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FOREWORD

Some DARPA IU activities for 1992 of interest to the IU community are
given below.

DARPA Organization
In 1992 the program structure of the Software and Intelligent Systems Office
(SISTO) was reorganized. As shown in Figure 1, IU projects are now in the
Autonomous Systems portion of Intelligent Systems. (Demo-il is the Unmanned
Ground Vehicle project.) The goals and missions of IU are unchanged.

Figure 1. Program Structure of DARPA SISTO

Applied Technology Demonstration Support
At DARPA the model for insertion of research into the "real world" is to set up
applied technology demonstrations (ATDs) such as RADIUS or the Unmanned
Ground Vehicle (UGV) as practical demonstrations ofthe ultimate uses of research.
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Unfortunately, by the end of a 3 to 5 year ATD the base technology is no longer on
the cutting edge. Rand Waltzman, my predecessor, came up with a solution for
RADIUS. He suggested a Broad Area Announcement (BAA) timed so as to
activate a set of research projects a year after RADIUS was initiated to deal with
perceived IU technology gaps. Proposed research projects are intended to supply
current technology to RADIUS, but not to be on the critical path. Five such research
projects in IU-RADIUS were initiated in 1992 and are reported on in these
proceedings. We have used the same approach for the UGV project in the area of
reconnaisance, surveillance, and target acquisition (RSTA). A BAA in six areas
related to UGV RSTA was announced in December of 1992, and a set of awards
will be made in early 1993. We hope that the results of these studies will transition
into later UGV demonstrations. Some care must be exercised in implementing such
studies:

"* someone must coordinate and integrate the various research efforts with the
ATD

"* the original contract with the ATD contractor must include tasks for interacting
with the researchers and for integrating the research results

"* software environment standards for integrating the results of the research into
the ATD must be part of the requirements of the research contracts

"* the research must not be warped into development by the pressures of the ATD
milestones

The major benefits of this approach are that real-world problems and
associated imagery can be made available to the IU community and that advanced
research can be incorporated into an ATD in advanced stages some time after the
ATD has been initiated.

Special IU Workshops
Several special IU workshops were held in 1992. Profs. Ruzena Bajcsy (U Penn)
and Takeo Kanade (CMU) hosted a computational sensors workshop at the U of
Penn in May 1992. Profs. Ryszard Michalski (GMU) and Azriel Rosenfeld (UMd)
hosted a workshop in learning in IU in October 1992. A session on benchmarking
in IU was held at the Principal Investigators workshop in September 1992. Reports
on these workshops appear in these proceedings.
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IU/AI Efforts
Typically, IU researchers do not communicate with researchers in AI and vice
versa. An attempt is being made to bring specialists in AI and IU together. Recent
efforts include IU and learning (UMd/GMU), IU and reasoning (ISI/USC), IU and
natural language (SUNY Buffalo), and IU and neural nets (new BAA; contracts to
be awarded early 1993). Although the current efforts are small, it is hoped that they
will lead to more extensive Al/1U interactions.

Automatic Target Recognition (ATR)
An interoffice DARPA working group on ATR has been set up to develop an
interdisciplinary approach to ATR problems. The participants are Software and
Intelligent Systems Technology Office (SISTO), Microelectronics Technology
Office (MTO), Advanced Systems Technology Office (ASTO), and Defense
Sciences Office (DSO). A joint BAA on ATR focussed on university participation
was issued in late 1992; awards are expected by Spring of 1993.

Oscar Firschein, DARPA SISTO
Program Manager
Image Understanding
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Maryland Progress in Image Understanding

Yiannis Aloimonos Rama Chellappa
Larry S. Davis Azriel Rosenfeld

Computer Vision Laboratory, Center for Automation Research,
University of Maryland, College Park, MD 20742-3275

Abstract algorithms. Our research on low-level vision, applica-
tions, and computational aspects is summarized in Sec-

Research in the Computer Vision Laboratory tion 4.
at Maryland is focused on both theoretical and Appended to this report is a list of the 52 technical re-
normative questions related to vision. This re- ports on computer vision issued by our Laboratory dur-
port reviews our work on these questions during ing the period October 1991-January 1993. The num-
the period October 1991-January 1993. The bers in brackets in the body of this report refer to these
areas covered include navigation, recognition, technical reports.
and low-level vision.

2 Navigation
1 Introduction Visual navigation constitutes a problem which is of con-
Understanding the mechanisms underlying the processes siderable practical as well as scientific interest. Naviga-
of visual perception and creating machines with visual tion, in general, refers to the performance of sensory-
capabilities requires that we answer several questions of mediated movement, and visual navigation is defined as
different natures. Among these are theoretical questions, the process of motion control based on an analysis of im-
whose answers will establish the range of possible mech- ages. A system with navigational capabilities interacts
anisms that could exist in intelligent visual systems; and adaptively with its environment. The movement of the
normative questions, whose answers will suggest what system is governed by sensory feedback which allows it to
classes of systems (animals or robots) would be desir- adapt to variations in the environment; it does not have
able or optimal for a given set of tasks. to be limited to a small set of predefined motions, as is

Our theoretical work on navigation is devoted to the the case for instance, with cam-activated machinery.
analysis of correspondence and the investigation of the Visual navigation encompasses a wide range of percep-
amount of three-dimensional information contained in tual capabilities that can be classified hierarchically. At
noisy correspondence (or optical flow) fields; as well as the bottom of the hierarchy are low-level tasks, such as
to such issues as the analysir of localization techniques on obstacle avoidance; the top is represented by high-level
natural terrain and the problem of visibility as it relates abilities like homing or target pursuit. As a basic capa-
to path planning. Our research on normative questions bility, however, every visual navigation system must have
related to navigation addresses the amount of informa- an understanding of visual motion. It should be able to
tion contained in normal flow fields that is necessary for estimate the three-dimensional motions of objects in its
robustly solving various specific problems, as opposed environment; even more important, it should be able to
to problems of general recovery. Both aspects of our determine its own motion. Naturally, a large part of our
navigation-related research are reviewed in Section 2. research is devoted to problems of visual motion analy-

Our theoretical work on recognition has concentrated sis.
on the study of local projective and affine invariants, One way to deal with the problem of visual navigation
while our normative research on recognition has been is to consider it as a subproblem of the general structure
devoted to the development of a framework for recogniz- from motion pro~lem (a theoretical question). By mak-
ing an object's purpose. Section 3 summarizes the main ing various assumptions we can develop solutions to the
results of our recognition-related research. problem of token correspondence. In general, such solu-

We have also developed a collection of low-level vi- tions will involve errors, but we can study ways of identi-
sion techniques for image segmentation, segmentation of fying special instances of the problem in which a robust
SAR data, and robust estimation, as well as new rep- solution for structure and motion is possible. Our work
resentations for objects that facilitate recognition tasks. along these lines is described in detail in Section 2.1.
Finally, we have worked in several specific application Section 2.2 is devoted to a normative study of the visual
areas such as handwriting, face recognition, aerial im- motion analysis problem, where we do not attempt to es-
age understanding, image enhancement and morphing, timate feature correspondences; rather, as input to our
as well as on the parallelization of image understanding motion algorithms we use the spatiotemporal derivatives
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of the image intensity function (the so-called "normal these Proceedings (parts of which have already been re-
flow"), ported in [31, 41, 45]). The monocular algorithm has also

been extended to the case of a binocular moving camera.
2.1 Motion and structure estimation For binocular imagery, the traditional stereo triangula-

2.1.1 Monocular and binocular recovery of tion method fails when the images are not taken by the
motion and structure parameters two cameras at the same time. But for our algorithm,

A central problem in vision-based navigation is to since asynchronism is allowed, the two cameras can func-

2-D information from a sequence of images to infer 3-D tion independently (see (45]).

motion and structure information. By its very nature The methods summarized above have attempted to

this problem is ill-posed and most of the algorithms dis- automate the problem of motion and structure recovery

cussed in the literature have proven to be very sensitive under relatively general conditions. In practical applica-

to even moderate levels of noise in the images and in the tions, such as the navigation of an autonomous vehicle

calibration of the camera(s). or a low-flying aircraft, several simplifications are pos-

Over the last few years, we have advocated the use of sible; for example, the 3-D structure of a (small) set

feature-based algorithms and long sequences of images of landmark points may be available from laser radar

for estimating the motion of the observer, the motions range measurements, or approximate vehicle kinematics

of objects, and the spatial structure of feature points. may be known from inertial sensors. Batch and recursive

These efforts have resulted in several robust algorithms estimation procedures for including such additional in-
formation from the sensors and the scene are describedwhich have been successfully used for both monocular in [16]. For the situation where the structure of a set

and biocla theroblea imaeseqmenches kof landmark points is known, the absolute pose and ve-
In 41], the problem of estimating the kinematics of the locity of the vehicle and the locations of the unknown

moving camera and the spatial structure of the objects feature points can be estimated. When the approximate

in a stationary environment is considered. Two estima- vehicle kinematics are known, the ranges of the feature

tion techniques, batch and recursive, have been used. points and improved estimates of the vehicle kinematics

The batch technique applies a non-linear least squares canb obtaoned escibed in 116].

method to the stack of images, while the recursive tech- can be obtained, 3s described in [16).

nique uses an iterative extended Kalman filter and an- 2.1.2 MAP estimation techniques [38, 47]
alyzes one frame at a time. The approach is based on
modeling the motion of the camera using nine parame- We have developed a Maximum A Posteriori (MAP)
ters, the 3-D coordinates of the rotation center and the estimation algorithm for calculating the camera motion
linear and angular velocity components. A perspective and the structure of a (rigid) scene. Our algorithm as-
camera model is used. The structure parameters are the sumes the motion to be along a smooth trajectory and
3-D coordinates of the feature points in the inertial co- the sequence of images to be dense, so that the displace-
ordinate system. These choices of parameters give rise ment between successive frames obtained by each camera
to linear plant models, leading to closed form solutions is at most n pixels, where typically n = 2. We calculate
for the state and covariance transition differential equa- instantaneous estimates of the focus of expansion (FOE)
tions. Time consuming numerical integration steps are and of the scene depth map, and keep updating these es-
not needed. timates through the sequence. Our algorithm begins by

The inputs to the algorithm are feature point corre- calculating a MAP estimate of the subpixel displacement
spondences over the image sequence. The task of au- at each point and a confidence measure in that estimate.
tomatically detecting and tracking features over a long Using points for which the confidence is high we calcu-
sequence of consecutive frames is a challenging problem late MAP estimates for the FOE and the magnitudes of
when the camera motion is significant. In general, fea- the displacements at these points, hence their relative
ture displacement over consecutive frames can approxi- depths. After determining the FOE we know the direc-
mately be decomposed into two components: (i) the dis- tion of displacement at every point in the image and we
placement due to camera motion, which can be compen- can again apply the MAP estimation method to get the
sated by image rotation, scaling, and translation; (ii) the displacement magnitude at each point and the associated
displacement due to object motion and/or perspective confidence measure. This information is propagated over
projection. The displacement due to camera motion is a long sequence of images by using the a posteriori dis-
usually much larger and more irregular than the displace- tribution calculated from a set of images as a prior for
ment caused by object motion and perspective deforma- the next set of images.
tion. We have developed a two step approach: First, the We have also developed a MAP algorithm for fusing
motion of the camera is compensated using a recently de- monocular and stereo cues from two image sequences
veloped image registration algorithm. Then consecutive to get robust estimates of both motion and structure,
frames are transformed to the same coordinate system under the same assumptions. The algorithm starts by
and the feature correspondence problem is solved as one calculating the instantaneous FOE, a MAP estimate of
of tracking moving objects using a still camera. Methods the displacement at each pixel, an associated confidence
of subpixel accuracy feature matching and tracking are measure, and a relative depth map, as described above,
introduced. The approach results in a robust and effi- from one of the two frame sequences. By calculating
cient algorithm. Results on several real image sequences the disparities at some feature points and using infor-
are presented in two papers that appear elsewhere in mation about their relative depths we compute the in-
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stantaneous component of velocity in the direction per- point in the 3-D scene. The model that has usually been
pendicular to the image plane. Using this information employed in previous research to relate 2-D image mea-
a depth map is calculated; this depth map is then used surements to 3-D motion and structure is that of rigid
to derive a prior probability distribution for disparity motion. Consequently, egomotion recovery for an ob-
that is used in matching the two frames of the stereo server moving in a static world has been treated in the
pairs. We use this method to estimate the disparity at same way as the estimation of an object's 3-D motion
each pixel independently; no assumptions about surface relative to an observer. The rigid motion model is ap-
smoothness are used. Both the monocular and binocular propriate if only the observer is moving, but it holds only
algorithms have been successfully tested on real image for a restricted subset of moving objects, mainly man-
sequences. made ones. Indeed, virtually all objects in the natural

world move non-rigidly. However, if we consider only
2.1.3 ]Frenet-Serret motion [36] a small patch in the image of a moving object, a rigid

We have formulated a new model, Frenet-Serret mo- motion approximation is legitimate. For the case of ego-
tion, for the motion of an observer in a stationary en- motion, data from all parts of the image plane can be
vironment. This model relates the motion parameters used, whereas for object motion only local information
of the observer to the curvature and torsion of the path can be employed. We have therefore developed concep-
along which the observer moves. We derive screw-motion tually different techniques for explaining the mechanisms
equations for Frenet-Serret motion and use them for ge- underlying the perceptual processes of egomotion recov-
ometrical analysis of the motion as well as analysis of ery and 3-D object motion recovery.
the resulting velocity patterns in 3-D and motion field
patterns on the surface of the velocity egosphere. We We have developed solutions to the following prob-
use normal flow to derive constraints on the rotational lems: (a) Given an active observer viewing an object
and translational velocity of the observer and compute moving in a rigid manner (translation + rotation), re-
egomotion by intersecting these constraints. We analyze cover the direction of the 3-D translation and the time
the accuracy of egomotion estimation for different com- to collision by using only the spatiotemporal derivatives
binations of observer motion and feature distance. We of the image intensity function. Although this problem
suggest that depth of field should be controlled in or- is not equivalent to "structure from motion" because it
der to make the analysis of egomotion on the basis of does not fully recover the 3-D motion, it is of importance
normal flow possible, and we derive the constraints on in a variety of situations. If an object is rotating around
depth which make either rotation or translation domi- itself and also translating in some direction, we are usu-
nant. These ideas have been validated by experiments ally interested in its translation-for example, in prob-
on real image sequences. lems related to tracking, prey catching, interception 127],

obstacle avoidance, etc. The basic idea of this motion
2.1.4 Feature-based and flow-based motion parameter estimation strategy lies in the employment of

estimation: a unified view [231 fixation and tracking [24, 46]. Fixation simplifies much
State-of-the-art algorithms for computing 3-D motion of the computation by placing the object at the center

from images can make use of either feature correspon- of the visual field, and the main advantage of tracking
dences or optical flow. In particular, noise-robust algo- is the accumulation of information over time. We have
rithms can be formulated for the feature-based two-view shown how tracking is accomplished using normal flow
problem-computing the depths of the feature points measurements, and have used it for two different tasks in
and the camera motion from correspondences of feature the solution process: First, as a tool to compensate for
points between two images. For such algorithms, condi- the lack of existence of an optical flow field, and to esti-
tions for decomposability and for uniqueness of the solu- mate the translation parallel to the image plane; and sec-
tion, as well as direct optimization solutions and "critical ond, to gather information about the motion component
surface" conditions, can be formulated. Similarly, noise perpendicular to the image plane. (b) Given an active
robust algorithms can be formulated that make use of op- observer moving rigidly in a static environment, recover
tical flow; here too, decomposability, uniqueness, direct the direction of its translation and its rotation. This is
optimization, and the "critical surface" can be treated, the task of passive navigation, a term used to describe
and relationships to the algorithms for finite motion can the set of processes by which a system can estimate its
be analyzed. In both the feature-based and flow-based motion with respect to the environment. Our approach
cases, a simpler treatment can be given for the case of to egomotion estimation [32] is based on a geometric
motion on a planar surface. analysis of the properties of the normal flow field. The

fact that the motion is rigid defines geometric relations
2.2 Direct motion analysis between certain values of the spatiotemporal derivatives
We have also addressed the problem of estimating 3-D of the image intensity function. We have proved that
motion directly without going through the intermedi- the normal flow gives rise to global patterns in the im-
ate stage of optical flow or correspondence estimation. age plane. The geometry of these patterns is related to
The inputs that we have utilized are the spatiotemporal the three dimensional motion parameters. By locating
derivatives of the image intensity function (the normal some of these patterns, which depend only on subsets
flow), of the motion parameters, using a simple search tech-

From measurements on the image we can only com- nique, the 3-D motion parameters can be found. The
pute the relative motion between the observer and any algorithmic procedure that we have developed (which is
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described in a separate paper in these Proceedings) is Current approaches to robot motion planning are lim-
provably robust, since it is not affected by small per- ited in their ability to deal with an uncertain and dy-
turbations in the local image motion measurements. In namically changing environment. We have developed [5]
fact, since only the signs of the normal flow measure- a probabilistic model based on discrete events that ab-
ments are employed, the direction of translation and the stract the dynamic interaction between the robot and
axis of rotation can be estimated in the presence of up the unknown part of the environment. The resulting
to 100% error in the image measurements. framework makes it possible to design and evaluate mo-

tion planning strategies that consider both the known
2.3 Localization, visibility, and path planning portion of the environment and the portion that is un-

2.3.1 Localization known but satisfies a probability distribution. We have
studied three instances of the general model that have

We have developed vhm approach to autonomous local- been useful in designing efficient motion planning algo-
ization of ground vehicles on natural terrain s 4]. The rithms under various assumptions about the robot's en-localization problem is solved using measurements in- vironment and its behavior with respect to unexpected

cluding altitude, heading, and distances to specific en- events.

vironmental points. Our algorithm utilizes random ac-

quisition of distance measurements to prune the possible 3 Recognition
location(s) of the viewer. The approach is also applicable
to airborne localization. The computational complexity The problem of object recognition has been traditionally
of an implementation on the Connection Machine and treated as one of matching image features or recovered
the accuracy of the localization have been analyzed. surface features with geometric object models. Such ap-

A method for localization and positioning in an indoor proaches are primarily devoted to the robust detection
environment has also been developed [33]. We define or recovery of features and to handling the combinatorial
localization as the act of recognizing the environment, complexity of the matching process. In this spirit, the
and positioning as the act of computing the exact coor- problem of recognition is defined as finding regularity
dinates of a robot in the environment. Our method is across views, and the theories of object recognition can
based on representing the scene as a set of 2-D views and be classified into three main groups: computation of in-
predicting the appearances of novel views by linear com- variant properties, object decomposition into parts, and
binations of the model views. The method accurately alignment. In Section 3.2 our recent work on invariants
approximates the appearance of scenes under weak per- is presented,with emphasis on local projective and afiine
spective projection. Analysis of this projection as well invariants. Section 3.3 is devoted to a novel method
as experimental results demonstrate that in many cases of two-dimensional object segmentation and recognition,
this approximation is sufficient to accurately describe the and Section 3.4 deals with our recent work on alignment
scene. When the weak perspective approximation is in- (pose estimation). Section 3.1 describes our recent work
valid, either a larger number of models can be acquired on an alternative framework for recognition.
or an iterative solution to account for the perspective
distortions can be employed. The method has several 3.1 A framework for object recognition [101
advantages over other approaches. It uses relatively rich Vision systems that operate in different environments
representations; the representations are 2-D rather than and perform different visual tasks do not necessarily rec-
3-D; and localization can be done from only a single 2- ognize objects using similar algorithms. A vision system
D view. The same general method is applied to both that needs to recognize ten types of objects does not nec-
the localization and positioning problems, and a simple essarily work in the same way as a system that needs to
algorithm for repositioning, the task of returning to a recognize one type or a hundred types. A system that
previously visited position defined by a single view, can serves a rapidly moving agent is not necessarily built in
be derived from this method. the same way as a system for a stationary agent. Object

recognition should be studied by taking into account not
2.3.2 Visibility and path planning only the objects that have to be recognized but also the

We have investigated [29] two classes of parallel al- agent that has to perform the recognition. Since different
gorithms for point-to-region visibility analysis on ter- agents, working with different purposes in different envi-
rain: ray-structure-based methods and propagation- ronments, do not recognize visually in the same manner,
based methods. A new propagation-based algorithm we should not seek a general, universal theory of object
has been developed which avoids problems commonly recognition. Instead, we should concentrate on develop-
occurring with such algorithms. The performance and ing a methodology that, given an agent in an environ-
characteristics of the two kinds of algorithms have been ment, will suggest how to perform particular recognition
compared. The sources of uncertainty in visibility com- tasks.
putation and the importance of taking uncertainty into An agent is a robot that has visual (and other) sensing
consideration have been analyzed. Different methods for capabilities and is able to carry out a set of behaviors.
representing the uncertainty have been studied, includ- These behaviors are direct results of a set of purposes or
ing Monte Carlo simulation, analytic estimation, and intentions that the agent has. A behavior is identified
some simple heuristic indicators. Our experiments show as anything that changes the internal state of the agent
that these indicators can be used for efficient coarse clas- and its relationship to the environment. Carrying out a
sification of the likelihood of point intervisibility. behavior calls for the performance of various recognition
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tasks. By performing partial recovery of attributes of the objects are part of the relation set. The intention en-
an object, we can find out if the object is suitable for codes the final state. Grasping, pushing and moving are
the desired purpose. In general an object can be used the behaviors. Solving the intention-to-behaviors prob-
for many purposes. The agent must recognize the one lem gives a solution to this problem.
needed to carry out its behavior. We are interested in object utilization; this is not the

Perception is a causal and intensional transaction be- same as naming an object. Under our framework an
tween the mind and the world. The intensional content agent acts in behavior Bh, under intention Ik. The
of our visual perception is termed "the visual experi- behavior calls for the completion of recognition tasks
ence". When we see a table there are two elements in the Tkil,..., Ter,. The behavior sets parameters for the
perceptual situation: the visual experience and the ta- recognition tasks. Each recognition task activates a dif-
ble. The two are not independent. The visual experience ferent collection of basic perceptual modules. Each mod-
has the presence and features of the table as conditions ule qualitatively finds a generic object property which is
of satisfaction. The content of the visual experience is a result of one or a combination of direct low-level com-
self-referential in the sense that it requires that the state putations on some sensory data (possibly done by other
of affairs in the world must cause the visual experience modules). The result of a module's operation is given as
which is the realization of the intensional content. a qualitative value. Each module has its own neighbor-

When we visually perceive an object we have a visual ing open intervals which are parameter-specific. The OhI
experience. This visual experience is an experience of module can take one of qil,..., qi, qualitative values.
the object. It may be that the conditions of satisfaction The state of our recognition system, denoted by Qi,
are not fulfilled. This is the case for illusions, halluci- is a tuple of all the qualitative values of our modules
nations, etc. The visual experience, and not the world, (qi,...,q,,) under recognition task TkiJ. Each recogni-
is at fault. The visual experience that we have, in this tion task T27i defines a system state that will constitute
case, is indistinguishable from the visual experience we a positive answer to that recognition task. Recognition
would have if we actually saw the real object. The in- is done when we complete our task, which means a sta-
tensional content of the visual experience determines its ble answer from our modules. The conditions for this
conditions of satisfaction. A visual experience in that kind of decision will not be considered here and proba-
sense is a mental phenomenon which is intrinsically in- bly should take into account utility measures (frequency
tensional. of appearance, network complexity, etc.).

An agent is defined as a set of intentions, 1,, 12,. . ., 1. Under this framework learning can be defined as the
Each intention Ik is translated into a set of behav- process of matching the "correct" system state with the
iors, Bk1 , Bk2,..., B,,. Each behavior Bki calls for recognition task needed by a certain behavior. This pro-
the completion of recognition tasks Tkil, TM,2, ... , T113 . cess is actually the reverse of recognition. A behavior
The agent acts in behavior Bki under intention 41. The creates a need for an object. An object is segmented by
behavior calls for the completion of recognition tasks low level modules, and a system state is achieved. The
Tkl, ,...,Ti,. The behavior sets parameters for the object is tested and a satisfied result for a needed be-
recognition tasks. Under one behavior a chair will an- havior starts the creation or definition of a recognition
swer yes to a recognition task that is looking for obsta- task.
cles, under another behavior it will answer yes to a task When we need to perform a given recognition task
that is looking for a sitting place, and under still another Tki, under behavior Bb, and intention I4, we may assume
it will answer yes to a task that is looking for an assault that some parameter setting is done by the intention and
weapon. the behavior. These parameters fix the setting for the

We view the recognition process along the axis (inten- task, which includes the required system state (some of
tion, behavior, recognition task). For a theory of purpo- the modules might be in don't care states) and possibly
sive object recognition we should be able to make two ba- some additional "common knowledge" parameters, such
sic transformations: first, from a desired intention to the as environmental parameters (outdoor, indoor), preda-
set of behaviors that achieve it; second, from a specific tor, size, etc. From this pont of view the recognition
behavior to some needed recognition task(s). We have process makes use of high-level information. For further
shown [10] that the intention-to-behaviors problem with discussion of object categories and functional modeling
a finite number of behaviors is undecidable by reducing it see [10].
the halting problem. We believe that the transformation
from behaviors to recognition tasks is also hard. 3.2 Inva-iants (19, 34, 44]

If we add constraints to our definition of the problem Invariants are useful in solving major problems associ-
we can move from undecidability to intractability. For ated with object recognition. For instance, different im-
example, by constraining ourselves to a constant set of ages of the same object often differ from each other be-
objects we can show a PSPACE-hard lower bound. This cause of the different viewpoints from which they were
can be shown by reducing our problem, for example, to taken. To match the two images, standard methods thus
that of motion planning for an object in the presence of need to find the correct viewpoint, a difficult problem
movable obstacles, where the final positions of the obsta- that can involve search in a large parameter space of all
cles are specified as part of the goal of the motion. The possible points of view and/or finding feature correspon-
reduction is straightforward. The set of objects contains dences. Geometric invariants are shape descriptors, com-
the moving objects and the obstacles. The positions of puted from the geometry of the shape, that remain un-
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changed under geometric transformations such as change arate paper in these Proceedings. Some of our earlier
of viewpoint. Thus they can be matched without search. work on object pose estimation is described in (12].
Deformations of objects are another important class of
changes for which invariance is useful. 4 Low-level vision

We have developed a new and more robust method of
obtaining local projective and affine invariants. These 4.1 Estimation and segmentation
shape descriptors are useful for object recognition be- 4.1.1 Image segmentation
cause they eliminate the search for the unknown view- The problems of image estimation and segmentation
point. Being local, our invariants are much less sensitive can be cast in a joint Maximum A Posteriori (MAP)
to occlusion than the global ones used by others. The framework using Gibbs distributions defined over the im-
basic ideas underlying our method are: i) employing an ageworkensi ties derine over theimplicit curve representation without a curve parameter, age intensities and over line processes representing the
thusi icurveasi robuesentatine; wiius a cuanonicalmcord, boundaries of image regions. MAP estimation is thenthus increasing robustness; ii) using a canonical coordi- reduced to minimizing an appropriate energy function
nate system which is defined by intrinsic properties of defined on the intensity and line processes.
the shape, independently of any given coordinate sys- The energy function typically has three components;
tem, and is thus invariant. Several shape configurations (a) a measure of closeness to the data, (b) a weak con-
have been treated using this approach: a general curve (a) a hmeasu me s to the data ib aoweak con-
without any correspondence, and curves with known cor- straint which assumes that the image is mostly smooth
respondences of one or two feature points or lines. The except at the discontinuities, and (c) penalties on broken
method is applied by fitting an implicit polynomial in contours, multiple edges, etc. In it. most general form,a neighborhood of each object contour point. It has the energy is highly non-convex, causing deterministic

relaxation techniques to converge to shallow, local min-been successfully implemented for real images of vari- ima. Stochastic relaxation is not always a viable alterna-
ous two-dimensional objects in three-dimensional space. tive due to the computational complexity of the problem.
This work is described in detail in a separate paper in We are interested in deterministic, continuation methods
these Proceedings. to solve the problem.

3.3 Target recognition [521 Alternative energy functions have been suggested
which depend primarily on the intensities and usually ig-

A multilevel energy environment has been developed nore the interactions between the line processes. We can
that simultaneously performs delineation, representation utilize the insights gained by these methods by showing
and classification of two-dimensional object shapes in an that each of the alternative energy function sequences
image utilizing a global optimization technique. The en- has an equivalent sequence in the domain of the inten-
ergy environment supports a novel multipolar represen- sity and line processes. Interactions can then be added
tation which allows the delineation and representation once the equivalent energy functions have been obtained.
tasks to be viewed as a single operation. The delin- There are many equivalent energy functions in the do-
eator acts as a hypothesis generator for the multipolar main of the intensity and line processes; the concept of
representation, which uses description length tests to de- an uncertainty function can help us to choose the proper
termine whether to establish new "centers". Model in- equivalent energy function. The uncertainty function is
formation is then utilized at these centers to identify analogous to the entropy in a statistical mechanical sys-
pieces of objects. In this way occluded objects can be tem.
recognized. This method is more robust than conven- The resulting algorithm is a combination of the Con-
tional, multistaged approaches because it incorporates jugate Gradient and the Iterated Conditional Models al-
all known information into a single decision process. It gorithms and is completely deterministic. It has been
has been applied to the delineation and classification of applied successfully to the segmentation of aerial images
vehicles in FLIR images. Further details on this work [I].
can be found in a separate paper in these Proceedings. A segmentation-based image coding technique has also
3.4 Pose estimation been developed [17]. Both uniform and textured re-

gion extraction algorithms are used for segmentation.
We have shown that the bounded error recognition prob- Textured regions are reconstructed using 2-D noncausal
lem for images of non-planar three-dimensional objects Gaussian-Markov random field models. Uniform re-
using point features can be decomposed into a set of one- gions are reconstructed using polynomial expansions. An
dimensional search tasks, involving searches along lines arithmetic coder is used for coding the boundaries of re-
joining the origin of the object coordinate system to the gions. Reasonable quality images have been obtained at
feature points chosen to model the object. Points are a compression factor of 82:1.
selected along these lines at locations given by the coor-
dinates of the detected image points; concurrent brack- 4.1.2 Segmentation of SAR data [18, 401
eting of these points by segment tree search along each A statistical image model has been developed for seg-
line provides maximal matchings between feature points menting polarimetric synthetic aperture radar (SAR)
and image points. The depth of search is limited by pixel data into regions of homogeneous and similar polarimet-
resolution. This method is well adapted to the task of ric backswatter characteristics. A model for the condi-
tracking objects in the presence of variable occlusion and tional distribution of the polarimetric complex data is
clutter. This work is described in greater detail in a sep- combined with a Markov random field representation for
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the distribution of the region labels to obtain the pos- points is an important task in many application areas.
terior distribution. Optimal region labeling of the data Recently the computation of linear estimators that are
is then defined as maximizing the posterior distribution robust has been recognized as important, since these es-
of the region labels given the polarimetric SAR complex timators are insensitive to outlying data points, which
data. This MAP technique has been implemented on a arise often in practice. We have studied one such robust
parallel optimization network. Two procedures can be estimator [13], Siegel's repeated median (RM) line es-
used for selecting the characteristics of the regions; one is timator, which achieves the highest possible breakdown
supervised and requires training areas, the other is unsu- point of 50%, and have developed: (1) a simple practi-
pervised and is based on multidimensional clustering of cal randomized RM algorithm that runs in O(n log2 n)
the logarithms of the parameters composing the polari- time with high probability, and (2) a slightly more com-
metric covariance matrix of the data. Experiments using plex randomized RM algorithm which performs as well
real multilook polarimetric SAR complex data, dual po- asymptotically, and which is shown by empirical evi-
larization SAR data, and fully polarimetric SAR data dence to perform in time O(n log n) on many realistic
indicate that all three types of data yield generally sim- input distributions.
ilar segmentation results. Existing algorithms for afline equivariant regression

For unsupervised segmentation, classes of polarimet- estingtalgorith for a oine arian treion
ric backscatter have been selected based on multidimen- estimators with high breakdown point are computation-
sional fuzzy clustering. The clustering procedure uses ally intensive. Heuristically, this appears to be due
both polarimetric amplitude and phase information, is to combinatorial and geometric reasons. Consequently,
adapted to the presence of image speckle, and does not non-afvine estimators may allow faster computation. We
require an arbitrary weighting of the different polarimet- ye developed [431 an RM algorithm which runs in
ric channels; it also provides a partitioning of each data O(n log2 n) time, a substantial improvement over the

sample used for clustering into multiple clusters. Given naive O(n') method. The new algorithm allows an em-
the classes, the entire image can then be classified using pirical study of this estimator for n up to 40,000. It turns

a MAP polarimetric classifier. Successful segmentation out that the finite-sample efficiencies converge extremely

results have been obtained using four-look polarimetric slowly although the estimator is asymptotically normal.

SAR complex data of lava flows and of sea-ice acquired More generally, given a set of n distinct points in
by the NASA/JPL airborne polarimetric radar (AIR- d-dimensional space that are hypothesized to lie on a
SAR). hyperplane, robust statistical estimators have been re-

cently proposed for the parameters of the model that
4.1.3 Robust estimation [30] best fits these points. We have developed [48] efficient

Data processing for scientific and industrial tasks of- algorithms for computing median-based robust estima-
ten involves accurate extra.Aion of theoretical model pa- tors (e.g., the RM and Theil-Sen estimators) in high-
rameters from empirical data, and requires automated dimensional space, by generalizing the computational
estimation methods that are robust in the presence of geometry techniques that were used to achieve efficient
"noisy" (i.e., contaminated) data. Robust estimation is algorithms in the 2-D case. This yields Q(nd- I log n) ex-
thus an important statistical tool that is frequently ap- pected time algorithms for the d-dimensional Theil-Sen
plied in numerous fields of science and engineering, and RM estimators. Both algorithms are space optimal,

Since the computational complexity of an estimator is i.e., they require 0(n) storage, for fixed d. An extension
one of the most important measures of its practicality, of the methodology to nonlinear domain(s) such as circle
searching for methods that reduce the time (and space) fitting has also been demonstrated.
complexity of robust estimators is a desirable research
goal. We have developed several computationally ef-
ficient algorithms for the exact computation of robust 4.1.4 Reliability of geometric computations
statistical estimators. In particular, we have studied the [221
design and analysis of such algorithms for various prob-
lem domains, including line, curve, and surface fitting. The reliability of 3-D interpretations computed from
In this connection, we have developed a general method- images can be analyzed in statistical terms by employ-
ology for the efficient computation of these classes of ing a realistic model of image noise. First, the reliability
estimators through the application of computational ge- of edge fitting can be evaluated in terms of image noise
ometry techniques. In particular, we have developed ran- characteristics. Then, the reliability of vanishing point
domized algorithms for the above tasks that have the fol- estimation can be deduced from the reliability of edge
lowing properties: (1) The algorithms always terminate fitting. The result can then be applied to focal length
and return the correct computational results; (2) the im- calibration, and an optimal scheme derived in such a way
proved (expected) running times occur with extremely that the reliability of the computed estimate is maxi-
high probability; (3) the algorithms are quite easy to im- mized. The confidence interval of the optimal estimate
plement; (4) the constants of proportionality (hidden by can also be computed. We can also evaluate the reliabil-
the asymptotic notation) are small (i.e., the algorithms ity of fitting an orthogonal frame to three orientations
are practical); and (5) the algorithms are space optimal obtained by sensing. Finally, we can derive statistical
(i.e., they require linear storage). criteria for testing edge groupings, vanishing points, fo-

The problem of fitting a straight line to a set of data cuses of expansion, and vanishing lines.
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4.2 Representation and geometry tic (stochastic), and probabilistic mixing of deterministic
4.2.1 Multipolar representation [3] processes. We have found that the probabilistic models

can produce smooth isotropic or elongated shapes, con-
We have developed a new method of delineating and cavities, and protrusions.

representing lobed objects, i.e., objects containing mul-
tiple compact parts, by using a multi-polar representa- 4.2.4 Polygonal ribbons [7, 20]
tion (MPR). The process begins by constructing a single- A polygonal ribbon is a finite sequence of polygons
center polar representation somewhere inside the object. such that each pair of successive polygons intersect ex-
This establishes a 1-D, cyclic Markov Random Field actly in a common side. We have investigated various
(1DCMRF) which optimizes edge sharpness and con- geometric properties of such ribbons in two and three
tour smoothness. The optimization is done using simu- dimensions, including properties such as nonselfintersec-
lated annealing. The 1DCMRF is segmented into sectors tion, orientability, and twist. When the polygons are
at significant minima of the radius; these sectors define all of simple types-for example, when they are all tri-
lobes. (An alternative is to segment at zero-crossings of angles or all rectangles-they can be represented com-
the contour curvature; see [521.) Next, each lobe is as- pactly in terms of such quantities as vertex coordinates,
signed a candidate polar sector representation centered side lengths, and dihedral angles. For nonselfintersecting
at the lobe's centroid. This new set of representations ribbons, we have established basic connectivity proper-
is then compared to the previous one using a "radius ties of the ribbon and its border.
entropy test" (RET). This test selects the representa-
tion with the highest degree of roundness, i.e. the rep- 4.2.5 Connectedness [6]
resentation in which the radii are most uniform in their In collaboration with Prof. A. Nakamura of Japan,
sizes. When a new representation supersedes an old one, we have solved the long-outstanding problem of proving
each new polar center establishes a I-D Markov Random that two-dimensional connected pictures over {O,1) are
Field for its sector and boundary conditions are deter- not recognizable by finite-state acceptors.
mined between neighboring MRFs. This process contin-
ues recursively within each of these MRFs. To deal with 4.3 Applications
deep lobes and concavities we define two special classes
of MRFs. Tunnel MRFs are used to explore long narrow 4.3.1 Aerial image understanding
lobes; these MRFs extend the original lobe center by di- The University of Maryland (with TASC a a subcon-
viding the lobe's radii into fore and aft groups. External tractor) is one of the group of institutions doing research
MRFs, whose centers lie outside of the object, are used on aerial image understanding in support of the RADIUS
to delineate concavities. These are detected when signif- program. The emphasis of our research is on knowledge
icant contour gaps appear between neighboring MRFs. based change detection using site models and image ana-
These MRFs must also meet the RET criterion in their lysts' (IA) domain expertise. Typically, an IA uses a set
creation. The method can operate on raw image data of object and background models to build a site model
without preprocessing; the object representation is con- for an area of interest. Change detection consists of clas-
structed simultaneously with the delineation process, an sifying changes in the imagery into changes due to site
important advantage when using the representation for updates, changes due to activity, and irrelevant changes
object recognition in real images, as described in [52]. due to illumination, seasonal variations, etc.

Before change detection can be attempted, the newly
4.2.2 Multiresolution curve representation [25) acquired images have to be registered to the site model.

We have developed a robust method for describing pla- Site models can also be used to mediate registration be-
nar curves at multiple resolution using curvature infor- tween two severely off-nadir images. We are developing
mation. The method takes into account the discrete na- methods of using site models in image registration; this
ture of digital images as well as the discrete aspect of is especially important in oblique acquisition situations
a multi-resolution structure (pyramid). The robustness where 3-D information is critical due to foreshortening,
of the technique is due to information that is extracted etc.
by observing the behavior of corners in the pyramid. Even if the task of image registration can be accom-
The algorithm is conceptually simple and easily paral- plished, the IA's expertise is crucial in identifying rel-
lelizable. We have analyzed the curvature of continuous evant changes. This expertise is dependent on the site
curves in scale-space, and studied the behavior of cur- and the specific intelligence agenda. We are studying
vature extrema under varying scale. These results are how image understanding (IU) techniques can aid the
used to eliminate any ambiguities that might arise from IA in change detection. This will be accomplished by
sampling problems due to the discreteness of the repre- designing an interface that allows the IA to specify what
sentation. are to be considered as relevant changes, and to select

appropriate IU algorithms for detecting these changes.
4.2.3 Growth models for shapes [51] Once changes have been identified, updating of the site

We have developed discrete models for growth of a models may be necessary. We plan to use non-monotonic
shape from a point on a two-dimensional Cartesian grid. reasoning based techniques such as assumption based
By growth is meant an accretionary process occurring at truth maintenance systems (ATMS) and their variants to
the boundary of the shape. We have studied three types efficiently perform the searches required for image regis-
of growth models: deterministic (periodic), probabilis- tration; to formulate constraints on IU algorithms (e.g.,
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for stereo or building detection); and to provide interac- a handwritten document should be analyzed within the
tive user guidance in change detection. context of the process which created it.

A significant part of our research effort will be the The problem of off-line handwritten character recog-
employment of usability analysis techniques and guid- nition has eluded a satisfactory solution for several
ance from experienced LAs to ensure the utility of the decades. Researchers working in the area of on-line
algorithms that we develop. A more detailed paper re- recognition have had greater success, but the possibil-
porting our progress to date can be found elsewhere in ity of extracting on-line information from static images
these Proceedings. has not been fully explored. The experience of forensic

document examiners assures us that in many cases, such
4.3.2 Tfrees [11, 39] information can be successfully recovered.

Plants such as trees can be modeled by three- We have designed a system for the recovery of tempo-
dimensional hierarchical branching structures. If these ral information from static handwritten images, based
structures are sufficiently sparse, so that self-occlusion is on local, regional and global temporal clues which are
relatively minor, we have shown that their geometrical often found in hand-written samples, and have shown
properties can be recovered from a single image. how these clues can be recovered from an image. Our

The distribution of leaves in a tree crown can be mod- approarh attempts to understand the handwriting sig-
eled by a random geometric process. Statistical proper- nal and to perform a detailed analysis of stroke and sub-
ties of such distributions can then be derived, including stroke properties. We believe that the recovery task re-
the probability of seeing through the leaves, and the dis- quires that we break away from traditional thresholding
tribution of leaf gray levels under various illumination and thinning techniques, and we have developed a frame-
models. work for such analysis. We have shown how temporal

clues can reliably be extracted from this framnework and
4.3.3 Faces [15, 421 have developed a control structure for integrating the

Faces represent one of the most common visual pat- partial information. Many seemingly ambiguous situa-
terns in our environment, and humans have a remarkable tions can be resolved by the derived clues and by knowl-
ability to recognize them. Face recognition does not fit edge about the writing process.
into the traditional approaches of model based recogni- If we view handwriting as a parameterized process,
tion in vision. Like most other natural objects, a geo- then problems such as signature verification can be posed
metrical interpretation of faces is difficult to achieve. We as the recovery of specific parameters. To demonstrate
have developed a feature based approach to face recog- this approach, we have studied the mechanical aspects
nition, where the features are derived from the inten- of instrument grasp and have qualitatively demonstrated
sity data without assuming any knowledge of the face the recovery of parameters which have stable and mean-
structure. The feature extraction model is biologically ingful effects on the static image. Our model for the
motivated, and the locations of the features often corre- grasping of a writing instrument makes explicit the forces
spond to salient facial features such as the eyes, nose, etc. exerted in the hand/instrument/paper system while the
Topological graphs are used to represent relations be- instrument is in motion. We have used this model as
tween features, and a simple deterministic graph match- a basis for analyzing the pressure exerted on the writ-
ing scheme which exploits tho' basic structure is used to ing surface for strokes of different orientations. We have
recognize familiar faces from a database. Each of the shown that relative pressure information is preserved in
stages in the system can be fully implemented in paral- static handwriting images. This information is a valu-
lel to achieve real time recognition, able heuristic in recovering the direction of motion of the

We have also developed an approach to labeling the instrument which created the stroke, and can be applied
components of faces from range images. The compo- to the development of on-line recognition techniques that
nents of interest are those which humans usually find can be used on off-line handwritten data.
significant for recognition. To cope with the non-rigidity
of faces, an entirely qualitative approach is used. A pre-
processing stage employs a multi-stage diffusion process Single instruction stream, single data stream (SIMD)
to identify convexity and concavity points. These points processor array machines are popular in practical par-
are grouped into components and qualitative reasoning allel computing. Such machines differ from one another
about possible interpretations of the components is per- considerably in the level of autonomy provided to each
formed. Consistency of hypothesized interpretations is processing element (PE) of the array. An understanding
verified using context-based reasoning. of the levels of autonomy provided by the architectures is

important in the design of efficient algorithms for them.
4.3.4 Handwriting [8, 211 We can classify SIMD architectures into six categories

The primary intention of the handwriting process is differing in key aspects such as the selection of the in-
to produce a series of perceptually meaningful strokes structions to be executed, operands for the instructions,
which collectively relay a message to the reader. Un- and the source/destination of communications.
fortunately, the process may be quite complex, so noise The data parallel model of computation used in pro-
is easily introduced and correct interpretation may not cessor arrays exploits the parallelism in the data by pro-
be possible in the absence of contextual knowledge (lin- ceasing multiple data elements (pixels, in image analy-
guistic or graphic) about the domain. We believe that sis) simultaneously by assigning one PE to each data ele-
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ment. This scheme does not make efficient use of the pro- ing needed to solve the stereo matching problem by only
cessor array when processing relatively small data struc- a small fraction. On a 16K processor Connection Ma-
tures. We have developed [37] a technique of data repli- chine the entire algorithm requires as little as I second
cation that combines operation parallelism with data for simple 512 x 512 images.
parallelism, to process small data structures efficiently
on large processor arrays. It decomposes the main op- 4.5 Miscellaneous
eration into suboperations that are performed simulta- 4.5.1 Enhancement [35] and morphing [50]
neously on separate copies of the data structure. The We are studying the use of a multi-stage physical dif-
autonomy of the individual PEa is critical to this de- fusion process in early vision procesing of range images.
composition. We have developed replicated data algo- The input range data is interpreted as occupying a vog-
rithms for several low level image operations such as his- The in page d a isfinterprete socup a voltogammngconoluion ad rnk rde fiterng[2]. ume in 3-D space. Each diffusion stage simulates the
togramming, convolution, and rank order filtering process of diffusing the boundary of the volume into theAdditionally, we have developed a way of constructing volume. The result appears to be useful for both discon-
a replicated data algorithm for an operation automat- tinuity detection and segmentation into shape coherent
ically from an image algebra expression for it, demon- regions.
strating its generality. We have also devised a replicated regins.
data algorithm to compute single source shortest paths Image interpolation and metamorphosis can also be
on general graphs, demonstrating its applicability be- performed by using a scof'A space created by diffusing
yond image analysis. We have analyzed the speedup the difference function of wse source and the goal im-
performance of the algorithms on various interconnec- ages. This formulation allows us to minimize the needtion networks to determine the conditions under which for human intervention in the selection of features in a
the technique results in a speedup. Implementations of process such as image metamorphosis. The smooth tran-the algorithms on a Connection Machine CM-2 and a sitions are accompanied by a moderated blurring that isMasPar MP-i have yielded impressive speedups. useful in displaying the metamorphosis process. The ap-proach can also be applied to motion image sequences as

We have also developed [37] a parallel search scheme a method of enhancing animation.
for the model-based interpretation of aerial images un-
der a focus-of-attention paradigm and have implemented 4.5.2 Matching [28]
it on a CM-2. Candidate objects are generated as con- In its original form the point pattern-matching relax-
nected combinations of the connected components of the ation scheme of Ranade and Rosenfeld did not easily
ir.hage and are matched against the model by checking permit the representation of uncertainty, and it did not
if the parameters computed from the region satisfy the exhibit the desirable property that confidence in consis-
model constraints. This process is posed as a search in tent pairings of features should increase from one itera-
the space of combinations of connected components with tion to the next. Because the process of pooling intrinsic
the finding of an (optimally) successful region as the goal. support with contextual support is essentially a process
Our implementation exploits parallelism at multiple lev- of evidence combination, it was suggested by Faugeras
els by parallelizing control tasks such as the management over ten years ago that the evidence theory of Dempster
of the open list. The level of processor autonomy and and Shafer might be an appropriate framework for relax-
other details of the architecture play important roles in ation labeling. We have implemented such an approach
the search scheme. and applied it to the domain of object recognition in

We have defined [9] a claw of routing operations which simulated SAR imagery.
can be performed in n unit-routes on a hypercube with
2" nodes. Specifically, we have shown that the con- 4.5.3 Bibliographies [14, 49]
junction of two conditions, called wrap-contiguity and Bibliographies containing a total of over 3000 refer-
wrap-mononicity, is sufficient to allow efficient routabil- ences on computer vision, image analysis, and related
ity. This result subsumc3 some earlier results on hyper- topics have been prepared for the years 1991 and 1992.
cube routing.

The use of dynamic programming for stereo matching References
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that this approach is suitable for parallel processing, but [1] A. Rangarajan and R. Chellappa, "A Continua-
there have been no attempts to implement a dynamic tion Method for Image Estimation and Segmenta-
programming stereo matching algorithm on a parallel tion", CAR-TR-586, F49620-88-C-0067 and MIP-
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Abstract techniques robust enough to operate in complex scene
domains where conventional correlation based stereo is

The image understanding program at SRI Interna- known to be inadequate (e.g., in urban scenes where oc-
tional is a broad effort spanning the entire range of ma- clusions prevent direct matching, and in ground-level
chine vision research. In this report we describe our views of natural terrain where there are radical depth
progress in two major scientific areas: (1) recovery of changes over very small angular displacements and thus
scene geometry, and (2) semantic labeling and scene the continuity assumption is often violated). We de-
modeling. We have addressed the problems of auto- scribe progress in using multiple images to obtain an in-
mated and interactive scene analysis in two application tegrated geometric and physical description of the scene
domains: the first is concerned with modeling the earth's in terms of surfaces and their reflectance properties
surface from aerial imaging sensors; the second is con- rather than just isolated points. We are also involved
cerned with ground-level vision and vision-based land in an effort to assess the capabilities of :xisting stereo
navigation, approaches and techniques to support land-based navi-

In particular, we describe progress in automated and gation, in developing techniques for building object de-
interactive scene modeling and visualization; in auto- scriptions that evolve gradually over time as more data
matic image segmentation and delineation of both nat- are obtained, and in devising motion analysis techniques
ural and man-made objects; in detecting and tracking for detecting and tracking moving objects in data taken
moving objects; and in using knowledge beyond shape by moving sensors.
and immediate appearance to recognize objects in natu-
ral scenes and other complex domains. The problems of semantic labeling (e.g., object recog-

nition) are known to be extremely difficult, and we have
taken two different approaches in our work. Where it

1 Introduction is feasible for a human to be part of the process, as is
typically true in such tasks as building terrain and "site"

The overall goal of Image Understanding research at SRI models from aerial imagery, the problem becomes one of
International is to obtain solutions to fundamental prob- designing an effective interactive environment with the
lems in computer vision that are essential in allowing ma- proper man-machine interface, feature extraction proce-
chines to model, manipulate, and understand their en- dures, and visualization capabilities. In the robotic do-
vironment from sensor-acquired data and stored knowl- main, where human intervention is limited, we have de-
edge. vised a context-based methodology for recognizing com-

In this report we describe progress on the fundamen- plex man-made and natural objects, and have developed
tal problems of geometric recovery and semantic label- and refined a set of procedures for delineating specified
ing in two application domains: aerial and ground-based natural and man-made objects that are "line-like" in ap-
vision.1 The first application domain is concerned with pearance (e.g., trees and roads).
modeling the earth's surface from photographs takenfrom aircraft and satellites; the second application do- An important theme in much of our current work is an
fromain ocerafaned wateith s; mod seling a pnaurlienvionmen emphasis on robustness and computational performancemain is concerned with modeling a natural environment -- especially through the development of algorithms ca-

in real time from data acquired by a robotic device mov- o espec ithog the develomentiof algoithmsuca-
ing through, and interacting with, this environment, pable of exploiting the parallel machine architectures

In both application domains, the underlying prob- now available (e.g., the Connection Machinetm). 2

lems in geometric modeling involve making our recovery

'Supported by various Defense Advanced Research Projects
Agency contracts. 2 Use of a Connection Machine was provided by DARPA.
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2 Geometric Recovery triangular meshes. These meshes have the advantage
that they can be easily deformed to refine their local

The goal of geometric recovery is to build a three- shape so that they satisfy both photometric and depth
dimensional structural description of a scene to support constraints. The use of these meshes as part of a tech-
such tasks as robot navigation and cartographic mod- nique for integrating stereo processing and photometric
eling. Ideally the description would consist of several analysis is presented in a separate paper in these pro-
interconnected representations, including a detailed rep- ceedings [Fua & Leclerc].
resentation of the support surface (i.e., the ground), a list One advantage of a triangular mesh representation is
of material types and semantic labels for all scene "ob- that many computers now incorporate special hardware
jects," and a set of accurate transformations from the to support and perform graphics operations on such rep-
local vehicle coordinate system to the global reference resentations. This same hardware can be used, with
system. For many tasks, especially robot navigation, the appropriate analysis routines, to predict such things as
process of building a scene model should be viewed as an scene depth values, surface orientations, and observed in-
on-going process in which a continuous stream of data tensities. We have implemented some of our techniques
is used for incrementally updating the representations. on Silicon Graphics computers that support these oper-
In practice, however, current scene modeling techniques ations.
typically analyze each snapshot of a scene independently Since these mesh representations are three-dimen-
and produce a loose patchwork of representations, in- sional, they can directly encode all aspects of an ob-
cluding such things as ground surface patches, clouds of ject's appearance in a single structure. This structure,
x-y-z points associated with objects, and a set of impre- in conjunction with rendering techniques, provides a con-
cise transformations from the local coordinate system to venient way to work with complex, convoluted objects.
global system. In most of our experiments, we have used regular

Our research goals in this area are to develop compact meshes. While this is appropriate for surfaces whose
and expressive representations for modeling natural ob- properties remain relatively constant, it is not optimal
jects, such as rocks and bushes, and to develop effective for complex surfaces that require the combined efficiency
techniques for incrementally compiling a complete scene and accuracy provided by irregular networks. The rela-
model from multiple views. In this section we briefly tively smooth parts of such surfaces can be represented
describe our recent progress on the following topics that by large patches, while the rougher parts could be de-
are steps toward our broader goals: scribed by finer, more precise triangulations. We are in

the process of implementing irregular networks formed
"* Representation of objects as three-dimensional sur- by all ow i mple men t o begulbrvie d.

faces, instead of viewpoint-dependent two-and-a- by allowing selected facets to be subdivided.

half-dimensional surfaces.

"* Extraction of both depth and reflectance maps by 2.2 Integration of Stereo and Photomet-
integrating stereo and photometric analysis. ric Analysis

"* Use of temporal analysis to detect, track, and iden- Over the past few years we have investigated techniques

tify independently moving objects in a scene. for integrating stereo and photometric analysis because
these two techniques are complementary; one works well

"* Evaluation of current stereo techniques, including when the imagery contains distinctive photometric pat-
characterization of their strengths and weaknesses. terns and the other works well when the imagery only

contains gradual shading. In 1991 we reported the re-
2.1 Three-Dimensional Object Models suits of our first technique of this type [Leclerc & Bo-

bick]. Recently we have developed a new approach that
In the past we have developed a number of three- functions well even though we have relaxed several as-
dimensional object representations, including fractal- sumptions commonly used in shape-from-shading tech-
based descriptions [Pentland], contextual representa- niques. This new technique computes both the shape
tions [Strat & Fischler], and a "representation space" and reflectance properties of physical surfaces from the
approach [Bobick & Bolles]. Recently we have devel- information present in multiple images. It considers two
oped a triangulated mesh model that supports both ob- classes of information. The first is the information that
ject segmentation and surface refinement techniques. In can be extracted from a single image, such as texture
the previous Image Understanding Workshop Proceed- gradients, shading, and occlusion edges. The technique
ings we described a technique for coalescing clouds of takes advantage of the fact that multiple images enhance
three-dimensional points into a small number of repre- the utility of this type of information by allowing both
sentative surfaces [Fua and Sander]. In the past year we consistency checks to filter out mistakes and averaging
have concentrated on a specialization of the triangula- to improve precision. The second class of information
tion representation that we call hexagonally-connected includes the stereo depth values computed from two or
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more images. standard correlation-based stereo techniques make.
Our surface reconstruction method uses an object- It becomes possible to recover accurately the depth

centered representation, specifically, a hexagonally- of sharply sloping surfaces (such as that of a sharp
connected three-dimensional mesh of vertices with tri- ridge).
angular facets. Such a representation accommodates the
two classes of information mentioned above, as well as * The shape-from-shading component does not make
multiple images (including motion sequences of a rigid the constant-albedo assumption common to most
object) and self-occlusions. We have chosen to model the shading algorithms. Instead, we only make the
surface material using a Lambertian reflectance model weaker and much more general assumption that
with variable albedo, though generalizations to specular aibedoes vary slowly across textureless areas.
surfaces are possible. Consequently, the natural choice
for the monocular information source is shading, while More complete details of this technique can be found in
intensity is the natural choice for the image feature used a separate paper in these proceedings [Fua & Leclerc].
in multi-image correspondence. Not only are these the
natural choices when we are able to assume a Lamber-
tian reflectance model, they are complementary: inten- 2.3 Moving Object Detection, Tracking,
sity correlation is most accurate wherever the input im- and Recognition
ages are highly textured, and shading is most accurate Our goal in this research effort is to develop auto-
when the input images have smooth intensity variation. mated methods for producing three-dimensional models
Since we wish to deal with surfaces with non-uniform of scenes containing moving objects. Our approach isalbedo, we have developed a new approach that ana-albeo, e hve evelpeda nw aproah tat na- to analyze sequences of temporally coherent images, be-
lyzes the facet-to-facet geometry and albedo pattern to tanle sequencesd o temally coherentniagsbrecover surface models. cause they provide the machine with both "redundant"

information and new information about the scene. TheWe use an optimization approach to reconstruct the redundant information can be used to increase the pre-
surface shape and its albedo from the input images. We
alter the shape and reflectance properties of the surface cision an r elb to cmted models th newin-
mesh to minimize an objective function, given an initial fomain ca n b e used too peviouslyunseen areas. Recently we have developed two new tech-
surface estimate provided by other means, such as a stan-dard stereo algorithm. The objective function is a lin- niques of this type. One is a real-time technique designed
dard sobntereon algorinthm.Then objetiveation isomp ine, to provide feedback within an "active vision" paradigm.ear combination of an intensity correlation component, The other integrates object recognition into the track-
an albedo variation component, and a surface smooth- ing process in order to bridge gaps in tracking-continuity
ness component. The first two components are a func- caused by such things as occlusion and low-level process-
tion of the intensities projected onto the triangular facets
from the input images (taking occlusions into account), ing mistakes.and re eigtedaccodin totheamout o tetur in The first technique, which is the product of a joint ef-and are w eighted according to the am ount of texture in f r e w e e o A C t n o d U i e st ,a d S I
the intensities, for the reasons mentioned in the previ- fort betwe n Xerox PAr stanfordiverity, an SRI,ous paragraph. The geometric smoothness component produces motion results (or stereo disparities) at 10 to 15ous ararap. Te gomeric moohnes cmpoent hertz. It has been implemented on two multi-processor
is slowly decreased during the optimization process to hertz.uItthassbeen implemented onotwocmulti-processor
allow for an accurate final estimate of the surface shape configurations, a 16k-processor Connection Machine andand reflectance, a 5-processor VX/MVX graphics accelerator system

We have implemented an algorithm employing these (200-MIPS). With these systems we have demonstratedthree terms and have performed extensive experiments real-time control of a five degree-of-freedom camera sys-thre tems ad hve prfomedextesiv exprimnts tem tracking a person walking around a room [Woodfill].
using synthetic images as well as aerial and face images. Te trckng aerhniwalkingoroua oom [WooditionThe strengths of the approach include: The second technique incorporates object recognition

procedures into the tracking process in order to improve
* The use of the 3-D surface mesh allows us to deal tracking reliability and facilitate object identification.

with self-occlusions and thus effectively merge infor- Our strategy has involved four steps. First, we "train"
mation from several potentially very different view- the system to recognize an object, such as a truck, by
points to eliminate "blind-spots." showing it to the system from several viewpoints. Sec-

• By combining stereo and shape from shading, and ond, given an image sequence of the truck moving in

weighing appropriately the reliability of their re- front of the camera system, we apply our "weaving-wall"

spective contributions, we can obtain results that tracking technique [Baker & Garvey] to build a temporal
are better than those produced by either technique model of the moving objects in the sequence. Third, we

alone, apply the PRS recognition system [Chen & Mulgaonkar)
to identify the truck in individual images. And fourth,

e Using the facets to perform the stereo computation we use the recognition results to "explain" discontinu-
frees us from the constant-depth assumption that ities in tracking the various objects so that we can pro-
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duce a more coherent description of the motion in the establish a cooperative atmosphere we decided to con-
scene. centrate on the positive aspects of each technique and

emphasize potential extensions, realizing that existing
2.4 Evaluation of Current Stereo Tech- techniques were developed for different domains and dif-

ferent applications. We also decided to share all the raw
niques results with the participants so they could duplicate our

Stereo analysis, which for a long time had been viewed as analysis or develop their own.

an interesting, but too-costly-to-be-practical technique, For the first phase of the qualitative evaluation,
has emerged as a viable tool for realtime applications, SRI collected imagery from five groups, JPL, INRIA
such as vehicle navigation. This has happened for two (in France), SRI, CMU, and Teleos (hence the name
reasons. First, advances in hardware have made it prac- "JISCT" for the first evaluation phase); selected 49 irm-
tical to compute stereo matches "in real time." And age pairs for analysis; converted them into a standard
second, advances in algorithm development have made format; distributed the dataset to the five groups for
it possible to correctly match large portions of outdoor processing, along with an extensive set of instructions;
scenes, collected the results; characterized them; and finally dis-

An important next step in the development and use of tributed the results and the associated report to the par-
practical stereo systems is the characterization of their ticipants.
capabilities. Potential users, such as system integrators We intentionally asked each group to process a large
and automatic task-planners, need to know the tech- number of pairs (10 training pairs and 45 "test" pairs ...
niques' computational requirements, their speeds, the 6 pairs were in both the training and test sets), because
precision of their results, their common mistakes, etc. we wanted to force each group to establish a standard al-
in order to model the behavior of these stereo systems gorithm that was automatically applied. As result of this
and reason about their use. With this in mind, SRI, approach, there are now 3 or 4 groups around the world
JPL, and Teleos began a multi-phase evaluation process that can readily apply end-to-end stereo techniques to
last year within the DARPA Unmanned Ground Vehicle new data and compare their results. As part of the sec-
(UGV) Project. The first phase of that evaluation has ond phase we hope to expand this community to 10 or
been completed and the second phase has begun. more groups. This process has opened up a new form of

The overall plan for that evaluation was (and con- interaction within the computer vision community that
tinues to be) to pursue a three-pronged approach, in- we feel will help stimulate advances and reduce redun-
cluding analytic models, qualitative "behavioral" mod- dant development.
els, and statistical performance models. The analytic In the instructions to the participants we asked each
models would be used to estimate such things as the ex- group to produce several results for each match point
pected depth precision computable with a specific cam- in addition to its computed disparity. For each point
era configuration. The qualitative models would be used we asked for an x and a y disparity, an estimate of the
to identify key problems for future research, for exam- precision associated with each reported disparity, an es-
ple, detection of holes, analysis of shadowed regions, and timate of the confidence associated with each match, and
depth measurements in bland areas. The statistical mod- an annotation for each unmatched point, indicating why
els would be used to produce quantitative estimates of the technique could not find a match. Possible explana-
such key factors as the smallest obstacle detectable at a tions for no match included "area too bland," "multiple
specified distance. SRI has taken the lead in the quali- choices," and "inconsistent with neighbors." Although
tative evaluation; JPL has taken the lead in the quanti- none of the groups produced all this additional informa-
tative analysis. tion (they all produced some of it), we felt that it was

For the qualitative analysis we decided to start by ex- important to begin the process with the goal of produc-
amining a small number of techniques in order to debug ing this auxiliary information, which will be invaluable
the process, and then expand the evaluation to include for the higher-level routines using the stereo results. We
a much larger set of participants. The goals of the first foresee a time in the not too distant future when the
phase were to get an initial estimate of the effectiveness calling routine will use the precisions, confidences, and
of current stereo techniques applied to UGV tasks, to annotations to actively control the sensor parameters for
identify key problems for future research, and to debug the next data acquisition step. For example, if the cur-
the evaluation process. rent stereo results contain a large region of no disparities

One of the high-level guidelines we adopted was to de- and the image regions are quite dark, the controlling rou-
velop and maintain an atmosphere of cooperation and tine could open the irises or increase the integration time
constructive criticism among the researchers participat- to re-examine these dark regions.
ing in the evaluation. Without this we would not be To assist in the analysis of the results, SRI developed
able to focus on our ultimate goal of producing a se- two sets of routines, one to gather statistics and one to
quence of increasingly capable stereo systems. To help display the disparities in a variety of ways. Since we
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did not have ground truth for the distributed imagery, there is a possibility of combining them in a way to
we were not able to compare the computed disparities check each other and fill in missing data.
with objective values. However, we were able to gather * All the stereo systems could be improved signifi-
statistics on two of the three types of mistakes that we
were interested in by outlining selected regions in the im- cantly with a relatively small amount of effort. This
agery and counting the occurrence of results/no-results was the first test of this type, requiring the analy-within these regions. We made a distinction between the sis of a large dataset, and it uncovered some weak-
following three types of mistakes: nesses in the different stereo systems that can becorrected. One area to be considered is the devel-

False Negatives: No disparities computed for points opment of pre-analysis techniques to automatically
that should have results. set key parameters, such as patch size and search ar-

eas (as Teleos did). Another place for improvement
False Positives in Unmatchable Regions: Disparities is in the filtering of results, eliminating matches that

reported for points that don't have matches in the differ significantly from their neighbors (as SRI did).
second image, for example, points occluded in one
image or points out of the field of view of one of the 9 There were a few surprises, such as Teleos's suc-
images. cessful solution to one set of image pairs from CMU

that includes a carpet with a repetitive pattern on
False Positives in Matchable Regions: Incorrect dis- it. Teleos's large patches were able to detect large

parities reported for matchable points, regions of subtle differences, which allowed recovery
of the correct disparities.

By interactively outlining regions of occluded points, re-

gions of points out of the field of view of the second Additional information about the JISCT evaluation, its
image, and regions of points in the sky, we were able to results, and our goals for the second phase, can be found
directly measure statistics for the first two types of mis- in a separate paper in these proceedings [Bolles, Baker,
takes. In addition, we outlined regions corresponding to & Hannah].
expected problems, such as dark shadows, foliage, and
bland areas. In this way we could gather statistics on the
behavior of the algorithms on these special problems. 3 Interactive Modeling

A high-level summary of the results of the first phase
evaluation are as follows: Our work in the area of Interactive Modeling is con-

cerned with the development of an interactive environ-
" We were surprised by the completeness of the re- ment and associated feature extraction and visualization

sults. Even though the dataset contained a wide techniques to enable effective human assisted scene/site
range of imagery, including some sequences designed model construction - especially for applications in the
to stretch the analysis along specific dimensions, areas of cartography, intelligence analysis, and mission
such as noise tolerance and disparity range, the planning.
stereo systems computed disparities for 64% of the
matchable points. On 8 image pairs selected to 3.1 Interactive Techniques for Scene
be the most appropriate for UGV applications, the Modeling: A Cartographic Model-
techniques computed disparities for up to 87% of the ModEli n t
points. Although the missing points (and mistakes ing Environment
in the reported matches) could cause problems for Manual photointerpretation is a difficult and time-
vehicle navigation, this level of completeness is an consuming step in the compilation of cartographic in-
indication that there is a solid basis for building a formation. However, fully automated techniques for this
passive ranging system for an outdoor vehicle, purpose are currently incapable of matching the human's

" For the UGV-related imagery the number of gross ability to employ background knowledge, common sense,

errors was relatively small, ranging from a few and reasoning in the image-interpretation task. Near-
"spike" errors to small regions of mistakes. We esti- term solutions to computer-based cartography must in-

mate that there were between 1 and 5% gross errors clude both interactive extraction techniques and new

in these results. Many of these errors would have ways of using computer technology to provide the end-

to be eliminated in order for the data to be used user with useful information in the form of both image

directly for planning navigable routes. and map-like interactive computer displays.
In order to support research in semiautomated and

" The stereo systems made different mistakes, most of automated computer-based cartography, we have de-
which could be explained by their correlation patch veloped the SRI Cartographic Modeling Environment
size, search technique, or match verification tech- (CME). In the context of an interactive workstation-
nique. However, since they made different mistakes, based system, the user can manipulate multiple images;
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camera models; digital terrain elevation data; point, line, search at SRI and GE on interactive programming en-
and area cartographic features; and a wide assortment vironments for image understanding. SRI and GE are
of three-dimensional objects. Interactive capabilities in- pleased to be able to make it available for use by
clude free-hand feature entry, feature editing in the con- other image understanding laboratories. (See references
text of task-based constraints, and adjustment of the [CME91, RCDE92, RCDE93a, and RCDE93b].)
scene viewpoint. Synthetic views of a scene from arbi-
trary viewpoints may be constructed using terrain and
feature models in combination with texture maps ac-
quired from aerial imagery. This ability to provide an The DARPA sponsored MAGIC (Multidimensional Ap-
end-user with an interactively controlled scene-viewing plications and Gigabit Internetwork Consortium) project
capability could eliminate the need to produce hard- has been established to develop a very high-speed, wide-
copy maps in many application contexts. Additional ap- area networking testbed that will demonstrate real-
plications include high-resolution cartographic compila- time, interactive exchange of data at gigabit-per-second
tion, direct utilization of cartographic products in digital (Gbps) rates among multiple distributed servers and
form, and generation of mission-planning and training clients. Participants in the project include a variety of
scenarios, organizations from government, industry, and academia.

In cooperation with General Electric, SRI has en- The SRI role in this project includes the design and
hanced the CME to fully support the needs of the RA- implementation of the MAGIC terrain visualization ap-
DIUS Program (as described below). plication, as well as the production of the digital eleva-

tion models (DEMs) and high-resolution ortho-rectified

3.1.1 The RADIUS Common Development En- aerial images (ortho-images) used by the application.

vironment This application will allow a U.S. Army commander to
"fly over" or "walk/drive through" a battlefield at his or

Progress in image understanding has often been ham- her own speed in real time. Views of the (on-going) bat-
pered by the difficulty involved in sharing results and tie available for selection will range from low-resolution,
software among collaborating institutions. This prob- wide-area coverage to high-resolution, limited-area cov-
lem is being addressed within the RADIUS Program erage and will include fixed and mobile objects such as
through development of a common development envi- buildings and vehicles. The positions of mobile objects
ronment. RADIUS is a government sponsored program will be updated in real time.
whose aim is to support image analysts through the con- What makes this application unique is that the area
struction and use of site models. Image understanding of interest is quite large (tens to hundreds of gigabytes),
techniques are expected to play a major role, in both and that the data must be accessed across a high-speed
the extraction of cartographic features to populate site network. In the first phase of the project, to be com-
models, as well as in the employment of site models in pleted by the end of 1993, the area of interest is a 900
more detailed scene analysis. Transfer of research results sq. km. exercise area of the National Training Center
within RADIUS is being facilitated through the use of a at Fort Irwin, California. The full-color ortho-images
common development environment, based on SRI's Car- alone, at one meter ground-level resolution, require 2.7
tographic Modeling Environment (as described above). gigabytes of storage. The next phases will involve much

The resulting environment has been named the RA- larger areas.
DIUS Common Development Environment (RCDE). The size of the database, the need for real-time net-
The RCDE has been distributed to participants in the work access, and the wide range of views has led us to
RADIUS Program and is now available for distribu- represent the ortho-images and DEMs as a "tiled Gaus-
tion to all members of the DARPA Image Understand- sian pyramid." That is, the ground-level distance be-
ing community. Widespread adoption of the RCDE tween pixels doubles from one level to the next (start-
throughout the IU community has the potential for pay- ing with one meter resolution for the ortho-images, and
offs at 3 levels: 32 meters for the DEMs), and each level is divided into

- Sharing research results among the various research equal-size image windows called "tiles." Using equal-size
laboratories to foster collaborative work and to build on tiles (initially planned to be 128 x 128 pixels) facilitates
the successes of others. the storage, transmission, and display of the data.

- Validation of research results by other laboratories to Although the network itself has a very high band-
insure the soundness of the work, to compare alternative width, there are inherent delays in requesting tiles from
techniques, and to motivate further investigations, a disk-based storage system (ISS) across large distances.

- Technology transfer from research laboratories to de- Consequently, the application must request tiles well in
velopment organizations which also utilize the common advance of their being required for display. This requires
development environment, processes for predicting future viewpoints, determining

The RCDE is the culmination of many years of re- which tiles are visible from a particular viewpoint, re-
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questing these visible tiles in an appropriately prioritized 3.3 Additional Topics In Interactive
fashion, and receiving and buffering the tiles in a shared- Scene Analysis
memory data structure accessible to the display process.

We recently made a significant advance in the long-

Also, the application must be able to deal with lost standing problem of duplicating human performance in
and/or delayed tiles in a relatively seamless fashion. This recovering 3-D models of objects with straight edges and
is accomplished in two ways. First, the tiled Gaussian planar faces from qualitative and imprecise line draw-

pyramid representation allows the entire area of interest ings (e.g., building edges as in a single approximate

to be represented at some coarse resolution using a rela- projection of the corresponding wire-frame). This work

tively small number of tiles. These coarse-resolution tiles can greatly simplify communication problems between
man and machine in such applications as robotic mis-

can reside entirely in the rendering engine, thereby guar- sion planning and in construction of databases for use
anteeing that any viewpoint can be rendered instantly, in robotic navigation. A paper describing this work has
no matter how radical the change in viewpoint, albeit at been published in the International Journal of Computer

Vision [Leclerc & Fischler]. Our goal in this on-going

work is to extend the basic approach to both curved-
Of course, it is not sufficient to merely guarantee that line drawings (e.g., of terrain elevations as in an approx-

any viewpoint can be displayed at any time at some imate and uncalibrated contour map) and to sketches
coarse resolution. The tile pre-fetch process must at- and actual images of natural terrain. The key elements
tempt to have all of the appropriate resolution tiles in of our current optimization-based approach are a way
memory when they are needed for dis~lay. I. , is done to automatically extract planar constraints from the line
by predicting the user's path, and se ing for tiles in drawings; an objective function that honors but does not
all of the views along that path from ti, arrent moment insist on the planarity constraints in combination with
to some future moment. (In fact, as one attempts to pre- terms measuring regularity and symmetry of proposed
dict further into the future, the "view" needs to become solutions; and a continuation technique (we developed)
more encompassing in order to account for the increas- to find the solution. For the limited class of 20-30 objects
ing uncertainty in the predicted path.) Tiles from any of we used in our experiments, we have been able to con-
these views that are not currently in memory are added sistently obtain the desired solution for the same object
to the list of tiles to be requested from the ISS using a in almost all of its possible projections.
coarse-to-fine search algorithm, where coarser-resolution
tiles are given a higher priority than finer-resolution tiles.

4 Semantic Labeling, Partition-
Searching all views in the above manner, and request- ing, and Delineation

ing all visible tiles that are not currently in memory in a
coarse-to-fine fashion has several consequences. First, in The natural outdoor environment poses significant oh-
the worst case of a change to a completely new viewpoint, stacles to the design and successful integration of the
one will immediately be able to display a coarse resolu- interpretation, planning, navigational, and control func-
tion representation of the scene followed by increasingly tions of a robotic device supported by a general-purpose
finer resolution representations. (It is currently expected vision system. Many of these functions cannot yet be
that this should occur over at most a few frames.) Sec- performed at a level of competence and reliability neces-
ond, the coarse-to-fine ordering of the requests should sary to satisfy the needs of an autonomous robot. The
prove useful even when the user is not radically chang- problem lies in the inability of available techniques, es-
ing viewpoints because it will increase the likelihood of pecially those involved in sensory interpretation, to use
intermediate resolution tiles being available, since these contextual information and stored knowledge in recog-
cover a larger area than the finest resolution tiles,and nizing objects and environmental features, inability to
will be requested with a higher priority. Third, since provide adequate models to the machine as a basis for
tiles not currently in memory are always requested, lost recognizing complex man-made and natural objects, and
or delayed tiles are automatically re-requested without the lack of an adequate collection of low-level feature ex-
the need for special protocols between the ISS and the traction techniques capable of robust performance over
application, a wide range of scene domains.

Our current work in this topic area, presented below,
We see our work on the MAGIC project, not only exploits three key ideas:

as a specific application of technology developed in the (1) use of an objective function and optimization as a
IU program, but also as providing important new tools descriptive mechanism,
needed for the visualization component of our efforts in (2) use of evolving context in a production system for-
interactive scene modeling and IU related applications. malism to select feature extraction techniques and pa-
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rameter settings in a knowledge-based paradigm for low- object class is a category of scene features such as sky,
level vision and interactive modeling, and ground, geometric-horizon, etc.

(3) use of a few highly refined and reliable low-level Visual interpretation knowledge is encoded in context
techniques as the base for a much wider class of feature acts, which serve as the uniform knowledge representa-
extraction methods. tion scheme used throughout the system. The invoca-

In this section we discuss the development of tech- tion of all processing operations in Condor is governed
niques for automatically recognizing and delineating by context through the use of various types of context
complex man-made and natural objects, especially for sets: an action is initiated only when one or more of its
applications to robotic navigation in the outdoor world, controlling context sets is satisfied. Thus, the actual se-
and to provide robust automated techniques for aerial quence of computations, and the labeling decisions that
image analysis. are made, are dictated by contextual information, by

the computational state of the system, and by the image
4.1 Condor: A Context Based Approach data available for interpretation.

to Scene Modeling The successful processing of a significant number of
outdoor images has demonstrated the validity and im-

Much of the progress that has been made to date in ma- ortacof the Condorsprad Our conining wor

chine vision has been based, almost exclusively, on shape on Condor problems oft(1)ihowoef

comparison and classification employing locally measur- ficiently construct (or acquire) the large site-specific

able attributes of the imaged objects (e.g., color and tex- database needed for successful operation, and (2) how

ture). Natural objects viewed under realistic conditions to improve the effectiveness of a few key low-level rou-

do not have uniform shapes that can be matched against tines that Condor depends on. We have also modified

stored prototypes, and their local surface properties are and extended the Condor paradigm to permit its use in

too variable to be unique determiners of identity. The
standard machine vision recognition paradigms fail to an interactive environment; this work is presented in a

provide a means for reliably recognizing any of the object separate paper in these proceedings [Strat] and briefly

classes common to the natural outdoor world (e.g., trees, discussed in the following paragraphs.

bushes, rocks, and rivers). In this effort [Strat&Fischler], The semiautomated nature of RADIUS (see earlier
we have devised a new paradigm that explicitly invokes discussion of the RADIUS program) obviates the need
context and stored knowledge to control the complex- for some of the machinery employed in the fully auto-
ity of the decision-making processes involved in correctly mated version of Condor. The availability of a human
identifying natural objects and describing natural scenes. operator permits access to some kinds of context that

The conceptual architecture of the system we describe, were not available to Condor, such as the level of interac-
called Condor (for context-driven object recognition), is tivity desired and manual sketches of individual features.
much like that of a production system; there are many The existence of a human to review and edit the IU re-
computational processes interacting through a shared suits offers the opportunity to use a supervised learning
data structure. Interpretation of an image involves the scheme to improve the quality of the knowledge base and
following four process types. to extend its range of competence.

The large number of features and wide range of imag-
* Candidate generation (hypothesis generation) ing conditions that must be considered for site-model

SCandidate comparison (hypothesis evaluation) construction in RADIUS stress the context set represen-tation employed in Condor. While context sets were ad-

* Clique formation (grouping mutually consistent hy- equate to represent Condor's knowledge base, it has
potheses) been necessary to consider more effective representa-

tions that will extend to the requirements of site-model
e Clique selection (selection of a "best" description) construction. Two new constructs, context tables, and

context rules, offer a more systematized organization
Each process acts like a daemon, watching over the for the context knowledge base that should facilitate

knowledge base and invoking itself when its contextual its construction. These representations offer additional
requirements are satisfied. The input to the system is an economies in both storage and computation that may be
image or set of images that may include intensity, range, vital to implementation of large systems. The symmetry
color, or other data modalities. The primary output of of context tables and rules encourage their use in either
the system is a labeled 3D model of the scene. The direction: to select algorithms and set. their parameters,
labels included in the output description denote object as well as to describe the conditions that must be sat-
classes that the system has been tasked to recognize, isfied for a given algorithm to be applicable. This final
plus others from the recognition vocabulary that happen capability raises the possibility of using context rules to
to be found useful during the recognition process. An choose. the most appropriate images for interpretation.
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4.2 Optimization-Based Methods for icant advances in the state-of-the-art in their respective
Partitioning, Delineation and Re- areas of image partitioning and delineation. The im-
cognition plemented systems based on these techniques have been

able to produce excellent results in complex situations
It is commonly accepted that the problems of partition- where existing (typically local) approaches often fail. In
ing, delineation, and recognition require non-local infor- the following subsection we describe on-going work which
mation for their solution. Optimization is one of the employs the above techniques under a Condor like con-
major paradigms for combining and evaluating global trol structure to deal with the problem of efficient site-
information, but to use this paradigm one must address model construction.
the issues of how to select an objective function that ac-
curately reflects the intended solution, and how to devise 4.2.1 Model-Based Optimization for Site Mod-
a procedure for the optimization process that will return eling
an answer with a practical amount of computation.

In previous reports we described two lines of research As part of our work on the DARPA sponsored RADIUS
using optimization-based methods for partitioning and Program (described earlier) our research seeks to in-
delineation: crease the speed and accuracy with which site models

1) An optimization-based approach, applicable both can be constructed from available imagery by developing
to image partitioning and to subsequent steps in the a new family of image understanding (IU) techniques.
scene analysis process, that involves finding the "best" Model-Based Optimization (MBO) is a paradigm in
description of the image in terms of some specified de- which an objective function is used to express both geo-
scriptive language. In the case of image partitioning metric and photometric constraints on features of inter-
[Leclerc88,89a,89b,89c,89d,90a,90b,91], we employ alan- est. A model of a feature (such as a road, a building,
guage that describes the image in terms of regions hav- or coastline) is extracted from an image by adjusting
ing a low-order polynomial intensity variation plus white the model until a minimum value of the objective func-
noise; region boundaries are described by a differential tion is obtained. The optimization procedure yields a
chain code. The best description is defined as the sim- description that simultaneously satisfies (or nearly satis-
plest one (in the sense of least encoding length) that fies) all geometric and image constraints, and, as a result,
is also stable (i.e., minor perturbations in the viewing is likely to be a good model of the feature.
conditions should not alter the description). A continu- The applicability of MBO is currently limited by the
ation method, specially designed to match the problem expressive power of terms in the objective function and
constraints, was used to solve the optimization problem. by the difficulty of optimization. We are attempting to

2) In situations where the required image description extend the range of objects that can be modeled within
must extend beyond that of a delineation of coherent the MBO paradigm, and to develop suitable optimiza-
regions, we require an extended vocabulary relevant to tion procedures to support their extraction from im-
the semantics of the given task. Fua and Leclerc deal agery.
with the problem of boundary/shape detection given a With these extensions, the MBO technology can be
rough estimate of where the boundary is located and used (1) automatically, to extract from an image all ob-
a set of photometric (intensity-gradient) and geomet- jects of a given type, or (2) interactively, to extract ob-
ric (shape-constraint) models for a given class of objects jects that are of special interest or that were missed by
[Fua&Leclerc88, Fua&Leclerc90]. They define an energy a fully automated system.
(objective) function that assumes a minimal value when This research seeks not only to develop new IU tech-
the models are exactly satisfied. An initial estimate of niques for cartographic feature extraction, but also to
the shape and location of the curve is used as the starting develop a language with which an image analyst can
point for finding a local minimum of the energy function communicate with such a system. The foundation for
by embedding this curve in a viscous medium and solving this language lies in the creation and implementation of
the dynamic equations. This energy-minimization tech- a large number of feature extraction operations, each of
nique, has been applied to straight-line boundary models which is sensitive to the context of a particular task.
and to more complex models that include constraints on To this end, we have developed a means to utilize con-
smoothness, parallelism, and rectilinearity. In an inter- textual information (see discussion of Condor) to auto-
active mode, the user supplies an initial estimate of the matically produce IU operators that are tailored to the
boundary of some object (which may be quite complex, specific extraction problem of interest, and hence are
like the outline of an aeroplane) and then, if need be, more likely to succeed than generic IU algorithms. A
corrects the optimized curve by applying forces to the description of this approach appears as a separate paper
curve or by changing one of a few optimization/model in this proceedings [Strat].
parameters. The technology is currently being implemented as a

We believe that the above techniques represent signif- customized system built using the RADIUS Common
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Development Environment (RCDE). Its design is being The algorithm was effective in finding such structure,
shaped through experiments using multiple overhead im- but it provided no mechanism for distinguishing between
ages in a site model construction scenario. The benefits the semantically meaningful objects and the "accidental"
of the new technology will be measured by comparing and irrelevant linear features found in most real images.
its performance on site-model construction tasks with In related work now in progress to automatically detect
that achievable using other manual and semiautomated and delineate roads in aerial images, we use the SSS al-
techniques. gorithm to "slice up" the individual curves found by our

existing delineation algorithm. We throw away the very

4.3 Curve Partitioning and Delineation small resulting segments which are typical of acciden-
tal linear formations, and then further filter the longer

of Man-Made and Natural Objects segments with respect to a set of semantic constraints.

We have identified a few key low-level routines, partition- Those segments that pass through the filtering process

ing and delineation algorithms in particular, that if made are then "glued" back together to produce the desired

sufficiently robust, could form the basis of a wide vari- delineation. The robustness of the SSS algorithm is es-

ety of feature extraction algorithms. In addition to our sential in carrying out the filtering operation. Insertion

optimization-based methods, we have made new progress of extraneous partition points would cause the lose of

in extending some of our past work in this problem do- portions of the road network; absence of v nartition

main. points would allow meaningless appendage,. .o become

A critical problem in machine vision is how to break up part of the extracted network.

(partition) the perceived world into coherent or meaning-
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Abstract colors of pixels in an image of a non-metal C"inho-
mogeneous dielectric") have an imprtant linear

At CMU, research in Image Understanding relationship to the two types of reflection. We
spans the range of topicsfrom the basic sci- made the prediction that the colors should lie on a
ence of imaging to applications in autono- plane in the RGB color space, and could be ana-
mous intelligent systems. The focal areas lyzed by linear algebra to actually measure the
are: amounts of each reflection component at each

* Physics-Based Vision pixeL In 1987, we accomplished this analysis, and
"* 3D Shape and Motion Recovery found that the pixel colors did not fill the plane in
"* Computational Range Sensor RGB space, but formed a "skewed-T' shape.
"V Parallel Vision We (Novak and Shafer) have now added to this
* Vision for Object Recognition theory by showing that the exact dimensions of the
"* Visionfor Robot Vehicles skewed-T shape are quantitatively determined by
"* Vision for Hwan-Computer Interaction the equations of body and surface reflection (such

1. Physics-Based Vision as Torrance-Sparrow). In our new method, we form
the color histogram of the pixel values, and mea-

While many vision systems have been demon- sure the dimensions including the ratio of the base-
strated in principle, few have been highly reliable line to the stem height of the T, the angle between
when deployed. This is largely because of the nl- the parts, and the position of their intersection.
ance on feature detectors such as edge-finding, From these measures, by inverting the equations,
which are based on over-simple approximations to we can determine the surface roughness and illu-
the principles of imaging physics. The detailed mination geometry. Since the inversion is mathe-
study of the imaging process can lead to vision sys- matically intractable, we use a table lookup. With
tems with both greater power and more reliability, this method, we have analyzed images of several
At CMU, we have pioneered in the exploration of real plastic objects [Novak and Shafer 92]. This
physics-based vision, and our work in this area has method of analysis is valuable because it is based
led to major advances in deployed vision systems. entirely on the color histogram, and is thus inde-
We continue to study these fundamental issues, pendent of object shape. It also contributes to our
particularly in the measurement of object color, basic understanding of the relationship between
shape, and surface roughness. color, shape, and surface roughness.

The basic principle of physics-based vision is that Unfortunately, such analysis does assume that the
most (non-metallic) objects display two colors: the object be reasonably smooth and that the directions
"object color of the material, and highlights of surface normals in the image are widely distrib-
caused by reflection from the outer surface. The uted in all directions. Therefore, it cannot handle
object color is important for identifying objects, cases where only a few planar surface patches exist
whereas highlights reveal the smoothness or in an image. To over come these limitations, we
roughness of the surface. Both can be used to iden- (Sato and Ikeuchi) have developed a novel method
tify the object shape and material. Metals display for measuring surface and object properties by ana-
only highlights (i.e. surface reflection). lyzing a sequence of color images taken with a

moving light source [Sato and Ikeuchi 92].
1.1. Color and Highlights We project the data into a four dimensional space,
In 1984, CMU vision researchers showed that the which we call the temporal-color space, whose
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Figure 1: Solder Joint measured by photometric stereo: (a) Picture (b) Elevation map

axes are the three color axes (RGB) and one tern- 1.2. Measuring Shape and Roughness of
poral axis. The term "temporal-color space" Metal Surfaces
implies an augmentation of the RGB color space
with an additional dimension that varies with time. Metal surfaces are of special interest in physics-
Because the light source is moving, this dimension based vision because they are important for many
represents the geometric relationship between the manufacturing and inspection tasks, because they
viewing direction, illumination direction, and sur- exhibit shininess or roughness clearly, and because
face normal. Thus, many geometries are sampled they are not directly amenable to analysis by color.
over time. However, they yield to methods of controlled illu-

mination, provided that the ilumination and the
The significance of the temporal-color space lies in reflection model are precisely enough known.
its ability to represent the change of image color Unfortunately, the physics community has prima-
with time, whereas a conventional color space rily chosen to model surfaces that are very smooth,
analysis yields the histogram of the colors in an which are important for specialized applications
image, only at an instant of time. Conceptually, the but not for general visual inspection. Therefore, the
two reflection components, surface reflection and image understanding community has been forced
body reflection, form two subspaces in the tempo- to develop its own models that are more directly
ral-color space. These two components can be useful for machine vision.
extracted by principal component analysis using At CMU. we proposed a model in 1991 to unify
the singular value decomposition technique. the well-known models of Torrance-Sparrow,

This technique has several advantages over other Beckmann-Spizzichino, and Lambert. Later, we
methods for color image analysis: it does not built a 3D photosampling device and successfully
require any prior knowledge about surface reflec- applied it to measure smooth surfaces such as sili-
tance and shape; it can recover the surface orienta- con wafers and transparent plastic lenses. How-
tion and reflectance at each pixel individually; and ever, since the algorithm used for analysis ignored
it does not depend on the assumption of a global the specular diffuse lobe component, it could not
distribution of surface normals in the image. This be applied to rough surfaces such as solder joints
method has been successfully applied to images of or sand-blast finished surfaces, which are corn-
real colored objects, resulting in the measurement monly found in many industrial parts.
of the specular reflection component and the body
reflection component. These components are sub- We (Kiuchi and Ikeuchi) have developed a novel
sequently used to recover surface orientation and algorithm to recover the surface shape and the
reflectance at each point, providing an easy-to- roughness of such surfaces (Figure 1) [Kiuchi and
implement method for visually localizing and Ikeuchi 921. Since the reflectance model depends
inspecting an object. on surface roughness as well as surface orientation,

we are able to recover both shape and roughness
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with our method. We take a set of image brightness revealed as a systematic variation from one to the
values measured at each surface point by using our next.
3D photosampler device. Each brightness value There are two classical problems in image texture
provides one non-linear image irradiance equation, analysis: segmenting flat (21) texture regions in
which contains unknown parameters for surface the image, and measuring 3D shape from texture
orientation, reflectance, and surface roughness. gradients on slanted or curved surfaces. We devel-
The algorithm iteratively solves the set of image gradiethods or ch ofatese We that
irradiance equations at each pixel with respect to showed the spectrograr can solve each problem as
these parameters. Experiments conducted on sev- wed the comm cn soach proble as
eral rough surfaces show a high accuracy in esti- well as other common approaches [Krumm and
mated surface orientations, and a good estimation sper lies ts unity to werate the
of surface roughness. We have been able to deter- spectrogram lies in its ability to integrate thesemine the shape of a brass cylindrical object, the problems in the same representational framework.
shape of a solder joint, and the roughness of two Using the spectrogram we can solve the combinednickel microfinish comparators, and we have been problem of texture segmentation and shape analy-
ale todttfectsh compara toirsfilm of gold depos- sis. The local Fourier transforms of pixels on theable to detect defects in a thick film same surface are similar, within a linear (affine)
ited on a [SI chip package. transform of each other, but, across surfaces, the

dMotion Recovery Fourier transforms differ significantly. Our analy-
2. 3D Shape and Msis proceeds by creating several hypotheses about

Geometric methods for recovering surface shape surface orientation based on small regions in the
and camera motion are crucial for tasks such as site image. Each hypothesis consists of an estimate of
modeling - the generation of a detailed three- the local surface normal and an estimate of what
dimensional model of a surveyed site - and for the local frequency distribution of the texture
robot vehicle navigation and control. These tech- would look like if viewed frontally. This "frontal-
nologies, in turn, are important for a wide range of ized" frequency distribution is computed by undo-
military and civilian applications including cartog- ing the effects of the estimated surface normal on
raphy, reconnaissance, and damage assessment, the local frequency distribution. Thus, two adjoin-

ing regions of similar texture and different surface
These applications require the development of effi- normal will have the same hypothesized local fre-
cient and reliable Image Understanding methods to quency distribution. We then merge similar
determine precise three-dimensional shape infor- hypotheses to form regions. This method is now
mation from a stationary or moving platform such being tested in the Calibrated Imaging Laboratory.
as a ground or air vehicle, or a stereoscopic cam- In addition, we (Maimone and Shafer) are now
era.. We have developed four new approaches to applying the spectrogram to stereo vision in tex-
this problem: (1) the image spectrogram for texture tured environments, where it appears promising for
and stereo analysis; (2) the multi-baseline stereo addressing long-unsolved problems in avoiding
method for depth mapping from multiple images; false matches and occlusions. The spectogram is
(3) the factorization method for motion analysis proving to be a powerful bridge between the Fou-
under orthography and perspective; and (4) reli- rier-based theories of signal processing and the
ably obtaining shape from lens focus and defocus. geometry-based approaches of machine vision.

2.1. The Image Spectrogram 2.2. Multi-Baseline Stereo
Image texture is confusing to nearly all vision In stereo matching, a longer baseline gives a pre-
methods for 3D shape recovery, particularly out- cise depth estimate, because the depth is calculated
doors. Yet, texture can actually be a rich source of by triangulation. A longer baseline, however, poses
information for measuring surface and terrain problems in matching: a longer disparity range
shape, classifying vegetation, and defeating cam- must be searched, some parts in the scene may be
ouflage. We (Krumm, Maimone, and Shafer) have occluded, and the appearance of some objects in
developed a new approach for image texture analy- the scene may change significantly between
sis using the image spectrogram, which comprises images. Matching becomes more difficult, and
the "local Fourier transforms" measured in the there is a greater possibility of false matches. Con-
neighborhood around each pixel. Patterns in the versely, a shorter baseline makes matching easier,
texture of the image are revealed in the structure of but reduces the precision of the estimate. There is a
each such Fourier transform, and 3D shape is trade-off between precision and correctness.
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We (Okutomi and Kanade) developed a multiple- scenes under a wide variety of conditions [Oku-
baseline stereo technique to solve this problem. tomi and Kanade 92). Indoors, in a calibrated labo-
This method uses multiple stereo pairs with differ- ratory, at a distance of 0.5-1.0m; and outdoors, at a
ent baselines generated by a lateral displacement of distance of approximately 15-35m. We have also
a camera. Matching is performed simply by com- tested the method on a large scale outdoor scene
puting the sum of squared-difference (SSD) values shown in Figure 2(a) at the Westinghouse Research
between multiple stereo pairs. The SSD functions Center in Pittsburgh, where Ambler, the CMU
for individual stereo pairs are represented with Planetary Rover, was tested. The scene contains a
respect to the inverse distance, and they are simply grassy field with a line of trees at a distance of 60
added to produce the sum of the SSDs. This result- m. Six images with horizontal displacements and
ing function is called the SSSD-in-inverse-dis- six additional images with vertical displacement
tance. The range estimate is calculated by finding were used. The widest horizontal and vertical base-
the minimum of the SSSD-in-inverse-distance line in this set was 9cm. Figure 2(b) shows the dis-
curve. This curve shows a unique and clear mini- parity image. The noisy region is due to lack of
mum at the correct matching position even when features in the area of sky in the original image.
the underlying intensity patterns of the scene This noise is sucessfully detected by the uncer-
includes ambiguities or repetitive patterns. tainty estimate. The plots in Figure 2(c) are the 3D

Our method has been implemented in software and terrain profiles shown as height vs. horizontal dis-

tested with images from both indoor and outdoor tance along the vertical columns drawn in the fig-
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Figure 2: Test site for Multi-Baseline Stereo: (a) Image (b) Depth map (c) Elevation profiles
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ure above. We can observe that the terrain features 2.4. Camera and Lens Modeling
of the scene are correctly recovered; a flat and
somewhat descending region at the front, a slope in Although the basic optics of lenses and cameras is

known in theory, most models do not account forthe middle, and then a more gentle slope at the rear the ons eoutered nopracc. nt for
before the tree line. The measured distances to a in the Calibrated Imaging Laboratory, we (Wilson,
few points in the scene have been verified to be in and Sa ferat e deveLoping wemodelsorcorrct o wihin1%.Xiong, and Shafer) are developing new models for
correct to within 1%.

modeling, calibration, and control of automated
The multi-baseline stereo system has been put to zoom lenses. Our recent work has led to advances
practical use on a CMU robot named Dante, a in the calibration of image center and in develop-
large, 8-legged walking machine sponsored by ing 3D shape recovery from lens focus.
NASA and NSF for the exploration of a live vol- Nearly all methods for machine vision assume that
cano in Antarctica. The system uses three cameras ly a ma chnsi onrassume th at
arranged along a I-meter horizontal baseline. The the image center is considered to be the point of
system software was highly optimized in favor of intersection of the camera's optical axis with the
speed in exchange for somewhat reduced preci- camera's sensing plane. In fact, there are many pos-
sion. Output is a dense depth map of 256x256 pix- sible definitions of image center, and in real lenses
els with 40 disparity levels in 7 seconds, which most do not have the same coordinates. We haveenabes he obo tomov slwly(2-3 MPH) identified 16 different ways to define "image cen-
enables the robot to move slowly (23W ) ter", and developed a taxonomy of image centersthrough a field of obstacles. The system has also bed on dev e r of differ ent ers
been used to guide the CMU robotic truck, NAV- based on the number of different camera settingsLAB II. used and on the type of measurements that are

made during calibration [Willson and Shafer 93].

2.3. Factorization for Motion Analysis By using the proper image center for each image
property that we are trying to model and by cali-

Recovery of 3D shape and camera motion informa- brating the image centers over the appropriate
tion is imprtant for robot vehicle control and ter- ranges of lens parameters, we have improved the
rain mapping. Unfortunately, the problem can be precision of a standard (Tsai-Lenz) calibration
mathematically unstable. We developed a novel from 0.23±0.10 pixels RMS error to 0.06±0.04
factorization method for analyzing image pixels.
sequences that avoided the instability by using sin- Based on our new lens models, we have developed
gular value decomposition of the observation data.
The method was limited to telephoto lenses due to new metho s that am c impove 3D apeits se f te othoraphc pojetio moelrecovery from lens focus and defocus [Xiong and
its use of the orthographic projection model. Shafer 93]. In the range-from-focus task, we obtain

We (Poelman and Kanade) have recently devel- an accuracy of I part in 1000 at distances of 1.2m,
oped a new factorization method that uses a parap- which is an improvement by fivefold over previ-
erspective projection model [Poelman and Kanade ously published results for this task. The improve-
92]. Paraperspective correctly models several ment comes from smoothing the criterion function
aspects of real camera image projection which fitting a polynomial curve to it in the vicinity of the
orthography fails to account for, including the peak value, where noise becomes the limiting fac-
change in the image size of an object as it moves tor to precision. More significant, for range-from-
towards or away from the camera, and the chang- defocus, we made two improvements - we use an
ing angle from which an object is viewed as the iterative method to overcome the effects of win-
object translates across the field of view. These dow size on the calculation, and we developed an
properties allow the method to be used in a much improved blur model in terms of motor control
wider range of situations, and allow the recovery variables rather than abstract optical idealizations,
of the distance from the camera to the object. Yet allowing more accurate calibration. Taking just
the paraperspective pro jection model, like ortho- two images with differing focus, we have obtained
graphic projection, can be described by linear dense depth maps with a precision better than I
equations. This allows us to recover the shape and part in 200, compared to results of I part in 75
motion in an efficient and robust manner similar to reported in the literature. With this precision,
the original factoriza tion method. The method has depth-from-defocus is becoming a viable comple-
been tested on both synthetic and real data, and ment to more established techniques for 3D shape
will enable of reliable terrain mapping from a mov- recovery such as stereo vision.
ing vehicle with a single camera.
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3. Computational VLSI Range Sensor ambient lighting, and the increased sensitivity per-
mits its use on a wider variety of objects. In addi-

While vision software is useful for long-range 3D tion, the range sensor chip now provides
shape recovery, at short distances, hardware can be reflectance information as an artifact of the new
used to accomplish the purpose more rapidly and peak detection process. The reflectance image is
reliably. This requires computational sensors that read from the chip along with acquired range data.
place computing power on the sensing chip itself to and pixels of the reflectance image are perfectly
perform the range computation without the bottle- aligned with corresponding pixels in the range
neck of data transmission to a CPU. The resulting image. The reflectance data is useful for object rec-
sensors will be useful for robotic inspection, ognition, and we also use it for efficient calibration
manipulation, and control in real time. of the VLSI sensor itself.

At CMU, we (Gruss, Tada, and Kanade) have One of the distinguishing features of this research
developed such a VLSI range-image sensor based is the very practical nature of the problem that has
on the light-stripe triangulation technique, which been solved - our sensor technology provides the
has proven to be robust as well as amenable to high frame rates required by the most demanding
hardware implementation. Our sensor (Figure 3) autonomous robotic systems. The advantages of
produces 100 frames of range data per second, VLSI computational sensing have been advocated
which is two orders of magnitude faster than con- by many, but few practical sensors of this type
ventional light-stripe sensors [Gruss et al. 1992]. have been developed. We now plan to deploy these

systems for research in robotic applications within
the DARPA and NSF communities.

4. Parallel Vision
In addition to sensor hardware, researchers at
CMU are using parallel computing to speed up
vision software for practical application. One focus
of our parallel vision efforts (Webb) has been the
development of languages for easy but efficient
programming of image processing operations. This
led to Adapt, which covers both local and global
operations. Recently, Adapt was released commer-
cially by Intel Corporation for the iWarp computer.
Plans are in place to support Adapt on future paral-
lel computers from Intel, as part of the effort to

Figure 3: This chip measures a 32x32 image of support current iWarp users. Based on our experi-
range data, 1000 times per second ence with Adept, we have developed a new parallel

The chip consists of an array of photosensitive FORTRAN with a "Do&Merge" loop construct
cells which independently determine when they which allows the programmer to describe a parallel
see light from the stripe reflected back by objects program at two levels (similar to Adapt), one
in the scene. Working in parallel, the 32x32 array describing an operation to be performed in parallel

of cells acquires a 1,024 pixel range image in one across an iteration range, and another describing
millisecond. The accuracy and repeatability of how to combine the independently computed

each pixel has been measured to be within 0.5 -. results. This Do&Merge loop is being incorporated
at 500 mm distances (0.1%). into the CMU FORTRAN compiler for easy gener-

ation of efficient image processing programs.
This sensor, the second version of our design, has
cells that are 40% smaller than our first design, The Adapt language has been used to develop an
giving an increase from 28X32 to 32x32 cells. In efficient implementation of Kanade-Okutomi
addition, a true peak detector has replaced the multi-baseline stereo vision [Webb 93]. The iWarp
thresholding circuit previously used to identify the implementation of Adapt allows processing of
light stripe. The new peak detection scheme has three 240x256 images to recover sixteen disparity
two important advantages. First, the new design is levels. Plans are underway to demonstrate real-
more sensitive to the stripe, which allows the sen- time performance by using an Ironics frmegrab-
sor to operate in the presence of bright indoor ber for the camera interface; we expect to process
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10 stereo pairs per second. This passive 3D vision vision programming system. Provided with sym-
system will be tremendously useful in a wide vari- bolic descriptions of the objects, sensor, and task,
ety of robotic applications, including SSV, UGV, the VAC generates a vision program that can be
Air Vehicle, and industrial applications, rapidly executed on-line to perform the task. This

approach will greatly reduce the cost of construct-
5. Vision for Object Recognition and ing vision systems for robotic manipulation and
Manipulation assembly. To prepare the VAC for deployment, we

have made recent advances in two problem areas:
Robotic manipulation of objects is one of the most planning multiple observations to resolve ambigu-
important application of autonomous systems. At ities, and developing an efficient algorithm for
CMU, we have developed a new representation for object recognition for large object databases.
recognizing curved objects, expanded our ability to We (Ikeuchi, Wheeler and Gremban) have devel-
automatically generate vision programs with the oped techniques to utilize sensor motions to
Vision Algorithm Compiler (VAC), and learning acquire observations to resolve ambiguous inter-
assembly by observing a human do the task. pretations of an object's pose. The solution utilizes

a resolution tree specifying the motions from the
5.1. Surface Modeling for Recognition initial vantage point that will reduce the ambiguity

Recognizing curved objects is important for until a unique pose can be resolved from the obser-
manipulating and inspecting equipment, vehicle vations. The resolution tree is created off-line by a
parts, and manufactured items. CMU researchers traditional planner that utilizes knowledge of the
(Delingette, Hebert, and Ikeuchi) have developed a aspect classes and the spatial extent of the aspects.
novel representation of curved objects called the New data representations were developed to facili-
Simplex Angle Image that allows matching even tate this planning operation. We have conducted
when one of the objects is partly blocked from experiments in recognizing specular objects and
view [Delingette et al. 93]. finger-gap sensing, showing the utility of multipleobservations for resolving pose ambiguity.
To compute the SAI, we begin with dense 3D

range data. We pose an ellipsoidal mesh of points We have developed a novel algorithm for object
that surrounds the object, and by a method based recognition in range images that is efficient for
on deformable surfaces, we shrink the mesh to fit large model databases [Wheeler and Ikeuchi 93].
the surface data closely and in a way that is unique, Our algorithm performs optimal selection of
regardless of the object's angle of orientation. At hypothesized views to model, and for each one, the
each node on this rmesh, we compute the "simplex visible image features are generated through simu-
angle" which expresses the 3D curvature of the lation of the imaging and feature extraction pro-
surface between this node and its neighbors on the cess. In these simulated views, the correspondence
mesh. Each simplex angle is paired with the sur- of model features and image features is known.
face normal at that point, and mapped onto the Using this correspondences, statistics are accumu-
point of the unit sphere corresponding to the nor- lated to produce conditional probability distribu-
mal. The result, called the Simplex Angle Image tions of the extracted features given the visibility
(SAI), is a spherical representation of the object.- of each model feature in the scene using Markov
The key feature of this representation is that two Random Fields and a Highest Confidence First
instances of the same object in two different poses estimation technique. This method has proven
have the same SAI up to a rotation of the unit effective in substantially reducing the number of
sphere. Using this approach, we have demonstrated hypotheses to be verified while choosing accurate
the recognition of 3-D curved objects in range hypotheses. Because of ability to search through
images of complex scenes with multiple objects, large sets of possible hypotheses, this method
and we have also used the SAI to piece together allows us to automatically generate vision pro-
multiple views of a complex 3D object such as a grams for large sets of objects and also for partly
hand. occluded objects.

5.2. Vision Algorithm Compiler 5.3. Learning From Observation

The Vision Algorithm Compiler (VAC) is a method We (lkeuchi, Kang, Suehiro, Kawade) have been
developed at CMU to replace the expensive cus- working on a task programming approach called
tom-building of vision software with an automated Assembly Plan from Observation (APO), which

will enable the robot system to observe a human
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perform a task, understand it, and perform the ters. This, coupled with mechanical properties such
same task with minimum human intervention. In as bolt-like and nut-like motions, enables the robot
this approach, the human provides the intelligence to replicate tasks such as picking and placing, and
in choosing the initial hand (end-effector) trajec- screwing a bolt into a hole.
tory, the grasping strategy, and the hand-object Grasp recognition is central to automatic learning
interaction by directly acting them ouL This of a grasping task. We (Kang and Ikeuchi) haveapproach helps to alleviate the problems of sym- developed a representation called the contact web
bolic path planning, grasp synthesis, and task spec- deveoped a represen tatonal theicontact w
ifictiton. in conjunction with a grasp taxonomy to identify a

grasp (Figure 5) [Kang and Ikeuchi 92]. The grasp
Recently, we have developed a method of APO for is represented by a grasp abstraction hierarchy
objects with curved surfaces [Ikeuchi et al. 93]. which comprises high-level (type of grasp), inter-
Each surface patch is categorized according to the mediate-level (finger groups), and low-level (Ioca-
signs of its Gaussian and mean curvatures. In our dons and joint angles) information.
current implementation, the human operator dem-
onstrates a task one step at a time to the system.
Each task is captured in intensity and range
images. 77c intensity images (sampled at a regular
interval) are analyzed to detect the next meaningful
action of the human operator, while the range
images are used to recognize objects and locate the
hand in the scene. A significant brightness differ-
ence between consecutive intensity images signals A
the occurrence of a meaningful action, and triggers
the range finder to capture the range image of the
scene. The system roughly locates the grasping
points from the last two images by image subtrac-
tion, superquadric fitting of the distal portions of
the thumb and index finger, and determination of
the intersection points between the superquadrics
and the grasped object. The contact transition is C
recognized based on the before- and after-task
range images; the appropriate task model is deter- Figure 5: Recognizing a grasp (a) Range Image of
mined from the contact relationship (Figure 4) and hand (b) Hand + object (c) Solid model (d) Grasp
then insantiated withte eo e- Our method for grasp recognition detects all

,, phases of the grasping operation. Given a temporal
lt image sequence of a grasping task, the pregrasp

so"-I 3&aphase is first inferred approximately (using param-
eters such as speed, grip aperture, and approach
polygon area) until the grasp itself has been tempo-
rally located in the sequence and identified. Pre-
liminary work has indicated that we can temporally
locate the static grasp phase within the sequence by
analyzing both the speed and approach polygon
area profiles. The identification of the grasp will
either strengthen or weaken the pregrasp phase

.. ,hypothesis. In addition, it constrains the types of
manipulation that can be applied to the object. Our
system for recognizing grasping tasks comprises a
CyberGlove hand tracker (with a Polhemus
device), a monochrome camera, and a range finder.

Figure 4: usng this table, the needed motion is
determined from "before" and "after" contacts
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vidual road type (Figure 6) [Pomerleau 92]. Differ-

6. Vision for Robot Vehicles ent networks are selected based on the match
between the input scene and its encoding as repre-

Mobile robots are vital for reconnaissance, explo- sented in each network. MANIAC (Jochem,
ration, and all missions to be carried out in remote Pomerleau, and Thorpe) does not select an individ-
locations. Navigation by GPS and dead reckoning ual network, but instead uses an additional neural
can be used to tell where the vehicle is, but to network which looks at the outputs of the individ-
guide it through terrain or to reach a target, visual ual nets [Jochem et al. 93]. This top-level net can
sensing is needed. This is challenging because of then use input from each of the lower-level nets to
the need for reliability in a complex, ever-changing produce a steering response which may be superior
outdoor environment. CMU has been a leader in to any of the responses from the individual nets.
vision-guided robot vehicle development, and has Obstacle location and avoidance: GANESHA
several major vehicle programs: the NavlabefGV (Langer, Hebert, and Thorpe) uses several sonar
effort for wheeled land vehicles, the Ambler for sensors placed around the front of the vehicle for
legged locomotion in rough terrain, and a new obstacle avoidance using an occupancy grid repre-
autonomous helicopter. sentation centered on the moving vehicle. It has

also been used for parallel parking (Figure 7)
6.1. Navlab and UGV [Langer and Thorpe 92], and the moving occu-

CMU is a key member of the DARPA Unmanned pancy grid representation has been used to inte-
Ground Vehicle (UGV) program. Based on our grate stereo vision and laser range data as well.
Navlab autonomous van and our Navlab II Intersections: YARF (Kluge and Thorpe), our sys-
HMMWV, we are providing basic mobility for the tem for driving by tracking lane markings, can now
Demo II effort, including perception, planning, detect and navigate intersections as well as road-
vehicle control and modeling, and human-coin- way stretches [Kluge and Thorpe 93]. This will
puter interaction. We have recently demonstrated allow autonomous traversal of road networks.
cross-country navigation for 5 kin; autonomous
parallel parking (including finding the parking Teleoperation: STRIPE (Kay and Thorpe) is a
space); and a mission that includes driving on dirt method of semi-autonomous teleoperation of a
roads, avoiding obstacles, following a map, driving vehicle which allows it to accurately traverse hilly
off road, and stopping at a designated landmark. terrain while communicating with the operator
Our software is being transferred to Martin Mar- across a very low bandwidth link [Kay and Thorpe
etta for integration into the UGV testbed vehicle. 93]. The operator plots the vehicle's chosen trajec-

tory based on a single 2-D image, and the transfor-
We have made advances in several areas to achieve marion of 2-D image points to 3-D world points is
these goals: done in real time on the vehicle.

Multiple types of roadway: ALVINN (Pomer- Automatic convoying: RACCOON (Sukthankar)
leau) is our neural-net based road following pro- is a vision system that tracks taillights for car-fol-
gram, which learns to drive from five minutes of lowing at night, building a map in real time of the
observing the human driver's control of the vehi- lead vehicle's position for accurate control [Suk-
cle. Recently, we have extended ALVINN to drive thankar 92]. It has been demonstrated on the NAV-
on a wide variety of roads, using information from LAB II at 32 km/h on a winding road.
several different networks, each trained for an indi-

Figure 6: ALVINN has been trained for several roadways: dirt road, bicycle path, two-lane highway
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Landmark recognition: Landmark recognition is range sensor data, periodic recalibrations to comn-
also important for both roadway and off-road navi- pensate for long-term sensor drit and extensive

gation, and we (Hebert) have a new approach error detection and recovery procedures to respond
based on surface matching with range data that has to hardware and memory management errors. We
been integrated on the Navlab to register the vehi- also developed a new fractal-based method for
cle position with the map [H-eber 92]. recovering the terrain map from range data.

6.2. Ambler for Planetary Exploration 6.3. Autonomous Vision-Guided Helicopter

In its fourth year of operation, the Ambler walking We (Amidi and Kanade) are also developing a
robot established new world records for long-term vision-guided autonomous helicopter. At present,
autonomous walking, both outdoors and indoors. we are researching visual feedback for close and
With all computing, sensing, power, and telemetry precise helicopter hovering near a known object of
on-board, the robot is completely self-reliant. 7b interest to perform inspection tasks. Our control
date, the Ambler has walked autonomously a total scheme is based on a linear helicopter control
of over 4 kin, much of it over rugged, difficult ter- model which is updated in real-time by a fuzzy
rain. controller. The helicopter model is the basis for
We (Krotkov) have extended the Ambler terrain image feature detection and tracking as well as

mappng yste toopeate eliblyand ontnu- helicopter control. We have been testing our con-

ously under a wide variety of environmental condi- itdoor i -dea res-o odel electri heliop)tersthng tan

tions in natural, outdoor envirornments [Krotkov et inor6dgesf-edm(610)tth ha
al. 93]. The fielded system has been thoroughly provides both ground truth data and controlled test

testd i nueros wlkig epermens, rocss- environments. We plan to upgrade to a mid-size
ingsteins ofmerousandsofkinge exeimaesndtes, pofes helicopter (Yamaha R50. 2.6-meter long, 20 kg
millioens of terrain elevatine pintgs.I asngl runso payload) with a larger 6-DOF stand for both indoor
theion ofper raieeevtion syteoaq ints. 120 rang simages ru, Wn outdoor experiments. Finaly, we plan to per-

and builetio 4700terri evatqired maps conainnge iage form free flight experiments using a camera and

toanblto 42.6 million elevation mpons.cnann on-board sensors to fly the helicopter while per-oforming a real-world task.

The extensions include using feedback from leg
contact with the terrain to increase the accuracy of

•the elevation maps, aggressive prerocessing of
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7. Vision for Human-Computer providing a hands-free replacement for a pointing

Interaction device. One such system we (Pomerleau and Bal-
uja) are developing is a non-intrusive gaze tracker

It is now being recognized by DARPA and others based on artificial neural networks. Once the posi-
that one of the biggest barriers to the effective tion of the eyes are located in the video image, the
application of computer technology is the difficulty gaze tracker extracts a small window centered on
of communicating between the human and the the right eye of the person, and provides it as input
computer. The Image Understanding group at to a neural network. The network is trained to
CMU has found several ways that machine vision determine where on the computer screen the per-
can contribute to improving this communication to son is looking from the appearance of his eye in the
impact all uses of computers, from word and data input image. By exploiting the unique characteris-
processing to gesture input and even for improving tics of an individual's eye appearance, it is able to
the study of Human-Computer Interaction (HCI) estimate the location of a person's gaze to within
itself. Our current focus areas are in gesture input, approximately I degree (about the size of a 6 letter
perception of the user's face, tracking where the word viewed in a normal font from a comfortable
user is looking, and aids for surgery. distance from the screen). This level of accuracy is

comparable to that of the most expensive commer-
7.1. The Vision Dataglove cially available vision-based eye trackers. Unlike

conventional eye-trackers, it does not require the
Gesture input is useful for tasks such as robotic user's head to be fixed in a frame - the user simply
manipulation, directing the attention of a robot sits normally in a chair. The gaze tracker is useful
vehicle, and providing input for map-based mis- as a rapid, hands-off pointing device, and also for
sion planning and coordination. We (Rehg and studying the process of human-computer interac-
Kanade) are developing the "Vision Dataglove", 15 tion itself, to improve interface designs.
a system for model-based visual tracking of human

arm and hand motion. By exploiting geometric and 7.4. Vision-Aided Laparoscopic Surgery
kinematic models of the human hand and arm, we
can estimate its motion from a sequence of inten- Laparoscopic surgery is a minimally invasive sur-
sity images. We model the hand as a collection of gical technique which involves low trauma,
16 rigid segments (12 individual finger segments, 3 reduced risk of infection, and less post-operative
thumb segments and one segment for the palm), pain than conventional open surgery. Unlike open
The vision dataglove has potential applications in surgery of the digestive system, which involves a
man-machine interfaces and teleoperation. large incision, laparoscopy is performed by special

instruments inserted through small holes cut into
7.2. Face Perception the abdomen. The interior of the patient is imaged

by a small camera mounted on a special instru-
The second focus of our work on vision for HCI is ment, called a laparoscope, and displayed on a
in perception of the human face. We (Rander and standard video monitor.
Kanade) have demonstrated a system for tracking
specific facial features such as the eyes, nose and We (Gibson and Kanade) are addressing two of the
mouth. The system builds a multi-resolution image fundamental limitations of current laparoscopic
pyramid from a digitized image of a person's face. surgery: (1) The laparoscope camera does not pro-
It uses coarse templates to localize the person's vide three-dimensional depth perception, and (2)
face within the lowest resolution image in the pyra- misalignment of the camera view can greatly
mid. It then searches the corresponding region of increase the complexity of hand-eye coordination
the higher resolution images for smaller facial fea- for the surgeon. We are developing a prototype
tures such as the eyes, nose and mouth. Contraints system that uses a pair of video cameras to image
imposed by the positions of features in the previ- the operative field. This stereo view will allow the
ous image and by a geometric model of facial fea- surgeon to perceive three-dimensional depth. Elec-
ture relationships allows the system to limit its tronic sensors will be fixed to both the laparoscope
search and achieve near real-time cycle rates (cur- and the surgeon to help align the camera view.
rently about 5 Hz). References

7.3. Tracking the User's Gaze [Delingette et al. 93]

One of the ways machine vision can aid HCI is by H. Delingette, M. Hebert, and K. Ikeuchi. A
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Progress in Computer Vision at the University of Massachusetts

Allen R. Hanson, Edward M. Riseman, and Charles A. Weems
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Dept. of Computer and Information Science
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Amherst, MA 01003

Abstract' phase involves tracking new unmodelled features
(points and/or lines), and using the landmarks and

This report summarizes progress in image partial model to determine the camera pose for
understanding research at the University Of triangulation of the new features and incorporation
Massachusetts over the past year. Many of the into the 3D model.
individual efforts discussed in this paper are
further developed in other papers in this Most of the algorithms have been described in
proceedings. The summary is organized into previous IUW proceedings and the general vision
several areas: literature [Beveridge 92, Kumar 92, Sawhney 92,

1. Mobile Robot Navigation 93]. These algorithms have been shown to be very
2. Motion Analysis accurate in many indoor experiments using a

camera mounted on a mobile robot and on a
3. Interpretation of Static Scenes moving robot arm. One new experiment that
4. Image Understanding Architecture integrated several components involved the
5. RADIUS Image Exploitation detection of shallow structures - an aggregatation

The research program in computer vision at of line features that can be approximated in an
UMass has as one of its goals the integration of a image sequence as a frontal planar surface. The
diverse set of research efforts into a system that is 3D position of these features served as the
ultimately intended to achieve real-time image acquired model, with a depth error of less than 4%.
interpretation in a variety of vision applications. As motion of the camera continues, the model is

extended with depth information on other tracked
1. Mobile Robot Navigation points to accuracies of less than 2% error in depth.

1.1. Automated Model Acquisition and 1.2. Status of the UMass Mobile Perception
Extension Laboratory (MPL)

The focus of the UMass mobile robot navigation 1.2.1. Physical Description
project is robust landmark-based navigation, with
a focus on automated model acquisition and model The UMass Mobile Perception Laboratory (MPL)
extension. Thus, for navigation in unmodelled or is based on a significantly modified HMMWV.
sparsely modelled environments, our general The design of the overall system includes actuators
scenario would involve the initial acquisition of and encoders for the throttle, steering column and
prominent visual features that can serve as brakes that closely match those being used by
landmarks. This initial phase of partial model CMU, controlled by 68020's in a 6u VME cage.
acquisition is necessary because there are few The low-level control software for controlling
situations where a model of a complex outdoor speed and steering angle will also be the same as
scene will be available a priori. Once a sparse that of CMU. The modifications and component
model is available, then the vehicle position and installation is being performed by RedZone, Inc., a
orientation (i.e. pose) can be recovered by Pittsburgh-based firm specializing in custom
recognizing lanrdmarks. The model extension robotics, and was completed at the beginning of

February 1993.
1This research has been supported in purt by the Defense Electrical power is supplied by a 10kW diesel
Advanced Research Projects Agency under TACOM contract generator, whose output is split into two 5kW
number DAAE07-91-C-R035, HDL contract number circuits. The first circuit is conditioned and
DAAL02-91-K-0047. and TEC contract number DACA76- backed by a 5kW uninterruptible power supply
92-C-0041. by the National Science Foundation under grant
CDA-8922572, IRI-9113690. and IRI-9208920. and by (UPS) system, and is used to supply power to all
RADC under contract number F30602-91 -C-0037. sensitive electronic equipment. The second circuit
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is not conditioned and is used to power the air originally occupied by the HMMWV's NBC
conditioners. Both circuits are attached to a shore- system. Forward of the Staget, at the edge of the
power hook-up that provide an alternative power cab's roof, is a long (5" by 12" by 12") rectangular
source to the on-board generator. enclosure with a glass front and hinged roof for
The physical lay-out of equipment was designed to forward-looking stereo cameras.

1) provide for two on-board programmer stations, 1.23. Software Environment
2) minimize destructive modifications to the body MPL is an experimental laboratory for testing and
of the vehicle, and integrating different approaches to problems in
3) keep the center of gravity as far forward as as autonomous navigation, including, but not limited
possible, in order to minimize stress L11 the to, landmark-based navigation, obstacle detection
suspension system. and avoidance, model acquisition, and road
The first programmer station is located in the following. It is therefore important that MPL have
HMMWV's passenger seat, with a 17" color x- a software environment where multiple visual
terminal fixed to the metal platform between the modules, addressing different subtasks, can be

passenger's and driver's seats. The second easily integrated, and where researchers can
programmer station is located behind and slightly quickly experiment with different combinations
above the driver, and includes a car seat, mounting and parameterizations of those modules. At the
brackets for both an SGI color terminal and a same time, MPL's software environment must besmall SONY monitor for viewing raw TV signals. efficient enough to meet the demands of real-time

navigation research.

The back of the vehicle is filled with equipment. The need to balance between flexibility and
On the driver's side of the vehicle, behind the efficincy ho le uetween alsoftware
second programmer station, is all equipment envicienc t has led us to design a software
associated with providing power. On the environment with two major components: the
passenger's side there are four enclosed, air ISR3 in-memory data store, and a graphical
conditioned 19" computer frames for the on-board programming interface adapted from Khoros.
computer systems. The first frame will hold the mSR3 is the glue that binds independent visual
6u VME cage for throttle, brake and steering modules together [Draper 93at. It is an in-memory
controllers and a second 6u VME cage for holding database that allows users to define structures for
digitizers, image frame stores and a Datacube storing visual data, such as images, lines and
MaxVideo20. The second computing frame will surfaces. ISR3 then serves as a buffer, so that, for
contain a 9u cage for the Silicon Graphics four- example, lines produced by one module can be
node multiprocessor, as well as the SGI's disk used by another, even if the second module is rundries poersupply and (removable) tape drive, later or on a different processor than the first.
drives, power fr a nd (removable) tpe rive. ISR3 also provides modules with efficient spatial
The third frame is reserved for the Image acs otnsfrvsa aa n rtcsdt
Understanding Architecture (IUA). The fourth access routines for visual data, and protects data
frame is for future additions, including video from being simultaneously modified by two or
recorders for collecting data and recording more concurrent processes. The graphical
experiments. Together, the four frames take up programming interface allows programmers to
the length of the vehicle's bed, as do the easily sequence modules and modify their
programmer station, UPS cage and generator on parameter.
the left side. 1.2.4. Navigation System

1.2.2. Sensor Configuration A preliminary version of a behaviour-based

The vehicle's sensor package includes a Staget, system for determining vehicle pose from known
which is a rotating stabilized platform being landmarks has been designed. It is assumed that
supplied to the UMass and CMU vehicles by pose estimates and associated covariance (error)
TACOM. The UMass Staget is mounted on a estimates are returned from several subsystems
level platform located at the center of the roof of (GPS, INS, Landmarks, and dead reckoning)
the cab. We are planning to put two CCD color asynchronously. These estimates are continually
cameras on the Staget, one with a wide angle lens combined via a Kalman filter into a single pose
and the other with a telephoto lens. The first will estimate (and associated covariance matrix
be used to locate landmarks in the larger scene, estimate) and stored in a vehicle state vector. The
and the second will be used for landmark matching vehicle pose error is continually monitored in aand accurate pose refinement. The Stager will also simple loop which branches to a behavior selectioncontain a FLIR sensor. The Staget's hardware is strategy when the vehicle pose error exceeds a
mounted above the driver's head in the enclosure preset threshold.
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The system also contains a video image frame and maintenance. In place of the usual
buffer and STAGET control subsystem. This construction of a geometric map, snapshots of the
system maintains image and pose temporal world at selected target locations along the route
histories (time-stamped images and corresponding are stored as the robot's knowledge of that path.
pose estimates) in a fixed-length first-in last-out By noting places where a set of memorized routes
queue. This information is available to the intersect, a topological "road map"of routes and
remainder of the system. The STAGET control junctions are represented. To retrace a stored
interface permits the STAGET to be repositioned route, a qualitative homing algorithm based on
relative to the vehicle and maintains information purely local visual servoing is employed to home
about the various STAGET parameters and between successive target locations along the
conditions, including information about the current route. This homing algorithm uses no geometric
lens aperture and focal length. model or positional information; rather, it servos

directly on the stored image for a target location,
All the landmark matching and pose refinement choosing headings that reduce the difference
algorithms have been tested extensively, although between features of the current bearings and those
to a great extent only in indoor domains. A large in the target snapshot. A "consistency-filtering"
portion of the original LISP has bcci ported to C. algorithm has been developed for handling
The plan for the coming year of research is to incorrectly matched landmark features [Pinette
develop the following behaviors: road following, 92]. It is shown that this algorithm guarantees
obstacle avoidance, landmark detection, landmark reliable homing as long as more than two-thirds of
tracking, and model extension. the landmarks are correctly identified.

Initially, two types of landmark processing A very robust implementation of a robot
behavior will be specified. The first behavior for navigation system has been developed using
landmark tracking assumes that a landmark (or set image-based homing with a spherical mirror for
of landmarks) are currently being tracked via the encoding a 360 degree view at each target
STAGET and all that is necessary is that the location. This navigation system has been
vehicle pose be recomputed from the tracked implemented as part of an indoor manufacturing
landmarks. However, there are computational automation application domain. It is not yet clear
tradcoffs as a function of the speed of the vehicle, whether these techniques are directly applicable to
and the distance and number of landmarks. Thus, unconstrained outdoor domains and large-scale
not all landmarks may be tracked frame by frame. space.

The second landmark navigation behavior assumes 2. Motion Analysis
that no landmarks are currently being tracked and
therefore a new landmark must be acquired. This 2.1. Multi-Frame Structure from Motion
will involve access to a stored 3D model of the In robot navigation a model of the environment
campus environment (which initially has been needs to be reconstructed for various applications,
constructed a priori) in order to control the Staget including path planning, obstacle avoidance and
and window on subimages via the Staget. determining where the robot is located.
However, the availability and density of landmarks Traditionally, the model was acquired using two
will vary significantly in different areas of the test images (two-frame Structure from Motion) but the
environment, and therefore model extension will acquired models were unreliable and inaccurate.
be a necessary goal. Ultimately we seek to Generally, research has shifted to using several
demonstrate that an accurate 3D model of the frames (multi-frame Structure from Motion)
environment can be acquired via exploration in a instead of just two frames. However, almost none
purely bottom-up manner, while carrying out of the reported multi-frame algorithms have
independent goal-oriented navigation tasks, produced accurate and stable reconstructions for

1.3. Qualitative Navigation via Image-Based general robot motion. The main reason seems to
Homing be that the primary source of error in the

reconstruction - the error in the underlying motion
If the world changes or the robot fails to recognize - has been mostly ignored. Intuitively, if a
a landmark, the robot's perception of the world reconstruction of the scene is made up of points,
will not correspond to its current map of the world. this motion error affects each reconstructed point
However, there is ambiguity in whether the errors in a systematic way. For example, if the
are in its perception or its map, and if the latter, it translation of the robot is erroneous in a certain
must update its map. direction, all the reconstructed points would be

Pinette [Pinette 911 has been developing a shifted along the same direction.
principled approach to automatic map construction
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Recently, Thomas [Thomas 93a,b] has depth estimates. Work is continuing on extending
mathematically isolated the effect of the motion the basic techniques to the general case.
error (as correlations in the structure error) and has 2.3. Multi-Sensor Dextrous Manipulation
shown theoretically that including these
correlations in the computation can dramatically Grupen and Weiss (Grupen 931 have continued
improve existing multi-frame Structure from their work on a multi-sensor approach to dextrous
Motion techniques. In several experiments on our manipulation. The goal of this project is the
indoor robot, the environmental depths of points integration of sensing and control for the task of
from 15 to 50 feet away from the camera (and for finding a stable grasp configuration for an
which ground truth data was available) were unknown object. A subgoal is the integration of
reconstructed with errors in the 1-3% range. In visual and haptic (proprioceptive) sensory data to
one further experiment, the multi-frame full- incrementally build a model of the object. This
correlation algorithm was first used to create a approach uses knowledge of the task and the
model (a set of points) of an indoor hallway from accuracy and completeness of the model to control
several initial frames of image data. This model the sensing actions.
was then used to compute the pose of the robot
over subsequent frames using Kumar's pose system onsists of a camera mounted on one
recovery algorithm. The estimated robot pose and robot and the Utah/MIT hand mounted on another.
actual robot position in the hallway differed by a The system calibration or identification problem
maximum of three to four inches over a 12.8 foot involves computing the transformation from the
path. coordinate system defined by the manipulator

robot to the coordinate system defined by the
2.2. Recovering Affine Transforms from Image camera robot. The pose determination algorithm
Sequences of Kumar and Hanson [Kumar 921 has been

adapted for this purpose. As the manipulator robotDeformations due to relative motion between 3- moves, known feature points are tracked. Given
observer and an object may be used to infer 3-D the kinematics of this robot, the pose of the camera
structure. Up to first order these deformations can with respect to the coordinate frame of the
be written in terms of an affine transform. The manipulator robot are computed and incrementally
recovery of an affine approximation to image refined using iterative, extended Kalman filtering.
deformation has recently been the focus of a large Experiments were performed to demonstrate that
amount of research, and has found application in the accuracy of the filtering algorithm was
such disparate areas of computer vision as image comparable to that of smoothing using a least
stabilization, optical flow computation and squares fit with all of the data, yet the computation
segmentation, structure from motion, stereo, and time was much less. An additional feature of the
texture, and obstacle avoidance. method is that the kinematics of the camera robot
Manmatha [Manmatha 93] has developed a can be computed at the same time.
technique for measuring the affine transform Grupen and Huber [Huber 921 have obtained 3D
locally between two image patches using weighted surface points from the Utah/MIT hand withoutmoments of brightness. Unlike previous methods, the use of tactile sensors. The measurements used
this technique correctly handles the problem of are posture, velocities, and torques. This will be
finding the correspondence between deformed integrated with the measurements obtained from
image patches, as is necessary for a correct the camera sensor.
computation of the affine transform. It is capable
of determining affine transforms of arbitrary size, 2.4. Shape Recovery from Occluding Contours
whereas most previous approaches are limited to
small transforms. It is first shown that the Recovering the shape of an object from two views
moments of image patches are related through (e.g. stereo) fails at occluding contours of smooth
functions of affine transforms. Finding the objects because the extremal contours are view
weighted moments is equivalent (for the purposes dependent. For three or more views, shape
of measuring the affine transform) to filtering the recovery is possible, and several algorithms have
images with gaussians and derivatives of recently been developed for this purpose. Szeliski
gaussians. In the special case where the affine and Weiss [Szeliski 931 have developed a new
transform can be written as a scale change and an approach to the multiframe shape recovery
in-plane rotation, the zeroth and first moment problem which does not depend on differential
equations are solved for the scale. In experiments measurements in the image, which may be noise
on synthetic and real images for this case, the scale sensitive. Instead, a linear smoother is used to
was recovered robustly and shown to give reliable optimally combine all of the measurements

available at the contours (and other edges) that arm
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tracked through the set of images. This allows the allowed a proof of the necessity and sufficiency of
extraction of a robust and dense estimate of the grouping constraints for scenes composed of
surface shape and the integration of shape flat embeddings of orientable surfaces with
information from both surface markings and boundary. Second, a more advanced grouping
occluding contours. The results provide an system which uses cubic Bezier splines of least
extremely promising path for recovery of 3D energy to model the shape of perceptual
shape models in an industrial setting where the completions has been implemented. The new
motion is known. system is demonstrated on a number of figures

from the visual psychology literature which are
3. Interpretation of Static Scenes beyond the capability of the old system.

3.1. Learning 3D Recognition Strategies 3.3. Perceptual Organization of Curvilinear

Most knowledge-directed vision systems are Structure
tailored to recognize a fixed set of objects within a During the past year, Dolan has continued his
known context. Generally, the programmer or work on curvilinear grouping [Dolan 92]. A
knowledge engineer who constructs them begins SIMD implementation of the curvilinear grouping
with an intuitive notion of how each object might system has been developed, along with a
be recognized, a notion which is refined by trial- simplified, distributed representation of curves for
and-error. Unfortunately, human engineering is use in the CAAPP. The integration of multiple
not cost-effective for many real-world grouping processes--in particular, curvilinear and
applications. Moreover, there is no way to ensure area grouping -- is currently being examined.
the validity of hand-crafted systems. Worst of all, Many of these ideas are being incorporated in a
when the domain is changed, the systems often general grouping module for KBVision, which
have to be rebuilt from scratch. will facilitate research and experimentation with

The Schema Learning System (SLS) [Draper 92, many diverse forms of grouping.
93b] automates the construction of knowledge- 3.4. Stochastic Projective Geometry
directed recognition strategies. Starting from a
knowledge base of visual procedures and object The use of projective invariants for object
models, SLS learns robust strategies for locating recognition and scene reconstruction has been the
landmarks in images and recovering their positions subject of intense interest in the image
and orientations, if necessary. Each strategy is understanding community over the past few years.
specialized to a landmark, taking advantage of its Although classic projective geometry was
most distinctive characteristics, whether in terms developed with mathematically precise objects in
of color, shape, or contextual relations, to quickly mind, practical applications must deal with
focus its attention on the landmark and recover its errorful measurements extracted from real image
pose. Furthermore, because SLS learns from sensors. A more robust form of projective
experience by a strict generalization algorithm, it geometry is needed, one that allows for possible
is possible to predict both the expected costs and imprecision in its geometric primitives. In his
the expected error rates (due to a lemma by Ph.D. thesis [Collins 93], Collins represents and
Valiant) of the strategies it develops, manipulates uncertain geometric objects using

probability distributions in projective space,
3.2. Figural Completion from Principles of allowing valid geometric constructions to be
Perceptual Organization carried out via statistical inference. The result is a

Figural completion is the preattentive ability of the methodology for scene reconstruction based on the
human visual system to build complete and principles of projective geometry, yet also dealing
topologically valid representations of with uncertainty at a basic level. The effectiveness
environmental surfaces from the fragmentary of this framework has been demonstrated on
evidence available in cluttered scenes. A several geometric problems, including the
description of a grouping system developed by derivation of 3D line and plane orientations from a
Williams, employing a two-stage process of single image using vanishing point analysis, the
completion hypothesis and combinatorial extraction of a planar patch scene model using
optimization, appeared in a previous workshop stereo line correspondences, and the reconstruction
proceedings [Williams 90]. Preliminary of planar surface structure using multiple images
experimental results were also reported. Since that taken from unknown viewpoints by uncalibrated
time there has been significant progress in two cameras.
major areas. First, the mathematical basis for the More specifically, Collins shows that projective N-
grouping constraints employed in the optimization space can be visualized as the surface of a unit
stage has been clearly elucidated. This has sphere in (N+l)-dimensional Euclidean space.
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Each point in projective space is represented as a reconstructions even in the extreme case of an
pair of opposing or antipodal points on the sphere. added pixel noise of 10%. It appears that it will
By the identification of projective space with the also be possible to prove the convergence of this
unit sphere, antipodally symmetric probability algorithm to the correct surface in the limit of
distributions on the sphere may be interpreted as perfect resolution.
probability distributions over the points of
projective space, and standard constructions of All algorithms thus far have assumed that the
projective geometry can then be augmented by imaged surface was matte. Even with this
statistical inferences on the sphere. Probability restriction, the algorithms are potentially useful in
densities defined in this way can also be used for controlled industrial or research applications. At
representing uncertainty in unit vectors, UMass these algorithms will be ported to the
orientations, and the space of 3D rotations (via robotics laboratory environment, and used in
unit quatemions). combination with other means of shape sensing

and recovery to aid in research in grasping
3.S. Shape from Shading partially or unmodeled objects. Further extensions

include adapting the current algorithms to the
Oliensis' previous work on shape from shading realistic case of a partially specular surface. With
[Oliensis 92] has beern extended in a number of this extension, shape from shading could become
ways. First, while our earlier work usually practical for a variety of applications.
assumed that the illumination was from the
direction of the camera, the shape reconstruction 4. Image Understanding Architecture (IUA)
algorithms and convergence proofs have been Overview
extended more recently to the case of illumination
from any direction [Oliensis 93a]. As before, Work on the IUA IWeems, 1993] has advanced in
these algorithms are provably and monotonically three areas in the preceding year: compilers and
convergent, and (in many cases) can be shown to system software, hardware and architecture, and
converge to the correct surface. Moreover, it has applications and algorithms. The IUA is a tightly
been shown that a whole family of algorithms coupled, heterogeneous parallel processor being
could be developed, and that all would give developed by UMass, Hughes Research Labs, and
equivalent surface reconstructions. This is Amerinex Artificial Intelligence (AAI) under
convenient since some of the algorithms are better DARPA funding. It is intended to support real-
for theoretical analysis while others are more time knowledge-based vision applications and
efficient in practice. The uniqueness proofs for the research by providing three distinct parallel
surface given the shaded image, and the corollary processors in a single architecture: a fine-grained
that regularization is not necessary for shape from SIMD/Multi-associative array for low-level vision,
shading, have also been extended. a medium-grained SPMD array for intermediate-
Experimentation with these algorithms on level symbolic vision, and a coarse-grained
synthetic and real images show that they are fast multiprocessor for high-level, knowledge-based
and robust, taking less than 10 seconds on a processing. A proof of concept prototype of the
DECstation 5000 for a 200 x 200 real image. IUA was constructed under a previous effort and

the current work is directed at developing a second
These algorithms still require that a small amount generation of the system with enhanced
of information on the surface be provided, namely: performance and the ability to be fielded in the
1) a list of those singular points (the brightest DARPA Unmanned Ground Vehicles (UGV)
image points) corresponding to local minima of program.
the surface height (as opposed to the other
possibilities of a local maximum or a saddle 4.1. IUA Compilers and System Software
point); and 2) the heights of these singular points. AAI has completed development of the C++ class
However, in a second extension of previous work library for the low level of the IUA. The class
[Oliensis 93b], Oliensis has developed a new library defines a set of image plane types upon
algorithm that is capable of determining this which parallel operations may be performed.
information automatically, and thus can Work at AAI includes the incorporation of
reconstruct a general surface from shading with no additional optimization code into the Gnu C++
a priori information on the surface. In compiler so that image planes are treated more like
experimental tests on complex synthetic images, first-class objects in C++. An automated test
this algorithm has produced good surface system has also been developed for the machine's
reconstructions over most of the image. For 128 microcode library, to facilitate regression testing
x128 images, the reconstruction takes less than 30 of new releases. For the intermediate-level
seconds on a DECstation 5000. Moreover, the processor, basic operating system support,
algorithm appears noise resistant, giving good multitasking, and messaging have been
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implemented on a TMS320C30 Single Board execute on an abstract parallel machine. The
Computer (SBC), and recently these were traces are then fed to a simulation system that
transported to another SBC with two TMS320C40 models hardware architectures with different
processors that are configured to simulate the features and parameters. The system allows us to
intermediate level of the IUA. A debugger has gather real performance data for different
also been implemented for the intermediate level, architectural configurations, and to analyze the
Work is now under way to transport the data statistically. The performance data will then
KBVisionTm system to the IUA. be contrasted with cost estimates for the different

configurations to produce a specification for the
UMass has implemented a version of the Apply third generation IUA.
language for the low-level processor of the second
generation IUA. The compiler generates code 4.3. IUA Applications and Algorithms
compatible with the C++ class library. It permits
us to easily import image processing operations The low-level processor of the IUA is a squarewritten for the CMU Warp or Intel iWarp mesh of processing elements, augmented with a
machines. second (reconfigurable) mesh, called the Coterie

Network. This network allows the mesh to be
4.2. IUA Hardware Status partitioned, for example, into areas corresponding

to regions in an image. One particularly useful
The prototype IUA has been running at Hughes for operation is the ability to enumerate elements
most of the last year. Under the prototype within a partition or to summarize (reduce) the
development contract, only a very simple information in a partition to a single value. The
controller was built to demonstrate the basic parallel prefix operation is the general form of this
functionality of the processor arrays. It was never type of operation. It is especially desirable to be
intended that the prototype controller be fully able to carry out parallel prefix in all partitions at
programmable. However, Hughes and Amerinex once, i.e. to perform a multi-prefix operation
Al invested additional effort to develop software [Herbordt, 19921. An algorithm has been
that allows C++ code for the second generation to developed for multi-prefix that is significantly
execute on the prototype hardware. Because of the faster than alternatives using general purpose
nature of the controller, instructions can only be routing in the mesh.
issued at VME bus rates to the array, which is
significantly slower than the array can accept As recommended by the DARPA IU Benchmark
them. However, it does permit demonstration of Workshop participants, much of the benchmark
the functionality of the array hardware on real [Weems, 1988, 1990] has been recoded as a set of
applications. Hughes has since implemented the library routines which are called by the core of the
low-level portion of the DARPA IU Benchmark, benchmark. We have also begun developing the
an SDI application, and an ATR application on the second level benchmark, which will incorporate
prototype. tracking of moving objects over a sequence of

images. The goal of the new benchmark is to test
The custom chips used in the IUA have been system performance over a longer period of time
fabricated and are undergoing testing. Each chip so that, for example, caches and page tables willcontains 256 bit-serial processors with on-chip be filled. The benchmark will also explore I/O

cache, and has roughly 600,000 transistors. The and real-time capabilities of the systems under

system's array control unit, backplane, and chassis test, and involve more high-level processing.

have been built and tested. Processor and memory

boards are currently under construction. The I/O UMass has developed a parallel algorithm for the
subsystem for the machine has also been designed, IUA that computes a dense depth map for a scene
and will support the equivalent of 20 simultaneous from a pair of images taken by a moving sensor
sensor inputs at 512 X 512 X 8-bit resolution with [Dutta 931. The algorithm has an average error of
automatic mapping onto the processor about 8 percent in depth, as computed from
virtualization scheme used for the low level, with randomly sampling points corresponding to
almost no latency. The I/O subsystem will also objects in the scene with known distances from 21
support the selection of multiple regions of interest to 76 feet from the camera. The experiments were
from an image. Hughes has indicated that the first done with fairly large displacements (four feet of
machine should be assembled by the end of forward motion between the images) so that a
February, 1993. large (41 X 41 pixel) search window was required

to establish correspondences, resulting in 1681Work has already begun on the analysis and image-to-image correlations being performed. in

design for the third generation IUA. UMass has simulations of the second generation IUA, it was

developed a system for capturing traces of determined that the execun tionme will be about

programs written in the C++ class library as they
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0.54 seconds, of which 0.53 seconds is taken up 2. Model Matching Module. Given the
solely by the correlations. We are thus looking approximate pose (location and orientation) of the
into approaches in which an estimate of the motion sensor, a partial 3D wireframe site model, and a
is available or in which a series of frames with set of extracted straight lines, the best match of the
smaller displacements can be used (allowing the projected 3D model to the line data will be found
search window to be constrained), using a novel model matching algorithm due to

4.4. Line Extraction Beveridge.

UMass has also developed a parallel algorithm for 3. Model Extension Module. Given a partial
extracting straight lines from an image. Using the model and a set of model-data feature
second generation IUA simulator, the algorithm correspondences over multiple images, the site
executes in as little as 31 milliseconds for images model will be extended to include further
that map to the array with a 1:1 virtualization ratio. unmodeled features. Two techniques are being
We are currently evaluating the quality of the evaluated. The first is based on recovering the
results, but a preliminary examination indicates camera pose using a robust pose estimation
that the algorithm gives very consistent lines over technique due to Kumar. This algorithm is
sequences of images, which is an important effective even when significant numbers of feature
attribute in the support of algorithms that use line correspondences are in error. Using the computed
tracking. pose for multiple images from multiple

viewpoints, the 3D positions of unmodelled
5. Image Exploitation under RADIUS features are found by triangulation. A second

approach is based on direct estimation of the 3D toUMass is developing mechanisms for site model 2D projective transformation relating model
acquisition, extension and refinement (Collins features to image features. The benefits of this
93a] based on technology that has already proven approach are that multiframe triangulation can still
effective in the mobile robotics domain., be performed without first solving for camera
Automatically acquiring the initial 3D site models pose, and without relying on accurate knowledge
from scratch is a challenging problem that will be of the internal camera parameters.
the focus of future research. Our current work
assumes that a partial model of the site is provided 4. Vanishing Point Module. Vanishing point
apriori by the image analyst. Our model-based analysis is a flexible tool for geometric reasoning
refinement and extension algorithms are then in cultural domains. Among its many uses are the
applied to automatically correct inaccuracies in the determination of 3D line and plane orientations,
initial site models, and extend them to include refinement of extracted linear features based on
previously unmodeled cultural features (buildings, convergence constraints, pose estimation, and
roads, etc.) based on information from new camera calibration. An efficient vanishing point
images. detection and estimation algorithm due to Collins

Rather than building a turn-key system, UMass and Weiss is being evaluated.
will be delivering a set of modules for performing In addition to developing new techniques for
specific tasks of direct benefit to the image automatically acquiring initial site models, new
analyst. The following is a list of the early research will investigate statistical techniques for
deliverable modules that are currently being applying projective invariants to the modeling
evaluated on the model board test imagery process to accurately derive structure without
supplied to the research community, explicit camera models or knowledge of

viewpoint. Initial experiments in this directionI. Feature Extraction Module. This module have yielded promising results. Other encouraging
condenses the vast amount of information in each results have been obtained regarding the difficult
image into a manageable set of symbolic problem of image to image registration. A
descriptions. Two straight line extraction technique based on vanishing point analysis
algorithms are being evaluated: the Burns [Collins93b] allows an oblique aerial view to be
algorithm based on fitting planar patches to the rectified (unwarped) to present a simulated vertical
underlying image intensity surface, and the Boldt view, allowing full perspective aerial images to be
algorithm for hierarchical geometric edge registered with a computationally tractable affinegrouping. Also under development are routines matching approach.
for extracting curved lines, and for locating
dihedral and trihedral junctions to subpixel 6. References
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ABSTRACT - Verify such hypotheses, using mure detailed
Our program in Image Understanding has maintained information.

a primary focus on issues in object recognition, especially We will describe our recent work in each of these areas.
the problems of selection, indexing, saliency computation
and integration of visual cues, and a secondary focus on 2.1 Selection and Attention
navigation. We have also continued our work on the We have argued for some time that robust and efficient
computation and the use of low level visual cues such as solutions to the selection (or grouping) problem are es-
motion, stereo, color and texture, on analog VLSI cir- sential to practical recognition systems. Earlier work.
cuits and on learning. using both formal analysis and experimental studies [22;

13; 27]. has shown that the complexity of many ap-
1 Introduction proaches to recognition are dramatically reduced if de-

Image U~nderstanding research at the MIT Al Lab has cent selection is provided, and that the false po-;i-
tive/false negative rates for such methods are also sig-continued along a range of fronts, from low level process- ni ca ty mp o e w th g d sl c in

ing, such as stereo, motion, color and texture analysis, nificantly improved with good selection.
through intermediate stages of integration of visual infor- One advantage of focusing on the issue of select ion forriation, to hihr ee tak soh object rogion recognition is that it provides constraints nn the reI,,ire-
and navigation. This report summarizes our main recent mets of early processing stages. For example. CUes such

and aviatin. hisreprt ummaize ou man rcen ascolor or texture are often considered from the view-accomplishments in these areas. As is usual in these re- point of extr e are o ft e measure mett. wichports, we refer interested readers to other publications point of extracting object surface measurements. which
port, worefr intes t requires that one account for illumination and ,,therscene effects in inverting the image measurements to ob-
2 Object Recognition tain object parameters. If one simply wants to use thesecues to separate regions of an image likely to have c•,m,

Because it has been one of our central focal points, we from a single object, much less stringent requir,.,ient-.
begin with our recent work in object recognition. In ap- are placed on the task, leading to simpler and hopefuilly
proaching the problem of recognizing objects from noisy more robust algorithms.
images of cluttered scenes, we have found it convenient Towards this end, Tanveer Syeda-Mahmood has re-
to separate out several different aspects of the problem: cently completed a Ph.D. thesis [46] that explore,- th,.

role of cues such as color and texture in selectinn for"* Selection: Given a large set of image features from recognition. She does this by developing and implement-
a cluttered scene, select (or group) subsets likely ing a computational model or visual attention. which
to have come from single objects, and use a rank serves as a general purpose selection mechanism in a
ordering to place the most salient ones first. recognition system.

"* Indexing: Given one of these image feature sub- The approach supports two modes of attentional b,--
sets, select a small set of object models from the havior, namely attracted attention and pay-attlnt,,i,
library that are likely to match the data. modes. The attracted attention mode of behavi,,r ti-

"* Matching: Given a ata feature subset and an spontaneous and is commonly exhibited by an unbiaed
object model, determine if there is a legal transfor- observer (i.e., with no a priori intentions) when 4.nmv

object or some aspect of the scene attracts his/her au-
the image that is consistent with the data, possibly tention, while the latter is a more deliberate behavi,,r

t exhibited by an observer looking at a scene with a p'rte,,by finding a matching between data and model fea- goals (such as the task of recognizing an object. say)awl
tures. It is often useful to separate this stage into hcaying atte to onlyithose objectsay) ctsItwo subproblems: hence paying attention to only those objects/aspect. ,,

a scene that are relevant to the goal.

- Hypothesize possible solutions, using mini- Briefly, the model suggests that the scene represenAtt,,
mal model and image information, by the image be processed by a set of interacting feat •r,.
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detectors that generate a hierarchy of maps, representing the feature maps described earlier) is used to build a de-
features such as brightness, color, texture, depth, group- scription of the object-model. This description was then
ing of edges, and others such as shape, size, symmetry, * used to design strategies for the selection filters. This
etc. The feature maps are then processed by filters in- involved developing new algorithms for finding instances
corporating strategies for selecting distinctive regions in of regions in the image satisfying object-model color and
these maps. The choice of these strategies is guided by a texture descriptions. Such regions are then passed to
central control mechanism that combines top-down task the recognition system for analysis. Experimental results
level and a priori information with the bottom-up infor- show that the methods drastically reduce the complex-
mation derived from the features, to demonstrate either ity of the recognition process by rejecting clutter from
mode of attentional behavior as desired. Finally, an ar- consideration. The system can also be driven in attract
biter module housing another set of strategies selects the attention mode, in which the most salient portions of the
most significant features across the feature maps, which scene are analyzed first, again reducing the complexity of
can then be used in an object recognition system. the recognition stage. An example is shown in Figure 1.

A system implementing the computational model de-
scribed here was built using three features: color, tex-
ture, and parallel-line-groups. The respective feature
maps were built, and the selection filters for finding dis-
tinctive regions in these maps have been developed. In
addition, a version of the arbiter module to combine the
saliency information from the various features has been
built.

Because we are interested mainly in separating regions
likely to have come from a single object, we do not need
to exactly recover object parameters such as body color.
Rather, we can focus on methods that describe the color
image as consisting of perceptually different colored re-
gions. This can be done by focusing on the components
of a color signal that are most relevant to human cate-
gorization of colors (e.g. saturation and brightness, but
not hue). Syeda has developed such a method of per-
ceptual categorization of a color-space, which supports
fast color region segmentatior;. A color saliency map was
then built which used a color saliency measure that em-
phasized attributes that are also salient in human color
perception. The key point is that such a saliency mea- Figure 1: Example of'attentional selection for recognition.
sure serves to highlight regions of interest for a recogni- Top Left: Image used to create the model. Middle left:
tion system. Scene. Bottom Left: Selected salient color regions. Top cen-

The texture feature map was generated by regarding ter: Model showing corner and line features. Middle cen-
the image as being generated by a space-limited station- ter: Edge image of scene, showing features. Bottom center:
ary stochastic process. Here, the segmentation of the salient features. Top right and middle right: matched fea-
textured image was obtained by a comparison of the lin- tures found by algorithm. Bottom right: alignment of model
ear prediction spectra of adjacent windowed regions of with image.
the image. Properties such as the relative distribution
of dark and bright blobs were then made use of to judge The key results here are a framework for combining
the distinctiveness of a region. This was used to generate sensory information to support recognition, the use of
the texture saliency map. an attention mechanism to select targets for recognition.

Lastly. the parallel-line-groups feature map high- and novel methods for handling texture and color infor-
lighted groups of closely-spaced parallel lines in an edge mation.
image. It has been found that some texture information
can be modeled this way. For example, printed letters on 2.2 Indexing
a surface (such as a bottle) appear as a bunch of closely Even if we can isolate key regions of an image. we still
spaced parallel lines when passed through an edge de- need to know what objects may be present. In some
tector. Similarly, some types of wooden tables show this tasks, we are looking only for a specific target, or a small
type of texture in an image. number of targets, in which case model-driven selection

These feature maps can then be combined to isolate can be used to isolate regions of interest. In other cases,
regions of an image for analysis by a recognition system we need to consider large libraries of objects. in which
(in our implementation this was a combination of a tree case we need some means of using selected image features
search algorithm and a linear combinations approach). to identify subsets of the library as candidate models.
The feature maps and their associated saliency maps can ('ues such as color and texture, discussed above, can heIp
be driven in a pay-attention mode, in which the color with this object indexing. In general, however, other
and texture information in the model (extracted using information is also needed.
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David Jacobs, as part of his recently completed Ph.D. proceedings. We note as an aside that considering this
thesis [27], has shown that simple aspects of an object's model of linear transformations has proved fruitful in
shape can often be used to efficiently index objects in other problems, such as the linear combinations ap-
a library. Jacobs' method views the indexing problem proach to recognition [48] and in dealing with affine
as stating: can one compactly represent the space of all structure from motion [28; 41].
images that an object model can create, given the type The key result here is a very efficient method for han-
of projection model used? If one can, then to handle dling indexing for some classes of objects, as well as a
the indexing problem, we can precompute each model's novel framework for investigating the interactions be-
manifold of possible images in an image space. At recog- tween object structure and image projections.
nition time, we can compute the associated representa-
tion of the current image, use this to access image space, 2.3 Matching
and retrieve all models that could have caused it. The A central part of recognition, once we have found sub-
key question is whether one can actually represent all sets of image features of interest and sets of models
possible images of a model in an efficient way. Jacobs of interest, is to determine whether the image features
has shown, perhaps surprisingly, that in several nontriv- are in fact consistent interpretations of the model fea-
ial cases, one can. tures. Over the past several years, we have developed

The results are summarized as follows. We assume a variety of different approaches to this problem, in-
that a 3D object is transformed by an arbitrary affine cluded Interpretation Tree Search [22], Alignment [24:
transformation, followed by a scaled orthographic pro- 25] and Linear Combinations [48]. Here we report on
jection. For the case of 3D points, this is equivalent to some new alternatives to these approaches, as well a's
applying an arbitrary 3 x 3 matrix to the points, then improvements on these approaches.
translating them, then projecting them. To describe the 2.3.1 Makig Alignent Robust
images that a model can produce under this class of
transformations, we first define image space, then deter- The alignment approach to recognition [24; 25; 6] pro-
mine the shapes of the model manifolds. Jacobs argues ceeds by matching a small set (typically 3) of image fea-
for using affine coordinates to represent image space. In tures to model features, using this match to determine
particular, if one selects three ordered point features to the associated transformation of the object (modeled as

establish a basis, then all other points can be written in a weak perspective transformation), and projecting the
terms of coordinates with respect to this basis: that is if remaining model features into the image for verification.
q1,q2... qn denote the image points, and if In the original system, uncertainty in the image inea-

surements was dealt with in a somewhat ad hoc manner.
0 = q, u = q2 - q, v = q3 - q, Recently [21] we have shown how to analyze the effects

of that uncertainty on the set of possible transfornia-are the affine basis, then all other points can be repre- tns. Alter [I] hsetne htwr osp~eiu

sented by coordinates (ni, i.) by tionsAle[1 has extended that work to suppilemienit
alignment approaches .-ith a verification stage that is

qi = o + aiu + liv. guaranteed to be correct. In particular, he shows that
using a bounded error model on the image features, one

These coordinates are invariant to any affine transfor- can compute the range of image positions for all other
mation, and hence an image is uniquely identified by model features, both for planar and solid objects. and

o, 11, v, (a 4 , 04), (a5 , /35) .... for point and line features. This allows one to exactly
specify the range of image positions over which to search

It turns out that the first three vectors do not provide for matching features, so that one will not miss any sup-
any information about whether a scene could produce porting evidence, while at the same time keeping the
this image, so we use only the (ai, #i) parameters to rep- chances of false matches minimal. One can further ex-
resent an image. Thus, an image with n ordered points tend this approach by adding a Bayesian analysis of the
maps to a point in a 2(n - 3) dimensional space, which actual matching regions, so that one can determine the
can be divided into two orthogonal n - 3 dimensional likelihood of each verified match actually being correct.
spaces, one for the a coordinates and one for the /3 co- This allows one to determine the best regions in which
ordinates. The advantage of doing this, as Jacobs has to search for features, by determining those most likely
shown, is that the set of all images that a model of n to contribute to a correct interpretation. An example ,If
ordered points could produce is simply a pair of parallel the image search regions is shown in Figure 3. Exten-
lines, one in each space. In this case, indexing simply sions of the method to line features has also been done.
says, given an image basis, compute the affine coordi- and results show, as expected, that lines are consideral)ly
nates of the points, then find all model lines that pass more powerful as verification features than points.
through the associated point in a - /3 space. One must A related result concerns the models of sensor uncer-
allow for uncertainty in the measurements, but this can tainty used both in the analysis of recognition method.,
be shown to be easily handled and simply expands the and in the derivation of verification and likelihood tech-
image points to small regions in the a and 3 spaces [21]. niques. Most of our earlier work has been hased on a
An example of the indexing system correctly retrieving bounded error of sensor uncertainty. Karen Sarachik ha:,
candidate models is shown in Figure 2. been working on the problem of estimating the effects 4f

Extensions of this approach to deal with other types sensor noise on the problem of model based object recog-
of features are discussed in an article by Jacobs in these nition. for other classes of uncertainty. For the analysis.
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it is assumed that the location of a point feature in an ever, that one can efficiently find such volumes by decou-
image is corrupted by noise, which is modeled as a two piing the search over the full pose space into a coupled
dimensional Gaussian distribution, and the presence of search over the translational components and a second
the model in the image is posed as a binary decision search over the rotational components. Moreover, one
problem. The positional uncertainties of the point fea- can use the structure of these geometric arrangements to
tures are traced through the recognition algorithm, re- find very efficient, polynomial-time algorithms for find-
suiting in analytic expressions for the confidence level of ing the boundaries of these pose-space volumes. ('ass
the algorithm's decision. Until now the analysis has been has extended his earlier work to allow for unknown scale
completed only for one algorithm, geometric hashing as factors, unknown uncertainty values, and has used re-
introduced by Wolfson, Lamdan, Schwartz and Hummel. stilts from computational geometry to provide efficient
Using this technique it is possible to explicitly compare algorithms for exploring pose space.
the expected performance of different recognition algo- 2.3.3 RAST algorithm
rithms and noise models, a useful tool for the domain of
multi-sensor fusion. An alternative to Cass' approach to analyzing Pose

Spaces is the RAST algorithm (Recognition by Adaptive
2.3.2 Pose Space Analysis Subdivision of Transformation Space: [8]). The RASTalgorithm solves bounded error recognition prob~lems ef'-

In earlier proceedings, we have reported on our work ficiently.

in developing recognition algorithms that work directly Bounded error recognition is one of the most conn-

in the space of possible poses of an object, rather than in monlv used formulations of the visual object recogni-

the space of feature correspondences. In the ideal case of tion used has ove isual objectumerof

perfect sensor data, one can simply search over all pos- practical systems (for fusrther references and related re-

sible pairings of model and image features, compute the spilts, see, for example, r4], [22]). The simplest form of

associated transformation and vote for that transforma- the bounded error recognition problem is the following:
tion in pose space, a Ia Bough transforms. When tin- given a set of model features (points in R2 or R') and a
certainty is allowed in the measurements, however, one set of image features (points in R2 ). find maximal sub-
must be more careful about voting for the entire volume sets of image and model features that can be brought
of transformations consistent with the pairing of a noisy into correspondence under given error bounds using rigid
sensor measurement and a model feature, and this in- body transformations.
creases the demand on searching fine tesselations of the The recognition algorithm is based on the idea of car-
pose space. rying out matching with variable sized error bounds: if.

Todd Cass has recently complete a Ph.D. thesis that for a given set of transformations, a good match can-
presents an elegant way around this problem, by ex- not be found for large error bounds, then matches with
ploiting the geometry of pose space directly. Cass [10] smaller error bounds need not be examined. The RAST
has provided a formulation of the problem in which one algorithm uses particularly convenient representations
can develop a polynomial-time algorithm that guaran- for sets of transformations that make it simple to mir-
tees finding all feasible interpretations of the data, mod- plement, efficient, and flexible in the kinds of features
ulo uncertainty, in terms of the model. The approach is and similarity measures that can be used with it.
based on representing the model and the sensory data So far, we have applied the RAST algorithm to 21)
in terms of local geometric features such as vertices and recognition problems that involve a very large number
line segments. He assumes bounds on the uncertainty (thousands) of very simple image features (short line
in the position or orientation of the data features due segments). In such applications, the RAST algoritlhii
to sensor error. He then shows that there are only a is found to be faster than alternative methods (recog-
polynomial number of quantitatively different transfor- nition by alignment, Hough transform, search, or corre-
mations that align the model and the data modulo error. lation). Actual applications using the RAST algorithim
Object localization is accomplished using a polynomial- include the prototype of a view-based 3D object recogii-
time search through the set of all model transformations tion system and a system for handwritten optical charac-
to find those that align large subsets of model and data ter recognition (O(C'R). Examples are shown in Figure -1.
feature's within the uncertainty bounds.

Intuitively, this approach can be considered as follows. 2.3.4 View-Based Representations
For each pairing of a data and model feature, there is For curved objects, both the visibility and the locatmin
a set of transformations that will align the model fea- of object parts/features in the image varies in a c,,,ipli-
tures within the uncertainty region about the data fea- cated way with the viewpoint. This has made the de-
ture. This set of transformations carves otit a volume velopment of efficient 3D object recognition algorithms
in pose space. If we consider all pairings of data and difficult.
model features, we get a set of such volumes, and we In order to avoid these difficulties, many 3D object
are interested in finding points in the pose space con- recognition systems have heuristically used ricir-hastd
tained within the intersection of a large number of such representations, i.e., representations that encode object
volumes. One could find such points by simply sampling properties and shape from a large number of different
points in pose space at some fine spacing, a method used viewpoints.
earlier by (Cass in implementing a very fast recognition However, using view-based representations only solve,
scheme on the Connection Machine. It turns out. how- the 3D object recognition problem approximately. In
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order to understand the nature and significance of this estimation problem, and use Baye's rule to calculate the
approximation, we have formalized the notion of view- a-posteriori probability density of F and 3:
based representations and established error and corn-
plexity bounds on the performance of recognition sys- p(F,o I o) = p(0 I [,r3)p(F,4)
terns that are based on view-based representations[9]. C

The theoretical results suggest that, for the pur- where C is a normalizing constant independent of r and
poses of object recognition from 2D images, view-based /3. Then we seek estimates for F and 3 that optimize
representations are good approximations to true 3D this objective function.
shape representation. Furthermore, we have estab- Note that we couple the effects of the objects pose di-
lished model-independent upper bounds on the number rectly into the matching problem. There are. of course.
of views needed in order to represent a model in a view- some sensor features that are not directly pose related.
based system. Finally, a complexity analysis suggests such as the fractal dimension of a region. These features
that view-based recognition can be carried out more ef- can also be incorporated into the matching process. ei-
ficiently than 3D shape-based recognition. ther as priors on the correspondence, or at s filters that

These theoretical results are supported by a number remove some correspondences directly.

of simulations and experiments on real images. To solve this optimization problem, we need several

2.3.5 Statistical Recognition things. First, we need to model 0. This can be done

An alternative approach to recognition is to treat it by a careful physical modelling of the sensor, by taking

as a problem of optimal estimation. Sandy Wells has into considerating the effects of noise on the transduc-
recently completed a Ph.D. thesis [531 that develops and tion process, and providing careful models of the distri-
tests a framework for statistical object recognition. bution of uncertainty about the measured values. Such

To formalize this, let the image that is to be analyzed models can be derived for widely varying sensors, other
be represented by a set of v-dimensional point features than visual, and in we are in the process of applying this

approach to LADAR and SAR sensors.
0 = {0102...On} , Oi E ?.} As an example, one simple model is to assume that

The model to be matched is also described by a set of the probability density function on features is uniform
point features, these are represented by real matrices: for features arising from the background, and is normally

distributed about their predicted locations in the image

M = {M 1 M 2 ... Mi.) for matched features. Of course, this is a simple model.
For some types of features, we have more explicit mod-

To solve the recognition problem we need to find a els of the distribution of the feature, which will simply
legal match between image features and model features. replace the variance of the normal distribution.
Here, legal means that there is some physically meaning- Second, we need to model the probability of an inter-
fil way of positioning the model in the scene so that it pretation (or matching of features) and the probability
would produce image features similar to those actually of a pose. One simple method is the following. The
observed. We can treat this as an optimization problem, probability that a feature belongs to the background is
wherein we seek to estimate two sets of parameters: the B; the remaining probability is uniformly distributed f,,r
correspondences between image and model features, and correspondences to the m model features.
the pose of the model instance in the image. The corre- Our simple model also assumes that prior informna-
spondences are described by an interpretation vector tion on the pose is a normal density. With this choice

F = [rr 2 ... r1] , Fi E M {1} for the form of the pose prior, the system is closed in the
sense that the resulting pose estimate will also be nor-

Here Fi = Mj means that image feature i corresponds mal. This is convenient for coarse-to-fine techniques (,,r
to model feature j, and ri =1_ means that image feature multi-resolution methods), in which we use coarse data
i is due to the background. to get an initial estimate, then refine this by focusing on

The pose of the model instance in the image, J1, is subportions of finer resolution data.
a real vector. An associated projection function P is If little is known about the pose a-priori, the pri,,r
defined': may be made quite broad. This is expected to often

P(Mi, 3) E Rv be the case. Note, however, that better models woumld
P maps model features into the v-dimensional image ac- incorporate additional information about the scene. F,,r
cording to the model's pose. example, if we know the parameters of the ground plane.

Our goal is to obtain estimates of the correspondences and the target is known to be in a stable position on thli.t
and pose by maximizing the posterior density with re- plane, we should be able to incorporate this knowlehd,.
spect to F and j3, as follows into better priors on the pose parameters. For examipl'.

if range information is also known, then only two of the,
F,/3 = arg max p(F, o0) six parameters of pose are completely unknown. 'Fhi,

r,o others can be constrained from such additional inforiwi;t-

In other words, we want to find the assignment of tion, thereby reducing the complexity of the search fir a
model features to image features, and the related pose match.
(position and orientation) of the object that optimally If we assume independence of the correspondences. andI
accounts for the observed data. We can treat this as an the pose (before the image is seen), the composite pr,,r
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is a straightforward product of the prior distribution on duce range images instead of shaded images. The syn-
pose and the probability distributions on matched and thetic range image appears in the tipper left of Figure
unmatched featur,,s. Thus, in our simple example, we 6.
can describe the probability of a pose and a correspon- In order to simulate a laser radar, the synthetic range
dence in terms of measurable quantities in the data. image described above was corrupted with simulated

Given this, we need efficient methods for finding op- laser radar sensor noise, using a sensor noise model
timal estimates for the parameters of interest. We can that is described by Shapiro. Reinhold. and Park [40].
choose those estimates that maximize the a-posteriori In this noise model, measured ranges are either valid
probability (MAP), by maximizing the posterior den- or anomalous. Valid measurements are normally dis-
sity with respect to the matched features and +he pose. tributed, and anomalous measurements are uniformly
But to find such estimates, we need efficient methods for distributed. The corrupted range image appears in Fig-
searching the objective function. tire 6 on the right. To simulate post sensor process-

To handle this search process, Wells has considered ing, the corrupted image was "restored" via a statisti-
several approaches including beam search through a tree cal restoration method of Menon and Wells [31]. The
of interpretations [511, and posterior marginal pose es- restored range image appears in the lower position of
timation [52]. The latter is motivated by the obser- Figure 6.
vation that in tree searches of the objective function Oriented range features were extracted from the syn-
of MAP model matching, hypotheses having -. or" thetic range image, for use as model features - and front
matches scored poorly in the objective function. The the restored range image, these are called the noisy fea-
implication was that summing posterior probability over tures. The features wc -e extracted from the range images
all matches (at a specific pose) might provide a good in the following manner. Range discontinuities were lo-
pose evaluator. This has proven to be the case in the cated by thresholding neighboring pixels, yielding range
experiment described in [51] discontinuity curves. These curves were then segmented

The essence of posterior marginal pose estimation is to into approximately 20-pixel-long segments via a process
choose the pose that maximizes the posterior probability of line segment approximation. The line segments (each
density of the pose, given an image: representing a fragment of a range discontinuity curve)

were then converted into oriented range features in the
11 = argmmax p(/3 1) following manner. The X and Y coordinates of thefeature were obtained from the mean of the pixel co-

The posterior probability density of the pose is computed ordinates. The normal vector to the pixels was gotten
from the joint posterior probability on pose and match, via least-squares line fitting. The range to the feature
by taking the mnarginal over the possible matches: was estimated by taking the mean of the pixel range,

on the near side of the discontinuity. This information
p(03 1 E) = Ep(F, 3 I a) was packaged into an oriented-range feature. The niodel

r features are shown in the fourth image of Figure 6. Each

Using Bayes' rule, the posterior marginal may isolated line segment represents one oriented-range feature. hie

as a function of the priors described above, and this ticks on the segments indicate the near side of the range

leads to a convenient objective function for optimization. discontinuity. There are 113 such object features.

One can utilize the EM algorithm to provide an efficient The noisy features, derived from the restored range
method for optimizing this objective function, thereby image, appear in the fifth image of Figure 6. There are 62
leading to solutions to the pose problem. A more com- noisy features. Some features have been lost due to, th,
plete description is given the paper by Wells in these corruption and restoration of the range image. The.st .. I
proceedings. image features was prepared from the noisy feature,- 1,%

Wv~ells has applied the method to several cases, include randomly deleting half of the features, transforming th,.
2[) point features, 2D oriented range features and linear survivors according to a test pose, and adding stifliciu,,t
3d projection modeL. An example of recognition from randomly generated features so that L of the feat,,,,.
visible image features is shwon in Figure 5. are due to the object. The 248 image features appear in

A sec'ond example shows the method applied to a very the sixth image of Figure 6.
different type of imagery. This work was done in con- Using this data, the EM algorithm was run in a iti-
junction with Group 53 of Lincoln Labs, directed by resolution manner, and Figure 7 shows the convergtJ,.
A. Gschwendtner. In this example, the features were of the algorithm to the correct pose.
oriented-range features, consisting of fragments of image
edge contours, augmented with a vector pointing in the 2.4 Projective Structure and Recognition
direction normal to a range discontinuity, with length re- In classic projective geometry of 3D space, projer'i",
flecting the inverse range at the discontinuity. Two sets structure is typically defined by three cross-ratios n.-,1n
of features were prepared, the "model features", and the five reference points (tetrahedron of reference and a unit
"iimage features". point) [39: 32] or, equivalently. by a tetrad of hing.-

The object model features were derived from a syn- nous coordinates. With such projective structure ,,n,
thetic range image of an M35 truck that was created can reconstruct the scene tip to an unknown prnj,-ti,.
using the ray tracing program associated with the BRL transformation in 3D projective space, or equiv:d,,nt .I
('AD Package [16]. The ray tracer was modified to pro- the camera coordinate frame may undergo an affine I rut-
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work in a framework that does not make a distinction Let Xb, Yb, Zb be the affine coordinates of a point P
between orthographic and perspective views and does with respect to four of the reference points. If the fifth
not require internal camera calibration, reference point (taken to be the (OP) is not at infinity.

The geometric relation between objects and their then the observed image coordinates (z. y) can be de-
views can also be used for purposes of recognition. In scribed by an affine change of coordinates followed by a
this case one is generally not interested in recovering ob- 2D projective transformation:
ject structure from multiple views but instead in being a x\ /

able to predict, the appearance of a novel view from a Z ( = A Y) + r
small number of example views ("model" views) given a * Yb

small number of corresponding points between the novel Zb

view and the model views. The projective structure in- for some fixed matrix A, and vector r and some scale
variant can also be used for this purpose (see Figure ??) factor z (in a metric framework z would correspond to
but it is more desirable to achieve the same result di- "depth"). In the case of an orthographic projection
rectly without going through the computation of struc- (COP at infinity and only 2D affine transformations of
ture (metric or non-metric) and without the reconstruc- the image are allowed), we have:
tion of camera geometry (transformation parameters or
epipolar geometry).(

In what is still an ongoing research we derive alge- = B Yb +.q,

braic relations between image coordinates across three \,6 b /

views (two model views and a novel view). We show for some 2D affine transformation B, (third row is
here three results: first, the general result is that im- (0,0, 1)) and an ideal vector .s (third coordinate of .s

age coordinates across three views (perspective or or- is zero) [28; 41]. We can use these two equations to
thographic) are related by a small number of third- describe the transformation between image coordinates
order algebraic functions each having II parameters in two views across four cases: two perspective views,
that can be recovered by linear methods. Second, if two orthographic views, a perspective to orthographic
the two model views are known to be orthographic, case, and an orthographic to perspective case. This is
then the algebraic functions reduce to second-order ones described below:
with only 7 parameters. Thirdly, if all three views
are known to be orthographic, then the functions re- (' (
duce further to first-order ones with only 4 parame- p' Y' pA + v. ()

ters. The latter is identical to the result derived by [48; 1
;33'] known as "the linear combination of views", and thus
the first two results can be viewed as an extension of the where p = z,p = z and A, v are general for the
linear combination of views to perspective, perspective-to-perspective case; p = p' = , A is a 21)

In a projective framework, five reference points (a affine transformation and v3 = 0 for the orthographic-

tetrahedron and a unit point) are used for construct- to-orthographic case; p = zp' = 1, third row of .4 is

ing a coordinate system of 3D space ([49], for example). (0, 0,0) and v3 = I for the perspective-to-orthographic

projection of a point P onto a plane with respect to case; p = I, p' = ", and A.v are general for thie

an arbitrarily positioned center of projection (COP) and orthographic-to-perspective case. Sinilarly. the image
arbitrarily positioned image plane can be achieved by coordinates (x",y") of a third view satisfy the following
first mapping the reference frame such that one of the relation to the first view:
tetrahedron's vertices is aligned with the desired loca- -I " ) \
tion of the COP. and three other vertices are coplanar p" y( = pB y ' + i. (2)
with the desired image plane (in projective space five I I
points in general position can be uniquely mapped onto
any other configuration of five points in general posi- Note that p remains fixed regardless whether the third
tion). The point P is then projected onto the face of view is perspective or orthographic. The algebraic fuii'c-
the tet'rahedron opposite to the COP (in homogeneous tions of image coordinates across three views can be de-

coordinate representation of space, this is achieved by rived by first eliminating p'.p" and then isolating p:
an orthographic projection, see Figure 9). If we assume - X2 _______%__________

that there exists at least one configuration of the ref- p = = =
erence frame in which three of the reference points do I a3 • p - a, . p y'a, • p - a2 - p r'a2 - p - y' p"

not intersect any of the scene points, then it is not dif- where a,. a 2 , a 3 are the row %ectors of .4. and 1 =
ficult to show (but not shown here) that the space of (x,y, 1), p' = (r',y', 1). Similarly, from equation 2 wo
images we can get. out of this framework are no more obtain
than perspective and orthographic images of the scene, U - X U.3 U2 - I -113 y" u - r" a2
and images of images of the scene, produced by a pin-- p = -b2 • ___b • p -_ ,

hole camera in which the camera's coordinate frame is

allowed to undergo arbitrary affine transformations in where bl,b.b 3 are the row vectors of B. and p"' -
space (rather than similarity transforms used in metric (x". y", I). These two equations lead to nine algp-
structure-from-motion models). braic functions of image coordinates across three uvw-.
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For example, the first two terms lead to the function for some fixed constants :•v, j = 1._ 8. As a result, we
F(x", x', x, y) = 0 of the form: can generate novel views (perspective and orthographic)

z"(vI b3• p-- U301 I p) + z"X'(u 3 aa • p- v 3b3 p p) + by observing only 7 corresponding points across the three

X'(Vsb- p - u a3 -p) + (ula, p - vib- p) = 0.(3) views. This result is both direct (avoiding structure and
motion) and requires less than eight points (the minimal

Note that the bracketed terms are first-order polynomi- tinder general conditions using linear methods). For in-
als of x and y with fixed coefficients (depending only on stance, with other tools we do not have an easy way for
parameters of camera transformations). In other words, making use of the fact that the two model views are or-
equation 3 is a third-order algebraic function of the form: thographic - because the determination of the epipoles

X"((t IX + a2Y + a 3 ) + r'X'(a4X + "5Y + ad) + and epipolar geometry between a perspective and an or-

X'(a7X + asY + a 9 ) + aI0X + allY + a 1 2 = 0, (4) thographic view still requires eight points in general.

where the coefficients a, j = ,,12, are fixed con- Finally, it is easy to see what happens when all three

stants. Note that the constants can be recovered by views are orthographic. In this case we have also U3 = 0
linear methods by observing 11 corresponding points and ba • p = 1, and thus Equation 3 reduces to a first-
across the three views (more than I1p points can be order function, with only 4 free parameters, of the form:

used for a least-squares solution). Then, for any ad- a(x" + a 2zX' + a 3 X + 0 4y + a5 = 0, (7)
ditional point (x, y) whose correspondence in the second
image is known (x',y'), we can recover the correspond- for some fixed constants aj, j = 1,..., 5. This is iden-
ing x-component x" in the third view by substitution tical to the "linear combination of views" result [48;
in equation 4. In a similar fashion we can recover the 33], stating that under the orthographic assumption aln
y-component y" by using one of the other functions, for arbitrary view can be generated by applying certain lin-
example: ear combinations to the image coordinates of two model

Y"(/I X + i12Y + 133) + y"y'(/34X + /3Y + /36) + views.

Y'( 7 +08Y+/3s 9 ) +#13OX+#1Y + /312 = 0- (5) To summarize, we have shown that it is possible to
The soltin3f y" is + ni9) provided that V1 , V3 do represent views as a function of image coordinates of two

The solution for x", or unique do not vasva do other views. In the general projective case, the image co-
not vanish simultaneously, or uc , ua do not vanish simul- ordinates of three views are connected via third-order al-
taneously. These singular cases apply only to the two gebraic functions with 11 free parameters. More restric-
functions above, and one can show that from the nine tive cases (but applicable in the context of visual recog-
functions we can always find two that are not singu- nition) reduce these functions to second-order with 7 free
Jar uinder any viewing transformations that takes place parameters and to first-order with 4 free-parameters de-
between the three views. The process of generating a pending on whether two or all the views are assumned
novel view can be easily accomplished without the need to be orthographic. The immediate application of these
to explicitly recover structure, camera transformation or results are in the context of visual recognition via align-
epipolar geometry - with the price of using more than ment (especially the 7-point result), but other applica-
the minimal eight points that are required by less direct tions may also be possible. For example, the general re-
methods. suit (Equation 4) may be useful in the context of model-

The algebraic functions derived so far are general based image compression. In this case the number of
in the sense that the scene is allowed to undergo gen- corresponding points required for reconstructing novel
eral 3D projective transformation in space. Reduced views is not of critical importance whereas robustness
lower order functions can be derived under more re- and simplicity are more of a concern. The 22 parame-
stricted situations. For example, the third order corn- ters required for reconstructing a novel view can be re-
ponent of these functions vanishes when V3 = U3 = 0 covered by many points in a least-squares fashion. but
(see Equation 3). This situation arises, for example, the receiver eventually requires only the parameters and
when the views are taken by a camera moving along not the corresponding points.
a base line perpendicular to the optical axis. One ob-
serves, as a result, that this situation is intrinsically 3.1 Recognition and Struct're from one 2D
more stable (errors in correspondence multiply to a Model View
second-order rather than to a third-order) than the gen- Acceral case -- an observation experimentally made by [7; Aording to the 1.5 views theoremn [33: 61 recog, nl-
5]. c a rtion of a specific 3D object (defined in terms of pointwise

5]. features) from a novel 2D view can be achieved froit at
Other results can be obtained by assuming that some least two 2D model views (in the data basis, for alat

of the views are orthographic. This is especially impor- oect fo orthographic p in t oa sioa each
tantin he ontet o acievig rcogitio vi algn- object, for orthographic projection). Poggio and Vetter

tant in the context of achieving recognition via align- studied how recognition can be achieved from a single
ment: since te two model views are taken only once 2D model view. The basic idea is to exploit transfornaa-
(and offline), we may as well use a tele-lense for produc- tions that are specific for the object class corresponding

ing orthographic views. In this case we substitute v3 = 0 to the o eject i for th e obn a por i ontay

and a 3 -p = I in Equation 3 and obtain a second-order the object. - and that may be known a priori or iaas ,

function with only 7 free parameters which has the form: he learned from views of other "prototypical- objects 4

.r" air a~y+ a3 + a.r".' +the same class - to generate new nmodel views froaaa the
,"((tIJX + 0t2Y "+- (W3) + ft4Jrl'' + only one available. Their work divides in two distinct
aVx' + 06-x + •7y + a• = 0. (6) parts. In the first part, they discuss how to exploit pri,,r
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knowledge of an object's symmetry. They prove that for product into which they are to be incorporated. Mit-
any bilaterally symmetric 3D object one non-accidental lion dollar supercomputers, or even twenty thousand

,U2D model view is sufficient for recognition. They also dollar workstations are simply inappropriate for inass-
prove that for bilaterally symmetric objects the corre- produced products intended to cost less than the com-
spondence of four points between two views determines puter.
the correspondence of all other points. Symmetries of Horswill's approach is one of situated agents, whereby
higher order allow the recovery of structure from one vision systems can be made much simpler and cheaper
2D view. In the second part of their work, Poggio and vi syemsacan be ma simpler and cheape
Vetter study a very simple type of object classes called by specializing them to a specific task and environment.liner obectclasses. Linear transformations can be A task-specific system need only extract the specific in-
linear object clse.Lna rnfrain a e formation needed to perform the task. As well, a task
learned exactly from a small set of examples in the case povides perform tha ca n simplify tae
of linear object classes and used to produce new views of provides performance constraints that can simplify thean bjct ro a inleview. More recendy Vetter, Pog- design process by allowing the use of approximlate so-
an object from a single viw oercnl etr o- lutions which might not be appropriate for all tasks. Agio and Buelthoff have provided psychophysical support sytemnspwhich t it enviropriate advatagefor the hypothesis that the human visual system exploits system specialized to its environment can take advantage
fomery the hy othesis for bete r hum nerisalizatione m exp s of domain knowledge which can simplify computational
symmetry of 3D objects for better generalization from a problems. For example, a complete stereo system can
fewsometimes be replaced by a system which uses height in

3.2 Face Recognition: Features versus the image plane to determine rough distance from the
Templates agent.

Over the last twenty years several different techniques A critical problem in developing these systems is the
have been proposed for computer recognition of human reusability of components. It is important that we be
faces. Poggio in collaboration with R. Brunelli at IRST able to apply experience gained in designing one system
compared two simple but general strategies on a common to the design of other systems. For this reason, tasks
database (frontal images of faces of 47 people, 26 males and environments must be analyzed at a theoretical level
and 21 females, four images per person). They have de- so as to make explicit the ways in which they simplify
veloped and implemented two new algorithms, the first computational problems.
one based on the computation of a set of geometrical
features, such as nose width and length, mouth position Low cost task-oriented vision systems could signifi-
and chin shape, and the second one based on almost- cantly improve the performance and flexibility of au-
grey-level template matching. The results obtained on tonomous systems and reduce their cost. Such systems
the testing sets, about 90% correct recognition using geo- have applications in transportation. surveillance, con-

metrical features and perfect recognition using template struction, manufacturing, space applications, and haz-

matching, favour their implementation of the template ardous operations. Low cost vision technology could also

matching approach. Present work aims to extend the be extremely valuable in consumer electronics. Track-

system to deal with arbitrary poses and expressions of ing systems could be incorporated into camcorders or

the face. surveillance systems. Face recognition, person detection.
stereo and motion algorithms could be incorporated into

4 Navigation intelligent nightscopes and binoculars. Low unit costswould be particularly important in this area.

Complementary to our work on object recognition, we To date, we have developed systems for tracking and
have also investigated issues and methods in navigation, following moving objects, detecting obstacles, proximity
One such method has built directly on our earlier work detectin msing s t s, dee ctigure s tacles, fo oin g

in recognition by Linear Combinations, and is reported ,.tetion using stereo (see Figures 10 and 11). following
in aseparategniticle by Linar oinathonse procedings. recorridors, and recognizing nods and shakes of the head.in a separate article by Basri in these proceedings. All systems run in real time on inexpensive conmputer.-

A second approach to navigation has been part of a such as Macintoshes. All systems use very low resolution

broader research project, executed by Ian Horswill. The

problem uinder consideration is the development of sim- processing (64 x 48 or less). A number of optimizations

pie real-time vision algorithms suitable for low-cost com- are shared between two or more systems, suggesting that

ptiter systems such as personal computers. The specific some amount of recycling of design time is possible.

goals are to develop (a) simple vision algorithms useful The particular prototype system is an indoor naviga-
for problems such as robot navigation and interacting tion system for a mobile robot that runs at 15 frame,'
with people, (b) a theoretical framework for analyzing per second on stock hardware. A computer equivalent
such systems, and (c) a concrete implementation demon- to the one on board the robot can be purchased for $S3-
strating the algorithms in a robot which gives primitive 4K. At present, the robot is capable of following corri-
"tours" of the seventh floor of the laboratory. dors, avoiding obstacles, recognizing corridor junctions.

This follows from the motivation of making vision navigating from point to point, and detecting the pres-
cheap as a necessary part of making it useful. For vi- ence of people. The corridor follower is extremely well
sion technology to be used routinely in construction and tested, having seen hundreds of hours of service. Th,.
manufacturing equipment, consumer electronics prod- other capabilites are newer and have not yet been fulls
ucts, automobiles, etc., both design costs and unit costs evaluated. An article by Horswill in these iproco,,,in"-
must be brought down to levels comparable with the further describes the approach.
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5 Early Vision Modules or blend together. To alleviate this problem, we intro-
duce a stable, robust decomposition of such regions into

Although a primary focus has been on recognition and their salient subparts. These subregions, called sample
navigation, we continue to develop methods for early region features, serve as the feature set for higher level
processing of visual information, processing. The decomposition is based on the medial

5.1 Optical Flow from 1D Correlation: axis skeleton of the region. Each subregion corresponds

Application to a simple Time-To-Crash Detector to a portion of a branch of the skeleton; each branch is
divided at positions where the distance from the skeleton

Anewtcna u ( expATA oita)nd PDcorrelaion have sown tht a to the bounding contour is minimized. To facilitate the
new technique exploiting ID correlation of 2D or even computation of the decomposition, a novel scale-space
ItD patches between successive frames may be sufficient is introduced for contours and the medial axis skeleton.
to compute a satisfactory estimation of the optical flow The scale-space is parameteric with the complexity of
field. The algorithm is well-suited to VLSI implemen- the contour or the skeleton. The complexity measure of
tations and a patent application is being filed by MIT the skeleton is the number of branches. A related cum,,-
and CSATA. The sparse measurements provided by the plexity measure of a contour is the number of extrema
technique can be used to compute qualitative properties of curvature of the contour. This leads to a complexity
of the flow for a number of different visual tasks. Inpartculr, heyals shwed how ho tocominethe scale-space for the region decomposition. The result of
particular, they also showed shows how to combine the the early vision process is the set of simple region fea-
ID correlation technique with a scheme for detecting ex- tures for each frame. These features are dense, stable.
pansion or rotation [37] in a simple algorithm which also and robust. To demonstrate the utility of the early vi-
suggests interesting biological implications. The algo- sion process, we present a relatively simple motion and
rithm provides a rough estimate of time-to-crash. It was structure-from-motion algorithm based on tracking sim-
tested with good results on real image sequences. pIe region features at multiple resolutions of the Lo(,

5.2 Sensor Integration filter.

(.:lay Thompson has recently completed a Ph.D. thesis 5.4 Calibration
that considers the problem of fusing two computer vision
methods, using variational methods. The example algo- Computing relative orientation is an important problem
rithms solve the photo-topography problem; that is, the for calculating depth from binocular stereo and for de-
algorithms seek to determine planet topography given termining general camera motion. Lisa Dron has been
two images taken from two different locations with two exploring methods for establishing the complete design
different lighting conditions. The algorithms each em- of a small, autonomous system with specialized VLSI
ploy a single cost function that combines the computer hardware for computing relative orientation in real-time
vision methods of shape-from-shading and stereo in dif- [141. Such a system would be suitable for mounting on
ferent ways. The algorithms are closely coupled and take mobile or remote platforms that cannot be tethered t,,
into account all the constraints of the photo-topography a computer and for which the size, weight and pow•er
problem. One such algorithm, the :-only algorithm, can consumption of the components are critical factors.
accurately and robustly estimate the height of a surface There are two parts to this work. The first is the()-
from two given images. retical and involves developing and adapting algorithlL-.

for finding point correspondences and solving the motion
5.3 Simple Region Features equations which are robust as well as simple enough t,,
Feature-based methods for recovering the motion of a be easily implemented in hardware. The second part is
camera from a sequence of images have suffered from the engineering and involves the design, fabrication and tetd
inability of the early vision processes to provide dense, of prototype chips for the specialized processors which
robust features. Typically, the features, such as Canny will be used to find the point correspondences. Two sep-
edges, are very sparse in each image. Furthermore, most arate processors are needed: one which computes a hi-
features are unreliable in the sense that they often dis- nary edge map from the input image data. and the other
appear from one frame to the next. Similarly, sporadic which determines translational offsets between patch,.
feature's often appear that are not associated with any of the edge maps from two different images. Fabricatii,,
object in the scene. To address these problems, Ron of these circuits is done through MOSIS.
(Chaney has developed a framework for early vision pro- In support of such work, Dron has already devel,,pel
cessing that leads to a dense, robust set of features. The the edge detection algorithm known as the multi-sral,.
early vision framework is based on the interpretation of veto (MSV) method [15]. During the past year. -h,
the Laplacian of (aussian (Lo() filter as a matched filter has completed the design of a two-dimensional prc',,-
for features of a particular size as well as an edge locator. sor which combines CCD and ('MOS technology t,, im-
An object in the image that has roughly the optimum plement the MSV algorithm. A test chip containing a
width associated with a particular LoG filter will typi- 4x4 two-dimensional array has been fabricated and i-
cally be nearly surrounded by the zero-crossings of the currently being tested. Algorithms have been deved,,,,,
LoG filter. Hence, a naive approach would be to take both to perform matching with the binary edge signa;l,-
the regions bounded by the zero-crossings of the LoG( produced by the MSV chip, and to solve the mi,ti-,,i
filter as the set of features. Of course, the regions asso- equations with a least-squares method suitable for iiiil,
ciated with nearby objects in the image tend to merge mentation on a programmable digital microproces.-,,r In
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addition, Dron has developed a least-squares algorithm principal point and the location of the center of radial
to determine the internal camera calibration parameters, distortion can each be found to within a few pixels.
which are required in order to compute motion from a set In addition to the first method a second method of
of point matches, using a sequence of images for which calibration is presented. This method uses simple geo-
the translational motion is known. A preliminary de- metric objects such as spheres and straight lines to find,
sign, comprising both analog and digital components, first the aspect ratio, then the lens distortion parameters
has been completed for the second processor which will and finally the principal point and focal length. ('ali-
compute point correspondences from the edge maps, and bration is performed using both methods and the results
have sent out for fabrication a set of test structures which compared.
will form the basis of the matching circuit. 6 Other Topics
5.5 Other Calibration Methods

Two other recently complete theses, reported in detail
In related work, Gideon Stein has developed a simple in earlier reports are Steve White's work in highly accu-
method for internal camera calibration for computer vi- rate representations for early vision, especially edges and
sion systems. It is intended for use with medium to wide stereo disparities [54], and Subirana's work on recogni-
angle camera lenses. With modification it can be used tion and representation of flexible objects [45).
for longer focal lengths. This method is based on track-
ing image features through a sequence of images while 6.1 Median Window Filtering for
the camera undergoes pure rotation. This method does Multi-dimensional Image Attributes
not require a special calibration object. The location of Median window filtering is a simple non-linear tech-
the features relative to the camera or to each other need nique for reducing image noise while preserving sharp
not be known. It is only required that the features can be discontinuities. It works by replacing the current value
located accurately in the image. This method can there- of each image pixel with the median value of the pixel's
fore be used both for laboratory calibration and for self local neighborhood. Although the technique has been
calibration in autonomous robots working in unstruc- extensively used for smoothing scalar image data like
tured environments. The method works when features grey-level intensities, little work is known about median
can be located to single pixel accuracy but subpixel ac- filtering in multi-dimensional data domains like image
curacy should be used if available, color, image texture and motion fields. Perhaps this is

In the basic method the camera is mounted on a ro- because the sample median is an ill-defined concept for
tary stage so that the angle of rotation can be measured multi-dimensional quantities. Recently, Sung has pro-
accurately and the axis of rotation is constant. A set of posed a novel interpretation of the median concept for
image pairs is used with various angular displacements. multi-dimensional metric spaces . The interpretation
If the internal camera parameters and axis of rotation follows from a mathematical property of the scalar me-
were known one could predict where the feature points dian, and the basic idea is to similarly define the iniulti-
from one image will appear in the second image of the dimensional median as the sample member that mini-
pair. If there is an error in the internal camera param- mizes a mean absolute error term. Sung implemented
eters the features in the second image will not coincide a multi-dimensional median filtering algorithm for color
with the feature locations computed using the first im- images and showed that the operation indeed preserves
age. One can then perform a nonlinear search for camera edges while reducing noise. He has also mathematically
parameters that minimize the sum of distances between derived that in the best case, the smoothing performance
the feature points in second image in each pair and those of multi-dimensional median filtering is comparable to
computed from the first image in each pair, summed over that of local averaging. More recently, he has also de-
all the pairs. veloped algorithms for approximating multi-dimensional

The need to accurately measure the angular displace- medians that run in linear time with respect to data th-
ments can be eliminated by rotating the camera through mension and sample size.
a complete circle while taking an overlapping sequence
of images and using the constraint that the sum of the 6.2 Statistical Uniformity Based Region
angles •must equal 360 degrees. Finding

The closer the feature objects are located to the cam- Over the past twenty to thirty years, a number of differ-
era the more important it is that the camera does not ent techniques have been proposed for segmenting iIII-
undergo any translation during the rotation. A method ages into piecewise uniform regions. Like many other
is described which enables one to ensure that the axis computer vision tasks, most of these techniques contain
of rotation passes sufficiently close to the center of pro- at least a few thresholds and operating parameters whose
jection (or front nodal point in a thick lens) to obtain values are crucial for producing reasonable results. Often
accurate results. however, these values are determined either emlpiricall%

Stein shows that by constraining the possible motions or by guess. Kah Kay Sung has explored an alternative
of the camera in a simple manner it is possible to devise a approach to the threshold selection problem for a siiple.
robust calibration technique that works in practice with but fairly general class of uniformity based region tindl-
real images. Experimental results show that focal length. ing paradigms. He proposed a statistical fornitulation
aspect ratio and lens distortion parameters can be found for uniformity based region finding as a series of -r,',fi-
to within a fraction of a percent. The location of the dence" and "significance" tests, where each test rotighl%
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corresponds to a decision procedure in the original region to picture cell. It turns out that so-called stationary
finding paradigm. The main advantage of his approach points, where brightness is constant (instantaneously).
is that it replaces typical region finding thresholds and play a critical role. If there were no measurement errors,
parameters with a new set of confidence and significance quantization effects or noise, then the FOE would be
thresholds and parameters that gives greater insight to at the intersection of the tangents to the iso-brightness
the system's pertinent characteristics. A color region al- contours at these stationary points.
gorithm, based on his formulation, was implemented on In practice, image brightness derivatives are hard to
the parallel Connection Machine. estimate accurately given that the image itself is quite

noisy. Hence the intersections of tangents from differ-
7 Learning ent stationary points may be quite scattered. Reliable

Under separate contract, Tomaso Poggio and colleagues results can nevertheless be obtained if the image con-

have been developing techniques for the application of tains many stationary points and the point is found that

learning methods to vision problems. In particular, has the least weighted sum of squares of perpendicular

building on extensive earlier work by Poggio and collabo- distances from the tangents at the stationary points.

rators on the use of Generalized Radial Basis Functions, This method was chosen from amongst a group of
they have been developing learning methods for use in competing approaches by considering both simulation
object recognition and computer graphics. results of these methods and constraints of what can

reasonably be built in analog VLSI.
8 VLSI The amount of computation for every picture cell (in-

Under separate contract Berthold Horn and colleagues cluding a number of multiplications) is such that it is not

have continued to developed VLSI implementations of feasible today to perform the task in a totally unclocked

low level visual algorithms. manner with the processing done at each picture cell.
Instead a row parallel scheme has been decided upon

8.1 The Focus of Expansion Chip where each row of the image has a single processor.

The problem that this chip solves is that of computing The first chip has been made by MOSIS and tested.

the direction towards which a camera is moving, based Minor revisions are being made.

on the time-varying image it receives. There is no re-
striction on the shapes of the surfaces in the environ- 8.2 System for recovering motion with respect
ment; only an assumption that the imaged surfaces have to a planar surface
some texture, that is, spatial variations in reflectance.
It is also assumed that the camera is stabilized so that A problem in motion vision that is somewhat more dif-
there is no rotational motion. ficult than that of recovering the focus of expansion is

Once the translational motion has been determined, that of recovering both translational and rotational corn-
it is possible to estimate distances to points in the scene ponents of motion of a camera from the time-varying
being imaged. While there is an ambiguity in scale, since image. Presently there is no simple robust method for
multiplying both distances and speed by some constant solving this problem in general, but methods are known
factor does not change the time-varying image, it is pos- in the special case that the surface being viewed is pla-
sible to estimate the ratio of distance to speed. This nar.
allows one to estimate the time-to-collision between thecamea an objctsin te scne.Applications for such a system include landing a ye-
camera and objects in the scene c hide on a planar surface and station keeping of a stub-

Applications for such a device include systems warn- mersible vehicle above the ocean floor. Also, such a svs-
ing of imminent collision, obstacle avoidance in mobil tem could be used to recover the motion of a personby
robotics, and aids for the blind.

The projection of the translational motion vector into aiming a camera at the flat ground in front of the per-

the image is called the focus of expansion (FOE). It is the son. The motion estimates obtained from such a down-
thimage o sfalled the pointftowards w h thexpan Fe)r is m , ward looking camera could then be used to interpret the
image of the point towards which the camera is moving, time-varying image from a second camera aimed direct lv
and the point from which other image points appear to forward. The resulting system could be an aid for the
be receding. blind that warns them of obstacles - even those that do

The method used is based on least squares analysis - not have a support directly below - such as signs hanging
that is, find the point in the image that best fits the from beams supported off on the side.
observed time variations in brightness. The quantity
minimized is the sum of squares of the differences at Here also the proposed method involves a least squares
every picture cell between the observed time variation of approach, although it is now considerably more complex
brightness and that predicted, given the assumed posi- than in the case of simple translational motion. It is
tion of the FOE and the observed spatial variations of known, for example, that there is an ambiguity in that
brightness, two quite different motions, and corresponding different

The minimization is not straightforward, because the surface orientations, can yield the same time-varying 1ita-
relationship between the brightness derivatives depends age.
on distance to the surface being imaged and that dis- Detailed design will have to await the results of ox-
tance is not only unknown. but varies from picture cell tensive simulations.
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8.3 Analog Circuits [9] T.M. Breuel. View-based recognition. In IAPR Work.

John Harris and Prof. Poggio are studying analog imple- shop on Machine Vision Applications, 1992b.

mentations of vision and learning algorithms. They are [10] T.A. ('ass. Polynomial-Time Geometric Matching for
interested in analog models because these models pro- Object Recognition. PhD thesis, MIT, 1992.
vide a novel mechanism for understanding and develop- [11] Ronald D. C'haney. Analytical representation of con-
ing algorithms. Experimentation with these continuous- tours. Al Memo 1392, MIT Artificial Intelligence Labo-
time nonlinear circuits facilitates algorithm intuition and ratory, 1992.
leads to fundamental insights. Powerful analog algo- [12] Ronald D. C(haney. Computation of the medial axis
rithms thus developed will prove useful even if a re- skeleton at multiple complexities. In Proceedings oa In-
searcher is limited to simulating the analog hardware on telligent Robots and Computer Vision XI: Algorithms.
a digital computer. In addition, biology has motivated Techniques, and Active Vision, Boston, MA. November
some of the circuits and, conversely, some of the VLSI 1992.
modules may help develop a better intuition for solutions [13] D.T. Clemens. Region-Based Feature Interpretation for
that biology has found for the same class of early vision Model-Based Recognition. PhD thesis, MIT, 1991.
problems. [14] L. Dron. System-level design of specialized vlsi hard-

A real-world vision system must be adaptive in order ware for computing relative orientation. In Proc. IEEE
to operate in a unconstrained environment. The system Workshop on Applications of Computer Vision. pages
must be smart enough to deal with such nonidealities 128-135, 1992a.
as changing light conditions or slight variations between [15] L. Dron. The multi-scale veto model: A two-stage analog
components. For example, the thresholds for detection network for edge detection and image reconstruction.
of edges in edge detectors should dynamically change Memo 1320, MIT Al Lab, 1992b.
with the brightness of objects in the scene. Or the ap- [16] P. Dykstra and M.J. Muuss. The brl cad package: an
propriate space constant of resistive network could by 1 P kra an Mi. Murts The Cadpake: anoverview. In Proc. Fourth (ISENIX C'omputer G;raphics
dynamically determined by an estimate of the noise in Workshop, pages 73-80, 1987.
the input signal. Analog hardware allows for adaptation
in many instances by relying on basic physics to perform [171 S. Edelman and T. Poggio. Bringing the grandmother

specific project un- back into the picture: a memory-based view of objectthe ecesarycomptatons.Onerecognition. Intl. J. Pattern Recog. Artaf. Intell., 6:37-
der implementation is the time-to-contact motion sensor 61. 1992.

proposed by Poggio (1991) and Poggio & Ancona (1992).

This sensor combines the outputs of ID motion correla- [18] O.D. Faugeras. What can be seen in three dimensions
tion sensors to produce an estimate of the amount of time with an uncalibrated stereo rig? In Eur. Conf. Comp.

until crash (assuming constant velocity). The small, low- Vision, pages 563-578, 1992.

power implementation will be useful as a crash-warning [19] O.D. Faugeras and S. Maybank. Motion from point
sensor for robots or automobiles. matches: Multiplicity of solutions. Int. /. ('omp. Vi-

sion, 4:225-246, 1990.

References [20] W. E. L. Grimson, D. P. Huttenlocher, and T. D. Alter.
Recognizing 3d objects from 2d images: An error anal-

[1] T. Alter. Fast and robust 3d recognition by alignment. ysis. In Proc. IEEE Conf. Computer Vision Pat. Rte..
Master's thesis, MIT, 1992. 1992.

[2] T. D. Alter. 3d pose from 3 corresponding points under [21] W. E. L. Grimson, D. P. Huttenlocher. and D. W. Ja-
weak-perspective projection. Memo 1378, MIT Al Lab, cobs. A study of affine matching with bounded sensor
1992. error. In Second European Conf. on Computer Vision.

[3] T. D. Alter and W. E. L. Grimson. Fast and robust 3d pages 291-306, 1992.

recognition by alignment. In Proc. Fourth Inter. Conf. [22] W.E.L. Crimson. Object Recognition by Computer: Tito
Computer Vision, 1993. role of geometric constraints. MIT Press. ('ambridge.

[4] H.S. Baird. Model-Based Image Matching Using Loca. 1990.

tiop. MIT Press, Cambridge, 1985. [23] J.i. Harris. An analog network for continuous-time svg-mnentation. Internat. Journal of ('omp. Visioon.. 1993g
[5] H.H. Baker and R.C. Bolles. Generalizing epipolar-plane

image analysis on the spatiotemporal surface. Int. J. [24] D.P. Huttenlocher and S. Ullman. Object recognition us-
Cornp. Vision, 3, 1989. ing alignment. In Proc. Int. Conf. Comp. Vision. pages

102-111. 1987.
[6] R. Basri and S. Ullman. The alignment of objects with

smooth surfaces. In Second Int. Conf. Comp. Vision, [25] D.P. Huttenlocher and S. UlIman. Recognizing solid ob-
pages 482-488, 1988. jects by alignment with an image. Int. J. ('omp. Vigion.

[7] R.C. Bolles and H.H. Baker. Epipolar-plane image anal- 5(2):195-212, 1990.

ysis: A technique for analyzing motion sequences. In [26] D.W. Jacobs. Space efficient 3d model indexing. In IEEE
IEEE Proc. of the 3rd Workshop on Computer Vision: Conf. Corinp. Vis. Part. Recog., pages 439-444. 1992.
Representation and Control. Bellaire, MI. October 1985. [27] D.W. Jacobs. Recognizing 3D Objects Using :2D Ihnygs.

[81 T.M. Breuel. Fast recognition using adaptive subdivi- PhD thesis, MIT, 1992a.
sions of transformation space. In IEEE 'onf. C'omp. [28] J.J. Koenderink and A.J. Van Doorn. Affine structurt-
Vis. Part. Recog., 1992a. from motion. J. Opt. Soc. Amer., 8(2):377-385. 11191.

62



(29] C.H. Lee. Structure and motion from two perspective [48] S. Ullman and R. Basri. Recognition by linear combi-
views via planar patch. In Int. Cony. Comp. Vision, nation of models. IEEE Trans. PAMI, PAMI-13:992-
pages 158-164, 1998. 1006, 1991. Also in M.I.T Al Memo 1052, 1989.

[30] S. Liu and J.G. Harris. Dynamic wires: an analog vlsi [49] 0. Veblen and J.W. Young. Projective Geometry, Vol.
model for object processing. Internat. Journal of Comp. I. Ginn and Company, 1910.
Vision., 8:231-239, 1992. [50] T. Vetter, T. Poggio, and H. Biilthoff. 3d object recog-

[31] M. Menon and W.M. Wells III. Massively parallel image nition: Symmetry and virtual views. Memo 1409, MIT
restoration. In Proc. Int. Joint Cony. Neur. Nets, 1990. Al Lab, 1992.

[32] R. Mohr, L. Quan, F. Veillon, and B. Boufama. Relative [51] W.M. Wells. Map model matching. In Proceedings IEEE
3D reconstruction using multiple uncalibrated images. Cony. Comp. Vis. Patt. Recog., pages 486-492, 1991.
Memo RT 84-IMAG, LIFIA - IRIMAGC, 1992. [52] W.M. Wells. Posterior marginal pose estimation. In Pro.

[33] T. Poggio. 3d object recognition: On a result by Basri ceedings of the Image Understanding Workshop, 1992a.

and Ullman. Tech Report 9005-03, IRST, Povo, Italy, [53] W.M. Wells. Statistical Object Recognition. PhD thesis,
1990. MIT, 1992b.

[34] T. Poggio and R. Brunelli. A novel approach to graphics. (54] S.J. White. Displacement and Disparity Representations
Memo 1354, MIT Al Lab, 1992. in Early Vision. PhD thesis, MIT, 1992.

[35] T. Poggio, S. Edelman, and M. Fable. Learning of vi- [55] J.L. Wyatt, C. Keast, M. Seidel, D. Standley. B. Horn,
sual modules from examples: a framework for under- T. Knight, C. Sodini, H.-S. Lee, and T. Poggio. Analog
standing adaptive visual performance. CVGIP: Image vlsi systems for image acquisition and fast early vision
Understanding, 56:22-30, 1992. processing. Intl. J. Computer Vision, 8:217-230, 1992.

(36] T. Poggio, M. Fable, and S. Edelman. Fast perceptual
learning in visual hyperacuity. Science, 256:1018-1021,
1992.

[37] T. Poggio, A. Verri, and V. Torre. Greens theorems and
qualitative properties of the optical flow. Memo 1289,
MIT Al Lab, 1991.

[38] T. Poggio and T. Vetter. Recognition and structure from
one 2-d model view: Some observations on prototypes,
object classes and symmetries. Memo 1347, MIT Al
Lab, 1992.

[39] J.G. Semple and G.T. Kneebone. Algebraic Projective
Geometry. Oxford, Clarendon Press, 1952.

(40] J.H. Shapiro, R.W. Reinhold, and D. Park. Performance
analyses for peak-detecting laser radars. In Proc. SPIE,
pages 38-56, 1986.

[41] A. Shashua. Correspondence and affine shape from two
orthographic views: Motion and recognition. Memo
1327, MIT Al Lab, 1991.

[42] A. Shashua. Geometry and Photometry in 3D visual
recognition. PhD thesis, M.I.T Artificial Intelligence
Laboratory, AI-TR-1401, November 1992.

[43] A. Shashua. Illumination and view position in 3D visual
recognition. In S.J. Hanson J.E. Moody and R.P. Lipp-
mann, editors, Advances in Neural Information Process.
ing Systems 4, pages 404-411. San Mateo, CA: Morgan
Kaufmann Publisher., 1992. Proceedings of the fourth
annual conference NIPS, Dec. 1991, Denver, CO.

[44] A. Shashua. Projective invariant from two views: Appli-
cations in reconstruction of afline or projective structure
and 3d visual recognition. In Int. Cony. Comp. Vis.,
Berlin, Germany, May 1993.

[45] B. Subirana-Vilanova. Visual Recognition of Non-rigid
Objects and Perceptual Organization. PhD thesis, MIT,
1993.

[46] T. Syeda-Mahmood. A Computational Model of Visual
Attention. PhD thesis, MIT, 1993.

[47] T.F. Syeda-Mahmood. Data and model-driven selection
using color regions. In Eur. Cony. Comp. Vis., pages
321-327, 1992.

63



I.X

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ---- ..~;zt'. .f ..~~ttt .iit fi.id~ti.I

r.'-nt iitag. )rl~r in h. rtath in~ ~4ar.........h.I,
l~a that a itiu~~l i' st~rd is lii................id a

Figureigtr 2: Fxatttplts of rr:u nlio ousingio ushe itin .\'. III..

I~~~~~~~~~~~~~~~~~~r tt, ht pitt-[1 '11[ t hw Ilw.. t.Xanpt.-I

li urt.(o d I , pro ut i ti. I I lIg iti1'.fgrw IN it - 1it iii s ,i~ I rI. dr~

'It-it. Im g - orn t er, lit(I slit,-in % t. mid f quat rt-l show r'iiti Io-......n

t~lodds front in( Itt atoo up

.. .... ...



4!!Y1
Figure 7: Example of recognition using statistical optimiza- .w
tion, based on matching oriented range features. The figure
shows the convergence of the pose of the model object to the
correct position in the data of Figure 6.

...4•o v L ., x,, z, n)i

P1

Figure 9: The points O,IJ,V,W,T provide a reference
frame for constructing a coordinate system for 3D pro-
jective space. In a homogeneous coordinate representa-

P tion the projection of a point onto a face of the tetrahe-
"dron of reference, is achieved by orthographic projection

v. \in coordinate space. For example, the projection of P
whose homogeneous coordinates are (z, y, z, t) onto the

o P5  face UVW has the coordinates (z, y, z, 0).

Figure 8: Projective structure of a scene point P is defined
with respect to four reference points Pi,..., P 4 and the cen-
ter of projection 0 of the first camera position. The cam-
era's center serves as the unit point in the projective frame
of reference instead of a fifth scene point. The cross-ratio,
denoted by ap, of the four points P, A, P, 0 uniqely fixes P
with respect to the frame of reference. The cross-ratio can be
computed from the projections of P, P, P, 0 onto the second
image plane. The projection of 0 is the epipole v' which can
be computed from eight corresponding points [18]; the other
projections p', p' can be recovered using the projections of the
four reference points and the corresponding epipoles v, v'. Fi-
nally, since ap is invariant it can be used to predict the image
location of P on any third view given the correspondences of
the four reference points and the location of epipoles between
the first and third view.
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Figure 10: Stereo Proximity Detector. Performance of the
system in an unmodified office environment. "Grey-scale" is
the original sampled image from the left camera, "left" and
"4right" are the respective images overlaid with derived edges,
"matches" is the set of edges matched between images at
disparity 2, and "stereo" is the left grey scale image overlaid
with matched edges.
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Figure 11: Depth-tuning curves and peak S/N ratios for
various objects. S/N ratios for objects are measured as the
ratio of peak response to that object over the noise level (12
pixels). Images are 64 x 48 pixels, cameras have 110 degree
fields of view with a baseline of 65mm. Objects IDH, JLS,
and TK are people. Each object was tested in nine positions
of varying depth for 20 trials each. The largest variance was
6.9 pixels. Readings past 7 feet are entirely matching noise.
The noise level was measured as the largest such noise value
observed over all trials for all data points. The background
was a cluttered office.
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Image Understanding Research at Columbia University

Terrance E. Boult, Peter K. Allen, John R. Kender, Shree K. Nayar*
Center for Research in Intelligent Systems, Department of Computer Science,

Columbia University New York, N.Y. 10027, U.S.A.

Abstract 1 Physics-Based Vision

This is an overview of IU research in image un- The topic of physics-based vision is enjoying a
derstanding at Columbia's Center for Research resurgence in the field. Over the past year re-
in Intelligent Systems since the 1992 image un- searchers at Columbia's CRIS lab have made
derstanding workshop. It reviews our work on some important contributions in this area. Much
the following topics: of this work might be characterized as getting

back to basics: we have revisited fundamental
1. Physics-Based Vision related work and examined the assumptions and

(a) Generalization of Lambertian Model validity of the models. The results - summa-
(b) Polarization-Based Techniques rized here and detailed in other papers in these

2. Recognition and Learning proceedings - may be a little surprising.
(a) Reflectance-Based Recognition
(b) Object Recognition using BSP trees 1.1 A Generalization of the
(c) Shape Recovery Lambertian Model
(d) Learning and Recognition from Appear-earnc The Lambertian assumption is one of the mostance

3. Sensor and Illumination Planning widely used assumptions in machine vision. We
(a) Planning in Active Environments have shown analytically as well as experimen-
(b) Illumination Planning tally that rough surfaces, even when locally Lam-
(b) Mlluminationcelaningy bertian, are non-Lambertian in reflectance. The
(c) Modeling Uncertainty paper [Oren and Nayar, 1993] details the devel-
(d) IUE sensors opment of a predictive model explaining these

4. Qualitative Vision results. This work may shed light on an age old
(a) Alignment using Uncalibrated Cameras question: why the moon, which has a diffuse sur-
(b) Topological Navigation face and is spherical, appears "flat."
(c) Qualitative Spatial Description

5. Real-Time Vision Image brightness values are closely related to
(a) Real-Time Polarization Computation the reflectance properties of points in the scene.
(b) Real-Time Image Warping Hence, accurate reflectance models are funda-
(c) Real-Time Tracking mental to the advancement of machine vision.
(d) Real-Time Detail-Preserving Smoothing Recently, Nayar et al. [Nayar et al., 1991] pro-

posed a reflectance framework for machine vision

As you can see our research covers the full span that has three primary components: the diffuse
of computer vision, from low-level image process- lobe, the specular lobe, and the specular spike.
ing to complete systems integration of vision and The emphasis of their work was the analysis of
robotics. Here we present only appetizers; for the specular components rather than the diffuse
the full course the hungry reader should consult component. The diffuse lobe was assumed to be
the research papers referenced in this overview. Lambertian as this model is simple and does rea-

sonably well in approximating reflection from a*This work supported in part by DARPA contract DACA- wide range of matte surfaces. A surface with
76-92-C-007. Numerous other agencies and companies have

also supported parts of this research. Lambertian reflectance appears equally bright
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(a) Real image (b) Lambertian model (c) Proposed model
Figure 1: Real image of a cylindrical clay vase compared with images rendered using the Lambertian
reflectance model and the proposed diffuse reflectance model. The vase is illuminated by a point
source from the viewing direction.

from all directions. This model for diffuse reflec- Figure 1(a) shows the image of a cylindrical clay
tion is one of the most widely used assumptions vase with a rough surface. This image was ob-
in machine vision. It is used explicitly in the case tained using a CCD camera. The vase is illu-
of shape recovery techniques such as shape from minated by a single light source from the sensor
shading and photometric stereo. It is also implic- direction. Figure 1(b) shows a rendered image
itly used in the solution of the correspondence that is generated using the known geometry of
problem by vision techniques such as stereo vi- the vase and the Lambertian model. Clearly,
sion and motion detection. the real vase appears much flatter, with less

brightness variation along its cross-section, than
For several real-world objects, however, the the Lambertian vase. Figure 1(c) shows a ren-
Lambertian model can prove to be a poor and dered image of the vase generated using the pro-
inadequate approximation to the diffuse compo- posed reflectance model. Note that the proposed
nent. In the areas of machine vision, remote model does very well in predicting the appear-
sensing, and computer graphics, each picture el- ance of the vase. Figure 2 compares the bright-
ement (pixel) can represent a surface area with ness values along the cross-section of the three
substantial roughness. Though the Lambertian vase images shown in Figure 1. It is interest-
assumption is often reasonable when looking at ing to note that the brightness of the real vase
a small planar surface element, the roughness remains nearly constant over most of the cross-
of the total surface covered by a pixel causes it section and drops quickly to zero very close to
to behave in a non-Lambertian manner. This the limbs. The proposed model does very well in
deviation from Lambertian reflectance is signifi- predicting this behavior, while the Lambertian
cant for very rough surfaces, and increases with model produces large brightness errors. We not~e
the angle of incidence. We have developed a that in graphics rendering of diffuse objects. it is
comprehensive model that predicts reflectance general practice (and an acknowledged hack) to
from rough diffuse surfaces, and conducted sev- add an "ambient light source" which modifies t~he
eral experiments that support the model [Oren reflectance function producing "flatter" render-
and Nayar, 1993], [Oren and Nayar, 1992]. The ings of objects and making them look less harsh.
proposed model takes into account complex geo- The proposed model can provide that desired be-
metrical effects such as masking, shadowing, and havior, and does so using rigorous foundations.
in terreflect ions between points on the rough sur-
face. It may be viewed as a generalization of the
Lambertian reflectance model.
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Figure 2: Comparison between the image bright-

ness along the cross-section of three vases shown
in Figure 1.

1.2 Polarization-Based Techniques

In the past three IUW proceedings, Columbia
has presented reports discussing the benefits of

polarization techniques in machine vision. Ba- +'•:
sic theory and numerous applications have been •
addressed. There have been, however, techni-

cal assumptions which may not have been ap- , .. " '
parent on first reading. Some of these asslimp- •
tions turned out to be quite strong, and i, mov-
ing them proved more than a simple extension
of the previous work.

1.2.1 Integration of Color and

Polarization

Two serious assumptions were associated with
the problem of separation of diffuse and specu-
lar components of an image. These assumptions
restricted previous polarization-based work to Figure 3: Top is the image of a cup with a
dealing with compact (i.e. small) highlights over strong highlight. Bottom is the diffuse compo-
regions with constant diffuse components and nent of the cup as computed with the integrated
constant material composition. Previous work color/polarization approach. (These grayscale
on this problem using color information made images were converted from color images, see
similar restrictions. The separation problem is [Nayar et al., 19931 for color versions of this and
important since many image understanding algo- other examples of separation.)
rithms, such as shape from shading, stereo, pho-
tonmetric stereo, and motion analysis, fail when
there are significant highlights and specular in- well as the color images from three experimental
terreflections, scenes, can be found in these proceedings [Nayar

et at., 1993].
The new approach uses color and polarization in-
formation to remove the restrictions of compact The new approach is not just an application of
highlights and constant diffuse components. In previous work in three color bands with a sire-
Figure 3, we see a gray-scale version of a color ple combination of the results. Rather it started
image of a mug with a significant highlight, and from the fundamental characterization of specu-
after removal of that highlight. More details, as lar highlights/diffuse reflection and derived new
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constraints in color space, which can be used to (consider the potential number of reflections be-
determine the diffuse reflection at a point. tween the leaves of a tree). Yet we generally

view these from a distance at which most inter-
We have tested the new tehcnique in experiments nal structure is within a pixel. As mentioned
using both a color camera and a monochrome above, even for something as simple as Laiaber-
camera with color filters, on scenes including a tian reflectance, complex sub-pixel surface ge-
simple geometric shape (cylindrical cup), with ometries (i.e. roughness) can create formidable
strong surface markings and a strong primary deviations from the model.
highlight, see figure 3, and more complex scenes
with strong interreflections, see [Nayar et al.,
1993]. The results of the experiments not only
verify the approach as feasible, but show a con-
siderable advance. The scenes considered in-
clude examples that would not be computable
using previously existing -lgorithms. There are
still a few assumptions to be overcome before
the separation is widely useful: it does not han-
dle near normal reflections or highlights that are
nearly the same color as the object. Still, it rep-
resents an important advancement in the state
of the art.

Unfortunately, the only available analysis of the
separation quality is qualitative/subjective in-
terpretation. Over the next year we will use
this algorithm as a preprocessor to stereo, shape Figure 4: Image of a scene near JPL containing
from shading and photometric stereo. Even with water, vegetation, bare soil, and a building.
the aforementioned limitations, we expect that it
will significantly help in these application areas. -j-"-- -.. ,*
These methods recover depth or shape informa- • • -

tion and we will use the the resulting surface
"quality metrics" as a quantitative measure of
the impact of separation.

1.2.2 Polarization for the UGV:
Stepping Outdoors

Other strong assumptions in our previous po-
larization work came from our exclusive use of
indoor environments. In support of the UGV
program we have teamed up with L. Wolff and
Johns Hopkins University and L. Matthies at ,
JPL to address the problem of material/scene -

classification in outdoor scenes. There are two 4.
things that make this quite challenging: dealing
with the complexities of the outdoor world and Figure 5: Percent polarization the scene. [0% -
collecting the necessary data. 30%] - [255 - 0]

The problems in outdoor scenes are many. First, The approach being explored by the joint effort
natural skylight is partially polarized. and re- is twofold: To venture forth and gather data for
flections of it are thus more complex. Second, analysis, and to find ways to use additional in-
outdoor scenes containing vegetation have com- formation, e.g. vehicle pose and multi-spectral
plex shapes with significant internal structure information. We have already gathered data for
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2 Object Recognition, Shape
Recovery and Learning

Three key problems in high-level vision are
Shape Recovery, Object Recognition and Learn-
ing of Object Models. This section overviews
Columbia's recent and ongoing work in these key
areas.

2.1 Reflectance-Based Recognition

Object recognition has been an active area of
machine vision research for the past two decades.
The traditional approach has been to recover ge-
ometric features from images and then use these
features to hypothesize and verify the existence

Figure 6: Polarization phase image for the scene of three-dimensional objects in the image. Edges
in figure 4. [0P - 180o] phs [255 - 0] and vertices are examples of geometric features

often used by recognition systems. During im-

age formation, however, a substantial amount of
information is lost regarding the geometry of the
scene. Hence, geometric features are not always
adequate for robust recognition of objects. In
the past, little attention has been given to the

a number of scenes at 6 different wavelengths use of other properties of objects for recogni-
and are analyzing the data. Figures 4-6 show tion. In addition to its geometry, an object may
some of the polarization information obtained be characterized by physical properties such as
from the 650nm wavelength band for a scene near reflectance, roughness, and material type.
JPL. Shown are the visible image, the percent
polarization and the polarization phase. The An efficient algorithm has been developed for
scene contains a body of water (in front) with computing the reflectance of regions in a scene,
a dirt/rock bank. Above the bank are various with respect to their backgrounds, from a sin-
forms of vegetation, some bare soil, and in the gle image [Nayar and Bolle, 1993a] [Nayar and
background is a building. The percent polariza- Bolle, 1993b]. The result is a physical property
tion (figure 5) clearly delineates the water from of each scene region that is invariant to the in-
the bank, but the reflections of some of the veg- tensity and direction of illumination. This pho-
etation are considerably more complex. The di- tometric invariant, referred to as the reflectance
rect view of the vegetation is also very detailed. ratio, provides valuable information for recogni-
The phase information has complexities rivaling tion tasks. We have used the reflectance ratio
those of the intensity image. We clearly have in- invariant to recognize objects from a single im-
formation, it is just not clear how to use it. The age [Nayar and Bolle, 1993a]. This approach is
joint research effort is looking at how we can very effective in the case of man-made objects
exploit known geometry (we can model some of that have printed characters and pictures. Each
the partial polarization effects of skylight, if we object is assumed to have a set of regions, each
know the time, viewing direction, local weather with constant reflectance. The reflectance ratio
conditions, and vehicle pose) and multi-spectral and center of each region are used to represent
information, the object. Algorithms based on the indexing

scheme have been developed for recognition and
A final problem in the use of polarization for the pose estimation of objects from 1. single image.
UGV project is that of data acquisition: how
to get the polarization information on a moving Experimental results are presented in [Nayar and
vehicle. That is discussed in the section of the Bolle, 1993a] for realistic scenes with occlusions.
overview on real-time vision, shadows, and illumination variations. Figure 7
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shows object acquisition and recognition results 2.2 Object Recognition using BSP
obtained using the reflectance-based recognition Trees
algorithm. The image shown in Figure 7a is used
for learning the object model. Three reflectance We recently began investigating the application
regions are used to form an index and are indi- of Binary Space Partitioning (BSP) trees to the
cated by the triangle. Other regions on the ob- domain of object recognition. A BSP tree is a
ject are included in the entry of a hash table to general method of partitioning an n-dimensional
be used for object verification and pose estima- space by a set of n-i dimensional hyperplanes.
tion. The centroids of these verification regions Its tree structure allows very efficient algorithms
are indicated by black boxes in Figure 7a. Fig- to be developed, it is compact, and it is numeri-
ure 7b shows a scene with several objects. The cally robust. BSP trees have proven their utility
index triangle is detected in the scene image and in 3-D modeling, graphics and image processing,
is shown as a triangle in Figure 7b. This pro- and many of the properties that allow BSP trees
vides a hypothesis for the object and its pose in to perform well in these tasks are of primary im-
the scene image. This hypothesis is verified by portance when considering the object recogni-
projecting other regions in the model image to tion problem.
the scene image. The object recognition system we are developing

uses augmented BSP trees, generated from CAD
models, to model the objects being examined.
Data is acquired from an image, a rangefinder,

NOI0 ES or tactile sensor, which the system then uses to
r _find matching features in the BSP tree models.

The tree structure of the model will allow the
system to quickly obtain a correlation between
the sensed and modeled features. Models will
also be used to guide the sensing process to-
wards features that are more discriminating over

W those that are less so. The output, which con-
i ,sists of the type of object, its position and orien-

, •tation, may then be used to direct further sen-

sor planning or tasks such as manipulation and
path planning. In addition, a recognized object

(a) no longer needs to be associated with the sensed
data and may be described by its model, which
may be viewed as a compression of the sensed
data.

2.3 Shape Recovery

In the past few years we have been developing
and analyzing a range of different methods for
shape recovery. Most of these projects contin-
ued this year, with incremental progress and a
few publications with more experimentation or
analysis. The basic concepts have been covered
in past years. We report only the recent publi-

(b) cations:

Figure 7: Model acquisition and object recogni- * Shape-From-Focus [Nayar, 1992a, Nayar.
tion results obtained using the reflectance based 1992b]
recognition algorithm. * Recovery of TORI from Range Images

[Kjeldsen and Kender. 1992]
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"* Energy-Based Segmentation [Boult and the eigenspace and is seen to lie on the para-
Lerner, 1991], [Lerner, 1993]. metric hypersurface of the object. The location

"* Shape from Shadows [Yang and Kender, of the point on the hypersurface determines the
1993] object's pose in the image. The performance of

"P[O'Donnell and Boult, 1991] the recognition and pose estimation algorithms
PROVER [is studied using over a thousand input images

"* Symmetry Analysis, SHGC Modeling and of the sample objects [Murase and Nayar, 1992].
Recovery [Gross and Boult, 1992] The sensitivity of recognition to the number of

eigenspace dimensions, and the number of learn-
This year we have begun research using dynamic ing samples, is analyzed. For the objects used,
models combining previous work on splines, gen- appearance representation in eigenspaces with
eralized cylinders and superquadrics. less than 10 dimensions produces very accurate

recognition results with an average pose estima-

2.4 Learning and Recognition of tion error of 0.5 degrees. These results suggest

Objects from Appearance the proposed appearance representation to be a
valuable tool for a variety of machine vision ap-

A technique is being developed for automatically plications.
learning object models for recognition and pose
estimation [Murase and Nayar, 19931. In con-
trast to the traditional approach, we formulate
the recognition problem as one of matching ap-
pearance rather than shape. The appearance of
an object in a two-dimensional image depends

on its shape, reflectance properties, pose in the
scene, and the illumination conditions. While 93

shape and reflectance are intrinsic properties of

an object and are constant, pose and illumina-

tion vary from scene to scene. We have proposed (a) 61
a new compact representation of object appear- (b)
ance that is parameterized by pose and illumi-
nation. For each object of interest, a large set of
images is obtained by automatically varying pose Figure 8: (a) An input image. (b) The input image is
and illumination. This large image set is com- mapped to a point in eigenspace. The location of the
pressed to obtain a low-dimensional subspace, point on the parametric hypersurface representation
called the eigenspace, in which the object is rep- of the object determines its pose in the input image.
resented as a ypersurface. Given an unknown
input imag,. -.,, .ognition system projects the
image ontu :w-: ::.., :pace. The object is recog-
nized based ,.: "i hypersurface it lies on. The 3 Sensor and Illumination
exact position of th- projection on the hypersur- Planning/Modeling
face determi'.es the object's pose in the image.

This section overviews two important aspects of
Experiments hnve b.," -, conducted using several using sensors. The first is the planning of param-
objects with complex appearance characteristics eters for sensors and illuminators, e.g., illumi-
[Murase and Nayar, 19931, [Murase and Nayar, nation placement, sensor placement, sensor lens
1992]. Fig. 8a show an input image of the ob- settings, etc. The second area is the modeling
ject (car) whose paraim:tric hypersurface repre- of sensors and uncertainty in robotic/vision sys-
sentation is shown in kig. 8b. The represen- tems. These research projects go to the heart
tation is parameterized by o~. iect pose (01) and of a key problem in vision- how we can reason
illumination direction (02). The hypersurface is about IU systems and plan to have them work
actually 8-dimensional but only the three most rather than getting them to work via fiddling
prominent dimensions are displayed in Fig. 8b. around with the sensor positions, light position,
The input image in Fig. 8a is projected onto etc.
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3.1 Sensor Planning in Active ment in order to monitor a robotic task. The
Environments second arm is given a particular task such as a

pick-and-place or welding operation. The goal is
A goal of robotics has been to develop intelli- to have the MVP system plan viewpoints which
gent robots which are capable of planning their allow us to monitor the task, while avoiding oc-
own actions. These actions are often guided by clusion which may arise due to the motion of
sensors, which provide noisy, incomplete, and the second robot. Future research will concen-
sometimes inaccurate data. Researchers accept trate on planning continuous paths that link the
this as a necessary evil of sensors and develop viewpoints together, and continuing to create a
algorithms which try to extract as much infor- fully automated environment for active sensing
mation as possible from sensor data. However, tasks [Timcenko et al., 19931.
less attention has been focused on planning sens-
ing strategies which yield more accurate data.
The Machine Vision Planning (MVP) system 3.2 Illumination Planning
developed at Columbia University attacks this Using the parametric eigenspace representation
problem by integrating sensor, object, and mo- (described in above section on learning) we have
tion models, along with task-level information to developed a new approach to the problem of
plan appropriate sensor locations and settings, illumination planning, see [Murase and Nayar,
see [Abrams et al., 1993a, Timcenko et al., 1993, 1993]. Given a set of objects, the goal is to
Abrams ei al., 1993b]. determine the illumination direction for which

the objects are most distinguishable in appear-
Given a CAD description of an object and its ance from each other. Correlation is used as
environment, a model of a vision sensor, plus a measure of the similarity in the appearance
a specification of the features to be viewed, of objects. For each object, a large number
MVP generates a camera location, orientation, of images are automatically obtained by vary-
and lens settings (focus-ring adjustment, focal ing pose and illumination direction. The sets
length, aperture) which insure a robust view of of images for each object constitutes the plan-
object features. In this context, a robust view ning set. A parametric eigenspace is computed
implies a view which is unobstructed, in focus, using the planning image set. For each illumina-
properly magnified, and well-centered within the tion direction, objects are represented as hyper-
field-of-view. In addition, MVP attempts to find curves in the eigenspace. The minimum distance
a viewpoint with as much margin for error in all between the hypercurves of two objects repre-
parameters as possible. sents the similarity between the objects in the

correlation sense. The optimal source direction
We have added moving environment models to is one that maximizes the shortest distance be-
MVP and are exploring methods of extending tween object hypercurves in eigenspace. This
MVP to plan viewpoints in an active environ- illumination planning method has the following
ment. The first approach, currently limited to advantages over previous approaches:
the case of moving obstacles (i.e. the target, or
features to be viewed, are stationary), is to sweep (a) It does not rely on geometric (CAD) models
the model of all moving objects along their tra- of the objects of interest. It uses only bright-
jectories and to plan around the swept volumes, ness images to accomplish the planning task.
as opposed to the actual objects. A temporal (b) No assumptions are made with respect to the
interval search is used in conjunction with the reflectance properties of the objects.
swept volumes to find large time intervals for (c) The optimal source direction produced by
which one robust viewpoint can be used. This the illumination planner is pose invariant: it
approach has been implemented in simulation is optimal over all object poses.
and experiments are being carried out in our
robotics laboratory. 3.3 Modeling Uncertainty

The lab setup involves two robot arms. The first In [Timcenko and Allen, 1992, Timcenko and
arm has a camera mounted on its end-effector Allen, 1993b] we offer a new method for model-
that can be positioned anywhere in the environ- ing uncertainties that exist in a robotic syslem.
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based on stochastic differential equations. The 3.4 Sensors and the WUE
benefit of using such a model is that we are then The DARPA Image Understanding Environ-
able to capture in an analytical structure some
key points underlying robot motion: the abil- nlents specification was recently released. (See
ity to properly express uncertainty within the also the papers on the IUE in this proceed-
motion descriptions, and the dynamic, chang- ings and also [Mundy et a., 1992]. Unoffi-
ing nature of the task and its constraints. The cial copies of both the IUE Overview Document
goal of this research is to exploit the smooth, dif- and the IUE Class Definition Document, can
ferentiable topological structure of configuration be FTPed from cs.columbia.edu in the directory
space and populate it with mathematical entities /pub/vision/iue.) A major part of this docu-that lead to plans as solutions of certain differ- ment was the specification of sensors and related
ential equations, objects. Our group was instrumental in this part

of the specification, drawing partially from our

We have performed experiments that attempt to experiences in the PROVER project. The design

quantify the uncertainty in robotic motion con- incorporates both sensor data characteristics and

trol and show how it can be used within our sensor uncertainty modeling. This past year we

model. The statistical justifiability of the pro- have been prototyping some of the IUE sensor

posed model indicates that it resembles the real objects, providing feedback on the design. Our

nature of the random phenomena that govern experiences should be summarized in a technical

the system quite well. More importantly, the report later this year.

method offers a way of estimating the variance
of different types of uncertainties, thus answering 4 Qualitative Vision
questions about both the qualitative and quan-
titative nature of uncertainty. In Columbia's CRIS lab we have initiated

Also of interest is defining methods for time pa- projects in the area of qualitative vision -

rameterization of robot trajectories so that the proj e the goals of vision are not mea-

robotic system achieves favorable performance surements but qualitatively describe goals such
despite them inevitachievesencvorl uerrainties as object alignment without calibration, navi-
despite the inevitable presence of uncertainties gation with topological directions or determine
[Timcenko and Allen, 1993a]. In order to develop the applicability of certain propositions (such as
these methods, we need detailed understand-

near, far, next to) to describe the relationship
ing of the sources of random phenomena in the of objects in a scene. In this section, we review
system, as well as comprehensive mathematicalmodls f tosepheomea. hatundrstnd- our recent work in these areas. It is interest-models of those phenomena. That understand- ing to note that while the title of the section is
ing can lead us to a mathematically tractable t oeta hl h il ftescini"qualitative vision," all the projects have a sig-
formulation of motion planning in the form of a nificant quantitative component. For example,
constrained optimization problem. if we did topological navigation without a quan-

We believe that this is a fruitful research direc- titative error analysis, it would be difficult for us

tion. It opens a wide spectrum of questions. to measure research progress.

Some of them are: 1) dealing with non-constant
environment uncertainty, 2) the robustness of 4.1 Alignment using an Uncalibrated
obtained plans with respect to modeling errors, Camera System
3) the numerical complexity of computing ap-
proximations of globally optimal plans, 4) ex- This new technique takes the typical mapping
perimentation with different types of difficulty from 3-D positions to image coordinates, and in-
indices and different types of constraint func- stead of finding this mapping, it recovers a prop-
tions, such as mathematical expectations instead erty of the image coordinates without calibrat-
of success probabilities. We hope to address ing the camera location. This method exploits
some of these problems in future. the fact that a known movement in the camera

system can result in useful motion information
in the image system without knowing the exact
calibration between the systems.
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Figure 11: The image-space projections of the
ellipses formed by tracking the object over the

focal p~m first 11 positions moved to by the robot.

-JJ •• •-, itself while performing the task of moving to the
•---••J1-- - 2'- - goal position and without computing the true

[ R.T Iair oa./tr|Ais location of the camera system.

Given an alignment task (e.g. insertion of a party - in an assembly), we first select designated fea-

Fgtures on the part to be inserted. The robot then

X rotates the camera around its rotational axis, R.Figure 9: Experimental setup for uncalibrated If the only movement in the robot-camera sys-
alignment tem is the rotation, the part features will trace

out a conic section, an ellipse under certain con-
ditions. By noting the changes in these elpti-

SR, . t . lcal parameters as the camera system moves (and

k• ... • . .••,.••,•computing the ellipse's projected area), we canrecover the alignment condition. We determine

/ ...... •the object's position based on the fact that if an
object lies on the axis around which a camera
system moves, the object will rotate but will not

translate in the camera system. This fact allows
us to set up a control structure for closed-loop
""servoing to the alignment position even though
we have no knowledge of the camera calibration
c information, see [Yoshimi and Allen, 1993].

- Figure 9 shows the setup of the camera mounted

on the arm. Figure 10 shows a workspace with
Figure 10: Work table with "U" shaped part to a part to be tracked for alignment; the goal is to
be tracked insert a pin in the hole of "U" shaped flange. Fig-

ure 11 shows the generated ellipses from tracking
In this method, an active camera system the hole during the camera's rotation, and the
mounted on a robotic arm can maintain an arbi- convergence of the ellipse data as the alignment
trary, geometric relationship with an object sys- succeeds.
temn, and as a result of certain operations, the
vision system can "calibrate" itself to or "can
define its location with respect to" the unknown 4.2 Topological Navigation

camera system. The newness of our technique Navigation in a unstructured environment is
arises from the fact that our system "calibrates" generally carried out in a topological manner
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with directions like "turn right when you see
the isolated yellow house, take a left at the sec-
ond light," etc.) rather than using metric direc- -
tions like "travel 1.345 miles, turn right, go 3.12
miles turn left". This past year we have contin-
ued our work in this area, working on an ana-
lytic (quantitative) model of the error behavior
of our system. In [Park and Kender, 1992] we de-
scribe a purely topological method for navigation 4
in a large unstructured environment that con-
tains featureless objects, using qualitative non-
metric information such as "isolated" landmarks
and "trajectories," which we define. The map-
maker and the navigator are implemented using 7
an IBM 7575 SCARA robot arm, PIPE, and two
cameras. The navigational environment consists Figure 12: An image for experimentation with
of a fiat plane with identical objects populated recovery of spatial descriptions. See text for de-
randomly but densely on it. First, given a start- tails.
ing position and a goal position the map-maker
module observes the environment and generates
a "custom map" that describes, in a non-metric using prepositions of place, such as "near," "in,
language, how to get from the starting position or "next to," was formalized in a translation-
to the goal position efficiently and reliably. The independent, rotation-independent, and scale-
accuracy and the cost of the directional instruc- independent way. Using prior research on the
tions are analyzed, then demonstrated by the descriptions of quadrilaterals, the method al-
navigator by following the commands in the cus- lows fuzzy, probabilistic estimates on how ac-
tom map. curately a given preposition describes the two-

dimensional relationship of objects.
The errors in denoting isolated objects as land-
marks were analytically determined, and com- We will use the image shown in figure 12 to il-
bined with an analytic determination of errors in lustrate several "recovered" prepositions. Each
using landmark pairs to denote parkway-crossing object has been numbered to ease its reference.
directions. These two error measures are then Internally, objects in the system are represented
treated as a single measure of topological good- using moments through second order. Currently
ness. Since both error measures are parame- the system accepts a spatial preposition and dis-
terized by a model of sensor error (the stan- plays all those objects that satisfy the prepo-
dard deviation of landmark exact placement), sition inequalities. The system also accepts as
it was illuminating to simulate the variations in input two objects along with a preposition and
paths produced under increasing error, partic- it outputs how well those two objects meet the
ularly in cluttered environments. As error in- given preposition (the value of fu, for given a).
creases, crowded areas are avoided. For more All intuitively obvious relations between objects
details see [Park and Kender, 1993] in these pro- are discovered by the system, e.g. objects 1 and
ceedings. 3 are next to each other, 4 is in 5, 6 next to 7,

etc.

4.3 Qualitative Spatial Description An interesting case, and one that demonstrates
In document understanding, the relation be- the effects of fuzzification is the case of supplying
tween image understanding and language be- object 2 and object 6 along with the preposition
comes very important. We have been looking at aligned. Fuzzification is accomplished by blur-
the relationship between objects within an image ring the object with a Gaussian distribution with
and the automatic determination of prepositions a standard deviation of a. With no fuzzification
to describe them, see [Abella and Kender, 1993]. the system finds that 2 and 6 are not aligned.
In the area of spatial descriptions, the problem of However, if we allow a certain amount of fuzzifi-
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ful not say for certain that object 2 and object 6
are either near or far, we can say that they are
somewhat near or somewhat far. How we decide
which of the two to use can be seen in figure 14.
If we examine the slopes of the two curves we
see that for small values of a the slope for far
is steeper than that for near. Therefore it would
seem more appropriate to say that 2 is somewhat
far from 6 as opposed to 2 is somewhat near to
6.

O.A81 0.01 0o1

a 5 Real-Time Vision
Figure 13: The dependency of fUaligned( 2 , 6 ) as a
function of a While not really a "vision topic" in itself, doing

vision in real-time often means crafting clever

ful algorithms to fit the hardware and timing con-
straints. The topics in this section are all related
to some research topic above, but are separated

a 0 out because of their real-time nature.•. near

5.1 Real-Time Polarization

0.4 Computation

, 0.2 A problem in the use of polarization for the UGV
project is that of data acquisition: how to get
the polarization information on a moving vehicle.

0.0 0.01 0.1

ar Before we can develop significant real-time po-

Figure 14: The dependency of fUeur( 2 ,6) and larization computation algorithms, we need the

fufr(2 , 6) as a function of or data. Previous algorithms at Columbia used a
rotating filter in front of a single camera. While
sufficient for indoor inspection-type tasks, it is

cation with say a = 0.03 the value of fUalgned is not acceptable for vehicles. In the past year we
0.8. This value indicates that they may be suffi- have had two projects addressing the real-time
ciently aligned to be regarded as such (which we polarization computation problem: one based on
actually see in the image!), depending on how beam-splitting, and one on image warping. We
much leeway we wish to allow. The dependency have already implemented and tested the algo-
of fualgned on a is shown in figure 13. From this rithms for polarization computation; it is just a
graph we see that the value of the membership question of getting multiple images, registered in
function significantly deteriorates for large val- space and time, which measure different polar-
ues of a. This simply means that the amount ization states.
of induced uncertainty is so large that the ob-
jects cease to possess their original features (such 5.1.1 Polarization Preserving
as orientation in this case). This also indicates Beam-splitter (PPBS)
what the maximal acceptable value for a should
be, in this case, a < 0.1. We have designed and built a "polarization pre-

serving beam splitter," and are in the process of
Another interesting case is that of supplying ob- calibrating it. (Actually, it does not totally pre-
ject 2 and object 6 along with the preposition serve polarization, but the effects introduced can
near or far. Neither satisfies the inequalities pre- be compensated for via calibration.) We have
cisely. However, if we again, allow for fuzzifica- found that with its 20 degree field of view and
tion, we get a most interesting result, as shown beam-splitting external to the camera optics,
in figure 14. We observe that although we can prec-se pixel alignment is difficult to achieve,
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and, more importantly, virtually impossible to developed under our previous DARPA contract,
maintain. We were also not able to achieve it see [Boult and Wolberg, 1993]. In addition, we
simultaneously over the entire image in differ- are developing the calibration processes to de-
ent spectral bands. Our conclusion was that termine the spatial warp needed for different ap-
we would work with this approximate alignment, plications. Related work is also under investiga-
calibrate the different distortions, and then warp tion, with no significant results yet, on flexible
the images to achieve alignment. This is sim- multi-modal registration which uses explicit sen-
ilar to the approach we used last year to deal sor models and a flexible matching process.
with chromatic aberration correction in regular
lenses (Boult and Wolberg, 1992a]. The cali-
bration process is now being implemented. The 5.3 Real-Time Tracking
PPBS is intended to allow internal experimenta- An important use of real-time vision is for track-
tion and will be used as a comparison for real- ing moving objects. In this area we have two
time warping-based polarization computations. projects, one on tracking objects for grasping by
The PPBS is not suitable for use on the UGV an arm, and the other on tracking for surveil-
vehicle, lance.

5.1.2 Polarization Computation by 5.3.1 Real-Time Tracking and
Image-Warping Grasping

A second approach for real-time polarization, Research in real-time motion tracking and grasp-
currently under investigation, is the use of real- ing has succeeded in laboratory demonstrations
time image warping to align images taken with of tracking and grasping moving objects. The
separate cameras and then apply the compu- focus of this work is to achieve a high-level of in-
tations. For small baselines (1-2 inches) and teraction between a real-time vision system ca-
small focal length lenses (6-8mm) the disparity- pable of tracking moving objects in 3-D and a
distortions are rather small. The real issue is robot arm equipped with a dextrous hand that
how accurately we can warp the image data, can be used to pick up a moving object. The sys-
which is addressed in the next section. tem we have built addresses three distinct prob-

lems in robotic hand-eye coordination for grasp-
5.2 _r'-eal-Time Image Warping ing moving objects: fast computation of 3-D mo-

tion parameters from vision, predictive control

Our previous work in chromatic aberration cor- of a moving robotic arm to track a moving ob-
rection ([Boult and Wolberg, 1992a, Boult and ject, and grasp planning. The system is able
Wolberg, 1992b]) and our ongoing work in real- to operate at approximately human arm move-
time polarization algorithm development, have ment rates, and has been tested with a moving
demonstrated the need for high-quality image model train which is tracked, stably grasped, and
warping. While we have developed a serial al- picked up by the system (see Figure 15). The
gorithm for this, which requires 1-2 seconds on system uses a real-time motion stereo computa-
a standard workstation, the real-time polariza- tion and a novel probabilistic filter [Allen ct al..
tion work requires real-time warping. The lens 1992, Allen et al., in press]. We have also pub-
correction would also be more easily used if it lished our results on unifying image-flow corn-
were run in real-time as part of the image ac- putations in an estimation-theoretic framework
quisition process. In the past year we have been [Singh and Allen, 1992].
developing and testing a near real-time, high-
quality image warping algorithm. The algorithm
was designed for the PIPE image processor, and 5.3.2 Surveillance Mode Tracking
currently runs at 10hz. Multiple versions can Related ongoing real-time tracking work for
be run in parallel to allow 30hz processing with surveillance is joint work with, and partially
a 1/10 second pipeline delay. It uses separable funded by, Texas Instruments. The approach
image reconstruction filters (up to 9x9) and pre- builds upon some of Columbia's recent work in
computed distortion tables. We are currently real-time tracking, but uses the DATACUBE
testing it using the image reconstruction filters MV20 processor as opposed to the PIPE. This
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5.4 Real-Time Detail-Preserving
Smoothing

This past year we also completed a formal de-
scription of our ongoing work on G-neighbor-
based processing, see [Boult et al., 19921. G-
neighbor algorithms use a modification of the
usual 8-connected neighborhood, including only
pixels that differ by less then a fixed amount
or by less than a fixed ratio. These signal de-
pendent neighborhoods are then used in tradi-
tional processing for detail-preserving smooth-
ing or signal-dependent morphology. In [Boult et
al., 19921 we pres2nt a qualitative analysis of the
usefulness of G-r, eighbor-based detail-preserving
smoothing, comparing it to four previously exist-
ing algorithms for detail-preserving smoothing.
The G-neighbor approach is significantly cheaper
and easily parallelized. The results of the qual-
itative comparison were surprisingly good: the
new algorithm was as good or better than the
comparison algorithms. The quantitative analy-
sis of these algorithms is still ongoing, and should
be completed in the next year.

The algorithm has been implemented both
on a workstation, under KBVision, and on
our PIPE. The real-time system computes G-
neighborhoods in a single frame-time and per-
forms 1 iteration of smoothing per frame. For
comparison, an example of the algorithm and a
few comparison algorithms can be found in fig-
ure 16.
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Abstract describe complex objects in terms of both volumes and
surfaces and which allows us to con", -between them.

This paper sum-narizes the USC Image Understanding We must also develop techniques to cormpute these de-
research projects and provides references to more de- scriptions from real data which includes shadows and
tailed sources of information. Our work has focused on noise and we must recognize such objects from a large
the topics of 3-D vision (including range data process- database of objects. Three-dimensional vision is the
ing, stereo, shape from contour and object recognition), largest research area funded under this contract. Within
aerial image analysis, motion analysis (including 3-D that area, we have a variety of projects:
motion and structure estimation, visual guidance for • Description of 3-D objects: We are studying the
mobile robots, and an integrated motion system), and problem of generating 3-D surface descriptions from
parallel processing (including mapping algorithms onto range data using the concept of deformable models.
specific or flexible architectures, and processor-time This work is described in [Liao & Medioni 1993]. A
trade-offs). second project using range data is exploring the inte-

1 INTRODUCTION gration of surface descriptions from different view-
This paper summarizes our research projects over the points and is discussed in detail in [Chen & Medioni
last year. Much of this work is described in detail in the 19931. A third effort addresses the problem of recov-
other papers in this proceedings, with this overview giv- ering segmented, hierarchical volumetric descriptions

ing only a brief description of the detailed efforts. Work from range data.
that is less complete will be described in somewhat - Perceptual Grouping: Most high level vision algo-
more detail in this overview since there is no corre- rithms require perfect data as input, but it is impossi-
sponding paper in the proceedings. ble to generate such features with low level

Our research covers a broad range of separate tasks algorithms such as edge detectors. We are working or,in image understanding, but the different tasks are high- bridging this gap by transforming an edge image into
lyinterim elaged u andi buthare differentco taaehnig. a saliency map. This approach uses a non-iteratively inter-related and share many common techniques. method based on a field associated with eac~h edge.

The four major task areas are three-dimensional vision, This field encodes the notions of sin- t cityh curvature
motion analysis, parallel processing and aerial image cons and co-curvione A siled re
analysis, which is largely supported under the RADIUS constancy and co-curvilinearity. A .- iled report on
program. This introduction will briefly describe the dif- this effort is given in [Guy & Me,'ioia 1993].
ferent research projects. • 3-D Shape from Monocular Images: In this project,

we are developing techniques for inferring 3-c shape
Three-Dimensional Vision descriptions given only a single image of the scene.
Three-dimensional vision is needed for many tasks in- We have developed techniques to use our earlier the-
cluding those of manufacturing, robotics and outdoor oretical results on real images where contours are
object recognition. To achieve these goals, we must de- likely to be fragmented and distracting contours such
velop a representation formalism that is rich enough to as markings and shadows are present We report on

* This research was supported in part by the Advanced Research these efforts in [Zerroug & Nevada 1993a and b].
Projects Agency of the Department of Defense and was monitored Motion Analysis
by the Air Force Office of Scientific Research under Contract No.
F49620-90-C-0078. Some work was supported under the RADIUS We have a number of projects in the area of motion anal-
program under a sub-contract from Hughes Aircraft Co. The United ysis, with autonomous navigation providing the context
States Government is authorized to reprodure and distribute reprints
for governrmental purposes notwithstanding any copyright notation
hereon.
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for most of the work, though these techniques have a 2 THREE-DIMENSIONAL VISION
much broader utility. 2.1 Description of 3-D Objects

• Integrated system for Motion: We have developed an 2.1.1 Integration from Multiple Views
integrated system that includes hierarchical feature We have developed systems for building models from
extraction and matching and feedback of 3-D motion unregistered multiple range images [Parvin & Medio-
estimation to the feature matching process. The sys- ni1992, Chen & Medioni 1992]. The latter system inte-
tem is able to tolerate errors and differences in the fea- grates views at the triangulated surface level rather than
ture extraction and matching process by removing at the pixel level. A triangulated surface model can rep-
these inconsistent feature points from the later analy- resent a variety of solid objects, and theoretically to any
sis. This is described in [Kim & Price 1993]. kind of resolution. They are not ideal representations for
- Mobile Platform: We use the domain of autonomous high level vision tasks, such as recognition, because,
navigation to unify our motion work. To this end we first, the representation is still low level, second, it is
have a small project in vision based navigation with a sensitive to many parameters, and therefore unstable.
trinocular stereo system for reliable 3-D descriptions However, we think it is a good intermediate representa-
of the environment. The recent results for this effort tion for integration and for building high level descrip-
are briefly given later in Section 3. More details can tion through surface interpolation from triangulation.
be found in [Kim & Nevatia 1993]. Figure I shows the multi-view integration result for a

Aerial Image Analysis complex object.
Our work in aerial image analysis consists of two major
components. First is the transfer of technology funded
by DARPA to the RADIUS program. We also continue
on our long range effort of analyzing complex cultural
domains. Our recent work in extraction of buildings is
given in [Huertas et al. 1993] and [Chung & Nevatia
1992b]. In the domain of large commercial airports we
have shown good results on the detection of runways
and taxiways [Huertas et al. 1990]. Recently we have
ported this system from the older Symbolics version to
the Sun platform and assisted another DARPA funded
group at USC in the reimplementation of these algo-
rithms on a Prolog machine. This airport analysis work
also forms the basis for a new effort in using the Loom (a) Original intensity image
knowledge representation system for vision tasks.
Knowledge Based Vision
We have begun a project in using a standard knowledge
representation system (the Loom system developed at
USC-ISI). This system will be applied to our earlier air-
port analysis system. This work is briefly described in
Section 5.
Parallel Processing
We are investigating parallel implementations of vari-
ous vision algorithms developed in our group and else- (b) Rendered result (c) Rendered result
where. We have studied algorithms for stereo and image Figure 1 Three dimensional reconstruction from
matching, graph algorithms. This involves implement- several views. Two views of the resulting
ing such algorithms on existing architectures. The re- structurefor the object "tooth."
cent work on implementing scalable data parallel
geometric hashing form matching is discussed in more
detail in [Khokhar & Prasanna 1993]. In previous work, 2.1.2 Deformable Models
we have also explored the advantages of using flexible A second project in range analysis involves the use of
architectures (Reinhart 1991]. deformable surfaces to generate a 3-D approximation of

range data. This work, performed by C. Liao and G. Me-
dioni, builds on our earlier work in "B-Snakes." The
user provides an initial simple surface, such as a cube,
which is subject to internal forces (describing implicit
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continuity properties such as tension and bending) and 2.1.3 Segmented Volumetric 3-D Descriptions
external forces which attract it toward the data points. We address the problem of recovering segmented hier-
The problem is cast in terms of energy minimization. archical volumetric descriptions of three dimensional
We solve this non-convex optimization problem by us- shapes. In an earlier work [Rom & Medioni 1992][Rom
ing the well known Powell algorithm which guarantees & Medioni 1993], we have suggested a method (using
convergence to a (possibly local) extremum and does SLS) for obtaining hierarchical axial descriptions of
not require gradient information. The variables are the planar shapes, together with a decomposition of the
positions of the control points. The number of control shapes into their parts. Unfortunately, it is not straight-
points is adaptively controlled. This methodology leads forward to extend these methods to handle three dimen-
to a reasonable complexity and good numerical stabili- sional shapes. This is because in the three dimensional
ty. We also provide a novel solution to the problem of space the SAT and SIS axes are, in general, not curves,
subdividing a patch when the fit is bad. We show results but surfaces, leading to unnatural descriptions [Nack-
on real range images to illustrate the applicability of our man 1985].
approach. The advantages of this approach are that it In this current work, performed by H. Rom and G.
provides a compact representation of the approximated Medioni, we restrict ourselves to three types of parts:
data, and lends itself to applications such as non-rigid Convex blobs (or Ovoids, borrowing the terminology
motion tracking and object recognition. Currently, our from Koenderink [Koenderink 1990]), Straight Homo-

algorithm gives only a CO continuous analytical descrip- geneous Generalized Cylinders (SHGCs [Shafer
tion of the data, but due to the flexibility of our adaptive 1983]), and Planar Right Constant GCs (PRCGCs [UI-
approach it should be upgraded to C1 or C2 easily. upinar 1991], planar axis and constant cross section).
Figure 2 shows an example of the extraction of the sur- These components exhaust many of the man-made ob-
face description from the range data. jects encountered on a normal basis. We suggest the use

of properties of the parabolic curves (zero crossings of
the Gaussian curvature) for recovering the cross sec-
tions and axes of the different parts. We advocate the
use of the parabolic curves over the often used occlud-
ing contours, which are unstable in range data. We will

assume that the shapes are C2 continuous (i.e. the curva-
ture is defined everywhere). We do not want to assume,
as several authors do, that the parts are cut along a cross
section or that a cross section is visible. Furthermore,
we will not assume the existence of any discontinuity
edges between parts. We believe that the case of parts
joined discontinuously is the limiting case of the more

(a) (b) general continuous case which we address.
Given the 3-D surface data, either from a CAD

model, or from registered range images [Chen & Medi-
oni 1992], or from a single range image, we first recover
the parabolic curves on the surface. This requires the
evaluation of the sign of the Gaussian curvature of the
surface patches. It has been shown that this process is
stable and reliable [Besl & Jain 1986] [Ponce & Brady
19871 [Fan et al. 1989]. The parabolic curves could be
either on the surface of the individual parts, or on the
border of the "glue" between parts. Note, that due to the
transversality principle [Guillemin & Pollack 1974],

(c) (d) there is almost always an anticlastic (negative Gaussian
curvature) region between convex parts when they are

Figure 2 (a) shows one view of a head with 45524 joined. The parabolic curves on the parts we consider
sampled points, and the initial cube with 8 could be either meridians or cross sections of the SHGC
control points and 12 triangles. (b) and (c) areSHGCs
the fitting surface with 259 control points and a l. 1989) and we have prown for SHGCs
514 triangles. (d) shows the shaded surfaces [Ponce et al. 1989] and we have proven it for PRCGCs).
after the third subdivision Using simple tests we can hypothesize (or in many cas-

es determine) the role of each parabolic curve. We can
therefore segment the object into parts, and based on the
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containing Straight, Homogeneous Generalized Cylin-
ders (SHGCs). The image may contain multiple, oc-
cluding objects and the objects may have surface mark-

..... ings. In working with real images, we must deal with
problems of fragmented boundaries and many addition-
al boundaries due to markings, shadows, highlights and
noise. We use the expected properties of the desired

S-,.. contours to separate the two sets of properties and to
complete the broken boundaries. Figure shows results

... ....-.- .on one example. Figure 4(a) shows the image, (b) the
(a) Original edges (b) Saliency map edges detected in it. Figure 4(c) shows the three recon-

structed SHGCs from two viewpoints each. Further de-
tails of this process are given in another paper in these
proceedings [Zerroug & Nevatia 1993a].

In continuation of this work, we are also studying
the class of curved generalized cylinders with circular

... but changing cross-sections. In this case, we are unable
to find invariants for the visible boundaries. However,
we are able to find good quasi-invariants that show that
commonly used ribbon descriptions are in fact, stable
for such objects. Our future work will focus on com-

(c) Enhanced map (d) Junction Map pound objects that combine a number of primitives that
Figure 3 Steps in extracting the most salient we have analyzed in the past.

features from an edge image.

properties of the specific parts, we can recover the axis
of the parts from the meridians and cross sections.

One problem which remains is that some parts can-
not be found until some other parts are removed. As in
[Rom & Medioni 1992] and [Rom & Medioni 1993], we ,/( ----•\
take an hierarchical strategy, in which, at each step, well
defined parts are described and removed. Once these " " ./

parts are removed, the next level parts can now be de- -- .
scribed. This process is efficient and produces a decom-
position of the shape into its intuitive parts with a stable
axial description of these parts. (a) Original input image (b) Extracted edges
2.2 Perceptual Grouping
We have started to develop a system for perceptual
grouping based on the properties of collinearity and co-
curvilinearity of partial contours [Guy & Medioni
1993]. The implementation is obtained by initiating an
oriented vector field at each site detected by a low level
detector. Structures which verify our constraints rein-
force each other, and dominate other arrangements.
Figure 3 shows a typical input, and the salient structures
detected U
2.3 Shape Analysis from Monocular Images.

We have continued our effort in understanding how
to infer shape from monocular images using contours.
First we developed a theory of invariances of projected
contours and how they can be used to infer 3-D shapes
of a certain classes of surfaces [Ulupinar & Nevatia (c) Different views of each extracted object
1990, Ulupinar & Nevatia 1992, Ulupinar 1991]. In re- Figure 4 Generation of3-D SHGC descriptions
cent work. we have developed a system for generating from edges extractedfrom an image.
volumetric 3-D shape descriptions from real images
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3 MOTION ANALYSIS
We have advocated the use of multi-frame analysis for
several years. In previous work, we developed a motion
and structure estimation system based on so called chro-
nogeneous motion, which includes uniform acceleration
and constant angular velocity rotation and translation as
special cases [Franzen 1991, Franzen 19921.
3.1 Integrated Motion System
In recent work using the motion estimation system, we
have been building an integrated system that includes
hierarchical feature extraction and matching and feed-
back of the Franzen 3-D motion estimation results to the
feature matching process [Kim & Price 19931. This en-
ables the system to tolerate errors and differences in the
feature extraction and matching processes by removing
these inconsistent feature points from the later analysis.
Figure 5 shows the first and last frames of an indoor im- (a) Trinocular input images.

chusetts) along with the reconstructed image-plane
trajectories based on the 3-D analysis and the recon-
structed top-down view of the scene. -

(b) Depth map (c) Planned Path

Figure 6 Trinocular vision results for mobile

(a) First image (b) Last image rot.
dor walls and obstacles in the hallway. Figure 6 shows
the input three images for a hallway scene along with
the resulting 3-D map and the planned path.

4 AERIAL IMAGE ANALYSIS
Most of our effort in this area is in support of the RADI-
US program and is largely funded under a different con-
tract though much of the basic technology has derived
from our basic IU research effort We have focused on
the problem of 3-D object detection and description,

(c) Image plane view (d) Overhead view particularly the buildings. Various RADIUS experi-
Figure5 Images and reconstructedresultsfor the ments with image analysts clearly illustrate the central

cone sequence. role of buildings in a site.
3.2 Mobile Platform 4.1 Stereo Calibration

In work by M. Bejanin and G. Medioni, we have consid-
We have continued with our robot project using trinoc- ered the problem of finding the geometric transforma-
ular imagery for guidance. We are investigating robot tion between two perspective views of the same scene
navigation for situations where only generic maps are and the determination of epipolar lines, given a set of
available, with one of the tasks being the generation of matched control points. Many methods exist and divide
more complete maps. The visual navigation uses three in two groups: linear methods and non-linear methods
views to improve the performance of the stereo system, [Horn 1991]. Linear methods work with matrix opera-
both in speed and accuracy of the matching. Rather than tions, using the essential matrix that was introduced by
producing a complete depth map we are concerned only Longuet-Higgins in 1981 [Hartley 19921 [Longuet-Hig-
with producing a "squeezed 3-D map" that shows corri-
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gins 1981]. We have evaluated the performance of both
types of methods using aerial images. We have also pro-
duced extensive comparisons between the two types of
methods by testing them on synthetic random data. The
main result of this comparative study is that the non-lin-
ear method seems to be more robust and reliable in the
presence of noise. Also, the linear method has many de-
generate cases where the transformation cannot be com-
puted; among these is the "perfect" stereo case where
both optical axis are parallel and perpendicular to the
baseline. Finally, the result obtained on aerial scenes is (a) Original Aerial Images
not very accurate, as these scenes are nearly planar.

After the transformation between the two images
has been computed from any of these methods, we show
that it is possible to obtain, from the initial views, two
images that are in parallel epipolar geometry. This is
done by applying the rotation to the first image plane.
This is equivalent to reprojecting the image, by keeping
the same position in space for the principal point, but
simply changing the direction of the principal ray. After
having transformed the first image, our two images will
lie on parallel image planes, but the scale will not nec-
essarily be the same (that is to say the baseline is not (b) Left result image (c) Right result image
necessarily parallel to both image planes). Therefore we
still need to scale the first image to the size of the second Figurea7 two original images of the Ft. Hood
image. We first transform the image coordinate system trans(o)mad isteed learight
in both images such that the new x-axis and the new x'- formed images in collinear epipolar

axis are parallel to the baseline, we are then able to use geometry (bottom).

the control points to scale the first image: since we want forming co-planar clusters and tracing structures among
to get collinear epipolar images, two conjugate points them. Our system can work with both overhead and
should lie on the same line (in this new coordinate sys- "oblique" views. An example is shown in Figure 8.
tern), and so have identical y-coordinates. The results Note that the system produces a flat roof (as opposed to
for real aerial images of the Ft. Hood site are shown in wavy surfaces typically found by stereo systems) and is
Figure 7 (flight parameters were used for computing the able to detect the hole in the roof correctly. More exam-
results). ples and a detailed description of this system may be
4.2 Stereo for Buildings found in [Chung & Nevatia 1992b] and [lChung 1992].
The problem of building detection and description is 4.3 Use of Groupings and Shadows
difficult for a number of reasons. Aerial images tend to Another system we have developed uses only a single
be highly complex with even simple buildings having image, but uses shadows to verify presence of a building
many architectural details, surrounding trees and vehi- and estimate its height. This system is currently de-
cles, nearby and aligned roads etc. These cause the low- signed for overhead views; we are in the process of ex-
level segmentation to produce highly fragmented re- tending it for oblique views. Basically, the approach is
suits. Also, 3-D information is not explicit in 2-D imag- to use perceptual grouping to hypothesize likely build-
es, but must be inferred somehow. We have developed ing-like structures. We assume that the buildings are
two systems, one using stereo analysis, the other using rectangular or composition thereof. Thus, the hypothe-
shadow analysis to overcome both problems (of frag- sis generation phase consists of forming rectangular hy-
mentation and 3-D description). potheses from fragmented line segments. We select

Availability of stereo makes the task of inferring 3- among these hypotheses based on some geometrical
D easier. However, we must still solve the problem of analysis of overlap, containment and strength of the ev-
correspondence, a difficult one in this context, and infer idence forming the hypotheses. The selected hypotheses
surfaces from the partial stereo matches. In our system, are then verified by examining whether they cast shad-
we use scene features for correspondence. Our current ows in the appropriate ways. Figure 9 shows an exam-
system uses junction and line matches, though ability to pie. Note that this building contains a number of parallel
match higher level features can also be incorporated, structures on top of the roof, making the hypotheses for-
Surfaces are inferred from junction and line matches by mation and selection process particularly difficult.
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(a) Input image (b) Extracted linear features
(a) Original image (left) (b) Matched lines

(c) Two extracted (d) Rendered view of regions

surfaces extracted model Figure 9 Building detection using shadows for
verification. Using the lines and junctions, the

Figure 8 Analysis of buildings using stereo. The buildings are extracted and verified using
hierarchical matching uses lines and junctions shadows.
to extract a set of surfaces, which are then generic descriptions of airports and for particular in-

stance that we are analyzing. Then we will begin to use
Nonetheless, our system produces good results. More the other descriptive and deductive capacities for find-
examples and a more complete description is given in ing and analyzing the runway markings that are used for
another paper in these proceedings [Huertas et al. the final verification and positioning of the runways.
1993]. Loom provides a means to describe the other objects

that may be present in the scene (taxiways, building, air-
5 KNOWLEDGE-BASED SYSTEMS craft, etc.) and their relations to the other objects.
We have begun a new project in using standard knowl- Our first goal is to evaluate the capabilities of Loom
edge representation technology for Image Understand- for high level Image Understanding and then to use
ing. Loom, a knowledge representation system Loom for generic high level descriptions of complex
developed at USC-ISI, provides a high level program- objects, and to use these descriptions for building other
ming interface for Lisp and an environment for knowl- analysis systems.
edge based system construction [MacGregor &
Burstein 1991]. Since it is built on Lisp, it can be easily 6 PARALLEL PROCESSING
incorporated into our Lisp based environment and We have studied parallel implementations of several
should be compatible with the Image Understanding high-level algorithms, such as relaxation labelling and
Environment developments (which did not address the graph matching. Our recent work has looked at the
knowledge base aspects of image analysis). In past problem of geometric hashing, which is used for a vari-
years we developed a system that uses domain knowl- ety of matching problems [Stein & Medioni 1992]. In
edge to simplify the task of describing a scene [Huertas earlier parallel implementations the number of proces-
et al. 1990]. This original system encoded the knowl- sors was independent of the size of the scene but de-
edge about airports in the programs. pended on the size of the model database. In this work

We chose to apply Loom to the airport analysis we have designed new parallel algorithms for both the
problem so that we could address the knowledge repre- MasPar and Connection Machine architectures which
sentation issues separate from the image understanding improve on the number of processors and improve the
issues. This is possible since the basic analysis pro- overall performance. Details of this work are given in
grams already exist and the incorporation of Loom into [Khokhar & Prasanna 1993].
the analysis can proceed in an incremental fashion, first
with the use of Loom as a representation system for the
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Abstract at the lab was described in a dedicated special issue of
Machine Vision Research at the University of Roches- the International Jourtnl of Computer Vision [Nelson
ter centers around the concept of active or behavioral 1991a and sequel]. The animatefbhavioral vision
vision. Vision is consierept as an teractive o ess approach is also described in [Ballard et al. 1992, Bal-vison.Viiouis onideedas n iteactveProcess lard 1991, Moraff and Brown 1992].
between a system and its environment, and this rela-
tionship is explicitly invoked to provide constraints to 2. Integration of Visual and Motor Control.
make machine-vision applications tractable. Work in
this area has focussed on four main areas: integration Previous work on low-level gaze control culminated
of visual and motor control, learning for robot skill and with a successful integration of vergence and tracking
visual model acquisition, task dependent allocation of that permitted the robot head to track an object moving
computational and physical resources, and parallel in a cluttere scene binocularly in real time. The sys-
real-time systems integration and support. We also tem combined foveal regions of interest, a binocular
continue to develop real-time low-level primitives for disparity filter, and predictive tracking to obtain the
integration into larger systems. demonstrated performance [Brown 1991a, Brown and

Coombs 1991, Brown et al 1992, Coombs and Brown
1. The Laboratory 1992, Grosso and Ballard 1992, Soong and Brown
The Computer Vision Laboratory at the University of 19921.
Rochester is set up to study active vision in a very real A new initiative by Nelson addresses hand-eye coordi-
sense - by interacting with the physical world. Robot nation using local linear models [Nelson 1993b]. The
hardware includes a binocular head with three external general idea is to relate changes in object appearance to
degrees of freedom, an Utah/MIT hand, and two Puma a set of one-parameter manipulations or "twiddles" by
robot arms for moving the hand and head. Computa- means of a generalized Jacobian. We represent the
tional hardware includes a large collection of Maxvi- appearance of an object by a vector x of scalar quanti-
deo boards for performing real-time image processing, ties, which could be the image coordinates point
an eight node Silicon Graphics Multiprocessor, an features, segment, curve or blob parameters, or even
array of eight transputer T805 TRAMS, and various colors. We also have a vector y of qualitative one-
coordinating workstations. Several improvements have parameter manipulations or "twiddles", which could
been made to the lab in the last year. The head has involve both rigid motions and nonrigid deformations.
been modified to provide color images and internal For a particular pose of the object, we can describe the
degrees of freedom, including focus and zoom. The change in appearance of the object under a small mani-
second Puma arm was acquired to give us the capabil- pulation by a motor-visual Jacobian formed from the
ity to move the head and hand cooperatively. The partial derivatives of the feature values with respect to
Puma arms were converted to run RCCL instead of the various manipulations. A nice property of this
VAL. This gives us more flexibility, and provides a Jacobian is that it can be determined interactively, i.e.,
much needed increase in speed. We have obtained an learned. The robot just picks up an object, looks at it,
EXOS exoskeleton for measuring human hand move- makes small manipulations along its basis axes, and
ments during manipulation. This replaces the Data- observes the changes in appearance.
Glove as an input device for the Utah hand, and pro- The motor-visual Jacobian can be used to implement a
vides values that are far more stable and repeatable. tight version of a principle views 3-D recognizer by
We have also founded a Virtual Reality lab for investi- storing with each view the motor-visual Jacobian
gating psychophysical aspects of vision. This lab con- corresponding to that pose and some set of basis mani-
tains eye and head trackers that will be incorporated pulations. Given a match hypothesis from some flexi-
into a helmet-mounted stereo video system. The equip- ble matching process, a difference vector can be com-
ment will be used to study human visual strategies dur- puted giving the discrepancy between stored
ing the performance of various tasks. Recent research
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representation and the measured values of the 3.1 Tele-assisted Manipulation
corresponding features. We then use a well condi- Teleoperation, wherein a robot mimics the actions of a
tioned pseudoinverse computed from the singular value human, offers the means to learn action sequences. If
decomposition of the Jacobian, to find the manipulation one records the robot state under teleoperated control
that comes closest (e.g. in a least squares sense) to pro- then one can later replay the sequence of moves to
ducing the observed view. By checking the difference duplicate the performance. The problem with such
between this solution and the actual appearance, we replays is that they are open-loop; the controller cannot
can tell whether what we see is consistent with what is respond to even minor changes in the environment.
encoded about how the appearance of the object can Pook and Ballard are developing the idea of tele-
change. This procedure allows an accurate match to be assistance, a form of control that combines the learning
made without an explicit 3-D model, and using only abilities of teleoperation with closed-loop autonomous
visually obtained information, control, to address the common latency and accuracy
The same mechanism used for recognition can be problems of teleoperation [Pook and Ballard 1992a,
reversed to visually control manipulations. The basic 1992b, Chu 19921 For example, as an operator slides a
idea is to experimentally determine the visual effect of tool across a surface, a closed-loop controller can
qualitative manipulations of an object and represent maintain steady robot velocity and contact with the sur-
them, as previously, by a motor-visual Jacobian. If we face even if the operator action is jerky.
know the appearance of the object in the goal condi- The first step in tele-assistance is to identify a primitive
tion, we can compute a difference vector and solve for actions as they are performed. Using teleoperation of
the best manipulation vector using the pseudoinverse as the Utah-MIT hand to perform tasks such as flipping
before. Executing this manipulation, we will effect the eggs with a spatula, Pook has successfully identified
goal configuration within the accuracy of the linear action primitives such as grasping, carrying, pressing,
approximation. The primary advantage of the proposed and sliding in contact, from characteristic temporal pat-
technique is that it can be used with a manipulator and terns of joint forces. This was done using learning vec-
visual system for which a good physical model does tor quantization to generate codebook patterns from a
not exist. training set of actions. The codebook patterns were

gApplications then used in conjunction with a hidden Markov model
3. Learning Afor transitions between actions to identify the action
Learning has become increasingly important in our primitives in the context of a larger task.
research, where we define learning as the process of The second step in teleassistance is to produce the
obtaining some of the information needed to specify a closed loop controls that implement the action primi-
complex machine system automatically, either via tives. Our current approach is based on the use of
interaction with the world, or using a search process to parameterized behaviors that reduce the redundant
find internal parameters that produce some more degrees of freedom in the hand to a manageable level
loosely specified behavior. Along the theoretical axis, via a task-dependent linking mechanism. We have had
Whitehead finished his work on using variations of some success already in producing such parameterized
reinforcement learning to acquire execution models for behaviors. Pook and Ballard will continue to pursue
joint foveal and manipulator control for goal-state this step over the upcoming year.
specified tasks in complex environments [Ballard et al.
1992, Ballard and Whitehead 1992]. Ballard and deSa 3.2 Robot Skill Learning
continued work on self-teaching variants of competi-
tive learning [DeSa and Ballard 1992]. The basic idea Schneider and Brown are working on the topic of robot
is to use the non-flat nature of joint probability condi- skill learning [Schneider and Brown 1992]. Skills are
tional density functions between different sensory parameterized open-loop behaviors useful for tasks for
modalities to drive the segregation of classes when the which the delay of closed-loop control can not be
information in a single modality is not appropriately tolerated, or for which no intermediate performance
biased to drive a clustering process. Brown also pur- information is available. Throwing a ball at a target is
sued topics in geometric invariance, which allow an example of the latter. A skill is termed "n-
recognition models to be automatically acquired dimensional" when the task is parameterized by n
[Brown 1991b, Brown et al. 1992]. On the applications desired output values.
side, two projects are ongoing. One, by Pook and Bal- Robot skill learning can be modeled as a function
lard attempts to derive high-level execution models for approximation problem. The learning algorithm needs
complex manipulation tasks by observing teleoperated to find a mapping from n desired output values to the
sequences. The other, by Schneider and Brown, space of possible robot control trajectories. These input
attempts to learn motor control strategies for control trajectories may be sequences of joint positions,
parameterizable actions that optimize some cost func- velocities, or torques. Typically the mapping from
tion. These are described briefly below, robot control signal to task output is redundant and the

inverse to be learned should be optimized according to
a cost metric. Function approximation techniques can
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be divided into global and local methods. 4.1 Resource Allocation Using Bayes Nets
In global approximation techniques, a variable func- Rimey and Brown have addressed the problem of intel-
tional form is specified in terms of parameters that ligent resource allocation using a Bayes net formalism
affect the entire domain of the mapping. The learning [Rimey and Brown 1991, 1992a, 1992b, 1993]. The
algorithm must find the parameter settings that optim- general problem is to control a computer vision system
ize a cost function. Linear models are easy to deal that has a repertoire of actions so that it achieves some
with, but restrictive when the task is non-linear, as is goal in minimal time. In particular we want to accom-
the case in most robot control problems. We therefore plish visual tasks efficiently by using knowledge about
adopted a modified linear model in which learning was the scene domain and about available visual and non-
done in a linear space, but a set of non-linear basis visual operators. Efficiency comes from processing the
functions was used to convert points in the output space scene only where necessary, to the level of detail
into robot trajectories. Experiments with a one- necessary, and with only the necessary operators.
dimensional throwing task (the single task parameter is TEA-i is a general purpose selective computer vision
distance to throw) were done in simulation. The results system that attempts to accomplish these goals using
showed that global function approximation can be used Bayes nets for representation and a maximum expected
for one-dimensional throwing. Performance is highly utility rule to make decisions about what action to take.
dependent on choice of basis functions and robot con- It is both a prototype system and an open-ended
trol schemes (joint velocities, torques, or spring-based research tool for studying control of selective percep-
control). The largest drawback is the number of robot tion. The basic constraint assumed for the vision sys-
executions necessary to fit the model, which increased t e bsia onta in t sedsor the visiosdramticllywit th nuber f tsk imesios. his temn is a pointable, multiresolution sensor that cannot
dramatically with the number of task dimensions. This view the whole scene at once. The problem is how best
led us to consider local function approximation to utilize this sensor to achieve a particular goal We
methods. have performed extensive experiments both in simula-
Canonical local function approximation methods tion and in the lab.
include neural networks, nearest neighbor classifiers, A number of modifications have recently been made to
table lookup, and radial basis functions. Schneider improve the performance of the system. First, actions
used a form of interpolated table lookup modified to have been split into two types: visual actions that pro-
handle a high (18) dimensional input space efficiently cess image data and camera movement actions. Previ-
to learn a two-dimensional (x and y landing position of ously all camera movements were integrated into each
the ball) throwing task in simulation. Experiments were visual action. This both reduces the number of cases
run with 1-d and 2-d throwing to compare the brute that must be considered, and decouples the analysis.

force search of standard table lookup and the new algo- Second, all the decision algorithms have been extended

rithm. The results showed a 55% to 80% reduction in so they can be based on an expected value sample
the cost metric (includes accuracy and control effort) information (EVSI) measure. The main advantage of

for the same number of robot executions. The expen- using an EVSI measure is that values and costs

ments also showed that the local method could outper- throughout the system are formally consistent, and in
form the global method even when it had the benefit of practice there are fewer coefficients that need to be
good basis functions. An additional feature of the new adjusted. Third, A new algorithm that is based on a
algorithm is its ability to automatically extend iLu range brute-force state-space search was added for deciding
of performance as it acquires the skill. Neither stan- which visual and camera movement actions to execute.
dard table lookup nor the global method allows this. In addition a formal definition of the T-world domain
4. Intelligent Resource Allocation and a software system for creating and solving T-world

problems, has been developed. This enables analysis
One of th;: major driving forces behind research into of a variety of factors that affect the performance of a
active vision is the need for some sort of sophisticated selective perception system.
control over the allocation of resources, both physical
and computational [Ballard and Brown 1992, Brown 4.2 Searching Cluttered Areas
1992b]. As an example of the first case, eyes, hands, Object search is one area in which animate vision stra-
and other sensors and manipulators generally can't be tegies can have a high payoff [Swain et al. 19921.
everywhere at once, and moreover, may require consid- When searching for an object, it can be advantageous
erable time or energy to transfer between states. As an to make use of the spatial relationships in which it
example of the second, it is generally not necessary for commonly participates. Searches that do this, which
a vision system to identify everything identifiable in a we call indirect searches, can be modeled as two-stage
scene, and is probably a waste of resources to do so in processes that first find an intermediate object that
most applications. This brings up the issue of visual commonly participates in a spatial relationship with the
attention, where resources are allocated on the basis of target object, and then look for the target in the res-
what is most likely to benefit the task at hand. Two tricted region specified by this relationship. Using this
current projects address the issue of visual attention in model, Wixson has determined that over a wide range
vat ous ways. of situations, indirect searches improve efficiency by
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factors of 2 to 8 [Wixson and Ballard 1991, Wixson independence while still allowing information to be
1992] To exploit such spatial relationships, it is neces- propagated throughout the system. The run-time
sary to have mechanisms for selecting camera posi- environment also keeps track of the state of the under-
tions. Since large objects that are suitable intermediate lying processors and system state. When the applica-
objects are usually cluttered, we need general-purpose, tion indicates it wants to solve a new goal, the run-time
yet computationally efficient mechanisms for detecting environment uses the information it maintained about
these occluded areas and bringing them into view. the system (e.g. about deadlines and accuracy require-
Occluding edges indicate areas that cannot be viewed ments) and combined it with knowledge of the struc-
from the current viewpoint, and Wixson believes that ture of the application to choose an appropriate
sparse information about occluding edges can be used planner. Our results indicate that this strategy works
to construct simple but efficient search mechanisms. better than having a single monolithic planner.
Recently, he has developed an algorithm for detecting 6. Motion Recognition
occluding edgels in stereo or motion pairs. The algo-
rithm works by searching for matches, in the right Polana and Nelson have worked on robustly comput-
image, for the regions to the left and right of a left- able motion features that can be used directly as a
image edgel. The algorithm is based on that of Toh and means of recognition. The underlying motivation is the
Forrest but extends that work in several ways. First, it observation that, for objects that typically move, it is
adds an algorithm for automatically selecting an frequently easier to identify them when they are mov-
appropriate size for the correlation windows used to ing than when they are stationary [Nelson 19911.
detect the occlusions. Second, it identifies a situation Specifically, the goal is to design, implement and test a
in which simply examining the match values values is general framework for recognizing both distributed
insufficient to determine whether an edgel is a surface motion activity on the basis of temporal texture and
marking or an occlusion. Finally, it adds a post- complexly moving compact objects on the basis of
processing step that eliminates some falsely detected their action. This recognition approach contrasts with
occlusions. Work on procedures for searching clut- the reconstructive approach that has typified most prior
tered areas using this algorithm is currently underway. work on motion. The proposed work has practical

applications in monitoring and surveillance, and as a
5. Parallel Systems Support component of a sophisticated visual system.
Systems support for parallel processing applications in For the first phase of the project image sequences con-
AT is an ongoing theme at Rochester [Bianchini and taining temporal textures were analyzed. Real imagery
Brown 1992, Marsh et al. 1992, Weems et al. 1991] was used as the prime source of test data. The normal
Currently, Robert Wisniewski is working on systems flow field of the motion between successive frames was
support for real-time parallel intelligent applications, used as the basis for recognizing the temporal textures.
There is a growing interest in designing such applica- Several features were extracted from the normal flow
tions. Currently there does not exist a good software field and techniques analogous to the statistical
platform upon which to build these applications. The methods of gray-level texture classification were
goal is to design a general system that allows for the applied to successfully classify scene regions contain-
necessary intelligent 'hooks' or information exchange ing non-rigid motion [Nelson and Polana 1992].
between the high level application and the underlying For the second phase, image sequences containing a
system. Previous work has developed systems with single periodic activity were analyzed in order to tag
good information exchange at the single application and track objects exhibiting periodic movement. Iden-
level, but general parallel environments with good tifying such motion is important since it indicates a
interfaces between high and low levels do not yet exist. situation where a structural classification technique
We are using a parallel shepherding application would be more appropriate than a temporal texture
developed on an eight node SGI multiprocessor to method. A Fourier Transform based technique was
develop and test our proposed run-time environment, developed that successfully distinguished periodic
We believe this application is representative of Al activities such as walking, exercising, rotating
applications needing to function in a real world machinery etc. from non-periodic motion, and tracked
environment. The goal is to keep as many individually the region of periodic activity against cluttered back-
moving objects confined on a table top as possible. grounds. Both stationary activity, and periodic activity
Different planners using different amounts of time dev- resulting in translation of the actor can be identified
ise strategies for a robot arm manipulator using the [Polana and Nelson 1993]. The technique can be gen-
visual input of an overhead camera. eralized to arbitrarily moving objects exhibiting
Our work has examined the effectiveness of our run- periodic activity.
time environment in choosing the appropriate planner The current task is recognition of periodic activities
for a particular dynamic internal state of the system. after successful detection using the periodicity detec-
The run-time environment is aware of the application's tion described above. A combination of normal flow
goals by a set of shared data structures. This permits field features and Fourier domain features will be used
the execution level to maintain environmental to characterize the nature of periodicity exhibited by
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different activities. These will be applied specifically 21, July 1992; to appear, Y. Aloimonos (Ed.). Active
to recognize human walking, animal gaits, and periodi- Vision.
cally operating machinery. The techniques will also be
examined for their invariance with respect to spatial Ballard, D.H., C.M. Brown, and R.C. Nelson, "Image
scaling and viewing angle. understanding research at Rochester," DARPA Image

Understanding Workshop, 109-116, San Diego, CA,
7. Line Segment Extraction January 1992.
Finding lineal features in an image is an important step Bala, D.H., M.M. Hayhoe, F. Li, and S.D. White-
in many object recognition and scene analysis pro- Wa d, "H ., M.M. dia tio n during s equential
cedures. Nelson has developed a new method of head, "Hand-eye coordination during sequential
extracting lineal features from an image using extended tasks," Proc., Phil. Trans. Royal Society of London B,

local information to provide robustness and sensitivity London, March 1992.

[Nelson 1993a]. The method utilizes both gradient
magnitude and direction information, and incorporates Ballard, D.H. and S.D. Whitehead, "Learning visual
explicit lineal and end-stop terms. These terms ar behaviors," in H. Wechsler (d.). Neural NetworksAfor
combined non-linearly to produce an energy landscape Machie Perception, Vol. 2. Boston, MA: Academic
in which local minima correspond to lineal features Press, 1992.
called sticks that can be represented as line segments. R
A gradient descent (stick-growing) process is used to Bianchini, R. and C.M. Brown Parallel genetic algo-
find these minima. rithms on distributed-memory architectures," TR 436,Computer Science Dept., U. Rochester, August 1992.
More specifically, suppose there exists a matching cri-

terion by which any line segment can be compared Brown, C.M.,"An empirical investigation of differen-
against an image and given a score. Then conceptu- tial invariants," in J.L. Mundy and A.W. Zisserman
ally, a good set of line scgments could be found by (Eds.). Computational Invariants for Vision. Cam-
finding, from all possible segments, the one that pro- bridge, MA: MIT Press, 215-227, 1992a.
duces the best score, nullifying the effect of the image
components contributing to it, and repeating, until Brown, C.M., "Gaze behaviors for robotics," invited
enough segments had been found. The main practical paper, in A. Sood (Ed.), Active Perception and Robot
problems with this method are making it efficient, since Vision (Proc., NATO-ASI Symp. on Active Perception
it is clearly impractical to look through all possible seg- and Robot Vision, Maratea, Italy, July 1989).
ments multiple times, and designing an appropriate Springer-Verlag, August 1991a.
matching measure. The new matching measure utilizes
a non-linear combination of separate convolutions with Brown, C.M. "Issues in selective perception," Proc.,
line-like and end-stop templates that provides for l1th IAPR Int'l. Conf. on Pattern Recognition, 21-30,
growth along a lineal feature, but stops the growth The Hague, IEEE Computer Society Press, September
when strong evidence of a termination is encountered. 1992b.
This cannot be achieved with a single convolution
measure. Brown, C.M., "Numerical evaluation of differential

When compared against two other methods of line seg- and semi-differential invariants," TR 393, Computer
ment detection, one based on edgel linking, and the Science Dept., U. Rochester, August 1991b.
other on support regions of similar gradient direction.
the stick growing method exhibits improved gap cross- Brown, C.M. and DJ. Coombs,"Notes on control with
ing abilities, and is better able to extract long, poorly delay," TR 387, Computer Science Dept., U. Roches-
defined features, especially in cluttered images. The ter, August 1991.
method gives sufficiently good results in images of
objects having strong linear features to permit the inter- Brown, C.M., DJ. Coombs, and J. Soong, "Real-time
mediate level representation obtained to be used for smooth pursuit tracking," in A. Blake and A. Yuille
recognition. (Eds.) Active Vision. Cambridge, MA: MIT Press,

123-136, 1992.
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Image Understanding Research at GE

J.L. Mundy*
Box 8

G.E. Corporate Research and Development
Schenectady, NY 12309

Abstract images for the detection of flaws in jet engine turbine
blades. This application is described elsewhere in these

Recent progress in image understanding re- proceedings [Noble and Mundy, 1993].
search at GE is described. The focus of GE's
program in IU is on the application of geometric 1.3 Geometric Invariants
constraint models and geometric invariants to A significant body of results on the construction ofthe recognition and representation of objects, Asgiiatbd frslso h osrcino
as well as the development of object-oriented geometric invariants to projective and affine trans-asofwellar the environ ments tof suo t-oriesteah formations has been developed over the past threeand applications. years [Mundy and Zisserman, 1992]. An invariant is anyproperty of a geometric configuration which is unaffected

by viewpoint. In current model-based vision approaches,
1 Overview it is necessary to test each object in the library since the

specific properties of the object can only be exploited for
1.1 An Emphasis on Geometry discrimination after model pose is determined. When
Image understanding research and applications at GE objects are described in terms of invariants the resulting
are centered around geometric descriptions and geomet- properties can be used to index large model libraries.
ric reasoning for representing and recognizing objects. We have shown that invariant indexing leads to object
We have developed this geometric theme over the past recognition cost which grows slowly with the size of the
decade with emphasis on object recognition and asso- model library. This efficient indexing property has been
ciated approaches for representing objects to facilitate exploited in three application tasks.
recognition. 1.3.1 Automatic Target Recognition

1.2 Constraint-Based Modeling A key problem in automatic target identification is

The conventional approaches to object recognition have efficient indexing of targets from image features. This
been based on fixed polyhedral models or models with indexing must be done from a rather sparse and low-
fixed relationships between components. We have been resolution image segmentation. It is often the case that
developing a system for representing broad categories the resolution is too low to permit robust indexing and
of objects by defining an object in terms of geometric recognition on geometric properties alone. We have re-
relations, or constraints. Any specific object of the class cently developed a concept of integrated geometric and
is considered to be a solution of the constraint system. In thermal invariants in conjunction with the Target Recog-
most cases, there is a continuum of solutions so a specific nition Technology Branch at Wright Labs(AARA)2 The
object is selected which satisfies the constraints as well idea is to derive a set of features which are invariant,
as optimality criteria derived from image features. not only to the geometric variations due to viewpoint,

A key application of our constraint-based modeling but also to the thermal variations due to environmental
system is to reduce the manual effort in the construction and target operational conditions. The benefits of in-
of RADIUS1 site models. Many building shapes can be variant indexing can be applied to target detection and
represented by a generic set of constraints and the spe- classification, even where resolution is limited, since at-
cific geometry of a building can be recovered by fitting tributes of the thermal intensity data are taken into ac-
the constraint model to various image views of the build- count. The graphs in Figure 1 shows the values of several
ing. Recent progress on this application is described in geometric-thermal invariants computed from a time se-
section 1.3.2. A dual-use application of the constraint ries of IR images of a tank. The variation is quite small
modeling system is automated interpretation of X-ray compared with the absolute temperature varation of in-

dividual tank components.
"The research reported here is funded in part by DARPA

Contract #MDA972-91-C-0053 2The key contributors at AARA are V. Velten, L. West-
'Research and Development for Image Understanding erkamp and M. Gander. Substantial contributions have also

Systems, a joint project by DARPA and ORD. been made by D. Forsyth of the University of Iowa.
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mary importance is the ability to achieve most IU image
analysis tasks without knowledge of the camera parame-
ters or viewing conditions and without requiring ground
control points [Hartley, 1993b].

1.4 Object-Oriented Design
In addition to our research and applications of object
recognition and modeling techniques, we are involved
in a number of projects for the application of object-

a oriented design to the development of research and ap-
______-______-__plication environments.

1.4.1 RCDE
-• • - - - Part of the DARPA sponsored RADIUS project, is to

develop a common software environment(RCDE) to fa-
-, cilitate the exchange of results and to provide a platform

for the demonstration of algorithms which are targeted
at the intelligence exploitation of aerial images. The
Cartographic Modeling Environment(CME) developed
at SRI International by Lynn Quam, has been extended
and interfaced to C++ by GE's Management and Data
Systems Operation with support from GE-CRD to be-
come the RCDE [Mundy el al., 1992b]. Extensive docu-
mentation for operation and programming of the RCDE

Figure 1: Ratio's of spatial-thermal integrals, as a func- has also been developed. Currently a number of early
tion of time, for the carriage region of a tank. Note that versions of the RCDE are under evaluation and testing at
four of the ratio's are effectively constant, and that the RADIUS contractor beta sites. The RCDE is currently
others vary only slightly over time. being enhanced by SRI and CRD under a task called

THREAD which provides a narrow architecture for car-
rying out Model Supported Exploitation(MSE) using the

1.3.2 Site Model Registration RCDE. The key IU algorithmic steps in THREAD archi-

The main RADIUS assumption is that each site will tecture are:

be described by a geometric site model which describes * Edge segmentation using a modified Canny edge de-
such features as: the site perimeter, lines of communi- tector and line segments extracted from the result-
cation, functional areas and 3D building structure. This ing pixel chains using maximum curvature.
site model provides a context for IU tools to assist the e Line segment grouping based on endpoint proximity
image analyst in tasks such as asset accounting, change and collinearity.
detection and scientific analysis. A central task for IU in
the RADIUS program is the registration of existing site Site model registration using affine model natching
models to new reconnaissance imagery. In our approach, based on vertex-pairs as well as affine and projective
we represent features from the site model in terms of ge- invariants.
ometric invariants and then use these invariants to rec- * Linear feature extraction using image correlation.
ognize key features at the site, such as buildings, roads Other elements of the THREAD architecture are related
and shorelines. This approach is described in more detail to camera modeling, interface to a database, and an an-
in section 3.1. alyst interface. This architecture provides a useful set

1.3.3 3D Reconstruction From Uncalibrated of examples for using and integrating new applications
Cameras with the RCDE.

Recently, Richard Hartley of GE and Olivier Faugeras 1.4.2 WUE
of INRIA independently proved that a structure in 3D A major DARPA project has been initiated to provide,
space can be reconstructed up to within a 3D projective a standard software environment for carrying out ira-
transformation from two or more uncalibrated camera age understanding research and applications. The Image
views. For many vision tasks such as object recognition, Understanding Environment or IUE has been specified
it is not necessary to determine the Euclidean structure by a committee of senior IU researcher and is based on an
of the object since the 3D object can be characterized object-oriented representation of the niajor data strgic-
by its projective invariants. If desired, the structure can tures and operations used in IU algorithms. An overview
be transformed to an appropriate Euclidean coordinate of the IUE appears elsewhere in this proceedings [Mundy
frame if a sufficient number of constraints, such as dis- and Committee, 1993b]. The goal is that the WUE will
tances and orientations are known a priori about the become a standard of exchange of IU data and also pro-
object. This observation has lead to a new approachs to vide common interfaces so that new algorithms and other
acquiring and registering models to image data. Of pri- support code can be freely exchanged between research
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institutions. Recently effort at CRD has been focussed Example I# Const. Time Error
on the development and prototyping of a data exchange Top Ex. 57 8 sec .02 pixels
file format. It is envisioned that such a standard will be Bottom Ex. 141 66.8 sec .58 pixels
of considerable immediate benefit [Mundy and Commit-
tee, 1993a]. Table 1: The performance of the constraint modeling

system for the two examples. The computational com-

2 Constraint-Modeling plexity for the solver used in these experiments is N3

where N is the number of constraints. The times shown

Our underlying approach to constraint modeling is the are for a SPARC 2.
observation that all geometric constraints can be rep-
resented in terms of algebraic equations. A constraint- requirement is that the system of constraints established
model is thus a system of polynomial equations and spe- for the model is consistent with the final building shape.
cific model instances correspond to root of the polyno- The current version of the modeling system is written
mial system. The final solution represents a best least in C++ and the computational performance is charac-
squares fit with respect to both the constraint equations terized in Table 1.
and the projection of corresponding image features. In
several earlier papers we have provided details of the rep- 3 Geometric Invariants
resentation and have shown results on a number of solu-
tion techniques [Nguyen el al., 1990, Nguyen et al., 1991, An invariant is a property of a set of geometric forms
Mundy, 19921. which does not change with viewpoint. Our premise is

The focus of this work over the last year has been the that invariants offer a sound framework for the repre-
application of these techniques to RADIUS sites using sentation of objects leading to efficient recognition algo-
the test data sets developed by ORD. In addition we have rithms. For the past few years we have worked jointly
extended the use of constraints to curved 2D primitives with Oxford University to develop and apply geometric
which has enabled the representation of complex turbine invariants to the problem of object recognition . A joint
blade geometries for automatic visual inspection [Noble workshop between DARPA and ESPRIT, "Applications
and Mundy, 1993]. This application represents a nice in Computer Vision," was held in Reykjavik, Iceland in
instance of dual-use of government-funded technology. April, 1991. The workshop brought together the lead-

ing researchers in invariant theory and applications. A
2.1 RADIUS Site Models collection of the papers from the workshop have been

There is now available imagery to support the analysis published by MIT Press [Mundy and Zisserman, 1992].

and site model construction for two sites, 1) aerial pho- Also in November 1992, a very successful seminar on
tography of Fort Hood and 2) an industrial area mod- invariants was held at Wright Lab under the sponsor-

elboard. We have been applied the constraint model ship of the Target Recognition Technology Branch and
system to the representation of road networks as well as AFOSR. The two day seminar provided a tutorial on in-

3D building geometry. A first example is illustrated at variants presented by J. Mundy and D. Kapur 4 as well
the top of Figure 2 which shows a constraint model of as a session quasi-invariants presented by Tom Binfordr.

an L-shaped building. The seminar was attended by about 30 participants from

The operator roughly sketches the building and se- government labs, ATR contractors and universities.

lects a few correspondences at key vertices as appropri- Below are some of the highlights of our recent results

ate. The constraint system is then solved to maintain in the application of invariants.

the correspondences while at the same time minimizing 3.1 Site Model Registration
the error with respect to the image feature locations. Experiments have been carried out to test the perfor-
The left image in Figure 2 shows the initial model as
sketched. The final solution is shown in the right image. mance of invariants on the RADIUS task of site model
The process assumes the existence of a camera model for regiratine par p tloits sem or buildivea single image of the scene. In this example a camera and affine planar invariants to locate major building fea-
moaiel was e aimag e f groun this p sup- tures in images. After these features are recognized theSw calculated from ground control points full site model can be aligned with the image using stan-
plied with the RADIUS modelboard. dard camera resectioning software.

A second 3D example example is also shown in Fig- First we review the basic invariants used in the exper-
tire 2. Here we constructed some 3D constraint primi- iments.
tives and used them to model a composite structure on
the RADIUS model board. Again, the procedure was
to roughly position the model in the vicinity of the ac-
tual building and then establish a few correspondences
between the vertices of the constraint primitive and the
image. The initial placement of the model primitives 3 The individuals from Oxford University involved in the
can be quite loose. For example one of the primitives collaboration are A. Zisserman, D. Forsyth (now at the Uni-
is about 45* away from the true orientation. Note that versity of Iowa) and C. Rothwell
the primitives do not have to be very close to the final 4State University of New York at Albany
shape and size in order to reach convergence. The only 5Stanford
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Invariant 1: Five Coplanar Lines. A
Given five coplanar homogeneous lines li, i E {1,..,5,. 5),

two projective invariants are defined:

h IM4311IM 5211
Ii M4211IM 5311

__ M42:11M 5321
Ji M4321JM 5211V

where M,,k = (li,lj, lk) and IMI is the determinant of awl,

M. Should any triple of lines become concurrent the
first invariant is undefined. This singular case is common
for polygons where alternate sides are parallel. In these
cases we can only use the second invariant as a shape
descriptor. Using the duality of points and lines the
invariants can also be defined for five coplanar points,
i.e. Mijk = (Pi, pi, Pk)"

Invariant 2: Two Points and Two Lines
A single projective invariant can also be derived from

two points and two lines. The invariant is given by a
ratio of various combinations of the algebraic distance Figure 3: An example of feature matching using a com-
from each point to each line, as follows. bination of invariants. The match was based on features

within the indicated ROI.

12 2 (i- p1)(I"p2)
(1•-p2)(1,. P1) Building 1I 12

11 0.770 0.212Note that each point and line appear the same number 12 0.782 0.208
of times in the numerator and denominator so the pro- 13 0.781 0.221
jective scale factors cancel. 21 0.776 0.236

Experiments 22 0.782 0.240
23 0.782 0.230

An example of the use of feature matching based on
projective invariants is shown in Figure 3. A set of in- Table 2: The value of various invariants for the "L"
variants are used to describe the "L" shaped buildings shaped building in the Fort Hood RADIUS images. The
at Fort Hood. The projective invariants are based on building label Bij refers to building j in image i, so one
lines and points extracted from an edge segmentation can compare the variation in invariants between copies
of the building. Then other buildings of the same type of same building design in the same image and across
in the same image or new images of the site are found images. Only one five-line invariant is available because
by invariant indexing. Table 2 shows the value of typ- three or more of the building edges are typically parallel,
ical invariants of each type within the same image and a degenerate case.
between images. The matches for each building are indi-
cated by overlaying the segmentation edgels of the model
building on each detected instance. In our experiments, 4.1 Invariants for 3D Structures From a Single
building (1,1) was taken as the model. Neither projec- View
tive and affine planar transformations account exactly
for the actual RADIUS image characteristics. However, In general, for a single view, there are no invariants for a
over a small field of view, such as a building, both of generic 3D structure. However, if one makes an assump-
these models provide reasonable indexing power. That tion about the general class of a 3D object it is possible
is, the variance of the invariant keys is small compared to to establish a framework of invariants which can be re-
the difference between invariant values of distinct object liably computed from a single view. Examples under
classes, development are:

4 Basic Research Results Rotational Symmetry
A substantial body of results have been obtained for

GE-CRD, in the context of a number of university collab- this case. It is possible to recover the axis of symme-
orations, has continued to advance the basic foundations try of a rotationally symmetric object from a single view
of object recognition, based on invariants. A key issue and to use distinct points on the axis to compute invari-
in geometric invariant research is the computation of in- ant indices, based on the cross ratio. It is also the case
variants for 3D structures both from a single view and that in a single view, the symmetrically corresponding
multiple views, occluding boundaries are within a plane projectivity of
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each other. This fact enables the construction of a con- [Hartley, 1993b] R. I. Hartley. Estimation of relative
tinuous invariant signature along the boundaries which camera positions for uncalibrated cameras. In Proc.
can be used to refine the axis parameters. This work Second European Conference on Computer Vision,
is described in more detail elsewhere in these proceed- Springer- Verlag, Vol. 588, 1993.
ings [Liu et al., 1993]. [Hartley, 1993c] R. I. Hartley. Invariants of lines in
4.2 Polyhedral Invariants space. In Proc. DARPA Image Understanding Work-

shop, 1993.
It can also be shown that invariants can be constructed [Liu et al., 1993] J. Liu, J. L. Mundy, D. A. Forsyth,
for general polyhedral surfaces where the faces have four A. Zisserman, and C. Rothwell. Efficient recognition of
or more vertices. This work is based on the earlier theory rotationally symmetric surface and straight homoge-
of Sugihara [Sugihara, 1986] which analyzed the degrees nous generalized cylinders. In Proc. DARPA Image
of freedom and correctness of image projections of poly- Understanding Workshop, 1993.
hedra. We have extended his theory to permit the con-
struction of projective invnriants from uncalibrated cam- [Mundy and Committee, 1993a] J. L. Mundy and IE
era views of polyhedral solids [Rothwell et al., 1993]. The Committee. A exchange format for image under-

restriction to polyhedera is not very severe since a poly- standing data. In Proc. DARPA Image Understanding

hedral "cage" can be invariantly constructed around a Workshop, 1993.
curved object surface with vertices established at points [Mundy and Committee, 1993b] J. L. Mundy and IUE
of high curvature. Committee. The image understanding environment

- overview. In Proc. DARPA Image Understanding
4.3 Multiple Views Workshop, 1993.

Recent work has established that invariants can be con- [Mundy and Zisserman, 1992] J.L. Mundy and A. Zis-
structed for arbitrary 3D structures from two or more serman. Geometric Invariance in Computer Vision.
views. This work builds on previous developments by MIT Press, Boston, MA, 1992.
Barrett [Mundy et al., 1992a]. It is possible to recover [Mundy et al., 1992a] J. L. Mundy, P. M. Payton, M. H.
the epipolar structure of multiple image views from fea- Brill, and E. B. Barrett. Three dimensional model
ture correspondences between views in terms of the es- alignment without computing pose. In Proc. 20th
sential matrix, Q. Once this matrix is available, the 3D AIPR Workshop, SPIE Vol. 1628, 1992.
geometry of an object can be constructed up to a pro-
jectivity of space. It is thus natural to describe objects [Mundy ef al., 1992b] J. L. Mundy, R. Welty, L. Quam,
in terms of their 3D projective invariants. For exam- T. Strat, W. Bremner, M. Horwedel, D. Hackett, and

ple, four lines in space define two projective invariants A. Hoogs. The radius common development environ-

and six points define three projective invariants. The ment. In Proc. DARPA Image Understanding Work-

latter case is easy to see, since five points define a pro- shop, 1992.
jective coordinate frame and the three coordinates of the [Mundy, 1992] J. L. Mundy. Image understanding re-
remaining point, in this frame, are invariant, search at ge. In Proc. DARPA Image Understanding

Two invariants can be obtained from two views of a set Workshop, 1992.
of six points, with four points coplanar and two points [Nguyen et al., 19901 V.-D. Nguyen, J. L. Mundy, and
not on the plane. This configuration has been exploited D. Kapur. Modeling polyhedra by constraints. In
to effect a projective transfer of shapes between views Proc. DARPA Image Understanding Workshop, 1990.
without actually constructing the 3D geometry of the [Nguyen el al., 19911 V.-D. Nguyen, J. L. Mundy, and
object [Demey et al., 19921. D. eal. M99ln gen , p e o.jMundy

We have also extended our work on the extraction of D. Kapur. Modeling generic polyhedral objects by
structure from uncalibrated cameras to incorporate line constraints. In Proc. IEEE Con, . on Computer Vision
features. An algorithm has been demonstrated which and Pattern Recognition, 1991.
derives the epipolar structure from line features and a [Noble and Mundy, 1993] J. A. Noble and J. L. Mundy.
minimum of three uncalibrated camera views [Hartley, Constraint processing applied to industrial inspec-
1993a]. In addition, Hartley has shown that two, 3D tion and continuous process improvement. la Proc.
,projective invariants can be extracted from four lines. DARPA Image Understanding Workshop, 1993.
This work enables the recopnition of objects using only [Rothwell et al., 1993] C. Rothwell, D. A. Forsyth,
line features [Hartley, 1993c6. A. Zisserman, and J. L. Mundy. Extracting projec-

tive information from a single view of 3d point sets.
References In Proc. 4rd International Conference on Computer

Vision, 1993.
[Demey et al., 19921 S. Demey, A. Zisserman, and [Sugihara, 1986] Kokichi Sugihara. Machine 9nterpreta-

P. Beardsley. Affine and projective structure from mo- lion of Line Drawings. MIT Pressr1986

tion. In Proc. BMVC92, Springer Verlag, 1992. lion of Line Drawings. MIT Press, 1986.

[Hartley, 1993a] R. I. Hartley. Camera calibration using
line correspondences. In Proc. DARPA Image Under-
standing Workshop, 1993.
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A Conscious Observer: A Coordinated Effort in
Computer Vision*

R. Bajcsy, D. Metaxas, M. Mintz & G. Provan

GRASP Laboratory, Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA

Abstract the sensory fusion process and the statistical
decision theory that the sensory fusion process

According to the American Heritage Dictionary, is based on, while Section 4 shows the prob-
the adjective "conscious" means having aware- lems and issues with representation, i.e., iden-
ness of one's own existence and environment. tifying the most statistically salient features for
In this paper we present some highlights of dif- indexing into an object database to recognize
ferent aspects and/or competencies that a Con- categories of shapes. There are two common
scious Observer must have. It has been said threads running through our various research
many times that some of these competencies projects. One is that since the image fornia-
are less conscious than others, or less context,. tion process is physics-based, it is just conmnion
task, and/or environment specific than others. sense to use physics-based models in order to
We certainly agree with this, and accordingly perform the inverse. The other thread is the re-
our efforts can be categorized into at least two alization that the scenes and the measurements
such cases or processing stages. The first stage that we make are noisy, incomplete and vary
can be characterized as physics-based under- due to environmental effects and hence. coin-
standing of reflectance (described in Section 1) nion sense again dictates that one must use iul-
and physics-based shape and motion modeling tiple sensory measurements and multiple repre-
and estimation (described in Section 2). Dur- sentations. The theory that models these pro-
ing the second stage. we process multisensory cesses in a most appropriate way seems to be
observations and/or multiple features or param- statistical decision theory, which we are apply.-
eters using statistical decision rules that will re- ing.
suit in either physical action (obstacle avoid-
ance, as an example) or mental action. The 1 Physics-Based Preprocessing (R. Ba-
mental action in this case is the indexing stage jcsy)
of recognition of objects. Section 3 describes During the last four years we have been en-

"This research was supported in part by the follow- gaged in understanding of the interactio' of
ing grants and contracts: Navy Grant N00014-92-J-1647. light (illumination) and surfaces. This under-
AFOSR Grants 88-0244. AFOSR 88-0296; Army/DAAL standing. which is based purely on physical
03-89-C-0031PRI; NSF Grants CISE/CDA 88-22719. principles, has led to the development of sev-
IRI 89-06770. and ASC 91 0813: NSF CISE/CDA-90- eral algorithms that enable us to identify. locate
2253. NSF MSS-91-57156. NATO Grant No. (1224/8.5.
Barrett Technology Inc.. A.I. duPont Institute and Du and remove, if desirable. highlights, interreflec-
Pont ('orporation tions. shading and shadows JFunka-Lea. 1992:
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Bajcsy et al.. 1990: Lee and Bajcsy. 1992: vironment. Let I represent the light measured
Lee. 1991]. by the camera from one point of view. Coeffi-

The motivation for this work comes from the hy- cient 0 from interval [0, 1] indicates the amount

pothesis that highlights, interreflections, shad- of obstruction, where 3 = 0 corresponds to the

ing and shadows often create artifacts in parti- umbra of the shadow. The value 3 = I corre-

tioning of the scene that do not correspond to sponds to the surface directly lit. The images

the true physical reality, and hence it is desir- values I of the surface in and out of shadow are

able to remove them prior to segmentation of proportional to the linear relationship:

the scene. The difficulty lies in the fact that
the imaging sensor measures an integral of all I '; + E.
the above components. The research question
is: what principled constraints and/or other This relationship in turn is used to recover a sin-
measurements can one bring to bear in order gle surface directly lit and in shadow as a single
to be able to separate the components? Of image region. It is also used as an aid in iden-
course we are not the only group addressing tifying the umbra and penumbra of a shadow.
this problem; currently there is a whole comnnmu- However, this equation will not help with dis-
nity working in this area [Boult and Wolff. 1991: crimination between shadow penumbra and/or
Gershon et al.. 1986: Ilealev and Binford, 1989; shading. It also mnay not apply for multiple light
Klinker et al.. 1990: Navar el al.. 1991: Shafer. sou rces and varied alhedos. For these cases, one
1985]. needs more constraints! The additional con-

At the last Image Understanding workshop [Ba- straints come from: (i) using a shadow casting

jcsy, 1992] we reported the results describing probe; (ii) using spatial segmentation based on
identification of highlights from metallic objects some homogeneity criterion: (iii) using geomet-

idenifiatio ofhighigh~s rom etalic bjets ic constraints on where shadows can be cast: or

and surfaces with varied albedo. In this section

we shall concentrate on understanding shadows. (iv) using active light cast into the scene. We

Shadows result from the obstruction of light enumerate the differeit, cases in Table I below.

from a source of illumination. As such, shadows For brevity. we demonstrate our results on
have two components: one spectral and one geo- one example that uses color image segment a-
metric. The spectral nature of a shadow derives tion. This algorithm is based on three ideas:
from the characteristics of the light illuminating (i) using line-like color models to take into
the shadow as compared to the additional light account shadow candidate regions: (ii) dove-
that would illuminate the same area if there was tailing the processing between color-space and
no obstruction. Hence. shadows reveal them- image-space; and (iii) looking for the best de-
selves as a spectral change in radiance due to a scription of an image in terms of primitive mood-
change in the local irradiance. The geometry of els via region segmentation. The region grow-
a shadow is determined by the nature of the il- ing process recovers uniform or linear functions
lumination obstruction and the scene geoinetry. in color space. Region growing is initiated from
A light source maY lIe onlyv partiallv obstrmuced. see(d regions found from thle highest peaks in I lie
In fact. for any uion-poiiit light source. lie outer color histogram, or if no peaks are found, based
portion of a shadow results from tlihe partial oh- oil laying a grid of small regions on the image.
struction of the light source. This is the penuin- The result of this process is shown in Figure I.
bra of the shadow, while the umnbra is the part 2 A Physics-Based Framework for
of the shadow where the light is completely ob- Shape and Nonrigid Motion Estimation
structed. (D. Metaxas)

First, we shall introduce our model of shadows
without other reflectance effects. Let D be the
amount of energy from the illumination source. In the past couple of years we have dealt wit h
measured at a given surface and let E be the in- tihe robust and efficient estinmatiou of shape and
tegral of all other illimination sol'rces in t!he en- nonrigid motion and addressed several related
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Identifying Shadows

lo.-.

Figuirt, 1: Top Left: Ali image of a roadl directly lit and inl shiadow con rtesY of the (a rnegie Me'lloni
Na viabl) uo ject . Top Right: A gra ' scale labeling of the uii bra aliid pein iinbra of the s liadow..s onl
tlie roadi as recoveredi by onur color iiiiage segment at ion for shiadows. Shiadow tiinbra is inid icatIedl
bv dark gray. pennitbra by lighti gray, and thie road direct lv lit bY whiite. Bottom: 'Thle ftill) color
iiiiage segnmentat ion of thle original imiiage ai med at recoverinig single mat erialIs direct *Iv lit a nd ill
sliadlow as single image regions. Thie di fferent regions are iindicated b~y di fferenit. suggest ive co~lor".
Black indticates t hat 1n0 region was foun d at t hat Imiiage lImsitjion.
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Table 1: Shadow Case Study. The columns indicate lighting conditions under which shadows may
be cast. The rows indicate material properties within the scene and whether or not shadows include
an umbra. A 'y' indicates that the case can be handled, while an 'n' indicates that the case cannot
be handled in general by our system. The label Multiple Albedos indicates distinct constant albedos,
while the label Varying Albedos indicates smoothly varying albedos and material properties. The
column in which an observer's environment falls can be determined by examining a shadow actively
cast by the observer.
* For this case, the umbra alone is represented as a linear color cluster, as opposed to the other
cases our system can handle, where a single material both in and out of shadow is represented by
a linear color cluster.

Shadows
Material Umbra & 1 Light 2 Light j More Than 2
Changes Penumbral None Source Sources Light Sources
One U& P y y y, n
Albedo P y y n n
Multiple U & P y y n n1
Albedos P y y n it
Varying U & P n n n n
Albedos P 1 n n n

difficult problems. We have consequently devel- and local deformations. Our primitives include
oped a physics-based framework for 3D shape global deformation parameters which represent
and nonrigid motion modeling which includes: the salient shape features of natural parts and
(i) a, new class of dynamic deforniable prim- local deformation parameters which capt ure
itives which combine global and local defor- shape details. More specifically, we have devel-
mation parameters; (ii) a systematic approach oped hybrid models whose underlying geometric
based on Lagrangian dynamics and the finite el- structure allows the combination of paraniet-
ement method to convert the geometric param- ric models (superquadrics. spheres. cylinders).
eters of the primitives to dynamic degrees of parameterized global deformations (bends. ta-
freedom: (iii) the development of physics-based pers, twists. shears, etc.) and local spline free-
constraints between these deforniable primi- form deformations. In this way. the descrip-
tives that may be used to track the motions tive power of our models is a superset of the
of complex articulated objects; (iv) a recur- descriptive power of locally deformable models
sive technique for estimating shape and non- [Terzopoulos and Wit kin. 19881 and globally de-
rigid motion from noise corrupted data based formable models [Pentland and llorowitz. 1991:
on applying Kalman filtering theory to our dy- \Vitkin and Welch. 19901. An important bene-
namic models: and (v) new applications to vi- fit of the global/local descriptive power of these
sual estimation. In what follows we elaborate models is that it can potentially satisfy the often
on each of tle above technical coiitributions. conflicting requiremenls of shape recoinstruction
which have also been reported in ['l'erzopow- and shape recognition. The local degrees of fre,-
los and Metaxas. 1990: Metaxas and Terzopou- dori ofdeformahle models allow the reconstruc-
los. 1991a: Metaxas and Terzopoulos. 19911: tion of fine scale structure and the natural ir-
Metaxas and Terzopoulos. 19931. regularities of real world data. while the global
2.2 New Deformable Primitives degrees of freedom cal)ture the salient features

of shape that are innate to natural parts andWe have created a new family of modeling alppropriate for matching against object prolo-
primitives by (develop)ing a niathem aticalI al) y~s

I)roach that allows the ('co lbilnatiol of global A

108



2.3 Systematic Formulation of Dynamic )ie, stiff springs leads to instability. hli our ap-
Primitives proach [Metaxas, 19921. we compute the con-

Through the application of Lagrangian mechan- straint forces using a stabilized Lagrange uiil-

ics. we have developed a method to systemat- tiplier tecbnique [Baumgarte, 1972].

ically convert the geometric parameters of the 2.5 Recursive Estimation
solid primitive, the global (parameterized) and Weals have e
local (free-form) deformation parameters, and motion t cpaoitithe onrai oed iiithe ix egres f fredo ofrig~l-lo~l moion order sy'nthesis capabilities of our models inth e six d eg rees o f freed o m o f rig id -b o d y m o tio n or e t o s i m e sh p a d t o i f o m i -odrto estimate shape and inotloll from ini-
into generalized coordinates or dynamic degrees complete. noisy observations available sequen-
of freedom. More precisely, our method applies tially over time. Applying continuous no,-
generally across all well-posed geometric prim- linear Kalman filtering theory [Metaxas and
itives and deformations. so long as their equa- Terzopoulos. 19911); Metaxas and Terzopoulos.
tions are differentiable. The resulting Lagrange 1993p, we have constructed a powerful new re-
equations of motion which describe the dynamic cursive estimator which employs the Lagrangecursiveoestmatorr modelemploysehetLagrang
behavior of our models take the form equations of 3D nonrigid motion as a systemn

M4j + D4 + Kq = gq + fq, model. We interpret the Kalman filter phys-
ica.lly: the system model continually synthe-

where M. D. and K are the mass. damping. and sizes nonrigid motions in response to generalized
stiffness matrices, respectively, where gq are iii- forces that arise from inconsistencies between
ertial forces arising from the dynamic coupling its state variables and the incoming observa-
between the local and global degrees of freedom. tions. The observation forces account formally
anti where fq(u, t) are the generalized external for instantaneous uncertainties in the data. A
forces (computed from the forces that the data Riccati procedure updates an error covariance
exert on the model) associated with the degrees matrix which transforms the forces in accor-
of freedom q of the model. dance with the system dynamics and the prior

ob~serva~tion history. The transformed forces in-
The distinguishing feature of our approach is

that it combines the p)arameterized and free- dice chaiges in tli tramislational. rotatioiil.

form modeling paradigms withiii a single physi- and (leformational state variables of the systeiii

cal model. Thus our models exlhibit correct iie- model to reduce tle inconsistencies. Thus the

chanical behaviors and their various geometric systemi model synthesizes nonstationarY shape

parameters assume well-defined physical iean- and motion estimates in response to the visual

ings in relation to prescribed mass distributions. data.

elasticities, and energy dissipation rates. Fur- 2.6 Experiments
thermore. motivated by the requirements of real The following experiments demonstrate the ap-
time vision applications we appropriately sim- llication of the above described tedhniques to
plify the models and use simple numerical inte- various data. Fig. 2 illustrates the fitting of agration techniques to achieve real time or near deformable superquadric to a monocular image
real time siimilation rates on available graphics of a pestle Fig. 2(a). The image is converted
work stat ioins. o eteFg () h mg ovre

into a force field that acts on the model. de-
2.4 Physics-Based Constraints foriiing it such that it becomes consistent with

To deal with constrained multipart objects the occluding boundary of the pestle in the hi-

such as articulated anthropomorphic bodies, we age. Fig. 2(b) shows the initial state of the
htdeformable superquadric displayed in wireframehave developed an efficient. technique to imlple-

ment hard point-to-point constraints between projected onto the image. Fig. 2(c) shows an in-

deformable primitives. These constraints are teinediate step in the fitting process as the im-

never violated, regardless of the magnitude of age forces are deforming the model and Fig. 2(d)

the forces experieniced b)y the parts. .Attemt- shows the final reconstructed model.

ing to al)proximate such constraiiits withi sire- The following two experiments (lemonstrate the
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performance of our recursive shape and mo-
tion estimator. In the first experiment the esti-

mator incorporates constrained deformable su-
perquadrics as Kalman filter system models.
The figure illustrates a model composed of five
connected deformable superquadrics. The esti-

mator is applied to biomechanical data collected
by 3D position sensors applied to the arms of a
human subject. Fig. 3(a) shows a view of the 3D
data and the initial models. Fig. 3(b) shows an
intermediate step of the fitting process driven
by data forces from the first frame of the data ".. -'

sequence, while Figs. 3(c) and (d) show differ- 7

ent views of the models fitted to the initial data.
Figs. 3(e) and (f) show intermediate frames of
the models tracking the nonrigid motion of the .-
subject's flexing arms, while Figs. 3(g) and (h)
show two views of the final position of the mod-
els.

In Fig. 4 we add uniform noise. by perturbing by

±5% (with randomly chosen sign) the noiseless
value of the 123 motion range data point and
we fit a deformable superquadric with 81 nodes. "

Figs. 4 (a) and (b) show two views of the range
data and the initial model. Fig. 4(c) shows an
intermediate step of the fitting process driven by
data forces from the first frame of the motion
sequence. Figs. 4(d) and (e) show the model fit-
ted to the initial data, with visible tapering and
bending global deformations. Fig. 4(f) shows an
intermediate frame of the model tracking the
nonrigid motion of the squash, while Figs. 4 (g)
and (Ih) show the final position of the squash.

3 Multisensor Fusion (M. Mintz)

3.1 Introduction

The successful design and operation of aui-
tonomous or partially autonomous agents which Figure 4: Tracking of fully (eformable squash
are capable of traversing uncertain terrains re- shaped object with noise.
quires the application of multiple sensors for
tasks such as: reconnaissance, surveillance, and
target acquisition and/or manipulation. It ap-
plications which include a teleoperation mode,
there remains a serious need for local data re-
duction and decision-making to avoid the costly
or impractical transmission of vast quantities of
sensory data to a remote operator. There are
several reasons to include multisensor fusion iin
a system design: (i) it allows tie designer to
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combine intrinsicailI( dissimilar data from sev- the dynainic range of the sensor.
eral sensors to infer sonie property or properties 3.4 Approach
of the environment, which no single sensor could
otherwise obtain: and (ii) it allows the system Our approach to sensor fusion employs statisti-

designer to build a robust system by using par- cal decision theory to obtain: (i) a robust test

tially redundant sources of noisy or otherwise of the hypothesis that data from different sen-

uncertain information. sors are consistent: and (ii) a robust procedure

for combining the data that pass this prelimi-
3.2 Sensor Fusion Research Issues nary consistency test. Here. robustness refers to

The following task-related issues arise in the the statistical effectiveness of the decision rules

design and operation of autonomous systems when the probability distributions of the obser-

which employ multiple sensors: (i) the value of vation noise and the a priori position informa-

a sensor suite; (ii) the layout, positioning, and tion associated with the individual sensors are

control of sensors (as agents); (iii) the marginal uncertain.

value of sensor information; the value of sensing- We have developed a coherent decision-theoretic
time versus some measure of error reduction, approach to robust inultisensor fusion which
e.g.. statistical efficiency: (iv) the role of sen- provides the means to compute hard probabilis-
sor models, as well as a) priori models of the tic confidence measures of data consistency and
environment: and (v) the calculus or calculi robustly combine consistent sensor data [Kam-
by which consistent sensor (data are deterinined berova and Mintz. 1990: .McKendall and Mintz.
and combined. 19921. Our approach allows the system designer

3.3 Technical Rationale to explicitly incorporate a priori information

in the form of geometric constraints, and also
An important role for active sensing is the make use of set-valued uncertainty class models
surveillance and sensory exploration of environ- which capture the noise behaviors of the vari-
ments that are characterized by significant a ous sensors. This work is particularly impor-
priori uncertainties. In addition to uncertainty tant because: (i) it allows the system designer
in the environment, the sensors themselves ex- to incorporate geometric constraints or infor-
hibit noisy behavior. While good engineering mation about the features or parameters of in-
practice can reduce certain noise components. terest without requiring generally insupportable
it is impractical if not impossible to eliminate assumptions about a priori probabilities. e.g..
them completely. Thus. all sensor measure- the uniform distribution on the set: (ii) it al-
ments are uncertain. However, sensor errors lows the system designer to incorporate realistic
can be modeled statistically. using both phys- sensor noise behavior in the analysis without re-
ical theory and empirical data.. In developing quiring the very often insupportable "Gaussian
these models, one recognizes that a single dis- hypotheses": and (iii) the sensor noise distri-
tribution is usually an inadequate description bution may vbe an element of a nonparametric
of sensor noise behavior. It is much more re- set of distributions which are asymmetric. niul-
alistic and imuch safer to identifNv an envelope timodal. heavy-tailed, and generally nronminno-
or class of (list ribut ions, one of whos, iiiein hers tone likelihood ratio.
could rep~resenit the acit al StltistiCl Ieliavior Because our methodology ea-sily allows for the
of the given sensor. Thmis use of a, iiunicert ain tvof he ive snso. Tis ls of'11 111crtant v accurate incorporation of geometric constrtaints.
class (or equivalently an envelope, set. or neigh-
borhood ) in (list ribtitioli space 1)101 ('ct the s- v, are conse(quentlv able to address sensor fu-

teni user against the inevitable unpredictable sion tasks in which both wide and narrow field-

changes that occur in sensor behavior. Reasons of-view sensors are employed. Specifically, we

for uncertainty in statistical sensor models in- can make robust confidence set-based tests for

lude: sporadic interference, drift (due to aging. correspondence between features at coarse and
fine scales.

temperature variations. imiscalibration. quanti-
zation, and other significant ionlinearities over 3.5 Current and Related Research
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We have studied the theory and applica- shown, through tinumerous examples of these ap-
tion of robust fixed-size confidence intervals plications. that the risks of the approximating
as a methodology foi robust multisensor fu- procedures are within 0.5% of optimal. These
sion. This work has been delineated in [Kam- approximation techniques have been reported in
berova and Mintz, 1990] and [McKendall and [Kamberova et al., 19921.
Mintz, 1992]. Currently, we are implement- Further, we generalize these previous decision-
ing a DARPA-funded multiagent hard%%are- theoretic results in two important directions:
software testbed for studying multisensor fu-
sion, and multiagent communication and coop-
eration [Bajcsy et al., 1992]. This testbed is size confidence intervals for restricted location

based on: (i) mobile robotic agents with utl- parameters for sampling distributions which do

tiple sensors and manipulatory capability: and not posses3 monotone likelihood ratio. Exam-

(ii) mobile observer (sensory) agents. pies of this sort of distribution are the Cauchy
distribution, and Gaussian distributions with

Our sensor fusion studies focused initially on heavy-tailed contamination. We derive a class
confidence intervals as opposed to the more gen- of nonmonotone almost equalizer rules for this
eral paradigm of confidence sets. The basic dis- decision problem. We establish that rules in this
tinction here is between fusing data character- class achieve near-minimax risk. In particular.
ized by an uncertain scalar parameter versus in the case of the C(auchy sampling distribution
fusing data characterized by an uncertain vec- we show, by example. that the risk is within
tor parameter, of known dimension. While the 0.3% of optimal. We also establish that very
confidence set paradigm is more widely applica- general shift and scale mixtures of Gaussian dis-
ble, we initially chose to address the confidence tributions have optimal procedures with a very
interval paradigm, since we were simultaneously simple monotone form. Since these Gaussian
interested in addressing the issues of: (i) robust- mixtures are generally not monotone likelihood
ness to nonparametric uncertainty in the sam- ratio, this suggests that a critical factor which
pling distribution: and (ii) decision procedures determines the need to consider ntononiototone
for small sample sizes. Our research on opti- rules is the tail-behavior of the sampling dis-
mal and robust fixed-size confidence intervals tribution. We obtain results which delineate
has appeared in [Zeytinoglu and Mintz, 1984; this connection. These results [Kamberova
Zeytinoglu and Mintz. 19,SA]. and Mintz, 1993] extend the work ont mono-

We have also investigated the multivariate (con- tone procedures [Zeytinoglu and Mintz. 19-S-:

fidence set) paradigm. The delineation of op- Zeytinoglu and Mintz, 1988].

timal confidence sets with fixed geometry is a (2) We obtain minimax rules for restricted lo-
very challenging problem when: (i) the a priori cation parameters under symmetric multilevel
knowledge of the uncertain parameter vector is bowl-shaped loss for symmetric sampling distri-
not modeled by a Cartesian product of inter- butions with monotone likelihood ratio. Multi-
vals (a hyper-rectangle); and/or (ii) the noise level bowl-shaped loss functions are obtained by
components in the multivariate observations are a convex combination of n zero-one loss func-
not statistically independent. Although it may tions with given width parameters. Sufficient
be difficult to obtain optimal fixed-geometry conditions for minimax Bayes rules are derived.
confidence sets. we have obtained some very These conditions are easy to check numnericallv.
promising approximation techniques. These ap- The mininitax rules possess the following struc-
proximation techniques provide: (i) statisti- ture: the rules are continuous (or piecewise-
cally efficient fixed-size hyper-rectangular con- continuous), piecewise-linear functions with al-
fidence sets for decision models with hyper- ternatiig segments of zero and unit slope.
ellipsoidal parameter sets; and (ii) tight upper These rules are simple to compute numerically.
and lower bounds to the optimal confidence co- Further. we show: (i) how to approximate arhi-
efficients in the presence of both Gaussian and trary symmetric bowl-shaped loss functions us-
non-(Gaussian sampling (list ril)1tions. We have i g muiltilevel appproximants: and (ii) how to
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obtain accurate approximations to the mini- The most salient sub-vector m' is used as
max rules for decision problems with symmetric a smaller-dimension initial index into the
bowl-shaped loss functions and restricted pa- database during object recognition. This im-
rameter spaces. An outcome of this approxi- proves upon the ad hoc nature of the fea-
ination study is the result that the minimum ture/parameter vectors used in most recogni-
Fisher information prior (cos2 ) defines a bound- tion systems.
ing envelope for the least favorable prior distri- Additional benefits of reduced-dimensionality
butions when the scale parameter of the sam- vectors include greater recognition robustness
pling distribution tends to zero. These results (since many elements of the vector are often just
[Kennedy and Mintz, 1993] extend the work ..noise", and the remaining elements have more
on zero-one loss [Zeytinoglu and Mintz, 1984; accurate estimated mean and covariance mai-
Zeytinogin and Mintz, 19~8], and on the role of ces used in classification), faster search (fewer
the minimum Fisher information prior [Bickel. variables to match/search), smaller databases.
1981]. and more efficient overall object recognition.

4 Object Recognition (G. Provan) 4.3 The Recognition Stage

4.1 Introduction We start with range data from a single rigid
multi-part object. We are currently using the

Over the past year work has been done in gen- segmentation algorithms developed by Solina
era[izing existing object recognition capabili- and Gupta, although we hope to incorporate the
ties, building upon previous work done in the alternative techniques developed by Metaxas
GRASP Lab on recovering superquadric rep- [Metaxas. 1992]. Once an initial superquadric
resentations for multi-part objects from dense fit has been done, each of the superquadric
range data [Solina, 1987; Gupta and Bajcsy, parts recovered from the input is paired with
1990]. The primary contributions are princi- the best matching prototypical part class using
pled solutions to the difficult problems of su- precomputed class statistics. The indexing keys
perquadric part classification and model index- used are the most distinguishing parameters or
ing, and object class recognition. This project parameter-clusters.
cousists of two stages: (i) object database cre- This matching process produces a probabilityation, and (fit)recognition. Ti acigpoespoue rbblt

associated with the data/miodel compatibility

4.2 Object Database Creation for a set of object subparts. A formal evidential

Each object, is represent~edl as aset of - aapproach is then used to compute the lprobabil-

perquadric parts, and each sui)erqua(lric parti ity of this collection of subparts being a mulli-

turn is represented by a superquadric paranme- part object.

ter vector m. Inl creating an object (latabase. This feature-selection approach to indexing hastervecora ing a objet dartae. been tested on a domain of simple concave
first, we cluster together similakitchen utensils (e.g. bowls, cups. pots. etc.).
to create a reasonable number of prototypical Linear and quadratic classifiers were trained
part classes. Second, we statistically analyze and tested on a collection of 64 representative
the parameter-sets to identify the statistically obdets a n a s et iof 3 6e weresentifie
most significant subset of parameters m' which objects and a set of 3 parameters were identified
distinguish objects (or object classes) fromne as accounting for 98W of the variance, a signifi-

another. This is achieved by selecting a small cant reduction in the dimensionality of the fea-

but highly diagnostic subset of the parameters ture space. These three parameters were then
or by combining the original oIarameters to uviel Used for indexing using dense range data from

a small number of new, more diagnostic fea- representative domain objects.

tures, such as height-to-width ratio, squareness, Future work involves a full implementation of
etc. For any given domain. such distinguishing the subpart evidential combination scheme, and
keys may be computed using statistical tech- active vision routines to cope with poor segmen-
niques such as )rincipal components analysis. tations or low match probability. If recognition
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IU` AT UI: AN OVERVIEW OF RESEARCH DURING 1991-92

Narendra Ahuja and Thomas Huang
Beckman Institute and Coordinated Science Laboratory
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Abstract of 3D analysis for perceptually realistic synthesis. The
fourth area (Sec. 5) is concerned with different compo-

This paper presents an overview of the research in nents of an evolving 3D representation and navigation
image understanding (IU) at the University of llli- system which has the goal of autonomously acquiring,
nois (UI) conducted during 1991-92. During this maintaining and using 3D information about the envi-
period, our work has been in five areas: integra- ronment. We have begun work in the area of learning
tion for three-dimensional vision, motion analysis, object recognition strategies (Sec. 6). The goal here is
analysis guided synthesis, representation and navi- to learn to automatically perform extraction and recog-
gation, and learning and recognition. Work in each nition of a class of objects from examples of such recog-
of these areas is reviewed. nition. Representative projects in each of these areas

are summarized in the following sections. To keep the

1 Introduction paper brief, we have minimized discussion of and refer-
ences to relevant work done by others. Such discussion

We review here the research progress we have made and references are available in the cited and other listed
since (33]. This includes the progress (Secs. 2-5) on publications.
previously ongoing projects in the four areas reported
in [33], as well as work in a new area (Sec. 6). The first 2 Integration
area (Sec. 2) is concerned with integration of multiple
image cues in performing image interpretation. These Our goal in this area is to perform image interpreta-
cues capture different aspects of the three-dimensional tion such that the interpretation simultaneously satis-
(3D) scene structure, and their integrated analysis leads fies a range of constraints imposed by the image struc-
to a more robust inference about the scene character- ture and the model of the scene. To do this, we use
istics than possible from individual cues. The second different computational processes each of which carries
area (Sec. 3) reports our work on interpretation of im- complementary or redundant information derived from
age sequences showing dynamic scenes. Here we con- different image cues. Image interpretation is the result
sider the problems of detecting feature correspondences of a cooperative computation that resolves conflicts and
and estimating the 3D motion parameters and surface ambiguities arising from the individual processes. We
structure from feature correspondences, in a sequence of have presented several examples of the integration ap-
images showing motion which is rigid or nonrigid, and proach in previous IU workshops [31, 32, 33]. Here we
motion specific or relatively general. The third area summarize some recent work on integration.
(Sec. 4) is concerned with analysis guided synthesis of
scenes which we introduced in [33, 24]. Here the goal is 2.1 Integrated Active Stereo
to synthesize images for depiction of 3D characteristics The goal of our continuing work on active stereo is sur-
of the scene, using attributes recovered during inter- face estimation from stereo images of large scenes having
pretation or artificial attributes. The use of image at- large depth ranges, where it is necessary to aim cameras
tributes identified during 3D recovery takes advantage in different directions to fixate at different objects and

to construct the global surface map of the scene from
*Parts of this research were supported by the Defense Ad- small patches. The first stage of this work involves sur-

vanced Research Projects Agency and the National Science face reconstruction of a single object, having no depth
Foundation grant IRI-8902728, National Science Foundation
under grant IRI-89-08255 Army Research Office Advanced discontinuities. It performs integration of camera ver-
Construction Technology Center under grant DAAL 03-87- gence, focus, aperture, stereo and calibration processes.
K-0006, Joint Services Electronics Program under grant The second stage allows scenes containing arbitrarily
N00014-90-J-1270, and the State of Illinois Department of placed and arbitrary size objects. In this stage, a part
Commerce and Community Affairs under grant 90-103. of the visual field that has not yet been fixated but
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has appeared as the peripheral visual field, helps deter- ation, integrate the information from multiple cues. We
mine the next fixation point and provides coarse (inac- have now developed a new approach which integrates
curate) structural information, to be refined following panning, focusing, and range estimation. To experiment
future fixations. Details of these stages can be found in with this, we have developed a novel camera system
[31, 32, 33, 1] and the references cited therein. We have whose image plane tilt with respect to the optical axis
now started a study to analytically compare the per- is controllable, and the two common mechanical opera-
formances of the bimncular cues of stereo and vergence, tions of focusing and panning are replaced by panning
and the monocular cue of focus for estimating scene sur- alone. Consequently, range estimation takes place at the
faces [2]. For ease of analysis, this is done by considering speed of panning. Thus, imaging geometry and optics
the estimation of range of a scene point, thus exclud- are exploited to eliminate explicit sequential computa-
ing the changes in the range values that would result tion. Since the camera implements a range from focus
from the use of surface smoothness constraint during approach, the resulting estimates have the advantages
surface fitting. The performance of the individual cues and disadvantages of any such approach. For details of
is evaluated as a function of errors in their respective this work, see [3] in these proceedings.
parameters. Two types of errors, called systematic and
random errors, are identified for each of the range es- 2.3 Integrating Shape Estimation from
timation methods. The effects of random, quantization Stereo and Shading
errors are expressed in terms of the mean and variance We have developed an approach to the integration of
of the resulting depth error. Analytical expressions for shape inform an prov ch to th thationo-
the effects of systematic, calibration errors on estima- shape information provided by stereo with that pro-
tion using each cue are also obtained. Further, we have vided by shading for estimating surface maps [4]. Such
developed a simplified approach to modeling the spatial integration is facilitated by the use of color images which
quantization error in axial stereo vision systems with are more easily segmented than gray level images. The
rectangular pixel geometry [56]. The need for simplifi- integrated system is able to accurately obtain depth es-
cation arises due to the lack of symmetry and spatial in- timates under a wider range of conditions than either
variance of the image disparity. Numerical simulations stereo alone or shape from shading alone. Specifically,
show that the modeling accuracy is adequate for prac- integrating stereo and shape from shading has several
tical purposes, and points to the underlying complexity advantages. Stereo algorithms cannot accurately deter-
of the true error distributions. Such performance evalu- mine depth for large featureless regions. Errors in sur-
ation of the individual cues is useful for identifying the face shap a loal larg t endently tis-imaingparmetrswhose control would be most effec- tributed so that global errors tend to be no larger than
imaging parameters whe control and bos dec- local errors. On the other hand, shape from shading
tive in improving the range estimate, and for devising tends to be locally accurate but can cause large globalstrategies to integrate the use of the cues in order to tedtoblcayacuteutancsearegbl
combine their strengths and to overcome their individ- errors, especially if the boundary conditions are not wellual limitations, known. In an integrated system, shape from shadingWe have made further progress [57, 58] on the multi- can use small features that would not be resolved by

c en blvemadefurthri (MCrodrese[57,58]onthed mutin [ a stereo system. At the same time, stereo can providecomponent blurring (MCB) model presented in [33c. initial conditions, boundary conditions and stability toUnlikethe iterative solution process used in shape from shad-
ture emergent image details that occur due to depth- itecanialso prov e the in shate f thad-
discontinuities in the scene. It also means that MCB ing. It can also provide the initial estimate of the deptheffects do not obey the maximum principle in scale- map which is required for estimating the light source

effets o nt oby te mximu prncile i scle- direction. We have developed an approach to estima-space, and thus blurring can create spurious details. We tion of the light source distribution to facilitate better
have simulated Pentland's depth-from-blur algorithm in int epretation of l ht ,oanditreb y more better
normal and MCB blurring cases (MCB cases are not interpf shading, and thereby more robust in-
tractable by Pentland's method). Previously we had tegration of stereo and shading [5]. Shape from shad-

suggested that human perception of blur and depth ing algorithms are limited in their applicability by the

could be enhanced by the presence of MCB effects. assumption of overly simplistic models of the complex

We now have more supporting data from independent light source distributions that occur in the real world.

psychophysical studies concerning an interesting phe- We have obtained a more complete representation in

nomenon in human blur perception that has some cor- which the lighting model makes use of multiple fixed

relation to the MCB effects. We have done extensive point sources located at infinity. Methods of estimat-

experiments on the MCB effects in real images. ing the model parameters are developed and a method
of estimating the surface shape given the source distri-

2.2 Integrating Camera Panning and bution is presented. The shape estimation algorithm

Depth from Focus using a Novel using multiple sources is based on a new, single source

Camera algorithm which is an improvement over existing shape
from shading algorithms. The source distribution al-

In integrated active stereo, the cameras must scan large gorithm and the generalized algorithm for shape from
visual fields by fixating different parts, and at each fix- shading and stereo have been applied to images of real
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and artificial scenes. gions at mutiple scales. We have considered the applica-
tion of the transform to detecting edge structure. The

2.4 Integrating Target Tracking and transform is motivated by the observation that linear
Coarse-to-fine Surface Estimation processing based approaches, such as convolution and

We have begun to investigate the problem of tracking matching, have the fundamental deficiency of using a
a target object in a complex visual environment un- priori models of edge geometry. The proposed transform
der binocular viewing, and simultaneously generating avoids this limitation by letting the structure "emerge,"
an evolving surface map [7, 8]. A corner feature detec- bottom-up, from interactions among pixels, in analogy
tor is applied to each image to locate point features. To with statistical mechanics and particle physics. The
initiate the tracking process, we use correlation across transform involves global computations on pairs of pix-
stereo images to match the feature points both in space els followed by vector integration of the results, rather
and in time, thus producing partial 3D trajectories with- than the commonly used scalar, local, linear process-
out prior knowledge of target motion. The unknown ing. An attraction force field is computed over the im-
object motion is assumed to be piecewise smooth. To age. Pixels belonging to the same region are mutually
capture such object motion, we use the Autoregressive attracted whereas those across edges repel each other.
Moving Average (ARMA) model to fit the 3D motion Scale is an integral parameter of the force computation.
trajectory. The ARMA model is initialized by each par- The resulting groupings of pixels represent multiscale
tial 3D trajectory obtained, and then the model is used image structure. The properties desired in multiscale
to extend the trajectory to predict future image plane edge detection are given, and it is theoretically and ex-
positions of feature points. The stereo correspondences perimentally shown that the transform possesses these
between feature points are established by comparing the properties. Along with their contours, the transform
predicted and the actual image locations of the feature also extracts skeletons of mutiscale regions. Prelimi-
points. The 3D positions of the feature point. -.,i com- nary experimental results with synthetic and real im-
puted from their image plane location he trae~jctories ages demonstrate the above properties of the transform.
are extended, the ARMA models are -ted, and the Details of this work are given in a separate paper in
camera configurations are modified to a.. ieve tracking. these proceedings [9]. Our recent work on integration
The surface maps of the target object and the back- of Gestalt constraints for dot pattern grouping can be
ground are constructed by fitting the 3D feature points found in [28].
with smooth surface patches. Since the target object is
maintained in fixation, the accuracy of the environment
range map depends on the location of the target rela- 2.6 Computational Models of Integration
tive to other surfaces. This yields target tracking and
simultaneous generation of surface map.

This as well as our integrated active stereo algorithms One formalism for modeling the process of integration
[31, 32, 33] have been implemented on the University using dynamical systems is presented in [30, 10]. Ac-
of Illinois Active Vision System described in [6]. The cording to this model, visual processing is performed
system employs two high-resolution cameras for image in parallel at each location in an image by multiple,
acquisition and is capable of automatically directing relatively simple dynamical systems. Multiple vision
movements of the cameras so that camera positioning computations are unified by many interacting dynam-
and image acquisition are tightly coupled with visual ical systems. For example, features may be identified
processing. The system was designed and developed in with limit sets of a multi-attractor system. The position
1987 as a research tool, largely based on off-the-shelf of the feature can be obtained by mapping the profile
components. A central workstation controls imaging of, say, the Laplacian-of-Gaussian of the image onto a
parameters, which include five degrees of freedom for limit cycle attractor where phase along the limit cycle
camera positioning (tilt, pan, translation, and indepen- corresponds to relative image position. Similarly, veloc-
dent vergence) and six degrees of freedom for the control ity information can be recovered by mapping the tem-
of two motorized lenses (focus, aperture, and zoom). In poral derivative of the Laplacian-of-Gaussian operator
[6], we have described the hardware of the system, the onto a different component of the dynamics. The design
imaging model, the calibration method employed and and analysis of a three-dimensional nonlinear dynami-
some of the system software. A second version of this cal system, in which the position and motion profiles of
system has recently been constructed and placed on an an intensitv edge are mapped onto a two-dimensional
autonomous vehicle. submanifold of the model dynamics, are discussed in

2.5 Integrating Region and Border [10]. This demonstrates a simple form of integration
by embedding two inputs within a single system. An

Extraction for Image Structure array of such dynamical systems can be used for de-
Detection tecting spatio-temporal trajectories in the image where

We have begun work on developing a new transform the analog nature of the dynamical systems ensures real
to extract the edge contours and skeletons of image re- time performance.
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3 Motion Analysis tection of correspondences, segmentation, and motion

The long-range goal of our research in this area is and structure estimation.
the understanding of dynamic scenes. We have made We have developed sufficient conditions for double or
progress in three major subareas: finding feature corre- unique solution of the problem of motion and structure
spondences in image sequence, determining rigid motion estimation of a rigid surface from pairs of monocular im-
parameters and surface structure from the correspon- ages [27]. These conditions further the understanding of
dences, and analyzing nonrigid motion. the uniqueness problem of rigid motion estimation. We

show that 5 correspondences of noncolinear points that
3.1 Detecting Feature Correspondences do not lie on a special type of quadratic curve, called

Maybank Curve, in the image plane suffice to deter-
Detecting feature correspondences is difficult due to a mine a pure rotation uniquely, and 6 correspondences
wide variety of 3D structural discontinuities and occlu- of points that do not correspond to space points lying
sions that occur in real world scenes. A major part of on a Maybank Quadric suffice to determine a motion
our work on this problem is concerned with matching with nonzero translation uniquely. We show that each
point features. Our objective is to integrate identifica- Maybank quadric can sustain at most two physically
tion of feature correspondences with segmentation and acceptable motion solutions and surface interpretations,
motion and structure estimation. We have begun to de- provided that a sufficient number of correspondences are
velop an approach to detecting and segmenting feature present. In particular, we show that in the plane motion
trajectories in image sequences having multiple moving case, 6 correspondences of points that do not lie on a
objects that may have temporal discontinuities in their quadratic curve in the image plane only admit the true
motion. One common type of motion discontinuity is motion and structure and their duals as solutions. We
in motion direction, e.g. when an object undergoes discuss how noise affects the uniqueness of solution and
collision. The object surfaces are assumed to contain present a nonlinear algorithm for estimation of motion
point features that are automatically detected as the parameters.
images are acquired. The process of feature tracking We have developed algorithms for estimating motion
begins when the second frame is acquired and the fea- and structure parameters from long monocular image
ture points detected. With two frames, feature track- sequences by using the most appropriate of a set of long
ing amounts to finding two-view correspondences. As sequence motion models [13, 14, 15]. We first present a
more frames become available, tracking becomes equiv- new two-view motion algorithm and then extend it to
alent to extending the trajectories already determined, long sequence motion analysis. The two-view motion
and matching with feature points in the next frame. In algorithm requires generally 6 pairs of point correspon-
both cases, appropriate constraints are used to compute dences to give unique solution of the motion parameters.
costs that are associated with every candidate match. However, when the points used for correspondences lie
These constraints involve image plane similarity in the on a Maybank Quadric, the algorithm requires 7 pairs
arrangement of neighbors around the points, smooth- of point correspondences to give all possible double so-
ness in the 3-D motion of objects and smoothness in lutions. Object-centered motion representations and
the image plane motion of the features. The costs com- models of motion described by up to the second or-
puted using the above constraints are merged together der polynomials are analyzed. Two long sequence al-
to obtain a single cost. This cost is incorporated into an gorithms are presented, one using interframe matches.
energy function along with the uniqueness constraints, and the other using point trajectories. The long se-
and this energy function is minimized using a Hopfield quence algorithms automatically find the proper model
network. The problem of removing wrong correspon- that applies to an image sequence and gives the globally
dences that may result from local minima is solved using optimal solution for the motion and structure parame-
another Hopfield-like network. Details of this work are ters under the chosen model. Since the algorithm does
presented in a separate paper in these proceedings [111. not involve structure parameters, it contains fewer un-
In another effort, we have considered feature extraction knowns than usual which makes it more efficient and
and matching as special cases of the more general prob- robust. Experimental results with several real image
lem of signal detection [121. Our early our work on two sequences showing different motions demonstrate the
view matching appears in [351. performance of the algorithm.
3.2 Rigid Motion and Structure from We have shown that the motion and structure of

3. mRgi Motionces arigidly moving objects can be completely determined
Image Sequences from two monocular image sequences using only tern-

Our work in this area is concerned with estimating mo- poral matches [55]. Three aspects of this scheme are
tion and structure of a scene from feature correspon- useful: (1) since stereo matching is not necessary, two
dences. We are interested in segmentation of the se- cameras can view totally different parts of the rigid
quence into distinctly moving objects, as well as in the scene; (2) as temporal disparity is usually significantly
estimation of the motion and structure of each object. smaller than stereo disparity, matching needs only to
As stated earlier, our objective has been to integrate de- deal with relatively small disparities; and (3) the re-
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coverable scene structure is defined by the union of the Previously, we developed a physically-constrained ro-
fields of view of two cameras instead of the intersec- bust interpolation method. The velocity fields were
tion, and so is much larger than that of a conventional considered as nonrandom functions, and multivariate
stereo setup. Experiments with synthesized data and reciprocal quadratics were chosen as the interpolants
real world images demonstrate the feasibility of this for their nice methematical properties. We now model
scheme. the velocity field as a vector-valued multidimensional

We have developed necessary and sufficient conditions random process where the particle particles are approx-
for determining shape and motion to within a mirror imated by a Poisson sampling process [59]. Based on
uncertainty from orthographic projections of any num- this model, the velocity interpolation problem becomes
ber of point trajectories over any number of views [16]. that of interpolation of a multidimensional random pro-
We prove that there are always two sets of solutions cess. While considering the special characteristics of
of shape and motion under orthographic projection: if fluid flow, we extended previous work on random pro-
shape S is a solution, so is its mirror image S which cess interpolation from scalar-valued one-dimensional to
is symmetric to S about the image plane. The neces- vector-valued multidimensional for homogeneous turbu-
sary and sufficient conditions for determining the two lence. An optimum linear filter which minimize the
sets are associated with the rank of the measurement mean squares error is derived for this interpolation prob-
matrix W. We prove that if the rank of W is 3, then lem. The mean squares errors of this interpolation are
a necessary and sufficient condition is to be satisfied to analyzed against the fluid property as well as the par-
determine the solution to within a mirror uncertainty. ticle density. Compared with previous interpolation
If the condition is not satisfied, then infinitely many methods, the interpolants in this work are the correla-
solutions result. If the rank of W is 2 and the image tion functions of turbulent flows which have clear phys-
points in at least one view are not colinear in the image ical meaning and could be obtained by theoretical anal-
plane, then there are two possibilities: either the mo- ysis or by experiments.
tion is around the optical axis or the 3-D points all lie Human face modeling is an important problem in ap-
on the same plane. In the first case, the motion can be plications such as videophone, teleconferencing and per-
determined uniquely but the shape is not determined, son identification. We have developed a method to ob-
In the second case, a necessary and sufficient condition tain a standard 3D wire-frame model of a person's face
is to be satisfied and at least 3 point trajectories over at from only the front and two side views [60]. The generic
least 3 views are needed to determine the shape in each face model we have used consists of a set of connected
view to within a mirror uncertainty. If th rank of W is triangular meshes. For each view of the face, the model
2 or 1 and the points in each view are colinear in the im- is fit to the face. Each view supplies sufficient depth in-
age plane, then the three dimensiviial motion problem formation to modify the model parameters. The model
reduces to a two dimensional motion problem. In this fit is then compared with the real 3D data of the face
case, a necessary and sufficient condition needs to be to obtain a measure of relative error. For this, we first
satisfied to determine the shape and motion to within fit the face model to the real 3D data by least-squares
a mirror uncertainty. All proofs are constructive and matching of several key points, and then find the corre-
can be used to build a completely linear algorithm for sponding points on the 3D data according to the nodes
estimating shape and motion from point trajectories, of the face model to compute the error. The results of

Our factorization based approach [33] to integrated our experiments show that this method can generate a
motion and structure estimation from orthographic im- realistic 3D face model for a person, which can be fur-
age sequences of arbitrary length and containing ar- ther used for facial motion analysis and expression syn-
bitrary numbers of features per frame is presented in thesis. Such 3) model-based coding differs from con-
[29, 17]. Our other recent work on motion and struc- ventional waveform coding in that it makes use of 3D
ture estimation is reported in [34, 39, 36, 21] properties of the objects. It uses an explicit 3D model

for the object, encodes images based on computer vision
3.3 Nonrigid Motion techniques and recovers the original images with com-

We have continued work on interpretation of image se- puter graphics methods. Since it only transmits several

quences showing nonrigidly moving objects such as flu- analysis parameters, an extremely low bit rate of image

ids, deformable objects (human face), and articulated transmission can be achieved. We are also continuing

objects (human body). our study of the visual motion of human ambulatory

Fluid motion is a major focus of nonrigid motion re- patterns.

search. Unlike rigid body or elastic body motion anal- 4 Analysis Guided Synthesis
ysis, fluid motion analysis is based on the vortex struc-
tures in the velocity fields of fluid. Particle tracking In [33, 24], we introduced a framework for imagesynthe-
velocimetry is one way to obtain velocity vectors of a sis using the information extracted during 3D interpre-
turbulence on random positions experimentally. To fur- tation. The objective is identification and depiction of
ther analyze the motion of the fluid, we need to inter- image attributes such that the display effectively com-
polate for the velocity vectors at regular grid points. municates the 3D scene structure as seen by an observer
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in relative motion to the scene. We have continued and guided recognition" [26]. Figure 1 shows experimental
extended this work [25]. There are two major aspects results for the second sequence in which the runway is
of this research. First, it introduces the notion that recognized and then enhanced in the synthesized im-
the cues that contribute the most to three-dimensional ages.
interpretation are also the ones that would yield the
most realistic synthesis, thus suggesting an approach 5 Representation and Navigation
to analysis guided compression. Second, it presents an
approach to recovering 3D motion and structure param- Our goals in this area continue to be two. First, we
eters from multiple cues present in a monocular image are interested in efficient computation of representations
sequence, such as point features, optical flow, regions, of the shape information such as acquired by three-
lines, texture gradient and vanishing line. The use of dimensional estimation algorithms described in previ-
line features has been recently incorporated into our ous sections. Second, we are interested in using the

implementation of the approach. For concreteness, this scene representations for path planning. Our work on
work focuses on flight image sequences of a planar, tex- both these problems uses potential field as computa-
tured surface. The integration of information in the tional tool. Details of our initial work on potential
diverse cues is carried out using optimization. In our re- field based approach to path planning are presented in

cent work, the requirement that motion be smooth is no [20]. In [33] we summarized our potential field based ap-

longer imposed and the vanishing line in each frame is proach for efficient derivation of the medial axis trans-
now automatically recognized from the detected lines by form and the generalized cylinder representations of
using the motion estimates from two successive views, a two-dimensional region [18]. Further, also re-

For reliable estimation, a sequential batch method is viewed how the skeletons of rigid moving jects are
used to compute motion and structure. For synthesis, used in conjuntion with potential field based represen-

real and/or artificial attributes are shown as a monoc- tation of free space for solving path planning problems

ular sequence or as a binocular (stereo) sequence thus using closed form expressions for repulsive force. We
further highlighting the recovered motion and structure have now extended this work to path planning for pla-
parameters. Experiments have been conducted with nar robot arms. Algorithms are developed for obtain-
two image sequences, one digitized from a commercially ing arm configurations of minimum Newtonian poten-
available videotape as reported in [24] and a new se- tial by constraining the skeleton of the robot arm ac-
quence acquired from a laserdisc. This second sequence cording to the given path topology [19]. We have also
is more challenging to our algorithm since the images surveyed the work on gross motion planning, i.e., mo-
contain partially or completely occluded vanishing lines tion planning without contacts between robots and ob-
and there is reflection of the ground in the bottom of jects, for point robots, rigid robots and manipulators
the airplane. The quality of the images is somewhat in stationary, time-varying, constrained, and movable-
better than that of the VHS tape used as the source object environments [22]. It reviews numerous research
of the first sequence, resulting in better estimates. Im- results on motion planning reported during 1985-1992
age compression ratios achieved for these sequences are by researchers in various disciplines such as robotics,
502 and 367 per frame. However, since the motion and artificial intelligence and computational geometry. It
structure parameters do not change significantly with presents a taxonomy of motion planning problems and

each new frame, the contents of a frame can be esti- a classification of various motion planning approaches
mated from the structure computed from other nearby which is used to structure the survey. Each type of mo-
frames, and the motion and structure parameters. Con- tion planning problem is explained and its complexity
sequently, only I out of every n frames may be used (say is described. Relevant algorithms are explained briefly
for transmission in a communication scenario), thus in- and their performances are compared with other algo-
creasing the compression ratios achieved to 502n and rithms. Future research directions are suggested for
367n, respectively. A stereo display of the results has each motion planning problem.
also been developed on Silicon Graphics workstation,
which can be viewed using stereo glasses. The display 6 Learning and Recognition
sequence appears very similar to the original sequence We have begun work on learning recognition of object
in informal, monocular as well as binocular viewing, classes, including the segmentation or extraction of ob-

The use of domain specific (model based) cues in in- ject area [37, 38]. Learning involves automatically esti-
tegrated analysis results in identification of model com- mating the criteria for segmentation and classification
ponents. In the first sequence, this is demonstrated in terms of multiscale structural constructs, called con-
by the use and identification of the vanishing line. In cepts. These constructs or concepts are dynamically
the second sequence, the constraint that runway edges formed in terms of basic image features such as edges
are parallel to each other as well as to the direction of from a large number of recognition examples.
translation results in identification of these edges. Such A framework called Cresceptron is introduced for au-
identification of model components (in addition to more tomatic algorithm design through learning of concepts
general scene characteristics) can be viewed as "analysis and rules needed for the development of algorithms,
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thus deviating from the traditional mode in which hu- on Machine Vision Applications, Tokyo, Japan,
mans specify the rules which comprise a vision algo- Dec. 1992, 317-320.
rithm. With Cresceptron, the designers need only to [8] Z. Hong and N. Ahuja, Target Tracking and Cum-
provide a good structure for learning, but they are re- mulative Depth Map Generation from Binocular
lieved of most design details. Cresceptron is tested on Image Sequences, Proc. 3rd International Confer-
the task of visual recognition: recognizing 3-D gen- ence on Intelligence Autonomous Systems, Pitts-
eral objects from 2-D photographic images of natural burgh, PA, Feb. 1993, to appear.
scenes, and segmenting the recognized objects from the burg , A Feb.s1993,fo aear.
cluttered image background. Cresceptron uses a hierar- [9] N. Ahuja, A Transform for Detection of Multiscale
chical structure to grow networks automatically, adap- Image Structure, these proceedings.
tively and incrementally through learning. Each neural [10] Edward J. Altman, Bifurcation Analysis of Chua's
plane in the network hierarchy gets automatically as- Circuit with Applications for Low-Level Visual
sociated with a different type of concept, the concepts Sensing, Journal of Circuits, Systems and Corn-
being detected automatically, and the network grows by puters, Vol. 3, No. 1, 1993, to appear.
creating new nodes and connections which memorize the [11] S. Thirumalai, Detection and Segmentation of Fea-
new concepts and their context. Cresceptron makes it ture Trajectories in Multiple, Discontinuous Mo-
possible to generalize training examples to other percep- tion Image Sequences, these proceedings.
tually equivalent items. Segmentation and recognition [12] X. Hu and N. Ahuja, Feature Extraction and
are simultaneous. No foreground extraction is neces- Matching as Signal Detection, Proc. SPIE Con-
sary, which is achieved by backtracking the response ference Applications of Artificial Intelligence XI:
of the network down the hierarchy to the image parts Machine Vision and Robotics, 1993, to appear.
contributing to recognition. Several types of network
structures have been developed, and their properties are [13] X. Hu and N. Ahuja, Estimating Motion of Con-
studied in terms of knowledge recallability, positional stant Acceleration from Image Sequences, Proc.
invariance, generalization power, discrimination power 11th ICPR, Hague, Netherlands, August 1992.
and space complexity. Experiments with a variety of [14] X. Hu and N. Ahuja, Long Image Sequence Motion
real-world images have been performed to demonstrate Analysis Using Polynomial Motion Models, Proc.
the feasibility of learning in Cresceptron. IAPR Workshop on Machine Vision Applications.

Tokyo, Japan, Dec. 1992.
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Figure 1: Analysis guided synthesis of a take-off sequence taken from a commercial laserdisc.
Results are shown for three frames. (a) Input sequence. (h) Synthesized sequence composed
of those image attributes selected during integrated 3D analysis. (c) Same as input sequence
but the recognized runway edges are enhanced by repainting them and placing yellow disks
in them. As results of the integrated :11) analysis: the airplane could be removed from the
image seq.'tlolc,. 'he occluded .•'eie part. filled in (1by il v .l)vi)lolahing the estimated nearby
st rlctlll'e). ,ini !to scene part above theI l 'va,iil gigi Iiu' c'ilhvoi', (bIlue).
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Abstract tures can be either raw data or simple, derived point or
nin outdoor terrain is difficult due to contour properties. Matching is essentially 2-D correla-

Navigation in o u ely idifiable land- tion. Viewpoint determination involves standard meth-
a lack of easily and uniquely identifiable land- ods from photogramnmetry.

marks. This paper outlines current research

on extraction of navigationally salient features Localization is much more difficult when performed at

from images and maps, feature matching and or near ground level due to the 900 change in perspective

viewpoint determination, landmark selection, from sensed data to map. Passive image understanding

detection and diagnosis of route following er- techniques are likely to have serious problems estimating

rors, perceptual issues related to vision-based range to environmental features and thus the relative po-

navigation, and database and software avail- sition of those features to each other and to the viewpoint

ability, in the map frame of reference. More sophisticated fea-
ture extraction and matching is required and viewpoint
determination methods must be able to to function in

1 Introduction. the absence of accurate 3-D information from sensors.

Navigation involves two closely related tasks: localiza- We have made progress in the following areas:

tion and route planning and following. Most often, anavigating agent has available a map or some other * Feature extraction: Domain specific feature extrac-
tion routines have been demonstrated which exploit

model of the environment within which it is operating, constraints imposed by the geometry of terrain.
together with sensor data about relevant aspects of that
environment at the current instant in time. Localization * Matching and viewpoint determination: Higher-
finds the agent's position within the map or model frame level symbolic problem solving has been integrated
of reference. Route planning involves the determination with lower-level computer vision methods to pro-
of a sequence of actions aimed at accomplishing some duce an image understanding system capable of
goal. This may be based in part on sensor data or com- dealing with inference and ambiguity in localization.
pletely on the map or model if they are sufficiently rich.
Route following includes those processes which execute e Landmark selection: Path following is significantly
the plan and monitor for errors. These activities must aided by selecting landmarks which minimize local-

be closely integrated. For example, accurate localization ization errors.
estimates are needed for route planning since an initial * Diagnosis and recovery: Al-like problem solving
position is usually required and for route following to methods can complement lower-level computer vi-
provide closed loop control of position. sion in detecting failures in route following and di-

Image understanding approaches to localization must agnosis where the original error occurred.
necessarily contain three parts: feature extraction,
matching, and viewpoint inference. Feature extraction 9 Perceptual issues: An understanding of the abili-
involves the detection of salient patterns in both sensed ties and limitations of human perception of terrain
data and the map or model. Extracted features are then features can give insights into the construction of
matched, establishing a correspondence between the two automated navigation and also lead to better train-
frames of reference. Finally, this correspondence is used ing methods.
to place the viewpoint in the map/model frame of ref-
erence. At least in principle, these steps are relatively t Database: Examples of panorama images registered
straightforward when downward looking aerial imagery to digital elevation data together with a variety of
is matched against a standard "plan view" map. (TER- useful software tools are being made available to the
COM is a classic example [Andreas et al., 1978]). Fea- research community.

"This work was supported by National Science Foundation Results of this work are of potential relevance to au-
grant IRI-9196146, with partial funding from the Defense Ad- tonomous and semi-autonomous mobile vehicles, naviga-
vanced Research Projects Agency. tion aids, mission planning, simulation, and training.
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2 Localization.

Our work on navigation has focused primarily on prob- •,
lem s in vo lv in g o u td o o r, u n stru ctu red terra in . F ig u re 1! ........... ..

shows typical feature correspondences that must be es-
tablished. Since distinctive cultural landmarks are not
available in such environments, considerable difficulties
can be expected in reliably associating map and view fea-
tures. One way to approach this problem is to use sym-
bolic matching by first independently extracting from
the view and map patterns likely to represent the same
topographic features and then establishing correspon- Figure 2: Original image.
dences using a hypothesize and test strategy.

Figure 3: Output from zero-crossing edge detector.

Figure 1: Correspondence between map and view.

Feature extraction from images of outdoor terrain is
based on finding ridge contours with shapes indicative Figure 4: Processed edges.
of peaks, saddles, and valleys. Peaks and saddles are
simply vertical extrema in ridge line contours. Valleys
are more difficult to find, since the actual valley terrain V V
is usually not visible and must be inferred from other V
features such as T-junctions in ridge line contours.

Simple edge detection alone is not sufficient to find V
ridge contours in an image. Images of large-scale, out-
door terrain contain many important but indistinct fea- A A
tures and many extraneous features which convey no
useful information about the topography. The contrast
across ridge contours is often low and of limited spa- Figure 5: Extracted features.
tial extent. Often, local sections of a ridge contour are
lacking in contrast variation altogether, while many non-
ridge, high-contrast features are present. from images, the "map-understanding" problem does not

Figure 2 shows a 400 portion of the panorama image have to deal with the multitude of effects that can lead to
shown in Figure 11. Figure 3 shows the results of apply- contrast variation in imals. Difficulties associated with
ing a zero-crossing edge detector to this image. Hystere- scale are still very real, however. For example, ridge lines
sis thresholding was used and parameters were carefully have a large spatial extent along their length. Across the
matched to the nature and scale ol the image. As a re- length of a single ridge line, extent can vary from small
suit, this represents about the best that can be expected (a sharp section of ridge) to quite large (a section where
from edge detection alone. Figure 4 shows a new edge the ridge top is essentially a plateau). Peaks are likewise
image in which a variety of filtering and gap filling steps more difficult to accurately detect. Simply finding local
have been applied. These steps are based on exploiting maxima in elevation is not sufficient. Figure 6 shows the
constraints about how ridge lines appear in horizontally- results of applying a local ridge detector similar to [liar-
looking views of rugged terrain. Finally, Figure 5 shows alick ct al., 1983] to a portion of our elevation database
extracted features and line segments. (see section 6). Figure 7 shows the final results of fea-

Figures 6 and 7 show similar results for map features. ture extraction after thinning the raw results and filling
Unlike the problem of extracting topographic structure gaps where ridge sharpness was low. In addition, peaks
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1 ) j Thompson et al., 1990, Smith et al., 1991, Heinrichs
1% et al., 1992] and computational implementations us-

ing these strategies can be found in [Bennett, 1992,
Bennett, 1993, Thompson et al., 1993, Thompson, 1993].

3 Landmark Selection.
We have previously demonstrated that the accuracy of
landmark-based viewpoint determination is quite sensi-

tive to geometric properties of the particular configu-
Sr ration of landmarks used [Sutherland, 1992]. Recently,

the image understanding community has been paying
increased attention to error estimation. Of equal impor-
tance are approaches which minimize the amount of error

'" which can occur rather than only providing a posteriori
characterizations of the error distribution.

Figure 6: Unprocessed ridge features. The extraction of navigationally salient landmarks
typically involves costs in time, computation, and sens-
ing resources. As a result, there is benefit to be gained if
simple strategies can be used to select a small set of land-
"marks which are likely to lead to accurate localization.
Effective landmark selection methods are also relevant

\ : to mission planning, where one of the criteria entering
"into route selection should be the availability of land-

S, marks sufficient to provide whatever degree of accuracy
"i* \ is required.

, A-- .° Error analysis is complicated by the lack of general
"--., sensor models which effectively describe position vari-

"ability in properties used for viewpoint determination.
4 "This is particularly true when localization is based on

bearings to features over a wide field of view, since sens-
ing might involve mechanical scanning of cameras, fish
"eye optics, or more exotic technologies. We take a con-

A - peak - - primary ridge line - --- sub. ridge servative approach in which we assume that the angular
--- 2nd level subsidiary .. - - - 3rd level subsidiary error in detected bearings to features is bounded, but

the distribution of values within this range is not known.
Figure 7: Peaks and ridge line hierarchy. We then find the the region within which the viewpoint

must lie to be consistent with these assumptions and are
thus able to determine if conflicts with obstacles or un-

are found using a large area search that is more reli- traversable terrain are possible. Figure 8 shows an exam-
able than simple local maxima detection and ridge lines pie in which the relative bearing between two landmarks
are organized into a hierarchy of importance that allows and the absolute bearing to a third landmark [Thomp-
significant ridges to be used for initial matching while son et al., 1993] separately generate possible viewpoint
making available subsidiary ridges for subsequent verifi- regions shown in light gray, the intersections of which
cation operations. (The ridge lines to the northwest are are marked in dark gray.
not rendered in this view of the hierarchy, since they are Starting from the analysis of uncertainty regions, it is
actually part of the parent of the ridges shown.) possible to develop simple heuristics for selecting land-

Features extracted using these processes still have a marks likely to minimize the size of such regions [Suther-
great deal of ambiguity associated with them. For ex- land and Thompson, 1993, Sutherland, 1993]. Note that
ample, lacking a prio ; information about viewing po-
sition and/or direction, it is hard to extract features
such as peaks and ridges known to correspond in the
view and map. This difficulty is similar to that faced
by many symbolic problem solving systems dealing with
tasks such as classification and diagnosis. In [Thompson
ei al., 1993], we show that high-level hypothesize and
test strategies can be integrated with lower-level feature
extraction to solve difficult localization problems.

Additional details about feature extraction from views
and maps can be found in [Savitt et al., 1992, Savitt,
1992, Thompson el al., 1993]. High-level strategies for
feature matching are described in [Heinrichs et al., 1989, Figure 8: Intersection of viewpoint uncertainty regions.
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this is not as easy as it might seem, since the problem viewpoint. Often, such models do not exist, particularly
must be solved with very minimal knowledge about the in tasks involving outdoor maneuvering. (Consider the
true viewing location. Figures 9 and 10 demonstrate the effort that went into producing 5m resolution DEM data
effectiveness of this method. Simulated navigators have for the ALV site.) When this is the case, it is not possible
identified landmarks on a map. Their task is to move to determine with certainty that an expectation does or
along the segmented path shown by the dashed line. does not match actual sensor values. At best some sort of
Current position is estimated at the beginning of each confidence estimate can be produced. One consequence
straight path segment, using relative bearing to three of this is that it is possible to travel substantial distances
landmarks. In Figure 9, the landmark selection heuris- on what is in fact an incorrect path before determining
tic is used at each step to choose the three landmarks with reasonable certainty that an error has occurred.
on which localization is based. In Figure 10, landmark Sparse world models and the potential for substantial
selection is random. Both navigators start at the square delays between when an error occurs and when it is de-
at the left end of the dashed line. Direction and dis- tected mean that lower-level image understanding tech-
tance of move are based on estimated position. Uniform niques are not sufficient in and of themselves to support
multiplicative error is assumed in both relative bearing effective plan monitoring in mobile robotics. We are ad-
measurement and in movement. The squares mark ac- dressing this problem by creating a qualitative model of
tual navigator positions at the end of each path segment error in vision-based navigation and using this model to
for fifty trials. The scattering of location in Figure 10 is characterize the sorts of errors that can occur, how they
much increased over that in Figure 9. can be detected, and what sort of diagnosis is possible to

determine the original source of difficulties [Stuck, 1992].
The research suggests a number of techniques that may
usefully complement lower-level perceptual servoing.

5 Perceptual Issues.

"Our approach to the development of novel methods
for vision-based navigation is interdisciplinary, involv-
ing computational analysis, computer simulations, and
studies of expert map users. Many of the strategies we
use to automatically solve localization problems [Hein-

Figure 9: Fifty trials - "intelligent" landmark selection. richs et al., 1992, Thompson et aL., 1993J arose out of ex-
periments done with experts solving actual and artificial
navigation problems [Pick et aL., in press). In retrospect,
these strategies make excellent computational sense since

a the experts are highly adapted to dealing with the ambi-
a a Mguity and complexity inherent in these problems. Nev-

ertheless, the strategies were not obvious to us or othersa its di until we undertook our studies.
I , i NUP m . This interdisciplinary investigation is continuing with

* b L " •4 . a current focus on the accuracy with which people are
l -- ** able to determine terrain geometry. By comparing hu-

na man and machine vision perceptual competence, we can
better understand the relevance of expert strategies to

Figure 10: Fifty trials - random landmark selection. image understanding solutions. At the same time, we
can identify specific perceptual skills for which mecha-
nized aids and/or alternative training might significantly

4 Error Detection and Diagnosis. improve human performance. Elsewhere in this proceed-
ings we summarize two such studies [Pick ef al., 1993].

Mobile robots capable of independent operation all em- One demonstrates that people are poor at estimating dis-
ploy some form of "perceptual servoing" to implement tance and slope in environments of the scale and topog-
a sense-plan-act-verify cycle in which expectation about raphy typical of outdoor navigation tasks [Melendez el
sensor data are compared with actual observations, and al., in prep]. Since passive vision systems are also poor at
then differences are quantified and used to update es- these estimates, the strategies people use to compensate
timates of current position and desired path (e.g., [Fen- for their perceptual limitations may also be relevant in
nema et ai., 1990]). If a match between expectations and automated systems. The second study deals with local-
observations cannot be established, then some sort of re- ization using visual angle. Again, people are quite poor
planning activity is initiated, a part of which requires a at using this cue. On the other hand, sensors which are
solution to the localization problem. This approach is capable of measuring large visual angles with reasonable
only effective when a rich model of the environment is accuracy can be designed, suggesting both possible dif-
available, allowing for complete and specific predictions ferences between machine and human solutions and aids
about the appearance of the world from any predicted that might assist people in performing the task.
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Figure 11: First panorama image.

6 Database and Software. [Heinrichs et al., 1992] M. R. Heinrichs, K. Smith, H. L.
Pick, Jr., B. H. Bennett, and W.B. Thompson. Strate-Many recent papers addressing ground level localization gies for localization. In Proc. DARPA Image Under-

have presented results obtained only from synthetic im-

agery. A few have used the highly calibrated data avail- standing Workshop, January 1992.

able for the Martin Marietta ALV test area. In addition [Melendez et al., in prep] P.H. Melendez, D.A. Gentile,
to the well-known pitfalls of failing to test new image un- Jr. Pick, H.L., A. Yonas, and D.J. Wegesin. Pay-
derstanding algorithms on real data, the use of synthetic chophysical judgments of natural terrain. (in prep.).
terrain data to generate test imagery is problematic since [Pick et al., 19931 H.L. Pick, Jr., A. Yonas, P. Melendez,
realistic digital elevation data is often in error. D. Wagner, D. Gentile, and D. Wegesin. Perceptual

We have produced two 360° panorama images of aspects of navigation. In this proceedings, 1993.
mountainous terrain obtained with a video camera, dig- [Pick et al., in press] H.L. Pick, Jr., M.R. Heinrichs,
itized at high resolution, and digitally photo-mosaicked. D.R. Montello, K. Smith, C.N. Sullivan, and W.B.
(Figure 11 shows one of them). They extend approxi- Thompson. Topographic map reading. In J. Flach,
mately 6,000 pixels horizontally by 450 pixels vertically. P.A. Hancock, J.K Caird, and K. Vicente, editors,
Viewpoint location has been registered 130m to USGS Ecology of Human-Machine Systems. Lawrence Eri-
30m DEM data. Direction relative to UTM north and
tilt are known within -0.5°. Geometric distortions due
to misalignments between the pan axis, the camera, and [Savitt et al., 19921 S.L. Savitt, T.C. Henderson, and
"true" vertical have been normalized to approximately T.L. Colvin. Feature extraction for localization. In

-0.250. Included in the database are 4 USGS 7.5' DEM Proc. DARPA Image Understanding Workshop, 1992.
quadrangles composed together and containing the view- [Savitt, 19921 S.L. Savitt. A Context Sensitive Segme-
points for the panorama images. Also available is soft- nation Approach for Outdoor Terrain Feature Extrac-
ware for converting USGS format data into a useful form, tion. PhD thesis, University of Minnesota, 1992.
mosaicking DEM quads and panorama frames, and ren- [Smith et al., 1991] K. Smith, M.R. Heinrichs, and H.L.
dering expected views given map position. Pick, Jr. Similarity judgment and expert localization.
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Abstract is assumed that the path is generated by an external rec-
ognizer in such a way that the data points collected byWork progressed on many fronts this year. A p~i- tactile sensing along the path will maximize the proba-

mary focus has been on the assembly of an indoor service bility of correctly identifying the object.
robot which has the capability of searching for a spec-
ified free-form object in a cluttered environment. The
robot mounts a number of sensors - stereo and laser 1 Vision
ranoi.g - and has model-based planning capability to
optimize use of its resources. This system, which is now 1.1 FIree-Form 2D and 3D Object
functioning, is undergoing testing and continuing devel- Recognition Based on Implicit
opment. This project is a collaborative effort by the Polynomials, Algebraic Invarants, and
P.I.s. In addition, vigorous research programs have been Asymotia ys ian Methods.
continuing in computer vision, planning, and mechani- Asymptotic Bayesian Methods.
cal sensing. This report summarizes our program for the We have now brought our free-form object recog-
year. Quite a few papers were published during the year. nition based on implicit polynomials and algebraic
A number of them are referenced in this paper. Others
are referenced in our technical papers in this workshop invariants to a useful stage where we can begin to
proceedings. apply it to real problems. At present, the system
1. Vision: A powerful new technology for recognii- can deal with the recognition of which of L known
ing free-form 2D and 3D objects has now been brought objects is present in 3D range data when the ob-
to a usable state. This involves fitting a high degree ject in the range data is in arbitrary position, i.e.,
implicit polynomial to the data, computing a vector of location and orientation. Examples of this are ob-
invariants of the polynomial coefficients, followed by a ject recognition based on LADAR range data or 3D
minimum probability of error comparison of that vec- data from stereo. Exactly the same technology han-
tor with a vector of invariants stored in a data base for dies the recognition of which of L object boundaries
each possible object to be recognized. A new geometric-
stochastic approach has been developed for completely is present in image edge data when the camera view
automated estimation of main roads and similar struc- direction is arbitrary so that the boundary in the
tures such as rivers in acrial images. An approach has image is in arbitrary position and will usually have
been developed for the joint estimation of 3D structure undergone different scale changes in each of two di-
and camera motion based on finding corresponding re- rections. Examples of this problem are ground tar-
pions in two images through use of new affine moment get recognition based on a silhouette in an aerial
invariants and solving simple motion equations explic- image, or recognition of an airborne plane based on
itly. a silhouette in an image by aground-based camera.

Considerable progress has been made on a determinis- a
tic approach to shape by modeling deformations of it by Our recognizer fits one generl implicit polynomial
Hamilton-Jacobi and reaction-diffusion equations, and to the data, computes a vector of invariants for the
has led to a novel theory of partitioning of visual form polynomial (these are functions of the polynomial
and a geometric evolutionary view of mathematical mor- coefficients that are functions of shape only and are
phology, among others, invariant to object position and stretchings in two
2. Planning and System Integration: A mobile different directions), and does a Bayesian compari-
robot carrying infrared proximity sensors, a laser light- son of this vector with a stored vector of invariants
stripe range sensor, and a pair of stereo cameras is now for each object in the database.
functional. The system can recognize free-form objects This recognizer has two crutiallp important fee-
and make optimal use of the robot's sensing routines to
search a cluttered environment for objects of a specified lures! First, it functions well even if data is over
type. only a portion of an object boundary due to self oc-
3. Object Recognition via 3-D Surface Track- clusion or occlusion by another object. Second, the
ing: A 3-D dual-drive surface tracking controller that required computation is small- linearly proportional
enables a robot to track along any specified path on the to the number of data points used in the recognition.
surface of an unknown object in order to identify the ob- Details of the approach and a number of examples
ject is under development and testing. The dual-drive are given in [221 in this proceedings.
controller computes the normal and tangent vectors rel-
ative to movement along the path. The result is con- One application of this approach is the following.
trolled movement in 3-D on the surface of an object. It An approach to target recognition is to decompose

a target into parts invariantly, i.e., a decomposition
"This work was partially supported by NSF-DARPA that is invariant to partial occlusion or to changes in

Grant #IRI-8905436 viewing direction. Such a decomposition is that of
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the silhouette of an F-16 using an approach devel- patches where each such patch has location and ori-
oped by Kimia et. al. [19]. The parts obtained by entation that is to be estimated, and simultaneously
the hierarchical decomposition are shown in Figure estimate camera position 2 with respect to camera
l(a). The final partitioning of the plane is shown position 1. We do this by solving a set of explicit
in the upper right corner of the image. These parts equations for the unknown parameters in terms of
would then be recognized by our recognizer, and the low computational cost, stable measurements that
results combined for target recognition. All of the we make on the images. These measurements re-
final parts can be fit with negligible error by 4th de- quire matching - finding a corresponding region in
gree implicit polynomial curves, and it is practical image 2 for each region in image 1. Since the im-
to go to higher degree if needed. Fits to a represen- age in such a region in image 2 may be a distortion
tative group of these airplane parts are displayed in of that in the corresponding region in image 1 be-
Figure 1(b), where it is almost impossible to distin- cause of the differences in camera viewing directions,
guish the part boundaries and the fitted curves. If a we use affine moment invariants for carrying out the
more complex part is to be represented, e.g., a rocket matching. This approach is computationaliy attrac-
at a wingtip, a 4th degree polynomial may provide Live and can be used more generally for aligning two
a fit of only modest accuracy, as shown. In such a or more aerial images. The approach seems to work
case, a higher degree polynomial can used, e.g., as well, and is described in [17] in this proceedings and
shown, an 8th degree polynomial fits the data with in [18].
negligible error. The computational cost of fitting
an 8th degree polynomial is roughly that of fitting 1.4 A Hamilton-Jacobi Approach to
a 4th degree polynomial. We are also exploring the Recognition
recognition of very complex objects using patches of We have made substantial progress in our "shape
low degree polynomials without the need of repeat- from deformation" framework [14, 12] which is
able segmentation. based on shocks formed from reaction-diffusion and

Hamilton-Jacobi equations. We have shown that al-1.2 Completely Automated Recognition gebraic, set-theoretic mathematical morphology op-
and Estimation of Main Roads in erations with any convex structuring element can
Aerial Images. be viewed and implemented as geometric evolution

Our ultimate goal is recognition and estimation of equations governed by a Hamilton-Jacobi partial dif-
all structure of interest in aerial imagery. However, ferential equations [1]. We had earlier shown that
to start we are focussing on main roads and similar Gaussian smoothing is a special case of this frame-
structure such as rivers, etc., because we can build work as well. The general approach has also moti-
on technology which we have developed previously. vated successful application to shape-from-shading
Most algorithms in the published literature require [151. Robust recognition of shape requires a multi-
an operator to give a pair of initial road boundary dimensional representation of it in terms of its parts,
points. This interaction simplifies the problem of protrusions, and bends. In the past year, we have
road estimation tremendously. We are after a com- developed a theory of partitioning for visual form,
pletely autonomous system. We build on our earlier which is based on general assumptions about ob-
work on blob boundary finding that included the in- ject formation and projection. Our notion of parts
troduction of "stochastic snakes", which we termed is based on notions of necks and limbs and is sup-
"the ripple filter", the Cramer-Rao lower bound on ported by computation, psychophysical and ecolog-
the minimum achievable error variance in estimat- ical constraints. The decompitions give natual in-
ing blob boundary location, and a dynamic pro- tuitive parts that are in correspondence with func-
gramming algorithm for implementing maximum a tional three-dimensional parts for a range of biolog-
posteriori probability blob boundary estimation [6, ical and man-made shapes [23, 20]. We have suc-
8]. We use stochastic-geometric models and model cessfully applied this scheme to military targets in
road geometry and image intensity inside and out- LADAR imagery. We are currently studying protru-
side the roads by autoregressive processes which are sions and bends, the other two nodes of the shape
well suited to both image synthesis and road estima- triangle [13], necessary to describe shape for robust
tion. We find all of the main roads in an image, ir- recognition.
respective of their intersections, variability in width,
lack of image intensity discontinuity at some groups 2 Mobile Robot Project
of boundary points, whether or not they have visible
barriers, etc.. This work is discussed in [2] in this 2.1 Mobile Robot Planning
proceedings. Over the past year, we have made a concerted effort

to combine our work in image understanding, plan-
1.3 Estimation Of 3D Surfaces And ning, and control. To that end we have designed and

Camera Motion From Two ',r More constructed a new mobile robot, developed software
Images. to control the robot and interpret the data returned

3D surfaces are to be estimated from two images. It by its sensors, and begun conducting experiments
is assumed that the position of the camera at which to evaluate our hardware and software. This work
each image is taken is completely arbitrary and a pri- builds on our experience with a smaller robot, ex-
ori unknown. This occurs if a camera is moving in an tending the same basic architecture [9] and incorpo-
unknown way or if images are taken by two or more rating more sophisticated image understanding tech-
cameras distributed through a 3D region and moving niques. In the following, we briefly summarize this
locally in an unknown way. Our approach is to ap- work; a more detailed account is available in these
proximate an arbitrary 3D surface with small planar proceedings [4].
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Our research has been driven by a specific class 2.2 Mobile Robot Free-Form Object
of tasks. These tasks involve navigation, obstacle Recognition Based on Stereo Vision
avoidance, and object recognition and focus primar- A 3D object is to be recognized from a stereo-pair
ily on efficiently searching in cluttered environments of images by estimating a portion of the 3D object
for objects specified in some suitable representation surface and then applying the recognizer from sec-
language. In a typical task, the robot is confined tion 1.1. Objects of interest can be anything from
to an area of about 1000 square feet, cluttered with simple polyhedra to complicated free-from solids.
obstacles and containing a number of target objects sim ppolyh to comated freefrom s o
corresponding to several known object types. The Our approach to estimating a surface from two
robot is given a particular object type and required or more images involves modeling the surface as
to find an instance of that type in the enclosed area. a smooth stochastic process with occasional depth
The robot's search is methodical but the robot doe discontinuities, and estimating the surface directly
not spend time on computationally expensive infor- from the images using maximum aposteriori prob-maton athrin opratonswhe les epeniveop- ability estimation. We design and use an appro-
mation gathering operations when less expensive op- priate Markov Random Field (MRF) as a priorerations suffice model for the surfaces. Though the field can be de-

While the emphasis is on employing the image un- signed to capture any desired structure, in the sys-derstanding algorithms developed in our overall ef- tem used in these experiments the purpose of this
fort, we use a variety of sensors to expedite search. field is largely to act as a smoother (i.e., regulariza-
Familiar with the advantages and disadvantages of field Deala o thas a oothe (ive, r ng[7riza
using sonar, we decided to complement our acoustic tion). Details of the algorithm are given in [7, 5,
ranging capability with near-infrared obstacle detec- 11].
tion and laser-light-stripe ranging. In addition, the Having obtained 3D surface points, object recog-
robot has a fixed, forward-directed stereo pair. The nition is done by fitting a fourth degree implicit poly-
sensors and computing machinery for the control nomial surface to these points, and then comparing
system were built on a heavy-duty 24 inch mobile the vector of algebraic invariants for this polyno-
base that provides power for experiments running mial with stored vectors of invariants. Comparison
up to six hours (this represents a 3-5 fold increase in is done using a Bayesian recognizer. The beauty of
battery life with about a 10 fold increase in onboard using this recognizer is that it is roughly equivalent
computing power). to checking how well the set of 3D estimated surface

We integrated the sensors into a set of robust nav- points matches the stored model, and hence, works
igation routines that comprise the low-level control excellently even if the set of points is over only a
system. The low-level control and sensor fusion al- portion of the object surface due to occlusion! De-
gorithms were implemented as a set of objects and tails of the Bayesian approach and other references
methods in C++. Due to the modularity of our soft- are given in [22, 21].
ware design and the similarity of the design of the Figure 2 shows the various steps in the algorithm.
new base with that of our earlier base, much of our Figures 2(a) and 2(b) are images of the object. The
existing C++ software could be directly transferred object is located in a busy environment. Table legs,
to the new robot. wires, a file cabinet and a person's legs can been

The high-level planning system is based on our seen in these images. The reconstructed surface pro-
work on temporal belief networks [10] which is de- duced by the stereo algorithm is shown in Figure
signed to address a range of planning and control 2(c). Object recognition is done using the Bayesian
problems [16, 3]. We are now extending and refining recognizer. Final verification of the recognition, if
our techniques to handle more complicated stochas- needed, is done by translating and rotating the data
tic models describing the dynamics of the domain set so as to fit the database model as shown in Figure
and the characteristics of sensors. In particular, we 2(d).
are working on planning applications that make use The problem with recognition based on the data
of the information returned from object-recognition from one stereo pair of images is that only a quar-
routines. ter to a third of the object surface is seen by both

The tasks that we are focusing on require the cameras, and it is therefore difficult to see enough ofthe curved surface to discriminate between similiar
robot to search for and recover an object of a spec- the urved rface disctin bstponsilif3
ified type in a cluttered environment. In order shapes. Highly reliable detection is possible if 3Difie tye i a luttredenvronent.In rde to point estimates from two or more stereo pairs, each
search efficiently, the robot has to deploy its sensors pair taken from a different position, can be aligned.
carefully. Laser ranging takes a few milliseconds, a Then estimates over more of an object surface can
quick-and-dirty analysis of an image to identify pos- be used. We are presently completing software for
sible locations of the target takes a few seconds, and this purpose.
a more careful matching against a prototype takes
15-30 seconds. Planning involves, among other
things, choosing from among a set of information- 3 Object Recognition via 3-D
gathering strategies so as to expedite search for the Surface Tracking
target object.

Current research involves the development of a The current focus of this research has been the devel-
programming environment that facilitates the design opment and testing of a 3-D dual-drive surface track-
and compilation of planning systems implemented as ing controller that enables a robot to track along any
temporal belief networks. We anticipate that by the specified trajectory on the surface of an unknown ob-
end of the first half of 1993 we will be able to produce ject. In the complete "object-dependent" tracking
complete planning systems using a semi-automated, system, we envision an external recognition program
interactive system in a small fraction of the time re- that uses partial data sets collected by tactile sensors
quired previously. on the object's surface to attempt an identification
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and to direct future data collection in such a way as [7] D. B. Cooper, B. Cernuschi-Frias, J. Subrahmonia,
to limit the uncertainty in making a positive iden- and Y. P. Hung. Use of Markov Random Fields in
tification. (see, e.g., the active vision algorithm in Estimating and Recognizing Objects in 3D Space.

[ stactile data collection method is referred To appear as a chapter in Markov Random Fields:
1211). Thist Theory and Application, Edited by Rama Chellapa
to as "object-dependent" sensing because although and Anil Jain, Academic Press, 1992.
no prior information is used by the controller, the
location of the sensing paths is driven by external [8] D. B. Cooper and F. Sun*. Multiple-Window Paral-
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Figure 2: (a) and (b): Stereo images of the object;
(c) : Surface reconstruction using the stereo algo-
rithm;
(d) : Reconstructed 3D surface points superimposed

___(b), on the database model for the object

"" -Figure 3: Examples of 4th degree polynomial sur-
faces fit to data sensed by robotic tracking around

an eggplant and a pear, respectively, along parallel" sl~ices

Figure 1: (a) : Final partitioning of the plane and
the parts obtained by hierarchical decomposition;
(b) : Polynomial fits to a representative group of
airplane parts
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GMU RESEARCH ON LEARNING IN VISION:
Initial Results

R. Michalski, J. Bala and P. Pachowicz
Center for Artificial Intelligence

George Mason University
Fairfax, VA 22030

Abstract

This report covers initial research on The reasons for this view are based on the
learning in vision conducted at the GMU following observations:
Center for Artificial Intelligence. The
research Is currently conducted by two The world changes i n unpredictable ways,
faculty members and one research therefore it is impossible, in principle, to pre-
assistant. The report describes our research program in the vision systems all the
goals, general approach, several developed knowledge necessary for image
methods, and results from experiments understanding.
with implemented systems. The research
has been concerned primarily with the Handcraftlng the knowledge needed for
development of efficient methods for image understanding into computer vision
Inductive learning of texture descriptions systems Is a difficult and time-consuming
from texture samples. The following process; learning provides a fundamental
methods (and Implemented systems) are vehicle for simplifying this process.
briefly described: Textral (employing
multilevel symbolic image transformations In biological vision systems, many aspects of
and the AQ15 Inductive learning image perception are genetically
program), PRAX (using a "WLincipal preprogrammed, but many are learned.
aLes" representation of texture Similarly, computer vision systems should be
descriptions), AQ-NT (oriented toward able to acquire some capabilities through
learning from noisy Inputs), AQ-GA learning.
(combining inductive rule learning with a
genetic algorithm based rule An important result of our initial research is a
enhancement), and Chameleon (based on demonstration that symbolic learning methods
"model evolution" approach). can be successfully applied to selected problems

of low-level vision, in which nonsymbolic
1 Introduction methods have been traditionally employed.

Specifically, the results obtained demonstrate
The goal of this research Is to explore the that these methods have been very useful for
applicability of machine learning methods to creating descriptions of textures from their
problems of computer vision. The underlying samples, obtained from the original camera-
premise Is that computer vision will ultimately generated images.
need to exhibit learning capabilities in order to 2 General Approach
be fully successful.

This research was supported in part by the Defense The developed approach, called "Multilevel
Advanced Research Projects Agency under the grant No. Logical Templates" (MLT) alms at
F49620-92-J-0549, administered by the Air Foce Office automatically determining texture class
of Scientific Research, and the grant No. N00014-91-J- descriptions ("texture signatures") from texture
1854, administrated by the Office of Naval Resemch, in samples. The basic step in this process is an
part by the Office of Naval Research under the gram No. Iterative (multilevel) application of symbolicN00014-91-J-1351, and in part by the National Science Inductive learning to generate texture rules.
Foundation under the grant No. tNI-9020266. These rules serve as "logical templates" that are
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matched against window-size samples of texture "symbolic" image, in which picture elements
classes, are labels of corresponding texture areas.

The approach was originally proposed by The sequence of operators that produces such a
Michalski [1973], and initially applied using the labeling serves as a texture description ("texture
ILLIAC III image recognition computer signature'). The basic operator in this process is
facilities, an application of a set of logic-style rules to

transformed texture samples. The rules can be
The research at the GMU Center for Artificial applied in parallel, and serve as "logicalTheresarc attheGM CeterforArtfical templates" that are applied to "events"
Intelligence has developed a variety of novel (attribute vectors) repesenting texture samples.
extensions and new directions stemming from
the above general approach. The novelty is in To recognize an unknown texture sample, the
utilizing new types of image transformations, system matches it with all candidate texture
self-improvement of the representation space descriptions. This is done by applying decision
(constructive induction), advanced noise-tolerant rules to the events in the sample. For each event,
learning techniques, and new multistrategy the class membership (texture class) is
learning techniques. determined.

The basic idea behind the MLT approach can be The assignment of the sample to a given
explained as follows (Figure 1). Given an image decision class (texture) is based on determining
with labeled samples of different textures, the which of the candidate classes gets the majority
learning system determines a sequence of (or) plurality of votes. Thus, even if some events
operators that transform this image to a in the sample are incorrectly recognized, the

classification of the sample may be correct.

Texture Class . Learning

" Recogntion

rning a Testing a . ImageData Reduction

Ot zti Generation (

<ven Sp a ce 
7•--- 

_ /2. 
E vent G eneration

<,781:3,7,S3> <6,7,0,0,1,'9,6,0>
<3,5,9,2,7,31,0> <4,5,9,0,7,2,1,0>
<4,7,8,1,30,39> <4,9,8,1,5,0,2,3> I 3. Learning

Learning (4) nd Matching (5)• x -'•Optimization. (5)•

•=v.8]l=8] ... 5. Rule Application

Decision

Figure 1: An illustration of the MLT approach to texture learning and recognition.
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The process of learning such texture In the machine learning method described here,,
descriptions consists of the following phases a concept corresponds to a single texture class.
(Figure 1): A concept description is a logical expression in
1) Image preprocessing (volume reduction). disjunctive normal form associated with adecision class (here, a texture class).
(2) Training events generation (selection of

texture samples, determining attributes, and Each conjunction in this expression together
formulating training examples) with the associated decision class can be viewed

(3) Inductive learning of texture rules ("logical as a single decision rule.
templates"), and

(4) Texture rule optimization. The conjunctions (serving as condition parts of
the rules) are logical products of elementary

The above process may be repeated iteratively conditions in the form:
until a desired image transformation is obtrvned. [L # R]

where:
The first phase of the process adapts the "image L, called the referee, denotes an attribute.
volume" to the texture classes characterized by R, called the referent, is a subset of values from
training samples. the domain of the attribute L.
This is done by modifying the spatial resolution # is one of the following relational symbols:
and a gray-level resolution of the image so that =, < >, >=, <of , hol
the similarities between samples of the same Each rule is assigned two parameters: "t" (for
texture and dissimilarities between samples of "total weight")-measuring the total number of
different textures are increased. In the initial wesghtve -meain ing the total n umerexpeimets, he vens wee etrated romthe positive training examples covered by the rule,
experiments, the events were extracted from the and "u" (for "unique weight")-measuring
second or third level of the Gaussian pyramid. the number of positive examples covered by the
The typical resolution of camera-acquired given rule and not covered by any other rule for
images was 512 by 512 image elements. the given decision class.

The second phase extracts a set of spatial texture Here is an example of an AQ-15 decision rule:
samples, called events, from classified texture [Class=I ]t=[x2=l][x4>3][x6=1..7]: (t=6, u=f2)
regions (Module 2 in Figure 1). An event is a This rule covers 6 examples of Class 1, out of
vector of attribute values that represent different which 2 are covered only by this rule, and notimage (texture) features. Initial attributes aregedtefned. featu.Io n ital attributes canbe by any other rule for this class. In the case of
predefined. Additional attributes can be texture rules, xi are attributes characterizing adetermined through the process of constructive txue s ml i u x ei et e ueindutio [Wnk ad Mihalki, ~lItexture sample (in our experiments we used
induction [Wnek and Michalski, 19911. primarily 8x8 windows). The above rule is
There are many possible attributes that could be satisfied, if attribute x2 takes value 1, attribute x4
determined to characterize textures. The most has value greater than 3, and attribute x6 takes
desirable are those that define a description value between 1 and 7.
space in which points corresponding to the same As mentioned earlier, a description of a texture
texture class constitute easily describable class can be viewed a set of such rules (a
clusters. "ruleset"). In such a ruleset, individual rules are

ordered according to the decreasing values of
The attributes generated by different systems the t-weight. The following is an example of a
described In this report fall into one of three texture description:
categories: neighboring gray-level va'ues, [Texture class = sweater surface] 4
statistical measurements, and convolution filter [xl=7,9,12]& [x2>]&[x3--O..4]&[x4=0..5]&[x5=0..3]
outputs. Sets of events extracted from texture [x6=0..7] [x7=2..4] [x8=0..3] (t:28, u:21)
classes to be learned are used as training OR
examples. [xl=5,7,91 [x2>21 [x3=0..21 [x4=0..4] [x5=1..4]
Texture rules are determined using the AQ-15 [x6=0..6] [x70=..21 [x8=0..4] (t:27, u:20)
method for inductive concept learning from OR
examples ([Michalski, 19861). The rules [xl=2,5,7]&[x2ffl..12]&[x3=l..2]
learned by the AQ method are represented In [x4=.2..6]&[x5=3..4]&[x6i0..4]&[x7=1..3,5,7]
VL 1 (Variable-Valued Logic System 1); [x8-0..1,3..4] (t016, u:Il)
[Michalski, 1972]). Advantages of this OR
representation are that it is amenable for parallel [xl=5..14]&[x2>6]&[x3--O..2,4..5]&[x4=2..5] (05, u:3)
execution and easy to interpret conceptually. where xl is the Laplacian edge operator, x2 is the

Frequency spot, x3 is the horizontal edge
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operator, x4 is the vertical edge operator, x5 is maximum of the degrees of match between
the horizontal V-shape operator, x6 is the vertical individual rules in the description and the event.
V-shape operator, x7 is the vertical line operator, The description with the highest match among
and x8 is the horizontal line operator. classes determines the recognition decision. The

measure of recognition accuracy of a rule when
The method uses "truncated" descriptions of applied to a set of testing events is the
texture classes. A truncated description is percentage of the number of correctly classified
obtained by the removing from the initially test events to the total number of testing events
generated rules the ones with a very low t- in the set.
weight. The reason for this is that rules with a
low t-weight can be viewed as insignificant, or as 3 Implemented Systems
representing noise. 3.1 Learning Texture Signatures:
We have discovered experimentally that so TEXTRAL
truncated descriptions often give a higher
texture recognition performance than non- The TEXTRAL system implements a version of
truncated descriptions. Since truncated the MLT approach ("Multiple Logical
descriptions are also simpler, then such a Templates"). The system generates multiple
truncation process is highly desirable. A detailed level of descriptions (rulesets) by applying the
study of this phenomenon (in the context of same learning process to images generated at
non-vision applications) have been described in each level. The first level ruleset relates to the
[Bergadano et al., 1992]. original camera-acquired image. The next level

ruleset relates to a "symbolic image" that
The learned texture descriptions are consists of numerical labels associated with the
generalizations of the observed texture events texture classes. These labels are generated by the
(i.e., attribute-value vectors characterizing application of the first level ruleset, and
window-size texture samples). Therefore, they represent texture classes assigned to texture
can be used to classify unobserved texture events in the original image [Bala and Michalski,
samples. There are two methods for applying 1991]. Subsequent levels of rulesets are
the descriptions for recognizing the class generated by reapplying this same process to the
membership of an event: the strict match and the symbolic images generated at the previous step..
flexible match.

Here is a more detailed description of the
In the strict match, the system tests whether an algorithm:
event strictly satisfies (the condition part of) a - Step 1 extracts a random set of training events
rule. The satisfied rule determines the from the training areas in the original images by
classification decision. In the flexible match, the applying various local operators (such as Law
system computes a degree of match between theevet ad anddat rles Te dgre o mach masks, statistical measures, convolutionevent and candidate rules. The degree of match operators, etc.), and learns the "first-level"
can vary in the range from 0. (no match) to 1.0 texture of rules;
(complete match). The rule with the highest
degree of match determines the classification * Step 2 determines rulesets generalizing the
decision, training events. These rulesets are applied to the

To explain the calculation of the degree of training areas of the original image, and a new
match, assume that a recognition rule contains a image (a "symbolic image") is created. The

condition [x = akr. If the domain of the attribute pixels of the new image (the next level image)

x is a set of numerical values <ai ,a, ...,an>, and are numerical labels of texture classes assigned
by the ruleset to corresponding events in the

an event includes the statement [x=ai], the original (previous level) image.
normalized degree of match between the rule • Step 3 determines the match between the
and the condition in the event is defined: texture training areas labeled by the teacher and

I - ( I aj - ak I / n) the corresponding areas in the symbolic image.
If the condition has several values in the referent If the match is sufficiently high (or the system
(on its right-hand-side), the value closest to ak is reaches a designated number of levels) then the
used. The degree of match between a rule process stops. Otherwise, the control is passed to
containing several conditions and an event was the step 1. The events are extracted from the
computed as the average of the degrees of match symbolic image (the last level image) and
between the conditions and the event conditions, assigned classes corresponding to the training
The degree of match between a class description assignment of pixels in the original image (i.e.,
(which may have several rules) and a given representing the "correct" partitioning of the
testing event (an example) is determined as the image Into texture classes done by the teacher).
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We have performed a number of experiments experiment has demonstrated that multilevel
with the system for various numbers of texture learning (using higher level rules) can increase
classes (between 4 and 16), representing fined- the system's recognition of individual events.
grained textures, such as sand, paper, pebbles,
etc. Training events were determined from It should be clearly noted, however, that to
texture samplings using 8x8 windows, and recognize a given sample of a texture, one would
selected from texture training areas. The texture extract from the unknown texture not just single
training and testing areas for each texture class event (representing an 8x8 window), but also
was determined by a teacher, several neighboring events. In such a case, the

texture Identification decision will be based on
Table I and 2 show the confusion matrices the majority of class assignments of individual
characterizing the system's recognition rates (in events in the neighborhood.
%) for individual texture events (using 8x8
windows) selected from testing areas of four Therefore, even when there is a relatively low
texture classes, CI, C2, C3 and C4. Table I recognition rate of individual events, one can
shows the recognition rate for first level rules, achieve 100% recognition rate of the sample (it
and Table 2-for the second level rules. Recall is sufficient that the plurality of events in the
that the conditions of the second level rules sample are recognized correctly). A problem
apply not to properties of the original image, but may occur mainly when a sample is taken from
to the distribution of texture labels generated by a border area between different textures, or
the first level rules. includes events characterizing rare local texture

distortions.

Recognized texture class Figure 2 presents the recognition rate of
I C2 C3 C4 individual events on learning of 12 textures,

Corrct C 1using rules of level 1, 2, 3 and 4.

-ass -a 21b-

C 84 15 16 23 -

C 2 10 178 20 10 '

C 3 7 14 79 27
C4 26 17 27 1- J

Recognition rates using the first level rules. MinimumI-
Table 1. 1630 -- ,

Recognized texture class 2 14
20 - 4

Correa C I C 2 C 3 C 4 1 Rule Level 4 1 Rule Level 4

Class
Figure 2: An increase of the system

C 1 94 3 2 6 performance with the rule level.

C 2 4 96 4 4 Figure 2A shows the increase of the recognition

C 3 4 9 88 12 rate of individual events from 12 texture classes
with the rule level. Figure 2B shows the

C 4 3 7 12 80 corresponding decrease of the standard
deviation (in %) of the recognition rates with the

Recognition rates using the second level rules. rule level. The average recognition rate of
Table 2. individual events increased from 48% with level

one rules to 58% with level four rules. At the
The average correct recognition rate of same time, standard deviation (of correct
individual events for the 4 class experiment was recognition values) decreased from above 20 to
77% when using the first level rules, and 89.5% 15, respectively. The minimum recognition rate
when using the second level rules. At the same increased from 21% to 36%.
time, the average misclassification rate decreased
from 17.6% to 6.6%, respectively. Thus, the
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The TEXTRAL method represents an extension
and improvement of our earlier method To learn a new, non-basic concept, the system
implemented in the TEXPERT system [Channic, determines a similarity matrix (SM) for that
1989]. TEXPERT used our earlier inductive concept. The SM specifies the average degrees
learning system GEM ("Generalization of of similarity between the training examples of
Examples by Machine;" also called AQl4) the new concept and all the principal axes.
[Reinke, 1984]. TEXPERT was applied to the
problem of recognizing faults in laminated The degree of similarity between an event and
aircraft materials using ultra-sound images each principal axis is determined according to a

procedure called ATEST [Michalski, et al,
3.2 Learning Large Number of 1986]. The procedure determines the

Classes: PRAX accumulated difference between the attribute
values in the event and the conditions in each

In the TEXTRAL system, each texture class is rule in the principal axis. To obtain a uniform
represented by a ruleset [Bala et al., 1992). If representation of all class descriptions, the
there are very many texture classes, there will be similarity matrix is also computed for all basic
correspondingly many rulesets, and the learning concepts.
and recognition process may become complex.
The PRAX system represents an alternative These degrees of similarity can be viewed as
approach to the problem of learning a large values of the new constructed attributes. Thus,
number of concept descriptions (in our this method represents a special case of
application, texture classes), constructive induction. (The general concept of

constructive induction includes any method that
The basic idea is to designate some concepts to self-modifies the concept representation space
be basic, and describe the remaining concepts in during the induction process. Generating
terms of the relations to the basic concepts. This additional, problem oriented attributes is an
idea can be simply illustrated by the example in important form of such self-modification of the
Figure 3. representation space [Michalski, 1978; Wnek &

Michalski, 19911).
If the system already knows the concept of
"orange" (Desl) and "lemon" (Des2), then it To recognize an unclassified event, the method
can learn the concept of "grapefruit" by creates an SM for it, that is, determines a matrix
relating properties of the grapefruit to those of of similarities between the event and the
the lemon and the orange (Des3"), rather than in principal axes. Subsequently, the system
terms of original properties (Des3'). determines the best match between the SM of

that event and SMs of all candidate concepts.
Phase I. Learning Basic Concepts The best match indicates the class membership.

The method was empirically evaluated by
ORANGE LEMION applying it to the problem of learning 24 texture

classes from examples ( Table 3). Each exampleN was described in terms of eight multivaluedDeal: F(cdr, Imab, Ec) Dm2: F(cdor, tage, ic) attributes (representing detectors of various basic

geometrical concepts, such as the presence of
Description of basic concepts lines, edges, V-shapes, etc.). The performance of

the PRAX-derived descriptions was compared
with the performance of the k-NN classifier.

Phase II. Learning New Concept Different level of misclassification noise were
added to test the robustness of the method.

GRAPEFRUIT
The main strength of the method lies in a
problem-relevant transformation of the

Des3': F(cdr, tasb, dc) Des3v= RF( Desl, Des descriptor space. The new descriptors form
generalized sub-spaces of the initial, training
space. In addition, the method uses a non-linear

Figure 3: A simple illustration of the PRAX distance metric to calculate values of constructed
method. attributes. The distance metric based on the idea

In the PRAX method, descriptions of the basic of flexible matching is less sensitive to noise,
concepts are called "principal axes." They are then traditional Euclidean distance metric often
learned in the similar way as in the TEXTRAL used by pattern recognition methods.
system.
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The Recognition Rate 4. If the size of the dataset falls below an
METHOD (in %) of Examples assumed percentage of the training data

from Unknown (which reflects an assumed error rate in the
Texture data), then go to Phase 2. Otherwise, return to

PRAX step 1.
No Noise 100%
5% Noise 100% Phase 2: Acquire concept descriptions from the
10% Noise 100% reduced training dataset using the AQ
K-NN learning program.
No Noise 96%
5% Noise 92% Figure 4 shows results from one run of the AQ-
10% Noise 87% NT system for six texture classes.

Table 3: The results from comparing PRAX with a b
the K-NN method. 96A4n

The current problem with the method is that it e
does not have a mechanism for deciding how to 94 - - - - - -

choose basic concepts. Choosing the minimal 30
subset of concepts to be used for principal axes 92 -

generation is important for method to be
efficient. This problem will be a subject of
future research. Another weakness is that the 90 20
similarity matrix is a relatively complex
representation. 88

3.3 Learning From Noisy Data: 10
AQ-NT 86

The AQ-NT method represents a novel way of
handling problems of learning from noisy real- 84 - 0
world data [Pachowicz and Bala, 1991]. It is 0 5 10 15 0 5 10 15
based on the idea that events covered by rules Iterations Iterations
with a low t-weight may be representing noise in Figure 4: The AQ-NT results.
the data. The assumption is that the system
learning from a dataset that does not contain Figure 4A shows the increase of the recognition
such events has a greater chance to produce accuracy (in %) of individual events with the
correct concept descriptions than when learning number of Iterations. After 12 Iterations, the
from the original events, recognition accuracy reached 95.3%. Figure 4B

The process of learning concept descriptions (in shows the average number of rules for each
ais done In the following iteration. An average number of rules can bethe form of a ruleset) viewed as a measure of description complexity.

two phases: Figure 4B shows a significant decrease in the

Phase 1: Performs a rule-based "filtration" of average number of rules (from 37 to 3). This
the noise from the training data. This is done in result is a significant indication of the
the following way: advantages of the proposed approach.
1. Induce decision rules from a given datasetusing the AQ learning program. 3.4 Rule Improvement by GeneticAlgorithm: AQ-GA

2. Truncate concept descriptions by removing
"the least significant" rules, defined as rules The size, complexity, variability and an inherent
that cover only a small portion of the training noise In the vision data pose significant
data (have small t-weight relative to the t- difficulties in developing a reliable concept
weight of other rules). learning system. The AQ-GA multistrategy

system was developed to address some of these
3. Create a new training dataset that includes issues [Bala et. al., 1993]. This system integratesonly training examples covered by the two forms of learning, symbolic inductive

modified concept descriptionsv generalization and genetic algorithm based
learning. The integration is done in a closed-
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loop fashion in order to achieve robust concept Genetic algorithms typically represent
learning capabilities. individuals in a population (here, concept

descriptions), using fixed-length binary strings.
The learning process cycles through two phases However, If the effective cooperative learning A
(Figure 5). novelty of this method is that it uses, instead of

Training Data Set binary strings, concept descriptions (formally,
VLI expressions) produced by AQI5. To this
end, a special mutation operator was designed to
introduce small changes to selected condition

Tuning Data AQ Training Data parts of the rules in each concept description.
The condition parts are selected by randomly
generating two pointers: the first selects a rule,4, and the second one selects a condition in this
rule.

Data-driven Model-driven The most-left or the most-right values of the
Learning Learning referent in this condition are slightly modified..
(Performance- . (Cognitively- For example, the condition [xl= 10..231 might
oriented) . oriented) be mutated to any of the following: [xl =

10..20], [xl = 10..24], [xl = 12..23] or [xl =
(e.g. GAs) - (e.g. AQ) 8..23], as well as others. Such a mutation process

samples the space of possible concept
description boundaries to improve the
performance criteria. The mutation process can

Control of Learning and be viewed as equivalent various transmutations
Apportionmnent of Training Data Set (knowledge transformations; Michalski, 1993)

4,of the conditional part of a rule.:

Final Learned Description • specialization: [x5 = 3, 10..23]=i [x5 = 3, 10..201
• generalization: [x5 = 3, 1O..23]=: [x5 = 3, 10..24]

Figure 5: The AQ-GA architecture. • variation: [x5 = 3, 10..23]=, [x5 = 5, 10..23]

In the first phase, initial concept descriptions are The crossover operation is performed by
acquired by running a noise-tolerant extension splitting concept description into two parts,
of the AQ15 rule induction system. The upper rules and lower rules. These parts are
resulting concept descriptions may not be, exchanged between parent concept descriptions
optimal from the performance viewpoint, due to to produce new child concept descriptions. Since
the AQ bias to generate simple, cognitively- the degree of match of a given tuning event
oriented descriptions. Therefore, in the second depends on the degree of match of this event to
phase, the system attempts to improve the each rule of concept description, this exchange
performance of the descriptions by employing a process enables inheritance of information about
genetic algorithm (GA). strong rules (strongly matching) in the

individuals of the next evolved population. An
The descriptions obtained from AQI5 are semi- example of crossover applied to short, four rules
randomly modified, using basic genetic description is depicted below:
operators: mutation and crossover. The resulting
descriptions are evaluated according to a Parent description 1
performance criterion. The criterion was the I [x1=7..8] [x2=8..19] [x3=8..131 [x5=4..541
recognition accuracy of the descriptions on the 2 [xl=15..54] [x3=11..14] [x6=0..91 [x7=0..ll]
"tuning" data (a subset of the training set of crossover position
events). The best performing descriptions are 3 [xl=9..181 [x3=16..211 [x4=9.._10
selected from the population, and a new 4 [xl=10..14] [x3=13..16] [x4=14..541
generation is repeated. The process stops when a
desirable performance level is achieved, or the Parent description 2
number of generations exceeds some limit. I [xl=16..541 [x5=O..61 [x7=5..121

The effectiveness of this multistrategy approach 2 rx o =&.251 ix3=&.i31nx4=9..)1)1 I.0=031

was tested on several texture recognition 3 po.xS=8..91it x6=O..71n x7=-..481
problems. 4 (x2=5..81 x3=7..81[x4=&.111[xS=O..36
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The result of the crossover operation (one of two conditions are not effective in recognizing
child descriptions) is the following: objects under different perceptual conditions.

1 [xl=7..8] (x2=8..19] [x3=8..13] [x5--4..54]2 [xl=15..54] [x3=11..14] [x6=0..9] [x5=0..54] To develop robust object recognition systems,3 [x4=O..22)[0=8..91][x6=O..7][x7=)l..48J we have to implement system adaptation4 [x2=0..8[1x3=7..8][x4-6=0.l]fxS=O..3J capabilities that can mitigate influence ofchanging perceptual conditions on the
The performed experiments, involving learning effectiveness of object recognition. Our ultimate
rules for describing texture classes, demonstrated goal is to integrate learning and vision modules
that the classification results obtained with the in such a way that learning functions can
hybrid learning algorithm (Figure 5) ( AQ support adaptation functions of the vision
Training Data -> AQ and Tuning Data -> system.
GAs ) exceed the performance of the AQ
algorithm used alone (AQ Training Data + The varidbility of texture characteristics under
Tuning Data -> AQ). Figure 6 presents changing resolution, lighting and pose has been
recognition rates from one of the experiments. investigated. It was found that texture attribute

distribution (for different attribute extraction
70. methods) can vary significantly when these

conditions are changed. The shape of the
- - Odistribution often contains a multimodality of

texture characteristics. In most cases studied,
the distribution cannot be determined a-priori.

60. We also observe that the variability of perceptual
conditions causes a significant translation of the
attribute distribution within the attribute space.

Relatively little has been done on the application50
of machine learning methods to the adaptability

•1Results for tuning d of vision systems to the dynamic environment.
Bhanu et al. [1989, 1990] apply genetic

-.- Results for testing data algorithms to image segmentation problems with
40 an extension towards segmentation under

variable perceptual conditions.
0 10 20 3)

Generations
The variability of object appearance

Figure 6: Recognition accuracy during the GA (particularly texture characteristics) requires the
generations. development of system capabilities that will

dynamically reconfigure and update object
The result shows the recognition rates for the models (knowledge). In our approach
class that was optimized by the GA. White marks [Pachowicz, 1991], system adaptation is applied
on the diagrams represent results obtained for to recognize objects on images acquired over
tuning data and black marks represent time.
recognition results for testing data.

In order to recognize an object on images
3.5 Texture Recognition Under sequentially, the system has to iteratively update

Varying Perceptual Conditions: the object model with regard to changes in
Chameleon object characteristics. In this approach, a time

sequence of images monitors slight changes in
In recognizing natural objects outdoors we have resolution, lighting and surface positioning from
to deal with a great variability of perceptual one image to the next one -- a sequence of
conditions that influence changes in object images is affected by continuous changes in
visual characteristics. Most vision research on perceptual conditions.
object recognition in outdoor environments,
however, has been focused on recognizing
objects under stationary conditions rather than We integrate the learning and recognition
dynamic conditions (varying resolution, lighting, processes within a closed loop to update texture
pose, and state). Object models, particularly models. Analysis of system recognition
texture models, when learned under a given effectiveness, performed over a sequence of
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images, detects changes in textures. If this problem of learning of the texture descriptions,
effectiveness decreases then the system activates but also to other types of problems in vision.
incremental learning processes of model
modification to improve the model There are several limitations of the current
discriminating power. The system learns initial methods. We have not investigated issues of the
texture models from teacher-provided examples. robustness and the sensitivity of the methods to
Then, the system updates these descriptions various invariant texture transformations (e.g., a
automatically without teacher help. significant changes in the illumination). Also, It

is unclear how the performance of the methods
Two systems were developed: CHAMELEON '91 depends on the number of texture classes.
and CHAMELEON '92. The first system had
only some of the adaptability functions There are several other major topics to be
implemented [Pachowicz et al., 1992, Pachowicz, investigated in future research:
1992]. In this system, a teacher segments each
image in a sequence. The system was useful for (i) the enhancements to the current learning
investigating stability problems and for the methodology to include capabilities for
modification of object models performed on- automatically generating higher level
line. The second system is more autonomous, problem-relevant attributers (constructive
and needs much less help from a human induction)
operator. The underlying methodology, system
architecture, and experimental results are (ii) the applicability of multistrategy learning
presented in a separate paper in the Proceedings (e.g., combining symbolic rule learning
[Pachowicz, 1993]. with neural network learning; the issue of

representing and learning of imprecisely

4 Summary defined visual concepts).

(iii) the extensions of the methodology to other
We have presented a general approach, called problems in vision, e.g., learning of shape
Multilevel Logical Templates (MLT), and several classes.
implemented systems for inductive learning
descriptions of texture classes from texture (iv) learning new visual concepts in terms of
samples. These systems represent different differences and similarities form known
variations and extensions of the general concepts, and developing a calculus for
approach oriented toward various types of representing symbolic differences between
learning problems: visual concepts.
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Abstract related to this polarization information. Such a polaris.-
We have made progress in a number of areas this past tion camera sensor was originally suggested in [161, and in

year, primarily in Physics-Based Vision. We have built the past year at Johns Hopkins we have built aliHuid crys-
and are continuing to develop different versions of a new tal implementation of a polarization camera [26. We are
type of sensor called a polarization camera which we be- continuing to build a variety of other polarization camera
lieve will make the more general capabilities of polarizsa- sensors including a beamsplitter implementation, and a
tion vision more accessible to many image understanding self-contained VLSI chip implementation some of which is
applications. An advancement in the modeling of dif- discussed in an article contained in these proceedings [23].
fuse reflection from smooth dielectric surfaces has been Because humans do not observe polarization directly
made, resulting in a relatively simple formula that sig- except with the aid of special filters, it is beneficial for
nificantly generalizes Lambert's Law. We have developed a polarization camera to produce some kind of vizualiza-
a new stereo technique which utilizes photometric ratios tion for representing sensed polarization information (e.g.,
as an invariant across a stereo pair of cameras for point intensity-color representation) for scene analysis. We uti-
correspondence on smooth surfaces, producing accurate lise a hue-saturation-intensity visualization for partially
dense depth maps. Shape recovery techniques have been linearly polarized light [26], [23]. Such a scheme was saug-
studied which utilize both reflectance and range data to gested by Bernard and Wehner [1] as a functional simi-
compute shape more accurately than from each individual larity between polarization vision and color vision for bi-
data source alone. ological vision systems. Whether a polarization camera

computes a visualization of sensed polarization informs-
1 Polarisation Vision tion at each pixel, or computes a visualisation of physical

There is a compelling motivation to study polarization information (e.g., dielectric/metal composition) at each
vision - polariztion affords a more general description pixel related to sensed polarization, a polarization cam-
of light than does intensity, and can therefore provide a era is inherently a computational sensor. The speed at
richer set of descriptive physical constraints for the inter- which such computations can be performed is important
pretation of an imaged scene. As intensity is the linear for real-time applications.
sum of polarization components, intensity images physi- We feel that there are considerable advantages to build-
cally represent reduced polarization information. Because ing a polarization camera sensor geared towards doing po-
the study of polarisation vision is more general than in- larization vision. There already exist polarization-based
tensity vision there are polarization cues that can im- vision methods that can significantly benefit a number
mensely simplify some important visual tasks (e.g., mate- of application areas such as aerial reconnaissance, au-
rial classification, reflection component analysis, identifi- tonomous navigation (e.g., UGV), target recognition, in-
cation of specular reflection, image region segmentations, spection, and, manufacturing and quality control. A po-
etc...) which are more complicated or possibly infeasible larization camera would make polarization-based vision
when limited to using intensity and color information. A methods more accessible to these application areas and
detailed description of a variety of polarisation-based vi- others. It should be fully realised that, as intensity is

Ton methods are contained in [14], [15], [25], [16, [3]. a compression of polarization component information, a
polarisation camera can function as a conventional in-

1.1 Polarisation Camera Computational tensity camera, so that intensity vision methods can be
Sensors: The Big Picture implemented by such a camera either alone, or, together

A criticism that has sometimes been leveled at with polarization-based vision methods. As intensity-
polarisation-based vision methods is the inconvenience of based methods are physical instances of polarization-
obtaining polarization component images by having to based methods, a camera sensor geared towards polariza-
place a linear polarising filter in front of an intensity CCD tion vision does not in any way exclude intensity vision, it
camera and mechanicay rotating this filter by hand or only generalizes it. providing more physical input to an au-
by motor into different orientations. This inconvenience tomated vision system! Adding color sensing capability to
is simply a result of commercially available camera sen- a polarization camera makes it possible to sense the com-
sors being geared towards taking intensity images instead plete set of electromagnetic parameters of light incident
ofpolarisation images. In our conception, polarization vi- on the camera.
sion is no more a "multiple view" problem than is color We are also considering, once a high resolution VLSI
vision, and a camera can be developed that can automat- polarization camera chip has been eventually made, of
ically sense polarization components and even automati- using such a chip for polarization goggles extending human
cally compute physical scene properties that are directly vision into the polarisation domain. This is in analogy

151



with the way night vision goggles extend human vision to camera. Assuming the existence of hardware for digitis-
"see" other wavelengths of light. Polarization goggles may ing and processing polarization component images this is
be useful to a number of areas which require this type of a low cost way of converting an intensity CCD camera
enhanced vision. It is known that many biological animals into a polarization camera.
(e.g., bees and fish) receive important visual information
in the polarization domain.

A patent is pending for a variety of these polarization 1.3 Polarization Camera Using Beamsplitter
camera and polarization goggle devices discussed above A common design for high quality color cameras is to
[13]. use a beamsplitter that directs equal amounts of incom-

1.2 Liquid Crystal Polarization Camera ing light onto 3 separate CCD chips for red, green, and,
A polarization camera has been designed and built in blue. A similar idea can be used to direct light onto mul-

the Computer Vision Laboratory that utilizes two Twisted tiple CCD chips, each chip covered by a uniquely oriented
Nematic (TN) liquid crystals in series with a fixed polar- polarizing filter. Unfortunately the polarizing properties
iser analyser placed in front of a standard intensity CCD of most common kinds of beamsplitters can be variable
camera. See Figure 1. The TN liquid crystals electro- across standard wide fields of view.
optically rotate the plane of the polarization of light, con- We are developing a prototype for a 2-CCD polariza-
trolled by electrical voltages placed across the liquid crys- tion camera utilizing a polarizing plate beamsplitter. See
tals in synchronisation with camera video. Not only does Figure 2. The simplicity of this design stems from the use
this obviate the need for mechanically rotating a polariz- of a special coating on a glass plate producing a beam-
ing filter in front of a CCD camera to image polarization splitter that effects the polarization of transmitted and re-
components, but optical distortion caused by the wobbling flected light in a nearly constant known way across a fairly
from such mechanically rotation is virtually eliminated, wide range of angles (i.e., ±200). Some details are de-
Components of polarization are imaged under full auto- scribed in [23] contained in these proceedings. The polar-
matic computer control, and these are processed on a Dat- ization state of reflected and transmitted light is effected
acube MV-20 board programmable via Image flow soft- in a linearly independent way by the plate beamsplitter.
ware from a SUN workstation. For details see [261, [231. If reflected and transmitted light are incident on different
One program on the Datacube MV-20 computes from po- CCD chips, the horizontal and vertical components of po-
larization component images a hue-saturation-intensity vi- larization can be resolved by solving a linear set of simulta-
sualization at each pixel for partial linear polarization rep- neous equations, and without the need for any polarizing
resenting, respectively, the orientation of the plane of the filters on the CCD chips. The current trade-off between
linear component of polarization, partial polarization (i.e., this type of polarization camera and our liquid crystal
percentage of linear polarization content), and, intensity, polarization camera is speed vs. amount of polarization
Another program computes dielectric/metal composition information. While the 2-CCD polarization camera with
from polarization component images. Our liquid crystal beamsplitter can operate at least at 15 frames/second and
polarization camera can generate up to 2.5 polarization probably at 30 frames/second, only two components of po-
images a second. The main timing bottleneck is the re- larization are resolved as compared with the complete set
laxation time of 100ms for each of the liquid crystals to of three components resolved by the liquid crystal polar-
switch states. With the most current faster liquid crystals ization camera needed to compute a complete state of par-
we can at least double the rate of polarization images per tial linear polarization. One way of extending the 2-CCD
second, and we intend to incorporate these newer liquid camera design to resolve three components of polarization
crystals in our implementation. A nice feature about our is to add a TN liquid crystal intercepting light before it
liquid crystal polarization camera is that with the Dat- reaches the beamsplitter. There are obvious extensions
acube MV-20 board, it is a programmable computational using three CCD chips at the expense of more difficult
sensor in that sensed polarization components can be pro- registration problems. However, the 2-CCD polarization
cessed in a variety of ways. camera with polarizing plate beamsplitter currently ap-

-~pears to be a simple robust design that may b- able in
the short term to give near frame-rate, partial capability
for polarization vision for applications such as the DARPA
Unmanned Ground Vehicle.

"" I&4
FIGURE 1

Depending upon interest from the image understand-
ing community, a self-contained optical head can be made
from liquid crystals and a polarizer, with appropriate elec- *
trical contacts, that can be mounted on the lens for a CCD FIGURE 2
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1.4 Polarization Camera Chips describes the diffuse reflected radiance into emittance an-
In collaboration with Prof. Andreas Andreou in gle (i.e., viewing angle), 4'. The terms F refer to the Fres-

the Electrical and Computer Engineering department at nel reflection coefficients [11], n, is the index of refraction
Johns Hopkins we are in the process of developing self- of the dielectric medium, and, p, is the diffuse albedo. This
contained VLSI versions of polarization cameras that diffuse reflectance formula accurately describes the depen-
sense complete states of partial linear polarization on- dence of diffuse reflection on viewing angle, falling off to
chip. Currently we are experimenting with chips (designed zero as viewing approaches grazing. This formula also ac-
at Hopkins and fabricated at MOSIS) that compute on- curately shows that diffuse reflection falls off faster than
chip a hue-saturation-intensity representation of partial predicted by Lambert's law as a function of angle of inci-
linear polarization at each "polarization pixel" and output dence, particularly as angle of incidence approaches close
this directly in video. VLSI offers very high computational to 90*. For exact details see [22] in these proceedings.
throughput so that VLSI polarization cameras can poten-
tially operate at very high speeds and benefit a number INCIDENT

of application areas that require real-time operation. UGHT

1.5 Modeling of Polarization in Outdoor w ýSUAcE INCIDENCE

Scenes NM ANL

VIEWING VIEWING
Skylight is partially polarized, dependent upon posi- DIRECTION W AGL

tion relative to the sun according to the law of Rayleigh
scattering. Reflected polarization from different terrain
types (e.g., water, vegetation, soil, etc...) is dependent
upon which patch of skylight is producing the reflection.
A polarization reflectance model is proposed in [19] which
combines the polarization model originally presented in FIGURE 3
L14] with a polarization model for skylight illumination.

uch a model can be used to predict reflected polarization When the Fresnel reflection coefficients are close to
dependent upon viewer orientation relative to surface ter- zero, formula 1 becomes almost identical to Lambert's
rain and could be potentially useful in providing insight Law, and this is true to good approximation when in-
into polarization-based identification of terrain type for cidence and emittance angles are both within the range of
autonomous navigation. 0° - 50* This explains why Lambert's Law has generally

been accepted as a reasonably good approximation. How-
2 Reflectance Modeling ever, if either one or both incidence and emittance angles

are outside this range, major deviations from Lambert's
2.1 Diffuse Reflection Law occur as the Fresnel coefficients become significant.

Perhaps the most widely used assumption about re- In [22] (these proceedings) experiments are shown that
flectance from materials in computer vision and in corn- illustrate striking non-Lambertian effects near occluding
puter graphics is Lambert's Law for diffuse reflection [8]. contours under oblique illumination that are accurately
Lambert predicted that diffuse reflection from a material explained by our new formula.
contributed by light incident from a specified direction is Formula 1 has bearing on virtually any technique in
proportional to the cosine of the angle between this inci- computer vision and image understanding that relies upon
dent direction and the surface normal, independent of the the Lambertian assumption applied to dielectric surfaces,
direction of reflection. While relatively little physical mo- including shape from shading, shape and/or roughness de-
tivation was given for this law when it was first published termination from multiple light source illumination (e.g.,
over 200 years ago, it has been adopted by the computer photometric stereo) and shape from intereflection. It is
vision and computer graphics communities primarily be- impossible to reference all of the related works but the
cause it serves as a reasonably accurate and computation- book by Horn and Brooks [6] contains a number of ap-
ally simple approximation for describing diffuse reflection plicable papers. This result makes it possible to precisely
under a number of conditions. analyze the conditions under which it is reasonable to as-

A prevalent class of materials encountered both in corn- sume the Lambertian model for a particular technique,
mon experience and in vision/robotics environments are and the conditions under which the Lambertian model
inhomogeneous dielectrics which include plastics, ceram- breaks down. In turn our formula can be utilized to
ics, and, rubber. It has been known that diffuse reflection precisely analyze when certain image understanding tech-
from smooth inhomogeneous dielectric surfaces can seri- niques are valid. This more general diffuse reflectance
ously deviate from Lambert's Law under certain condi- model provides a more solid physical foundation upon
tions. We have formally derived from first physical princi- which to develop accurate object feature extraction tech-
pies and extensively empirically verified a relatively simple niques in computer vision.
formula for diffuse reflection from smooth inhomogeneous
dielectric surfaces that accurately explains striking devi- 2.2 Relative Strength of Specular and Dif-
ations from Lambertian behavior [21], [18], [171. Using fuse Reflection: How Bright is a Specu-
the geometry depicted in Figure 3, if light is incident with larity ?
radiance, L, at incidence angle, 0i, through a small solid An additional advancement that our diffuse reflectance
angle, d&, on a smooth dielectric surface, then model for inhomogeneous dielectrics makes is that it di-

rectly relates the diffuse albedo, Qto physical surface pa-
rameters. As explained in [21], [18], [17], [[221 contained

pL x (1 - F(lib, n)) x cos& x (1 - F(sin-(sIn-o), 1/n)) dw in these proceedings], inhomogeneous dielectric material
is modeled as a collection of scatterers contained in a uni-

(1) form dielectric medium with index of refraction different
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from that of air. Diffuse reflected intensity results from entation relative to illumination conditions. Stereo cor-
the process of incident light refracting into the dielectric respondence of equal photometric ratios is in essence the
medium, producing a subsurface diffuse intensity distribu- correspondence of equivalent physical constraints across a
tion from multiple internal scattering, and then refraction stereo pair of images without ever having to know explic-
of this subsurface diffuse intensity distribution back out itly what these physical constraints actually are.
into air. We show that the diffuse albedo, p, is dependent The advantage of using photometric ratios for stereo
upon both the single scattering albedo, p, describing the correspondence is that it is a robust way of obtaining
proportion of energy reradiated upon each subsurface sin- a dense 3-D depth map of smooth featureless surfaces,
gle scattering, and, the index of refraction n. The exact something which is normally hard to do from image fea-
relationship is given in [18], [17], [22]. ture correspondence (e.g., edge correspondence). While

Whereas before diffuse albedo was just an ad hoc two different illumination conditions are required, these
scaling coefficient our diffuse reflection model explains conditions can be arbitrary (e.g., extended light source,
the physical origin of diffuse albedo. This means that point light source, etc...) and never need to be known,
combined diffuse and specular reflection can be modeled and this technique works in full perspective views. We
purely in terms of physical material parameters [20], [22]. demonstrate in [24] experimental 3-D depth determina-
An important consequence of this is that the relative tion of a dense set of points using our stereo technique
brightness of diffuse and specular reflection can be pre- on smooth objects of known ground truth shape that are
dicted in terms of these material parameters. It has al- accurate to well within ±1% relative depth.
ways been known that specularities are typically brighter We have also noticed that isoratio curves formed by
than diffuse reflection and there are a number of im- image pixels with equal photometric ratio are invariant
age understanding techniques that segment specularities to surface albedo and can serve as a useful photometric
using contrast thresholding without real physical moti- invariant for object recognition [24]. Isoratio curves can
vation for selecting such thresholds. Specularity-diffuse be used to distinguish important geometric characteris-
contrasts can be precisely predicted from our physical tics between different objects fairly independent of diffuse
model as described in [20], [22]. Even if the material sur- reflectance properties.
face and illumination conditions are completely unknown, Previous work on using intensity values to determine
we have derived physical lower bounds for specularity- surface shape from stereo correspondence of reflectance
diffuse contrasts below which it is physically impossible for includes the work of Grimson [51 and Smith [121. Ikeuchi
specularity-diffuse contrasts to occur. This may be useful [7] pioneered a technique called "dual photometric stereo"
as an added feature to image understanding techniques in which utilizes photometric stereo to determine surface ori-
discerning specular reflection on dielectric surfaces. entation from a stereo pair of orthographic views, and

then corresponds surface orientation constraints making
3 3-D Stereo Correspondence Utilizing sure to preserve consistency between surface orientation

Photometric Ratios as an Invariant and depth.

Correctly corresponding points on a smooth featureless 4 3-D Shape Recovery From Reflectance
surface utilizing intensity values between a stereo pair of
images can in practice be very difficult to do for a variety and Range Data
of reasons having to do with the nature of video cam- The problem of finding 3-D shape of a smooth object
eras and object reflectance. Influencing image grey values from a single intensity image is a very difficult problem
are F-stop, image plane-to-lens distance, angle between even when light source incident orientation and the re-
incident light on a pixel and the optic axis in a perspec- flectance map is known precisely [6]. Researchers have
tive image, and, camera gain, all of which can be at least also used depth information from range finders to deter-
slifhtly variable in an unpredictable way across a stereo mine 3-D shape [2]. We (Mancini and Wolff] [9], [10] have
pair of cameras. In addition, as was seen in the last sec- been exploring shape recovery methodologies that com-
tion with respect to our research on diffuse reflection from bines range and reflectance data to determine local surface
dielectrics, such reflection is in fact viewpoint dependent. orientation more accurately than is possible by each data

The work of Wolff and Angelopoulou [24] (in these pro- source individually. Even more, we have extended our
ceedings) shows that photometric ratios produced from technique to solve simultaneously for initially unknown
diffuse reflection from different but not necessary to be point light source position a finite distance away, and lo-
known illumination conditions are reliable for accurate cal surface orientation.
correspondence of object points along epipolar lines across The first step is to get initial local surface orientation
a stereo pair of images. The methodology utilizes multiple estimates from least squares fitting of local quadric sur-
stereo pairs of images, each stereo pair taken of exactly faces to range data which has a specified range error. For
the same scene but under different illumination. With the case where light source incident orientation is known,
just two stereo pairs of images taken respectively for two the next step is to make these initial local surface orien-
different illumination conditions, a stereo pair of photo- tation estimates consistent with reflectance which is as-
metric ratio images can be produced; one for the ratio sumed to be Lambertian (a good assumption for smooth
of left images, and one for the ratio of right images. We dielectrics when the angle of incidence of the light source
show that such photometric ratio images are invariant to and the angle of emittance are both within the range
changes in video camera parameters listed above. Be- 00 - 500, See Section 2). To do this, for each pixel we
cause formula 1 above is a separable function in variables project the initial local surface orientation estimate onto
incidence angle, 0b, and emittance angle, 0, photometric the closest point on the conic section in gradient space
ratios of diffuse reflection are invariant to varying view- that is consistent with image irradiance. Then we en-
point as well. We show that object points having the force surface integrability using the method developed by
same photometric ratio with respect to two different il- Frankot and Chellappa [4]. The procedure iterates be-
lumination conditions comprise a well-defined equivalence tween projection onto the conic section nearest point and
class of physical constraints defined by local surface ori- enforcing integrability, and typically converges after about
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10-20 iterations. In simulations we have found that aver- of IEEE Conference on Computer Vision and Pat-
age local surface orientation error of initial estimates were tern Recognition (CI'PR), pages 707-709, Urbana-
better than cut in half by our shape recovery procedure Champaign, Illinois, June 1992.
(e.g., from over 7* average error to under 2.5* average [11] R. Siegal and J.R. Howell. Thermal Radiation Heat
error). Transfer. McGraw-Hill, 1981.

For the case where incident point light source orienta-
tion is initially unknown, after initial local surface orienta- [12] G.B. Smith. Stereo integral equation. In Proceedings
tion estimates are generated by least squares local quadric of the AAAI, pages 689-694, 1986.
fitting to range data, initial estimates for incident source [13] L.B. Wolff. Polarization viewer. Patent Pending Oc-
orientation at each point are generated by a least squares tober 29, 1992.
fitting to a local neighborhood of reflectance data. The 4
position of the point light source a finite distance away [14] L.B. Wolff. Surface orientation from polarization

is then least squares triangulated by light source incident images. In Proceedings of Optics, Illumination and

orientation rays emanating from each surface point. Then Image Sensing for Machine Vision II, Volume 850,

a combination of projecting light source incident orienta- pages 110-121, Cambridge, Massachusetts, Novem-
tion and local surface orientation onto nearest points of ber 1987. SPIE.

conic sections, consistent with image irradiance, together [15] L.B. Wolff. Polarization-based material classifica-
with enforcing integrability, is iterated. In simulations we tion from specular reflection. IEEE Transactions on
were able to achieve about 50 average incident orientation Pattern Analysis and Machine Intelligence (PAMI),
error across the surface, and reduce initial local surface 12(11):1059-1071, November 1990.
orientations errors about 30%. [16] L.B. Wolff. Polarization Methods in Computer Vi-

We want to apply this to actual experimental data us- sion. PhD thesis, Columbia University, January 1991.
ing a range finder and imager. [17] L.B. Wolff. A diffuse reflectance model for dielectric
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Abstract semantics, especially the abstraction in the IUE object
hierarchy. Thus, the display and browsing operations

Our work is concerned with several areas of im- express the class similarities for objects such as images,
age understanding: perceptual organization, image-registered features, and spatial objects. We are
motion processing, model-based vision, image hopeful that using and becoming comfortable with the
understanding software, and applications in interface will not involve understanding a large number
domains such as terrestrial robotics, industrial of unrelated things.
and biomedical image processing. This paper An equally important part of the user interface is what
is an overview of the different papers from our we do not intend to develop. The IUE user interface
lab in the IU Workshop Proceedings. We first must leverage extensively off existing (and emerging) in-
describe the design and initial prototyping of terface and graphics packages and standards. The in-
the user interface of the DARPA Image Un- terface must be supported by ongoing and future de-
derstanding Environment (IUE) and the tools velopments in software environments and graphical user
for documentation, tutorials, and publication interfaces. This is critical for the long term use of the
that will facilitate the use and adoption of the IUE because we can depend on continuous advances in
IUE. We then present different motion pro- these areas that we will want to take advantage of in
cessing algorithms. These algorithms involve terms of capabilities and cost.
generalizing earlier work for processing trans- To realize this, the interface is being developed in
lational image sequences to less restricted mo- terms of three levels. The Graphics Level is the un-
tions; extensions to factorization methods tc) derlying "machine independent" package for display and
allow for linear features which are less depen- graphic operations which tell the screen what to do. Ex-
dent on precise feature-point matching; and amples would be X, GL, OpenGL, and Phigs. The In-
the incorporation of models in processing dy- terface Support Level involves packages for the cre-
namic images. We finally present a set of new ation and rapid prototyping of user interfaces and related
algorithms for range-free qualitative naviga- tools which are built on top of graphics level software.
tion which enable mobile robots with limited This also includes the tools found in the selected soft-
recognition capabilities to form effective spa- ware development environment such as editors and de-
tial maps for navigation and exploration, buggers. The Image Understanding Environment

User Interface (IUEUI) Level consists of the inter-
1 Prototyping the IUE and Tools to face objects specialized for image understanding. This

Facilitate Its Use includes such things as object displays, plotting displays,
several types of browsers, and structures for describing

The user interface of the Image Understanding Environ- the interface context. The IUEUI consists of a small set
ment (IUE) is intended to provide flexible, simple, and of objects which can be freely combined for very powerful
powerful tools for exploring data, algorithms, and sys- results. The specifications of these objects are relatively
tems. The general principles of object oriented design independent of the other two levels although much of the
used in developing the IUE object hierarchy and pro- current prototyping and design activities are directed to-
gramming constructs have also been applied to the in- wards understanding how to best realize the functional-
terface: abstraction over common operations to provide ity of the IUEUI objects with respect to these two levels,
a small number of interface objects which can be freely especially for accessibility and. limiting the eventual cost
combined by a user. The interface has been designed to of the IUE for users.
have a consistent interaction with WUE objects and their The basic functional components of the IUE interface

are:
*This research is supported by the Advanced Research

Projects Agency of the Department of Defense and is mon- o Displays: These deal with mapping spatial objects
itored by the U. S. Army Topographic Engineering Center and images (or sets of spatial objects and ir, ages)
under contract No. DACA76-92-C-0016 onto two-dimensional display windows. There are
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several types of displays for displaying images and These different types are distinguished by specific
image-registered features, for plotting functional re- methods but all inherit a large number of similar meth-
lations between attributes and components of spa- ods from the general display class. For example, overlay
tial objects; and for displaying surfaces. operations are similar for a surface display and for an

" Browsers: These deal with presenting textual and image display, although they can look quite different (In
symbolic information about objects. There are dif- one case it appear like drawing in solid colors in im-
ferent types of browsers for such operations as in- age registered coordinates on top of a displayed image
specting the values in a spatial object, for perform- and in the other it would be rendering the colors onto a
ing interactive queries with respect to databases displayed surface). Plot displays have many similarities
and sets of objects, and for inspecting relational with object displays in terms of such things as overlays
graphs and networks, and interaction methods.

" Interface Context Descriptors: These are for 1.2 Browsers
describing the state of the interface and interfacedbjecscribinghes sate of c theinte e and intheurrfe Browsers are used for interacting with text-based or sym-
objects. Examples are ah thivengispla the current bolic descriptions of objects. They are used for actions
color-look-up table for a given display; the current sc sqeisoe e fojcs eemnn n n

dispay indo orbrower;and ink beteenin- such as queries over set of objects, determining and in-display window or browser; and links between in-
terface objects which describe related views. specting relationships between objects, process moni-toring, and inspecting values in an object. There are

" Command Language and Command Buffer: two general types of browsers: Field-Browsers and
Users can control their interaction with objects us- Graph-Browsers of which only field browsers are cur-
ing an interactive command language. This also rently being implemented.
provides a complete description of the functionality Field Browsers consist of a regular array of fields.
of the user interface. Fields can be filled with text, icons, colors, colored text,

" Simplified, programmable access to GUI ob- text in particular fonts. Fields can have actions associ-
jects: This is intended to provide programmer ac- ated with them when they are selected or a user changes
cess to several of the objects commonly found in the values in them. We distinguish between four types
Graphical User Interface Construction Kits such as of field browsers which inherit from the general Field
knobs, sliders, text buffers, menus. These can then browser class:
be used in applications and to extend the interface Set/Database Browser: This is presented as an

We know look at these in slightly more detail and refer array of fields. Each row of fields corresponds to
the reader to the respective paper in the proceedings for selected attributes of a particular object and each
a more complete discussion. column corresponds to common attributes over the

set (or database) of objects. An example would be
1.1 Object Displays browsing the database which describes the current
Object Displays are for viewing and interacting with ob- active objects in the IUE to find the most recently
jects by mapping them onto a two-dimensional display created image from some operations.
window. This involves nearly all WUE objects: images, Object Attribute Browser: Each row corre-
curves, regions, object models, surfaces, vector fields, sponds to the value of an attribute for an object.
etc. Object displays support several types of operations This would usually be used for inspecting a single
for controlling the mapping of an object onto a win- object.
dow such as the viewing transformation; mapping val-
ues through pixel-mapping functions and color look-up * Hierarchical Browser: Useful for text-based in-
tables; the specification of overlay planes; transparency spection of graph structures and trees. When an
effects; interacting with displayed objects through selec- item is selected, the related items (along some rela-
tion operations and interactive function application. tional dimension) are displayed in the next column.

There are different types of object displays: * Object-Registered Browser: This contains val-

"* The image display is for viewing images and image- ues extracted from a spatial object, such as the
registered features. intensity values in some square neighborhood of

"an image. Depending on the dimensionality of* The local graphics display displays objects by the object (or relationships between component ob-
mapping their values onto parameterized graphic ject (or ran ship s a componentiob-

objects such as lines and cubes. Examples are dis- jects), this can be presented as a one-dimensional
playing vector fields and edgels, array, a two-dimensional Array, or multiple two-dimensional arrays and be used to describe curves,

"* The surface display is for displaying objects that images, image sequences, pyramids.
get mapped onto mesh or rendered surfaces.

"* The plot display is for displaying functional rela- 1.3 Command Buffer and Command Language
tions between objects. Examples Users will be able to specify all interface actions through
are one-dimensional, two-dimensional, and three- an interactive command language and be able to access
dimensional graphs; histograms, scattergrams, and all the functionality of the interface. Display operations
views of functions and tables. can be performed interactively through the command
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buffer. The command language will have intelligent de- and displays specialized for use with the Data Exchange
faults and abbreviations (such as displaying to the cur- Format. We are exploring extensions to GNUPIot so it
rent window if none is specified). In addition, the com- is compatible with the methods associated with the gen-
mands will be be usable in non-interactive code for cre- eral display class and can provide an inexpensive plotting
ating scripts and general display routines, package. We are also evaluating OPENGL as a possible

In the actual operation of the IUE, it is not necessary machine independent graphics package.
that all interactions take place through this command
language: some w,'l be invoked by menus and special 1.7 Documentation and Tutorial Tools
keys and refer to the current display context. An im- The WUE will be supported by on-line documentation
portant part of the design of the IUE interface entails and tutorials. The tools for implementing these will also
how commands (and which commands) are mapped onto be available for enhanced communication and publica-
menus and other interactive devices. This is especially tion by scientists and developers who use the IUE. While
important since the interface will support a wide com- there is significant activity in developing documentation
munity of users ranging from naive users who are inter- and hypermedia toolkits, they remain largely machine
acting with hardened applications to developers. Naive dependent with no clear standardization. We are de-
users may want many interactive devices such as spe- veloping a simple documentation tool called Knowledge
cialized menus while experienced users will want more Weasel (KW) which is based on Lucid Emacs 19 and
powerful, abbreviated commands. Advanced users will existing media editing tools.
become very adept at shortcuts that should be provided. Knowledge Weasel (KW) is a presentation and author-

1.4 Interface Context Description ing system designed to support annotation using several
different types of media. A simple analogy for KW is

Contextual descriptions of the state of the interface and reading a book or attending a lecture and being able
the status of displayed JUE objects are used for intel- to make diverse types of comments and annotations on
ligent default behaviors so users needn't specify every the material. In reality, such unrestricted annotations
detail of interacting with an object and can build corn- and comments made with respect to real books and lec-
plex displays incrementally. Many interface operations tures could create a significant mess (especially if made
involve accessing and setting the attributes of data struc- by several different people), so in developing KW we
tures which describe the current context for such things have extended this simple metaphor in several ways. The
as the current or active window; the current mapping first is to provide a general format for annotations that
from objects to displays (such as the viewing transforma- can include several different types of media. An anno-
tion and color look-up table); established links between tation is a common record structure wrapped around
windows (for specifying the relations between displays instances of different types of media such as text files,
in different windows such as window to window panning sound, drawings, postscript files, GNU-plots, code run-
and zooming); the thickness of lines in graphic overlays; ning in the GDB debugger, and others. Annotations are
and the layout of windows and browsers on a screen. implemented much as a property lists in Lisp with at-

tributes and values and are displayed as buttons with
an associated region of support. When an annotation is

GUIs (Graphical User Interfaces) generally consist of selected it performs an operation specific to the type of
several standard types of interface widgets that can be annotation selected. Annotations are created using exit-
used in the interface. The IUE interface should provide ing media editing tools for operations such as recording
routines that allow users to access these constructs and a sound, drawing packages, calls to other branched pro-
use them in their programs and the interface. The IUE cesses, grabbing a portion of the screen. The second
should provide simplified, interactive access to the inter- extension has been to develop different types of naviga-
face objects found in GUI Kits such as sliders, knobs, tion, organization and presentation tools to keep users
buttons, menus, and text input/output fields. This in- from being overwhelmed with a great deal of possibly
cludes methods which enable user code to access infor- irrelevant information. Users can prune the set of anno-
mation from specified interface objects or to prompt a tations that they want to deal with and also how they are
user. displayed. Annotations are structured to make possible

intelligent processing, perhaps eventually including rule-
1.6 Interface Prototyping Activities based processing for automatic presentation and "ferret-
We are currently prototyping many different parts of ing" of information (hence the name).
the user interface to complete the functional specifica- We are implementing KW on Lucid Emacs 19 which
tion and to answer basic implementation questions about is in turn based on the X window system. Lucid's im-
choices regarding GUIs and user interface toolkits. This plementation of Emacs Lisp provides primitives for han-
will help to simplify the job of the eventual integrating dling display attributes such as windows, fonts, and col-
contractor. For reasons of rapid development, current ors. Lucid Emacs version 19 has a built-in Lisp inter-
implementation is taking place in C and C++ on Silicon preter for Emacs Lisp and this Lisp variant provides a
Graphics machines using the GL graphics library, Motif, wide variety of primitives that are useful for manipu-
and the FORMS user interface toolkit. We have been lating text, processes, and/or files. It is available via
able to put up the general display object and the differ- anonymous FTP on the Internet, and is also the basis
ent browsers and hope to use these as initial browsers of a commercial product. Knowledge Weasel is chiefly
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written in Emacs Lisp but some parts, such as the part We can extend the translational processing algorithm
which interacts with the operating system's lock dae- to work with more general cases of motion by applying
mon (lockd), is in C and communicates via pipes with the translational procedure to local portions of a flow
the Emacs Lisp portion of the implementation. field. This allows us to associate a direction of rela-

We have begun using an initial version of KW to de- tive environmental motion with the corresponding lo-
velop an on-line version of the Low Level Vision course cal portion of a flow field. We call this description of
taught at Georgia Tech. We also plan to use it as part of image motion the local translational decomposition
a computer vision algorithms course where students will (LTD). This is a low level representation of environmen-
select a paper from the literature, implement the corre- tal motion which considerably simplifies the recovery of
sponding algorithms and use KW to develop a tutorial the sensor motion parameters.
presentation of the paper. Computing the LTD begins by decomposing a flow

1.7.1 CD-ROM version of DARPA IU field into small overlapping neighborhoods and then ap-

Workshop Proceedings proximating the motion for each neighborhood as being
produced by translational motion of the corresponding

A significant instance of technology transfer is the portion of the environment. This is accomplished by ap-
DARPA IU Proceedings and workshop. For the next plying a procedure which extracts the relative direction
meeting, we hope to enhance this by having the work- of translational motion within small image areas over a
shop proceedings available on CD-ROM, and integrated flow field. This approximates more general motion as an
with the Data Exchange Format, a documentation and array of local environmental translations, and interprets
browsing tool such as Knowledge Weasel, and, possi- local image motions as if they resulted from translational
bly, the IUE itself. This will enable an extraordinary motion of the corresponding portions of the environment.
type of paper which includes data, code, additional refer- This associates with local portions of a flow field a unit
ences, animations, and extensive annotations and cross- vector corresponding to the direction of motion relative
references. to the sensor of the corresponding portion of the en-

vironment. Each unit vector has an associated fit-value
2 Dynamic Image Processing reflecting the validity of the translational approximation.

2.1 Translational Decomposition of Flow Fields Once the directions of motion have been established,
we can then use these as constraints to determine the ac-

This paper presents a set of algorithms for processing tual parameters of motion and to recover the structure
optic flow fields by approximating them as local trans- and layout of environmental surfaces. This is broken
lations of the corresponding portions of the environ- into four different cases: motion constrained to a known
ment. This is theoretically interesting since it dramat- plane (the normal to the plane is known); motion con-
ically simplifies the equations for inferring motion pa- strained to an unknown plane (the normal is not known);
rameters from optic flow and also supplies a low level motion constrained to surfaces which are locally planar;
representation of image motion that might be useful for and arbitrary motion with no assumptions.
inferring motion properties from non-rigid motions. Its
practical use involves its robust nature for motion con- 2.2 Interactive Model Based Vehicle Tracking
strained to an unknown plane which characterizes much
of terrestrial robotics. It can also use a small number While most work in motion processing has involved very
of points for inferring motion parameters from an optic minimal assumptions about objects such a rigidity, a
flow field. very important area for future work is motion process-

In previous work [Lawton, 1982], we developed a tech- ing which incorporates object models. We have begun to
nique to process relative translational motion of a sen- investigate this in the restricted domain of tracking ve-
sor with respect to a stationary environment or inde- hicles from a stationary camera in outdoor road scenes.
pendently translating objects. This and related algo- The key idea is that motion is a critical source of infor-
rithms [Burger and Bhanu, 1989; Jain, 19831 are based mation for instantiating object models and that motion
on the strong geometric constraints on image motion in processing is in turn simplified by the constraints sup-
the case of translation - radial motion of image features plied by object models.
from a focus of expansion determined by the intersec- Processing begins with a human forming a rough inter-
tion of the axis of translation with the imaging surface. pretation of a scene by interactively manipulating mod-
The technique in (Lawton, 1982] was based on a mea- els of objects such as terrain surface patches, roads, gray-
sure which described the quality of feature displacements ity, and vehicles. This initial, human-directed interpre-
along the radial flow paths associated with a potential tation consists of incompletely specified two dimensional
axis of translation. The measure was then optimized by drawings of expected image features and associated three
searching over the surface of a unit sphere where each dimensional object models which are also initially in-
point corresponded directly to a possible direction of completely specified. Once an interpretation is in place,
translation. The optimization combined the determina- tracking algorithms then autonomously refine and ex-
tion of the direction of translation and the corresponding tend the interpretation. For example, a human will indi-
image displacements into a single, mutually constraining cate that a particular area is a road as a two-dimensional
computation. It was possible to determine the direction drawing. The system will then track movement along the
of translation to within a few degrees in small image road and fit a constraint-based description of a vehicle
areas with a few features. to this movement. As vehicles are tracked, the three-
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dimensional shape of the road can be recovered. The 2.3 Shape and Motion from Linear Features
system can determine that a vehicle has just gone off the The extraction of environmental structure and motion
road (or that it is behaving inconsistently with respect from a sequence of two-dimensional images is a com-
to the model of a vehicle) and report back to a human mon problem in computer vision. Typically solutions to
about unusual occurrences or behavior that cannot be this problem are expressed in camera-centered coordi-
accounted for. nate systems where environmental geometry is specified

by the depth along an image feature's ray of projection.
Object models are related by constraints specifying Unfortunately, parameters computed from this camera-

necessary geometrical properties and relationships be- centered representation are dependent upon the depth to
tween objects. The use of constraints allows for flexible environmental features. This leads to erroneous results
object instantiation. A user can indicate a vehicle and for objects located far from the camera.
this directs perceptual processing routines to determine The recently introduced factorization method [Tomasi
the corresponding local surface orientation and roads, or and Kanade, 1990; Tomasi and Kanade, 1992; Boult and
w- can instantiate a road segment to direct the extrac- Brown, 1992] has attempted to overcome the disadvan-
tion and tracking of vehicles. tages associated with a camera-centered representation.

This method uses a world-centered coordinate system,
The work with the local translational approximation along with an orthogonal projection assumption, in order

described above as been found to be useful for tracking to compute shape and motion without the intermediate
vehicles and determining three dimensional information, calculation of depth. A matrix of image measurements
Moving vehicles can often be treated as rigid objects is constructed by making point correspondences between
which are translating over short periods of time. For image frames. The matrix is then factored into a shape
example, as a vehicle goes around a curve, because of matrix and a motion matrix using Singular Value De-
turning radii constraints, the axis of rotation is often composition.
far away from the vehicle itself and the vehicle motion One problem with the factorization method is that it
can be treated as a sequence of small translations cor- relies upon accurate point correspondences between im-
responding to tangents of the curve of motion. The lo- age frames. This paper introduces a method of extract-
cal translation-based tracker determines the direction of ing shape and motion from directionally selective lin-
motion of a set of extracted image points over time, and ear feature correspondences. This line-based algorithm
fits their motion to an estimate of the current direction is capable of reconstructing shape and motion without
of motion of the corresponding vehicle in three dimen- computing depth as an intermediate step. In addition to
sions. The effect of this tracker can be visualized as a the orthogonality assumption, we assume that the three-
unit sphere with an axis corresponding to the current di- dimensional direction of gravity is known relative to each
rection of motion. As the vehicle and the corresponding image in a motion sequence.
set of points move, the position of the axis changes with The algorithm begins by searching for the orientation
respect to the sphere. We expect that this processing of one of the lines in the environment. This is a one
will work well with temporal filters since there are con- dimensional search over 1800, constrained by the projec-
straints on how quickly a vehicle can change its direction tion of the line on one of the image planes. Each candi-
of motion. Vehicle rotation is indicated by areas of the date line orientation, along with the position of gravity,
image which show differences over time, but for which no forms a set of quadratic equations which constrain all
clear axis of translation can be determined. Conversely, the other lines, as well as the rotation between image
if there is an instantiated three-dimensional road model frames. An error measure is computed from the derived
and a rough estimate of the position of the vehicle along line orientations and used to evaluate each shape and
the road has been established, the tangent information motion configuration. Once the line orientations and
associated with the road model can be used to initial- parameters of rotation have been derived, the relative
ize the search for the axis of translation. If there is an positions of the lines can also be computed from simple
instantiated vehicle model, it restricts the features that linear equations.
the local translational tracker uses.

3 Range-Free Qualitative Navigation
This work will be useful for applications such as teler-

obotic monitoring systems where low bandwidth commu- Qualitative Navigation [Kuipers and Byun, 1987; Levitt
nication is critical. The human would produce a rough and Lawton, 19901 concerns spatial learning and path
scene interpretation from sensory information from a planning in the absence of a single global coordinate sys-
telerobots. The resulting interpretation is a model of tem for describing locations and the positions of land-
the world that the telerobot would refine, use to control marks. It is based on a multi-level representation of
their behavior, or report back to a human. In this way, space, which, at its most abstract level, is based on topo-
the human directs the telerobots by initializing and con- logical properties which allow a robot to describe a loca-
straining their processing and communication between tion using the directions of visually salient patterns (with
the robot and the human takes place in the context of no associated range measurements) and then navigating
a shared model of the world which makes possible infre- using the occlusions that occur among them as a basic
quent, semantically meaningful, and very low bandwidth cue to control movement through the environment. An
communication. advantage is that the robot can use landmarks for which
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exact positions can not be determined. Thus, if a robot to a freely navigating robot which can build maps and
sees a building in the distance, it may not know or be navigate using landmarks which are based on simple vi-
able to recognize the structure as a building or determine sual features, such as colored regions and edges aligned
its exact position in space but it can still incorporate this with gravity.
to form an effective spatial memory. This is actually
quite intuitive: it is doubtful that animals navigate by References
detecting landmarks, determining ranges to them, and [Boult and Brown, 1992] Terrance E. Boult
then storing everything in a single frame of reference.
It also removes the effects of incremental errors due to and Lisa Gottesfeld Brown. Motion segmentation us-

drift. ing singular value decomposition. In Proceedings of

Our work [Lawton and Levitt, 1989; Levitt and Law- the Image Understanding Workshop, pages 495-506,

ton, 1990] in qualitative navigation developed while try- 1992. San Diego, CA.

ing to produce basic navigation and recognition capabil- [Burger and Bhanu, 1989] W. Burger and Bir Bhanu.
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with a terrain representation based upon an a priori ter- tonomous navigation. In Proceedings of IEEE Con-
rain grid, which describes terrain in terms of a regular ference on Computer Vision and Pattern Recognition,
square grid of features referenced with respect to a sin- pages 563-568, 1989.
gle global coordinate system. There are several prob- [Jain, 1983] R. Jain. Direct computation of the focus of
lems associated with this involving difficulties with up- expansion. IEEE Transactions on Pattern Analysis
dating a terrain grid; difficulties in establishing exact and Machine Intelligence, 5:58-64, 1983.
three-dimensional positions of landmarks; and dealing
with the limited recognition capabilities of robots. [Kuipers and Byun, 1987] B.J. Kuipers and Y.T. Byun.
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sume that once landmarks are seen, they can be tracked and Image Processing, 22:116-144, 1982.
over time until they disappear. The other distinction
involves whether or not the navigation algorithms use a [Levitt and Lawton, 1990] T.S. Levitt and D. T. Law-
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visible from a wide set of views. A global compass will Kanade. The factorization method for the recovery
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Topological Qualitative Navigation Algorithms

Compass No Compass
distinct Ian marks Very Good Good
non-distinct andmarks Good Difficult!

For example, qualitative navigation without a com-
pass and in a world of identical, non-distinct land-
marks is very difficult and depends critically on matching
viewframes based exclusively upon the angular orienta-
tions of landmarks. More practical algorithms are those
which are based upon the use of a local compass and a
limited number of distinct landmarks. This corresponds
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Abstract at University of Washington.

Recent progress in image understanding
research at the University of Washington 2 Performance Character-
is described in this paper. The main fo- ization
cus of the research has to do with perfor-
mance characterization of computer vision
algorithms. We provide an overview of our Image Understanding systems employ d-
approach to performance characterization ieterentialgorithm pedfnseunce .
and discuss ongoing theoretical and exper- Deterinationothe pormance of theimental work. complete IU algorithm is possible if the

performance of each of the sub-algorithm
constituents is given. An algorithm em-

1 Introduction ployed at any stage in the image analysis
sequence employs a representation for the

Our current focus in Image Understanding data with which it works. In our approach,
research at the University of washington is we address questions such as: what kinds
on performance characterization of com- of conditions exceed the limits of the rep-
puter vision algorithms. Our present re- resentation? When is reality not covered
search objective is to develop the method- by the representation? What condition-
ology for evaluating the performance of s make numerical computations, that the
image understanding algorithms and sys- algorithm performs, to be unstable ? Fi-
tems. In the first section of this paper we nally, since the algorithm works with noisy
summarize the general approach we use for data, data which has been perturbed from
performance characterization. Subsequen- its ideal form, the results of the algorith-
t sections discuss accomplished and ongo- m will be perturbed from their ideal form
ing work in performance characterization too. To what degree will a perturbation
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of the input data affect the accuracy of we must first specify a model for the ide-
the output, in a qualitative sense and in a al world in which only perfect data exist.
quantitative sense? Then we must give a random perturbation

The methodology involves both black- model which specifies how the imperfec-
box and white-box perspectives. In the t perturbed data arises from the perfect
black-box perspective, the problem is one data. Finally, for the last algorithm in a
of determining what the requirements of vision sequence we need a criterion func-
a computer vision task are, and perform- tion which quantitatively measures the d-
ing empirical evaluations to verify whether ifference between the ideal output arising
these requirements are met. In the white- from the perfect ideal input and the calcu-
box perspective, the algorithm is exam- lated output arising from the correspond-
ined from the inside out. Under a given set ing randomly perturbed input.
of well-defined assumptions, does the algo- The difficulty in performance evaluation
rithm provide guaranteed answers ? This is in deciding what the appropriate ran-
is done by performing a theoretical evalu- dom perturbation model must be for each
ation of the algorithm. The consistency of input or output a vision algorithm com-
these assumptions used in the theoretical ponent may have. Sometimes the algo-
analysis with the reality that the algorith- rithm component may change data struc-
m is supposed to handle is established by tures from input to output. This means
a experimental reality-assumption valida- that the random perturbation model must
tion test. be different from input to output. And of

What does performance characteriza- course, the choice of the random perturba-
tion mean for an algorithm which might tion model for a vision algorithm compo-
be used in a IU system? Each algorithm nent output must be suitable for the input
is designed to accomplish a specific task. to the subsequent vision algorithm compo-
If the input data is perfect and has no nent. Very quickly one finds that the clas-
noise and no random variation, the out- sical Gaussian models are not appropriate.
put produced by the algorithm should also
be perfect. Otherwise, there is something
wrong with the algorithm. So, measuring 3 Current and Ongoing
how well an algorithm does on perfect in- Work
put data is not interesting. Performance
characterization has to do with establish- Re -nt work, [1], was focussed on the
ing the correspondence of the random vari- whi !-box perspective. We were interested
ations and imperfections which the algo- in setting up random perturbation model-
rithm produces on the output data caused s for typical computer vision algorithms
by the random variations and the imper- and relating the model parameters to per-
fections on the input data. This means formance measures of algorithms. In the
that to do performance characterization, past year, we theoretically analyzed an ex-
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ample vision an example vision algorithm intervals obtained after the filling opera-
sequence that involves edge finding, edge tion.
linking, and line/arc fitting. By starting In reality, there is an overlap between
with an appropriate noise model for the the edge detector neighborhoods centered
input data we derived random perturba- around pixels. Hence there is some de-
tion models for the output data at each pendence between gradient estimates ob-
stage of our example sequence. These ran- tained for neighboring windows. In addi-
dom perturbation models are useful for tion, if one assumes that the noise at each
performing model based theoretical com- pixel is locally dependent then the corre-
parisons of the performance of vision al- lation in the noise would introduce corre-
gorithms. Parameters of these random lation in the gradient estimates. In ad-
perturbation models are related to mea- dition, the analysis in [1] did not include
sures of error such as the probability of positional errors. These positional errors
misdetection of feature units, probability are of significance if one wishes to analyze
of false alarm, and the probability of in- higher-level matching algorithms. Hence,
correct grouping. In Ramesh and Haral- we extended the results presented in [1] to
ick [1], we described a theoretical model handle dependencies between gradient es-
by which pixel noise can be successively timates for neighboring edge pixels. Under
propagated through an edge labeling al- the assumption that the gradient across
gorithm, an edge linking algorithm and a the edge is constant along the entire mod-
boundary gap filling algorithm. Assuming el line segment, we illustrated how the de-
an edge idealization of a linear ramp edge pendencies between neighboring pixels can
and i.i.d Gaussian random perturbations be captured by modeling the sequence of
on pixel gray values it was shown how one labeled edge and non-edge pixels along the
could model the breakage of a true line seg- true model line as a binary Markov Chain
ment as a renewal process with alternat- of a particular order. The transition prob-
ing segment and gap intervals. It was also abilities for the Markov chain are shown to
shown that if one ignores the dependencies be related to the true edge gradient, the
between adjacent gradient estimates then edge operator width, the noise variance,
the segment and gap interval lengths are and the edge operator threshold.
exponentially distributed with parameters In other work, [2], we focussed on per-
that are related to the true edge gradien- forming theoretical model-based compari-
t, the neighborhood operator size and the son of gradient based edge finding schemes
gradient threshold employed. It was also and mathematical morphology based edge
shown how the output after a gap filling finding schemes. The performance analy-
operation could also be modeled as an al- sis was done by assuming an ideal edge
ternating renewal process and we derived model and a noise model and by deriv-
the expressions for the probability distri- ing expressions for probability of false alar-
butions of the lengths of segment and gap m and probability of misdetection of edge
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pixels. Under the Gaussian noise mod- erated synthetic image data consisting of
el assumption, the theory indicated that ramp edges with varying orientations and
the morphological edge detector is superi- additive Gaussian noise of different level-
or to conventional gradient based edge de- s. We are in the process of estimating the
tectors, that label edges based on gradient random perturbation model parameters at
magnitude, when a size 3 by 3 window was each stage of the line detection schemes
used. We performed experiments to vali- employed. The results from these experi-
date our theoretical results and the empir- ments will be used to validate the theory
ical plots indicated that the morphological discussed in [1]. We plan to perform simi-
edge operator was also superior when a 5 lax evaluation using RADIUS imagery.
by 5 window is used. However, the theo- In the black-box mode of performance
retical plots did not confirm this because characterization, we have defined the
the theory provided only an upperbound. meaning of an experimental protocol. We
In [2] we also included comparisons of re- have set up an experimental protocol for
suits obtained for real images. A simple evaluating the performance of an algorith-
analysis of hysteresis linking was also done m which computes the exterior orientation
in this paper and it was shown that hys- given a set of 3D model points with its
teresis linking improves the performance corresponding 2D perspective projection-
of the edge operators. s [3]. The exterior orientation algorith-

Our recent work involved the design and m computes the rotation and translation
implementation of an experimental proto- by which the model reference frame can
col to compare the accuracy of the edge be transformed into the camera reference
locations obtained for the two operators. frame. The experimental protocol in [3]
We generated synthetic images containing illustrated how ideal data could be ran-
ramp edges of various orientations and ad- domly generated and how this ideal da-

ditive noise of varying degree. We defined ta was randomly perturbed. The random
the edge pixel location error as the dis- perturbations employed included both s-
tance along the gradient direction from mall perturbations, that affected most of
the true edge pixel to the nearest labeled the generated perspective projection da-
edge pixel (if one exists) in the edge detec- ta points, and large perturbations that af-
tor output. We applied the morphological fected a small part of the generated da-
edge operator and the gradient based op- ta points. Experiments were conducted
erator on these images and we are in the to compare the standard iterative equal-
process of evaluating the results. ly weighted least-squares against the iter-

We are also in the process of evaluat- ative reweighted least-squares technique.
ing line finding schemes. We have de- Planned future work includes evaluation
vised an experimental protocol for evaluat- of algorithms for circle finding, ellipse find-
ing line finders and are conducting the ex- ing, and rectangle finding, particularly as
periments now. Specifically, we have gen- these algorithms are employed in the un-
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derstanding of aerial images. In this appli-
cation rectangles correspond to roof top-
s and circles and ellipses correspond to
spherical holding tanks or circular chim-
neys.
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Abstract new object and constraint system, Classics, was
implemented to facilitate the geometric reason-A goal of this research is effective recognition of ing necessary to generate Bayesian networks

complex objects in realistic, operational scenes

with moderate complexity, using general meth- automatically.

ods with a rigorous scientific basis. This re- Extended edges for a variety of scenes were
search is intended to contribute to ATR, map- generated using a preliminary local linking of
ping and site monitoring. Major research issues edgels from a new Wang-Binford operator. Ex-
are: 1) robust recognition despite image com- tensive performance evaluation was done to
plexity; 2) exploitation of multi-spectral, multi- build a statistical model for the new Wang-
sensor data; 3) low-complexity algorithms; and Binford operator to incorporate in Bayesian
4) automation of development of recognition networks. Image measurements of position andprogramsa orientation are an order of magnitude more ac-

The technologies of this research that con- curate than those in ACRONYM, Stanford's

tribute to resolving these major issues are: a) system from 1980, making possible an order
;b) structured Bayesian infer- of magnitude more accurate estimates of partquasi-invariants; bstutrd ayinife-dimensions and stereo measurement. Effective

ence; c) segmentation and measurement, and dmnin n tromaueet fetv
ence;d ) shapegmentation. ameasurement appears possible to a few percent
d) shape representation. for surfaces with images extending only 5x10
From the point of view of computational com- pixels.

plexity, the most important problem in recog-

nition is figure-ground discrimination. In the
last IU Workshop, effective figure-ground dis-
crimination was demonstrated based on quasi- I: Introduction
invariants derived for Generalized Cylinder
parts (GC). The shape of 3d objects was in-
ferred from monocular images [Sato and Bin- The goal of this research is to develop effective meth-
ford 92a,92b]. ods to contribute to ATR, cartography and surveillance.
New theoretical results have been achieved in This requires effective recognition, interpretation and
quasi-invariants, including: 1) a new mathe- measurement of complex objects in realistic, operational
matical definition of quasi-invariants; 2) deriva- scenes with moderate complexity, using general methods
tion and proof of two new strong quasi- with a rigorous scientific basis. Considerable progress
invariants for four coplanar points; 3) results has been achieved.
about the taxonomy of quasi-invariants. Major research issues are: 1) robust recognition de-

Recognition was demonstrated for an aircraft spite image complexity; 2) exploitation of multi-spectral,
at San Francisco airport and canisters in a com- multi-sensor fusion; 3) development of low-complexity

plex crash image, based on quasi-invariants. algorithms; and 4) automation of development of recog-

Progress has been made toward the goal of nition programs.
recognition by Bayesian networks that are gen- The technologies of this research that contribute to im-

erated automatically from object models. A plementing mechanisms that solve those problems are:
a) quasi-invariants; b) Bayesian inference; c) segmen-

"*This research was supported in part by a contract tation and measurement; and d) shape representation.
from the Air Force, F30602-92-C-0105 through RADC from This research takes an integrated system approach to
DARPA SISTO, "Model-based Recognition of Objects in building component technology and the Successor sys-
Complex Scenes: Spatial Organization and Hypothesis Gen- tem.
eration" and supported in part by a contract with NASA- Robust recognition depends on accurate measurement
AMES Research Laboratory NCC 2-574: "Nap of the Earth of object dimensions, based on both accurate measure-
Flight by Helicopter".
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ment of image dimensions and effective interpretation of 3) generation of object hypotheses by indexing based on
image features as object surfaces. Effective segmentation estimation of shape of compound objects from shapes
based on minimum variance methods enables accurate of GC parts; and 4) verification or refutation of object
measurements of image dimensions. A benefit of this hypotheses by Bayesian networks.
research is effective, robust recognition with fewer pix- At the last IU Workshop, results were demonstrated
els on target than possible with other methods. Quasi- for figure-ground discrimination for a variety of images.
invariants enable generation of hypotheses assigning im- The methods rely on rigorous quasi-invariant relations
age features to object surfaces, and allow estimating among curves on cross sections (parallels) and meridians
shape parameters in space. Quasi-invariants also enable of GCs. The estimation of shape of cross sections was
new stereo correspondence. demonstrated also. Those results have been extended in

Bayesian inference networks that incorporate quasi- two ways: 1) A new algorithm for determining relations
invariants [Binford 87a] with physical constraints were among curves has been designed and implemented. It
motivated multi-sensor and information fusion. is used for several recognition examples and cuts the

Recognition is fundamentally limited by computa- computational complexity dramatically. An extended
tional complexity. Complexity of brute-force, view- algorithm for figure-ground discrimination has been de-
sensitive methods is enormous (e.g. aspect graphs). signed but not implemented; it extends the applicable
View-sensitive methods for pose estimation match all class of GCs greatly. 2) New quasi-invariants and im-
combinations of image features with all views of all ob- proved probabilistic characterization of quasi-invariants
jects. The dominant contribution to computational com- extends estimation of 3d shape from 2d image data.
plexity is matching all combinations of image features. Substantial progress has been made toward automat-
For typical aerial imagery, scene complexity dominates ing the building of Bayesian decision networks from ob-
over the number of views of objects, i.e. the num- ject models. A new object and constraint system, Clas-
ber of combinations of m features from all image fea- sics, was implemented to facilitate the geometric reason-
tures is much larger than the number of views of all ob- ing necessary to generate the Bayesian networks auto-
jects. Our research provides quasi-invariant mechanisms matically. Examples of recognition presented at the last
to reduce this combinatorial complexity enormously by IU Workshop will soon be fully automated, based on
figure-ground discrimination in clutter to match only Classics models.
groups of features belonging to a single object to avoid Extended edges for a variety of scenes were generated
matching all combinations of image features. From the using a preliminary local linking of edgels from a new
point of view of computational complexity, figure-ground Wang-Binford operator. Extensive ?erformance evalua-
discrimination (grouping) is a central problem in recog- tion was performed to build a statistical model for the
nition. new Wang-Binford operator to enable its use in Bayesian

A smaller yet significant part of the computational networks. Linking edgels into extended edges has proved
complexity in recognition by view-sensitive methods is very difficult in IU. Complexity of linking is exponential
matching the number of views of objects. Invariants, in the error of position and orientation of edgel measure-
where available, are view-invariant; they avoid the com- ments. There is a high priority and payoff in accurate
putational complexity of view-sensitive methods and en- measurement that is typically overlooked.
able indexing for object hypotheses. Quasi-invariants Improved estimation improves recognition by making
extend invariants greatly, making these view-insensitive more reliable discrimination of object parts from clutter
methods much more widely applicable. Avoiding match- and to make more accurate estimates of part dimensions.
ing all views of all objects is the problem of hypothesis These dimension measurements are typically an order of
generation and indexing for similar objects. magnitude more accurate than in typical IU systems,

From another standpoint, the inability of view- typically 1% error in for an image region 10 pixels. It is
sensitive methods and pose estimation to accomodate quite feasible to work with regions 5x10 pixels with im-
variability of natural scenes is also very important. age measurements to a few percent. With order of mag-
Quasi-invariants allow considerable variation within ob- nitude better resolution now, routine counting of types
ject class and viewing conditions. of aircraft at airports seems at hand. Stereo reliability

Considerable progress has been made toward automat- and accuracy in height mcasurement are aided in the
ing the building of recognition programs from object same way.
models.

II: Approach III.1.a: Quasi-Invariants: Theory

The system achieves recognition by a hypothesis
generation and verification paradigm implemented in Quasi-invariant observables are also called semi-
Bayesian decision networks There are four modules: invariants or local invariants. Quasi-invariant observ-
1) figure/ground discrimination of generalized cylinder ables are locally invariant about some observation. The
primitive parts (GC) from background based on quasi- explanation follows, an observation is a measurement
invariant relation among extended curves along image made from some viewpoint. An observable is a measure-
discontinuities; 2) estimation of 3D shape of GC primi- ment repeatable by different observers with coordinate
tive parts from 2D image data based on quasi-invariants; frames that differ by rotation and translation. Observ-

ables are invariant under rotation and translation, i.e.
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isometries. gular building has only 4 points, but there might be
Invariant observables under perspective projection in small structures on the roof. An L-shaped building has

imaging are observables that have a constant value from 6 points in a plane; a U-shaped building has 8 points in
all projections. E.g. for four colinear points, the cross a plane. In these examples, there are typically 10,000
ratio is invariant. Quasi-invariant observables under per- points or lines in a large image. The number of combi-
spective projection are observables that are constant lo- nations of 5 points is ('0,01 s, 1018 calculations of 2
cally about some projection, i.e. the gradient of the ob- invariants and 2d index operations. That number is pro-
servable with respect to projection parameters vanishes hibitive. Simple grouping was used to reduce the number
at that projection. E.g. for three colinear points, the of combinations, corresponding to curvilinearity.
ratio of intervals is quasi-invariant about projection for By contrast, for 10,000 objects, there might be about
a distant line parallel to the image plane. 106 total views. That is a very large number but minis-

Quasi-invariants were introduced by Binford in the cule in comparison with the number of combinations of
late 1960s to extend algebraic invariants and were used image features [Binford 93]. Conclusion: image com-
numerous times since. The definition given in [Binford plexity dominates over the number of views of objects.
93] is a refinement of the mathematical definition used From the computational point of view, figure-ground dis-
in the past. Over the twenty years of their use, a large crimination is the most important operation in computer
number of useful quasi-invariants were invented by the vision.
author. Quasi-invariants based on generalized cylinders pro-

Several new invariants were derived. The most power- vide the basis for figure-ground discrimination. Quasi-
ful are 2 strong quasi-invariants for 4 points in a plane. invariants also enable the estimation of shape parameters
These results extend invariants: there are known to be for parts and objects, enabling indexing to generate ob-
two invariants for five points in the plane. There are ject hypotheses to reduce the complexity of matching all
known to be no invariants for four points and three views of objects.
points in the plane. There were known to be two quasi- An obvious way to recognize objects is to make mea-
invariants for three points in the plane [Binford 87a]. For surements of object dimensions in space and compare
four points in the plane there are four quasi-invariants. them with dimensions in tables of objects. These mea-
The two new quasi-invariants are strong. For strong surements of object dimensions are Euclidean invariants,
quasi-invariants all second derivatives with respect to i.e. invariant under rotations and translations. There
viewpoint parameters vanish [Binford 93]. Strong quasi- is obviously no quasi-invariant for length, a usual Eu-
invariants are nearly invariant. These quasi-invariants clidean invariant, but there are quasi-invariants for ratios
are expected to be extremely valuable, of lengths. For many Euclidean invariants, such quasi-

A taxonomy, a classification scheme, for quasi- invariants have been found. The investigators believe
invariants was developed. The taxonomy includes: in- that it will be possible to develop a systematic method
variants, generic observables, strong quasi-invariant ob- to generate quasi-invariants, just as has been developed
servables, and quasi-invariant observables. for some types of algebraic invariants.

We are investigating not only the local behavior of One big advantage of quasi-invariants is that there are
quasi-invariants but their global behavior as well. If many of them and they appear to be widely available, i.e.
quasi-invariants were stable only in a small region around quasi-invariants are there when needed, for most objects
the observation, they would have limited value. It turns in most situations. There are few invariants.
out that quasi-invariants investigated to date are "sta- Another advantage of quasi-invariants is that exploita-
ble in large measure", e.g. they are constant to 30% tion is intuitively clear once the paradigm switch has
over 2 of the viewing sphere. Strong quasi-invariants been made. Recognition is done by interpreting quasi-
are much more nearly constant. The global analysis of invariants as approximate measurements of objects in
the colinear ratio, a strong quasi-invariant, showed that space. Quasi-invariants determine figure-ground dis-
the standard deviation is 1% over a typical human limit, crimination, i.e. generating hypotheses of object parts.
that the projected colinear ratio is invariant to within Quasi-invariants determine hypotheses about propor-
30% over almost the full range of viewing for an object tions of object parts and objects, generating hypotheses
2 miles long in imagery from aircraft flights, i.e. for ex- of object shape that enable indexing.
tremely large objects. The projected colinear ratio is The paradigm shift is from brute force matching fea-
much more nearly invariant for smaller objects. ture sets from models to all combinations of feature sets

These results are very favorable. There is reason in the image domain, to generating object hypotheses,
to believe that these results are widely true for quasi- generating 3 space descriptions of objects from images,
invariants and strong quasi-iiivariants. Systematics of indexing to generate hypotheses of matching objects,
global analysis of quasi-invariants are under investiga- and detailed verification.
tion now [Binford 92]. As a simple example, invariants are not possible for

any plane figure with three or four points, e.g. a tri-
angular cross section or quadrilateral. There are two

III.2.b: Quasi-Invariants: Exploitation quasi-invariants for three points in a plane; there are
two additional strong quasi-invariants for four points in
a plane. Thus, approximate measurement of ratio of di-

[Mundy et al 92] demonstrate recognition of buildings mensions of a triangular face and recognition based on
using invariants for five points in a plane. A rectan-
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these measurements are possible for monocular images, monocular gray scale images, a difficult problem. The
and very good approximate measurements for quadrilat- algorithms described in this section begin with linked
eral faces are possible. For five points or more in a plane, edges, group them into GC surfaces, and ultimately es-
invariants are possible also. These results are very pow- tablish a 3-D object interpretation of the surfaces. There
erful. They are complete in a mathematical sense in that are three primary components in this section of our inter-
any polygon can be recognized approximately with these pretation system: the Bayesian network interpretation
methods. Quasi-invariants give shape measures that can kernel, the Volume-Surface-Curve-Point (VSCP) mod-
be used for indexing. New results are expected for non- elling system, and Classics, a highly-typed object and
polygonal faces to extend completeness results. constraint system.

A major use of quasi-invariants has been in stereo vi- The Bayesian network is a graph structure of ob-
sion [Arnold and Binford 80, Baker and Binford 81]. Pro- ject model hypotheses and conditional probabilities be-
jected angles in two stereo views of an edge in space are tween the hypotheses. Geometric and physical models
nearly equal, i.e. there is a narrow distribution of the dif- determine geometric constraints with detailed probabil-
ference of angles in two views, with 1 degree full-width ity models for measurements and estimation algorithms.
half-maximum for human stereo at 1 meter. There is Bayesian networks are at the core of our interpretation
much more to be done in stereo using quasi-invariants. approach; they have been demonstrated successfully in

Generalized cylinders are used to describe a very the 3-D interpretation of an aircraft in optical imagery
large class of objects. Generalized cylinders (GCs) ex- from San Francisco airport and in 3-D interpretation of a
press powerful quasi-invariants for grouping image fea- plastic elbow, a plumbing part. Work will be completed
tures that define a mechanism for discrimination of GC soon that will generated Bayesian inference networks au-
parts, figure-ground discrimination. Generalized cylin- tomatically from lie VSCP modelling system.
der primitives are defined by cross section and sweeping The VSCP graph (Volume-Surface-Curve-Point) rep-
rule. Quasi-invariants permit estimates of shapes of GC resents the topology of neighbor relations among the
parts and objects formed of GC parts that enable gener- topological types of objects. It is an intermediate level of
ation of hypotheses that are verified by globally coherent modeling that will be derived from object models. The
interpretation by a Bayes net for evidential inference, goal of the VSCP modelling system is to define geomet-

An important part of this paradigm of use of quasi- ric information to permit automated computer reasoning
invariants follows. Quasi-invariants are inexact; a quan- and interpretation, and do it in a way that is concise and
titative probabilistic interpretation enables efficient use usable. To achieve this goal we have built our models up
of quasi-invariants in recognition in a paradigm of hy- using mathematically sound definitions. In addition, we
pothesis generation and verification. The statistical have developed a special constraint system, Classics, to
analysis is for hypothesis generation, not accuracy of permit the necessary level of symbolic expression.
the final match. This is an important distinction. For The Classics system is a highly typed constraint sys-
a majority of cases, quasi-invariant observables are ap- tem. It supports the definition of object classes in terms
proximations to corresponding body measurements in of other classes using constraints.
space; those quasi-invariants generate good approximate We have achieved 3-D interpretation of an aircraft in
hypotheses. Distributions of deviations are known or an airport scene and a plastic elbow, a plumbing part.
can be derived for use in evidential inference. For a mi- We used Bayesian networks to guide the recognition, ac-
nority of cases, quasi-invariant observables give bad esti- cumulate evidence and provide a measure of the most
mates of corresponding body measurements; those quasi- likely interpretation of the data. These results are shown
invariants generate false hypotheses that are rejected by in the figures below. These results demonstrate the vi-
a verification phase, in most cases at low cost. This hy- ability of aspects of our approach: a) generating object
pothesis generation and verification mechanism depends hypotheses from quasi-invariants; b) accurate probabil-
on making some accurate measurements and some ac- ity models; and c) using Bayesian networks to aggregate
curate hypotheses; the mechanism tolerates local errors. evidence both in support of correct hypotheses and in
Computational complexity can be low. refutation of incorrect hypotheses.

Interpretation proceeds by: 1) generating part hy-
potheses by finding corresponding curves from quasi-

111.2: Bayesian Networks and SUCCESSOR System invariants that make generalized cylinder part hy-
potheses; 2) estimating part measurements from quasi-
invariants; 3) generating object hypotheses from part hy-The objective of this part of the effort is provide a com- potheses and indexing based on object shape from quasi-

prehensive way of integrating available information, per- invariants to determine object model hypotheses; 4) ver-
forming seasor fusion. A further objective is to solve the ification in Bayesian networks. All of these steps 1-4 use
associated software problem by automating the building generic models that utilize information available at that
of Bayesian decision networks from object models. stage. None of these steps is specific to object models; all

steps accomodate great variation in the generic models.
Ill.2.a: SUCCESSOR System This approach avoids the combinatorics of attempting

We are working toward automated, model bad 3-D to match every combination of image features with ev-
interpretation of imagery. The algorithms are intended ery view of every known object model. In addition, at
for multi-sensor fusion; here algorithms are tested with every level of interpretation, the model is used to pre-
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dict and refine edge and image information to aggregate proved estimation accuracy results in improved and more
more data. Strong data give rise to hypothesized models, reliable discrimination of object parts from clutter and
which are used to predict and include other data. more accurate estimates of part dimensions.

Probabilistic relationships between the models and the
data are expressed by the Bayesian Network. Probabilis-
tic relationships lead to a mathematically sound algo- III.3.a: Local Discontinuities
rithm and avoid the many ad-hoc decisions common to
recognition algorithms. Generic methods for creating 3-
D interpretations from 2-D data avoid the computational Binford and Wang [Wang and Binford 93] have de-
problem of too many false hypotheses. veloped a step edge estimation operator, starting from

a modified Canny operator. They have improved sensi-
III.2.b: Classics tivity by a factor of 4, i.e. decreased the threshold for

gradient magnitude by a factor of 4. The only parameter
We have completed an implementation of Classics, a used is a measured parameter, i.e. sensor noise variance.

highly typed object system and constraint system. Clas- There are no free parameters, no tweaking. Those pa-
sics can be thought of as a combination of an object- rameters are measured from the sensor or measured from
oriented data base and a symbolic declarative program- image content. Analysis has eliminated biases from ori-
ming language. The goal of Classics is to support the entation and position, biases that are so strong that sev-
creation of a geometric modelling system with suffi- eral researchers do not use orientation from the Canny
cient power and symbolic representation to perform true operator. With the Wang-Binford operator, orientation
model-based recognition. Classics is written in Com- is accurate to a few degrees over a wide range of condi-
mon LISP on top of the Common LISP Object System tions.
(CLOS) as implemented by Portable Common Loops A range image, SAR or IR image, or optical intensity
(PCL). Classics is unique in that it not only defines an image is a compound mathematical surface. Differential
object class hierarchy, but does it in a way that solu- geometry applied to the physics of image formation al-
tion algorithms can be derived automatically from the lows us to classify the local classes of image surface. A
constraints that define classes, small image patch corresponds to: 1) a single continuous

We are building the Volume-Surface-Curve-Point image surface; 2) a pair of image surfaces with an edge
(VSCP) object modelling system using Classics. From discontinuity at their intersection; a single image sur-
the VSCP the algorithm will automatically derive the face with a spot discontinuity; 3) three or more image
Bayesian network in real time and control the interpre- surfaces with curve discontinuities meeting at a vertex
tation. The goal is to provide automatic image interpre- discontinuity; 4) more complex configurations that may
tation from object models. At this intermediate step, not be discriminable with fixed image resolution.
the system builds a Bayesian network from VSCP mod- The conclusion is that robust segmentation for a va-
els. The user creates high level models of specific man- riety of imagery can be achieved with a small number
ufactured parts. All of the geometric relationships and of local segmentation components. The objective of
observable features of the part will be extracted auto- this part of the effort is: a) to design and implement
matically. The system will automatically integrate the the complete set of local segmentation components; b)
part into the probabilistic characterization of the low to design and implement the linking method that con-
level models. structs quasi-local and global segmentations from local

segmentations. Segmentation corresponds to generat-
ing hypotheses about the image surface. Interpreta-

111.3 Segmentation tion corresponds to generating hypotheses about surfaces
in space and objects from image surfaces. An impor-
tant part of this work is building an accurate statistical

What seems like an incomprehensible variety of imag- model of behavior of segmentation that is valuable in the
ing problems breaks down into a small set of segmen- Bayesian network for combining evidence, especially in
tation components based on careful analysis of physics multi-sensor problems.
and differential geometry of observation [Binford 87b]. Edge discontinuity detection extracts boundaries of
There is much in common between segmenting depth image surfaces and discontinuities of orientation of
data, segmenting intensity data, and segmenting SAR boundaries, etc. It has played an important role in the
and IR data. Multi-sensor segmentation is achievable, early process of a vision system, and has a direct impact
Complete segmentation is feasible in an interesting sense, on performance of subsequent processes. When we look
not in the sense of perfect or faithful segmentation, for at the output of typical edge segmentation algorithms on
which information might not be available. Instead, a simple images, they look adequate, superficially. When
complete segmentation is possible in wthat physics and we take a close look at their performance in complex im-
differential geometry make possible a small enumeration ages we find important faults that can be overcome. For
of local image configurations. example, the Canny operator, which depends on the gra-

Extended edges for a variety of scenes were generated dient of the image values, is sensitive to shading. This
using a preliminary local linking of edgels from a new causes false edgels where there is no discontinuity, on
Wang-Binford operator. Extensive performance evalua- curved surfaces like the fuselage of an aircraft. The ef-
tion was done for the new Wang-Binford operator. Im- fect of gradients also causes large biases in the estimate
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ages. It is not complete in the sense that the operator is pretation: Observability Model"; Proc lnt Symp on
not effective for many image features, e.g. lines or spots. Robotics Research, 1987.
The author has promoted development of a complete set [Binford 92] T.O.Binford; "Tutorial on invariants and
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image to estimate gradient components in i and j direc- 18; Dr. T.O.Binford, Dr. T. Levitt; "Quasi-Invariants";
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maximum with a 3 by 3 support to get the position, Binford. "On Boundary Detection", M.I.T. Artificial In-
orientation, and contrast information of the edgel. telligence Lab., Cambridge Mass, Al Memo 183, 1970.

Estimate of improvement of the Wang-Binford algo- [Levitt, Binford, Ettinger 88] T.S. Levitt, T.O. Bin-
rithm is underway by building statistical models of this ford, G.J. Ettinger; "Utility Theory in Computer Vi-
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the Canny Operator, etc. 88; reprinted in Uncertainty in Artificial Intelligence IV,
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mer, eds. North-Holland, 1990.

Conclusion (Mundy et al 92] J.L.Mundy, P.M.Payton, M.H.Brill,
E.A.Barret, R.P.Welty; "3-D Model Alignment without
Computing Pose"; Proc DARPA IU Workshop, pp 727-

Quasi-invariants from GC shape representation pro- 735, 1992.
vide a basis for figure-ground discrimination of GC [Sato and Binford 92a] H.Sato and T.O. Binford; "On
parts hypotheses. Quasi-invariants also enable estima- finding the ends of SHGCs in an edge image"; Proc Im-
tion of 3d shape of parts and objects that enables view- age Understanding Workshop, 1992.
insensitive hypothesis generation and indexing. These [Sato and Binford 92b] H.Sato and T.O. Binford;
two mechanisms reduce drastically the first and second "BUILDER-I: a system for the extraction of SHGC ob-
most computationally complex operations in recognition jects in an edge image"; Proc Image Understanding
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nition with targets with a high degree of variability. [Ulupinar and Nevatia 901 F. Ulupinar and R. Nevatia;

Classics implement an object system with a strong "Recovering shape from contour for SHGCs and CGCs";
mathematical type heirarchy. The shape representation Proc Image Understanding Workshop, pp 544-566, 1990.
implemented in Classics enables automation of target- [Wang and Binford 93] S.J. Wang and T.O. Binford;
specific recognition from VSCP object models. "Local Step Edge Estimation: a New Algorithm , Sta-

Improvements in segmentation demonstrating ex- tistical Model and Performance Evaluation"; Image Un-
tended edges are important to robust recognition and derstanding Workshop, Washington DC. 1993.
measurement.

We plan to demonstrate image interpretation of more
complex object models, including multiple parts with
occlusion, within the next quarter. The recognition will
be completely automatic and model-driven.
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CREATING BENCHMARKING PROBLEMS IN
MACHINE VISION: SCIENTIFIC CHALLENGE

PROBLEMS

Oscar Firschein*, Martin A. Fischler**, and Takeo Kanade***
*DARPA, **SRI International, **Carnegie Mellon University

Abstract set of vision problems to which proposed advances can
be subjected to experimental evaluation. The problemsWe discuss the need for a new series of benchmarks should be formulated in terms of tasks, for a module

in the vision field, to provide a direct quantitative mea- or foraw le tem indepne of any specifmcdte
sureof rogess ndestadabl tosposorsof eserch or for a whole system, independent of any specific tech-

sure of progress understandable to sponsors of research niques - e.g., evaluation of three-dimensional shape re-

as well as a guide to practitioners in the field. A first covery rather than evaluation of a shape-from-X method,

set of benchmarks in two categories is proposed (1) static or evaluation of n undersadn r ethan

scenes containing manmade objects, and (2) static nat- or evaluation of natural scene understanding rather than
uraloutoorscens. he estsare"en-to-nd"and evaluation of an expert system-based interpretation sys-

ural/outdoor scenes. The tests are "end-to-end" and tem. There would be challenging problems in various
involve determining how well a system can identif) in- categories, e.g., outdoor scenes, manmade objects, time-
stances (an item or condition is present or absent) in varying scenes, and so on. After discussing issues and
selected regions of an image. The scoring would be set methodologies in creating vision benchmark problems,

up so that the automatic setting of adjustable parame- this paper presents a few example problems in the do-

ters is rewarded and manual tuning is penalized. To main of static natural scenes and in static scenes con-

show how far machine vision has yet to go, a Benchmark taing manmade-objects.

2000 problem is also suggested using children's "what is

wrong" puzzles in which defective objects in a line draw-
ing of a scene must be found. 2 Previous Benchmarking in Vi-

sion
1 Introduction

The DARPA benchmark carried out from 1986-89 [1,21
Speech and natural language researchers at DARPA have was an attempt to characterize the performance of ma-
made extensive use of a benchmarking approach to ob- chine architectures running IU algorithms. As such, it
tain a measure of the progress in these fields. This ex- is not directly applicable to the current 1U benchmark
ercise has had two distinct positive effects on the fields. effort. However, there were several lessons learned, pri-
First, since the results of the benchmarks provide a di- marly the time-consuming and somewhat expensive na-
rect quantitative measure understandable by people out- ture of the operation.
side these fields, they have been of great use "politically" A more pertinent benchmark approach is the Un-
within DARPA. Second, through the rigorous compari- manned Ground Vehicle set of evaluations for all sub-
son among various techniques the benchmarking exercise systems, including stereo, LADAR, road-following, and
has spurred advances in the field. This paper discusses path planning. The stereo evaluation, described in these
the strategy for devising and using a new series of bench- proceedings [31, is of particular interest in this regard.
marks in the vision field. We believe that the vision field The overall plan was to pursue a three-pronged ap-
requires such benchmarking efforts to objectively mea- proach, including analytic models, qualitative "behav-
sure its progress. There have been some previous bench- ioral" models, and statistical performance models. The
marking attempts in vision at DARPA and elsewhere, analytic models are used to estimate the expected depth
but they dealt mainly with measuring the performance of precision computable with a specific camera configura-
computer architectures running vision algorithms, rather tion. The qualitative models are used to identify key
than with the performance of the vision algorithms and problems for future research. The itatistical model is
systems. used to produce quantitative estimates of such key fac-

The goal of creating challenging benchmark problems tors as the smallest obstacle detectable at a specified dis-
in machine vision is to pose a reasonably comprehensive tance. Data gathering and preparation required a large
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amount of effort. Imagery was collected from five groups; 3.2 Competitive and Collaborative As-
49 image pairs were selected for analysis and converted pects
to a standard format. An interesting initial result of the
evaluation was the identification of the strengths and The principal goals of the proposed vision benchmarks
weaknesses of the various stereo techniques, leading to are to evaluate scientific progress in specific problem ar-
the possibility of combining them in a system that pro- eas, and to make the extent of such progress apparent to
duces more complete and accurate results than any of the sponsors of the research as well as to the scientists
the individual techniques. working in this field. Evaluation of a set of alternative

solutions to a problem naturally involves comparing the
resultant scores and to thus rank the techniques. We

3 Issues in Vision Benchmark can't avoid competition. Making the results of the eval-
uation difficult to interpret or keeping the identity of theDesign participants secret eliminates the incentive to enter the
evaluation and exert the necessary effort to do well.

There are a few important issues that arise in vision Nonetheless, it is very important to make sure that we
benchmarking : are competing on the right problems, that the competi-

tion is fair, and that we don't poison the currently excel-
* specifying the scope of a problem, lent cooperative atmosphere that exists in the DARPA

* balancing competitive and collaborative aspects of vision research community.

benchmarking, and Among its positive benefits, benchmarking will pro-
mote collaboration. Many researchers will not be able to

* devising an evolutionary problem selection mecha- afford to develop all the system components themselves
nism for future benchmarks. in order to enter the evaluation. A module or compo-

nent that has been proven to have high performance will
be transferred from the hands of the developer to other

3.1 Vision Problem Specification sites whose main research focus is not the module, but

The critical difference between producing vision bench- rather access to its functionality.

marks, and producing those for language and speech, In the specific case of algorithms that are intended to

is that the field of machine vision does not yet have run autonomously, i.e., without manual tuning, it is crit-

widely acceptable specifications for generic problem do- ical for the purposes of believability that the test data

mains (or representations) on which to base the problem NOT be given to the contestants prior to the bench-

definitions. Further, the number of sample images and mark. Further, the problem of automatically finding
supporting data necessary to cover any given problem settings for adjustable parameters(present in almost ev-domain without artificial (unknown) biases seems to be ery vision algorithm) is a key vision problem in which

far larger than in language and speech. In language, progress should be encouraged - the benchmark could
topics and languages certainly vary a lot; yet a large
enough number of news articles, novels, etc., will reason-
ably cover the problem variations, and text files contain 3.3 Evolution of Benchmarks
everything the benchmarking algorithms need to employ.
In speech, there are variations in frequency, dialects, etc, Since there is enough diversity of opinions about what
yet a "numeral digit recognition" problem or a limited constitutes the correctness of the output of any com-
vocabulary problem provides some reasonable bound to ponent, practical benchmarking tends to be performed
a problem domain, and a large enough number of speech on "end-to-end" systems performing a well-understood
samples will cover the variations. A high-quality tape task. This emphasis on system evaluations can have both
of speech (with various types of background noise) is a positive and negative impacts on the field. Positive ef-
good universal basic representation for the input data. fects are: the promotion of research because there exist

In image understanding, the direct analogies do not accepted criteria of progress; the establishment of some
work as well. Outdoor natural scenes do not seem to priorities on problems to be solved; and an increased
have an accessible technical definition, except that peo- awareness of the availability and usefulness of a broader
pie can probably classify a given image as depicting a range of techniques for performance improvement. Po-
natural scene or not. A universal representation/media tential negative effects are: the temptation to use any
for sensed data describing a scene does not exist. More- trick that improves performance on the evaluated task;
over, the nature of the input devices, the way we acquire the premature stifling of new directions in the field, and
images and specify the resolution, the measurable infor- the reliance on some statistical methods which tends to
mation, etc. can themselves, singly or in combination, produce better "average" results. Some of these phe-
constitute major research problems. nomena, positive and negative, have appeared in the 1an-
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guage and speech fields since the introduction of bench- are offered for discussion in the light of all the above
marks. sentiments, but the task of choosing the actual problems

To achieve the positive effects and avoid the negative still remains. It is hoped that for an initial benchmark
ones, the vision benchmarks should allow for evolution a total of no more than four problems will be selected
and expansion as we improve our understanding of the from the set of all submissions. This would allow us to
field. This is especially important in vision because vi- work out the details of the process before an excessive
sion tasks are not static - they expand. The benchmark amount of effort is expended.
problems cannot be a casually controlled ad-hoc collec- Finally, it is important to remember that the proposed
tion of problems, or a set of problems carefully tailored benchmark will only cover a small subset of the impor-
for small cliques, each with a special view of how the tant problems in machine vision. We have not done away
problem should be solved. If a group of investigators with all the traditional methods of reporting and evalu-
wants to pursue a promising new approach which can- ating progress.
not be evaluated appropriately within the current set of
benchmarks, there must be a mechanism to define a new 4.2 Evaluation Method
DARPA benchmark if appropriate criteria are satisfied.

Human examiners would select (but not necessarily re-
veal to the contestants) a few locations in each im-

4 Deriving Benchmark Prob- age that contain obvious instances (item or condition

lems is present or absent) of, for example, the existence of a
road or a material like grass or rock. The scoring at each

4.1 Problem Selection location is binary - correct or incorrect.
Problems, for example, in recognizing natural objects

We must first define the problem domains, such as static are believed to be difficult enough so that no currently
outdoor scenes, static scenes of manmade objects, out- known technique, or brute force approach, can perform
door image scene sequences, and image sequences of well (i.e., within 50% of human performance on the
manmade objects. A panel will be organized to carefully recognition problems and somewhat higher on the ge-
divide the vision field into categories and subcategories ometry problems depending on the availability of cali-
because this categorization is one of the most critical is- bration data and the nature of the prior models) without
sues in the design of the benchmark. A relatively small additional constraints on the problem (or the provision of
number of problems (less than four initially) in each cat- auxiliary information, such as manual parameter adjust-
egory would be carefully selected by community consen- ment to match the given imagery). An obvious advance
sus. These problems should be based on some important would be a performance improvement of, say 5 to 10%
vision function, NOT some vision architecture, represen- over that of the previous best known technique. When
tation, or technique. performance of a computer vision technique reaches (say)

These should generally be retained in the benchmark 90-95% of human performance, the corresponding prob-
until they are "solved" or no longer of scientific impor- lem is considered to have a reasonable scientific solution
tance. and further advance is now also considered in terms of

The complete benchmark should cover the vision field engineering criteria (cost, speed, complexity, etc.).
by defining between five to ten separate problems for
the competition; it may be necessary to have two prob- 4.3 Competition Procedure
lems in some categories to separately deal with the main
dichotomy of strong vs. weak models (e.g., man-made It is intended that there would be a competition once
environments vs. natural outdoor scenes). Each prob- a year to choose the best performing program in some
lem category may require separate subcategories for dif- (or all) problem categories. The programs would have to
ferent sensing modalities, viewing conditions, and envi- run on specified machine configurations, must take the
ronmental factors; in the case of sensing modalities, the input images in a specified format, and must produce
subcategories could be answers in a specified time interval. To insure an initial

reasonable baseline of performance for the most difficult
"* intensity images vs range images problems, an operator would be allowed to place a speci-
"* black-and-white vs color (or multispectral) fied number of labeled markers in an overlay of the given

test image and/or be given (in advance) a small window

"* significant perspective distortion vs. essentially or- from the test image to allow system calibration and pa-
thographic projection rameter adjustment. Typical images from each category

would be provided in advance, and would not change in
The problems listed in Appendix A are a few ab- nature or difficulty from year to year.

stracted versions of possible benchmark entries for the Entry in the competition implies the entrant is willing
static outdoor scenes and man-made object scenes. They to make public the theory (and possibly pseudo-source
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code) for his algorithms and allow the use of his object 3. R.C. Bolles, H.H. Baker, and M.J. Hannah, "The
code (at least) for scientific purposes. "JISCT" Stereo Evaluation," in these proceedings.

4.4 Specific Proposal APPENDIX
1. A list of 5-10 problem domains will be selected for

the benchmark. This appendix offers a set of abstracted versions of pos-
sible benchmark entries for discussion in the light of the

2. A panel of experts would be chosen to define the goals and issues. The task of specifying the actual prob-
problems and select the sample and test imagery lems still remains.
and the contextual information to be made avail-
able. Sample imagery would be available prior to A.1 Man-Made Object Scenes
the competition. The actual test imagery would be
provided to all interested parties after the competi- The key issues in setting up the problems for man-made
tion. object scenes include:

3. The nominal approach would be for the panel to se-
lect a few locations in each image that contain obvi- 0 amount of clutter in a scene

ous instances (item or condition absent or present) * amount of occlusion of objects
of the challenge problem subject matter; this infor-
mation would not be revealed (for the test imagery) e class of shapes of objects (e.g., polyhedral vs.
until after the competition; scoring at each location curved, planar vs. 3D, fixed vs. articulated or de-
is binary, correct or incorrect, formable)

4. The test could be held yearly (e.g., at the IU meet- . class of surfaces (e.g., textured, specular, diffuse)
ing or at some selected contractor site) on machines
provided or approved by DARPA. Programs must * lighting conditions
produce answers in a specified time interval. It is
intended that the programs will be run without in- kind of imagery (2D vs. 3D, grey-scale vs. color)
tervention by the contestants, but some provision e class of transformations applied to object model
might be made to allow a contestant to tune his
program at a specified penalty to his test score. Even more important is an evaluation method. We can

5. Theory (and possibly pseudo source code) must be use the ROC (Receiver/Operator Curve) which plots the

provided in report form, and the compiled code ac- false negative rate vs false positive rate as the overall
tually used in the competition made available (free, indication of the performance of a system. We should

but possibly under license) for scientific use. evaluate the accuracy of computed pose as well as the
number of free parameters in the system. We should also
define a series of increasingly harder problems, such as

5 Conclusion presented below.

We have taken the initial steps in developing a new set PROBLEM 1: Flat parts (with little or no texture

of machine vision benchmarks in the areas of manmade on the parts or background) and known camera orienta-

object scenes and natural scenes. The next steps involve tion. But include significant clutter (e.g. as little as 10%
more careful delineation of the experimental protocol, of the features in the image are associated with the ob-

selection of the specific problems, and the gathering of ject) and significant occlusion (perhaps as little as 25%

imagery and other test data. We welcome comments on of the object is visible) as well as noise. The goal is to

this new DARPA benchmarking effort. identify and locate as many instances as possible from a
small library of known models. This problem is probably
fairly well solved by several existing algorithms. Open

References issues include how to provide/obtain the models and a
range of shapes for each of the models. We can allow

1. A. Rosenfeld, "A Report on the DARPA IU Archi- the objects to scale, rotate, and translate in the image
tectures Workshop," Image Understanding Work- plane.
shop, 1987. Example objects include 2D parts (eg. teletype parts)

2. C. Weems, E. Riseman, and A.R. Hanson, "A Re- and tools (wrenches, screw drivers, etc).

port on the Results of the DARPA Integrated Image PROBLEM 2: Solid rigid objects with no articula-
Understanding Benchmark Exercise," Image Under- tion, but with significant clutter and occlusion. Texture
standing Workshop, 1989. is allowed on the objects and background. One version
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of the problem would be 3D shape recovery from a single -Render the profile of the skyline seen from a specific
2D image; a second version could be 3D shape recovery ground location, given an overhead stereo pair of a
from a 3D image (i.e. from range imagery). mountain or valley.

The objects should include a range of shapes and even -Given a dense sequence of images containing an
several shapes that differ only in a few places, so that object of interest (e.g., a tank or a rock) taken from
saliency can be an issue. Examples include models of a camera mounted on a moving truck, recover the
vehicles or planes, simple office scenes, etc. geometry of the object.

PROBLEM 3: include pe 6. Track a Specific Moving Object: For example, aGeneric objects. This could include ideris o specific fish in a fish-bowl containing many fish and
ject classes and articulated objects. The idea is to allow other objects that can cause occlusion or temporary
for objects that are nonrigid, while still structured. A dsperane of the fis be tcked. or por-
tank is an obvious example, given the movable turret. disappearance of the fish being tracked. Other pos-

Classes of vehicles in general provide the next level of sibilities are a person in a crowded store, or a specific

complexity (e.g. categorizing vehicles as a sedan, a sta-

tion wagon, a van, etc., as well as localizing it). 7. Generic Problems (edge and surface classification)

PROBLEM 4: Recognition by function. A classic in Image Analysis:
example is a "chair", where the recognition system has -Classify specified locations in an image as either
to identify objects not only by shape, but also by whether edge or not-edge; if edge, then further classify the
they meet certain functional constraints (such as stable nature of the edge as either occlusion, orientation,
support, a fiat surface on which to sit, etc.) illumination (e.g. shadow), or reflectance edge.

-Classify the material type of selected surface
A.2 Static Natural Scenes patches in an image as either wood, metal, glass,

1. Generic (natural) Object Recognition or Classifica- water, vegetation, sand/rock, brick, soil, sky, cloud,

tion: Recognize (point to or delineate) rocks and asphalt, or concrete.

trees in single images of outdoor scenes. Distinguish -Classify, into say three spectral bands, the color
between rocks and sand in a desert scene. spectrum of selected surface patches in a natural

outdoor image.
2. Specific Object Recognition: Recognize (point to,

or delineate) the presence of a specific known object
in an image (e.g. a particular person). The object
(preferably non-rigid) can be partially occluded or Some day we would like vision to be integrated with
seen from any aspect. knowledge and reasoning. A challenge problem to eval-

3. Feature Extraction and Delineation: uate this capability would require a system to identify
objects, use knowlege about these objects and the real

-Extract a road network from an aerial image that world, and apply reasoning to solve a visual problem. We
can be either vertical or oblique and low or high suggest a challenge problem along these lines for the year
resolution. For example, the image could even be a 2000 using a class of children's picture puzzles in which
view of a partially occluded freeway from a window the child is asked to find "mistakes" in the picture. The
in a nearby building. problem posed to a vision system would be: Given a line

-Given the skeleton of a tree trunk or tree limb (in a sketch taken from a children's book of "what is wrong"
forest scene), accurately delineate the corresponding puzzles, see Fig. 1, devise an automatic vision program
edges and measure the width of the trunk/limb. that can perform as well as a five year old child. The

absolute score for any algorithm is the percent of defec-
4. Geometric Recovery From a Single Image of a Nat- tive objects found in a scene; the relative score can be

obtained by comparison with a child's performance.
-Given a line overlaying an image, determine rela-
tive depth (from the camera) along the line.

- Determine (scene) surface orientation at a given
set of points (locations) in an image. The scale of
interest will be provided.

5. Geometric Recovery From Multiple Views Of Some

Specified Object:

-Model (i.e., recover the 3D geometry) a building in
an urban scene from multiple views.
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Figure 1: Children's Puzzle Picture ["What's Wrong
Here?" Kidsbook, Inc. 1990)
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RADIUS: Automating Image Analysis Through Model-Supported Exploitation

Shirley J Gee and Arthur M Newman
Artificial Intelligence & Information Systems Department

Hughes Aircraft Company
El Segundo, California 90245-4701

ABSTRACT touted as the theoretical goal, but the desirability
of this is questionable since the ultimate use of the

Image analysis is a labor-intensive end product is of such import that skilled IAs will
activity that grows increasingly intensive due to always be needed to verify the processing results.
the volume of imagery and collateral being Furthermore, technology that is both robust and
collected. Image analysts (lAs) and photo reliable enough to achieve this objective is
interpreters need to extract accurate yet timely currently not realistic. Practical development of an
information from the data. Strategically MSE workstation also requires adherence to
automating portions of the processing will help budgetary and scheduling constraints.
analysts achieve both objectives, first by
eliminating some of the tedium of the activity then 1.1. Image Analysis
by accelerating the process. Model-supported
exploitation (MSE) was identified as the Four basic activities were identified as
technology that will provide this automation. tasks for which lAs are responsible:
This paper discusses in detail the various MSE
design constraints, first as they pertain to the [1] Change detection - the location and
RADIUS problem domain, and then in context of identification of significant changes in an
their impact on the design of an MSE workstation. image, both physical (e.g., construction)

and logistical (e.g., an increased number
1. INTRODUCTION of vehicles in a delineated area)

[2] Negation - the determination of when a
Image processing (IP) and image change first appeared at a site

understanding (IU) have been the subjects of [3] Detection and counting - the counting of
research for many years, both in the academic and all instances of specified objects
the industrial worlds. In 1990, a consortium of MSE regardless of quantity, location, or
experts and researchers surmised that IU orientation in an image
technology was sufficiently mature for [4] Trends and history - or trend analysis,
implementation in an operational capacity. the chronological documentation of
Specifically, IU was thought to be particularly events at a site
well-suited for application to the problem of image
analysis. The IA community was targeted as the Based on an analysis of current IA
end user of this technology, and the MSE concept activities, it was hypothesized that all image
was designed to address its needs. analysis activities consisted of some combination of

these four tasks. In addition, the consortium
The goal of MSE is to support IAs in their identified four tools for supporting IAs in their

work by using three-dimensional site models to work:
produce visual aids and provide geographically
referenced collateral information. The design of an [1] Registration - the establishment of a
MSE workstation must take into account the mathematical point-to-point mapping
following three constraints: between two data types (e.g., images,

site models, maps) to correlate key
[1] Operational needs objects, regardless of collection source
[2] State of technology [2] Perspective, geometric modeling, and
[3] Cost and development schedule orientation (PG&O) - the two-

dimensional or three-dimensional
Fully-automated processing has often been rendering of data types (e.g., images,
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site models, maps) to produce visual aids image analysis are issues of fundamental
[3] Recognition guides - digitized image importance to the IA community. Two government-

chips, drawings, and text that assist lAs supported projects are specifically geared toward
in identifying objects addressing these issues. They are the Research and

[4] Interpretation aids - site models and Development for Image Understanding Systems
recognition guides for non-literal image (RADIUS) project and Workstation 2000.
analysis

1.3.1. RADIUS
Due to the present manual nature of image

analysis, these tools do not currently exist in the RADIUS is planned to progress in two
operational environment. Consequently, their phases. The goal of Phase 1 was to characterize
impact on IA productivity remains to be validated, the state of technology and to define the MSE
Finally, two databases were identified as being operations concept, resulting in the design of a
part and parcel of the MSE concept: testbed system. Phase 2 is geared towards testbed

development and evaluation in an operational
[1] Site baselines - the primary source of site environment. In total, RADIUS is scheduled to run

specific information (e.g., equipment five years, with Phase 1 being a two-year exercise
normalcy ranges, functional area layouts, and Phase 2 being a three-year endeavor.
historical information)

[2] Site folders - contain other collateral The RADIUS Phase 1 contract was
data specific to a site (e.g., reference awarded to Hughes Aircraft Company in mid-1991,
imagery, maps, textual reports) with BDM Federal, Computing Devices

International (CDI), the Hughes Research
Site baselines and folders currently exist in Laboratories (HRL), and the University of

hardcopy form. These ten items are collectively Southern California (USC) forming its
known as the RADIUS application concepts. The subcontracting team. Hughes, HRL and USC
design for an MSE workstation must provide formed the IU technology assessment subteam,
interactive tools for addressing each of these while BDM and CDI worked on the MSE concept
application concepts, either in part or in whole. definition. USC offered consultation and insight

into continued MSE research. The efforts of the
1.2. Definition of MSE Hughes team resulted in the conclusions

summarized in this paper. The contract is
The MSE concept is grounded in the scheduled to end in June 1992, with the Request for

existence and exploitation of site models for image Proposal for Phase 2 being issued in late July.
analysis and consists of two components:

1.3.2. Workstation 2000
[11 The development and maintenance of site

models using IU techniques Workstation 2000 is an umbrella concept
[2] The use of site models for image that covers the gamut of IA concerns regarding

exploitation tasks, either directly by lAs implemention of MSE in an operational
or via a set of model-based IU environment. One concern is that any MSE
exploitation tools workstation designed to function in an operational

capacity must exploit existing collateral, that is,
The IA community has expressed great the workstation must be integrated with the

enthusiasm for the exploitation component in databases currently available to the IA community.
general and for the exploitation tools in particular. Another concern is that the workstation tools must
IU researchers recognize, however, that an facilitate image analysis as defined by lAs, that
efficient site modeling capability must exist for the tools be perceived as unobtrusive and non-
automation of exploitation to be possible. invasive. A third concern is the need for speed, the

desire for timeliness as well as accuracy. These
13. User Concerns concerns were primary factors in the MSE

workstation design.
Productivity, accuracy, and timeliness in
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2. OPERATIONAL NEEDS Another issue of concern is the question of
which objects are necessary and sufficient for a site

The two operational components of an MSE model. Just as the appropriate level of model
system are the modeling subsystem and the detail was a function of the exploitation goals of
exploitation subsystem. The modeling subsystem the IA, the nature of the objects in which the IA
provides a means for generating the three- has a particular interest are likewise defined. To
dimensional site models and for linking collateral support the variety of disparate interests without
data to these models. The exploitation subsystem inundating any particular IA with superfluous
provides the visual aids that support lAs in their information, the concept of layers was introduced.
activities. A series of experiments were conducted Site model layers are subsets of the site model and
to determine what lAs wanted from site modeling reflect either community-wide standards (e.g., the
and exploitation tools. The requirements the baseline layer) or individual interests (i.e., user
analysts placed on the subsystems were used to layers). Access to the various layers may be global
derive the MSE operational needs. or privileged.

2.1. The Modeling Subsystem From the user perspective, one of the most
important conditions for site models to be

Informal site models are currently being considered useful is that they are kept reasonably
used by lAs. These include physical entities (e.g., up-to-date. Thus, in addition to the tools for
sketches, NEL-produced diagrams) as well as the creating the initial model, the modeling subsystem
knowledge an analyst internalizes as he must also provide a mechanism for site model
familiarizes himself with a site. For a site model update: for creating new objects, modifying existing
to be useful to an MSE workstation, however, all objects and their collateral links, or deleting
pertinent data must be stored explicitly, destroyed objects. The MSE system must be capable
Furthermore, related information (i.e., collateral of maintaining the change history of a site to
data) must be easily accessible. enable lAs to trace the evolution of the site.

A site model is a three-dimensional, 2.2. Exploitation
georeferenced wireframe representation of the
objects at a site. Included are both physical (e.g., Those lAs interviewed during the RADIUS
buildings) and non-physical (e.g., functional areas) Phase 1 experiments summarized their exploitation
objects, their attributes (e.g., labels), and links to responsibilities in the following sequence of
the collateral data that is associated with the activities:
particular site. While it is obvious that site
models must include objects which are of analyst [1] Prioritize the imagery to be exploited
interest, it is equally important that they include [2] Locate the site on the image
objects which are of processing utility. By [3] Take a quick look around the site
definition, then, site models contain more [4] Detect and count things of interest
components than an analyst would want to see or an [5] Look for site activity
algorithm could be designed to process. [6] Look for site changes

[7] Discuss findings with other IAs
The appropriate level of model detail is an [8] Take a final look around the site

issue over which lAs differ and for which the [9] Report findings and conclusions
capabilities of IU vary. For example, an analyst [10] Retask the site if necessary
who is primarily interested in detecting gross
changes (e.g., demolition of a building) may be While these activities seem ill-correlated
satisfied with a simple block diagram, while one with the four basic IA tasks described in Section
who is interested in the function of a building may 1.1, upon further consideration, it will be seen that
require that substructures (e.g., doors, windows) be the fundamental analysis process, that of assessing
included. The modeling subsystem must therefore the existence, magnitude, type, and timing of
be capable of generating models at a variety of change, is reflected in both sets of task
detail levels to support the variety of IA needs. descriptions. What is important to note is the IA's

need to validate and verify change personally. In
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essence, then, the exploitation subsystem must inaccuracies. Since site model construction is less
provide the IA with interactive tools for making likely to be bound by such tight timing constraints,
these assessments. The subsystem must also offer modeling algorithms can be designed to emphasize
mechanisms for generating reports of IA findings, accuracy over speed.

3. TECHNOLOGY ASSESSMENT 3.2. Characterization Methodology

The underlying assumption is that IU An IU system qualified for Phase 1
technologies will be available in the RADIUS characterization if it satisfied one of two
Phase 2 timeframe to fulfill the MSE operational conditions:
needs as outlined in the previous section. IU
systems were assessed during Phase 1 to project [1] It was a commercial product
realistic automation levels for the various MSE [2] It was the subject of active research
tools in the Phase 2 testbed system. The assessment
focused on technologies that addressed the The literature is replete with descriptions
following application concepts: site model of systems that address elements of the RADIUS
construction and update, registration, PG&O, and problem domain. Rarely, howevc have the
site baselines and folders. algorithms been subjected to extensive testing.

Success of the Phase 2 testbed system therefore
3.1. Technology Goals depends on the availability of the original

developers to support integration, bug fixes, and
Any MSE technology targeted for inclusion system enhancements. While other highly

in the Phase 2 testbed system must have the basic relevant systems have been presented in the
objective of lightening the IA's workload. Because "terature, it is doubtful whether they would be
lAs have exploited imagery without IU tools for ready for presentation to an IA within the RADIUS
years, successful introduction of MSE to the IA Phase 2 timeframe.
community depends largely .-n the cultivated
perception of MSE as an aid rather than a The last RADIUS reportloutlined plans to
hindrance. With this caveat, automation levels provide test sets of imagery to system developers,
(i.e., manual, semi-automated, or automated) and along with ground truth and code for initial on-site
the relevant user interface issues were found to be ch:-acterization. Generating representative sets of
useful performance measures. unclassified image data and having developers

characterize their work without compensation
The primary islue with manual tools is the have been inordinately time-consuming.

user interface. The tools must provide sufficient Consequently, this paper reflects a mixture of
visual feedback to the IA so as to achieve the formal characterization results mixed with an
required accuracy. Such tools must permit rapid, internal assessment of these systems and the
intuitive operation without overwhelming the user techniques they employ.
with options. For semi-automated tools, the issue
expands to include real-time response. The A decomposition of the MSE applications
objective in this case is to provide accurate results was presented in the RADIUS Technology
in less time than would be needed by an IA using Development Plan2. That decomposition was used
manual tools. For automated algorithms, run-time, as the framework for characterizing the
accuracy and false alarms become key concerns, functionality and the availability of the relevant

IU systems. Near-, mid- and long-term
Automated exploitation algorithms face availability correspond to the three years of

far more stringent requirements than those for site RADIUS Phase 2: 1994, 1995, and 1996. The
model construction, since exploitation is often a following subsections offer a conservative estimate
time-critical activity that demands quick of the technology available to support MSE. It is
turnaround. Unfortunately, poor accuracy and high not a recommended architecture for Phase 2, but
false alarm rates are often obtained at the price of rather a response to the assumptions regarding IU
speed. These errors undermine the value of maturity and the degree to which IU can satisfy
automation by forcing the IA to compensate for the MSE operational needs.
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3.3. Site Model Construction Several options exist for Object Modeling in
the near-term. For manual modeling, three systems

Figure 1 shows the decomposition of site offer broad support for the various MSE
model construction and the technologies as they are applications: the RADIUS Common Development
projected to be available during Phase 2. For Environment 3 (SRI/GE), GLMX (CDI), and SOCET
example, during the first year, Imagery Selection SET (GDE). RCDE is based on SRI's Cartogr.aphic
is supported by cloud detection, which allows the Modeling Environment, a manual site modeling and
system to select only those images offering a clear IP package. GLMX was the basis of the RADIUS
view of the site. Image-to-Image Registration can concept validation experiments and has been used
be implemented via SMED (Hughes) or MAIR in a classified operational environment to rapidly
(Harris Corporation). SMED takes advantage of generate site models for bomb damage assessment.
all available camera parameters and other system SOCET SET is a commercially available manual
specific data, relieving the IA from having to site modeling package that draws on GDE's
select more than two pairs of tie points. As tested experience with DMA mapping workstations.
against the RADIUS characterization test set,
MAIR automatically registered image pairs with These same three sources are addressing
a mean Y-disparity of less than 2.5 pixels. Terrain near-term semi-automated Object Modeling. SRI,
Extraction is automatically performed by GLSM as a RADIUS-related Broad Area Announcement
(GDE Systems Incorporated - GDE), which is being (BAA) awardee, is extending its model-based
incorporated by the Defense Mapping Agency optimization technology4 to extract roads,
(DMA) into their mapping workstations this year. railroads and buildings. CDI has developed a
All these systems were designed to work on means of using stereo imagery to accurately refine
classified imagery and their associated collateral. coarsely-specified three-dimensional wireframe

D=i semi-wautoad Conftcdo

C manual

Define selectDraw Register Extract Object Edit AddModeling Site Image to t IISemanticderig Imagery B a Image Terrain Modeling Site ModelCriteria Bondry ImgeLaelL ] RPU W i E SOCET SET

I[ II IIill- 1i &

LONG-TERM
Figure 1. Site Model Construction. Each algorithm is coded according to its automation level. Similarly coded
are the boxes extending below each task, reflecting the automation level of that task for each year of Phase 2.
Tasks for which no technology is assigned are handled manually via database and other non-lU technologies.
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primitives. GDE has enhanced SOCET SET with imaged site. An automated map-to-image
algorithms that track roads and railroads and registration is considered a mid-term capability.
locate rooftops in stereo imagery given an initial
user estimate. The constraint-based semi- 3.4. Site Model Update
automated algorithm developed at GE/CRD-' is
estimated to be a mid-term capability. The Many of the tasks and technologies for Site
specification of model primitives for use by the Model Update are shared with Site Model
GE/CRD system may require more mathematical Construction. Consequently, Figure 1 also applies
expertise than possessed by a typical IA, thus to site model update. The primary difference is the
requiring a library of ready-made primitives or a availability of the site model as a starting point in
simplified user interface. Site Model Update. New images are registered

initially to the projected site model, instead of to
Near-term automated Object Modeling is other images. SMED provides a "drag-and-drop"

likely to be available as systems from USC and near-term manual registration capability. As is
Carnegie-Mellon University (CMU). USC has two the case with map-to-image registration, an
approaches to automated structure extraction, one automated model-to-image registration capability
based on stereo' and the other on shadow evidence7, can be developed for mid-term testbed inclusion.
The CMU offering is based on the BABE" system.
Each of the three systems is being enhanced to 3.5. Site Baselines and Site Folders
handle oblique imagery. These fully-automated
systems have been rated as near-term technologies Site baselines are textual descriptions that
with the understanding that they operate with an are updated annually or as frequently as needed.
acceptably low false alarm rate. The long-term They document normal activity and highlight
automated building extraction algorithm being specific areas of interest. Site folders contain
developed by the University of Maryland (UMd) reference data (e.g., maps, charts, select images)
under a BAA extracts evidence from stereo imagery that aid IAs in exploiting imagery of the site. IU
and uses a truth maintenance system to search support for baselines and folders comes in the form
among the building hypotheses generated). of model-to-reference data registration (Figure 2).

The manual site modeling systems 3.6. Exploitation Tasks
mentioned above are applicable to the Edit Site
Model task, in which the user may refines, adds or RADIUS Phase 1 did not include the four
deletes elements of the model. A model extension basic image analysis tasks (Section 1.1). While
capability is being developed at the University of Phase 2 will explore these application concepts
Massachusetts, Amherst (UMass) under a BAA. more extensively, change detection has been
Positional accuracy of site model elements will be identified as a BAA research area. Figure 3 shows
refined automatically via induced stereo generated the preliminary requirements common to all
over multiple overlapping views of the site. This exploitation: Determine Image Utility and
algorithm is considered a long-term capability. Register Image to Model. The combination of cloud

detection and model-to-image registration helps
A body of two-dimensional campus-style automate the image prioritization process, thereby

maps, to which collateral information is attached, streamlining the exploitation process. UMd is
is currently available to lAs. Buildings, parking developing a semi-automated change detection
areas, points of entry and other intelligence- capability, scheduled for completion by the third
related site features are typical components of year of Phase 2.
these maps. More importantly, the maps include
labels and identifiers keyed to the various map 4. TECHNOLOGY STUDIES
elements. Registration of this map to imagery of
the site facilitates automated entry of these labels As shown in Section 3, registration is
and identifiers into the generated site model. After fundamental to the success of RADIUS. Several
projecting the campus-style map into the geometry data types must be registered to one another (i.e.,
of an image of the site, SMED offers a near-term imagery, maps, models). While pieces of these
manual capability for aligning the map with the registration tasks have been addressed, most
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notably image-to-image, there are aspects of the knowledge of the camera parameters.
problem specific to the proposed operational
environment and data. To validate the concepts Since the site model is very large, the first
that would allow timely and accurate automated step in registration is to decompose the site model
registration, the Hughes team undertook two into distinctive objects. By using only the most
studies. The first relates to image-to-model distinctive objects in the model-to-image matching
registration, specifically the registration of large process, computational expense is reduced
site models to large images. The second study significantly. After the objects are matched to
investigated the utility of the campus-style features extracted from the image, the camera
collateral maps mentioned in Section 3.3. parameters are then updated.

4.1. Registration of Large Models to Large Images The registration system was developed
using unclassified data of Fort Hood. CDI provided

The problem of matching three- camera models and a site model containing 148
dimensional models to images is similar to object buildings. Two images, one nadir (FH1) and one
recognition where an object in an unknown position oblique (FH2), were used in the experiments. FHI
and orientation is recognized. There are, however, was used to build the site model; FH2 was not. The
significant differences. The site model can consist image data was scaled from 16 to 8 bits per pixel,
of several hundred objects, some of which may lie and the images were subsampled by a factor of
off the image. The model is constrained to lie on a four.Since the camera models were fairly accurate
known ground plane, leaving only one unknown in overlaying the site model onto the image, two
orientation parameter. Since scale is given, there types of error were introduced to test the system
are only two degrees of freedom for position. Translation error was introduced by translating the
Matching is further restricted by a priori projected model in the image plane. Model error

l a*Dorued Site Baselines Image
[' semi'automated Site Folders Exploitation

0 manualII

G•ther Register Save 1 RegterICollateral Model to Soltcopy Iae model toImg
Collateral L Links Utility Image

LMED WDD
NEAR-TERM NEAR-TERMD eiitratin) R2itrtin1 11 1!1 I 11D11

MID-TERM MID-TERM

LONG-TERM LONG-TEr-
Figure 2. Site Folders and Baselines. Multi-source regis- Figure 3. Exploitation. Exploitation depends on clear
tration is vital to site baselines and folders. imagery and accurate model-to-image registration.
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which image junctions were matched. Results were
V 4e described by the estimated translation error and by

j the number of junctions found at that translation.

Count Count/Peak T
165 LWK (301,250)
85 0.52 (68,349)
84 0.51 (371,336)
75 0.45 (313,275)
73 0.43 (73,345)

Figure 7. Accumuldator Array for First Test Using
FH 1. The inaximnun frr the correct peak (165) is

4nearly double that of the next closest estimnate (85).

In the first test using 171-1, no error was
Fiue6 A Building in FHL-. The sitein odel overlay~ added to the site model, but a translation error of
is black, the extracted corner junctions wahite. T=(300) rows, 250 columns) was introduced. The

search window in which the model was expected to
the image that were processed and to restrict the lie was 4(X0x40() pixels, effectively 16(X~xl6fK)
neighborhood around the projected model corner in pixels in the original image. Figure 7 shows the top
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five entries in the Hough accumulator array search window was again set at 200 x 200 pixels. As
indicating the matched junction count, the count-to- in the first test, the estimated translation error
peak ratio, and the estimated translation for the closest to the actual translation, (1, 0), was not
first test. indicated by a strong peak (Figure 10).

In the second test, each side of each Count Count/Peak T
building in the model was stretched by 10 pixels, 84 1.00 (-99, -1%)
while T was held at (0, 0). As before, the search 82 0.98 (-38, -63)
window was set at 400 x 400 pixels. Once again, 80 0.93 (1, 0)
thepeak was very strong (Figure 8). 78 0.89 (-126, -1%)

75 0.83 (-58, -109)
Count Count/Peak T Figure 10. Accumulator Array for Second Test Using

180 1.00 (1,1) FH2. Although not indicated as the best solution,
137 0.76 (-5, 5) the correct translation was within the top five.
104 0.58 (331, 155)
94 0.49 (-137, 108) These experiments demonstrate that model
89 0.49 (-184,-28) decomposition followed by a simple matching

Figure 8. Accumulator Array for Second Test Using procedure is a promising technique for registering
FH1. A robust solution is generated even in the large site models to large images. Decomposition
presence of model inaccuracies, reduces the search space, since only distinctive

buildings need to be matched. Decomposition can be
The same two tests were performed on FH2. improved by including spatial information. One

Inherent discrepancies were known to exist between approach is to treat closely-situated, similar
the site model and the image since FH2 had not structures as non-distinctive. A second tact is to
been used to generate the model. Consequently, identify distinctive patterns of structures and to
smaller errors were added. In the first test of FH2, later match them as a unit. Finally, additional
no error was added to the site model and T = (-100, - processing is required in cases where only a portion
150). The search window was 200 x 200 pixels, of the site is imaged (e.g., as in Figure 5).
effectively 800 x 800 pixels in the original,
unreduced image. 4.2. Registration of Campus-Style Maps to Imagery

Count Count/Peak T Registration of campus-style maps to
56 1.W (-29,-26) imagery is the problem of registering two-
50 0.89 (-100, -149) dimensional site models to imagery. This problem
47 0.84 (-154, -194) was solved for two scenarios on the SCORPIUS
46 0.82 (8, -102) program. The goal of SCORPIUS (the Strategic
45 0.80 (22,-112) Computing Object-directed Reconnaissance

Figure 9. Accumulator Array for First Test Using Parallel-processing Image Understanding System)
FH2. A sharp peak is not produced, since half of was to demonstrate automated exploitation of
the distinct elements extend past the image, aerial imagery. Registration on SCORPIUS used

image acquisition parameters to project the site
In this example, the estimated translation model into the image plane then matched pre-

error closest to the actual translation, (1(), -149), computed tie points to features extracted from the
was not indicated by a strong peak, unlike the image. The problem was one of determining the
examples of FHI (Figure 9). Nevertheless, it was rotation and translation between the projected
within the top five maxima. As shown in Figure 5, model and the underlying data.
a large number of distinct buildings used for
matching lie off the image, increasing the The registration system was developed
likelihood of false matches. using a campus-style map and imagery. Two

oblique images of a site were selected, one
In the second test of FH2, each side of each reflecting summer conditions (e.g., clear weather)

building in the model was stretched by 10 pixels in and the other showing winter conditions (e.g., haze
a single direction, while T was held at (0, 0). The and snow). The map was scanned into softcopy and
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stored as a semantically-labelled two-dimensional the limitations of existing technology, the MSE
site model. For study purposes, tie points were operations concept includes three levels of
determined and labelled manually. The site model automation: manual, semi-automated, and
was projected by the government-furnished camera automated, with manual capabilities existing as a
simulator into the geometry of the selected images. fallback position to ensure system functionality
Using SCORPIUS software, the map and its under all operating conditions. The RADIUS
related collateral were registered successfully to technology studies (Section 4) demonstrated that
the two images. through judicious combination of existing data and

technology, such an operations concept is a
The hypothesis is that information from reasonable and realistic objective.

the registered map will provide valuable a priori
knowledge to subsequent IU algorithms. More 5.2. Technical Requirements
specifically, object modeling systems will have
access to cues regarding the number, location, The technical requirements for the MSE
orientation, size, and footprints of important workstation stem from the functional flows shown
objects in an image. As a result, automation of the in Figures 1, 2 and 3. Although the flows for site
site modeling process is simplified, being modified modeling/update and exploitation were
from a general to a directed search problem. This conceptualized prior to IA consultation, the
study demonstrated the viability of using pre- RADIUS Phase 1 experiments proved the viability
existing campus-style maps to obtain these cues. of these designs. The technical requirements that

support these functional flows in three levels of
5. CONCEPTUAL DESIGN automation focus on user interface issues and data

exchange standards.
The conceptual design for an MSE

workstation must satisfy the operational needs A fundamental characteristic of a workable
enumerated in Section 2 while taking into account workstation design is a minimization of the
the technological constraints outlined in Section 3. difference between the output of automated
The critical concerns for lAs are those of confidence processing and any manual effort. The end product,
in an accurate site model and in the results of whether it be the site model itself or an
automated processing. The key caveats issued by exploitation report, must have a standard look-
the IU technologists focus on the boundary and-feel no matter which portion or how much of
conditions and accuracy rates of their algorithms, the product was generated by IU or a human

analyst. A significant implication of this
5.1. Operational Concept requirement is that the various processing

algorithms must work on components of the
The success of an MSE workstation design is modeling or exploitation problem that are

grounded in the integrity and usability of the intuitively self-contained to facilitate human
underlying site models, as required by both the lAs interaction. Having multiple options for each
and the IU algorithms. The initial emphasis had processing stage also mandates the formal
been on automation as the end goal in workstation definition and strict enforcement of data formats to
technology. In crafting a realistic operations ensure easy system integration and upgrade.
concept, however, the Hughes team found that lAs
questioned the desirability of full automation. 6. CONCLUSION
Analysts believe that ultimate responsibility for
the processing results was still theirs, thereby As with any system supported by research,
making a more interactive, checks-and-balances there is a tension between the needs of the user
system more appealing. community and the capabilities of the underlying

technology. By including multiple automation
Technology characterization (Section 3) options in conceptual design for an MSE

validated the IAs' concerns, showing that systems workstation, an attempt has been made to provide
which were said to be fully automated still fell the user with ultimate control over the system
short of meeting operational requirements. To while giving automation every opportunity to
accommodate the wishes of the IA community and demonstrate its effectiveness. The insistence upon
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user and data interface standards serves to simplify California, November 1992. IRIS Technical
system development and integration. Report 302 -
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Abstract (model refinement). This process can be repeated as
new images become available, each updated model be-

This paper presents an overview of a system for site coming the initial partial model for the next iteration.
model extension being developed for the Radius (Re- Thus, over time, the site model will be steadily im-
search and Development for Image Understanding Sys- proved to become more complete and more accurate.
tems) project by the University of Massachusetts. Au-
tomatically registering imagery to a geometric site The process of model extension and refinement canmodel, and extending that model to include new fe.- be broken into four important subtasks. First,

modl, nd xtedin tht mdelto nclde ew ea- feature extraetio routines are run on new images
tures of interest seen from multiple views, represents ture extast rout af rncon new images
an important application of image understanding - to reduce the vast amount of incoming data into a
nology to the task of model-supported image exploita- manageable set of symbolic geometric descriptions.
tion. The completed system will contain modules for Second, a mode cmeatlens procedure uses an ni-perorin fatreexratinmoelmachng pse tial guess oftecmr esand pose parameters for
performing feature extraction, model matching, pose each image to guide its discovery of the correspondence
determination, and triangulation. between model features and extracted image data fea-

tures. These correspondences are used to perform a
1 Introduction resection of the pose parameters for each camera,

to find a more accurate description of the transfor-
Acquiring accurate 3D site models from a set of images mation between the three-dimensional site model and
is a difficult task. Due to the ambiguity inherent in the each two-dimensional image. The updated transfor-
projection of three-dimensions down to two, general mation parameters enable a final process of multi-
structure recovery is not possible without additional image triangulation to determine the position of new
constraining knowledge. We begin by assuming that features in the mode coordinate system, and to update
a partial scene model is available and that for each im- the positions of old features based on the new image
age the internal (lens) and external (pose) parameters data. Images of significantly disparate viewpoint can
of the camera are approximately known. Our models yield a quite large baseline, resulting in very accurate
consist of sets of points, lines, and planes, represented reconstructions.
in a three-dimensional world coordinate system. The
model is partial in that we do not assume all the im-
portant features of the scene are modelled. It is not 1.1 The role of the imagery analyst
necessary that the features be connected, confined to
a single object, nor is it even necessary that they be The imagery analyst (IA) plays a key role in the sys-
known precisely. In this sense we use the term 'model' tem being developed. Early versions will require IA
in a much broader way than is commonly used in the guidance at several stages. Most obvious, the initial
graphical modelling community, although our defini- partial site model we require has to come from some-
tion covers the traditional usage as well and thus in- where, and the most likely provider in the short term
cludes wire-frame and surface-based models. is the IA. Since our models are required to be merely
Given an initial partial model, and a set of images of a collection of geometric primitives known in three-
then sninitie, ou r tal s mtodextnd the modelto inclde o dimensions, considerable flexibility is available in theirthe site, our goal is to extend the model to include seiiain h oe a oss fntigmr

previously unmodeled site features (model extension), specification. The model may consist of nothing more
and o rducetheinacuraiesin te eistig mdel than the known 3D locations of a set of visually distinc-

and to reduce the inaccuracies in the existing model tive scene points. Alternatively, the IA could fabricate

"This work was funded by the RADIUS project under wire-frame 'boxes' of the appropriate dimensions and
DARPA/Army contract number TEC DACA76-92-R-0028 locations to fit several significant buildings at the site.
and by DARPA/TACOM contract DAAEO?.91-C-R035. Since model extension locates new scene features with
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respect to preexisting ones, the best results are oh- of the entire process, rather than an in-depth analy-
tained when initial model features are spread out over sis of any one piece. Two of the components, feature
the whole area of interest, both in terms of ground extraction and model matching, are currently under
positions and in height. If enough initial features are evaluation on the model board images, and illustra-
given, none of them needs to be specified very pre- tive examples are included in those sections.
cisely, since they will be automatically refined later in Future research will focus on ways to further automate
the model extension process. the model extension process. For example, we hope to

Another important piece of information that will need acquire initial partial site models from scratch. This
to be provided to the system is an estimate of the cam- process requires determination of correct feature cor-
era lens and pose parameters for each image, which respondences across multiple images. When accurate
provides the system with an initial estimate of the initial estimates of the camera parameters for each im-
transformation mapping three-dimensional site fea- age are available this is indeed feasible. Otherwise,
tures into observed two-dimensional image features, the very difficult problem of finding correspondences
This estimate is used to build the appropriate geo- between two images taken by different cameras, pos-
metric template for matching the initial site model to sibly from significantly different viewpoints, must be
extracted image features, and to restrict the search solved. To this end, we are pursuing a parallel research
for feature correspondences to a manageable set of track investigating the use of projective invariants for
likely candidates. Some subsets of parameters may image to image registration and for planar and 'nearly
be known beforehand, or recorded when the picture is planar' scene reconstruction. The benefit of this ap-
taken. For example, it is customary to assume the in- proach is that the dependence on prior estimates of
ternal camera lens parameters are known and remain camera lens and pose parameters is minimized. One
constant for multiple images taken by a single camera. aspect of our work on invariants, automated image rec-
Other parameters related to camera pose such as alti- tification (unwarping of oblique views) for matching
tude or look angle may be measured at the time the coplanar structures, is described in these proceedings
photo is taken, and are provided with some estimate of [Collins93].
their uncertainty. If at the time of interpretation some
parameters still have no recorded values, an estimate 2 Feature Extraction
will need to be provided by the analyst. It should be
stressed that the initial camera parameters supplied to
the system do not have to be accurate enough to pro- In order to extend a partial site model from a set of im-
vide precise 3D triangulation, but only good enough ages, it is necessary to determine where in each image
to allow model matching to find the correct correspon- the model appears. A model will normally be specified
dences between model and image features with reason- at a much higher level of geometric abstraction than
able computational cost. These estimates will be re- the image intensity values. For this reason, feature
fined via camera resection following the determination extraction routines are first run on the images to pull
of model to image feature correspondences. out higher-level symbolic features of a type compati-

ble with the features represented in the initial model.
One final area where analyst interaction can greatly The type of geometric features that can potentially be
benefit the model extension process is in selecting extracted from the image includes straight line seg-
which new image features are interesting enough to ments, line pencils, rectilinear line groupings, curves,
be worth adding to the model. The automated system corner points, regions of homogeneous intensity, and
could conceivably be turned loose to add every feature textured areas. Our current matching algorithm relies
for which a correspondence is found across at least two exclusively on straight line segments: edges of a wire-
images - the result would be analogous to a digital ter- frame model are matched to straight lines extracted
rain model, being refined to finer and finer resolutions from the image.
as new images are processed. While this may be ex-
actly what is wanted for some tasks, it would not be 2.1 Straight line extraction
particularly meaningful for interpreting urban and in-
dustrial sites, where one might like to structure the We are applying two straight line segment extrac-
developing model in terms of high-level concepts such tion algorithms to the Radius model board imagery.
as 'road' and 'building', and thus derive additional de- The Burns algorithm [Burus86] begins by labeling pix-
tail only for particular areas of the model. els in the intensity plane according to coarsely quan-

tised gradient orientation. A connect-components al-
1.2 Paper overview gorithm is then run to determine line-support regions,

i.e. a set of pixels with an intensity surface that sup-
The remainder of this paper describes, section by sec- ports the presence of a straight line. Representative
tion, each of the four stages of model extension: fea- lines are extracted by intersecting a plane correspond-
ture extraction, model matching, camera resection and ing to the average intensity of a line-support region
triangulation. The aim is to present a brief overview with a least-squares planar fit of the underlying inten-

198



sity surface of that region. spatial access mechanism. The final vanishing point
locations are computed using a statistical estimation

In contrast, the Boldt grouping algorithm [Boldt89] technique that estimates each vanishing point location
extracts local edges and then hierarchically groups as the polar axis of an equatorial distribution on the
them via geometric relations that were inspired by the unit sphere [Collis90]. The resulting polar axis points
Gestalt laws of perceptual organfisation. The initial towards the location in the image where the converging

edges are the zero crossing points of the Laplacian of lines intersect, and points parallel to the image plane

the intensity plane. In an iterative process, two edges when the underlying 2D line segments are parallel.

are linked and replaced by a single longer edge if their

end points are close and their orientation and contrast
are similar, resulting in increasingly longer lines. 3 Model Matching

Our current implementation of the Burns algorithm
runs much faster than Boldt, because it makes fewer The second stage of the model extension process is
local decisions at each stage of processing, and main-
tains fewer intermediate data structures. Indeed, a model matching. Figure 3 shows a partial wireframe

stripped down version of the Burns algorithm has been model constructed from the model board ground truth

used as a fast line finder for robot navigation exper- data. This model encompasses only those buildings

iments [Fennema90]. Our current implementation of where enough ground truth points were available to

the Burns algorithm also works on larger image sises. determine their shape and location. Note that some

The one drawback is that oddly-shaped support re- buildings are incompletely specified.

gions caused by slow gradient intensity changes in the Given a partial 3D wireframe site model, and a set of
image can skew the orientation of the resulting lines, extracted straight lines, the goal of model matching
Current work is aimed at correcting this known prob- is to find the correspondence between model lines and
lem. Figure I shows a portion of one of the model data lines. To find this correspondence we are evaluat-
board images, while Figure 2 presents a set of lines ing a novel model matching algorithm due to Beveridge
extracted from this image by the Burns algorithm. [Beveridge90]. Based on the local search approach to

combinatorial optimisation, this algorithm seeks the
2.2 Vanishing point detection transformation that brings the projected model into

Vanishing points can be an important source of in- subpixel alignment with the underlying image data.

formation in urban and industrial scenes where build- The local search matching algorithm searches the
ings and roads are layed out in a rectangular grid. By discrete space of correspondence mappings between
grouping together pencils of lines that converge to a model and image features for one that minim;ses a
vanishing point, a higher level of geometric abstraction match error function. The match error depends upon
and data reduction is achieved. Under known camera the relative placement implied by the correspondence,
lens parameters, vanishing points allow the computa- and the amount of coverage of the model by the data.
tion of three-dimensional line and plane orientations More particularly, to compute the match error the
from a single image, and thus allow the orientation of model is placed in the scene so that the appearance
the camera with respect to the scene to be inferred of model features is most similar to the appearance
(see Section 3.1). When the camera lens parameters of corresponding image features. The more similar the
are not known, they can be determined to a limited appearance the lower the match error. The mathemat-
extent from vanishing point information [Wang9l]. ical transformation mapping model features to scene

A practical algorithm for finding vanishing points from features is essentially a module of the system. Our
a se oflinesegnent inan magemus addesstwo current implementation handles the four parameter 2Da set of line seg',•ents in an image must address two similarity transform and the full 3D pose transform.

issues: how to cluster line segments going to a single

vanishing point, and how to estimate an accurate van- To find the optimal match, probabilistic local search
ishing point from a given line duster. The former is relies upon a combination of iterative improvement
handled elegantly using a Hough transform that maps and random sampling. Iterative improvement refers to
line segments onto great circles in a histogram repre- a repeated generate-and-test procedure by which the
senting the surface of a unit sphere [Barnard83]. Po- algorithm moves from an initial match to one that is
tential vanishing points are detected as peaks in the locally optimal via a sequence of incremental changes
histogram, corresponding to areas where several great that continually reduce the match error. In an effort to
circles intersect. While this approach excels at quickly find the global optimum, the algorithm is run multiple
clustering line segments into convergent groups, the fi- times, starting with different initial correspondences
nal estimate of vanishing point location and variance from the model to data line match space. Even if the
should be based on the line segments themselves rather probability of seeing the optimal match on a single trial
than the arbitrary bucket boundaries of a histogram is low, the probability of seeing the optimal match in a
data structure. We therefore use the Hough transform large number of trials started from uniformly random
only as an initial clustering method and as an efficient positions in the match space is high.
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Figure 1: Model board image 8 Figure 2: Burns lines for image 8

Figure 3: Partial wire-frame model Figure 4: Initial model projection

Figure 5: Candidate data correspondences Figure 6: Best match of model to data
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3.1 Initial camera model resolved by identifying the direction of true north in
the image by hand. The distance of the camera from

Essentially all model-to-image correspondence prob- the ground was determined from the reported Ground
lems involve solving both a discrete correspondence Scale Distance (GSD); to date our experiments have
between model and image features along with an asso- only used the 18 inch GSD image.. Finally, the inter-
cated transformation mapping model features into the section of the camera's line of sight with the ground
image. The two problems together constitute model plane was estimated manually (see Section 1.1 on the
matching: a match being a correspondence plus a role of the imagery analyst).
transformation. The most general transformation typ-
ically considered involves full 3D pose: a rigid 3D 3.2 Setting up the match space
model is rotated and translated relative to the cam-
era and then projected into the image using a known Model matching performs a search through the space
camera model. of possible model to data correspondences. This space

However, given good estimates of the lens and approxi- is initially set up by deciding which data lines in the
mate pose parameters of the camera, the 3D model can image are to be considered as candidates matches for
be projected onto the image before matching begins, each model line. Careful pruning of this space at the
turning the problem into a search for the 2D transfor- start is crucial to achieving tractable run times. Once
mation that best brings the ED projected model lines again the problem is greatly simplified when good ini-
into correspondence with the data. 'This is the under- tial estimates of the camera transformation parame-
lying motivation for the 2D similarity version of the ters are available. The better the initial estimates,
model matcher. Finding the best 2D similarity trans- the tighter the filters for picking out possible candi-
form between model and data is much faster than solv- date data lines can be, both in terms of orientation,
ing for full 3D pose. Because the method is fast, it is position in the image, and length.
possible to run more trials in a given amount of time, Even though the metric used to score potential corre-
thereby increasing the confidence in finding the best spondences is purely geometric, photometric expecta-
correspondence. Figure 4 displays a projection of the tions such as the sign and magnitude of contrast across
wire-frame site model onto our example model board a line can be enforced in the final match by prefilter-
image using initial estimates of the camera lens and ing for these properties in the initial candidate gener-
pose parameters. ation phase. Our tendency has been to underspecify

The camera parameters to be estimated for each image rather than overspecify filter parameters, however, be-
may be presented in the followir3 matrix form cause once a correct line pairing has been excluded by

oversealous filtering in the candidate generation stage,
3x 3x3 3x 4 4x Ithat correct pairing can never contribute to the match

0 0 Ithat is eventually found.

k-w = .so, l ( R It i For the experiments we have run on the model board
1 0 0 1 z imagery, all lines located within 100 pixels and having

1 an orientation within 10 degrees of a projected model

which maps the 3D coordinates z, y,and z of a model line are selected as possible matching candidates. Fig-

point into the 2D coordinates us and v of an image ure 5 shows the complete set of candidate data lines

point The transformation from model to image coor- considered in our example matching problem. Fig-
point.e tran to fro f pose param eters ure 6 displays the overlaid model after application ofdinates is broken into a 3 x 4 matrix of pose parameters the 2D similarity transform associated with the best
and a 3 x 3 matrix of lens parameters. The pose pa- cors ndnefu.

rameter matrix is partitioned into a 3 x 3 orthonormal correspondence found.

rotation matrix R and a 3 x I translation vector t.
The lens parameters considered are s, and a,, the fo- 4 Camera Resection
cal length in pixels along each of the image axes, and
uo and vo, pixel coordinates of the principle point. The result of model matching is a set of model to image

For our experiments, initial estimates of the lens and feature correspondences between 3D wire-frame edges
pos praexerns, for the Radius model board imager and 2D image lines. The next stage in the model ex-pose parametersry tension process uses these correspondences to resect
were determined as follows. First, nominal values for more accurate estimates of camera pose. These up-
the camera lens parameters were filled in from infor- dated parameter estimates will be used to triangulate
mation supplied with the model board data (namely the positions of new scene features.
the focal length in mm and the dimensions of a pixel in
mm), and by assuming the principle point to be in the Kumar has developed optimisation techniques for find-
numeric center of the image. The orientation of the ing 3D camera pose from point and line-based feature
camera with respect to the scene was determined by correspondences [Kumarg2a, Kumarg2b, Kumar92c].
vanishing point analysis up to a four-fold ambiguity, His line-based constraints are similar to those devel-
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oped by Liu, Huang and Faugeras [Liu88] from the 5 Triangulation
observation that the 3D lines in the camera coordi-
nate system must lie on the projection plane formed Our approach to model extension began with the
from the corresponding image line and the optical cen- search for correspondences between a partial site
ter. Using this fact, Liu et.al. separated the constraints model and geometric image features. Finding these

for rotation from those of translation, leading to a so- correspondences and computing the camera pose re-
lution in which rotation is solved for first, and then lating the model coordinate system and the image co-
translation is obtained using the rotation results. Un- ordinate system of each view has been discussed. Now,

fortunately, small errors in computing the rotation are using the computed model to image transformations,
amplified into large errors in translation, correspondences of unmodeled features over the multi-

ple views can be backprojected to locate new 3D model
Kumar's pose solution differs from that of Liu et.al. in points and lines in the model coordinate system by tri-
two significant ways. First, rotation and translation angulation.
are solved for simultaneously, which makes more effec-
tive use of the constraints and is more robust in the Currently, only code for triangulation of point features
presence of noise. Second, the nonlinear least-squares is implemented. The estimation of new 3D points can

optimization algorithm used to solve for rotation and be done in either batch or iterative sequential mode.
translation is adapted from Horn [Horn90J. Horn's Triangulation requires at least two frames and there-
method, based on the quaternion representation of ro- fore the minimum batch size is two. Results from batch
tatious, provides much better convergence properties to batch can be be integrated by the standard Kalman-
than solution methods based on Euler angles. filter covariance based updating equations.

It is well known that least squares optimisation tech- Due to noise both in image measurements and cam-
niques are prone to errors when there are outliers in era pose estimates, image projection rays will not ex-
the data. Kumar developed a second suite of pose op- actly intersect at a point. Kumar has developed a
timisation methods using robust statistics in order to 3D pseudo-intersection method that minimizes an er-
minimlie the effect of outliers. In these algorithms, ror equation based on the same constraints that de-
the median of the error function is minimized, rather termine the pose [Kumar92bj. The criterion underly-

than the mean squared error. This approach is robust ing this error equation is that the best estimate for
over data sets containing up to 50% outliers, at the ex- any model point location is the point that minimizes
pense of the increased computation needed to sample the least-squares distance between the predicted im-

multiple subsets of data to find one devoid of outliers. age location of the projected model point and its ac-
tual image location, taking into account covariances in

Based on a model of image noise and the assumption the measured image positions and the computed pose.
that the 3D model data is accurate, closed form expres- Two non-linear error equations are obtained for each
sions for the uncertainty in the pose refinement results scene point for each image frame, thus a minimum
(rotation and translation) have been derived. Kumar of two frames is needed to solve the system of equa-
has shown analytically that the error in the output tions. Techniques for the solution of nonlinear systems
parameters is linearly related to the noise in the input of equations generally require an initial estimate that
data [Kumar92b]. He also studied the effect of er- is close to the true solution. The initial estimate in
rors in estimates of the image center and focal length this case is chosen as the point that minimizes the sum
on the resulting pose, showing that incorrect knowl- of squares of perpendicular distances to all the image
edge of the camera center does not significantly affect projection rays, a point that is easily found by solving
the computed 3D location of the sensor (although the a linear system of equations. Using this initial guess,
computed rotation is affected), and that incorrect esti- an iterative procedure is employed to solve the system
mation of the camera focal length significantly affects of non-linear equations for each point. The iterative
only the z-component (depth) of the computed pose. procedure is repeated until there is convergence. Usu-

For images where the lens parameters are not avail- ally only one iteration is sufficient for accurate results
able, or not known very accurately, the pose deter- [Kumar92b]. A byproduct of this calculation is an ap-

mination process could conceivably be extended to proximate covariance matrix for the derived 3D model

solve for both lens and pose parameters. The resulting point position.
highly nonlinear set of equations could best be solved The method described above can also be used for
if multiple images taken with the same camera were model refinement. In this case initial model points
available, in which case a joint optimization procedure have input covariances associated with them. The
could be used to determine the single set of lens pa- pseudo-intersection method is used to calculate a new
rameters at the same time the pose parameters for estimate for each initial model point. The covariance
each view were computed. We are investigating the matrices of a new estimate and an initial model point
feasibility of this approach for general applications. are used to fuse the two estimates and provide a new

uncertainty matrix using the standard Kalman filter-
ing equations.
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Kumar assumes that the lens parameters are known, Projective Unwarping and Similarity Matching,"
uo only uncertainty in the pose parameter estimates is Proc. Darps, JUW, Washington, DC, 1993.
considered when computing the error in a triangulated [Fennema9O]
point position. We are extending this approach to han- C.Fennem.., A.Hanson, E.Riseman, J.L.Beveridge
dle uncertainty in the camera lens parameters as well, and R.Kumar, -Model-Directed Mobile Robot
We are also extending the triangulation equations to Navigation,- IEEE fleaw. SMC, Vol. 20(6), 1990,
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Site-Model-Based Change Detection and Image Registration
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Abstract for viewpoint and illumination differences) are extremely
sensitive to errors in registration and in the photomet-

The University of Maryland (with TASC of iic models (e.g. reflectance, illumination) that are used;
a subcontractor) is one of the group of insti- b) too many inconsequential changes occur in any natu-
tutions doing research on aerial image under- ral environment. Even if general-purpose methods could
standing in support of the RADIUS program. be developed for screening out all changes due to varia-
The emphasis of our research is on knowledge- tions in viewpoint, sensor and illumination, there would
based change detection (CD) using site mod- still be many differences between the images whose sig-
els and the domain expertise of image analysts nificance could only be determined by an image analyst
(IAc). Change detection involves classifying (IA) using comprehensive site knowledge and the rele-
changes in the imagery as being due to site up- vant intelligence agenda. Thus the goal of relieving the
dates or activity, or as irrelevant changes due IA of the burden of screening large subsets of acquired
to illumination differences, seasonal variations, imagery is unlikely to be achieved using such general-

etc. The IA's expertise is crucial in identifying purpose methods.

relevant changes, which depend on the site and

the intelligence agenda. Our focus is on ways We plan, instead, to develop a model-based vision
in which image understanding (IU) techniques system for CD incorporating image understanding (IU)
can aid the IA in performing CD. We are de- techniques whose primitives are specific to a particu-
signing a system that allows the IA to specify lar site type, and that can be employed by the IA to
what are.to be considered as relevant changes, direct the IU system to conduct spatially constrained
and to select appropriate IU algorithms for de- analyses whose outcomes may be indicative of occur-
tecting these changes. rences of changes that have intelligence significance. The
Before CD can be attempted, the acquired im- system will be site-model based, employ a heavily vi-
ages have to be registered to the site model. sual man/machine interface, and will be based on threeWe are developing efficient constrained search classes of primitives: object primitives, which corre-

mechanisms for image-to-site model registra- spond to the specific objects that occur in a particular
tion, using techniques based on non-monotonic site model and to the generic object classes supported
reasoning (Assumption-based Truth Mainte- by the IU system; spatial primitives, for the construc-
nance Systems (ATMSs) and their variants). tion of search locales and the specification of constraints
We are also using such techniques to facilitate on the search for object types within locales; and tempo-
interactive IA guidance for CD and site model ral primitives, which can constrain or parameterize the
updating. analysis by factors such as time of day, day of week, time

of year, etc. The system will assist the IA by highlight-
ing areas on an image where there are relevant activities,

1 Introduction new or upgraded facilities.

The process of locating and identifying significant As reported in [1], IAs have identified two ways in
changes or new activities, known as change detection which IU can be useful in CD: the "quick-look" (QL)
(CD), is one of the most important imagery exploita- and "final-look" (FL) modes. In the QL mode, small
tion tasks [1]. Previous research on CD has emphasized areas where any change would be considered significant
the development of general-purpose methods that can are declared a priori, and when the system is presented
be employed to screen a wide variety of imagery and de- with a series of images, only those that satisfy the con-
termine, without access to any site-specific model infor- ditions in the QL profile are marked. In the FL mode,
mation, whether any significant changes or events have a set of less important areas to be examined for change
occurred between the times of acquisition of the imagery. is specified. These areas are less important, but the IA
These methods have been found to be unreliable because wants to examine them to ensure complete coverage of
a) CD techniques based on more or less sophisticated dif- the site. As the IA gains experience, both the QL and
ferencing of images (possibly after attempted corrections FL profiles can be modified. The CD system that we
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plan to build could include these two options. temns (ATMSs) [7, 8]. ATMSs achieve efficiency by keep-
The site models considered in the current phase of ing track of unsuccessful or undesirable search paths.

RADIUS encode only the spatial relationships between Conditions that lead to unfruitful search are declared
fixed objects of interest in a site, such as buildings, roads, and stored as mogoods. These aegooda can be declared a
etc. An important issue in training new analysts or re- priori or during analysis, based on the IA'. expertise in
viewing infrequently analyzed sites is the coding of the terms of undesirable matchings or in terms of inconsis.-
temporal relationships which describe changes in the site tencies of features and their groupings as predicted by
such as movements of vehicles under normal or abnor- the rendered scenes or the site models themselves.
mal circumstances--i.e., a site activity model. The CD ATMSs can also be used for updating a site model once
system described above will be a valuable step toward the CD module and the IA identify the changes of con-
the development of a site activity modeling capability, sequence. This process involves additions sad deletions

Generally the first step in a CD task is the registra- of assertions or hypotheses that exist as part of the site
tion of an image to an existing site model. Depending model. The subproblems involved are generating symn-
on the CD task, using the existing site model and cam- bolic descriptions of the image regions where changes
era parameters, regions of interest in the given image will have occurred and incorporating these descriptions into
first be outlined. Subsequently, objects such as buildings the model.
and vehicles that are characteristically present in the site It is evident that the IA will perform a crucial role in
can be extracted and analyzed for CD purposes. Such directing, manipulating and correcting the results of IU
object extraction algorithms cannot be purely bottom- algorithms. An important part of our approach is the
up. For example, in extracting buildings [2], heuristics inclusion of early feedback, by users familiar with the
based on the expected shapes of roofs (site-specific infor- final application, as to the usability of the algorithms
mation) are very useful for completing any partial roof developed under this program. Although formal usabil-
hypotheses that result from imperfect bottom-up pro- ity test sessions are not envisioned, subjects will be asked
cessing. Likewise, shadow analysis is very useful for ob- to perform routine and specialized tasks for evaluation.
taining height information [3, 4], or allowing the IU sys- These evaluations will provide valuable information with
tem to explain why some building features that are in respect to the likely models and levels of interaction to be
the field of view cannot be identified in the image. Site expected from IA's, the clarity and intuitive understand-
models can also be very useful for providing geometric ability of the IU algorithms, and whether the typical IA

and hot metrc c nstrint tht reuce matcingam- is able to tailor the responses of the algorithm to his/her
biguities. needs.

The interactions of the various modules describedIn addition to image-to-site model registration, we are aoeaeilsrtdi iue1
also interested in image-to-image registration where two
images acquired from possibly severe off nadir viewing
conditions need to be registered. Image-to-image regis-
tration is useful for building site models, and for per-
forming the subtask of transforming a given image to a
"favored orientation" [1]. The images to be analyzed ban
as part of the RADIUS-related research program are
high-resolution images of complicated sites. In many
of the currently used image registration algorithms, tie I arI~~. iaergtaJ~
points need to be manually selected. This can be a
laborious task. Automatic registration of the two im-
ages is desirable. Given the variability of viewing di-
rections, illumination conditions and resolution, the fea-
tures used for matching may be poorly localized or oc-
cluded. Automatic image-to-image registration will be
accomplished using appropriate cues from site models
and camera models. Although the use of site models
for image registration and CD has attractive features,
there are some problems associated with this approach.
Site models are usually not complete; only a few im- Fiue1Scmacrpesntonfthcagede-
ages may have been used in building a site model. In- tionuro chess. ersntto fte hnedtc
ferences based on incomplete site models may be erro- to rcm
neous or incomplete. The matching algorithms used in
image registration should be able to deal with uncer-
tainties. Currently used matching algorithms based on 2 Research Areas
relaxation, interpretation trees [5] and constraint sat-
isfaction networks [6] lead to inefficient, repetitive and 2.1 Site-Specific System for Change Detection
uncontrolled search for matches. We propose to use We are developing a system whose primitives are specific
search methods based on non-monotonic reasoning--in to a particular site type. This system will be employed
particular, Assumption-based Truth Maintenance Sys- by the IA to direct the IU system to determine the oc-
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currence of changes that have intelligence significance. 2. Activity modeling. Detecting changes in a corn-
The system will have the following characteristics: plicated environment often involves the fusion of

1. It will be site-model based-i.e., the specifica- multiple change cues. The individual changes may

tion of changes of interest will be in terms of object not be significant, but their simultaneous occurrence

types in the site model, type-specific changes, and may be very significant. As an example, consider

three-dimensional spatial relations that can be used the monitoring of airfield activity. The arrival of

to direct and constrain the IU algorithms. This in a significant number of new aircraft at an airfield

critical because these changes must be detected in is not unusual in support of an ongoing training or

future imagery whose source characteristics (view- exercise activity. Increased activity at the weapons

points, spatial resolution) will not be known in ad- storage facility associated with the airfield is also

vance. not uncommon in support of resupply and training
activities. However, the simultaneous occurrence of

2. The man/machine interface will be visual. The the arrival of a large number of aircraft not nor-
IA will construct a change specification by graph- mally seen, together with increased activity at the
ical manipulation of the current elements of the site weapons storage area, might indicate preparations
model and of generic class models supported by the for hostile actions. The interface will be designed
IU system (e.g. vehicle classes, road models), and to incorporate specification of interactions between
insertion of visual tokens into the site model that cues, defined in terms of object, spatial, or temporal
will provide to the IU system information concern- primitives.
ing where to search, what to search for, and the
specificity of the search.specficty o th seach.2.2 Registration Algorithms

3. The system design will be based on three dasses
of primitives: object primitives, which corre- We are investigating two types of registration processes,
spond to the specific objects that occur in a par- image-to-site model registration and image-to-image reg-
ticular type of site model and the generic object istration. Prior to any CD task, the newly acquired im-
classes supported by the IU system; spatial prim- age needs to be registered to the existing site model.
itives for the construction of search locales and the Depending on the particular CD task, e.g., if building or
specification of constraints concerning the search for vehicle related activity is being monitored, we can use
object types within locales; and temporal prim- the site model and viewing direction of the new image
itives which might constrain or parameterize the to identify regions in the image that need further study.
analysis by factors such as time of day, day of week, We can subsequently invoke the necessary IU algorithms
time of year, etc. related to building detection, vehicle location and count-

We illustrate these ideas with two example tasks: ing (and road extraction, if construction of roads is mon-

1. Counting objects within locales. Many types of itored). For tasks such as these, there are two very im-

changes involve counting instances of objects within portant model-based IU techniques:

locales and comparing these counts either against an
absolute standard or with their values at previous Registering images to site models. Consider, for
times. For example, the analyst might wish to mon- example, the problem of identifying the region in an
itor the number of vehicles in a parking area and aerial image corresponding to a given parking lot. While
be informed if their number is ever above a given estimates of sensor and platform parameters are known,
threshold. The specification of this change would it is not sufficient to simply project the parking lot
involve: boundaries onto the image plane using these parame-

(a) Indicating the locale of interest by either point- ters, since these parameters are subject to errors. Fur-
ing to it in a visualization of the site model (if thermore, determining which parts of the parking lot
it is an explicit component of the site model) are visible in the image (since parts of the parking lot

it s a exlict cmpoentof he itemodl) can be occluded by other elements of the site model)
or using a graphical tool to indicate its position an te illumni cotion ints of the

and extent. For example, while a parking lot and the illumination conditions in the visible part of the

may be an element of a site model, the analyst parking lot (parts of which may be in shadow depend-

may only be interested in increases in vehicles ing on sun angle and site model geometry) are critical
to subsequently making a correct decision as to whether

inthepart of the lot nearsome building of in- there is a significant difference between the numbers of
terest. In such a case, graphical tools can be observed and expected vehicles in the parking lot. In
used to construct an arbitrary locale for search. fact, the feasibility of performing a CD task depends on

(b) Choosing one or more vehicle model types from the IU system correctly modeling the relationship be-
a menu of object classes. tween a given image and the site model (for example, if

(c) Choosing a "count" option from an analysis we were interested in whether a large number of vehicles
menu, and specifying the criteria for a signif- are parked near a certain building, it could be important
icant change. to determine if that part of the parking lot is, in fact,

(d) Specifying temporal constraints on when to visible in the image). As described in the next section,
conduct the analysis. For example, it may be ATMS-based techniques can also be used for registering
of interest to count vehicles only on weekdays. images to site models.
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Model-based object recognition. Many CD tasks 1) It should be able to handle uncertainties in the lo-
involve the identification of objects in constrained parts cations and attributes of features due to errors in
of the image, along with an analysis of their density and feature extraction, incomplete site models, etc.
spatial distribution. If the image has sufficient spatial 2) It should be efficient. Since the high resolution RA-
resolution, and CAD models are available for the objects DIUS images may produce large numbers of accept-
of interest, then IU techniques such as alignment [9], and able features, the search space may be prohibitively
geometric hashing (10] are appropriate. Given that good large. Efficiency is achieved by avoiding futile back-
estimates of the height and orientation of the sensor with tracking and eliminating rediscovery of inferences.
respect to the ground plane are known a priori (and can
be improved by the site model to image registration pro- 3) It should be permited differential diagnosis so that

cess), a method such as the one developed at Maryland solutions can be directly compared with one another
by Silberberg et al. [11] can be employed; this method at different points in the search space and the "best"

has the minimal combinatorial complexity of any 3-D ob- interpretation chosen. (Note that more than one

ject recognition algorithm, requiring that only a single reasonable solution may be found in real life situa-

image feature be matched against a single model feature tions.)
to determine the image to model transformation. In sit- 4) It should be able to make use of geometric and pho-
uations where the spatial resolution is not sufficient, or tometric constraints derived from site models.
where geometric models are not available, one can em- 5) It should be able to accept guidance from the user.
ploy general-purpose model-based image segmentation
algorithms such as Programmed Picture Logic (PPL) The second requirement eliminates exhaustive search

[12], which can be extended to "learn" the descriptions and depth-first search, also known as chronological back-
of objects of interest (through a few visual examples), tracking. In chronological backtracking [14], when the

and can then identify remaining instances viewed under search backtracks because it encounters contradictions,
similar conditions of viewpoint and illumination, it forgets any inferences made in that portion of the

In addition to image-to-site model registration, which search space. These inferences will be rediscovered at

will be directly useful for CD, we are also developing a other places. Also, the underlying reasons for the contra-

general-purpose image-to-image registration algorithm, dictions are not stored, so that these contradictions may

Such an algorithm will be useful for building site mod- be encountered again and again. As a solution to this

els and for orienting an image in a "favored position". "forgetting" problem, one may consider dependency-

The traditional stereo paradigm [13] for inferring 3-D directed backtracking [15]. In this scheme, dependency

structure is not applicable to images acquired from se- records are maintained for each inference. These records

vere off-nadir viewing directions. Our goal is to develop link each inference to its antecedents. When a contra-

a completely automatic registration algorithm using site diction is encountered, the dependency records are used

models and any auxiliary information such as camera pa- to backtrack to the most recent selection which actu-

rameters. Site models will be very useful for registering ally contributed to the contradiction, instead of resorting

two severely off-nadir images, as we can predict the con- to chronological backtracking. This avoids futile back-

trasts of features in both images, occlusions of features tracking. Also, the dependency records are bidirectional

and shadow regions. and are used to reinstate previously derived information

An integral component of site model based registration in different portions of the search space, thus avoiding

and change detection is the availability of site models. rediscovery of inferences. When a contradiction is en-
eare working on site model construction and updating countered the underlying assumptions that actually ledWe an orking on site model construc - to the conflict are stored for future reference as nogoods.

on an ongoing basis. The solution to site model construc- Teeooosresdt pvnteisvryfcnr-

tion assumes that several overlapping coverage images These nogonds are used to prevent rediscovery of contra-

are available. We will initially construct a site model dictions, and hence improve efficiency.

using the RCDE site model rendering system. Image- Truth maintenance systems (TMSs) of various kinds

to-model registration algorithms will be used to register employ dependency-directed backtracking. A justifica-

each image to the site model. When two or more im- tion based truth maintenance system (JTMS) [7] works
with nodes each of which corresponds to a problem solver

ages confirm the same hypotheses about the underlying datum. Associated with each node is a justification
object, the initial assertions about the object will be re- which summarizes how the node originated. Truth main-
placed by image-derived assertions. This will be done tnnei rcdr htdcdswihpolmsle

in an incremental fashion. During the early stages, the tenance is a procedure that decides which problem solver

errors due to incomplete specification of site models may is to be believe d a which disbelieved (out). It uses

be handled by allowing more tolerance in the predicted dependency-directed backtracking for this purpose.

positions of features and their computed attributes. As In our registration algorithms we plan to use an ATMS

more images become available, the representation error [8, 16, 17] for search. An ATMS works by manipulating

will decrease. assumption sets, which are primitive data from which
all other data are derived. It works on the principle that

2.3 Truth Maintenance assumption sets can be manipulated much more conve-
niently than the data sets they represent. It simplifies

Algorithms for CD and image registration need to per- truth maintenance and eliminates backtracking. When
form model based search. Any search method used for using an ATMS, all contexts (points in the search space)
these tasks should have the following characteristics: are simultaneously visible to the problem solver. This
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permits differential diagnosis. An ATMS will find all controvert results obtained by the IU system.
the solutions that pure enumeration would. At the same A similar constructive role will be played by the TASC
time, it improves the efficiency of the problem solver team in supporting the development of the specification
without sacrificing coherence and completeness. interface for goal-directed CD. The technology is not ripe

An important advantage of using an ATMS in its abil- for automatic translation of IA queries in natural lan-
ity to integrate IA-derived and site-model-derived infor- guage to define the set of IU tasks that need to be per-
mation. The nogoods mentioned above can be set by formed. Even preliminary efforts and successes in bring-
the IA. For example, if the sunlight is diffuse, so that ing IU algorithms a step closer to the eventual users in
crisp shadow information is unlikely to be available, the the intelligence community will be worthwhile. There
use of shadows can be declared as a nogood condition. are several issues to be addressed from an IA point of
All inferences that use shadow information will then be view:
avoided and the final result will be one which did not
use any information about shadows. As an example of 1) The interface must be powerful enough to commu-
site-model-derived constraints, the relative positions of nicate a broad variety of objectives.
features in the two images to be registered must be con- 2) The primitives must relate directly to the analysis
sistent with those predicted by the site model and any paradigm employed by the analyst.
violations can be declared as nogoods. Topological con- 3) The analyst must be confident that the specification
straints derived from site models can also be used to interface has encoded all the constraints that he/she
define nogoods. has imposed.

The ATMS will also be useful for handling the be- An IA must have significant confidence in the system in
lief revisions involved in site model updating. In an order to be willing to use it. It is impossible to verify
ATMS uncertainty is dealt with by making assump~tions that all changes of relevance have been detected without
(hypotAeses) whose beliefs can be later revised as new human review.
evidence accumulates. Another advantage in using an
ATMS is that it provides mechanisms for the automatic
construction of the inference network. A very simple 3 Accomplishments to Date
version of a JTMS was used in 3D MOSAIC [18] for During our first four months under contract (as of the
incremental reconstruction of site models in a simple do- time of the writing of this paper) we have made consid-
main. Since an ATMS is much more versatile than a erable progress on several fronts: (1) We have developed
JTMS, we will be able to handle the more complicated a novel image-to-image registration algorithm that can
site models that arise in RADIUS applications, automatically register two off-nadir images. When addi-
2.4 Usability Analysis tional information about camera parameters is available,

the algorithm becomes considerably simpler. More de-
One of the key contributions of TASC to our project will tails about the algorithm, and experimental results ob-
be to assist us in developing IU capabilities which are tained on model board and real images, are given in the
amenable to use by lAs. This assistance will be critical remainder of this section. (2) We have tested the line
in two main areas: support of the ATMS-based regis- detector developed by Venkateswar and Chellappa [19]
tration and site-model updating algorithm development, on model board imagery. The line outputs will be useful
and assistance in developing the specification interface for building detection (2] algorithms.
for goal-directed CD. In the following subsections, we first discuss the trans-

The expectation is that ATMS-based techniques will form between images takens from two off-nadir orien-
be developed in such a way that they can be integrated tations. We then present our image registration algo-
into an interactive environment. Such interaction must rithm, including details such as feature point extraction
satisfy the following constraints: and match verification. Experimental results on model

1) The algorithms developed must provide rapid feed- board and real aerial images provided by the sponsor are
back to the user about their current state and the presented.
quality of the product being generated. 3.1 3-D Transform

2) Any global algorithm parameters required to be set Some notation In the following discussion we use the
by the IA must have an intuitive interpretation. The notation given below:
appropriate values of these parameters should de-
pend in a direct manner on factors easily accessible [1 0 01
to the IA, for example, sun angle and general image T-(0) = 0 cos 0 sin 0 (1)
quality. 0 -sin 0 cos a

3) The effect of this parameterization on algorithm be- cos 0 sin 0 0
havior should rlso be intuitive. T. (0) - sin e cosa 00 (2)

4) An interactive capability should be available to in- 0 0 1
terject additional IA guidance as the algorithm pro- £ = - (3)
greases. !

5) The ability of the algorithms to backtrack is crucial. where e is the resolution when digitizing an image, and
The IA should be able to assert new information or f is the focal length of the camera.
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Offunadir to nadir transform We begin by consider- Off-nadir to off-nadir transform Consider two off-
ing the transformation from off-nadir camera coordinates nadir camneras characterized by triplets (&,,, #I, -/.I) and
x.y~x, to the world coordinate system x~zuPZ. with x.- (01AC2 ,7. 2 ) respectively. From (7) and (8), the trans-
V. plane parallel to the ground plane. The camera co- formation from one off-nadfir system to the other is
ordinates are characterized by the triplet (a, 0, -f) where -

a is the angle from the north direction to the positive V. T.(-0.2 - 7c.2)T#(P2a)T 5 (0.2 + 7.2)
direction of the camera rotation axis, P is the angle from T.(II. I - If. 2) IT. (-a~ 0 - . 0
z. to z,, and -f is the angle from the x axis to the north T(e ~)~ 1 i
direction. 1 Figure 2 shows the definitions of a, P and -y. T.(a + . +17J + 17.

qP ~Ta(ae02 --7c2 )Ts(P2)Ta(a.w2 -C0i)

Y Camera T,(41 M. (a.1 +7 Yc1)17. + 17j2

KT =T(-'p-TzP2) T. M(0) Tz(iT. (W1) 17.1+412

RV= 1+ V2 (9)

.- Jr where
Rotation Lx~' * U North direction JP = Ge2 + W 2 = .2 + U 2  (10)

-6. pi = OCl+7C1=a.1+7.1 (11)
x = .2 - Owl (12)

Figure 2: Camera rotation angles r 14
172 r24

Let the triplet (a, #,,y) be (a., P.,, v) when measured /3
in world coordinates and (ac,P,7,y) when measured in -

camera coordinates. -For real applications, normally a T. (V 2 ) T.062 ) T.(01. 2 +7.I(-cwI+V1 2  (13)
and P are available in the world coordinate system while
-f is defined with respect to the camera (;mage) coordi- R =,-p).P).OT(P).ii

nate system. The relationship between the two triplets r1flt2 r13
Is = r 21  r22  r2~ (14)

0.= A. =P t~ r 2  r3)

at= arctan si .corl= Cs0COJCOV

a , = aw + t ooa - sin 0 sin ip cos if cos 01

or + sin 0 coo Wi sin Vp2 sin #2

P. A.PU= (4) + cos 0sin ipsin iftcos #Icos #2

0. arctan(tan a. Cos ~ (5) + sin VoI sin if sin P1l sin #2 (15)

7ye a. +7-. - arctan(tan a. coo P (6)r1 CO Si91OOV
The 3-D transform from the world coordinates to the + cs Gin 0~ co WcoW2co0

camera coordinates can be written in terms of rotations+siGcc osWcs
with respect to the x and:z axes defined in (1) and (2) + sin 0sin ipfin W2 cosP2
as -COO Iot COO itsin (0 COS 01 COS 02

=7 T. (-a. 7 + c. + 7.)T5 (-a. 7.u) - cos pI sin 92uin #1sin #2 (16)

- (7) 13= --sin 0cos j2 sin,61

where accounts for the 3-D translation. + cos 0 sin ift sin P1 coo fli
The transformation from an off-nadir system to the - sin 92 Cos P1 sin P2 (17)

world system is

'V . u)T 4 .(o,+ ,)f.+ft (8) rl= COB CGco91 Sin P2

where - sin 0sin i,1 sin W2 coos#I

+ ~- sinG0 can (p con W2 coo 02
17ev~~~~~~~ co -T(a -7 ),-) 5 a+~1. c sin ipCOsOW2cCOO 01cCOS

'The reason for using triplet (a, ,7) to represent the - sin ip, coo 9o2 sin #I sin #2 (18)
camera orientation is that in real applications, the north di-
rection is ased as the reference to define the camera rotation
axis. 22= coos0sin ipsin o92
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+ Bin 0 cos O oI Bil P COS as
- sBninn joi cos O W2 cos = Azxl + By6 l + ze
+c ocos C i COS6COS 1 COBlo 2  = AXiciz. 1 + BYlcz. 1 + z.
+ cso cos i sin #I sin2 (19) Z1 (26)

1 - AXICI - BYte1
r23 = - sin 0 sin p2sin #I The relationship between the two image planes is

- mcos 0coitsin #Icos, X2C2 fiz-C2

+ m~c c I(20) X6 2
rllZcl + rl2N€l + rlIZel + "14

rsl = sin 0cos oi sinm2 r7 lzc + r321c + r33z61 + r34

+ coso sin joI coso P sin 2 = [r IXIel +rl 2 YIcI +rs+" 14(--
- 5nfloi sinai cosa2 (21) AXle, -BYi)] /[ rs3XIeI +r32 YIeI

S= in 0in sina� "+rss3+r-4(-AXicl-BYic)] (27)

- cos coos os- sin 6 Vc2

+ co l s in 61co 2 (22) Y2c2 = _
ZC2

r33 = cossin2sin# =+ r23 + r24
r=SZcS +" r32Ycs + r33ZX1 + r34

+COB #I cos0 (23) = [ r2iXIC+r 2 2YIC I+r23+•L(l_
Zo

3.2 Image Transform AXsc1 -BYict)]/[ r3 1 Xsc1 +rsYsci
For nadir images, the ground plane is parallel to the

image plane, leading to a simple relationship between +r3 3+ -(1-AXici-BYiil)] (28)
the image plane coordinates and the 3-D z and y coor- zX

dinates. When dealing with off-nadir images, there is When the camera parameters (01, -fl, '), (a2, 02,
a slant component in the depth, depending on the dis- 72), el and C2 are available, r1 l, r12, rr s,2, r22, r23,
tance between the ground point and the camera rotation rsi, r32, r33, A, and B are determined. The image reg-
axis. In our triplet (a, #, 7) camera rotation model, the istration problem is then equivalent to estimating the
equations for the camera rotation axis are three translation parameters Ef, t and 9 from the

x., sin oi - yc cos ip, = 0 correspondences between matched points, which can be
achieved by solving a set of linear equations with three

Ze1 = ZO unknowns U, M' and rM:

Hence the distance from a point (z61 ,yll, zl) to the r141- AX1 ,e,- BYiei)
camera rotation axis in the oxzey, plane is Zo

d = zes sin Oi - Vce cosooi (24) 34 (1 - AX1 ,61 - BYui)X2,r
and the depth zl6 can be determined by = (X

=(ra1 X11 C1 + r32Y11C1 + r33)X2iC2
Ze = ZO + (x ssinioP - Ye cos~ol)tanai -(rulXljr + rl 2Yue1 + rs3) (29)

= z. + Azxe + By., (25)

where r24(I - AXloms - BYjc)
Xe

A = sin o1 tan• -r34(I - AXsje - BYsjt)Yi

B = -cos itanai ZO

z. is the distance from the camera to the center of the = (rt3 Xlsl + r32 Y11 C1 + r33 )YiE2

scene. -(r 2'Xlcl + r22YaCI + r23) (30)
Let (X, Y) be the image plane coordinates (indexes); for i = 1,..., N, where N is the number of matched

we then have points.

Xe = When the camera information is not available, note
T z that r33zo + rs4, the depth of the nadir point in the
Ye second camera coordinate system, is always nonzero. We

= • = can then rewrite (27-28) as

rMs+9 (ril - ZA)FI1The depth in the first camera coordinate system can - S. + +- - Be Abe represented in terms of the image plane coordinates (r33 + f,'.A)C2 (ra3 + ",'•)C2
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(r12 - %AB)Ce y+ (-rs, + 1tA)cic 2  frames are'matched using area correlation. Three match
+(r3 + rj".')e Y r + ( + L.)X 2  verification tests are used to exclude false matches. Af-

(-r3a. (3 ter the initial matching is achieved, a multiresolution
+ (-rs2 + -fB)eC2 YIX 2 = X2 (31) trandorm-and-correct matching is implemented to ob-

+ tain a high accuracy registration. At each resolution, the
second frame t2 is first transformed to the coordinates of

r23 + + (r2l - fr• A)ej frame tt using the estimated matching parameters and

(ras + A. )e62  (r33 + i,4. )CE then matching refinement is performed on the feature

"(r22 - -iB)C 1  (-731 + ',')i 2  points of frame t,.

+ + 1i+
(r33 + 1M)C 2  Imp+~"C 212datON

"+(-r32 + %4B)cIC2 YIY2 = Y2  (32)
(r33 + r)C2

Let

al + (33)

a2 2( , + )2 (34)

a (ril- !LA)ci (35)aa (r33 + ,.)C )haei

a4 - (r21 - tiA)c1  (36) fie(r33 + 'L)C2

a (r 12 - %&B)ci (37)as (r33 + Z,. )C2f

aG- (r22 -, tB)ct (38) MieVadctm3

a7 -=Z (39) Tedr rlnt)(r 33 + [)C2

as = (-r32 + -B)lej 2  (40) Figure 3: Block diagram of image registration algorithm(r33 + r.)C2
)2, There are several variations in the implementation of

The transform from imagel to image2 can be determined the above algorithm. First of all, we used two control
in terms of the eight parameters ai, i = 1, ... , 8 as points to determine the north direction in each image.

a3 X1 + a5 Y1 + al In real applications, this data is available from the gy-
X = -a7X1 - asYj + 1 (41) rocompass and flight diary. For applications where such

a4 X + +a2data is not available, we use an illuminant direction esti-

Y2 - a4Xj + 61 +82 (42) mator [21] to get the illuminant directions in each image
aTXI - asY1 + 1 and then align the images according to known illuminant

The eight parameters are obtained by solving the linear difference. The use of the illuminant direction estimator
equations is indicated by dashed lines in Figure 3. Secondly, when

camera parameters are available, only three translation
a,+Xjjas+Yi~as+XijX 2ja7+Yi1X 2 ias = X 2i (43) parameters are required for determination of the image

a 2 +Xlia 4+Yias+XliY2ia7+YliY2 ias=Y2, (44) transform; we solve (29-30) to get r, =~2 and -u and
transform the second image to the coordinates of the first

for i = 1,t...,N, where N is the number of matched camera using (27-28). For applications where camera
points. information is not available, we formulate the transform

3.3 Algorithm between the two images in terms of eight parameters and
determine the transform parameters by solving (43-44).Overview Figure 3 illustrates the image registration The second image is then transformed to the coordinates

algorithm. Given two images, we first locate two control The s t iage ran s t41-odn.

points to get the north direction in each image. A small of the first camera using (41-42).

number of feature points are then located using a Gabor Feature point detection For feature point extrac-
wavelet model for detecting local curvature discontinu- tion we use a Gabor wavelet decomposition and local
ities [20]. The feature points extracted from different scale interaction based algorithm reported in [20]. The
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basic wavelet function used in the decomposition is of 3.4 Experimental results
the form Figure 4 shows the registration of a stereo pair of model

(X, Y, ) = e-(x'+Y')+IX (45) board images. Figure 4.a is the image taken by the first
camera with parameters a. = 40 and 0 = 15". The
north direction, estimated using two control points, is

X = = X cost9 + Y sin t (46) a. = 93.52?. Figure 4.b is the image taken by the sec-

Y = = -Xsin#+Ycost9 (47) ond camera with parameters a. = -71" and/ := 15".
The north direction, estimated using two control points,

where 0 is the preferred spatial orientation. In our ex- is a. = 91.40". Figure 4.c shows the registration of
periments 0 is discretized into four orientations. The the second image to the orientation of the first camera
feature points are extracted as the local maxima of the when the given camera parameters were used. Figure 4.d
energy measure shows the registration of the second image to the orien-

tation of the first camera when no camera parameters
I(X, Y)=max({1W 2(X, Y, d)- 7fWs(X, Y, 4)111 (48) were assumed.

Figure 5 shows the registration of two off-nadir model

where board images. Figure 5.a is the image taken by the
first camera with parameters a,, = 14" and f = 45".

W,(X,Y,t93=f• (2-fX,2-fY,t9, J={J1,J2). The north direction estimated using two control points
is a. = 274.89*. Figure 5.b is the image taken by the

Here j, and j2 are two dilation parameters, and -y second camera with parameters a. = 50 and f = 30".
2(,-h2) is a normalizing factor. In implementing the The north direction estimated using two control points is
above algorithm, we further require the energy measure ac = 10.35*. Figure 5.c shows the registration of the sec-
for a feature point to be the maximum in a neighborhood ond image to the orientation of the first camera when the
with radius equal to 10 and above a threshold. given camera parameters were used. Figure 5.d shows

the registration of the second image to the orientation
Match verification In our algorithm, the initial of the first camera when no camera parameters were as-
matching is implemented on 2-D rotation compensated sumed.
images. Since no further knowledge about the camera Figure 6 shows the registration of two aerial images.
parameters is used in the initial matching, false matches Figure 6.a is the image taken by the first camera, and
due to perspective deformation and similarities between Figure 6.b is the image taken by the second camera.
similar objects are inevitable. Automatic exclusion of Since information about the north directions was not
these false matches is a key to success in image registra- available, we used the illuminant direction estimator 121,
tion. We have used three tests to exclude less reliable 22] to get an initial estimate of the camera orientation
matches. change. For these two images, no information about the

cameras are available. Figure 6.c shows the registration
1. Distance Test: The translation between the of the second image to the orientation of the first camera.

rotation-compensated images should not be larger Figure 7 shows the registration of another set of aerial
than certain fraction of the image size. A valid images. Figure 7.a is the image taken by the first cam-
matching pair i should satisfy era. Figure 7.b is the image taken by the second camera.

Again the illuminant direction estimator was used to get
dig = JXi, - Xi I :5 AL. an initial estimate of the camera orientation change. Fig-
X ir= J+[, - Yill :5 AL , (49) ure 7.c shows the registration of the second image to the

,i,-Xui1+JYi,-YJ !cmax{L,, orientation of the first camera.

For example, A = I and o - A. Acknowledgement
2. Variation Test: The translations used in the cor-

rect matches should support each other, i.e. We thank Drs. D. Izraelevitz and T. Moore of TASC for
many helpful discussions, and for their contributions to

Id, -31 -5 po (50) Figure I and Section 2.4.
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a

Figure 4: Registration of a stereo pair of model board im- Figure 5: Registration of tw off-nadir model board images.
ages. (a) imagel. (b) image2. (c) image2 after registration (a) imae. imge2.c) image2 alter registration to the
to the orientation of cameral, when camera parameters were orientation of cameral, when camera parameters were used.
used. (d) image2 after registration to the orientation of cam- (d) image2 after registration to the orientation of cameral,
eral, when camera parameters were not used. when camera parameters were not used.
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114,

(a) (a)

(b) (b)

(c) (c)

Figure 6: Automatic registration of two aerial images. Figure 7: Another example of automatic registration of
(a) imagel. (b) image2. (c) image2 after registration to two aerial images. (a) imagel. (b) image2. (c) image2
the orientation of cameral. after registration to the orientation of cameral.

215



[3] A. Huertas and R. Nevatia, "Detecting Buildings in [19] V. Venkateswar and R. Chellappa, "Extraction of
Aerial Images", Computer Vision, Graphics, Image Straight Lines in Aerial Images", IEEE Trans. Pat-
Processing 41, 131-152, 1988. tern Analysis Machine Intelligence 16, 1111-1116,

[4] D.M. McKeown, Jr., "Toward Automatic Carto- Nov. 1992.
graphic Feature Extraction", in Mapping and Spa- [20] B.S. Manjunath, R. Chellappa, and C. Malsburg,
tiai Modeling for Navigation, L.F. Pau and L. Kanal "A Feature-based Approach to Face Recognition,"
(eds.), Springer-Verlag, Berlin, 149-180, 1990. in Proc. IEEE Con!. Computer Vision Pattern

[5] W.E.L. Grimson and T. Losano-Perez, "Model- Recognition, Champaign, IL, 373-378, June 1992.

Based Recognition and Localization from Sparse [21] Q. Zheng and R. Chellappa, "Estimation of Illumi-
Range or Tactile Data", Intl. J. Robotics Research nant Direction, Albedo and Shape from Shading,"
3, 3-35, 1984. IEEE Trans. Pattern Analysis Machine Intelligence

[6] R. Mohan and R. Nevatia, "Using Perceptual Orga- 13, 680-702, 1991.

nization to Extract 3-D Structures", IEEE Trans. [22] Q. Zheng and R. Chellappa, "A Computational Vi-
Pattern Analysis Machine Intelligence 11, 1121- sion Approach to Image Registration," in Proc. Intl.
1139, 1989. Conf. Pattern Recognition, The Hague, The Nether-

[7] J. Doyle, "A Truth Maintenance System", Artificial lands, 193-197, Aug. 1992.

Intelligence 12, 231-272, 1979.

[8] J. de Kleer, "An Assumption-based TMS", Artifi-
cial Intelligence 28, 127-162, 1986.

[9] D. Huttenlocher and S. Uliman, "Recognizing Solid
Objects by Alignment with an Image", Intl. J.
Computer Vision 5, 195-212, 1990.

[10] Y. Lamdan and H. Wolfson, "Geometric Hashing:
A General and Efficient Model-based Recognition
Scheme", Proc. Intl. Conf. Computer Vision, Tar-
pon Springs, FL, 238-249, 1988.

[11] T. Silberberg, D. Harwood and L.S. Davis, "Object
Recognition Using Oriented Model Points", Com-
puter Vision, Graphics, Image Processing 35, 47-
71, 1986.

[12] D. Harwood, R. Prasannappa and L.S. Davis, "Pre-
liminary Design of a Programmed Picture Logic",
Technical Report CAR-TR-364, Center for Au-
tomation Research, University of Maryland, College
Park, MD, June 1988.

[13] V. Venkateswar and R. Chellappa, "Hierarchical
Stereo Matching Using Feature Groupings", Tech-
nical Report CAR-TR-556, Center for Automation
Research, University of Maryland, College Park,
MD, May 1991.

[14] E. Charniak and D. McDermott, Introduction to Ar-
tificial Intelligence, Addison-Wesley, Reading, MA,
1985.

[15] R.M. Stallman and G.J. Sussman, "Forward Rea-
soning and Dependency-directed Backtracking in a
System for Computer-aided Circuit Analysis", Ar-
tificial Intelligence 9, 135-196, 1977.

[16] M.L. Ginsberg (ed.), Readings in Nonmonotonic
Reasoning, Morgan Kaufmann, Los Altos, CA,
1987.

[17] W. Lukaszewicz, Non-Monotonic Reasoning, Ellis
Horwood, West Sussex, England, 1990.

[18] M. Herman and T. Kanade, "Incremental Recon-
struction of 3-D Scenes from Multiple, Complex Im-
ages", Artificial Intelligence 30, 289-341. 1986.

216



Employing Contextual Information
in Computer Vision

Thomas M. Strat
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue

Menlo Park, California 94025

Abstract

Contextual information is often essential for visual recog-
nition, but the design of image-understanding systems
that effectively use context has remained elusive. We
describe some of our experiences in attempting to em-
ploy contextual information in computer vision systems.
By making explicit the built-in assumptions inherent in
all computer vision algorithms, an architecture can be
designed in which context can influence the recognition
process. This paper describes such an architecture for
context-based vision (CBV).

1 Introduction

It is generally accepted that the surroundings of
an object may have a profound influence on, and in
some cases, may be necessary for, visual recognition
of the object. What is not so well established is how Figure 1: An image in which the use of context is
to design computer vision systems that can exploit critical to the recognition of some objects.
such contextual information.

When a human observes a scene, or even stud-
ies a photograph, he normally has at his disposal a scene that is then useful for interpreting other parts
wealth of information that is not captured by the of the image. For example, given an outdoor scene,
image alone. For example, if Bob shows Alice some usually one can readily determine where the sky is,
photographs he took, her knowledge that Bob re- which direction is vertical, what the weather condi-
cently vacationed in Hawaii may help her to recog- tions are, and whether any man-made objects are
nize that the photos were taken there. Any knowl- visible. This information forms part of the context
edge that Alice has about Hawaii may be useful that is available for interpreting the remainder of
for recognizing the content of the scene (e.g, that the scene.
the amorphous landform is actually Diamond Head, An image such as shown in Figure 1 illustrates
and that the vegetation is palmetto bushes and not the power of contextual information. The inset, a
agave cacti). magnified portion of the larger image, displays an

An observer can also infer information about the object that is difficult to recognize. When the same

'The work reported here was sponsored by DARPA and object is viewed in the context of the intersection
monitored by the US Army Topographic Engineering Center of city streets (as in the large image), it is readily
under Contract DACA76-92-C-0034. recognized as an articulated bus.
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In this paper, we describe some of our experi- designed:
ences in attempting to employ contextual informa-
tion in computer vision systems. By making explicit * CONDOR [17, 18, 19] is a system that analyzes
the built-in assumptions inherent in all computer ground-level outdoor imagery of natural en-
vision algorithms, an architecture can be designed vironments in the context of a mobile robot
in which context can influence the recognition pro- application. CONDOR contains an elaborate
cess. This paper describes such an architecture for mechanism for recognizing and labeling nat-
context-based vision (CBV). ural objects automatically. Because natural

The first half of the paper summarizes the types objects, unlike man-made objects, are difficult
of contextual information that are available in to recognize without consideration of context,
image-understanding systems and describes some analysis of these scenes demands an architec-
roles that context can play in the interpretation ture that makes strong use of contextual infor-
process. The second half reviews a previously con- mation.
structed context-based architecture, CONDOR; de-
scribes some extensions that are necessary to ex- a The on architectur iseingdeloped
tend its applicability to semiautomated image un- asipr of ra s m afor ite e RUc
derstanding (IU); and presents some empirical re- tion]usingoee imageR y in dIU
sults of its use in extracting cartographic features. Project [8]. Unike CONDORt, this system is de-signed to be semiautomated -- a fact that has

implications for both the way in which con-
2 Context-Based Vision text can be employed, and for the availability

of contextual information. Being a semiauto-
We use the term contextual information, or context mated design, it relies upon a human operator
for short, in the broadest sense - to denote any to replace some of the machinery incorporated
and all information that may influence the way a in CONDOR and exploits additional contextual
scene is perceived. Thus, the camera geometry, the constraints supplied by the operator.
image type, the availability of related images, the
urgency of observation, and the purpose of image 3 The Need for Context
analysis, are all part of the context. A computer
vision system, like a human, should be able to use The technical problems in using context involve the
all types of context. identification of appropriate representations for the

Many authors have used contextual information relevant knowledge and the design of an architec-
either implicitly or explicitly in their IU systems, ture that can effectively invoke this knowledge. A
but few have made the representation and use of context-based architecture for image understanding
context a central design feature [4, 5, 7, 13, 21]. must have (among other things) a means for enforc-

The effective use of contextual information can ing the assumptions of IU algorithms and a means
be addressed by considering the design of an over- for accessing relevant information.
all system architecture, rather than by focusing on
individual algorithms. In our view, this can be ac- 3.1 Enforcing Assumptions
complished by structuring a computer vision sys-
tem as a composite of many individual algorithms. Every image-understanding algorithm, by necessity,
The contextual information, including the percep- contains numerous built-in assumptions that limit
tual task and the available imagery, can be used its range of applicability. For example, some edge-
to choose the algorithms most appropriate for each finders work only on binary images, some stereo al-
subtask, and can form the basis for evaluating their gorithms cannot handle occlusions, and some road-
results. The algorithms can perform independently, finders are confounded by strong shadows.
but are able to interact through the context that all If the results of these algorithms are to be re-
are controlled by and all contribute to. lied upon, the algorithms must not be employed in

The concepts described in this paper are illus- situations for which their designers did not intend
trated by examples from two architectures we have them to be used. It is the context of invocation that
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dictates the suitability of an algorithm for a partic-
ular task. By explicitly encoding the assumptions task
and inherent limitations of IU algorithms, one has wodd data
the potential to control the algorithms by reason- world knowledge
ing about the context. Representing assumptions 

w

explicitly and matching them to the particular cir-
cumstances is one of the keys to using contextual
information in a computer vision system.

3.2 Accessing Nonlocal Information

Most IU algorithms also require the use of nonlocal images lU
information - data outside the immediate sphere scene description
of computation - to assist the interpretation or to parameters
control the processing flow. Examples include pixel
data that are outside some local processing window, Figure 2: A schematic diagram of an IU algorithm
additional images of the same scene, prior facts or embedded in a vision system.
expectations that are stored in a map or database,
and generic knowledge about the appearance, func- Physical context - information about the vi-
tion, or purpose of objects in a scene. Such infor- sual world that is independent of any partic-
mation is used by many IU algorithms to compute ular set of image acquisition conditions. Phys-
parameters, to guide search, to cue recognition pro- ical context encompasses a range of specificity
cesses, or to reason about the consistency of an in- from the very precise "There is a tree at (342,
terpretation. 124)" to the more generic "This area contains

IU algorithms must have access to nonlocal in- a mixed, deciduous forest." Physical context
formation to aid interpretation. Providing direct may also include information about the ap-
access to relevant nonlocal information is another pearance of scene features in previously inter-
key to using contextual information in a computer preted imagery and dynamic information, such
vision system. as weather conditions and seasonal variations.

Photogrammetric context - information sur-
4 Types of Context rounding the acquisition of the image under

study. This includes both internal camera pa-
Before describing how contextual information can rters (.cl lnth in cipal point,

be represented and used, it is useful to take inven- field of view, color of filter) as well as external

tory of the kinds of context that could be consid- parameters (e.g., camera location and orienta-

ered. tion). We also include the date and time of

Figure 2 depicts a schematic view of an IU algo- image acquistion as well as the images them-

rithm as a black box. Its explicit inputs are a set selves.

of images and some parameters, but it is invoked in

the context of an assigned task, a database of facts Computational context - information about
about the world, and a knowledge base from which the internal state of processing. The computa-
additional information about the world can be de- tional context can be used to control the pro-
duced. Some of its outputs are symbolic descrip- cessing sequence based on partial recognition
tions that can also be used to augment the database results. Different strategies can be used when
or knowledge base, or to assign additional tasks for first initiating the analysis of an image versus
realizing behaviors. filling in the details of a largely completed anal-

We have found it convenient to divide the range ysis. The assigned task, the level of automation
of contextual information into three categories. Ad- required, and the available hardware processes
ditional semantic knowledge may involve contextual are all construed as part of the computational
information from all three categories, context.
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It is worth noting that context may be either Table 1: Physical Context
established or hypothetical. Tentative conclusions Geometry Geometric models of roads, trails, fences,
such as "The sky is not visible in this image," and trees, rocks, buildings, railroads, towers,
hypothesized facts about the world such as "Assum- fields, etc.
ing that no buildings with peaked roofs are at this 3D Outline

site" can be treated as ordinary context to generate Location

hypothetical conclusions. Photometry/ ientation
Phoomery/Albedo

Just what constitutes contextual information is Radiometry Material type
highly dependent upon the domain of application Reflectace
and the goals of the image-understanding system. Surface properties

CONDOR and RADIUS both involve the delineation Previous image snippets

and recognition of features of the outdoor world Illumination Sun (azimuth, elevation angles)

from multiple images. Tables 1-3 detail the types HCue

of context used or usable in these applications. Cloud cover
Shadow contrast

The information in the tables was compiled by Weather Temperature

examining about one hundred IU algorithms em- Current Precipitation

bedded in CONDOR. That list was then augmented Recent Precipitation

by considering additional algorithms that appear Wind speed and direction
to be relevant to the RADIUS site-model construc- Season
tion application. The algorithms considered range Geography Site
from edge-finders [1] to image-segmentation [12], to Terrain type (tundra, desert, ocean,

stereo compilation [2], to snakes (10], to complete Land use (urban, rural, agricultural, ... )

object recognition systems [3, 20]. The associated Topography (e.g., Digital Elevation

parameters and implicit assumptions for each algo- Environmental events (fire, lood, earth-
rithm were tabulated. quake, war, ... )

Contextual information may come from a variety Other Semantic properties (name, use, history,

of sources, depending on the nature of the appli-
cation. Some representative sources of contextual
information are 5 Uses of Context

"* Database - Information for use by a vision sys-
tem may have been previously compiled and When an IU algorithm is viewed as a black box as
stored. Geometric object models, map data, in Figure 3, it is apparent that there are only two
and iconic texture maps are examples. opportunities to use contextual information to in-

fluence its behavior. At the input end, context can
"* Image header - Information about the im- be used to select the best match of image data with

age acquisition is often stored with the image. IU algorithms and their parameters. At the output
Camera models, image size and type, and time end, context can be used to analyze and filter the
and date of acquisition are examples. results.

"* Derived - Results of earlier IU computation Choosing algorithms and their parameters:

are a valuable source of additonal information Given an image and a task to be performed, it is

about a scene. necessary to determine the most appropriate algo-
rithm or set of algorithms for accomplishing the

"* User - In an interactive or semiautomated sce- task. When the assumptions and limitations of each
nario, the human operator is also a source of algorithm have been coded explicitly, it is possible
information that can provide context to IU al- to match their requirements with the context of the
gorithms. This information could range from present situation, and choose the ones that have
a general characterization of the image (e.g., (at least) the potential to achieve the desired re-
urban environment) to a precise, manual ex- sult. Similarly, a mechanism can be constructed to
traction of individual features. compute the parameters associated with those algo-
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Table 2: Photogrammetric Context task
Date and time worlcd data
Look angle Azimuth, elevation, roll
Footprint Portion of ground observed world knowledge
Modality Infrared, color, radar, L

I1
Multiplicity Monocular, binocular stereo, mul- L

tiple, contextual reason
Image size Pixel dimensions
Image element type Binary, scalar, vector, complex,
Resolution Ground sample distance (GSD)

Camera model Focal length, principal point, non- images scene
perspective, descriptio

Table 3: Computational Context Figure 3: A schematic diagram of a context-based
Task Interpret everything, find tanks, vision system.

model all buildings, ...
Interactivity Fully automatic, manual, semiauto- control their invocation. Not only does this ap-

matic, batch, continuous interaction, proach reduce unnecessary computation, but it also

Urgency Acceptable processing time simplifies software construction because each algo-
Hardware Uniprocessor, special-purpose hard- rithm need work only in some narrowly defined con-

ware, multiprocessor, ... text.
Processing state Just starting, already looked, detailed

search, ...

6 An Architecture for Context-
Based Vision

rithms from the available context, although it may

be difficult to identify the appropriate computations In the context-based vision paradigm, the invoca-
in advance. tion of all algorithms is governed by context. Rather

Choosing image data: In some applications, than having the control structure and control deci-
including the CONDOR and RADIUS scenarios, a mul- sions to be made hard-wired, the process is driven
titude of imagery is available for analysis. Choos- by context.
ing the subset of images to use can be as critical CONDOR was designed as the perceptual archi-
as the selection of appropriate algorithms. When tecture for a hypothetical outdoor robot. Given an
an algorithm is being considered for invocation, the image and a possibly extensive database describ-
explicitly coded assumptions can be used to select, ing the robot's environment, the system is to an-
the images that are best suited to the extraction alyze the image and to augment the world model.
task being given to that algorithm. CONDOR's recognition vocabulary consists mainly

Evaluating results: When IU algorithms have of natural objects such as trees, bushes, trail, and
completed their processing, the system has pro- rocks. Because of the difficulty of recognizing such
duced a set of results that are best considered as objects individually, CONDOR accepts an interpre-
hypotheses. Analysis of the results with the ben- tation only if it is consistent with its world model.
efit of relevant contextual information can lead to CONDOR recognizes entire contexts, rather than in-
improved interpretations of the imagery. This anal- dividual objects [17, 18, 19].
ysis can take place in several ways - by ranking the
hypotheses, by comparing them, by checking their 6.1 Context Sets
consistency with other hypotheses or with the es-
tablished context, and so on. In each case, if the We associate a data structure called a context set
analysis software is encoded as a collection of al- with each IU algorithm. The context set identifies
gorithms with explicitly encoded assumptions, one those conditions that must be true for that algo-
can use the context to choose the algorithms and rithm to be applicable. Efficient and effective vi-
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images e Type I context sets control IU algorithms that

produce candidate (hypothetical) labeled re-

gions.

Type I CANDIDATE e Type II context sets control algorithms that
Context Sets GENERATION compare two candidates and determine if one

j Candidates should be preferred over the other. This step

Type II CANDIDATE 1 is mainly necessary to limit the combinatorics

Cntext Sets-- COMPARISON j of finding mutually consistent candidates.

Partial orders e Type III context sets control algorithms that
Type III -•} CLIQUE 1 check if a candidate is consistent with an

Context Sets FORMATION emerging world model.

.Cliques For each class in the active recognition vocab-

CLIQUE ulary, all Type I context sets are evaluated. The
SELECTION J operators associated with those that are satisfied

are executed, producing candidates for each class.
Type II context sets that are satisfied are then used

3D Model to evaluate each candidate for a class, and if all
such evaluators prefer one candidate over another,
a preference ordering is established between them.

These preference relations are assembled to form
sual recognition can be achieved only by invoking partial orders over the candidates, one partial order
the IU algorithms in those contexts in which they for each class. Next, a search for mutually coher-
are likely to succeed. ent sets of candidates is conducted by incrementally

Formally, a context set is a collection of context building cliques of consistent candidates, beginning

elements that are sufficient for inferring some rela- with empty cliques. A candidate is nominated for

tion or applying some algorithm. A context element inclusion into a clique by choosing one of the can-

is a predicate involving any number of terms that didates at the top of one of the partial orders. Al-

refer to the physical, photogrammetric, or compu- gorithms associated with Type III context sets that

tational context of image analysis. have been satisfied are used to test the consistency

Each algorithm has an associated context set, and of a nominee with candidates already in the clique.

is invoked only if its context set is satisfied. A con- A consistent nominee is added to the clique; an in-

text set is considered to be satisfied only if all its consistent one is removed from further considera-

context elements are satisfied. 4ion with that clique. Further candidates are added

As an example, consider a simple operator that to the clique until none remain. Additional cliques

extracts blue regions to find areas that could be are generated in a similar fashion as computational
labeled "sky." A context set for this operator might resources permit. Ultimately, one clique is selected
be as the best interpretation of the image on the basis

bel of the portion of the image that is explained and
time-is-daytime o the reliability of the operators that contributed to

The blue-sky algorithm would be unreliable if it the clique.
The interaction among context sets is significant.The addition of a candidate to a clique may provide

context that could trigger a previously unsatisfied

6.2 Approach context set to generate new candidates or estab-
lish new preference orderings. For example, once

The CONDOR architecture employs three types of one bush has been recognized, it is a good idea
algorithms controlled by context sets, as illustrated to look specifically for similar bushes in the im-
in Figure 4: age. This tactic is implemented by a candidate-
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generation context set that includes a context ele- taneously illustrates the power of using context, as
ment that is satisfied only when a bush is added to well as the need to encode all contextual constraints
a clique, that are likely to arise.

6.3 Representation of Context 7 RADIUS - Site Model Con-

We have outlined a paradigm in which the require- struction
ments of algorithms are matched against the con-
text of a given situation. To employ this paradigm, We now turn our attention to the RADIUS project,
it is necessary to have representations for the vari- which is concerned with constructing site models of
ous categories of contextual information that are to cultural objects from overhead imagery. Although
be employed, the specific algorithms to be employed in RADIUS

The CONDOR system employs the Core Knowl- are likely to differ greatly from those in CONDOR,

edge System (CKS), an object-oriented knowl- their demands for contextual information are very
edge/database that was specifically designed to similar.
serve as the central information manager for a per- The biggest difference between CONDOR and RA-

ceptual system [15]. The CKS provides the abil- DIUS is the fact that RADIUS is being designed as
ity to store contextual information, and to retrieve a semiautomated system. Accordingly, our design
it through a vocabulary of spatial and semantic chooses to leave the evaluation of IU results to the
queries. It has the further ability to accommodate human operator. As a result, the Types II and III
conflicting data from multiple sources without cor- context sets employed in CONDOR are not neces-
rupting the inferenc.e channels. CONDOR uses CKS sary. Instead, we concentrate on the construction
to store a persistent model of the world, and then of Type I context sets for controlling the invocation
uses that model as context for image understanding. of IU algorithms. This is particularly appropriate
Image-understanding results are stored in the CKS for RADIUS given the wide variety of features to be
and hence are available as context for subsequent extracted and the large number of IU laboratories
processing. expected to contribute algorithms.

The SRI Cartographic Modeling Environment The examples presented here are drawn from an
(CME) provides the primitive representations for architecture that is being designed to support site
modeling the physical objects and their at- model construction for the RADIUS application. The
tributes [9]. CME is also used for geometric op- architecture incorporates a large number of generic
erations, including coordinate transformation, and cartographic feature extraction algorithms; it uses
for display of imagery and synthetically generated contextual information to identify those most likely
scenes. to succeed at a given task and to set their associated

parameters.

6.4 Results
7.1 Model-Based Optimization

Figure 5(a) depicts an image that typifies those an-

alyzed by CONDOR. After several thousand IU al- While the architecture we have designed is capa-
gorithm invocations and construction of 20 cliques, ble of enforcing the contextual constraints of al-
CONDOR's best clique correctly identified six of the most any IU algorithm, our initial experiences have
trees visible in the image. A perspective view of focused primarily on employing algorithms from
the grass and trees in the 3D model produced by a paradigm known as Model-Based Optimization
CONDOR is shown in Figure 5(b). (MBO).

CONDOR was able to achieve similar results from Specializations of MBO have been referred to
processing more than 100 images of natural scenes by various other terms, including dynamic pro-
taken within a limited 2-square-mile area. When gramming [6], regularization [14], deformable sur-
tasked to analyze images from other natural areas, faces [22], and snakes [10]. The approach under-
CON DOt's performance degrades because its contex- lying MBO is to express the solution to a feature-
tual knowledge is not totally relevant. This simul- extraction problem as a mathematical function of
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Figure 5: --mple of Processing Results by CONDOR.

some variables, and then to extract the feature from This context set gives the requirements that must
imagery by adjusting the values of the variables exist for the above MBO algorithm to be applicable
to minimize the function. Typically the objective and it specifies the suitable parameter values. In the
function includes terms that bias the feature's ge- example above for detecting roofs, these parameters
ometry as well as its match with image data. As have been specified as a closed-curve topology, an
we have posed it, MBO operators require four pa- objective function preferring rectangular corners,
rameters: topological primitive, objective function initial boundary provided by manual entry, and the
to be minimized, source of initial conditions, and use of a gradient-descent optimization procedure.
the optimization procedure to be employed. The In practice, a large number of context sets gov-
Context-Based Vision architecture must set these erning the application of MBO algorithms as well
parameters on the basis of known contextual infor- as other algorithms could be constructed and used
mation or (in some cases) human input, to implement a cartographic feature-extraction sys-

tem suitable for site-model construction. It is clear
7.2 Context Sets that such a collection could be unwieldy and diffi-

cult to maintain. A more structured representation
In CONDOR, Type I context sets are used to specify of the context set concept is needed.
the conditions that must be met for a given algo-
rithm to be applicable. The context set can also
specify the conditions that must be met for a given
parameter setting to be useful. For example, One alternative representation for context sets is

MBO(closed-curve, rectangular-corners, the context table - a data structure that tabulates
manual-entry, gradient-descent): the context elements in a more structured fashion.

specifies the parameters for an MBO algorithm An IU algorithm is associated with each row in the
that could be used to extract roof boundaries un- table; each column represents one context element.
der some circumstances. The following context set The context table is equivalent to a collection
encodes conditions that are required for the extrac- of context sets. Conceptually, it provides a more
tion of roofs using that algorithm: coherent view of the contextual requirements of

{ image-is-bw, image-resolution< 3.0, related algorithms. Applicable algorithms are se-
interactivity-is-semiautomated ) lected by finding rows for which all conditions are
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Table 4: A Context Tabl]
feature interactivity images resolution geography algorithm

1 roof semiautomated single BW < 3 meters ' MBO(topology=closed-curve.
obj-fn=rectangular-corners,
init=manual-entry, opt=gradient-descent)

2 roof manual single < 10 meters - CME(primitive=closed-curve)

3 road semiautomated single BW < I meter hilly MBO(topology=ribbon-curve,
obj-fn=(smoothness(0.5), continuous,
parallel),
init=manual-entry. opt=gradient-descent )

4 road semiautomated single BW < 10 meters hilly MBO(topology=open-curve,
obj-fn=(smoothness(0.5),continuous),
init=manual-entry, opt=gradient-descent)

5 road semiautomated single BW < I meter flat V urban MBO(topology=ribbon-curve,
obj-fn=(smoothness(O.8),continuous,
parallel),
init=manual-entry, opt=gradient-descent)

6 road semiautomated single BW < 10 meters flat V urban MBO(topology=open-curve,
obj-fn=(smoothness(0.8),continuous),
init=manual-entry, opt=gradient-descent)

7 road manual single < 10 meters - CME(primitive=open-curve)

8 road manual single < 1 meter - CME(primitive=ribbon-curve)

9 road semiautomated single < 2 meters - ROAD-TRACKER
(control=bidirectional-search,
init=manual-entry)

met. Table 4 contains an excerpt of a context ta- eliminates the need to devise special machinery to
ble for use in cartographic feature extraction which test satisfaction of context sets. The context table
illustrates the representation. of the previous section (Table 4) can be recoded as

One drawback to the table representation is its the roughly equivalent Prolog program given in the
potentially large size. Each algorithm may require Appendix.
many rows to capture the contextual constraints
Of its various parameter combinations. Its chief A further representational efficiency is possible
value its viots pargazameti comnt uat information by collapsing rules with common context elements.
value is its organization of contextual For example. the only difference between rules gov-

erning Algorithms 3 and 4 and rules governing Al-

gorithms 5 and 6 is the geography term and the
7.4 Context Rules value of the smoothness parameter. This depen-

dence could be generalized by additional rules that
A third alternative for representing context sets is relate smoothness to geography.
to encode them as rules whose antecedent is the
context set, and whose consequent is the applicable Whatever representation is chosen, it is clear that

algorithm, context sets can be employed in either direction. In

For example, the forward direction, the context sets are used to

find applicable algorithms. In the opposite direc-
4 image-is-bw, image-resolution< 3.0, tion, the sets can be used for several purposes, in-

interactivity-is-semiautomated ra==s cluding the selection of images on which to invoke a
manual-entry, gradient-descent): given algorithm. For example, Table 4 shows that

the use of an MBO algorithm for finding a roof (Row

One advantage of encoding the rules as a logic 1) requires the existence of a monochrome image
program is that using the logic program interpreter with 3-meter resolution or better.
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7.5 Results 7.6 Knowledge-Base Construction

Although the architecture we have described for the The context sets (or context table or context rules)

RADIUS application is not yet fully functional, we constitute the knowledge base employed by the sys-
can illustrate its application using the example Ta- tem. It is clear that the performance of the system
ble 4. will be limited by the accuracy and completeness of

the knowledge base. The context sets employed in
Figure 6 compares the results of applying an CONDORand the context rules being constructed for

MBO algorithm both within and outside its inher- the RADIUS application are hand-crafted based on
ent contextual constraints. Figure 6(a) shows an ad hoc experimentation with available imagery. It
overhead view of a portion of the Mall in Washing- is clear that a more automated, or at least a bet-
ton, DC -6 a flat park area in an urban setting. ter grounded procedure for constructing the context
Figure 6(b) shows an overhead image of a hilly area rules is desirable, both for accommodating a poten-
in the foothills of the Rocky Mountains in Colorado. tially large knowledge base and for extending the
Both images are shown at approximately the same domain of competence beyond that originally con-
scale. ceived.

The context table in Table 4 can be used to se- There are several approaches by which the sys-
lect an algorithm suitable for extracting roads in a tern could learn the most effective context rules.
semiautomated setting. In the context of the anal- Perhaps the most enticing one for interactive inter-
ysis of the Washington DC image, both Algorithm pretation is one in which the system learns through
5 and Algorithm 9 are applicable, but we ignore Al- experience. Whenever a situation arises for which
gorithm 9 in this example. Algorithm 5 calls for there is no applicable algorithm, or for which all the
manual entry of the initial curve, which is shown in applicable algorithms give unacceptable results, the
Figure 6(a). Optimization of this curve using the human operator has no choice but to edit the result
specified objective function and optimization pro- or model the feature by hand, and then continue
cedure results in the model depicted in Figure 6(c) the site-model construction. Such a manual extrac-
- a reasonably accurate extraction of the road. tion can serve as the "correct" answer in a super-

This algorithm is not applicable to the Rocky vised learning process. By capturing the context

Mountain image, because of the different geograph- that failed initially, the learning procedure can the-

ical context. If it were applied anyway, optimiza- oretically compare the results of many algorithms
tion of the initial curve shown in Figure 6(b) would with the "correct" one - whenever there is a suf-

result in the curve shown in Figure 6(d) - an ex- ficiently accurate match, a new context rule can be

traction that does not follow the road boundaries added. One can also imagine finding a better set of

well. parameters by posing the problem as one for MBO:

The context table shows that Algorithm 3 (with the algorithm's parameters can be varied systemat-

its lower smoothness parameter) is applicable for ically until the best match with "correct" answer is

the Rocky Mountain image. Applying it to the same obtained. If the match is sufficiently close, a new

initial curve gives the result depicted in Figure 6(f), context rule with the corresponding parameter set-

a significant improvement over that obtained by Al- tings can be installed.

gorithm 5. Automating the construction of the context rules
is both important and difficult. There are manyHad Algorithm 3 been appplied to the Washing- promising approaches, but none have yet been seri-

ton DC image (where its context is violated), the ously tried.

result shown in Figure 6(e) would have been ob-

tained - a noticeably poorer delineation of the road
than that obtained with a higher smoothness pa- 8 Summary
rameter. It is not surprising that the choice of pa-
rameters can have a critical effect on the output We have described some of our experience in ap-

of an IU algorithm. More important, this exam- plying the CONDOR architecture to the site-model

ple illustrates that contextual information can be construction task of RADIUS. The semiautomated
successfully used to choose parameter settings. nature of RADIUS obviates the need for some of the
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machinery employed in the fully automated design % alg(same, Parameter.s) :-
of CONDOR. The availability of a human operator % aig specifies the applicable functions and their

permits access to some kinds of context that were % appropriate parameter settings for use in a

not available to CONDOR, such as the level of inter- % prescribed context
,and manual sketches of individual N ame is a symbol denoting the function to be invoked

activity desired, a Paramters Is a sequence of parameters whose format

features. The existence of a human to review and I depends on the function

edit the IU results offers the opportunity to use a alg(mbo. [closed-curve, obj-fa~rectangular-edges).

supervised learning scheme to improve the quality manual-entry, gradient-descent])

of the knowledge base or to extend its range of com- object-type(roof),
site(Site),

petence. interactivity(samiautomated),

The large number of features and wide range of image-site(mage.,Site),
modality(Image, bn),

imaging conditions that must be considered for site- imdag-resolution(moW, b e),

model construction in RADIUS stress the context set GSD -< 3.0 .

representation employed in CONDOR. While con- alg(cme. [closed-curve) )

text sets were adequate for the knowledge base of object-type(roof),

CONDOR, it has been necessary to consider more site(Site),
interactivity(manual),

effective representations that will extend to the re- image-site(lmago,Site).

quirements of site-model construction. Two new image-resolution(Image, GSD),

constructs - context tables and context rules - GSD =< 10.0

offer a more systematized organization for the con- alg(mbo, [ribbon-curve,
obj-fn(smoothness(0.5), continuous, parallel),text knowledge base that should facilitate its con- manual-entry, gradient-descent]) -

struction. These representations offer additional object-type(road).

economies in both storage and computation that site(Site),
interactivity(semiautomatod),

may be vital to implemetation of large systems. The image-site(Imape,Site),
symmetry of context tables and rules encourages modality(Image. be),

image-resolut ion (Image, GSD),
their use in either direction: to select algorithms GSD < 1.0.

and set their parameters, or to describe the condi- site-geography(Site, hilly)

tions that must be satisfied for a given algorithm to alg(mbo, [open-curve,

be applicable. This final capability raises the pos- obj-fn(smoothness(O.5). continuous),

sibility of using context rules to choose the most manual-entry, gradient-descent]) -

siagces object-type(road),
appropriate images for interpretation. site(Site).

interact ivity(semiautomated),
image-sito(Image Site),
modality(Tmage, be).Acknowledgments image-resolution(Image, GSD),
GSD =< 10.0,

I am indebted to Marty Fischler for the numerous site-geography(Site, hilly)

discussions that motivated and shaped much of this
work. Thanks also to Pascal Fua for the use of his alg(mbo, [ribbon-curve,obj-fa(suoothness(0.S), continuous, parallel).
snake algorithms and to Lynn Quam for supplying =anma - t ,ae nt- descnti ) :-

y manual-entry, gradient-descent])
the Cartographic Modeling Environment which fa- object-type(road).
cilitated the implementation and experimentation site(Site),

interact ivity(semiautomated),
enormously. image-site(Ime ,Site),

modality(Image. be),
image-resolution(Image, GSD).

Appendix site-geography(Site, flat)

The following Prolog program2 is roughly equiva- alg(mbo, [open-curve,
obj-fn(smoothness(0.8), continuous),

lent to the context table depicted in Table 4. manual-entry, gradient-descent]) -

object-type(rood),
site(Site),
interactivity(semiautomated),

2 More compact programs are possible. image-site(Image,Site),
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modality(Image, be), [9] Hanson, Andrew J., and Lynn Quam, "Overview of the
image-resolution(Image, QSD), SRI Cartographic Modeling Environment," Proceedings:
QSD a< 10.0, DARPA Image Understanding Workshop, Cambridge,
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05d =< 10.0 . cle," in Proc. 1986 IEEE International Conference on
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object-type(road), - 2051 (April 1986).
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object-type(road),
site(Site), [14] Poggio, Tomaso, Vincent Torre, and Christof Koch,
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Research in Automated Analysis of Remotely Sensed Imagery
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Abstract clearly used by both cartographers and imagery
This paper presents an overview of our program of analysts in a variety of tasks ranging from mapping
research toward the automated analysis of remotely to environmental land use analysis to natural
sensed imagery. Research results in the areas of resource inventory.
photogrammetry, stereo analysis, automatic
building extraction, digital terrain modeling, In this paper we provide a status report in a variety
knowledge-based systems, and multispectral image of research activities. Section 2 describes recent
analysis are presented.1 work in the application of rigorous

photogrammetric methods to image orientation and
1. Introduction building extraction within the context of the
The automated compilation of man-made and DARPA RADIUS program. We also describe recentThe utoate copiltionof an-adeand results using our stereo matching systems
natural terrain in urban or built-up areas has been [McKeown and Hsieh 92, Hsieh et al. 92] on
the focus of our research for a number of years. model board imagery. A companion paper in this
Built-up areas provide some of the most difficult
and time consuming tasks for the cartographic proceedings describes the incorporation of
community, and provide a rich environment of vanishing point geometry into the BABE building
varied structures and natural terrain features to test extraction system [McGlone and Shufelt 931. Such
the robustness of new approaches to computer geometric analysis is a key requirement for
vision. The theme of our research is to understand cartographic feature analysis for oblique imagery,

particularly in the fusion of results from multiplethe computational aspects of automated recovery views.
of three-dimensional scene information using a
variety of image domain cues. These cues include Section 3 describes new research in developing
the analysis of cast shadows, stereo matching, symbolic and geometric descriptions for buildings
geometric models, and structural descriptions using multiple cues such as stereo, shadow
based upon analysis and combination of low-level analysis, and monocular building detection. The
image-based features. We look for opportunities to analyistandemonocularrbuilding detection.yTheaugmnt tadiiona coputaionl viion goal is to detect those regions in the disparity map
augment traditional computational vision created by stereo matching that correspond totechniques with domain knowledge since it is buildings. Given that structures may appear on

rolling terrain, and that stereo analysis rarely
constructs an error-free model of the scene, simple
techniques based upon region analysis must be

This work was sponsored by the Defense Advanced augmented with other sources of information.
Research Projects Agency under Contract DACA76-92-
C-0036. by the U.S. Army Topographic Engineering Center Section 4 details an experiment in measuring the
and the Defense Advanced Research Projects Agency under effectiveness of human-computer interaction to aid
Contract DACA72-91-C-0014. and by the Air Force Office of in building detection. While most of our research
Scientific Research under Contract F49620-92-J-0318. The h
views and conclusions contained in this document are those of has focused upon automated end-to-end analysis,
the authors and should not be interpreted as representing the there is a role for user interaction at various stages
official policies, either expressed or implied, of the Defense of the cartographic process. Some preliminary
Advanced Research Projects Agency, the U.S. Army results are presented in interactive building
Topographic Engineering Center. the Air Force Office of selection using a simple pointing method.
Scientific Research. or the United States Government.
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Section 5 describes a continuation of previously Image # Ground # Image RMS Image
reported research toward the development of ED Points Points Residuals
improved techniques for a terrain representation
called a triangular irregular network (TIN) [Polis J3 76 76 2.2 pixels
and McKeown 92]. A new point selection
algorithm is described and results for the J4 67 67 1.8
generation of a 2500 kilometer square area of the J5 65 65 2.4
National Training Center (NTC), Fort Irvin,
California, are shown. J6 77 77 2.3

Research on knowledge acquisition and refinement J7 81 81 2.4
for rule-based systems used for the interpretation J3-J7 111 366 2.3
of aerial imagery is reported on in Section 6.
Using a large production system architecture, Table 1: RADIUS modelboard resection results.
SPAM, we report on ongoing research in the
evaluation of the utility of various sources of
knowledge for airport scene analysis. 2.1. Modelboard image resection

Finally, in Section 7 we briefly describe current Our work to date has been focused on an initial set

research in multispectral analysis to determine of eight images, J1 through J8, of the modelboard
surface material properties as a knowledge source industrial site. Figures 1 and 2 are two overlapping
of built-up area segmentation and cartographic areas, from images J5 and J4 respectively, and

feature extraction. A detailed description of illustrate typical scene content. In order to obtain
performance evaluation for two classification valid position and orientation parameters for the

techniques can be found in a companion paper images we implemented a standard

[Ford et al. 931 in this volume. photogrammetric resection procedure.

A relatively large number of modelboard control
2. Photogrammetric approach points (70-80) were measured in each of five
Our goal is to apply rigorous photogrammetric images, J3 through J7. We scaled the RADIUS
methods in several areas of research, particularly to modelboard control point coordinates into world
improve the extraction of geometric cues, and to units using the modelboard scale information,
relate partial object descriptions across multiple given as 1:500. In order to better integrate with
images. One of our first applications has been the our existing landmark database software
incorporation of vanishing point geometry into the [McKeown 87] we transformed the modelboard
BABE building extraction system, as discussed in coordinates into pseudo geodetic (latitude-
[McGlone and Shufelt 931 in this volume, longitude) coordinates. The coordinate origin of

the modelboard imagery was taken to be
In this section we discuss our research using the somewhere in central Kansas. For each of the
RADIUS modelboard imagery. Under the RADIUS images we performed an individual image
program a set of images of a synthetic industrial resection to establish an error measure based upon
site, represented by a scale model, were created RMS image displacement of the measured points.
and distributed to the RADIUS community. These In addition we performed a simultaneous block
images differ from more typical mapping adjustment of the modelboard images using all of
photography used in cartographic research in that the measured points. Simultaneous resection of the
they are taken from oblique angles rather than images in the same adjustment allows better error
near-nadir (down looking) mapping cameras. detection, due to the higher redundancy in the
Along with the imagery a set of ground control solution, and gives orientation parameters that are
points with known modelboard coordinates were more consistent between images.
distributed.

Results of the individual and simultaneous
Using this imagery we have addressed two major adjustments of images J3 through J7 are shown in
areas. The first is the implementation of a rigorous Table I. One can see a fairly consistent residual
central projection camera model and the solution error of about 2.3 pixels in these resections.
for the camera parameters for the modelboard Further refinements of our camera model may
imagery. The second is the evaluation of our improve this situation, but at the current scale of
current stereo matching techniques developed for the modelboard photography these errors
traditional mapping imagery using the modelboard correspond to about a three foot displacement in
imagery. ground position. Sources of error include

uncertainty in the modelboard ground control
locations, errors in the measurement of these points
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in each of the modelboard images, and unmodeled fine fashion in order to capture as much global
distortions resulting from the image formation continuity as possible while retaining a locally-
process. It remains to be seen how such errors will based process. Its results are best in smooth
effect the accuracy of cartographic feature textured areas, but tends to smooth (blur) abrupt
descriptions, such as buildings, whose models are changes in depth.
composed from partial object descriptions acquired
from multiple views of the scene. The second, S2, is a feature-based method that

provides a more accurate estimate at a few
An important output of the resection solution is the points---especially near depth discontinuities, but
precision information obtained on the orientation requires interpolation to "fill in the gaps." This
parameters, which can be propagated to estimate process also uses a hierarchical coarse-to-fine
the precision on calculated ground coordinates, approach, but matches "waveform" features
distances, or heights. These precision estimates across (epipolar) scanlines rather than a correlation
will in turn allow us to more meaningfully control window. To remove false matches this process
and merge various operations. uses a inter-/intra-scanline consistency check

[McKeown and Hsieh 921.
The image resection parameters are used
pervasively in our research. For building The results of the two stereo processes are refined
extraction from the oblique aerial imagery, the using a monocular segmentation of the original
vanishing point information is directly calculated intensity image into homogeneous regions. This
and exploited as described in [McGlone and process first merges the disparity results from each
Shufelt 93]. In the stereo processing the image stereo method using a common estimate of
orientation parameters are used to precisely "goodness" to select the best match; however, if
resample the images into epipolar geometry and to there is a large disagreement between the two
calculate elevations and heights in the scene. The methods, then both estimates are suppressed.
incorporation of precise camera models, resection Within each region of the segmentation, which is
information, and precision information into other assumed to represent a single continuous patch of
applications is now in progress. surface, the disparity values are averaged and the

outliers are removed. Two different segmentations
2.2. Stereo analysis of the RADIUS are used to limit the formation of artifacts during

modelboard imagery this process [McKeown and Perlant 92].
The RADIUS modelboard imagery presents several
new complexities in the interpretation of aerial 2.2.2. Generation of epipolar geometry
imagery. The emphasis on oblique views breaks Epipolar resampling, that is, resampling a stereo
some of the basic assumptions built into processes pair of images so that the epipolar lines run along
that analyze and interpret near-vertical stereo pairs. the rows of the image, is a requirement for our
In order to establish a performance baseline for our stereo matchers, as it is for most existing computer
stereo analysis systems we processed the two vision systems applied to aerial imagery.
stereo pairs (J4-J5) and (J6-J7) found in the initial Unfortunately, the resampling that is typically
release of the RADIUS modelboard dataset. We performed uses approximate warping techniques
used our standard orientation methods developed that may be adequate for vertical images but may
for near-vertical imagery taken along a single fail for imagery with severe obliquity. We have
flightpath [Perlant and McKeown 901 as well as implemented a rigorous epipolar reprojection
our new image orientation system based upon the routine that transforms a given stereo pair into the
resection results reported in the previous section. required geometry using the full orientation
Both pairs, (J4-J5) and (J6-J7), are relatively wide parameters for the images.
angle stereo, with convergence angles of 60 and 25
degrees, respectively. For the examples in this As an experiment we generated epipolar aligned
section we show results using the 60 degree pair imagery using two different techniques. First, we
because it represents an extreme case with respect established a baseline registration by performing a
to our previous work. relative orientation of the RADIUS modelboard

imagery by finding common scene points in each
2.2.1. Stereo matching and refinement of the stereo pairs. A polynomial orientation was
Most stereo systems in cartographic analysis performed giving an approximately collinear
assume that the stereo pair is in a collinear epipolar epipolar alignment [Perlant and McKeown 90].
geometry. We use two independent stereo The second orientation was performed using a
matching systems of this type. The first, Si, is an rigorous epipolar reprojection based upon the
area-based method that provides good figural- modelboard resection.
continuity and captures a sense of foreground and
background. It works in a hierarchical coarse-to-
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Figure 1: Image J5 (left view). Figure 2: Image J4 (right view).

Figure 3: Refined SI disparity results using Figure 4: Refined S2 disparity results using
polynomial orientation, polynomial orientation.

2.2.3. Modelboard stereo results based S I process. This was mostly due to the lack
Both Si and S2 were run using both the polynomial of a precise alignment of the epipolar lines. In
orientation and the resection reprojection on the addition, the large number of occluded regions
RADIUS J4 and J5 stereo pair. Figures 1 and 2 caused several mismatches by the feature-based S2
show the left and right image pairs. Figures 3 and matcher. In many cases the correct match between
4 show the stereo disparity results after refinement features had an opposite intensity contrast, vhich
using the polynomial orientation. The disparity violates one of the current S2 constraints. This was
results are encoded such that bright areas are less an issue of registration and due more to the
higher than dark areas. imaging geometry.

Using the polynomial orientation one can easily Figure 5 shows the reprojection of the original left
see areas of mismatch, especially for the area- image in Figure I such that the camera axis is
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Figure 5: Resampled Image J5 (left view) using Figure 6: Refined S2 disparitm results using
full resection. full resection.

perpendicular to the stereo baseline. Both the left generated by monocular analysis. in order to help
and right images were reprojected into epipolar guide and refine the stereo matching.
alignment. One can notice a change in shape of
the scene due to the obliquity and the angle 3. Building extraction from stereo
between the original camera axis and the stereo The interpretation of stereo disparity maps to
baseline. In this case the change was minimal detect and delineate manmade structures contained
since the baseline was nearly horizontal, within is a difficult problem. Our recent research

has been addressing the detection and extraction of
Figure 6 shows the result of S2 matching and buildings using stereo analysis together with
refinement using the resection orientation, monocular cues. The goal is to produce full three-
Although the results in Figures 4 and 6 are not dimensional models of complex buildings for site
directly comparable due to the reprojection. one model construction and update. Our approach is to
can see significantly more structure in the apply the cooperative-methods paradignm starting
buildings in the upper left corner of the scene. with the results generated by the stereo analysis of
Figures 7 and 8 show perspective views of the a pair of aerial images and, together with
modelboard reconstruction and also highlight some monocular cues, mark those areas of the image that
of the differences between the two orientation appear to be structures.
techniques. Quantitative analysis of the stereo a
accuracy along the lines of [Hsieh et al. 921 will be Our first step is to obtain a set of refined stereo
performed over a set of test cases. estimates of the scene. This is obtained bN using

the SI and s2 stereo matching systems coupled with
2.3. Open issues disparity map refinement as described by
As discussed in Section 2.1 we have applied a JMcKeown and Perlant 921. In the course of the
rigorous photogrammetric approach to the problem stereo refinement process an intensity
of obtaining a more exact collinear epipolar segmentation is produced. This segmentation is
alignment of the stereo images. We still need to used as the basis for subsequent processing.
determine how much tolerance our stereo
algorithms exhibit with oblique imagery. With the The second step is to merge those segmented
larger angle oblique images, we will need to regions that have approximately the same disparity
consider methods to deal with the large occluded and that are adjacent. Next, those omerged)
areas and the large baseline-to-range ratio. regions having a significantly greater disparity than

their neighbors are selected. The rule applied in
We have observed that the stereo refinement this step is liberal in the sense that we would rather
process greatly improved the disparity results in produce a few false positives that miss buildings at
both of the modelboard image tests. We plan to this point.
introduce additional sources of information in the
stereo process. such as wall and roof hypotheses
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Figure 7: S2 stereo results (05-44) using polynomial orientation.

Figure 8: S2 stereo results (J5-J4) using full resection.
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Figure 11: Fine Intensity Segmentation. Figure 12: Building H% potheses.

In order to remove some or all of the false are again used it) hypothesize the location of' the
positives. we apply heuristics and constraints shadow casting sides of each potential building.
derived from monocular cues. acting as a final cluster hypothesis verification.

o Clusters of regions whose collective size is small
or large with respect to possihle building size are 3.1. Extraction test results
discarded. Some initial results are shown for a complex

industrial scene. IW3gxiX. Figure 9 -sho%%-s the
*Regions that exist in areas marked as shadows original intensity image of' the left view% of' the
jlrvin and McKeown 899 Shufelt and McKeown stereo pair of aerial images. whi le Figure 10) shows

931 are removed, the refined stereo result produced by the S-2
matcher and used as the initial input to the building

*Multi-spectral classification of' regions may be extraction process.
used to remove elevated non-structural regions
such as tree canopies I Ford and McKeown 92a. Fileure I I shows the segmentation of' the scene in

Figure 19 that was generated during the stereo
Finally. the remaining clusters of buildings are re- refinement process in which the range of, Intenmit\
analyzed by searching tor a best fit building model within each region is ±5.
for- each cluster. In addition. the shadow regions



These regions are used as an initial over-nt
segmented view of the aerial scene and adjacent LL
regions are merged using the mode stereo disparity
value within the region. The threshold for merger
of adjacent regions is ± 1 pixel. Next individual
regions are marked as potential buildings based on
their relationship to adjacent regions. According to

the heuristic rule: (1) If the mode disparity within .
the region is less than the lowest of its neighbors,
then it is not considered a building; (2) If its
disparity is greater than the highest of its
neighbors, then it is given a likelihood value of 1.0
(from a range of 0-1.6); (3) If the mode disparity is
equal to both the high and low values of its
neighbors, it is allowed to be considered a buildinghypothesis and assigned a value of 1.6; Otherwise,

its likelihood is calculated by the formula:

1.5 xD-L-0.5 xM _ %

H-L Figure 13: Filtered Building Hypotheses.

where:
3.2. Open issues

D is the disparity of the local region. Although our initial results are promising, we feel
M is the mode of the surrounding that no approach will reliably detect and delineate

regions, manmade structures solely by using stereo
disparity. As a part of the cooperative-methods

H is the maximum disparity of the paradigm we plan to include other sources of
surrounding regions, and information such as BABE building hypotheses

L is the minimum disparity of the [McKeown 90] and surface material classification
surrounding regions [Ford and McKeown 92b, Ford and McKeown

92a1. In rugged terrain or in areas with significant

Figure 12 shows the result of accepting regions tree canopy additional cues will be necessary for
rated at 0.5 or according to the above heuristic. both the selection and the filtering of building
Clusters of regions that are very large (more than hypotheses. In addition, we expect that such
6000 pixels) or small (less than 100 pixels) ae monocular cues, such as those generated by BABE

removed.2 This is followed by a further restriction will play an important role in the verification and
that all clusters that do not have a hypothesized re-analysis of region clusters during the model
shadow region to their non-sunward edges are fitting and labeling process.
removed. Figure 13 shows the final result after
these restrictions. 4. Manual selection of building hypotheses

Automated feature extraction from aerial images is
As a result of this process many of the significant a complex problem, and research in this domain
buildings are detected, with various degrees of has illustrated the difficulties in reliably detecting
accurate delineation. One way to visualize the and verifying building structure. Although the
results is to look at the differences between a three- ultimate goals of our work in this area are systems
dimensional ground truth description, the refined which will accurately detect and precisely
stereo disparity map, and the three-dimensional delineate man-made features in aerial photography
scene that results from using building extraction. without human intervention, it is clear that a
Figure 14 shows the original scene rendered using combination of current extraction techniques with
a hand-generated stereo ground truth estimate some degree of user guidance has the potential to
14(a), the shows the refined S2 stereo result 14(b), exhibit improved performance on complex
and using the building hypotheses generated by imagery.
this technique 14(c). To date, many of the semi-automated systems

require a large portion of the detection and
delineation tasks to be performed by the user of the
system. In such systems, the user interactively
manipulates a variety of models over features in

2 Here a "cluster" is defined as the transitive closure of the image, fitting the models to the features
adjacent (within 2 pixels) regions.
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(a) wisms~) (;round Truth

(b) Refined s2Stee Result

(c) Visualization after Building Extraction

Figure 14: DC3800)8 Building Extraction.
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(Hanson et al. 87, Kass et al. 87]. An alternative Results BunDal Bckground Total
paradigm suggests that another approach for Detctin Detection Detectiom
developing a high-performance system is to allow
the user to lend a guiding hand during the All Boxes 82.1% 63.0% 65.8%
execution of the feature extraction algorithms. Best Boxes 57.4 97.7 91.9

4.1. Manual selection of building hypotheses I Point 67.7 94.1 90.2
We have been exploring possibilities for the 3 Point 77.1 92.9 90.6
application of human interaction in the extraction
process. Our current testbed for this research is Table 2: Building/background detection statistics
BABE, a line-corner intensity based feature
extractor [McKeown 90]. In brief, BABE proceeds
through four major phases to incrementally With the simple mechanism of multiple point
generate building hypotheses. The first phase selection, a user interacting with BABE can achieve
constructs comers from lines, under the
assumption that buildings can be modeled by a marked improvement in building detection, at the
straight line segments linked by (nearly) right- slight expense of accumulating errors inangled corners. The second phase constructs background classification. This is due to line
chains of edges which are linked by coners, tr placement errors in BABE hypotheses that areserve as partial structural hypotheses. her to otherwise accurate descriptions of man-madestructure. Note also, however, that the total scenephase uses these line-comer structures to classification rate remains essentially the same in
hypothesize boxes, parallelopipeds which may each of the three examples. This suggests that user
delineate man-made features in the scene. The interaction at the verification level trades detection
fourth phase evaluates the boxes in terms of size ratinst over ification presion o
and line intensity constraints, and the best boxes rate against overall classification precision.
for each chain are kept, subject to shadow intensity
constraints similar to those proposed by [Nicolin 4.2. Open issues
and Gabler 87] and [Huertas and Nevatia 88]. Given that the initial hypothesis data produced by

BABE still fails to detect 18% of the building
In recent work, we have addressed the possibility structures in the scene, it should be clear that more
of replacing the hypothesis evaluation routine with work is necessary on the basic feature extraction
a simple form of user verification, in which a algorithms, and we intend to continue our pursuits
person uses the mouse to drop points on each in this area. User interaction at an intermediate
individual structure in the scene. Then, hypothesis level appears to be a fruitful avenue for further
evaluation reduces to determining which boxes exploration, however, and we intend to investigate
produced by BABE contain points placed by the this topic further. One key issue is the
user. This level of interaction does not place great determination of the appropriate level of
demands on the user, and makes effective use of interaction between a user and a feature extraction
the hypothesis generation capabilities of BABE; algorithm. We also plan to experiment with user
thus, it serves as an interesting test for an input at other phases in the extraction algorithms,
intermediate level of man-machine interaction in such as comer detection, line linking, and structure
this domain. generation.

Figure 15 shows a ground-truth hand segmentation 5. Terrain Modeling and Visualization
of a suburban scene in Washington, DC. Figure 16 Terrain modeling is becoming an increasingly
shows the complete set of hypotheses generated by important issue with the advent of large-scale
BABE for this scene, and Figure 17 shows the distributed simulations for training, mission
hypotheses verified by the shadow intensity rehearsal, and mission planning. Such systems
constraint algorithms invoked in the fully rely on efficient representations for natural terrain,
automatic version of BABE. Figure 18 illustrates as well as manmade features such as buildings,
the results of a semi-automated BABE execution, in roads, and bridges. Our recent work in this area
which the shadow verification algorithm was has focused on the development of visualization
replaced by user selection of three points on each tools for three-dimensional data, and in the
building, followed by intersection of these points continuation of our research in triangular irregular
with the full set of hypotheses in Figure 16. Each networks (TINs).
of these results was then compared on a pixel-by-
pixel basis with the ground-truth hand S Visualization tools
segmentation to generate the statistics in Table 2. With tieainasin toolsNotetha wegivedat fo a ingl-pont ser With the increasing availability of a variety of
Notection exampe data for a single-point user digital spatial data ranging from map databases,selection exam ple as well; we omit the oj c o e ecito s iia l vto
corresponding figure for brevity, object model descriptions, digital elevation
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Figure 15: Ground truth segmCnt iti in for Figure 16: Hypothesis generation for 1(r5.
ID(37405.

-. i

Figure 17: Automatic verification for DC37405. Figure 18: User-assisted 3 point verification.

models, and gco-referenced imagery, there is a automated stereo results, multi-spectral results, and
need to conveniently view image and vector data to digital map data (lTD. DLMS) overlaid on terrain.
support various aspects of our research. In many
cases these datasets are best visualized in three Figure 20 shows a sample control panel used to
dimensions. Figure 19 demonstrates the difference specify imagery. terrain, map overlay, and %iewing
between viewing terrain as an intensity mapped parameters. Users can create and store multiple
height field and as an overhead shaded relief ordered sets of camera parameters in order to
rendering. The latter process takes into account compare results from different stages of an
shading from a light source and tends to make the extraction process. They can also compare results
surface structure more apparent. Small changes in from different analysis methods from a single
terrain detail are enhanced and surface slope and known viewpoint. XRH.i-,1L1 has an intuitive
aspect appear more pronounced. To support our graphical interface for control and creation of these
need for 3D display of spatial data we have camera parameters. as well as positioning of an
developed an X/Motif application. XRtiIEF, to illumination source used for shading calculations.
allow us to visualize digital elevation models and and simple animation support. This interface is
TINs. manual ground truth segmentations, shown at the lower right of Figure 20. The large
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Figure 19: Comparison of 21) and 3D display o IDigital Elevation Models.

and small circles represent camera lookfrom and approximate TFIN is compared to the actual DEM
lookat points, and the image displayed underneath and the point or points having the greatest error in
corresponds to the image being ovcrlaid on the elevation are determined. These DEM points are
terrain, added to the TIN as correction points, and a nev.

triangulation is generated. The triangiulation is
5.2. A new TIN generation method evaluated based on a global point budget and the
A digital elevation model (I)M ) is a terrain Model residual global error. If the point budeet is not
consistin~v of elevation data regularly spaced on a exceeded and the RMS error is still greater than aUseisrn spciie elevtio goata reguarl spahe pon,, a
grid. A triangular irregular network consists of user specified error goal. then the process is
elevation data that are irregularly spaced and are repeated. In practice the point budget controls ihe
connected into triangular facets to form a surface. stopping conditions for the TIN generation
The ability of the TIN to place points irregularly process.
permiits point density to adapt to terrain
complexity, and allovs points to be placed Our previous point selection method relied on the
precisely on peaks and \alley floors. The TIN generation of error contours and associated medial
terrain model is ideally suited to real-time axes. Points would be selected from the set of
renderinG. as it consists of a reduced set of maximal contours generated at each iteration. The
polygons tailored to the underlying terrain new point selection is based solely upon a measure
cornplexit . Pre~ ious reearch in TFIN generiZion calculated at each point in the approximation
using point ,election from the I)EM as described ItDM. The new, process chooses fe%\er correction
in an earl ier paper [Polis and McKeovn 921. In points per iteration and as a result man. more
iin snectlion paper iIol an b ~onvi our. chose arPfiseltopntc i brief" update niterations are required. However. the points

of new ind improvedchon are of higher quality in terms of our RMSpoint selection. (m error metric. As a result of this a fast triamgulation
is necessary, so the modified greed\ triangulation

)ur point selection method relies on the iterative has been replaced with a Delauna\ triangulation.

selection of points based upon successi\e Hoeve\r. the inmpro\ement in point selection

approximation to the actual terrain surface. At appears to outweigh the loss in triangulation
each iteration a dense IEM is constructed by accuracy, especially since the iterative process \will

interpolation fron the current TIN. Thi-s naturally add points to correct poor triangulations.
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In the following section we will describe the use of impression was confirmed using the SIMNET
this new triangulation method to generate large- system at USATEC and driving an M1 tank
scale TINs suitable for use in SIMNET. (simulated) through the terrain.

5.2.1. TIN generation for SIMNET 5.3. Open issues
A digital elevation model constructed to support a We have shown the utility of our new TIN
SIMNET training exercise was provided to us by the construction method for a large-scale digital
U.S. Army Topographic Engineering Center elevation model. Research issues remain in
(USATEC). The DEM covered an area 50 determining how to factor more detailed mobility
kilometers on a side (2500 square km) including information into the point selection process. We
the National Training Center (NTC), Fort Irwin, are also interested in addressing how to integrate
California. This area is primarily desert, with small scale cartographic features, particularly roads
some highly eroded mountainous areas and into a TIN, while maintaining a limited poiygon
intricate alluvial fans running to the desert floor, budget.
The sheer size of the area presents signifi ant
problems. The DEM consists of 1979x1979 From a pragmatic standpoint, the generation of a
points, nearly 4 million elevation posts. To TIN directly from the NTC digital elevation model
maintain the desired polygon density for the using our new point selection method would take
SIMNET computer image generation systems, only weeks, even on a fast (20mips) workstation. Our
90,000 points were to be selected for the TIN. initial solution was to divide the DEM into tiles

and then generate a TIN for each tile. We
An additional complication for the TIN generation maintained a restriction that TJNs must match
process was the desire for reduced fidelity in the along common boundaries. The execution time is
mountainous areas with increased detail in the divided by the number of tiles, and can be further
areas of alluvial fans and on the desert floor. This reduced since tiles which have no common
was primarily driven by the fact that mountainous boundary can be generated in parallel. Using this
areas are not accessible to ground vehicles method we were able to generate the NTC TIN
(simulated or otherwise) yet, due to their height overnight using three workstations. There are
and complexity, they tend to accumulate a large limits to this technique since as the number of tiles
number of TIN points. This decreases the budget is increased, the global behavior of point selection
available for other areas of the terrain. An overlay is greatly reduced. This can defeat the overall goal
indicating the mountainous areas was provided by of placing points wherever their utility is the
USATEC, and was used to produce an importance greatest.
grid. Our initial experiment was to make the
maximum error in the mountains approximately 6. Toward Knowledge Refinement for
one fifth as large as that in the low lying areas. We Large Rule-Based-Systems
smoothed the importance grid to avoid problems Knowledge refinement is a central problem in the
that might result from a discontinuity at the field of expert systems [Buchanan and Shortliffe
boundary of the mountainous area. Since point 84]. It refers to the progressive refinement of the
selection under our new method was based solely initial knowledge-base of an expert system into a
upon a measure calculated at each point, it was high-performance knowledge-base. For rule-based
now possible to use the importance grid to apply a systems, refinement implies the addition, deletion
weight to each point based upon its subjective and modification of rules in the system so as to
importance. improve the system's empirical adequacy, i.e., its

ability to reach correct conclusions in the problemsFigure 21 shows a shaded relief representation of it is intended to solve [Ginsberg et al. 88].
the western part of the National Training Center.
The left half shows the terrain relief using the The goal of our research effort is to understand the
original digital elevation model. The right half methodology for refining large rule-based systems,
shows the same area using the TIN representation as well as to develop tools that will be useful in
for the underlying surface structure. The TIN was refining such systems. The vehicle for our
generated using selective fidelity in the investigation is SPAM, a production system (rule-
mountainous areas. Using approximately 2.5% of based system) for the interpretation of aerial
the original DEM points we were able to construct imagery [McKeown et al. 89, McKeown et al. 85].
a TIN with an RMS elevation error of 3.1 meters It is a mature research system having over 600
when compared to the original DEM. The range of productions, many of which interact with complex
elevations in the DEM was approximately 1500 geometric algorithms. A typical scene analysis
meters. From a qualitative standpoint it appears task requires between 50,000 to 400,000
that the major topographic features are generally production firings and an execution time of the
preserved and that detail in the alluvial fans and
desert floor areas are also quite good. This
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Figure 21: S I MNI ýt 50ki N'T 1) E'M lefA)ju Iix taposed wki th 50kmi NTC TI IN (righ-,[It)

order of 2 to 4 cpu hours.; AN a result, the ineihodologp adopted in ývcli-
known systems such as SITK and SLLK-2 113ol itakis

Large. conmpute-intensiwe sstemns like SPAM) and Weiss 84. Giinsberg et al. 881, or KRt ST ICra\m
impose some unique constraints on knowledge and Sleemian 911I. cannot be directl\ employed to
ref'inemnitt. First, the problem of' creditlblaine- refine knowlIedge in SPAM. Our a1pproach is to
assignment is complicated. It Is extremnely dif~ficult address this problemi in a bottom-tip fashion. iLe..
to isolate a single culprit production (or a set of begin by understanding SP.AM\'S indil idual phases.
culprit productions) to blamne fbr an error ohbserved and then attempt to understand the interactions%
in the output. Second. given the large run-timie, it betmeen the phases. A difTerent set ot tools 'IN
is not possible to rely onl extensive experimentation required to allonk the user to focus attention onl
fo(r know ledge refinement, individual modules responsible tbr interme~diaIte

results, and refine thcm. In our wkork so f'ar. \we
have focused on the second phase in s*mm. local-

Vim Kin highIk opl imi/ed U hased ( )IS5 I Kalp et i conslstenc\ wu .**. \khich applies constraints ito a
XXI running ona DLC "AS~(W120H



set of plausible hypotheses and prunes the the scene with their correct hypothesis labels. An
hypotheses that are inconsistent with those "ideal" input to the LCC phase, a set of hypotheses
constraints. Furthermore, we have narrowed this that are 100% correct, can easily be manually
focus to refining SPAM's distance and orientation generated and run through the system. Any errors
constraints, in the output are then directly attributable to the

constraints.
In working toward refining these constraints, we
posed several questions to help guide our analysis: A set of constraint results can be generated by

1. Does this constraint play a positive (helpful) allowing a user (the expert) to enumerate those
or negative (unhelpful) role in the constraints that should exist between each pair of
interpretation process? objects in the ideal input. This is equivalent to an

2. If the role is positive, are there improved "ideal" output for LCC.
constraint bounds values? Once SPAM has processed the ideal input, the

3. What is this constraint's impact on run time? generated output can then be compared to the ideal
4. Is this constraint uniformly applicable or output. Such a comparison is informative as it

should it be applied selectively? If allows a quantitative measure of error to be
selectively, in what cases should we apply the computed. We can produce this comparison as a
constraint? set of confusion matrices where each matrix

represents the results for a single constraint and a
In the following sections we describe some of our single pair of classes. These matrices contain the
current efforts toward addressing these questions. usual cells (true-positives, false-positives, true-

negatives, false-negatives). An example confusion
6.1. The refinement methodology matrix is shown in Figure 22.
We have begun our investigation on knowledge
refinement by focusing on SPAM's second phase of A true-positive entry in the confusion matrix
processing, LCC. This phase was chosen because indicates situations where the expert and L both
most of SPAM's time is spent in this phase, and it conclude that the constraint supports a pair of
showed the most potential for future growth. LCC hypotheses. A true-negative entry indicates
performs a modified constraint satisfaction situations where the expert and LCC both conclude
between hypotheses generated in SPAM's first that the constraint does not support a pair of
phase. In LCC, a successful application of a hypotheses. A false-positive entry is one where
constraint provides support for a pair of LCC concludes support, while the expert does not.
hypotheses, and an unsuccessful application goes A false-negative entry is one where the expert
towards filtering out that pair of hypotheses. The concludes support, while LCC does not.
distance constraint specifies allowable distance
ranges between different pairs of hypothesized 6.1.2. Constraint optimization
objects, e.g., two hangar buildings must occur By examining the overlap of each histogram, we
between 20 and 200 meters apart, while a parking can tell if SPAM's distance constraint is working
apron and a hangar building must be between 0 properly. The overlap of, for example, true
and 50 meters apart. In essence, each constraint in positives with false positives can tell us how the
the LCC phase classifies the pairs of hypotheses --- constraint can be modified to achieve the greatest
either the constraint supports that pair, or it does number of true positives without introducing too
not. many false positives. For numeric constraints,

such as distance, we have developed an automatic
Our refinement methodology consists of three process for adjusting the constraint bounds to
parts: intermediate result evaluation, constraint generate an improved set of ranges.
optimization, and embedded evaluation. The first
two methods allow the isolation and improvement Automated bounds selection is achieved by doing
of individual constraints, while the third method an exhaustive search through the space of possible
allow us to evaluate the performance of the new bounds settings, evaluating each setting with an
knowledge in the context of the overall system objective function. Currently, this objective
output. function weighs all cells in the confusion matrix

equally and seeks to maximize the number of
6.1.1. Intermediate result evaluation elements in the diagonal cells of the matrix (true-
In order to measure the effect of various spatial positives, true-negatives).
constraints we needed to establish a database of
correct inputs and outputs for Lcc. For each of the
sets of data that we run through SPAM we have a
ground-truth database containing all the objects in
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Figure 22: Confusion matrix showing correctness of SPAM's
hangar-building/road distance constraint.

6.1.3. Embedded evaluation ground-truth. The resulting comparison histogram
Both methods described above evaluate and was used by our bounds adjustment procedure
improve the performance of isolated constraints, which generated a set of optimal settings for this
However, it is most important that the system's constraint. These experiments were performed on
overall output improve with the adjusted contraint four data sets, with each data set corresponding to
embedded within it. a different airport scene.

We want to choose to evaluate embedded Next, we ran five experiments for each data set,
performance at a place within the system where the allowing SPAM to execute through it's third phase.
intermediate results have been used, but where Each experiment corresponded to a modification of
only a small amount of processing has been done the distance constraint bounds, as follows:
so that the credit assignment problem is avoided.
We chose to evaluate performance at the end of off constraint disabled;
SPAM's third phase, FA. This phase does grouping low bounds set to minimum value;
based on the results of the constraints applied in
LCC. These groups of supporting hypotheses are optimized optimal bounds setting arrived at by
called functional-areas (FAs). adjustment procedure;

SPAM's long run times prohibit iterative refinement original original bounds setting optimization
if the number of iterations required can be large. process;
This limitation can be avoided by appropriately high bounds set to maximum value;
choosing experiments to run and observing the
system's behavior. In this way, we sample the Those table entries labeled orient-* are orientation
space of possible bounds settings and hence, constraint modifications. For each run, we
sample the system's output behavior, compiled statistics on run-time, number of

production firings, number of functional-areas
6.2. Analysis of results generated, and number of correct and incorrect
We ran the LCC phase of SPAM with a set of hand- hypotheses included in those functional-areas.
labeled hypotheses and compared this to our Evaluation was done by comparing each run to the

original bounds settings.
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Dataset Bounds Time No. Rule No. of No. of No. of
Setting (cpu Firings FAs Correct Incorrect

hours) (diff.) (diff.)

Moffett off 0.26 97051 16 -21 -19

"low 0.29 103779 16 -21 -19
" optimized 0.30 113107 16 -10 -6

"original 0.30 115012 17 0 0

"high 0.35 135978 19 16 55

"orient-off 0.27 104672 17 -1 -21

"orient-low 0.30 114783 18 -1 2
" orient-high 0.32 124697 18 1 8

DC National i off 0.52 161685 27 -25 -82

"low 0.57 170801 27 -26 -83

"optimized 0.57 180060 28 -9 -44

"original 0.58 183273 28 0 0

" high 0.72 240726 28 68 210

"orient-off 0.54 167618 28 -16 -18

"orient-low 0.57 186919 28 3 6

" orient-high 0.62 203931 28 27 14

Table 3: Sampled SPAM performance, measured along several
dimensions while changing constraint settings.

Our results are presented in Table 3. From this An interesting phenomena is observed as the
table, we can make several observations. First, constraints are selectively turned off. The
from the increase in run time (from off to original), generated functional-area groups get smaller, but
it can be noted that the distance constraint is they do not radically change in area of coverage.
having some impact on the results. The increase in This implies that the distance constraint is
the number of correct hypotheses and the drop in selectively applicable, i.e., it largely overlaps with
the number of incorrects reveals that this constraint the other system constraints, but it is necessary for
is playing a positive role. the inclusion of some subset of hypotheses.

Because optimizing and then coupling these two
Finding the best setting for the bounds of the constraints does not produce a dramatic
constraints is a more difficult problem. The improvement in results, it appears that more
evaluation function for this task seems very constraints may be required to do a better job of
complex, taking into account relationships between interpretation
numbers of corrects/incorrects, sizes of functional-
areas, and run time. For the Moffett data set, the 6.3. Open issues
number of corrects increases, while the number of With the recent emphasis on performance
incorrects increases, but at a slower pace. From evaluation of vision systems focused upon low and
this we would conclude that the bounds should be intermediate level vision tasks, this work
set to the maximum value. However, the same establishes a data point in the area of high level
analysis for DC National implies that the vision systems. Though our goal is to improve the
optimized value would be best. Other larger data interpretations generated by SPAM, we have begun
sets, such as those for San Francisco National by improving our understanding of how the
Airport, show a similar trend. This suggests that individual components of SPAM operate, and how
the bounds for the distance constraint should be they interact. This will provide the foundation for
chosen on a case by case basis.
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understanding the effects of modifying or adding techniques, gaussian maximum likelihood and
knowledge to the system. differential radial basis function, for surface

material classification. In order to do this
We have been able to show that SPAM's distance evaluation we have created several highly detailed
constraint plays a positive role in the interpretation ground truth segmentations based upon manual
task. However, choosing an "optimal" value is analysis of the multispectral imagery, as well as by
difficult, and seems to be scene dependent. inspection of panchromatic imagery acquired over
Finally, we have determined that, of the two the same area. Details of this work can be found in
constraints considered thus far (distance and a companion paper [Ford et al. 931 in this volume.
orientation), the applicability of both overlaps a
great deal. Our overall conclusions are that multispectral

imagery with moderate spatial resolution has great
There is still much to be done. In the short term, potential to provide scene domain cues necessary
there are several obvious problems that we have to improve the performance of cartographic feature
not addressed. First, we need to look more closely extraction based on panchromatic imagery with
at the applicability of the constraints and high spatial resolution.
characterize, if possible, the cases where each
constraint can be applied. Second, it is unclear if 7. Multi-spectral classification
the bounds optimization procedure we developed Our work in multispectral analysis to determine
will extend to non-numeric constraints. Finally, surface material properties has been focused on
we wish to extend the analysis to simultaneously basic research on demonstrating the utility of such
perform validation across multiple constraints, data for cartographic feature extraction. For many

tasks in traditional remote sensing it is clear that
Overall, we believe that it will be possible to build having surface material information drives many
a heuristic system that would automate the tasks in land use, environmental monitoring, and
knowledge refinement process, similar to the natural resource management. Our hypothesis is
automated system in [Ginsberg et al. 88, Politakis that such data can aid in manmade object
and Weiss 84]. Within such a system, we would detection, delineation, and identification.
like to discover ways not only to improve the However, getting multispectral imagery at spatial
current constraints, but to automate methods for resolutions that are comparable with the high
determining what new knowledge may be needed. resolution panchromatic imagery has been

Our work in multispectral analysis to determine difficult.

surface material properties has been focused on Initial work has demonstrated the utility of the
basic research on demonstrating the utility of such refinement of multispectral classification using
data for cartographic feature extraction. For many monocular panchromatic imagery, and the fusion
tasks in traditional remote sensing it is clear that of stereo disparity maps with surface material
having surface material information drives many information [Ford and McKeown 92b, Ford and
tasks in land use, environmental monitoring, and McKeown 92a]. One issue is maintaining accurate
natural resource management. Our hypothesis is registration between the multispectral scanner data
that such data can aid in manmade object (8 meter gsd) and the panchromatic imagery (1.3
detection, delineation, and identification. meter gsd). Once this is accomplished a unique
However, getting multispectral imagery at spatial hybrid three dimensional multispectral dataset can
resolutions that are comparable with the high be created and utilized for further analysis.
resolution panchromatic imagery has been
difficult. Our recent research has been to perform a

performance evaluation of two classification
Initial work has demonstrated the utility of the techniques, gaussian maximum likelihood and
refinement of multispectral classification using differential radial basis function, for surface
monocular panchromatic imagery, and the fusion material classification. In order to do this
of stereo disparity maps with surface material evaluation we have created several highly detailed
information [Ford and McKeown 92b, Ford and ground truth segmentations based upon manual
McKeown 92a]. One issue is maintaining accurate analysis of the multispectral imagery, as well as by
registration between the multispectral scanner data inspection of panchromatic imagery acquired over
(8 meter gsd) and the panchromatic imagery (1.3 the same area. Details of this work can be found in
meter gsd). Once this is accomplished a unique a companion paper [Ford et al. 93] in this volume.
hybrid three dimensional multispectral dataset can
be created and utilized for further analysis. Our overall conclusions are that multispectral

imagery with moderate spatial resolution has great
Our recent research has been to perform a potential to provide scene domain cues necessary
performance evaluation of two classification to improve the performance of cartographic feature
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Detection of Buildings from Monocular Views of Aerial Scenes
Using Perceptual Grouping and Shadows
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Abstract

We describe a system Jbr detection and description of
buildings in aerial scenes. This is a difficult task as the aerial
images contain a variety of objects. Low-Jeel segmentation
processes give highly fragmented segments due to a nwnber
of reasons. We use a perceptual grouping approach to collect
these fragments and discard those that come from other
sources. We use shape properties of the buildings for this. We
use shadows to verif the hypotheses generated by the group-
ing process. This step also provides 3-D descriptions of the
buildings. Our system has been tested on a number of exon-
pies taken from the imagery supplied by the RADIUS pro-
gram and the results have generally been very good. The
current system is largely limited to overhead views, we are Figure 1. A building form Ft. Hood, Texas
currently working on extensions to oblique views. v w t made of the same material, may

1 Introduction be even lower. Low contrast alone is likely to cause
The goal of this work is to detect and describe i low-level segmentation to be fragmented. In addition,
from monocular views of aerial scenes. This is a diiti- small structures on the roof and objects, such as cars and
cult but important task for many applications such as trees adjaeu to the building will cause further frag-
photo-iimpretation and cartography. There have been mentation and give rise to "noise' boundaries. Roofs
many previous attempts to solve this problem in o may also have markings on them caused by dirt or vari-
group [Huertas, 1983, Huertas and Nevada, 1988, Mo- ations in material. Shadows and other surface markings
han and Nevatia, 1989] and elsewhere [Irvin and on the roof cause similar problems.
McKeown 1989, liow and Pavlidis, 1990, Ven- There are other characteristics of these images which
kateswar and Chellappa, 19901. These systems have may cause problems. Roofs have raised borders which
shown interesting performance but on limited exam- sometimes cast shadows on the roof. This results in
ples. The technique we describe in this paper, we be- multiple close parallel edges along the roof boundaries
lieve, significantly extends the range of scenes that can and often these edges are broken and disjoint- At roof
be analyzed though many problems remain. We show corners and at Junctions of two roofs, multiple lines
several examples taken from the images provided by the meet leading to a number of corners making it difficult
RADIUS program to demonstrate the effectiveness of to choose a corner for tracking. A roof cast a shadow
ourtechnique, along its side and often there are objects on the ground

Building detection is difficult for several reasons. such as grass, trees, tcks, pavement, etc., which lead
The contrast between the roof of a building and Sur- to changes in the coast along the roof sides.
rounding structures such as curbs, parking lots, and Consider the building in Figure 1, from a scene of Ft
walkways can be low. The contrast between the roofs of Hood in Texas. The building is easy for humans to see

and describe, but it is difficult for computer vision sys-
tems. Figure 2 shows the line segments detected in the

This research wa supported RAnDrIU y by r sgaom, and fprom image, using LINEAR, our linear feature extractionHughm Aircraft Co. on the RADIUS progra inOftWare [Nevatia and Ba, 1980, Canny, 1986]. We
Deatuse Advanced Remech Projects Agency under contract
F49620-90-C-0078, monitored by the Air Poroe Ofce of Scientc ar still able to see the roof structures of the buildings
Research. The United stms Oovmnment is authorized to mproduce readily and easily, but the complexity of the task now
and diribte reprints for sovermuental purposes notwihutandinS becomes mor apparen The building boundary is fng-
any copyrigit notation heeon.
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mented, there are gaps and missing segments. There are
also many extraneous boundaries caused by other struc-
am in the scene. 2 Overview of the System

The diagram in Figure 3 shows the main components in
our system. The system uses the line segments approxi-
mating the intensity boundaries to compute lines and
relevant junctions among them. A hierarchy of features
including parallel relationships and portions of rectan-

- 27 ) gles leads to the formation of building hypotheses.
These consist of instances of rectangular shapes that po-
tentially correspond to building roofs and parts of build-*ing roofs (see section 3). Next, promising rectangles are
selected and verified to correspond to building struc-
tures.

Figure 2. Line segments extracted from image Our philosophy in the design of this system has been
to make only those decisions that can be made confi-
dently at each level. Thus, we choose to generate as

Much of the previous work to resolve these prob- many hypotheses as seem feasible at the first level. Our

lems has used some form of a contour tracing technique, selection process too is conservative and favors keeping

see for example liHuertas, 1983, Huertas and Nevatia, hypotheses that may be viable. The verification process

1988, Venkateswar and Chellappa, 1990H.These are es- has the most global information and can make stronger

sentially local techniques that must make a decision of decisions. Even here, if our system is to be embedded in

which path to trace at each local junction. Of course, all a larger system, some of the decisions would be de-

paths could be traced using backtracking but then the ferred to that system where more context is available for

search space may become prohibitively large. decision making.

We propose, instead, to use a perceptual grouping
approach. Cultural features such as buildings represent Image
structures that are not random but have specific geomet-
ric properties. In this work, we restrict the shapes of Linear Feature Extraction
buildings to be rectangular or composition of rectangu-
lar shapes (thus allowing L, T and I shapes for exam--
ple). We also assume that the viewpoint is more or less Na
overhead. Thus, primarily, we see roofs which project nes and Junctions
as rectangles or composition of rectangles. This proper-
ty can be used to organize the detected line segments
into roof hypotheses. We believe that this approach Parallels U-contours
leads to many fewer hypotheses than would be generat-
ed by a complete contour tracing scheme.

We can choose among the many hypotheses by uti- Rectangle Formation S w Analysi
lizing other properties of the image. Specifically, under Shadow A s
favorable imaging conditions 3-D structures cast shad-
ows that allow verification of roof hypotheses and fur- R e!e lction
ther provide us an estimate of the height allowing us to
generate 3-D descriptions of the detected buildings. An
alternative would be to utilize more than one image of
the scene to infer heights of the features of the roof and Rectangl V on
to separate them from features on the ground; another
project in our group has explored this approach [Chung 3-D Building Description
and Nevatia, 1992]. The advantage of using only one
image, of course, is that such imagery is much easier to
acquire. Figure 3. Block Diagram of the System

Our approach combines several of the techniques
from our previous work. Our perceptual grouping ap-
proach comes from the work described in [Mohan and 3 Generation of Hypotheses
Nevatia 1989], however, we use a very different selec- The process of hypotheses formation is essentially the
tion technique. The earlier work, in fact, used perceptu- one described in [Mohan and Nevatia, 1989]. This sys-
al grouping for stereo analysis, here we apply it to mo- tern has been applied to building detection but using a
nocular analysis. Our shadow analysis method is an ex- stereo pair of images. In this process we construct a fea-
tension of the approach first described in [Huertas, ture hierarchy which encodes the structural relation-
1983, Huertas and Nevatia, 1988]. ships specific to rectangular shapes: Lines, parallels, U-
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contours, and rectangles.

Lines and Junctions
A group of close parallel lines represent a linear struc-
ture at a higher granularity level than the edges (see the
common boundary between the building wings in
Figure 2.) The resulting lines have a length and an ori-
entation derived from the contributing elements. Figure
4 shows the lines obtained from grouping the segments
in Figure 2. We use these lines to detect L-junctions and
T-juncdons also shown in Figure 4.

Figure 5. Rectangle hypotheses generated

to give much more predictable results.
* '•Our new system uses two kinds of criteria: local se-

lection criteria and global selection criteria. Local se-
4lection criteria determine whether or not a rectangle is

J* 46"good" based on the local supporting evidence. Only
good rectangles are retained for global selection. It is
possible that some of the good rectangles retained after

I " the local selection are mutually contained or duplicated
or overlapped with some other good rectangles. Global

Figure 4. Linear structures and junctions selection criteria select the best consistent rectangles
from good rectangles.

Parallels and U-structures We apply local selection criteria and global selection
Structures in urban scenes like buildings, roads and criteria differently. Local selection criteria (evaluation
parking lots are often organized in regular grid-like pat- criteria) work together to evaluate the goodness of a
terms. These structures are composed of parallel sides, rectangle, while global selection criteria work separate-
As a consequence, for each significant line-structure de- ly. Each global selection criterion acts like afilter. The
tected in the scene, there is not one but many lines par- set of retained rectangles pass through all filters and the
allel to it. For each line, we find lines that are parallel set of rectangles coming out from the last filter will is
and satisfy a number of reasonable constraints. Note the set of rectangles selected by the selection process.
that the formation of a parallel structure also aids in the The local selection criteria are used to remove rect-
formation of new lines, as they suggest extension and angles formed using weak evidence. For each rectangle
contraction of the parallels to achieve full overlap, the evaluation criria compute a goodness value. If this

When the two lines in a parallel structure have their value exceeds a given threshold, the rectangle is select-
ends aligned, they strongly suggest the presence of a ed, otherwise the rectangle is removed.
line with which the parallel structure would form a U- Every evaluation criterion is weighted according to
structure. Even ff the third line does not exist in the set its importance. The goodness of a rectangle is then mea-
of lines, we hypothesize it and generate the U-structure. sured by the sum of the weighted valuem returned by the

Rectangles evaluation criteria. The problem of measuring the good-
Rectangle structures are generated from the U-struc- ness of a rectangle now becomes a problem of finding
tures. The rectangles formed in our example are shown and formulating good evaluation criteria, and how to as-
in Figure 5. In practical applications this number can be sign appropriate weights.
reduced by restricting the formation of rectangles on the Whether a rectangle is good or not depends on evi-
basis of size, as a function of image resolution, for ex- dence of support. We distinguish between positive evi-
ample. Rectangles are also generated from matching dence and negative evidence of support for a rectangle.
junctions along the direction of illumination (see strong The positive evidence we use includes the presence of
junctions in section 5.) We hypothesize the missing por- edges, corners, parallels, and shadows. The negative ev-
tions of a rectangle having a corner with a matching idence includes the presence of lines crossing any side
shadow comer. of a rectangle, existence of L-junctions or T-junctions in

any side of a rectangle, existence of overlapping gap on
4 Selection of Hypotheses opposite sides of a rectangle, and displacement between
After the formation of all reasonable rectangles, a selec- four sides of a rectangle and its corresponding edges
tion process is applied to choose rectangles having support. Negative evidence is as important as positive
strong evidence of support and having minimum con- evidence, because they help us to remove those rectan-
flict among them. Our previous system used a Con- gles which are less likely to be pan of buildings.
straint Satisfaction Network (CSN) [Mohan and Neva- Good rectangles surviving local selection may com-
tia, 1989]. Here, we use a different method which seems pete with each other. For example, some rectangles
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could share the same edge or corners support and some
rectangles might overlap with each other. The goal of
global selection criteria is to select a minimum set of Illumination Strong
rectangles which best describe the rectangular composi- line
tion of the scene.

Global selection criteria examine overlapping rect-
angles and choose one if appropriate. The selection is junction

based on relative properties of each rectangle, the
amount and kind of overlap, and whether they share
support or not. Note that a rectangle fully contained in Shadow Medium
another is not necessarily removed. If a rectangle does casting line
not overlap with any other rectangles then it is not in line
competition, and it remains. If available, some of the
shadow evidence is used in this process. Strong

The rectangles selected in our Ft. Hood example af- line Strong
ter both the local and global selection criteria have been juncton
applied are shown in Figure 6. Medium l

Figure 7. Shadow features

Strong Junctions
Matching junctions along the direction of illumination,
having a consistent shape and a consistent attitude.
These junctions constitute the strongest monocular cue
to the presence of a 3-D structure. We use then also to

Figure 6. Selected Rectangles form and select rectangle hypotheses.

Strong Lines
5 Verification of Hypotheses Vertical building edges cast shadow lines in a direction
The purpose of verification is to validate the selected similar to the direction of the projection of the sun rays.
hypotheses to correspond to buildings. Our validation We use this evidence also during hypotheses selection.
step segments the objects, generates a description of the Medium Lines
shape of the structures and derives a 3-D model. The rectangle sides that are supposed to cast shadows

5.1 Shadow Analysis must have corresponding shadow lines.

By shadow analysis we mean the establishment of cor- Medium Junctions
respondences between shadow casting elements and The junctions formed by strong and medium lines,
shadows cast, and the use of these correspondences to found along the direction of the strong lines.
verify and model 3-D structures. We assume that the Weak Junctions and Lines
sun angles are given and that the ground surface in the Junctions and breaks in the shadow boundaries between
immediate neighborhood of the structure is fairly flat the strong and weak junctions.
and level. The shadow casting elements are given by the
sides and junctions of the selected rectangle hypotheses. Strong Regions
The shadow boundaries are located among the lines and Dark regions surrounded by strong and medium junc-
junctions computed earlier from the image. tions. We require that this region be darker than the rect-

There are a number of difficulties that prevent the angle region regardless of their gray level.
accurate establishment of correspondences however.
Building sides are usually surrounded by a variety of Weak Regions
objects such as loading ramps and docks, grass areas In the absence of geometric correspondences of junc-
and sidewalks, trees, plants and shrubs, vehicles, light tions and lines, a dark region adjacent to rectangle, con-
and dark areas of various materials. Nearby structures sistent with the direction of illumination.
may reflect light into the shadowed areas making the
objects in it more visible, and so on. To deal with these 5.2 Shadow Process
problems we have adopted the following definitions, The shadow process consists of four steps:
criteria and geometric constraints to analyze the shad-
ows adjacent to rectangles (see Figure 7): Extraction of Potential Shadow Evidence

Potential shadow evidence consists of lines, junctions
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and intensity statistics. We extract the following: mine the width of the shadow by averaging the distance
to the lines selected. The selected evidence is then con-

Lines parallel to the projection of the sun rays. They sidered to surround the shadow region. We compute the
represent potential shadow lines cast by vertical edg- mean intensity of this region and compare it to the rect-
es of 3-D structures in the image. angle region.The evidence collected for both sides is

* Lines having their dark side on the side of the illumi- combined to give the evidence for the rectangle.
nation source are potential shadow lines. Evaluation of Shadow Evidence

* Junctions among the lines above. We evaluate the shadow evidence and give a confidence

* Pixel statistics to compare relative brightness, value as a weighted sum of the evidence of strong junc-

The potential shadow lines and junctions extracted tions, medium junctions, strong line, weak lines, strong
from the lotentiin shaowinesexadpjunctionsownsoled and weak regions. We designated five levels of confi-

from the lines in our F eHood example are shown solid dence. Each level of confidence requires that a mini-
in Figure 8. The underlying edges are shown in gray. mum amount of the different kinds of evidence be

present. Very high confidence requires that every kind
of evidence be detected. Very low evidence is reported
when no geometric correspondences can be established

< but the presence of a region, adjacent to and darker than,
the rectangle region itself, is found.

The rectangles selected on the basis of shadow evi-
Sdence are shown in Figure 10.

Figure 8. Potential shadow lines and junctions

Search for Shadow Evidence
For each rectangle we look in a search window (dashed
lines in Figure 9) and collect all the potential shadow
evidence in it. The search distance is arbitrarily chosen
as a function of the maximum expected building height
and the sun incidence angle. There is the possibility that
lines, not relevant to the current rectangle, be included. Figure 10. Rectangles with evidence of shadows
They however, have a reduced effect in the presence of Use of Shadow Evidence
the real evidence. The rectangles validated by shadows are used to give

Illumination the footprint of buildings or portions of buildings. The
shadow widths are used to estimate their height. The re-
sult is and elevation map encoding the height computed
for each rectangle. A 3-D rendered view computed from
the rectangles verified in our Ft. Hood example is

lip -shown in Figure 11.

',Weak line

.1a1TFo.. Medium ine

Figure 9. Windows to search for shadows

We favor medium and weak lines that are parallel to
the rectangle side. In some cases there may be various Figure 11. 3-D view from another viewpoint
sets of lines, all parallel to the building side but at vari-
ous distances from the rectangle side.This is actually a 6 Results
common occurrence since many side walks, grass areas, We have tested our technique on many images from the
streets, vehicles and so on, will be found to be arranged Ft. Hood site and from a modelboard site. We selected
or located parallel to building sides. In this case we a few to demonstrate the performance of our system. In
choose those shadow lines at the distance from the rect- the remaining figures (except Figure 16), (a) is the im-
angle side such that the sum of their lengths is greater, age, (b) the line segments, (c) the lines and junctions, (d)
but not exceeding the length of the rectangle. We deter-
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the rectangles, (e) the selected hypotheses, and (f) the a"-
hypotheses verified by shadows. In particular, note fig-
ure (e), the excellent performance of the new selection
technique. In the absence of shadow information, the
selected rectangles can be matched by our system if ste-
reo views are avPilable, thus providing verification and
a 3-D model.

Figure 12 shows a set of four buildings and part of
another. The difficulty here is with the building with the - -

patterned arrangement of small objects on the roof. The -
shadows cast by these reach one side of the building u•,
causing it to be fragmented. The shadow occluding the
top left corner of the building and the poor boundary
definition on the top right are also a source of difficulty.
The strong shadow cues however help form rectangle
h for most ofthe building

eOn fo
1 I t;# .I

Figure 13. Modelboard - Scene 2

Figure 12. Modelboard - Scene 1I ~ -- .
In Figure 13 the small building on the top left corner

of the large one is detected separately. Note that por-
tions of buildings not in full view are also detected.

Figure 14 shows two dark buildings. The boundaries
between buildings and shadows in cases like this has r
low contrast and are difficult to detect.

Figure 15 shows a complex building with numerous
rectangular components on the roof. We are able to ex- e
ploit the presence of strong shadow evidence. It allows
the system to form a hypothesis for the entire building
in spite of the broken and fragmented boundaries. Note
that the selection mechanism is able to select most of fl
the rectangular components on the roof as well. In this U
example the shadows are well defined, and it is possible
to measure their width accurately. Figure 16 shows a 3- Figure 14. Modelboard - Scene 3
D rendered view of the building. of the details of one of its sides is visible, apparently

Figure 17 shows the same building from an oblique doors. These and the vehicles parked on the other side
view (300). The roof remains a rectangle with small per- result in highly fragmented boundaries. The rectangles
spective effects that the system is able to tolerate. Pro- verified by shadows include one that is formed from
cessing oblique views is the subject of our current work. various aligned parked trailers which collectively cast a

Figure 18 shows a building in Ft. Hood, where some shadow. The small rectangle on the bottom has a strong

258



a a b1;K

CC d

e e -CE f

m 0

Figure 15. Modelboard - Scene 4~ Figure 17. Modelboard - Scene 4 (oblique)

Figure 16 3-D view from another viewpoint

shadow junction corresponding to an actual narrow Figure 18. Fort Hood- Scene 2
shadow cast by a vehicle. The lower wing of the build-
ing has a strong line and a corresponding medium junc- building. Note that the other rectangles have adjacent
tion. The rest of the shadow is diffused and only gives a bright regions, namely, the building itself and its wings.
"dark" region adjacent to the building wings. Figure 21 shows a group of small buildings arranged

In Figure 19 the I-shaped building has no strong ev- in a parallel fashion, and surrounded by other parallel
idence of shadows. The rectangles are weakly validated structures. In spite the large number of hypotheses the
on the basis of a strong region which up a given maxi- system is able to select the relevant ones.
mum search distance remains "strongly" dark.

In Figure 20 shows a not uncommon situaion. Th 7 Current Work: Oblique Views
building is surrounded by rectangles representing In the scenes analyzed, many of the objects have re-
grassy areas and sidewalks parallel to the building. "'he stricted shapes and often the viewpoint is restricted. For
only shadow evidence is the dark region adjacent to the some applications, it is necessary to integratr informa-
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-/ tion extracted from images of a scene acquired fromb C various viewpoints or acquired through various types of
-,- sensors. We are currently performing extensive testing
- , ,• ',-. x of our system and reviewing our methods to determine

the feasibility of relaxing viewpoint restrictions. We
\§,.,Xhave begun investigating orthogonal trihedral vertices

/ -/ .'(OTVs) in oblique views. If we continue to assume that0 we restrict the shape of the objects to rectangles, the

efmost significant change is that right angles in the real
world no longer necessarily project onto right angles in
the image.
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Abstract for two reasons. First, advances in hardware have made
it practical to compute stereo matches "in real time."

The results of the "JISCT" Stereo Evaluation (named And second, advances in algorithm development have
after the five groups contributing imagery: JPL, INRIA made it possible to correctly match large portions of out-
(in France), SRI, CMU, and Teleos) are presented. The door scenes.
goals of this evaluation, which was the first phase of a An important next step in the development and use of
multiphase evaluation process, were (1) to get an initial practical stereo systems is the characterization of their
estimate of the effectiveness of current stereo techniques capabilities. Potential users, such as system integrators
applied to Unmanned Ground Vehicle (UGV) tasks, (2) and automatic task plannerS, need to know their compu-
to identify key problems for future research, and (3) to tational requirements, their speeds, their precision, their
debug the evaluation process so that it can be repeated mistakes, and so forth, in order to model their behav-
with a larger group of participants. SRI collected 49 ior and reason about their use. With this in mind, SRI,
.pairs of images, distributed them to the five participants, JPL, and Teleos began a multiphase evaluation process
and received complete results from three groups - IN- last year within the Unmanned Ground Vehicle (UGV)
RIA, SRI, and Teleos. SRI compared the results by in- Project. The first phase of that evaluation has been
teractively analyzing them and automatically gathering completed, and the second phase has begun. This paper
statistics. describes the results of the first phase.

We were surprised by the completeness of everyone's The overall plan for our complete evaluation process is
results. On the eight image pairs that we thought were to pursue a three-pronged approach, including analytic
the most representative of UGV tasks, the techniques models, qualitative "behavioral" models, and statistical
computed disparities for as much as 87% of the points performance models. The analytic models would be used
with only a few "spike" errors and some scattered regions to estimate such things as the expected depth precision
of points without matches. Although the missing points computable with a specific camera configuration. The
(and mistakes in the reported matches) could cause prob- qualitative models would be used to identify key prob-
lems for vehicle navigation, this level of completeness is lems for future research, for example, detection of holes,
an indication that there is a solid basis for building a analysis of shadowed regions, and measurement of bland
passive ranging system for an outdoor vehicle. On the areas. The statistical models would be used to produce
other hand, none of these techniques have "solved the quantitative estimates of such key factors as the smallest
stereo problem" - we selected a number of important obstacle detectable at a specified distance. SRI has taken
areas for future research, including filtering out gross er- the lead in the qualitative evaluation, JPL has taken the
rors and handling the wide dynamic range of intensities lead in the quantitative analysis.
common in outdoor imagery. For the qualitative analysis, we decided to start by ex-

amining a small number of techniques in order to debug
the process, and then expand the evaluation to include

1 Introduction a much larger set of participants. The goals of the first
phase were to get an initial estimate of the effectiveness

Stereo analysis, which for a long time had been of current stereo techniques applied to UGV tasks and,
viewed as an interesting, but too-costly-to-be-practical from this, to identify key problems for future research.
technique, has emerged as a viable tool for realtime ap- One of the high-level guidelines we adopted was to de-
plications such as vehicle navigation. This has happened velop and maintain an atmosphere of cooperation and

"Supported by Advanced Research Projects Agency Contract constructive criticism among the researchers participat-
DACA76-92-C-0003. ing in the evaluation. Without this we would not be
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able to focus on our ultimate goal of producing a se- Teleos, SRI, and two from INRIA. One of the INRIA
quence of increasingly capable stereo systems. To help sets was from a technique that locates linear features
establish a cooperative atmosphere, we decided to con- and then matches these features. Since this technique
centrate on the positive aspects of each algorithm and reports only disparities along the matched edges, it was
highlight ways to strengthen existing techniques, realiz- not possible to directly compare its results to the oth-
ing that they were developed for different domains and ers. Therefore, we concentrated our analysis on the three
different applications. We also decided to share all the correlation-based algorithms.
raw results with the participants so they could duplicate Each participating group analyzed its own results. In
our analysis or develop their own. addition, Harlyn Baker and Marsha Jo Hannah of SRI

For the first phase of the qualitative evaluation, analyzed the results from all the groups on all 44 pairs

SRI collected imagery from five groups, JPL, INRIA and wrote short reviews of them. In the full report

(in France), SRI, CMU, and Teleos (hence the name [Bolles, Baker, & Hlannah], their comments are included
".JISCT' for the first evaluation phase); selected 49 pairs as appendices. These comments, plus the automatically
for analysis; converted them into a standard format; dis- compiled statistics, form the core of this evaluation.
tributed the dataset to the five groups for processing, Initially, we were a little reluctant to compute and
along with an extensive set of instructions; collected the publish statistics that may be taken out of context. On
results; characterized them; and finally distributed the the other hand, statistics, if reported with sufficient
results and the associated report to the participants. caveats, can provide a convenient basis for comparing

We intentionally asked each group to process a large techniques. In this paper, we summarize the qualitative

number of pairs (10 training pairs and 45 "test" pairs results and quantitative statistics. The validities of both

... 6 pairs were in both the training and test sets; we are limited by the dataset, which implicitly defines the

made an administrative mistake on one of the test pairs, range of data for which the conclusions directly apply,

reducing the total to 44), because we wanted to force and by the analyzers, who naturally focused on issues

them to establish a standard algorithm that was auto- they were most interested in.

matically applied. As a result of this, there are now four This paper is organized as follows. In Section 2, we

groups around the world that can readily apply end-to- briefly describe the key strategies and parameters of the

end stereo techniques to new data and compare their three principal techniques, highlighting their similarities
results. As part of the second phase we hope to expand and differences. In Section 3, we describe our experi-

this community to 10 or more groups. This process is mental procedure. In Section 4, we present the auto-

opening up a new form of interaction within the com- matically gathered statistics, which we refer to as the

puter vision community that we feel will help stimulate believe-everything-they-tell-you statistics because they

advances and reduce redundant development. are based on the number of "reported" disparities in

In the instructions to the participants, we asked each specified regions of the test data, not on the number
of "correct" disparities. In Section .5, we summarize our

group to produce several results for each matched point o cret iprte.I eto ,w umrz u
in addition to its computed disparity. For each point qualitative analysis and briefly discuss open issues for fu-
we asked for an x and a y disparity, an estimate of the ture research. In Section 6, we conclude with an evalua-
wrecision ask ociated forh anchxrand y disparity, an est e otion of the JISCT evaluation and make some suggestions
precision associated with each reported disparity, an es-

timate of the confidence associated with each match, and for the next step in the evaluation process.

an annotation for each unmatched point, indicating why
the technique could not find a match. Possible explana- 2 Technique Summaries
tions for no match included "area too bland," "multiple
choices," and "inconsistent with neighbors." Although We evaluated three techniques, whose key aspects are
none of the groups produced all this additional informa- highlighted below.
tion (they all produced some of it), we felt that it was
important to begin the process with the goal of produc-
ing this auxiliary information, which will be invaluable 2.1 INRIA
for the higher-level routines using the stereo results. We This technique was originally implemented as part of
foresee a time in the not too distant future when the a European space project to produce three-dimensional
calling routine will use the precisions, confidences, and models of scenes containing rocks and sand. It is im-
annotations to actively control the sensor parameters for pleniented in C on a Sun. A similar technique is im-
the next data acquisition step. For example, if the cur- pleanented on a Connection Machine (by Pascal Fua) at
rent stereo results contain a large region of points with- SRI. Key aspects are
out disparities and the image region is quite dark, the
controlling routine could open the irises or increase the * The algorithm computes a disparity for every pixel
integration time to reexamine these dark regions. in an image by matching patches (usually l1xIl pix-

Four groups returned results and write-ups to SRI - els) at. one or two image resolutions, independently.
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The basic algorithm "INRIA-1" matches only at one uses these matches to guide another matching technique,
resolution. whose results become anchors for yet another technique,

"etc, with culling of mistakes occurring at many levels.
SThe technique uses an approximation to normalized At each stage, the algorithm acquires more supporting
correlation, referred to as C5, because it can be ia-1 matches to suggest limits for the disparity search, so the
plemented efficiently using a sliding computation of algorithm can attempt to match points that have less
the basic sums. "interesting" information, using less hierarchy. For this

" The algorithm searches only along epipolar lines, evaluation, code was added to produce "dense" matches;
which are assumed to be horizontal, this included stages that grow regions of matches around

previously matched points, and fill in a regular grid of
" The algorithm expects a range of disparities to be matches. In total, the standard algorithm for this evalu-

specified for each image pair to be analyzed. ation involved seven stages of matching and three filter-
ing steps. The algorithm is implemented in C on a Sun;

" The technique verifies all matches by independently speed has not been a priority.
matching patches from the left image in the right Some key aspects are
image and patches from the right image in the left
image. If the match for a patch from the left image is The algorithm applies a version of hierarchical
not mapped back to within a pixel of its location in matching for each point that it analyzes. At the
the left image, the point is not assigned a disparity, early stages of the process, it. uses all available im-

age resolutions, starting at the coarsest, using the
" The technique computes a subpixel location for each match found at that level to predict the location of

match by fitting a second-order curve to the corre- the match at the next finer level, then refining it,
lation values surrounding the best match. and so forth. At the final stage, where the dense

"* After computing disparities for as many pixels in grid of points is computed, the algorithm uses only

the left image as possible, the algorithm filters out one or two levels.

isolated matches by morphologically shrinking the At each image resolution (level), the algorithm does
regions of matches. It typically shrinks the regions a two-dimensional search near the epipolar line and
three times, grows the result three times, and then then hill-climbs around the best match. The epipo-
ANDs this result with the original image of results. lar lines can be at any angle in the second image,
This process can erase regions as large as 6x6 pixels. and if there is no camera model (due to bad matches

at early stages, or because the camera isn't mode-
" The algorithm computes a confidence value for each aabeerby agpinholecame the algrithms dea

disparity by differencing the heights of the two high- lable by a pinhole camera), the algorithms .search
est matching peaksi over areas-(dx,dy) boxes-defined by surrounding

matches.

" The technique estimates the precision of a disparity The algorithm uses normalized cross correlation
value by fitting a Gaussian to the matching peak, (correcting for a linear intensity change from ir-
using its standard deviation as the precision mea- age to image) on 11xIi patches typically. Latersure.aetoiaeon1xlpthstpcly Ltr

stages, such as the region-growing step, can use
"* The technique does not attempt matches near the smaller patches. The final match includes a sub-

edges of an image. pixel estimate of the disparity, computed by fitting
two parabolas to the nearby correlation values.

" The second set of results provided for this evaluation
often was produced by matching at two image reso- Each match from one image to another is verified
lutions and picking the highest resolution for which by applying the same technique to match back into
there was a valid match. the original image. If the return match is not within

a pixel of the original point, the match is discarded

2.2 SRI as unreliable.

The algorithm applies several other "filters" toThis stereo system has evolved over 20 years, begin- weed out mistakes, including a threshold on interest
ning with early Martian Rover research, migrating into value, thresholds on relative and absolute correla-
the aerial mapping domain, and now coming back to tion values, tests for matches outside an image, and
ground-level analysis. Its goal has been to produce a tests for unusual disparity values within a region of
set of high-quality matches from a wide range of (pos- the image.
sibly uncalibrated) imagery. The algorithm is a multi-
stage process that uses one matching technique to get a Later stages of the algorithm use previously corn-
few solid matches at high-information points, and then puted disparities in the neighborhood of a new point
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to be matched, to specify the range of disparities 3 Experimental Procedure
to be considered. The neighborhoods are typically
large, beginning at 1/4th of the image area, and The goal of this initial evaluation was to produce a
gradually reducing to 1/64th of the image for this qualitative characterization of the capabilities of current
experiment. This technique assumes that the scene stereo techniques applied to UGV tasks. The intent, as
is composed of relatively large continuous surfaces. stated in the instructions distributed t.o each participant,

* Since a confidence for each match was requested for was to produce a description such as the following:

this experiment, one was supplied by computing the On the 44 image pairs in the database
ratio of the correlation value to the autocorrelation our techniques correctly measured disparities
threshold. to 65% of the points on the ground and 40% of

the points on obstacles, such as trees, bushes,
2.3 TELEOS and rocks. The top five problems for our tech-

This technique has been designed for efficient imple- niques were dynamic range, holes, bland areas,

mentation and recently has been geared toward active repeated structure, and poor range resolution.

vision in which the basic stereo process matches 100 to We estimate that these probleirLs occur in the

200 selected points in a 1/30th of a second. It is im- UGV scenarios with frequencies of ...

plemented on a combination of two special boards and The idea was to produce a characterization that would
a Datacube system. For this evaluation, however, the The ide woroduce a c racter ou
hardware was not available and so a Lisp version of the focus future work on key UGV problems.
algorithm (running on a Lisp Machine) was used. Some Our basic approach to developing this type of charac-

key aspects are terization was to apply the techniques to a large dataset,
visually display the results in ways to highlight unusual

"• The algorithm uses large correlation windows (rang- events, gather basic statistics, and where possible, sum-
ing from 24x24 to 96x96 pixels). marize our observations in descriptions that link ob-

"* The algorithm computes binary correlation values served behaviors to aspects of the techniques.

from the Laplacian of Gaussian of the original im- To start the process, SRI compiled a database of 49

ages. image pairs from JPL, INRIA, SRI, CMU, and Teleos.
We converted the images into a standard format and

"* The algorithm analyzes the data only at one reso- then distributed them to the five contributing groups for
lution. It automatically selects the size of the con- analysis. The groups were instructed to use 10 pairs as a
volution operators by analyzing the peak shapes of training set, "freeze" their algorithm, and then process
matches at 25 points in each new image pair. It se- the whole set of 45 pairs. Results and commentary from
lects the smallest window size that produces a sig- four stereo systems were returned to SRI - Teleos, SRI,
nificant difference between the heights of the top and two from INRIA. One of the INRIA sets, using edge-
two highest peaks. based feature analysis, could not easily be compared with

"* At each point in the image, the algorithm starts the others. We concentrated our analysis on the three

with the disparity computed for the neighboring correlation-based system results.

pixel and tries to locate a match at a similar dis- To assist in the analysis of the results, SRI developed

parity. A serpentine search, which analyzes the first two sets of routines, one to gather statistics and one to

row from left to right, the second row from right display the disparities in a variety of ways. Since we

to left, and so forth, is used in order to reduce the did not have ground truth for the distributed imagery,
we were not able to compare the computed disparities
with objective values. However, we were able to gather

"• The algorithm searches off the epipolar line for the statistics on two of the three types of mistakes that we
best match. are interested in by outlining special regions in the im-

"* The algorithm also examines the effect of skewing agery and counting the occurrence of results within these

the patch being matched. It analyzes skews ranging regions.

from -. 5 pixels per line to +.5 pixels per line. This We made a distinction between the following three

analysis is applied only at the end of the search when types of mistakes:

the best match has been selected. False Negatives: No disparities computed for points

"* The algorithm estimates a subpixel disparity value that should have results.
by fitting a quadratic function to the best peak... .. .False Positives in Unmatchable Regions: Disparities

"* The algorithm does not try to match points near reported for points that. don't have matches in the
the edges of an image. second image, for example, points occluded in one

266



image or points out of the field of view of one of the to display three-dimensional results, because most cur-
images. rent techniques encourage the human eye to "smooth

over" differences, making the results look better than
False Positives in Matchable Regions: Incorrect dis- they actually are.

parities reported for matchable points.

By interactively outlining regions of occluded points, 4 Statistics Summary
regions of points out of the field of view of the second
image, and regions of points in the sky, we were able The statistics that we refer to as believe-everything-
to directly measure statistics for the first two types of they-tell-you statistics are based on the number of re-
mistakes. In addition, we outlined regions corresponding ported disparities in specified regions of the test data.
to expected problems, such as dark shadows, foliage, and These statistics do not distinguish between "correct" and
bland areas. In this way we could gather statistics on the "incorrect" disparity values, just reported values and un-
behavior of the algorithms on these special problems. reported values. They do, however, provide enough in-

As part of the initial instructions we asked each group formation to estimate three important quantities, tile
to extend its algorithm to produce an image of annota- number of false negatives (matchable points that were
tions that summarizes the result of the analysis, pixel not assigned a disparity), the number of false positives
by pixel. At each pixel we asked for a code from the occurring in unmatchable regions, and the number of
following list: matchable pixels that were assigned disparities.

To help focus attention of key areas of the test data,
0: no match attempted we interactively outlined regions in the left images of
1: matched fine 20 of the 44 image pairs (see Figure 1 and Figure 2).

One of the most important regions is what we called
N0 MATCH BECAUSE "matchable-data." It eliminates several types of points

2: too bland, no information to key on that do not have matches in the right image, including
3: low match value (e.g., correlation value) null bands that do not contain grayscale data (but are
4: multiple choices (ie, repeated structure) included in the images to fill them out to a standard size,
5: back-match inconsistency such as 512 by 512 pixels) and pixels that are out of the
6: point out of camera's field of view field of view of the right camera. In the 20 images we
7: point occluded by an object in the scene examined, the percentage of unmatchable points ranged
8: point too far off the epipolar line from 4.3% to 46.0% and averaged 12.3%.
9: point inconsistent with neighbors The statistics were gathered by a program that

10: other counted the number of disparities (dx disparities) re-

ported in the specified region (or the whole image, if
The reason for requesting these codes is to encourage that was appropriate).

future algorithms to provide this additional information, Figure 3 shows the results on all 44 image pairs. Note
which can be used by the higher-level vision techniques that
to decide what should be done next. For example, if no
results are reported for a region directly ahead of the The dataset contains a wide variety of imagery;
vehicle and the region is too bland and very dark, one some of it is realistic (containing dirt roads and
option might be to open the irises on the cameras (or cross-country scenes) and some is designed to test
increase the integration time) in order to see into the the algorithms along one dimension, such as base-
dark area. line and noise tolerance. Some of the imagery is

INRIA reported codes of 1 and 10; SRI reported 4l even trick imagery (the shoe images from CMU).
codes except for 4 and 7; and Teleos reported codes oi 1,
1, 2, and 3. Therefore, we were able to count the number The numbers in parentheses after each group's name
of matches attempted in each region and the number of (along the top of the table) indicate the number of
disparities reported. test pairs in the dataset from that group.

To estimate the frequency of incorrectly reported dis-
parities (the third type of mistake), we either compared * The INRIA-2 results are in parentheses because dif-
them to interactively selected values or located an aber- ferent parameter settings were used for different im-
ration in the local pattern of disparities when they were age pairs. However, the usual change was for the
displayed on the screen. We experimented with a variety technique to match at two spatial resolutions in-
of display techniques, including displaying the dispari- stead of just one, and then combine the results. If a
ties as color-coded dots in stereo, heights above a three- second set of parameters was not tried for a pair, we
dimensional "ground" plane, and disparity-displaced left the entry blank and used the INRIA-1 results
vertical lines. We are continuing to look for better ways in our computation of INRIA-2's average.
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Figure 1: Interactively outlined, special-interest regions for the J 1 image pair from INRIA.

* If we did not outline a "matchable-data" region for a 5 Qualitative Analysis
pair, we used the full-image statistics in our compu-
tations. This reduces the effectiveness totals some- We were surprised by the completeness of everyone's
what (possibly by as much as 7%). results. Even though the dataset contained a wide range

of imagery, including some sequences designed to stretch
Given the diversity of the data, we were pleased with the the analysis along specific dimensions, such as noise tol-
completeness of the results. erance and disparity range, the techniques computed dis-

In order to examine the behavior of the techniques on parities for 64% of the matchable points. On the eight
typical UGV imagery, we selected the eight images from image pairs that we selected as the most appropriate for
the dataset that were the most appropriate for UGV UGV applications, the techniques computed disparities
tasks and collected statistics on that subset. Figure 4 for as much as 87% of the points. Although the miss-
shows the results on these data. The INRIA-2, SRI-2, ing points (and mistakes in the reported matches) could
and Teleos-. techniques performed well, computing dis- cause problems for vehicle navigation, this level of com-
parities for 86 or 87% of the matchable points. Note, pleteness is an indication that there is a solid basis for
however, that these images did not contain difficult ob- building a passive ranging system for an outdoor vehicle.
stacles, such as holes, ditches, and small rocks-the ob- The number of gross errors varied considerably from
stacles were large rocks, bushes, and trees. image pair to image pair. For most "realistic" images the

Figure 5 shows the results on the 17 large obstacles number was relatively small, ranging from a few "spike"
in the dataset. The techniques did an excellent job of errors to small regions of mistakes. We estimate that for
detecting these objects, which stick up above the ground these images there were between 1 and 5% gross errors in
- they only had a little trouble in shadowed regions on the results. In many cases, the worst errors cluster into
them. areas that are "breaking up" for one reason or another

With respect to shadows, the techniques had a signif- (usually poor information plus a poor "guess" for the
icantly harder time computing disparities for points in disparity range); if we can "fix" these areas, then the
shadowed regions than in sun-lit regions. Figure 6 shows remaining "spike" errors should be amenable to culling
the results for points in shadows. techniques. In any case, most of these errors would have

The techniques also had trouble with bland regions, to be eliminated in order for the data to be used directly
as expected. Figure 7 shows the results on these areas. for planning navigable routes.
The techniques typically computed results around the The techniques made different mistakes, most of which
edges of the regions - the larger the correlation win- could be explained by their correlation patch size, search
dows, the more points were computed, because correla- technique, or match verification technique. However,
tion windows naturally extend matches into the interior since they made different mistakes, there is a possibil-
of bland regions by about half their diameter. ity of combining them in a way to check each other and

There are several potentially important problem areas fill in missing data.
that were not covered in this initial dataset, including All the techniques could be improved significantly with
holes, sand, small- to medium-sized rocks and bushes, a relatively small amount of effort. This was the first test
reflective surfaces (water or windows), and moving ob- of this type, requiring the analysis of a large dataset, and
jects. One of our goals for the second phase of this eval- it uncovered some weaknesses that can be corrected. One
uation is to include examples of these problems. area to be considered is the development of preanalysis
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Figure 2: Special- interest. regions for the STANFORD image pair from SRI.
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Weighted

JPL(5) INRIA(8) SRI(15) CMU(9) Teleos(7) Average

INRIA-1 1 63 66 42 89 35 57
(INRIA-2)I(92) (75) (60) (70) (50) (67)

SRI-2 94 74 61 64 39 64

Teleos-1 95 81 45 87 77 71

Average 1 84 74 49 80 50 I 64

Figure 3: Percentage of "matchable" pixels assigned disparities on all 44 image pairs.

Arroyo EPI16 HMMWV1 HMMWV2 J1 Road Rock StanDbl Average

------------------------------------------------------------------

INRIA-I 90 60 67 79 72 40 37 47 62

(INRIA-2)I (85) (95) (95) (90) (88) (76) (86)

SRI-21 91 72 94 94 73 97 94 78 87

Teleos-1 98 72 93 91 74 98 95 72 87

-----------------------------------------------------------------

Average I 93 68 85 88 73 78 75 66 I 79

Figure 4: Percentage of "matchable" pixels assigned disparities on the eight most representative pairs.
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Arroyo HMMWV1 HMMWV2 Rock
Bushi Bush2 Rock LMound Rock RMound Rock Etc LBush RBush Rock

Pixels: 56 68 10 130 18 106 26 839 174 105 23

INRIA-1 1 95 88 100 98 100 88 100 96 67 30 57
(INRIA-2)I (100) (100) (100) (100) (98) (74) (74)(100)

SRI-2 91 82 90 99 94 96 96 95 68 64 96

Teleos-1 90 100 90 88 100 97 88 94 74 72 57

Average I 92 90 93 95 98 94 95 95 70 55 70

31 StanDbl Ball2 Unweighted
RRock FRock LRock ITree 2&3T Tennis-Ball Average

Pixels: 70 70 98 276 37 145

INRIA-1 i 100 100 100 63 86 92 85
(INRIA-2)1 (92)(100) (94) (95)

SRI-2 100 99 99 50 76 90 87

Teleos-1 98 89 100 94 62 86 87

Average I 99 96 100 69 75 89 I 86

Figure 5: Percentage of "matchable" pixels on large obstacles assigned disparities.

Stanford StanDbl Unweighted
Shadow lstTree Shadow lstTree Average

Pixels: 215 140 448 276

INRIA-I 40 71 38 63 53
(INRIA-2)I (84) (96) (73) (92) (86)

SRI-21 59 61 65 50 59

Teleos-1 1 82 29 94 52

Average I 33 71 44 69 I 55

Figure 6: Percentage of "matchable" pixels in shadows assigned disparities.
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iRoad2 31 Ball2 Ball4 Unweighted
Road Bland Matchable- Matchable- Average

Pixels: 1077 229 3126 3126

INRIA-11 12 22 56 39 32
(INRIA-2)I (86) (72) (62) (61)

SRI-21 63 32 76 43 54

Teleos-1 1 83 10 86 84 66

Average I 53 21 73 55 1 51

Figure 7: Percentage of "matchable" pixels in bland areas assigned disparities.

techniques to automatically set key parameters, such as INRIA's algorithms search the entire width of the
patch size and search areas (as Teleos does). Another epipolar line. This helped them to do well on some
place for improvement is in the filtering of the results datasets, but when the ground texture was ambiguous,
to eliminate matches that differ significantly from their their technique tended to return no match because of
neighbors (as SRI and INRIA do). multiple choices.

There were a few surprises, such as Teleos's successful SRI's algorithm depends on early matches to "set the
solution to one set of image pairs from CMU that in- context", so that later searc> es for matches can be con-
cludes a carpet with a repetitive pattern on it. Teleos's fined to the disparities in that neighborhood. When
large patches were able to detect large regions of subtle there is enough global texture for the initial matches to
differences, which led to the correct disparities, give a good sampling of the disparities, this works well,

enabling SRI-2 to produce ground plane matches where
5.1 Technique-Oriented Summaries the others couldn't. However, when lack of foreground

detail keeps SRI-2 from having the right initial matches,No one of these algorithms has completely solved the i al omth rfnsrno imths

stereo problem, although all can produce basically usable

results on most reasonable imagery. Each has strengths Teleos's algorithm uses very large windows dynami-
and weaknesses-and very often an algorithm's strength cally skewed to accommodate tilted planes. This causes
on one dataset is its weakness on another! it to do well on some ground planes where it was able to

INRIA's algorithms assume that the images are in disambiguate the pattern through minor variations, but
epipolar alignment. This makes their searches more ef- not on others where the ground plane tilt was out of the
ficient, and keeps matches from wandering off of the allowed range of skewing. Of course, these large windows
epipolar lines (for instance, "climbing" the edges of tree also cause it to have problems with any scene containing
trunks). However, when presented with nonepipolar im- depth discontinuities-it either finds no match, or tries
agery, INRIA-1 fell apart; INRIA-2 did better, but had a to blend the foreground object into the background ob-
persistent problem, producing rough disparity contours, jects, or widens the foreground object out onto the back-
which are apparently due to the way the pyramid was ground. In addition, Teleos-1's scanning heuristic cre-
handled. The low-resolution results were simply zoomed- ates some rather peculiar artifacts- extending objects
out using pixel replication. This epipolar line constraint in opposite directions on alternate scan lines. However,
also limits the usefulness of INRIA's algorithms on im- its ability to "see" into low-contrast situations is very
agery from nonpinhole cameras, good.

SRI's algorithm mostly disregards the epipolar con- The Teleos system, with its large correlation windows,
straint. Consequently, it had no particular problems also produces smaller range images, because it limits
handling nonepipolar imagery. However, it failed to matching to areas where the full correlation patch is
match many of the very smooth tree edges in the EPI within the image. In an active vision system, the sensors
sequence, probably because its matches "slid" up the could be reoriented to center objects of interest that may
linear sides of the trees. initially appear on thie boundary of an image.
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Both INRIA's and SRI's algorithms use fairly small 4. Adjusting algorithm parameters automatically to
windows. This removes much of the need for win- properly handle different image regions, such as
dow skewing and warping, although on extremely tipped bland areas and texture regions.
planes, warping would be helpful. INRIA-l, INRIA-2,
and SRI-2 all do better on tilted planes if the informa- 5. Detecting multiple matches and selecting the cor-
tion is slightly "fuzzy". These algorithms don't do nearly rect one, possibly by analyzing multiple images.
as well in the presence of man-made ambiguous patterns. 6. Providing validation and confidence estimation

SRI's algorithm tends to leave more holes in the mechanisms.
data-low-information places that it refuses to try to
match, ambiguous places where it can't backmatch suc- 7. Detecting occlusion edges and reporting accurate
cessfully, or error matches that it has detected and re- depths on both sides of them.
moved. This gives the data a "lacey" appearance, and
it should probably be followed by an interpolation step, 8. Detecting and characterizing small- to medium-
to fill in these problem areas. (The SRI technique is sized obstacles, such as rocks and bushes.
capable of interpolation, but it was not used in this eval- 9. Detecting "negative" obstacles, such as holes and
uation.) SRI-2 often leaves a nice band of no-matches ditches.
outlining depth discontinuities, where one doesn't really
want separate objects "smoothed" together. SRI-2 also Although the JISCT dataset did not include examples of
often refuses to match areas like the sky, which techni- the last two areas, they are clearly important for cross-
cally don't have a match. country navigation.

None of the algorithms currently distinguishes be-
tween good image data and the "null data" areas caused
by image digitization, reprojection, and so forth. This 6 Conclusion
can lead to rather peculiar mismatches around these ar-
eas of null data. All of the algorithms should add the As a result of this phase of our stereo evaluation, we
ability to accept a mask telling what parts of the image can make a few general observations and develop a few
not to try to match. Better yet would be a preprocessing ideas for the project's next phase.
step to construct these masks automatically. First, the time is right for evaluation. If promising

It was interesting to see how much better all of the computer vision techniques, such as stereo analysis and
algorithms did on the imagery taken by ,IPL than on road following, are to make the transition from the re-
the SRI imagery. A major factor is the unusual aspect search laboratory to practical systems, their characteris-
ratio of the SRI imagery caused by digitizing individual tics will have to be well enough documented that. system
fields, since the vehicle was moving fast enough to show a engineers can understand them and predict their behav-
significant difference between fields. JPL's imagery was ior. We view this evaluation as the first tentative step
taken while the vehicle was standing still. Other differ- toward developing this type of characterization.
ences that may have contributed include image contrast, Second, evaluations of this type require a significant
epipolar geometry, and look angle (SRI's cameras were effort. To give an idea of what is involved in such an
looking far forward, whereas JPL's were looking down evaluation, SRI did the following: gathered imagery from
a bit more). We note that the exchange of imagery can five groups, converted it into a standard format, designed
help in algorithm development by avoiding inadvertently the experimental procedure, distributed the imagery to
"tuning" one's algorithm to one's particular style of im- the participants, collected the results, converted them
agery. into a uniform format (correcting for a few mistakes in

the original specifications), developed visualization rou-

5.2 Open Research Problems tines, used these routines to interactively examinu all the
results, developed statistics gathering routines, applied

After examining the results from this dataset, we these routines to the results, wrote the report, and finally
have selected the following topics for future research in distributed the report and copies of everyone's results.
the area of low-level passive range sensing: Third, ideally an evaluation of this type should be per-

formed periodically to provide estimates of the relative1. Filtering out gross errors caused by erroneous improvements of the techniques.
matches.

2. Handling the wide dynamic range in intensities com- 6.1 Critique of the JISCT Evaluation
mon in outdoor imagery, from dark shadowed re-
gions up to specularities off shiny surfaces. Some things that were done correctiy:

3. Handling the large range in adjacent disparities aris- N 'tke developed a cooperative attitude among the par-
ing from narrow foreground obstacles. ticipants. This was the first time our community
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had tried establishing an ongoing evaluation pro- * More auxiliary data (e.g., calibration information)
cess and we knew that we'd make mistakes. We also should be supplied with the dataset. Some tech-
knew that the participants have their egos involved niques rely on this information to reduce search and
in their systems, and we wanted to emphasize the set key parameters. Also, it will generally be avail-
constructive aspects of comparing techniques. able in most applications.

"* The experimental procedure was almost right. The
idea of distributing a large number of stereo pairs, 6.2 Plans for the Next Evaluation Phase
using some for a training set., freezing the "official" We plan to include three types of imagery in the next
algorithm, and then applying it to 45 test pairs is dataset: demonstration-related pairs and sequences, a
correct. The large number of pairs virtually forced few image-intensified pairs, and some synthetic pairs
the groups to implement an automatic technique, that are less artifactual than previous ones. One of our
which they could apply to any image pair. As a goals for this phase is to explore more rugged off-road
result, there are now four systenms around the world scenes, including deop ruts, tall grass, and ditches, so
that can be easily tested on new imagery. we are including several examples of each in the new

"* The idea of asking for precision estimates, confi- dataset. The image-intensified data will provide our first
dence estimates, and annotations was correct. Al- look at applying our techniques to night-vision-type im-

though no group produced them all, future systems agery. The synthetic data is formed from real pairs by
will be expected to because this information is so modifying a se* of computed disparities, and then form-
important for higher-level users o rm the results. ing a new right image based on these disparities. This

data, although still not completely realistic, is signifi-

"* The basic idea of sharing data from several groups cantly better than previous versions and provides comn-
was good because applying the algorithms to this plete ground truth.
diverse set of images brought to light several im- We plan to distribute the dataset to 10 or 15 research
plicit and explicit assumptions and parameters in groups for analysis. After debugging the process, we are
the algorithms, in a position to open up the evaluation to include a wider

group of participants.

"* Since any evaluation of this type can only include a

limited set of imagery that attempts to cover all po
sible dimensions, the idea of including several sm: I Reference
controlled experiments worked well. For example, Bolles, R.C., H.H. Baker, and M.J. Hannah, "'The
the set of images from Teleos explored the ability of "JISCT" Stereo Evaluation, SRI International Report,
the algorithms to handle increasing noise; the SRI January 1993.
EPI sequence tested a range of baselines.

Some things that should be changed:

"* The lack of ground truth significantly limited the
types of automatic "objective" evaluations possible.
Ground truth is expensive, but there is no substitute
for assessing quantitative issues.

"* For this initial phase we built our dataset primar-
ily from existing data. In the future we need to
gather data that is more realistic and appropriate
to the task. In particular, for UGV tasks, the data
should be from the demonstration sites and include
examples of the common "obstacles," such as ruts,
bushes, rocks, ditches, and water. Future datasets
should also include sequences of images and trinoc-
ular data, not just individual pairs.

"* The whole process took too long (almost a year).
Techniques can change faster than that. To be rel-
evant, the results should be returned within a few
months. This turnaround time is more possible now
that we have been through the process once and
have developed routines for analyzing the data.
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Reconnaissance, Surveillance
and Target Acquisition

Research for the Unmanned
Ground Vehicle Program

LTC Erik G. Mettala, Ph.D., Deputy Director and

Oscar Firschein, Image Understanding Program Manager

Software and Intelligent Systems Technology In response to this Congressional mandate, previously
Office separate ground vehicle related robotics efforts were

Defense Advanced Research Projects Agency consolidated in a single program element, under the
direction of the Tactical Warfare Programs (TWP) office of
the Director for Defense Research and Engineering

Abstract (DDR&E). Since 1990, the TWP office has been
responsible for reporting on the activities of this program

The Department of Defense UnmannedGround Vehicle element to Congress, providing direction, allocating

Program is a multi-year effort involving the Services, appropriated funds to projects, and carefully monitoring
OSD and DARPA. The objective of the program is to the progress of all DoD Unmanned Ground Vehicle
first field a teleoperated unmanned ground vehicle activities. The Services and the Defense Advanced
system, followed by preplanned product improvements Research Projects Agency (DARPA) are responsible for the
leading to self-navigating systems performing conduct and daily management of the projects.
reconnaissance, surveillance, target acquisition and
designation missions. This paper describes the recent
DARPA procurement for research in reconnaissance, 1.1 Introduction
surveillance, and target acquisition (RSTA) for the
Unmanned Ground Vehicle (UGV). The research topics This paper describes a recent DARPA solicitation for un-
of interest are described, followed by a description of classified research projects in Autonomous Systems Tech-
the UGV program structure. nology, focusing on Image Understanding technology

needed by Unmanned Air Vehicles, by the Surrogate Semi-

1.0 Background autonomous Vehicle (SSV), and later by the Tactical Un-
manned Ground Vehicle (TUGV) reconnaisance, surveil-

In recent years, Congress "has been concerned about the lance, and target acquisition (RSTA) function. Both the
direction and composition of the many diverse robotics SSV and the TUGV are currently under development. The
projects undertaken by the armed services and defense RSTA requirements include the detection, tracking, model-
agencies."' Congress therefore directed the establishment based identification and location of military ground vehi-
of a DoD robotics master plan in 1989. The diversity of des at ranges from 200 m to 3 km. The RSTA system is de-
robotics projects that were described in the 1989 plan led to signed to use a wide field of view (wfov) forward looking
Congressional request in 1990 to consolidate all of the infrared (FLIR) sensor, approximately 15 degrees x 8 de-
ground robotics vehicle projects "under OSD policy and grees, for target detection. It will then use a narrow field of
program direction." view (nfov) Laser Radar (LADAR) to gather three-dimen-

sional information from detected target locations for target
identification. Target tracking functions will be performed
using either the wfov FLIR or video imagery.

1. Report 101-132 from the Senate Committee on Appropriations
on the Department of Defense Appropriations Bill, 1990. Quota-
tions is this section are from Report 101-132.
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Research topics of interest specifically solicited in the contracts will result from this solicitation. Industry/re-
Broad Agency Announcement included (1) natural scene search center teaming was encouraged to support the use
understanding, (2) model-based object recognition in Laser and extension of existing sensor and scene simulation tech-
Radar (LADAR) imagery, (3) motion compensation (dig- nology into novel IU research approaches to SSV RSTA
ital image stabilization), (4) target detection in Forward problems.
Looking Infrared (FLIR) imagery with natural scene clutter
rejection, and (5) Multi-sensor fusion using FLIR and LA-
DAR identification and accurate target location. 1.2 RSTA Research Areas

We sought research projects whose results could be inte- Analysis of the RSTA subsystem requirements was con-

grated and demonstrated in SSV RSTA operational scenar- ducted to identify technological shortcomings in the exist-

ios in 1995. Emphasis was on IU techniques embedded in ing program. The following potential research areas were

an end-to-end system, rather than on isolated techniques. identified for the IU tech-base effort:

The solicitation required that the proposed IU research be
more than a concept, resulting in programs that could be di- 1.2.1 Natural scene understanding.
rectly transferred to a Unix-based workstation such as the
Sun or the Silicon Graphics for testing, evaluation, and The results from this general research area will supply
SSV RSTA system integration. RSTA algorithms depen- guided search process information to the sensor needed to
dent on special purpose hardware were specifically exclud- govern efficient sensor search for threats. In the absence of
ed from this solicitation, high resolution elevation and cultural map data, the RSTA

system itself must use sensor data to determine which areas
Two possible avenues for technology transfer to the SSV of the scene are likely to contain enemy threats. This ca-
RSTA system were identified. Model-based object iden- pability may also support long range navigation planning -
tification technology could be optimally integrated into the the current SSV system uses only map information to per-
SSV RSTA target identification system, a modular model- form route planning. This research area includes the fol-
based object identification system based on C/Unix/X- lowing sub-components:
Windows. Where possible, contractors performing re-
search in other technology areas would use C++, CLOS, Scene component identification (sky, trees, fields,
and the objects and methods defined in the Image Under- roads, occlusion ridges) in FLIR and RGB imagery that has
standing Environment (IUE) described by Mundy [1]. This been acquired from forward-looking, ground-based sen-
target platform/environment is meant to assure technology sors.
transfer of the final research results, as well as easy inter-
change for testing, upgrading, and evaluation within the The use of known and monitored host vehicle motion,
university, government laboratories, and the contractor feature extraction, and image sequence processing, to cre-
community. The SSV program has preliminary plans to do ate 3-D scene maps of SSV operations areas. For example,
all of its system development in C and C++ and will make host motion may be useful in identifying terrain occlusion
available to the community at large critical interface de- boundaries that conceal targets.
signs as the project progresses.

The use of active vision. Focus-of-attention processing
Close coordination of contractors with the existing SSV/ using FLIR or video imagery of natural scenes for target
TUGV projects was required as well as a series of short- cueing.
term assignments (several weeks) of SSV/TUGV team
members to their research sites to aid in technology trans- 1.2.2 Model-based object recognition.
fer. Bidders were additionally encouraged to plan for short
term assignments of their technical personnel to the SSV This research topic supports the SSV target recognition re-
contractor's site in Denver, CO, to support modification, in- quirements of target vehicle recognition. The SSV model-
tegration, and evaluations of their systems on the SSV. based target recognition approac, has a modular design
Contractors were expected to attend and to present results which allows the incorporation of.esearch approaches (for
at two of the four annually scheduled UGV Demo II Work- indexing, feature matching, belief propagation, etc.) devel-
shops meetings and to prepare an annual paper describing oped in the IU community. IU research could focus on
progress for the DARPA Image UnderstandingWorkshop. complete recognition approaches or sub-component tech-

nology. Research topics in this area include:
Projected total funding for the IU research is approximately

$7,500,000 over three years. Approximately ten three-year
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Recognition of tactical targets in ladar imagery. A par- 1.3 UGV/TUGV Program Structure
ticular challenge is object recognition in sub-optimal im- The technology associated with unmanned systems, is
agery: lower resolution, noisy, or attenuated by maturing faster than the concepts of employment are being
atmospheric conditions. developed. The structure of the DoD Unmanned Ground

The recognition of occluded targets in ladar imagery. Vehicle Program reflects this reality, in a coordinated
Thisincludesthemodel-based recognition of oc d targets ievaluation and development program with the objective of

This includes the model-based recognition of whole targets frsfilngoanum nesytmb198

via the recognition of distinctive unoccluded sub-parts. first fielding of an unmanned system by 1998.

The TUGV is the principal effort of the current UGV
Ladar sensor, target and scene modeling. Algorithms advanced development program. The TUGV program is

for simulating target and background characteristics, ge- being planned and managed with an awareness that it
ometries, and probabilities are key elements of the SSV represents an initial step in the evolution and fielding of
model-based target identification system. UGVs for combat applications and that its success or

failure may have far-reaching consequences.
1.2.3 Motion compensation: digital image Three principal foci encompass the DoD UGV program.

stabilization First, several Surrogate Teleoperated Vehicles (STVs) will
be developed and used to support Early User Test and

This research is for techniques that use processing to main- Evaluation (EUTE) of UGV concepts. Second, a full scale
tain a stable view of the world from a moving platform. Engineering and Manufacturing Development (EMD)
Such approaches must exceed the current technology base program will develop the first fielded Teleoperated
that rely on large frame to frame scene overlap. Addition- Unmanned Ground Vehicle. Third, the Unmanned Ground
ally, approaches in this area must utilize general purpose Vehicles Technology Enhancement and Exploitation
scalable parallel computation, as opposed to dedicated (UGVTEE) program will focus on maturing those robotics
hardware for this single function. technologies of particular interest to UGV systems. The

UGVTEE program is a demonstration-directed effort,
1.2.4 Target detection in FLIR imagery including Demo-I, whose principal aims are to mature and

with natural scene clutter rejection transition near-term technology, and Demo-ll, whose goal
is to develop semi-autonomous navigation technology.

Open research issues in this field include the use of object,
terrain, sensor and atmospheric transmission models to pre- 2.0 The Surrogate Teleoperated Vehicle
dict target/background contrast at the operational site, and Program
the use of such data to select optimal target detection mod-
ule parameters. The STV program, managed by the Joint Unmanned

Ground Vehicles Office (JUGVO) at the U.S. Army Missile
1.2.5 Multi-sensor fusion using FLIR and Command (MICOM) in Huntsville, AL will develop 14

LADAR identification. Surrogate Teleoperated Vehicles (STVs). These will be
used to conduct Early User Test and Evaluation (EUTE), by
placing six STVs in a USMC infantry brigade, and six in a

Research here investigates the cooperative combination of U.S. Army brigade for a period of one year, starting in
approaches of image segmentation from infrared images 1992.
and depth maps from LADAR to facilitate object recogni-
tion.

1.2.6 LADAR/FLIR Multisensor Fusion.

LADAR/FLIR multisensor fusion research deals with
model-based target identification processes that use multi-
ple sensor information to increase algorithm performance.
Emphasis will be placed on the combination of information I. The term UGV is used in a general sense to include a range of
from FLIR and LADAR imagery to increase classification applications. The term Tactical Unmanned Ground Vehicle
performance. (TUGV) will refer to a specific project, which is developing one

class of UGVs.
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FIGURE 1. The Surrogate Teleoperated Vehicle the TUGV. This part of the program (Demo-I) will
conclude in FY1992. The long term focus is on image
understanding, planning and control technologies that will
enhance operational capability and survivability. This part
of the program (DEMO-II) has been initiated in FY1991,
with the main focus of developing autonomous navigation

-. .... .. under battlefield conditions. Technology development will
include support for RSTA functions while the UGV is
moving, distributed artificial intelligence supporting
automated communication with other vehicles, and work-
load partitioning between vehicles to accomplish mission
objectives.

The STV is a six-wheel-drive, fully amphibious platform. 5.0 UGVTEE Demo-I
It contains all automotive and navigational components,
including sensors and control for teleoperated driving The principal purpose of Demo-I is to mature critical
under day, night, and adverse environmental conditions. system component technologies for first generation
The platform is powered by a hybrid 25 horsepower (HP) teleoperated UGVs and demonstrate their readiness for
diesel engine and a 3 hp electric motor, for silent acquisition programs. Based on the results of Demo-I,
locomotion when required. The STV will be able to selected technologies will be integrated into the basic STV
traverse roads at 35 miles per hour (mph) and travel off- for the development of a complete TUGV prototype. The
road at 25 mph. Its remote driving speeds will depend: 1) emphasis is on reducing operator work-load while
on the skill of the operator in teleoperated mode or, 2) on enhancing performance of the RSTA mission.
the sophistication of the software as semi-autonomous
capabilities are added. By placing these teleoperated
vehicles into the hands of soldiers and marines, the JUGVO 6.0 UGVTEE Demo-Il
will acquire direct access to employment concepts created The purpose of Demo-II is to develop and mature those
by users in tactical environments, navigation technologies that are critical to evolving UGVs

from labor intensive teleoperated systems requiring fibre-
optic cables for communication to supervised autonomous

3.0 TUGV Engineering and systems utilizing low-bandwidth non-line-of-sight
Manufacturing Development communication. The objective of the program will be to

demonstrate four semi-autonomous cooperating unmanned
In the Engineering and Manufacturing phase, the selected ground vehicles performing navigation, reconnaissance,
system contractor(s) will be responsible for fabricating a surveillance, target acquisition and target designation.
production-ready TUGV. The Government will conduct
Developmental Test and Evaluation and Initial Operational As shown in Figure 2, Demo-Il is a four-phase five year

Test and Evaluation of the contractor-provided TUGV pro- program with three interim demonstrations directed at

totypes. These tests will determine readiness for production transitioning research results onto the surrogate vehicles.

of a first generation TUGV. Milestone III is planned for the
end of 1997. 6.1 Demo-Il Technologies

Realization of the Demo-lI objectives will require
4.0 UGV Technology Enhancement and moderate to substantial increases in capabilities from

Exploitation current state-of-the-art in Image Understanding,

UGVTEE consists of technology base efforts supporting Navigation, Planning, Control, and Distributed Artificial

current and future UGV projects, and involve participation Intelligence. The recommendation for approving the

from academe, industry, DoD, DoE and NASA Demo-II programwas basedon research resultsdeveloped

laboratories. The UGVTEE program is directed to exploit under support by the DARPA Image Understanding',S~4
robotics advances and mature those technologies that are Planning , and Robotics Science' Programs, and others.

critical to the robotization of UGV systems. The near-term
focus of this program is on providing the mission
capabilities and technological enhancement required for
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FIGURE 2. Demo-II Overview References-

I FY=1 I 'FYb2' I ,F'V,3 I F&94 1 !. Mundy et al, "The Image Understanding Environments

M Program," Jan 1992 DARPA IU Workshop Proceedings,
pp. 185-214, Morgan Kaufmann Publishers, 2929 Campus

_ _adS dMa Drive, San Mateo, CA 94403.
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7.0 Conclusion

We have described the recent DARPA procurement for re-
search in RSTA for the UGV. These efforts, to begin in
mid-1993, will lead to needed advancements in natural
scene understanding, model-based object recognition, mo.
tion compensation, target detection in FLIR imagery, and
LADAR/FLIR multisensor fusion.

i. Principal Image Understanding Research provided by Carn-
egie Mellon University [Kanade. Thorpe, Whittaker], University
of Massachusetts [Hanson. Riseman. Weems], University of
Maryland [Rosenfeld, Davis], University of Pennsylvania [Bajc-
syl. University of Rochester [Ballard, Brown]. Advanced Deci-
sion Systems I Morgan]. General Electric Corporation [Mundy).
SRI (Bolles. Hannah. Strat], Hughes Aerospace Company
[Tseng. Nash], Massachusetts Institute of Technology [Poggio,
Lozano-Perez]. and others.
2. Principal Planning Research provided by University of Mary-
lan d [Davis], Carnegie Mellon University [Thorpe, Whittaker],
Massachusetts Institute of Technology [Brooks], Advanced De-
cision Systems [Soldo], University of Michigan [Jain. Durfee].
Yale University [Dean], Stanford University [Cannon,
LaTombe], and others.
3. Principal Robotics Science Research provided by University of
Pennsylvania [Bajcsyl, Stanford University [Cannon], Massachu-
setts Institute of Technology (Brooks, Lozano-Perezi, and others.
4. My sincerest apologies to those not listed due to minimal
space.
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The Image Understanding Environment: Overview

J.L. Mundy and WUE Committee*
mundy@crd.ge.com

G.E. Corporate Research and Development
Schenectady, NY 12309

Abstract oped a new program called I4US. The decoding of this
The Image Understanding Environment(IUE) acronym is Intelligent Integrated Interactive Image Un-
Thoject imagfive Unearotandingram onmend(byderstanding. The name has since been shortened to IUE,
project is a five year program, sponsored by for Image Understanding Environment.
DArtPA, to develop a common software envi- The IUE program was announced at a meeting for
ronment for the development of algorithms and DARPA Principal Investigators in Scottsdale, Arizona
application systems. The ultimate goal of the at the end of February, 1990. The project goal, as an-
project is to provide the basic data structures nounced by Rand, was a five year program to design
and algorithms which are required to carry out and implement a common software environment for the
Image Understanding(IU) research and to de- development and demonstration of image understanding
velop IU applications. This paper provides an algorithms and techniques.
overview of the IUE and an update on the sta- Rand Waltzman convened and chaired three meetings
tus of the project. during the 1990-1991 period to develop an consensus in

the IU community about the requirements for the IUE.
Introduction A number of teams were established to suggest specific

What is the IUE? application scenarios and propose skeleton architectures
for the IUE. In April 1991, these team reports were re-

The Image Understanding Environment(IUE) is an viewed, and the IUE committee was formed from repre-
object-oriented software system which provides the ba- sentatives of each team. In June 1991, Oscar Firschein
sic data structures and operations required to imple- replaced Rand Waltzman as the IU program manager at
ment Image Understanding(IU) algorithms. These data DARPA.
structures and operations are based on the classical Since April 1991, the IUE committee, along with the
mathematical abstractions used in IU research, such as DARPA IU Program Manager, has met eight times to
pointsets, transformations and topology. The primary develop the design and produce a number of documents
purpose of the Image Understanding Environment(IUE) which specify the design as well as an IU data exchange
is to facilitate exchange of research results within the IU standard. In September 1992, the committee provided
community. The IUE will also provide a platform for var- a draft version of the IUE design to DARPA to provide
ious demonstrations and tools for DARPA applications, the basis of a solicitation to select the IUE contractor.
These demonstrations and tools will become a primary On January 8th 1993, the IUE BAA was published in
channel for IU technology transfer. The IUE will also the Commerce Business Daily by the contracting agent,
serve as a conceptual standard for IU data models and al- the Topographic Engineering Center.
gorithms. The availability of standard implementations The basic structure of the IUE is captured by a partial
for algorithms will facilitate performance evaluation of summary of the class hierarchy shown in Figure 1. The
new techniques and to track progress in algorithm im- figure illustrates the central idea of the IUE design and
provements. The IUE is designed to support evolution its relationship to mathematical concepts. The following
and testing of IU techniques and provide an efficient pro- sections provide a brief summary of the JUE design.
gramming environment for rapid prototyping.

History of the IUE Image

In late 1989, Rand Waltzman of DARPA, then manager The IUE image object class supports many forms of im-
for Image Understanding programs conceived and devel- age data, from intensity images to color images to com-

plex composites such as pyramids. IUE images fall into
"The members of the IUE Committee are: Tom Binford- one of two subclasses: simple or composite. Simple im-

Stanford; Terry Boult-Columbia; Bob Haralick, V. Ramesh- ages have two primary dimensions, x and y, with possible
U. Washington; Al Hanson, Chris Connolly-Umass; Ross additional dimensions such as color and/or time.
Beveridge-Colorado State; Charlie Kohl- AAI; Daryl Lawton-
Georgia Tech; Doug Morgan-ADS; Joe Mundy-GE; Keith
Price-USC; Tom Strat-SRI

283



Module: joe Sheet: 1: hierarchy Panel: (0,0) Time: Fri Jan 29 14:19:02 1993

th gre re Retstonl e iu aet n el n of e .

284

,' I nei I OP ISI~ IRWISC", l =. H,.= l=...=iOl

thisfigue rpresntsonlya setchto llsrtthe gen ral natreure ofte heacy

CondiionalrobalittyArra



A simple image can be defined as a mapping from Composite-images provide the flexibility required to de-
Z x Z to V, where Z is the set of positive and negative velop objects such as image pyramids and mosaics. An
integers and V is the set of allowable pixel values: Image-Pyramid is an ordered set of images, each a power

of two reduction of the predecessor. This makes several
I : Z X Z - V restrictions evident. The first image must be square, the

dimension being a power of 2, i.e., 2". The depth isI may be abstractly viewed as a discrete function of two of the pyramid, or number of images, is simply n + 1.

variables I(r, c) where r, c E Z. For computational rea- An image of size 2rn2 r is said to reside at level n of

sons it is desirable to restrict the domain of the m ap- the ofrsi ze A M a -I g is a p atchwork of

ping to a specific subset of Z x Z, usually a rectangular theypyramid. A Mosaic-Image is a patchwork of images,

bounded region of the plane. The set of pixels comprising possibly overlapping, and partially covering an extended

the restricted domain is often called a region-of-interest 21 area. The proper metaphor is a stack of photographsona table. h~ence, the get-pixel method returns the pixel
(or ROL) and, by extension, the logical image defining value for the first image in the set which is defined at the

the characteristic function is also called an ROL. Note

that there is no restriction on the connectedness of the specified point.

pixels in this restricted domain; that is, it is not a true Spatial Object
region as defined in region segmentation and may consist
of a set of completely isolated pixels. In the IUE, there A key element of the IUE design is the spatial-object
are two ROIs which affect the domain. While both are which has the mathematical properties of a pointset in
called ROIs, their semantics are slightly different. Every Rn. The fundamental structures are organized along
image in the IUE has an ROI associated with it, called classical notions of intrinsic dimension, i.e., point, curve,
the image-ROl. This ROI may be explicitly represented surface and volume. Further distinction is made between
as a logical image having the same extents and index set implicit and parametric entities. Implicit structures are
as the original image or it may be implicitly represented defined by the vanishing of systems of equations, usually
as the entire image. In addition, each method has an polynomials. Implicit forms are useful for determining
optional parameter which specifies an ROI, called the incidence or containment. Implicit forms of curves such
in-ROI. The set of pixels comprising the pixel domain is as the line and conic are used throughout IU research.
obtained by intersecting the image-ROI and in-ROI. An example of a commonly used implicit surface is the

Simple-images can map onto different slices of the superquadric.
same underlying pixel data, thus avoiding redundant Parametric structures involve a mapping from a set of
copies in many common situations. To illustrate, an parameters to Rn. The parametric mapping function is
RGB image is represented as a 3 dimensional shared- a particular type of relation which defines a mapping be-
array. Associated with it are three 2 dimensional arrays: tween two sets of n-tuples, the Domain and the Range.
slices corresponding to each of the three color planes. We further restrict the mapping to be order preserving
These four objects-RGB, red, green, and blue images- and one to one. With these properties we can always
present different views of the same underlying data. In find a unique point in the domain for a given point in
addition to abstr:,ct high level interfaces to pixel data the range and the natural dimension and neighborhood
provided by the image objects, the IUE will provide a properties are preserved. This is a much stronger con-
raw-data interface to pixel data. Raw-data objects are dition than is usually associated with the idea of para-
one dimensional containers for large amounts of numeric metric curves or surfaces. The curves here are perhaps
data, and they support direct pointer access to numeric more properly called "well-parametrized," where there is
pixel data. The IUE must efficiently support large im- a unique inverse for each point in the range of the curve.
ages (say 10Kx10K) such as those commonly occurring in A typical example of a parametric curve is the spline. A
photo-interpretation tasks. Thus, a direct tile-mapping common parametric surface used in IU is the ribbon1

mechanism must be associated with raw-data objects A coordinate system is associated with the base
which allows large images to be block mapped into mem- spatial-object class in order to maintain a consistent def-
ory on a demand basis; this mechanism must be efficient inition of coordinates derived from the equational defi-
enough to support smooth scrolling (roaming) and zoom- nition of geometric structures. Also associated with all
ing. spatial-objects are a bounding-box and centroid point.

Image-types commonly occurring in image under- These ancillary structures enable efficient processing of
standing include: A color image with red, green and blue distance and intersection operations.
components, where each component is a simple grayscale There are many other components of the spatial-
image. A range image represents a depth image acquired object hierarchy which are described more fully else-
from laser triangulation or a time-of-flight range finder, where in these proceedings [Ramesh and Committee,
An image sequence can be viewed as a queue of images in- 1993].
dexed by time. For simple-image-sequences queue length
is fixed when the sequence is created and all elements Coordinates
must be simple-images of the same size. In contrast, The geometric relationship between sensors and scenes,
composite image sequences may contain images of any among physical objects, and between pixels and the
type and may dynamically grow and contract. a g sl e n tep i h

The class of composite-images is very broad and 'Only restricted classes of ribbon surfaces satisfy the
the semantics vary considerably between specializations, unique inverse property.
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world has been a core component of the science of im- ural correspondence between the sequence of topologi-
age understanding since its inception. Nearly every IU cal constructs, e.g. vertex, edge, and face used for
system makes use of coordinate systems and transforms spatial objects, and the descriptions of image features
either implicitly or explicitly. The multitude of repre- for points and junctions, edges, and regions. Access to
sentations that have been devised, some of which incor- this topological representation is especially important
porate arbitrary conventions, has been a key obstacle for describing composite image features such as linked
precluding the transfer and sharing of code and results. line segments, adjacencies between regions found in seg-
The following are definitions associated with coordinate mentations, and perceptual groups. Second, since image
spaces. features generally correspond to the projection of three
Coordinate System A coordinate space, in the math- dimensional object models, it is useful to have the same

ematical sense. It is represented in the WUE by an underlying operations and representations used for both
instance of a coordinate-system class, of them.

Coordinate The coordinate(s) of a point are repre- Images features collections can be grouped on a variety
sented by a vector and implemented as a 1D-array. of properties such as proximity, alignment, curvature,
Coordinates are implicitly associated with a coordi- etc. These grouping operations are supported by various
nate system. spatial indexing schemes such as K-D Trees, quadtrees

Coordinate-Transform A specification of a mapping and the Hough transform.

between two coordinate spaces. It is implemented in Image features are discussed in more detail elsewhere
the IUE by an instance of a coordinate-transform in the proceedings [Price and Committee, 19931.
class.

A coordinate transform specifies the mapping between
two coordinate systems, and is represented in the IUE Sensors
by an instance of a coordinate transform class. There
is an implied directionality to each transform, and any
individual transform may or may not be invertible. Unlike some other aspects of the IUE, sensors are an area

The relationships among coordinate systems and of active research where few de facto standards exist.
transforms form a graph. Coordinates can be mapped Two important aspects of sensing in the context of IU
between any two coordinate systems by finding a se- are the device and the data produced by the device, rep-
quence of transforms that connect them in the graph. resented by the classes, sensor and sensor-model re-
There is a potential problem when more than one path spectively. The class sensor is the analog of the physical
exists between two coordinate systems. Ideally, all such device and is capable of many operations associated with
paths specify the same transform, but the existence of sensing and the production of sensor-models. The out-
numerical errors, and the need for high-performance ap- put of a sensing operation is stored in an object of type
proximations preclude the treatment of all such paths as sensor-model. The sensor-model not only contains a
equivalent. In IUE, the first path established between pointer to the generated data, it has a copy of relevant
two coordinate systems is treated specially - all others sensor-parameters and provides methods to reason about
are considered to be derived transforms. Whenever a the geometry of the sensor mapping, and uncertainty in
transform is requested from the coordinate transform data locations and measured values. The sensor may in-
graph, the basal (non-derived) transform is retrieved. teract with a external device (e.g. a frame grabber) to
Derived transforms can be employed when desired by get real data, or may generate synthetic data either by
specifying them explicitly. This policy ensures that coor- embellishing a stored image with additional (assumed)
dinate transforms are performed consistently and with- properties or by rendering in conjunction with a scene
out introduction of excessive numerical error. object. In addition to getting the data, it is also the

sensor's task is to determine, from the various attributes
Image Features of the sensor (e.g. lens parameters, digitizer parameters,

Central to any Image Understanding research or applica- etc.), the attributes of the sensor-model (related to its
t ion program is the extraction and use of image features. geometric mappings and its uncertainty measurements).
inage features are a part, of the general spatial object hi- While one might think of sensors producing only
erarchy in that they combine both geometric and image image-like data, the mapping concept on which sen-
signal-theoretic concepts. sors are based is not restricted to physical transducers

inage features provide implementations of methods of energy. Hence, it naturally extends to include the
for extraction, property value computations, display, production of spatial objects. This allows us to define
spatial indexing operations, input, output, grouping, and a geonietric-sensor as something that can have the
the various iterators over sets of spatial objects (subsets, saime "lens" slot as a camera and that uses the same
all in an area, etc.). inage features are often be used as sampling pattern as a camera but that maps a scene
the basis for the region-of-interest in image processing with many instances of the class spatial-object into a
operations and thus must support geometric and topo- sensor-nmodel which contains a collection of instances
logical operations. of the class spatial-object. For example. a scene full of

There are several reasons why developing image fea- polygons might be miapped into a collection of vertices
tures as spatial objects is crucial. First, there is a nat- and/or line segments.
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The IUE User Interface the underlying "machine independent" package for ba-
sic display and graphic operations which tell the screen

The IUE will make extensive use of graphical interaction what to do. Examples would be X and Postscript. The
to support the examination of features and to provide Interface Kit Level involves packages for the creation and
convenient tools for model construction, recognition and rapid prototyping of user interfaces and related tools
etc. These tools will be constructed within a uniform which are built on top of graphics level software. Exam-
user interface methodology and will allow convenient se- ples are such things as InterViews, DevGuide, and TAE.
lection and modification of graphic items. This level also includes the tools found in the selected

There are three interfaces for dealing with user inter- software development environment such as editors and
actions with the IUE: The user interface (IUEUI), the debuggers. It is important that these all be thoughtfully
IUE graphical user interface (IUEGUI), the programmer integrated. It should not feel like starting up completely
interface. different processes when moving from the debugger and

The Image Understanding Environment User Interface editors for code development to the display and browsing
(IUEUI) is intended to provide flexible, simple, and pow- operations of the interface. The IUEUI Level consists of
erful tools for exploring data, algorithms, and systems. the interface objects specialized for image understand-
In addition to general principles of good interface design, ing. This includes such things as object displays, plot-
there are several important objectives which are specific ting displays, several types of browsers, and structures
to image understanding and developing the IUE: for describing the interface context. The IUEUI consists
Use existing interface standards The interface of a small set of objects which can be freely combined

should be supported by ongoing and future devel- for very powerful results.
opments in software environments and graphical The IUE User Interface is described in these proceed-
user interfaces. The interface components should ings [Lawton and Committee, 1993].
be built on top of existing and emerging interface
packages and interface construction toolkits. This IUE Process Control
is critical for the long term use of our environment Large grain IU operators typically have complex param-
because we can depend on continuous advances in eter structures. A significant portion of the time spent
these areas that we will want to take advantage of in in developing IU applications is spent in the exploration
terms of capabilities and cost (other issues involved of the search space defined by the parameters of the op-
with this are discussed in section on graphics soft- erators. For example, a common type of question that
ware). A good example is the evolving Open GL needs to be answered by IU researcher is: "What is the
standard. most effective Laplacian radius when performing a Zero

A few, powerful interface classes The same general Crossing segmentation on aerial images of cities?". A
principles of object oriented design used in the IUE great deal of time and effort is spent in determining ap-
should be applied to the interface: abstraction over propriate values for parameters of a particular operator
common operations to provide a small number of in a particular domain. Once these parameter values
types of interface objects which can be freely com- have been determined, it becomes natural to think of
bined by a user. The interface should not involve the parameterized operator as a new entity that is dif-
understanding a large numbers of unrelated things. ferent from the unspecialized generic operator. This view

Consistent interaction with other IUE objects leads to the concept of an operator as a Task object that
The interface should make it straightforward to ma- can use inheritance and specialization to represent thesenipulate and investigate IUE objects. For example, parameter structures.
indispulateng an sptigatelTU objects.aFoer exampl, tIU research also involves a very large amount of pro-in displaying a spatial object, a user wants to con- csigaddt eeain nti yeo niomn

trol all aspects of how the domain and the range cessing and data generation; in this type of environment
aredisplayed. Another aspects ofhote this ispro - it becomes important to be able to examine the process-are displayed. Another aspect of this is provid- ing history. The Task class readily supports the mainte-
ing intelligent default behavior for interacting with nance of a processing history through the explicit repre-
TUE objects, such as setting up appropriate types sentation of Task parameters. A Task instance can exist
of browsers for different types of objects. in one of three states depending on the specification of

Control of the display and presentation While in- the input and output parameters for the Task: it may ei-
telligent defaults and context-based behavior is es- ther be partially specified, fully specified, or completed.
sential, a user should always be able to override In this way, Task instances describe both the complete
them and have complete control and flexibility, input and output specification and the processing sta-

tus of Tasks. The Task objects thus provide a complete
Support for sophisticated users Naive users will description of the large granularity image understandingwant support for running tailored applications with prcsigtahsocuednauerniomn.

several interaction aids such as menus while expe- processing that has occurred in a user environment.
rienced users who want programmability and sig- Associated Classes
nificant compression and abbreviation in specifying Another aspect of large grain IU processes is that they
actions. are used by the IU researcher as a set of tools within

To realize these objectives the interface of the IUE is an experimental toolbox. Researchers require a flexi-
described in terms of three levels. The Graphics Level is ble mechanism for control and data chaining that al-
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lows them to construct experiments that combine indi- Currently, the IUE committee is developing a data ex-
vidual Tasks into more complex algorithms. The Task change standard which will be immediately useful f_,
class hierarchy provides this mechanism through the exchanging research results. The data exchange for-
CompoundTask and DataflowGraph object classes. With mat is based on the IUE class hierarchy and provides
these classes, the user may chain individual Task objects an ASCII representation for the construction of class in-
together, either through programs or through the use of stances. The syntax is Lisp-like and can be easily parsed
a interactive graphical interface, by LEX/YACC. The initial goal of the data exchange

DataflowGraphs allow the user to specify data path- specification is to support technology transfer within the
ways between Task objects. The Tasks in a Dataflow- RADIUS project. The format is discussed in more detail
Graph can have some subset of their input parameters in these proceedings [Mundy et al., 1993].
specified dynamically; the input values of the dynamic At this writing, the solicitation process is underway
parameters are specified by the values of output param- to select the IUE integrating contractor. It is expected
eters of other Task objects. Whenever values have been that the selection will be made in the first half of 1993.
specified for all required input parameters, the Task ob- The implementation of the basic and core versions of the
ject is executed. Other DataflowGraph objects, such as IUE are expected to take about two years from start of
DataflowConditional nodes and DataGenerator nodes, contract with version 1.0 being released at the end of the
provide the control constructs that make the Dataflow- project.
Graph an effective programming tool. A DataflowGraph During these project phases there will be continuous
may be constructed either in C, LISP, or at the interface review and consultation to insure that the IUE meets
level, to form these complex processes. In C or Lisp, this the requirements of the IU community. Any suggestions
complex Task control can be also implemented through or comments concerning design or implementation issues
a message passing paradigm in which Task instances are are welcome and may be directed to mundy@crd.ge.com.
parameterized and controlled through messages (generic
function calls) from a controlling program. References

Applications [Lawton and Committee, 1993] D. Lawton and IUE
The Tasks that will be supported by the IUE will cover Committee. The image understanding environment
a wide range of algorithms and tools. It will be expected user interface. In Proc. DARPA Image Understand-
that the set of Tasks that are included with the IUE will ing Workshop, 1993.
expand rapidly as the IUE begins to receive wide use and [Mundy el al., 1993] J.L. Mundy, R1. Welty, and IUE
the research groups using the system begin to contribute Committee. The image understanding environment:
their own research tools. The following are examples of Data exchange. In Proc. DARPA Image Understand-
TaskGroups specified by the lUE design. ing Workshop, 1993.

ImageProcessing Tools that map image data to image [Price and Committee, 1993] K. Price and IUE Com-
data. mittee. The image understanding environment:image

ImageSegmentation Tools that map image data to features. In Proc. DARPA Image Understanding
symbolic data. Workshop, 1993.

PerceptualOrganization Grouping tools to map sym- [Ramesh and Committee, 1993] V. Ramesh and IUE
bolic data to symbolic data. Committee. Spatial objects in the image understand-ing environmnent. In Proc. DARPA Image Understand-

GeometricFitting Tools that fit geometric entities to ing Wvorkslop, 1998.

symbolic data.

ObjectMatching Tools mapping object descriptions
to symbolic data.

ModelConstruction Tools for creation and manipula-
tion of object descriptions.

The Future of the IUE

The IUE is planned to be developed in three phases:
basic, core and version 1.0. The basic version of the
IUE accounts for the elementary classes and methods
required to support development of core IU classes and
algorithms. The core IUE represents a useful intersection
of current practice in IU research. The core will provide
representations for the major structures and methods
used to implement IU algorithms, such as segmentation,
grouping, matching and modeling. Finally, version 1.0
will consist of the core plus selected support for curves
and curved surfaces as well as demonstration algorithms
which illustrate the use of the core class library.
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Abstract areas that the IUE will need to take advantage of in
terms of capabilities and cost.

We describe the design and initial prototyp- To realize this, the interface is being developed in
ing of the user interface of the DARPA Image terms of three levels. The Graphics Level is the un-
Understanding Environment (IUE) and tools derlying "machine independent" package for display and
for documentation, tutorials, and publication graphic operations which tell the screen what to do. Ex-
that will facilitate the use and adoption of the amples would be X, GL, OpenGL, and Phigs. The In-
IUE. terface Support Level involves packages for the cre-

ation and rapid prototyping of user interfaces and related
tools which are built on top of graphics level software.

1 Introduction This also includes the tools found in the selected soft-
ware development environment such as editors and de-The user interface of the Image Understanding Envi- buggers. The Image Understanding Environment

ronment (IUE) is intended to provide flexible, simple, User Interface (IUgUI) Level consists of the inter-

and powerful tools for exploring data, algorithms, and face objects specialized for image understanding. This

systems [Mundy and others, 1992]. The general princi- includes such things as object displays, plotting displays,

ples of object oriented design used in developing the IUE sevincludes ofcbrowsersaanobse uctureslfyrdesoriing
object hierarchy and programming constructs have also seeral types of browsers, and structures for describing
obeent apiedrar the inteprogramming ab ctonsu haver cm on the interface context. The IUEUI consists of a small set
been applied to the interface: abstraction over common of objects which can be freely combined. The specifi-
operations to provide a small number of interface objects cations of these objects is relatively independent of the
which can be freely combined by a user. The interface other two levels although much of the current prototyp-
has been designed to have a consistent interaction with ing activities are directed towards understanding how to
IUE objects and their semantics, especially the abstrac- best realize the functionality of the IUEUI objects with
tion in the IUE object hierarchy. Thus, the display and
browsing operations are sensitive to the class similarities and limiting the eventual cost of the IUE for users.
for objects such as images, image registered features, and and b e evntual co s of the IUE fruers. c

spatial objects. Using and becoming comfortable with The basic functional components of the IUE interface
the interface hopefully will not involve understanding a are:
large numbers of unrelated things. Displays: These deal with mapping spatial objects

An equally important part of the user interface is and images (or sets of spatial objects and images)
what it does not develop. The IUE user interface must onto two-dimensional display windows. There are
leverage extensively off of existing (and emerging) inter - types of displays for displaying images and image
face and graphics packages and standards. The interface registered features, for plotting functional relations
needs to be supported by ongoing and future develop- between attributes and components of spatial ob-
ments in software environments and graphical user in- jects; and for displaying surfaces.
terfaces. This is critical for the long term use of the
IUE. We can depend on continuous advances in all these Browsers: These deal with presenting textual and

symbolic information about objects. There are dif-
*This research is supported by the Advanced Research ferent types of browsers for operations such as in-

Projects Agency of the Department of Defense and is mon- specting the values in a spatial object, for perform-
itored by the U. S. Army Topographic Engineering Center ing interactive queries with respect to databases
under contract No. DACA76-92-C-0016 and sets of objects, and for inspecting relational

tThe members of the JUE Committee are: Tom Binford- graphs and networks.
Stanford; Terry Boult-Columbia; Bob Haralick, V. Ramesh-
U. Washington; Al Hanson, Chris Connolly-Umass; Ross Interface Context Descriptors: These are for
Beveridge-Colorado State; Charlie Kohl- All; Daryl T. describing the state of the interface and interface
Lawton-Georgia Tech; Doug Morgan-ADS; Joe Mundy-GE; objects. Examples are such things as the current
Keith Price-USC; Tom Strat-SRI color-look-up table for a given display; the current
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display window or browser; and links between in- on top of this with the display of curvature values along
terface objects which describe related views. This the curve mapped onto 8-bits of red intensity.
information supports intelligent default behaviors. We refer to the operations that are involved with spec-

" Command Language and Command Buffer: ifying the mapping onto a screen position the position

A user can control his interaction with objects using methods. These involve operations such as panning,

an interactive command language. The commands zooming, perspective transformations, and warping op-

can be used in code and to create scripts. This also erations. The machinery for this comes directly from

provides a complete description of the functionality the coordinate system transformation methods. The op-

of the user interface. erations that involve mapping onto a particular window
"value are called the value methods and these involve

SSimplified, programmable access to Graphi- such things as setting up the CLUT, point-mapping
cal User Interface (GUI) objects: This is in- functions (functions applied to the value at an object
tended to provide programmer access to several of position prior to display), transparency effects, etc.
the objects commonly found in Graphical User In- The basic processing flow for displays is shown in fig-
terface Construction Kits such as knobs, sliders, ure 1. Displays take place with respect to a context
text buffers, menus. These can then be used in which involves such things as the current object, the cur-
applications and to extend the interface rent description of the transformation from an object to

With the exception of GUI objects, we now look at the display window, the current color look-up table, links
each of these in more detail. Our focus here is on the between IUE objects, and several other attributes. Sev-
functional components of the user interface and their eral display operations involve se•"ng up these contex-
attributes. tual attributes. Displaying an o, ect, such as an image

or image registered features, involves iterating over the
2 Object Displays object and applying the specified position methcds to de-

termining the position in a window at which to generate
Object Displays are for viewing and interacting with a display and also applying the specified value methods.
objects by mapping them onto two-dimensional display In interactive processing, a selection operation is per-
windows. This involves nearly all IUE objects: images, formed with respect to the display context to return a
curves, regions, object models, surfaces, vector fields, value at a selected location. Graphics are also done with
etc. Object displays involve a wide range of actions respect to the display context (The processing flow in fig-
such as displaying an image and image registered fea- ure 1 is idealized in several respects. Many display oper-
tures; displaying networks of objects such as stereo im- ations don't involve iterating over an object but manipu-
ages, multi-resolution pyramids, image sequences (and lating the color look up table and display buffer directly.
this can involve having several linked windows for the Rendered objects or displays which involve warping or
different images; cycling through displays of the differ- interpolation are more naturally expressed as iterating
ent components; or mapping the different components over the display window itself. Displays can also involve
onto different planes of the display buffer and combinin- a discrete sampling of other objects using square pixel
the images through transparency or color addition); dis- neighborhoods).
play of models and predicted segmentations as overlays; The object display methods are organized into the fol-
and interactively inspecting and manipulating displayed lowing classes:
objects and applying operations to them.

There is a strong relation between spatial objects and Value Methods: These are methods that control
displays. Most IUE objects are expressed as relations how values in the specified object(s) get mapped
between sets. In displaying an object, values from one onto screen attributes such as color and intensity;
set are used to specify a position in a display window how to configure planes in the screen buffer for the
and the corresponding values from another set are used display of color images; how many panes to use for
to specify an attribute such as intensity, color, overlay, overlays; particular functions and conditions to ap-
transparency effect, etc., that is displayed at the posi- ply to object values prior to displ . This includes
tion. A basic example is an image, where one set is operations such as overlays, mapl onto different
described by the indices of the coordinate system of the color bands, transparency, and ;:. s.
image and the other by the color or intensity values as- Position Methods: These are methods that con-
sociated with the particular image coordinate. A dis- trol how positions in specified object(s) get mapped
crete curve is a mapping from integer indices onto two- onto a display window. This includes operations
dimensional positions with respect to an image coordi- such as panning, zooming, perspective views, and
nate system. Displaying a curve as an overlay on top of some types of warping.
an image, involves mapping two-dimensional positions
along the curve onto window positions using the same Display Window Attributes: These involve con-
transformation that was used for the display of the im- trolling attributes of the display window such as
age. The color/intensity of the display at these points position, size, attributes of the title bar, event han-

can be based upon registered values associated with the dling for the mouse; and resizing operations.

curve (such as approximated curvature). For example, a Link Methods: For linking different displays (and
user might want to display an intensity image in 8-bits browsers and GUI widgets). Examples are window
of grey-level intensity and then overlay extracted curves to window zooming, display of stereo and pyramidal
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as color and intensity. The are several types of meth-

t da ods for this. CLUT-segment methods involve setting
FSe disply Contet up a color look up table (CLUT). They involve creating

Set up CLUT, graphics state and options named segments and associating some number of bits
Set up object to display window mappings I with each segment, such as specifying 8 bits for red,

8 bits for green, and 8 bits for blue. CLUT-value
methods involves associating color and intensity val-I ues with CLUT indices. These operations can be ap-
plied to CLUT-segments. For example, the red compo-
nent of the color look up table can be mapped onto red

Iterate over objects values in several different ways: by linear interpolation
specified bounds, increment, sampling, between specified shades of red or by a spline through
domain restrictions specified color values. Overlay methods involve set-

ting up overlay planes. Overlay planes can be can be

XmValue Function displayed and cleared separately of underlying intensitydisplays. Object-mapping methods deal with taking
Pan ILinear object values and mapping them onto color table indices.

ZOO°M Pa L For example, the CLUT-segment for red intensity could
be set for a linearly interpolated 255 shades of red but the

....... i actual object values in an object could range from val-
ues such as -1000 to 2000. The Linear object-mapping
method specifies to linearly interpolate from this range
of object-values to the available shades of red. There
can be a linear mapping from the object onto color ta-
ble indices, but the the color table may be set up for a
non-linear mapping onto actual intensities displayed on
the screen. Value-function methods are user specified

Execute Links functions that are applied to specified object values to
map them onto CLUT indices. Examples are conditional
expressions that determine what value to map a particu-
lar object value onto. In Lisp this is straightforward. In
C and C++, it involves a run-time interpreter which we
want to be of as minimal complexity as possible. Other
value methods deal with transparency, blinking, and log-

Figure 1: Basic Processing Flow for Displays ical operations on bitplanes.

images in multiple images. This involves creating 2.2 Position Methods

links and specifying the operations and transforma- Position methods are used to specify mappings from
tions associated with links between interface objects spatial objects and images onto two dimensional display
Interaction Methods: These involve interaction windows. They specify where to display something in a
anteracipulation Meodis:hese ivolvet intraction display window. For example, position methods are used
and manipulation of displayed object(s) in a dis- to specify pan, zoom, and scaling parameters to relate
play. Operations include object selection, recover- anigetadspywnow

ing object positions and values from a mouse click, an image to a display window.
applying functions to selected objects The position methods and transformation networks

used by the interface are defined by the coordinate-
Graphics Methods: Display registered graphics transforms used in the IUE. The interface generally re-
for drawing lines, text, three-dimensional objects, quires transforms of images and image registered objects
etc. onto display windows and simple types of interpolation

History Methods: Many objects can be mapped and sampling. More complicated mappings, such as im-

to the same display window. These are methods age warping and the generation of rendered objects for

to coordinate displays over time, such as cycling a specific sensor use methods from the sensor and scene

through an image sequence, playing an animation classes and image packages for warping. These are either

of displays. used to generate an image which is then displayed or the
object specific display methods can be invoked through

Archiving Methods: Printing an object display, the interface.
writing an object display to file, writing an object The coordinate transformations and networks are very
display to video tape important for the interaction methods. In this case, the

user indicates some position in the display window and
2.1 Value Methods and the CLUT then the mapping from the object to the display win-

Value methods are used to specify how values in an dow is inverted so that the corresponding values and
object are mapped onto display window attributes such position in the object can be determined and accessed.
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The object display is able to do this for images and in- and values are stored in separate lists. Interactively
vertible geometric transformations. For others, such as selected Functions can then use items in these lists
interacting with a potentially complex, rendered solid, as parameters.
methods from the other classes, such as the sensor and A user can associate functions and command-
scene class, are needed. It is also possible that there sequences with keys and mouse-states so the func-
are other representations of a rendered scene, such as tions can be called interactively. The functions
an image-registered depth map that contains pointers to are stored in a table index by mouse-state or
all the surfaces that project to a given pixel, ordered by keyboard-event. The functions can be a sequence
depth that can be generated to simplify the interactive of specified interface commands and can be in-
processing. teractively applied to the values in the different

There is often hardware supported pan and zoom for lists. Functions are selected using keyboard input
images that should be accessible through the position (numbers) or mouse-state (mouse-down, mouse-
methods, even though this is machine dependent. up,mouse-drag for the left, right, and, if it is avail-

2.3 Interaction Methods able, the middle mouse button). Function selection
may also be based upon a count of the number ofThe Interaction Methods are for interacting with and mouse-clicks for specified mouse button.

inspecting objects through the context associated with a

display, such as the current object to display transforma- * There may be a default spatial index associated
tion. The methods associated with this are built on top with a display window. This is memory intensive
of the event-handling mechanisms of the supporting en- but can help with a lot of the interactive operations,
vironment. Interacting with an object through a display especially the selection operations.
involves using the position mapping from the object to
the window. This is straightforward if the mapping is in- 2.4 Graphics
vertible and there is no interpolation or warping. This is Often a user will want to perform graphical displays of
usually the case for images and image registered objects. text, two dimensional graphics, and three dimensional
It can also involve geometric intersection using the ray of graphics. Examples are annotating a display, indicat-
projection corresponding to a selected window position. ing where some action is occurring (the position of an
For other objects, such as closed analytical surfaces, the epipolar line, translational flow paths, etc.), projecting
reverse mapping is more complicated and involves gen- a wire-frame of a model onto an image. Much of this
eral spatial object methods that need to be accessed by functionality will come directly from an existing graphics
the interaction methods. packages that the IUE will utilize. The graphic displays

The current object to be interacted with can be ex- need to take place in three different modes:
plicitly specified or selected. Selection can require dis-
ambiguation if there are multiple overlapping objects or * they can occur in the coordinate system of the dis-

complex spatial objects. The user may be required to play window. In this case displays only occur with

use a spatial index image (an image of pointers to ob- respect to the window coordinate system.

jects which occupy a given position) or use geometrical * they can occur in the coordinate system of a dis-
data base operations in the IUE. Both are potentially played object, such as drawing a line with respect
expensive and don't reflect operations specific to the in- to the inverse mapping from window to object co-
terface hut are general WUE spatial data base operations ordinates
that need to be invoked through the interface to return
the selected object(s) and object position from the ob- generating corresponding coE objects. Thus, inject to display mapping. drawing a line in image coordinates, an correspond-

Te can be dispay varpiey oing instance of an IUE line object would be pro-There can be a variety of interaction devices (mini- duced. When the wire-frame model is displayed,
mally it should specify a screen location), but we are as-duce-seWhent w ir a mode idsayed,
suming a mouse with at least two distinguished buttons each line-segment and junction would be created asan txtinutfrmthe keyboard. In the interactive an object in the IUE. This is very useful for pro-
and text-input from ducing data for testing routines. This mode can be
mode: coupled with the interactive processing mode to al-

" The current position of the mouse is stored in low for the interaction creation of data. This maybe
variables for the (mouse-z,mouse-y) of the current restricted to relatively simple objects such as poly-
display window. Associated with this is the cor- gons, curves, and so forth.
responding positions (current-position) and values
(current-values) in the specified objects. The de- 2.5 Types of Object Displays
fault is to only deal with geometry only to inverting We have distinguished four types of object displays:
coordinate system transforms and not sampling or
interpolation relative to the objects. Since several 9 The image or pixel display is for viewing images
objects can be interacted with at the same time, and image registered features.
these lists will consists of lists of positions and val- * The local graphics display displays objects by
ues. mapping their values onto parameterized graphic

"* When the mouse is clicked, the values for the win- objects such as lines and cubes. Examples are dis-
dow position, the corresponding object positions playing vector fields and edgels.
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"* The surface display is for displaying objects that * most of the view transformations for such things as

get mapped onto mesh or rendered surfaces. scaling and zooming

"* The plot display is for displaying functional re- * overlaying plots in different colors
lations between objects. Examples are one- We are currently exploring the use of the plotting ca-
dimensional, two-dimensional, three-dimensional pabilities in GNUPlot to be used for use in the IUE. It
graphs, histograms, scatter grams, and views of is essentially free and all the source code is available.
functions and tables.

These different types are distinguished by specific 3 Browsers
methods but all inherit a large number of similar meth- Browsers are used for interacting with text based or sym-
ods from the general display class. For example, overlay bolic descriptions of objects. They are used for actions
operations are similar for a surface display and for an such as queries over set of objects, determining and in-
image display, although they can look quite different (In specting relationships between objects, process monitor-
one case it appear like drawing in solid colors in image ing, and inspecting values in an object. The browser and
registered coordinates on top of a displayed image and browser-related classes are being designed so they can
in the other it would be rendering the colors onto a dis-playe surfce),readily be built on top of existing interface construction
played surface). kits.

2.5.1 Local Graphics There are two general types of browsers: Field-
Browsers and Graph-Browsers of which only field

Local Graphic Displays are a subclass of object browsers are currently being implemented. Field
displays which map object values onto parameterized browsers are built from component objects which are
graphics, such as a line, a square, a perspective view found in several GUIs:
of a cube, Chernoff faces, or a user specified function.
A common example is a vector display which will map 9 A field appears as a rectangular box which can be
each component from a pair of image onto the x and y filled with text, icons, colors, colored text, text in
components of a vector. Using the general display meth- particular fonts, or user-specified graphics. Fields
ods, the vectors can be displayed as an overlay on top of can have actions associated with them when they
an image or through indices in a CLUT. For visualizing are selected or a user changes the values in them.
three dimensional attributes in register across an image, Fields can be organized into connected horizon-
the user can display unit cubes with their orientation tal or vertical field groups where each field as
computed from the specified components of the display a unique index in the Field Group. The fields in
object. The graphic display can be a piece of graphics field groups will generally have different objects dis-
code which will be positioned to the projected location played in them. An example comes from the object
of the pixel. registered browser where a field group can corre-

There will be specialized local graphic displays for vec- spond to a display of registered values from differ-
tors and different types of edges because of their heavy ent objects. For better visualization, these can be
usage. It will be possible to display the horizontal and displayed in different colors, fonts, etcs, in addition
vertical edgels in the cracks between pixels or to place a to their position in the field group. A field group
single edge at the center of a pixel with it's orientation can also have a distinct boundary
determined by the specified components objects * Field Groups can be organized into field matrices

2.5.2 Plot Displays where in each group as a unique index set in the
field matrix. Objects and sets of objects can be

There are several different types of plot displays: fied matrix.
one-dimensional, two-dimensional, three-dimensional mapped onto the matrix.

graphs, histograms, scattergrams, perspective views of e Field Matrices can be scrollable as a way to control
functions and others. Examples of plot displays can be the mapping of an object (or object set) onto the
found in several data visualization packages and math- Field Matrix
ematics packages such as Mathematica and GNUPlot We distinguish between four types of field browsers
[Wolfram, 19911. In using such packages in the IUE, it is which inherit from the general Field browser class:
important to bear in mind cost limitations on bundled
software and potential problems with data compatibility * Object-Registered Browser: This contains val-
and speed. Plots also need to be compatible with the ues extracted from a spatial object, such as the
general display methods for such things as intensity values in some square neighborhood of

an image. Depending on the dimensionality of
"* mouse interaction methods: for selecting a position the object (or relationships between component ob-

in a graph and then having access to the domain jects), this can be presented as a one-dim -isional
point and the range point. An example is interac- array, a two-dimensional Array, or multiple two-
tive segmentation from a histogram displayed as a dimensional arrays and describe curves, images, im-
plot age sequences, pyramids.

"* links between plot displays and other types of dis- * Set/Database Browser: This is presented as an
plays array of fields. Each row of fields corresponds to
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selected attributes of a particular object and each Object Registered
column corresponds to common attributes over the Obec Browser
set (or database) of objects. An example would be
browsing the database which describes the current or
active objects in the IUE to find the most recently Mai* SPa
created image from some operations.

"* Object Attribute Browser: Each row corre-
sponds to the value of an attribute for an object.
This is used for inspecting a single object. Navigaton

" Hierarchical Browser: Useful for text based in- Y " " y -7
spection of graph structures and trees. When an Z - - M

item is selected, the related items (along some rela- E
tional dimension) are displayed in the next column. Bowa- ey C:3

The methods associated with browsers are very sim- Inweposm e -
ilar to thoese with displays, suggesting a more general Bound --

IUE Interface object class. The position methods for !
browsers involve how an object (or set of objects) gets
mapped onto the fields of a browser. For object regis-
tered browsers, these are essentially the same as with
displays (see figure 2). The fields are analogous to pix-
els in a display window, although they can be filled
with textual information. For DataBase browsers the
position methods specify how objects are mapped onto
rows of the browser and how attributes are mapped W MA notion

onto columns (See figure 4). The position methods for
mapping from graphs and networks onto a hierarchical
browsers involve keeping track of different paths through
a networks and nodes and arcs that have been traversed.
Browsers can also be linked to browsers, displays, and
user specified interface widgets. The following examples
have been implemented using the FORMS GUI kit on
SGIs [Overmars, 19911.

3.1 Object Registered Browser Figure 2: Object Registered Browser

The object registered browser is used to inspect the val-
ues in a neighborhood of a spatial object. A common dimensional Object Registered Browser in which is dis-
example is inspecting the image values about a selected played two images and the computed difference of the
point. It is very much like the display of a spatial ob- two images, each in separate fields. Each image is dis-
ject in a display window, but instead of the values be- played in a different color and the field containing the
ing mapped onto window positions and screen intensities difference image uses the background color to encode
and colors, values are mapped onto field locations and the magnitude of the difference.
general field attributes such as colored text in specified
fonts, colors, and icons. The attributes of and the spec-
ification of the mapping from an object onto an object 3.2 Set/Database Browser
registered browser is shown in figure 2. A set of spatial
objects are mapped onto a matrix of fields in the object The set/database browser is for inspecting the attributes
registered browser. This mapping involves several parts: of a set of objects. It enables interactive queries can be
a coordinate transform from the N-dimensional spatial performed via the browser. This is especially useful for
objects to the two-dimensional object registered browser; keeping track of instances of objects (an object selected
the type of interpolation to be performed if this mapping in a Set/Database browser should probably default to
doesn't involve discrete values; what to do when brows- the current-object so it could be displayed immediately).
ing beyond the boundaries of the spatial object. Also There are two structures used for describing the map-
shown is a navigation tool to interactively access posi- ping from a database onto the browser. One is the set
tion methods to position the object registered browser of selected attributes which correspond to the columns.
with respect to a set of spatial objects. The browser The other is the current set of items which satisfy a
is linked to a display window which shows the position query and the indices into the first and last element of
of the browser with respect to the bounding rectangu- this set which are displayed in the corresponding rows of
lar prism of the spatial object. This display would be the browser (see figure 4). Figure 5 shows an example
updated when the browser is moved with respect to the using the Set/Database browser to inspect a set of line
spatial objects. Figure 3 shows an implemented two- segments and then to sort them by slope.
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Figure 3: Object Registre Browser applied to an image .,-

3.3 Object Attribute Browser 670a0dm Browser

An Object Attribute Browser is for inspecting the
attributes of an object or several object with the same
types of attributes. It uses an ordered list of object at- Figure 4: Set/DataBase browser
tributes to determine which attributes of the object to
display. Figure 6 shows an example of a Object Attribute
Browser applied to the attributes of an image object. *Object-Display-Mapping: Structures which de-

scribe the mapping from an object onto a display.
3.4 Hierarchical Browser This includes the viewing transformation between

an object and a display window, the value-mapping
A hierarchical-browser is for inspecting graphs and of how the object is displayed and a reference to a
network objects. Instead of one large field-matrix, it

consists of linked Nxl field-matrices. Each column priua LT
corresponds to a set of nodes. When a node is me- * Object-Browsing-Mapping: Structures which
lected, the types of relations (arcs) are displayed in the describes the mapping from an object(s) or
current -- arc-- browser. When a type of arc is selected, database onto a browser
the nodes with that type of relation are displayed in the *Display Context: Structures which describes the
adjacent (right) column. Several structures are used to current context for a display for such things as the
describe (and update) the mapping from the graph onto current window, the current object, the current
the successive browser columns. The current node is the object display mapping, the current display corn-
most recently selected node. The current path is stored mand, the current mouse-selected object position
as well as the nodes that have been visited. Figure ? and value, the lists of interactively selected object
shows a hierarchical browser applied to an instance of a values and positions. For example, if neither a dis-
polyhedral mesh. play or an object is specified, it will default to the

most recently used.
4 Interface Context *Browse Context: Related structures for

brws.s Such0 thng 00 72.0 7uren 00werh

There are several data structures for describing the con-brwesSuhtigashecrntroete

c4rren d.ta tooe qer hisory 14.00hrs

text of the interface. These are used for intelligent de-

faulting and for saving the state of the interface. These *History: The sequence of display or browsing ac-
include: tions for a particular window or browser are saved
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Figure 7: Hierarchical Browser applied to a description
Figure 5: Set/DataBase browser applied to set of line of a polyhedral mesh from the Data Exchange Format
segments from Data Exchange Format

and can be reaccessed and used for creating ani-
mations. In addition which objects have been dis-
played or browsers is also stored.

Options I Exit Default layouts for windows and browsers:

The desired layout of windows and browsers can be
saved and be available to a user when he starts using

F V C LStep: the IUE. Users may prefer different interfaces (ar-
rangement and instantiation of the basic interface

" 'nm ,magell objects) depending on the task or level of sophisti-

image 92&93 eOjcDipa cation.
acquistion 9/23/93 s Object Display Links: A structure which de-

-mestereo-camera, scribes the concatenation of a display or browsing

3 operation between IUE interface objects.

dbnensios 150 200 The context description is an extension to the under-

10 10 lying context usually provided by the graphics level. It

format jpg should be possible to read and save context descriptions.

encoding descompress 4.1 Links

modified 10123V92 10/29/92 11/11/92 Links support operations such as window to window

d-by mmryann@cc maryannfcc warren@cc zooming, displaying the same object from different views

digited 9123/92 or using different value-mappings, and controlling dis-

rendered 10/29/92 plays using interactive widgets like sliders and knobs.

support magez image13 range10 Linked displays are useful for displaying composite data
such as stereo image pairs or pyramids. When something
happens in a parent display (or browser), another display
will perform an action using information from the parent
display. The action can be a display operation operation
or executing a sequence of commands associated with

Figure 6: Object Attribute Browser applied to an image the link, such as a set of commands from the interactive
command language.
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The mapping between a spatial object and a display An important operation for displaying spatial objects
window in one window can be concatenated with the is the ability to apply functions to objects prior to dis-
display specification in another. A common example is playing or interacting with them. These operations al-
using one window to zoom onto the display in another most always don't involve creating a new object. An ex-
or using one window to display a selected portion of an- ample is manipulating the underlying color look up table
other (Panning and Zooming are so common they will to perform a thresholding operation. In this case, there
be directly supported via an interactive tool). is no thresholded image object produced, only what is

We have specified constraints on links to avoid displayed in a window. This goes by many names in
many complex and pathological things that can hap- different systems such as Pixel Mapping Functions, Dy-
pen. Linked displays and browsers are only updated namic Color, Generalized Color Look-Up Tables.
when a display action is performed, not when changes There are two aspects to such functions. First, there
are made to the displayed object. Individual links are are limitations on the types of functions that should be
bi-directional, but no cycles are allowed in the graph specified for application to an object when it is displayed.
formed from all of the links between WUE interface ob- Operations such as zooming, panning, manipulating the
jects. color look up table, specifying which planes in the dis-

play buffer are used, and simple point-wise algebra with

5 Command Language limited conditional evaluation, are very useful and will
be supported. But, it doesn't make sense for operations

Users will be able to specify all interface actions through such as generalized warping or detailed processing over
an interactive command language and be able to access a neighborhood or generalized intersection to be done
all the functionality of the interface. Display operations by via interface commands. Second, there are also lan-
can be performed interactively through the command guage specific aspects for specifying function application
buffer. The command language will have intelligent de- to objects prior to display. In Lisp, it is straightforward
faults and abbreviations (such as displaying to the cur- to pass lambda expression or closures which are applied
rent window if none is specified). In addition, the com- to each position or value prior to display. In C, this re-
mands will be be usable in non-interactive code for cre- quires a library of standard functions and an interpretor.
ating scripts and general display routines. All of the In the actual operation of the IUE, it is not necessary
functionality of the interface is accessible through an that all interactions take place through this command
interactive command language which encompasses the language: some will be invoked by menus and special
overall functionality of the interface, keys and refer to the current display context. An im-

A concern with the interface command language is portant part of the design of the WUE interface entails
that it becomes another language that people will need how commands (and which commands) are mapped onto
to memorize. This is not an issue for development in menus and other interactive devices. This is especially
Lisp since the display operations can be called interac- important since the interface will support a wide com-
tively like any other function, but it is a significant issue munity of users ranging from naive users who are inter-
with C++. We intend for the command language to be acting with hardened applications to developers. Naive
as simple as possible, with a limited syntax. Most argu- users may want lots of interactive devices such as spe-
ments are specified via keywords and correspond directly cialized menus while experienced users will want more
to interface object methods. There are also defaults powerful, abbreviated commands. Advanced users will
for command specification. And the IUE will probably become very adept at shortcuts that should be provided.
eventually support intelligent prompting to complete the
commands. The general syntax is 5.1 Examples

The following presents some examples of specified dis-
IUE-interface-object object-set [keyword arguments]* play operations using the command language.

For example, [*Vl* sagol

:p
[*(l* imagel :p] :linear 0 128 *scroen-min* *ucroen-max*]

means to display imagel using a pixel-type display in This would display to window *wl* using the current
window *wl* using the current display context associ- defaults. The range of object values from 0 to 128 are
ated with the display in window *wl*. The brackets are linearly mapped onto the range of values *screen-min*
used to indicate separate commands. If the last display and *screen-max*.
operation was of type :p in *wl*, then only:

[image :pJ
[imagelJ [edge-imago :overlay red]

needs to be specified. More detailed examples are pre- An image is displayed in the current window using a
sented below. pixel-type display. The edge image is then overlayed on
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top of this. Wherever the edge-image is equal to 0 noth- a mouse click in the display window and stored in the
ing is displayed in the red overlay plane and wherever object-value queue. red blue refers to globally defined
the edge-image is equal to 1, the corresponding pixel is overlay colors. Recall that the :value function specifies
set in the red overlay plane. the operation to be applied to an object value to map it

onto a screen intensity or color.
[:overlay-colors (red, green, blue, violet)]
[image :p :valuo-function [:link *.le :zoom 2 2 :pan 60 603

(if (image.valuo > 10) red bluo)]

This links *wl* to the current window and concatenates
The first command tells the current display to use the a zoom and a pan transformation.
specified overlay colors. The second will display red in
the overlay plane at a screen pixel corresponding to an [aegionDB
image pixel if the image value is greater than 10, other- P
wise it will display blue. :positions RegionDi.locations

:values RegionDB. texture~easure
[spatiallndexImage :linear 0 100 *sine *max*

:P : red-8]
:value-funct ion

(if (label-image.value = NULL) This says to display the RegionDB in the current display
0 window with the positions coming from the locations
(length (spatiallndeolmage. value))) attribute of the regions in the regionsDB and the values

:linear 0 20 0 *screen-max*] by taking the Region DB texture mappings and using
a linear mapping from these onto screen intensities in 8

This function displays a spatial index image (an image bits of red.
where each pixel contains a list of all the objects which
occupy that pixel). The value function determines the [*wi* histogram :plotld 3
number of objects in this list and the linear function [*e2. image :pJ
maps this onto available screen intensities. [(wl histogram

:i
(imagel image2 :1 Cmin = object-values[1] .x

:P Emax = object-valuess[23.x
:value-function [*V2* image

(image.val - image2.val) :P
:linear -20 20 *min *max*] :value-function

(if ((image.value > min) U&
to display the difference between two images. Other (image.value < max))
common value functions would be for type conversion blue red)]
and display histogram transforms. The user can also
specify functions in the interactive mode to be applied This is an example of plotting used for interactive his-
to the values in the different queues. For example: togram segmentation in which the interaction methods

lets us click on the axis of a plotted function to returns
[image the x coordinate and the y-value of the displayed object

: i and then use these values to specify peaks in a histogram.
:1 [p :overlay-plane clear] Here the user has plotted a histogram in *WI*. He then

(p image :value-function selects the range of values by clicking on the displayed
(if (imago. value > histogram. The current-object-value contains the x and

object-values [1]) y value from the displayed histogram. These are stored
red blue)] in the local values min and max. When the user hits the

key 1, the selected range of values are displayed in the
blue overlay plane in *W2*.

The user has selected an image location with a mouse

click and the corresponding queues have been filled with 6 Additional Features
the window and object positions and values. There-
after, when the user hits the terminal key 1, the over- Even though our focus has been on developing the core
lay planes will be cleared and all image locations with functionality of the user interface, there are several other
a value greater than the value at the selected image lo- features that have been considered for use with the inter-
cation will be displayed in red, otherwise blue, in the face. Some of these can be built on top of the interface
overlay planes. image.valse is a dummy variable that objects and operations described previously. These are
refers to the current value in image which is being dis- important candidates as packages and libraries to aug-
played. object-values[l] refers to the value selected using ment the core 1UE.
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One important area involves interactive task manage- performing specific display operations in ways op-
ment tools. Examples can be found in the data-flow timized for particular types of displays.
editor in the Cantata portion of Khoros and the Task
editor in KBVision. Another area that several people 7 Status - Implementation Trade-offs
feel is important is developing graph browsers are for
the display of graphs and networks, generally represent- We are currently prototyping many different parts of
ing object or values as nodes and using links to describe the user interface to complete the functional specifica-
relations. Graph browsers can have difficulties when try- tion and to answer basic implementation questions about
ing to display several nodes with arbitrary relations be- choices regarding GUIs and user interface toolkits. This
tween them in that the connections between the nodes will help to simplify the job of the eventual integrating
can begin to obscure the over all display. A typical use contractor. For reasons of rapid development, current
would be for the display of a constraint or coordinate implementations is taking place in C and C++ on Silicon
transform network. Graphics machines using the GL graphics library, Motif,

There are probably hundreds of nice interactive con- and the FORMS user interface toolkit. We have been
trols for displays and visualization that exist in differ- able to put up the general display object and the differ-
ent environments, such as interactively manipulating the ent browsers and hope to use these as initial browsers
object-value to screen-intensity function by interactively and displays specialized for use with the Data Exchange
shaping a function; selecting color look-up tables; modi- Format. We are exploring extensions to GNUPlot so it
fying color look-up tables; interactively building display is compatible with the methods associated with the gen-
commands using templates or command browsers; float- eral display class and can provide an inexpensive plotting
ing tool palettes of interactive drawing tools; etc. In gen- package. We are also evaluating OPENGL as a possible
eral, such tools can be very useful, but it is extremely machine independent graphics package.
important that there be a consistent look and feel with
different applications that are based on the IUE. This 8 User Facilitation Tools
will be partially achieved by depending on the underly-
ing graphical user interface to supply the basic interface The IUE will be supported by on-line documentation
objects. and tutorials. The tools for implementing these will also

Other useful interface tools are: be available for enhanced communication and publica-
tion by scientists and developers who use the IUE. While

"* Interactive Selection and Modification of color there is significant activity in developing documentation
lookup tables and display mapping functions; cy- and hypermedia toolkits, they remain largely machine
cling through different color look up tables dependent with no clear standardization. We are de-

"* A dialog box for setting up system defaults and veloping a simple documentation tool called Knowledgc
initializing characteristics of the IUE: initial layout, Weasel (KW) which is based on Lucid Emacs 19 and
font selected, level of expertise, etcs. existing media editing tools.

"* Access to and Integrated use of Established Visu- Knowledge Weasel (KW) is a presentation and author-

alization Packages: There are several data visual- ing system designed to support annotation using several

ization products and it would be nice to have a different types of media. A simple analogy for KW is

modular interface to these reading a book or attending a lecture and being able
to make diverse types of comments and annotations on

"* Mensuration tools: Such things as rulers, grid over- the material. In reality, such unrestricted annotations
lays, and the use of multiple cursors mark of dis- and comments made with respect to real books and lec-
tances and points of reference. These probably can tures could create a significant mess (especially if made
be built on top of basic interface capabilities and by several different people), so in developing KW we
the display of IUE objects (in particular, the dis- have extended this simple metaphor in several ways. The
play interaction methods and WUE objects such as first is to provide a general format for annotations that
bit-mapped regions, line-objects), can include several different types of media. An anno-

"* Interactive Object Creation (Draw Objects): It tation is a common record structure wrapped around
should be possible to create object interactively, instances of different types of media such as text files,
This is useful for creating idealized data for test- sound, drawings, postscript files, GNU-plots, code run-
ing and development. This should be supported by ning in the GDB debugger, and others. Annotations are
the display interaction methods and access to the implemented much as a property lists in LISP with at-
instantiation methods associated with spatial ob- tributes and values and are displayed as buttons with
jects an associated region of support. When an annotation is

"selected it performs an operation specific to the type of
f Incorporating Hardware Accelerators: So the inter- annotation selected. Annotations are created using exit-
face and the i UE in general can modularly incorpo- ing media editing tools for operations such as recording
rate different hardware accelerators, a sound, drawing packages, calls to other branched pro-

"* Display Buffer Optimization: The display buffer it- cesses, grabbing a portion of the screen. The second
self is a short term memory for manipulating the extension has been to develop different types of naviga-
view of a displayed object. A useful feature would tion, organization and presentation tools to keep users
be routines to directly access the display buffer or from being overwhelmed with a great deal of possibly
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irrelevant information. Users can prune the set of anno-
tations that they want to deal with and also how they are
displayed. Annotations are structured to make possible -

intelligent processing, perhaps eventually including rule- -.. Iaae4 .queioaa"
based processing for automatic presentation and "ferret-
ing" of information (hence the name). t dl=

We are implementing KW on Lucid Emacs 19 which -'h,
is in turn based on the X window system. Lucid's im- . .............. O.
plementation of Emacs Lisp provides primitives for han- GO S.O.
dling display attributes such as windows, fonts, and col- ft. . .. . ..... 40.

ors. Lucid Emacs version 19 has a built-in lisp inter- ,
preter for Emacs Lisp and this lisp variant provides a
wide variety of primitives that are useful for manipu-
lating text, processes, and/or files. It is available via .
anonymous FTP on the Internet, and is also the basis

of a commercial product. Knowledge Weasel is chiefly .
written in Emacs Lisp but some parts, such as the part
which interacts with the operating system's lock dae-
mon (lockd), is in C and communicates via pipes with
the Emacs Lisp portion of the implementation.

Figure 8 shows an example using some of the current Figure 8: KW Example
features of KW. A user is reading some text about his-
togram equalization from a text file in Emacs. He has
selected some annotations for display (these could be [Overmars, 1991] Mark H. Overmars. Forms Library: A
comments from other users or references to other ma- Graphical User Interface Toolkit for Silicon Graphics
terials). One annotation corresponds to bringing up the Workstations. Utrecht University, 2 edition, December
corresponding code and then executing it step-by-step in 1991.
the GNU debugger. One nice thing about the intergra- [Wolfram, 19911 Stephen Wolfram. Mathemaiica:
tion with GNU-tools and Emacs is that it is possible to A System for Doing Mathematics by Computer.
directly annotate running programs for step by step com- Addison-Wesley, Redwood City, CA, 1991.
mentary. The user has selected the button *View His-
togram* which is associated with a GNUPlot-type anno-
tation. Annotations are displayed in a larger font of text
(which is colored). The actual display of annotations is
controlled by a user. Annotations can be conditionally
displayed and mapped onto different colors and fonts.

We have begun using an initial version of KW to de-
velop an on-line version of the Low Level Vision course
taught at Georgia Tech. We also plan to use it as part of
a computer vision algorithms course where students will
select a paper from the literature, implement the corre-
sponding algorithms and use KW to develop a tutorial
presentation of the paper.

8.1 CD-ROM

A significant instance of technology transfer is the
DARPA IU Proceedings and workshop. For the next
meeting, we hope to enhance this by having the work-
shop proceedings available on CD-ROM, and integrated
with the Data Exchange Format, a documentation and
browsing tool such as Knowledge Weasel, and, possi-
bly, the IUE itself. This will enable an extraordinary
type of paper which includes data, code, additional refer-
ences, animations, and extensive annotations and cross-
references.
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The Image Understanding Environment: Data Exchange
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mundy@crd.ge.com

G.E. Corporate Research and Development
Schenectady, NY 12309

Abstract be used for simplicity, object descriptions will be be
stored in Lisp-like lists, and the format facilitates theA major activity of the IUE committee is the transfer of data between different systems.

design of a data exchange standard for IU algo-
rithm results. The exchange standard is formu- Character format The first design choice elimi-
lated according to object-oriented design prin- nates binary formats, which may be necessary for effi-
ciples and is based on the class hierarchy of cient storage of some objects, but simplifies transporta-
the IUE specification. This paper provides an bility between different systems. Note that this format
overview of the exchange format. is not primarily for the storage of image data, but for

the storage of more geometric and relational IUE object

Introduction data.

As the design of the IUE progressed, it became clear LISP-like syntax The second principle implies
that the concepts for IU data structures and operations only that parentheses (or another suitably defined macro
could be applied to the formulation of a data exchange characters and reserved words) surround the data. Oth-
standard for IU research and application results. Such a erwise the format is relatively free-form. Since Lisp has
standard is badly needed since two application-oriented a simple syntax, this assumption provides a small set of
programs are now underway at DARPA which involve delimiters to break the data and an easy mechanism to
the cooperation of a large number of research groups. read the data in Lisp. For the C++ implementation, the
One of these projects, RADIUS1 involves a number of parsing will be straightforward and through the use of
university and other research institutions who are de- a few key words, the format can be efficiently parsed by
veloping IU algorithms to support site modeling and Lex and Yacc parsing mechanisms.
image analysis. The second project is the Unmanned Free form output By expecting the user to have
Ground Vehicle(UGV) project which is focussed on au- relative freedom in the output sequencing, we are not
tonomous navigation and reconnaissance. It is clear that required to analyze the data to find relatively efficient
both of these projects can benefit from the capability to formats. The user will specify what objects are to be
exchange detailed results of algorithms such as image saved, the order of the objects and the set of object slots
segmentation, feature grouping and model matching. that are included. This aproach simplifies the outputThe JUE -Aata exchange standard based on an object- taarinud.Thsprocsmplfe th upu

process, but does requires the user to insure that alloriented representation of the main structures used in the required object instances are defined before used by
IU research and applications. The primary emphasis is other classes. The design assumes that the format con-
on the relationship between image signal data and geo- version is a single pass operation.
metric structures. Much of IU research is involved with
grouping and matching of geometry derived from images. Portability The final principle requires a format that
Another major area of processing and representation is is easily read and written in either Lisp or C, one that
associated with the derivation of camera parameters as- is not dependent on the host machine, and one that can
sociated with camera calibration and camera motion, be transformed into other internal representations inde-

The design of the exchange format is based on these pendent of the Image Understanding Environment. The
design principles: character based formats (ASCII) will syntax is also very similar to the class construction styles

used in both C++ and CLOS, so the action routines of*The members of the TUE Committee are: Tom Binford- thnoreuemcheofiraonfte
Stanford; Terry Boult-Columbia; Bob Haralick, V. Ramesh- the parser do not require much reconfiguration of the
U. Washington; Al Hanson, Chris Connolly-Umass; Ross data to form class constructors.
Beveridge-Colorado State; Charlie Kohl- AAI; Daryl Lawton-
Georgia Tech; Doug Morgan-ADS; Joe Mundy-GE; Keith Relation to Other Standards
Price-USC; Tom Strat-SRI

'Research and Development for Image Understanding There are many standards for binary image data file for-
Systems mats, such as NITF, TIFF and even as ASCII such as
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Postscript. The Programmers Image Kernel(PIK) stan- (f) 3d polyhedral topology
dard provides additional representations for image pro- (g) 2d and 3d box neighborhoods
cessing operations as well as representation for various
image data types. There are also standards for the repre- 3. Transforms
sentation of CAD geometry such as the Initial Graphics (a) 2d and 3d Euclidean
Exchange Specification(IGES). Some aspects of IU are
also captured by standards associated with the exchange (b) 3D quaternion
of geographic data such as the DOD Vector Product (c) 4x4 Projective
Format(VPF) Standard and the Standard Interchange (d) 4x3 Image Transform
Format(SIF) used to represent simulation database en- (e) UTM and lat-long earth coordinates
tities. More recently, standards are emerging for the
representation of product design information under the 4 Spatial Indices
Product Data Exchange Using STEP(PDES) program (a) 2D grid
of the Department of Commerce. STEP is an interna- (b) 2D quadtree
tional standard for the representation of product geome- (c) 2D r-Tree
try and functionality. In addition, some aspects of prod-
uct definition and test requirements are being addressed (d) 2D Hough array
by the DOD Computer-aided Acquisition and Logistic 5. Image Features
Support(CALS) program.

These existing standards do not cover the breadth of (a) edgel

mathematical and physical concepts inherent in IU algo- (b) pixel chain
rithms. For example, in the case of image segmentation, (c) edgel chain
there are many attributes which must be defined, such (d) segmentation line segment
as edge strength, or edgel orientation. In order for differ-
ent research groups to use each other's results these at- (e) connected line segments
tributes must be defined according to a standard naming (f) image region
convention and associated mathematical definition. As 6. Sensors
another example, IU algorithms depend on many types
of grouping operations, some quite unique to IU, such (a) perspective camera
as the Hough transform and are not supported by other (b) stereo pair
exchange formats. (c) moving linear array camera

Finally, IU is a rapidly evolving discipline and it is (c) mvnge camera
necessary to have an easily extensible standard and the (d) range camera
same time maintain the compatibility of existing data. These structures represent only a portion of the WUE
The WUE object-oriented design approach enables this design, but have been selected as an initial implementa-
flexibility though inheritance and class definitions which tion goal and are likely to provide maximum utility to
can be provided in the exchange file itself. the RADIUS and UGV projects mentioned in the intro-

In the remainirg sections, we provide a summary of duction.
the ideas behind the development of the standard and
provide the syntax for the current version of the file for- An Example
mat.

The following example is taken from the IUE specifi-
Core Exchange Data Structures cation document which includes examples for data ex-

change. The specification is mainly concerned with nam-
The initial scope of the data exchange format is based on ing and definition of region attributes.
the core data structures in the IUE. The following sum-
marizes the classes to be supported in the initial release 2d-image-region
of the standard. Description A 2d-image-region is a connected set

1. Image Data of image pixels, registered with a set of images by op-
erations such histogram segmentation, region-growing,

(a) 8 and 16 bit intensity data model surface projection. Sometime attributes and oper-
(b) 8bit, 3-channel color data ations involving regions are based upon the set of points
(c) multi-channel landsat data which comprise the region (i.e., compactness, Euler num-
(d) range with registered intensity data ber), some operations and attributes are based upon the

2. Spatial Object image values at these locations (i.e., average intensity in
the image area corresponding to the region). This con-

(a) basic spatial object cept can be generalized for voxel processing in analogy
(b) 2d and 3d pointsets to the class block.

(c) 2d and 3d implicit and parametric lines Superelasses
(d) 2d and 3d implicit and parametric planes image-feature 2d-unordered-pointset face
(e) 2d polygonal topology(e.g. vertex, edge, face) connected-image-pointset
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Pseudo Slots(Attributes) (slot vO (make 2d-vertex ''vert-a''

1-chns: list(image-1-chain) (slot p (vector 2 integer 11 13))))

Multiple interior boundaries as a list of usually (slot vi (make 2d-vertex vert-b1 )

image-pixel-chains. These chains can be 4 con- (slot p (vector 2 integer 13 9)

nected or 8-connected. The boundary is usually (slot n 24)

composed of several pixel-chains which intersect at (slot chain-code-sequence

image vertices. (vector 23 integer 4 4 4 4 3 2
4 3 1 3 1 2 2 1 0 0 0 0 7 7 7 6 7)

area integer )
The size of the region in image pixels a method of )
face specialized for discrete pixel regions. (make 2d-pixel-chain ''pchn-b-a-1''

number-of-holes: integer (slot vO (use ''vert-b''))

The number of holes in the region. (slot v1 (use ''vert-a''))
minimum- bounding-rectangle: (slot n 5)
md-aignimm-boundngle-relan gt: (slot chain-code-sequence
2d-aligned-rectangle-neighborhood (vector 4 integer 1 1 2 1)

)
centroid: point )
The position of the centroid of the region.

scatter-matriz-of-pizel-positicnq: (slot dir (vector 2 integer I 1))

vector[2] (vector[21 (fBeat)) (slot closed-p true)

Provides covariance of z and y coordinates of pixels )
in the region. (make image-l-chain ''ic-c-c-A''

(slot edges (list
compactness: float (make 2d-pixel-chain ''pchn-c-c''
Ratio of perimeter to area. (slot vO (make 2d-vertex ''vert-c''

adjacent-regions: list(2d-image-region) (slot p (vector 2 integer 7 7))))
A list of regions which share a boundary with self. (slot v1 (use ''vert-c"))
The shared boundary descriptions are contained in (slot n 14)
the inferiors of each region. (slot chain-code-sequence

intensity-distribution: vector[2](float) (vector 13 integer 6 5 7 6 0 0 0

A distribution(assumed gaussian) with two slots, 1 2 2 3 4 4)

mean and variance. These are floats with the val-
ues computed using all the points in the region and
the corresponding intensity image. If the nature of ) (
the image is unknown, then this is the mean of its (slot dir (vector u integer 1))
values. For other, known, image types such as red, (slot closed-p true)
infra-red, range, etc. other attributes will be used,
but they have the general same form. (slot nghbrhood

red-distribution: vector[2](float) (make 2d-image-pixel-neighborhood ''n-5'6
Distribution for the red component. (slot num-nghbrs 7)))

green-distribution: vector[21 (float) (slot number-of-holes 1)

Distribution for the green component. (slot adjacent-regions (list ''reg-B''))
b:vector[2 (float) (slot intensity-distributionblue-distribution: vetr2(la)(vector 2 float 135.2 3.4))

Distribution for the blue component. (

zzz- distribution: vector[2](float)
Distribution for the XXX component. Since these The Exchange Format
are implemented as pseudoslots, any number of such
distributions can be specified according to applica- Basic syntax
tion requirements. The general name for the differ- At the most basic level, WUE Exchange Format looks

ent distributions is <band-name>-distribution for somewhat like a lisp file; the format is designed to be
the variety of image bands. readable by most lisp readers without much difficulty,

An example of the data exchange format for region A in should this be necessary. A prototype C parser gener-

the figure. ated by the standard Unix(TM) utilities Lex and Yacc

(make 2d-image-region ''reg-A'' is available upon request.

(slot 1-chns (list File Organization
(make image-l-chain ''lchn-a-b-A' F

(slot edges (list A file in IUE Exchange Format consists of an IUE Ex-
(make 2d-pixel-chain ''pchn-a-b'' change Format version identifier, followed by a series of
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WUE Class instance descriptions, default slot value set- Sequence numbers and Class instance names
tings, and references. The general model is that the When an IUE file writer describes an IUE Class instance
content an individual IUE file will correspond to one hi- (using a 'make' clause), it is assigned a unique positive
erarchy, e.g. one site or one building. IUE files may integer. Most writers will probably start with one and
reference external objects by identifying their WUE files; increment the number for each Class instance described,
consistent with the notion that the file/hierarchy rela- but as long as the integers are unique, and all integers
tionship is one-to-one. Since an IUE file will normally referenced are defined somewhere in the file, there is no
contain a flattened series of IUE Class Instance descrip- other requirement. For files generated by humans, Class
tions and references to those descriptions, the convention instances may have names instead of numbers, in which
has been adapted that the final IUE Class Instance de- case they are not assigned integers from the sequence.
scription or reference in a file will be considered the root These names must be unique within the context of the
of the hierarchy. The standard algorithm for traversing a file, and have no meaning outside of that context; an WUE
network of IUE Class Instances will invariably attempt file reader may discard them once a file has been read. In
to make the root object the last one referenced in the a human-generated IUE file, both class instance numbers
file. and names may be used.

File Identification Using an object

An IUE File Identifier is constrained to appear at the he (use ...) clause is the standard method for refer-very beginning of the file, with no spaces or newline encing an IUE class instance. A use clause may refer tocharacters embedded. This is so that a file sniffer may an integer sequence number (described in the previousdepend on the first 29 characters of the file being "(IUE- paragraph), an WUE Class instance name, or an external
Exchange-Format-Version " Case must be strictly ad- object (using an external clause.) The object need nothered to in this particular instance, again, so that file have been defined at the time that a use clause refers tosniffers may be as simple and fast as possible. It will that object; in such cases an IUE file reader will place theprobably be adequate for file sniffers to examine the first reference on the list of presently unresolved references,four characters ("(IUEf) in most instances, which are to be cleaned up by the time that the file hasbeen completely processed. A standard algorithm for

forward reference handling is provided in an Appendix.
Comments Examples of (use ...) clauses:

Comments are introduced by a semi-colon (;) character,
as in Common Lisp, and run to the end of line character, (use 12)
again as in Common Lisp. (use "foo-bar "dgo")
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(make 3D-vertex 52
(slot p

External objects (vector 3 float 45.3 23.8 3.4)

An (external ...) clause may be used inside a (use ...) )
clause to include files. Any file included must be in the
same directory as the file containing the (external ...)
clause. The last Class instance listed in the external Attributes
IUE file by either a (make ... ) clause or a (use ...) Attributes are very similar to slots, but being user de-
clause will be the one referenced by the (use (external fined items, they are not described in the IUE document.
... )) clause. It is the responsibility of the IUE user to insure that any

Example of an (external ...) clause: attributes can be properly written and read.
Attributes also differ from slots in that since they are

(use 23 (external "my-cube. iue")) not described in the WUE document, their data type is
not known until they are encountered during input; for
this reason, the attribute type is included in an Attribute

In this example, the file my-cube.iue is processed and clause.
the last WUE Class instance made or used in the file is Example of a nested Make clause for a 3D edge with
returned, and assigned sequence number 23. This se- 2 previously undescribed vertices:
quence number may be used elsewhere in the file - but (make edge "my edge"
it must not appear in any (make ... ) clause in the same (slot vi
file. file.(sake 3D-vertex 36

It is expected that WUE file readers will keep a list of (slot p (vector 3 float 3.45 -2.34 7.3298))))
files and the last objects referenced by them; this way, (slot v2
when an external reference is made, a check can be made (make 3D-vertex 36
to see if the file has already been read; otherwise multiple (slot p (vector 3 float 5.732 3.21 -2.3))))
copies of objects might be created. (attribute edge-name

Making an object )string "NE Edge of object Foo")

A (make ... ) clause consists of the reserved word 'make', Example of the same description, flattened as required
followed by an identifier corresponding to a Class name for machine input, and using the hard slots inferiors and
from the WUE class hierarchy, followed by either a se-
quence number or a string, and finally the slots and superiors, as ismoreappropriate with machine generated
attributes for this WUE object and their contents. At- JUE files:
tributes are items not provided for in the IUE standard (make 3D-vertex 2
that an WUE user may wish to attach to WUE objects. (slot p
Examples of (make ...) clauses and slots appear in the (vector 3 float 3.45 -2.34 7.3298))
next section. (slot superiors (list (use 1)))

)

Slots

Slots may contain a variety of data types; these include (make 3D-vertex 3

simple types like bit, int, and float, more complex types (slot p (vector 3 float 5.732 3.21 -2.3))

such as string and vector, and may contain objects or (slot superiors (list (use 1)))

lists of objects.
A slot clause consists of the word 'slot', followed by the

name of the slot and by the content of the slot. if a slot (malk edge 1
refers to an WUE Class instance, then a use clause will (slot inferiors
be emitted referencing the object. If the object does not (list (use 2) (use 3)))
exist, then in a human-generated IUE file, a make clause (attribute edge-name
may be inserted describing the object. A human writing
an IUE file may recursively descend through the struc-
ture, writing make clauses as WUE Class instances are
referenced for the first time. A program generating an It is recommended that lower level objects be created
IUE file is required to generate a flattened file description immediately before higher level objects, in order to keep
in which make clauses are never nested; this is done be- the list of unresolved references reasonably small.
cause extremely large, deeply nested files may otherwise Example of a 2D 1-chain 2 which contains 3 edges:
impose unreasonable memory management demands on (make 2D-vertex 3
WUE file readers. (slot p (vector 2 float 1.0 2.3))

Example of a simple Make clause for a 3D Vertex lo- (slot superiors (list (use 2))))
cated at [45.3, 23.8, 3.4] (the vector data type will be
detailed later in this document): 2 A 1-chain is a sequence of connected line segments.
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(make 2D-vertex 4 Lists
(slot p (vector 2 float 2.0 2.3)) A list clause consists of the word list, followed by a se-
(slot superiors (list (use 2) (use 6)))) quence of simple types, vectors, and UE Class instances.

(sake 2D-vertex 6 Lists of simple types will always be homogeneous. Lists
(slot p (vector 2 float 7.3 8.2)) of objects are always constrained so that all objects share
(slot superiors (list (use 7) (use 5)) a common superclass. These restrictions are intended to

(make 2D-vertex 8 ease C-+ implementation.
(slot p (vector 2 float -2.0 9.3))
(slot superiors (list (use 7)))) Characters and Strings

(make edge 2 A simple data type for single characters has been in-
(slot inferiors (list (use 3) (use 4))) tentionally omitted; this is because the Lisp and the
(slot superiors (list (use 1)))) C/C++ worlds have decidedly different notions of what

(make edge 5 is appropriate syntax. A character string containing ex-
(slot inferiors (list (use 4) (use 6))) actly one character is more than adequate for represen-
(slot superiors (list (use 1)))) tation ofa single character.

(make edge 7 String is intentionally limited to printable ascii char-
(slot inferiors (list (use 6) (use 8))) acters; by implication, strings may not presently contain
(slot superiors (list (use 1)))) end-of-line characters or tabs. Strings may not contain

double quote characters. Strings are written between
(make 1-chain I double quote (") characters.

(slot inferiors (list
(use edge 2) (use edge 5) Default Slot Values
(use edge 7)) Default slot values may be specified for classes and sub-

) classes using the default-slot-value clause. These de-
) faults will be used whenever the class is instantiated and

a slot value is not explicitly provided; the defaults may
be changed with a new default slot value form at the

Vector types top level in an MUE file. To set a default neighborhood'
3d-ordered-point-sets, one would use a form such as theAs may be inferred from the previous examples, the vec- following:

tor clause is used to describe homogeneous sequences of

class instances; an array representation is presumed. A (make 3d-linesegment-neighborhood 23
vector clause begins with the word vector. The second (slot span 3.3))
item in a vector clause is the number of elements in the (default-slot-value
vector; the third is the data type of the vector. Vector 3d-ordered-pointset
elements are constrained to be of the same type as spec- 3d-nghbrhood (use 23))
ified by the vector type, or in the case of bit types, the
elements must be integers. Floats

IUE Exchange Format provides only 1D vectors and The syntax for floats is a subset of those of Common
vectors of vectors; matrices are represented by vectors Lisp, C, and C++, thus permitting it to be parsed by the
of similar vectors (which are generally similar in both standard tools of any of those languages. It is expected
length and data type.) It is possible to represent matri- that IUE floats will always be double precision floats.
ces of arbitrary size and dimensionality using this mech-
anism without extension to the grammar for the IUE Reserved Words
Exchange Format. The number of reserved words has been kept to a mini-

Example of a vector representation of an mum and the grammar designed so that changes to the
1024xlO24x8biL array: IUE hierarchy will not necessarily force changes to the

(vector 1024 vector grammar for the exchange format; in particular, IUE

(vector 1024 bit8 class names and slot names are not reserved words.

10 11 10 10 14 14 15 ... User-defined MUE classes
)
(vector 1024 bit8 A restricted form of class description is provided so that
11 11 10 11 14 15 16 ... IUE users may describe their extensions to the IUE hi-
) erarchy. Such descriptions will be limited to class inher-
.. itance and slot definitions; no provision will be made for

)" transmitting code fragments. An example follows:

Note that decimal integers are being used to represent bit 3 A 3d-linesegment-neighborhood is a linesegment joining
values; a special syntax for bit values is not particularly a pointset in a one-dimensional sequence. Points are not
necessary. considered connected if the span distance is exceeded.
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numbers, then a C++ implementation will need to dou-
(class my-new-iue-class ble up hash tables (this is not necessary in a Common

(inherits Lisp/CLOS implementation.) Implementation will be
iue-classl somewhat different in a Lex/Yacc driven implementa-
ius-class2 tion, but details of the restoration of the circular refer-
iue-class3) ences will be identical.

(slots This algorithm presumes that an implementation can
foo float support 'empty shell' class instances, whose slots have
bar integer not yet been filed in. If an implementation cannot sup-
baz bit) port such WUE Class Instances, but can create an inferior

object without knowledge of its superiors (e.g., create
edges given vertices but not yet knowing 1-chains), then

A lisp system can, of course, create such classes on the it will be necessary to provide an intermediate 'storage

fly during IUE file input. A C++ system will have to class' in which to stash Class information such as slot

take extra steps; a preprocessor will have to locate the contents, until the object description has been read in
class descriptions in the WUE file and emit a C++ header allowing the UE Class Instance to be created. Such a

file fragment. The person(s) managing the WUE system two stage process may necessitate doubled hash tables
atithe destination site willon rspomnaginghe fr ssteg g for storage of intermediate information, and cause someat the destination site will be responsible for integrating processing steps to be slightly delayed. Such a two stage
this C++ code fragment with their system. process is used in the Yacc/Lex prototype reader for Ge-

New IUE Classes must be defined before they are ref- ometer Jr.
erenced. oee r

There are many implementation details such as han-

dling slots which contain lists of references (both resolved
Appendix 1 and unresolved) that are not handled; some creativity

Output Algorithm may be required of the implementor, although there are
no insurmountable problems (just a few irritating ones.)

Using this algorithm to write an WUE class instance will Data structures required:
produce a properly ordered flat file with the class in- sequence number hash table - key is sequence number,
stance for the WUE Class Instance selected appearing last datum is empty-shell IUE Class Instance
in the file, which is proper organization for (external unresolved reference hash table - key is sequence num-
... ) clauses. Infinite loops due to circular references are ber of as yet undefined instance; datum is a list of refer-
avoided as objects who have sequence numbers assigned ences in the form (sequence number, slot-name)
already have either been written or are on the stack wait- call Function Read-Object for each (make ...) in the
ing to be written, and thus do not need to be revisited, input stream:
The algorithm is depth-first in character. Function Read-Object( input-stream) returns IUE-

Data Structure required: Class-Instance
sequence number hash table - key is IUE-Class- RI: [make instance] create appropriate shell of a IUE

instance, datum is sequence number Class instance based on IUE class type from (make ...)

method Output-object( IUE-Class-Instance, output- clause
stream) R2: [record sequence number] put Class Instance shell

1: [check for previous visitation] if object already has and sequence number in sequence number hash table
sequence number stored in hash table then return R3: [for all slots and attributes] if make clause encoun-

2: [assign sequence number] obtain sequence number tered then recursively invoke Read-Object on it, and set
and place in sequence number hash table slot value to return value else if a sequence number is in

3: [for all slots] if slot contains object, list of objects, the sequence number hash table then set slot value else
or vector of objects then for each sub-object recursively put current sequence number, slot name, and sequence
invoke Output-Object on sub-object number of undefined object on the appropriate list in the

4: [for desired attributes] if attribute contains object, unresolved reference table
list of objects, or vector of objects then for each sub- R4: [check for references that can now be resolved] if
object recursively invoke Output-Object on sub-object sequence number for newly created WUE Class Instance

5: [write instance header] "(make class-name appears in unresolved reference hash table, then fill the
sequence-number ..." slots in the appropriate class instances and remove the

6: [for all slots write] "(slot slot-name slot-value)" associated triple from the table.
7: [for desired attributes write] "(attribute attribute- R5: [return] newly created WUE Class Instance as re-

name attribute-type att-value)" suit

8: [write instance close] ")"

Input Algorithm

This reader will handle both flat and deep representa-
tions of data structures, correctly restoring circular ref-
erences. If names are to be handled as well as sequence
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Appendix 2

WUE Exchange Format grammar:

<IUR-Zxchange-Format-Fil*> : := <IUE-File-Identif jer> { <top-obj act>}

<digit> ::0 1 1 1 2 I3 I4 1 5 I6 I7 I8 1 9

<letter> ::A 8 C ID I F IG 5 1 J 9 1 L I N N 1 0 IP
IQ I R S T U V V IIYIZ ab c I dI e
Ig Ihi ii I kil a101 P1 qI r sI a t lulv
IVIx ylz

<standard-type> ::= vector Islot Ifloat Iinteger
I bit32 Ibit24 Ibiti IG bitsI bit

Itype

<reserved-words> ::= make Iuse I list I slot I t Inil
I<standard-type>

I IUE-Exchange-Format-Version
Idefault-slot-value
Islots I inherits I external

<digit-sequence> :*<digit> ( <digit>)

<sign> ::= + I -

<float-expon~ent> :=e<digit-sequence> I E <digit-sequence>

<dotted-digits> :=<digit-sequence> <digit-sequence>
I<digit-sequence>

I <digit-sequence>

<unsigned-float> :: <dotted-digests>
I <digit-sequence> <float-exponent>

I<dotted-digits> <float-exponent>

<float> := <sipn> <unsigned-float>
I <unsigned-float>

<string> : := <double-quote> <printable-ascii-characters> <double-quote>

<integer> ::= <digit-sequence> I <sign> <digit-sequence>

<label> ::= <integer> I <string>

<identifier> ::= <letter> { <identifier-char>)
I <digit> { <hyphen-or-digit> I<letter> { <identifier-char>

<identifier-or-type> ::= <identifier> I<standard-type>

<identifier-char> ::a <letter> I <digit> I -

<hyphen-or-digit> ::= - I <digit>

<WUE-File-Identifier> := ( IUS-Exchange-Format-Version
<digit-sequence> <digit-sequence>)

<oake-or-use> ::= <make> I<use> I nil
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<obj-list> ::= f <make-or-use> }

<top-object> -:a <mske-or-us.> <default-slot-valus> I <class-dofinition>

<list> ::= ( list <list-tail> )

<list-tail> ::= <obj-list> I <int-list> I <float-list>
I <vector-list> I <list-oa-lists>

<mt-list> ::= <integer> { <integer> }

<float-list> ::= <float> { <float> }

<string-list> :: <string> { <string> }

<vector-list> :: <vector> { <vector> }

<list-of-lists> ::= <list> { <list> )

<vector> ::= ( vector <element-count> <vector-tail> )

<vector-tail> ::= integer <int-list>
I float <float-list>

I string <string-list>
I vector <vector-list>

I list <list-of-lists>
I identifier <obj-list>

<element-count> ::= <int>

<class-definition> ::= ( class <class-name> <class-inheritance> <class-slots> )

<class-name> ::z <identifier>

<class-inheritance> :: ( inherits { <class-name> } )

<class-slots> : slots ( <slot-name> <identifier-or-type>) )

<make> m (ake <identifier> <label> <slots-and-attributes> )

<use> ( use <label> )
I ( use <external> )

<external> :=a ( external <string> )

<default-slot-value> : default-slot-value <identifier> <identifier>
<slot-value> )

<slots-and-attributes> { <slot-or-attribute> }

<slot-or-attribute> ::= <slot> I <attribute>

<slot-descriptor> ::a ( slot <identifier> <slot-value> )

<slot-value> ::= <string> I <integer> I <float> I t I <list>
I <vector> I <make-or-use> I <identifier-or-type>

<attribute-descriptor> ::= ( attribute <identifier> <identifier-or-type>
<slot-value> )
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The Image Understanding Environment: Image Features

Keith Price and IUE Committee*
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

Abstract Image features form a portion of the larger spatial
object hierarchy and are directly related to the math-

An WUE image feature is a spatial object that ematical structure of the hierarchy. WUE users such as
represents some information extracted from an application developers will be interested in how to use
image. These features include image points, and extend the image feature classes with little consider-
curves, edges, lines, regions, and complex col- ation of the larger spatial object hierarchy. The spatial
lections of these kinds of features, such as per- object hierarchy and the relationship of image features
ceptual groups. Image features without ref- to it developed through the series of meetings of the IUE
erence to the underlying image correspond to Committee and forms a clean way to describe and im-
basic objects in the spatial object mathemat- plement the hierarchy. There are several reasons why
ical hierarchy. The image feattre class shares developing image features within the spatial object hier-
a common development with this mathemati- archy is crucial.
cal structure. In practice, image features will First, there is a natural correspondence between the
be kept in collections (the features extracted sequence of topological constructs, e.g. vertex, edge, and
from an image) and will be used as an element face used for spatial objects, and the descriptions of im-
of that collection of through the use of a spa- age features for points and junctions, edges, and regions.
tial index. This paper describes the philosophy Access to this topological representation is especially im-
behind the image feature with a few limited ex- portant for describing composite image features such as
amples of how they are described and used. linked line segments, adjacencies between regions found

in segmentations, and perceptual groups. Second, since

1 Introduction image features generally correspond to the projection of
three dimensional object models, it is useful to have the

This paper assumes that the reader is familiar with the same underlying operations and representations used for

basic concepts used by the Image Understanding Envi- both of them. Third, image features are characterized by

ronment (especially the basics of object oriented develop- having a wide range of possible attributes. We wanted

ment and the basic classes used by the IUE) and should to be sure that it would be possible for users to easily
be read in conjunction with the other papers on the WUE define and extend the attributes associated with image

included in these proceedings. The complete documen- features. Many of the shape attributes associated with
tation on image features in the IUE requires many pages image features are described by fitting a curve or two
and this paper is intended to provide a general descrip- dimensional shape corresponding to a spatial object.
tion of the image feature classes not to be the complete
description. 2 Relationship to Spatial Objects

Central to any Image Understanding research or ap- Image features are defined as spatial objects that repre-
plication program is the extraction and use of image fea- sent some information extracted from an image. These
tures. Users of the IUE include applications users who features include simple features such as points, curves,
are primarily interested in the user interface, applica- and regions and complex collections of image features
tions developers who will use and extend image features, in perceptual groups. An image feature has very little
and other developers who will implement the more basic meaning separate from its underlying image-without
programs. For each of these groups, the image feature the relationship to the image, image features fit into the
class definitions will be important. basic spatial object hierarchy. In practice, image fea-

"The members of the WUE Committee are: Tom Binford- tures will be kept in collections (i.e. a collection con-
Stanford; Terry Boult-Columbia; Bob Haralick, V. Ramesh- taining all the edge features extracted from one image)
U. Washington; Al Hanson, Chris Connolly-U. Maw.; Ross and will be stored, referenced, and manipulated as ele-
Beveridge-Colorado State; Charlie Kohl- All; Daryl Lawton- ments of that collection. A common alternative for the
Georgia Tech; Doug Morgan-ADS; Joe Mundy-GE; Keith collection would be the spatial index that allows image-
Price-USC; Tom Strat-SRI. like (efficient) access to the features based on position.

311



Since image features are usually kept in collections some every pixel in the image is treated as a single point with
of the slot values associated with image features are no associated properties and is thus a verter. The main
only stored once for the collection. For example, the aspect which distinguishes the class edgel from the basic
coordinate-system associated with an individual image vertex is that a local model for the geometry of the image
feature is that of the underlying image, and since most intensity surface is assumed. The local neighborhood is
expensive processing with the image feature is fixed to defined by a disk about each potential edgel location.
the coordinate-system of the image, there is no cost as- In the IUE core, we allow a number of simple mod-
sociated with this information. els for the intensity surface in the local neighborhood

Me~hods for image features are inherited mostly from around each edgel location. The neighborhoods are char-
the spatial-object class. There will be varying needs for acterized by the local structure of image intensity sur-
specializations for methods relating to extraction (from faces. The neighborhoods are defined as follows in order
the image), property value computations (i.e. color), of frequency of occurrence in an image:
display on the image, spatial indexing operations, input, A The interior of a single surface.
output, grouping, and the various iterators over sets of
spatial objects (subsets, all in an area, etc.). Image fea- B Two surfaces intersect at the edgel.

tures will also be used as the basis for the region-of- C Three or more surfaces. Often corresponds to & cor-
interest in the image processing operations. ner.

Image features are developed following the mathemat- D The image intensity surface is too complex to be
ical structures used for spatial-object where the vertex, described by a simple model.
0-chain, edge, etc. of the spatial-object hierarchy have
analogs in the image feature hierarchy. The most appar- The intent of the cover with small disks is to divide
ent difference between the mathematical structure of the and conquer, to make small neighborhoods that are suf-

spatial-object classes and image features is the inclusion ficiently simple that it is feasible to describe the sur-

of image related property values and the use of named face adequately over the neighborhood. This is a fine to
object classes that correspond to the kinds of image fea- coarse to fine approach. In this approach, the first level
tures used in image understanding research and develop- of disks is the smallest meaningful. It is simple to de-
ment programs. An important requirement of the IUE scribe patches of class A that include a single continuous
has always been to support rather than hinder research, surface. Continuous patches are described in differential
so we do not define these objects in absolute final forms geometry by a tuple: (point, tangent plane, and curva-
but indicate what property values (slots) are possible, ture tensor).
the names that will be used, and the associated seman- It is reasonably simple to describe the compound sur-
tics. Between different programs, the slots may vary, but face over a disk of type B that includes two surfaces.
the creation, reading, and writing programs will allow for This model is the most common representation used to
missing and extra information without harm. Our first define an edgel. Two surfaces are bounded either by a
description of image features will parallel the mathemat- curve at which two surfaces intersect or by a limb, an ap-
ical hierarchy of spatial-objects. Most image features fit parent boundary. On a small disk, the boundary curve is
clearly into this parallel hierarchy, but some may not be locally straight. The model of type C is typically called
obvious at first glance. a corner and is best represented as an attributed vertex.

In addition to the position slot that is inherited from
2.1 Image Points as Special Cases vertex, the basic set of attributes that is associated with

Image points are simple features for representing image the edgel model are as follows:

positions. As was used for point in the spatial object Line Segment The parameters of the edgel line
hierarchy, the simple image-point does not inherit from segment.
the image-feature class, but is a primitive element that Tangent Vector For efficiency the local line seg-
only contains the image positions. Sequences of points ment may be represented as the tangent vector.
are stored in specialized versions of the ordered-pointset. Tangent angle Another alternative is a quantized

2.2 Vertex Objects and Image Features tangent angle.

The mathematical object vertex is a O-D object. A O-D Strength The local slope of the discontinuous traii-

image feature is a point in the image, possibly with some sition between the two surfaces in the edqel neigh-
associated neighborhood. This point can be something borhood.
extracted directly (e.g. points from an interest operator, Left Surface Normal The surface normal of the
a corner detector, etc.) or the point could be the result intensity surface on the left of the edge boundary.
of an intersection of two lines (or line-segments). The Right Surface Normal The right surface normal.
primitive slots for an image feature vertex are the image
positions, but, depending on the feature being modeled, Covariance Matrix The variances of the param-

many other property values are possible. eters of the edgel model computed from the actual

A common image feature corresponding to vertex is intensity distribution in the neighborhood. Gives a
the edge--extracted in a neighborhood and representing likelihood that the model holds for the local disk.

the step between two intensity surfaces. A simple edgel These point operation results can be grouped in a
that encodes the yes/no result. of an edge operator at number of ways depending on the user's concept of the
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underlying geometry of the boundary or region. The An image-0-chain may be analyzed to produce a image-
simplest group is the 0-chain which is a set of vertices i-chain composed of image-line-segments that approx-
with an implicit linear ordering. Usually a full topo- imate the original curve and the individual segments
logical description is not applied until a local neighbor- maintain the order given by the original edge elements.
hood analysis is done to "link" edgels into connected sets
called edgelchain. 2.6 Face, 2-D Image Features

2.3 0-Chains of Image Features The spatial-object face corresponds to 2-D image features
most clearly represented as a 2d-image-region in an im-

The mathematical 0-chain describes ordered collections age. The low level representation of a region can vary
of objects of class vertex, such as that formed by link- according to the ultimate use due to time and space effi-
ing edgels into a discrete curve. For some purposes the ciency considerations, and can include point sets, binary
ordered-pointset class may be used to group edgel se- masks, interval codes, boundaries, etc. Each of these can
quences and for others the more complete image-0-chain be derived from the others. A nice aspect of treating re-
is proper. The main difference is that the image-O-Chain gions as faces is that all of the edge mathematical struc-
is a topological concept which supports algebraic opera- tures can be used directly to determine adjacent regions
tions on the points while the ordered-pointset is a set of and represent the geometry of the image structures.
feature points with no topological interpretations. There are several typical attributes associated with

A sequence of corner objects also forms a image-0- 2d-image-regions. Some of these are simple scalar and
chain but here there is often no local neighborhood rela- matrix attributes for describing shape such as Area (in-
tion assumed between the corners. However, the corners teger number of pixels), Euler number, Centroid (the 2-D
usually correspond to junctions of two or more edges point of the centroid), Scatter-Matrix-of-Pixel-Positions,
and it is reasonable to use the topological structure of and Compactness. Some shape attributes correspond di-
the vertex for the basis of the individual junctions. rectly to instances of ID and 2D spatial objects which

describe the shape of a region and are instantiated by ap-
2.4 Edge, One-Dimensional Image Features plying their corresponding fitting methods to the edgel
The name edge has a clear meaning in describing graphs chain of a region. Other attributes such as average inten-
and in topology, and has a very different meaning in most sity, variance, and so forth, are computed using a spatial
image understanding work. In the TUE descriptions, we index to register a region with an image and to access
use edge for both of these meanings, but usually the the corresponding image values. These attributes are
context will indicate which one is meant. The mathe- stored as a gaussian-distribution with two slots, mean
matical edge corresponds to many image features, espe- and variance.
cially bounded line segments and curves. The image-
line-segment and image-curve-segment are the most ob- 2.7 2-Chains, Linked 2-D Features
vious objects in this class. These features may be com- A 2-chain is a sequentially linked face feature. It is likely
puted directly from the image or derived from other im- that the more conventional region adjacency graph is
age features. the more effective data structure to group faces as im-

The image-line-segment potentially has a large num- age regions, although it is essential that the underlying
ber of attributes, but the basic set of attributes include: mathematical descriptions of edges and faces be used.

VO and Vi The primary information of the line Composite regions produced by an image segmentation
segment is the beginning and ending points. These procedure are represented as multiply connected facesare are vectors of image locations. corresponding to a set of 1-Chains enclosing pixel areas

in the image plane. Region merging operations are sup-

0-chain A 0-chain (ordered list) of the pixel loca- ported by the topological operations for removing com-
tions corresponding to the line segment. mon edges between faces. Merging operations require

Strength The difference across the line segment, methods to access properties of adjacent regions shar-

a float. ing a common boundary. These descriptions of region
adjacencies are similar to the attributes used with edgel

Segment-length The length across the line seg- models.
ment, a float.

tangent-angle The direction (in radians, a float) 2.8 Blocks, 3-D Image Features

of the line segment. Images are typically 2-D objects, but with range sensors
and time sequences, we can expect to deal with extend-

2.5 I-Chain, Connected i-D Features ing the block to image features.

The mathematical construction continues with the de- 2.9 Other Collections of Image Features
scription of 1-Chains or ordered sets of 1-D objects such
as sequences of line segments. 1-Chain structures can Not all collections of image features fit the definitions of
also intersect at junctions represented by objects of the the X-chains. For example, perceptual-groups formed by
class vertex and be extended to define closed region clustering some number of image features into perceptu-
boundaries. In practice, it is often difficult to form com- ally meaningful structures may result in a image-0-chain
plete topologies of these types in a bottom-up fashion. or image-l-chain where points or lines are grouped into
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single curves, but frequently they are grouped into ei- * Pseudo slots - the slots that are added with this
ther simple shapes with few features (e.g. two parallel definition.
lines, rectangles, etc.) or clustered into an area feature - tangent-angle-z float Another alternate orien-
where order and linking are unimportant. The IUE will tation specification for the line segment. The
provide direct support for basic groups of image features angle in radians of the line segment. The sense
through the 2d-segment-pair, 2d-segment-triple, and 2d- is counter-clockwise with respect to the x-axis.
segment-quad classes. The specific shapes will be han- i count-clockis wit res to t-axis.
died by classes such as 2d-segment-parallel, 2d-image- exceptgehe-angle fo Sames g
corner, 2d-segment-junction, 2d-u-shape, etc. which will except the angle is in degrees.
inherit from the appropriate spatial-object class and con- - tangent-angle-y float Another alternate orien-
tain the links to the image features that contributed to tation specification for the line segment. The
the object. angle in radians of the line segment. The sense

Perceptual grouping produces hypotheses that include is counter-clockwise with respect to the y-axis.

cluster of interior cells of a region and n-tuple of edgels - tangent-angle-d-y float Same as tangent-angle-y
along a smooth curve boundary between surfaces. except the angle is in degrees.

Basic images features may be grouped by a variety - slope float The direction of the line represented
of properties such as proximity, alignment, curvature, as the slope in the image coordinate space.
etc. Many different data structures can be important - r-intercept float The position where the seg-
to use in this grouping process, such as K-D Trees and ment intersects the X axis, or the column value
quadtrees Additionally, the Hough transform performs when the row is 0.
directional grouping. Proximity and directional group- - y-intercept float The position where the seg-
ing also often use different forms of spatial indexing. One ment intersects the Y axis, of the row value
example of the grouping process involves the generation when the column is 0.
of two sets of hypotheses from a tuple of edgels. The - rho float Hough Transform representation, dis-
first set is that there is not a smooth curve between two tance.
surfaces. The second set is that there is a smooth curve - theta-: float Hough Transform representation,
between two surfaces. Hypotheses for individual edgels angle of the 2d-lane-segment normal in radians
are that they are on the curve, that they are random with respect to the x-axis.
spatially-invariant as a result of camera noise, and that
they are "clutter," non-random and not on the smooth - theta-x-d float Hough Transform representa-
curve, e.g. another edge. tion, angle theta-z in degrees.

The inheritance structure shows how the slots for this
3 An Example Image Feature object are derived. Most slots are derived from the ob-

jects earlier in the hierarchy with the direct 2-D image
To illustrate the construction of a class in the image related slots added at this stage. Additionally, many of
feature hierarchy we will use the 2d-image-line-segment. the slots are implemented as "pseudo" slots rather than
This description shows the level of description available as "hard" slots. That is, these behave like slots in terms
to the system developers and illustrates how slots and of storing the values, but do not take any space if they are
methods are inherited in the construction of objects. It not needed. Additionally, some slots are defined early
must be pointed out that the format in the complete in the hierarchy and are refined as the hierarchy is de-
description documents is superior to what is given in veloped (e.g. centroid changes from the general point to
this paper. the more specialized nd-image-point). Slots such as co-

ordsys (the coordinate system for the spatial object) are
3.1 2d-image-line-segment usually the same for all image features corresponding to

one image (and are the same as the image).
A major structure in image segmentation algorithms.

Many of the slots are associated with the orientation
of the line and there is a standard orientation ambigu-
ity which arises in image coordinate frames. At times
it is convenient to have the image coordinates with x
along the increasing image column index and y down-
ward along the increasing row index. This coordinate is
left handed, and alters the meaning of the segment orien-
tation. The sense of the coordinate frame is provided by
its definition at the level of spatial-object. It is assumed
that the inverted coordinate frame is normally used, i.e.,
'y' downward. In order to put the features into a stan-
dard right-handed cartesian coordinate system for later
processing, the 'y' orientations, Oy, must be transformed
to Py + 180 which is a method on coordinate-transform.

* Superior Class image-line-segment

314



Inheritance Structure:
Class where Defined Slot Name jType of Slot How Implemented
sipatialobject coordsys pointer(coordinate-system) hard
spatialobject bounding-box Ialigned-box-neighborhood hard
spatialobject centroid point hard
image-feature centroid nd-image-point hard
image-feature image pointer(image) hard
parametric-curve domain pointer(spatial-object) hard
parametric-curve range implicit-curve hard
parametric-curve parametric-mapping pointer(function) hard
parametric-line range implicit-line hard
parametric-line Imat vector[n] (vector[2] (float)) pseudo
2d-parametric-line range 2d-implicit-line hard
2d-paramnetric-line Imat. vector(2](vector[2](float)) pseudo
topology-node superiors list(pointer(topology-node)) pseudo
topology-node inferiors list(pointer(topology-node)) pseudo
edge O-chn 0-chain pseudo
edge 1-chn list(pointer( 1-chain)) pseudo
edge vo pointer(vertex) hard
edge V1. pointer(vertex) hard
image-line-segment tangent-vector vector[n] (float) pseudo
image-line-segment fitting-tolerance float pseudo
image-line-segment edgel-fit float pseudo
2d-image-line-segment tangent-angle-x float pseudo
2d-image-line-segment tangent-angle-d-x float pseudo
2d-image-line-segment tangent-angle-y float pseudo
2d-image-line-segment tangent-angle-d-y float pseudo
2d-image-line-segment slope float pseudo
2d-image-line-segment x-intercept float pseudo
2d-image-line-segment y-intercept float pseudo
2d-image-line-segment rho float pseudo
2d-image-fine-segment theta float pseudo
2d-image-line-segment theta-d float pseudo
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Spatial objects in the Image Understanding Environment

J.L. Mundy and IUE Committee*
Box 8

G.E. Corporate Research and Development
Schenectady, NY 12309

Abstract point set and its embedding dimension. The ma-
jor categories are, point, curve, surface and vol-

A major insight achieved by the IUE committee lume. These entities correspond to point sets with
is the concept of the "spatial object". Objects to dimension, 0,1,2,3 respectively. The entities can
represent typical IU features such as points, lines, be placed in coordinate spaces of their dimension
arcs, volumes, etc., have common spatial attributes or higher. For example, a plane can be placed in
and operations. The concept of "spatial object" is spaces of dimension 2 or higher. Composite struc-
an effort to abstract these properties into a compact tures such as polygonal curves or polyhdrons are
set of generic classes. In this paper, we provide an represented by topological networks which contain
outline of the design of spatial objects in the IUE. pointers to the geometric elements. For example a

1-chain is a sequence of edges. An edge is a curve
segment, bounded by two vertices. A vertex is a

1 Introduction point with associated topological connections.

A major insight achieved by the IWE committee
is the concept of the "spatial object". Object-
s to represent typical IU features such as points, In addition to these basic structures, we also in-
curves, surfaces and volumes, have common spatial troduce the concept of neighborhood which is
attributes and operations. The concept of "spatial taken from the standard theory of point set topol-
object" is an effort to abstract these properties into ogy. The various neighborhoods are needed to es-
a compact set of generic classes. Essentially, a spa- tablish continuity and connectedness relations be-
tial object is a point set in n-dimensions. The point tween points and other spatial objects. Any spatial
set has an associated coordinate frame so that pro- object can act as a neighborhood, but we define a
jections and transformations can be applied to the special hierarchy of typical neighborhoods with the
point set. It is not essential that the point set be a idea that the rather simple intersection tests associ-
simple flat set, but can be represented as a hierar- ated with neighborhoods will be implemented with
chical group or other relationship among groups of hard coded method implementations and will short
point sets. A polyhedral object represents a com- circuit most of the pointer chains associated with
plex spatial object which represents a set of points deep inheritance hierarchies.
in 3D space.

We divide the spatial object concept into ma-
jor categories according to the dimension of the

*The members of the WB Committee awe: Tom Binford- In this paper, we provide an outline of the spa-
Stanford; Terry Boult-Columbia; Bob Haralick, V. Ramesh- tial objects in the IUE. The paper is organized in
U. Washington; Al Hanson, Chris Connolny.Umass; Ron the following fashion. First we discuss the details
Beveridge-Colorsdo State; Charlie Kohl- AII; Daryl Lawton- of the class "spatial-object". In subsequent sec-
Georgia Tech; Doug Morgan-ADS; Joe Mundy-GE; Keith tions, we discuss implicit and parametric represen-
Price-USC; Tom Strat-SRI; The committee effort has been
funded by numerous DARPA grants and associated funding tations of spatial objects, representations for topo-
partners under contract to each institution, logical structures, and representations for solids.
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2 Spatial Objects Dimension[W --o Z] - The intrinsic dimension
of the point set. For example a point has di-

2.1 Abstract Geometry mension 0, a curve dimension I and a surface
dimension 2.

The theory of geometry is based on abstract con-

cepts such as point and various point sets, e.g. line, On(p) [n ---, {T, P}] - For point sets which
surface ... etc. The theory of these structures can have a boundary, the method On(p) is true for
be presented and manipulated entirely in terms of points which have a neighborhood containing
formal predicate logic. For example, we can rep- at least one point, q, for which In(q) is false.
resent the axiom that there is always at least one The concept of neighborhood is defined later.
point not on a given line'

Intersect(SO) [Nn --, Rn]- Perform a Boolean
V £ 3p Line(1) A Point(p) A - In(p, £) intersection with the spatial object, SO.

However, the theory of geometry and topology is Compose(SO) [R - Rt ] - For parametrized
not very efficiently computed in such formal terms. spatial objects, it "s meaningful to use the
For practical applications, it is necessary to provide range of one spatial object, 01, as the domain
a model for these abstract concepts which permits of another, 02. The dimension of the Domain
efficient computation of their properties and rela- of 01 is n and the range of 02 is m. For ex-
tions. A common model for geometry is the repre- ample, a polygon may be used as a region of
sentation of a point as a tuple in Rh. A line then interest in an image.
becomes a set of points, where set membership is
defined by, Nearest-Distance(p) - For point sets which have

a metric defined 2 , it is meaningful to compute
In(p, C) =_ (p = ctp. + Opb) (1) the distance from a point to the nearest point,

i.e., two unique points determine a unique line by p, which is On(p).

linear combination. Transform(CS) - Transform all the points of the
Now a particular concept can have many models, spatial object from the current coordinate sys-

For example, a circle can be defined by X2 + y2 - 1 tem of the spatial object to the target coordi-
or p - 1 = 0 depending on the use of cartesian or nate system, CS.
polar coordinates in the model for the circle. The
models are related by the fact that they represent Boundary - Returns the boundary of a spatial
the same abstract concept, the unit circle. For most object. For example, the boundary of a curve
applications, the most effective model for geometry segment is two vertices. Note that the bound-
and topology reptesents a point as an n-tuple from ary of a boundary is always empty or NIL.
Rn. This model is called the n-Euclidean model.
The concepts such as curve and surface are sets of Surface-Normal(p) - When a point, p, satisfies
points or n-tuple sets. On(p) and the spatial object is a differentiable

In the development to follow, a Spatial Object manifold then it is meaningful to compute the
will either be a point or a point set which can sup- surface normal at a point. Many other surface
port a standard set of methods. Some of the more differential properties can be defined at this
common basic methods of the spatial object are, level of abstraction.

In(p) [R'• -- {T, F}] - A point p is in the set These methods are used extensively throughout
of points defined by the spatial object. many IU algorithms and the IUE classes are de-

signed to efficiently implement these basic meth-
'These is some confusion over the predicates, In(p) and ods. In most cases these efficient implementations

On(p) in the mathematical literature. For example Hilbert
uses "On" to mean that a point is an element of a line point will be based on sets of R" and associated algebraic
set. On the other hand, common usage uses the predicate operations.
"In" to denote an element of a set. In the discussion here,
we take the predicate symbols In and E to be equivalent. 2A metric is a function which defined on two points which
We reserve the symbol On to refer to points which are In obeys a set of axioms corresponding to the usual notions of
the boundary of a set. distance. For example, d(PF, Ps) < d(P1 , P2 ) + d(P2 , P 3 ).
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sented as vectors of R, defines the points of a line.
An Attributed-nDPoint is the same as point, ex-
cept that a set of dynamic attributes are associat-

R"• Ied with the point. These attributes typically arise
in the context of segmentation and correspond to
properties such as texture, contrast, or differential

L"Kin' m geometry properties. For example an Edgel is con-
iNt'n)0°d sidered to be a point with attributes describing the

local pixel neighborhood around a discontinuity.

n T 2.3 Coordinate Systems

When we have a large number of simple objects,
such as an nDPoint, it is not efficient to associate

zan Can flAn Fl a coordinate system with each point individually.
Instead, we group the points into a set and then
associate the coordinate system with the set as a
spatial object. In this case, we make use of the
generic R' tuples to save the cost of linking each
point to a coordinate system. Similarly, we do not
attach a coordinate system to K for many mathe-
matical definitions. For example, it is not meaning-

Figure 1: A portion of the IUE class hierarchy ful for v to have units. Sometimes it is warranted

which defines the fundamental notion of relation- to associate a coordinate frame with a single point,

s and point sets. as in a trajectory or track. We do not rule out the
idea of a single point being a spatial object but to
be an equivalent data type, it must be represented

2.2 The nDPoint as a point set with one element.

The nDPoint is the fundamental element of geom- The process of associating a coordinate system
etryoIn the iE the point is modeled as a tuple of with a spatial object is achieved by associating at-etry. nthIU thponismdeda tpeoftributes with each element of the • tuple. At-

real numbers, i.e. an element of 3?. Each real num- tributes wreached of the dimension At-

ber in the tuple corresponds to a coordinate value tributes are attached to define the dimension and

with respect to the coordinate-system associat- type of each coordinate axis through the class Ax-

ed with the spatial-object. A simple point can be isType. For example, a coordinate might be dis-

considered to be a spatial-object with a default tance (dimension) measured in meters (units). To-

coordinate-system where each axis is just the re- gether these make up the attributes for a compo-
nent of the 3?" tuple. This attributed 3? is still a

al number line. A set of such points can be con- subclass of e so it can be used as the range and

structed and associated with a global coordinate- domain sets of a spatial object. The relationship to
system where the axes have defined units andax- the classes described in the section on coordinate

is types, along with relationships to other coordi- sses shown in the 2.

nate systems. We will often use the mathematical systems is shown in Figure 2.

structure of Rn as a model for the theory of points,
curves and surfaces. The hierarchy of Figurel il- 3 Implicit Point Set
lustrates the relationship of points and attributed
points to the basic classes. ' In truth, there is little The class Relation is specialized to form the con-
which distinguishes a nDPoint from the class Re- cept of an ImplicitPointSet as shown in Figure 3.
aINTuple and we may be able to dispense with the The tuples in the relation are instances of 3?. The
extra specialization layer. Arithmetic on elements predicate defining the pointset will typically be a
of 3? provides an algebraic representation for point system of algebraic equations. For example the in-
set operations. In the example of Equation 1 shown tersection of two ellipses in the plane generally de-
earlier, a linear combination of two points, repre- fines up to four real points from !R2. When the
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Figure 2: A portion of the WIE class hierarchy which introduces the use of coordinate systems with
spatial objects.

relational predicate is defined simply by an enu- the surface of a sphere requires at least two maps.
meration of the points in the relation, there is no The basic set of curve classes is shown in Fig-
distinction between an Impflcit-nDPointSet and ure 3. Most IU applications will involve either the
a set of nDpoints. implicit form of the line or an implicit conic. Most

It should be noted that the computation of im- curves of interest are implicit polynomial equation
plicit point sets is perhaps the most difficult area with the exception of the Superquadric which is
of mathematics. On the other hand, there is of the form
widespread use of simple implicit forms in IU al-
gorithms, such as the implicit form for a line and ((_ fLzI\(
circle, so we will proceed to develop the hierarchy ++ -- +-i = 0
to provide the necessary general representational L"I +

structure. The superquadric representation is appealing, be-

cause a wide variety of shapes can be generated

4 Implicit Curve with relatively few parameters.

The theory of implicit curves and surfaces is not 4.1 Embedding
well developed. For example, it is not easy to tell
the dimension of the solution, or variety, of a sys- As considered so far, these implicit point sets can
tem of polynomials. It is not unusual to get a mix- be defined on any set of RNO. However, it is often
ture of solution sets with different dimension. For useful to consider that a curve or surface is defined
the implicit case, the distinction between curve and on its natural dimension, i.e. R for curves and R2

surface becomes fairly abstract. A curve can be for surfaces. The embedding of the entity in high-
continuously mapped onto a line or circle. A sur- er dimensional spaces is carried out by defining a
face can be locally mapped to a disk and completely mapping from the natural dimension onto the tar-
represented by a finite number of such maps. For get space. In general, we can define any mapping
example, an invertible mapping between disks and from one space to another as long as the natural
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Figure 3: The implicit curve class hierarchy.

dimension and neighborhood properties of the ima- ed with a function must satisfy the property that
plicit spatial object are preserved. These embed- a given element from the domain maps to exact-
ding mappings can be used to define a broad class ly one element of the range. A parametric entity
of parametrised curves and surfaces. For example uses a function, and the function is either a com-
a conic can be defined as a parametrized curve in ponent of the parametric class or is intrinsic to the
the projective plane as [:i, z2, 33] - [t2, t, 1] which code implementing the class methods. A portion
is the equation of a parabola. Then any conic can of the IUE class hierarchy illustrating the defini-
be generated by transforming this projective space tion of the class Function is shown in Figure 4 In
with a homogeneous 3x3 matrix transformation. our use of the function4 . as the basis for paramct-
The 8 parameters of the matrix define a space of tnc spatial objects we further restrict the mapping
conic curves 3 . to be order preserving and one to one. With these

properties we can always find a unique point in the
domain for a given point in the range and the nat-

5 Parametric Spatial Objects ural dimension and neighborhood properties are p-
reserved. This is a much stronger condition than

A class of spatial objects can be defined in terms of is usually associated with the idea of parametric
the fi~nction. A parametric-entity in the IUE has curves or surfaces. The curves here are perhap-
the same interface as the type Relation. In this s more properly called "well-parametrized," where
way, all of the standard class methods which apply there is a unique inverse for each point in the range
to Relation, such as the predicates, In and Inter- of the curve.
sect, carry over to the parametric object classes. A As an example, a parametrised line, C, in the
function is a particular type of relation which de-
fines a mapping between two sets of n-tuples, the 4lnitiadly the IUE helra-chy was designed so that £ ros

Dowmain and the Rainge. The mapping associat- metric entity had the same class interface as a function.

Subsequently, it was reaslised that a more uniform class in-
5 Actually, the sacse of conics is only five dimensional so terface is achieved by making parametric entities be a type

this projective rmapping is not uniquely invertible, of Relation
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Figure 4: The claas hierarchy for parametric curves and surfaces. These classes are based on functional
mappings..

plane defines a mapping from R1 to 9R2 as follows, the case of a parametric cubic curve. In order to
make the parametrisation uniquely invertible, we

2 = o~t + b8  choose to introduce a vertex at the double point so
•= ayt + b, that there is an invertible parametrization between

where t E R is the domain and (a, p) E S?2 is the endpoints.
rang. I genral parmetizedcures ae fnc- This definition of In(p) assumed that the pointrawaseonItheeline.,Thisabackward referenceetouthetions with a domain 5? and represent mappings on- doain of the parae.Tric line swnotdrefirnced if ato some nD point space. In this example of the line,d

the entire set of 5? is used as the domain of C. The point is not on the line. In general, the implicitrange of the line in a can be further restricted by form of a curve or surface is necessary to determine

intrducng se ofineualiieson he oman, ~gif a point is in the set when the set is embedded in
intoduin a se fieuliiso.h dmleg a space with higher than the natural dimension. A

natural approach is to use the implicit form of the
curve as the domain of the parametric form. Then5.1 The method I+(p) the method In(p) for the range of the parametric

The predicate In(p) is decided by fnding the value form can be queried to determine if the point is on
of the parameter, r, in the domain ofTC and checking the curve before checking the bounds imposed by
the inequalities. In the case of our example, the domain inequalities. With our design for the

parametric form of a spatial object, the Domaine
t = 1 (3 +?,) (b.a+pbr) of an implicitformforacurve can be used asthe

2 a2 + a•c Range of the parametric form since a Range slot or
SuTimael thods ontp r) attribute is available for the parametric mappingThe predicately, the decided bynthepredingathe vae ffunction.

rests on an implicit point set which is defined by a
set of equalities n equalities on orxm. Most often,
these domains are simple balls or boxes in 5fa, as 5.2 Composition

in our simple example with the line segment.
For curves defined by higher order polynomials, A function defines a composition operation where

it is possible that a curve can cross itself, as in the range of one function is used as the domain
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of another. In the usual notation, composition is Often, the point set is viewed as a set of samples
represented as, f(m) = g(h(z)) where f is the corn- from some continuous space and the class definition
position of g and h. Here, the domain of f is the must provide the necessary structure to represent
domain of h and the range of f is the range of g. We the neighborhood properties of the samples. For
expect that the composition of functions will play example, in the case of pixel chains, each point is
a central role in the application of spatial objects associated with the square pixel neighborhood in
in the IUE. For example, consider an image I(z, y) the image. The computation of intersection or in-
which can be considered as a function from R2 onto cidence is carried out by taking into account the
R. We also define a parametric curve, say a circle intersection or incidence of pixel neighborhoods.
as a function from R onto R 2 . The composition of It is also common to define one-dimensional
the two functions is, I(circle. (t), circle, (t)) and is neighborhoods about each point by connecting each
a mapping from R onto R and represents the image point with a straight line segment which is the min-
intensities at the points of the circle which can be imal assumption about the continuity of the curve.
plotted as a one dimensional graph. Smoother assumptions can be introduced, such as

For the composition of a number of functions, the higher order derivative continuity, e.g., C1 and C2,
predicate In(p) is computed by a chain of function as well as global assumptions about the curve. For
inversions, until the decision is made on the point example, the samples are taken from a bandlimit-
set representing the domain of the first function. ed curve and the original curve can be recovered
Suppose we have a curve segment in the plane de- exactly by Sinc(z) interpolation.
fined by, C(f(g(h(t))) where 0 < t < 1. To decide
In(p), we compute, 5.4 Spline Curves

t = h-1 (g-1 (f-1(C-1 (p)))) A spline curve is a sequence of polynomial segments
with continuity conditions at each segment break-

Then it is easy to check if 0 < t < 1. Again, the point, or knot. The polynomial segments are de-
ultimate decision of parametric point set member- limited by the breakpoints along the curve. These
ship rests on deciding the membership of an implic- breakpoints are represented by the class Ordered-
it point set, in this case, the domain of the function PointSet Each polynomial segment is represented
h. as a linear combination of basis functions. Depend-

ing on what basis functions are used and the order
5.3 Parametric curves of continuity, we can categorize splines as being

In the hierarchy of Figure 4 a number of types linear, quadratic, cubic, Bspline etc. A general-
of theprametrichy curves re illustrat. nu er ctes parametric-curve is one where the curve is speci-of parametric curves are illustrated. The classes fled by a linear combination of user specified basis
are organised around the type of functions used functions. The different subclasses for parametric-
to provide the mapping from the domain to range splines include: 2d-linear-spline, 3d-linear-spline,

of the curve. The most common classes are de- ic -spline, 3d- lined-cubic-

fined in terms of polynomials of various degrees, 2d-quadratic-spline, 3d-quadratic-spline, 2d-cubic-

for example a parametric cubic curve is shown in spline, 3d-cubic-spline, and Bspline.

the figure. Another common class of projectively
defined curves is constructed from rational polyno- 5.5 Parametric surfaces
mials. For example a parametric circle can be de- The covering problem
fined as the ratio of two second-order polynomials.
Similarly, curves can be defined by trigonometric Parametric surfaces are generated by functions
functions as in the case of a circle parametrized by with two arguments, i.e. functions with domain R2 .
polar coordinates. The range can be any tuple space but usually we

We introduce the class OrderedPointSet, think of continuous surfaces in W'•. Again a wide
which is a sequence of points, to represent sampled range of surfaces can be represented by polynomial
curves or discrete pixel chains. Since the point set is functions. However these mappings do not in gen-
ordered, it has all of the semantics of a parametric eral cover an entire surface. For example, a para-
curve. That is, we can define a parameter along the metric mapping for the surface of a sphere in terms
curve which maps to points in the discrete point set. of spherical coordinates results in a non-invertible
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curve by varying parameters of the transformation.
The target coordinate system is a local coordinate
frame along the axis curve. Usually the generator
curve is maintained perpendicular to the axis curve
at the intersection point. A free parameter of the
transformation corresponds to the position along
the axis curve. Taken together, these constraints
define a parametrized transformation matrix which

.. .maps the generator curve at each point along the
axis. The final result is a surface patch with two
parameters, p, position along the generator, and
P, position along the axis. As usual, the bounds
on these parameters define the extent of the ribbon
surface patch.

Discrete surfaces
Figure 5: A parametrized surface patch generat-

ed by sweeping one curve segment along another. In a similar manner to the discrete curve, a para-
One approach to ribbon generation is to define a metric surface can be defined by a bit map array
parametrized transformation. where the points on the surface are generated by

the two array indices. The boundary of the the sur-
face can be defined by inequalities on the array in-

mapping. However, two parametric surface patches dex values. Alternatively, the elements of the array
with invertible mappings may be defined, domain which have no corresponding surface point

It is often necessary to use many parametric in the range can map to a range element which is
patches to make up a surface, since the particu- reserved to indicate undefined.
lar representation is not able to accurately "fit" a As in the case of discrete curves, we often wish
desired shape, even though the topology provided to consider this discrete representation as associ-
by two or more patches is sufficient. For example, ated with a continuous space. To achieve a con-
many industrial components with complex shapes tinuous representation it is necessary to maintain
are represented as composite surfaces made up of a a neighborhood description for the sample points.
network of BiCubicPatch instances. The patches A neighborhood definition is required to compute
are defined on a set of knots in a analogous man- intersection or incidence methods. For example,
ner to the spline curve case. The class Ordered- for a discrete 3D surface, all points might have an
PointSetintroduced earlier is implicitly ordered as implicit neighborhood defined by a sphere of given
a sequence, since this ordering supports the bulk of diameter. Then the method In(p) can be comput-
applications for ordered point sets. Therefore it is ed checking if p lies inside or on any of the spheres
necessary to add a new class, 2DArrayOrdered- surrounding the sample points. Similarly to the
PointSet to maintain the knots for splined surface discrete curve case, we can establish minimal two
representations. A number of examples of spline dimensional neighborhoods about each point by tri-
surfaces are indicated in the hierarchy of Figure 4. angulating the mesh of points. Again, higher order

continuous neighborhoods can be defined in analo-

The Ribbon gy to the curve case.

The Ribbon is an unusual case since it is de-
fined in terms of one curve segment which is swep- 6 Primitive Spatial Objects
t along another curve segment by a parametrized and Neighborhoods
transformation. An example is shown in Figure 5.
The ribbon can be generated by introducing a co- In any discussion of continuous curves and surfaces
ordinate system for both curve segments. Then as well as the sampling of these entities, it is neces-
the generator curve can be "swept" along the axis sary to introduce the concept of a neighborhood. In
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the current representation a neighborhood is sim- E--w•. "M,.,,•,

ply a primitive spatial object such as a line inter-
val, a box, a disk or sphere. Since these structures
are used so pervasively throughout the system, it •
is intended that these primitive structures can be
included in any class with minimal cost in space
and computation. T

For example, in computing connected compo- I Oranvona 2 Dimmisn 3 Onuoram

nents on an image segmentation it is necessary to Figure 6: A topological space is defined in terms of
maintain a description of the square pixel neigh- neighborhoods. This figure illustrates a number of
borhood about each point. Since applications will primitive neighborhoods for various dimensions.
involve millions of pixels for each image, it is essen-
tial that the representation of such neighborhoods
be efficiently processed. On the other hand, it is neighborhoods satisfy the properties of a topolog-
important that the resulting topological structures ical space. In the core IUE, we will implemen-
are consistent and compatible throughout the sys- t neighborhood methods for line segments, boxes
tern. It should be the case that a region boundary, and rectangular prisms. These neighborhood ge-
extracted from an image, will have the same topo- ometries support efficient computation of boolean
logical structure as a solid model and that image operations and predicates such as In(p). The con-
curves can be simply extruded to form solid sur- cept near is fundamental to define most of usual
faces. topological notions.

In general it is desirable to have any spatial ob-
ject act as a neighborhood, since in some applica- Let A be a subset of S and i a point of S.
tions the geometry of a neighborhood can be quite Thntpis a A if eb
complex. For example the projected neighborhood contains a point of .
of two conjugate pixels in a stereo image pair is a The definitions, Closed, Connected, Boundary,
3D trapezoidal prism in space. That is, any point can then be expressed in terms of near. For exam-
within this volume will project to the correspond- ple, we can define A as Closed if A contains all of
ing pixel neighborhoods in the image. As anoth- its near points. For more detail on these concepts
er example, very complex composite neighborhood and further definitions see Henle[4].
regions can be developed when the primitive neigh-
borhoods are circular or spherical. 6.2 The Neighborhood Classes

The IUE designates a small number of basic neigh-
6.1 Topological Space borhood classes which are designed to be efficien-

The fundamental concept of a Topological Space can t. This portion of the hierarchy is shown in Fig-

be defined in terms of neighborhoods as follows: ure 7. Neighborhoods are defined for various do-
main dimensions. Many of these neighborhoods

A Topological Space is a set of points S a- are defined implicitly. A 0-Dimensional neighbor-
long with the choice of a class of subsets A" of hood corresponds to a point. The most pervasive 1-
S, each of which is called a neighborhood of Dimensional neighborhood is the line interval, spec-
its points, such that, ified in terms of inequalities as

a) Every point of S is in some neighborhood. t1 : t < t 2

b) The intersection of any two neighbor- Also provided is an oriented line segment to pro-
hoods of a point contains a neighborhood vide a local curve neighborhood as in the case of
of that point, the Edgel. The neighborhood is specified as an

oriented line segment by specifying a parametrized
The usual definition of topological spaces use open line and bound inequalities on the line.
intervals, disks or spheres as neighborhoods as The 2D analogy of the line interval is the rect-
shown in Figure 6. It is easy to see that these angle which is aligned with the coordinate axes to
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Figure 7: The IUE neighborhood classes. These classes are meant to be efficient for large volume
applications and can be "mixed in" to other classes such as Image.

support efficient computation. A special neighbor- Neighbors - Returns the adjacent neighbor-
hood is defined for image pixel locations to sup- hoods of self. A set of neighborhoods is re-
port direct integer indexing of neighboring pixels, turned consisting of the neighborhoods con-
A more general 2D neighborhood is provided by nected to self. For example, the Neigh-
the VoronoiNbrhd where the neighborhood re- bors of a pixel neighborhood, •j, in a 4-
gion around a point is defined as the set of points connected image array are the pixel neighbor-
closest to the point. These concepts carry over di- hoods, (t..-l),, n('+i)j, nl,( 3 _i), nl,(j+I)}.
rectly to three dimensional neighborhood domains.

It is assumed that the neighborhood is defined In general, there are adjacent point sets of various
around each point in a spatial object as a result of dimensionality. For example, the point of intersec-
the mixin. For a single point, the process amounts tion of a line with a plane has a 1 D set of neighbors
to constructing a "point-with-neighborhood" class, on the line and a 2D set of neighbors on the plane.
Often, the same neighborhood description, with the This situation is handled below in a more struc-

same parameters, is applied to each point in a point tured topological representation belbws. At this
set. In the case of Edgel neighborhoods, the orien- basic level, it is assumed that the topological space
tation and possibly the length of the neighborhood is everywhere the same dimension.
varies from point to point. Similarly, a Voronoi
neighborhood is, in general, a different region for 6.3 Why Separate Neighborhood
each point in the set. Classes?

The neighborhood should in general be able to
support all of the methods for a spatial object, such In the discussion of neighborhoods, there is no real
as Boolean intersection methods. The additional distinction between the neighborhood classes and
methods which each neighborhood class must sup- the general concept of a spatial object. Indeed, we
port are summarised below. For the purpose ofdefniton t i asume tht te nighorhod s inh the treatment of Section 5 the angAft/ova gets is dil-
definition it is assumed that the neighborhood is vided into a number of called superiors and inferiors. The
defined about a point, p. superion are one higher dimension than the given entity

and the inferiors are one dimension lower. Also there can be
Near(p) - A predicate which is true if p is near more than one adjacent pointset, e.g. the edges incident st

the neighborhood defined by self. a vertex.
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intend that any spatial object can act as a neigh- legs, etc. The inferiors of head are eyes, nose, .etc.
borhood. On the other hand, we expect that the The superior of leg is body. The case of multiple
efficiency demanded of a neighborhood will require superiors occurs when a part is shared. For exam-
a special implementation and therefore we define ple the wrist may be considered as part of both the
these separate classes. Conversely, it is expected hand and arm.
that the neighborhood classes are quite satisfacto- As shown in Figure 8 an example global method
rily used as spatial objects and it can be considered of HierarchicalGroup is Superior-p(Node. Node),
that the neighborhoods are specializations of the which determines if one node is indirectly superi-
appropriate spatial object class, or to another in the hierarchy by tracing up the

For example, a rectangular neighborhood is the tree. We define the class, HierarcalGroupNode
set of points interior to a rectangle which is a which efficiently implements access to the list of
specialization of four-aided polygons However, we direct superiors and direct inferiors of a node. We
do not need to maintain the extra baggage asso- will make immediate use of HierarchicalGroup in
ciated with the bounding 1-Cycle and associated defining the topology of geometric structures. Also
edges and vertices in order to perform neighbor- note that the usual notions of part composition is
hood methods. Admittedly, we might choose to implemented naturally by a subclass of Hierarchi-
implement the rectangular planar face as efficiently calGroup.
as just assumed for the rectangular neighborhood The approach of inheriting a Hierarchical-
and then the two concepts -3uld -- identical. In GroupNode to acquire the methods of Inferiors and
any case, the same numb, specialized classes Superiors is limited to one grouping for each entity.
must be implemented. It does not make sense to inherit more than one

hierarchical node. This creates a problem for sit-
uations where an entity is a member of a number

7 Hierarchical and Sequence of hierarchical groupings. The solution proposed
Groups so far is to have a multi-group node class for those

structures which require membership in more than

In order to proceed with our development of spatial one hierarchy. A single hierarchy node class is also

objects, it is necessary to introduce several class- available for efficiency reasons.

es which define groups of the geometric primitives
we have just discussed. The first group is the Se- 8 Topology Groups
quence which is an ordered set of objects. A gener-
al approach in the IUE for implementing the access So far we have introduced the concepts involved in
to groups is through the mechanism of inheritance, defining the primitive classes of points, curves and
That is, an object becomes part of a group by in- surfaces. The next step is to define the topological
heriting the mechanisms of a generic node class de- structures which are needed to construct compos-
fined for the group. In this case, an object becomes ite curves and surfaces. The fundamental notion of
part of a sequence by inheriting the class Sequen- topology is that of "connection" or adjacency. A
ceNode as shown in Figure 8 The basic methods simple example is provided by two line segments
for SequenceNode are Next and Previous. The in- which share a common endpoint. The common
tention is that the node classes are designed to be point of incidence is viewed as a connection be-
very efficient at computing the direct access meth- tween the two line segments. In order to develop
ods required by a node. More global queries such a consistent topology, the connection between two
as the total number of items in the sequence should line segments is restricted to endpoints. That is, if
be referred to the Sequence class itself. two line segments intersect at all, they intersect at

The second type of group we need to define is the an endpoint.
HierarchicalGroup. The concept is a hierarchy
of superior and inferior elements which form a tree. 8.1 The Vertex
An typical example of a hierarchical group is the
description of part-whole relations. For example if These considerations lead to the definition of the
the human body is considered the root of the group class Vertex. The vertex is both a point in space
tree, the inferiors are parts like head, trunk, arms, as well as a connection. In order to represent these
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Figure 8: The definition of sequence and hierarchical groups.

properties, the vertex class is constructed by multi-
ple inheritance from the class Point and Topolog-
yNode as shown in Figure 9 The class Topolog-
yNode is a special case of HierarchicalGroupN-
ode which defines a set of Inferiors and Superiors.
In our case, the vertex has no inferiors but has a set
of superiors which are instances of the class Edge.

Each of these topology elements is illustrated in OW
Figure 9.

8.2 The OChain

The OChain is, strictly speaking, an unordered set .
of of vertices. In most applications it is useful to
establish an order on this set and thus we consider
the OChain to be a Sequence. The class Vertex
therefore must inherit from the class SequenceN- I c
ode. The concept of an ordered set of vertices is
useful for various topology constructions. For ex- Figure 9: The various elements of object topology.
ample, when constructing a polygon from the set Note that if a 1Chain or 2Chain is closed it forms a
of its vertices, it is necessary to maintain a stric- 1Cycle or 2Cycle. It is not necessary to introduce a
t ordering so that the boundary of the polygon is new clas but just associate the attribute "closed"
consistently defined. The ordering is also necessary with the chain structures. The structures are or-
to maintain a consistent surface normal orientation. dered top-to-bottom, left-to-right in the order of

The OChain is also useful in the case of a curved the inferior --+ hierarchy.
edge, such as a spline, which may have a num-
ber of sample points on its interior between the
endpoints. These interior points are not vertices,
but they may be used to define a sequence of line
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segments(polygonal line) for display or intersection
calculations. For these applications, this set of in-
terior and boundary points are conveniently repre-
sented by a OChain.

8.3 The Edge

The class Edge is a bounded segment of a curve, Figure 10: A bounded surface or face. An example
where the boundary of the segment is defined by is shown of a multiply connected face with interior
two vertices. These bounding vertices are estab- holes.
lished as the inferiors of the edge. The superiors
of and edge are a set of 1Chains, where a IChain Many of the topological properties required to
is a sequence of edges. The edge is constructed define image features are provided by vertices,
by multiple inheritance from a curve class as well edges and 1Chains. The usual process of joining
as the classes SequenceNode and TopologyN- and recursively growing sequences of line segments
ode in order to support the necessary relationship, can be handled by manipulating the iChain struc-
s. Note that an edge can participate in a number ture. Also, boundary corner events such as "T" and
of IChains, as in the case of two polygons which "Y"junctions are defined where image edge chains
are joined at a common edge. meet at a vertex.

The generic predicate In(p) for the edge can be Note that it may be necessary to maintain a num-
computed by parametrizing the curve in association ber of topological descriptions for a pixel chain.
with the bounding vertices. A typical choice is to The first level is the original sequence of pixel lo-
define the parameter at the first vertex as t = 0 and cations. Next, we may fit straight lines or splines
t = I at the second. The predicate On(p) is true to the pointset using a number of levels of fitting
when the point p is either of the endpoints since tolerance. Each fit, will produce a different 1Chain
these points define the boundary of the the edge. which should be associated with the other IChains

When representing highur order curves it is pos- as well as the original discrete set. This composite
sible for an edge to intersect itself somewhere other structure is analogous to a pyramid, since a larger
than a vertex. This event violates the requirements error tolerance leads to fewer curve segments. As
for a consistent typology and a vertex must be in- yet, we don't have an adequate understanding of
troduced at the point of intersection. The numer- the semantics of this type of grouping.
ical computation of such events is difficult and er-
rors can result in an inconsistent topology. Issues of 8.5 The Face
this sort have impeded progress in CSG modeling
for curved surfaces. The class Face is a bounded surface region. The

boundary may be multiply connected as shown in

8.4 The 1Chain Figure 10. The face multiply inherits from classes
SequenceNode and TopologyNode. The face

The class 1Chain has many applications within inferiors are the iChains defining the face bound-
the IUE. It is the basic structure for defining com- ary. This definition of the face allows multiply con-
posite curves, e.g. a polygonal chain of edges. The nected regions with one outside 1Chain and any
IChain is a sequence of edges with additional di- number of interior IChains as shown in Figure 10.
rection information associated with each edge. The The superior of the face is the 2Chain which is de-
direction values, ± define the sense of traversal of fined in the next section. One important applica.
an edge along the curve. If the traversal is from tion of the face structure is to define the boundaries
Vertexo to Vertexl of the edge then the direction is of a region segmentation. In this case the surface is
+, otherwise -. The IChain is also used to repre- a discrete point set as well as the edge curves form-
sent closed boundaries of surface regions or faces. ing the boundaries. In the current definition, there
A closed IChain, or 1Cycle, has one superior, i.e., is only one level of interior IChains. However, the
the face which it bounds. The inferiors of a 1Chain case of "islands" within the holes of a face is some-
are the edges in the chain, times encountered in image region segmentation.
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This structure can be accommodated by arrangingVWIVdSE (vv) 3,.V.dV.m0 (XV) F..V.MWv)

the 1Chains in a tree structure. Each level of the
tree accounts for another layer of "inside" contain-
ment. However, it should be noted that this layrred
structure is not consistent with the usual notions of v.fsp4n( -. 0uA OM Irsarm

connectivity. In the case of image segmentations,
the concept of "figure' and "ground" regions arise, ,
where the ground region is taken to be a continu- 0ous surface. The figure regions occlude the ground
region, but the ground is taken to be one connect- Vm-V. -. Vc (31) Vv-F

ed surface even though only isolated islands may
be visible. With the containment tree structure
for the inner face boundaries, it is straightforward
to produce the set of equivalent standard topology o ufP•t • am " •--••s s 0•nd••m.
faces. no otlf5d te @dISOSI ot c t F I N"pe soe

Figure 11: The nine possible topologicai _.Jjacency

8.6 The 2Chain schemes. The combinations result from a primary
structure selected from { Face, Edge, Vertex } and

In general, the face is used as the primitive element an adjacent structure selected from the same set.

in any composite surface. As we pointed out earlier,
it is always necessary to form composite arrays of 9 Relation to Other Topolog-
surface patches in order to cover a closed boundary
of space. The essential structure needed to define ical Schemes
a composite surface is the 2Chain. The 2Chain is a
sequence of faces which where adjacent faces in the The IUE topology can be compared with other

sequence meet at a common edges. If the 2Chain topological structures using the concepts derived

is closed, it is called a 2Cycle and defines a volume by Kevin Weiler[5]. Weiler classifies various topo-

of space. logical schemes in terms of the types of adjacency
relations supported by the structure. There are
three basic structures, vertex, edge and face. Con-

8.7 The Block sequently, there are nine combinations of primary
and adjacent structural schemes. These combina-

If a volume of space has interior cavities, then a tions are illustrated in Figure 11. In the case of
number of 2Chains are used to represent the re- curved surfaces, it is impossible to recover the cor-
gion boundary in analogy to the multiply connected rect topological description of an object from the
face region. The class Block is introduced to con- indicated adjacency information and it in usually
tain the required 2Chain pointers as inferiors. The necessary to provide ancillary structures to com-
block is the highest topological structure and has no plete the sufficiency of the topological structure.
superiors 7 . Composite objects, such as articulated The IUE structure provides a number of these ad-
structures or different buildings in a site model, are jacency relationships at the same time and provides
usually constructed from separate blocks with each a complete topological specification.
block embedded in a transform network. That is, The IUE structure is also reasonably efficient in
each block has is own local coordinate system and a terms of storage. For example, the IUE structure
set of transforms to the other blocks or to a central takes (4 + (7/2)m)N! pointers where m is the num-
coordinate system. ber of edges per face and N! is the total number

of facess. By contrast, a winged edge structure9

'Note that a single sequence cannot represent all adja.
cencies on a surface. However if two faces are next to each 8A similar design to the MUE structure[3] represents the
other in the sequence, they share a common edge. two endpoints of an edge as a OChain, but this approach

'Note that we could naturally extend the representation considerably increases the pointer count.
to include 4 dimensional structures by joining blocks at faces gThe winged-edge structure has an edge as the primary
to form 3Chains. structure and edges as the adjacent structures.
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n p ible surface primitive whose shape is controlled by
providing variable exponent values on the quadric
terms.

The generalized cylinder is another major repre-
sentational approach where the primitives are de-

VtffW~V cfined by a axis which can be a general space curve
and a sweeping rule which defines the variation of
the object cross section along the axis. For exam-

cso Tree ple, a cone is a generalized cylinder with a circular
cross section and a linear sweeping rule along a s-
traight line axis. The complete description of the
object is maintained in a tree structure, called the
CSG tree, where the leaf nodes are primitives and
the root is the final object. Boolean operations
are carried out between primitives at each interi-
or node of the tree. This representation requires
that Boolean operations are defined for each prim-

Figure 12: A partial class hierarchy for construc- itive which allows quite complex objects to be de-

tive solid geometry, CSG. Only a small sampling of fined by a short description. For example a cylinder
with a hole can be defined as the subtraction of onecylinder from another. Usually each primitive is as-

sociated with a bounding box (rectangular prism)
which facilitates efficient checking for the possibili-
ty of intersection. The Boolean operations required

increases, as would occur in image regions, the IUE for a CSG definition are, Union,Intersection,and D-
structure takes less space than winged-edge. The ifference. Union is used to join two spatial objects
cross over is at about 10 edges per face. The IUE into a single spatial object with no boundary at
topology is similar to the usual notions of vertex- the join. Intersect(SO) is used to find the common
edge-loop-face-shell-block[1, 2]. However, the use point sets between two objects. For example the
of nChains introduces the machinery of chain al- intersection of a cube an a cylinder is a (possibly)
gebra which considerably clarifies the removal of shorter cylinder. Difference(SO) - Forms the inter-
"bridges" in topological configurations. The rigor section of an object with S0, the complement of

introduced by the axioms of chain algebra assists the second object. In this case the difference of a
cube and a cylinder is a cube with a hole.

the construction of algorithms for boolean opera-

tions.
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Computational Sensors:
A Report from the DARPA Workshop

Takeo Kanade and Ruzena Bajcsy*

Carnegie Mellon University and * University of Pennsylvania

1 Introduction bibliography of computational sensing created with
input from the workshop participants.

Computational Sensors combine computation and
signal acquisition to improve performance and pro- 2 Opportunities
vide new capabilities that were not previously pos-
sible. Traditionally, sensory information processing pro-

They may attach analog or digital VLSI process- ceeds in three steps: transducing (detection), read-
ing circuits to each sensing element, exploit unique out (or digitization), and processing (interpretation).
optical design or geometrical arrangement of ele- Micro-electronics technologies will spawn a new
ments, or use the physics of the underlying material generation of sensors which combine transducing
for computation. Typically, a computational sensor and processing on a single chip - a computational
implements a distributed computing model of the sensor.
sensory data, including the case where the data are In machine vision, the basic approach has been
sensed or preprocessed elsewhere, to use a TV camera for sensing, to digitize the im-

Recognizing the importance and potential of age data into a frame buffer and then to process
computational sensors, Oscar Firschein, DARPA the data with a digital computer. Apart from be-
SISTO, requested us to organize a workshop to bring ing expensive, large, heavy, and power-hungry, this
together developers and users of computational sen- sense-digitize-and-then-process paradigm has fun-
sors. The workshop was to define the state of the damental performance disadvantages. A high band-
art, discuss the issues, and identify promising ap- width is required to transfer data from the sensor to
proaches and applications for this new technology, the processor. The parallel nature of operands cap-
The workshop was held at The University of Penn- tured in a 2D image plane is not exploited. Also,
sylvania on May 11-12, 1992. Approximately 40 high latencies caused by this method, due to image
people attended from academia, government, and transfer times, limit the usefulness of this method
industry. The workshop hosted several key presen- for high-speed, real-time applications. Combining
tations and followed them with group discussion and processing on silicon wafers together with detectors
summary sessions. This workshop report presents will eliminate these limitations, and have the po-
a summary of the state of the art in computational tential to produce a visual sensor of low-cost, and
sensors and recommendations for future research low-power with high-throughput and low latency.
programs. The potential for integrating the transducing and

In Section 2 we discuss opportunities for compu- processing of signals has been recognized for some
tational sensors. Some computational sensor exam- time, but in the past, research and development in
pies are reviewed in Section 3. Technologies, issues, this area was driven mostly by curiosity or special
and limitations are considered in Section 4. Section use. Today, however, the advancement of VLSI
5 discusses algorithms for computational sensors. and related technologies provides opportunities for
Recommendations for future programs are given in us to harness this potential in new, broad, practi-
the concluding section. The appendix includes a cal applications in image understanding, robotics,
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and human-computer interfaces. Most importantly, * toy
VLSI technologies have become available and ac- Development of a computational sensor does not
cessible to the sensor application community where simply mean combining sensing capability with pro-
we have recently observed a growing body of re- cessing algorithms. It requires new thinking. Most
search in computational sensors. of the current vision algorithms, for example, are

Several computational sensors have been fabri- strongly influenced by the fact that image data is
cated and demonstrated to perform effectively. Ana- provided in a stream and processed by instructions.
log vision chips have been demonstrated which can provide in o fram ratessed constringdetect a motion field, or continuously compute the Also, the concept of frame rate (ie., considering
detec ad moriention ofiel, or cobtinuoy c te dme- a certain number of discrete frames per second) issize and orientation of an object. Three dimen- dominant in dealing with time varying events. How-
sional range sensing has been performed at a rate d om putatinal sensorecan evants. of
of 1000 frames per second using a chip containing the inherent, two-dimensional nature of the sensory
an array of cells each capable of detecting and cal- data arrangement, the continuous time-domain sig-
culating the timing of an intensity profile. Sensor nal, and the physics of the media (eg. silicon) it-
chips that mimic the human's fovea and peripheralvisi n h ve b en abri ate and use forpatern self for processing. This type of new thinking of-
vision have been fabricated and used for pattern ten results in a completely different, more efficient,
recognition. Tiny lenses can be etched on silicon orders-of-magnitude faster "algorithm". Many of
to focus light efficiently on a photosensitive area, the successful examples mentioned above and in
or even to perform a geometrical transformation of section 3 are the results of such new algorithms.
images. Resistive networks and associated circuits Finally, computational sensors can create a funda-
on a chip can solve optimization problems for shape mental change in the approach to the sensor system
interpolation, as a whole. When a sensor is bulky, expensive and

Computational sensors are not limited to vision slow, it is not affordable, both economically and
use, but have applications in mechanical, chemical, technically, to place many of them within a system.
medical and other sensors. Development of mi- The sensor system is forced to be centralized. If
cromechanical pressure sensors and accelerometers computational sensors can provide cheaper, smaller,
has been underway for some time. An air-bag sen- and faster sensing units, we can place a large num-
sor for automobiles could become one of the first ber of sensors throughout a system, such as covering
successful, mass-produced, low-cost computational te of surfacerof a syste such A newsensrs.It ontins miiatre ccelromterand the whole surface of a submersible vehicle. A new
sensors. It contains a miniature accelerometer andsystems more dis-
processing circuits in a chip. Processing could also tributed, reliable, and responsive.
be combined with micro-chemical sensors to de-
tect water contamination, air pollution, and smells,
while micro-medical sensors could measure blood 3 Computational Sensors: Some Ex-
chemistry, flow, and pressure. amples

Potential applications/markets of computational
sensors are abundant: This section reviews computational sensor architec-

"* robot perception tures that have emerged in recent years:

"• industrial inspection I. The focal plane computational sensor: Pro-
cessing is done on a focal plane, i.e. the sensing

"* navigation and automobile and processing element are tightly coupled;

"* space 2. The spatio-geometrical computational sensor:
"Computation takes place via the inherent geo-

* sensor based appliances metrical structure and/or optical properties of

"* medicine (e.g. patient monitoring) the sensor;

"* security and surveillance 3. The VLSI computational module: Sensor and
processing element are not tightly coupled, but

"* entertainment ind media processing is done on a tightly coupled module.
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Many existing systems would fall into several of image is determined solely by the size of the array.
the above categories. Representative examples of In the current CMOS implementation, an array of 28
each category are presented here. x 32 cells has been fabricated on a 7.9mm x 9.2mm

Although most examples we give are of visual die.
information processing, these considerations and Keast and Sodini [41] at MIT have designed and
techniques extend directly to measurement over the fabricated a focal plane processor for image acqui-
whole spectrum of electromagnetic radiation. In sition, smoothing, and segmentation. The processor
general, any other "imaging sensors" such as me- is based on clocked analog CCD/CMOS technol-
chanical (e.g. tactile) or magnetic sensors, could ogy. The light signal is acquired as an accumulated
also benefit from lessons learned when considering charge. The neighboring PE's share their operands
and designing computational sensors for vision ap- in order to smooth data. In one iteration, each PE
plications. sends one quarter of its charge to each of its four

neighbors. The charge meets halfway between the
3.1 The focal plane architecture pixels and mixes in a single potential well. After

mixing, the charge is split in half and returned to
The focal plane architecture tightly couples process- the original PE, approximating Gaussian smooth-
ing and sensing hardware--each sensing site has a ing. However, the segmenting circuit will prevent
dedicated processing element. The sensor and the this mixing if the absolute difference between the
processing element (PE) are located in close phys- neighboring pixels is greater than a given threshold.
ical proximity, thus reducing data transfer time to A 40 x 40 array with a cell size of about 150 x 150
PE's. Each PE operates on the signal of its sen- microns is currently being fabricated.
sor. However, depending on the algorithm, each PE
may need the signals of neighboring sensors or PE's. Use of Media Physics (Resistive Grid)
This concept corresponds to the SIMD paradigm of
parallel computer architectures. In computational Some algorithms can exploit the physics of the VLSI
sensors, the operands are readily distributed over an layers to achieve "processing" in a computational
array of PE's as they are being sensed. sensor. Carver Mead at Caltech has developed a

set of subthreshold CMOS circuits for implement-

Cell Parallelism ing a variety of vision circuits. The best known
design is the "Silicon" retina, a device which com-

Gruss and Kanade [26] [27] [40] at Carnegie Mellon putes the spatial and temporal derivative of an im-
have developed a computational sensor for range age projected onto its phototransistor array. The
detection based on light-stripe triangulation. The photoreceptor consists of a phototransistor feeding
sensor consists of an array of cells, each cell having current into a node of a 48 by 48 element hexagonal
both a light detector and a dedicated analog-circuit resistive grid with uniform resistance values R. The
PE. The light stripe is swept continuously across the photoreceptor is linked to the grid by a conductance
scene to be measured. The PE in each cell monitors of value G. An amplifier senses the voltage between
the output of its associated photoreceptor, recording the receptor output and the network potential. The
a time-stamp when the incident intensity peaks. The circuit computes the Laplacian of an image, while
processing circuitry uses peak detection to identify temporal derivatives are obtained by adding a ca-
the stripe and an analog sample-and-hold to record pacitor to each node.
time-stamp data. Each time-stamp fixes the position Another example which exploits resistive grids
of the stripe plane as it illuminates the line-of-sight to achieve signal processing is the blob position and
of that cell. The geometry of the projected light orientation circuit developed by Standley, Horn, and
stripe is known as a function of time, as is the line- Wyatt at MIT [83] [84]. Light detectors are placed at
of-sight geometry of all cells. Thus, the 3-D location the nodes of a rectangular grid made of polysilicon
of the imaged object points ("range pixels") can be resistors. The photo-current is injected into these
determined through triangulation. The cells operate nodes and the current flowing out of the perimeter
in a completely parallel manner to acquire a frame of of the grid is monitored. The injected photocurrent
3-D range data, so the spatial resolution of the range and the grid perimeter current are related through
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Green's theorem; based on sensed perimeter cur- its pixels into regions, and output only one value for
rent, information to compute the first and second each such rectangular "super pixel". The largest su-
moments of the blob is extracted at 5000 frames/sec. per pixel is an 8x8 region. There are three modes of
An array of 29 x 29 cells has been fabricated on a operation. In Variable Resolution Mode, the resolu-
9.2mm x 7.9mm die. tion of the entire chip can be selected from highest

to lowest, or anywhere inbetween. The Multiple

3.2 Spatio-Geometric and Optical Compu- Region of Interest mode provides multiple active

tational Sensors windows, possibly with different resolutions, while
reading data out from the rest of the array is inhib-

Some computational sensors are based on the "com- ited. The third mode is a combination of the first
putation" performed by virtue of the special geom- two modes. This third mode would resemble the
etry or optical material of the sensor array. sampling of a human retina if so programmed. The

design permits multiple foveae within the retina.

Log-Polar Sensor The authors demonstrated significant speed-up in
data acquisition for a variety of tasks from indus-

The University of Pennsylvania's log-polar trial inspection to target tracking.
sensor developed by Kreider and Van der
Spiegel [47] [48] [73] [77] in collaboration with
Sandini of University of Genova and researchers at
IMEC in Belgium has a radially-varying spatial res- Hexagonal sampling tessellates the frequency plane
olution. A high resolution center is surrounded with more efficiently than rectangular sampling.' Pous-
a lower resolution periphery in a design resembling sart and Trembley [91] at Laval designed a 200 x
a human retina. A sensor that has a high spatial 200 array with a hexagonal grid. This chip facil-
resolution area, like a fovea in a human retina, is itates parallel access to the data in a particular lo-
often termed a foveating sensor. The image is first cal neighborhood. For rapid convolution, this local
mapped from log-polar to the Cartesian plane. There neighborhood is subsampled along three principal
is evidence that in biological systems this type of axes of the grid, thus reducing the data needed for
mapping takes place from eye to brain. The authors convolution in the local neighborhood of each pixel.
have shown that transformations involving perspec- Their MAR (Multi-port Array Photo-Receptor sys-
tive, such as optical flow and rotation, are simplified tem) performs zero-crossing detection at seven spa-
with such a mapping. This sensor must be mechan- tial frequencies in 16 milliseconds. Edge detection
ically foveated for a specific region of interest, and is computed in real time.
current research concentrates on applying this chip
to robotics.

Bederson, Wallace, and Schwartz [7] at New York Binary Optics
University and Vision Application, Inc. designed a By etching desired geometrcal shapes directly into
log-polar sensnr as well. The VLSI sensor itself is the surface of an optical material, a designer can pro-
in the process of being fabricated. An additional duce optical elements with properties that were pre-
interesting part of their system is a miniature pan- viously impossible to achieve. This method, called
tilt actuator called Spherical Pointing Motor (SPM) binary optics, can perform simple optical processing
shown. The SPM is capable of carrying and oi- before the light is detected.
enting the sensor. It is an accurate, fast, small, and As VLSI microlithographic techniques have ad-
inexpensive device with low power requirements vanced, inexpensive fabrication of binary optical
and is suitable for active vision applications, devices has become possible [93]. Veldkemp of

Another foveating sensor has been designed by Lincoln Lab at MIT has developed a micro lens ar-
Kosonocky, Wilder and Misra at Rutgers Univer-si.hobjectWivder was todesign at sutgenso wser- ray in which each lens is only 200 microns in diam-sity. The objective w as to design a sensor whose ee .O e a pi ai n o u h a ra o l et
foveal region(s) will be able to expand, contract and
roam in the field-of-view. The chip is, in essence, 'Nature prefers hexagonal sampling, which is actually found

a 512x512 square array with the ability to "merge" in the mammalian retina.
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focus light onto tiny photodetectors thus saving sil- modate complex PE's, or the data to be processed
icon area for processing hardware. Some of the first comes from other modules.
applications of the idea are already on the market:
Hitachi FP-CI0 HI-8 video coders use a micro-lens Smoothing and Optimization by Resistive Net-
array CCD, and the Sony XC-75 video camera dou-
bles the sensitivity to f8 @ 2000Lux using their Hy-
perHAD CCD structure which uses micro lenses. In At Caltech, several regularization techniques have
addition, binary optics devices have been applied to been implemented on-chip. For example, consider
automatic target recognition and space applications, the problem of fitting a 2D surface to a set of sparse,

McHugh of Hughes Danbury Optical Systems ex- noisy depth measurements by imposing a "smooth-
perimented with binary optical techniques and found ness" constraint. This method produces quadraticly
that they can generate virtually any transformation varying functions. This can be solved using simple
of an optical wave front. The first application that linear resistive networks by virtue of the fact that
used this new capability was a binary optical com- the electrical power dissipated in linear networks is
ponent that optically mapped the log-polar plane to quadratic in the current or voltage [711].
the Cartesian plane. This device, in effect, samples Mapping 2D motion algorithms onto analog chips
images at log-polar resolution and optically trans- has turned out to be surprisingly difficult. A ro-
forms them for sensing on a Cartesian grid. This bust motion detection circuit implemented in ana-
way an optical log-polar foveating sensor is pro- log VLSI has yet to be demonstrated, but early effort
duced, while the mapping to the Cartesian plane has has been made by Tanner at Caltech [88] [89]. He
become "free of charge". successfully built and tested an 8x8 pixel chip that

outputs a single uniform velocity averaged over the

Color and Polarization entire image. His chip reports values of x and y ve-
locity which minimize the least square error in the

Wolff at Johns Hopkins University uses liquid crys- image brightness constraint equation.
tal polarizers whose polarization angles are elec- Bair and Koch have successfully built an ana-
tronically controlled [100]. It has been reported that log VLSI chip that computes zero crossings of the
by eliminating mechanical rotation of filters, switch- difference of Gaussians. It takes the difference be-
ing time between different polarization angles is re- tween two copies of an image, supplied by a I-D
duced, and accuracy of results is improved. Wolff array of 64 photoreceptors, each smoothed by a sep-
hopes to build polarization cameras with polarizers arate linear first-order resistive network, and reports
in each element of the CCD array for acquisition of the zero-crossings in this difference [6]. This imple-
polarized images in real-time. For specularity detec- mentation has the particular advantage of exploiting
tion, material classification and object recognition, the smoothing operation naturally performed by re-
color and polarization carry independent and com- sistive networks, and therefore avoids the burden
plementary information: polarization for specular- of additional circuitry. The network resistance and
ity, and color for diffuse surfaces and light sources, the confidence of the photoreceptor input are inde-
Sensors for real-time combination of both color and pendently adjustable for each network. Also, an
polarization images will add rich information to vi- adjustable threshold on the slope of zero-crossings
sion systems. can be set to cause the chip to ignore weak edges

due to noise.

3.3 Computational Modules for Sensory Binary line processes which model discontinu-

Information Processing ities in intensity within the stochastic framework of
Markov Random Fields provide a method to detect

While not strictly a computational "sensor", there is discontinuities in motion, intensity, and depth. This
a class of computational modules for sensory infor- is achieved by selectively imposing the smoothness
mation processing which exploit VLSI technologies assumption. Harris and Koch have invented the
in a similar manner as computational sensors. "resistive fuse", which is the first hardware circuit

These computational modules are useful when that explicitly implements line processes in a con-
there is not enough space on a single chip to accom- trolled fashion [31]. Like a normal house fuse, a
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resistive fuse operates as a linear resistor for small 4.1 Analog vs. Digital
voltage drop and as an open-circuit for large voltage Both digital and analog circuits can be implemented
drops. A 20x20 rectangular grid network of fuses using VLSI technology. The analog approach can
has been demonstrated for smoothing and segment- be conceptually divided into continuous-time (un-
ing test images which are scanned onto the chip. clocked) and discrete-time (clocked) processing.

The choice of technology depends on the particu-
Pyramid lar application, but several general remarks are in

Van der Wal and Burt at David Sarnoff Research order. Compared to digital, the traditional disad-
Center developed a VLSI pyramid chip PYR [94]. vantage of analog electronics is its susceptibility to
Combined with external framestore, the PYR chip noise, yielding low precision. The source of this
is capable of computing Gaussian and Laplacian noise can be on-chip switching electronics which
pyramid transforms simultaneously. These trans- require special considerations for hybrid designs.
forms consist of Gaussian filtering and consecutive Also, analog electronics do not provide efficient
subsampling, and, for Laplacian, image subtraction. long-term storage; typical storage times are about
The Chip has a separable 5 by 5 filter and four one second. On the other hand, digital processing
1024-sample-long delay lines. Each filter tap has requires AID and D/A conversion, which usually
a preassigned set of possible values. Coefficient imposes limitations on total circuit speed. Analog
values from this set can be changed under software electronics are characterized by:
control. PYR has special features such as double * high speed,
precision, double sample density, image border ex-
tension and automatic timing control. At 15MHz 9 low latency,
a single chip can compute Gaussian and Laplacian e low precision (typically 6 to 8 bits),
pyramids at 44 frames/second for 512 by 480 im-
ages. PYR is implemented in digital VLSI using the 9 short data storage time (typically I second),
CMOS standard cell library from VLSI Technology, * sensitivity to on-chip digital switching; and
Inc. Digitized image samples pass through the chip
sequentially, in raster scan order. e a long design and testing process.

In general, analog hardware takes less chip area
4 Issues than digital mechanisms of the same functionality.

Most participants at the workshop were experts in
Successful development of a computation sensor re- analog circuitry which seems to be preferred; how-
lies on careful consideration of several issues includ- ever, many recognized the importance of digital
ing: electronics for computational sensing.

Analog VLSI offers two interesting advantages
" choice of the circuitry: digital vs. analog elec- for computational sensor design. First, the physical

tronics, choice of sensors with respect to spec- properties of the solid-state layers and devices can
tral bandwidth (color) and polarizers, sometimes be exploited to yield elegant, new solu-

"tions. One such example is to exploit the physics of
* choice of an algorithm, a resistive sheet (or dense grid) to compute desired
"* state-of-the-art VLSI, quantities.

The second interesting advantage of analog VLSI
"* prototyping infrastructure: design tools and is charge-domain processing, best exemplified by

fabrication facilities, CCD technology, which offers an area-efficient
"* applications, mechanism for transferring data. In addition, cre-

ative processing schemes can be developed to pro-
"* education, workshops/networking, literature. cess the data in charge-domain as it is transferred.

CCD technology has already provided several useful
All of these issues are discussed in the following examples of integrated sensing and signal process-
sections. ing.
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4.2 Algorithms for Computational Sensors Algorithms that exploit a significant level
of parallelism without requiring significant

While the VLSI computational sensor offers excit- oragelcapacitywae real stateforant
storage capacity, wafer real estate, or inter-

ing opportunities, one must be careful in deciding processor data transfer.
which algorithms or applications will benefit from
such an implementation. At the present state of tech- Algorithms that map naturally to physical pro-
nology, successful design of working VLSI circuits, cesses encountered in semiconductors,
especially analog ones, is a lengthy process.

Algorithms must be carefully selected or invented Algorithms that could exploit the intercommu-
to match the architecture to the circuitry for max- nication and propagation afforded by charge-
imum performance - there are definite limitations transfer, surface acoustic waves, and optical
on circuitry and architectures. Circuitry has lim- properties.
ited precision and storage. Until technology allows
much denser circuits (or 3D structures) for example, 4.3 VLSI Technology
there is not enough room to fabricate a complex PE
at each photo site. CMOS, Bipolar, and BiCMOS are the most avail-

Simple cell-parallel algorithms that detect local able VLSI technologies. CMOS is characterized by
cues or integrate local information over time or mul- very dense packaging, low power consumption, and
tiple channels (eg. spectrum) at each cell are most high input impedance. Good switching properties
ideal. make it well suited for digital, switching, and hy-

When a complex PE is required, processing and brid circuits. It is widely accessible and relatively
sensing can take place on separate, but tightly cou- inexpensive technology. CCD's are implemented in
pled (preferably on-chip) modules. The cost of MOS technology.
transferring data must be minimized in order to jus- Bipolar technology is characterized by low noise
tify the use of VLSI over conventional computer and fast circuitry, but consumes more power and
systems. CCD row-parallel transfer is one way to takes more substrate real estate. It is not as accessi-
perform the transfer at a reasonable speed. Also, ble to the wider research community as it probably
some algorithms do not directly exhibit parallelism should be.
in the focal plane: they often require significant lo- BiCMOS combines the advantages of both
cal data storage at each PE. In stereo algorithms, for CMOS and Bipolar technologies.
example, optical signals are to be combined from Semiconductor material other than silicon is also
two different focal planes. In this case, data are available. GaAs compounds yield very high speed
read out and processed on a separate computational circuitry and are well suited to electro-optical ap-
module. plications. GaAs technology is less available, how-

There are optimizations and other techniques that ever, and is considerably more expensive.
map naturally to physical processes in silicon; such The trend in VLSI is toward smaller device ge-
as relaxation processes implemented on resistive ometries. This produces both smaller and faster
grids. The advantage of these physics-based pro- digital circuits and hence more functionality per unit
cessors over computer implementation is that they area. This scaling, however, is not as beneficial to
minimize a multi-dimensional energy function by analog circuitry as to digital. Most active devices
reaching a stable state of a continuous-time system, are designed at a given size and scaling and would
potentially reducing round-off error and numerical not preserve desired functional features after a scale
instability from which an iterative solution by a dig- change. Analog MOS circuits benefit more from
ital computer may suffer. improvements in fabrication process quality. Fac-

In summary, the following are some general char- tors such as oxide quality and thickness, or tighter
acteristics of algorithms which are good candidates control of threshold voltages would greatly benefit
for computational sensors implementation: analog circuit performance.

Great interest has been shown in 3D VLSI. One
* Algorithms that are simple and robust to noise, possibility is optical signal communication between

and are based on sensor or cue integration stacked chips. This could be accomplished with
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the availability of silicon-compatible semiconduc- e Insect robots for the toy industry.
tor emitters and IR detectors [90]. This technique
would also require and exploit integrated optics • High-speed industrial inspection, chip reticle
capability such as binary optics. Alternatively, alignment.
a conducting feedthrough could be developed for Document understanding and optical character
making distributed point-to-point electrical connec-
tions [70].

Micro fiber-optics could be used to route data in * A light-weight amacronic sensor/display de-
parallel from module to module. The optical ap- vice for virtual reality.
proach has the advantage of possible optical pro-
cessing during the data transmission itself, but has * Image compression for home video appliances.
the disadvantage of high power consumption and
heat dissipation. This technology has not been
developed far enough to become accessible to the * Automatic target recognition - signal prepro-
wider research community. cessing for specialized sensors (gain, bias, fil-

tering) and multi-sensor integration. An ex-
4.4 Applications ample is a computational sensor to perform the

functions of detection, inscan calibration, andAs VLSI technology advances and becomes acces- otu utpeigo LR

sible to a wider research community, a number of output multiplexing of FLIR.

ideas that combine sensing and processing on a chip 9 Space robotics for orbital replacement, satellite
are emerging. Many attempts, however, are too retrieval, and planetary exploration.
quick to postulate miraculous chips and systems
which have little chance of ever working. e Remotely and automatically piloted vehicles -

Several successful examples of computational sensors to make UGV, AAV, AUV low cost.
sensors have been driven by applications, and the
workshop participants have agreed that this will re- 4.5 Prototyping Infrastructure
main true for most successful developments. A truly
successful "marriage" of sensing and computation Design tools
can be done only by careful analysis of application An issue which received unanimous agreement
requirements in conjunction with implementation among workshop participants is the lack of ana-
technologies. log VLSI design tools equivalent to those for digital

While a wide variety of applications are conceiv- design. These tools include design aids from lay-
able, the following are potential applications that out to testing, including extraction, verification and
have been suggested during the workshop: simulation. Analog circuits are more sensitive to

"parasitics than digital circuits. Accurate techniques
u A high resolution camera (2000 x 2000 and for including these parasitics in the extracted files
up). would reduce the number of design iterations due to

"* Face recognition for credit purchase, security, unexpected circuit behavior.
and human-computer interfaces. Analog modeling and simulation capabilities are

still inadequate. Much of the attention in modeling
"* An inexpensive anti-collision stereo sensor for is directed at the effects of extremely short chan-

automobiles. nel lengths on MOS transistor operation. Analog
"design rarely uses minimum size transistors, but is

secuMotioandetectioandc uteraingeforau ies, more critically dependent upon operating under a
security, and human-computer interfaces, different bias condition: subthreshold and saturation

"* Automatic local brightness adjustment of im- regions. The proper modeling of bias-dependent ca-

ages. pacitances is critical for modeling circuit dynamics
and stability. There is little or no support for simulat-

"* Tactile sensors for material handling. ing charge-domain devices like CCD's. Statistical
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modeling is an important predictive element of ana- used as a rapid prototyping vehicle. Small func-
log design, providing assurance that the resulting tional building blocks can be easily fabricated and
circuits will meet the prescribed design constraints, tested before too much time is invested in building
Without it, a circuit may be functional and within and integrating a full system. Furthermore, many
specifications for a given process model, but actual ideas and needed intuition can be gained through
process variation may result in an out-of-spec or "playing" with these actual working chips. Success-
inoperable circuit. ful designers of existing functional computational

It has been noted that a data book for standard sensors have reported that silicon prototyping, corn-
analog cells would be very useful. While it will be bined with higher level algorithm simulation, has
more difficult than the digital domain, it is necessary proven to be a useful system-building approach in
to develop a library of standard building blocks of computational sensors.
compatible electronic and sensor components with MOSIS offers two monthly runs of a standard
which one can design a new computational sensor. 2um, double-layer metal, CMOS process. One of

these runs usually includes a second layer of polysil-

Fabrication Facilities icon. Typically these designs are fabricated, bonded
and returned in about two months. In addition to

The MOSIS Service is a prototyping service offer- these standard runs, a 1.2um CMOS run goes out
ing fast-turnaround standard cell and full-custom about once every month and there are more infre-
VLSI circuit development at very low cost. The quent runs at 0.8um. Every other month includes
MOSIS Service, begun in 1980, provides fabrica- a low-noise 2urn analog CMOS run which has op-
tion services to government contractors, agencies, tions for second poly, a NPN bipolar transistor in
and university classes under the sponsorship of the n-well, and a buried channel CCD.
the Defense Advanced Research Projects Agency MOSIS's capability, however, is limited for the
(DARPA) with assistance from the National Sci- research and development of computational sensors.
ence Foundation (NSF). MOSIS has developed a Quality bipolar and depletion-mode MOS devices
methodology that allows the merging of many dif- are unavailable. MOSIS is beginning to offer GaAs
ferent projects from various organizations onto a (instead of the more usual Silicon) process runs on
single wafer. Instead of paying for the cost of mask- a regular basis.
making, fabrication, and packaging for a complete At this point, MOSIS does not provide a capa-
run (currently between $50,000 and $80,000) MO- bility for optical electronics fabrication. University
SIS users pay only for the fraction of the silicon researchers must rely on teaming with industries
that they use, which can cost as little as $400. Ini- which have the fabrication capability in this area. It
tially, the MOSIS user-base was primarily university is noteworthy that both the European research com-
and government users. MOSIS' success in serving munity and the Japanese micro-sensor project will
this group of users led, in recent years, to a natu- have a common facilities including capabilities for
ral expansion into the industrial sector, with rapidly optical electronics fabrication.
growing use of MOSIS by commercial companies.
MOSIS foundries have also taken advantage of the 4.6 Education, Workshops/Networking
frequent prototype runs for their own needs as well
as those of their clients. MOSIS is located at the
Information Sciences Institute of the University of Understanding semiconductor and device physics
Southern California (USCIISI) in Marina del Rey, as well as techniques for marketing custom-made
California. integrated circuits are essential prerequisites to de-

The MOSIS program has been a successful mech- veloping a successful computational sensor. For
anism for promoting VLSI applications. MO- the complete success of a computational sensor, av-
SIS' ease of access, quick turnaround, and cost- enaes of communication between VLSI designers,
effectiveness have afforded designers opportuni- computer vision researchers, and product develop-
ties for frequent prototype iterations that otherwise ers must be developed. These groups would ex-
might not even have been considered. With MOSIS' change information about the opportunities and dif-
low cost for "tiny-chip" fabrication, silicon can be ficulties in each others' fields. Vision (and other
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sensor) researchers must be made aware of what is 9 Interdisciplinary - the program must in-
available in VLSI technology, and VLSI designers clude sensing, algorithms, VLSI, mate-
must understand the problems of machine vision. rial, and applications;
This workshop was very productive. It was recom- o Multi-modal - the program must deal with
mended that follow-on workshops or conferences not only the image or visual modality, but
be held. also with other sensing modalities includ-

It was proposed that universities and industries ing tactile, acoustic, pressure, accelera-
team-up to allow students to obtain more hands-on tion, chemical, and so on;
experience. This is an old idea that still has diffi-
culty working in practice. Namely, most students Prototyping-oriented- individual projects
and university professors are more likely to under- under this program must be oriented to-
take theoretical research than to work on the "real ward producing working prototype de-
thing". This is primarily due to the fact that deal- vices or systems;

ing with hardware tends to extend time in graduate * Applications - individual projects must
school for students, and reduce the publishing rate of identify potential applications and possi-
professors. This problem received some attention, ble avenues of technology transfer to real
and reviews of academic standards were suggested. world applications.
It was suggested that more credit should be given to
efforts which produce working prototype devices or 2. Improve the infrastructure for research and de-
systems. velopment of computational sensors:

The body of experience and knowledge of com-
putational sensors is currently scattered over a large * Fabrication facilities - MOSIS (or similar
number of disciplines and corresponding publica- facilities) must be expanded to include
tions. Publications range from journals on elec- technologies for optical and mechanical
tronic circuits and signal processing to publications sensor development;
on neural networks and vision research. To ef- * Tools - Tools for designing and testing
fectively communicate knowledge about computa- computational sensors can be far more
tional sensors, it was suggested that a new journal complicated, than they are for standard
be created. VLSI design. Standardization, and ii-

Another type of cooperation is to distribute work- brary and tool development are essential;
ing prototype sensors in among the user community.
An excellent example is the log-polar camera proto- pvedu to grads-e rencmt
type that University of Pennsylvania has offered to provided to graduate students;
share with interested researchers. This type of co- * Networking and workshops - Researchers
operation is of mutual benefit to the sensor designers in computational sensors, by its nature,
as well as to application developers. Designers of are scattered in multiple fields, and mech-
the computational sensor receive much needed feed- anisms; workshops and consortiums must
back about the actual need and practical value of the be developed to bring them together.
sensor, while application researchers can investigate
new areas previously limited by the absence of these
specialized devices.

THE FOLLOWING BIBLIOGRAPHY CONTAINS PA-
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NSF/DARPA Workshop on Machine Learning and Vision:
A Summary

Ryszard S. Michaiski Azriel Rosenfeld
Peter W. Pachowicz Yiannis Aloimonos

Center for Artificial Intelligence Center for Automation Research
George Mason University University of Maryland

This report gives a brief account of the structured vs. unstructured environment.
NSF/DARPA Workshop on Machine Learning Navigation tasks incorporating learning
and Vision, organized by George Mason functions were analyzed according to shallow vs.
University in collaboration with the University deep inference, resource consideration,
of Maryland, October 15-17, 1991 in Harpers availability of supplementary knowledge, and
Ferry, WV. The purpose of the workshop was to complexity of behavior. Issues for machine
bring together researchers in vision and learning learning include (i) learning in a constrained
to discuss the possibilities of cross-fertilizing the spatio-temporal context, (ii) building
two fields, and implementing learning representations to facilitate planning in a spatio-
capabilities in vision systems. temporal context, (iii) memory management
The workshop was attended by about 40 during learning, (iv) combining sensor
participants representing universities, industrial information, and (v) optimal feedback control.
and governmental laboratories, and several The session on learning in sensory-motor
sponsoring agencies. The workshop started with control identified several bottleneck problems.
two general presentations, one on machine The major goal of machine learning is viewed as
vision (A. Rosenfeld), and the second on automatic combining of specific vision and
machine learning (R.S. Michalski). Subsequent action modules in a task-independent way. This
discussions were conducted in three sessions: 1) includes (i) learning efficient visual search, (ii)
Learning in object recognition (organized by J. learning invariances that facilitate object
Shavlik and T. Poggio), 2) Learning in identification under different imaging
navigation (organized by T. Dean and T. transformations and occlusions, (iii) learning
Kanade), and 3) Learning in sensory-motor module configuration and coordination for
control (organized by R. Bajcsy and T. sensory-motor tasks, and (iv) learning
Mitchell). calibration between sensing and action.

The session on object recognition discussed In summary, researchers agreed that many
issues related to types of tasks and important crucial elements of machine vision cannot beisueask relatjedto typesofnitassond iportanctys considered in isolation from machine learning.subtasks in object recognition. Two basic types However, to be successful in the integration of
were distinguished: learning shape descriptions lern an visinresearche shou pk
and learning surface (texture) descriptions. The learning and vision, researchers should pick a
shape learning subtasks were classified particular vision problem, apply acceptable
according to their difficulty: isolated object restrictions on the problem, simplify the data,
recognition, recognition of specific objects In a find solutions by applying learning technology,
scene, and recognition of objects that fulfill a and then improve the solutions by gradually
functional goal (e.g., an object that could be relaxing restrictions on the problem. It would
used as a chair). The following issues were be desirable to sponsor several long-term
considered as important for learning in vision: projects focused on both industrial and military
relationship between 2D and 3D vision, number applications. The creation of sharable testbeds is
of training examples needed, use of prior recommended for evaluation of results.
knowledge, discovery of good representations,
attribute selection, variability of the Reference
environment, and occlusion. Machine Learning and Vision: Research Issues and
The session on learning in navigation classified Promising Directions, Report by Participants of the
the problems that require learning along such NSF/DARPA Workshop on Machine Learning and
dimensions as: constrained vs. unconstrained Vision (MLV-92), Harpers Ferry, WV, October 15-17,
navigation, static vs. dynamic navigation, and 1992, Edited by R. S. Michalski, A. Rosenfeld, P. W.

Pachowicz and Y. Aloimonos, Reports of Machine

The Workshop was sponsored jointly by the National Learning and Inference Laboratory, MLI 93-1, Center
Science Foundation and the Defense Advanced Research for Artificial Intelligence, George Mason University,
Projects Agency under Grant No. IRI-9208947. Fairfax, VA, 1993.
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DARPA Automatic Sensor Interpretation Workshop

Oscar Firschein
Software and Intelligent Systems Office, DARPA

March 4, 1993

Abstract 2.1 Government Presentations

A DARPA workshop on automatic sensor interpretation * "Energizing DARPA Application Programs with

was held to bring together government sponsors and peo- University Participation," Dr. Duane Adams,

ple carrying out research and development in fields re- Deputy Director, DARPA

lated to sensor interpretation. We indicate here some of "An Overview of the DARPA Surveillance and Tar-
the speakers and their topics. As a result of the Work- geting Programs," Dr. Larry Stotts, Asst. Director,
shop, a BAA was issued for a university research initia- Advanced Systems Technology Office, DARPA
tive in theory and strategies for automatic target recog-
nition (ATR). * "Issues and Approaches in Automatic Target Recog-

nition," Mr. Edward Zelnio, Air Force Wright Aero-

1 Introduction nautical Laboratory
* "Night Vision ATR Performance Evaluation,"

The DARPA Automatic Sensor Interpretation Work- Dr. Clarence Wa"ters, Night Vision and Electro-

shop was held at George Mason University September Optic Directorate

30 - October 2, 1992. The purpose was to bring to-

gether government sponsors and specialists in various * "High Performance Sensor Processing," Dr. Do-
disciplines related to sensor interpretation. The work- minick Giglio, Sensors and Processing, ASTO,
shop was motivated by an automatic target recognition DARPA
inter-office effort within DARPA involving the Advanced
Systems Technology Office (ASTO), the Software and o "Image Understanding," Mr. Oscar Firschein, Im-
Intelligent Systems Technology Office (SISTO), The De- age Understanding, Software and Intelligent Sys-
fense Sciences office (DSO), and the Microtechnology Of- tems, DARPA
fice (MTO).

As a result of the workshop, BAA 93-07, "Univer- M "Spatial Reasoning for Tactical Fusion,"
sity Research Initiative into the Theory and Strate- Mr. Richard Anthony, Signals Warfare Directorate
gies for Automatic Target Recognition," was issued on * "Wavelet Techniques for Detection/Recognition,"
November 4, 1992. This BAA solicited proposals from Lt. Col. Jim Crowley, Applied Science, Defense Sci-
U.S. graduate education institutions to research the the- ences Office, DARPA
ory and strategies for ATR. Of particular interest were
those approaches that investigated the fundamental ba- o "Neural and Gabor Techniques for ATR," Major
sis for detecting and recognizing dim or obscured, quasi- Steve Rogers, Air Force Institute of Technology
resolved targets located in severe ground clutter, and
which would validate their results using real data. Eval- o "Neural Nets for ATR," Dr. Barbara Yoon, Mi-
uation of the proposals was completed in February 1993, crotechnology Technology Office, DARPA
and the contracts should be finalized by the middle of
1993. 2.2 Technical Overviews

Some of the techical overviews were:2 Summary of the Workshop
"2 "State of the Art Array Processing Algorithms

The best way to capture the flavor of the workshop is to for simultaneous Detection and Estimation," Prof.
present the titles and authors of some of the key presen- Harry Van Trees and Prof. Yariv Ephraim, George
tations. Mason University
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* "Optimal Filtering for Multiband Detection," 3 Conclusions
Prof. Irving Reed, University of Southern Califor-
nia This workshop brought together people in various disci-

plines related to advanced ATR. As a result of the work-
"* "Image Processing and Analysis, an Overview," shop it was realized that new ideas from the university

Prof. Azriel Rosenfeld, University of Maryland community are required in ATR to deal with the new
sophisticated threats such as fleetingly mobile targets

"* "Gabor, Wavelet, Morphological, and Distortion- in "deep hide," decoys and deception, and short expo-

Invariant Filter Sets," Prof. David Casasent, sure times. In addition, it is necessary for ATR systems
Carnegie Mellon University to function in day or night, or adverse weather. It is

hoped that the research contracts resulting from BAA

"93-07, "University Research Initiative into the Theory
* "The Challenges of Automatic Sensor Interpreta- and Strategies for Automatic Target Recognition," can

tion," Dr. Dan Dudgeon, MIT Lincoln Labs poiesm fteenwiesprovide some of these new ideas.

2.3 Panel Discussions

The panel discussions were of particular interest:

"* "Issues and Challenges in ATR," Prof. Clay-
ton Stewart, George Mason University (modera-
tor), Mr. Trent DePersia, ASTO-DARPA; Major
Steve Rogers, Air Force Institute of Technology;
Capt. Steve Suddarth, Air Force Office of Scientific
Research, and Mr. Edward Zelnio, Air Force Wright
Laboratory.

"* "Issues and Challenges in Advanced Sensor Process-
ing," Dr. Larry B. Stotts, ASTO-DARPA (moder-
ator), Dr. Jurgen Gobien, SAIC, Dr. Les Novak,
MIT Lincoln Labs; Dr. Serpil Ayashli, MIT Lincoln
Labs; Dr. Dino Sofianos, SAIC, and Dr. Jack Ced-
erquist, ERIM.

2.4 Technical Papers

The technical papers, too numerous to list, were in the
areas of SAR, IR, and laser sensors; multisensor fusion,
use of wavelets and Gabor techniques, neural networks,
and image understanding. Of particular interest to the
IU community were the following papers in the Image
Understanding Session:

"* "Computational Sensors," Prof. Takeo Kanade,
Carnegie Mellon University

"* "Active Vision, Task-oriented Vision," Prof. Chris
Brown, University of Rochester

"* "Understanding SAR images," Prof. Rama Chel-
lapa, University of Maryland

"* "Fusion of Multispectral and Panchromatic Imagery
for Automated Cartography," Prof. Dave McKeown,
Carnegie Mellon University
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Young Investigator Reports

Steven Abrams, Columbia University
Planning Viewpoints in an Active Environment

Bruce Draper, University of Massachusetts
Learning in Vision

Noah S. Friedland, University of Maryland
An Integrated Approach to Object Recognition

Robert Mandelbaum, University of Pennsylvania
Multi-Sensor Fusion for a Multi-Agent Robotic System

Ray Rimey, University of Rochester
Studying Control of Selective Perception with T-World and TEA

Jefferey Shufelt, Carnegie Mellon University
Incorporating Vanishing Point Geometry into a Building Extraction System

William M. Wells m, Massachusetts Institute of Technology
Statistical Object Recognition with the Expectation-Maximization Algorithm

Mourad Zerroug, University of Southern California
From Monocular Intensity Images to Volumetric Descriptions
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Camera Calibration Using Line Correspondences

Richard Hartley
GE - Corporate Research and Development,

P.O. Box 8, Schenectady, NY, 12301.
Ph : (518)-387-7333
Fax : (518)-387-6845

email : hartley@crd.ge.com

Abstract tial matrix, introduced in [Higgins-81] for calibrated
In this paper, a method of determining the essen- cameras, but easily extended to uncalibrated cameras.

tial matrix for uncalibrated cameras is given, based on The essential matrix encodes the epipolar correspon-
line matches in three images. The three cameras may dences between two images. It has been shown to be a
have different unknown calibrations, and the essential key tool in scene reconstruction from two uncalibrated
matrices corresponding to each of the three pairs of views ([Faugeras-92 Hartley-Gupta-92]) as well as for
cameras may be determined. Determination of the es- the computation of invariants ([Hartley-93a]). The
sential matrix for uncalibrated cameras is important, task of image rectification, which seeks to line up
forming the basis for many algorithms such as corn- epipolar lines in a pair of images as a preliminary
putation of invariants image rectification, camera cal- step to finding image correspondences, can be ac-
ibration and scene reconstruction. complished using the uncalibrated essential matrix

In the case where a fourth view is available, and all ([Hartley-93c]) where previous methods have relied
four cameras are assumed to have the same unknown on camera modelling. It is particularly interesting
calibration, the method of fFaugeras-Maybank-92a, that the essential matrix may be used for the calibra-
Faugeras-Maybank-92b] may be used to calibrate the tion of a camera, and consequent scene reconstruction,
camera. The scene may then be reconstructed ex- given four or more views ([Faugeras-Maybank-92a,
actly (up to a scaled Euclidean transformation). This Faugeras-Maybank-92b]). This result provides a
extends previous results of Weng Huang and Ahuja strong argument for not assuming camera calibration
((Weng-92]) who gave a method Yor scene reconstruc- a priori, and underlines the central r6le of the essential
tion from 13 line correspondences using a calibrated matrix.
camera. The present paper shows that the the cam- A recent paper Weng, Huang and Ahuja
era may be calibrated at the same time that the scene ([Weng-92]) gave an algorithm for reconstructing a
geometry is determined. scene from a set of at least 13 line correspondences

in three images. They assumed a calibrated camera
1 Introduction in their algorithm. It is the purpose of the present

A traditional approach to analysis of perspective paper to extend their result to uncalibrated cam-
images in the field of Computer Vision has been to eras, showing that the essential matrices can be com-
attempt to measure and model the camera that took puted from three uncalibrated views of a set of lines.
the image. A large body of literature has grown up It is not assumed that the three cameras all have
seeking to calibrate the camera and determine its pa- the same calibration. In fact, the essential matri-
rameters as a preliminary step to image understand- ces corresponding to each of the three image pairs
ing. The papers [Beyer-92] and [Beardsley-92] rep- may be computed. In the case where four views with
resent two of the latest approaches to camera cali- the same camera are avilable, however, the result of
bration. A recent view ([Faugeras-92]) is that cam- [Faugeras-Maybank-92a, Faugeras-Maybank-92b] may
era calibration is not desirable or necessary in many be applied to obtain the complete calibration of the
image understanding situations. Many authors have four cameras and reconstruct the scene up to a scaled
been led to consider uncalibrated cameras. The study Euclidean transformation. Thus, in this case it is
of projective invariants ([Mundy-Zisserman-92]) is an shown that the assumption of calibrated cameras is
example of a growing field based on the philosophy of unnecessary, for the cameras may be calibrated at the
avoiding camera calibration. In fact, study of uncali- same time that the scene is reconstructed.
brated cameras is intimately linked with the study of One unfortunate aspect of the algorithm [Weng-92]
projective invariants, for a result of [Faugeras-92] and is that 13 line correspondences in three images are
[Hartley-Gupta-92] shows that under most conditions necessary, compared with eight point correspondences
a scene can be determined up to a projective transform (and with some effort only six, [Hartley-93b]). Al-
of projective 3-space M>by a pair of images taken by though nothing can be done with two views or fewer
uncalibrated cameras. (see [Weng-92, a counting argument shows that as

Central to the study of pairs of images is the essen- few as nine lines in three views may be sufficient, al-
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though it is extremely unlikely that a linear or closed were assumed to be calibrated, meaning that the in-
form algorithm can be found in this case. It is shown ternal cameras parameters were known. It is not hard
in section 4 of this paper that if four of the lines are to show (for instance see[Hartley-92]) that most of the
known to lie in a plane, then a linear solution exists results also apply to uncalibrated cameras of the type
with only nine lines, considered in this paper.

The following basic theorem is proven in
2 Preliminaries [Higgins-81].
2.1 Notation Theorem 1. (Longuet-Higgins) Given a set of im-

Consider a set of points {xj} as seen in two im- age correspondences {uj} I*- {u } there exists a 3 x 3
ages. The set of points {x,} will be visible at image real matrix Q such that
locations {ui } and {f } in the two images. In normal
circumstances, the correspondence {uJ} *--* {fu will UTQuJ = 0
be known, but the location of the original points {xi
will be unknown. Normally, unprimed quantities will for all i.
be used to denote data associated with the first image,
whereas primed quantities will denote data associated The matrix Q is called the essential matrix. Next,
with the second image. we consider the question of determining the essential

Since all vectors are represented in homogeneous matrix given the two camera transformation matrices.
coordinates, their values may be multiplied by any ar- The following result was proven in [Hartley-92].
bitrary non-zero factor. The notation •, is used tobitrry on-zro acto. Te ntatin ;e isuse to Propos ition 2. The essential matrix, corresponding to
indicate equality of vectors or matrices up to multipli- oeo
cation by a scale factor. a pair of camera matrices P = (M I -Mt) and P' =

Given a vector, t = (t.,t, ,t.)T it is convenient to (M' I -M't') is given by

introduce the skew-symmetric matrix QMIMT[M(t. _t)
-tzM*M MtitJ

[t] =(0 0 --t1 (1) For a proof of Proposition 2 see [Hartley-92].
- 1  t, 0 2.4 Computing Lines in Space

Lines in the image plane are represented as 3-
This definition is motivated by the fact that for any vectors. For instance, a vector 1 = (I, m, n)T rep-
vector v, we have [t]xv = t x v and v[tIx = v x t. resents the line in the plane given by the equation

The notation A* represents the adjoint of a matrix lu + mv + nw = 0. Similarly, planes in 3-dimensional
A, that is, the matrix of cofactors. If A is an invertible space are represented in homogeneous coordinates as
matrix, then A* se (At)-i. a 4-dimensional vectc- ir = (p, q, r, 8 )T.

The relationship between lines in the image space
2.2 Camera Models and the corresponding plane in object space is given

Nothing will be assumed about the calibration of by the following lemma.
the two cameras that create the two images. The
camera model will be expressed in terms of a gen- Lemma 3. Let A be a line in p 3 and let the image of A
eral projective transformation from three-dimensional as taken by a camera with transformation ratrix P be
real projective space, 7p3, known as object space, to 1. The locus of points in P3'that are mapped onto the
the two-dimensional real projective space P 2known as image line I is a plane, v, passing through the camera
image space. The transformation may be expressed in centre and containing the line A. It is given by the
homogeneous coordinates by a 3 x 4 matrix P known formula W = pTI.
as a camera matrix and the correspondence between
points in object space and image space is given by Proof. A point x lies on r if and only if it is mapped to
u4 ; Pxi. a point on the line I by the action of the transformation

For convenience it will be assumed throughout this matrix. This means that Mx lies on the line 1, and so
paper that the camera placements are not at infinity,
that is, that the projections are not parallel projec- 1T Mx = 0 . (2)
tions. In this case, a camera matrix may be written
in the form On the other hand, a point x lies on the plane r if and

P = (M I -Mt) only if irTx = 0. Comparing this with (2) lead to the

where M is a 3 x 3 non-singular matrix and t is a col- conclusion that rT = ITM or W = MTI as required.

umn vector t = (t,.,t,,t.)• representing the location 0
of the camera in object space (see [Hartley-93a]). 2.5 Degrees of Freedom
2.3 The Essential Matrix In this section, we compute how many views of a

For sets of points viewed from two cameras, set of lines are necessary to determine the positions
Longuet-Higgins [Higgins-81] introduced a matrix that of the lines in space. Suppose that n unknown lines
has subsequently become known as the essential ma- are visible in k views with unknown camera matrices.
trix. In Longuet-Higgins's treatment, the two cameras Suppose that the images of the lines in each of the k
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views are known. Each line in each view gives rise to used in [Weng-92. Since we are now considering three
two equations. In particular, suppose A is a line in cameras, the different cameras will be distinguished
Pland I is the image of that line as seen by a camera using subscripts rather than primes. Consequently,
with camera matrix P. Let x be a point on A, then as the three cameras will be represented by matrices
shown in (2) 1T Px = 0. Since the line A can be spec-
ified by two points, two independent equations arise. (Mo 10) , (MI I -Mit 1 ) and (M 2 I -M 2 t 2)
The total number of equations is therefore equal to
2nk. where t, and t2 are the positions of the cameras with

On the other hand, each line in P3 has four degrees respect to the position of the zero-th camera, and Mi is
of freedom, so up to projectivity, n lines have a total a non-singular matrix for each i. For convenience, the
of 4n - 15 degrees of freedom, as long as n > 5.1 coordinate system has been chosen so that the origin
Furthermore, each camera matrix has 11 degrees of is at the position of the zero-th camera, and so to = 0.
freedom. In summary: Now, consider a line in space passing through a

point x and with direction given by a vector t. Let Ni
D.O.F = 4n -15+ -lk , be the normal to the plane passing through the center
equations = 2nk . of the i-th camera and the line. Then, Ni is given by

the expression
To solve for the line locations,

2nk > 4n + Ilk - 15. (3) =(x-ti)xI=xxI-k.x f
Then for i = 1, 2,

In particular for 6 lines at least 9 views are necessary.
On the other hand, for just 3 views, at least 9 lines No x N, = (x x t) x (x x t- ti x t)
are necessary. -= -(xxet) x x(t -ixt)

Once the lines are known the camera matrices may = -(x x).t)t, ((xXt).t,)t) (4)
be computed using (2), and the essential matrices of - (N xt) .t
each pair may be computed using Theorem 2.

The bounds given by (3) are minimum requirements
for the computation of the essential matrices of all the However, for i = 1,2,
views. The necessity for at least 9 lines in 3 views just
demonstrated should be compared with section 3 in Ni.ti = ((x - ti) x t) .ti
which a linear method is given for computing Q from = 0(x x t).ti - (ti x 1).ti
13 lines in 3 views. Also, compare with section 4 in =
which a linear method is given for computing Q under
the assumption that four of the lines are coplanar. Combined with the result of (4) this yields the expres-

3 Determination of the Essential Ma- sion
trix from Line Correspondences No x N, = (N,.t,)e (5)

This section will investigate the computation of the for i = 1,2. From this it follows, as in [Weng-92] that
essential matrix of an uncalibrated camera from a set
of line correspondences in three views. As discussed (N2 .tA2 )NO x NI = (N A.t1)NO x N2  (6)
in [Weng-92], no information whatever about camera
placements may be derived from any number of line- Now, let i be the representation in homogeneous
to-line correspondences in two views. In [Weng-92] coordinates of the image of the line t in the i-th view.
the motion and structure problem from line correspon- According to Lemma 3, Ni is the normal to the plane
dences is considered. An assumption made in that
paper is that the camera is calibrated, so that a pixel (Mi I -M~t,)Tni• Consequently,
in each image corresponds to a uniquely specified ray
in space relative to the location and placement of the Ni = Mi'ni
camera. It will be shown in this section that this as-
sumption is not necessary and that in fact the same Applying this to (6) lead to
approach can be adapted to apply to the computation
of the essential matrix for uncalibrated cameras. T )(MOT X MIT

It will be assumed that three different views are (D 2 M2 t 2  no ni)
taken of a set of fixed lines in space. That is, it is = (niTMiti)(MoTno x M 2Tn 2 ) (7)
assumed that the cameras are moving and the lines
are fixed, which is opposite to the assumption made We now state without proof a simple formula concern-
in [Weng-92]. It will not even be assumed that the ing cross products:
images are taken with the same camera. Thus the
three cameras are uncalibrated and possibly different. Lemma 4. If M is any 3 x 3 matrix, and u and v are
The notation used in this section will be similar to that column vectors, then

IAn shown in (Hartley-93aJ four fineb have. two degrees of
freeon (Mu) x (My) = M*(u x v) .3(8)
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Applying (8) to each of the two cross products in (7) from which it follows, using Proposition 2 that Qoi
leads to is the essential matrix corresponding to the (ordered)

pair of transformation matrices (Mo 1 0) and (MI IMo;l(n2'Mat2)(no X MO*Mllnl) -Miti).
= Moi(n 1 TMxt1 )(n 0 × M•Mrn 2 ) . (9) From the definition of E = rluT - tsIT it follows

that ET(t x ri) = 0. If E has rank 2, then (t x r1 )
Now, cancelling Mo' from each side and combining can be determined up to an unknown scale factor. If
the two cross products into one gives the same way, if F and G have rank 2, then (t x r,)

can be similarly determined. Since these three vectors
no x ((n 2TM 2 t 2 )MeMTrnl - (nrTMlt 1 )M*M2 Tn 2 ) are the columns of the essential matrix Qoi, it means

that Q01 can be determined up to individually scaling
=0. (10) its columns. How to handle the case where E, F or G

does not have rank 2 is discussed in [Weng-92].
As in [Weng-92], we write Now, by interchanging the roles of the first and

T MT l IT t T U second cameras in this analysis, it is possible to de-
B = (n2 M 2 t 2 )MoM 1 rni - (n(M1t2)M)Marn termine the matrix Qi0 up to individual scalings of its

then n x B = 0. Now, writing (11) columns. However, since Qoi = Q10T the matrix Q01
can be determined up to scale.

MrMT = T 4 Computation from 9 lines
T =If the lines are known to satisfy certain geometric

rsr constraints, then it is possible to compute the essential
s1 T(12) matrix using fewer lines in three views. The general

0 2a s8r idea is that if the projective geometry of some plane in
83 rT the image can be fixed, then the determination of the

Mi ti = t epipolar geometry is simplified. This observation was
MA2  = U applied to the determination of Q from point corre-

spondences in [Zisserman-Hartley-93]. Instead of con-
vector B can be written in the form sidering the configuration of 9 lines of which four are

coplanar, we consider four points in a plane and five
nir(r T _ ts1 T)n 2  (nIT En12  lines not in the plane. From four lines in a plane it is

B = n T (r 2 uT - ts 2 )nU2  = nT Fn 2  easy to identify four points as the intersections of pairs
niT(r3uT s)n2 n1 T Gn2  of lines. Thus, let x1 ,... x4 be four points lying in a

plane r in P3. Let the images of these points as seen
(13) in three images be u1 , ut and u•'. We suppose for con-

Where E, F and G are defined by this formula. There- venience that the images have been subjected to ap-
fore, we have the basic equation propriate projective transforms so that u 1 = ' 4'

for all i. Then, a necessary and sufficient condition
nUTEn 2  0 for any further point x to lie in the plane r is that x

no x n1TFn 2  = 0 . (14) projects to the same point in all three images.
nrGn112  This observation may be viewed in a different way.

We may assume that the image planes of the three
This is essentially the same as equation (2.13) in images are all identical with the plane ir itself, since
[Weng-921, derived here, however, for the case of un- by an appropriate choice of projective coordinates in
calibrated cameras. As remarked in [Weng-92], for each of the image planes, it may be ensured that the
each line t, equation (14) gives rise to two linear equa- projective mapping from plane ir to each of the image
tions in the entries of E, F and G. Given 13 lines it planes is the identity coordinate map. The projective
is possible to solve for E, F and G, up to a common mapping associated with each camera maps a point x
scale factor. in space to the image point ii in which the line through

We now define a matrix Qoi by x and the camera centre pierces the image plane. Co-
ordinates for p 3 may be chosen so that the plane z is

Qoi = (t x ri,t x r2 ,t x r3) the plane at infinity and the first camera is placed at

This may be written as Qo0 = [t]. (ri,r 2 ,r 3 ). Then, the point (0,0,0, 1)'. Let the other two cameras be

we see that placed at the points (a) and ( b ). The three

i nT camera transformation matrices are then P = (I 1 0) ,
Qo01 T - r 2  [t] P' = (I -a) and P" = (I I -b). If we can compute

r /r the vectors a and b, then the essential matrices can
be computed using Theorem 2.

and in view of the definitions of ri and t given in (12), Now consider a line A in 7Wwhich does not lie in
we have the image plane. Let the projections of A with respect

Q0 - MoMI[Mtt]• to the three cameras be t, t' and t". Since A does not
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lie in the image plane, its three images will be distinct The above discussion was concerned with the case
lines. However, lines t, e and e' must all meet at a in which the plane 7 was defined by four points. Any
common point, namely the point at which , meets the other planar object which uniquely defines a projec-
image plane. tive basis for the plane may be used just as well, for

Given t, C and C' the line A may be retrieved as example four coplanar lines (as already noted). This
the intersection of the three planes defined by each line shows that four coplanar lines plus five lines not in
and its corresponding camera centre. Each such plane the plane are sufficient (in 3 views) to determine the
may be computed explicitly. In particular from (2) essential matrices.

the three planes are equal to P'T t _ plTe 5 Conclusion0 IThe two algorithms given above can be used to de-
e p.,T 1 I e termine the essential matrices for the purposes of in-

SbTe T f t variant computation, scene reconstruction, image rec-
these three planes meet in a common line implies that tification or some other purpose.
the 4 x 3 matrix Most interesting would be the case in which we

have four views with the same camera. Then
t e el \ the cameras can be calibrated and the entire

A o 0 Ta eITb scene reconstructed up to scaled Euclidean trans-form from line correspondences in three views.
In order to implement this method, an effi-has rank 2. Hence, there must be a linear dependency cient implementation of the calibration algorithm

betweea the columns of A. of Faugeras and Maybank ([Faugeras-Maybank-92a,
As remarked above, the lines t, C and t" are coin- Faugeras-Maybank-92b]) would be required. At the

cident, so there is a relationship at + et' + 7t" = 0. present time, no such implementation is available,
This gives a linear dependency between the first three so the calibration method described in this paper
rows of A. Since t, e and t" are known, the weights also remains unimplemented. This paper, there-
a, P and 7 may be computed explicitly. Since A has fore represents a contribution to the theory of cal-
rank 2, this dependency must also apply to the last ibration and scene reconstruction. It seems likely,
row as well which means that however, that an efficient implementation of the al-

gorithms of this paper and [Faugeras-Maybank-92a,
GeITa + 7 t'Tb = 0 . Faugeras-Maybank-92b] will become available in the

future.
This is a single linear equation in the coordinates of
the two vectors a and b. Given five such equations,
arising from five lines not lying in the plane 7r, it is
possible to solve for a and b up to an unknown (but
insignificant) scale factor.

Summary of the algorithm The algorithm for de-
termining the essential matrices from four coplanar
points and five lines in three images is as follows. We
start with coordinates ui, u: and ux4, the images of
the points in the three images and also t, e and t",
the images of the lines. The steps of the algorithm are
as follows.

1. Determine two-dimensional projective transfor-
mations rep 'esented by non-singular 3 x 3 ma-
trices K' and K" such that for each i = 1,...4
we have ui = K'ui = K" l'.

2. Replace each line ei by the transformed line
K'"i, and each e/' by K"'g.'.

3. For each i = 1,... ,5 find coefficients ai,, 3i and
7, such that ail, + ,i4. + -fit' = 0.

4. Solve the set of five linear equations #,I,,Ta +
" %I Tb = 0 to find the vectors a and b, up to
an indeterminate scale.

5. The three essential matrices are. KIT[a]x,
K"iT[b]X and KiT[b - a]x K'.
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2-D Images of 3-D Oriented Points

David W. Jacobs
NEC Research Institute

4 Independence Way,
Princeton, NJ 08540

Abstract to perform indexing with these features, how to derive
structure from motion sequences, and how to determineRecent work has shown thist a number of vision the image of a model from a small number of correspon-

problems become simpler when one models dences. However, we show that all of these problems be-
projection from 3-D to 2-D as a non-rigid lin- come fundamentally more complex with oriented point
ear transformation. This projection model has features.
been used fruitfully to solve problems in mo-
tion understanding, search based object recog- In this work, one assumes that a 3-D object is trans-
nition, the indexing of models in a data base, formed by an arbitrary affine transformation, followed
and in alignment types of recognition. These by a scaled orthographic projection. Applying an affine
results have been largely restricted, however, transformation to a set of 3-D points is equivalent to ap-
to models and scenes that consist only of 3-D plying an arbitrary 3W3 matrix to the points, and then
points. In this paper we show what happens translating them. We will call this a 3-D to 2-D linear
when one attempts to extend these results to transformation. Standard models of projection assume
the somewhat more complicated domain of ori- that a 3-D object is displaced in a scene with a rigid,
ented points. In particular, we show how to Euclidean motion, and then projected to a 2-D image,
perform indexing with these features, how to using either perspective or scaled orthographic projec-
derive structure from motion sequences, and tion. Since a 3-D affine transformation is a non-rigid
how to determine the image of a model from generalization of 3-D rigid transformations, the linear
a small number of correspondences. However, projection model includes more standard projections as
we show that all of these problems become fun- a subset.
damentally more complex with oriented point We focus on three pieces of past work that dealt with
features. More space is required for index- the linear projection of 3-D point features into 2-D im-
ing, more images are required to derive struc- age features. First, Ullman and Basri[15] show that any
ture, and new views cannot be synthesized lin- novel 2-D view of a rigid 3-D structure is a linear combi-
early from old views. Moreover, these are not nation of a small number of basis views of the structure.
just idiosyncracies of our approach, they are This means that one can fully represent 3-D structure
inherent properties of the problems that we implicitly, with a few 2-D views, and use these to predict
address.1  the appearance of the full structure based on the loca-

tion of a few of its points. Second, Jacobs[5] considers the
1 Introduction problem of using an ordered group of 2-D image points to

index into lookup tables where one represents groups of
Recent work has shown that a number of vision prob- 3-D model points. This indexing step finds geometrically
lems become simpler when one models projection from consistent matchings between the image and the model.
3-D to 2-D as a non-rigid linear transformation. These It is shown that one can optimally perform this indexing
results have been largely restricted, however, to mod- by representing each model group with a pair of lines
els and scenes that consist only of 3-D points. In this in two orthogonal index spaces, using an image group
paper we show what happens when one attempts to ex- to compute a key into each index space and then inter-
tend these results to the somewhat more complicated secting the result of two table lookups. (Lamdan and
domain of oriented points. In particular, we show how Wolfsonf9] had previously used linear projections to de-

Research dwau c vise a more limited 3-D to 2-D indexing method). Third,MITeeahdescribed in this paper w conducted at the Koenderink and van Doorn[7] show that given two 2-D
MIT Artificial Intelligence Laboratory. Support for this re- views of ase of Doinson ou in the 2-D
search was provided in part by the University Research Initia- views of a set of 3-D points, one could infer the 3-D
tive under Office of Naval Research contract N00014-86-K- affine structure of those points. That is, one learns the
0685, and in part by the Advanced Research Projects Agency 3-D structure up to an arbitrary affine transformation,
under Army contract DACA76-85-C-0010 and under Office which is all that one can determine given our projection
of Naval Research contract N00014-85-K-0124. model (see Shashua[12] for related results). There has

367



been other work that capitalizes on the linear projection face in a higher dimensional space. An image space is
model, but which is less directly related to our current just a particular way of representing an image. If we
results. This includes Roberts[l 1] early method of de- describe an image using some parameters then each pa-
termining object poses for recognition, and Cass'[3] and rameter is a dimension of image space, and each set of
Breuel's[2] recent' .rk in object recognition. values of these parameters is a point in image space cor-

All the work mentioned above is restricted to scenes responding to one or more images that are described
consisting of 3-D points. (We use "scenes" or "models" by this set of parameters. For example, if our image
interchangeably to refer to 3-D configurations of features consists of a set of n 2-D points, then we can describe
that might be viewed from arbitrary directions). In this each image by the cartesian coordinates of these points,
paper, we consider scenes that also include 3-D orien- (z 1 ,yiz 2 , Y2,..., y,,). These coordinates describe a
tations. By orientation, we mean that one or more 3-D 2n-dimensional image space. Suppose then that our
vectors are associated with some or all of the 3-D points, models consist of sets of 3-D points. As we apply all pos-
where only the directions and not the magnitudes of the sible transformations to these models, we produce a large
vectors are known. For example, if we form a model from set of images that correspond to a manifold in our 2n-
distinguished points on a curve along with their tangent dimensional image space. We will therefore talk about a
vectors, we get an orientation vector associated with each group of model features producing or corresponding to a
point. If we use the vertices of a polyhedra as our model, manifold in image space. We will generally assume that
the direction of the lines that form the vertices associates these groups are ordered, avoiding the problem of find-
two or three direction vectors with each point. Oriented ing correspondences, although canonical orderings can
points, then, are of practical significance. They also pro- in some cases be defined (see Clemens and Jacobs[4]).
vide perhaps the simplest generalization of past work. A Representing the manifolds of a group of features is just
different generalization from point features is described a method of representing its potential images, and im-
by Basri and Ullman[1], who consider the images pro- plicitly, of representing its 3-D structure. 2

duced by solid objects with smooth surfaces. We can use this geometric approach to solve a number
We will show that when we use oriented points the of problems in which we reason about the 3-D structures

problems of image construction by linear combination, that are consistent with one or more 2-D images. In this
indexing, and affine structure from motion all become view, the problem of determining which scenes are com-
fundamentally more difficult. We show that novel views patible with a set of images becomes the problem of de-
of an object are not linear combinations of past views, termining which manifolds in image space could contain
except in a trivial sense, although we do show how new the points that correspond to these images. We begin
views can be reconstructed nonlinearly based on old by reviewing results presented in Jacobs[5] for models
views. We show that indexing cannot be done by repre- consisting of 3-D point features. This will provide an
senting model groups using a pair of I-D lines. To per- example of our approach, and present results on which
form indexing, we must represent each group of model we will build.
features by a 2-D surface in an index space. We show We first note that there are several equivalent ways
how to build this representation, but our results prove of formulating our projection model. We have already
that representing groups of oriented point features in an described it as applying an arbitrary 3-D affine transfor-
index table inherently requires much more space than mation to a 3-D model, followed by scaled orthographic
is needed to represent groups of simple point features. projection. For point features, a 3-D affine transforma-
And we show that correspondences between features in tion is modeled by applying an arbitrary 3x3 matrix to
four views of oriented 3-D points are needed to deter- the points, then adding an arbitrary 3-D translation vec-
mine their affine structure, whereas only two views were tor. This is the method used by Koenderink and van
needed to derive the structure of simple point features. Doorn[7]. This formulation is equivalent to assuming
We also show how to derive the 3-D structure of oriented that our 3-D scene is projected in parallel, in an arbi-
point features by solving a simple set of linear equations. trary direction, onto a 2-D plane, if we then allow the

In addition to presenting these concrete results, a sec- resulting 2-D image to be transformed by an arbitrary
ond goal of this paper is to demonstrate the value of 2-D affine transformation. A 2-D affine transformation
approaching such problems by first characterizing the of an image is equivalent to taking a new photograph
set of images that a model can produce. We begin by of the image, assuming scaled orthographic projection.
providing a simple analytic mapping from a 3-D model This formulation is used in [5], and we will use it here.
to a geometric structure that represents all the images Both projection methods are equivalent to applying an
that the model can produce, when it is viewed using all arbitrary 3x2 matrix to point features, and then arbi-
possible linear transformations. Given this mapping, we traritly translating the resulting 2-D points.
show how past results concerning simple point features There are two parts to describing the images that
can be rederived and extended. models can produce, given these transformations. First,

what is the image space? Second, what manifolds do
2 Descriptions of a Model's Images models correspond to in this image space? If we think

We take a geometric approach to the problem of rep- about image formation as resulting from parallel projec-

resenting a model's images. We describe models using 2 It is possible to define image spaces in which models do
manifolds in image space. For our purposes a manifold not correspond to manifolds, but such representations seem
may be thought of as just a simple n-dimensional sur- far-fetched, and we will not consider them here.

368



tion followed by a 2-D afline transformation, then it is
natural to represent images in a way that is invariant un-
der 2-D affine transformation. This allows us to separate
the information in the image that depends on the model
from the information that depends solely on the viewing
transformation. We therefore represent images of point
features as follows. We use the first three points of the
image to define an afline basis. That is, if we denote the
image points: (ql, q2 ,'.., qn), let: P1  P

o = q1  u = q2 - q1  v = q 3 - q1

Then we may fully describe the locations of the remain-
ing points using amine coordinates derived with respect Figure 1: The three points shown are used as an afmine
to this basis. For example, we describe q4 with the pa- basis, and the slopes of the vectors are found in this
ram eters (a 4 , /34), w here: co ri na t e syst em .

4coordinate system.

It is important to what follows that the aMine coordinates
of a point are left unchanged by any afine transform. we describe each orientation vector by its afflne slope.
That is, for any 2x2 matrix, A, and any 2-D translation, The afine slope of a vector at the origin is just •, where
t, if q4 = o+a 4u+/34v then Aq 4 +t = (Ao+t)+ (a, P) is any point in the direction of the vector.
a 4Au + / 4Av. It is easily seen from the properties of affine transfor-

An image is fully described by the parameters: mations that the afine slope of a vector is well defined
(o, u, v, (a4, /4), ...(a,, #/,)). Due to the model of pro- and is invariant under affine transformations. This rep-
jection we use we may ignore the first three of these resentation of vectors is equivalent to an affine invariant
parameters. To see this, we note that, except in de- representation derived by Van Gool et al.[16] using dif-
generate cases, there exists an affine transform that will ferent methods. We use affmine slope to define a new
map any three image points to any other three im- image space that combines point and vector informa-
age points. Therefore if a scene can produce the im- tion. We describe an image with the affine coordinates
age, (o, u, v, (04, P4), ... (a,•, )), it can also produce the of any points beyond the first three, (04,/4, ...- ,a,,),
image (o0,u',v', (04,fl4),...(0,,/n)) for any choice of and with the afmine slopes of all vectors, which we will
(o', u', v'), by combining the affine transform that maps call (0o, ... , 0m). We call the space defined by these pa-
(o, u, v) to (d', u', v') with the afine transform that was rameters affine slope space. As before, the problem of
part of the projection that produced the original image. determining a scene's manifold becomes one of deter-
Meanwhile, this affine transformation will not effect the mining the set of alfine invariant values it may produce
remaining parameters of the image. Therefore, the pa- when viewed from all directions. We may again ignore
rameters (o, u, v) provide no information about whether the actual position of the first three image points, except
a scene could produce an image. in using them to determine the affmine invariant values of

The remaining image parameters form what we will the remaining points and orientation vectors.
call an affine space. An image with n ordered points is We have defined a simple image space for images of
mapped into a point in a 2(n-3)-dimensional afline space point features, and a slightly more complex space for ori-
by finding the afline coordinates of the image points, ented points. We now describe a mapping from any 3-D
using the first three as a basis. We divide the afline scene to its corresponding geometric shape in these im-
space into two orthogonal subspaces, an a-space, and age spaces. First, we assume that scenes of simple point
a /-space. The a-space is the set of a coordinates of features contain at least five points: P1, P2, P3, P4, pj
the image's afline coordinates, and the /-space is simi- Then we can show that the set of all afline coordinates
larly defined. The alfine space is then equal to the cross that such a model can produce is described by a series
product of the a-space and the #-space, and each image of equations:
corresponds to a point in each of these two spaces. The
previous paragraph states that the images that a scene (__,_j_) = (a_, bj) + ((04,04) - (4, b4))
can produce are fully described by the locus of points r(
these images map to in affine space.

We now extend this image space to provide an affine We have one such equation for each model point beyond
invariant representation of oriented point features. To the first four. The values of rh a3 and bt are just mea-
simplify this representation, we assume that each model surable properties of the 3-D scene that do not depend
contains at least three oriented points. We then continue on viewpoint at all. rj is the ratio of the height of p1
to use three image points to define an afline basis, and above the plane formed by the first three scene points
describe the points' orientation vectors using this basis. to the height of P4 above this plane. And (aj, b1) are
Our image consists of points with associated direction the afline coordinates of the projection of pj down into
vectors. Without loss of generality we may locate these this plane, using the first three scene points as an affine
vectors at the origin (see figure 1). We describe any ad- basis. Jacobs[5] derives equation 1.
ditional image points using their afline coordinates, and This set of equations describes all images that the
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ALPHA SPACE that there is a scene corresponding to any pair of lines

2-D 3-D in a-space and #-space because the parameters rj are
IMAGES MODELS the same in the equations for the two lines. This means

that the two lines are constrained to have the same di-
-- • •rectional vector, but they are not further constrained.

0. So we have further simplified our representation to one
in which models correspond to 1-D lines and images to[I] 'pairs of points. This is shown schematically in figure 2.

Now we determine the manifolds that correspond to
scenes of oriented point features in affine slope space. We

_\ / begin by introducing some special 3-D points related to
\ our scene. With every orientation vector, vi, we asso-

* BETA SPACE ciate some point, ri that is in the direction vi from the
N, origin. We denote the points of the scene by pi. We may

* •then describe the images that would be produced by the
points (PL, P 2 , P 3 , r0 , ...rm, P4, ..-Pn) with two lines in

S-�a and 6 space, which we call a* and #*. However, in
practice we cannot know the images of the points ri,
only the direction of the vectors to them. We proceed
by determining the images that are produced by these
points, and then determining the affine slope of the vec-
tor to a point when only the direction of this vector is
known. The vectors that we can extract from the image
will be in the direction towards the location where the

Figure 2: We may represent all of a model's possible images of these points would be, however. This tells
us that the affine slope of v1 's image, called 9i, will

images with a pair of lines in two, orthogonal spaces. equal the a coordinate of ri dlivided by the 0 coordi-
Each image corresponds to a pair of points, one in each nate of ri. That is, 0, = *. So for any two points
of these spaces. on a* and #*, with coordinates (a 4 , as, ... an+m+1) and

(/4, ~, ... ,+,n+mi), the scene can produce an image
which is described by the affine invariant parameters:

scene points may produce. For any image, this equation P PL ""+d am+5 .... a,+n+1, l.+s, -.- m+n+1. This
will hold. And for any values described by the equa- #aP5'-.n.iT
tion, there is a corresponding image that the scene may is the mixture of affine coordinates and affine slopes that

produce. There is one important degenerate case, in we call afline slope space.

which these equations do not hold. If the scene points are We will now derive a set of equations that describe

coplanar, then their affine coordinates are invariant. In a scene's manifold in this space. We begin by showing

that case the above equation becomes degenerate; such how the possible values for 9i that a scene produces can

a scene can produce only one set of affine coordinates, be expressed as a function of 00, 01, and characteristicsa senecanprouceonl on se ofattne oorinaes, of the scene. First some notation. We can describe a*
Interpreted geometrically, the set of equations (1) de- with a parateri me equation o e form:

scribe a 2-D plane in the affine image space, since rj, aj

and b. are constant for a specific scene. This provides a a* = a + kv*
concrete example of our overall approach. We develop a
space such that all images correspond to points in that where a is any point in a space on the line a*, and has
space and all scenes correspond to 2-D planes, or in the coordinates that we denote by (ao, ai, ... am+n-2), and
degenerate case to points, in that space. The problem v" is a vector in a space that expresses the direction
of matching groups of features in one or more images to of a*, and has coordinates (vs, .V;+n_2), and k is a
groups of features in possible scenes becomes the prob- variable. As k varies, we get the points on the line a*.
lem of determining which planes pass through one or Similarly, we let:
more points in this space. #0 = b + cv*

Taking the a and P components of these equations

(a 4 - a4) _ (#4 - b4 ) Note that v* is the same in both equations, because the
a j = aj + #)j = b + two lines must have the same directional vector, as we

rj r1 mentioned earlier.

we have equations that describe a line in a-space. We We want to find the range of values for (00, ...Gm),

may derive a similar set of equations in #-space. These where, for a particular choice of k and c,

equations are independent. That is, for any set of a 0i+4 = - a +kvi
coordinates that a scene may produce in an image, it A- bi + c=
may still produce any feasible set of P coordinates. No-
tice that for any line in a-space, there is some scene That is, any possible set of affine slopes the scene may
whose images are described by that line. It is not true produce is found by finding a set of a values that the
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constructed ri points can produce, and then dividing
these by a set of / values that could be produced. This
equation expresses these possible 0 values as a function
of the parameters k and c, which may vary arbitrarily.

We ignore the degenerate cases where 04 and #4 are
constant over a* or /*. These are the cases in which
the first scene vector is coplanar with the three scene
points, and so its affine slope does not vary with viewing
direction. Then we may choose for a and b those points
on a* and P* for which a0 = 0 and bo = 0, This gives us
the equation:

= o + kvo _ =
be + mcv c

This implies
kC 0o-

We can use this to get:

6 = al + kv4*

o1(bi Oo + kv) = al0o + ktvo
k(v901 - vlOo) = aio - b1OoO9

0 o(oi - Gibi)k O(a O - 0o) Figure 3: A hyperboloid of one sheet.

So we can express k and c in terms of the first two affine
slopes that we detect in the image and of properties of dividing by 0. This reflects the fact that as our view-
the scene that determine the lines a* and /P. Implic- point becomes closer to the plane of the first three scene
itly, we have used 9o and 01 to solve for the viewpoint, points, the affine slopes all converge to the same value.
This allows us to express each remaining image parame- They never quite get there, since if we view the scene
ter, both affine slopes and the a and P8 coordinates that from a point in this plane, the first three image points
describe other image points, as a function of these first will be collinear, and all the affine coordinates become
two asfine slopes and properties of the scene. We find: undefined. As our viewpoint approaches this plane and

rotates about it, all the afline slopes can approach any
Oj+4 = aj + vjk common value.

0 0.(al - 01 b1 ) So we have an analytic form. describing all images of
= aj + 0 % ) the model. We now show in the case of 3 points and 3

=-* (81 00) vectors that this form describes a 2-D hyperboloid in a

Pj+4 = bi + vj c 3-D image space.

= V(al - Gibi) We introduce the following abbreviations:

v0(01 - 9o) cl = aiv; c2 = 02V1  c3 = bl v; C4 = b2Vt1

ai + v, k Z = o0=0 01 z = 02

bi + vle We note that C1 , C2, C3, C4 are properties of the scene, and
f a, + o(.-41 that scenes may be chosen to produce any set of these

= _a_____(__-_o values. So, the set of manifolds that can be produced is

b •, + precisely described by:

aivw( -1 -G0)+vio(al - 01b1 ) -Cszp + (Cl - C2)z + C2Y

bt4(O1 - Oo) + vj:(a, - 9lb1) -c 4z + (C4 - Cs)Y + c1

-bivj'Oo0 1 + (al•t - aiv)0o + av 01 -c 4zz+(C4 -cs)Yz+cIz+czp-(CI-c 2 )z-C 2 Y = 0 (2)
-bjv4Oo + (biv - biv')Oj + a1 vI Adopting the notation of Korn and Korn (pp. 74-76)[8]

Note that this derivation fails in a few degenerate we find:
cases. In particular, it will fail if any of the scene points I - 0 D = -2csc 4 (c 4 -c3) A = (cic 4 -C2 C) 2 > 0
or vectors is coplanar with the first three scene points,
in which case that affine value is constant. A physically This tells us that when we look at three dimensions of
unrealizable solution to the above equation occurs when- afline slope space, we find that a model's manifold is a
ever 00 = 01 = 9,, in which case our derivation involved hyperboloid of one sheet (see figure 3). That is, the set
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of affine slopes that three oriented points produce form of the scene, and everything that we could know about
an hyperboloid in the space of possible affine slopes. We which images it can produce.
also see that we can find a model corresponding to any But we may go beyond this, and consider what hap-
hyperboloid that fits equation 2. For our purposes, we pens when we try to extend Koenderink and van Doorn's
do not need to consider the degenerate cases in detail, result to oriented points features. We find that four

To recap this section, we have shown how to determine views are needed to determine the affine structure of
the manifolds in image space corresponding to scenes of oriented points. We consider a model with three points
both plain and oriented point features. This allows us to and three orientation vectors. We know that for any
consider the problem of matching models and images by hyperboloid of the following form:
considering an equivalent problem of matching points in
image space to lines or hyperbolic shapes. We now show -C4ZZ + (C4 - c3)Yz + CIz +- c3zY - (Cl - c2)z - c2Y = 0
how to use this formulation of matching to solve real there is a model whose images are described by this
problems. hyperboloid, where z, y, z are the affine slopes of the

o Motion three image vectors, and cl, c2 , cs, c4 are parameters of
Affine Structure from Mthe model, which may take on any values. Determining

Koenderink and van Doorn[7] and Shashua[12] have the affine structure of the model is equivalent to finding
noted that two views of an object can be used to predict the values of C1 , C2, C3 , c4 . If we do not know these val-
additional views, and have applied this result to mo- ues, we do not know the set of images that the model
tion understanding. Koenderink and van Doorn show can produce and so we can not know the model's affine
that the affine structure of an object made of 3-D points structure.
can be derived from two views. Affine structure is that Every image of the model gives us a set of values for
part of the object's geometry that remains unchanged z, y, and z, while C1 , c2 , c3, and c4 remain to be deter-
when we apply an arbitrary a/fine transformation to the mined. This gives us one linear equation in four vari-
object's points. For example, given two views of five ables. We need four independent equations to solve for
corresponding points, they compute a 3-D affine invari- these variables, and hence we need at least four views
ant representation of the fifth point with respect to the of the object to find its affine structure. Given three
first four. This is similar to the affine coordinates that views of the scene, there will still be an infinite number
we have used above, which are an afline invariant de- of different hyperboloids that might produce those three
scription of a 2-D object. Then, given the location of images, but that would each go on to produce a different
the first four points in a third image, the location of the set of images.
fifth point may be determined. This result is particu- This result is easily extended to four or more oriented
larly significant because it is known (Ulliman[l1A) that points. The affine structure of additional points can
three views of an object are needed to determine the ob- be found using the method for point features described
ject's rigid structure when images are formed with scaled above. Additional orientation vectors each provide four
orthographic projection. new unknowns, and one new equation for each image.

We can rederive this thereom from our previous re- However, it only takes three views to determine the
sults. Determining the affine structure of a model is rigid structure of four or more oriented points. To com-
equivalent to determing the manifold that it corresponds pute this, we can first use the locations of the points in
to in image space. Recall that the projection model three views to determine their 3-D location, as shown by
that we use is equivalent to applying a 3-D affine trans- Ullman. This tells us the 3-D location of each oriented
formation to a model, followed by orthographic projec- point and each viewing direction, but not the 3-D direc-
tion. This means that if two objects have the same 3- tion of the orientation vectors. A view of an orientation
D affine structure, then, and only then, can they pro- vector at a known 3-D location restricts that vector to lie
duce exactly the same set of images under our projection in a plane. For each orientation vector, two views tell us
model. There is a one-to-one mapping between affine two different planes that include the vector. As long as
structure and a model's manifold in an affine-invariant our viewpoints are not identical, these planes intersect
image space. in a line, which tells us the direction of the orientation

We have shown that a 3-D scene of points corresponds vector.
to a pair of lines in a and P space that have the same It might seem paradoxical that from three views we
direction. Given two images of a model seen from differ- can determine the rigid structure of oriented points,
ent directions, we can determine two sets of affine coor- while we need four views to determine their affine struc-
dinates that the model may produce. That is, we have ture. But keep in mind that a view of an object provides
two points in a space and two points in 0 space that us with less information about the object if we assume
must be included in the model's manifold. We can use the view was created with a linear transformation than
these pairs of points to determine the two lines that must if we assume scaled orthographic projection.
correspond to the model in a and 6 space. In fact, since This result shows us how to solve for the affine struc-
the two lines have the same directional vector, it is suf- ture of an object of oriented points by just solving a set
ficient to know the affine coordinates of one image of a of linear equations, provided that we have four views of
scene, and just the a or the # values of a second image to the object. But the need for four views is a significant
determine the manifold of the scene that produced the limitation. Koenderink and van Doorn suggested that
two images. This implicitly tells us the affine structure affine structure is an intermediate representation that
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we can compute using less information than is required In this paper we have shown an analytic mapping from
to determine rigid structure. However, we see that this groups of oriented point features to manifolds in an affine
is not always true. slope space. These manifolds are all 2-D. We could there-

fore perform indexing by discretely representing affine
4 Indexing slope space. We can see that by characterizing the geo-

metric structures that represent the images that a model
Indexing is a general term often used to describe any can produce we are solving the primary theoretical prob-
object recognition process that selects a small number lem that arises in indexing. It can require a good deal
of candidate objects, or object parts, from a large data of space, however, to discretely represent a 2-D man-
base of different possiblilities on the basis of information ifold in a lookup table. For example, Thompson and
available in the image. In one approach to indexing, we Mundy[13], Lamdan and Wolfson[9], and Clemens and
preprocess the models, making entries in a lookup table Jacobs[4] all build such lookup tables by uniformly sam-
that each point to a portion of a model. Then at run pling the set of images that a model group can produce,
time, we use some set of features in the image to com- instead of analytically computing these images. Thomp-
pute an index into the lookup table. Indexing the table son and Mundy, in fact, do this for groups consisting of
at that point, we find all portions of all known models pairs of vertices. In all three systems thousands of ta-
that could have produced that particular group of image ble entries are needed to represent each group of model
features. The indexing process enforces geometric con- features. We might want to represent many different ob-
sistency between image features and the model features jects in a lookup table, and a model of each object may
to which we match them. give rise to many different subgroups of features that we

The central problem of indexing with a single table would want to individually recognize. And in these sys-
lookup is to find the best way of representing models as tems, the lookup tables are discretized fairly coarsely.
manifolds in image space. For if we look in an index table A more fine discretization might be desirable, but this
just once for an ordered group of image features, this would require even more space. So it is of considerable
means that the index table is an image space; each point practical significance to determine whether we can rep-
in the table corresponds to one or more images. If we resent model groups with lower-dimensional manifolds.
are to avoid missing correct matches, then for each group Unfortunately, we can prove that this is not possible.
of model features we must make entries in the table atevery point that corresponds to a possible image of thos First we note that if we represent oriented point features
modely feintthatu corres.ends that thestable rgep osens with a single manifold in a single image space, these man-model features. This means that the table represents ifolds must be at least 2-D. The proof of this is given ineach group of model features' manifold in image space Jacobs[6], and is essentially the same as the proof giveninfor simple point features in Clemens and Jacobs[4. NowSo to perform indexing we would like to have an an- in the point features we were an d co mpowalytically understood mapping from the set of possible in the case of point features we were able to decompose

tlyticl t odi mangfro ls i setom e i a single affine space into two orthogonal subspaces suchgroups of model features to their manifolds in some im- that each model was represented with two l-D mani-
age space. Then we may divide image space into discretebuckets, and determine which buckets are intersected by folds. Our only hope of reducing the space required to
each model group's manifold. We then place pointers to index oriented point features is that we can similarly de-the model group in each of these buckets. The amount of compose the image space that represents oriented pointspae modelgrequpiredabycthis aroathee i ts. a x ma utey of features so that all the 2-D manifolds are decomposedspace required by this approach is approximately Ndshow this cannot bewhere we represent N model groups in the lookup table, dne.
we divide each dimension of the table into d parts, and
where each manifold is n-dimensional. This space can Our proof will assume that each model contains at
be considerable, and therefore it is important to find an least three points, and three or more vectors. We as-
indexing method that uses the lowest-dimensional man- sume that any configuration of points and vectors is
ifolds possible. a possible model group. We also assume a continuous

Our past results show that we can represent a model mapping from images to our image space, and to any
of point features using two 1-D lines in two orthogonal image subspaces. This is essential in any practical in-
image spaces. This tells us that we can perform indexing dexing scheme, because otherwise a small perturbation
using a and /3 spaces that we have divided into discrete in an image, due to error, could result in large changes
buckets. For each model group, we then make entries in in that image's representation in image space. We show
those buckets intersected by the line in each space that that if there is a decomposition of the image space that
corresponds to that model group. Then at run time, decomposes all the manifolds in it, then the kinds of in-
we compute the a and 6 values that describe an image, tersections that can occur between manifolds must be
and use them to index separately into the two lookup limited, and that the class of manifolds produced by ori-
tables, intersecting the results. The space required for ented point models do not meet these restrictions.
this grows at only a linear rate as we discretize the spaces We will suppose the opposite of our proposition, that
more finely. This indexing system is implemented and image space may be decomposed into two subspaces,
described in [5]. There we also show, based on results such that each 2-D manifold in affine slope space that
in Clemens and Jacobs[4] that this is the most space corresponds to a model is the cross-product of two 1-D
efficient possible way of representing groups of 3-D model curves in each of the subspaces. Then when two man-
points in a lookup table. ifolds intersect in image space, we can determine the
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places where they intersect by taking the cross product surfaces, and any three hyperboloids will intersect only
of the intersections of their I-D manifolds in the two at points, and in the line 00 = 01 = 02, as noted above.
image subspaces. Suppose that two models' manifolds Therefore, any general set of six hyperboloids chosen to
intersect in image space in a I-D curve. Then our de- intersect at a common point will fulfill our needed con-
composition of image space must represent this curve as struction.
the cross product of a 1-D curve in one image space, We can also prove this result another way, which will
and a point in the second image space. This means that perhaps strengthen the reader's intuitions about these
in one of the two image subspaces, the two I-D curves hyperboloids. Let H be a 3-D hyperboloid, and P be an
that represent the two models must overlap, so that their arbitrary point on it. We derive a contradiction after as-
intersection is also a curve and not just a point. suming that we can decompose H into two I-D curves in

This observation allows us to formulate a plan for de- two image spaces. Suppose that P is represented again
riving a contradiction. We pick a model group, M, with by the two points p and p' in the two image spaces.
manifold H. We then choose a point P on H (that is, P Choose any other point Q on H. Referring to equation
corresponds to an image of M). We define p and p' as the 2 we see that knowing two points of a hyperboloid gives
points that correspond to P in the first and second image us two linear equations in the four unknowns that de-
subspaces respectively. We will construct five new, spe- scribe the hyperboloid. Therefore, we may readily find
cial models, M1, M 2 , M3 , M 4 , M5. Each of these model's a second hyperboloid, H', that also includes P and Q,
manifolds will intersect H in a 1-D curve in image space. but that does not coincide with H. As noted above, in
We call these curves K 1, K 2 , K3 , K 4 , K 5 . Each of these general H and H' intersect in a 1-D curve, which must
curves will contain P, by construction. Then, since each correspond to a curve in one image space, and to either p
curve maps to a curve in one image subspace, and a or p' in the other. In particular, this means that Q must
point in the other, we may assume without loss of gener- correspond to either p or 1/. Since Q is an arbitrary
ality that K 1, K 2 , and K3 map to the curves k1, k2, and point, all points on H must correspond to either p or e.
k3 in the first image subspace, and to the points ri, r2  This contradicts our assumption that H is represented
and r3 in the second image subspace. Then, in order by the cross-product of two curves.
for the curves K1 , K 2 , and K3 to all include the point Notice that these proofs do not depend on our choice
P, it must be that r, = r2 = r3 = p', and that k1, k2 , of affine slope space to represent images of oriented
and k3 all intersect at the point p in the first image sub- points. These proofs make use only of the topology of
space. We will call the curve that represents M in the the intersection of manifolds. This topology will be pre-
first image subspace k. k1 , k2, and k3 must all lie on k served by any one-to-one continuous mapping, and hence
because they come from the intersection of M and other will be present in any continuous representation of im-
models. It is possible that two of these curves intersect ages.
only at p if they end at p, and they occupy portions of We have therefore shown that our representation of
k on opposite sides of p. But with three curves, two at groups of oriented points as 2-D manifolds is optimal in
least (suppose they are k1 and k2) must intersect over terms of its dimensionality. We cannot represent images
some 1-D portion of k. Since they both intersect at p' in of such models using lower-dimensional manifolds. This
the other image space, this will tell us that K, and K 2  places an unexpected lower bound on the cost of index-
intersect over some 1-D portion of image space. We will ing groups of oriented point features. It shows that it
then derive a contradiction by showing that in fact all of requires considerably more space to index them than to
the curves, K1 , K 2, K3 , K 4 , Kr, intersect each other only index simple point features. Again we see that adding
at a single point, P. So, to summarize the steps needed orientations to our models makes a basic vision task fun-
to complete this proof, we will: construct the point P damentally more difficult.
and the models M, M1, M 2 , M3 , M4 , M5 so that each ad-
ditional model's manifold intersects M's in a 1-D curve 5 Recognition by Linear Combinations
that includes P. We will then show that these curves Ullman and Basri[15] show that any image of a model of
intersect each other only at P, that is, that M and any 3-D points can be expressed as a linear combination of
two of the other models have only one common image. a small set of basis images of the object. That is, given

For these constructions, we will choose our models to a few views of an object, il ...i, and any new view, ij,
be identical and planar, except for their first three orien- we can find coefficients al..a, so that:
tation vectors. Therefore, in considering the intersection
of these models' manifolds, we need only consider their = z ik
intersection in the coordinates (00, 01, 02), since their re-
maining coordinates will always be constant, and will be k=1
the same for each model. Therefore, when we speak of where we multiply and sum images by just multiplying
the coordinates of a point in image space, we will only and summing the cartesian coordinates of each image
consider these three coordinates. And to describe the point separately. This idea is refined independently by
values for (00, 01,02) that a model can produce, we need Basri and by Poggio[10] into the following form.
only give the values for C1 , C2 , C3, c4 that will describe the Suppose we have a model, m, with n 3-D points. ii
model's hyperboloid in (00,01, 02) space. and i2 are two images of m. We describe each image with

It is easy to see from equation 2 that, in general, any cartesian coordinates, and assume there is no translation
two of these hyperboloids will intersect in a set of I-D in the projection. Let x1 be an n-dimensional vector
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containing all of il's z coordinates, and let yl be an n- whether there is a continuous, one-to-one mapping from
dimensional vector of its y coordinates. Similarly, define affine slope space, that is the space defined by (0o, 01,02),
x2 and Y2 for i 2 . Take any new image of m, ii, and into another space, such that this mapping takes every
define xj and yj. Then Basri and Poggio show that hyperboloid in affine slope space into a linear subspace.
there exist a0 , al, a2 and b0 , bl, b2 such that: From elementary topology we know that any continuous

one-to-one mapping will map our 3-D affine slope space
xj = aoxl + aly 1 + a2x2 into a space that is also 3-D, and that it will map every
Yj = boxl + blYl + b2x2 2-D hyperboloid into a 2-D surface. So the question is

whether these hyperboloids might map to 2-D planes in
This tells us that the z and y coordinates of a new image a 3-D space?
are a linear combination of one and a half views of the To answer this, we must look at the particular set ofobject, that is, of the z and p coordinates of one view, Tonsethwemtlokatepriclreto
and either the z or the y coordinates of a second view. hyperboloids that correspond to possible models. We as-anoeitherwayto th ink o f th is y ordtesul is that s d vw. 2 sume that an appropriate mapping exists for linear com-Another way to think of this result is that xl, Yall x2 binations, and derive a contradiction. First, we recallspan a 3-D linear subspace in W' that includes all that the line o = 1 = 2 is part of the equation for eachof z or y coordinates that the object could later produce. hate line sponding-to i possthe equ a ll thWe omit a proof of this, but note that the proof is basd hyperboloid corresponding to a possible model. Call this
Weomi a pierotrsfomthio, butoline L. L is a degenerate case; the actual set of images aon a linear transformation. model produces does not include L, but it includes im-

Weages that are arbitrarily close to L. Suppose we apply a
work. When one considers the affine coordinates of an age s tha toare a ariy clos to f, Sups we apy
image, we have shown that the set of images a model pro- continuous one-to-one mapping, call if 1, that takes one
duces occupies a linear subspace, a 2-D plane, of a larger of these hyperboloids, H, to a 2-D plane, f(H). Then
affine space. Our approach also implies a result similar 1(L) is a 1-D curve such that for any point on the curve,

to the one and a half views result described above. Given there is a point on 1(H) arbitrarily close to that curve

the a coordinates of any two views of a model, we may point. This can only happen if f(L) lies on f(H). That

determine the line in a space that describes all the a is, we can omit 1(L) from a model's manifold without

coordinates the model might produce. In fact, any point problems, but if this manifold is linear, then the require-

on this line is a linear combination of the original two ment that our representation be continuous tells us that

points used to determine the line. And since the direc- f(L) must in fact lie in this 2-D plane.

tions of the a and P lines are the same, if we are given Since L is part of every scene's hyperboloid, this
the a coordinates of two images of a model, and the Pl means that 1(L) must be a 1-D curve at which all scenes'
coordinates of one image, we may also determine the line manifolds intersect, in our new space. If all scenes' man-
in ft space that describes the model. ifolds are 2-D planes in this new space, they can only

We now use our results to show that the linear com- intersect in a line. So 1(L) must be a line at which
binations work cannot be extended to oriented points, all scenes' planes intersect. But this means that no
To do this it will be sufficient to consider the case where scenes' planes can intersect anywhere else in our new
each model consists of three points and three vectors. If space. However, we have already shown that in general
the linear combinations result fails in this case, then it all the hyperboloids that represent scenes intersect at
fails in general. In this case, we may represent a model's other places than the line L. f must preserve these inter-
images with a 2-D hyperboloid in a 3-D space. It might sections, so a contradiction is derived. That is, we have
seem obvious from this that the linear combinations idea shown that in any space, the manifolds corresponding to
will not apply. Given a 2-D hyperboloid in a 3-D space, two different scenes of oriented points must intersect in
it is easy to pick four points on the hyperboloid that two distinct curves, which cannot happen if the mani-
span the entire 3-D space. This means that in general, folds are linear. This tells us that it is never possible
any four images of any model can be linearly combined to represent the images produced by a scene of oriented
to produce any possible image, and the linear combi- points using linear combinations, except in the trivial
nations idea is true only in the trivial sense that with sense.
enough images we may express any other image as a lin- The implications of this result, however, depend on
ear combination of those images. what one thinks is important about the linear combina-

However, things are not this simple. Linear combina- tions result. If it is the linearity of the images, then our
tions might be true of one representation of images, but result concerning oriented points is a setback. It does
not true of another. For example, with point features seem that part of the impact of the linear combinations
the cartesian coordinates of one image are linear combi- work is that the linearity of a scene's images was unex-
nations of other images of the same scene, but this might pected and striking. And it is certainly true that lin-
not be true of polar coordinates. So we must prove that ear spaces can lead to simpler reasoning than non-linear
the set of all images of a scene are not a linear combi- ones. However, a significant part of the importance of
nation of a small number of images, regardless of our the linear combinations work is that it provides a simple
choice of representation for an image. Since we know way of characterizing a scene's possible images in terms
that the three basis points of the image convey no in- of a small number of images, without explicitly deriv-
formation about the scene, the real question is whether ing 3-D information about the scene. And we may still
some alternate representation of affine slope might map do that with oriented points, as we have shown in our
each model's images into a linear subspace. So we ask discussion of affine structure from motion. Our compu-
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tations are no longer linear, but we may still derive a [2] Breuel, T., 1991, "Model Based Recognition using
simple set of equations from a few images of oriented Pruned Correspondence Search,* IEEE Conference on
points that characterize all other images that could be Computer Vision and Pattern Recognition, pp. 257-268.
produced by the scene, without explicitly determining [3] Cam, T., 1992, Polynomial Time Geometric Matching
this scene's 3-D structure. for Object Recognition, PhD Thesis, MIT Department

of Electrical Engineering and Computer Science.
6 Conclusions [4] Clemens, D. and Jacobs, D., 1991, "Space and Time

Bounds on Model Indexing," IEEE Transactions on Pa.
In this paper we have shown how to characterize the tern Analysis and Machine Intelligence, 13(10):1007-
sets of images that groups of 3-D oriented point features 1018.
can produce as simple geometric objects, when a lin- [5] Jacobs, D., 1992, "Space Efficient 3D Model Index-
ear transformation is used as a projection method. This ing," IEEE Conference Computer on Vision and Pat.
means that problems involving matching 2-D images to tern Recognition, pp. 439-444.
3-D scenes can be rephrased as the problem of matching [6] Jacobs, D., 1992, "Recognizing 3-D Objects Using 2-D
points in a high-dimensional space to 2-D hyperbolic sur- Images," PhD. Thesis, MIT Department of Electrical
faces in that space. This provides us with a formulation Engineering and Computer Science.
of the matching problem that can be easily visualized, [7] Koenderink, J. and van Doorn, A., 1991, "Affine Struc-
and that is easy to reason about. Many problems can ture from Motion," J. of the Optical Soc. of America,
be handled very simply, and involve familar geometric 8(2):377-385.
structures residing in a 3-D euclidean space. At the same [8] Korn, G.A. k T.M. Korn, 1968, Mathematical Handbook
time, we have demonstrated that when we focus on the forn, a. Engineers, Mcthem-Hil Ndwook
topology of this simple space, we can derive results that for Scientists and Engineers, McGraw-Hill, New York.
will apply to any reasonable representation of a model's [9] Lamdan, Y. & H.J. Wolfson, 1988, "Geometric Hash-
images. ing: A General and Efficient Model-Based Recogni-tion Scheme,' Second Int. Conference Computer Vision,

We use these results to place some fundamental limits pp. 238-249.

on problems in motion understanding and object recog-

nition. We show that although affine structure can be [10] Poggio, T., 1990, "3D Object Recognition: On a Result
derived simply from a motion sequence, that this deriva- of Basri and Ullman," Istituto Per La Ricerca ScientificaE Tecnologica IRST Technical Report 9005-03.
tion requires four images of oriented points. This com-

pares unfavorably with the two images needed to derive [11] Roberts, L., 1966, "Machine Perception of Three-
the affine structure of simple point features, or the three Dimensional Solid Objects," Optical and Electr-optical

images needed to derive the rigid structure of simple or Information Processing, edited by J. Tippett, MIT

oriented point features. Our result therefore undermines Press, Cambridge.

one of the motivations for attempting to derive affine [12] Shashna, A., 1991, "Correspondence and Affine Shape
structure instead of rigid structure. We also show that from Two Orthographic Views: Motion and Recogni-

indexing oriented points requires us to represent a 2- tion," MIT Al Memo 1327.

D surface discretely. Some indexing systems have been [13] Thompson, D. & J.L. Mundy, 1987, "Three-
built that implicitly represent 2-D surfaces, and that Dimensional Model Matching From an Unconstrained
build lookup tables through sampling, but these tend Viewpoint", Proc. IEEE Conference Rob. Ant., pp. 208-

to require considerable space. So it is disappointing to 220.

find that for oriented points we cannot find a way to [14] Ullman, S., 1979, The Interpretation of Visual Motion,
perform indexing by representing 1-D curves, as we did MIT Press, Cambridge.
for simple points. Finally, we show that new images of [15] Ullman, S. and Basri, R., 1991, "Recognition by Lin-
oriented points cannot be constructed from a linear com- ear Combinations of Models," IEEE Transactions on
bination of old images, except in a trivial sense. At the Patern Analysis and Machine Intelligence, 13(10):992-
same time, we do show how to construct new images 1007.
from old by solving a simple set of equations. In fact, [161 Van Gool, L., P. Kempenaers & A. Ooterlinck, 1991,
it is not clear how much of the real value of the linear "Recognition and Semi-Differential Invariants,* IEEE
combinations result is lost, since for oriented points we Conference Computer Vision and Pattern Recognition,
have a simple method of solving the same basic problem pp. 454-460.
that the linear combinations method solved for simple
points. For each of these problems, we have shown that
when we add orientation vectors to points, a problem
becomes more difficult in an important way, while at the
same time we provide positive solutions to these prob-
lems.
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Abstract to as repositioning, involving the return to a previously
visited place is also discussed.

A method for localization and positioning en Previous studies have examined the problems of lo-
an indoor environment is presented. Localiza- calization and positioning under a variety of conditions,
tion is the act of recognizing the environment, defined by the kind of sensors employed, the nature of
and positioning is the act of computing the ex- the environment, and the representations used. We can
act coordinates of a robot in the environment, distinguish between active and passive sensing, indoor
The method is based on representing the scene and outdoor navigation tasks, and metric and topolog-
as a set of 2D views and predicting the ap- ical representations. The metric approach attempts to
pearances of novel views by linear combina- utilize a detailed geometric description of the environ-
tions of the model views. The method accu- ment, while the topological approach uses a more qual-
rately approximates the appearance of scenes itative description including a graph with nodes repre-
under weak perspective projection. Analysis senting places and arcs representing sequences of actions
of this projection as well as experimental re- that would result in moving the robot from one node to
suits demonstrate that in many cases this ap- another.
proximation is sufficient to accurately describe In the paper we consider a robot that uses a passive
the scene. When weak perspective approxima- sensor, vision, in an indoor environment. The paper ad-
tion is invalid, either a larger number of models dresses both the localization and the positioning prob-
can be acquired or an iterative solution to ac- lems. Solutions to these problems are presented based
count for the perspective distortions can be em- on object recognition techniques. The method, based on
ployed. The same principal method is applied the linear combinations scheme [18], represents scenes
for both the localization and positioning pro, by sets of their 2D images. Localization is achieved by
lems, and a simple algorithm for repositioning, comparing the observed image to linear combinations of
the task of returning to a previously visited po- model views, and the position of the robot is computed
sition defined by a single view, is derived from by analyzing the coefficients of the linear combination
this method. that aligns the model to the image.

The rest of the paper is organized as follows. The
1 Introduction next section describes the localization and positioning

problems and surveys previous solutions. The method
Basic tasks in autonomous robot navigation are localiza- of localization and positioning using linear combinations
tion and positioning. Localization is the act of recogiz- of model views is described in Section 3. The method as-
ing the environment, that is, assigning consistent labels sumes weak perspective projection. An iterative scheme
to different locations, and positioning is the act of corn- to account for perspective distortions is presented in Sec-
puting the coordinates of the robot in the environment. tion 4. An analysis of the error resulting from the pro-
Positioning is a task complementary to localization, in jection assumption is presented in Section 5. Constraints
the sense that position (e.g., "1.5 meters northwest of imposed on the motion of the robot as a result of special
table 7') is often specified in a place-specific coordinate properties of indoor environments can be used to reduce
system ("in room 911"). In this paper we suggest a the complexity of the method presented here. Experi-
method of both localization and positioning using vision mental results follow.
alone. A variant of the positioning problem, referred

OR. B. was supported in part by the Advanced Research 2 The Problem
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Agency (ARPA Order No. 8459) and the U.S. Army Engi- ment, identify the observed environment, and then find
neer Topographic Laboratories under Contract DACA76-92- your position in that environment. Localization resem-
C-0009. bles the task of object recognition, with objects replaced
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by scenes. Once localization is accomplished, positioning advance, and localization becomes a verification prob-
can be performed. lem. Path continuity in many cases is essential, and the

One problem a system for localization and position- so-called "drop-off" problem is not addressed. The em-
ing should address is the variability of images due to phasis in these systems is on positioning, which is used
viewpoint changes. The inexactness of practical systems to keep the robot on the path. It is typical for these
makes it difficult for a robot to return to a specified po- systems (e.g., [1, 6, 12]) to use a full 3D model of the
sition on subsequent visits. The visual data available environment.
to the robot between visits varies in accordance with Onoguchi el al. [12], among others, represent the en-
the viewing position of the robot. A localization system vironment by a set of landmarks selected from pairs of
should be able to recognize scenes from different posi- stereo images by a human operator. These landmarks
tions and orientations, are transformed by an image processing program which

Another problem is that of changes in the scene. At is designed so as to identify the specific landmark using
subsequent visits the same place may look different due specific extraction instructions (such as what features to
to changes in the arrangement of the objects, the intro- look for and at what locations). Localization is achieved
duction of new objects, and the removal of others. In by applying the extraction procedure specified for the
general, some objects tend to be more static than oth- next landmark. Once a landmark is identified, the posi-
ers. While chairs and books are often moved, tables, tion of the robot relative to that landmark is determined
closets, and pictures tend to change their position much by comparing the dimensions of the observed landmark
less, and walls are almost guaranteed to be static. Static with those of the stored model.
cues naturally are more reliable than mobile ones. Con- The method presented in this paper represents the
fining the system to static cues, however, may in some environment using a set of views given as edge maps.
cases result in failure to recognize the scene due to in- Localization and positioning are achieved by comparing
sufficient cues. The system should therefore attempt to images of the environment to linear combinations of the
rely on static cues, but should not ignore the dynamic model views. The method uses rich visual information
cues. to represent the scene. The system is flexible. In many

Solutions to the problem of localization from visual cases it is capable of recognizik6 its location from one
data require a large memory and heavy computation. image only (3600 coverage is not required). When one
Existing systems often try to reduce this cost by us- image is not sufficient, additional images can be acquired
ing sparse representations and by exploiting contextual to solve the localization problem. Context can be used
information. Sparse representations are introduced in to determine the order of comparison of the models to
[10, 15]. Mataric [101 represents scenes as sequences the observed image and to increase the confidence of a
of landmarks (such as walls, doors, etc.) extracted by given match, but context is not essential: the system can
tracing the boundaries of the scene using a sonar and a also, by performing more extensive computations, solve
compass. Metric information of and between the land- the "drop-off" problem.
marks is not stored. Sarachik [15] recognizes a room by
its dimensions, which are measured by identifying and 3 The Method
locating the top corners of the room using stereo data The problems of localization and object recognition are
(obtained from four cameras). In both cases the repre- similar in many ways. Both problems require the match-
sentation is very sparse, and the scene is therefore often ing of visual images to stored models, either of the en-
ambiguous. vironment or of the observed objects. Both problems

Richer representations are used in [3, 5] where higher face similar difficulties, such as varying illumination con-
success rates are reported. Braunegg [3] represents the ditions and changes in appearance due to viewpoint
scene by an occupancy table, a 2D bit array which con- changes. Similar metholiologies therefore can be used
tains a I at every location occupied by some object. The for both problems.
table is constructed by taking stereo pictures covering A particular application of an object recognition
3600 from the middle of the room and projecting the ob- scheme, the Linear Combinations (LC) scheme [18], to
tained 3D data onto the floor. The method suffers from the problems of localization and positioning is discussed
loss of information due to the projection onto the floor, below. The environment is represented in this scheme by

Engelson et al. [5] represent the scene by a set of in- a small set of views obtained from different viewpoints
variant "signatures". A signature is usually composed and by the correspondence between the views. A novel
of low-resolution gray-level or range data obtained by view is recognized by comparing it to linear combinations
blurring an image. A set of signatures taken from differ- of the stored views. Positioning is achieved by recovering
ent viewpoints are stored. A scene is recognized if the the position of the camera relative to its position in the
robot encounters a signature similar to one of the stored model views from the coefficients of the aligning linear
signatures. combination. In the rest of this section we review the lin-

Systems that use the full information provided by the ear combinations approach and describe its application
image (e.g., [6, 12]) usually rely on contextual informa- to both localization and positioning.
tion to avoid scanning all the models in the memory and
to reduce the computational cost of comparing a model 3.1 Localization
to the image. The system follows a predetermined path, The problem of localization is defined as follows: given
so that the identity of each visited location is known in P, a 2D image of a place, and M, a set of stored mod-
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els, find a model M4 E M such that P matches M'. A xi, Yi and X2, Y2 the location vectors of the n points in
common approach to handling the problem of recogni- the two images; then there exist coefficients a,, a 2 , a3, a4
tion from different viewpoints is by comparing the stored and bl, b2, b3 , b4 such that
models to the observed environment after the viewpoint
is recovered and compensated for. This approach, called X = aixi + a2YI + a3x 2 + a 4 1
alignment, is used in a number of studies of object recog- Y' = bixi + b2y 1 + b3 x2 + b4 1 (4)
nition [2, 7, 8, 9, 16, 17]. We apply the alignment
approach to the problem of localization. The system (Note that the vector Y2 already depends on the other
described below uses the "Linear Combinations" (LC) four vectors.) Since R is a rotation matrix, the coeffi-
scheme, which was suggested by Ullman and Basri [18]. cients satisfy the following two quadratic constraints:

We begin with a brief review of the LC scheme. LC a2 + a2 + a. - 2 b-
is defined as follows. Given an image, we construct two
view vectors from the feature points in the image, one 2(bb 3 - aaa)rl + 2(b2b3 - a2 a3 )r1 2  (5)
contains the z-coordinates of the points, and the other
contains the y-coordinates of the points. An object (in and
our case, the environment) is modeled by a set of such alb1 + a2b2 + asba + (aib3 + asbi)r11+
views, where the points in these views are ordered in cor- (a 2 b3 + a3b2)rl 2 = 0 (6)
respondence. The appearance of a novel view of the ob-jectis redcte byappyin liearcominaion tothe To derive these constraints the transformation between
ject is predicted by applying linear combinations to the the two model views should be recovered. This can
stored views. The predicted appearance is then com- be done under weak perspective using a third image.
pared with the actual image, and the object is recog- Alternatively, the constraints can be ignored, in which
nized if the two match. The advantage of this method cs h ytmwudcnuergdtasomtoswt
is twofold. First, viewer-centered representations are case the system would confuse rigid transformations with
used rather than object-centered ones, namely, models affmie ones. This usually does not prevent successful lo-
are composed of 2D views of the observed scene; second, calization since generally scenes are fairly different from
novel appearances are predicted in a simple and accurate The LC scheme for the problem of localization is as
way (under weak perspective projection). The environme is mo dle d by ali etio f i m-

Formally, given P, a 2D image of a scene, and M, follows. The environment is modeled by a set of im-
a set of stored models, the objective is to find a model ages with correspondence between the images. For ex-M' EM sch tat = _ rr' fr sme cnstnts ample, a spot can be modeled by two of its correspond-
M' E M such that P = k==I ajMJ for some constants ing views. The corresponding quadratic constraints may
ij E 2R. It has been shown that this scheme accurately also be stored. Localization is achieved by recovering the

predicts the appearance of rigid objects under weak per- linear combination that aligns the model to the observed
spective projection (orthographic projection and scale). image. The coefficients are determined using four model
The limitations of this projection model are discussed points and their corresponding image points by solving
later in this paper. a linear set of equations. Three points are sufficient to

More concretely, let pi = (z4, yi, zi), 1 < i < n, be a set determine the coefficients if the quadratic constraints are
of n object points. Under weak perspective projection, also considered. Additional points may be used to reduce
the position p• = (z•, y4) of these points in the image are the effect of noise.
given by The LC scheme uses viewer-centered models, that is,

S= 8rlZi + sr2yI + sr1 3zi + tr representations that are composed of images. It has a
number of advantages over methods that build full three-

y: = sr21zi + Sr22Yi + sr 2 3zi + ty (1) dimensional models to represent the scene. First, by us-

where r,3 are the components of a 3 x 3 rotation matrix, ing viewer-centered models that cover relatively small
and s is a scale factor. Rewriting this in vector equation transformations we avoid the need to handle occlusions
form we obtain in the scene. If from some viewpoints the scene appears

different because of occlusions we utilize a new model
x = sriix + sr 12y + 8r 13 z + t1l for these viewpoints. Second, viewer-centered models
y = sr 21 x + 8r 2 2y + sr23Z + til (2) are easier to build and to maintain than object-centered

ones. The models contain only images and correspon-
where x, Y, z, x', y' E R' are the vectors of xi, yi, li, dences. By limiting the transformation between the
zx and Y• coordinates respectively, and 1 = (1, 1,... 1). model images one can find the correspondence using mo-
Consequently, tion methods. If large portions of the environment are

,y' E san ,y,,1} (3) changed between visits a new model can be constructed
Espaix, 1 (3) by simply replacing old images with new ones.

or, in other words, x' and y' belong to a four-dimensional One problem with using the LC scheme for localization
linear subspace of IV'. (Notice that z', the vector of is due to the weak perspective approximation. In con-
depth coordinates of the projected points, also belongs trast with the problem of object recognition, where we
to this subspace. This fact is used in Section 4 below.) can generally assume that objects are small relative to
A four-dimensional space is spanned by any four lin- their distance from the camera, in localization the envi-
early independent vectors of the space. Two views of ronment surrounds the robot and perspective distortions
the scene supply four such vectors [13, 18]. Denote by cannot be neglected. The limitations of weak perspective
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modeling are discussed both mathematically and empir- views:
ically in the next two sections. It is shown that in many
practical cases weak perspective is sufficient to enable ac- Az - aa + a4
curate localization. The main reason is that the problem Ay = b3 tv + b4 (8)
of localization does not require accurate measurements 1 1
in the entire image; it only requires identifying a suffi- Az f(- - -)
cient number of spots to guarantee accurate naming. If Sn 8

these spots are relatively close to the center of the im- where
age, or if the depth differences they create are relatively 2 2 2 2 2
small (as in the case of looking at a wall when the line of n-a 1 +a 2 +a~s +2aas(alr 1 1 +a 2 r12) (9)
sight is nearly perpendicular to the wall), the perspec- Note that Az is derived from the change in scale of the
tive distortions are relatively small, and the system can object. The rotation of the camera can also be derived
identify the scene with high accuracy. Also, views re- (see details in [14]).
lated by a translation parallel to the image plane form a As was already mentioned, the position of the robot
linear space even when perspective distortions are large. is computed here relative to the position of the camera

By using weak perspective we avoid stability problems when the first model image, P1, was acquired. Ax and
that frequently occur in perspective computations. We Az represent aie motion of the robot from P1 to P', and
can therefore compute the alignment coefficients by look- the rest of the ,arameters represent its 3D rotation and
ing at a relatively narrow field of view. The entire scheme elevation. To obtain the relative position the transfor-
can be viewed as an accumulative process. Rather than mation parameters between the model views, P1 and P2 ,
acquiring images of the entire scene and comparing them are required.
all to a full scene model (as in [3]) we recognize the scene
image by image, spot by spot, until we accumulate suffi- 3.3 Repositioning
cient convincing information that indicates the identity An interesting variant of the positioning problem, re-
of the place. ferred to as repositioning, is defined as follows. Given

When perspective distortions are relatively large and an image, called the target image, position yourself in
weak perspective is insufficient to model the environ- the location from which this image was observed1 . One
ment, two approaches can be used. One possibility is way to solve this problem is to extract the exact position
to construct a larger number of models so as to keep from which the target image was obtained and direct the
the possible changes between the familiar and the novel robot to that position. In this section we are interested
views small. Alternatively, an iterative computation can in a more qualitative approach. Under this approach
be applied to compensate for these distortions. Such an position is not computed. Instead, the robot observes
iterative method is described in Section 4. the environment and extracts only the direction to the
3.2 Positioning target location. Unlike the exact approach, the method

presented here does not require the recovery of the trans-
Positioning is the problem of recovering the exact po- formation between the model views.
sition of the robot. This position can be specified in We assume we are given with a model of the environ-
a fixed coordinate system associated with the environ- ment together with a target image. The robot is allowed
ment (i.e., room coordinates), or it can be associated to take new images as it is moving towards the target.
with some model, in which case location is expressed We assume a horizontally moving platform. (In other
with respect to the position from which the model views words, we assume three degrees of freedom rather than
were acquired. In this section we discuss an application six; the robot is allowed to rotate around the vertical
of the LC scheme to the positioning problem. axis and translate horizontally.) Below we give a -imple

The idea is the following. We assume a model com- computation that determines a path which terminates in
posed of two images, P1 and P2 ; their relative position is the target location. At each time step the robot acquires
given. Given a novel image P', we first align the model a new image and aligns it with the model. By compar-
with the image (i.e., localization). By considering the co- ing the alignment coefficients with the coefficients for the
efficients of the linear combination the robot's position target image the robot determines its next step. The al-
relative to the model images is recovered. To recover the gorithm is divided into two stages. In the first stage the
absolute position of the robot in the room the absolute robot fixates on one identifiable point and moves along
positions of the model views should also be provided, a circular path around the fixation point until the line of

Assuming P2 is obtained from P1 by a rotation R, sight to this point coincides with the line of sight to the
translation t = (t., ty), and scaling s, the coordinates of corresponding point in the target image. In the second
a point in P', (z', y), can be written as linear combina- stage the robot advances forward or retreats backward
tions of the corresponding model points in the following until it reaches the target location.
way: Given a model composed of two images, P1 and P2 ,

P2 is obtained from P1 by a rotation about the Y-axisz - a, xi + a2 Y3 + a3Z 2 + a 4  by an angle a, horizontal translation t=, and scale factor
y= bx I + b2YI + b3 Z2 + b4  (7) 'This problem can be considered as a variant of the horn-

Substituting for X2 we can derive the position of the ing problem. A discussion of the general homing problem
robot in the image relative to its position in the model with a "signature- based" solution can be found in[l 1].
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s. Given a target image Pt, Pt is obtained from Pi by a retreat backward to adjust its position along the line
similar rotation by an angle 0, translation t1 , and scale of sight. Several measures can be used to determine the
s,. Using Eq. (4) the position of a target point (zt, yt) direction of motion; one example is the term cl/a 1 which
can be expressed as satisfies

- s(17)
x = = az xi+ a3Z2 + a 4  a, St
yt = b2yi (10) when the two lines of sight coincide. The objective at

(The rest of the coefficients are zero since the platform this stage is to bring this measure to 1.
moves horizontally.) In fact, the coefficients are given by

ai - 5.Sil(G9) = *, sne4 Handling Perspective Distortionsa, =- s ipa 0 a3 =---- "n

a4  tt 6' . = awn The linear combination scheme presented above accu-
as= al rately handles changes in viewpoint assuming the images

(The derivation is given in [14]) are obtained under weak peispective projection. Error
At every time step the robo, acquires an image and analysis and experimental results demonstrate that in

aligns it with the above model. Assume that image Pp many practical cases this assumption is valid. In cases
is obtained as a result of a rotation by an angle 0, trans- where perspective distortions are too large to be handled
lation tp, and scale sp . The position of a point (xp, yp) by a weak perspective approximation, matching between
is expressed by the model and the image can be facilitated in two ways.

One possibility is to avoid cases of large perspective dis-
Zp ="- 1 lZ + C3 Z2 + C4  tortion by augmenting the library of stored models with
yp = d2yI (12) additional models. In a relatively dense library there

where the coefficients are given by usually exists a model that is related to the image by
a sufficiently small transformation avoiding such distor-

cl = n-C3 = • tions. The second alternative is to improve the match
sin a#sina (3sin= = .'s (13) between the model and the image using an iterative pro-s sin a Pcess. In this section we consider the second option.

The step performed by the robot is determined by The suggested iterative process is based on a Taylor
c1  a, expansion of the perspective coordinates. As described

6 = - - (14) below, this expansion results in a polynomial consisting
C3  a3 of terms each of which can be approximated by linear

That is, combinations of views. The first term of this series rep-
6 = s sin a(cot .0 - cot 0) (15) resents the orthographic approximation. The process re-

6 is a monotonic function of the angular diference be- sembles a method of matching 3D points with 2D points
tween Pp and Pt (the derivation is given in [14]). The described recently by DeMenthon and Davis [4]. In th's
robot should now move so as to reduce the absolute value case, however, the method is applied to 2D models rather
of 6. The direction of motion depends on the sign of 6. than 3D ones. In our application the 3D coordinates of

The robot can deduce the direction by moving slightly the model points are not provided; instead they are ap-
to the side and checking if this motion results in an in- proximated from the model views.
crease or decrease of 6. The motion is defined as follows. An image point (z, y) = (fX/Z, fY/Z) is the projec-
The robot moves to the right (or to the left, depending tion of some object point, (X, Y, Z) in the image, where
on which direction reduces 11611) by a step Ax. f denotes the focal length. Consider the following Tay-

A new image Fn is now acquired, and the fixated point lor expansion of F(Z) = I/Z around some depth value
is located in this image. Denote its new position by ZO:
z,,. Since the motion is parallel to the image plane the
depth values of the point in the two views, Pp and Pn, 1 = F(k)(Z) - Zo) (18)
are identical. We now want to rotate the camera so as F= 0k!
to return the fixated point to its original position. The k=0
angle of rotation, f, can be deduced from the equation The Taylor series describing the position of a point z =

Zp = Zn cos # + sin P (16) fX/Z therefore is given by

This equation has two solutions. We chose the one that fX [+ 0 (_1)k (Z- Zok1 (19)
counters the translation (namely, if translation is to the F1 (k-- 1)! Z0 (19)
right, the camera should rotate to the left), and that =

keeps the angle of rotation small. In the next time step Notice that the zero term contains the orthographic ap-
the new picture Pn replaces Pp and the procedure is proximation for z. Denote by A(") the kth term of the
repeated until 6 vanishes. The resulting path is circular series:
around the point of focus. fX (-1)k Z- Zo k

Once the robot arrives at a position for which 6 = 0 o (k - 1)! Z= (20)
(namely, its line of sight coincides with that of the target Z0 (-, \) /

image, and 0 = 0) it should now advance forward or A recursive definition of the above series is given below.
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Initialization: z \ f 5 10 15 20

z(O) _ A(O) _ 25 1.2 1.4 1.6 1.8
Z0 50 1.1 1.2 1.3 1.4

75 1.07 1.13 1.2 1.27

Iterative step: 100 1.05 1.1 1.15 1.2

A(k) = - Z0 A(k-1) Table 1: Allowed depth ratios, Zo, as a function of z

(k- 1)-Z0 (half the width of the field considered) and the error

z(k) - z(k-i) + A~) allowed (c, in pixels).

where z(k) represents the kth order approximation for x,
and A(k) represents the highest order term in z(k). 5 Projection Model-Error Analysis

According to the orthographic approximation both X
and Z can be expressed as linear combinations of the In this section we estimate the error obtained by using
model views (Eq. (4)). We therefore apply the above the linear combination method. The method assumes a
procedure, approximating X and Z at every step using weak perspective projection model. We compare this as-
the linear combination that best aligns the model points sumption with the more accurate perspective projection
with the image points. The general idea is therefore the model.
following. First, we estimate z(') and A(O) by solving the A point (X, Y, Z) is projected under the perspective
orthographic case. Then at each step of the iteration we model to the point (z, y) = (fX/Z, JY/Z) in the im-
improve the estimate by seeking the linear combination age, where f denotes the focal length. Under the weak
that best estimates the factor perspective model the same point is approximated by

(i, ý) = (sX, sY) where s is a scaling factor. The best
Z - Z0 z - X(k-1) estimate for s, the scaling factor, is given by s = flZ o ,

-k -1)Z 0  &(k-1) (21) where ZO is the average depth of the observed environ-
ment. Denote the error by

Denote by x E R" the vector of image point coordinates, E = - zJ (23)
and denote by

P = [x1 , Y1, x2 , 1] (22) The error is expressed by

an n x 4 matrix containing the position of the points in E=IX(1 (24)
the two model images. Denote by P+ = (PT P)-I PT the TO (
pseudo-inverse of P (we assume P is overdetermined).
Also denote by a(k) the coefficients computed for the kth Changing to image coordinates we obtain
step. Pa(k) represents the linear combination computed z
at that step to approximate the X or the Z values. Since E= Il ,1 (25)
at every step ZO, f, and k are constant they can be 0

merged into the linear combination. Denote by x(k) and The error is small when the measured feature is close
A(k) the vectors of computed values of z and A at the the optical axis, or when our estimate for the depth, ZO,
kth step. An iterative procedure to align a model to the is close to the real depth, Z. This supports the basic
image is described below. intuition that for images with low depth variance and

for fixated regions (regions near the center of the im-
Initialization: age), the obtained perspective distortions are relatively
Solve the orthographic approximation, namely small, and the system can therefore identify the scene

-a(
0 )= P+X with high accuracy. Table I shows a number of examples

a&(°) = Pa) where the allowed depth variance, Z/Zo, is computed as
() A) aa function of z and the tolerated error, f. For exam-

ple, a 10 pixel error tolerated in a field of view of up to
Iterative step: -50 pixels is equivalent to allowing depth variations of

20%. From this discussion it is apparent that when a
q(k) - (x - x(-i)) - - model is aligned to the image the results of this align-
a(k) = p+q(k) ment should be judged differently a different points of
A(k) = (pa~k &(k..) the image. The farther away a poi:.t is from the cen-

) (Pa()) -ter the more discrepancy should be tolerated between
x(M) = x(k-) + A&M the prediction and the actual image. A five pixel error

at position z = 50 is equivalent to a 10 pixel error at
where the vector operations ® and + are defined as position z = 100.

So far we have considered the discrepancies between
u ® v = (Ujv 1 ,..., unvn) the weak perspective and the perspective projections of

u + v = (!l,..., Ln) points. The accuracy of the LC scheme depends on the
V] Vn validity of the weak perspective projection both in the
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model views and for the incoming image. In the rest of static cues (the wall corners) were perfectly aligned. The
this section we develop an error term for the LC scheme semi-static cues, however, did not match any features in
assuming that both the model views and the incoming the image.
image are obtained by perspective projection. Figure 3 shows the matching of the model of office A

The error obtained by using the LC scheme is given with an image of the same office obtained by a relatively
by large motion forward (about 2m) and to the side (about

E = Ix - ax1 - by, - cX2 - dj (26) 1.5m). Although the distances are relatively short most

Since the scheme accurately predicts the appearances of perspective distortions are negligible, and a good match
points under weak perspective projection, it satisfies between the model and the image is obtained.

Another set of images was taken in a corridor. Here,
i = ail - bi - ci 2 - d (27) because of the deep structure of the corridor, perspective

distortions are noticeable. Nevertheless, the alignment
where accented letters represent orthographic approxi- results still demonstrate an accurate match in large por-
mations. Assume that in the two model pictures the tions of the image. Figure 4 shows to model images of
depth ratios are roughly equal: a corridor. Figure 5 (left) shows an overlay of a lin-

-0 z01  z02  ear combination of the model views with an image of
S= Z0 _ (28) a corridor. It can be seen that the parts that are rela-
TV Z1  Z2  tively distant align perfectly. Figure 5 (right) shows the

(This condition is satisfied, for example, when between matching of the corridor model with an image obtained
the two model images the camera only translates along by a relatively large motion (about half of the corridor
the image plane.) Using the fact that length). Because of perspective distortions the relatively

near features no longer align (e.g., the near door edges).
-- X L LO LO (29) The relatively far edges, however, still match.

Z Z0 Z Z The next experiment shows the application of the iter-
ative process presented in Section 4 in cases where large

we obtain (see [14]) perspective distortion were noticeable. Figure 6 shows
LO ZM I the results of matching an office model to an image of the

E 1 I M I °• - 11 (30) same office. In this case, since the image was taken from
I- Z Z- d "a relatively close distance, perspective distortions can-

The error therefore depends on two terms. The first not be neglected. The effects of perspective distortions
gets smaller as the image points get closer to the center of can be noticed on the top right corner of the board, and
the frame and as the difference between the depth ratios on the edges of the hanger on the top right. Perspective
of the model and the image gets smaller. The second effects were reduced by using the iterative process. The
gets smaller as the translation component gets smaller results of applying this procedure after one and three
and as the model gets close to orthographic. iterations are shown in Figure 7.

Following this analysis, weak perspctive can be used The experimental results demonstrate that the LC
as a projection model when the depth variations in the method achieves accurate localization in many cases, and
scene are relatively low and when the system concen- that when the method fails because of large perspective
trates on the center part of the image. We conclude distortions an iterative computation can be used to im-
that, by fixating on distinguished parts of the environ- prove the quality of the match.
ment, the linear combinations scheme can be used for
localization and positioning. 7 Conclusions

6 Experiments A method of localization and positioning in an indoor
environment was presented. The method is based on rep-

The LC method was implemented and applied to images resenting the scene as a set of 2D views and predicting
taken in an indoor environment. Images of two offices, the appearance of novel views by linear combinations of
A and B, that have similar structures were taken us- the model views. The method accurately approximates
ing a Panasonic camera with a focal length of 700 pixels. the appearances of scenes under weak perspective projec-
Semi-static objects, such as heavy furniture and pictures, tion. Analysis of this projection as well as experimental
were used to distinguish between the offices. Figure I results demonstrate that in many cases this approxima-
shows two modcl views of office A. The views were taken tion is sufficient to accurately describe the scene. When
at a distance of about 4m from the wall. Correspon- the weak perspective approximation is invalid, either a
dences were picked manually. The results of aligning the larger number of models can be acquired or an iterative
model views to images of the two offices are presented solution can be employed to account for the perspective
in Figure 2. The left image contains an overlay of a distortions.
predicted image (the thick white lines), constructed by The method presented in this paper has several ad-
linearly combining the two views, and an actual image vantages over existing methods. It uses relatively rich
of office A. A good match between the two was achieved, representations; the representations are 2D rather than
The right image contains an overlay of a predicted im- 3D, and localization can be done from a single 2D view
age constructed from a model of office B and an image of only. The same basic method is used in both the localiza-
office A. Because the offices share a similar structure the tion and positioning problems, and a simple algorithm
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Figure 1: Tw~o miodel views of office A.

Figure 2: Mat clung a model of office A to an imiage (if llice A (left), and mat cling a model of office B to Owh same
image (right)

Figure 3: Matching a niodel of office A to anI imiage of t he samie office obtained by a relatively lairge moiit ion 6 rward
adn~ to the right..
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Figure 4: Two model views of a corridor.
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Figure 6: The result of matching the model to an image obtained by a relatively large motion. Perspective distortions
can be seen in the table, the board, and the hanger at the upper right.

Figure 7: The results of applying the iterative process to reduce perspective distortions after one (left) and three
(right) iterations.
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Dynamic Camera Self-Calibration from Controlled

Motion Sequences

Lisa Dron

M.I.T. Artificial Intelligence Laboratory
545 Technology Square, Cambridge, MA 02139

Abstract full nonlinear model is not usually necessary. Since cam-
In order to recover camera motion and 3-d structure from era motion is estimated by measurements taken over the
a sequence of images we must first relate points in the entire image, the effects of distortion are not as impor-
image plane to directions in space. This paper describes a tant unless the lens distortion is particularly severe. The
least-squares algorithm for computing camera calibration previously cited methods require tedious measurements
from a series of motion sequences for which the transla- and carefully controlled setups. It is certainly desirable
tional direction of the camera is known. The method does to avoid the use of calibration patterns if this is possible;
not require special calibration objects or scene structure. and as a practical matter, it may be necessary to do so if
It only requires the ability to move the camera in a given the camera is placed in an environment where the scene
direction and to track features in the image as the cam- cannot be controlled.
era moves. This method differs from other recently de- Recently, methods for computing the linear pinhole-
veloped approaches in at least two respects. First, since it model parameters of perspective projection by track-
is a linear least-squares method, it can include informa- ing features in the image, without using spe-
tion from many sequences to produce a robust estimate cial patterns, have been developed by Faugeras et
of the calibration matrix, which can be updated dynami- al. [Faugeras et al., 19921 and Hartley [Hartley, 1992].
cally as new measurements are taken. Second, it uses the In the second method, the effective focal lengths and
most general possible linear model for calibration, taking relative positions of two different cameras are computed
into account misalignment of the image sensor and op- from two images using an initial guess for the locations
tical axis, as well as rotation of the camera with respect of their principle points. The method developed by
to the external coordinate system. Experimental results Faugeras et al. applies theories from algebraic projective
from applying the algorithm to a set of real motion se- geometry to compute all of the pinhole model parame-
quences with noisy correspondence data are given and ters from three image sequences.
analyzed. The algorithm for camera self-calibration presented in

this paper is similar to these methods in that it requires
1 Introduction the ability to track features between images as the cam-

Before camera motion and 3-d structure can be deduced era moves and does not need special calibration patterns.
from a set of images, it is necessary to know the re- It differs from the previous methods, however, in that
lation between points in the image plane and direc- it is a linear least squares algorithm and can include
tions in 3-space. Methods for computing camera cali- information from many motion sequences to produce a
bration differ mainly in the complexity of the camera robust estimate which can be updated dynamically as
model and the type of laboratory setup required. The new measurements are taken. Furthermore it uses the
accuracy of the calibration and the complexity of the most general linear camera model possible, taking into
model needed are determined by the application. For account misalignment of the image sensor and optical
3-d metrology, it is necessary to use as complete a model axis, as well as the rotation of the camera with respect
as possible which includes the nonlinear distortions due to the motion stage coordinate system.
to imperfections and misalignments in the optical sys- Unlike the other methods, it does require that the
tem. The basic method for determining the linear per- translational direction of the camera be known for each
spective parameters and nonlinear radial lens distortion sequence. It is not necessary to know the rotation; al-
using a carefully designed calibration pattern was devel- though the estimation is simplified if it is made to be
oped by Tsai [Tsai, 1986], and later refined by Lenz and zero. The benefit gained in return for having to control
Tsai (Lens and Tsai, 1988]. Since then the method has the camera motion, is a less stringent requirement on
been improved several times by expanding the number of the accuracy of the point correspondences than needed
distortion parameters in the model and using nonlinear otherwise. For example, Faugeras et al. report that er-
optimization techniques [Weng et al., 1992]. rors of I pixel in the location of the correspondences can

For computing camera motion and judging relative significantly affect their results. Such precision is not
distances as needed for navigation, the precision of the achievable from block-matching techniques which can be
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implemented in hardware. In many situations, it is much 2.2 Relative motion and the coplanarity
easier to move the camera in a known direction than to constraint
attain such high accuracy in the correspondences. Suppose we have two images taken by the same camera

at two different positions, which we will refer to as right
2 Basic Equations and Definitions and left. Let {wr,, wi}) denote world coordinates with
The least-squares algorithm for computing the camera respect to the right and left coordinate systems of a set
calibration from a set of controlled motion sequences is of fixed points in the environment, wi = (Zr, y,, z')T
presented in Section 3. In this section I define the nota- and wai = (zi, yh, zi)T. Assuming rigid motion of the
tion which will be used later and rederive the fundamen- camera with respect to the stationary environment, wri
tal equations describing the apparent motion of points and w1i are related by
in the image plane given the motion of the camera with
respect to an external coordinate system. = RIw. + tc (4)
2.1 The camera calibration matrix where Rc denotes an orthonormal rotation matrix, and

t, is the translation vector that connects the origins of
Let w = (z, y, z)T represent a point in the world with the two systems.
respect to the origin of the camera coordinate system. In terms of homogeneous coordinates, ir =
We are interested in relating the projection of w onto (Zr/zr, yr/Zr, 1)T and •, = (ZI/zi, yj/zj, 1)T, equa-
the plane (0,0, f)T to the coordinates of a point on a tion (4) can be rewritten as
digitized pixel grid. Let * = (x/z, y/z, 1)' represent
the 2-dimensional homogeneous coordinates of w. Two ZrWr, = ziRcivii + te (5)
world points wi and wj are projectively equivalent on and hence,
(0, 0, f)T if and only if wi = iw3j.

Image plane coordinates, m = (m",my, I)T are de- ZrKc-lmri = ziRcKc-'mi + tc (6)
fined on a rectangular coordinate system such that A necessary condition for the vectors Wri and wgi to
(mr, my) represents the coordinates of a point in the im- intersect at the world point i is that they be coplanar
age plane with the centers of each pixel located at integer with t,, or equivalently, that the triple product of the
values of m, and mi. If we ignore the nonlinear radial wiy direquivanish

and tangential distortions caused by imperfections in the ray directions vanish

lens and assume perfect perspective projection, the im- Rewli • (tr x Civ,) = 0 (7)
age plane coordinates are related to 2-d homogeneous
world coordinates by a linear transformation matrix Kc Zr and zi drop out of the above expression since they are

merely scale factors.
n = (1) Equation (7) is known as the coplanarity constraint

Under certain conditions Kc takes on a special form. and is the basis of all methods for computing relative
If the axes of the pixel grid are exactly orthogonal, and cameramotion given a set of matched vectors {wr,, wN, }.
if the image plane is exactly perpendicular to the optical A similar constraint can be written in terms of image
axis, K, is upper triangular and has the form coordinates by writing (6) as

Kc 0 l/es (2) Zrmr = ZiKcRcKc-Imgi + Kct
K, 0 0 V / = z1U~m1, + Ve (8)

where f is the effective focal length, s, and sy are the with
spacings between pixel centers along the orthogonal z-
and y-axes, and (zo,yo) is the location of the principal U _ KcRcKc- (9)
point, in image plane coordinates, where the optical axis v. Kctc (10)
pierces the image plane.In practice, the conditions for Kp to have the form Equation (10) is the key equation which will be used inIn pactcethe ondtios fo Kto ave he orm the least-squares algorithm of Section 3. As with (.5), we
of (2) will not be met exactly. Synchronization error or tase
clock skew in the frame capture hardware can cause the obtain
grid axes to be slightly non-orthogonal. Since commer- U . (VC X Rn) = 0
cial CCD cameras are not assembled with strict align-
ment tolerances, it is also unlikely that the image sensor 2.3 Motion stage orientation
will be exactly perpendicular to the optical axis. Taking In order to generate controled motion sequences, the
these effects into consideration, a more general form for camer t be monted on s evuewces theKCe can be written as camera must be mounted on .some device which is able

to move in a precise manner. In pract ice, it is not feasible( f/Os -f/(s tan B) Zo to exactly align the camera coordinate system with that
KX = A, 0 f/(sy sin0) yo (3) of the motion stage, and hence we must also find the

( 0 0 1 ) transformation which relates the motion of the stage to
where A. is the affine transformation between image that of the camera.
plane coordinates on the rotated and unrotated image Let (Ro, to) denote the rotation and translation of the
sensor, and 0 is the angle between the grid axes. camera coordinate system with respect to the motion
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stage coordinate system such that if w. = (z,, y,, z,)T As explained in Section 4, it is numerically difficult to
are the coordinates of a world point in the camera system obtain a good estimate directly from the image data for
and wm = (Zm, ym, zm)T are the coordinates of the same Km = KAR., with K, of the form (3), since this matrix
point with respect to the motion stage then is very poorly conditioned. Instead, we start with an

estimate, K,, and look for the the best update matrix
we=~wm +t, (12) K. such that

Suppose the stage executes a motion described by a Km = K, K. (22)
rotation and translation (Rm, tin) of its coordinate cen- The estimate K, can be derived either from the manufac-
ter. Let Wtm and wa,. denote the coordinates of the turer's data on the camera and associated frame capture
same world point with respect to the stage before and hardware, or by iteratively solving (22) and replacing
after the motion and let w,, and wl, denote the same K, with the value computed for Km on the previous
points in the right and left camera systems. We have iteration. We thus define
then

Wrm = Rmwim + tm (13) Uo = K.-'UckK, (23)

and, combining equations (12) and (13), we obtain after V -k K#-'vck (24)
some algebraic manipulation p K,- 1m (25)

w,. = RoRmR.TwI+Rotm +(I-Rol.,nRoT)to (14) such that from (19) and (20)

Comparing (14) with (4), we see that U.k = Ku.-RmkKU (26)

R = = RoRmfoT (15) vak = Kutmk (27)

te = Rotm + (I- RoRmRoT)to (16) and

and we can use (9) and (10) to determine that p = Kiv (28)

The algorithm for computing K. consists of first de-
Ur E KCR.K.- 1 = KcRoR RoTK.- (17) termining the uncalibrated translation directions vFik for

each sequence, k = 1,...,M. Since only the direc-
and tion of translation is recovered from the relative motion

vc =- Kctc = KclRotn + K.(I - Rop..RoT)to (18) equations, the equations (27) cannot be solved directly.
The next step is therefore to compute the scale factors

Replacing K, by Km =- KrRo, we obtain finally Gk = IIVtkII/I1tmk1I such that akV"k = Kutmk. After
Ue = Km1mKm- (19) determining the ak we can then solve for Ku.

Each of these steps will be described in more detail
ve = Kmtm + Km(I - R,)RoTto (20) in the remainder of this section. To simplify the nota-

tion, since only unit vectors are used in the following
which, except for the term multiplying to, gives the same derivations, we will define

set of equations as (9) and (10) in terms of the rotation

and translation of the motion stage, Rm and tin, and t -tm (29)
the matrix Km.

There are two ways in which the to term in the above v a v, (30)

expression can be effectively eliminated. The first is by 3.1 Computing the uncalibrated translation
making R.,, = I, or at least Rm r I, which is usually direction
possible since we control R,. The second is by making
Iltmll > 11toll. In either case, we arrive at an equa- For each sequence, k = 1,. M we first determine a
tion of the form (10) to be solved for Km instead of set of correspondence points between the two images.

K,. Once Km is found, other procedures, which will not The fundamental equation for computing relative cam-
be discussed in this paper, may be applied if desired to era motion is the coplanarity constraint which in terms

estimate R Tt. and complete the camera-motion stage of U., v, pa,, and p,j is given by

calibration. U.pI • (v x p,j) = 0 (31)

3 Computing the Calibration Matrix These equations can be written in matrix form by re-
placing the cross product by an equivalent matrix mul-

The algorithm for computing the calibration matrix Km tiplication. Let V. denote the skew-symmetric matrix
is based on solving a set of equations of the form

Vck = Kmtmk (21) V = V, 0 -V, (32)

given M motion sequences (pairs of images) for which ( VY V, 0

the translation directions t.nk, k = 1,. . ., M, are known, where (v., v,, v,) are the components of v. Clearly
Equation (21) is the same as (20) in which it is assumed Vxpri = v x pri and (31) can be written as
that to can be ignored, either by making R,, = I or
I1tmkII >> lt.11. pTUoTVlp 7 i = 0 (33)
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The above formulation is identical to that derived The method which in testing the calibration algorithm
by Longuet-Higgens [Longuet-Higgens, 1981] who pro- was found to yield the best results, is to minimize
posed a linear method to compute the product matrix N N

Q =- UTVx to within an arbitrary scale factor from 8 Ee2 = E(U.pli.(v X pi))2
correspondence points. Once Q is known v is identi- (39)

fied as the eigenvector of QTQ = VwT _ v'vl with the i1 i=i

smallest eigenvalue. explicitly assuming U, = KURVKU-l is an orthonor-
The Longuet-Higgens method, however, is numerically mal rotation matrix. Horn [Horn, 1991] developed an

unstable. Since it does not explicitly enforce dependen- iterative algorithm to compute relative motion by di-
cies between the elements of Q and does not take into rectly solving the nonlinear minimization problem while
account any error in the data, it requires knowing the lo- enforcing the orthonormality of U,. A revised version of
cations of the correspondence points with high accuracy. Horn's algorithm, which was modified for more efficient
If there is error, as there usually is, the coplanarity con- implementation in hardware [Dron, 1992], was used for
dition will not hold exactly for all pairs of corresponding the results of Section 5.
points. Equation (31) should instead be written as If R, 0 I and the initial estimate K, is far from K..

the assumption that U, is orthonormal will not be very
U, pli• (v X pJ,) = ei (34) good. Nonetheless, as long as the relative motion algo-

and solved by a least-squares procedure which minimizes rithm can determine a well-defined solution to (39) for a
se?. sufficient number of motion sequences, the least-squares

If the motion sequences are controlled such that R = algorithm for computing the update K,, to the calibra-

I, then by (19) and (26) U, = I, and equation (31) tion matrix will find a solution that brings the new esti-
becomes mate closer to the correct Km. As K, - Kin, K,, I,

and the assumption of orthonormality for U, will im-
Pli X (V X Pri) = V- (Pri x Pli) =e (35) prove. A detailed analysis has not been performed to

prove that an iterative procedure defined in this manner
Given N correspondences and defining Y, = Pri X Pi starting from an arbitrary K, will always converge to

N N the correct Kmn. However, in the tests which have been
C = vT yTV (36) conducted, the procedure has in fact converged to the
i~ Yi= $ same solution starting from very different initial values

V= T T)for K,.
ST iY v (37) 3.2 Estimating the ak

Having computed the uncalibrated translation direc-
- vTyv (38) tions, Vk, we now have from (27) a set of equations

The unit vector v which minimizes the sum of squared akvk = K,,tk (40)
errors is the eigenvector of Y with the smallest eigen- for k M, where ak is an unknown scale factor.value. o ,.,M hr t sa nnw cl atr

The method of requiring R, = I so that v can be To compute a least-squares estimate for the factors akcomputed directly as an eigenvector of Y is the simplest we choose three non-coplanar vectors, (t 1 , t 2 , t 3 ), out ofcomproedudireutly as anot alwayspractial.Ys te sima pli- the M known translations to serve as a basis. For bestprocedure, but is not always practical. In many applica- numerical stability, it is desirable that (ti, t 2 , t 3 ) be mu-
tions, it may be possible to translate the camera accu-
rately in a known direction, but not to ensure R, = I tually orthogonaln however the algorithm only requires
with high precision. An example is a camera mounted that they span Let T be the matrix whose columns
on a vehicle which can move reliably from point to point, are the basis vectors
but has limited ability to align itself exactly in the di- T = (tj t 2 t 3 ) (41)
rection of the previous position. In general it is best to
estimate both U, and v together. If in fact U, = 1, and let V be the matrix whose columns are the corre-
nothing is lost. sponding computed displacement vectors

Weng et al. [Weng ef al., 1989] proposed an improved V = (V1 V2 V3) (42)
version of the Longuet-Higgens method which does mini-
mize the sum of squared errors by using more than 8 cor- From (40)
respondences and solving a 9x9 eigenvalue-eigenvector
problem instead of computing the exact solution to the 0 0 0 (
homogeneous linear equations. This method, however, 0 Oa 2  0) =KuT (43)

still does not enforce dependencies between elements 0 0 a3

of Q, and, since it involves computing the eigenvector Since T spans W, we can express the other transla-
corresponding to the smallest eigenvalue of a relatively tion vectors, tk, k = 4,.. ., M, as linear combinations of
large matrix, it has inherent numerical difficulties. When (tI, t2 , t3)
the correspondence data are noisy, the results from this
method have been found to be less reliable than those tk = Ckltl + ck2t2 + Ch3t 3

from other procedures. = Tck (44)
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with ch (c(t, C12, Ck3)T. Hence The matrix K. which minimizes the sum of squared er-

S = Ku ror magnitudes satisfies

= KTck (45) =I eke = M--U 0---21 (Ktk kT-a k k~tT (56)

Let Ck be the diagonal matrix, diag(ckl, c4 2 , Ck3) formed OK5  i=2
from the elements of ck and let a = (al, a 2 , a 3 )T, then from which we find that
from (43) and (45) /M \/M \-

CfkVk = VCka (46) Kk k ZrvciIttJ(7

Since V- is a unit vector, ) (=1
This expression can be simplified by substituting equa-

ak = VTVCta (47) tion (47) for ak, and defining

and by substituting (46) into (47) we obtain f4 C- VTvk
MvkvTVCka = VCka (48) D Jttt (58)

or,
(I - vtvT) VCka = 0 (49) so that

The fact that the above expression is homogeneous f T J

reflects the fact that K5 is known only to within an Ku -)Vtk D-1 (59)

arbitrary scale factor, and hence that we can only solve new mfor the relative proportions of the ak. To fix the scale, 3.4 ]Including new measurements
we impose the condition [ail = I.Since the computed estimates of v1 will necessarily A feature of a linear least-squares algorithms is that it iswincue sh rimtes (9 a ss ay possible to improve a given estimate for Ku by perform-
contain some error, we should write (49) as ing subsequent measurements using a recursive update

(I - vkvT) VCka = ek (50) procedure, without having to recompute everything from
the beginning.

where ek is the error vector whose squared magnitude is Suppose we have n - 1 measurements and have com-
eTek = aT CkvT (I - vkvl) VCkQ (51) puted n--1

The total error for all of the sequences is therefore min- W(n-)= k CVT (I - v,,vT) VCk (60)
imized by taking a to be the eigenvector corresponding E k

to the smallest eigenvalue of We subsequently obtain the nth measurement and

W M compute
W -• CtVT (I - vkvT) VCk (52) W(c ) pu W(n-)+ CVT (I- vnvT) VC. (61)

i=1

In order to obtain a nontrivial, unique solution for a, from which we obtain a new estimate a(n)

we must have at least four motion sequences, includ- Now define
n--1ing the basis, T, for which no three translations, tk, -n-1) E fi vttT

are coplanar. If we have more than four sequences, the F1 k (62)
condition for obtaining a nontrivial, unique solution is i=1
that we can construct, though linear combinations of - n-
the tk, at least four vectors, no three of which are copla- 2 E A= 2 fi 2vktt' (63)
nar. It should be noted that this condition is equiva- i=1
lent to that for being able to form a projective basis for n-I
I3 (Semple and Kneebone, 1952]. F(3n) - E fi3V ttT (64)

3.3 Computing K. i=1
where (Ai1, A,2, fA3) are the components of f,. The matri-

Given the least-squares estimate for a, we can compute cF(n-1) F(n (n-1) are updated in the obvious
ak for each sequence from equation (47). We now have ces 2 a
from (40) way, and we can use a matrix identity to compute

K u tk = akvk (53) D(J)- (D(.-i)+ ttT'-

in which the only unknown is the matrix K,. Again, we D =

consider the error in the estimated vk and write = (-) - D(n-,)-lttTD(n"T ) (65)

ek = Kutk - akvk (54) 1 +tTDn-1)-'t 5

As before, we seek to minimize the total error K.(n) can then be computed directly from
M M T K(n) ((n)F (n) + (n)F (n) + (n)F (n)) D(n)-)

EeTe =E(Kut--akv)T (Kutk--akvj) (55) ( 6 2 2 3 3
1(66)
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4 Numerical Stability and Parameter where Ki, a; and v• represent the error-free values of
Estimation Kin, ka and vk, respectively.

Clearly, errors in scaling, represented by e. # 1 and
Before applying the algorithm to real data, we should • i4 I will significantly affect the computed vk. Suppose
first address the issues of numerical stability and ana- then that e, = ey = I and consider now the effect of
lyze the effects of error on the estimation of the different error in zo, yo represented by 6, 6b. We have
components of the calibration matrix.

4.1 Numerical stability bvk = Cv& + • ( • ) (71)

The structure of K., given by equation (2), guaran- 0
tees numerical problems. Even though we compute K,
which in general differs from the form of (2) by the affine By the same argument s before, t4 will always be much
and rotational transformations, A. and R., the weak- smaller than the other components of v•. From (71)
ness of the underlying structure remains, we can see that errors in the principal point will have

Typical commercial CCD image arrays are several little effect on computing vk; and they will have no effect
hundred pixels wide in both horizontal and vertical di- unless the z component of tk is significantly different
mensions. The effective focal length of the lens, which is from zero.
comparable to the sensor dimensions, is therefore several These arguments can be turned around to conclude
hundred times longer than the spacing between the rows that we should be able to estimate the diagonal scale
of sensing elements, and as a result, f/s., f/sv, zo, and factors reasonably well, but that much greater precision

Yo are all > 1. Suppose K, is of the form (2). If we use in computing vk is required in order to obtain an accu-
image plane coordinates directly then rate estimate of the principal point.

Now consider the effects of the affine transformation(~f/s, + zo) A, and the offset rotation R,. A simple example illus-
V = K t, = t'Yf/s$Y + tzyo0 (67) trates the problems caused by these matrices for esti-k / mating the other parameters. Suppose A, = I and R,

represents a small rotation of 0 about the y-axis, so thatand the z, or third, component of the uncalibrated trans- we can express K.. as
lation directions will therefore always be much smaller
than the other two. Aside from the fact that it is difficult -o9 0 f /so + ZO
numerically just to estimate such small z components in Km( f-3 f./xO I SO (72)
the computed vectors vk, the matrix V, which is central 0 1 /
to the algorithm, will be nearly singular. Consequently, Since 0 is small, the elements in the lower triangle of K.
it is not feasible to estimate Km in one step directly from are also small relative to the other elements of K, and
the image data. As previously stated, we must instead hence will be difficult to estimate accurately. They can,
start with an initial estimate K, and compute the best however, significantly affect the estimates of the princi-
update matrix K. such that pal point and diagonal scale factors, if they are ignored.

K,,, = KK. (68) With f/se = 567, and zO = 378-which are the val-
ues supplied by the manufacturer of the camera and lens

If K, is not close to the actual Kin, several update used in the experiments-a rotation of 10 would cause a
iterations may be required before the estimate stabilizes. 10 pixel difference in the estimate of x0 and a difference
Although the least-squares algorithm for computing K, of 7 in the estimate of f/s.,.
is linear, the procedure for estimating the directions vk In conclusion, we see that it is difficult to accurately
by approximating U, as an orthonormal matrix is not. estimate any of the individual parameters that compose

4.2 Parameter Sensitivity Km with great accuracy. The goal of the method pre-
sented in this paper, however, is not to recover the indi-

To analyze the effect of error on estimating the different vidual parameters but rather Km itself. We do expect,
components of Ki, it is easiest to look at how errors that the matrix found by the algorithm will be approx-
in Km affect the computed vectors vk. First consider imately upper triangular of the form (2), and the fact
the effects of error in the scale factors and the principal that it is can be used as a partial confirmation that the
point, assuming A, = R. = I and that K. has the form result is reasonable. The real test of correctness, how-
of equation (2). Let ever, will be how well the computed motion given K.

(e f1/S 0 e(Zo + 6b)) fits the known motion of the camera and how closely
Km 0 eyf/sy e(7o + by) (69) subsequent motion sequences, not included in the com-

0 0 1 putation of K,,, can be predicted.

= (e 0 CAe6 5 Experimental Results

0 0 1  The algorithm was tested on a Cohu digital camera
= KerrK* rigidly mounted on a movable carriage which could be

From (40) translated along a fixed rail. The carriage assembly
could be rotated on both the vertical and horizontal axes

akvk = Kmtk = KerK,,tk = a*kKc..v (70) so that the camera could be oriented in any direction as
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Figure 1: Motion sequence #3, tm (.866,0,-0.5). Top: original images. Bottom: edge maps with numbered matched
points.

the assembly was moved along the rail. Positional accu- one of the images pairs (sequence #3) along with the bi-
racy was better than .10 on each axis. nary edge maps upon which the correspondence points

Digitized image data was read directly from the cam- are marked. One can see from these images that there

era over an Sbus interface to a Sparc workstation. The is a fair amount of nonlinear distortion in the periphery

advantage of the digital camera is that each pixel cor- produced by imperfections in the small focal-length lens.

responds exactly to a sensor location. Since there is The improvements made to the matching procedur.,
no frame grabber in the path to resample and resize in [Dron, 1992] were to reject any match which did not
the data, the calibration matrix should be very close have a well-localized peak and to use knowledge of the
to that given by the manufacturer's data on the im- translation direction to shape the search window. Sice
age sensor. According to the data sheets, the sensor is che procedure compares 24x24 blocks, there is an inher-
6.4mmx4.8mm with 756 (horizontal) and 484 (vertical) ent uncertainty of -3-4 pixels caused by defining the
pixels. A 4.8mm lens was used to give an approximately location of the correspondence to be at the centers of
80' field of view. This information was used to generate the blocks. However, no adjustments were made to the
the initial calibration matrix given in table 3. locations given by the matching procedure.

Twelve pairs of images were taken for the relative mo- Uncalibrated translation directions were computed for
tions given in table 1. Not all of these were purely trans- each sequence from the point correspondences found by
lational motion. Sequences #6 and #10 combined a y- the matching procedure using the relative motion algo-
axis rotation of 50, and sequence #9 included a 5' ro- rithm described in [Dron, 1992], which is a modified ver-
tation about z. Point correspondences were found using sion of Horn's algorithm [Horn, 1991]. This algorithm
an improved version of the matching procedure described produces a least-squares estimate of the translation di-
in [Dron, 1992]. With this method, the binary edge map rection assuming the matrix U, from (26) is orthonor-
of one of the images is divided into blocks which are in- mal. However, since it is a nonlinear optimization prob-
dividually shifted across the edge map from the other lem, it can get stuck in local minima and produce er-
image in search of the offset which gives the best align- roneous results. Two steps were taken to ensure that
ment. Only the most reliable matches are kept. For each the uncalibrated translation directions computed from
pair of images in these sequences there were generally 20 the algorithm were reliable. First, the inotion was es-
to 30 correspondence points retained. Figure 1 shows timated twice. After the first pass, the errors in the
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-]Motion Sequences

1 2 3 4 5 6 7 8 9 10 11 12
t. 1.0000 0.0 0.0 1 0.7071 0.8660 0.5000 1 0.0 1 0.0 0.0 0.7071 0.6124 0.3536
tv 0.0 1.0000 0.0 -0.7071 0.0 0.0 0.8660 0.5000 0.0 -0.7071 -0.6124 -0.3536
t, 0.0 0.0 1.0000 0.0 -0.5000 -0.8660 0.5000 0.8660 1.0000 0.0 -0.5000 -0.8660

Table 1: Camera motions used to generate test image pairs

[__ _Computed Motion

1 2 3 4 5 6 7 8 9 10 11 12
t. 0.9993 -0.0071 -0.0010 0.7007 0.9081 0.4921 0.0137 -0.0029 -0.0107 0.6977 0.5664 0.2804

tv -0.0316 0.9994 0.0100 -0.7120 0.0500 0.0163 0.8564 0.4754 0.0131 -0.7071 -0.6760 -0.2808Ft. -0.0209 0.0350 0.9999 -0.0467 -0.4159 -0.8704 0.5161 0.8798 0.9999 -0.1150 -0.4831 -0.9179

=j,_ 0.0004 0.0003 0.0000 0.0005 0.0028 0.0001 0.0002 0.0002 0.0001 0.0033 0.0019 0.0033

Table 2: Computed translation directions for test image pairs from calibration matrix of T?-- 4

coplanarity constraint (31) were computed, and every Section 4 without any prior knowledge of the camera F-ys-
correspondence pair whose error was greater than one tern. Tables 5-7 show the results after iterations 1, 3,
standard deviation above the mean squared error was and 6, starting initially from K, = I. By the 6th itera-
removed from the list. The translation direction used in tion the result is very close to that of Table 4 which was
the calibration algorithm was the one computed from the computed starting from the manfacturer's data.
remaining correspondence points with the least error.

The second step taken was to judge the reliability of 6 Conclusions and Future Work
the result from the condition number of the translation The least-squares method derived in this paper for corn-
matrix. At each iteration of the relative motion algo- puting camera calibration has been shown to work well
rithm, a matrix of the form of Y in equation (38) is for the real image sequences given in the last section.
computed, given the matrix U,. The estimated transla- These results are very encouraging; however, additional
tion v is the eigenvector corresponding to the smallest tests should be conducted on different scenes and differ-
eigenvalue of this matrix in the final iteration. If the ent cameras to confirm the general applicability of the
condition number of this matrix is small, the estimate method.
of v is very sensitive to error, and the least eigenvalue An eventual goal is to implement the automatic cali-
reported may in fact correspond to a vector that is per- bration procedure in hardware as part of a larger navi-
pendicular to the correct translation direction. Hence gation system. This was a primary motivation for devel-
any sequence for which the condition number was < 1000 oping a method which could tolerate substantial error in
was categorically rejected and was not used to compute the correspondences. Before doing so, however, a more
the calibration matrix, extensive analysis should be performed to determine how

The results of applying the least-squares algorithm for much error in the data can be tolerated as well as to de-
camera calibration to the data from these sequences are termine more precisely how nonlinear distortion in the
given in Tables 4-7. Note that both Km and K-i as lens affects the results.
given in the tables have been normalized so that their
(3,3) element is 1. Hence they are not exact inverses of Acknowledgements
each other. I wish to acknowledge my fellowship sponsor, AT&T Bell

The results of two experiments are shown. In the first, Laboratories, who has generously supported me for the
the calibration matrix given in Table 3, which was de- last three and a half years. This paper describes research
rived from the manufacturer's data, was used as a ini- done at the Artificial Intelligence Laboratory of the Mas-
tial estimate. An update matrix was computed from sachusetts Institute of Technology. Support for the labo-
sequences 1-8, and the result is given in Table 4. Esti- ratory's artificial intelligence research is provided in part
mated translation directions for all 12 motion sequences by the Advanced Research Projects Agency of the De-
were then computed by the relative motion algorithm us- partment of Defense under Office of Naval Research con-
ing this new matrix, and the results are given in Table 2. tract N00014-85-K-0124. Funding for the Analog VLSI
The prediction error, computed from Ak = (1--vTtk)/2, for Machine Vision research project is provided by NSF
based on the actual motion tk is also given at the bot- Grant MIP-91-17724 and NSF and DARPA contracts
tom of the table. As expected, the error is smallest for MIP-88-14612.
vectors 1-8 which were used to compute the new calibra-
tion matrix. However, the errors for the four sequences,
8-12, which were not used are also reasonably small.

The second experiment consisted of deriving the cal-
ibration matrix using the iterative method described in
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Initial Calibration from Manufacturer's Data
Km K,,-I

567 0.0 378 0.001764 0.0 -0.666667
0.0 484 242 0.0 0.002066 -0.500000
0.0 0.0 1.0 0.0 0.0 1.000000

Table 3: Initial calibration matrix derived from manufacturer's data on the image sensor.
Calibration Computed from Sequences 1-8

using Manufacturer's Data for K,
Km Km-I

747.0 -20.3 379.3 0.001334 0.000047 -0.517834
23.8 638.8 249.1 -0.000037 0.001545 -0.370715
0.0 0.0 1.0 -0.000032 -0.000010 1.000000

Table 4: Calibration matrix computed from sequences 1-8 starting with matrix of Table 3 for K,

Calibration Computed from Sequences 1-8
after 1st iteration with K. = I

Km Km-L
1503.5 22.1 405.1 0.000654 0.000034 -0.268187
-16.52 1120.0 97.4 0.000025 0.000769 -0.084876

0.3 0.2 1.0 -0.000191 -0.000168 1.000000

Table 5: Calibration matrix computed from sequences 1-8 after Ist iteration starting with K. = I

Calibration Computed from Sequences 1-8
after 3rd iteration from K. = I

Km Km-1

927.6 -8.0 313.9 0.001103 -0.000019 -0.341880
-111.0 632.5 217.7 0.000097 0.001717 -0.404238
-0.2 -0.1 1.0 0.000281 0.000101 1.000000

Table 6: Calibration matrix computed from sequences 1-8 after 3rd iteration starting from K. = I

Calibration Computed from Sequences 1-8
after 6th iteration from K, = I

K,m Km-'
864.9 11.0 363.0 0.001146 -0.000004 -0.415092
17.6 646.7 240.6 -0.000022 0.001533 -0.360741
0.0 0.0 1.0 -0.000024 -0.000037 1.000000

Table 7: Calibration matrix computed from sequences 1-8 after 6th iteration starting from K, = I
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Fast and Robust 3D Recognition by Alignment

T. D. Alter and W. Eric L. Grimson
MIT Al Lab & Dept. of EECS

Cambridge, Massachusetts 02139

Abstract using the technique for computing er-
ror bounds, it is demonstrated experi-

Alignment is a prevalent approach for mentally that the use of line segments

recognizing three-dimensional objects in significantly reduces the expected false

two-dimensional images. Current imple- positive rate. The extent of the im-

mentations handle errors that are inher- provement is that an alignment system

ent in images in ad hoc ways. These er- that correctly handles propagated error
enthowever, can propagate and meag- is expected to remain reliable even inrors, hwvrcnprpgtan u-substantially-cluttered scenes.

nify through the alignment computa-

tions, such that the ad hoc approaches
may not work. This paper gives a tech- 1 Introduction
nique for tightly bounding the propa-
gated error, which can be used to make Object recognition involves determining which of
the recognition robust while still being a set of known objects are in an image and
efficient. where they are. Many systems use rigid objects,

Previous analyses of alignment have in- modeled by geometric features such as lines and
dicated that the approach is sensitive points. Given a set of such object models, the
to false positives, even in moderately- task of model-based recognition is to find corre-
cluttered scenes. But these analyses ap- spondences between model features and thei.ý pro-
plied only to point features, whereas al- jections in the image. To find large sets of corre-
most all alignment systems rely on ex- spondences, many approaches begin with minimal
tended features, such as line segments, sets-i.e. sets with sufficient matches to transform
for verifying the presence of a model in a model to the image-and try to extend them.
the image. We derive a new formula for Backtracking search starts from each minimal set
the "selectivity" of a line feature. Then, and repeatedly uses the current matches to con-

strain the search for an additional match, back-

OA similar paper will appear in the Inter. Conf. on tracking whenever an inconsistency is found (e.g.,
Computer Vision [May, 1993]. This report describes [6, 13, 14]). Transform clustering uses every mini-
research done at the Artificial Intelligence Laboratory mal set to compute a model-to-image transforma-
of the Massachusetts Institute of Technology. Support tion, then counts how often each transformation
for the laboratory's artificial intelligence research is is repeated (e.g., [4, 17, 7]). Alignment methods
provided in part by the Advanced Research Projects use each minimal set to transform all the model
Agency of the Department of Defense under Army con- features into the image, then look near each pre-
tract number DACA76-85-C-0010 and under Office of dicted model feature for a matching image feature
Naval Research contract N00014-85-K-0124. T. D. Al- (e.g., [8, 3, 5, 15, 16).
ter was supported in part by an NDSEG Fellowship.
WELG was supported in part by NSF contract num- Here, we focus on alignment, analyz' .g the ef-
ber IRI-8900267. fects of uncertainty in the image features. To be
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robust to such uncertainty, an alignment system models, [11] uses numerically computed bounds on
needs to know, for each predicted model feature, the parameters of the model-to-image transforma-
where in the image to search for a matching im- tion to estimate conservative bounds on the propa-
age feature. If the regions searched are smaller gated regions. Analyses of false positive rates have
or larger than necessary, correct matches may be been provided for recognition involving 2D mod-
missed (false positives) and incorrect matches may els and 2D data for both point and line features
be accepted (false negatives). Assuming "weak- [9, 10]. Using point features only, similar analy-
perspective" (i.e. scaled orthographic) projection ses have been applied to recognition involving 3D
and a "bounded error" model of uncertainty in the models and 2D data for flat models [12], and also
image points, we give a method for computing the for solid models using the boun~ds of [11].
correct search regions for point and line features of
a 3D model, given a set of 3 corresponding model
and image points, since 3 is minimal [15]. 2 Analyzing the False-Positive

Even if the correct search regions are known, Sensitivity of Alignment
there may still be false positives, i.e., image fea-
tures appearing at random in the search regions, 2.1 Propagated uncertainty regions
causing incorrect identifications of models in the
image. Consequently the reliability of an align- A match of three model and image points deter-
ment system depends largely on its false positive mines the image position of an unmatched model
rate. We use the search regions to compute the point up to a finite number of solutions [8, 15].
probability of a false positive and then use the Any uncertainty in the locations of the matched
probability of a false positive to compute limits image points propagates to uncertainty in the pre-
on the amount of scene clutter that alignment can dicted position of an unmatched model point. Er-
handle. We also examine how much of the model rors in the sensed or nominal locations of the im-
must be matched to keep the probability of a false age points are assumed to be bounded by circles
positive low. of radius c. Then, as the three image points move

independently around their c-circles, the fourth
The approach we consider uses points for gener- model point traces out a region of possible image

ating minimal sets (hypotheses) and then verifies locations. Any image point within E of this region
the hypotheses using extended features as well as is a possible match for the model point.
points (as in [15]). Specifically, Section 2 de-
scribes a theory for analyzing the false-positive For flat objects, the propagated uncertainty re-
sensitivity of an alignment system that uses points gion for a model point is a disc centered at the
or line features for verification. The main result nominal location, whose radius depends on the
is a formula for the "selectivity" of a line feature. affine coordinates of the nominal location with
Section 3 computes the propagated uncertainty re- respect to the basis triple [16]. For solid mod-
gions for point features, which give the regions for els, we assume that the uncertainty region can be
line features (Section 2.1). We show that the re- bounded accurately with an "uncertainty circle"
gions for points can be computed quickly and ac- centered at the nominal point. Section 3 demon-
curately by fitting circles to their sampled bound- strates that this assumption generally is valid.
aries, assuming a fast solution for the image posi- We can use this result to bound the uncertainty
tion of a predicted model point given 3 correspond-
ing model and image points (as in [1]). Section 4 in predicted line segments. We assume that theuses the formulas for selectivity and false positives orientation of an image line segment is constrained
(Set t ) as for socptting pop- such that its endpoints lie within t circles. Then,(Section 2) and the technique for computing prop- for each model line segment we calculate the un-
agated error bounds (Section 3) to estimate the cranycrlsfrisedons et efn
improvement gained by using line features for ver- certainty circles for its endpoints. Next, we findification, and to judge how sensitive alignment is candidates for each model segment by gathering
to false positives, all image line segments that lie entirely within theuncertainty region formed by the uncertainty cir-

Previous work has shown that the propagated cles and their common outer tangents (Fig. 1) and
uncertainty regions for 3D point features can be whose extensions intersect both of the uncertainty
computed exactly for flat models [16]. For 3D solid circles.
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2.2 Selectivity of line features For the image, the area of the region of trans-
lations for the same image segment is (Fig. 5)

A system's false positive rate depends on the un-

certainty regions' selectivity [12], i.e. the probabil- A, = (w - Icos 0)(h - Isin 0)
ity that it contains a spurious feature at random.
For points, the selectivity is the uncertainty re- The selectivity of a random line segment of known
gion's area divided by the area of the image. For length and orientation is -A
lines, we need the fraction of positions and orien-

tations of a spurious segment in the image that In general, there will be several line segments
put the segment in the region. with different lengths and orientations that fallwithin a line uncertainty region. To account for

Non-overlapping uncertainty circles orientation, we assume that random line segments
are equally likely to fall at any angle. We then

There is a set of translations that places a line integrate A and Al over their respective ranges of
segment of known length and orientation within allowable orientations to get volumes of allowable
the image, also given by its configuration space positions of a random line segment (with known
[18]. The line selectivity is the fraction of these length). Integrating the two area formulas over an
translations that place the segment within the line arbitrary range [wl,w 2] gives:
uncertainty region, and can be obtained by shrink-
ing both the region and the image along the seg- VI(W1, W2) = (R + r - t)2r(w2 - wI)
ment's orientation and by its length. For shrink- +2rL(sin W2 - sin w1)
ing the region along the segment's orientation, the v2 (w1 , w 2 ) = (R + r - t)(R + r)(w2 - w1 )
shaded regions in Fig. 2 show two cases, distin- +(R+ r - t)L(cosW2 - cos W)
guished by the image segment's orientation rela- +(R + r)L(sin w2 - sin w1 )
tive to that of the common outer tangent, 01. An -L L 2(sin 2 

W2 - sin 2 wI)
image segment's orientati-n is bounded by the ori-
entation of the crossed common tangent, 92. From From the area formulas, the range of 0 is divided
Fig. 3, into two intervals at 0 = 01, and the length of the

image segment constrains the range of orientations
01 = sin-'I'R-r 02 = sin-...._R+r such that cos0 >_ -T , or

L L 1
providedL>_R-rfor01andL>R+rfor0 2 . 0 < 4 COS- 1 (t- (R+r)
If the circles don't overlap, then L7> R + r. - L /

The set of translations is further constrained Note that 4 exists iff R+r-L < t < R+r+L. The
by the segment's length, obtained by shrinking the first inequality holds if the circles do not overlap,
shaded region in Fig. 2 by this length. To compute and the second must be true for the image segment
the selectivity, we need the area of the shrunken to fit in the uncertainty region (Fig. 1). From this,
region. While this area can be computed exactly the volume V that corresponds to the two area
[2], we use a more convenient rectangular box as formulas is given by
an overestimate (Fig. 4). For comparison, Fig. 2
shows the box surrounding each corresponding line V V1 (0, 0) if 0:_ 01,
uncertainty region. From Fig. 4, after shrinking V = 2 vI (0, 01) + v2 (01 , 4) if 01 _< -0 02,
the rectangle along the base by t, the region's area V1 v(0, 9) + v2 (0 1 ,02) if 02 _ 4,,
is

where I < R+r+L. Integrating Al from 0 = -w/2
If0E[0, 1] & t_<R+r+Lcos0, to 0 = r/2 gives

A = (R + r + L cos 0 - )2r,
V1 = wwh - 2t(w + h) + t2.If Oe([0i,9 2 ] & < R + r +Lcos O,

A = (R + r + L cos 0 - t)(R + r - L sin 0), The selectivity equals V

Note that R + r - L sin 0 > 0, since 0 < 02 = In summary, a model line segment's selectivity
sip-I AP. can be computed as follows. Let r and R, r <
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R, be the radii of the uncertainty circles for the model triples, the probability that at least one
endpoints of the line segment, computed using the match leads to a false positive of size k is
technique of Section 3 or, for planar models, using
the known analytic solution. Let L be the distance -(
between the centers of the two circles, and let I be ek = 1 - (1 - Wk)('). (2)
the expected length of the corresponding image
line segment. Then compute the selectivity p from 3 A Study of Uncertainty Regions
the above formulas for V, Vg, v1, v2 , 01, 02, and 0. for 3D Point Features

This method assumes that the image line seg-
ment's length is known. Because in real images To use these false positive formulas, we need the
all lengths are not equally likely, we cannot inte- expected selectivity of point and line features.
grate out the length dependence. Instead, if we These can be computed from the propagated un-
can estimate the percentage a of the model that certainty regions for points, which we assume are
is occluded, then we can estimate occlusion by as- circular. This section experimentally justifies this
suming that each model segment is occluded by a, assumption, and proposes a method for comput-
giving I = (1 - a)L [10]. ing the bounding circles. Specifically, Section 3.1

shows that the uncertainty regions generally can
Overlapping uncertainty circles be approximated accurately with "uncertainty cir-

cles" centered at the nominal points, although at
Occasionally, the uncertainty circles may over- times the shapes of the uncertainty regions can be

lap, either by intersection (R - r < L < R + r) complex (Section 3.2). Section 3.3 demonstrates
or inclusion (L < R - r). For these situations, that the uncertainty circles can be computed pre-
[2] derives similar volume formulas, which are a cisely with a small amount of numerical sampling,
little more complex and handle the few additional so that the simple approach of sampling is both
cases that arise over the range of 0. accurate and efficient.

2.3 Likelihood of false positives 3.1 Comparing the shapes of uncertainty

The false positive rate of an alignment system can regions to circles

be computed from the expected selectivity of a To see how well uncertainty circles bound the er-
feature ([10, 11, 12], also Section 4). To compute rors he wel catin s of ndite elthe false positive rate, let •T be the expected se- rors in the image locations of predicted model
lectivity, let e be the number of unmatched image points, this section runs two experiments that
features, let m be the number of unmatched model compare the true regions to the circular fits. The
features, and let m' be the number of model point radii of the circles are computed using the maxi-features that are used for generating hypotheses mum distance from the nominal point to a bound-
If the s image features occur independently and ary point. To compare regions, we use the fol-
at random, the probability of at least one image lowing error measure. Let At equal the area of
feature appearing in a propagated region with me- the true region, and let Ac equal the area of the
lectivity a is approximating circle. The error measure is

p= 1- A,P A,-A (3)

The probability of at least k of the m propagated
regions having at least one random feature is where the sign is used to discriminate which area is

larger. Since it is based on the difference in areas,
h-t/a\ the measure will be large when the fit is poor.

w= 1-I - ("•)p'( - p)l--i. (1) Since the difference in areas may be large if the
perimeters do not line up exactly, the measure may
also be large when the fit is relatively good. Thus,

wk is the probability of a false positive of size k. the measure provides a conservative estimate of
If we match a fixed image triple to all possible the badness of the circular fit.
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Experiment 1: Accuracy of uncertainty cir- larger. This method separates the two regions cor-
des for random models responding to the two weak-perspective solutions,

This experiment examines how often we can ex- unless they overlap. If they do overlap, there re-

pect the uncertainty circles to be correct, in par- ally is one region, and this method splits it.

ticular, how often the maximum error is 1%, or Results and Discussion: Over the 100 trials,
10%. Also, we estimate what the maximum error 1163 uncertainty regions were tested. The aver-
will be 90%, 95%, and 99% of the time. To do this, age area was 583.53 for the correct uncertainty
we run a series of trials of an alignment algorithm regions and 662.43 for the approximating circles.
and compute the error measure (Eq. 3) for each. For 96.73% of the uncertainty regions, the error
The percent of time the error satisfies some crite- (using the error measure) between the true region
ria is estimated by the fraction of trials over which and the approximation was less than 1%, and for
the error measure satisfies that criteria. For the 97.94% of the uncertainty regions the error was
algorithm, we assume that the image points effec- less than 10%. Also, the maximum error for 90%
tively arise at random, which is reasonable if the of the regions wais 1%, for 95% of the regions was
image has significant clutter. 1%, for 98% of the regions was 10%, and for 99%

Method: We ran 100 trials where a model is pro- of the time 51%. This suggests that uncertainty
jected into an image and the error measure of Eq. 3 circles are generally very a•ccurate.
is computed for each model point. In each trial, a Experiment 2: Accuracy of the uncertainty
random triple of image points is matched to a ran- circles for the telephone model
dom triple of model points taken from a randomly-
generated model (for details see [2]). The three- For comparison, we ran the same set of trials on a
point match is used to project the model into the model of a telephone (Fig. 6).
image, which gives the nominal image locations Method: The method is as in Experiment 1, but
of the model points. Except for model points in using the telephone model at every trial.
the plane of the matched model points, there are
two possibilities for each nominal image location Results and Discussion: For 100 trials with
[15, 1]. the phone model, 1092 uncertainty regions were

generated. The average area was 495.59 for the
Using p oi 5, the s -circles around the three correct uncertainty regions and 450.13 for the ap-

image points are sampled uniformly at 25 points proximating circles. Notice that this time the av-
each. Every triple of sampled points is matched to erage area for the overestimates is lower than for
the three model points, and used to compute the the exact areas. This is because the method used
image locations of all the model points. This re- to compute the true regions can overestimate them
suits in a region in the image for each model point, a little when the fit is good, an effect which turned
The area of each region is computed by counting out to be stronger than the overestimate in the cir-
the pixels within the region's boundary (see [2]). cular fit, because very few of the circular fits were
The radius of the corresponding uncertainty circle poor. Here, for 98.01% of the uncertainty regions
is obtained by taking the maximum distance from the error between the true region and the approx-
the nominal point to a boundary point. imation was less than 1%, and for 99.08% of the

As noted, there are two solutions for each pair regions it was less than 10%. The maximum er-
of model and image triples, which correspond to ror for 90%, 95%, and 98% of the regions was 1%.
a reflection about any plane parallel to the image Further, for 99% of the regions the maximum er-
[15, 1]. From [1], let Hi and H 2 be the differences ror was 10% instead of 51%. So it appears the
in the z coordinates between the first model point circular fits work better for the specific model of
and the second and third model points, respec- a telephone.
tively; -H, and -H 2 for the reflected solution.
To distinguish the two solutions, we use the val- 3.2 Cases where errors are greatest
ues of H, and H2 that occur when the matched
image points are at their nominal locations. If the Of the 100 trials of random models, two had er-
nominal H, is larger, we take all solutions with rors greater than 25%. Fig. 7 displays, relative to
the same sign for HI as being from the same re- the image, the uncertainty regions and uncertainty
gion. We do the opposite if the nominal H2 is circles corresponding to the largest errors for those
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trials (78.8% and 81.7%). In both cases, the corre- the matched image points are sampled uniformly
sponding angles between the matched model and at 25 points and 10 points. For each propagated
image points were very close. Geometrically, this uncertainty region, the error in using the smaller
means the plane of the model points was almost number of samples to using 25 samples is com-
parallel to the image, a situation which is inher- puted. This is repeated for 9, 8, and 7 sample
ently unstable [1]. The unusual shapes of the true points as well.
uncertainty regions in Fig. 7 are due to the com- Results and Discussion: The results are shown
putation of the uncertainty regions (Section 3.1), in Table 1. sNot sionathe rentage downand represent cases where the two regions overlap 1nTbl . Note that the percentages do not
and aepresplt ie two. rstrictly decrease as fewer sample points are used.and are split in two. This is because the circles around the image points

For the phone model, only one trial had errors are sampled uniformly, so that using different
greater than 25%, specifically 27.0%. The uncer- numbers of sampled points can give different sam-
tainty region and uncertainty circle are shown in ples on the circles. Hence, when the percentages
Fig. 7 (same scale as other examples). are close, there may be cases where fewer sample

From the cases with large errors, we can infer points do better. Nevertheless, this effect should

that, in an alignment system that tries many or be small. Notice that the average percent error

all pairs of point triples for aligning a model to does indeed increase monotonically.
the image, situations with large errors could be We can use Table I to pick a reasonable number
avoided by checking whether the angles between of points for sampling the image error circles. If
the points are similar. However, this may lead we permit 5% error, then using 8 sample points
to relying on an arbitrary threshold. As a conse- instead of 25 should be accurate over 99% of the
quence, it would be better to handle these cases time. Also, the average error in using eight points
specially by sampling extensively and then walk- is very small (1.137%).
ing the boundaries of the resulting regions. A better feel for how accurate is the use of fewer

sample points is given by statistics on the radii,
3.3 Computing uncertainty circles shown in Table 2. From the table, the average dif-

efficiently ference in the radii for eight sample points was .08

Given that circles centered at the nominal points pixels, and the worst case difference was 3.24 pix-

approximate well the uncertainty region bound- els. Relative to the radius for twenty-five points,
the average difference is .575%, and the maximum

aries, all that is needed is to compute the radii difference is 8.96%.
of the circles. A simple approach is to sample
points from the error circles around the matched Experiment 4: Using fewer sample points
image points and take the maximum distance from for telephone model
the predicted nominal point as the radius. This Method: This experiment is the same as Exper-
process will be efficient if few sample points are
required. This section infers how few points are
needed. Results and Discussion: Tables I and 2 give

Experiment 3: Using fewer sample points the results. From Table 1, we again can use eight
for random models points to limit errors to 5% over 99% of the time.

From both tables, it appears that using fewer sam-
To see how few sample points are needed, this ex- ple points works slightly better with the phone
periment tests, for various numbers of points, n, model than with random models.
and for a series of trials, the percent of time (frac- To illustrate the use of uncertainty circles, Fig. 8
tion of trials) that the error in using n points is To anlustrate ofethe o p uncertainty
less than some limit. This is compared to using 25 shows an example of the propagated uncertaintypoints, as in the last two experiments, circles, where eight sample points were used. The

three smallest circles correspond to the assumed
Method: A series of 100 trials were ran using errors in the matched image points, which in this
random image triples matched to random model example were matched correctly. For the un-
triples from randomly-generated models, as in Ex- matched model points, the other circles show the
periment 1. For each trial, the error circles around regions to be searched for matching image points.
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The self-occluded model points were removed be- Results and Discussion: Using random mod-
forehand. Still, some of the remaining corner els with 8 sample points over 1000 trials gave
points are occluded by other objects, and the un- 11349 propagated regions with average area 973.25
certainty regions provide a means to reason that square pixels. Using the phone model with 8 sam-
this is so after a relatively small amount of search ple points over 1000 trials gave 11085 propagated
in the image. regions with average area 979.78 square pixels.

Notice that the sizes of the propagated un- The resulting selectivities along with those for [11]
certainty regions vary considerably for different and [12] are shown in Table 3.
model points. Consequently, an approach that re- The expected selectivity for the uncertainty cir-
lies on fixed-sized error bounds, as in [15], can cles is about half that for [11], which implies that
lead to correct matches being missed (when the the uncertainty circles should give significantly
bounds are too small), and incorrect matches be- better performance. Furthermore, it appears that
ing accepted (when the bounds are too large and the selectivities of solid models are only slightly
include spurious image points), greater than for planar ones. We can infer from

this that, when point features are used, recogniz-

4 Measuring the Sensitivity to ing solid objects with alignment is a only little
more sensitive to false positives than recognizing

False Positives planar objects.

4.1 Expected selectivity of point features 4.2 Expected selectivity of line features

We now use the analyses of Sections 2 and 3 to Experiment 7: Expected selectivity of line
examine alignment's sensitivity to false positives, features for the telephone model
For point features, the expected selectivity has
been used before to analyze false positive rates Method: To compute the expected selectivity, we
for alignment where the models are fiat [12], and used the formula given in Section 2.2. We ran a
also for alignment with solid models but using a series of the same trials from Experiments 5 and
different uncertainty propagation technique [11]. 6 when the selectivity of point features was com-
We can use the expected selectivity to compare puted. For each trial, we used each pair of uncer-
the uncertainty propagation technique used here tainty circles that corresponds to a line segment
to the one in [11]. in the telephone model (Fig. 6) and computed the

For fiat models, the propagated uncertainty re- line segment selectivity. This was repeated for var-

gions can be computed exactly. It would be inter- ious amounts of occlusion, a.

esting to see how much the chance of a false pos- Results and Discussion: For 1000 trials, the se-
itive increases from planar to solid models, since lectivity of 9560 line uncertainty regions was com-
the propagated uncertainty regions are larger for puted and averaged. Table 4 gives the selec-
points out of the plane of the matched model tivities for different amounts of occlusion. As ex-
points than for their corresponding points in the pected, the selectivities for lines are much less than
plane [1]-for a 3D point, the corresponding point for points (compare to Table 3).
in the plane is the intersection of the plane and
the perpendicular from the plane to the 3D point. 4.3 Limits on Scene Clutter
Again, we can use the expected selectivity for the
comparison. A recognition scheme based on extended model

Experiments 5 and 6: Expected selectivity features will fail if a scene becomes extremely clut-
of point features tered. It would be useful, then, to know how much

clutter a recognition system can accommodate be-
Method: To compute the expected selectivity, fore the probability that it will fail is significant.
we re-ran 1000 trials of the same type as in Ex- We can use Eq. 2 to estimate this limit. Specifi-
periments 3 and 4, except five was added to each cally, given an image triple, we can compute the
radius before computing the area, in order to ac- maximum value of s such that et _ 6, where 6 is
count for expanding each uncertainty region out- a preset limit, and k = fm for some fraction f of
wards by t = 5 pixels, the model features.
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Table 5 shows the results for 6 = .001 (the .01 do better. In fact, the analysis is almost always a
and .0001 cases are similar). The limits for the solution, which means its bounds are exact, except
uncertainty propagation technique of [11] are very where the 3D pose solution is inherently unstable.
low. Although the numbers are greatly improved In these cases, the bounds conservatively overesti-
using uncertainty circles, it is only when line seg- mate the exact bounds.
ments are used that numbers of features are in Even though the error propagation technique in
the range of images with substantial scene clutter Section 3 is generally accurate, the technique has
(s 500 features). the disadvantage of being numerical. For most

recognition problems, however, the time to com-4.4 Threshold for Accepting a Partial pute the solution is effectively constant, as though
Match the solution were analytic.

When the extended features of a model are used These contributions tie together well for build-
for verification, we want to know how many must ing a fast and robust alignment system. The un-
be matched before we can stop looking for more certainty analysis provides the correct minimal
matches. We can use Eq. I to set a threshold such search regions to guarantee that no correct hy-
that the chance that a false positive will arise is potheses are lost. Further, the uncertainty regions
less than a preset limit. Let f be the percentage can be computed quickly using the error propaga-
of model features that must be matched to keep tion technique and a fast solution for the image
the probability of a false positive at most 62. Sub- position of an unmatched model point. Once com-
stituting mf for k, we want to find the minimum puted, the uncertainty regions usually are small
f such that wrnI : 62. Table 6 shows the results enough to be searched rapidly for candidate image
for line segments. As a check on the method, the features. Then the current hypothesis can be eval-
recognition system of [15] used f = .5 as a thresh- uated, using a predetermined threshold on the per-
old on the percentage of the model to verify. In centage of model features that must be matched.
the examples given, anywhere from 0 to 50% of
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1% 2% 3% 4% 5% 6% ave max min
10 72.06 93.12 98.61 99.13 99.22 99.56 0.684 21.97 -. 34
9 57.27 84.16 98.00 98.70 98.87 99.04 1.031 31.60 -.37
8 55.61 75.98 90.43 98.87 99.39 99.57 1.137 17.12 -. 49
7 46.30 63.27 77-89 91.65 97.91 98.61 1.670 25.53 -. 31
10 66.40 91.91 99.37 99.55 99.64 99.64 0.726 8.55 -.33
9 60.83 84.19 98.02 99.46 99.55 99.55 0.913 13.19 -. 33
8 62.15 91.91 99.37 99.55 99.64 99.64 0.981 11.76 -. 30
7 46.46 64.24 80.32 92.81 98.38 99.55 1.532 12.80 -. 33

Table 1: Percentage of time error was less than I%-6% for different numbers of sample points, plus
average, maximum, and minimum percent errors over all trials. Top: using 1149 propagated uncertainty
regions from random models. Bottom: using 1113 uncertainty regions from the telephone model.

ave max min ave percent max percent min percent
10 .05 2.55 -. 05 .344 11.67 -. 17
9 .08 3.87 -. 03 .521 17.30 -. 18
8 .08 3.24 -. 05 .573 8.96 -. 24
7 .13 4.21 -. 02 .844 13.70 -. 16
10 .05 0.69 -. 05 .365 4.37 -. 17
9 .06 1.30 -. 02 .459 6.83 -. 17
8 .07 1.12 -. 03 .494 6.07 -. 25
7 .10 1.23 -. 03 .772 6.62 -.16

Table 2: Differences in radii for different numbers of sample points. Top results are for random models,
bottom results are for the telephone.

Method Models Model type Uncertainty ý7
Uncertainty Circles Random Solid Circular .003722
Uncertainty Circles Phone Solid Circular .003747
Grimson et al. 92a Random Solid Polygonal .00866
Grimson et al. 92b Random Planar Circular .002911

Table 3: Expected selectivities of point features.

0.00 0.25 0.5 0.75 1.00
S.000647 .001017 .001311 .001550 .001750

Table 4: Expected selectivities of line features for different amounts of occlusion,tr, using the telephone.

. R

Figure 1: Region to search for candidate line segments
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Method a f = 0.25 0.50 0.75
Line Uncertainty Regions 0.00 161 537 1200
Line Uncertainty Regions 0.25 102 341 763
Line Uncertainty Regions 0.50 79 265 592
Line Uncertainty Regions 0.75 67 224 500
Uncertainty Circles - 31 97 216
Grimson et al. 92a - 15 43 95

Table 5: Approximate limits on the number of sensory features for different amounts of occlusion a
and different fractions f of model features used. Table is for c = 5, 6 = .001, for lines m = m' = 200
(line uncertainty regions), and for points m = 197 and m' = 200 (uncertainty circles and [11]).

62 a = 0.00 0.25 0.50 0.75 1.00
0.01 .36 .49 .57 .63 .67

0.001 .38 .51 .60 .66 .70
0.0001 .41 .54 .62 .68 .72

Table 6: Predicted termination thresholds for different amounts of occlusion a, and for different limits
62 on the false positive probability. Table is for e = 5, m = m' = 200, and a = 500.

Figure 2: Region of translations with orientation constraint and rectangular bound.

r

RL
rr

Figure 3: Orientations of the common outer tangents (left) and the common cross tangents to the
circles (right), which give the maximum possible angle of a line segment with an endpoint in each circle.
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Figure 4: Rectangular upper bound on translations of a line segment with orientation constraint.

h , h- Ies wo

hfd

Figure 5: Region of translations of a line segment over an image.

2

Figure 6: A telephone and a model of a telephone

408



Figure 7: Left: Largest errors for random models: 81.7% (upper left), 78.8% (bottom right). Right:
Largest error for the telephone model: 27.0%.

Figure 8: Propagated uncertainty in a real image, which was provided by David Jacobs. The three smallest
circles correspond to assumed errors in the matched image points, and, given those errors, the larger circles show
the sets of possible locations of the other corner points of the telephone.
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Alignment Using An Uncalibrated Camera System

Billibon H. Yoshimi
Peter K. Allen

Center for Research in Intelligent Systems
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Abstract
Calibration of cameras and manipulators for
robotic tasks is a difficult and sensitive pro-
cess. We present a technique that uses ac-
tive camera motion to recover image space
properties that can be used to accurately
control and position a robot hand/eye sys-
tem that uses an uncalibrated camera. The
algorithm is verified by an experiment where
a robot completes the task of inserting a peg
into a hole with an error of 3mm.

This work was supported in part by
DARPA contract DACA-76-92-C-007, NSF
grants IRI-86-57151, CDA-90-24735, North
American Philips Laboratories, Siemens
Corporation and Rockwell International.

1 INTRODUCTION Figure 1: View of camera, robot, and mul-
tiple target setup

In many real world applications, there is a

need to perform alignment tasks between
two objects. Two simple, generic tasks aberration and lens defects in modern lenses,
are inserting a peg into a hole and align- they obtain highly precise calibrations of
ing objects into arbitrary geometric config- their camera systems. For more informa-
urations (e.g. robotic assembly tasks.) A tion see Karara[6]. These methods are often
key component of this problem is position- difficult to understand and inconvenient to
ing where there is little room for mechan- use in most robotics environments. They
ical error. The idea of precision measure- usually require the minimization of several,
ment (in our example, alignment) using a complex, non-linear equations of multiple
mechanical device, photographic emulsions variables (of which the results are not guar-
or photo-electric sensors, has been exam- anteed to be robust.) Other methods for
ined in great detail by the researchers in performing camera calibration for robots in-
non-topographic photogrammetry. By us- clude the works of Tsai [16, 15], Young et.
ing models which account for most of the al. [181, Bennett et. al. [1], and Holt et. al.
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erate an estimated position where it expects
that the object motion will be minimized
with respect to the camera movement.

Our technique takes the typical map-
ping from 3-D positions to image coordi-
nates, and instead of finding this mapping,
it recovers a property of the image coor-
dinates. The traditional mapping problem
(known as the calibration problem) deter-
mines the position of objects based on rela-
tive scale difference, perspective distortion,
and/or several other properties which ex-
ist between a calibrated system and an ob-

• served system. These positional values can
Sbe obtained from both static and dynamic
j systems. These methods do not exploit the

fact that a known movement in the camera

Figure 2: View of targets from camera system can result in useful motion informa-
tion in the image system without knowing
the exact calibration between the systems.

[4) for example. We approached the problem by asking

To give the reader an idea of the align- the following question: How can I get a

ment/insertion task, figure 1 shows our ex- robot to perform a given task using only un-

perimental setup. Off the end of the end calibrated visual input to direct the robot's

effector of our robot is a probe with a sharp actions? In many cases, it is not neces-

tip (the "peg".) The target in this scene is a sary for the robot to have a completely cal-

2mm hole in the machined aluminum block ibrated work area. (It is not necessary to

located almost directly below the probe. know the exact positions of everything in

Figure 2 shows a view of the target objects the robotic workspace. It may be more im-

taken from the camera system. In this fig- portant to know only the exact position of

ure, the holes in the machined block are certain items.) We propose a new tech-

more easily seen. The goal of the task is nique, similar to the work of Sawhney [11,
to maneuver the probe to a position where 12], which will allow the robot system to

it is directly above the target, and then to maintain an arbitrary, geometric relation-

insert the probe into the target. ship with an object system, and as a result of
certain operations, the robot-object system

Another class of methods revolves can "calibrate" itself to or "can define its lo-
around the depth from motion paradigm. cation with respect to" the unknown camera
This body of research tries to recover the system. The newness of our technique arises
absolute pixel velocity for objects in image from the fact that our system performs the
space. Here too the researchers are search- useful task of moving to the goal position
ing for an absolute transformation from a without ever really knowing the true loca-
known reference (the velocity of a known ob- tion of the camera system.
ject) and an unknown system (the actual,
time-varying, intensity data). The method 2 OVERVIEW OF METHOD
we propose does not require the absolute po-
sitional information that both of the afore- In order to perform the peg-in-hole insertion
mentioned systems require. It uses simple task, we broke the task into two parts: the
image displacement data (generated from alignment task and the actual insertion task.
the movement of the camera system) to gen- The alignment task servos the end effector
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Y N Figure 4: Demonstration of the observed ef-
fect

further away from the axis of rotation moved
a greater distance than those points closer to

foa plane the axis. This effect is not new and is very
Ssimilar to the work done by researchers on

Plan. A /4\ the analysis of the Focus of Expansion for
S / time to impact studies.

- - We make the simplifying assumption

"T that the objects do not change their appear-5 R~otatonalOptial ~ance as we perform the rotation. One simple
scal Axis way of doing this was to use point-like tar-

gets. The point-like targets rely on the fact
Y that the perspective distortion is highly lo-

To calized due to the fact that the targets have
a high level of spatial coherence.

Figure 3: Experimental setup Using the effect noticed above, we trans-

formed the alignment problem into one of a
in a plane in robot space until the alignment positioning problem in a plane. The simpli-
condition occurs (that being when the ob- fication is justified by the following observa-
ject to be servoed to and the end effector tions:
lie on the same axis.) The insertion task 1. The initial movements of the
relies on the fact that the alignment stage manipulator-camera system are in the
has constrained the solution to lie along a X - Y plane. The projection of the Z-
line (thus making the insertion task simply distance to the object on the rotational
a one degree of freedom search.) axis is kept constant.

A simplified setup is shown in figure 3. 2 Once the alignment has been performed
The task is to maneuver the end effector to in X - Y space, the only movement nec-
a position directly over the target position.einary-is spure the aon m ontheessary is a pure translation along the

We started our investigation by examin- rotational axis (for our scenario, the Z-
ing what would happen if we attached some axis).
sensing system to the rotational axis, such
that the system could image the rotational To perform our peg-in-hole insertions
axis. We noticed the following effect as we we also make the following assumptions:
servoed the rotational joint over a small an- T Ts (the transform from the world coor-
gle (see figure 4.) Those objects which were dinate system to the end-effector of the
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robot, minus the last rotational degree a 2 DOF problem. The goal state is one
of freedom) is known. where the object simply rotates in the im-

"* R (the last degree of rotational freedom) age plane without translating, hence satis-

is known. fying the alignment condition which is that
"the object lies on the rotational axis. The

u Tamn, the camera transform matrix, is rotational degree of freedom is used as a free
unknown. variable for the alignment task and does not

"* P, the perspective effect introduced by contribute to the final alignment state (for
the camera system where the missing circularly symmetric objects).
parameter is A, the focal length, is un-knownOnce an object has been selected in the
known camera's view, the robot rotates the camera

"* Once the camera was positioned, it re- around its rotational axis, R. By slowly ro-
mained fixed with respect to the rota- tating the camera around its rotational axis,
tional axis of the 6th joint of the PUMA. we remove the correspondence problem (the
The camera was not allowed to move in object moves only a slight bit between con-
its mount nor was the mount allowed to secutive shots, therefore making the corre-
move with respect to its mounting point spondence between two shots trivial to com-
on the robot. pute.) If the only movement in the robot-

"* The camera can image the target object camera system is caused by the rotation, the
during any servoing operation. There object will trace out a conic section, an el-
should not be a time where the object lipse under certain conditions 1, in the cam-
leaves the focal plane. era system. We propose to use these ellipti-

"* and finally, Tobjet is unknown. cal parameters to recover the alignment con-
dition. One simple method requires that we

The following constraints were not nec- move about in the plane A, sweeping out
essary: ellipses in camera space. The further away

" intersection of the optical and rotational the object is from the rotational axis, the
axes. Proof: If you imagine the system larger area is swept out by its ellipse pro-

setup (camera, extending rod, gripper jection into camera space. The closer we

and task system) where each piece is im- come to aligning the object to the rotational

movable, you will notice that the rota- axis, the smaller the projected ellipses will
tional axis projects to a line in the cam- become. The goal in this scenario is to de-
era imaging area. This line, by defini- vise a method for maneuvering the end ef-
tion of the rigid system, cannot change. fector's position in plane A to the position
Its position is dictated by a fixed pro- which causes the object to project to an el-

jection and since the line simply rotates lipse with the smallest area.
around its own symmetrical axis, its po-
sition does not change. Note: if the ro-
tational axis is seen to have translated, The degenerate conditions are if the object:

it means that the manipulator did not I. is directly orthogonal to the image plane - a circle,

go through a simple rotation, but may 2. is already aligned to the rotational axis - a point,
actually have translated.

3. incident with a plane containing the focal point
"* knowledge of the focal length, or which is parallel to the image plane - parabola,

"• knowledge of Tcam. 4. passes through a plane containing the focal point
which is parallel to the image plane - hyperbola.

In the figure 3, the robot-camera sys- and

tem is constrained to move in the plane A, 5. lies in the same plane as the optical axis (where the

where A is defined by the circle swept by the optical axis and the rotational axis are perpendicu-

camera around the rotational axis, R. We lar to one another) - line.

have simplified the alignment task to one of
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3 RECOVERY OF ELLIPTICAL be able to find the solution. We proposed
PARAMETER DATA creating a "walker" with three legs: a sim-

plex (for two dimensional "walking") requir-
The majority of this work was inspired by ing three starting points. A simplex was
Safaee-Rad et. al. [10, 9, 14], Haralick [2], created in X-Y space from the set of three
Magee et. al. [7], Sawhney et. al. [11, arbitrary, non-collinear positions ((0.0,0.0),
12] and Shiu et. al.[13]. (0.0,50.0), and (50.0,50.0)). The search

While inspired by these methods, we method using the simplex simply "walks"
have developed a new formulation for de- down the surface by tossing the "leg" which
riving ellipses from scattered point data. In is furthest uphill an equal amount down-
our current scenario, we accumulate the (06, hill. Once it constrains the solution to
X projection, Y projection) triplet derived lie between its "legs" it shrinks itself and
from combining the angle made between the tries "walking" down the surface using its
end effectors zero position and the current new position and new, smaller "legs." This
position of the end effector and the pro- method is similar to the Simplex method of
jection of the tracked feature into camera Nelder and Mead[8].
space. We then parameterized the curve The implemented version of the algo-
traced out by the feature as: rithm for the simplex search runs as follows:

x(0) = A cos(06 ) + B sin(06) + C (1) 1. Initialize simplex. The robot moves to
each position in the initial position set

y(0) = Dcos(06) + Esin(06) + F (2) in turn. At each position, the robot
The area enclosed by this curve (computed tracks the movement of a point-feature
Theng areaenclosedy the is cin the image plane as the robot changes
using Green's Theorem) is its value of 06. After accumulating

2  2 +C 2 + (3) the object positions in the image plane
A2. (2-D point data), the computer fits a

least-squares conic section to the points.
The full proof that the parametric curves From the conic section parameters, it
generated by these equations are ellipses is computes the area of the elliptical tra-
contained in [17]. jectory taken by the projection of the

The problem of fitting raw data points object in the image plane. This process
to elliptical data was covered in both the is performed once at each robot position
Sawhney and Safaee-Rad works cited earlier, given in the initial simplex set.
We were concerned primarily with develop- 2. While none of the areas is less than
ing a method which did not require data a predetermined threshold (where zero
points be taken from the entire ellipse and area indicates a perfect alignment be-
which could be solved linearly. In our exper- tween the object and the rotational
iments, the elliptical data was taken over a axis),
90 degree sector of the ellipse. Using only (a) Find the point, pl in plane A,
this data, we were able to fit ellipses quite whose ellipse encompasses the great-
well (see figure 5.) est area.

(b) Reflect the point, through the line
4 THE SIMPLE SIMPLEX connecting the other two points, p2

SEARCH METHOD and p3.
(c) Evaluate the area of the ellipse at the

This method uses a version of the simplex new point. If the new point's area
method for finding local minima. We were is larger than the area of the point
motivated by the fact that the solution sur- which generated it, you've trapped
face was fairly smooth and by the idea that the minimum, so decrease the area
even a simple "walking" algorithm should of your search space.
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The above algorithm tries to trap the global feature. The feature extractor used a Sobel
minimum using large simplex movements to operator with a fixed threshold to extract
surround the minima and when the minima the predominant feature in the selected re-
is trapped, it reduces its search space by gion. The tracker would follow the feature
moving the point with the largest area to over consecutive image frames as long as the
the middle of the simplex (roughly reduc- feature moved only small distances.
ing the bounding area by one-third). The After establishing the feature tracker,
algorithm is repeated until the area of the the robot was instructed to move to the first
ellipse computed for a position is falls below position, stop , and rotate its last joint 90
the area threshold. degrees over the course of which it would ex-

tract 16 images spaced equi-angularly with
5 IMPLEMENTATION respect to the robot's rotation.

In figure 3, we show a schematic of the sys- The feature tracker tracked the move-
tem set up for testing the new alignment ment of the selected target position over the
method. We mounted a Sony XC-77 CCD complete 90 degrees (reporting to the con-
camera in a bracket system off the end ef- troller the position of the object at 16 equi-
fector of a Puma 560 robot. The camera angular positions over the duration of the
was not calibrated or position constrained movement.)
when initially placed. The system was con- The centroid of feature (in image coor-
trolled using RCCL and RCI [3]. The im- dinates) was then fed to a least squares esti-
ages were digitized at 256x242 resolution mator to recover the ellipse parameters asso-
and 8 bits gray scale at standard NTSC ciated with the moving features's trajectory.
frame rates using the PIPE parallel image These parameters were then fed into formula
processing engine [5]. The resulting images 3 for computing the area of the ellipse.
were thresholded to recover a simple black
object on a white background. In general, The process was repeated for the re-
any recovery method can be used to generi- maining two points in the simplex. We ini-
cally extract object information from an im- tialized the simple simplex algorithm using
age array. The object was positioned so these three areas and allowed it to step its
the robot would not encounter singularities way to the minima.
when moving to the new control positions. The halting condition was when the

Given that the only information neces- area of the ellipse formed from a position
sary to constrain the alignment is the area was < lpixels2 . The following table tabu-
of the projected ellipse on the image plane, lates the results of this experiment:

it is not necessary to know anything about #1 X Y Area
the geometry of the sensor setup. I 0.000000 0.000000 1951.378696

I -50.000000 0.000000 5811.561407

6 RESUJLTS I -50.000000 -50.000000 4679.246920
3 0.000000 -50.000000 284.406540

In the experiment, we used the modified 4 50.000000 0.000000 4349.398"117
simplex method (see section 4) with an ini-
tial simplex of ((0.0,0.0), (0.0,50.0), and
(50.0,50.0)). 22 2.408169 -39.056546 30.307041

23 2.210029 -38.058223 3.082379
We built a feature tracker which as- 2 2.91625 -37.8988 0.384

-124 2.941625 1-37.8988 0.380444
sumes velocity constrained object motion in
image space. At the beginning of the ex- Figure 5 shows the projected ellipsoidal
periment, a scene was extracted by the im- information taken from the three, initial
age processor and the user was prompted to simplex positions.
move a pointing device to the location of the
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a00 Figure 7: Robot system after performing the

00 insertion task

- so 100 ISO 200 250

generated at points which are sampled very
close to one another. In the case of the fi-

200 . nal few ellipses, noise pixels resulted in the

,,o :0 oddish ellipsoid calculations. A more intelli-

100 gent system would detect this condition and
would hypothesize about the area of the el-

lipse taking this into account. But even with
0 s 100 ISO 200 200 noisy data, the system reconstructs an ellip-

Figure 5: Ellipses recovered by sweeping the soid which reflects the general behavior of

initial simplex positions. the points.

In the experiment above and in figure 7,
the tracked feature was a 2mm diameter

200 •hole. The robot system was able to place the

" peg" (a tapered probe) within 3mm of the
"hole (this using uncalibrated camera data!)

100 In addition, trying the same experiment 3
more times resulted in about the same re-
sult, that is: an error of about 3mm for the
insertion task. When using a 10mm diam-
eter hole, the robot system almost always50 10 5 200 250so .1 ISO 00succeeds in placing the probe in the hole.

Figure 6: Superimposed ellipses shown for
all 25 positions 6.1 Evaluations for positions on

the initial simplex

In the figure, the raw data is displayed t i

as point data while the predicted ellipses are Upon closer examination, the modified sim-

drawn in as solid lines. plex method does converge as well as a
method should taking into account the

Figure 6, we show the ellipses generated amount of knowledge we have given it about
by all 25 positions investigated. Note that this system. (See figure 8.) The modified
the system is not guaranteed to be mono- simplex method does suffer from the fault
tonically convergent (in terms of the number of reexamining points analyzed previously.
of evaluations) but the system is convergent This can be seen in the overlapping num-
none the less. bers in figure 8. The only way the simplex

The system also can be fooled by ellipses can shrink itself is by covering all possible
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7S sition, resulting in large ellipses, we can start
so with accurate estimates of the "family" of
2S ellipses over small rotations. This is in con-

trast to the smaller ellipses which (because
of numerical inaccuracies in estimating the
center of the object and problems caused by

4 quantization) need larger movement arcs to
adequately recover the parameters of the el-

5 .5 0. 75 1000 lipse. This sweep function is a function of
Figure 8: The positions examined by the the resolution of the imaging device as well
modified simplex method. as the size of the object and position of the

object.

point reflections and then after exhaustively One possibility for increasing the effec-
examining all possibilities, it determines the tiveness of this process is to use more of the
best step for proceeding to the solution state innate properties of the ellipses generated
is to contract. by the process. A more sophisticated search

Notice that the simplex method suffers procedure, one based on the physical model
from the fact that it must "overextend" the of the parabolic surface which is formed by
simplex in all directions before coming to the ellipses areas, would give more satisfac-
the conclusion that the simplex should be tory results.
shrunk. This ability allows a simplex to In addition, productive results will
normally "jump" over a local minima and probably be gained from the analysis of
continue its search in a more fruitful valley, other properties of the conic sections. If the
In the case of our system, there exists only component values of the conic sections are
one minima and simplex need not evaluate traced out as a function of the rotation, the
all positions when it sees an increase in the sinusoids generated will show a phase an-
area of an ellipse after picking a new point. gle difference with respect to the rotation

This observation brings up several pos- of the end-effector. The magnitude of the
sible places where the algorithm for com- sinusoids will determine the net amount of
puting the next position can be improved translation of the object with respect to the
and makes two insightful observations which rotational axis. These four values can prob-
are crucial to understanding the alignment ably be used as a control signal to effect a
problem. The first observation is the fact net change to drive all four values to zero
that we are tracking the centroid of the mov- which is a position where the sinusoids are
ing object rather than the true center of the both in phase and at zero amplitude with
object. In the case where the object is point- respect to the rotations: the alignment con-
like, the center of the object and the centroid dition. This technique needs to be examined
of the object are very close together, so the in further detail.
algorithm works. But, in the case of a fairly Another problem which must be faced
large object observed through a fairly wide is the problem of small ellipses. When im-
angle lens (take for instance: 12.5mm focal age noise is of the same magnitude as the
length), the distortion of the center of an ob- centroid data the Least Squares fit no longer
ject can be significant (on the order of > 1/2 captures the true centroid information of the
the radius of the object) depending on the object. Remember that the object itself is
angle the camera takes with respect to the perspective transformed and the true object
rotational axis. center can actually be a great distance from

The second observation is the fact that the objects projected center. It may be pos-
by starting with several observations where sible to use the centroid information, if we

the rotational axis is far from the object po- are able to recover the varying amounts of
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skew caused by perspective. It may also be calibration for hand-eye coordination.
possible to recover the centroidal informa- In Robotics Research, volume 5, pages
tion by using the parametric description of 137-144. MIT Press, 1989.
the object and divining the focal points of
the object, the generating lines, and/or the [21 R. M. Haralick. Solving cameraeccetricty o theernpes.parameters from the perspective
eccentricity of the ellipses. projection of a parameterized curve.

The final positioning error may be im- Pattern Recognit., 17(6):637-645,
proved by using a set of movement primitive 1984.
vectors defined by a spiral like the logarith-
mic spiral or some member of the family of [3] V. Hayward. RCCL User's Guide.
spirals, which can exploit the properties of McGill Research Centre for Intelligent
containment and possibly approach with an Mac, Caila Univ.
incremental goodness-of-fit function (which Quebec, Canada, 1984.
may be a property of the spiral). [41 R. J. Holt and A. N. Netravali.

Camera calibration problem: Some
7 CONCLUSIONS new results. CVGIP: Image

We have demonstrated a method for per- Understanding, 54(3):368-383, Nov.

forming a three dimensional task in essen- 1991.

tially two dimensions. The peg-in-hole ser- [5] A. Inc. Programming PIPE Model 1
voing task and the the vernier alignment Systems. Aspex Inc., 530 Broadway,
task both benefit from a method which can NYC, NY 10012, 1987.
constrain the initial position of the object [6] H. M. Karara. Non-Topographic
(to a high degree) and which can essen- [ H. .Krara. Non-Topograpic
tially turn a three dimensional search prob- Photogrammetry. American Society of
lem into a two dimensional search in uni- Photogrammetry and Remote Sensing,Falls Church, VA, 1989.
modal space. We have presented such a
method which converges to a solution state [7] M. J. Magee and J. K. Aggarwal.
even when using a very simple convergence Determining the position of a robot
algorithm, using a single calibration object. In

The key features/contributions of our Proc. IEEE It. Conf. Robotics and

system: Automat., pages 140-149, Mar 1984.

"* It does not require calibrated cameras. [8] W. H. Press, B. P. Flannery, S. A.
"* It converges with simple search algo- Teukolsky, and W. T. Vetterling.

rithms. Numerical Recipes: The Art of
"• Even with the two constraints above, Scientific Computing. Cambridge

the alignment results are very good (our University Press, 1987.
experiments have shown that we can po- [9] R. Safaee-Rad, K. C. Smith, and
sition a probe within 3mm of a 2mm fea- B. Benhabib. Accurate estimation of
ture consistently.) elliptical shape parameters from a

Active camera motion that recovers image grey-level image. In Proc. IEEE Int.
space properties of tracked objects has Conf. Pattern Recognit., pages 20-26,
shown itself to be useful in performing June 1990.
alignment tasks without the need to
calibrate the camera systems. [10] R. Safaee-Rad, I. Tchoukanov, K. C.

Smith, and B. Benhabib.
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Abstract 1. Introduction
Previous work has shown the feasibility of merging With the availability of moderate resolution
surface material information derived from moderate multispectral imagery, comparable in spatial resolution
resolution multispectral imagery with estimates of to aerial mapping imagery, opportunities exist to
height based upon stereo matching in high resolution exploit the inherent spectral information of
panchromatic imagery. The goal is to use surface multispectral imagery to aid urban scene analysis for
material information, normally highly correlated with cartographic feature extraction. Moderate resolution
object location in complex urban scenes, as a source of multispectral imagery with spatial resolution ranges of
information for small scale mapping of man-made 5 to 8 meters can be collected with existing airborne
structures such as buildings and roads, as well as multispectral scanners like Daedalus, AVIRIS, and
natural featu-c's such as soil, vegetation, and water. MEIS.
The fusion of height estimates with surface material
estimates provides a unique synthetic three Our research in multispectral scene information fusion
dimensional dataset that is not directly available in any utilizes moderate resolution airborne imagery (8 meter)
airborne imaging sensor. and high resolution panchromatic aerial photography

(1.2 meter). Using traditional spectral classification
The focus of this paper is to present a performance techniques, surface material information is derived
evaluation of two classification techniques, gaussian from the multispectral imagery, refined by monocular
maximum likelihood and differential radial basis segmentations from the panchromatic imagery and
function, on the task of surface material analysis. In fused with high resolution stereo disparity maps [Ford
order to carry out this evaluation we have created and McKeown 92a, Ford and McKeown 92b].
several highly detailed ground truth segmentations
based upon manual analysis of the multispectral The focus of this paper is to present a performance
imagery, as well as by inspection of panchromatic evaluation of two classification techniques, gaussian
imagery acquired over the same area. Tools built for maximum likelihood and differential radial basis
the generation and validation of the ground-truth function, to perform surface material analysis. In order
surface material map are also discussed. to do this evaluation we have created several highly

detailed ground truth segmentations based upon
manual analysis of the multispectral imagery, as well
as by inspection of panchromatic imagery acquired
over the same area. Tools built for the generation and
validation of the ground-truth surface material map are
also discussed.

This research was sponsored by the U.S. Army Topographic In the remainder of this section we give a brief
Engineering Center and th, Defense Advanced Research Projects overview of the Daedalus scanner and the surface
Agency under Contract DACA72-91-C-0014. The views and material classification task.
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Topographic Engineering
Center, or the Defense Advanced Research Projects Agency, or of
the United States Government.
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Since the Daedalus scanner is aircraft-based, the sensor characterization and the determination of a
has the capability to acquire moderate resolution multispectral pixel's class assignment differ. We then
multispectral imagery by flying the system at lower discuss the generation of training datasets, followed by
altitudes. In the case of our datasets, the scanner was a discussion of our methodology for ground truth
flown to achieve a ground sample distance of generation for our surface material classes. The
approximately 8 meters per pixel. This imagery was generation of a ground truth surface material map is
collected for the United States SPOT HRV Simulation critical for the quantitative analysis of classification
Campaign [SPOT 83, SPOT 84] and should not be results discussed in Sections 3 and 4.
confused with actual SPOT HRV imagery at 20 meter
spatial resolution. 2.1. Gaussian Maximum Likelihood Classifier

In the maximal likelihood classification model, the
1.2. Surface Material Classification training set of a spectral class statistically characterizes
Figures 1 (GAOl) and 2 (CIVILl) show two of the urban the class in the form of a mean vector and covariance
test sites with which we have been experimenting, matrix with the dimensionality being determined by the
Both images are visually presented as near infrared number of multispectral bands used in the statistical
images using Daedalus bands 7, 5, and 3.2 The analysis. Sufficient training samples for each spectral
outlined regions indicate the area used for class must be present to allow reasonable estimates of
classification. The scene content is representative of a the mean vector and covariance matrix [Richards
complex urban area with buildings, street networks and 86, Swain and Davis 78]. The mean vector
landscaped areas. characterizes average intensity or brightness level for

each multispectral band in the spectral class, while the
The objective of our classification task involves the covariance matrix describes the shape and orientation
generation of surface material classmaps at a coarse of the population of the spectral class, assuming a
level for urban multispectral scenes. Coarse level multivariate normal distribution. Diagonal entries of
means we are initially only interested in characterizing the covariance matrix contain the variance or
the primary level of land-cover detail. In our urban dispersion of the brightness levels for each
analysis problem, the primary land-cover types of most multispectral band of the spectral class while off-
interest to us are water, vegetation, soil and man-made diagonal entries indicate the degree of correlation
features. In Figure 3, these primary land-cover types between a given pair of multispectral bands.
are further divided into specific spectral classes based
upon visual interpretation of the Daedalus ATM The gaussian maximum likelihood (GML) classifier
multispectral imagery. The inclusion of a shadow assumes that the spectral class probabilities are
feature in the spectral class hierarchy alleviates multivariate normal distributions. This is an
misclassifications of shadow pixels as water spectral assumption, rather than a demonstrable property of
features due to spectral similarities between the two natural spectral classes [Richards 861. The probability
features. distribution of each individual spectral class is modeled

by using its mean vector and covariance matrix as
2. Two Techniques for Multispectral calculated from its training set. When classifying a

Classification multispectral image pixel, the probability of the pixel
Traditional multispectral classifiers can be categorized belonging to each of the candidate spectral classes is
into one of two methods: unsupervised and supervised. determined and assigned to the spectral class with the
The primary distinction between the two multispectral highest probability.
classification procedures centers around the
involvement and interaction of the image analyst or 2.2. Differential Radial Basis Function
domain expert with the classification process. Classifier
Typically, time must be spent by the image analyst to The differential radial basis function (DRBF) classifier
identify candidate spectral classes, called training sets, is a modified version of the Gaussian Radial Basis
prior to supervised classification. Function (RBF) neural network architecture

[Broomhead and Lowe 88, Moody and Darken
In this section we describe two classification 88, Poggio and Girosi 89, Medgassy 61]. The
techniques, Gaussian Maximum Likelihood (GML) paradigm is identical to the maximum likelihood model
and Differential Radial Basis Function (DRBF). Both with four major exceptions:
are supervised classifiers requiring training sets to . The DRBF associates a discriminant function with
characterize the spectral classes of interest. However, each spectral class rather than associating an
their utilization of training sets for spectral class unparameterized distribution with each spectral class.

As a result, the DRBF employs discriminative learning
while the GML uses a probabilistic model.

2 Color images have been replaced by their corresponding

luminance (Y) component from a RUB to YiQ transformation for * The DRBF's discriminant functions have a peak
black and white reproduction, value of unity, whereas the GML discriminant
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functions have unit area, a requirement for Number of Training Samples
probabilistic models.

* The covariance matrix associated with each Spectral Class GML DRBF

discriminant function is diagonal, and all of its asphalt 740 740
diagonal elements have the same value (i.e., the concrete 720 720
covariance matrix has orthonormal eigenvectors and
all of its eigenvalues are identical). For this reason, coniferous tree 52 52
each discriminant function has C2 - 1 fewer parameters deciduous tree 9759 1259
than its maximum likelihood counterpart, where C
denotes the dimensionaiity of the spectral intensity deep water 16433 933
vector. In the case of an 11-element spectral intensity
vector representing 11 spectral classes, the maximum gr 2544 1044
likelihood classifier has 1452 parameters compared to shadow 140 140
the DRBF classifier's 132. Thus, the DRBF has an
order of magnitude fewer parameters than its shallow water 887 887
maximum likelihood counterpart. soil 354 354

* The model is trained differentially [Hampshire tile 260 260
931 using the classification figure-of-merit (CFM)
objective function [Hampshire and Waibel 90], rather turbid water 2269 769
than by the method of maximum likelihood.
Differential learning via CFM is a discriminative form Table 1: Spectral Classes Used in Classification
of learning that focuses on classifying patterns with corresponds to the true a priori probability of that
minimum probability of error. This contrasts with class.
probabilistic learning strategies such as maximum
likelihood and conventional neural network learning Each discriminant function of the maximum likelihood
procedures, which focus on estimating probabilities model is trained independent of the other functions,
[Hampshire and Kumar 921. and absent any a priori knowledge regarding the prior

probabilities of each spectral class, the final
2.3. Training Data Sets classification of the maximum likelihood model
Block training sets, consisting of homogeneous areas assumes that these priors are all equal. In this sense,
of pure pixels representative of the candidate spectral maximum likelihood training is relatively insensitive to
classes were collected manually from various regions unbalanced training samples, assuming the class prior
distributed throughout the entire Daedalus ATM probabilities are roughly equal. Because differential
multispectral imagery. The candidate spectral classes learning requires that all discriminant functions be
are listed in Table 1 with the number of training trained simultaneously, the resulting classifier is quite
samples or pixels per spectral class for each of the sensitive to unbalanced training samples. If the
classifiers. One can note that these are relatively small empirical probability of a given spectral class does not
sample sets from the original multispectral imagery correspond to the true a priori probability of that class,
over Washington, D.C., measuring 716 rows by 3000 then the training set statistics are not representative of
columns, or about 2 million samples in each of the the spectral intensity vector's true probabilistic nature.
eleven Daedalus bands. These samples were selected As a result of unbalanced training samples, the
prior to the selection of the GAOl and CIVILI test sites, differentially trained classifier tends to form
so as to cover a wide range of materials visible over the inappropriate decision boundaries, making more
entire swath from Virginia, across the Potomac river, classification errors for under-represented spectral
and through the center of Washington, D.C.. classes than a comparable maximum likelihood

classifier.
One artifact of our training sample selection was that
no attempt was made to acquire a balanced or equally During some preliminary testing using the GML's
populated set of training data across each of the training data, it was observed that the DRBF classifier
spectral classes. One property of the DRBF classifier has trouble distinguishing shadow regions from water.
is that it is an effective way of classifying multispectral This is due to two factors, the first and most obvious of
data with simple models that require relatively small which was that the spectral intensities of these ground-
training samples (i.e., training data sets). However, a truth classes are quite similar. The second factor
related property of the DRBF classifier (and involved the water to shadow training sample ratio.
differentially trained classifiers in general) is that they Because the number of water training examples was
require balanced training samples in which the number over 19,000 and the number of shadow training
of training examples for each spectral class examples is 140, the training sample ratio of water to
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shadow is more than 100:1. However, the ratio of to multiple spectral classes, especially along surface
water to shadow in the test samples is less than 1: 1. As material transition boundaries. These conflicting
a result we reduced the training set size for the DRBF pixels are flagged, reassigned to UNCLASSIFIED and
classifier to those shown in Table 1. Significant resolved by visually displaying the conflict pixel for
reductions in training set size were also performed for assignment. The center column in Figures 4 and 5
vegetation classes. No special selection criteria were shows the resulting surface material ground truth
employed to perform this reduction; we simply used classmaps. Every pixel in the GAOl (14014 pixels) and
the N first training samples for each class in those CIVILI (12180 pixels) test sites were manually labeled.
cases where the GML training populations were large.
Tables 2 thru 5 in Section 3 include some of the While the training set data acquired over the entire
original DRBF results with the unbalanced training sets Daedalus image had examples from each of the eleven
labeled as DRBF(l). It can be observed that the surface material classes, not all classes were present in
balanced training DRBF(2) performed better than the the GAOl and CIVILI sites. Missing from both scenes
unbalanced experiment DRBF(I). were soil, coniferous tree, deep water, shallow water,

and turbid water classes. A secondary issue, not
2.4. Generation of Surface Material Ground explored in this paper, is the issue of intrinsic accuracy

Truth of the surface material ground truth. A recent study
Our previous work in ground truth generation used has shown statistically significant differences in
high resolution black and white aerial photographs. ground truth labeling accuracy across multiple analysts
These manual segmentation tools are useful for using Landsat Thematic Mapper imagery [McGwire
generating ground truth where geometric relationships, 921. Such imagery has significantly lower spatial
such as building size, shape and boundaries are the resolution than the Daedalus scanner data and that may
primary focus. With regard to spectral classification, relate to increased variability in human labeling.
the ground truth needs to represent the material types Ne
located in the scene. As a consequence, our previously vertheless, it is certainly the case that our grounddeveloped manual hand segmentation tools were trhclsmacoaisoeerrsdeoouinadequate and inappropriate. We have addressed this inability to discern precise material boundaries or toinadequacy by the development of an interactive label small pixel populations embedded in large areas

inaeqacybythedeelpmet f a iterctve of nalhomogeneous surface materials. Forsupervised classification tool, ICLASS, to generate nearly homeneous surfac teris.iForsurface material ground truths in the form of surface example, at times it was visually difficult to distinguish
material ground truth classmaps, between the deciduous tree canopy and the underlyinggrass areas. A standard deviation classification map

The ground truth generation procedure consists of a may be useful distinguishing between the textured tree
two stage process using ICLASS. Initially, a surface canopy and the flat areas of grass. Similarly, it can be
material classmap is generated for each of the very difficult to visually distinguish between asphalt
individual spectral classes visually present in the GAOl and shadow. The Daedalus thermal band I 1 was not
and CIVILI test sites. An individual surface material extensively used during the manual ground truth
classmap is built by manually segmenting the moderate segmentation. A re-examination of asphalt and
resolution multispectral image regions containing the shadow transition areas using the thermal band may be
surface material of interest using various false color useful in improving the ground truth.

composite presentations. The near infrared color
presentation using Daedalus ATM band 7, 5 and 3 has 3. Classification Test Results
proven to be the most useful visually. When Surface material classmaps were generated for GAOl
difficulties in visually distinguishing between surface and CIVILI using the Gaussian Maximum Likelihood
material types using the moderate resolution (8 meter) and Differential Radial Basis Function classifiers. The
multispectral imagery occurred, collateral imagery in resulting surface material classmaps for the two
the form of high resolution panchromatic aerial classifiers are shown as greylevel classification images
imagery was referenced in attempts to resolve in the left and right columns of Figures 4 and 5. The
ambiguities during surface material segmentation with manually generated Ground Truth is shown in the
the multispectral imagery. The collateral imagery was center column of each Figure. Each horizontal set of
helpful in varying degrees due to the difference in images are side-by-side comparisons of the
scene content between the two image datasets; the classification results for each of the major surface
aerial imagery was acquired in 1976, while the material classes: MAN-MADE, SHADOW/SOIL,
multispectral imagery was collected in 1983. VEGETATION, and WATER. Within each class, sub-

class features are distinguished by grey shades, with
With creation of surface material classmaps for each of white being reserved in all cases to indicate no pixels
the individual spectral classes complete, the surface classified as a member of this class. All results shown
material classmaps are combined together to generate in these images represent the classification achieved
the surface material ground truth classmap. During the using all I I Daedalus spectral bands for training and
segmentation process, it is quite possible that an classification.
individual multispectral image pixel may be assigned
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GAOl Site GAOI Site

4 Bands 10 Bands 11 Bands 4 Bands 10 Bands 11 Bands
Classifier (%) (%) (%) Classifier (%) (%) (%)

GML 79.6 85.9 87.8 GML 50.9 58.6 61.6

DRBF (1) 79.1 * 78.1 DRBF (1) 47.1 * 46.7

DRBF (2) 85.4 84.8 85.5 DRBF (2) 62.2 61.7 60.5

14014 Pixels Sampled 14014 Pixels Sampled

Table 2: GAOl Coarse Classification Accuracy Table 6: GAOl Coarse Classification Kappa

CIVILI Site CIVILI Site

4 Bands 10 Bands 11 Bands 4 Bands 10 Bands 11 Bands
Classifier (%) (%) (%) Classifier (%) (%) (%)

GML 75.9 78.4 83.2 GML 58.8 60.4 67.3

DRBF (1) 76.8 * 79.9 DRBF (1) 57.8 * 63.3

DRBF (2) 79.9 80.8 84.3 DRBF (2) 63.8 65.1 70.1

12180 Pixels Sampled 12180 Pixels Sampled

Table 3: CIVIL! Coarse Classification Accuracy Table 7: CIVILI Coarse Classification Kappa

GAOl Site GAOl Site

4 Bands 10 Bands 11 Bands 4 Bands 10 Bands 11 Bands
Classifier (%) (%) (%) Classifier (%) (%) (%)

GML 58.7 65.2 63.6 GML 44.1 50.3 48.7

DRBF (1) 59.0 * 60.1 DRBF (1) 41.5 * 44.0

DRBF (2) 66.8 67.7 68.7 DRBF (2) 52.4 53.5 54.3

14014 Pixels Sampled 14014 Pixels Sampled

Table 4: GAOl Fine Classification Accuracy Table 8: GAOl Fine Classification Kappa

CIVILI Site CIVILI Site

4 Bands 10 Bands I I Bands 4 Bands 10 Bands I 1 Bands
Classifier (%) (%) (%) Classifier (%) (%) (%)

GML 49.1 53.2 55.3 GML 38.0 41.3 44.0

DRBF (1) 58.2 * 62.5 DRBF (1) 46.3 * 51.8

DRBF (2) 63.7 64.6 68.8 DRBF (2) 53.0 53.9 58.9

12180 Pixels Sampled 12180 Pixels Sampled

Table 5: CIVIL! Fine Classification Accuracy Table 9: CIVIL! Fine Classification Kappa

The surface material classmaps generated by the accuracies and measure of agreement for each of the
Gaussian Maximum Likelihood and Differential Radial methods.
Basis Function classifiers were compared against the
surface material ground truth classmaps for GAOl and
CIVIL!. Classification accuracies were performed for
both coarse and fine surface material class sets. In the
following sections we present overall classification
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3.1. Classification Accuracy discussed in Section 3.2.
With the generation of classmaps by different
classification methods, it is necessary to have some The results were tabulated in two ways, first using the
method for evaluating and comparing the accuracy of coarse classification metric that grouped the eleven
the generated classmaps to aid in the assessment and surface material classes into five groups: man-made,
improvemcent of these methods. Various techniques vegetation, shadow, soil, and water. The groupings are
have been developed and implemented in the remote shown in Table 12. The second tabulates accuracy for
sensing community to determine and evaluate the the fine classification of each of the surface material
accuracy of land-use/land-cover maps derived from classes. For both the GAOl and CIVIL1 sites there
remotely sensed data [Aronoff 82, Dicks and Lo appears to be no significant difference for coarse
90, Fitzpatrick-Lins 81, Story and Congalton 86]. The analysis between the GML and DRBF(2) classifiers.
basic accuracy assessment procedure involves the Both performed quite well, 84 to 87 percent accuracy,
selection of samples from the land-use/land-cover map, in the I I band case. Similar performance was
verification of the samples using ground truth, and achieved in the 10 band case, with noticeably poorer
statistical evaluation of the verified samples from the results for the 4 band case. This is interesting since the
land-use/land-cover map [Congalton, et. al. spectral class separability analysis that led us to select
83, Congalton, et. al. 84, Congalton and Mead 86]. these four bands indicated a high degree of information

content. This may well be the case with respect to
In our accuracy assessment process, all samples (i.e. spectral class separability, but it is clear that the use of
pixels) contained in the generated surface material additional bands always improved classification
classmap are used. This requires the availability of a accuracy in our experiments.
surface material ground truth classmap with the same
coverage as the test area, a condition rarely found in 3.2. Measure of Agreement
most remote sensing experiments. Our surface An additional metric, introduced to the remote sensing
material ground truth classmap provides the necessary community by Congalton et al. [Congalton, et. al.
ground truth Juring the verification process of the 83, Congalton, et. al. 84], is also commonly used as a
generated surface material classmap. measure of classification accuracy. It is called the

Kappa coefficient of agreement and has been used as a
Each of the Tables 2 through 5 give classification standard measure when reporting classification
accuracies with respect to our ground truth accuracy [Hudson 87, Rosenfeld 86]. Cohen [Cohen
segmentation. The row labeled GML gives the results 60] developed the Kappa coefficient for nominal scales
for the gaussian maximum likelihood classifier. The which measures the relationship of beyond chance
rows labeled DRBF(I) and DRBF(2) are the results of agreement to expected disagreement. An advantage of
the differential radial basis function classifier. As the Kappa coefficient is that its calculation takes into
described in Section 2.3, DRBF(1) was an initial consideration off-diagonal entries of the error matrix,
experiment using unbalanced training sets and was or errors of omission and/or of commission. The
superseded by the results of the DRBF(2) classifier, Kappa coefficient provides a measure of difference
using the balanced training sets. between the observed agreement between two

classmaps and agreement that is contributed by chance.Three experiments were run. The first column shows It theoretically deflates accuracy statistics based upon
accuracy using four of the 11 Daedalus spectral bands chance occurrence of correct classification [Congalton,
(3, 5, 7, 10) for classification. These bands were et. al. 83, Rosenfeld 86, Hudson 87, Dicks and Lo 901.
selected by calculating the average Jeffries-Matusita
Distance [Mausel, et. al. 90, Richards 86, Swain and Tables 6 through 9 show the Kappa accuracies that
Davis 78] using the statistics from the spectral class correspond to the original accuracy analysis in Tables
training sets, in order to rank spectral class separability 2 through 5. One can observe that the overall
for all four band combinations, classification accuracies have been reduced

significantly in most cases, yet the overall trends in
The second column shows the classification accuracy relative performance are maintained. In order to
using all ten of the reflective bands of the Daedalus understand the details of the strengths and weaknesses
scanner. The third column gives classification of our classification techniques, we present a more
accuracy using all eleven bands, including the thermal detailed error analysis, in terms of coarse and fine
band. From a remote sensing standpoint this generally errors of commission and omission, in the following
would not be performed, since the physics of the section.
thermal band is quite different than the reflective
bands. Nevertheless we tried this experiment and were
surprised to see some measurable improvement over
the results using the ten reflective bands. These In this section we describe a more detailed accuracy
improvements were not only evident in the assessment procedure to evaluate the surface material
classification accuracy measure, but also in the classmaps for the GML and the DRBF(2) classifiers.
measure of agreement, the Kappa coefficient, As we have seen in Section 3. 1, the most common way
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to express the accuracy of a generated classmap is by a the GML was able to distinguish between water and
statement of the percentage of the classmap that has man-made or shadow significantly better than the
been correctly classified when compared with a DRBF(2). The GML classified 23 shadow (column
reference classmap or ground truth. In addition to this C3) pixels as water (row C5) in the (GAOl site and only
overview one may desire a more detailed tabulation in 1 shadow pixel as water for CIVIL!. In comparison, the
the form of an error or confusion matrix. In this kind DRBF(2) assigned 513 man-made (column Cl) and
of tally, the reference classmap (represented by the 317 shadow (column C3) pixels as water (row C5)
matrix columns) is compared to the generated or test from GAOl while labeling 196 man-made and 87
classmap (represented by the matrix rows). The major shadow pixels for water in CIVIL!. The DRBF(2)'s
diagonal indicates the agreement between these two inability to discriminate water from man-made and
classmaps. Overall accuracy for a particular generated shadow was partially influenced by the unbalanced
classmap is then calculated by dividing the sum of the nature of the water training sets originally presented to
entries that form the major diagonal (i.e. the number of it as shown in Table 1.
correct classifications) by the total number of samples
(i.e. pixels) taken [Story and Congalton 86]. In terms of locating shadow (row C3, column C3)

pixels, the DRBF(2) omitted 259 and 249 fewer
The off-diagonal entries indicate the omission and candidate pixels than the GML in the GAOl and CIVILI
commission errors. Errors of omission correspond to sites, respectively. Almost 60% of shadow (column
pixels belonging to the spectral class of interest that the C3) pixels were classified as man-made (row C l) by
classifier has failed to recognize (false negative), the GML.
whereas errors of commission are those that
correspond to pixels from other sr -- tral c, .ses that the The DRBF(2) also correctly included significantly
classifier has labeled as belongin the spectral class fewer soil pixels as man-made when compared to the
of interest (false positive). I1k. former refer to GML for both test sites. Examining the error matrices
columns of the error matrix, whereas the latter refer to for CIVILI, the DRBF(2) classified 348 fewer man-
rows [Richards 86). made (column Cl) pixels as soil (row C4) than the

GML. An example of classifying man-made pixels as
4.1. Coarse Class Analysis soil by the GML is illustrated in Figure 5 along the
Due to our objective of generating surface material rooftop of the Department of Interior building in the
classmaps at a coarse level for urban multispectral center-right portion of the image.
scenes, we evaluated the performance of the
classification results using surface materials comprised At the coarse level, it is not obvious which man-made
of man-made, vegetation, shadow, soil and water and water surface material members are contributing to
features. For the coarse class analysis, nine of eleven the classification error. Examining the fine
spectral classes are aggregated into three surface classification results against the ground truth at the
materials of man-made, vegetation and water during detailed class level provides more insight into these
performance evaluation. Listed in Table 12 are the discrimination errors between individual surface
spectral class membership into the five coarse surface materials.
materials along with the Key used in the error matrices.
Tables 10 and 11 contain the performance evaluation 4.2. Detailed Class Analysis
results for the I I band GAO! classification using GML In the detailed class analysis, all eleven spectral classes
and DRBF(2), respectively, while Tables 13 and 14 are examined as individual surface materials. Tables
highlight the 11 band CIVILl classification. 15 and 16 contain the performance evaluation results

for the 11 band classification of GAOl and CIVIL! using
The GML overall classification accuracies are 87.8% the GML and DRBF(2). The GML overall
and 83.2% for GAOl and CIVILI while the DRBF(2) classification accuracies are 63.6% and 55.3% for
overall accuracies are 85.5% and 84.3%. Based on the GAO! and CIVILI while the DRBF(2) overall accuracies
overall accuracies from both sites, the GML and are 68.7% and 68.8%. From the overall accuracies, the
DRBF(2) classification results appear very similar. GML and DRBF(2) performed about the same for
Upon inspection of the error matrices, man-made and GAOl but are dramatically different for CIVILI with the
vegetation features account for approximately 90% of DRBF(2) out-performing the GML.
the surface materials contained in both sites' ground
truth. These features dominate the performance The sharp drop in GML classifier accuracy between
evaluation process when determining the overall GAOl and CIVILI is due to the major differences in
classification accuracy which fails to indicate relative scene material composition. The CIVILI site is
differences between the GML and DRBF(2) composed of 33% vegetation (i.e. grass and deciduous
classification results. tree) while the GAOl site contains 13% vegetation. The

ground truth for GAO! and CIVILI in Figures 4 and 5
Further examination of the GAOl and CIVILI error illustrate the increase in vegetation composition.
matrices at the coarse classification level show some Referring to the GML error matrix in Table 16, it is
interesting trends. Referring to Tables 10 through 14, clear that the GML has difficulty in distinguishing
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Surface Material Ground Truth Surface Material Ground Truth

Row Commission Row Commission
Cl C2 C3 C4 C5 Total Error CI C2 C3 C4 CS Total Error

GML Cl 10648 613 756 0 0 12017 11.4 GML CI 6703 859 502 0 0 8064 16.9

Surface C2 12 1205 24 0 0 1241 2.9 Surface C2 35 3159 25 0 0 3219 1.9

Material C3 41 2 451 0 0 494 8.7 Material C3 22 10 270 0 0 302 10.6

Test C4 201 38 0 0 0 239 100.0 Test C4 523 60 II 0 0 594 100.0

C5 0 0 23 0 0 23 100.0 C5 0 0 I 0 0 I 100.0

Column Column
Total 10902 1858 1254 0 0 14014 Total 7283 4088 809 0 0 12180

Omission Omission
Error 2.3 35.1 64.0 * * Percent Error 8.0 22.7 66.6 * Percent

GML Overall Accuracy = 12304 /14014 = 87.8% GML Overall Accuracy = 10132 / 12180 f 83.2%

Table 10: Error Matrix Showing Results of GAOl Table 13: Error Matrix Showing Results of CIVILI
Coarse Classification Using GML Coarse Classification Using GML

Surface Material Ground Truth Surface Material Ground Truth
Row Conmission Row Commission

CI C2 C3 C4C5Total Error CI C2 C3 C4 C5 Total Error

DRBF(2) CI 10176 720 186 0 0 11082 8.2 DRBF(2) Cl 6740 956 154 0 0 7850 14.1

Surface C2 85 1089 41 0 0 1215 10.4 Surface C2 117 3011 49 0 0 3177 5.2

Material C3 73 8 710 0 0 791 10.2 Material C3 55 34 519 0 0 608 14.6

Test C4 55 24 0 0 0 79 100.0 Test C4 175 74 0 0 0 249 1W0.0

C5 511 17 317 0 0 847 100.0 C5 196 13 87 0 0 296 100.0

Column Column
Total 10902 1858 1254 0 0 14014 Total 7283 4088 809 0 0 12180

Omission Omission
Error 6.7 41.4 43.4 * * Percent Error 7.5 26.3 35.8 * * Percent

DRBF(2) Overall Accuracy = 11975 /14014 = 85.5% DRBF(2) Overall Accuracy = 10270 12180 = 84.3%

Table 11: Error Matrix Showing Results of GAOl Table 14: Error Matrix Showing Results of CIVILI
Coarse Classification Using DRBF(2) Coarse Classification Using DRBF(2)

Key Surface Material Members the deciduous tree canopy appear spectrally similar to
grass while the DRBF(2) is able to discriminate

C I Man-Made Asphalt between the two vegetated surface materials. In the
Concrete coarse analysis, this error was not observed due to the
Tile grouping of grass and deciduous tree into vegetation.

C2 Vegetation Grass We noted in the coarse class analysis that the DRBF(2)
Coniferous Tree had difficulty in distinguishing between water and
Deciduous Tree man-made or shadow. From the error matrices for the

C3 Shadow Shadow fine classification, the DRBF(2) is labeling asphalt
(column Cl) and shadow (column C5) pixels as deep

C4 Soil Soil water (row C9) and turbid water (row CII). As
previously stated, it is believed that a more balanced

C5 Water Deep Water training set would alleviate these errors.
Shallow Water
Turbid Water The GML's higher number of soil pixels, as observed

in the coarse analysis, is related to the GML's
Table 12: Error Matrix Legend for misclassification of concrete (column C2) pixels as soil

Coarse Classification (row C6). The spectral characterization of soil and
concrete is evidently too similar under the GML

between deciduous trees and grass. It labeled 1560 model.
pixels as grass (row C4) when they were actually
deciduous trees (column C3). To the GML, portions of In general, both classifiers had difficulty in
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Surface Material Ground Truth

Row Commission
CI C2 C3 C C4 C1 C6 C7 CS C9 dO Cil Total Error

Cl 4637 873 472 70 152 0 18i 0 0 0 0 6222 25.5

C2 658 2936 0 0 8 0 1 0 0 0 0 3603 18.5

C3 0 0 64 1 15 0 0 0 0 0 0 80 20.0

GML C4 5 7 630 487 5 0 0 0 0 0 0 1134 57.1

Surface C5 40 I 2 0 451 0 0 0 0 0 0 494 8.7

Material C6 43 155 28 10 0 0 3 0 0 0 0 239 100.0

Test C7 972 221 71 0 596 0 332 0 0 0 0 2192 84.9

C8 0 0 23 0 4 0 0 0 0 0 0 27 100.0

C9 0 0 0 0 0 0 0 0 0 0 0 0

CIO 0 0 0 0 23 0 0 0 0 0 0 23 100.0

CII 0 0 0 0 0 0 0 0 0 0 0 0 *

Column
Total 6355 4193 1290 568 1254 0 354 0 0 0 0 14014

Omission
Error 27.0 30.0 95.0 14.3 64.0 a 6.2 * * a * Percent

GML Overall Accuracy - 8907 / 14014 = 63.6%

Key Surface Material Key Surface Material Key Surface Material Key Surface Material

Cl Asphalt C4 Grass C7 Tile CIO Shallow Water

C2 Concrete C5 Shadow C8 Coniferous Tree CII Turbid Water

C3 Deciduous Tree C6 Soil C9 Deep Water

Surface Material Ground Truth

Row Commission
Cl C2 C3 C4 C5 C6 C7 CS C9 CIO CII Total Error

CI 4988 1069 642 69 164 0 86 0 0 0 0 7018 28.9

C2 674 2896 3 0 4 0 2 0 0 0 0 3579 19.1

C3 15 0 327 38 33 0 0 0 0 0 0 413 20.8

DRBF(2) C4 0 17 265 447 0 0 0 0 0 0 0 729 38.7

Surface C5 69 1 8 0 710 0 3 0 0 0 0 791 10.2

Material C6 2 53 12 12 0 0 0 0 0 0 0 79 100.0

Test C7 128 75 4 2 18 0 258 0 0 0 0 485 46.8

C8 5 48 12 0 8 0 0 0 0 0 0 73 100.0

C9 418 5 17 0 274 0 5 0 0 0 0 719 100.0

CIO 0 0 0 0 0 0 0 0 0 0 0 0

CII 56 29 0 0 43 0 0 0 0 0 0 128 100.0

Column
Total 6355 4193 1290 568 1254 0 354 0 0 0 0 14014

Omission
Error 21.5 30.9 74.7 21.3 43.4 a 27.1 a * a * Percent

DRBF(2) Overall Accuracy = 9626 / 14014 = 68.7%

Table 15: Error Matrices Showing Results of GAOl Fine Classification Using GML and DRBF(2)
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Surface Material Ground Truth

C C6 Row Commission
CI C2 C3 C4 C5 C6 Cs C9 CI0 CII Total Error

CI 3201 409 516 216 37 0 2 0 0 0 0 4381 26.9

C2 311 1734 0 0 4 0 I 0 0 0 0 2050 15.4

C3 I 0 572 25 20 0 0 00 0 0 618 7.4

GML C4 29 4 1560 905 3 0 1 0 0 0 0 2502 63.8

Surface C5 22 0 10 0 270 0 0 0 0 0 0 302 10.6

Material C6 77 443 55 5 II 0 3 0 0 0 0 594 100.0

Test C7 664 325 120 7 461 0 56 0 0 0 0 1633 96.6

C8 0 0 94 3 2 0 0 0 0 0 0 99 100.0

C9 0 0 0 0 0 0 0 0 0 0 0 0 *

CIO 0 0 0 0 1 0 0 0 0 0 0 1 InO.O

Cei 0 0 0 0 0 0 0 0 0 0 0 0

Column
Total 4305 2915 2927 1161 809 0 63 0 0 0 0 12180

Omission
Error 25.6 40.5 80.5 22.0 66.6 * 111 * * * * Percent

GML Overall Accuracy = 6738/ 12,180 55.3%

Key Surface Material Key Surface Material Key Surface Material Key Surface Material

CI Asphalt C4 Grass C7 Tile CIO Shallow Water

C2 Concrete C5 Shadow C8 Coniferous Tree CI I Turbid Water

C3 Deciduous Tree C6 Soil C9 Deep Water

Surface Material Ground Truth

SC46Row Commission

Cl C2 C3 C4 C5 C6 C7 C8 C9COCII Total Error

CI 3554 381 705 229 60 0 16 0 0 0 0 4945 28.1

C2 347 2109 5 4 5 0 6 0 0 0 0 2476 14.8

C3 29 4 1474 190 32 0 0 0 0 0 0 1729 14.7

DRBF(2) C4 2 10 631 682 0 0 I 0 0 0 0 1326 48.6

Surface C5 54 I 34 0 519 0 0 0 0 0 0 608 14.6

Material C6 2 173 29 45 0 0 0 0 0 0 0 249 100.0

Test C7 126 161 13 0 89 0 40 0 0 0 0 429 90.7

C8 18 53 23 !I 17 0 0 0 0 0 0 122 100.0

C9 107 3 13 0 45 0 0 0 0 0 0 168 100.0

CIO 0 0 0 0 0 0 0 0 0 0 0 0

CII 66 20 0 0 42 0 0 0 0 0 0 128 100.0

Column
Total 4305 2915 2927 1161 809 0 63 0 0 0 0 12180

Omission
Error 17.4 27.7 49.6 41.3 35.8 36.5 L* * Percent

DRBF(2) Overall Accuracy = 8378 / 12180 = 68.8%

Table 16: Error Matrices Showing Results of CIVILI Fine Classification Using GML and DRBF(2)
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discriminating asphalt (row Cl) from deciduous tree Daedalus Enterprises, Inc. was very helpful in
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5. Conclusions this paper.
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Incorporating Vanishing Point Geometry Into a Building Extraction System

J. Chris McGlone
Jefferey A. Shufelt

Digital Mapping Laboratory
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Abstract Many of these techniques exhibit poor
Knowledge about the imaging geometry and performance when building structures are
acquisition parameters provides useful geometric composed of complex shapes, when there is poor
constraints for the analysis and extraction of man- contrast between object and background, and when
made features in aerial imagery, particularly in viewing geometry, building height, and building
oblique views. In this paper, we discuss the density cause occlusions and partial views, or
application of vanishing points for the views of surfaces other than the building roof. As
identification of vertical and horizontal lines, and a result, even in the case of nominally nadir
the use of multiple views for verification of these imagery, the three-dimensional nature of the world
lines. The vertical and horizontal attributions are can not be ignored. In the case of non-traditional
used to constrain the set of possible building mapping photography, particularly oblique views
hypotheses. Preliminary results exploiting these used in aerial photo-interpretation, there is a
attributions are described.1  greater need to explicitly model the viewing

geometry; such modeling needs to be performed
1. Introduction within the context of a rigorous photogrammetric
Building extraction is a fundamental problem in calculation in order to take advantage of all
automated cartography [Nicolin 87, Huertas geometric information available.
88, Mohan 89, Irvin 89, Liow 90, McKeown Our current experiments have been focused on the
90, Shufelt 931. Systems implemented to date have modification of BABE (Builtup Area Building
had basic similarities: all have used vertical aerial Extraction), a building detection system built at
imagery, assuming simplified imaging geometry in CMU [McKeown 901 based on a line-corner
their calculations, and all have used intensity analysis method. We have been experimenting
features as the basic cues for feature extraction. with the inclusion of geometric constraints derived
Several have made use of shadow geometry for from knowledge of the full camera position and
hypothesis generation and verification. Low level orientation. In brief, BABE proceeds through four
boundary determination is usually region-based or major phases to incrementally generate building
based upon geometric analysis of lines found in the hypotheses. The first phase constructs corners
image. from lines, under the assumption that buildings can

be modeled by straight line segments linked by
(nearly) right-angled corners. The second phase
constructs chains of edges which are linked by
comers, to serve as partial structural hypotheses.
The third phase uses these line-comer structures to

IThis work was sponsored by the Defense Advanced hypothesize boxes, parallelopipeds which may
Research Projects Agency under Contract DACA76-92-
C-0036. The views and conclusions contained in this delineate man-made features in the scene. The
document are those of the authors and should not be fourth phase evaluates the boxes in terms of size
interpreted as representing the official policies, either and line intensity constraints, and the best boxes
expressed or implied, of the Defense Advanced Research for each chain are kept, subject to shadow intensity
Projects Agency or the United States Government.
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constraints similar to those proposed in [Nicolin often oblique viewing angles. Image edges
871 and [Huertas 881. In addition, the results of the corresponding to hallways, doors, and structures
third phase of analysis are directly used as sources are numerous, long and usually have high contrast,
of building hypotheses for other modules that allowing good solutions for vanishing points and
perform grouping, shadow analysis, and stereo image orientations.
matching.

Aerial imagery presents different problems. The
Our initial modifications to the BABE system standard vertical viewpoint lessens perspective
include the use of a rigorous photogrammetric effects, while individual objects cover a much
camera model, the incorporation of vanishing point smaller proportion of the image. Vertical lines in
geometry as an additional input to the building particular are less prominent, typically only a few
hypothesis construction process, and the pixels long. Edge contrast may be lessened due to
substitution of exact metric calculations for illumination and atmospheric conditions. It is well
distances and angles instead of approximations known that standard edge detectors have problems
based upon image scale and near-nadir orientation. extracting such short, weak edges, often distorting
This paper describes the current status of the BABE their geometry or mistakenly combining them with
system, starting with an overview of vanishing intersecting edges.
point geometry as used for the extraction of
horizontal and vertical edges and a brief Further, in cartographic applications it is assumed
description of the BABE system. The current that the aircraft position and orientation in space is

integration of the vanishing point information into fairly well known, and camera properties such as

BABE is outlined and some preliminary results are focal length, distortion and sensor type, film,

given, scanning array, etc., are quite well modeled. For
these reasons, our approach starts with the

2. Vanishing point geometry assumption that the orientation of the aerial image
As is well known from projective geometry is known beforehand. Instead of using the

[Barnard 83], parallel lines in a scene meet in a vanishing points to determine image orientation,

common point in an image of the scene. This point we focus on using the vanishing point geometry to

is known as the vanishing point, since it is the assist in extracting buildings. Of course, given

image of a point at infinity. In an aerial image strong enough vanishing point information from
vertical lines in the scene meet at the vertical the image the orientation can be refined, but in this

vanishing point, traditionally referred to as the work no refinement was attempted.

nadir point because it is directly below the
perspective center of the image. Sets of parallel This section outlines the calculation of the vertical

lines at varying orientations in a plane have vanishing point and the horizon line, and the

vanishing points which lie along a straight line in identification of vertical and horizontal lines using

the image. If the sets of parallel lines are this information.

horizontal, the line is the true horizon. 2.1. Calculation of the vertical vanishing

This apparent convergence of parallel lines gives point
important cues to the orientation of the image and The image orientation is specified by a 3 by 3

to the structure of objects within the scene. orientation matrix M which rotates the ground
Previous work has looked at using vanishing points coordinate system into the image coordinate
to determine image orientation [Barnard 83] and to system. This matrix is determined by three
determine the structure of objects within the scene independent orientation angles or parameters, e.g.,

[Brillault 92, Lebegue 92]. roll, pitch, and yaw [Slama 80].

Most previous work using vanishing point The vertical vector in object space v0 is [0, 0, I1
geometry has been done with robotics imagery and is transformed into the image coordinate
from standard video cameras viewing objects at system by multiplication with the ground-to-image
close range. The applicability of vanishing point orientation matrix M.
analysis is obvious; perspective effects are strong Vi =-M v0
due to the wide angle lenses, close objects, and
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Figure 1: Fort Hood test area RADT9WOB.

When the vector vi is placed at the perspective only a point; its image must therefore be the
center of the image (coordinates 0,0f). it pierces vertical vanishing point.
the image plane z = 0 at

m l3 2.2. Horizontal vanishing point
f determination

m33 The horizontal vanishing points are calculated
m2,3f using a variant of the Gaussian sphere technique

Y m33 first applied in [Barnard 831.

Since this vector is vertical it is parallel to all other The Gaussian sphere represents a vector
vertical lines in the scene and its image must pass orientation in 3-space as a point on the sphere. As
through the vertical vanishing point. However. its in [Barnard 831 we assume that the perspective
image. where the vector pierces the image plane. is center of the image is at the center of the sphere.
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the origin of the image coordinate system, and the calculated and if the rms error exceeds 2.0 pixels,
image is tangent to the sphere. the edge is eliminated. Since extremely short

edges will have small residuals for any orientation
An "interpretation plane" is associated with each of line fit, edges below a minimum length are
line in the image, passing through the image line eliminated.
and the perspective center. The interpretation
plane is represented on the sphere by the point
corresponding to the orientation of its normal and,
in a dual sense, by the great circle formed by the
intersection of the plane and sphere.

The great circles cut by the interpretation planes
corresponding to parallel lines in the scene
intersect on the sphere in the vanishing point for
that set of parallel lines. The vanishing points for
sets of parallel lines of different orientations in a
plane lie on the vanishing line for that plane - i.e.,
for horizontal lines, on the horizon line.

Using the known image orientation we calculate
the horizon plane and its corresponding great circle
on the sphere, the vanishing line for horizontal
lines. (The normal to the horizontal plane is, of
course, the vertical vector.) The interpretation
plane corresponding to each horizontal line in the
scene will intersect the horizon line at the Figure 2: Edges for test area RADT9WOB.

vanishing point for horizontal lines in that The same resection that produces the image
direction. orientation used to calculate the vertical vanishing

To identify parallel sets of horizontal lines, the point also calculates the precision of the
great circle for each line in the image is formed orientation angles, from which the precision of the
and intersected with the horizon. The horizon vanishing point location can be determined and

great circle is divided into equal bins along its arc used to set the acceptance criteria for slopes and

length (instead of quantizing azimuth or elevation) line fitting. For oblique imagery. where the

and the number of intersections within each bin is vanishing point is usually outside the image area

tallied. The bin with the maximum number of itself, the precision has a small effect. For vertical

intersections corresponds to the most numerous set images, however, the vertical vanishing point is
near the center of the frame and is close to the
edges being tested. Error in its location can change

3 .I cthe slope of the test line significantly and should be
lines taken into account in the line fitting procedure.

Given the b, kground for the determination of the As a further test a line not constrained to pass
the vertical vanishing point and our method for through the vanishing point is also fitted to
determining parallel sets of horizontal lines, we accepted edges and the slope of that line compared
proceed with a demonstration and discussion of to the direction from the centroid of the edge to the
current performance using an oblique image of a vanishing point. If the slopes do not agree within
barracks area over Fort Hood, Texas. an angular tolerance of 0.2 radians, the line is

3.1. Vertical lines eliminated.

In order to find vertical lines in the scene each
edge in the image is fit to a line constrained to pass
through the vanishing point, leaving only the slope
of the line to be determined. The residuals are
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Figure 3: Horizontal edges. Figure 4: Vertical edges.

3.2. Horizontal edge extraction ambiguous cases, external information or other
Our goal is to identify man-made structures, which views must he used to decide between these labels.
are usually defined by perpendicular sets of
parallel lines. We therefore examine the histogram 4. Horizontal and vertical line verification
bins (as described in section 2.2) and, instead of Given a single view and only geometric
choosing the single bin with the maximum score, information, the inherent ambiguities of
we add the score of each bin to the scores of the perspective projection prevent an absolute
bins representing directions perpendicular to it. determination of whether a given line is horizontal
The maximum of this sum indicates the directions or vertical. False positive identifications due to
of the strongest mutually perpendicular sets of accidental alignments are unavoidable. Since these
parallel lines in the scene. In areas where false positives increase the number of edges
buildings and roads are all on a cormnon grid, this flagged for later analysis and the computational
is sufficient: in areas where not all the buildings effort required. we would like to eliminate as many
are parallel to each other, secondary maxima can as possible.
be determined to label buildings. Bins
corresponding to perpendicular directions can be A first step is filtering against a minimum length or
easily determined, since right angles at the center height threshold. Highly textured areas produce a
of the sphere between points on the horizon great large number of short, randomly oriented edges.
circle correspond to true right angles between some of which will align with the vanishing point
horizontal lines in object space. of interest. Using the assumed horizontal or

vertical orientation for the line, we can calculate an
Figure I shows an oblique image of a barracks area approximate length or height and compare it to the
within Fort Hood, Texas. Such scenes are not minimum values we would expect to see. For
atypical for military bases or. with some example, if we are looking for buildings. heights
architectural modifications, for houses in a will typically be greater than 3 meters and lengths
suburban development. Figure 2 shows the edges greater than 10 meters. Such constraints can he
extracted by an implementation of the Nevatia- easily modified by world knowledge to search for a
Babu line finder [Nevatia 801. while candidate specific set of buildings within a range of heights
horizontal and vertical edges are shown in Figures or volumes. Currently we view this process as one
3 and 4. Some edges are labeled as both horizontal of filtering rather than selection. Each edge
and vertical due to the viewing angle of the image, segment that passes these filters is given an
which happened to align many of the horizontal attribution as either horizontal or vertical. The
edges with the vertical vanishing point. In such entire collection of edges can then be used in a



variety of ways to construct plausible building flat roof peaked roof

hypotheses. In the following section we describe h h h
the use of attributed edge segments to detect and
construct possible building comers. nadir h h h h

If multiple views of the scene are available, we can h

use the epipolar condition to determine if v h vhh v h
consistent edges appear in both images. For each s h h
edge in the image, we calculate the epipolar plane side h h h h h
through its midpoint and determine which edges, if v v h h v h
any, are intersected by the epipolar line on the h N

other image. For lines which lie on corresponding N

epipolar lines, we can also compare their front h hh

calculated dimensions. Horizontal lines can also v vI v
be matched using their calculated directions in h h

object space, obtained from the horizontal line N
extraction procedure described above. ol %hhoblique v

5. Corner detection with line attributions v h V h h
The vanishing-point geometry of a scene can h - horizontal line
provide important additional cues for feature vh- vertical line
extraction. Under the assumption that man-made N - unclassified line (neither horizontal nor vertical)

features in aerial photography can be modeled by Figure 5: Simple building model.
parallelopipeds joined at edges, horizontal and
vertical edge segment attributions are useful cues problem by generating building hypotheses, i.e.,
in assembling building hypotheses. We illustrate boxes, for every subchain of edges in a chain. This
the utility of these attributions in the context of a is accomplished by taking every subchain of at
building extraction system, BABE, originally least two edges and completing them to four-sided
designed for analysis of mapping photography boxes.
having nadir and near-nadir acquisition geometries.

Typically, only about 10% of the boxes generated
BABE begins processing by generating intensity for a scene correspond to buildings. BABE's
edges for an image, using a Nevatia-Babu edge verification phase selects building candidates from
finder [Nevatia 80]. BABE applies a range search the boxes generated in the previous phase. It
to locate and connect collinear edges whose performs this task by examining the boxes for
endpoints are in close proximity, to address the indications of a shadow region along the shadow
possibility of fragmented edges. These edges are casting edges.
then used as the basis for comer detection.

Under an oblique viewing geometry, BABE's model
BABE performs another range search on the edges, first breaks down in the comer detection phase
to locate edges which meet at approximately right where right-angled comers in the scene may not
angles. The intersections of these edges represent translate to right-angled comers in the image. In
the comer points. BABE then uses these comer fact, the actual angle depends not only on the
points to link sequences of edges such that the obliquity of the viewing geometry, but on the
direction of rotation along a sequence is either relative position and orientation of the building in
clockwise or counterclockwise, but not both, since the scene.
building structure is assumed to be well modeled
by parallelopipeds. Using the horizontal and vertical line identification

techniques described in Section 3, we can assign
Even when a building can be modeled perfectly by attributions to each edge prior to corner generation.
a rectangle, the chain of edges representing it may We can then make use of a simple building model,
not be a closed structure, due to extraneous or outlined in Figure 5. This model presents two
missing comers in the chain. BABE addresses this simple and common classes of buildings, those
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Figure 6: BABE hypotheses, RA)T9WI)B. Figure 7: Geometrically consistent hy potheses.

with flat roots and those with peaked roofs. The * Two intersecting verticals never form a valid
two types of buildings are shown fronm various corner in object space.
viewpoints (symmetric cases are omitted fo~r * A horizontal-vcrticai intersection is allowed to
brevity., form a corner.

Each distinct line segment in the diagram has been * Two intersecting horizontals are allowed to form
assigned a label, indicating whether it is a vertical a corner, if their intersection in object space fo~rms
or horizontal line in object space, or whether it is a right angle.
neither. In object space. we observe that for flat.- * An unlabeled line intersecting with a labeled line
roof structures. side and front facets of buildings is allowed as a corner, since it is potentially part ot
are instances of rectangles composed of alternating a peaked roof.
horizontal and vertical segments. and roof facets
are instances of rectangles fo~rmed by four * Two intersecting unlabeled lines are allowed to

horiontl sgmets.Forpeaed-oofstrctues, fo~rm a corner, as they may be part of a pentagonal
eachsid faet i agin epreentd b a rctagle facet: it should be noted, however, that the currenteac sie fce isagan eprsened y retanle version of BABE will not generate pentagonal

of alternating horizontal and vertical segments: descriptions. We intend to pursue more general
roof facets are now instances of rectangles of shape constructions in future work.
alternating horizontal and unlabeled segments. A
front facet of a peaked-roo~f structure is a pentagon. These heuristics must take into account the fact
composed of two unlabeled segments, two that a given line may be labeled as both horizontal
verticals, and a horizontal segment. and vertical, if the imaging geometry is such that

the direction of the horizontal vanishing point for
it is worth noting that BABE doe•s not explicitly use soeetflisisheam asheercl
this simple model in its processing phases: there is vanishing point. They do so by allowing such lines
nothing in principle that prohibits an extension to to be regarded as both horizontal and vertical lines
BABE for constructing more complex shapes by during corner formation.
joining these rectangular or pentagonal facets. The
model is useful, however, for visualizing the 6. Building hypothesis generation
relationships between horizontal, vertical, and Given the ability to generate corners in oblique
unlabeled lines in typical man-made structures, imagery. BABE can be used to generate structural

These properties of building facets suggest the hypotheses, boxes which delineate structure in the
scene. in the original implementation of BABt-, the

following set of heuristics for corner detection: only geometric constraint applied during line-
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comer linking and box formation was the right- Given these presumptions, it is reasonable to
angle constraint on corners. In the new regard these hypotheses as verified facets of three-
implementation, we can apply our simple building dimensional structure in the scene. Using the
model at this stage to prune geometrically scene geometry in conjunction with our building
inconsistent hypotheses. model, it becomes possible to extrapolate these

partial delineations of building structure into more
For each box generated by BABE, we examine the complete building models. We consider one such
horizontal and vertical line attributions assigned to extrapolation here, that of completing partially
each line segment of the box. If the four peaked roofs to cover the entire roof. Using our
attributions are consistent with the labelings of any model, we know that facets with alternating
building facet in the building model, the box is unlabeled and horizontal lines must be peaked roof
accepted. One example would be a facet with facets; we can detect these facets by examining the
alternating horizontal and vertical lines, which is line labelings and applying geometric constraints
consistent with a side facet of a building. If the to extrapolate the other peaked roof facet in the
four attributions do not match any of the allowable pair.
building facets, the box is rejected as being
geometrically inconsistent. One example of this Figure 8 illustrates the situation at hand. The
situation would be a box comprised of four vertical hypothesized facet represents a BABE hypothesis
lines; such a facet is impossible in the model. which we wish to use as a guide for hypothesizing

the other half of the rooftop. We begin by
Figure 6 shows the complete set of boxes computing the line perpendicular to the horizontal
generated by BABE prior to the application of line R in object space, and projecting this
geometric labeling constraints; in this case, there perpendicular into image space (line C). Next, we
are 2899 boxes. Figure 7 shows the set of 628 intersect that line with the line drawn through the
boxes left after the labeling constraints have been roof peak point p and the vertical vanishing point
exercised. As the figures show, the labeling vp, to obtain a point x. In object space, the
constraints alone provide a strong constraint on the distance between x and e is equal to the distance
permissible hypothesis geometries. between x and n; we assume that these distances

are equal in image space as well, and complete theAfter the application of the labeling constraints, the new building facet by using the roof peak point p,

boxes are passed through BABE's verification points n andbf, and the application of symmetry to

phase, which estimates shadow intensity and sun generate g.

illumination direction and uses this knowledge to

score each hypothesis based on its conformance hypothesized
with these parameters. At this time, the faet
verification phase makes no use of the
photogrammetric information, and hence treats all
hypotheses as though they represented features in a
nadir-acquisition geometry. We intend to address g
this shortcoming in future work.

At this stage, we are left with a set of hypotheses
which are presumed to be geometrically consistent,
in that they are composed of fromers exhibiting
valid angles in image space and that they possess
valid labelings with respect to our simple building
model, and which are presumed to be
photometrically consistent, in that they exhibit a
combination of strong intensity gradient across
edge boundaries and are adjacent to dark regions in VP
the image which could plausibly be the shadows of Figure 8: Peaked roof projection.
the hypothesized structures.
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Figure 9: O(riginal BF\Bh results. Figure 10: No\\ II.\i.l results.

Figure 9 ,ho%%s the original I1.\ABIt result', for the implementation of a general \iewpouint B E.+\lh, it

scene:. Figure 10) illustrate,, the final result \would he desirable to maintain tie generate-and-
-enerated b\ our current extensions to AI\-.. wo test paradigm used in the original \ersion of ,..\lIl.
improemnents are apparent from the figures: the During the line-corner chain forming phase. one
geometric consistency pruning has eliminated would like to construct full three-dimensional
man\. spurious boxes generated hb accidental strlctural models in object space. rather than t\ko-
alignments of small edge features. and the peak dimensional model., in image space. 'These models
projection technique has imnproved the modeling, of would then be subjected to a verification process
peaked structure,, in this scene. corrc.tlv similar in spirit to the shado\\ constraint

hypothesiiing roof facets that were either lost in algorithms BAtE no%% emnploys. but w\ith the added
the shadovw evaluation phase of BAIBF- or were information provided b\ scene eeonmetrM and
never geilerated due to a lack of edge information. illumination constraints on adjacent planar
There are still problems. one of the false surfaces. This point will be discussed again in the
hypotheses on the right side of Figure 10 has a final section.
long narrow facet, generated by the peak protjection
technique. 'The immediate problem is that the 7. Analysis and future work
supposed hori/ontal roof edge linle is perpendicular Preliminarv results from the inclusion of gceometric
to the vertical lines in image space. and hence the and metric knowledge into the building extraction
line through the roof peak and the \anishing point systemn have been promising. although they have
"v ill be nearly parallel to the roof edge line, highlighted the limitations of the current implicit
resulting in a facet hypothesis whose roof edge will building models within the BABL s',.stem. We

he very far from the original facet. believe that these limitations are t pical of other
building extraction research based upon nadir \ iew%

The problem just described arises in part from the assumptions.
fiact that the facet projection technique is only an
approximation to the true image space Our experimentation has been limited to five test
relationships between edges, and this areas visible in each of four images of Fort Hood.
approximation breaks down when structures Two of the images have near-nadir geometry.
possess horiontal roof lines and vertical lines with while two are oblique with a relativel\ \wide angle
the sarme orientation in image space. Ultimately. field of view. We expect to continue to refine and
hovke~er. the problem is due to issues in modeling validate our research on a wider set of imagery.
and hypothesis generation. In a full Some specific obser\ations regarding our work are

as f'ollows:
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Figure 11: Multiple \le%%i veritication. Figure 12: Repro ie.ted II. results.

* The height estimates flr the candidate \ertical combining multiple viewks using the
lines are gord refinement and information fusion photogrammetric Infornmation aIh Is the
cues. since the object-space measurements can be hypothesis generation and verification to take
directly compared with other sources of heights., place completely in object space. Figure 12 shows
such as shadows. A next step is to incorporate the tI.\E results for test area RADTP)Wt)B proicected
precision information on the measurements into an into another image. using the camera resection
information fusion framework IShufelt 931 to results for the two images. This illustrates the
allow for relative weighting of the measurements. advantages of being, able to tie images together

with rigorous camera models, especially required
* The height and length attributions can also be for oblique imagery.
used to constrain hypothesis search by pruning
unrealistic building sizes. 9 The BABE model can also be extended to handle

illumination constr:unts on the building facets
* A small catalog of structural formation (such as variation across peaked roofs of uniform
constraints (Figure 5) can be a powerful tool for material, given the sun angle). more rigorous

maeiagve h su icangle. more strieorupruning hypotheses, shadow detection and verification, and stereo

* Verification of horizontal and vertical lines disparity.

across multiple views can reduce the number of
hypotheses for later processing stage,,. thereby Results thus far have shown the need for true
Increasing efficiency. A future step is to perform three-dimensional modeling of object structure.
multiple view verification of corners, wshich Figures 13 and 14 compare the original and ncw
should also decrease the number of hypotheses and BAF3[ hypotheses for another of our test scenes. III
improve their quality. Figure II shows the BABE this case, the new data are qualitativel\ much
results using horizontal edges verified with worse. despite the system's abilit\ in a te'w\
another image. From 1634 original horizontal instances to correctl\ extrapolate roof structure.
edges. 478 were eliminated because of length (less The problem here arises in FIAFVS hypothesis
than I1) meters) and 141 were eliminated because verification algorithms. In the old version ot

they did not match another horizontal edge on the BABIF. no gecometric consistencý checks are
overlapping image. A comparison of Figure I I Zefr. no geometr onsistency che are

with Figure 10 sho\ws 30 fewer building performed on the set of boxes before they are

h~potheses generated, with only one of the passed to the verification phase. In the no\,
version, geomectric pruning present., til'e

structures eliminated actually corresponding to a version. pe with ic pruning peses the
real structure in the scene. verification phase with a smaller set of boxes for

statistical analysis. and the \enification algorithms
* Although BABI has been designed as a choose a higher cutoff for plausible hypotheses.
monoscopic system. the capability of precisely
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Figure 13: Original BABE results. RAIT5N\()B. Figure 14: New BABI results. RAI)TS\V()B.

eliminating many' true boxes. This can in part be 8. Conclusion
blamed on the adaptive nature of the verification We have described initial experiments in
scoring algorithms in BAB.E, but the problem is incorporating photogrammetric calculation. in an
,,mptomatic of the larger issue of modeling, existing building detection system. analvied the

Ideally. the generation and verification algorithms results on a small set of oblique aerial images. and
would work with three-dimensional models in raised several issues of modeling, h\pothesis
object space. This strategy allows all feasible generation, and hypothesis vcrification that must
models to reach verification, where precise ultimately be addressed in a complete
geometric information permits rigorous testing of implementation of a photogranimetricallv rigorous
illumination constraints across adjacent planar feature extractor. Although the work is certainly in
surfaces: prediction and verification of cast its preliminary stages, and many issues and (flaws
shadows llrvin 891: and, the application of remain to be addressed, we believe that the
stereoscopic information for consistency qualitative results show that the combination of
constraints across multiple views. Understanding precise camera modeling and geometric
these issues and the evaluation of rigorous information with existing feature extraction
techniques to address these problems are the algorithms provides a powerful approach for
subject of current research. increasing the performance of building detectors

on complex aerial imager.
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Measuring the Affine Transform - I: Recovering Scale and Rotation
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Abstract ,. and ar te doimage coordinates and uo and ,o
the image translation. This is a valid approximation

Image deformations due to relative motion between assuming local planarity and weak perspective projec-
an observer and an object may be used to infer 3-D tion [Kanade and Kender, 19831. Even in situations
structure. Up to irst order these deformations can be where full-perspective projection must be used, it can
written in terms of an affine trandorm. This paper be shown that if the change in relative orientation of
presents a method for measuring the affine transform the surface patches is small, the image projections can
locally between two image patches that correctly han- again be related by an affine transform [Adiv, 19851.
dies the difficulty of finding the correspondence be- The recovery of 3-D structure from the affine trans-
tween deformed patches. The method uses weighted form requires robust load estimates of the affine pa-
moments of brightnmes. It is shown that the moments rameters. Consider the case where an image patch FP
of deformed patches ar related through functions of is deformed into a patch F2 (either in the same im-
affine transforms. In the special case where the affine
transform can be written as a scale change and an in- age or in another image) by an unknown adfie trans-
piane rotation, the seroth and first, moment eqform. The problem of measuring the afine transform
are solved for the scale. The robustness of the method is to fist find the corresponding patch Pa given P, and
is demonstrated experimentally, second to recover the aflne parameters from the two

patches. Even if the centroids of the image patches
are matched, the precise size and shape of P3 is dig-

1 Introduction cult to determine since it is a function of the unknown
deformation. If this correspondence is not precisely

Changes in the relative orientation of a surface with done, the affie parameters will be determined incor-
respect to a camera cause deformations in the im- rectly. Thus the problem is more difficult than in stan-
age of the surface. Deformations can be used to in- dard correspondence problems e.g. the determination
fer local surface geometry from motion [Koenderink of optical low.
and van Doom, 1987; Sawhney and Hanson, 1991; Existing methods using imag patche usually ignore
Cipolla and Blake, 1992; Jones and Malik, 1992b]. this problem. A number of techniques assume that
Since a repeating texture pattern can be thought of the affine parameters are small and then linearise the
as a pattern in motion, shape from texture can also be brightness function or Altered versions of it with re-
derived from deformations rKanade and Kender, 1983; spect to the spatial coordinates [Bergen et OL, 1992;
Super and Bovik, 19921. Constraints on the shape of enderink and van Door, 1967; Campam and Verr,
the undeformed structure also allow the computation 1992; Werkhoven and Koenderinch, 19901. Thus these
of shape from texture [Brown and Shyvaster, 1990; methods are restricted to cases where the &dne trans-
Garding, 19901. form is small which in turn requires that the 3-D mo-

To first order, the image deformation and translation tion be small. [Jones and Malik, 1992b] do not asume
due to relative motion can be described using a six that the affne transform is smalL Their method, how-
parameter affin, trandormation Awhere ever, uses brute force search techniques and again ig-

nores the determination of precise correspondence. A
A&=, uo°+lto up III's 1 (1) natural way to find correspondence is to use straight•O we I lines [Sawhney and Hanson, 19911 bouda

contours [Cipoals and Blake, 1992, with the chanp in
*Tlis research was supported in part by DARPA (via the rise and shape of the enclosed area dejaing the

TACOM) under contract number DAAEOT-91-C-R035, afne tranform. The methods, however, fail when
and by the National Science Foundation under rants such structures ae absent as in many richly textured
CDA-8922572 and IRL9113690.
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scenes. Further, their use has only been demonstrated 2 Deformation of Filters: Zero
on homogeneous image regions with closed boundaries. Moments

This paper presents a technique for reliably measur-
ing affine transforms that correctly handles the diffi- Notation Vectors will be represented by lowercae
culty of corresponding deformed image patches. The letters in boldface while matrices will be represented
image patches are filtered using gaussians and deriva- by uppercase letters in boldface.
tives of gaussians. Measuring the adine transform is We will assume that the image translation is known
then recast as a problem of finding the deformation and has been set to sero. Methods for finding the irm-
parameters of the filters rather than the patc6 a. For age translation are briefly discussed in section 4.2.4.
example, let F1 and F2 be related by a scale change Then the affine transform has only four deformation
s. Then the output of FP filtered with a gaussian of parameters. It is also assumed that shading and illu-
a will be equal to the output of F2 filtered with a muination effects can be ignored. These can, however,
gaussian of so. Similar relationships hold for arbitrary be taken care of by incorporating an additional con-
aifne transforms and filters described by derivatives of stant factor in the equations. For simplicity, we focus
gaussians. These equations are exact for any arbitrary on the 2-D case although the discussion is dimension-
af•ine transform in arbitrary dimensions. independent.

The second part of the paper focuses on solving for Our discussion is based on two observations. First, the
the affine transform when it can be written as the result of a filtering operation on two image patches will
product of a scale change and a rotation (the solution be different in general unless the filter is appropriately
for the general case will be considered in future pa- deformed for the second image patch-the deforma-
pers). For example, this situation arises in the case of tion being a function of the alfne transform. Second,
mostly translational camera motion and shallow struc- moments of the image patches are related by simple
tures (i.e. structures whose extent in depth is small functions of the affine transforms, and this can be ex-
compared to their distance from the camera [Sawhney ploited to compute the afine transform.
and Hanson, 1991]). Consider two functions FP and F2 related by an adine

The equation can be solved by sampling the a space. transform of the underlying coordinate system. Then
Rather than use a brute force search technique, the
search space is sampled for a few different o' and one Fi(r) - F2(Ar) (2)
of the o' is picked as the operating point. The scale is Their integrals over some finite interval are related by:
recovered by linearising the gaussian filter with respect a a
tc. a about this operating point using the diffusion _AF1 (r)d = aF(Ar)dr
equation. Consistency is used to establish the correct
operating point. Note that linearization is done with Aa
respect to or as opposed to linearisation with respect - f Fi(Ar)d(Ar)detA- 1 (3)
to the image coordinate* done by other methods. As J-Aa
a result, scale changes of arbitrary magnitude can be expressed succinctly as
dealt with by choosing different operating points. The
rotations can also be arbitrary. In contrast, linearis- YJ = Y X detA-'. (4)
ing with respect to the image coordinates is a valid Let a, be the scale change along the ish dimension and
approximation only for small dffine transforms. n the number of dimensions. Then det(A) = U's,.

The gaussian (seroth moment) equation is linear in This can be intuitively understood as follows. Con-
the scale parameter. By sampling at several scales, sider the 1-D case (n = 1), where the dline trans-
an overconstrained linear system is obtained. This form reduces to a scale change. Let the function F,

is solved for scale using singular value decomposition. be graphed on a rubber sheet. The graph of F2 is

Using the first moment an equation which is nonlin- obtained by stretching the sheet and attached coor-
ear with respect to scale is obtained. Again, this may dinate system. The determinant term is equal to the

be sampled at multiple scales to provide an overcon- stretching undergone by the coordinates. Note that
strained system of equations. This non-linear system the integral of a function may also be viewed as its
is solved using the Gauss-Newton technique. The first seroth moment.
moment equation also allows the computation of the (3) cannot be used directly because the limits on the
rotation. Both the formulation and the solution are right-hand side depend on the affine transform and are
done for arbitrary dimensions, not just 2. Experimen- therefore unknown. This crucial point has not been
tal results are shown on both synthetic and real im- handled correctly before. On the other hand, taking
ages attesting to the robustness and simplicity of the the limits from -oo to oo would not preserve local-
method. isation. The solution to this problem is to weight the

function by another which decays rapidly-here the
gaussian is used.
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We present the weighted equations analogous to (3) 2.2 General Case
first for the case where A = aR (i.e. the affine trans-
form equals a scale change a times a rotation R), fol- A similar equation can be shown to hold for arbitrary
lowed by the general case. affine transforms, provided generalised gaussians are

used. Define a generalised gaussian as

2.1 Case A=R, 1 rTM-r ) (13)

Denote the unnormalised gaussian by = (2w)I 2det(M) 1 2  2
where M is a symmetric positive semi-definite matrix.

H(r, a') = exp(-T 1/=2'). (5) Then

Multiply both sides of (2) by H(r, a2) to obtain G(r, -rTr

Fr(r)H(r, o2) = F2 (Ar)H(r, O2). (6) (2v),, 2 det(.7i)1/2 exp(--.4)

From the orthonormality of rotations it follows that 1 (Ar)T*(AAT)-i(Ar))

H(r, ') = H(Ar, (au) 2), (7) - (2)-/2V- 2a 232

which allows (6) to be rewritten as det(AAT) 1I 2G(Aru 2 (AAT)). (14)

Fi(r)H(r, y'2) = F2(Ar)H(Ar, (aW)2 ). (8) Thus the weighted moment equation may be written

The weighted seroth moment is therefore f FP (r)G(r, ar'I)dr = det(A)x

J F1(r)H(r, u2)dr = J F2(Ar)H(Ar, (Sa)2 )dr J F2(Ar)G(Ar, o2(AAT))d(Ar)det(A-l)

= J F2 (Ar)H(Ar, ( 8o)2)d(R)sa-, = J F,(Ar)G(Ar, 2(AAT))d(Ar), (15)

(9) where the identity deAAT)1/= det(A) has been
where the limits are taken from -oo to oo. The factor used. The matrix AA• is a symmetric, positive semi-
&-% = detA- 1 can be eliminated by using normalised definite matrix and may therefore be written
gaussians I AAT fte , (16)Ra~e, (l' ;7

, ') F (27)./ 2Oft H(r, v2) (10) where R is a rotation matrix and Z a diagonal matrix

in place of H. The moment equation then becomes with entries 102, 82C2 ... 02 (sj > 0). Thus

J F1 (r)G(r, u2)dr J FP(r)G(r,u 2I)dr= f F 2 (Ar)G(Ar, RfZft T )d(Ar)

1 2 (u) 2 d (17)
, F2(Ar)H(Ar, A i)d(Ar)- Again, to show the connections to convolution and fll-

J tering, this may be written as

= J Fi(Ar)G(Ar, (au) 2)d(Ar). (11) PF * G(r, 21) = F2 * G(r( , RZRT). (18)

The integral may be interpreted as a gaussian convo- (18) is the analog of the sero moment equation (3),
lution or filtering at the origin. Thus we write (11) and can be used for determining the affine transform.
as The level contours of the generalised gaussian are el-

F1 * G(r, u2) = F2 * G(ri, (.u)2), (12) lipsoids rather than spheres. The tilt of the ellipsoid

where r, = Ar. is given by the rotation matrix while its eccentricity
is given by the matrix Z, which is actually a func-

(12), the weighted analog of (3), is exact and valid for tion of the scales along each dimension. (18) clearly
arbitrary dimensions. The problem of recovering the shows that to recover affine transforms by filtering,
affine parameters has been reduced to finding the de- one must deform the filter appropriately; a point ig-
formation of a known function, the gaussian, rather noted in previous work [Bergen et &1., 1992; Koen-
than that of the unknown brightness functions. How- derink and van Doom, 1987; Campani and Verri, 1992;
ever since (12) is invariant to rotation it can only be Werkhoven and Koenderinck, 1990; Jones and Malik,
used for recovering the scale (the recovery of rotation 1992b]. The sero moment equation (18) alone does
by other means is discussed later). Note that although not permit the recovery of the complete affine matrix-
the limits are infinite, since the gaussian is a rapidly only the scales and the tilt. To find the complete affine
decaying function, it suffices in practice to take limits transform, higher order moments need to be consid-
from -4a to 4a (and correspondingly from -4wv to ered. Using higher order moments also permits the
4sa on the right-hand side), use of more overconstrained equations.
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3 Higher Order Moments andd2G(r1, A A*s)/d rzr1T) =

The first order moments of Fz and P2 are related by [(Ar T )-,rA(A T"A) -. - (AA T') -] x

/_= F G(ri, AAT, ). (27)

a =r- a(25) and (21) are seen to be closely related; the differ-
= A- Aences are the additional term due to the gaussian in

f A1  ArP2(Ar)d(Ar)detA- 1  (25) and due to normalization.
Since convolutions with gaussians and derivatives of

(19) sans are so closely related to the original weighted

or moment equations, they will often be referred to as

j1 = A-17•2 x detA- 1 . (20) moments in the rest of the paper.

The second order moments are given by 4 Solving the Moment EquationsfrrTFp(r)dr 4.1 The problem of even and odd

functions F

= A- 1' Ar(Ar)TF(Ar)d(Ar)(A- 1)TdetA_1 If the value of the moments is sero, (or near sero in
J-'An practice), the moment equations are ill-conditioned

and this may be expressed as and cannot be solved. This can occur in two ways;
either the signal strength is too low (i.e. the magni-

-" = A-1r 2 (A-1)Tdet(A-1). (21) tude of F is small) or the function F is purely even or
purely odd causing some of the moment equations to
be sero. There is little that can be done in the firstNote that the seroth moment equation is a scalar equa- case. The latter case, however, provides indsiht into

tion, (20) a vector one, and (21) is a matrix equation. the number of moment equations required to solve for

As before, the moment equations (20) and (21) are not the nume ofrmmeters.

directly usable due to the difficulty that the limits of the affine parameters.

the patches integrated over depend on the deforma- Consider first the I-D case. It is easy to see that the
tion. Therefore we again employ gaussian weighted even moments of any odd function will be sero while
moments, using the fact that the derivatives of gaus- the odd moments of any even function are sero. Since
sians are closely related to moments weighted with the seroth moment is even, and the first moment is
gaussians. odd and only one parameter (the scale) needs to be

determined, these two equations suffice to find it.
The effect of filtering with derivatives of gaussians can
be obtained by differentiating the gaussian (13). First The situation is a little more complicated in higher
write r1 = Ar. Differentiating (13) gives dimensions. One way of stating the problem is to con-

sider each dimension separately. Then if a function is
FA(r)*dG(r, oal)/dr = A•F•2(rl)*dG(rl, AATUS)/dri odd along any dimension, its contribution to the even

(22) moment from that dimension will be sero and hence
where inferences along that dimension cannot be made. Sim-

dG(r, 0 2I)/dr = -- G(r, 021) (23) ilarly, if a function is even along any dimension, its
2 contribution is uero to the odd moments along that

and dimension. Note that typically a function is even or
odd only at a few points over its domain, so this may

dG(ri, AATO 2 )/dr = -(AAT 2 )-lriG(ri, AA•T•,2). not be a significant problem.
(24)

This equation looks different from the first moment How many moments are required in 2-D to solve for
(20) because the first derivative of the gaussian has the affine transform? In general four affine parame-
been normalised. Convolving with second derivatives ters need to be determined. Straightforward equation
of a gaussian gives counting seems to show that there are four even equa-

tions (1 from the seroth moment and 3 from the second
Fi(r) * d 2G(r, v2l)/d(rrT ) = moment), and there are six odd equations (2 from the

ATF 2(rl) * d2 G(rl, AAT7r 2)/d(r1 r1 T)A (25) first moment and 4 if the third moment is used). Thus
even if the function is purely even or odd, moments up

where to third order suffice to solve for the adine parameters.

S(r)/C 2 
- G o (2) However, the third moment it actually not required,

d2G(r, l)/d(rT) =(r) -I G(r, u) (26) since the previous analysis ignores the information
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available from the deformation of a gausoian. Consider which the above equation has smallest residual error
the seroth moment when an arbitrary alfine transform according to some norm. A more elegant approach
A needs to be measured. In this case, the seroth mo- uses the fact that the affine transform can be analyti-
ment may be used to find the matrix AAT (i.e. 3 cally interpolated. The idea is to sample over a small
parameters may be computed). Accounting for the set of a* and then interpolate using a Taylor series
additional information available from the deformation approximation. Consider first a given a'. The Taylor
of the gaussian, there are at least 6 even equations (3 series appro n to first order gives
from the seroth moment and at least 3 from the sec-
ond moment) mad at least 4 odd equations (from the Gir, (uw)") ft G(rw, a2) + acaG(rll'°) (29)
first moment). 8U

The function F may also be transformed so that some = G(rw, o') + ao'V 2 G(ri, a2X30)

of the moments are always non-zero. For example, if where a = 1 + a. The last equality follows from the
instead of the function F, the magnitude of its auto- diffusion equation V = G'V2 G. This allows the con-
correlation is used, the seroth and the second moment volution (28) to be written as
are always nonsero. This follows from the radial sym- 2) + r,* G
metry of the auto-correlation function-which implies A) * G(r, a P2  * G(rj, ff2) 2 * V2 G(rl, a 2)

that the odd moments are all zero while the even mo- The above equation is linear in s. To find a, three

ments are nonzero.
filtering operations need to be performed: two gaus-

A different transformation uses certain algebraic tricks sian filtering operations and one laplacian operation.
to convert any function to an odd or an even func- Note that the above equation expresses the well-known
tion thus ensuring that every moment equation is well- result that a laplacian can be approximated by a dif-
defined. For example, consider the I-D case again. ference of gausian=
Every function F can be written as the sum of an
even part EF and an odd part OF. The odd part OF 4.2.1 Issues of Scale
can be converted into an odd function by taking its
magnitude. The even part EF can be converted to Information in an image is scale dependent. There
an odd function by flipping one half of the function. may be information present at several different scales
The problem is somewhat more complicated in higher or at only one of them. A method which does not
dimensions. The 2-D case will be dealt with in the take this into account is not likely to be robust. Thus
solution section. it is desirable to solve the above equation at several

different scales (aj,). Let a set of av be chosen. For each

4.2 Solving the Zeroth Moment such a'. an equation of the form (31) may be written

Equation giving the following system of equationsp, * Fr •,2 ft p2 * G~,,ooe
In the remainder of this paper, only the case where F G(r, a's) 0 F 2 • Gfr1, a's) + aop2F * V2 G(r 1, o,02)

the afline transform A = &R (i.e. a scale change and F1 *+ a 2 *V 2G(ria')
a rotation) will be considered (see section 2.1); the ............
general affine transform will be considered in a later FP * G(r, ar?) t F2 * G(ri, a'?) + a'F 2 A* V2G(ri, 0,2)
paper. The zeroth moment equation will be dealt with
first followed by the first moment equation. ...........F1 • G(w,a) F2 • G(z1,,' + •oF v2G(ri,,'
When the affine transform is described by A = *R, (32)

(12) can be written as
F (r) •G(r, a2)= F2(rw) * G(ri, (a,*)') (28) This is an overconstrained set of equations in the

unknown a. The redundancy offered by the over-

where a" = sa. The important point here is that constrained problem also makes it more robust with
the rotation matrix does not figure in or'. The respect to noise.
problem of finding the scale parameter has therefore The particular choice of the a'i is to some extent ar-
been converted into the problem of finding the value bitrary although some general criteria may be speci-
of a'. Older methods [Bergen et at., 1992; Koen- fied. Too small a c will make the system sensitive
derink and van Doo rn, 1989; Campan e and Verri, 1992; to noise while localisation requires that ar, not be tooWerkhoven and Koenderinch, 1990; Jones and Malik, Impe. The actual values we not very crucial. In prac-
1992b] have instead concentrated on the much more lare. a ctual e s arent vere crucia. npr-difficult problem of trying to correspond the functions tice, a set of eight different a', were chosen. They
difficult pwere all spaced apart by half an octave (a factor of
P, and F2. 1.4). The filter width = S ari (since the filters need to
The equation can be solved by sampling the space of range from -4a', to 4Ur). The widths actually chosen
possible values of o', filtering for each sampled value were (3,5,7,10,14,20,28,40) (see also [Jones and Malik,
and declaring the solution to be that value of or* for 1992a]).
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The above system of equations was cast into the fol- work well. An alternative is to compare the residual
lowing linear least squares problem error after SVD minimisation; this does not seem to

SwIIpa*G(r,2)FG r,2)+auF 2 V 2G(ri,2)II 2  Work as wel, pay because the diferent errors renot really comparable-they have different numbers
Value (33) of equations. Another technique that has been tried isand was solved using Singular VleDecomposition to make all the equations into a single overconstrained

(SVD). It was found that the lowest filters (widths t e and the itins iVt ase onsthaner

= 3,5,7) were noisy and hence they were disregarded system and solve it using SVD -based on the answer= 3,,7)wer noiy ad hnce heywer disegaded obtained, some of the equations may be dropped and

(one reason may be that the laplacian is noisy when the system resolved.

the filter size is small). The scale was recovered fairly

accurately using the other widths (see the experimen- In principle the same technique can be used to ex-
tal section for details). This set of filter widths worked pand around nonnearest neighbor operating points ar,
better than another one where 8 filters were used with Ij - il > 1, if the scale gets very large (or small). The
their ai spaced apart by a factor of 1.2; presumably range of scales to be expected depends on the applica-
because with a larger variation in scale, there is more tion. For structure for motion, a scale change of more
information available at multiple scales. than 1.4 almost never happens in practice. In find-

ing shape from texture, in principle any scale change
4.2.2 Choosing a Different Operating can occur. If the surface is smooth, it is expected that

Point there is likely to be a neighbouring texture patch whose
scale change is less than 2.5. In this case one should

For large s (say s > 1.3) the recovered scale sometimes also expand around 2.0o' and 0.5o. in addition to v, 1.4a
tends to be poor. This is because the Taylor series and 1/1.46a. Very high scale changes are probably dif-
approximation is good only for a small change in o. ficult to measure in any case because of the extreme
The problem arises because in (31) the right-hand side foreshortening that this implies. We reemphasize that,
is expanded around the same a, as on the left-hand apart from such inherent limitations, our approach can
side. A better approximation is obtained by expanding in principle handle large magnitude affine transforms
a* as close to the correct scale as possible. An example with little approximation, whereas previous methods
should clarify this point. Assume that the left-hand were limited to small transforms.
side uses a = Oo and that the scale change s is 1.3,
then it is better to expand the right-hand side around 4.2.3 Ensuring that Fi is always even
or = 1.40o (i.e. the half-octave step closest to the
actual scale) rather than expanding at o0. In this case, The method does not work if the output of the gaus-
(31) may therefore be modified to sian convolution is sero (or close to zero in practice).

2,2+ 1r2 2 2 This can happen either if the signal is weak or if the
Fi*G(r,ai') Az F2*G(ri, ,•+)+aa•+iF 2,VG(ri,,o•+) signal shows odd symmetry along any dimension.

where * = 1.4(-+-a'). Since filtering by a set of. is al.- The 1-D case was dealt with in section 4.1. Here it
ready being performed for the overconstrained system is shown how a function in 2-D may always be con-
no additional filtering operations are required. Again verted into an even function. One cannot consider each
an overconstrained system may be implemented eas- dimension separately for this would destroy the rota-
ily. For each value of vi on the left-hand side of (34), tional symmetry of the gaussian. Instead, the function
expand around 01+1 on the right-hand side. is decomposed into parts which are radially even EF,

and radially odd 0O F, where

A similar scheme may be implemented if the scale a

< 0.8 by expanding around & a. which is smaller by a EF, = F,(r) + F,(-r) (35)
factor of 1.4. 0,P, = F,(r) - Fi(-r) (36)

A priori the a, around which the expansion should be The magnitude of both functions (I EFPi I 0, Fi 1) is
done is not known since the value of the scale is not then taken. The resulting functions are both even and
available. The solution is to expand around all three the gaussian convolution is nonsero for both. The SVD
of them (i.e a',, 1.4ai and ail/1.4) and then pick the is performed on each set of these functions separately
correct answer to be the one which gives a* close to and the one with the lower error is then used (this
the operating point. Again an example will clarify this ensures that if either the even or odd components is
point. Assume that the correct scale is again 1.3 and really small, it is ignored).
that the three different operating points return the
following values of s (1.25, 1.32, 1.18). Consistency 4.2.4 Finding Image Translation
decides the correct answer here. 1.18 is inconsistent
with expanding around o/1.4 and can be rejected. The Before scale can be recovered, the two patches must
other answers are both between 1 and 1.4 and closer to be aligned by finding the image translation. These can
1.4. Therefore, the appropriate operating point to pick be found using traditional optical flow or displacement
is 1.4ai = +,.i. Experimentally, this method seems to schemes [Anandan, 1989]. Alternatively, the residual
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Table 1:
Actual No Noise Gaussian Noise o = 10 Uniform Noise (-10,10)

cales L.81001 *'10 i00 sale M 1100 100 scalesI A 'lO 'o00
1.05 1.050 0 0 1.040 1.0 20 1.040 1.0 20
1.10 1.101 0.09 0.01 1.082 1.6 18 1.098 0.2 2.0
1.15 1.158 0.Y 5.3 1.152 0.1 1.3 1.148 6.1 1.3
1.20 : 1.213 1.1 6.5 1.198 0.2 1.0 1.192 0.7 4.0
1.40 1.408 0.6 2.0 1.415 1.1 3.8 1.427 1.9 6.8
1.60 1.639 2.4 6.5 1.630 1.9 5.0 1.591 0.6 1.5
1.80 1.855 3.1 6.9 1.838 2.1 4.8 1.816 F.8 2.0

of the SVD error can be used to localise the image its new depth is zs = zo + T.. Then the percentage
translation to ±0.5 pixels. This is done in the fol- ero in fnding the quantity zl/zo is given by ft
lowing manner. The first image patch is filtered with 100 and this is tabulated in column 3 for the noise-
the set of gaussians. The second patch is filtered with free case. On the other hand, the percentage error in
gaussians at every pixel in a small window centered finding the quantity T./zo is given by h_ * 100 and this
at the first patch's location and the SVD computed. is tabulated for the noise-free came in column 4. Which
That pixel for which the SVD residual is minlimized is of these quantities is more important? Since the depth
declared to be the correct image translation. Experi- zo is a priori unknown, the quantity of relevance at
mentally, this method was found to work satisfactorily, least in the motion case is T./zo and the corresponding
Note that in general no additional filtering operations percentage error is more significant. Similar values are
are required since the filtering operations are done at tabulated when gaus-an noise (columns 5,6 and 7) and
every point in the image anyway. uniform noise (columns 8,9, and 10) are added.

The results show that even with noise depth recon-

4.3 Experimental Results struction effectively has an accuracy on the order of
several percent. The results are excellent in the noise-

Experiments were carried out both on synthetic images free case. The percentage errors in column 3 are all less
as well as a pair of real images. The first synthetic than about 3% while even in column 4 the percentage
image (Figure 1) shows a cosine wave generated by errors do not exceed 7%. Note that the method recov-
the equation Fa(z, y) = 127 cos(wy + 0.). The cosine er scale accurately in spite of the large rotation.
was picked for the following interesting properties. It With noise added, the results are as good except for
can be made even or odd at any point depending on the lowest scales (1.05 and 1.10, corresponding to the
the value of ,. Further, there is no information along largest depths). These results for the lower scales
the y direction (the so-called aperture problem). In might be improved by using operating points separated
spite of that the scale can be recovered, by ratios smaller than 1.4.

For the first experiment, 0. was chosen to be zero, so The experiment was repeated using ¶r = w/2 for both
that the function was even. w. = 0.2 was chosen. A images. The method failed because the function now
second cosine function was generated using the follow- becomes an odd function at the origin and thus the
ing function F2 (z, y,) = 127 cos(w1 3 + O,) (Figure 2). result of gaussian filtering is sero. However, if the
F2 is rotated 90. with respect to FP and also scaled by function is tranformed into an even function using
the factor a. For various values of s, the scale was re- the methods discussed in the text, the seroth moment
covered using the zeroth moment. The results are tab-
ulated in Table 1. The experiment was repeated with
noise added. First, uniform noise ranging from -10 The experiment was repeated with random dot images.
to 10 was added to FP. Second, gaussian noise with A random dot image of sise 64 by 64 was generated
a standard deviation of 10 was added to F3. These (Figure 3). The image was then affine transformed and
results are also tabulated in Table 1. Two operating smoothed using a cubic interpolation scheme. For var-
points were used: a and 1.4o. The appropriate oper- ious values of the scale factor s, the scale was recovered
ating point was picked as discussed in the text. using the seroth moment method. The results are tab-

ulated in Table 2. The highest error in column 4 (rel-
Table 1 is to be read as foflows. The first column in ative depth error) is less than 9% if the smallest scale
Table 1 is the actual scale while column 2 shows the (1.05) is ignored. Again the relative error in * (column
recovered scale in the noise-free case. Two different 3) is much lower. The error is somewhat larger in this
percentage errors are tabulated and they arise from the case because the program that affine transforms the
following considerations. Assume that an object is at a image does interpolation which tends to destroy inm-
depth of zo and after a translation T, in the z direction,
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Table 2: where
Actual Recovered Sca* 100 _'-1-- d00

1.05 1.059 0.9 18 *nd
1.10 1.104 0.4 4.0 = Fa(r)*Grivo)/dui. (42)
1.15 1.138 0.8 8.0 The rotation matrin can be eliminated by taking the
1.20 1.180 '1.7 10 dot-product (i.e. the magnitude) of both sides of (40)
1.40 1.398 0.1 0.5 and equating them. This gives

1.60 1.569 1.99 5.2 01 = (1 + a) 2[W 02Tp + 2•W2&T7 + a2a4CTj].
1.80 1.722 4.3 9.8 (43)

This is a polynomial equation in the unknown a. As
before several different scales ar are used to give an

age structure. This is more serious at the lower scales. overconstrained system. The resulting system can be
solved using the Gauss-Newton technique [Gill et aL,

Finally the algorithm was tested on a pair of real im- 1981]. The Gaus-Newton procedure works by fin-
ages from a sequence [Sawkney and Hanson, 1991]. earising the system around the current estimate of the
The images were taken with a Sony ccd camera us- solution reducing the problem to a linear least-squares
ing a robot moving straight ahead. The robot moved problem. Define a vector function e(a) where the
about 1.4 ft between frames. Since the original images component is given by
were taken with the intent of using a line based algo- ci(c) = 2'Pli + a)Z -702i
rithm, most of the objects have little intensity varia- + = + )2 0,j42(0P 44
tion in their interior. However, the posters on the back + 2uo 2 pj T" + a~uL4CiT4. (4)
wall show some intensity variation and can therefore Then if al is the current estimate of a, then ak+l =
be used. Points I and 2 were picked by hand in the irst ,+ p where ph is the solution of the linear least
image (Figure 4). The corresponding points in the sec- squares problem
ond image (Figure 5) were determined using the SVD Il&p+ Ca11, (45)
residual error. For point 1, the recovered scale was
1.07 which corresponds to a distance of 1.4/(1.07 - 1) where a quantity subscripted by k denotes that quan-
= 20 ft. For point 2 the recovered scale was 1.06 which tity evaluated at ah and J(a) is the Jacobian matrix
corresponds to a distance of 1.4/(1.065 - 1) = 21.5 ft. of (4).
The measured distance to the back wall is 20.3 ft. The The least squares problem was solved using SVD and
accuracy is thus within 6%. convergence was found to be rapid-within a couple

of iterations. The method was tested on a sine-wave
4.4 Solving the First Moment pattern.

Equation In two dimensions, the rotation may be computed in
Again for the case where the affine transform is de- the following manr. Consider (40) again. This may

scribed by A = &R, the first moment equation (22) breit) a Rb, (46)
may be written where

FI(r) * dG(r, or')/dr = sR[F:(r,) * dG(r,, (au)2)/drt b = (1 + a)(Wp(u) + 'ova()] (47)
(37) is a known quantity (since a is now known). Let

The diffusion equation applied to the derivatives of the b = (b,, b2)7". Then (46) can be transformed into the
gaussian gives the following identity following form

aG, 1/la = V2Gj, (38) where ja,) = (48)

where G,, denotes the derivative of the gaussian with B - i b2 (49)
respect to the ri" coordinate. Using this identity, 1

the right-hand side of (37) is expanded around a and W = (cos9, sinG) and 9 is the rotation angle. Us-

rewritten as ing the identities coo0 = vl-sinC 0, and B-1 =
-B/(detB), (48) can be transformed into the follow-

F,(r) * GI(r,u2) o ing pair of equations each linear in the unknown sin0.

* vRi F2(r,) * [G, (ri,o"2) + af 2 V2G,,(ri, o')I39) %/1 - [(blei + bulu)/(detB)]2  = sin0 (50)

where Rj is the j'A row of R and a = I + a. Note (-b2Ce +. b1 2)(detB) = sinG (51)

that there are 2 such equations. This may be more where jls = (el,e 2)7. Such pairs of equations can be
conveniently written as written for every vi and the resulting linear system of

overconstrained equations can be solved using SVD for
0,(a) = (1 + a)Rn[j(v) + aa2C(u)]. (40) the rotation angle 9.
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5 Future Extensions [Jones and Malik, 1Mb] D. G. Jones and J. Malik.
Determining teedmnoalshape from orienta-

Future work includes the solution for the ca of the tion adspata frequency disparitfies. In Pro. fti
general &Suie transform as well as the use of the second seurpeas Coeajevue on Compuater Vision, pages
moment equation. Other possibilities include the an- 661469,1992.
tomation of the process over the entire image and the [Kanade &and leader, 1963 T. Kanade and J. IL
detection of occlusions. Finally, the use of the affine lender. M~apig image properties into shape corn-
transform to fid surface orientation from both texture stans Shwe symmet ry, saw-transformable
and motion cues will be explored. patterns, and the shape-frtom-texture paradigm. in
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Abstract can often be reduced to a simpler four parameter affine
matching problem when the horison line of the planar

We consider the problem of matching perspective structure can be determined. Given the horson line,
views of coplanar structures composed of line seg- it is possible to transform the image to show what it
ments. Both model-to-image and image-to-image cor- would have looked like if the camera's line of sight had
respondence matching are given a consistent treat- been perpendicular to the object plane. This process
ment. Although these matching scenarios generally re- is called recQfctiea in aerial photogrammetry.
quire discovery of an eight parameter projective map-
ping, when the horison line of the object plane can 2 Planar Transformations
be found in the image, using vanishing point analy-
sis, for instance, these problems can be reduced to as
simpler six parameter affine matching problem. When Essentially all matching problems involve solving for
the intrinsic lens parameters of the camera are known, both a discrete correspondence between two sets of fea-
the problem further reduces to four parameter affine tures (model-image or image-image) and an associated
similarity matching. transformation that maps one set of features into reg-

istration with the other. These two solutions together
constitute matching: a match being a correspondence

I Introduction plus a transformation. For planar structures under a
perspective camera model, the relevant set of transfor-

Matching is a ubiquitous problem in computer vi- mations is the eight parameter projective transforma-
sion. Correspondence matching can be broken into tion group [Faug88].
two general areas: model-to-image matching where
correspondences are determined between known 3D More restrictive transformations are worth special at-
model features and their 2D counterparts in an ins- tention. Often these transformations are more easily
age, and image-to-image matching where correspond- computed, thus making matching easier. One such
ing features in two images of the same scene must be special case occurs for fmotal plaxe., planar structures
identified. Fast and reliable matching techniques exist viewed "head-on' with the viewing direction of the
when good initial guesses of pose or camera motion are camera held perpendicular to the object plane. When
available [Beveg0] or when the distance between views the intrinsic camera parameters are known, perspec-
is small [Anan87]. What is lacking are good meth- tive mapping of a frontal plane to its appearance in
ods for finding matches in monocular images, formed the image can be described with just four affine pa-
by perspective projection, and taken from arbitrary rameter: an image rotation angle, a 2D translation
viewpoints, vector, and an image scale [Sawhg2j.

This paper examines the problem of matching copla- 2.1 Frontal Planes
nar structures consisting of line segments. A simple
method is presented that, when applicable, allows fast Under the standard pinhole camera model, the image
and accurate matching of coplanar structures acros projection of a 3D world point (X, Y, Z) is the image
multiple images, and of locating structures that cor- point (X/Z, Y/Z). In this can, the appearance of ay
respond to a model consisting of significant planar 3D object is governed only by the relative position and
patches. The main point to this paper is that the full orientation of the camera with respect to the object,
perspective matching problem for coplanar structures i.e. , the camera pose. There are 6 degrees of freedom

"This work was funded in part by DARPA/TACOM for camera pose: three rotation angles of roll, pan and
contract DAAEOT-91-C-R035 and by the RADIUS project tilt, and three translations T%, T., and T.. If the cam-
under DARPA/Army contract TEC DACA76-92-R-0028. era is constrained to point directly perpendicular to
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an object plane, yielding a frmu view of the plane, a frontal view of a coplana structure is that the van-
its two pan and tilt angles must stay fixed. This leaves ishing line of that structure appears at infinity.
one free camera rotation about the normal of the ob- Conversely, by applying a projective mapping taking
ject plane, and the three unconstrained translations, the vanishing ine of an image of & coplanar structure
four parameters in all. The efect of camera roll on the to the line at infinity, the vanishing points of all lines
image plane is an in-plane rotation about the origin,
Translation parallel to the planar surface shows up in the plane will now be at infinity, hence all parallelas a 2D translation of the image. Finally, translation ines in the planar structure must now be parallel inanre 2D towards or away from the object plane sai- the image. This implies that the new image is a frontal
directly toad raa rmteojc ln ai- view of the original set of coplanar fines.
fests itself as a uniform change in scale of the projected
image. These are precisely the effects of the four pa-
rameter affine similarity mapping. The pinhole camera 2.3 Rectification
projection of a frontal plane is therefore described byfour dfine parameters that are directly related to the We have seen that the vanishing line of a frontal plane
physical pose of the camera with respect to the plane. appears at infinity in the image plane, and further-more, that it is possible to recover a frontal view from
A more realistic camera model must take into account the image of a tilted object plane by applying a pro-
the intrinsic parameters of the camera lens. To a first jective transormation that maps the object's vanish-
approximation, lens effects are often modeled by a set ing line to infinity. There is, however, a whole six-
of linear parameters including focal length, lens aspect dimensonal space of projective transformations that
ratio, optical center, and optical axis skew, whose com- all map a given line in the image off to infinity. How
bined effects can be described by a six dimensional to choose a best one is described in this section.
affine mapping of the pinhole image onto the actual For a pinhole camera image, the position and orienta-
raster image [Horu86]. A more realistic model of the Fon o the vanishing the pob itionandeoriesprojection of a frontal plane is thus a four parameter tion of the vanishing line of an object plane determines
dine mapping of the plane onto an idealised pinhole the true 3D orientation of the plane with respect to theplane, followed by a six parameter dine mapping onto camera's line of sight. When the equation of the van-the actual measured image. ishing line is ax + by + c = 0, the normal to the objectplane, in camera coordinates, is
In summary, the perspective projection of a frontal
plane is described in general by a six parameter aine = (a be)/II(a be)II. (1)
transformation. When a calibrated camera is used its
intrinsic lens effects are known, and can be inverted For a frontal plane, the normal of the plane must be
to recover the ideal pinhole projection image. After parallel to the Z cruera axis, since the plane is per-
correction for lens effects, the frontal view of a plane pendicular to the line of sight. If the camera could

can be described by a four parameter affine similarity move, the image of a frontal plane could be recovered
mapping- from the image of a tilted plane by merely rotating

the camera to point directly towards the plane. The
camera can no longer be moved physically, of course,

2.2 Arbitrary Orientations but the image can be transformed artifically to achieve
the desired 3D rotation.

For planes viewed at arbitrary orientations, the full Assume the unit orientation of the object plane has
six degrees of pose freedom may manifest themselves Assu me t o be nt ation 1, orienedin the image. The two camera rotation angles, pan and been determined to be n, as in equation 1, oriented

in te iage Th tw caera otaionangespanand into the image (c > 0). To bring this vector into coin-
tilt, not used for frontal images, are directly related to the image (c> ) To rint s aec ton oi
the tilt of the object plane with respect to the camera's angle woft(n- (0t0he )) p axos teuaxis n X (0o0ao f)
line of sight. Under perspective projection, lines that age Cof t ( abot the isan (0 )
are parallel on a tilted object plane appear to converge be esi oflted camera rota ti ve tranf

in the image plane, intersecting at a vaniuhing point. b ulated by an invertible projective transforma-

The locus of vanishing points of coplanar parallel lines tion in the image plane [Kanas8]. In homogeneous

of all orientations forms a line in the image called the coordinates,

vanishing line or horizon line of the plane.P ri
For frontal planes, all parallel lines on the object plane P G b

remain parallel in the image. By convention a set of -
parallel lines in the image is said to intersect in a point where
"at infinity.' When all vanishing points appear at in- a 2 +Vab(_- _),__

finity, the vanishing line passing through them is also & = + 2 + 2 G= G2=
said to be at infinity. Since a transformation isaFne &Rie 2 + G =

if and only if all parallel lines of arbitrary orientation The image is transformed to appear as it would have
remain parallel, it follows that the defining feature of if the camera had been pointing directly towards the
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object plane. The result therefore is a frontal view of ing from a randomly chosen initial match is analogous
the object plane, as seen by a pinhole camera, i.e. a to the probability of getting heads when Sipping an
rectified four parameter afiae view. unfair coin. Even with an unfair coin it is a good bet

that heads will appear at least once in a large number
This mappint can be used to map l vanishing line to of throws. For instance, using a coin that only comes
infinity even when the intrinsic calibration parameters up heads in 1 out of 10 throws, the odds of getting
are not known. However, when the original image U heads 1 or more times in 50 throws are 99 out of 100.
not a pure pinhole image, the position of the vanish- Similarly for local search matching, even if the proba-
ing line in the image can no longer be interpreted ge- bility of seeing the optimal match on a single trial is
ometrically in terms of 3D plane orientation, and the low, the probability of seeing the optimal match in a
resulting unwarped image will be in general some sx large number of trials is high.
parameter adine view of the object plane.

The combination of iterative refinement and random
sampling has proven to be very effective. This ba-

3 Correspondence Matching sc form of algorithm reliably finds excellent, and
usually globally optimal, matches under difficult cir-

Plane rectification forms the essence of our approach cumstances. The algorithm performs well even when
to matching perspective images of coplanar structures, scenes are highly cluttered and significant portions of
The idea is to find the vanishing line of an object plane a model instance are fragmented or missing entirely.
in the image by any means possible, then apply a pro-
jective transformation that maps it to the line at" 4 Examples
finity, thereby producing an affine frontal view of the
original object plane. The effect is to reduce a per-
spective matching problem to a simpler adfine match- Although other methods are available (see discussion
ing problem. in Section 5), the results in this paper rely exclusively

To search for the optimal dfine map and correspon- on vanishing point analysis for finding vanishing lines
dence between two sets of line segments, an efficient in the image. This simple approach works surpris-
and robust local search algorithm is used [Beve90]. ingly well for many man-made scenes, both indoor,Therobust local searchmatching algorithm isuseae outdoor, and aerial Vanishing points are found usingThe local search matching aloorithm searches the a standard Hough transform approach [Baru83]. Eachdiscrete space of correspondence mappin@ between line in the image is entered into a two dimensionalmodel and image features for one that minimizes a Hough array representing the surface of a unit hemi-
match error function. The match error depends upon sphere. Each image line 'votee in a great (semi)circle
the relative placement implied by the correspondence. of accumulators, and potential vanishing points are de-
More particularly, to compute the match error the tected as peaks in the array where several great circles
model is placed in the scene so that the appearance intersect. For most man-made scenes, either two or
of model features is most simila to the appearance of three clusters will dominate the Hough array; clusters
corresponding image features. The more similar the corresponding to the vanishing points of the two or
appearance the lower the match error. three dominant line directions in the scene. Each pair
To find the optimal match, probabilistic local search of vanishing points defines a vanishing line for planes
relies upon a combination of iterative improvement consistent with those line orientations.
and random sampling. Iterative improvement refers At present, only a four parameter dine version of
to a repeated generate-and-test procedure by which the local search m h system is implemented. We
the algorithm moves from an initial match to one that therefore needed to know the calibration parameters ofis locally optimal. This is done by repeatedly testing the camera for each experiment. It should be stressed
a local neighborhood of matches defined with respect that only rough knowledge of the calibration param-
to the current match. Each neighbor is a distinct cor- eters is generally needed to find acceptable matches.
respondence mapping between model and image fea- The most important parameters to determine are fo-
tures. Tractable neighborhood sises, for instance n cal length and aspect ratio. We assumed for all our
neighbors in a space of 2" possible matches, tend to
yield tractable algorithms. However, there is an art experiments that the image center was at the centerto designing small neighborhoods that do not induce of the image, and the optical X and Y axes were per-
ao profsioning ofsalloptima.New neighborhoods tndue- pendicular (no skew) and aligned with the row anda profusion of local optima. New neighborhoods defi- column axes of the raster image. Aspect ratio was

uto have been developed that are particularly well counaeoftersrimg.Aptrtowsnitions ha pe n d evel0p. determined from the camera manufacturer's specifica-suited to shape-matching [Beve9O]. tions, when available, otherwise it was assumed to be

Despite clever neighborhood definitions, local search one-to-one (square). The focal length for each experi-
can become stuck on local optima. Random sampling ment was computed as a byproduct of vanishing point
offers a probabilistic solution to this problem. The analysis and spriM knowledge that the actual angle
probability of finding the globally optimal match start- made by the two dominant line directions is 90 degrees
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Figure 1: Model to image matching example on a Figure 2: Image to image matching example on an
poster image: a) data lines from poster image, b) aerial image: a) image lines from nadir view, b) image
poster model, c) rectified poster data lines, d) poster lines from oblique view, c) unwarped oblique view, d)
model registered with the image data. registration of nadir view with unwarped oblique view.

[CaprOO]. This focal length was chosen by finding the 4.2 Image to Image Matching
distance of the focal point from the image that re-
sulted in perpendicularity of the two vectors from the Because it does not rely on computing 3D object pose,
(variable) focal point towards the two (fixed) vanishing The current formalism extends easily to image to im-
points in the image. age correspondence matching. In this case, both im-

ages are rectified using the techniques of the last sec-

4.1 Model to Image Matching tion, and one is treated as the model while the other
becomes the data to be matched. The goal is to dis-

Figures 1a) and b) show a set of straight line segments cover a transformation that maps one set of rectified

extracted from an image of a wall poster using the image lines into another.
Burns algorithm [Burn86], and a set of model lines to When both cameras are calibrated, both images can be
be matched to the image. The first stage in match- rectified into frontal views of the object plane. Since
ing is to detect two clusters of lines converging to the the mapping from one image to another can be written
two main vanishing points in the image, and from the by inverting one transformation and composing it with
resulting vanishing line rectify the image to present a the other, and since the four parameter affine group is
frontal view of the poster (Figure ic). closed under inversion and composition, the resulting

The four parameter affine match found by the lo- image to image transformation can be described by

cal search matching algorithm yielded a set of cor- a four parameter affine similarity map. As may be

respondences between model lines and image lines, expected, when either camera is uncalibrated, the re-

These correspondences were used to estimate an eight sulting transformation between unwarped views is a

parameter planar projective transformation to bring general six parameter afFne mapping.
the model lines into registration with the image data Figure 2 shows an example of image to image matching
lines, using the least-squares estimation procedure of in the context of aerial image registration. Figures 2a)
[Faug88]. Figure ld shows the transformed model and b) show sets of extracted straight line segments
overlaid on the input image lines, from two aerial photographs. In the first image, the
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camera is nearly perpendicular to the pround plane, camera systems, knowledge of the perspective traaM-
a fact verbled by vanishing point analysis, which finds formation relating the image features of a sngle plane
two orthogonal sets of nearly parallel lines. The second in the scene constrains the positions of point features
image is clearly not a frontalview.1 Figure 2c shows in one image to lie along epipolar lines in the other
the image after rectification based on vanishing point image.
analysis. In its current form, the local search affine matcher de-

To apply the local search matching algorithm, image I scribed in this paper is used for image to image feature
was assumed to be the model and the unwarped lines matching simply by declaring the features in one image
from image 2 the data. Both line sets were fltered to be a model. This is not ideal, since the the current
to only include lines greater than 100 pixels long, re- treatment of model and image lines is not symmet-
ducing the matching problem to 55 long lines in one ic. Future work on the affine matcher may include
image and 68 lines in the other. The best match found developing a more symmetric error metric for image
is displayed in Figure 2d. to image matching, and extending the range of the

match transformation space to handle six parameter
5 Issues and Extensions affe matching so that images from uncalibrated cam-

era systems can be used.

The domains we anticipate are scenes depicting either Referenceh
indoor or urban outdoor environments with much pha,
nar and parallel linear structure. Such scenes often [Aua87] P. A--An, -Measurin Visual Motion from
contain lines and planes in two or three dominant Image Sequencesu Ph.D. Thesis and COINS Tech
directions. The approach to matching taken in this Report 87-21, University of Massachusetts, Amherst,
paper requires each plane to be matched separately, MA, 1987.
therefore there needs to be some way to partition lines [Amns89] J. Arnspang, "Moving Towards the Horizon of
in the image into sets belonging to planes in the world. a Planar Curve,'IZZZ Woarkhop on Visual Motion,
This would be nearly impossible in monocular images, 1989, pp. 64-69.
were it not for the rich structure of man-made envi- [Barn83] S.T. Barnard, Interpreting Perspective Images,*
ronments, suggesting domain-specific heuristics based AI Jurna4, VoL 21, No. 4, November 1983, pp. 435-
on corners and perpendicularity. In particular, L- 462.
junctions made of two lines from different vanishing [Beve9o] J.R. Beveridge, R. Weiss and E.M. Riseman,
point clusters are good candidates for coplanar cor- "Conbinatorial Optimization Applied to Variable
ners. We are currently exploring heuristic geometric Scale 2D Model Matching,* Proceedings IEEE Inter-
methods, as well as more formal approaches based on national Conference on Pattern Recognition, Atlantic
projective invariance, for partitioning image lines into City, June 1990, pp.18-23.
coplanar groups. [Burn86] J.B. Burns, A.R. Hanson and E.M. Rlieman,

We are also exploring other methods besides vanish- atng Strht Lines,* IEEE T a on
ing point analysis for detecting the horison line of an Paoe. Analys, ad Mach4,elligence, VolJ 8,

object plane's image projection. Some possibilities are

analysis of texture gradients [Gard9l], and exploita- [Caprgo] B. Capnle and V. Torre, "Using Vanishing Points
tion of the perspective properties of convex planar for Camera Calibration,- International Journal of
curves [Arns89]. Computer V-ii, Vol. 4, 1990, pp. 127-140.

(faug98] O.D. Faugera and F. Lustman, "Motion and
When structures are present in the scene that devi- Structure from Motion in a Piecewise Planar Environ-
ate significaL dy from coplanarity with respect to the ment,' International Journal of Pattern Recognition
viewing distance, then their correspondences may not and Artificial Intelligence, Vol. 2, 1988, pp. 485-506.
be adequately found using the above techniques. How- [Gardgl] J. Garding, -Shape from Surface Markinp,,
ever, to the extent that son. e scene features are copla- Ph.D. dissertation, Royal Institute of T.lhnology, S-
nat and are found, this initial set of planar corre- 100 44 Stockholm, Sweden, May 1991.
spondences provide strong constraints on the remain-
ing features, particularly when the cameras are cali- borig] BK.P. Horn, Robot Visio, MIT Pres, Cam-
brated, in which case the relative rotation and direc- bridse, MA., 1986.
tion of translation between the two camera positions [KanaS8] K. Kanatai, "Constraints on Length and An-
can be computed from the planar perspective trans- ien, CompVal. Vi4,, Gp ph., and Image P2c8--
formation [Faug88]. This reduces the problem to that 3, Vol. 41, 1988, pp. 28.42.
of induced stereo, where point correspondences must [Sawh92] H.S. Sawhney, Ph.D. Thesis, Computer Science
lie along known epipolar lines. Even for uncalibrated Department, University of Massachusetts, Amherst,

MA. 1992.

'The term "frontal' was coined with terrestrial robotics
in mind; in the aerial domain the correct term is "nadi'.
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Abstract Correlation trackers based on the assumption that
This paper presents an automated approach to find- there exists a pattern or texture on the road surface
ing main roads in aerial images. The approach is to was used first by [7], and later by [2] in combina-
build geometric-probabilistic models for road image tion with edge linkers. A region based method as-
generation. Then, given an image, roads are found suming constant intensity in the region and in the
by map (maximum aposteriori probability) estima- background was used first by [4] with a correlation
tion. The map estimation is handled by partitioning follower.
an image into windows realizing the estimation in In [1] and (3], a Bayesian approach to low-level
each window through the use of-dynamic program- boundary estimation and object recognition was in-
min , and then, starting with the windows contain- troduced. The problem considered in this paper ising tigh confidence estimates, using dynamic pro- the automatic extraction of main roads when road
gramming again to obtain global estimates of the curvature, width, image intensity and edge strength
roads present. The approach is model-based from can vary considerably and when a barrier along the
the outset and is completely different than those ap- road center may or may not be present. The ap-
pearing in the published literature. It produces two proach is general, and we feel that it can be extended
boundaries for each road, or four boundary when a to handle the full range of road image variability.
mid road barrier is present. The approach is to build geometric-stochastic mod-

els for representing road images, and then use maxi-
1 Introduction mum aposteriori probability estimation for estimat-

ing the road boundaries (and other important fea-
In this paper we introduce a new approach to build- tures) in an image. The modeling approach forces
ing models for main roads in aerial images and a the designer to model all significant pbenomena, and
new computation approach to finding them. The the model is generative so that its representation
goal is a completely automated sysyem. The idea is power can be assessed. The map estimation provides
that this approach could then be extended to findin for the most accurate road finding. Global map es-
other types of objects in areal ima es of the groun, timation is realised in a computationally reasonableIn recent years a number of papers nave appeared in way by using dynamic programming to search small
the published literature dealing with semi-automatic windows to obtain initial road candidates, and then
extraction of roads from aerial photos. In general a dynamic proaammin again with small windows in
human operator gives the road starting points and order to obta glo imates.
the road directions at the starting points. This is
a huge help to the road finding algorithm. This in-
teraction has been necessary because road images 2 Road Generation
can be very complicated. Examination of just the
two images in this paper, Figs 6 and 8, reveals that 2.1 Road Geometry And Internal Grey
image intensity accross a roa d can vary noticeably. Level Model
There may be a barrier running along the center
of the roa. Road- width can vary appreciably, es- We build a geometric-stochastic road model based
pecially when a barrier is present. Image intensity on the following assumptions:
edges along a road boundary may disappear, espe- 1) Road width variance is small and road width
cially when there is a building entrance with a very change is likely to be slow.
small parking area alongside the road. The image 2)Road direction changes are likely to be slow.intensity structure at road intersections can be very 3)Road grey level is likely to vary only slowly.
complicated. There may be cars or markings on
roads, or shadows cast by buildings or trees, etc., 4) Grey level variation between road and background
etc.. Three major types of road finder were used: is likely to be large.
edge linkers, correlation trackers, region based fol- 5) Roads are unlikely to be short.
lowers. A stochastic process model is built exhibiting the
Edge linkers, based on an edge operator output for preceding behavior. Specifically, autoregresw ;e pro-
magnitude and angle for each point in the image cesses are designed to model road center line, road
and then linking the edges according to some crite- width, grey level within the road, edge strength at
ria, were used first by [6] and later by [8] and by [2]. the road boundary,and regions outside the roads and

adjacent to the boundraies. We refer to these re-
*This work was partially supported by NSF-DARPA gions as background. Note that the road geometry

Grant #IRI-8905436 processes are-hidden, i.e, they are not observed di-
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rectly in the data. For this purpose, consideration is Assume for now that the we deal with a step edge (
restricted to an N x N pixel window. The stochas- we also deal with the blur edge but this is more in-
tic processess are function of a discrete parameter volved). The observation image intensities y,,2+I.
i which can be thought of as time or distance, in
pixels, along a horrizontal or a vertical axis. As an and , immediately outside the lower and up-
example, consider Fig 1. The i axis here is horri- per road boundary respectivly are determined by:
zontal. The road center line at i is zi which takes
values in the vertical direction. This variable is not Yz, 2 +1,i = u, + r2 * 61,, i = 1....N (5)
quantized, it takes arbitrary real values. The {zi}
process is given by (la), where c.,, is a zero mean, Isij-,1i = ui + rl * 0,,, i = 1....N (6)
white Gaussian driving noise. This process is de- where r2 and r, are random variables, taking values
signed to generate a straight line if the driving noise ±1 with equal probabilities, 6,, and 8,, are a white
is zero. Gaussian iid sequence having some nonzero mean.

z, = 2z,-i - Z2-2+ (1) The purpose of r2 and rl are to model whether each
of the background grey level is lighter or darker than

di = -d +...1 +1- 2 + e, 2 that in the road.
2 2Assume that the image intensities in the background

Equation (2) describes road width, where di is the regions above and below the road boundaries are
perpendicular road width through the unquantized modeled by different Markov processes. These are
center point [zi,i]. The perpendicular direction is causal Gaussian AR ( autoregressive) models. The
measured as perpendieular to the line segment from lower background AR model is:
the point [zi-2,i - 2] to the point [zi-. 1,i - 1]. i

The stochastic processes ei and Ed. are independent i,., = . x ( -_,._ ,,.,-a)+e,. (7)
Gaussian white noise sequences with zero means and k=0 8f0
variances a.,, and od,, respectively. The road ob-
tained for the unforced solution (exi = 0, edi = 0 where 1ki are the model parameters, uij is the mean
) will be two parallel line as seen in Fig 1. Road value function, and ci., is a Gaussian white noise
boundary location are uniquely detemined by the zi driving sequence with zero mean and variance
and di. The road boundary location on the grid lo- Note that this model generates image data in raster
cations are determined as in Figure 1; where iii, scan mode - left to right top to bottom. The con-
denotes the upper unquantized boundary and ii,2 ditional listribution of the process at pixel j,i given
denotes the lower unquantized boundary. the previously generated process depends only on

We use a second order Markov Process to model the three pixels immediately above and to the left
of j,i. A similar model generates the background

S' above the road, but here the proces generation is
-i • 1------ left to right, bottom to top. The reason for using

3* ]causal AR models is that they are computatioally
,. _-well suited to the dynamic rogramming road esti-

;I- '• mation algorithm used. With the specified road edge
I and background models, it is now possible to speci

d... £ 1the proba-bilty of the background data. We are ex-
_1 -. pecting to detect roads having lengths between Lmi

to Lm,.. with uniform distribution. That feature is
very usefully in the high level processing, whereas

.•-1 2 ] the other features are more useful in the low level
nt... ,t • .... o ... processin'. In fig 2 are displayed various synthetic

eted Wfidt L- xi for i-I.. images wnich were generated by the road model de-
srbdin this section.

Figure 1: (A)A road in a window for unforced solu-
tion. (B) Two Roads in a Window. 3 Road finding as map estimation

problem
the mean intensity of the image data in sequential
vertical strips of the road to be consistent with fea- Our general framework for viewing road finding is
ture 3 of our road model. to estimate the geometry of the road by formulating

the roblem as map estimation. We look for that
1 + roal for

U 2 = jUil + jUi_2 + 6, (3) which P(hypothesized road modellimage data)

The variable ui is the mean intensity in column i is a maximum. Since this posterior likelihood of a
of the window, and cus , is a Gaussian white noise hypothesized road model given the image data canof te wndow an •,is aGansia whie nise be written as
sequences with zero mean and variance au,, and is

independent of the processes c,, and Ed.. The inten- P(hypothesized road model, image data) (8)
sity varies across the vertical direction of the road P(image data)
too. We model this by adding an additive white
noise.Therefore, the observed picture function at the and the denominator is not a function of the hy-
ji)th pixel (jth row, ith column ) in the road is y pothesized road model , the road model estimate

can be found as that which maximizes the numera-
given in (4), where nji is Gaussian white noise with tor, i.e, the joint likelihood of a hypothesized road
zero mean and variance or. model and the image data. The map estimation is

handled by partitioning the image into windows, re-
j,, = u, + na,j, i = L..N, i = i, 1 ..1,. (4) alizing the estimation parameters in each window
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through the use of dynamic programing (detailes are were obtain from the Radius Program. The goal is
given in [5]). Our approach also includes of desion to. find the roads in the real and synthetic images
rules for starting points of a road in a window, and using our approach. The image field is partitioned
stopping points o a road in a window, into an array of square windows (32x32). The road

finder runs simultaneously within the windows to
3.1 The complete low level processing find initial road seeds in the images (section 3). It
In the low level processing we are searching for seeds then combines all the local results to obtain the fi-
of roa..s. The image is divided into square win- nal main roads in the images by using the high-level
dows, N x N pixels in each window, and the sys- approach. Using the low level approach only for the
tem searches for road candidates that fit the road synthetic images, the results in Figure 5 were ob-
model with high probability by using the dynamic tained. The recognized road boundary points are
programming structure. We run the road search four indicated by black dots. The recognized roads for
times, with a separate search starting at each of the Radl are indicated in (Fig7), (detailes are given in
four sides of the window, to pass over all the possi- [51). The recognized barriers and roads for Rad2 are
bilities of road geometries. In Fig 3a we represent indicated in (Figg), The system starts first with rec-
those examples. There may be more than one can-
didate road within a window. This is handled by ognizing the road barriers, using knowledge that the
searching a window for the best road and then re- barrier intensity is lighter than the road surrounding
p eating a window search for the next best road. We it. The initial road barrier seeds in the image were
do not want the second-best road to be a variation obtain by low-level processing within the windows,
of the best road. This is handled by not p~rmitting and with the high-level following stage it combines
boundary points for the best road also to be bound- the local results to obtain the final barrier (detailes
ary points for roads in subsequent searches. In this are given in [51). Each side of the barrier is bordered
way, the system will find a pair of roads such as in by a road; therefore, by knowing the boundaries of
figure lb. The procedure is repeated until all road the barriers, the system also knows the correspond-
candidates are found. Fig 3b illustrate another ex- ing boundaries along one side of each main road.
ample, road junction where a main road forks into The other boundaries along the second side of each
two roads. In a first search starting on, the right road are estimated by using the high-level approach
side of the window road1 between points H, K, E, for road finding.
F will be found, then road2 between points L, M,
F, G will be found and road3 between points A, B,
C, D will be found, by a search starting at the left
side of the window. The splitting area represented
by points C, D, E, F will not be found at this level
.The hidden structure for every road candidate is
found and observed to the high- level processing.

4 Combining road candidates
A high level processing stage is now used to extend
each road candidate produced by the low level win-
dow search in order to obtain global road estimates.
This is done by using shifting windows, as illustrated
in Fig 4, where a new window is introduced at an end
of a road candidate centered on one of the sides of
the window. The best extension, of the road candi-
date, through the window is estimated by using the
dynamic progamming algorithm. This process is
repeated until the stopping criterion stops the road
search or until the estimated road hits the image
border. In the process of extending a road throug-h
a new shifted window, the dynamic programming al-
gorithm begins by using the last estimated state of
the road and the associated road image data. Upon
termination of the road search, if the length of the
estimated road from the initial road candidate is Figure 2: Various synthetic images generated by our
greater than a threshold, the estimated road is ac- road model.
cepted. If the length is less than the threshold, the
estimated road is rejected, unless there is other sup-
porting evidence. Supporting evidence we have used References
in the experiments is that if three long roads enter
an intersection and the short road is adjacent to the [1) D.B. Cooper. Maximum likelihood estimation of markov pro-
intersection and appears to be an extension of one cess blob boundaries in noisy images. IEEE PAMI, Oct 1979.
of them i e has roughly the direction and width of 12] Jr. David M. McKeown and Jerry L.Denlinger. Cooperative
one of the~m: then accept the short road. methods for road tracking in aerial imagery. CVPR, 1908.

[3] D.B.Cooper and F.P.Sung. Multiple-window parallel adaptive
5 Experimentel Road Results boundary finding in computer vision. IEEE PAMI, 1983.

This section describes the results of road finding in [4] Dr.-Ing. W. Kestner and Dr.ing. H. Kamierzak. Semiauto-
tbe synthetic images (Fig2), and two different real matic extraction of roads from aerial photographs. Research

Intitate for Informaton Processing and Pattren Reco••,-
images called, Radl (Fig6) and Rad2 (Fig8) that t,on, 197S.
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MANIAC: A Next Generation Neurally
Based Autonomous Road Follower
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Abstract

The use of artifcial neural networks in the domain of autonomous vehicle navigation has produced
promising results. ALVINN [Pomnerleau, 19911 has shown that a neural system can drive a vehicle
reliably and safely on many different types of wads, ranging from paved paths to interstate high-
ways. Even with these impressive results, several areas within the neural paradigm for autonomous
road following still need to be addressed. Tlese include transparent navigation between roads of
different type, simultaneous use of different sensors, and generalization to wad types which the
neural system has never seen. The system presented here address se issue with a modular neu-
ral architecture which uses pretrained ALVINN networks and a connectionist superstmture to
robustly drive on many different types of roads.

1. Introduction required for driving on the particular
road type for which it is trained.

ALVINN (Autonomous Land Vehicle In A

Neural Network) [Pomerleau, 1992] has - ALVINN is computationally simple.
shown that neural techniques hold much prom- • ALVINN learns features that are intu-
ise for the field of autonomous road following. itively plausible when viewed by a
Using simple color image preprocessing to human.
create a grayscale input image and a 3 layer
neural network architecture consisting of 960 o ALVINN has been shown to work in a
input units, 4 hidden units, and 50 output units, variety of situations.
ALVINN can quickly learn, using back-propa- These features make ALVINN an excellent
gation, the correct mapping from input image candidate as the building block of a neural sys-
to output steering direction. See Figure 1. This tem which can overcome some of the problems
steering direction can then be used to control which limit its use. The major problem this
our testbed vehicles, the Navlab 1 [Thorpe, research addresses is ALVINN's lack of ability
1991] and a converted U.S. Army HMeerhMdrsesi LJN' akV bltcalled the Navlab 2. to learn features which would allow the system

to drive on road types other than that on which
ALVINN has many characteristics which make it was trained. In addition to overcoming this
it desirable as a robust, general purpose road problem, the system must meet the current
following system. They include: needs of the autonomous vehicle community

which include:
* ALVINN learns the features that are
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50 Output Units

connection

30x32 Ipt Retina

Fpmre 1: ALVINN network adhilectue.

* The ability to robustly and transparently serve as road feature detectors. Output from
navigate between many different road each of the ALVINN networks is combined
types. into one vector which is placed on the input

units of the MANIAC network. The outputGraceful performn degrdation, from the ALVINN networks can be taken from
M The ability to incorporate many different either their output or hidden units. We have
sensors which can lead to a much wider found that using activation levels from hidden
range of operating conditions. units provides better generalization results and

have conducted all of our experiments with
From these reqm nts we have begun this connectivity. The MANIAC system is
developing a modular neural system, called trained off-line using the back-propagation
MANIAC for Multiple ALVINN Networks In learning algorithm [Rumelhart, 1986] on
Autonomous ControL MANIAC is composed imagestring direction pairs stored from
of several ALVINN networks, each trained for prior ALVINN training sessions.
a single road type that is expected to be
encountered during driving. See Figure 1. This 2.1. MANIAC Network Architecture
system will allow for transparent navigation
between roads of different types by using thes The architecture of a MANIAC system which
pretrained ALVINN networks along with a inco s multiple ALVINN networks con-
connectionist integrating supsrsuctur. Our sists of a 30x32 input unit retina which is con-
hope is that the superstructure will learn o nected to two or more sets of four hidden units.
combine data from each of die ALVINN nt (The MI connections in Figure 2.) This hidden
works and not simply select the best one. layer is connected to a second hidden layer by
Additionally, this system may be able to the M2 connections. The second hidden layer
achieve better performance than a single contains four units for every ALVINN network
ALVINN network because of the extra data that the system is integrating. Finally, the sec-

available from the different ALVINN net- ond hidden layer is connected to an output

works, layer of 50 units through the M3 connections.
All units in a particular layer are fully con-

2. The MANIAC System nected to the units in the layer below it and use
the hyperbolic tangent function as their activa-

The MANIAC system consists of multiple tion function. Also, a bias unit with constant
ALVINN networks, each of which has been activation of 1.0 is connected to every hidden
pretrained for a particular road type. They and output unit. The architecture of a
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MANIAC system incorporating two ALVINN work trained for one lane roads learns a
networks is shown in Figure 2. matched filter that looks for the road body,

The topology of the input retina ad Ml c- while a network trained on multi-lane roads isThe opoogy f te inut etin an MI on- sensitive to painted lines and shoulders.
nections of MANIAC system is identical to

that of the Al connection topology of an . Triningthe MANIAC Network
ALVINN network. See Figure 1. This allows

us to incorporate an entire MANIAC system To train the MANIAC network, stored image/
into one compact network because the Al con- steering direction pairs from ALVINN training
nection weights can be directly loaded onto the runs art collated into a large training sequence.
MI connections for a particular set of first These pairs consist of a preprocessed 30x32
layer hidden units of the MANIAC network image which has been shifted and rotated to
Simulating the entire MANIAC system, then, create multiple views of the original image
does not entail data transfer from ALVINN along with the appropriate steering direction as
hidden units to MANIAC input units, but only derived by monitoring the human driver during
a basic forward propagation through the net- ALVINN training. See [Pomerleau, 92] for an
work. in-depth discussion of the image preprocessing

and transformation techniques. After collation,
It is the Al connection weights of the the sequence of pairs is randomly permuted so
ALVINN network that extract vital features that all exemplars of a particular road type are
from the input image for accurate driving. So not seen consecutively. The current size of this
in addition to allowing easy implementation of training sequence for a two ALVINN
the MANIAC network, the network topology MANIAC network is 600. If additional
of the Ml connections allows us to capture ALVINN networks are used, 300 images per
important weight information in the MANIAC new ALVINN network are added to the train-
system that the ALVINN hidden units have ing sequence. This sequence is stored for use
learned. These features can be interpreted in our neural network simulator.

graphically in two dimensional views of the
Al connection weight values. Typically, a net- Next, weights on each of the connections in

50 Output Units

Random weights, modified during

M3 ,MANIAC MANIAC training.
connections

8 Hidden Units

Pretimined ALVINN weight
These weights wre frozen during

M2 MANIAC tsMANIAC taiing.
connections

S4 Hidden Units 4 Hidden Units

connections

30x32 Input Retina

Figure 2: MANIAC network built using two ALVINN networks.
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the MANIAC network must be initialized. 3. Results
Because the MANIAC MI connections consist
of precomputed ALVINN Al connection Empirical results of a MANIAC system corn-

weights, they must be loaded from stored Posed of two ALVINN networks have been

weight files. After this is done, the M2 and M3 encouraging. For this system, one ALVINN

connection weights in the MANIAC network network was trained to drive the vehicle on a

are randomized. This weight set is then ready one lane path while the other learned to drive

for use as the initial starting point for learning, on a two lane, lined, city street. The resultant
MANIAC network was able to drive on bothTo do the actual training, the network arhtc of these road types satisfactorily.

ture along with the weight set created as dis-

cussed in the previous paragraph and the To determine more quantitative results, image/
stored training sequence, are loaded into our steering direction pairs from the same two road
neural network simulator. Because the types as well as from a four lane, lined, city
MANIAC MI connection weights are actually street were captured. See Figure 3. Using these
the pretrained ALVINN weights who serve as stored images, ALVINN networks were
feature detectors, the M1 connections are fro- trained in the lab to drive on the one lane
zen so that no modification during training can paved path and the two lane, lined city street.
occur to them. See Figure 2. Also, a MANIAC network integrating the

Initially, training is done using small learning same two ALVINN networks was trained. The

and momentum rates. These values are used results of these experiments are summarized in

for 10 epochs. At this point they are increased Table 1. In Table 1 the columns represent the

(approximately doubled) for the remainder of average error per test image for a particular
training. This technique seems to prevent the road type and the rows represent the type of

network from getting stuck in local minma network that is being used. The errors com-

and is an adaption of a technique used in puted are of two types, SSD error and Output

ALVINN training. Peak error. SSD error is the sum of squared
differences error while Output Peak error is the

The back-propagation learning algorithm is absolute distance between the position of the
used to train the network. The stored images gaussian peak in the desired output activation
are placed on the input units of the MANIAC and the peak in the actual output activation.
network while a gaussian peak of activation is SSD error can be thought of as a measure of
entered at the correct steering direction on the the network's ability to accurately reproduce

50 output units of the network. After about 60 the target vector while Output Peak error is a
epochs, the network has converged to an measure of the ability of the network to pro-
acceptable state and its weights are saved. This duce the correct steering direction.
takes approximately10 minutes on a Sun
Sparcstation 2. The initial comparison to notice in the table is

that the ALVINN network trained for a partic-It soul be ote tha MAIAC sesthe ular road type always performs significantly
same output vector representation as ALVINN. betr ra 50p) than ternor k
T'his allows the output of the MANIAC net- bte >5% hnteAVN ewr
This toeasllow te oupuofted MANiAC nt- of trained for the other road type when presented
wok tor easilytbeicparved wthy tatd aof test images of the type of road on which it is

ALVIN fr qantiatie sudy nd lso trained. This is to be expected. Also notice that
allows for the use of existing software in the

the single MANIAC network, which has been
trained to respond properly to both road types,

2.3. Simulating the MANIAC network typically compares well to the correct
ALVINN network (within 11% in all cases).

Once the network has been trained, we use it in As mentioned earlier, this amount of error is
our existing neural network road following acceptable to properly drive the vehicle.
system to produce output steering directions atapproximately 10 Hz. The case of the four lane road is unique in that

neither of the ALVINN networks nor the

4-6



One Lane Path Two Lane Road Four Lane Road
:Figure 3: T'ypical road input images.

MANIAC network saw a road of this type. In left lane, close to the yellow line, the correct
this case, the response of the one lane path output is identical to the two lane road case.
ALVINN network is nearly identical to when it The most interesting result, though, is that
was presented a two lane, lined, city street. when
Because this type of network typicallyprsnewthoulaeoaimg,responds to the body of the road and the fyat the MANIAC network actually performs better
that the two and four lane roads are both sig- than either the one lane path ALVINN network

or the two lane road ALVINN network. In both
nificantly wider than the one lane path, i.e. the prior cases, the MANIAC network per-
have a larger body area, this response was
expected. A more interesting response is that formed slightly worse than the best ALVINN
of the two lane road ALVINN network. It network for a particular road. This could imply
seems to respond better to the four lane road that the MAIA networks using rma -
images than it does to the two lane road test
images. A possible explanation of why this is steering direction at its output. This will be

occurring can be seen in Figure 3. The four discussed more in the following section.

lane road and the two lane road look almost 4. Discussion
identical. One slight difference, though, is that
the contrast of the road/offroad boundary is A central idea that this research is trying to
slightly higher in the four lane road case than it examine is that of improving performance and
is in the two lane road case. This difference making connectionist systems more robust by
could help the network localize the road better, using multiple networks - some of which
and because we want the vehicle to drive in the

One Lane Path Two Lane Road Four Lane Road

SSD Output SSD Output SSD Output
Peak Peak Peak

One Lane
Path 5.913 2.045 5.570 2.228 5.469 2.225
ALVINN

Two Lane
Road 11.360 3.076 3.621 1.375 1.287 0.823
ALVINN

MANIAC 6.263 2.167 3.907 1.532 1.243 0.774

Table 1: The average output error of ALVINN and MANIAC systems are shown for a variety of road types using two
different metrics. The lower the value in the table, the better the accuracy of the network.
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might be producing incorrect results. In our desirable to have a system that, when given
system the key point to notice is that although initial or new ALVINN networks, created its
a particular ALVINN network may not be able own training exemplars and was able to auto-
to drive accurately in a given situation, its hid- matically learn the correct MANIAC network
den units still detect useful features in the input weights. Creating training exemplars from
image. For example, consider an ALVINN net- existing network weights is essentially the net-
work that was trained to drive on a two lane, work inversion problem. Techniques such as
lined road. The features that it learns are those developed by [Linden, 1989] may pro-
important for accurate driving are the lines on vide clues of how to do this one to many map-
the road and the road/non-road division. Now ping that can create an input exemplar from an
present this network with a paved, unlined output target It can be argued that this task is
bike path. The ALVINN network will respond extremely difficult, even impossible, due to the
in its output vector with two steering direction high dimensionality of most retworks, but per-
peaks. The reason for this is that one of the haps it is worth taking a hard look at imple-
features that the network is looking for in the menting some network inversion techniques
input image is the delineation between road because of the benefits that can be obtained by
and non-road. Because this occurs at two having self training modular neural networks.
places in the image of the paved bike path, the Another area in which modular neural systems
feature detecting hidden units produce a such as MANIAC may be useful is that of
response which indicates that the road/non- inchpas information ufl dis rthroad edge is present at two locations, If these incorporating information from different

roa ede i peset a to lcaton. I thse sources. An example of this idea is to use
hidden unit activations were allowed to propa- sourCes a examewof is id i to use
gate to the output of the network, the charac- MANIAC as a framework in which to add
teristic two peak response would appear. sensing modalities other than video. In addi-
Although in reality this is the incorrect tion to2a videoqcamera, our testbed vehicle, the
response, it is a consistent response to this Navlab 2, is equipped with an infrared camera
input stimulus. A similar scenario holds for and two laser rangefpders. If these devices can
other ALVINN networks given input images of be used as input to ALVINN-like systems
road types for which they haven't been trained, which produce a steering angle as output, it is
Because the response of particular ALVINN reasonable to assume that a training technique
network is consistent when presented with similar to the one used in the current video-
similar images, the MANIAC network can use only MANIAC system will result in a network
this 'extra' data to produce a correct, perhaps which will be robust in all of the component

better, steering direction than a single network domains. This could lead to highly

ALVINN network. It is possible that this is robust autonomous systems which could oper-

what is happening in the case of MANIAC ate in a variety of situations in which current

driving better on the four lane road than either systems fail. Driving with the same system in

of the ALVINN networks. both daylight and at night is an example. In
this scenario video images provide sufficient

5. Future Work information to drive in the daytime but at night
sensors such as infrared cameras would be

There are many directions this research can necessary. The infrared cameras need not go
take but perhaps the most interesting is that of unused in the day though, as their output
developing self-training systems. In the cur- would provide addition information to the
rent implementation of the MANIAC system, modular network.
ALVINN networks must be trained separately In addition to the previous areas of work, there
on their respective roads types and then the is much to be doneiousharevslofingrsysteerMANIAC system must be trained using stored is much to be done with developing systems
exemplars from the ALVINN training runs. If which can allocate their resources and group
exempa r new A thNetworkis traddid torthesy I relevant features together. It has been showna new ALVINN network is added to the sys- that modular neural networks can learn to allo-
term, MANIAC must be retrained. It would be thtmdlrnuanewkscnernoal-cate their resources to match a given problem,
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such as locating and identifying objects in an modular connectionist achitec-
input retina [Jacobs, 1990], while the cascade ture: The what and where vision
correlation algorithm provides a way to pro- 92 COINS Tchnical Report

duce appropriately sized networks. [Fahiman, 927.

1990] By using similar techniques in a (Linden, 1989] Linden, A. and Kindermann, J.
MANIAC-like system, the need to pretrain "Inversion of Multilayer Nets", in
ALVINN networks would be eliminated. It is Proceedings of the First Interna-tional Joint Conference on Neu-
not clear, though, how new information would ral Networks, Washington D.C.

be incorporated into this type of system once it

has been trained. Pmrleau, 1991] Pomerleau, D.A. "Efficient Train-
ing of Artificial Neural Networks

6. Conclusion for Autonomous Navigation".
Neural Computation 3:1, Ter-

This research has focused on developing a WX= Se*noWs (F4.

modular neural system which can transpar- [Pomerlean, 19921 Pomerleau, D. A. Neural Network
ently navigate different road types by incorpo- Perception for Mobile Robot
rating knowledge stored in pretrained Guidance. Ph.D. dissertation,

networks. Initial results from the autonomous Carnegie Mellon University, Feb-

navigation domain are promising. Although ruary, 1992.

the system is simplistic, it provides a starting [Rumelhart, 1986] Rumelhart, D.E., Hinton, G.E.,
point from which we can explore many differ- and Williams, RJ. (1986)

ent areas of the connectionist paradigm such as "Learning Intenal Representa-

self-training modular networks and network tions k, Error Propagation- in
Rumelhart, D.E. and McClelland,

resource allocation. In addition to these areas, J.L. Parallel Distributed Process-
autonomous navigation tasks such as multi- ing: Explorations in the Micro-
modal perception can be studied. structure of Cognition, MIT

Press.
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Abstract results with exponents very close to unity, indicating a
linear function with a high degree of "size constancy."

This paper summarizes several recent results While many of these studies were conducted in small
from perceptual experiments that have poten- spaces in laboratory environments or building corridors,
tial relevance for image understanding methods a number were conducted in outdoor natural environ-
in vision-based navigation. ments. For example, [Da Silva, 1985] obtained functions

with exponents ranging on the average from 0.87 to 0.98

1 Introduction. depending on the particular method of estimation used.
Experiments with expert map users have provided in- Although the studies conducted in such outdoor en-
sights into strate ies useful in automated systems [Hein- vironments suggest impressive precision in perception of
sights nto sategi992Mres uefulnt autmatednsystems [Hein- distance, the environments used have without exception
richs e t al., 19921. More recent experiments are investi- been flat homogeneous spaces such as grassy fields, ath-
gating perceptual competence in extracting navigation- letic fields, or open water. We conducted three experi-
ally salient information from realistic terrain. Results ments to determine if these results generalized to situ-
are helping us to understand the relevance of human ations more likely to occur in actual navigation tasks.
perception to the development of machine solutions for The terrain used was part of a ski slope area and a large
localization problems. In addition, computation a analv- nature park with distances ranging from 8.5m to 357
ysis of these results may help in developing better navi- m. Our principal conclusion is that variability was very
gational assists and training procedures. large, with the previously accepted power function model

fDistance and Slope, accounting for only 40% to 60% of the variance in dis-
Perception of Dtance judgments in some conditions.

When experts solve difficult localization problems, they Scatter diagrams of subjects' judgments of distance
appear to describe topographic features in terms of dis- under two of the conditions used provides some idea of
tinctive properties such as relative size, elevation, slope, such variability. Figure 1 indicates actual and estimated
etc. These are typically specified in bipolar qualitative lateral distances between two points which lay along a
terms such as large or small, narrow or wide, steep or single line of sight under one of the viewing conditions.
shallow. Comparison among features is common with Figure 2 indicates actual and estimated radial distances
terms such as larger, broader, and steeper. As best as between two points, both at approximately the same dis-
we can determine, metric descriptions in terms of units tance from the observer.
of distance or angle of slope are rarely used, despite the An additional experiment was carried out in flat ho-
fact that metric information is readily available on maps mogeneous terrain and yielded results similar to those
with a distance scale and contour lines at standard in- reported in the literature. In addition, all four experi-
tervals. ments replicated a result often reported in the literature,

The psychophysical literature on perception of spatial that of relative underestimation of radial distance com-
layout suggests that at least in the case of distance esti- pared to lateral distance. This is often attributed to the
mation, judgments can be quite accurate. Generally, the foreshortening of visual projections of distance along the
results of studies of perceived distance are represented in line-of-sight.
the form of a power function relating judgments of per- As in the case of research on perceived distance, there
ceived distance to actual distance: judged distance - is considerable laboratory research on the perception of
K * (actual distance)u, where K is a constant which de- slope. However, there is almost no research on the per-
pends on the scale used and n is an exponent which ception of slope in natural terrain. A common observa-
defines the form of the function as decelerating, linear, tion of the laboratory research is an overestimation ofor accelerating. A surprising number of studies yield the slant of surfaces from the horizontal. Of 51 such

"This work was supported by National Science Foundation studies overestimation was reported in 31 and underes-
grant IRI-9196146, with partial funding from the Defense Ad- timation in only one, with the others reporting approx-
vanced Research Projects Agency. imately veridical judgments. In the one report of per-
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Figure 2: Estimated vs. actual radial distances. Figure 4: Actual and estimated radial slopes.

ceived slant in natural terrain a similar observation was slopes and the greater overestimation of more distant ra-
mad-, [Smith and Smith, 1965]. Adults were asked to dial slopes may be due to inaccuracy in radial distance
estimate the slope of a road going up a hillside. The judgments. If the underestimation of radial distances
hill, several miles away, faced the observers. All subjects is greater than the underestimation of lateral distances,
grossly overestimated the slope of the hill; the measured exactly this sort of foreshortening will occur. A similar
slope was 3' but the modal estimate was 450! effect may also account for the overestimation of radial

We carried out three experiments to assess the percep- slopes in laboratory studies were reduced viewing condi-
tion of slope in natural terrain. Subjects were asked to tions are typically used.
judge the average slope of the ground between two tar- In summary, the perception of metric characteristics
get locations. The slopes were on hillsides and level areas of natural terrain is quite variable and subject to consid-
near a local ski area, on a river bank, and on streets in erable error. Map users may know this from experience
a residential environment. The particular slopes varied and not rely on strategies employing such information.
from horizontal to 50 . Included were hills rising in the It is not known to what degree systematic training could
medial plane (e.g., lateral slopes in which the slope of the reduce these errors and provide map users with another
hill cut across the line of sight) hills rising in the fronto- useful tool.
parallel plane (e.g., radial slopes which were slanting into
the line-of-sight). 3 Localization Based on Visual Angle.

Results of al three experiments indicated that sub-
jects markedly overestimated the slopes with amount of [Levitt et al., 1987] describe how the apparent order of
overestimation varying up to 30*. Figure 3 shows the landmarks constrains the viewpoint to a half plane de-
best linear fit between actual and observed slope esti- fined by landmark-pair-boundaries. On a plane, non-
mates for one experimental condition. In general the linear triads of landmarks constrain the viewpoint to
amount of overestimation was less for slopes close to hor- one of seven possible orientation regions. If in addition,
izontal. Furthermore, radial slopes tended to be overes- quantitative information about the visual angles between
timated to a greater degree than lateral slopes. There landmarks is available, two landmarks constraint the
was also some indication that there was greater overesti- viewpoint to a partial circle and in most case, thrf-e
mation of radial slopes when they were far from the ob- landmarks uniquely determine the viewpoint. [Suther-
server than when they were close to the observer. Both land, 1992] extends the analysis by showing how uncer-
the greater overestimation of radial as opposed to lateral tainty in viewpoint determination is related to errors in
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visual angle determination and the actual positions of Results indicated, first of all, that people are rather
the landmarks used. Uncertainty in viewpoint increases poor at using visual angle information in this way. The
with uncertainty in visual angle, though not necessarily average error in estimating one's position, relative to the
in a linear manner. For a given accuracy in angle deter- distance to the configuration of landmarks, ranged from
mination, uncertainty can vary significantly for different 30% for a configuration whose distance was on the av-
configurations of landmarks. For example, the uncer- erage 1,700m to 65% for a configuration approximately
tainty associated with three landmarks on a line and the 1,100m away. Thus observers were making errors of the
actual viewpoint off to the side is much greater than if order of 500m to 700m. For a sample of visual an-
the center landmark were closer to the viewpoint. gles across the various configurations ranging from 140

The only study in the literature investigating human to 700, the visual angles associated with the estimated

localization of viewpoint based on ordering of landmarks viewpoints differed from the actual angles in the scene
and something equivalent to landmark-pair-boundaries by an average of almost 30%. Either the observers where
is that of [Peruch and Pailhous, 1986]. Subjects were not able to accurately make use of the visual angle in-
given a map with 22 distinctive object locations iden- formation or they had significant difficulty in estimating
tified. They were then given a series of trials in which the angles with precision.
they were shown a left-right ordering of a subset of the Nevertheless, there was some indication that subjects
map objects, as if from an eye level view of the space could use the visual angle information. In the first place,
of the map. The ordering of the objects was equivalent there was a high correlation between the actual visual an-
to the order that would be st~en if one were at partic- gles and the angles associated with the estimated view-
ular location on the map and the distance between the points. Secondly, in spite of the large variability in per-
different pairs of objects corresponded to the visual an- formance, for eight of the ten sets of landmarks the av-
gles that would be subtended by them from that loca- erage error was greater for the configurations with the
tion the map. The task was to find in each case this colinear landmarks than for the corresponding sets with
viewpoint on the map. Subjects found correct solutions the medial landmark non-colinear. Performance of occa-

in about 90% of the trials. Their behavior and com- sional individual subjects is very congruent with visual
ments indicated that they were using information about angle information. It is also interesting to note that in
which landmarks were in view in the ordering and about no case were landmark-pair-boundaries violated. Thus
at least large differences in visual angle subtended by while performance is quite variable across subjects there
pairs of object locations. The study demonstrates that, are individual subjects who perform at a very high level
in principle, human subjects can operate on the basis and on the average subjects' performance does seem to
of such qualitative navigation techniques. However, the reflect use of visual angle. Training of human attention
large number of target locations available on any given to visual angle information for position may be feasible
trial makes possible localization on the basis of intersec- and is worth trying.
tion of landmark-pair-boundaries without necessary at-
tention to visual angle. In addition, performance on this References
paper-and-pencil assessment doesn't necessarily indicate [Da Silva, 1985] J.A. Da Silva. Scales for perceived ego-
what people might do in estimating outdoor locations, centric distance in a large open field: Comparison of

An initial attempt was made to assess whether people three psychophysical methods. American JournOa of
were sensitive to the information provided by the visual Psychology, 98:119-144, 1985.
angle separation of landmarks and whether their accu- [Heinrichs et al., 1992] M. R. Heinrichs, K. Smith, H. L.
racy would be subject to the configuration constraints Pick, Jr., B. H. Bennett, and W.B. Thompson. Strate-
identified by [Sutherland, 1992]. Subjects were asked to gies for localization. In Proc. DARPA Image Under-
locate on a map their own viewpoint, in relation to three standing Workshop, January 1992.
environmental landmarks. The landmarks were build-
ings in a metropolitan skyline, viewed from a vantage [Levitt et al., 1987] T.S. Levitt, D.T. Lawton, D.M.
point a mile or more across a river. The river and in- Chelberg, and P.C. Nelson. Qualitative navigation. In
tervening urban clutter prevented accurate perception of Proc. DARPA Image Understanding Workshop, pages
even the relative distance of the individual landmarks, 447-465, February 1987.
leaving visual angle as potentially the best information [Peruch and Pailhous, 19861 P. Peruch and J. Pailhous.
for localization. The maps were blank sheets of paper ex- How do we locate ourselves on a map: A method for
cept for marks indicating the location of the three land- analyzing self location processes. Acda Psychologica,
marks. The three buildings on the skyline were identified 61:71-88, 1986.
to a subject and then they were given a niap with three [Smith and Smith, 1965] O.W. Smith and P.C. Smith.
marks corresponding to the buildings. The subject's task An illusion of slant in nature. Perceptual and Motor
was to mark their own position on the map. In half of Skills, 20:1108, 1965.
the configurations the landmarks were colinear. In the
other half, one of the landmarks was displaced toward or [Sutherland, 1992] K.T. Sutherland. Sensitivity of fea-
away from the observer to see if this increased the preci- ture configuration in viewpoint determination. In
sion of localization as might be implied by Sutherland's Proc. DARPA Image Understanding Workshop, pages
analysis. There were ten sets of the three landmarks of 315-319, January 1992.
each type.
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Abstract used. In this paper, we therefore utilize more generally
applicable methods based only on relative angular mea-

Robot navigation is often based on determining the surements between landmarks.
relative position of visible landmarks in the envi- We define the visual angle from a navigator to two
ronment and establishing a match between those point features as the angle formed by the rays from the
landmarks and features on a map to determine navigator to each feature. A perfect estimate of visual
map position. Exact measurements are seldom angle between two points in three-dimensional space con-
known, and combinations of approximate measures strains viewpoint to a surface of revolution somewhat re-
can lead to large errors in self-localization. The sembling a torus (Levitt ct al., 19871. When the points
conventional approach to this problem has been tosebigatrs(vtttal,18.Whnhepns
cnenal approah theerrorsaf this p roble Ween tow can be ordered with respect to viewpoint position, the
deal with the errors after they occur. We show viewpoint is restricted to half the surface. It follows that,
how a careful choice of landmark configurations on for a navigator traveling on terrain, exact knowledge of
which to base localization will lead to significant the visual angles between three points constrains view-
improvement in robot performance. point to the intersection of three surfaces and the terrain.

In most cases, this intersection is a single point [Suther-
1 Introduction land and Thompson, 1993]. For an analysis of error

A robot, using a map to navigate, is faced with a double free localization when a two-dimensional approximation

challenge: it must be able to determine its own posi- of the environment is assumed, see [Levitt el al., 1987,
tion on the map at any given time as well as stay close Sugihara, 1988, Krotkov, 1989, Sutherland, 19921.

to a specified path as it moves. This is usually done We are making the assumption in this paper that land-

by establishing a match between landmarks in the en- marks are point features and can be ordered. Mountain

vironment and map features and then using geometric peaks are one example of such features, though the re-

relationships between the navigator and the landmarks suits hold for any point landmarks or beacons. We are

to determine map position. Errors in position determi- also assuming that the navigator is traveling on terrain

nation are a function of errors in the measurement of (as opposed to being in space), and that perfect mea-

landmark properties and the particular method used to surement of visual angles to three landmarks will provide

estimate the viewpoint. To the extent that such errors exact localization. When visual angle measure is not ex-

have been considered at all, it has usually been in a con- act but within a given range, location is constrained to

text of developing ways to estimate uncertainty regions an area on the terrain. We define the area of uncertainty

associated with particular viewpoints. Our interest is in to be the area in which the navigator may self-locate for

selecting landmarks in such a way that the errors which any given error range in visual angle measure. We have
shown that a wise choice of landmarks will lead to a de-can occur are minimized, rather than having to accomo- craeithrsuinaeaoucranyadsgifat
crease in the resulting area of uncertainty and significant

date uncertainty regions after the fact. This is partic-
ularly important when sensory processing is expensive improvement in localization.
in time or other resources, making it desirable to utilize 2 Choosing Good Landmarks
only those landmarks which are most useful.

An unstructured outdoor environment complicates the When a two-dimensional approximation of the envi-
localization process significantly. Actual distances to ronment is assumed, any given error bound on vi-
landmarks are often difficult or impossible to estimate, sual angle estimate will constrain viewpoint to a thick-
forcing solutions that depend heavily on visual bearing. ened ring, the thickness of the ring determined by the
Absolute bearings, registered to a map, are frequently amount of error [Levitt et al., 1987, Levitt et al., 1988,
unavailable. In this case, triangulation, which requires Krotkov, 1989]. When three , ndmarks are used, any
absolute bearings to two or more landmarks, cannot be given error in estimate constrains viewpoint to the in-

'This work was supported by National Science Foundation tersection of two such ringsi [Kuipers and Levitt, 1988,
grant IRI-9196146, with partial funding from the Defense Ad- 'A third ring passing through the two landmarks lying at
vanced Research Projects Agency. greatest distance from each other can be computed, but it
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Sutherland, 1992]. In Figure la, the visual angles from landmark order changes. Since the computation of the
the observer V to AB and BC are both 45*. The dark area of uncertainty is dependent on landmark order, the
lines surround the area of uncertainty which represents area will always be bounded by the orientation region
an error bound of -13.50 or ±30% in both visual angles. formed by those three landmarks used for localization.
Although the landmarks will not always be in a straight Our algorithm begins by picking the triple of landmarks
line, the visual angles will not always be identical and which produce the smallest orientation region on the
the navigator will not always make the same error in es- map. (See Figure 2.)
timate of each angle, the resulting area of uncertainty We have previously shown [Sutherland, 1992] that the
will always equal the intersection of these two rings, closer a configuration is to single circle (i.e., all land-

A marks and viewpoint on one circle), the greater the er-
ror in localization. An ongoing rule of thumb is to avoid

done by avoidiug any configuration which results in a cir-
cle which passes through all three landmarks also passing

B through the orientation region in which the viewpoint is
required to lie. If all triples produce the same orienta-
tion region (e.g. all landmarks lie on a straight line), the
most widely spaced landmarks should be chosen.

C

a) A b)

Figure 1: In a two-dimensional approximation of the en-
vironment, error in visual angle estimate to two points
constrains viewpoint V to a thickened ring. When three
points are used, viewpoint is constrained to (a) the in-
tersection of two such rings. In a three-dimensional en-
vironment (b), landmark elevation affects the size of this
intersection.

In a three-dimensional environment, landmarks may F
differ in elevation from each other as well as from the igure 2: Lines joining the landmark points divide spacenaviato. Tis iffrene wil afec th sie ad e into orientation regions such as the shaded area in thenavigator. This difference will affect the size and shape foerud
of the area of uncertainty. Figure lb shows an example foreground.
of the difference that elevated landmarks can make in the Incorporating these constraints, we have developed a
area of uncertainty. The visual angles to AB and BC are "goodness" function to weight configurations. It uses
both 45*. The smaller area on the plane is the area of the locations of landmarks A, B, C and estimated view-
uncertainty for planar angles of 45* and error bound of point V0. The larger the function value, the better the
-10 or ±22% if the landmark points were at the same configuration. Although V0 is not necessarily the true
elevation as the viewpoint. The larger area is the actual viewpoint, our experiments have shown that this func-
area of uncertainty for this configuration given the same tion discriminates in such a way that the best configura-
error bound. tion to be used for localization can be determined using

In order to make the best use of available informa- this estimate. Let A = (Az, Ay, Az), B = (Bz, By, Bz),
tion, the successful navigator must choose landmarks C = (Cx, Cy, Cz), V = (Vr, Vy, Vz) be the projections
which will give the least localization error regardless of the landmark points and Vo on a horizontal plane.
of amount of error in visual angle measure. The area Let I be point of intersection of the line through V and
of uncertainty corresponding to a given visual angle B with the circle through A, C, and V; L be point of
and error in that visual angle varies greatly for dif- intersection of the line through A and C with the line
ferent configurations of landmarks [Sutherland, 1992, through V and B; and d(p, q) be distance between any
Sutherland and Thompson, 1993]. We claim that knowl- two points p and q. (See Figure 3.)
edge of landmark map location and landmark viewing Then:
order, together with knowing that viewpoint is located
somewhere on the map, is sufficient for choosing good G(A, B, C, Vo) = h + f
configurations. where

It has been shown [Levitt ef at., 1987, Levitt et al.,
1988, Kuipers and Levitt, 1988] that the lines joining h = (k (Az + Bz + Cz) - Vz + 10-1
pairs of landmarks divide navigation space into distin- 3
guishable areas (orientation regions). Levitt et al. called
these lines LPB's (linear pair boundaries). When the f d(v,2 )vA - 't if d(V, B) . d(V, 1)
robot passes from one orientation region to another, -i) * ifd(V-L)!d(VB)<d(V1)

does not affect area size. V if d(V, B) < d(V, L)
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Consider two navigators moving along a path toward
B a goal. They have identified visible landmarks on a map

and know the left to right order of those landmarks.
Both begin by using their knowledge of landmark or-
der to determine the smallest orientation region in which
they are located. They use the landmarks which form
that region to estimate their initial location. Those three
landmarks are shown as triangles in Figure 4. The esti-
mated location (same for both navigators) is shown by

c) the empty square. The desired path is shown by a dot-
ted line. The goal is marked by a star. The sequence

Figure 3: Simple geometric relations can be used to rank of frames in Figure 5 show each step as the navigators
landmark configurations. progress toward the goal. A configuration of three land-

marks to use for localization (triangles) is chosen. View-
point (empty square) is estimated and a move is made
toward the next path point (line ending in solid square).

The function consists of two parts. The h function The sequence on the left shows a wise choice of land-
weighs the elevation of the landmarks compared to the marks. Landmarks are chosen randomly in the sequence
elevation at point VO. It is non-negative and attains its on the right.
maximum of 1 when the average elevation of the land-
marks is equal to the elevation at VO. The constant k
was set to .005 in the experiments we describe here.

The f function, also non-negative and defined piece- 0 0

wise, has the major effect on the goodness measure. It
is based on the size of the area of uncertainty for the A

projected points. Note in Figure 3 that as B approaches A

the circle, the measure approaches zero. If B lies on line 0 S

AC, the measure is the ratio d",L. The function in-
creases in value as B is pulled away from the circle and
estimated viewpoint. The factor of 2 in the first piece of 1 ...........
f causes this increase to occur at a rate such that when "..
B is pulled back to the point that the area of uncertainty
is the same size as for a straight line configuration, the
function value is the same. The function increases in
value as B moves nearer the viewpoint.

Figure 4: The eight points at the top of the figure rep-
3 Experimental Results resent the eight landmarks used for localization. Both

navigators start at the solid square on the lower left.
We compared the performance of our algorithm with ran- Viewpoint is estimated (empty square) using the three
domly choosing landmarks to be used for localization, landmarks (triangles) which produce the smallest orien-
All experiments were run in simulation using real topo- tation region. Desired path is shown as a dotted line.
graphic data. It was assumed that the navigator had a The goal is marked by a star.
map of the area and knew map locations of points which
defined both the path and the landmarks as well as the Landmarks used by the navigator on the right in the
order of landmarks with respect to initial navigator lo- first frame are not as widely spaced as those used on the
cation. Results for one example are shown in Figure 4 left. In addition, the center landmark lies behind (with
and in the sequence of frames in Figure 5. Each frame respect to the navigator) the line joining the outer two
in this example represents an area approximately 18 by landmarks whereas the center landmark on the left lies
12 kilometers with the lower left corner corresponding in front of that line. These conditions result in a larger
to UT•M coordinates 427020E, 4497780N, southeast of area of uncertainty for the configuration on the right and
Salt Lake City, UT. North is to the left of each frame, somewhat poor localization. This error is made up for in
and east is toward the top. All landmarks are mountain the second frame, but a large error in estimation occurs
peaks which are visible from the given path.2 Identifying in the last frame. The reason for this is that actual
landmarks in large-scale space is difficult and time con- navigator location (from which the estimate was made)
suming [Thompson and Pick, 1992]. For that reason, we and the three landmarks chosen are very close to being
use a small set of landmarks. Additional landmarks can on a single circle. The visual angles themselves in the
be identified if they are needed. The eight landmarks corresponding third frames -e quite similar: 28* and
used for these trials provided 56 different combinations 450 on the left and 42? and .d* on the right.3
of ordered landmark triples.of oreeanmrrils 3Landmark elevation affects visual angle measure. That2Landmark locations and elevations were taken from is why the sums of the angles are not equal even though the
USGS 30m DEM data. outer landmarks are the same.
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Figure 5: The sequence on the left shows the path taken by the navigator using our algorithm. The sequence on
the right shows the path taken when landmarks used for localization are chosen randomly. Landmarks used for
localization are shown as triangles. Desired path is a dotted line. Path taken is a solid line. Viewpoint is estimated
at empty square, and navigator mioves to next path point (end of solid line furthest to right).
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Figure 6: After fifty trials, clustering on the left shows how better localization results when landmarks are chosen
wisely. Error bounds were *20% in visual angle for the top pair of frames, ±30% in visual angle for the second pair
of frames, and ±20% in both visual angle and direction and distance of move for the third set of frames.
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Wise Landmark Choice Random Landmark Choice
Error Bounds 120Vo Angle ±30% Angle ±20% Angle :t:20% Angle ±30% Angle ±20% Angle

0 Move 0 Move ±20% Move 0 Move 0 Move ±20% Move
Mean Extra Distance Traveled 344 2883 474 4273 18657 4576
Mean Distance to Path 452 513 387 1106 1227 861
Mean Distance to Goal 711 1166 769 3239 4781 3290

Table 1: Results after 100 trials. Total path length was 11352 meters. All distances have been rounded to the nearest
meter.

The statistical distribution of sensor errors and References
whether they affect measurements in an additive, mul- [Krotkov, 1989] E. Krotkov. Mobile robot localization
tiplicative, or non-linear manner are heavily dependent u are o inr
on the specific sensor technologies used. In navigation, using a single image. In Proceedings IEEE Conference
these can range from very wide field image sensors to on Robotics and Automation, pages 978-983. IEEE,
sensors which mechanically move to scan for landmarks. 1989.
In order to illustrate our approach, we ran a simula- [Kuipers and Levitt, 1988] B. Kuipers and T.S. Levitt.
tion experiment using multiplicative error, uniformly dis- Navigation and mapping in large-scale space. AI Mag-
tributed over a fixed range. Error amounts were gen- azine, 9(2):25-43, 1988.
erated using an implementation of the Wichmann-Hill [Levitt et al., 19871 T.S. Levitt, D.T. Lawton, D.M.
algorithm [Wichmann and Hill, 1982]. Chelberg, and P.C. Nelson. Qualitative navigation. In

The three pairs of frames in Figure 6 show navigator Proc. DARPA Image Understanding Workshop, pages
positions for 50 trials, assuming uniform distribution of 447-465, February 1987.
error within ±20% in visual angle measure and no error [Levitt et at., 1988] T.S. Levitt, D.T. Lawton, D.M.
in movement, error within ±30% in visual angle measure Chelberg, K.V. Koitzsch, and J.W. Dye. Qualitative
and no error in movement, and error within ±20% in navigation II. In Proc. DARPA Image Understanding
both visual angle and direction and distance of move.4 Workshop, pages 319-326, April 1988.
The clustering around the path points is quite marked
on the left, the result of using our algorithm to choose [Sugihara, 1988] K. Sugihara. Some location problems
landmark configurations. for robot navigation using a single camera. Computer

Vision, Graphics, and Image Processing, 42:112-129,
Table 1 gives results for all three cases after 100 tri- 1988.

als each. Distances have been rounded to the nearest
meter. "Mean Extra Distance Traveled" is the average [Sutherland and Thompson, 1993] K.T. Sutherland and

number of meters ± total path length that each naviga- W.B. Thompson. Inexact navigation. In Proceedings

tor traveled. Due to the fact that paths in unstructured of the IEEE International Conference on Robotics and

environments are seldom straight, total distance traveled Automation, May 1993.

does not necessarily reflect how well the navigator stayed [Sutherland, 19921 K.T. Sutherland. Sensitivity of fea-
on the desired path. For that reason, we also recorded ture configuration in viewpoint determination. In
distance of each path segment of the desired path to the Proc. DARPA Image Understanding Workshop, pages
corresponding path taken. The perpendicular distance 315-319, January 1992.
of the midpoint of the desired path segment to the path [Thompson and Pick, 1992] W.B. Thompson and H.L.
segment taken was computed for each segment. The av- Pick, Jr. Vision-based navigation. In Proc. DARPA
erage of all these distances is given in the table as "Mean Image Understanding Workshop, pages 149-152, Jan-
Distance to Path". This gives an indication of the lateral uary 1992.
distance of each navigator to the desired path. "Mean
Distance to Goal" is the average distance to the goal. [Wichmann and Hill, 19821 B.A. Wichmann and I.D.

The navigator which used our algorithm traveled less, Hill. An efficient and portable pseudo-random number
remained closer to the path and ended closer to the goal generator. Applied Statistics, 31:188-190,1982.
than the second navigator. It is important in this type
of environment that, when better localization at the goal
is needed, the navigator is close enough to that goal to
exploit local constraints. The navigator who chose land-
marks wisely is close enough to use local constraints in all
three sets of trials. It is questionable if the second navi-
gator, averaging a minimum of two miles away from the
goal, will be able to take advantage of such constraints.

4A point was picked from a uniform distribution within
a circle of radius 20% of path segment length around the
desired path point.
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Abstract and Davis, 19911 and [Talluri and Aggarwal, 19921 de-
termine viewpoint under the assumption that viewpoint

Localization based on visual landmarks re elevation is known with high precision in the reference
quires feature extraction from views and map, frame of the map, a situation which dramatically re-
mathng viewpoft f otuesi benweenatie and map, duces complexity but is unfortunately not likely to hold
and viewpoint hypothesis generation and ver- in practice. [Stein and Medioni, 1992] proposed an al-
ification. In this paper, we describe lower- ternate method for determining viewpoint based on the
level image and map understanding procedures observed horizon line which is similar to the character-for extracting features and higher-level problem istic view approach in object recognition.
solving methods for establishing feature corre- itcve prahi betrcgiin
spondences and makishin ferences about the Vision-based navigation in unstructured terrain can

viewpoint. Each of these processes, including violate many of the assumptions used in the approaches
the interaction of high-level and low-level sub- described above. Often there is limited a priori knowl-
systems, is demonstrated on real data. edge about the viewpoint due to travel through indis-

tinct terrain, temporary occlusion of landmark features,
or errors in position updating processes. The view of

1 Introduction. the world at or near ground level is difficult to generate

An essential aspect of map-based navigation is the deter- from map data with sufficient fidelity to allow signal-level
mination of an agent's current location based on sensed matching. Furthermore, available digital cartographic
data from the environment. Formally, this amounts to data sets often contain inaccuracies that can cause seri-
specifying the current viewpoint in some world model ous problems for correlation-based analysis. For exam-
coordinate system. This localization process has two ple, in one of the USGS DEMs that make up our test
distinct components: one involving the establishment of data, the location of the high point of a significant peak
correspondences between aspects of the sensed data and is off by over 200m. It is not surprising that most of
the map or model and the other involving derivation the published work on vision-based localization from a
of constraints on the viewpoint based on the correspon- ground-level perspective has been demonstrated only on
dences that have been determined, synthetic data, where these problems do not occur.

Correspondences can be established at the signal or With signal-based techniques, actual viewpoint deter-
feature level. Signal-level matching correlates sensed mination is done using the same types of methods in-
data with predictions of how the sensed data should ap- volved in photogrammetry (which solves the same prob-
pear. It works best when the uncertainty in the view- lem) [Sanso, 1973, Thompson, 195 8 j or in a!ignment ap-
point is small and when it is relatively easy to accu- proaches to object recognition [Huttenlocher and Ull-
rately generate expected sensor data. For example, in man, 1987, Grimson, 19901. The principal shortcoming
the TERCOM and SITAN cruise missile guidance sys- in both these methods is the difficulty of introducing
tems, a digital elevation model is matched against a realistic error models or effective representations of the
downward looking, radar sensed elevation profile [An- uncertainty in viewpoint estimates.
dreas et al., 1978, Baird and Abramson, 1984]. Several Feature-based approaches hold the potential for avoid-
researchers have addressed the more difficult problem ing many of these problems. Features are extracted inde-
of signal-based localization at or near ground level us- pendently from sensed data and maps and then matched
ing horizontally oriented imaging systems and passive symbolically. As a result, there is no longer a need to
sensing. In [Ernst and Flinchbaugh, 19891, deviations be able to synthesize an accurate rendition of expected
between expected and observered views are determined sensed data. The symbolic nature of matching and view-
using curve matching algorithms and a weak perspective point inference allows the introduction of sophisticated
model is used to update the position estimate. [Yacoob problem solving methods which are able to deal with

*This work was supported by National Science Foundation issues such as ambiguity and complex error models.
grant IRI-9196146, with partial funding from the Defense Ad- In the remainder of this paper, we describe one pos-
vanced Research Projects Agency. sible approach to feature-based localization in unstruc-
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tured, outdoor terrain. We outline methods for extract-
ing terrain features from maps and image data, show how
matching can be performed, and describe a collection of
qualitative geometric reasoning procedures for determin- "
ing viewpoint while maintaining an explicit representa-
tion of the uncertainty associated with that determina- :10

tion. The approach is demonstrated on a real example
involving imagery obtained with a video camera and map
data provided by the USGS.

2 Feature Extraction.
Figure 1: Original Image

Three classes of entities are central to the localization
process: Terrain is the physical layout of the land. Maps
are geometric representations of a particular region of
terrain, typically from a downward-looking perspective
and possibly augmented with information about culture
and/or vegetation. Views are visually sensed images of
a particular region of terrain.

Each class of entities can be described in terms of fea-
tures. In the case of terrain, features are commonly used
geographic properties: hills, valleys, ridges, etc. These Figure 2: Actual ridge lines.
features can exist across a range of scales, specified in
terms of physical extent. (We never actually deal with
terrain features, only with manifestations of such fea-
tures in the map and view.) In the case of maps and
views, we need to distinguish between data-level and
terrain-levelfeatures: Data-level features are distinctive
patterns in the data (e.g., a configuration of edge frag-
ments in a view or a locally defined topographic struc-
ture in a map). Terrain-level features are patterns of
data-level features likely to correspond to some partic-
ular terrain feature. Terrain features, terrain-level map
features, and terrain-level view features are distinct, even
though they may have common names.

2.1 View features. -

Currently, we are concentrating on those view features "
associated with occluding contours. Because the im- . - -
agery is acquired from a horizontal perspective, these - . . -.
typically correspond to ridge lines. Ridge line extraction - - -

is a classical segmentation problem. The type of data
we are working with, however, causes significant difficul-
ties. Image contours corresponding to actual ridge lines
should be long, connected, and relatively smooth. Ex-
cept in pathological cases, they should never fold back .-
on themselves. While this might suggest an approach
which looks for "large scale" image features, things are - '. _ ....
not so simple. Contrast variations across edges that cor-
respond to actual ridge lines can be small and of limited ...
spatial extent. For portions of many ridge lines, con-
trast variations can be lacking altogether. As a result,
scale-space approaches will not succeed.

Instead, we use an approach similar to [Sha'ashua and
Ullman, 1988, Nevatia et al., 1992]. An initial edge map
is computed using a zero-crossing edge detector. Edge
segments are alternately filtered to remove portions in-
consistent with the geometric properties of ridge lines
and augmented using properties of good continuation to
account for locally indistinct ridge segments. Extraction
of longer ridge lines is done using A* search [Martelli, Figure 3: Edge filtering and gap filling
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Figure 4: Extracted features

1972] which allows the specification of more global op-
timization criteria. This is particularly important for
the horizon line, which can be difficult to find due to Figure 5: Extracted peaks and ridges.

clouds or aerial perspective. Once these operations are
completed, junctions, end points, and vertical contour
extrema are located, since these often correspond to to-
pographically relevant features.

Figure 1 shows an image of mountainous terrain. Fig-
ure 2 shows the actual ridge lines apparent from the
viewpoint associated with Figure 1, as determined from
DEM data. Figure 3 shows four stages in the edge filter-
ing/gap filling process. The first frame is the output of a
hysteresis thresholded zero-crossing edge detector. The
next two frames show intermediate results, with filled
gaps indicated by darker lines. The last frame shows
the final edges. Figure 4 shows extracted line segments,
peaks, saddles, T-junctions, and end points.

2.2 Map features.

The extraction of map features involves different prob- Figure 6: Extracted peaks and ridges at coarser scale.
lems than those associated with the view, but many of
the processing steps are similar. (The cartographic com-
munity has done related work, but not specifically in range of spatial scales. Again, the linear nature of
support of localization.) Since we are operating directly ridge lines limits the value of a straightforward scale-
on elevation data, we do not need to deal with the am- space analysis. A local analysis of ridge line junctions
biguity associated with low-level contrast features in the has proven adequate for distinguishing between dom-
view. However, we do have to find long ridge contours inant and subsidiary ridges. This allows the creation
that may not be immediately apparent at a given scale. of a graph-like description of ridge structure, since spur
The analysis starts with a characterization of local sur- ridges can in turn contain sub-spurs. Access to this hier-
face shape of the map in terms of ridges, valleys, peaks, archy can prove significantly beneficial in feature match-
and saddles using the method described in [Haralick et ing. At initial stages of the matching process, only main
aL., 1983]. Instead of resampling to produce precise ridge ridges should be considered. When precise localization
lines, we found it sufficient to impose thresholds when hypotheses are being evaluated, however, the detailed
extracting ridge lines and use a thinning algorithm to structure of the ridge line may become relevant. The
extract ridge contours. hierarchical description makes it easy to avoid this level

Navigationally salient ridge lines and peaks cannot of detail unless needed.
be detected from an analysis of features extracted from
local differential properties alone. Visually prominent _

ridge lines often contain broad sections where the spa-.*.i . .

tial derivatives of elevation are low, resulting in a clas- : ,
sification as flat ground and so creating breaks in the
ridge lines. Local maxima in elevation may or may not ' "
correspond to visually identifiable peaks, depending on ... . "
the nature of surrounding peaks and saddles. Relatively
simple gap filling and filtering operations can signifi- .

cantly improve the utility of features extracted using lo-
cal methods. Figure 7: Alternate, viewpoint dependent ridge hierar-

The features resulting from this process span a wide chies.
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Local analysis at times is unable to distinguish with
confidence the major and minor ridges coming into a
junction. Rather than being a deficiency of the ap- hesns
proach, it may provide useful information. These sit-
uations are exactly those where there is a viewpoint de-
pendence in the ridges which needs to be attended to. As
a result, we can isolate the viewpoint dependent aspects [ w
of the representation, use with greater confidence those MAO MsL.
parts that show no obvious ambiguity, and distinguish Vo, HsL.
between dominant and subsidiary features if and when
hypotheses about the viewpoint are available. ------ -- ------

Figure 5 shows significant peaks and ridges extracted
at one particular spatial scale overlaid onto the cor- Mqr besh Lo

responding contour map. Figure 6 shows peaks and Lmuoe
ridges extracted at a coarser spatial scale. Figure 7 illus-
trates the hierarchical nature of extracted ridge features.
"Dominant" ridge lines are often viewpoint dependent,
as shown in the two parts of the figure, each with a view
position indicated by a black dot.

3 Matching and Geometric Inference. Figure 8: Interaction of high-level and low-level subsys-

Feature-based localization involves problem solving tems.

[Heinrichs et al., 1992). The integration of symbolic
problem solving with signal-level image analysis has long matching and each potential match involves a richer set
been a goal for many in the computer vision commu- of properties which can be evaluated for compatibility.
nity. Few successful examples exist, however. In our Complexity and possible ambiguity are further re-
case, we are able to effect this integration by restricting duced by forming target configurations that are likely
ourselves to a specific task and establishing a protocol to be matched. Each map and view feature has a set of
for the interaction between high and low level analysis associated properties which constitute a geometric de-
routines that is tailored to that task. The problem solv- scription of its shape and position. Particular property
ing component of the system interacts with the feature values such as high or sharp peaks or near level ridges are
extraction modules as if they were databases. Query an indication that the feature is likely to be easy to find
and response languages were defined that make it possi- in both map and view. Specific combinations of feature
ble to easily express relevant information about terrain properties are used to compute a set of prominence val-
features. Geometric inference is integrated in a similar ues, represented using a number in the range [0.0 - 1.0].
manner. The result is a system in which the individual Prominence alone is a poor criterion by which to select
components can be constructed in a nearly independent features for forming configurations, however, since it is
manner, without a need to understand the details of in- computed on a per-feature basis and it may turn out for
ternal representations and algorithms of other modules. a particular case that there are many features high in
Figure 8 shows the basic organization. some particular property prominence. The distinctive-

Overall control is determined by the high-level match- ness of a particular prominence type is characterized by
ing and inference system. Both top-down and bottom- a value that is large when the population of features is
up feature extraction is easily accomplished, however, such that a few have large values for the prominence in
For example, early in the localization process reconnais- question and the rest have small values. The saliency
sance queries can request a general examination of map of each feature property is computed by multiplying the
or view to determine significant features. Later, expecta- property prominence by the property distinctiveness. Fi-
tions can be verified in a top-down manner by generating nally, the overall saliency for features is computed using
highly constrained queries and examining whether or not a simple product rule that favors features with several
any items are returned, highly salient prominences:

3.1 Matching. Soverndl(fi) = 1.0- fl(1.0 - Si(f.))
One key observation arising from our study of how expert i
map users solve difficult localization problems is that where Soverji(fi) is the overall saliency of feature (fi)
they organize map and view features into configurations and S, (fi) is the individual saliency of the j-th property
before attempting to match them [Pick et al., in press]. of feature (fi).
Configurations are small groupings of features (typically The formation of configurations is implemented by
two or three) that are close together and often satisfy first sending a reconnaissance query to either the map or
particular topographic and/or geometric properties that view feature extraction subsystems, requesting that indi-
make them distinctive. Matching configurations rather vidual features with high prominence be returned. These
than individual features significantly reduces the com- are filtered to remove all but the features with the high-
binatorics in two ways: there are fewer candidates for est overall saliency. Configurations are then formed with
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a combination query to the same low-level subsystem,
requesting any sets of features that contain at least one
of the salient individual features and satisfy particular
geometric and/or topographic properties. Any configu-
rations that result from this process can be searched for
using a similar combination query to the other low-level
feature extraction subsystem.

3.2 Inference.
Localization involves the determination of viewpoint
constraints based on possible correspondences between
image and map features. These constraints are used in
geometric reasoning operations that either hypothesize a Figure 9: Reasoning about viewpoint involves interact-
possible viewpoint or evaluate a hypothesis by predicting ing constraints.
additional constraints that should be satisfied. There are
distinct categories of information about feature position
that in turn lead to distinct constraints on viewpoint:

Absolute bearing: This is the "standard" way to solve
localization problems. It requires an accurate compass a b
registered to the map coordinate system. Determination
of viewpoint is done using straightforward trigonometry.

Relative bearing: Relative bearings between three or
more image features with known map positions lead to a
classical "pose estimation" problem. Well established
numerical techniques exist for solving such problems. d

[Levitt et al., 1987] describe an alternate method in
which only two features are considered at a time. The vi-
sual angle between the two features constrains the view-
point to lie on a particular circle on the map. Using e
multiple pairs of features usually allows a unique view-
point to be found by intersection. Figure 10: Distant constraints on viewpoint: a) abso-

Ordinal view: (Levitt et al., 1987] show how ordinal po- lute bearing, b) relative bearing if approximate depth
sition of two features (e.g., "A is left-of B") can be used information is available, c) relative bearing if no depth
to constrain the viewpoint to lie on one side of a line information is available, d) ordinal position, e) exact
through the positions of A and B [Levitt et al., 1987, alignment, f) approximate alignment
Levitt et al., 1988]. They suggest intersecting this con-
straint for many different pairs of features.

Exact Alignment: If two features line up along a line of last constitute distant constraints, since they are based
sight, then the viewpoint is constrained to lie on a line on features distant from the viewpoint. Trigonometric
connecting the two features. In almost all circumstances relations are required to relate distant constraints to
encountered in outdoor navigation, it is possible to de- viewpoint, although qualitative as well as quantitative
termine which of the two features is more distant and as solutions exist. Viewpoint terrain type leads to local
a result the viewpoint can be constrained to a half-line, constraints which limit the viewpoint to compatible ter-

rain features on the map. Distant and local constraints
Approximate Alignment: If two features are much closer ranftueonhempDiatadlclcnsansApprximte ligment Iftwofeauresaremuc clser can be used in three kinds of reasoning about viewpoint
laterally (i.e., perpendicular to the line of sight) than in (Figure 9):

depth (i.e., parallel to the line of sight), then not only is

the viewpoint constrained to lie on one side of a line con- Distant constraints =ý. constraints on viewpoint: Map-
necting the two features, but it will be "near" this line. view feature correspondences for sets of distant features
This constraint appears to be used with some frequenrcy can be used to determine constraints on viewpoint using
by expert map users solving real navigation problems. geometric reasoning methods applied to any combination

Viewpoint terrain type: A locomoting agent often has of the information sources described above.

more complete information about its immediate envi- Local constraints =* constraints on viewpoint: Local con-
ronment than it does about more distant aspects of the straints allow for the enumeration of possible viewpoints.
terrain. This information relates in a direct manner to Such an enumeration can be intersected with the con-
the determination of viewpoint. (E.g., "I'm standing on straint regions that usually arise from consideration of
a hill. Therefore, the viewpoint must be located at one distant features.
of the hills found represented on the map.") Constraints on viewpoint =* expectations about distant

Constraints arising from the information sources listed constraints: Hypotheses about viewpoint can be evalu-
above can be divided into two categories. All but the ated by examining distant features using the geometric
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Figure 11: View.

reasoning methods applied to any combination of the DEM data covering the equivalent of four 1:24000 7.5'
information sources described above. Positional and/or quadrangles (approximately 21.4 km by 28 kin), the up-
orientational constraints on viewpoint can be exploited, per half of which appears in Figures 5 and 6. The com-

In order to implement the constraint satisfaction pass orientation of the view was known, but no infor-

shown in Figure 9, geometric representations are needed mation about viewpoint was provided other than that it

for viewpoint regions (areas in the map corresponding was somewhere within the available map area.

to possible viewpoints), map search regions (map re- The problem solving subsystem responsible for feature
gions possibly containing terrain features visible in the matching and hypothesis generation and evaluation was
view), and view search regions (portions of the view in implemented in Lisp. The geometric inference subsys-
which particular terrain features indicated by the map tem was also implemented in Lisp and was interfaced
are expected to be found). A variety of representational via function calls. Both of the low-level feature extrac-
formalisms are possible, each with advantages and dis- tion subsystems were implemented in C, ran on different
advantages. [Sutherland and Thompson, 1993] use an machines than the Lisp processes, and were interfaced
analytical description of the bounding curve associated using simple database-like query/response techniques.
with the region in which there is any chance that the The example used four of the six high-level reasoning
viewpoint is located. The localization example shown strategies described in [Heinrichs et al., 1992]: concen-
in section 4 uses a much simpler convex polygon repre- trate on the view first, organize features into configu-
sentation. This provides a compact description that is rations, pursue multiple hypotheses, and evaluate hy-
efficient to manipulate. It also fits fairly well with peo- potheses using a disconfirmation process. Two types of
pie's intuition about the geometry involved. With a few distant constraints on viewpoint (section 3.2) and one
exceptions, convex polygons have proven to be an ade- type of constraint for determining map search regions
quate basis on which to build the geometric constraint based on hypothesized viewpoint were used. Execution
satisfaction algorithms, though they sometimes lead to proceeded in five stages:
a very conservative approach such as describing the rela- View reconnaissance: The view (image) was searched for
tive bearing constraint using a circle rather than a cres- significant features. The highest peak in the image stood
cent (see Figure 10). Figure 10 indicates how distant out well above other features in overall saliency.
constraints on viewpoint can be represented using the
convex polygon approach. Similar regions have been de- Form view configurations: View configurations were
fined for using viewpoint to develop constraints on view formed from the selected peak feature and other nearby
and map positions [Thompson, 19931. features that were prominent. Prominence rather than

G,,Cmetric inference is implemented using a query lan- saliency was used, since the configuration is more dis-
guage similar in principle to that used to interact with tinct than its components. Two dual-feature configur'.-
the low-level feature extraction subsystems. Viewpoint tions resulted, one involving the horizontal ridge segment
regions are hypothesized or refined using a query con- to the left of the peak and one involving the ridge seg-
taining a (possibly empty) current viewpoint region hy- ment to the right. In fact, the second of these was a
pothesis, a set of corresponding map and view feature bad choice. The ridge to the right is actually quite dis-
locations, and a particular inference method to use. The tant from the peak, but this was not detected by the low
geometric inference subsystem applies the method to level image analysis routines since the corresponding T
produce a viewpoint region constraint, intersects this junction was not found. Simultaneous consideration of
with the initial regions supplied, and returns the result. multiple hypotheses combined with the disconfirmation
Map search regions result from queries which specify a strategy resulted in a system tolerant of such errors.
current viewpoint region hypothesis, a set of view fea- Search for configurations in map: Configurations con-
ture locations, and an inference method. View search sisting of a high, sharp peak and a nearby horizontal
regions are obtained in an analogous manner. ridge were searched for in the map. Three such configu-

4 Example. rations were found.

We have demonstrated the sufficiency of the approach Generate initial hypotheses: Six configuration match-
describ mned above byuffplying citto real example from ing hypotheses were postulated (two view configurationsdescribed above by applying it to a raexmlfom times three map configurations). Each configuration

the mountainsjust southeast of Salt Lake City, UT. View match specified two feature matches which were used

features were extracted from the panorama image shown to generate a hypothesized viewpoint region using the

in Figure 11. Note that, rather than the synthesized relative bearing constraint, as shown in Figure 12.

views commonly used in much of the reported research

on outdoor localization, we are using an actual terrain Refine hypotheses and evaluate using disconfirmation
image. Map features were extracted from USGS 30m strategy: For each hypothesis, highly salient view fea-
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Figure 12: Viewpoint regions corresponding to the six
initial hypotheses.

tures were considered in turn and searched for in the
map. If exactly one map feature of the correct type wa,
found in the expected location, a match was established
and the absolute bearing constraint was used to refine
the viewpoint region. If two or more map features were
found, no inferences were drawn and the next view fea-
ture was processed. If no map feature was found where
one was expected, the hypothesis was disconfirmed.

Figure 13 shows the refinement of the hypothesis cor-
responding to the actual viewpoint. Four view fea-
tures were searched for in the map: the high peak men-
tioned previously, two other peaks towards the left of
the panorama, and the long ridge line that wraps around
from the right edge to the left edge of the panorama im-
age. Three unique matches were found, involving two of
the peaks and the long ridge. The remaining peak was
ambiguous, with two possible peaks in the map located
in positions that could plausibly correspond to the lo-
cation of the view feature. On the left of the figure is Hypothesis accepted.

shown the search for corresponding map features. The
current viewpoint hypothesis is show together with the Figure 13: Viewpoint refinement final region.
search region predicted from the bearing to the chosen
view feature. Black dots indicate map features that were
found. For the first three view features considered, a
unique map feature was found. On the right is shown
the current viewpoint, the constraint regions associated
with the map feature just found, and the intersection Figure 14 shows an attempt to refine one of the in-
which becomes the refined viewpoint region. The last correct hypotheses. The upper left panel shows the map
map search returned an ambiguous result, as can be seen search region used to look for the most. salient view peak.
by the two features present within the search region. As The feature being searched for is shown as an open cir-
a result, no refinement of the viewpoint region was pos- cle. Due to the fact that the hypothesized viewpoint is
sible. The plot on the lower right of the figure shows wrong, a different feature was found, as indicated by the
the final region, with the actual viewpoint marked. The black dot. The viewpoint region was refined based on
original viewpoint hypothesis had an area of approxi- this match as shown to the right. The next most salient
mately 1.489 km 2 . After the first absolute bearing con- view feature was the long ridge line. As shown in the
straint was imposed, the size of the region was down to lower left pancl, this was not found where expected and
72,800 m2 . The second absolute bearing constraint left so the hypothes-s was rejected All five hypotheses not
this unchanged. The final constraint reduced the area to including the true viewpoint were rejected in a similar
less than 71,700 in 2 , or about .07 km 2  manner.
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Abstract m
In this paper I will discuss a system which uses
vision to guide a mobile robot through corridors To(m a Cs
and freespace channels. The system runs in an

unmodified office environment in the presence M
of both static and dynamic obstacles (e.g. peo-
ple). The system is among the simplest, most Figure 1: Hardware architecture of Polly.
effective, and best tested systems for vision-
based navigation to date. The performance of
the system is dependent on an analysis of the Polly is a low cost, vision-based, autonomous robot built
special properties of robot's environment. I will to help study how properties of the environment can sim-
describe these properties and discuss how they plify the computational problems facing an agent.2 The
simplify the computational problems facing the theoretical goal of the project is to articulate a num-
robot.'1  ber of useful computational properties of office environ-

ments, and to develop a theory of how those properties
1 Introduction can simplify the design of an agent. For example, one

such property is that office environments do not gener-
Navigation is one of the most basic problems in robotics. ally have any moving objects other than people; thus,
Since the ability to safely move about the world is a pre- motion is a cue to agency. Rather than having to do
requisite of most other activities, navigation has received a complicated analysis of the various objects in view to
a great deal of attention in the AI, robotics, and com- determine if they look or act like agents, the robot can
puter vision communities. One of the limiting factors in simply check if they're moving, a much simpler test. This
the design of current navigation systems, as with many property does not hold of all habitats-trees blow in the
other robotic systems, has been the availability of reli- wind and waves crash upon the shore, but they are not
able sensor data. Most systems have relied on the use agents-and so the property partly determines of the set
of sonar data [7][81, or on vision [9][3][5][6][13][1]. In all of habitats in which an agent that assumes it may sur-
cases, the unreliability of the available sensor data was vive. For this reason, I will refer to such properties as
a major concern in the research. Some researchers have habitat constraints (see Horswill [4] for a more detailed
even avoided the use of sensor data entirely in favor of discussion).
precompiled maps [10. In this paper, I will discuss how habitat constraints

In this paper, I will discuss a very simple vision-based In this papeiwilltisus h ow tat cons
corridor following system which is in day-to-day use here trol systems of simple agents. The optimizations we will
at MIT. The system is notable in that it is very fast examine take the form of replacing a subsystem of the
(15 frames per second in the current system), very well agent with another system which is in some way less ex-
tested, and uses only cheap "off-the-shelf" hardware.A maor oure ofthi siplicty s a anaysi ofthe pensive, but which nonetheless does the same job, pro-
A major source of this simplicity is an analysis of the vided that the habitat constraint holds. The motion
agent's niche. Such an analysis helps make clear the de- constraint outlined above allows a motion detector to be
pendence of an agent on its environment and provides substituted for a more complicated recognition system.
guidance for the design of future systems. This substitution is an optimization in the sense that
1.1 The Polly project the motion detector is less expensive than the recogni-

tion system. Depending on the context, we may mena-
'Support for this research was provided in part by the sure expense as the actual monetary cost of building a

University Research Initiative under Office of Naval Research
contract N00014-86-K-0685, and in part by the Advanced 'Polly was built for S20K (parts cost in the U.S.), but
Research Projects Agency under Office of Naval Research today, a roughly comparable, or perhaps even faster, system
contract N00014-85-K-0124. could be bought for roughly $10K US.
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Figure 2: Conceptual architecture of the current version of the navigation system, as implemented in software.

robot, or the biological cost of growing and feeding extra 9 A plan executive for forcing the robot to perform
neurons, or some other measure entirely. By analyzing fixed sequences of actions (useful for debugging)
an agent's specialization in terms of habitat constraints 9 A simple person detector based on bilateral symme-
and optimizations, we can place specific properties of try
the environment into correspondence with specific com- e An "unwedger," which pilots the robot out of cul-
putational problems facing the agent and the solutions de-sacs and dead ends.
which those properties allow. Such an analysis makes 9 A unit which overrides the corridor follower to per-
very explicit the way in which an agent is adapted to its form open-loop turns
environment, the possible consequences of changing that * A carpet-boundary detector (see section 7)
environment, and what facets of the agent would have
to change to adapt to the new environment. The connectivity of the navigation components is shown

The implementation goal of the project is to use this in figure 2. All these components are run in pseudo-
approach to design to develop an efficient visual system parallel fashion on the DSP: at each moment in time,
which will allow the robot to run unattended for ex- the robot grabs a new frame from the camera, runs each
tended periods (hours) and to give primitive "tours" of of the components, yielding a motor command, issues
the MIT Al lab. Our general approach to design has the motor command, and repeats the cycle.
been to determine what particular pieces of information The corridor follower nearly always controls the robot
are needed by the agent to perform it's activities, and when it is moving. Even when the robot is not in a
then to design complete visual systems for extracting corridor, the corridor follower is still used to attempt to
each piece of information. Thus, the agent might have go forward without hitting obstacles. All other modules
distinct systems for answering questions such as "am I are built upon the corridor follower: the turn box can
about to hit something?" and "what is the axis of this override the corridor follower to turn a corner; the place
corridor?" If these systems are simple enough, they can recognition system, the unwedger, and the plan execu-
be run in parallel very efficiently. In the system pre- tive can issue turn requests to the turn box. As of this
sented here, they are indeed simple enough so that each writing, the corridor follower, unwedger, carpet bound-
one can be run for each image frame, using an inexpen- ary detector, and plan executive are essentially finished.
sive computer. The place recognition system and person detector are

The computational hardware on Polly consists of still under active development.
a 16MIP digital signal processor (Texas Instruments
TMS320C30) with 64K 32-bit words of high speed ram3 ,
a video frame buffer/grabber, a simple 8-bit microcon- 2 Corridor following
troller (M68HCll) for I/O tasks, and commercial mi-
crocontrollers for voice synthesis and motor control (see Corridor following is a common navigation task in office
figure 1). Nearly all computation is done on the DSP. environments. Office buildings tend to consist of long
The fact that Polly uses only vision for sensing was due corridors lined with rooms on either side, thus much of
to lack of engineering time and experience, not because the work of getting from one room to another consists of
we feel that vision should be used for everything, driving along a series of corridors. The corridor follower

described here is intended to be used as one component
1.2 Work to date among many which cooperate to allow the robot to par-

At present, Polly consists of: ticipate in its projects.

"* A system for navigating corridors and relatively un- Corridor following can be broken into the complemen-

cluttered spaces (reported on here) tary problems of keeping aligned with the axis of the

"• A rudimentary place recognition system corridor and keeping away from the walls. This amounts
to keeping the variable 9 in figure 3 small, while simul-

3The DSP includes an additional IMb of low speed ram, taneously keeping I and r comfortably large. Since Polly
which in not presently in use. At present, only approximately can only move in the direction in which it's pointed,
10KW of RAM are in use. these variables are coupled. In particular, if the speed of

500



dhdlon of W" possible architectures. The choice of what architecture is
0e best will depend on the resources available to the agent,

the other tasks which the agent may have to perform,
__ and the relative expense of the design.

Figure 3: Corridor following. 3 The control system

At any given time, the corridor follower has to make a

the robot is s, then we have that: decision about what direction to turn, if at all, how fast
to turn, and how fast to move forward. Since our robot

dl dr has independent motors for turning and driving forward,-- = -T= ssinO
dwe can treat these problems separately. In this section, I

so moving away from a wall requires that Polly tem- will discuss how the corridor follower computes the turn

porarily turn away from the axis of the corridor. Thus and drive rates from five numbers describing the situa-
the problem for the control system amounts to control- tion: I', r', and 06, which are estimates of 1, r, and 0,
ling sand d respectively, c', a measure of the distance to the nearestthe problem for the visual system amounts to determin- obstacle in front of the robot, and a, a measure of theing when one of these conditions is violated, visual system's confidence in its estimate of 0. The con-

There is a huge space of possible solutions to this prob- trol problem is actually much easier than the perceptual
lem. Consider the subtask of aligning with the corridor, problem of estimating these numbers. In section 4, I will
An obvious way of performing this task would be to use discuss two special properties of the environment which
a system that first constructs a 3D model of the environ- can make it easier for the visual system to estimate these

ment, then finds the walls of the corridor in the model, numbers, and then in section 5, I will discuss the actual
then computes the axis, 0, of the corridor from the walls, design of the visual system.
and finally, multiplies the axis by some gain to drive the 3.1 Steering for corridor following
turning motor. We can represent this schematically as: the steering rate d9 is controlled by 0', a, 1', and r',

40[ motor which are measurel[ by the visual system. The system
=3Dmo el-m drives the steering motor at a rotational velocity of

Here the double arrow at be beginning represents input dO a(l' - r') + 00'
from the sensors and the boxes are successive transfor- dt
mations of the sensory data. This is not a particularly if it is confident of it's measure of 0', otherwise with a
efficient design however, since 3D models are both diffi- velocity of a(i' - r'). Here a and 3 are gains (constants)
cult and computationally expensive to build. Intuitively, adjusted empirically for good results.
building an entire model of the environment, only to In practice, we have not measured the variable 0' di-
compress down to a single number, 0, seems a waste of rectly, but instead have used the image plane x coordi-
energy. nate of the projection of the axis of the corridor, which

Of course, any system which computes 0, in whatever is more easily measured. The projection z is equal to
manner, and then turns to minimize 0, that is, any sys- k tan- 1 0, where k is determined by the focal length and
tem of the form, resolution of the camera Thus the actual control law used

in our system is:

= J gain -- motord- = d t(l' - r') +_O tan_ 101

will do the trick. Furthermore, it can be shown that One could solve for 0 giver, z and an accurately cali-
given the right conditions, we don't even need to com- brated camera, but in our experience, this control system
pute 0 per se; we can substitute any monotonic function has worked perfectly well.
of 0 which is zero when 0 is zero.4 Thus we can use any 3.2 Controlling forward motion
system of the form: The two constraints on forward velocity are that the

-motor robot should move forward when there's nothing in its
1f"'1 IH -1 way, and that it should stop when there is something

where f is the monotonic function. close to it. We want the robot to move at full speed

The point of this analysis is simply that the constraints when the nearest obstacle is more than some safe dis-

imposed by the task on the architecture of agent are ac- tance, d and to stop when it's less than some dis-

tually quite modest, and that they admit a huge space of tance d We use the rule( ~Vmaz( c'

"4The conditions are that the motor must be controlled in 8 = min Vmaz, d, - ( dtP)
velocity space, meaning that we have direct control over its
speed, rather than just its acceleration, and that the control which causes the robot to smoothly decelerate as it ap-
system must be fast enough so that we can treat it as having proaches an obstacle, and to back up if it gets too close
zero delay. If these conditions are not met, then the system to an obstacle. Backing up is useful because it allows
may oscillate. one to herd the robot from place to place.
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Constraint Computational problem
Ground plane Depth perception
Background-texture Figure/ground separation
"Long corridor edges Vanishing point
Strong corridor edges Edge detection (for vanishing point)
Known camera tilt Vanishing point
Uniform non-corridor intersections Vanishing point

Figure 4: Habitat constraints assumed by the visual system and the problems they helped to simplify. Note that
"known camera tilt" is more a constraint on the agent, than on the habitat.

4 Computational properties of office ages covering a field of view of 110 degrees (1.9 radians).

environments All vision computations are performed for each frame.
The overall structure of the visual system is shown in

Estimating distance and parsing the visual world into figure 5. The constraints used in the optimization of the
objects are both very difficult problems in the general system are given in figure 4.
case. For example, figure/ground separation can be ar-
bitrarily difficult if we consider pathological situations 5.1 Computing the vanishing point
such as camouflage or crypsis, which can require pred- As was mentioned above, the axis of the corridor is repre-
itors to learn to recognize prey on a case by case basis sented by the z coordinate of it's image-plane projection.
(see Roitblat [12], p. 260). Fortunately, office environ- This can be estimated by finding the vanishing point of
ments, Polly's habitat, are actively structured by both the parallel lines forming the edges of the corridor. Bel-
designers and inhabitants so as to facilitate their legi- lutta ct at [1] report on a such a system which extracts
bility (see Passini [11] for an interdisciplinary discussion vanishing points by running an edge finder, extracting
of the navigational properties of buildings). The special straight line segments, and performing 2D clustering on
properties of office environments allow much simpler ar- the pairwise intersections of the edge segments.' We can
chitectures to be used than would be necessary for an represent this schematically as:
agent which was to follow arbitrary paths in arbitrary
environments. 4. - -ieec[--

One such property is that office environments have a
flat ground plane, the floor, upon which most objects This algorithm, while less computationally expensive
rest. For a given height and orientation of the camera, than 3D modeling, is still rather expensive. We can sim-
the distance of a point P from the camera will be a plify the system if we make stronger assumptions about
strictly increasing function of the height of P's projection the environment. We can remove the step of grouping
in the image plane, and so image plane height can be edge pixels into segments by treating each edge pixel as
used as a measure of distance to objects resting on the its own tiny segment:
floor5 . While this is not a linear measure, and the exact
correspondence between heights and distances cannot be 4.
known without first knowing the specifics of camera, it is _ ee _._
still a perfectly useful measure for determining which of Note that this system will effectively weight segments by
two objects is closer, whether an object is closer than a
certain threshold, or even as an (uncalibrated) measure the leng th e fine provied that the longsline
of absolute distance. This property was referred to as inth
the ground plane constraint in [4]. point.

Another important property of office environments is Edge detectors can also be extremely expensive. Since
that they are generally carpeted, and their carpets gen- the edges we're looking for should be very strong and
erally have only fine-scale texture. That is to say, that straight, we should be able to use a very simple edge
from a distance, the carpet will appear to have a uniform detector, such as a gradient threshold. Computing the
reflectance. If this is true, and if the carpet is uniformly intensity gradient (the rate of change in image bright-
illuminated, then the areas of the image which corre- ness, denoted by o) at a pixel and testing its magnitude
spond to the floor should have uniform image bright- can be done using only a few machine instructions. The
ness, and so any violation of this uniformity must be an resulting system is then:
object other than the floor. This property, called thebackground texture constraint in [4], can greatly simplify=1 [itret ... _-

the computational problem of figure-ground separation. If the tilt-angle of the camera is held constant by the

5 Design of the visual system camera mount, then the vanishing point will always have

The visual system estimates the axis of the corridor and 'The algorithm of Bellutta et al. is actually more compli-
three distance measures from 64 x 48 pixel grey-scale im- cated than this in that it extracts multiple vanishing points,

but for our purposes we can treat it as extracting only the
"5This observation goes back at least to Euclid. See [2]. forward vanishing point.
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center-distance (c'right-distance (r')

van n vanishing point
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Figure 5: The portion of the visual system devoted to corridor following. Note that smoothing is performed prior
to edge detection to remove noise. The vanishing point unit is shown as a single box because all the steps of the
vanishing computation are performed simultaneously. The carpet boundary detector is discussed in section 7.

the same y coordinate, that is, it will lie in the line then simply the height of the lowest non-floor pixel in a
y = Yo for some yo. We can then replace the pair- given column. Thus:
wise intersections with the intersections of the edges with RDM(z) = minfylthe point (z, y) isn't floor}
y = yo. This reduces the number of points to consider
from O(n 2 ) to O(n), where n is the number of edge pix- so now our system looks like this:
els, and also reduces the clustering to a ID problem,
which is also more efficient:

= '-•intersect--Dcluster I-- where "F/G" is the figure/ground system. If the floor
is textureless but the walls generate edges where they

Finally, if we assume that the intersections of the edges meet with the floor, then, by the background-texture
not pointing toward the vanishing point are uniformly constraint, it too can be replaced, in this case, by an
distributed, then we can replace the clustering opera- edge detector (e.g. thresholded gradients):
tion, which looks for modes, with the mean of the z
coordinate: ::,E - miio -

A number of things are worth noting here. First of all,
P' and r' are not necessarily the distances to the walls.

This does have the disadvantage that if there are many They are simply the distances to the nearest non-floor
non-corridor edges in view, then the mean will tend to objects on the left and right sides of the image. This is
move toward the center of the screen. The sign will still not actually a problem however, since if there are other
be correct however, and so the robot will still steer in objects in the way it will simply cause the robot to steer
the correct direction. around them, thus conferring on the robot a limited ob-

ject avoidance capability. If there are no such objects,
5.2 Computing distances then there is no difference anyhow. Thus having the sys-
There are two problems involved in estimating the left, tem make no distinctions between walls and other obsta-
right, and center distances: figure/ground separation to des is actually advantageous in this situation. The sec-
find the walls in the image, and depth estimation to de- ond thing worth noting is that the distance measures are
termine the distances to them. Suppose we had com- nonlinear functions of the actual distances 7 . For some
puted a radial depth map, RDM, of the scene. A radial applications this might be unacceptable, but for this ap-
depth map gives the distance of the nearest object in plication we are mostly just concerned with whether a
each direction. Then we could find the distance to the given object is too close or whether the left side or the
left wall by finding the minimum distance given in the right side is closer, for which these nonlinear measures
left side entries of the radial depth map: are quite adequate. Finally, since no camera has a 180

,----, r-- degree field of view, i' and r' are not even measures of
*I Aminjeft-..sideI-- the perpendicular distances to the walls, I and r, but

rather are measure of the distance to the closest point in
If we had already somehow solved the figure-ground view. Again, this is not a problem in practice, partly be-
problem, that is, if we had already labeled every pixel as cause our camera has a relatively wide field of view, and
being either "floor" or "not floor", then we could use the partly because for a given orientation of the robot, the
ground-plane constraint to generate the RDM: the dis- perpendicular distance is another monotonic and strictly
tance to the closest object in a given direction is a mono- increasing function of the measured distance, and vicC
tonic function of the height in the image plane of the versa.
lowest non-floor pixel in the image plane. Since columns 'The actual function is a quotient of linear equations
of the image correspond to directions, the distance is whose coefficients are determined by the camera parameters.
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Test Time (sec) Frames/see
Full system 67 15 0 0 0 0 0 0 0 0
Corridor follower 67 15
I/O only 67 15 0 0 0 0 0 0 0
No I/O 15 67 0
No VP 10 100 10

Figure 6: Execution times for 1000 frames. "Full sys- 0 0 0 0 0 0 0 0
tem" is all code presently implemented, including the
person detector. "No I/O" is the corridor follower with- Figure 7: A forest environment.
out any frame grabbing or output to the base (a single
frame is grabbed at the beginning and processed repeat-
edly). "No VP" is the collision avoidance system run
without I/O or the vanishing-point box. All execution 6.2 Failure modes
times are for a Texas Instruments TMS-320C30-based
DSP board (a Pentek 4283) running with no wait states. The system runs on all floors of the Al lab building on

The processor has a 60ns instruction time. The first which it has been tested (floors 3-9) except for the 9th

three lines are the same because the system cannot dig- floor, which has very shiny floors. There the system

itize frames faster than 15 FPS. brakes for the reflections of the overhead lights in the
floor. The present system also has no memory and so
cannot brake for an object unless it is actually in its

6 Evaluation field of view. This sometimes causes problems. The sys-
tem also cannot brake for an object unless it can detect
an edge on or around it, but this can more or less be ex-

The corridor follower has been running for nine months pected of all vision systems. The system's major failure
and is quite stable. It has seen at least 200 hours of mode is braking for shadows. If shadows are sufficiently
service with many continuous runs of one hour or more. strong they will cause the robot to brake when there is in
This makes it one of the most extensively tested and fact no obstacle. This is less of a problem than one would
reliable visual navigation systems to date. We have been expect because shadows are generally quite diffuse and
able to run the system as fast as our robot base could so will not necessarily trigger the edge detector. Finally,
run without shaking itself apart (approximately 1 m/s). the 7th floor of the lab, where the robot spends most
While there are cases which will fool the braking system of its time, does not have a single carpet, but several
(see below), we have found the system to be quite reliable carpets, each with a different color. The boundaries be-
in general. tween these carpets can thus be mistaken for obstacles.

This problem was dealt with by explicitly recognizing
6.1 Efficiency the boundary (see section 7).

The system is very efficient computationally. The
present implementation runs at 15 frames per second, 6.3 Performance outside corridors
which is a fast as the system can read data from the
camera (see figure 6). All computation boxes in figure While the system was designed to navigate corridors,
5 are run on every frame in (simulated) parallel. This it is also capable of moving through more complicated
implementation is heavily I/O bound however, and so it spaces. Its major deficiency in this situation is that
spends much of its time waiting for the serial port and there is no way of specifying a desired destination to
doing transfers over the VMEbus to the frame grabber the system. Effectively, the system acts in a "point and
and display. We expect that performance would be no- shoot" mode: it moves forward as far as possible, veer-
ticeably better on a system with a more tightly coupled ing away from obstacles, and continuing until it reaches
DSP and frame grabber. This efficiency of the system al- a dead end or is stopped externally. The system is also
lows it to be implemented with a relatively simple and in- non-deterministic in these situations. When the robot
expensive computer such as the DSP. The modest power is blocked by an object, it will turn either left or right
requirements of the computer allow the entire computer depending on the exact position and orientation of the
system to run off of a single motorcycle battery for as robot and object. Since these are never exactly repeat-
long as nine hours. able, the robot is effectively non-deterministic. Thus

The simplicity and efficiency of the system make it in a "forest environment" such as figure 7, the robot
quite inexpensive compared to other real-time vision sys- could emerge at any point or even get turned around
tems. C30 DSP boards are now available for personal completely. The system's performance is good enough
computers for approximately $1-2K US and frame grab- however that a higher-level system can lead it though
bers can be obtained for as little as $400 US. Thus the a series of corridors and junctions by forcing the robot
corridor follower would be quite cheap to install on an to make a small open-loop turn when the higher-level
existing system. We are also working on a very inexpen- system wants to take a new corridor at a junction. The
sive hardware platform for the system which we hope corridor follower then realigns with the new corridor an
will cost less than $200 US. continues on its way.
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7 Extensions 8 Conclusions

A number of minor modifications to the algorithm de- Curiously, the most significant things about the system
scribed above are worthwhile, are the things which it does not do. It does not build

or use detailed models of its environment; it does not
use carefully calibrated depth data; it does not use high

Vertical biasing resolution imagery; and it is not designed to run in ar-
bitrary environments. Indeed, much of its power comes

As discussed above, shadows and bright lights radiat- from its specialization.
ing from office doors can sometimes be sufficiently in- One may be tempted to object that this system is too
tense to trigger the edge detector. Since these shadows domain specific and that more complicated techniques
always radiate perpendicular to the wall, they appear are necessary to build practical systems for use :n the
horizontal in the image when the robot is successfully real world. I think that this is misguided however. To
aligned with the corridor. By biasing the edge detector begin with, even if one had a single truly general naviga-
toward vertical lines, we can make it less sensitive to tion algorithm, its very generality would likely make it
these shadows. A previous version of the system dealt much slower than the system discussed here. The gen-
with the problem by weighting vertical lines twice as eral system may also require allocating scarce cognitive
much as horizontal lines. The system now explicitly or attentive resources which would be better used for

searches for carpet boundaries and briefly disables the other concurrent tasks. One approach would be to build
detection of horizontal lines when a carpet boundary is a hybrid which used the simple system when possible,

found. The criterion for a carpet boundary is that it and the more cumbersome system only when necessary.
must be a weak horizontal line with no surrounding tex- Another possibility would be to build a system which
ture. could rapidly switch between a number of domain-

specific strategies. Ullman's Visual Routine Processor
[14] is a particularly attractive architecture for this ap-

Fear of the dark proach. A VRP could be quickly configured by the cen-
tral system to use different strategies for different sit-

The system, as described above, will happily drive uations. Ideally, such a system would be able to recog-
through a dark room and hit the nearest obstacle. Simi- nize and learn to use domain-specific strategies for visual

larly, if the robot somehow misses the boundary between tasks, thus making it truly adaptive (see Whitehead and

the floor and a blank wall, and drives close enough to the Ballard for an interesting example of learning visual rou-
wall for it to fill the robot's visual field, then it will treat tines [15]).
the blank wall as being an empty floor and attempt to I remains to be seen how far we can go with simple,
drive up the wall. Polly avoids these problems by treat- domain-specific strategies which rely on special prop-
ing dark pixels as obstacles to be avoided, and by refus- erties of the environment. I suspect that quite a lot
ing to drive forward if there is insufficient texture in the can be done with them. In either case, the system de-

image. A better solution would be to add other sensory scribed here is a demonstration that it is practical to

modalities to the system, such as touch or sonar, but build simple, inexpensive vision systems which perform
those sensors were not available on the robot. useful tasks, and that the solutions to vision problems do

not necessarily involve buying better cameras and bigger
computers.
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ABSTRACT son, 1992a]. Model extension results are also presented
for one sequence where the partial model was manually

Least-squares and robust methods for determining out- built.
liers have been effective in the location and orientation of
a mobile robot from visual measurements of modeled 3D 1.1 Related Work
landmarks. However, building the initial 3D landmark
models is a time consuming and tedious process. For
landmark-based navigation methods to be widely appli- Previous research on multi-frame 3D reconstruction can
cable, automatic methods have to be developed to build be categorided into two broad clamse The frtit das as-
new 3D models and enhance the existing models. Ide- tumes that a model of 3D inter-frame motion is known,
ally, a robot would continuously build and update its rather than assuming independent motion parameters

world model as it explores the environment. This pa- between consecutive frames. Broida [Broida and Chel-

per presents techniques to determine the 3D location of lappa, 1991] assumes constant velocity motion and esti-

image features from a sequence of monocular 2D images mates the 3D location of a set of points tracked over a

captured by a camera mounted on the robot. monocular image sequence. [Chandrasekhar, 1991] ex-
tended Broida's technique to deal with data sets where

The approach adopted here is to first build a partial the 3D location of a few points is known. The objec-
model (possibly noisy) by tracking and reconstructing tive function, which Broida and Chandrasekhar et. al.
shallow structures over a sequence of images using the minimize, has the motion model parameters and the un-
constraint of affine trackability. This model is subse- known structure location parameters as unknowns. Thus
quently used to compute the pose that relates the model the dimension of the objective function grows with the
coordinate system and the camera coordinate system of number of unknown points. An even more basic limit&-
the image frames in the sequence. Unmodeled 3D fea- tion of this approach lies in the model of motion being
tures are then tracked over the image sequence and their adopted and its suitability to the motion being observed.
3D locations recovered by a pseudo-triangulation pro- The second Class Of techniques does not assme any
cess, a form of "induced stereo". The triangulation pro- model of motion. The rigid structure of the world is
cess is also used to make new 3D measurements of the mod ofwmotion The rigtd structe ofrth e w oinitial model points. These measurements are then fuse carried forward by the depth estimates from frame to
with the previous estimates to refine the set of u frame. These techniques are sequential in nature andmodel points.1  

typically use Kalman Filtering to compute the depthestimates [Cul, et al, 1990], [Oliensis, 1991], [Sawhney,
1991]. Oliensis and Thomas [Oliensis, 1991] solve for the

1 Introduction motion parameters between consecutive image frames in
a monocular image sequence. With each image pair,

Techniques are presented for initial model acquisition, new measurements are made for depth values of features

and then model extension using a partial model to re- and these are integrated with previous estimates in the
late the camera and world/model coordinate systems. Kalman Filter framework. The new observation Olien-

The partial model is derived from the reconstruction sis and Thomas [Oliensis, 1991] make is that the depth

of shallow2 environmental structure [Sawhney and Han- estimate of different feature points are correlated since
the same noisy motion parameters are used to compute

iThis work was supported in part by DARPA (via the depth. Because of this correlation, they estimate
TACOM) under contract number DAAE07-91-C-R035, and the depth parameters of all points simultaneously. This
by NSF under grant number CDA-9822572. gives them fairly good depth estimates for camera mo-

'Shallow structures have small extent in depth compared tions having some T. (i.e. tranhattion along the optical
to their distance from the camera. axis) component. The cost, however, is that for estimat-
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ing the depths of m points, a covariance matrix of sini through:
3m x 3m must be inverted with each new frame. I 1)

7f . ,)
1.2 Overview where, p and p' are the corresponding imaged points of

a shallow structure at times n and n + I respectively,
All of these approaches rely on the basic principle of tri- s is the scale defined as the ratio of average depths at
angulation to reconstruct new 3D points. However, re- the two time instants, R. is the 2 x 2 rotation matrix
construction by triangulation is highly sensitive to errors for the rotation around the optical axis (z-axis), t is
in estimating the relative orientation between consecu- the translation in the image plane, Q., and T2v. are the
tive camera frames. In this paper, the reconstruction of vettors representing the x and V components of the 3D
3D structure is accomplished in two steps to overcome rotational and translational vectors respectively, Z0 is
this limitation, the average depth at the second time instant, and f is

The first step is a partial reconstruction of a scene i the focal length of the camera.

terms of shallow 3D environmental structure; structures A set of noisy line correspondences are used to compute
whose extent in depth is small compared to their dis- the best affine motion parameters in the image plane.
tance from the camera. The 3D motion and structure of An error measure that is a weighted sum of the parallel
a shallow object in motion, relative to the camera, can and perpendicular components of the vectors joining the
be well approximated by an affine transformation. In corresponding endpoints of the line in frame n + I and
[Sawhney, 1991], a framework was presented for tracking the affine transformed line in frame n is formulated:
shallow objects over time under the afilne constraint, and 2
in [Sawhney, 1992b] an algorithm for identification and B, = .-
3D reconstruction of these structures is presented. An E W=LX Diira+tpjj)I2 +wUJ(Dii?.+34)1IJ2

important advantage of this approach is that 3D struc- 3=1 (2)
ture is derived reliably without the intermediate step of where i is the ith corresponding pair, j refers to endpoint
explicit computation of the 3D motion parameters. I or 2, w±, and two, are the weights for the perpendicular

Shallow structure reconstruction provides only a partial ad parallel error components, D = - 1 is the
3D model for the scene. However, this partial model isL ¥ J
adequate for the second part of the technique presented data matrix which is constructed using the endpoint p =
in this work, namely model extension and refinement. (a .1 r in frame n, vector r. = fs cos w. s sin w.]T is the
The partial model is used to compute the pose that re- product of scale a and rotation, w., around the optical
lates the model coordinate system and the camera coor- axis, and n, and 1 are the unit normal and direction,
dinate system of the image frames in the sequence. The respectively, of the line in frame n + 1.
unmodeled 3D features (those not recovered by the shal-
low structure reconstruction) are tracked over the image For a set of line correspondences, the unknown parame-
sequence using an optic-flow-based line tracking algo- ters v. and t can be found by minimizing Ei Ej which
rithm (Williams, 1989]. Using correspondences of image leads to a linear system:
features, and the poses computed from model-to-image Mietwel! = Vto (3)
feature correspondences for a sequence, new 3D points
are located by triangulation (see Figure 1). The esti- where Mtt and vig are the data matrix and vector, re-
mation of the new 3D ploints is done using both batch spectively, and v.11 is the vector of the unknown four
and quasi-batch or sequential methods. The triangula- alfine parameters (for full details, see [Sawhney, 1992a].
tion process is also used to make new 3D measurements Given the model of uncertainty of the constituent lines
of the initial model points, which are then fused with in a structure, the covariances of the output afline pa-
the previous estimates to refine the set of initial model rameters can be expressed &a follows [Strang, 1986]:
points. Results are presented for real sequences where
new 3D points are located with average errors of 1.76 %. , (4)

where A.tg is the 4 x 4 covariance matrix of the affne

2 Shallow Structure Reconstruction parameters r. and t.

This section presents a brief summary of identification, 2.1 Tracking Shallow Structures
tracking and 3D reconstruction of shallow structures.
The details can be found in [Sawhney, 1992a]. The affine motion constraint is used in a dynamic model

to predict and track shallow structures over time. Track-
Given a 3D structure that can be well approximated by a ing requires:
fronto-parallel plane (shallow structure), its image pro-
jections at two closely spaced time instants are related 1. A dynamic model of the motion of a structure.
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2. A match meanure to choose good matches for a Using equation (5) and assuming perspective projection,
structure in every newly acquired frame. The con- the pose constraint equations for the ith point 1K in a set
straints on the search for the potential matches are of Win' points can be written in the following manner
provided by the dynamic model.

3. A mechanism for fusing the current estimate of the -C._ .(R 1d+f) = 0 (6)Peas

affine motion and the 3D location parameters of a1 -

structure with those obtained from the newly ac- (Rig + fi) = 0 (7)
quired data. Pes( C~ = (so, 0, -1.4) (8)

The affine motion parameters derived in Equation 3 pro-
vide a dynamic model of prediction of the motion of 4' = (0,8,, -Ii) (9)

a shallow structure in the image plane. Kalman filter- Peas = (RA. + 4), (10)
ing is used for prediction and recursive estimation, and where (I,", Iz) is the image projection of the point and
the Mahalanobis distance [Mahalanobis, 1936] is used ( ,, ow) is the focal length in pixet along each poin d
for matching the predictions with potential matches in
a newly acquired frame [Sawhuey, 1991]. The non-linear system of constraint equations for the

pose parameters R and f is solved using the guas-

2.2 Shallow Structure Identification newton technique [Strang, 1986]. Given a current esti-
and Reconstruction mate R, T, the constraint equations (6,7) are linearized

about the estimate:
In [Sawhney, 1992b] affine tracking is embedded in an 1
algorithm to automatically identify shallow structures.Cus . AT+ 6. b,) = _..1 + ' (11)
The essential idea is that if a hypothesized structure Pes Peai

can be consistently tracked and its 3D depth over time I
is consistent with a shallow structure model, then the (dz. AT + e. C) =---Czi-fa+% (12)
structure is identified as shallow; otherwise it is labeled

non-shallow. The depth of structures identified as shal- where b- = RA x C4 and • = RA x 4,. The above
low is computed from the scale parameter in the afline equations relate the pose increments 6w (rotation) and
transformation of Equation 3. It is represented in the AT (translation) to the computed measurement errors
coordinate system of the first frame in the sequence. using the current pose estimate. The noise terms in the

two equations, i/. and % are functions of both the 3D

3 Pose Determination model noise Api and the image noise AX, AY:

% = AX + _Cdm,. (R(S,)) (13)
Using the depths of the shallow structures recovered by pcsi
the affine-based algorithm, a partial model of the en- =.AY _+i-.I(R(Sp,)) (14)
vironment can be built. This model has the same co- -Y (
ordinate system as that of the first frame's coordinate
system. Given correspondences between model and im Therefore for the ith point, two such equations (11 and
age tokens in subsequent image frames, the pose parame- 12) can be written and for a set of Win points, a total
ters (rotation and translation) that relate the subsequent of '2m" equations are obtained. At each iteration in
frames' coordinate systems to the model coordinate sys- the m ation process, the linear system of equations
tem can be computed. In an earlier paper [Kumar, 1989] is solved using equation (23) to find the best increment
least-squares techniques for pose determination were de- vector3, This increment is added to the current pose
veloped. These techniques are optimal with respect to estimate and the process repeated until there is conver-
gaussian noise in the input image measurements. In this tme at i s
section, the least-squares techniques are extended to also gence"
handle gaussian noise in the 3D model. The techniques If the correct estimate of pose were known, the measure-
presented in this section assume point correspondences ment noise terms %J and %7 would be equal to the sum of
but are easily modified for line correspondences. the measurement error of the image point location and

the projection of the error in the model point along the
The rigid body transformation from the world coordinate image x-axis and y-axis respectively. The measurements
system to the camera coordinate system can be repre- of the image point locations are assumed to be corrupted
sented as a rotation (R) followed by a translation (T). with identical, independent, sero-mean gaussian noise.
A point 'in world coordinates gets mapped to the point The 3D model points are also asumed to be corrupted
IF in camera coordinates as:

"The appendix reviews some salient information on solv-
S= R(p) + (5) ing over constrained linear equations.
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by sero-mean independent gaussian noise. Thus the co- made to relate the coordinate system of each frame in
variance matrix "V' corresponding to the noise in the the sequence to the world coordinate frame.
linear system of equations (22)in the Appendix is a band
matrix in which the non-sero entries are 2 x 2 matrices Points are located by the psuedo-intersection process in

about the diagonal. The output covariance matrix for two steps. In the first step, a 3D error function is mini-

the pose rotation and translation parameters is given by mised to find an initial estimate of the point's location.

equation (24) evaluated at the final pose estimate. This step, however, does not yield the optimal estimate
since the various error terms are not weighted by the
input covariances. In the second step, an image-based

4 Induced Stereo error function is optimised in which the error terms are
inversely weighted by a combination of the input covari-

In this section, we present techniques for computing 3D ances of the pose estimate and the image measurements.
estimates of new points in the world coordinate sys- Let ri be the unit vector corresponding to the image pro-
tein from their tracked image locations over a multi- jection ray for an image point in the ith frame. The pose
frame sequence. The mathematics for both extending estimation for this frame is given by the rotation R. and
the model and refining the initial modeled points is pre- t
sented. Computed with the estimate of each new model translation ai. Since the image projection rays do not
point is an estimate of the covariance of its error. These intersect st a unique point4 , the 3D pseudo-intersection
covariances are functions of the input image measure- point I is obtained by m ing an error function B:
ment covariances and the initial 3D model point covari-
ances. E = ll(Rd) + ii) x tsIll (15)

t.=1

which is the sum of squares of the perpendicular dis-

WORID tances from the psuedo-intersection point IFto the image
V % 1 PA ,P2 projection rays. Differentiating E with respect to the

unknown variable f leads to a set of linear equations,
0, ' which are then solved to give the initial estimate for IF

Frame. : ,, , In the second step, the pose constraint equations 6 and
Frame I Frame 3 7 are used to formulate image-based error equations for

.* .. the X and Y projections of the model points.

Frame2/ , ,,, = 21- (

6L ,. = - - ,. +y (17)

9 PCs PCs03 .where Cx and Cy are the noise terms that are func-
(R T ) 02 tions of both noise in pose AT, and Cw, and image noise

12 2 (R 23 T23 (AX, Ay):

Cx = AX + '( ,. FT, + ' ,i . (16)
Figure 1: Model Extension and Refinement. PCs PCs

1 - 1I- -
The matching of image features to the partial model is C" = AY+P-Ci."T P+ai-- ' (19)
obtained by the tracking method described in Section PIt Pos

2. Given these correspondences, pose estimation is per- al the denomorel in the uations ( an17

formed for each frame using the method presented in the able. The denominator pe, in the equations (16 and 17)

previous section. Image tokens corresponding to new fea- corresponds to the depth of the point and is a function

tures are also tracked over a sequence of frames using the of the unknown variable 1F Therefore, for each frame

computed optic flow between pairs of successive frames over which the point is tracked, two non-linear constraint

[Williams, 1989]. Typically corner points (defined by the equations (16 and 17) are obtained 5 . An iterative proce-

intersection of two image lines) are tracked although any dure is employed to solve the system of non-linear equa-

image feature which can be reliably tracked may be used. tions. At each iteration, the denominator p.. is held

The 3D estimate of the corner point is obtained by the constant using the previous estimate of f and the re-

pseudo-intersection of all the image projection rays for a suiting linear system of equations is solved. The iter-

tracked image point. A nice property of the system de- ative procedure is repeated until there is convergence.

scribed here is that the pose estimation process provides "Due to noise both in image measurements and pose
the world coordinate frame as a stable coordinate frame estimates.
in which 3D measurements from a sequence of frames 'A minimum of two frames is needed to solve the system
can be combined. Independent measurements can be of equations.
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In practice, we have found one iteration is sufficient for on a mobile robot moving roughly parallel to the opti-
robust results. The input covariance matrix V required cal axis. Figure 2 shows the first frames in the A211
for the normal equations is obtained from the expressions and COMP sequences. Between consecutive frames, the
derived above for the noise terms Cx, Cy. The output co- robot was translated approximately 0.38 and 1.4 feet re-
variance of the 3D point estimate can also be computed. spectively for the A211 and COMP image sequences.

The depth of some salient structures in each seqeunce
In the batch method, information from all frames is used was measured with a tape measure.
simultaneously to estimate the 3D locations of tracked
image points. However, it may be desired to sequentially
update the location of new points after every pair (or a
larger set) of frames. In the sequential or quasi-batch
mode, equations (6 and 7) are again used to estimate
the 3D location of image points tracked over the current
set of frames. These new estimates must be fused with
the previous estimates to obtain the current optimal es-
timate. The covariance matrices associated with each
estimate are used to fuse the two estimates and provide
a new uncertainty matrix using the standard Kalman
Filtering equations.

Let the estimate of the point's 3D location and its covari-
ance at frame "t? be p(ti) and A,(ti) respectively. A ! i
new 3D location measurement Q with uncertainty (co-
variance matrix AQ) is computed from a batch of "n"
image frames. The fused location estimate pAt,) and up-
dated covariance matrix AM(t) at frame "4"I are given
by: (a)

At.) = Ap(i4)(Ap(t 1 ) 1 p-jt1 ) + AQ1d) (20)

Ap(tn) = (A,(tl)-1 + AQ1) 1  (21)

This same method is used for model refinement. Initial
model points have associated with them their input co-
variance matrices. When the model is tracked over a new
batch of frames, 3D measurements can also be made for
the model points by the above psuedo-intersection pro-
cedure. These new measurements are fused with the old
estimate using the above equation.

5 Experimental Results and Discussion

We now present results on two multi-frame sequences. In
both cases, similar results are presented using an initial .
m odel built from points on the recovered shallow struc- ...................................................
tures. The image sequences were captured with a SONY (b)

B/W AVC-D1 camera, with an approximate FOV of 24 Figure 2(a) A211 and 2(b) COMP Images.
degrees and digitized to 256-by-242 pixels. In all exper- In both sequences, image lines were extracted for each
iments the image center was assumed to be at the center frame using Boldt's [Boldt, et al, 1989] line grouping
of the image frame and the effective focal length wascalculated from the manufacturers specification sheets, system. The tracking algorithm was applied to the image
Sincewhaved shown ie [manufacturers 1990hatirorin thee. sequences to identify the shallow structures in the scene.Since we have shown in [Kumar, 1990] that errors in the Line triples were automatically selected to hypothesize
image center do not significantly affect the location of Line tril.wre automatil seleted to hphisenew points in a world coordinate system (for a small aggregate structures. Each of these was tested for aJFfne
ned pofs vieaw od c ialt s (for th trackability, resulting in its labeling as a shallow or a
field of view imaging system), calibration for the image non-shallow structure [Sawhney, 1992a-. Figure 3 shows
center has not been done.[awny v j.lursshsin bold lines the structures identified as shallow by the
The A211 (10 frames) and COMP (6 frames) sequences algorithm for the two sequences.
were generated by taking images from a camera mounted
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The numbered points marked by crosses in Figure 2 ly- pare the measured depth value (ground truth) with the
ing on the recovered shallow structures were used as the recovered depth value. Column 2 in the tables shows
initial model points for the A211 and COMP image we- the measured depth of the point in the first image co-
quences respectively. These points are defined by the ordinate frame. Columns 3 and 4 show the error and
intersection of some of the pairs of lines belonging to percentage error in depth, respectively, for the initial
shallow structures. The 3D model locations were con- model points as acquired by the affine-based tracking al-
structed by back projecting the points in the first image's gorithm. Columns 5 and 6 show the output error and
coordinate frame. percentage error in depth (after model refinement and

extension) respectively.

For the new points, it is assumed that no initial model
was available; therefore columns 3 and 4 for these points

I _ "- - are blank. Note that these points also belong to the

reconstructed shallow structures. However, their recon-
-_ _z structed locations were not used as a part of the ini-

tial partial model. Instead, these points were used to
1,0 Jdemonstrate model extension because the ground truth

was available only for these structures. In the tables,
the percentage error in depth is computed with respect

Table 1: Absolute and Percentage 3D location er-

•|J [)to the depth in the first image's coordinate frame.

rors for points in A211 sequence (see Fig. 2.)
-- -- I II I -- ....... IINPUT OUTPUT

-F t-. Depth Abs. % Abs. %

No. Err. Err. Err. Err.
ft. ft. Ift.I

Initial Points
"1 13.4 0.24 1.80 % 0.24 1.78 %

2 14.6 0.19 1.31% 0.20 1.34 %
3 19.0 0.74 3.88 % 0.66 3.46 %
4 19.0 0.16 0.86% 0.11 0.60

Il OO-' 5 20.4 0.13 0.6256 0.17 0.865%
6jJ 1-. l - 6 20.4 0.39 1.90% 0.32 1.605%

!i 7ij-- 20.4 0.49 2.3856 0.7.46 2.25
NwPoints _____

. 1 13.4 - 0.11 0.795%
9 13.4 - 0.00 0.01 %
10 14.6 - 0.53 3.653%
11 19.0 0.273 3.863
12 19.0 - - 0.54 2.82%6
13r 19.0 - 0.11 0.59%6
14 19.0 - 0.07 0.34%5
15 20.4 - 0.23 1. 13 5

~16 20.4 - - 0.27 1.32%5
17 20.4 - 0.12 0.57 56

Figure 3. Shallow structures indentifled in the 17 20.4 0.34 1.65 5

A211 and COMP image sequences. 19 20.4 - 0.62 3.02 5%

The model extension and refinement algorithm was run 20 20.4 - 0.59 2.92 5
in a sequential mode. Tables 1 and 2 show the result Average depth error of new points 1.63%
of locating new points (circled and numbered in Fig-
ure 2) and refining the initial model points (marked by
crosses in the figures). The ground truth available for The average input error in depths of the seven initial
both experiments was only the depths (as opposed to model points in the A211 sequence (as recovered by the
3D location) of the points in the first image's coordinate nMae-based tracking algorithm) was 0.4 feet (1.85 % er-
frame. Thus the results shown in Tables I and 2 con- tror). At the end of the ten frames, the average error of
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result of the model refinement process. The robust re-
Table 2: Absolute and Percentage 3D location 2 covery of the location of new 3D points depends on the
rors f'or points in COMP sequence (see Fig. 2.) camera motion. Optimal angles for triangulation are

INPUT OUTPUT achieved when there is significant translation parallel to

Pt. Depth Abs. % - -Abs. % the image plane. In the A211 and COMP sequence, the

No. Err. Err. Err. Err. translation of the camera is mostly along the optical axis.

ft. ft. ft. Thus, the FOE (focus of expansion) lies on the image

23 Initia oints -plane. Points close to the FOE have smaller dispanty
Initial__ Pnand their depths cannot be reliably estimated. Comae-

1 29.3 -0.23 0.80 % -0.11 0.36% quently, these results imply that we may be at the limit
2 31.3 0.26 0.84 % 0.17 0.55 % of recoverable accuracy.
3 34.2 -0.10 0.29 % -0.07 0.20 %
4 25.7 -0.26 1.03 % -0.23 0.88 % Finally, the accuracy of the model extension process de-
5 35.8 1.59 4.43% 1.54 4.31 % pends on the initial accuracy of the model points. If the
8 28.7 0.39 1.36 % 0.39 1.35 % initial model points have a large amount of noise, then
7 43.2 -1.65 3.82 % -1.63 3.76 % the poses determined for any batch of frames will be
8 43.2 1.18 2.73 % 1.15 2.66 % highly correlated. In this case, the 3D location estimates

9 28.7 1.46 5.08 % 1.41 4.91% of new points will be correlated both across all points and
New Points also all frames. To fully account for this OBcorrelation,

covariance matrices equal to the size of number of points
10 29.3 - - 0.25 0.86 % times number of frames will have to be inverted. In our
11 29.3 - - -0.35 1.19 % case, it is assumed that the initial points do not have
12 31.3 - - 0.51 1.63 % significant noise and hence the cross-correlations can be
13 31.3 - - 0.28 0.89 % ignored. But for larger amounts of noise, it may not be
14 34.2 - - 0.93 2.70 % possible to ignore these effects [Oliensis, 1991].
15 34.2 - 1.31 3.82 o
16 25.7 - -0.02 0.07 %
17 25.7 - 0.03 0.11% Appendix
18 35.8 - 1.05 2.93 %
19 35.8 - 0.50 1.40 % Some facts from linear system estimation theory are re-
20 28.7 - -0.11 0.39 % viewed. An unknown parameter vector i with Vp' ele-

21 28.7 - 0.08 0.29 % ments is related to a set of "n' noisy observations i by
22 43.2 - - 0.46 1.07 % the following equation:

23 43.2 - 1.77 4.10 o Ai= j- (22)
24 43.2 - - 0.45 1.04 1 where iis zero-mean Gaussian noise with covariance ma-
25 43.2 8.0.13 0.30 % trix V. Assume, that this set of equations is an over-
1 26 28.7 -0.80 2.777o- constrained system. Then the Best Linear Unbiased Es-
27 28.7 -0.25 0.88 % timate (BLUE) [Strang 1986] of the unknown vector i
Average depth error of new points 1.46 % and the covariance matrix *P" of the output parameters

are given by:

S= (ATV-'A)-lATV-'y (23)
the 7 initial points was 0.37 feet (1.76 %). The thirteen P = (ATV- 1 A)- 1  (24)
new points were located to an average accuracy of 0.4
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Range-Free Qualitative Navigation*
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Abstract referenced with respect to a single global coordinate sys-
tem. We discovered several problems with such spatial

We summarize some recent algorithms devel- representations. The grids would describe large patches
oped for qualitative navigation which are con- of terrain by a set of numbers which corresponded to
pletely independent of range estimates to lhadt terrain features such as elevation and vegetation type.
marks. We introduce several distinctions that Unfortunately, the world consists of objects which are
reflect more realistic application of qualitative difficult to summarize by a single set of numbers. It
navigation algorithms to real robots. These is difficult to establish the exact three-dimensional po-
involve the the extent to which landmarks sition of a distant landmark, especially when using pas-
can be identified from very different points of sive sensing. Thus, it is difficult to know where to attach
view (called the dintiactiveness of landmarks); landmarks to the underlying terrain representation when
whether or not a compass is allowed; and dis- it uses a single, global coordinate system. Robots also
tinctions between different types of compasses, have limited recognition capabilities in complex outdoor

environments. They can see distinctive things in the
1 Introduction world, and yet not know what or where they were. In

Qualitative Navigation [Kuipers and Byun, 1987; fact, there are no assurances that robots can see the
19901Ne con cns sp8 same object as being the same object from very different

Kuipers, 1978; Levitt and Lawton, 1990] concerns spa- points of view.
tial learning and path planning in the absence of a single
global coordinate system for describing locations and the Qualitative Navigation deals with these problems via
positions of landmarks. It is based on a multi-level rep- a multi-level representation of spatial memory. The dif-
resentation of space, which, at its most abstract level, is ferent levels are distinguished by what constitutes a land-
based on topological properties which allow a robot to mark and the connectedness of spatial memory which
describe a location using the directions of visually salient refers to how, given one location, it is possible to de-
patterns (with no associated range measurements) and termine the position of another location. At the sim-
then navigating using cues such as the occlusions that plest level of spatial representation (the Sensorimotor
occur between landmarks. An advantage is that the level) a landmark consists of a perceptual event which
robot can use landmarks for which exact positions can can be used for sensory feedback to control guidance.
not be determined. Thus, if a robot sees a building in The next level (the Topological level) is based upon
the distance, it may not know or be able to recognize the noting and tracking stable perceptual events around the
structure as a building or determine its exact position in robot, but without associating any range information to
space but it can still incorporate this to form an effec- these. This level is topological in the sense that there
tive spatial memory. This is actually quite intuitive: it is is no metric information associated with landmarks. A
doubtful that animals navigate by detecting landmarks, place is described by the set of visual patterns surround-
determining ranges to them, and then storing everything ing the robot. This description of a place is called a
in a single frame of reference[Gallistel, 1990]. It also re- viewframe. Movement from place to place is deter-
moves the effects of incremental errors due to drift, mined when there is some change in the order of these

Our work [Levitt and Lawton, 19901 in qualitative patterns. The next level allows the association of po-
navigation developed while trying to produce basic nay- tentially inexact range information with the visual pat-
igation and recognition capabilities in an autonomous terns (Local Coordinate systenms). At this level,
land vehicle. Initially we worked with a terrain rep- viewframes can have associated range estimates with the
resentation based upon an a priori terrain grid, which detected visual patterns and the localization of one place
describes terrain in terms of a regular grid of features to another was inexact. The final level (Global Co-

"This research in supported by the Advanced Research ordinate System) assumes that we have exact three-
Projects Agency of the Department of Defense and is mon- dimensional information for all landmarks. In [Levitt
itored by the U. S. Army Topographic Engineering Center and Lawton, 1990], we found that by working at the
under contract No. DACA76-92-C-0016 level of a viewframe based representation, the problems
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faced when working with a single global coordinate sys- view. We assume that once a nondistinct landmark is
tern were drastically simplified, seen, it can be tracked over time until it disappears. A

In this paper we describe qualitative navigation algo- nondistinct landmark is not necessarily described as a
rithms which work completely at the topological level, particular object in the world, but can be described as a
dealing with landmarks for which there are no range es- simple visual patter, such as a colored region of a partic-
timates. In addition, we introduce several distinctions ular shape or a set of edges aligned with gravity. Such
for qualitative navigation algorithms. One distinction descriptions of landmarks will tend not to be unique.
concerns landmarks. We consider two basic types: dis- A general finding of the algorithms we describe here
tinct landmarks which can always be recognized as is that the more distinct landmarks there are, the more
the same from wherever they are seen and nondistinct easily a robot can find shortcuts and novel paths between
landmarks which may not be recognized as being the locations. The more indistinct landmarks there are, de-
same when seen from different points of view. We as- termining position depends on recognizing the distribu-
sume that once landmarks are seen, they can be tracked tion of landmarks surrounding a robot. In this case, the
over time until they disappear. The other distinction robot will tend to stay close to established paths that it
involves whether or not the navigation algorithms use a determines during explorations. It is possible for a robot
compass to yield a fixed direction. We also distinguish to determine novel paths between locations with nondis-
two different types of compass. The direction associated tinct landmarks, but it requires significant exploration
with a local compass can change from place to place, to determine that a landmark is the same form many
but at a given place, it will always point in the same different points of view.
direction. An example is a compass which is effected by
fixed magnetic influences at different locations. The lo- 2.2 Viewframes
cal compass can also be a very strong landmark which is A viewframe contains the set of visible landmarks sur-
visible from a wide set of views. A global compass will rounding a robot at a given location with their corre-
always point in the same direction regardless of where sponding orientations and other attributes describing the
the robot is located. We can express these distinctions individual landmarks (such as color, visible height, con-
as a table corresponding to the different types of topo- trast, etc.) Viewframes are a one-dimensional sequence
logical navigation algorithms we have developed: of landmarks (The direction of gravity is used to reduce

the two-dimensional images surrounding the robot to a
Topological Qualitative Navigation Algorithms one-dimensional sequence). An example viewframe V is

Compass No Compass shown in Figure 1. This viewframe uses compass infor-

distinct landmarks Very Good Good mation and is then represented as
nondistinct landmarks 00o Difcult. [Viewframe Identifier: V

Landmarks:
For example, consider qualitative navigation without [[lidA; AttributesA], aA]

a compass and identical, nondistinct landmarks. As one [[lidB; AttributesB], GB]

might expect, this is very difficult and depends criti- [[lidc; AttributesC], ac]
cally on matching viewframes based exclusively upon Robot's heading: orf
the angular orientations of landmarks. More practical When a viewframe is extracted without a compass,
algorithms are those which are based upon the use of there's no associated 0-axis to describe a fixed direction.
a local compass and a limited number of distinct land- The relative orientation of landmarks is then represented
marks. This corresponds to a freely navigating robot by the angle difference between successive landmarks.
which can build maps and navigate using simple visual The ane diffrene bn succesenladmrs.
features, such as colored regions aligned with gravity, as in Figure 1 in
landmarks. in Figure 2) as

In the remainder of this paper, we describe the basic
memory organization used for qualitative navigation and [Viewframe Identifier: V
then present different navigation algorithms. Landmarks:

[[lidA; AttributesA], OA]

2 Organization of Spatial Memory and [[lidB; AttributesB], OBI

Navigation Behaviors [[lidc; AttributesC], 1c]
Robot's heading: (Oh,B)]

2.1 Landmarks For the viewframe in Figure 1 and Figure 2, lidA, lidB,
We distinguish between types of landmarks to reflect dif- lidc are the local identifiers for visible landmarks A, B,
ferent recognition capabilities in robots. A distinct land- C. The Local identifier is a name or abstraction of
mark is one which can be recognized as being the same the attributes of a landmark that is tied to a specific
from all points of view. Distinct landmarks require con- viewframe. Note that a landmark with the same local
siderable recognition capabilities for a robot owing to the identifier in different viewframes can have different im-
variable appearance of landmarks from different points age attributes depending upon the viewframe it is con-
of view. A nondistinct landmark is one which may not tained in. A distinct landmark which can be recognized
be recognized as being the same from different points of as being the same from very different points of view has a
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unique local identifier with respect to all viewframes and
is called a global identifier. When a robot is exploring
the environment, distinct landmarks will always be asso-
ciated with a unique local identifier in all the viewframes
which contain it. Nondistinct landmarks will have the UA ufe

same local-identifiers in connected viewframes so long
as the landmark is visible (or after landmark-unification........... N .. ........
- see below). When a landmark reappears or is dis- C
occluded, it will have a new associated local identifier.
This is similar to what can happen when an animal walks
on two different paths without realizing that there is a
common landmark between them. For each nondistinct
landmark, there can be more than one local identifier for
it in different viewframes. Figure 1: Viewframe Representation with a Compass

When viewframes consist largely or totally of nondis-
tinct landmarks, being able to access or recognize a par-
ticular viewframe is difficult (for example, a large red re- A
gion can be a landmark in several different viewframes).
For this reason, we also associate keys with viewframes oil

that are used for recognizing viewframes by a hashing op-
eration. There are a large number of different keys such

as the average height of landmarks, the average angle be-
tween landmarks, the number of landmarks, number of
highest landmarks, number of landmarks for particular
colors, variance of contrasts, variance of heights, variance
of angles between landmarks, ratio's of landmarks having
different attributes, etc. These keys help to distinguish Figure 2: Viewframe Without a Compass
and match viewframes. If there is a local compass many
more types of keys are possible because it is possible to associated with allowable changes in the value for eachorder the landmarks in the viewframe and compute keys asoitdwhalwbecansinhevuefrah
based upon position in the viewframe. Each key has lim- key. If this is exceeded, then the viewframe is stored inited number of values. Two viewframes are said to be spatial memory. For example, if there number of land-hash-matched if they have the same key value for each marks changes drastically, it is necessary to then extract
key. a viewframe in spatial memory. It may also be useful

also uto have a function which weights the changes in the dif-
Keys are also useful for the efficiency of accessing ferent keys to determine whether a viewframe is novel

viewframes. Suppose we have 10 keys, each key has
10 different values; therefore we have 1010 equivalence enough to be extracted.
classes. We build a hash table, making an entry for 2.4 ViewFrame Matching
each possible value combination of all keys. To find a Viewframe matching is the process which deter-
viewframe to match V, we first compute key values of mines the similarity of two viewframes. We use a two
V for all keys, then use the combination of those values level matching processing. The first level finds similar
as an index to the hash table to find the viewframe in viewframes by hashing and then uses the number of land-
the database. Since we have 0(1) number of keys, time marks with common local identifiers in both viewframes
to compute the key value is 0(1), time to search in the
hash table is 0(1); therefore, the time complexity to find connectivity between two v.ewframes is defined as:
a viewframe to match V is reduced to 0(1).

2.3 Viewframe Extraction and Filtering con(Vi, V2) = IILocai-ids(Vi) n Localids(V2 )j (

The extraction of a viewframe involves identifying land- IlLocal-ids(V1 ) U Local-ids(V2 ) (1

marks surrounding the robot. These are then stored in Second level viewframe matching compares the orien-
different types of viewframes depending upon whether tation (angle) difference between landmarks. For this
or not there is a compass and on the distinctiveness of level of matching, different thresholds for the maximum
the landmarks. We have also found it useful to compare orientation difference for corresponding local identifiers
a newly extracted viewframe to the previously extracted in the viewframes are used.
viewframe to determine if the newly extracted viewframe
is different or novel enough to merit storing it in spatial 2.5 Navigation Behaviors
memory. This process is called viewframe-filtering and The navigation algorithms are based on a set of sim-
has the effect of reducing the number of very similar or pIe visual tracking behaviors. Viewframe centering is
redundant viewframes that are stored in memory. Filter- when the robot is positioned at a landmark and walks in
ing is done by by keeping track of changes in the values the direction of the center of a viewframe which contains
associated with the different keys. There is a threshold that landmark. Without a compass, viewframe centers

517



involves moving so that the robot optimizes key simi-
larity with respect to the viewframe. Viewframe cen- . Z 2 Z =

tering is simpler with a local compass which is valid V a
withing the extracted viewframe since the relative direc- -

tion of a landmark and the viewframe center is known.
Viewframe back-matching (also called landmark C-
unification involves recognizing that landmarks in dif-
ferent viewframes are the same and their local identi-
fiers are uniiied. This happens when a robot visits the C"-
same place along separate paths. Landmark circling
is when a robot circles around a known landmark. It is- -
a way of searching for surrounding landmarks when no
nearby landmarks are distinguished or visible. The robot
can spiral towards or away from the landmark (until the
landmark is no longer visible). Landmark targeting is
for walking towards a visible landmark. LBP crossing
is when a robot crosses an Linear Pair Boundary defined Figure 5: Simulator for Indoor Robot with displayed
by two landmarks. The crossing can occur on either viewframe
side or through the center of the LPB between the two
landmarks. LBP alignment is when the robot trav-
els along the LPB boundary defined by two landmarks. Step 2 compare VFwitb other viewframe in VF-DB by
Random walking randomly selects a visible landmark; some viewframe matching mechanism.
walks to it; and then repeats. An alternative version Step 3 if NOT matched for VF,add VF to V-DB, add
walks straight for some distance, changes direction, and pointer to VF into each landmark entry with the
then repeats. In Novelty walking, a robot walks to op- same local identifier in L-DB; else return the pointer
timize the changes in the keys used for viewframe filter- to VF in V-DB.
ing. The effect is to go someplace where it is as different Step 4 add pointers to VF into current path's
as possible from where you currently are. viewframe sequence in P-DB;

2.6 Spatial Memory 2.7 Qualitative Navigation Simulator

Spatial memory consists of three inter-related databases: We have been exploring different qualitative naviga-

the viewframe database (V-DB), the path database tion schemes using the simulators shown in (Figure 4)

(P-DB) and the landmark database (L-DB) (see Fig- and (Figure 5) (for exploring indoor navigation). Each

ure 3). The landmark database contains descriptions contains 4 subwindows. The upper-left is a Unix shell;

of landmarks that a robot has seen. It is possible for the lower-left has controls for setting the such things

the same physical landmark to occur several different as the density of landmarks, the range of visibility, the

times in the landmark database because it may not have number of globally distinct landmarks, selecting differ-

been identified as being the same from different views, ent navigation modes and so forth; and the upper-right

The viewframe database contains viewframes which de- shows the 360 degrees of view from the robot at a given

scribe the visible landmarks surrounding a robot at a location. The lower-right shows a top-down view of the

given location (this is described in more detail shortly) navigation world. In (Figure 4) the circle shows cur-

The path database consists of connected sequences of rent viewframe containing landmarks displayed in upper-

viewframes which a robot determines while exploring the right subwindow, the line in the circle shows the robot's

environment. Database Storage algorithm: heading. Distinct landmarks are numbered and nondis-
tinct landmarks are not numbered, but can appears as

Step I extract VF and filter against previously ex- having different colors and intensities. In the simula-
tracted VF. tor in (Figure 5), we assume that limitations on sight

are only caused by occlusion. The current viewframe is
shown as the set of radiating lines from the robot's cur-
rent position to each of the visible landmarks. The 'jr-
rent viewframe is displayed as a sequence of landmarks
in the upper right-hand window.

L.M V-09 P.09

V9110 0---V1 Pm, ,3 Navigation Using A Local Compass
S: ••--With A Variable Percentage Of

vi Distinct Landmarks
vo •This algorithm is intended to work with a variable

number of distinct landmarks, ranging from completely
nondistinct landmarks to completely distinct landmarks.

Figure 3: Memory Architecture The nondistinct case would correspond to walking
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Figure 4: Qualitative Navigation Simulator

through a world full of identical landmarks with a corn- a in V, viewframe centering is to walk in orientation an-
pass. When the number of distinct landmarks increases, gle a + , towards the center of V. Two viewframes are
the efficiency of the path planning improves, said to be connected or adjacent if they have at least one

Navigation using this algorithm is shown in figures local identifiers in common. Navigation then involves

7, 8, and 9. The robot initially walks along two sep- finding a sequence of connected viewframes (Vo, .... I,
arate paths which form a 'k-like shape shown by the ... , V,) with overlapping landmarks which are traversed

solid thin lines. The robot is first at the upper-middle by successive viewframe centering.

part of the #1 and walks to the middle-lower part. It Viewframe back-matching (also referred to as
is then relocated to the upper-left corner and walks to landmark unification) is used to determine that land-
the upper-right corner along a curved path. As it walks marks having different local identifiers in different
along these paths, it keeps track of landmarks and stores viewframes actually are the same physical landmark.
extracted viewframes in the different system databases. They can then be used to navigate from one viewframe
It then has the task of going from the upper-right corner to another and form the basis of finding shortcuts
of # to the upper-left corner of tP. To do this, the robot when such common landmarks are recognized. During
can either follow the long curved path that it originally viewframe centering to Vj, if the robot cannot find a dis-
followed or else it can find a short-cut directly between tinct landmark in common between Vj and Vm (m > j
them. The key result is that as the number of distinct and m < n), it attempts viewframe back-matching to
landmarks increases, the robot is able to find increas- update local identifiers in the viewframe database. This
ingly more direct paths between locations. With more is illustrated by Figure 6. The robot is currently at VU,
nondistinct landmarks, navigation involves staying close and has previously extracted VA with local identifiers L1,
to paths that have been previously followed. Shortcuts L2 , L3 associated with the nondistinct landmarks. VA

are possible when common landmarks between paths are and VB have local identifier L, in common. The robot
found. first goes to landmark L 1 , then walks towards the center

The algorithm utilizes viewframe centering and of VA. While it is walking towards the center of VA, it
viewframe back-matching. In Viewframe centering continues to extract viewframes and perform second level
a robot walks from a landmark towards the center of a viewframe matching (based upon angle and orientations
viewframe which contains that landmark. If the robot is of landmarks) with respect to VA. When it extracts a
at landmark with local identifier L and orientation angle viewframe at C (which is nearby A) with new local iden-
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Figure 6: Viewframe Back-Matching with a Compass "

tifiers L4 for L2 , L5 for L3 , the robot matches VC to VA . U

, updating the viewframe database by substituting L3
into L 5 , L2 into L4 . "

The algorithm has the following steps:

Goal: A landmark with local identifier Icid (tied to a Figure 7: 100% Nondistinct Landmarks. Path Planning
specific viewframe) to go to. (Solid Thick Path) from Upper-Right Corner to Upper-

Step 0 If Icid is in current viewframe, go directly to it Left Corner of the

and the algorithm terminates.

Step 1 Create a virtual viewframe V, containing only "re r
the goal icid with an unspecified orientation. Con-
struct an N by N weight matrix W (N is cur-
rent total number of viewframes plus one). For ..

each pair of viewframes (Vi, V4) including the vir- • ". .
tial viewframe V, and current starting viewframe
Vo, compute con(V4, Vi) by equation (1), if it is
greater than a certain threshold (we select 0), we as-
sign the weight matrix entry W(i, j) = 1; otherwise t •
W(i,j) = 0o. With the weight matrix, we find a
least sequence of connected viewframes V0, V1, ....
Vn by applying a shortest path algorithm[Cormen _
etai ., 1990]. Alternatively, if the total number of a *

viewframes N is too great, we use a breadth-first - "
tree search[Cormen et al., 1990] from V0 to find ad- " .
jacent viewframes, such that a viewframe cannot * "
appear twice in a path of the tree. "

Step 2 If a sequence of connected viewframes are
not found, stop. Otherwise the robot performs ' "
viewframe centering and viewframe back-matching
through Vo, V1, ... , Vn. It walks to the landmark Figure 8: 75% Nondistinct Landmarks. Path Planning
with common local identifier in both V0 and V1 , (Solid Thick Path) from Upper-Right Corner to Upper-
where choice of distinct landmark has priority. Left Corner of thee

Step 2.1 If the robot is currently at landmark P
of viewframe V1 (i is max), it viewframe cen- corresponding local identifiers with the same
ters towards the center of Vi , testing if cur- orientations in V,, as well as those local identi-
rent viewframe V. is adjacent to Vm, i.e. m E fiers in V-DB; and then walks to a landmark
[i+1, n] and m is maxsuch that con(V,, Vm) > with common local identifier both in Vi and
0; if m is found which means a distinct land- Vi+i.
mark is found, then it changes the direction
and walks to the landmark in both V, and Vm. Step 2.2 Repeat Step 2.1 until the goal is
Otherwise, it performs back-matching to 14; achieved, or failure due to ambiguity.
if no ambiguity occurs and the best match is
found, the robot updates the local identifiers, When all the landmarks are distinct, viewframe back-
i.e. it uses local identifiers in Vi to replace matching is unnecessary.
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"" is r - ing distance. The further the robot can see, the more
.......... .direct and similar the paths found under this algorithm

become.
a 0 _•The algorithm has the following steps:

o Goal: A landmark with identifier id to go to.

a t *• r • Step 0 If id is in current viewframe, go directly to it
* and the algorithm terminates.

* r a - . r Step 1 Create a virtual viewframe V, containing only
* * the goal id with arbitrary orientation. Construct

• ko• _ an N by N weight matrix W (N is current total
-r number of viewframes plus one). For each pair of

a aviewframes (Vi, Vj) including the virtual viewframe
V, and current starting viewframe V0, compute

I *IV con(Vi, Vi) by equation (1), if it is greater than a
. s, - certain threshold (we select 0), we assign the weight

mat:ix entry W(i,j) = 1; otherwise W(i,j) = oo.
With the weight matrix, we find a least sequence of

- * connected viewframes Vo, Vi, ... , Vn by applying
a shortest path algorithmn[Cormen et al., 1990]. Al-
ternatively, if the total number of viewframes N isFigure 9: 50% to 0% Nondistinct Landmarks. Path toget eueabedhfrtte erhCrc

Planning (Solid Thick Path) from Upper-Right Corner too great, we use a breadth-first tree search [Cormen
Planning (Soer-LiT P t Corner oet al., 1990] from Vo to find adjacent viewframes,
to Upper-Left Corner of the 'P such that a viewframe cannot appear twice in a

path of the tree.

4 Navigation Without a Compass for Step 2 If a sequence of connected viewframes are
Distinct Landmarks (No LPBs) not found, stop. Otherwise the robot performs

viewframe centering and viewframe back-matching
This algorithm assumes distinct landmarks and no com- through Vo, V1, ... , V,. It walks to the common
pass and no landmark pair boundaries (LPBs). LPB- distinct landmark in both V0 and V1 .
based navigation is described in next section. Step 2.1 If the robot is currently at landmark P

The algorithm relies on viewframe circling to com- of viewframe Vi (i is max), it landmark circles
pensate for the lack of a compass. Figure 10 shows i , i.e. it walks away from P until P is at
an example of navigation using this algorithm with the its visual range-limit, then it circles around P.
viewframes and paths from the previous figures. The During the walk, it tests if current viewframe
exploration paths *P (solid thin lines) are generated in V, is adjacent to V, i.e. m E [i + 1, n] and
the same manner as in figures 7, 8, 9. The path deter- m is max such that con(V, Vm) > 0; if m
mined by the robot is shown as a solid thick line from is found which means a distinct landmark is
the upper-right corner of the % to the upper-left corner found, then it changes the direction and walks
of the tP. The result shows that, the path is slightly to the landmark in both V, and V,.
longer than that with a compass (in Figure 9). The pro- Step 2.2 Repeat Step 2.1 until the goal is
cessing example in figures 11, 12, 13, 14, shows some achieved.
of the interesting characteristics of this algorithm. In
Figure 11, the robot moves to Landmark 89 by an ex-
ploratory behavior to generate a path. We then want 5 LPB Based Navigation Without A
the robot to walk back-and-forth between Landmark 89 Compass For Distinct Landmarks
and 64 to find increasingly more direct paths. Initially,
the robot can not find, due to limitations on its range This navigation algorithm assumes distinct landmarks
of vision, most of the visible landmarks along its origi- and no compass and use of LPI3s. In [Levitt and Law-
nal path. So it begins to circle around the current land- ton, 1990], the robot uses a global map in its spatial
mark to search for landmarks from the path it traversed, memory to indicate each landmark's estimated direction
This continues until it returns to its origin. The circling and distance for path planning. Instead of assuming that
behavior for finding landmarks is responsible for the in- the robot knows the estimated direction and distance of
direct looking paths. As the robot traverses back-and- each landmark in spatial memory, we assume that the
forth between landmarks 64 and 89, it is able to use the robot only knows the directions of a few selected land-
viewframes it stored from previous trips to determine marks called known landmarks.
a more direct path. The robot will determine different Each pair of the known landmarks forms an LPB
paths between the two landmarks depending upon the (Landmark-Pair-Boundary) vector or an LPD.
direction in which it travels. This is because the robot LPBs are used to demark visually distinct areas by not-
can not see the same landmarks when traveling in the ing which sides of the LPBs surrounding a region the
different directions due to limitations on allowable view- robot is in. This algorithm uses LPB regions instead of
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for a location A as
viewframes as the basic descriptions of locations. For an

LPB vector 1 and a location A, we use !(A) to indicate LPB.prj(A) = i (A) * 1,(A) ... k.M(A) (2)
which side of 1 that A is on. !(A) has 0, 1, 2 values to
distinguish different sides. In Figure 15, known land- where ... correspond to string concatenation of the val-
marks K1, K2 form LPB ht,,k., At A, aA > r (from K, ues 0,1, or 2. An LPB region string is the LPB projec-
to K 2 counterclockwise), 1k,,k(A) = 1; At B, aB < Z, tion using the whole set of LPB vectors determined by

( - all the known landmarks. This creates a net of distinct
Ik,,k,(B) = 0. At C, it's on the LPB, Ik,,ký(C) = 2. The LPB regions.
two landmarks which define an LPB break the LPB into Path planning involves finding a sequence of LPB seg-
3 distinct LPB segments. ments from the graph formed by all the LPB segments

Suppose we have n known landmarks forming a total formed by known landmarks. The robot walks along
of(N = (n)) LPB vectors 11,12,.. ., 1 N. For aset of LPB each LPB and tests both sides of it to see if it is ad-
vectors lit, 1 94.... v , , we define the LPB projection jacent to the goal region. This requires at most 0(n 2 )
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S~IV ' V the algorithm is finished.a' a'

A, 1' Vi • u Step 1 Initialize segments of each LPB vector as un-

visited. Perform masking on each known land-
At * V, mark K visited before ;.e., mark the segments of

LPB vectors crossing A as visited if they are not
borders of the section having the same LPB projec-

Figure 14: Stable Path (thick path) from Landmark 89 tion (onto these LPB vectors) as that of Lg. Also
to 64 after 4th time initialize the stack SP for the known landmarks as

•GA empty.

)/XA' Step 2 Test the stack SP.

If SP is empty,
"select any known landmark K which is one end

, __of an unvisited LPB segment, push(K) into SP,
n. •, cgoto step 2; if K is not found, stop.

Else
a.. K = pop(SP); if K is not one end of any

Xn non-visited LPB segment, go to Step 2.

Figure 15: LPB(Landmark-Pair-Boundary) Representa- Step 3 The robot walks to known landmark K, test-
tion ing whether the goal region is achieved; if so, the

algorithm is finished.
LPB vectors to be visited. However, we can improve Step 4 If K has not been visited before, the robot per-

this. There are a total of (n - 1) LPB vectors crossing forms masking on K.

one known landmark, which will partition the area into Step 5 If K is one end of non-visited LPB segment S,
at most 2(n - 1) distinct sections. Each section is ex- mark S as visited, push(K) into SP. Else go to
pressed in terms of the LPB projection (onto those LPB Step 2.
vectors) of any location from that section. The basic Step 6 The robot walks along segment S, testing
idea is that the robot goes to the known landmark, walks whether the goal region Lg is found, until one of
along parts of 2 LPB segments, which are borders of the the following conditions is satisfied
section having the same LPB projection (onto those vec- * if the goal is found, the robot achieves the goal
tors) as that of goal LPB region. The robot then has at
most 0(n) LPB vectors to visit. In Figure 16, values in ad ithe a orthm is finished.parentheses show dsisinct LPBs projections (onto 1

k1, * if contradiction to the goal region happens, i.e.
rt2, hes) for sections I to visit A , originally the robot is on the same side of

3) fthrough VI; t region A(sec- one LPB as that of the goal, later different;
tion I), the robot only needs to visit parts Kltl, K4 2 of mark visited for the segment which the robot
2 LPB vectors hi and 4k2. is heading towards, go to Step 2.

The algorithm has the following steps: * if the robot arrives at another known landmark

Goal: A given LPB region and corresponding an LPB K,, push(KA) into SP, go to Step 2.
region string Lg to go tn. Figure 17 shows an example of navigation using this

Step 0 If any components of Lg is equal to 2 (it is on on algorithm with the viewframes and paths from the previ-
an LPB vector), the robot first goes to any known ous figures. The known landmarks are circled, the LPB
landmark on that LPB. It then walks along it in vectors are in dash-dotted line, and the exploration paths
one direction until the goal region is achieved; if so, * ( solid thin lines) are generated in the same manner
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Figure 17: Example of Navigation Using LPBs Figure 18: LPBs Partitions the Area into Small Regions

as in figures 7, 8, 9. The path determined by robot is -. &. , U I'
shown as a solid thick line from the LPB region near ",,,r
the upper-right corner of the * to the goal region near .... . "* ".'.
the upper-left corner of the V. The processing time of -. -

this algorithm is 0(n) where n is the number of known A i" '".t- '" " * " , a'
landmarks. In addition, experiments have shown the /,-1

algorithm gracefully degrades as the number of known A' , , A, _' - .

landmarks is decreased. A I ? ....' i ", IF " " -"

An interesting finding is, if we apply masking on all / NO a '. " r
known landmarks as stated in step 1 of the algorithm, the , " "
LPB candidates(i.e. LPB vectors of which LPB masks q1' ,
are not 111) form a flow towards destination region. Fig- A '"
ure 18 shows LPBs partition the area into small regions. , a !' a
Figure 19 shows the flow towards the goal region near i 't , '.
the Upper-Left Corner of the 1i of Figure 17. 1 ,' AIa

6 Navigation Not Using a Compass !I , ', "

with a Variable Percentage of ,
Distinct Landmarks A AN r aA NN r

We are currently exploring different alternatives for this Figure 19: LPB Flow Towards the Goal Region Near the
case. The characteristic behavior appears similar to Upper-Left Corner of the i of Figure 17
navigation using a compass with nondistinct landmarks
(hugging to previously explored paths without taking
shortcuts), except it is much more sensitive to the al-
lowable viewing distance. One approach for this case is marks LI, L2 , L3 which are also in vfo. In order to go

to perform navigation using LPBs defined by landmarks nearby the center 0 of vfo to back-match vfo, the robot
with local-ids. A difficulty is that one or both of the first comes to one of L I , L2 , L3 , say L3 , then it walks
landmarks defining an LPB can disappear as the robot along arc L3.O by maintaining angle 2  L-L2OL3
walks away from it. So the LPBs connecting viewframes walk and ttsts if angle LLIBL2 equals a,, if so, we con-
may not be stable. It may be possible to use a measure clhd, ". ,-,hot is close to 0. The robot must always see
of reliability of LPBs between viewframes as a criteria all : i; i•i• trks before it comes nearby 0 (Note angles
for extracting viewframes. ef I, r ),, ,iidlated counter-clock-wise, so there is only

Another approach we are investigating for the case of ont, (',- !-r ihis type of walking is used for viewframc
low percentage of distinct landmarks, involves modifying back- rnafhng without a compass.
viewframe back-matching in the algorithm from section The following algorithm is intended for the case of
3 to satisfy the constraint of not using a compass. In high percentage of nondistinct landmarks without a com-
Figure 20, the robot is at A, seeing nondistinct land- pass. It has the following steps:
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VfA .................. ................ fo K as well as those local identifiers in V-DB;
and then walks to a landmark with common
local identifier both in Vi and V 1...

4°° "Step 2.2 Repeat Step 2.1 until the goal is
A 0 achieved, or failure due to ambiguity.

S,, L . ... " 7 Summary and Future Work

We have described different range-free qualitative navi-
gation algorithms. The data structures we have used,
especially for the case of nondistinct landmarks, are

Figure 20: Viewframe Back-Matching Without a Com- compatible with the types of features that could be ex-
pass tracted as landmarks with basic image processing tech-

niques on a robot with a 360 degree field of view. We
also have performed experiments to understand path-

Goal: A landmark with local identifier Icid (tied to a planning feasibility and efficiency for these algorithms.
specific viewframe) to go to. One measure of path planning efficiency is the ratio of

Step 0 If Icid is in current viewframe, go directly to it the straight-line distance between two locations corn-

and the algorithm terminates, pared to the actual distance walked by a robot to go
from between the two locations. By this measure of ef-

Step I Create a virtual viewframe V,, containing only ficiency, the compass-based algorithms improve if num-
the goal lcid with arbitrary orientation. Construct ber of viewframes, visual range, and number of distinct
an N by N weight matrix W (N is current total landmarks increases. The non-compass-bsed algorithms
number of viewframes plus one). For each pair of also depend on allowable visual range. The efficiency of
viewframes (V1, Vj) including the virtual viewframe the LPB, non-compass-based algorithms increase as the
V. and current starting viewframe Vo, if they are number of known landmarks increases.
at least 3(for i 0 n and j 6 n) or l(for i = n Our current work is focusing on navigation using
or j = n) landmarks with common local ids in LPBs formed from nondistinct landmarks, viewframe fil-
both viewframes, we assign the weight matrix en- tering techniques, and different approaches to organizing
try W(i,j) = 1; otherwise W(i,j) = oo. With the spatial memory, such as a hierarchical representation of
weight matrix, we find a least sequence of connected viewframes, along the lines discussed in [Kuipers, 1978].
viewframes V0 , V1, ... , Vg by applying a shortest
path algorithm [Cormen et al., 19901. Alternatively, References
if the total number of viewframes N is too great, we
use a breadth-first tree search[Cormen et al., 1990] [Cormen et al., 19901 T. H. Cormen, C. E. Leiserson,
from V0 to find adjacent viewframes, such that a and R. L. Rivest. Introduction to Algorithms. MIT
viewframe cannot appear twice in a path of the tree. Press, 1990.

Step 2 If a sequence of connected viewframes are [Gallistel, 1990] C. R. Gallistel. The Organization of
not found, stop. Otherwise the robot performs Learning. The MIT Press, 1990.
viewframe centering and viewframe back-matching [Kuipers and Byun, 1987] B. J. Kuipers and Y. T.
through V0, V1, ... , V,. It walks to the landmark Byun. A qualitative approach to robot exploration
with common local identifier in both V0 and V1 , and map-learning. In Proceedings of the Workshop on
where choice of distinct landmark has priority. Spatial Reasoning and Multi-Sensor Fusion, Los Al-

Step 2.1 If the robot is currently at landmark P tos, CA, 1987.

of viewframe V1 (i is max), it finds 2 other [Kuipers, 19781 B. J. Kuipers. Modeling spatial knowl-
landmarks with common local identifiers both edge. Cognitive Science, 2:129-153, 1978.
in current viewframe Vc and vfi, and walks [Levitt and Lawton, 1990] Todd S. Levitt and Daryl T.
towards the center of vfi by using viewframe Lawton. Qualitative navigation for mobile robots. Ar-
back-matching without compass explained in tificial Intelligence, 44:305-360, 1990.
Figure 20. During the walk, it tests if current
viewframe Vc has at least 3 (1 for m = n)
landmarks with common local identifiers with
vf,mn, i.e. m E [i + 1, n] and m is max; if m is
found, which means 3 distinct landmarks are
found, then it changes the direction to walk to
the landmark in both Vc and Vm. Otherwise,
it performs back-matching to 1i; if no ambi-
guity occurs and the best match is found, the
robot updates the local identifiers, i.e. it uses
local identifiers in Vi to replace corresponding
local identifiers with the same orientations in
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Interactive Model-Based Vehicle Tracking*

Daryl T. Lawton, Warren F. Gardner, and Jun-Hoy Kim
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract The approach described here is to develop a model-
based vision system that a human can interactively con-

We describe an architecture for an interactive trol. The human uses this to rapidly interpret sensory
model based vision system and its application information from a potentially distributed team of teler-
for vehicle tracking. A human specifies a lim- obots. The resulting interpretation is a model of the
ited amount of information which establishes world that the telerobots can refine, use to control their
a context for autonomous interpretation of im- behavior, or report back to a human. In this way, the hu-
ages obtained by a telerobot. Object models man directs the telerobots by initializing and constrain-
are described by constraints specifying neces- ing their processing. Communication between the robot
sary geometrical properties and relationships and the human can then take place in the context of
between objects. The use of constraints al- a shared model of the world which makes possible in-
lows for flexible object instantiation. A user frequent, semantically meaningful, and low bandwidth
can indicate a vehicle and this directs percep- communication.
tual processing routines to determine the cor- The particular system we present is for tracking vehi-
responding local surface orientation and roads, cles in outdoor scenes. A human can manipulate models
or he can instantiate a road segment to di- of objects such as terrain surface patches, roads, and ve-
rect the extraction and tracking of vehicles. hicles to interpret imagery from a telerobot. Once an in-
We conclude with a processing example based terpretation is in place, the telerobot can autonomously
upon implemented components and a brief dis- refine and extend the interpretations, detect and track
cussion of future work. vehicles, and report back to a human about unusual oc-

currences or behavior that cannot be accounted for. For

1 Introduction example, a human will indicate that a particular area
is a road. The vision system will then track movement

Efforts to develop intelligent and autonomous systems along the road and fit a constraint-based description of a
for operation in complex, natural domains have been vehicle to this movement. The system could determine
largely unsuccessful to date, in spite of continued ad- that a vehicle has just gone off the road (or that it is
vances in the underlying technologies. There remain un- behaving inconsistently with respect to the model of a
resolved and fundamental difficulties in terms of the nec- vehicle).
essary computational power, the required complexity of We begin by reviewing the basic architecture guiding
perceptual systems which can operate in outdoor envi- the development of the interactive model based vision
ronments, and the corresponding complexity of planning system, and then detail some of its components involving
and reasoning systems. A recent framework addresses object models and perceptual processing that have been
many of these problems by stressing the importance of implemented.
telerobotic and interactive systems. This is a realistic ap-
proach to fielding advanced technology in the short term, 2 System Architecture
and also provides a long term framework for developing The underlying architecture is shown in Figure 1. It
autonomous systems. An interactive, semi-autonomous is und tree ms es in aigu man
system can significantly amplify the capabilities of a hu- is built around three major data bases that a humancan access and manipulate through a user interface.
man, and also yields an evolutionary approach as au- The basic task of the human is to access models of the
tonomous system capabilities are developed and begin various types of objects stored in the Object Model
to replace human controlled functions. Data Base along with information describing maps,

"This research has been supported by the U. S. Army landmarks, and previous interpretations in the Long
Human Engineering Laboratory and the Advanced Research Term Data Base to build an interpretation of the cur-
Projects Agency of the Department of Defense (monitored rent scene which is stored in the World Model Data
by the U. S. Army Topographic Engineering Center under Base. For example, the human is presented with im-
contract No. DACA76-92-C-0016) ages from cameras on the telerobot. He can use a priori
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Figure 1: System architecture

maps to align landmarks and terrain features from these for an object, and the system will use the constraints
maps with the images. He can also access the three- and associated processing actions to then refine the in-
dimensional and physically based models of objects and stantiation of an object.
position them with respect to the world model. As he The World Model Data Base describes the three
does this, the models are projected back against the im- dimensional world of objects and situations surround-
ages obtained from the telerobots for interactive control ing the telerobots. It is initially formed by the human
and to initiate processing. accessing models in the object data base and instanti-

The Object Model Data Base contains generic ating them. There are three types of controllers associ-
models of objects, relationships, and events for ter- ated with the World Model Data Base. The Constraint
restrial scenes. This involves objects such as terrain Controller checks for consistency in the world model.
patches, roads, vehicles, and gravity. We distinguish be- The constraint controller uses the constraints which de-
tween two different types of objects: Primitives which fine an object or relationship to refine an instantiation or
correspond to basic entities and relationships used to to find a violation or inconsistency and ask the human for
describe and represent Terrestrial Objects which cor- help. The Perceptual Processing Controller deals
respond to the conventional objects found in the world with the extraction of information from images and sen-
such as roads and cars. Primitive Objects describe char- sors on the telerobot. The constraints in an object model
acteristics such as shape constraints, material composi- specify the types of processing that are necessary to ob-
tion, and relationships between parts. The representa- tain this information. When the human indicates that
tion of objects for an interactive vision system is more a road is located somewhere, this constrains the type of
complex, though related in many ways, to those used tracking and feature extraction processes that are used.
in CAD/CAM and geometric modeling packages, be- The corresponding image areas are isolated and the type
cause they will be manipulated for autonomous pro- of segmentation or tracking procedure corresponding to
cessing and reasoning. Thus, in addition to describ- the material class and distance of the object is applied.
ing shape, the model of a car needs to include that The Graphics Controller deals with interactive scene
a car is acted on by gravity and will have a preferred measurements and the presentation of the world model
type of orientation and attachment with respect to the to the user. Thus when he accesses a model of a vehi-
ground surface. Object models are described by sets of cle, he is presented with a cartoonish three-dimensional
constraints [Borning, 1981; Lawton, 1980; Leler, 1988; vehicle template which is back projected onto the image
Mundy el al., 19891 which must be satisfied. A simple being interpreted.
constraint is that the value of some parameter associated The user interface is currently based upon windows
with an object model is bounded. More complicated con- for displaying imagery and graphical overlays, and text-
straints deal with relations between objects. The human based browsers for inspecting entities in the data base
will in general specify a limited amount of information in detail. This basic level of interface can be quite te-
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dious to work with and it's future role will be to serve
as a debugging tool. An intermediate, near-term sys-
tem interface will use a more natural set of tools such as
three-dimensional hand/finger position sensors and voice
input. Using these, the human will actually have a sense
of reaching into the data base of models, grabbing some-
thing, and then placing it into the world model. In the
eventual system, the world model and the sensor input
from the different telerobots could be presented to the
human as a virtual reality in which the human can be
embedded in the world model itself.

3 Object Models Figure 2: Perspective view of the three-dimensional ve-

We have currently developed models for objects corre- hicle model
sponding to gravity, the immediate ground plane sur-
rounding the camera from which an image is obtained,
terrain patches, and a generic vehicle along with con- three dimensional road model and can yield information
straints describing relations for attachment, alignment, to instantiate a vehicle model. An instantiated vehicle
and coincidence. There is a simple mechanism to in- model constrains the extraction of features. These fea-
yoke the instantiation of models based upon other mod- tures satisfy the requirements of another type of tracker
els that have been instantiated and the results of percep- that can determine a scaled three dimensional trajectory
tual processing. A more powerful constraint propagation for extracted image points. The information determined
mechanism would determine consistency of relationships by this tracker can in turn be used to determine a three
between objects in the world model data base. dimensional road model, and also refine the attributes of

Each object model has a two-dimensional image reg- an instantiated vehicle model. As a result, the flow of in-
istered display that can be interactively manipulated. formation and processing varies based upon the state of
When this is instantiated it sets up perspective con- the current interpretation. The current processing rou-
straints with respect to the three dimensional object tines consists of three types of trackers and restricted
models which will have unspecified parameter values, segmentation and interest operators which are applied
For example, gravity appears as a two-dimensional vec- when a vehicle model is instantiated.
tor field that can be interactively aligned with image 4.1 Difference Tracker
features. We use different types of road models for two
and three dimensions. The two dimensional road model The difference tracker operates with respect to an in-
is a sequence of connected parallel line segments for stantiated two or three dimensional road model. It de-
the road boundaries and/or the center-line of the road. termines regions above the indicated road areas which
This is used to indicate and mask images areas which are changing overtime and are also moving in a consis-
are adjacent to the road. The three dimensional road tent direction (not necessarily along the road). It deter-
model is a connected sequence of segments with three- mines information to instantiate a vehicle model by find-
dimensional coordinates and associated road width infor- ing the front and back (or only the back or the front) of
mation with constraints on allowable orientations with a vehicle. If a three dimensional road model has been in-
respect to gravity and adjacent terrain patches. The stantiated, it can further constrain the dimensions of the
end-points of the linear segments in the two-dimensional generic vehicle model instantiation. It also restricts the
display of a road model can constraint the three dimen- extraction of features for the local translational tracker
sional parameters for positioning the road model. Differ- (Section 4.2) which can in turn recover the direction of
ent material properties can be associated with the roads, motion of the vehicle, whether it is turning, and the cor-
but this currently isn't used by the segmentation and responding direction of motion relative to the road.
feature extraction procedure. The first step in the difference tracker is to reduce

The generic vehicle model is an oriented box with an the image noise by convolving consecutive images in a
indication of where the track/wheel area of the vehicle motion sequence with a low-pass filter. If no models are
is, where the engine is positioned, and where the cab present, the entire image must be convolved with this
area is. The scale and relative position of these is pa- filter. However, given a two-dimensional road model,
rameterized and can be specialized for different types of the filter is only convolved with pixels that are above
vehicles. There are scale and orientation constraints on the road. The road model shown in Figure 3 is used to
all of these components as well as for relative position to constrain the smoothing process.
ground surfaces and gravity (see Figure 2). Once the images have been smoothed, the algorithm

begins to search for areas of motion that lie near the
4 Perceptual Processing road. This is accomplished through image subtraction.

Pixels from temporally consecutive images that are sit-
Image processing and tracking procedures are organized uated near the road model are subtracted. If the result
in terms of the type of information they depend on and of this subtraction is greater than a threshold, the envi-
can extract. One type of tracker depends on a two or ronmental object corresponding to this pixel position is
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assumed to have undergone motion. This pixel is marked is an instantiated vehicle model, it restricts the features
as a motion pixel, and a region growing process begins, that the local translational tracker uses.

An object traveling along the road may extend some
distance from the road (i.e. the object could be very 4.2.1 Feature Extraction
close to the camera, in which case it would appear to The local translation-based tracker requires features
be quite large). The search for all areas of motion as- which can be matched in successive images. The type of
sociated with an object is accomplished through region features we use are conventional masks of image pixels,
growing. Once a pixel near the road has been identified extracted from distinct areas of the image. In the exam-
as a motion pixel, its neighbors are also examined using pies shown in this paper, the masks are 5x5 pixel arrays.
the subtraction technique discussed above. If any of the We have use normalized correlation [Ballard and Brown,
neighboring pixels contain motion, their neighbors are 19821 to determine similarity of extracted features. This
also examined. This recursive procedure continues until is used in measuring feature distinctiveness and for eval-
no more motion pixels can be found. An example of this uating the matches of extracted features along the radial
extraction of the areas of motion is shown in Figure 4. flow determined by a possible axis of translation. Since
Once the areas containing motion have been identified, the radial flow lines do not necessarily pass through the
the centroid of these areas is located. Over time a two center of the image pixel arrays, we use bilinear interpo-
dimensional trajectory can be constructed. lation for matching features.

The distinctiveness of a feature is 1 minus the best
4.2 Local Translation Tracker correlation value obtained when the feature is correlated
Moving vehicles can often be treated as rigid objects with its immediately neighboring areas. Good features
which are translating over short periods of time. For are selected by finding the local maxima in the values
example, as a vehicle goes around a curve, because of of the distinctiveness measure over an image. We con-
turning radii constraints, the axis of rotation is often far strain the neighborhoods over which the features are se-
away from the vehicle itself and the vehicle motion can be lected to areas that contain large intensity discontinu-
treated as a sequence of small translations corresponding ities, determined by extracting zero-crossings. The area
to tangents of the curve of motion. The local translation of feature extraction is further constrained by the output
based tracker determines the direction of motion of a set of the difference tracker or an instantiated vehicle and
of extracted image points over time, and fits their motion road model. The distinctiveness measure is then applied
to an estimate of the current direction of motion of the only to these restricted areas in an image. This gener-
corresponding vehicle in three dimensions. Essentially, ally results in the extraction of areas of high curvature
it determines the direction of motion of a set of environ- along the zero-crossing contours. In addition, as a vehi-
mental points over time. The effect of this tracker can cle is tracked over a sequence of images, this processing
be visualized as a unit sphere with an axis correspond- is continually reapplied to find features iii addition to
ing to the current direction of motion. As the vehicle those that have matched successfully. These can corre-
and the corresponding set of points move, the position spond to new features due to occlusions or changes in
of the axis changes with respect to the sphere. This pro- observable detail as a vehicle moves in depth.
cessing works well with temporal filters since there are
constraints on how quickly a vehicle can change it's di- 4.2.2 Determining the Direction of Translation
rection of motion. This can also be used to determine Features in image sequences will move along radial
if a vehicle is rotating with respect to an axis contained lines defined by the focus of expansion (FOE) during
within the vehicle. This is indicated by areas of the im- translational motion. The FOE is determined by inter-
age which show differences over time, but for which no secting the direction of translation with the imaging sur-
clear axis of translation can be determined, face (where the direction of translation emanates from

This tracking algorithm is based on the strong geo- the focal point of the camera). Using this geometric re-
metric constraints on image motion in the case of trans- lationship, the displacement paths of all image features
lational motion (radial motion of image features from a can be determined for a potential direction of transla-
focus of expansion, determined by the intersection of the tion. To evaluate a potential direction of translation,
direction of translation with the imaging surface) [Law- we search for each feature along the appropriate image
ton, 1982]. The algorithm evaluates an error measure displacement paths. The error measure used to evaluate
which associates with a potential axis of translation, the this potential direction of translation is determined by
quality of feature displacements along the corresponding summing the best matches for each of the features.
radial flow paths. This error measure is evaluated by To search for the direction of translation we use a unit
searching over a unit sphere which describes all poten- sphere centered at the focal point of the camera. Any
tial directions of translation. It is possible to determine vector which has its initial point at the camera's focal
the direction of translation to within a few degrees in point and its terminal point resting on the surface of
small image areas, using only a few features. the sphere is a potential direction of translation. The

If there is an instantiated three-dimensional road search procedure is defined with respect to this sphere
model and a rough estimate of the position of the ve- instead of the potential positions of the FOE in the image
hicle along the road has been established, the tangent plane. This is because the sphere is a bounded surface
information associated with the road model can be used which makes uniform global sampling of the error mea-
to initialize the search for the axis of translation. If there sure feasible. When the image plane is used directly, the
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resolution in the position of the translational direction tional tracker to match extracted features to a vehicle
varies, model for each successive image. If extracted features

The initial search process consists of two phases: an are near previously extracted features that have success-
initial global sampling of the sphere, followed by a local fully matched they are discarded. Otherwise, they are
search for the maximum value. The local search begins associated with the instantiated vehicle model.
at the position of the maximum value as determined by
the global sampling. The local search process recursively 5 User Interface and Model
searches the area of the current maximum. The step size Instantiation
of the local search processes is reduced until it is at the
desired resolution for the determination of the direction An important facility in the user interface is a conven-
of translation. Figure 6 shows a sequence of tessellated tional depth buffer used for hidden surface removal which
spheres along with their potential directions of transla- has been modified to have pointers, ordered by depth, to
tion. Once a direction of motion has been established, it all the objects in the world that project onto a given pixel
will tend to change smoothly and we can then use gra- in the image. Thus, when the human "touches" a pixel
dient based techniques to track the axis of translation in the image from the telerobot, he can access all the
for successive images. In addition, if there is an oriented objects in the world model that project onto that pixel.
vehicle model or a road model segment, the search for We call this an augmented depth buffer.
the translational axis is constrained to limited areas of The user interface enables the human to place objects
the sphere. into the world model in several ways. He can access the

objects and manipulate them via their three dimensional
4.3 Planar Tracker attributes with respect to a coordinate system linked to
Often the motion of a vehicle is restricted to a plane the world model. This looks like back projecting a three-
determined by the local road or surface orientation. In dimensional cartoon of the object onto the image. When
this case, the geometry of planar perspective makes it it has been positioned as desired, the different compo-
possible to associate three dimensional information with nents of the object can be placed in the augmented depth
extracted image features if they are contained in the area buffer associated with the image. In this way, the pro-
of the planar patch. In addition, the directions of motion jected attributes of the instantiated object can access the
are constrained to be parallel to this plane, so the p- actual image or the results of image processing routines.
sible directions of motion for the local translation-based The user can burn-in attributes when he instantiates an
tracker are restricted to a circle on the unit sphere whose object. Burning-in means that the attributes can not be
orientation is parallel to the plane of motion. This sim- changed. This often involves constraining a particular
plifies initialization and also tracking of the axis of trans- feature to lie along a given ray of projection. Another
lation over time. technique is for the user to directly draw the specified

There is another useful constraint associated with pla- object on the sensory input and then indicate it's at-
nar motion that may not be immediately apparent. In tributes. An example of this is interactively segment-
this case, an environmental displacement vector v must ing an image into different types of terrain patches and
be perpendicular to the normal of the plane of motion. V pointing out that different edges correspond to terrain
also lies in the plane determined by its corresponding im- feature discontinuity.
age displacement and the focal point of the camera. The
direction of environmental motion can be determined by 6 Processing Example
intersecting these planes. This is useful for tracking pla- An example of this processing is shown in Figures 3-6.
nar motion without the constraints supplied by a road Figure 4 shows a sequence of images obtained with a
model. video camera viewing a road scene. In Figure 3 a human
4.4 Feature Extraction from a Model has interactively positioned a generic vehicle model with

respect to the road and has begun to "drive" the model
When the vehicle model is instantiate it constrains seg- vehicle through three dimensions while using the back-
mentation and feature extraction procedures to a limited projection of the vehicle as a three dimensional cursor.
image area. In addition to the feature and zero-crossing Note the center segments of the road being laid down
extraction described above, we use histogram b~ased seg- behind the vehicle. This establishes a two-dimensional
mentation to determine potential vehicle features. road mask and also an initial set of connected three-

An instantiated vehicle model can also constrain the dimensional road segments to constrain later processing.
places to search for detailed features corresponding to Figure 4 shows connected regions of image differences
portions of the vehicle which can be tracked. A particu- moving in a consistent direction with respect to the user
lar problem we have found is that it is necessary to have instantiated road model. These correspond to the front
a large image area to get clear views of the features to be and back of a vehicle. Since orientation is known along
matched to the model. Images of the vehicle will need to the road and the road model has been scaled relative to
be larger to begin finding detailed features such as head- the generic road model, it is possible to use these areas
lights, bumpers, and so forth. Such images could per- to instantiate a three dimensional vehicle model. Fig-
haps be obtained by using one of the trackers to direct ure 5 shows interesting points which have been extracted
a zoom camera to follow a moving vehicle. Currently in the corresponding areas determined by the vehicle
we use the interest operator described for the transla- model. These features are then used by the translation
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Figure 4: Areas of motion and vehicle position found through differencing

tracker to refine the estimate of vehicle and road orienta- laboratory. ACM Transactions on Programming Lan-
tion. The determined successive directions of translation guages and Systems, 3(4):353ff, 1981.
are shown in Figure 6. More and more features are as- [Lawton, 1980] Daryl T. Lawton. Constraint-based in-
sociated with the vehicle model over time. ference from image motion. In Proceedings of AAAI-
7 Future w80, 1980. Stanford, CA.

ework [Lawton, 1982] Daryl T. Lawton. Processing transla-

Our current work involves: tional motion sequences. Computer Vision, Graphics,

"* Extending the number and complexity of the mod- and Image Processing, 22:116-144, 1982.
els that are used along with the a more general con- [Leler, 1988] W. Leler. Constraint Programming Lan-
straint propagation mechanism. guages: Their Specification and Generation. Addison-

"* Extending the user interface to use a wide range of Wesley, Reading, MA, 1988.
interactive devices such as a data glove and other [Mundy et al., 1989] J. Mundy, P. Vrobel, and R. Joyn-
three-dimensional positioning devices, son. Constraint-based modeling. In Proceedings of the

"* Integrating the local translational tracker with a Image Understanding Workshop, 1989. Stanford, CA.
Kalman Filter for processing over time.

"* Using multiple cameras from different points of
view with respect to the same scene.
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Figure 5: Extracted feat with a superimposed three-dimensional vehicle model
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Figure 6: Translational motion spheres corresponding to the image sequence
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Qualitative Environmental Navigation
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Abstract qualitative information rather than quantitative

In this paper we describe a purely topological one.
method for navigation in a large unstructured
environment that contains featureless objects, 2 Definitions
using qualitative non-metric information such as
"isolated" landmarks and "trajectories", which 2.1 The world, the map-maker, and
we define. The map-maker and the navigator are the navigator
implemented using an IBM 7575 SCARA robot There are two major modules in this project,
arm, PIPE, and two cameras. The navigational namely, the map-maker and the navigator. They
environment consists of a fiat plane with iden- both operate on the navigational world.
tical spherical objects populated randomly but
densely on it. First, the map-maker model ob- The navigable world
serves the environment, and given a starting po- The navigational environment that we are inter-
sition and a goal position, it generates a "custom te nvigathree dimensional wo alter-map"tha desribs ina nn-mericlangage ested in is a three dimensional world, althoughm ap" that describes in a non-m etric lan guage t ec r e ti p e e t t o ft e n vg t r( u
how to get from the starting position to the goal the current implementation of the navigator (dueposition efficiently and reliably. The accuracy to its restriction of degrees of freedom) makes

postio eficintl an reiaby. he ccuacy the effective environment two dimensional. Theand the cost of the directional instructions are teefcieevrnettodmninl h
analyzed, then demonstrated by the navigator navigational terrain itself is a fiat surface that isana ,then emom raneds i the u atom m visually uniform all over. Objects that will beby following thescattered over this flat surface are spherical ob-Several non-intuitive and ill-specified aspects of scts, such as mat urffoe in spheri snavigation in this manner are then discussed. jects, such as marbles, uniform in size. There is

no restrictions on where the objects are placed,
except that no objects are allowed to be placed

1 Introduction on top of another. However, the two assump-
tions of the objects - that they are uniform in
size, and that they are placed randomly - em-

Navigation in a large unstructured environment phasize the spatial and topological problems of
requires different information and tools than doing vision and navigation "in the large". That
that of navigation in a structured small environ- is, firstly, an object can no longer be described
ment. To guide a navigator in a such environ- by its intrinsic attributes, such as shape, size, or
ment, the direction giver has to produce a set of color. Therefore, in order to describe an object,
directional instructions that contains not only the geometrical relationship of the target object
sufficient information for accurate navigation, to its neighboring objects must be considered.
but also has to make sure that the given set of Secondly, the directions of the movements of the
directional instructions is not overburdening the navigator have no external reference to rely on.
navigator with too much information[Streeter et Our goal is to be able to throw a number of mar-
al., 19851. In this paper, we explore the effective- bles on a table and have our robot successfully
ness of navigation using "isolated" landmarks navigate through this random world. To a large
and "trajectories", both of which make use of extent, we have succeeded, but by using disks.
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Map- maker Navigator
Objective Generate a custom map Navigate using a custom map
Visibility Infinite Limited to current view window
Metric ability Yes Only within current view window
Intelligence Omniscient Limited to interpreting the custom map
Memory Large None
Computing power Fast Slow

Table 1: Capabilities and limits of the map-maker and the navigator

The map-maker
The purpose of the map-maker is to generate a .
"custom map", consisting of directional instruc-
tions, so that the navigator will be able to find
its way to the destination by executing each of
the instructions in a sequence. The map-maker
is assumed to be omniscient and error free. It
sees the whole environment and knows the exact
position of each objects that exists. The map-
maker also knows the capabilities and the lim-
its of the navigator. Therefore, the custom map
contains directional instructions that the navi-
gator can handle. The communication between
the map-maker and the navigator is done off-
line (one-way, one-time). This means that the
custom map is given to the navigtaor in the be-
ginning of the journey and the navigator's only
source of directional information is the custom
map.

Figure 1: Randomly populated environment of
The navigator disks on a table
The navigator's capabilities are much more lim-
ited. Its view window size is very small rela- navigator.
tive to the environment. It has limited metric
measurement capabilities only within its current 2.2 Parkways and trajectories
view window. However, the accuracy of the its
metric measurements is assumed to be low. For First, the map-maker captures the entire world
example, the navigator can move the window po- by taking the image of the world from a vertically
sition so that a visible reference object is posi- high location. The positions of the populated ob-
tioned near one of the four corners of the view jects are recorded. Figure 1 shows an example
window, but it does not have the accuracy to pin of a randomly populated world with 100 objects.
point the coordinates of a visible object. There- The map-maker is assumed to know in advance
fore, it is not possible for the map-maker to give, the capabilities of the navigator, such as view
to the navigator, the (x, y) coordinate of a land- window size and degrees of freedom. The map-
mark as part of the directional instructions. The maker further abstracts the world into a graph
navigator is not intelligent enough to decide on data structure, with vertices and edges. There
its own what it should do, and is thus totally de- are many ways to decide whether or not two ver-
pendent on the custom map that it is given. It tices (objects) in this graph are connected by an
does not have any memory. Therefore, the cus- edge. One way is to define that two objects are
tom map can be considered as the navigator's "connected" if the two objects can be viewed in
intelligence. Table 1 summarizes the assump- the same view window of the navigator. By ap-
tions that we make on the map-maker and the plying the connected component algorithm using
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Figure 2: Parkways, the paths that allow step Figure 3: Trajectories
by step movements of the navigator

The small boxes are the navigators view win-
the above definition of "connectedness", we can dows. The straight lines are the trajectories of
then generate discrete sets of connected compo- the windows in the direction of the sliding move-
nents. We define a parkway to be such a con- ment. One end of a line is attached to the win-
nected component. Figure 2 shows parkways dow at the position to which the new object is
formed on a world of 100 objects using a window expected to appear. The other end of the line is
size 10 x 10 in a world of size 100 x 100. The the object that this sliding window is seeking.
relative size of the view window to the world is
shown in the lower left corner of the figure. The
arcs between points indicate that the objects are 2.3 Description language
connected, that is, both are simultaneously vis-
ible in same window. To find the shortest path The map-maker needs to generate a custom map

between two objects in the same parkway, we that describes how the navigator may follow the

apply Dijkstra's shortest path algorithm, landmarks along the computed shortest path. In
this section, we explore the issues in designing
the language for the custom map. At any given
instant, the navigator will have only a small por-

To find a path between two objects that are in tion of the world at its view, which may contain
mutually separate parkways, we need to be able several objects. The map-maker has to be able to
to devise methods to transfer between parkways. describe what the navigator sees in order for the
At some point of the traversal, the navigator has navigator to be able to distinguish a particular
to leave a parkway and get to the other park- object to use as the next reference point. This
way without getting lost. In our method, we is a hard problem because of our assumption of
"slide" the view window in the direction formed the navigable environment which is comprised
by two objects within the view window until a of point-like objects that are randomly placed.
new object is reached. The inter-parkway paths If the robot has infinitesimal accuracy, infinite
generated by this method are defined as "tra- memory and extremely fast processor, it could
jectories". The overall shortest path is then the keep the bitmap image of each possible view, or
appropriate combination of parkway paths and at least the coordinate of each landmark within
the trajectory paths. Figure 3 shows an example each possible window. But realistically, we need
of trajectories computed on our random world. some invariants, such as colors or shapes, to de-
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scribe the immediate environment. Since our
world is a monochrome point-like world, we need
a qualitative language that can describe the ge-.,""'l

ometrical relations of the visible objects. The .,

level of detail in the description process would 3

depend on the intelligence and the mobile abil- uneawr orring Spiral inward ordwing ot poin
ity of the navigator; our exploration here deliber- Referene ont
ately emphasizes the topological aspects of nav-
igation.

Some vocabulary follows: An object is defined ISOlaBe point

to be "obvious", if it is the only other object o al point oated pair

that is visible except for the reference landmark.
Two or more objects are defined to be "confus- few
able" if it does not matter which object is to be
chosen as the next reference point. The term IinofoO
"new" objects refers to the objects that newly
came into the view window as a result of robot's
movement. The term "isolated" point refers to Figure 4: Examples of description language, only
a single isolated object as a result of applying a one of which (isolated point) this paper analyzes
clustering algorithm. The term "isolated pair" and implements
refers to a single pair of isolated objects as a
result of a clustering algorithm. Figure 4 illus- O _____W
trates these methods. All have been or are being ooliec 6 Ouch~d.'

implemented, but we will only talk about one
of these vocabulary terms in this paper. Fig- 0 S. (I@O.bd-Pdr.SW)

ure 5 shows an example of a navigation using 4-. cOv,•SE)
the description language. The custom map en-
tries corresponding to each movement is show to 3. (CovWousSE)

the right of the figure. Each entry is of the form
(D, [T], M), where D is a description language
vocabulary that identifies a landmark, [T] is an
optional term that indicates trajectory, and M hh•-,t v

is the corner designator to indicate which of the 2. on,,W. bl-". sW)

4 corners (SE, SW, NE, NW) the chosen land-
mark is to be positioned. The symbol * is the
wildcard that matches any D or M. ,. (*SW)

kowU patU

Figure 5: An example of navigation using a cus-
3 Isolated landmark following and tom map, showing isolated point, obvious point.trajectory traversal trajectory, and isolated pair

trajectoryin traversald oin

In this paper, we present one navigational tech- 3.1 Calculating the isolated point

nique using the isolated point descriptor and the Our algorithm to compute the most isolated
trajectory method. Parkway traversal is done point in a scene consisting of n point-like objects
by following isolated landmarks solely. Parkway uses the concept of mutual neighborhoods[Gowda
crossing in done by using the trajectory method and Krishna, 1978]. (Several other definitions of
solely. As stated, other descriptors and methods "isolated" led to unstable performance or costly
have been or are being developed.[Park, 1993] computations.) The algorithm is as follows:
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Figure 6: Finding the most isolated point in a

window according to the mnv algorithm LLeft
LBot
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b 5 0 2 3 Figure 7: Formulation of Trajectory
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two objects within the view window and to see
which object gets encountered by the window

1. IFor each pair of points in the scene compute first. Since the method we are using to iden-

the mnv (mutual neighborhood value). The tify a landmark in a view window is by selecting

mm, of two points a and b is the sum of two the isolated landmark, the two objects we use

numbers, representing the order of how close are the reference point and the isolated point.

b is to a and the order of how close a is to b The directions formed by these two points, the

relative to all the other objects. For exam- positive and the negative directions, leads to at

ple, if b is 2nd closest point to a, and a is 3rd most two trajectory goal points. Note that we

closest point to b, then the mnv is 5. The are not establishing any absolute coordinates for

result is stored in a n x n matrix where n is the navigator's movement, but in fact the navi-

the number of visible objects. The objects gator's movement is based on local orientations

in figure 6 have the mnv matrix of table 2. formed by landmark pairs. The implementation
of trajectories is done by geometrically subdivid-

2. For each column of the mnv matrix, find the ing the navigation plane based on the naviga-
smallest value greater than 0. This value is tor's view window position and the direction of
the mnv value between this particular object the trajectory movement, and then computing to
(that correspond to this particular column) see which of the outstanding object is closest. In
and its "closest" neighbor. Call this value figure 7, we see a view window centered around
the "c-value" of this particular object. So in two objects, Pi(xiy 1 ). and PI(X2 ,y 2 ). The di-
our example, the c-values for a, b, c, and d rections formed by these two points, P1 and P2 .
are 4, 2, 2, and 3 respectively, is defined by the slope m of the line that passes

3. The object (column) that has largest c-value through these two points. The trajectory goal
is the most isolated point in the scene. In point, is then the closest object to this window
our example, a has the largest c-value(4) and along the directions (left and right) defined by
therefore it is the most isolated point. Note m, bounded by the two lines, LTop and LBot.
that c-value is a small integer of value at Therefore, for each pair of landmarks, there can
most n. be up to two different trajectories. When the

navigator is moving right, two classes of objects
Using the isolated point concept as the "con- are considered. The first class is the objects
nected" definition, we can form an "isolated" that are enclosed by the open polygon bounded
parkway of paths between isolated landmarks. by LTop, LRight, and the "north" part of the

view window. The second class is the objects
3.2 Majectory traversal that are enclosed by the open polygon bounded

byLRight, LBot, and the "east" part of the view

The basic idea in trajectory method is to "slide" window. From the objects that are in these two
the view window along the direction formed by classes, the one which is closes to the view win-
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of "the most isolated point" in each view win-
dow of the navigator. In the screen, the open dot
at the lower right corner is the starting position
and the open dot on the left side of the screen
is the goal position. Each of the small rectangle
represent the projected navigator's view along
"its path. For example, the rectangle in the lower
right corner of the screen that contains the start-
ing point is the initial view of the navigator. The
line segment in each of these boxes connect the
landmarks which are the most isoated points in
the robot's path. Finally, the map-maker gen-
erates a file called "custommap" which contains

Figure 8: The map-maker and the navigator the list of directional instructions for the navi-
gator. The navigator is comprised of a second

dow frame is the trajectory goal object. When camera attached to the IBM robot arm. This

the navigator is moving left, two classes of ob- camera is also connected to the PIPE for image

jects are considered, similarly with respect to processing of each scene as the navigator moves

LLeft. along. For each directional instruction in the
custom map, the derivation of the most isolated
point and the amount of movement of the robot

3.3 Implementation for the corresponding instruction is computed by
the SUN-4 workstation. It then sends out low

We have implemented our map-maker and nav- level instructions to the IBM arm controller for
igator using an IBM 7575 SCARA arm, two the actual movement.
CCD cameras, PIPE, which is a high speed real-
time image processor, and a SUN-4 workstation
for high level control of the navigator and as 4 Error modeling
the map-maker. Figure 8 shows the configura-
tion of the map-maker and the navigator. The 4.1 Reliability of isolated landmarks
map-maker is comprised of one CCD camera lo- The navigation using "custommap" was tested
cated at a position that can capture the whole for various types of populations and start/goal
workspace of the navigator. This camera is at- positions. We discovered that the navigator
tached to the PIPE which grabs the image and tends to fail in subareas of the environment
sends it to the SUN-4 workstation which runs the where the objects are highly populated. To ex-
"map-making" program based on the centroid plain this phenomenon, we did a statistical ex-
information of the scattered objects. The om- periment, since the non linear definition of "iso-
nisciency assumption of the map-maker requires lated" defies analytic solution. We started with
that the image captured by the global camera a randomly populated window with n objects.
correctly be used to generate the position of each To simulate the inherent error of the navigator's
object. To account for the image distortions due position estimation of the visible objects, the po-
to translation, rotation, and perspective, we use sition information, (x, y), of each of the n ob-
a simple geometric calibration matrix A that jects was associated by a 2 dimensional Gaussian
transforms the homogeneous world coordinates probability distribution. The output of such as-
(X, Y, Z, 1) into the homogeneous camera coor- sociation produces a distorted position informa-
dinates (U, V, 1)[Fu et at., 1987]. tion, (x + c,, y + (,). Then we applied the iso-

lated point algorithm on the view window with
the distorted positional information to see if the
algorithm still identifies the correct landmark.

Figure 11 shows the user interface program of the The reliability of the isolated point in a view
map-maker, running on the X- Window system. window with n objects is measured by the prob-
When the start and goal objects are chosen, the ability of achieving correct isolated point. This
map-maker computes the optimal path in terms is is approximated by the ratio -N, where N is
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Figure 9: Reliability of isolated landmark de-
creases as the number of neighboring objects in-
creases

the number of tries and C is the number of times
when the algorithm identifies the correct isolated
point. We ran this test with N = 1000, with
n = 3,5,7,9,11,13. Figure 9 shows the results. Figure 10: Reliability of each isolated land-
The data points near the top line indicates the F igurer10: rabily of rea ioled lnd-
reliability measures of the isolated point when mark, illustrated graphically; larger boxes inge-
the standard deviations, 0,, cay, of the position cate higher reliability
estimations are equal to 1% of the window width
W (of window size W x W). The data points * *
near middle and bottom line correspond to the " " l
reliability measures of isolated point when stan- "
dard deviation are 2% and 3% of the window
width, respectively. As we can see, the reliabil-
ity of an isolated point decreases as the number * 0 * .

of neighboring points increases. Note also that '.

as the positional error increases (standard devi-
ation of error function increases), the reliability _ __,_o,_*

decreases. After experimentation, we modeled
the reliability of isolated point with the follow-
ing equation, which states that the reliability is Figure 11: The user interface program for the
inversely proportional to the number of neigh- map-maker, in which the world of dots has been
boring objects. captured by the camera and displayed. The com-

mand buttons are shown on the right. Also
R= a + b + + d (1) shown is the computed optimal path from a user-

R +n C selected source to a user-selected goal.

This equation was fitted with the data points us-
ing Mathematica package[Wolfram, 1988]. The is the view window size of the navigator, and R
result of the curve fitting is also shown in fig- is the reliability of the isolated landmark. Basi-
ure 9. cally, the larger the box is, the more reliable the

object is as an isolated landmark. Therefore,
during the derivation of the optimal path, ob-
jects with larger reliability windows are favored.

Figure 10 is a visualization of this reliability mea- Figure 11 shows the generated path that favors
sures in original world of figure 1. Each "isolated "reliable" isolated landmarks. Notice the nay-
point" candidate ha, - box around it. The size of igator's path has detoured to avoid the highly
the each box is drF Fe,',0 W x R, where, W x W cluttered area.
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4.2 Reliability of trajectories f(xi) f(xJ)

The reliability of the trajectory method depends 4 If/c
on whether or not the trajectory goal is accu-
rately achieved by the navigator's movement.
Note that the error involved in achieving a wrong al bi ,b
object during a trajectory movement is strictly C C _-00.
one dimensional, as opposed to the two dimen-
sional area involved in the error of "the most Distributions of Xi and Xj
isolated-point" method. In the isolated point
method, the neighboring objects surrounding the
actual isolated point contribute to the error. X1
However, the trajectory landmark needs to be
distinct in only one direction - the direction of = xi
the navigator's trajectory movement. b2.

The errors in trajectory traversal can come from
sensor error in determining positional informa- bI ..................
tion of objects, or from translation or rotational
error of the view window during navigation. The
first of these three sources produce a static error,
meaning that the error does not change with the
traveling distance of the navigator. But the er-
rors due to the second and the third sources are __ , ,
dynamic, meaning that the error grows as the al bI a2 xi
trajectory distance increases.

Joint distribution of XI and XI
Figure 12: Uniform joint probability distribution

First, let us examine the static error. Let Xi Then the probability that B will be reached be-
and Xj denote the distance from the view win- fore A is given by P(Xi > Xj), which is the area
dow frame to to objects Pi and Pj, respectively, of the box under the line xj = xi in figure 12.
Assume that Xi and Xj follow some probabil-
ity distributions with density functions f(xi) and P(Xi > Xj) = f(xi)f(xj)dxidxj
f(xj) respectively. Since Xi and Xj are indepen- >J,>,
dent, the joint density function is given by, = 2

f(xi,xj) = f(xi)f(xj)

As stated earlier, errors due to the second and
Then, the probability that object Pi will be the third sources are dynamic, meaning that the
reached before object Pi is given by: error will grow as the trajectory distance in-

creases. To model this, we use use a variable
P(Xi > Xj) = ] f(xi,xi)dxidxi size a that is a function of distance. For exam-

JJx,>xJ ple, if object Pj is 10 times farther away from the

For simplicity in this paper, let us assume f(xi) window than object Pi, then the distribution of

and f(xj) are uniform distribution density func- Pj should be 10 times more dispersed than that

tion (other error models have also been ana- of Pi. The question is what the "initial" value

lyzed) as in figure 12. of the a is. Let us assume that during the tra-
jectory movement, as the navigator travels a dis-

Xi, U(ai, a2) where a2 - a, = c tance equal to the window size (W), the dynamic
error (in the case of Gaussian distribution, a), is

Xi ,. U(bl, b2) where b2 - b, = c bounded by the size of the blob (radius r). This
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5.2 Definition of optimal path

WCurrently, we have cost functions that estimate
the distance of navigation path D and the un-
reliability of navigation path R. One of map-
maker's responsibility is to generate a path that

S j either minimizes D, or maximizes R. Unfortu-
nately, in some environments, these two cost es-

S Z timates are in a direct conflict of each other. For
example, if the shortest distance path involves
in a highly cluttered area, the reliability would

Figure 13: Combined path of Parkway traversal be low. Conversely, a reliable path that avoids

and Trajectory traversal highly cluttered areas may force the navigator
to detour around a shortest path. Here, we sug-

means that when the navigator travels a distance gest a third function C that compromises D and
equal to its window size, the positional error can R, defined as: C = log D - log R. Using C as
be as big as the blob size. Let the radio between our cost estimate for travel, we can apply Dijk-
the blob radius and the window size be 1/B and stra's shortest path algorithm to derive a path
the distance traveled be d. Then, that minimizes the DIR ratio. The generated

dr d path will tend to favor short path and sparsely
d- -populated areas. Note that R is a function of
W B not only n (population) but also a (position es-

Combined navigation using parkways and tra- timate error) as in equations 1 and 2. If a is
jectories both weighted by reliability is shown small, the path will resemble the D-path and if
in figure 13. The corresponding custom map for a is large, the path will resemble the R-path.
the generated path is : ((isolated, SE), (isolated, This means that if the navigator's metric ability
trajectory, SE), (isolated, SE), (isolated, trajec- within its window is good, the optimal path will
tory, NE), (isolated, NW), (isolated, *)). be the metrically shortest path. On the other

hand, if the navigator's metric ability is poor,

5 Discussion the optimal path will be the one that least con-
fuses the navigator. In figure 13, note that the

5.1 Tie breaking heuristics generated path neither passes through a highly
Sometimes, particularly in sparse areas, there cluttered areas nor it detours too much from the
can be more than one winner in the isolated metrically shortest path.
landmark method. In this case, two or more
landmarks in the navigator's view window will
seem equally isolated to the navigator, i.e., they
have the same mnv c-values described previ- The shortest path in a parkway network does
ously. To break he tie, we use a heuristic to not guarantee the shortest travel path for the
choose the isolated landmark that is the farthest navigator because the cost (distance traveled)
away from the current reference point. This of achieving a landmark depends on the current
method is based on the observation that the nay- "context" of the landmark. For example, con-
igator tends to travel towards the goal (and away sider a path generated within a parkway. Each
from the starting location) at any instance of arc of the path represents the distance between
navigation. Therefore, by selecting the farthest a reference point and a subsequent landmark.
landmark from the current reference point, the However, depending on the which corner of tle
navigator usually moves closer to the goal. This view window (SE, SW, NE, NW) the new land-
is in contrast to a more usual search heuristic, mark is placed, the actual traveled distance of
which would select the landmark closest to the the navigator may or may not be equal to the
goal. The reason we use the former is that the arc length. In an extreme situation, we can vi-
global position of the goal (or even of the two sualize a parkway path that zigzags but the ac-
competing landmarks) is unknown to the topo- tual traveling movement of the navigator is linear
logically driven navigator, and the traveled distance is much smaller (see
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clustering using the concept of mutual
nearest neighborhood. Pattern Recognition,
1978.

r 1[Kender and Leff, 19891 John R. Kender and
Figure 14: Zigzag arrows indicate the physical Avram Leff. Why direction-giving is hard:
distances between landmarks, whereas the actual The complexity of linear navigation by
movement of the navigator is almost linear landmarks. IEEE Transactions on Systems,

figure 14.) This is analogous to a driver follow- Man, and Cybernetics, 1989.

ing a series of landmarks, such as buildings, in [Kender et al., 1990] John R. Kender, I1-Pyung
which the physical distances between landmarks Park, and David Yang. A formalization and

is not equal to the odometer reading. Using our implementation of topological visual

navigator model, each landmark has 4 different navigation in two dimensions. In SPIE

contexts, corresponding to the SE, SW, NE, and International Symposia, 1990.

NW corners of the navigator's view window. In [Kuipers, 1978] B. Kuipers. Modeling spatial
order to implement context-based landmark fol- knowledge. Cognitive Science, 1978.
lowing, data structures to represent parkways, [Park and Kender, 1992] Il-Pyung Park and
trajectories and the cost matrix, must be modi- John R. Kender. Qualitative navigation
fled. Instead of n nodes in the parkway network, using isolated landmarks. In SPIE
we now have 4n nodes, namely, the 4 ways each International Symposia, 1992.
landmark can be "seen" by the navigator. The
size of the cost matrix grows by a factor of 42, but (Park, 19911 1l-Pyung Park. Towards automatic

stays very sparse. Out of 16n 2 cells, at most 12n vehicle navigation. Technical report,

are used. Therefore, a sparse matrix representa- Columbia University, Department of

tion is needed for storage efficiency. Time com- Computer Science, Technical Report, 1991.

plexity of the search algorithm is also increases, [Park, 1993] l1-Pyung Park. Qualitative
but by a factor of 43 since Dijskstra takes 0(n3 ). Environmental Navigation: Theory and

Practice. PhD thesis, Columbia University,

6 Future work (Forthcoming), 1993.
[Streeter et al., 1985] L. A. Streeter, D. Vitello,

Future work will include a more elaborate de- and S. A. Wonsiewica. How to tell people
scription language that can fully represent the wherer to go: Comparing navigational aids.
navigational scenes; statistical analysis to help International Journal of Man-Machine
decide on which "vocabulary" of the description Studies, 1985.
language to use for each situation; error recov-
ery schemes for the navigator to avoid, detect, (Wolfram, 19881 Stephen Wolfram.
and to correct for errorful situations; refinement Mathematica. Addison-Wesley, 1988.
of reliability of the directional instructions, and
an increase in the navigator's degrees of freedom
for a more general modeling of the real world
navigation.
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Visual Learning of Object Models from Appearance

Hiroshi Murase and Shree K. Nayar

Department of Computer Science
Columbia University

New York, N.Y. 10027

Abstract from autonomous navigation to visual inspection. For
a vision system to be able to recognize objects, it

We address the problem of automatically learn- must have models of the objects stored in its mem-
ing object models for recognition and pose estimation. ory. In the past, vision research has emphasized on
In contrast to the traditional approach, we formulate the use of geometric (shape) models [Besl and Jain 85]
the recognition problem as one of matching appear- [Chin and Dyer 86] for recognition. In the case of
ance rather than shape. The appearance of an ob- manufactured objects, these models are sometimes
ject in a two-dimensional image depends on its shape, available and are referred to as computer aided design
reflectance properties, pose in the scene, and the il- (CAD) models. Most objects of interest, however, do
lumination conditions. While shape and reflectance not come with CAD models. Typically, a vision pro-
are intrinsic properties of an object and are constant, grammer is forced to select an appropriate representa-
pose and illumination vary from scene to scene. We tion for object geometry, develop object models using
present a new compact representation of object ap- this representation, and then manually input this in-
pearance that is parametrized by pose and illumina- formation into the system. This procedure is cumber-
tion. For each object of in ,erest, a large set of images some and impractical when dealing with large sets of
is obtained by automatically varying pose and illumi- objects, or objects with complicated geometric proper-
nation. This large image set is compressed to obtain ties. It is clear that recognition systems of the future
a low-dimensional subspace, called the eigenspace, in must be capable of acquiring object models without
which the object is represented as a hypersurface. human assistance. In other words, recognition sys-
Given an unknown input image, the recognition sys- tems must be able to automatically learn the objects
tem projects the image onto the eigenspace. The ob- of interest.
ject is recognized based on the hypersurface it lies Visual learning is clearly a well-developed and vi-
on. The exact position of the projection on the by- tal component of biological vision systems. If a human
persurface determines the object's pose in the image. is handed an object and asked to visually memorize it,
We have conducted experiments using several objects he or she would rotate the object and study its appear-
with complex appearance characteristics. These re-swith compestxthproposed appearance haractepris hesenance from different directions. While little is known
suits suggest the proposed appearance representation about the exact representations and techniques used
to be a valuable tool for a variety of machine vision by the human mind to learn objects, it is clear that the

overall appearance of the object plays a critical role in
1 Introduction its perception. In contrast to biological systems, ma-

chine vision systems today have little or no learning

One of the primary goals of an intelligent vision sys- capabilities. Hence, visual learning is now emerging
tem is to recognize objects in an image and com- as an topic of research interest [Poggio and Girosi 90]
pute their pose in the three-dimensional scene. Such [Ullman and Basri 91] [Ikeuchi and Suehiro 92]. The
a recognition system has wide applications ranging goal of this paper is to advance this important but

relatively unexplored area of machine vision.
"*This research was supported in part by DARPA Contract

No. DACA 76-92-C-0007 and in part by the David and Lucile Here, we present a technique for automatically
Packard Fellowship. learning object models from images. The appearance
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of an object is the combined effect of its shape, re- the object is obtained by varying pose and illumina-
flectance properties, pose in the scene, and the illumi- tion in small increments. The image set is then nor-
nation conditions. Recognizing objects from bright- malized in brightness and scale to achieve invariance
ness images is therefore more a problem of appearance to image magnification and the intensity of illumina-
matching rather than shape matching. This observa- tion. The eigenspace for the image set is obtained by
tion lies at the core of our work. While shape and computing the most prominent eigenvectors of the im-
reflectance are intrinsic properties of the object that age set. Next, all images in the object's image set (the
do not vary, pose and illumination vary from scene to learning samples) are projected onto the eigenspace to
scene. We approach the visual learning problem as one obtain a set of points. These points lie on a hypersur-
of acquiring a compact model of the object's appear- face that is parametrized by object pose and illumina-
ance under different illumination directions and object tion. The hypersurface is computed from the discrete
poses. The object is "shown" to the image sensor in points using the cubic spline interpolation technique.
several orientations and illumination directions. This It is important to note that this parametric represen-
can be accomplished using, for example, two robot tation of an object is obtained without prior knowledge
manipulators; one to rotate the object while the other of the object's shape and reflectance properties. It is
varies the illumination direction. The result is a very generated using just a sample of the object.
large set of object images. Since all images in the set Each object is represented as a parametric hy-
are of the same object, any two consecutive images persurface in two different eigenspaces; the univer-
are correlated to large degree. The problem then is to sal eigenspace and the object's own eigenspace. The
compress this large image set into a low-dimensional universal eigenspace is computed by using the im-
representation of object appearance. age sets of all objects of interest to the recognition

A well-known image compression or coding tech- system, and the object eigenspace is computed using
nique is based on the Karhunen-Loeve transform only images of the object. We show that the universal
[Oja 83] (Fukunaga 90]. This method computes the eigenspace is best suited for discriminating between
eigenvectors of an image set. The eigenvectors form objects, whereas the object eigenspace is better tuned
an orthogonal basis for the representation of individ- for pose estimation. Object recognition and pose esti-
ual images in the image set. Though a large number of mation can be summarized as follows. Given an image
eigenvectors may be required for very accurate recon- consisting of an object of interest, we assume that the
struction of an object image, only a few eigenvectors object is not occluded by other objects and can be seg-
are generally sufficient to capture the significant ap- mented from the remaining scene. The segmented im-
pearance characteristics of an object. These eigenvec- age region is normalized in scale and brightness, such
tors constitute the dimensions of what we refer to as that it has the same size and brightness range as the
the eigenspace for the image set. From the perspective images used in the learning stage. This normalized im-
of machine vision, the eigenspace has a very attrac- age is first projected onto the universal eigenspace to
tive property. When it is composed of all the eigen- identify the object. After the object is recognized, the
vectors of an image set, it is optimal in a correlation image is projected onto the object eigenspace and the
sense: If any two images from the set are projected location of the projection on the object's parametrized
onto the eigenspace, the distance between the corre- hypersurface determines its pose in the scene.
sponding points in eigenspace is a measure of the simi- We have conducted several experiments to
larity of the images in the 12 norm. In machine vision, demonstrate the power of the parametric eigenspace
the Karhunen-Loeve method has been applied pri- representation. The fundamental contributions of this
marily to two problems; handwritten chlipacter recog- paper can be summarized as follows. (a) The paramet-
nition [Murase et al. 81] and human face recogni- ric eigenspace is presented as a new representation of
tion [Sirovich and Kirby 87], [Turk and Pentland 91]. object appearance. (b) Using this representation, ob-
These applications lie within the domain of pattern ject models are automatically learned from appearance
classification and do not address the problem of learn- by varying pose and illumination. (c) Both learning
ing or using complete parametrized models of the ob- and recognition are accomplished without prior knowl-
jects of interest. edge of the object's shape and reflectance.

In this paper, we develop a continuous and
compact representation of object appearance that is 2 Visual Learning of Objects
parametrized by the variables, namely, object pose
and illumination. This new representation is referred In this section, we discuss the learning of object mod-
to as the parametric e:genspace. First, an image set of els using the parametric eigenspace representation.
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{ "* .•,i() . (...... I -M(1) . (3)
First, we discuss the acquisition of object image sets. R 1,2, . ....... , R,L (

The eigenspaces are computed using the image sets j:(2) -(2) -(2) -(2)

and each object is represented as a parametric hy- 1.... ..... .I XR,2.I

persurface. Throughout this section, we will use a
sample object to describe the learning process. In the -(P) (P) -(P) - (P)
next section, we discuss the recognition and pose es- '1,1 ...... I RJ I1,2, ...... I R,L J
timation of objects using the parametric eigenspace We assume that the imaging sensor used for learn-
representation. ing and recognizing objects has a linear response, i.e.

2.1 Normalized Image Sets image brightness is proportional to scene radiance. We
would like our recognition system to be unaffected by

While constructing image sets we need to ensure that variations in the intensity of illumination or the aper-
all images of the object are of the same size. Each ture of the imaging system. This can be achieved by
digitized image is first segmented (using a threshold) normalizing each of the images in the object and uni-
into an object region and a background region. The versal sets such that its average brightness is zero and
background is assigned a zero brightness value and the the brightness variance is unity. This brightness nor-
object region is re-sampled such that the larger of its malization transforms each measured image i to a nor-
two dimensions fits the image size we have selected malized image x:
for the image set representation. We now have a scale
normalized image. This image is written as a vector i x = [zl, z21 ..... ZN] T (4)
by reading pixel brightness values from the image in
a raster scan manner: where:

X =.........,ZN (1) x,= - i -A()i (=, -, i ... Ni A) (5)

The appearance of an object depends on its shape and N N
reflectance properties. These are intrinsic properties BN
of the object that do not vary. The appearance of A = N n , B = E(z -A) 2

the object also depends on the pose of the object and fl1

the illumination conditions. Unlike the intrinsic prop- The above described normalizations with respect to
erties, object pose and illumination are expected to scale and brightness give us normalized object image
vary from scene to scene. If the illumination condi- sets and a normalized universal image set. In the fol-
tions of the environment are constant, the appearance lowing discussion, we will simply refer to these as the
of the object is affected only by its pose. Here, we object and universal image sets.
assume that the object is illuminated by the ambient The images sets can be obtained in several ways.
lighting of the environment as well as one additional If the geometrical model and reflectance properties of
distant light source whose direction may vary. Hence, an o metr i ts m age s for refl en t pose ofall possible appearances of the object can be captured an object are known, its images for different pose and
by varying object pose and the light source direction illumination directions can be synthesized using well-with respect to the viewing direction of the sensor. We known rendering algorithms. In this paper, we do notwill despen ttoteheah ewimage asdiwhretin o the sensorotat assume that object geometry and reflectance are given.will denote each image as *(P,) where r is the rotation Ised easm htw aeasml fec h

r'l Instead, we assume that we have a sample of each ob-or pose parameter, i represents the illumination direc- ject that can be used for learning. One approach then
tion, and p is the object number. The complete image is to use two robot manipulators; one grasps the ob-
set obtained for an object is referred to as the object ject and shows it to the sensor in different poses while
image set and can be expressed as: the other has a light source mounted on it and is used

{i(p) . .(p) ,() . (p) to vary the illumination direction. In our experiments,
,•.. , , X 1,2 .  R,.L (2) we have used a turntable to rotate the object in a sin-

gle plane (see Fig. 1). This gives us pose variationsHere, R and L are the total number of discrete poses about a single axis. A robot manipulator is used to
and illumination directions, respectively, used to ob-abuasigexs.Arotmnplorsuedotaindthe iuminageseti dIrections, respectivesed to ob- vary the illumination direction. If the recognition sys-

tem is to be used in an environment where the illumi-
learned by the recognition system, we can define the nation (due to one or several sources) is not expected
universal image set as the union of all the object to change, the image set can be obtained by varying
image sets: just object pose.
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eigenvectors of the image set we define the covariance
matriz as:

XXT (7)

The covariance matrix is N x N, clearly a very large
matrix since a large number of pixels constitute an im-
age. The eigenvectors ej and the corresponding eigen-
values Ai of Q are to be determined by solving the
well-known eigenvector decomposition problem:

i= Qe (8)
)L ei ei 8

Figure 1: Setup used for automatic acquisition of ob- All N eigenvectors of the universal set together con-
ject image sets. The object is placed on a motorized stitute a complete eigenspace. Any two images from
jtu magles. Tthe universal image set, when projected onto the
turntable. eigenspace, give two discrete points. The distance be-

tween these points is a measure of the difference be-
2.2 Computing Eigenspaces tween the two images in the correlation sense. Since

the universal eigenspace is computed using images of
Consecutive images in an object image set tend to be all objects, it is the ideal space for discriminating be-
correlated to a large degree since pose and illumination tween images of different objects.
variations between consecutive images are small. Our Determining the eigenvalues and eigenvectors of
first step is to take advantage of this correlation and a large matrix such as Q is a non-trivial prob-
compress large image sets into low-dimensional rep- lem. It is computationally very intensive and tra-
resentations that capture the gross appearance char- ditional techniques used for computing eigenvectors
acteristics of objects. A suitable compression tech- of small matrices are impractical. Since we are in-
nique is the Karhunen-Loeve expansion [Fukunaga 90] terested only in a small number (k) of eigenvec-
where the eigenvectors of the image set are computed tors, and not the complete set of N eigenvectors,
and used as orthogonal basis functions for representing efficient algorithms can be used. In our implemen-
individual images. Though, in general, all the eigen- tation, we have used the spatial temporal adaptive
vectors of an image set are required for the perfect (STA) algorithm proposed by Murase and Linden-
reconstruction of an object image, only a few are suf- baum [Murase and Lindenbaum 92]. This algorithm
ficient for the representation of objects for recognition was recently demonstrated to be substantially more
purposes. We compute two types of eigenspaces; the efficient than previous algorithms. Using the STA al-
universal eigenspace that is obtained from the univer- gorithm the k most prominent eigenvectors of the uni-
sal image set, and object eigenspaces computed from versal image set are computed. The result is a set of
individual object image sets. eigenvalues { Ai I i = 1, 2, ..., k ) where { A1 _> ,A2 2!

To compute the universal eigenspace, we first sub- ..... > Ak ), and a corresponding set of eigenvector
tract the average c of all images in the universal set { e I i = 1, 2, ... , ki. Note that each eigenvector is
from each image. This ensures that the eigenvector of size N, i.e. the size of an image. These k eigen-
with the largest eigenvalue represents the dimension vectors constitute the universal eigenspace; it is an
in eigenspace in which the variance of images is max- approximation to the complete eigenspace with N di-
imum in the correlation sense. In other words, it is mensions. We have found from our experiments that
the most important dimension of the eigenspace. A less than ten dimensions of the eigenspace are gener-
new image set is obtained by subtracting the average ally sufficient for the purposes of visual learning and
image c from each image in the universal set: recognition (i.e. k < 10). Later, we describe how ob-

jects in an unknown input image are recognized using
X { x,) - C, xR,() - C......, x -- c }(6) the universal eigenspace.

Once an object has been recognized, we are inter-
The image matrix X is NxM, where M = RLP is ested in finding its pose in the image. The accuracy of
the total number of images in the universal set, and pose estimation depends on the ability of the recogni-
N is the number of pixels in each image. To compute tion system to discriminate between different images
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of the same object. Hence, pose estimation is best we have used a standard cubic spline interpolation al-
done in an eigenspace that is tuned to the appearance gorithm [Press et al. 88]. Since cubic splines are well-
of a single object. To this end, we compute an object known we will not describe them here. The resulting
eigenspace from each of the object image sets. The hypersurface can be expressed as:
procedure for computing an object eigenspace is sim-
ilar to that used for the universal eigenspace. In this g(P) (91, 02) (11)
case, the average c(P) of all images of object p is com-
puted and subtracted from each of the object images. where 01 and 02 are the continuous rotation and il-
The resulting images are used to compute the covari- lumination parameters. The above hypersurface is a
ance matrix Q(P). The eigenspace for the object p is compact representation of the object's appearance.
obtained by solving the system: In a similar manner, a hypersurface is also con-

structed in the object's eigenspace by projecting the
A ) ei) = Q(P) ei) (9) learning samples onto this space:

Once again, we compute only a small number (k< 10) f 1(p) = fei(P) e2 (i),e&(P)]T ( , _ )(12)
of the largest eigenvalues {Ai(P) I i = 1,2,...,k}
where { A 1(P) _ A2 ) >_..... _ (") }, and a corre- where, c(P) is the average of all images in the object
sponding set of eigenvector { ei(P) I = 1,2, ... ,k}. image set. Using cubic splines, the discrete points
An object eigenspace is computed for each object of 4(,W are interpolated to obtain the hypersurface:
interest to the recognition system.

2.3 Parametric Eigenspace Representation f(P) ( 01, 02) (13)

We now represent each object as a hypersurface in Once again, 01 and 02 are the rotation and illumi-

the universal eigenspace as well as its own eigenspace. nation parameters, respectively. This continuous pa-

This new representation of appearance lies at the core rameterization enables us to find poses of the object

of our approach to visual learning and recognition. that are not included in the learning samples. It also

Each appearance hypersurface is parametrized by two enables us to compute accurate pose estimates un-

parameters; object rotation and illumination direc- der illumination directions that lie in between the dis-

tion. crete illumination directions used in the learning stage.
Fig.2 shows the parametrized eigenspace representa-

A parametric hypersurface for the object p is con- tion of the object shown in Fig. 1. The figure shows
structed in the universal eigenspace as follows. Each only three of the most significant dimensions of the
image x,.,(P) (learning sample) in the object image set eigenspace since it is difficult to display and visualize
is projected onto the eigenspace by first subtracting higher dimensional spaces. The object representation
the average image c from it and finding the dot prod- in this case is a curve, rather than a surface, since the
uct of the result with each of the eigenvectors (dimen- object image set was obtained using a single illumi-
sions) of the universal eigenspace. The result is a point nation direction while the object was rotated about
g , J(P) in the eigenspace: a single axis. The discrete points on the curve corre-

spond to projections of the learning samples in the ob-
gr,(p) = [el, e 2 , ..... ekT (,(P) - c) (10) ject image set. The continuous curve passing through

the points is parametrized by the rotation parameter
Once again the subscript r represents the rotation pa- 01 and is obtained using the cubic spline algorithm.
rameter and I is the illumination direction. By pro-
jecting all the learning samples in this manner, we ob- 3 Recognition and Pose Estimation
tain a set of discrete points in the universal eigenspace.
Since consecutive object images are strongly corre- Consider an image of a scene that includes one or more
lated, their projections in eigenspace are close to one of the objects we have learned using the parametric
another. Hence, the discrete points obtained by pro- eigenspace representation. We assume that the ob-
jecting all the learning samples can be assumed to lie jects are not occluded by other objects in the scene
on a k-dimensional hypersurface that represents all when viewed from the sensor direction, and that the
possible poses of the object under all possible illumi- image regions corresponding to objects have been seg-
nation directions. We interpolate the discrete points mented away from the scene image. First, each seg-
to obtain this hypersurface. In our implementation, mented image region is normalized with respect to
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If di(P) is within some pre-determined threshold value,
we conclude that the input image is of the object p. If
not, we assume that input image is not of any of the

* objects used in the learning stage. It is important to
o note that the hypersurface representation of objects in

eigenspace results in more reliable recognition than if
the object is represented as just a cluster of the points

Sgr,/P) in eigenspace. The hypersurfaces of different
I €objects can intersect each other or even be intertwined,

in which cases, using nearest cluster algorithms could
easily lead to incorrect recognition results.

* Once the object in the input image y is recog-
nized, we project y to the eigenspace of the object.
This eigenspace is tuned to variations in the appear-
ance of a single object and hence is ideal for pose
estimation. Mapping the input image to the object

Figure 2: Parametric eigenspace representation of the eigenspace gives the k-dimensional point:
object shown in Fig.1. Only the three most prominent
dimensions of the eigenspace are displayed here. The z = [e(P), e 2(P). .... ek(P) T(y - c(P)) (16)
points shown correspond to projections of the learning T
samples. Here, illumination is constant and therefore = [Z(P), Z2(P), ...... zk(p)]

we obtain a curve with a single parameter (rotation)
rather than a surface. The pose estimation problem may be stated as follows:

Find the rotation parameter 01 and the illumination
parameter 02 that minimize the distance d2(P) between

scale and brightness as described in section 2.1. This the point z(P) and the hypersurface f(P) of the object
ensures that (a) the input image has the same dimen- P:
sions as the eigenvectors (dimensions) of the paramet-
ric eigenspace, (b) the recognition system is invariant min
to object magnification, and (c) the recognition system d2 = 1, 02 11 Z - f(P) (01, 02) It (17)

is invariant to fluctuations in the intensity of illumi-
nation. The 01 value obtained represents the pose of the object

As stated earlier- in the paper, the universal in the input image. Fig. 3(a) shows an input image of

eigenspace is best tuned to discriminate between dif- the object whose parametric eigenspace was shown in

ferent objects. Hence, we first project the normalized Fig. 2. This input image is not one of the images in

input image y to the universal eigenspace. First, the the learning set used to compute the object eigenspace.

average c of the universal image set is subtracted from In Fig. 3b, the input image is mapped to the object

y and the dot product of the resulting vector is com- eigenspace and is seen to lie on the parametric curve

puted with each of the eigenvectors that constitute of the object. The location of the point on the curve

the universal space. The k coefficients obtained are determines the object's pose in the image. Note that

the coordinates of a point z in the eigenspace: the recognition and pose estimation stages are compu-
tationally very efficient, each requiring only the pro-

z = [el, e2 ...... ek ]T ( y _ c) = [Z, Z2 ...... Z, z]T(1 4 ) jection of an input image onto a low-dimensional (gen-
erally less than 10) eigenspace. Customized hardware

The recognition problem then is to find the object p can therefore be used to achieve real-time (frame-rate)

whose hypersurface the point z lies on. Due to fac- recognition and pose estimation.

tors such as image noise, aberrations in the imaging
system, and digitization effects, z may not lie exactly
on an object hypersurface. Hence, we find the object We have conducted several experiments using complex
p that gives the minimum distance dl(P) between its Wec to verat effe rivents of compex
hypersurface g(P) (0k, 82) and the point z: objects to verify the effectiveness of the parametric

eigenspace representation. This section summarizes

d m(p) min some of our results. Fig. 1 in section 2 shows the
01, 2II z - g(P) (B1, 02) fl (15) set-up used to conduct the experiments reported here.
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tion 2. Each normalized image is 128x 128 pixels in
size. The universal and object image sets were used
to compute the universal and object eigenspaces. The
parametric eigenspace representations of the four ob-
jects in their own eigenspaces are shown in Fig. 4(b).

Table 1: Image sets obtained for the learning and
recognition stages. The 1080 test images used for

*,recognition are different from the 1800 images used
for learning.

Leming Samples Test Samples for Recognition

4 Objects 4 Objects
Figure 3: (a) An input image. (b) The input image is 5 Light Source Directions 3 Light Source Directions
mapped to a point in the object eigenspace. The loca- 90 Poses 90 Poses
tion of the point on the parametric curve determines 1800 Images 1080 Images
the pose of the object in the input image.

The object is placed on a motorized turntable and its A large number of images were also obtained to
pose is varied about a single axis, namely, the axis of test the recognition and pose estimation algorithms.
rotation of the turntable. The turntable position is All of these images are different from the ones used
controlled through software and can be varied with an in the learning stage. A total of 1080 inpu* (test) im-
accuracy of about 0.1 degrees. Most objects have a ages were obtained. The illumination directions and
finite number of stable configurations when placed on object poses used to obtain the test images are differ-
a planar surface. For such objects, the turntable is ent from the ones used to obtain the object image sets
adequate as it can be used to vary pose for each of the for learning. In fact, the test images correspond to
object's stable configurations. poses and illumination directions that lie in between

We assume that the object is illuminated by the the ones used for learning. Each input image is first
ambient lighting conditions of the environment that normalized in scale and brightness and then projected
are not expected to change between the learning and onto the universal eigenspace. The object in the image
recognition stages. This ambient illumination is of is identified by finding the hypersurface that is closest
relatively low intensity. The main source of brightness to the input point in the universal eigenspace. Unlike
is an additional light source whose direction can vary. the learning process, recognition is computationally
In most of our experiments, the source direction was simple and can be accomplished on a Sun SPARC 2
varied manually. We are currently using a 6 degree- workstation in less than 0.2 second.
of-freedom robot manipulator (see Fig. 1) with a light To evaluate the recognition results, we define the
source mounted on its end-effector. This enables us to recognition rate as the percentage of input images for
vary the illumination direction via software. Images which the object in the image is correctly recognized.
of the object are sensed using a 512x480 pixel CCD Fig. 5(a) illustrates the sensitivity of the recogni-
camera and are digitized using an Analogics frame- tion rate to the number of dimensions of the universal
grabber board. eigenspace. Clearly, the discriminating power of the

Table 1 summarizes the number of objects, light universal eigenspace is expected to increase with the
source directions, and poses used to acquire the image number of dimensions. For the objects used, the recog-
sets used in the experiments. For the learning stage, a nition rate is poor if less than 4 dimensions are used
total of 4 objects wei-. used. These objects (cars) are but approaches unity as the number of dimensions ap-
shown in Fig. 4(a). For each object we have used 5 proaches 10. In general, however, the number of di-
different light source directions, and 90 poses for each mensions needed for robust recognition is expected to
source direction. This gives us a total of 1800 images increase with the number of objects learned by the
in the universal image set and 450 images in each ob- systern. It also depends on the appearance character-
ject image set. Each of these images is automatically istics of the objects used. From our experience, 10
normalized in scale and brightness as described in sec- dimensions are sufficient for representing objects with
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fairly complex appearance characteristics sui:h as the [Chin and Dyer 86] R. T. Chin and C. R. Dyer,
ones shown in Fig. 4. "Model-Based Recognition in Robot Vision,"

Finally, we present experimental results related ACM Computing Surveys, Vol. 18, No. 1, pp.

to pose estimation. Once the object is recognized, the March 1986.

input image is projected onto the object's eigenspace [Fukunaga 90] K. Fukunaga, Introductzon to Statisti-
and its pose is computed by finding the closest point cal Pattern Recognition, Academic Press, Lon-
on the parametric hypersurface. Once again we use all don, 1990.
1080 input images of the 4 objects. Since these images
were obtained using the controlled turntable, the ac- [Ikeuchi and Suehiro 92] K. Ikeuchi and T. Suehiro,
tual object pose in each image is known. Fig. 5(b, and "Recognizing Assembly Tasks using Face-Contact
(c) shows histograms of the errors (in degrees) in the Relations," Proc. of IEEE Conference on Com-

poses computed for the 1080 images. The error his- puter Vision and Pattern Recognition, pp. 154-

togram in Fig. 5(b) is for the case where 450 learning 160, June 1992.
samples (90 poses and 5 source directions) were used to [Murase et al. 81] H.Murase, F.Kimura,
compute the object eigenspace. The eigenspace used M.Yoshimura, and Y.Miyake, "An Improvement
has 8 dimensions. The histogram in Fig. 5(c) is for the of the Auto-Correlation Matrix in Pattern Match-
case where 90 learning samples (18 poses and 5 source ing Method and Its Application to Handprinted
directions) were used. The pose estimation results in 'HIRAGANA'," Trans. IECE, Vol. J64-D, No. 3,
both cases were found to be remarkably accurate. In 1981.
the first case, the average of the absolute pose error
computed using all 1080 images is found to be 0.5 de- [Murase and Lindenbaum 92] H. Murase and M. Lin-
grees, while in the second case the average error is denbaum, "Spatial Temporal Adaptive Method
found to be 1.2 degrees. for Partial Eigenstructure Decompisition of Large

Images," NTT Technical Report No. 6527, March

5 Conclusion 
1992.

[Oja 83] E. Oja, Subspace methods of Pattern Recogni-
In this paper, we presented a new representation tion, Research Studies Press, Hertf3rdshire, 1983.
for machine vision called the parametric eigenspace. [Poggio and Girosi 90] T. Poggio and F. Girosi, "Net-
While representations previously used in computer vi- works for Approximation and Learning," Proceed-
sion are based on object geometry, the proposed repre- ings of the IEEE, Vol. 78, No. 9, pp. 1481-1497,
sentation describes object appearance. We presented September 1990.
a method for automatically learning an object's para-
metric eigenspace. Such learning techniques are fun- [Press et al. 88]
damental to the advancement of visual perception. We W. Press, B. P. Flannery, S. A. Teukolsky, and
developed efficient object recognition and pose esti- W. T. Vetterling, Numerical Recipes in C, Cam-
mation algorithms that are based on the parametric bridge University Press, Cambridge, 1988.
eigenspace representation. The learning and recogni- [Sirovich and Kirby 87] L. Sirovich and M. Kirby,
tion algorithms were tested on objects with complex "Low dimensional procedure for the characteri-
shape and reflectance properties. A statistical anal- zation of human faces," Set of Images," Journal
ysis of the errors in recognition and pose estimation of Optical Society of America, Vol. 4, No. 3, pp.
demonstrate the proposed approach to be very robust o 5 1987.
to factors, such as, image noise and quantization. We 519-524, 1987.
believe that the results presented in this paper are ap- [Turk and Pentland 91] M. A. Turk and A. P. Pent-
plicable to a variety of vision problems. This is the land, "Face Recognition Using Eigenfaces," Proc.
topic of our current investigation, of IEEE Conference on Computer Vision and

Pattern Recognition, pp. 586-591, June 1991.
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"Recognition by Linear Combination of Models,"
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Statistical Properties of Learning Recognition Strategies

Bruce A. Draper
Dept. of Computer Science
University of Massachusetts
Amherst, MA., USA. 01003"

Abstract can be constructed, there is no way to ensure their
validity, since their performance, in terms of accuracy

The Schema Learning System (SLS) automates the and reliability, is unknown, and there is no objective
construction of knowledge-directed recognition strate- test for comparing one strategy to another. Worst of
gies by learning object-specific strategies that inte- all, when the domain is changed, hand-crafted systems
grate many different visual procedures. Starting from often have to be rebuilt from scratch.
training images with ground truth object positions, an If we look at the knowledge engineering process more
object model, and a library of visual procedures, SLS closely, we find that it is convenient to draw a dis-
learns which procedures aid in the recognition of a par- tinction between object models and the visual pro-
ticular object, and which are unreliable, unneccessary cesses used to extract them. In a typical application,
or too expensive. It then builds a strategy for control- a knowledge engineer starts with a model of the ob-
ling selected procedures that will reliably recognize the ject(s) to be recognized. In some cases, the model is a
target at a minimum cost. complete geometric description of the shape of an ob-
This paper does not present the algorithm, published ject, as in a wire-frame or generalized-cylinder model.
previously, by which SLS infers recognition strategies. In other cases, the model describes other features, such
Instead, it focuses on SLS's role as an integrator of as the color or texture of an object. In still other cases,
disparate visual procedures, and on an analysis, based the model may be in the form of constraints.
on a lemma by Valiant [1984], giving a probabilistic Whatever the model, the knowledge engineer's task
upper bound on the likelihood that a strategy will fail is to select visual procedures for matching the object
to recognize an object in a test image. model to image data or, equivalently, reconstructing

the target object from the image data consistent with
1 Introduction the constraints of the object model. Visual procedures

are selected based on both the form of the object model
Most knowledge-directed vision systems are hand- and knowledge of the domain, such as lighting condi-
crafted to recognize a fixed set of objects within a tions and the likelihood of occlusion.
known context. Generally, the programmer or knowl- In general, recognition strategies require more than a
edge engineer who constructs them begins with an in- single visual procedure. Most visual procedures are de-
tuitive notion of how each object might be recognised, signed to solve particular subtasks, and several must
a notion which is refined by trial-and-error. Eventually be sequenced together in order to reconstruct an ob-
the programmer finds a combination of features (e.g. ject model. For example, Figure 1 shows several al-
color, shape or context) and methods (e.g. geometric ternative methods for finding the pose of a roadsign,
model matching, minimum-distance classification or each of which depends on one or more intermediate
generalized Hough transforms) that allow the objects representations of the data. To build a recognition
to be reliably identified within the domain. In this strategy, a knowledge engineer must find a series of
way, seperate, hand-crafted strategies are constructed visual procedures that lead from the original image
for all the objects in a domain, data to the desired representation. In addition, most
Unfortunately, there is a growing concensus that hu- visual procedures are prone to occassional failures, so
man engineering is not cost-effective for many appli- system designers must consider how much redundancy
cations. Moreover, even when hand-crafted systems to include in each strategy.

"This work was supported by Rome Labs under con- Despite the labor-intensive knowlegde-engineering
tract F30602-91-C-0037 and by DARPA/TACOM under process, many knowledge-directed systems have been
contract DAAEO7-91-C-R035 built and successfully demonstrated, e.g. [Draper, et.
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al., 1989, McKeown, et. al., 1985, Hwang, et. al., As described in this paper, SLS's task is to learn strate-
1986]. In general, the success of these systems can be gies that recognize a particular object and recover its
traced to a "small world" assumption, in which the three-dimensional position and orientation. (SLS can
number of objects in the domain are few, the con- also be used for two-dimensional recognition, or for
straints on their descriptions are tight, and a complete learning predicate strategies that determine if an ob-
world model is at least a possibility. Consequently, ject is present or not.) It is trained on images in which
knowledge engineers are able to select the appropriate the position and orientation of the target object are
visual procedures for the domain and object models, known. Its goal is to learn a control strategy for in-
and to devise effective control procedures for applying voking visual procedures from its library that mini-
them. However, as the scope of a system broadens mizes the expected cost of recognizing the target ob-
towards a domain-independent, general-purpose sys- ject across the training images. As will be discussed
tem, system designers are faced with an unfortunate in the next section, it is also able to predict the ex-
dilemma: either they craft more and more special- pected cost of each recognition strategy and to bound
purpose strategies, and option that quickly becomes the probability of failure.
infeasible in terms of labor, oi they generalize their
strategies to recognize more aiud more objects under a 3.1 The SLS Process Model
wider range of circumstances. In the latter case, con-
straints on object descriptions become looser to ac- SLS is similar to a blackboard system in that recog-
count for wider variability, the system can make fewer nition is viewed as a process of applying visual pro-
assumptions about the types of image descriptions nec- cedures (VPs) to hypotheses. Hypotheses are repre-
essary for matching, and the complexity of matching sentations of the image or 3D world such as points,
increases substantially. lines, regions or surfaces; visual procedures are algo-

rithms from the image understanding literature such

2 Knowledge Base Construction as line extraction or geometric model matching [Bev-
eridge and Riseman, 1992]. Recognition strategies take

In general, the difficulty and expense of knowledge the place of dynamic schedulers in traditional black-In gnerl, he dffiult andexpnseof kowldge board systems, selecting which procedure(s) to apply
base construction has relegated knowledge-directed vi- at each step.

sion to the laboratory, where the domain can be re-

stricted to a few objects in a controlled context. Al- Therefore, recognition can be described as a branch-
though artificial intelligence researchers handle this ing sequence of VP invocations. The sequence be-
problem by extracting knowledge from experts, this gins when data arrives, typically in the form of im-
scenario does not apply to computer vision. Vi- age hypotheses'. Visual procedures are applied to im-
sion researchers have therefore concentrated instead ages, producing low-level hypotheses such as points,
on knowledge base specification. The SPAM project lines or regions. New VPs are then applied to these
developed a high-level language for describing objects low-level hypotheses, transforming them into more ab-
[McKeown, et. al., 1989] and a series of tools de- stract hypotheses. Still more VPs are applied to these
signed to automate pieces of the knowledge acquisition hypotheses in a repeating cycle, until eventually goal-
process [Harvey, et. al., 1992]. The UMass Schema level hypotheses are created.
System divided both the interpretation process and
the knowledge base by object, increasing modularity 3.1.1 Transformation Procedures (TPs)
and making the system easier to modify [Draper, et.
al., 1989]. Work in Japan has involved both auto- Unlike most blackboard systems, however, SLS refines
matic programming efforts and higher-level languages its processing model by dividing visual procedures into
for specifying image operations [Matsuyama 1989]. two classes, transformation procedures (TPs) and fea-

ture measurement procedures (FMPs) 2 . Transforma-
tion procedures transform old hypotheses into new hy-

3 The Schema Learning System (SLS) potheses at a higher level of representation. Examples
include vanishing point analysis, which creates surface

The Schema Learning System (SLS) presents a differ- orientation hypotheses from pencils of image lines, and
ent solution to the knowledge base construction prob- stereo line matching, which creates world (3D) line
lem. SLS is a system that automatically learns object- hypotheses from pairs of image (2D) line hypotheses.
specific or task-specific recognition strategies from ob- Feature measurement procedures, by way of compari-
ject models, training images and a library of visual son, measure properties of hypotheses without chang-
procedures, as shown in Figure 2, The idea behind ing their underlying representations.
SLS is that a general-purpose vision system can be
constructed of hundreds of special-purpose recognition 'Typically, but not necessarily. Active strategies may
strategies, each learned from experience, rather than invoke procedures to acquire image data.
from a single, highly-general, and therefore highly in- 2We will still use the generic term visual proceduresefficient, recognition strategy. (VPs) when refering to both TPs and FMPs.
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Figure 2: Top-level view of SLS architecture

Although TPs are described as transformation oper- supplied by the user, determines which visual proce-
ators, the word 'transformation' should not be con- dures are enabled (either because they do not require
strued as implying a one-to-one mapping between old model data, or because the necessary data is included
and new hypotheses. TPs can combine information in the model), and therefore which procedures can be
from multiple hypotheses and may generate an arbi- used in the recognition strategy. For example, Bev-
trary number of new hypotheses. Stereo line matching, eridge's geometric model matcher [Beveridge and Rise-
for example, combines two image (2D) line hypotheses man, 1992] matches 3D model lines to 2D data lines. If
to generate a single world (3D) line hypothesis. In ad- the object model includes a wire-frame shape descrip-
dition, TPs do not consume their arguments, so mul- tion, the edges of the wire-frame become compile-time
tiple TPs may be applied to a single hypothesis. Some parameters to the model matcher specifying the 3D
readers may therefore find it helpful to think of TPs model lines to be matched. If, on the other hand,
as procedures that generate new hypotheses from old a wire-frame description is not included as part of the
hypotheses, rather than as a transformation operator. object model, then the geometric model matcher is not

enabled and cannot be used as part of a recognition
3.1.2 Feature Measurement Procedures strategy.

(FMPs)

Feature measurement procedures (FMPs) calculate 3.2 Recognition Graphs

features of hypotheses, such as orientations of pla- Interpretation strategies are represented in SLS as
nar surfaces and intensities of regions. During the generapized mutti-level decision trees clled i encogi-
recognition process, many properties of a hypothesis geon erapis that direct both hypothesis formation and
may remain uncalculated, so the set of known fea- hypothesis formation and
tures describing a hypothesis is refered to as its knowl- hypothesis verification, as shown in Figure 3. Theedge state. Applying a FMP to one or more hypothe- premise behind the formalism is that object recogni-

tion is a series of small verification tasks interleaved
ses computes a feature of those hypotheses, advancing with representational transformations. Recognition
them to new knowledge states. The number of knowl- begins with trying to verify hypotheses at a low level
edge states is finite, since continuous features are di- of representation, separating to the extent possible hy-
vided into discrete feature ranges. potheses that are reliable from those that are not. Ver-

ified hypotheses (or at least, hypotheses that have not
3.1.3 Object Models been rejected) are then transformed to a higher level of

Many visual procedures, including various types of representation, where a new verification process takes

graph matching, require data from an object model place. The cycle of verification followed by transfor-

to be compared with hypotheses extracted from the mation continues until 3D pose hypotheses are verified,

image. Since the object model does not change from or until all hypotheses have been rejected.

image to image, SLS considers object model compo- The structure of the recognition graph reflects the ver-
nents to be compile-time parameters of visual proce- ification/transformation cycle. Each level of the recog-
dures. When a strategy is trained, the object model, nition graph is a decision tree that controls hypothe-
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Figure 3: A recognition graph. Levels of the graph are decision trees that verify hypotheses using feature measure-
ment procedures (FMPs). Hypotheses that reach a subgoal are transformed to the next level of representation by a
transformation procedure (TP).

six verification at one level of representation by invok- strategy selects which FMP to invoke next (i.e., which
ing feature measurement procedures (FMPs) to gather feature to compute), and the FMP probabilistically re-
support for or against each hypothesis. When a hy- turns a feature value. Thus hypotheses advance from
pothesis is determined to be reliable within the deci- knowledge states to FMP application states and then
sion tree, a transformation procedure (TP) transforms on to new knowledge states. The cycle continues for
it to another level of representation, where the process each hypothesis until it reaches a subgoal state, indi-
repeats itself. cating that it has been verified and should be trans-

As defined in the field of operations research, decision formed to a higher level of representation, or a failure
trees are a form of state-space representation com- state, indicating that the hypothesis is unreliable and

posed of alternating choice states and chance states. should be rejected.

When searching for a path from the start state to In general, SLS learns in advance which FMP to choose
a goal state, an agent is only allowed to choose at each knowledge state in order to avoid making run-
where to go next from a choice state. If the cur- time control decisions. As a result, when SLS builds
rent state is a chance state the next state is selected a recognition graph it leaves just one option at each
probabilistically3 . The search process is therefore sim- choice node. Often, however, the readiness of a FMP
ilar to using a game tree against a probabilistic oppo- to be executed cannot be determined until run-time,
nent. in which case SLS will leave several options at a choice

In SLS, the choice states are hypothesis knowledge node, sorted in order of desirability 4 . At run-time the
states as represented by sets of hypothesis feature val- system will choose the highest-ranking FMP that is

ues. The choice to be made at each knowledge state is ready to be executed.

which FMP (if any) to execute next. Chance states in
the tree represent FMP applications, where the chance 3.3 Inference Algorithms
concerns which value the FMP will return. Hypothesis This paper will not repeat the inference algorithm by
verification is an alternating cycle in which the control which SLS infers recognition graphs from training im-

3Operations research terminology is based on trees 4This is just one of many complications that arise from
rather than spaces, so it refers to choice nodes and chance multiple-argument visual procedures. In general, we will
nodes rather than choice states and chance states, and to describe SLS as if all VPs took just one argument in order
leaf nodes and root nodes rather than goal states and start to keep the description brief; see Draper [1993) for a more
states, complete description.
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ages; interested readers are refered to [Draper et. al., 4.1 Predicting Expected Cost
1993, Draper 1993, Draper et. al. 1992]. However, we
will briefly mention some of its most important charac- As was discussed in Section 3.2, recognition strate-
teristics. First, SLS's inference algorithm is a syntac- gies are represented as multi-level decision trees called
tic, logic-based algorithm that makes no assumptions recognition graphs. Each level of a graph corresponds
about the visual procedures or representations it is ma- to one level of representation (e.g. points, lines, sur-
nipulating other than the declarative knowledge about faces), and the decision tree at that level controls the
the type of hypotheses that each takes as input and order in which features are measured. Hypotheses with
produces as output. As a result, although Table 3.3 features that SLS has learned are reliable are then
shows some of the visual procedures and representa- transformed to the next level of representation, while
tions that have been used in SLS experiments to date, unreliable hypothesis are discarded.
this list is by no means exclusive: SLS could just as Since SLS estimates the likelihood of each feature dur-
easily manipulate generalized cylinders as wire-frame ing training, as well as the expected cost of each fea-
models, and probably any algorithm found in the Im- ture measurement procedure (FMP), it is a straight-
age Understanding literature could be included in a forward procedure to estimate the cost of verifying a
SLS strategy. hypothesis at any level of representation, given a recog-

Seconc., SLS's learning algorithm tries to minimize the nition graph (the equations can be found in [Draper et.
expected cost of recognition, subject to the constraint al. 1992, Draper 1993]). Furthermore, since the cost
that a strategy must recognize every object instance of transforming hypotheses from one level to another,
in the training set. As a prerequisite for the minimisa- as well as the average number of hypotheses per level,
tion process, SLS estimates the expected cost of every can also be estimated from the training data, the total
visual procedure and the likelihood of each feature, expected cost of recognition is easily obtained.
based on information gained from the training images. Experimentally, Draper [1993] describes three experi-

Finally, SLS's inference algorithm is strictly a gener- ments in which the expected cost of a strategy, over
alization algorithm. SLS starts by learning a strategy twenty test images, was predicted to within four per-
for finding the target object in the first training im- cent of its actual cost. In all three cases, the error was
age; it then generalizes this strategy to account for the a slight overestimate of the cost, due to differences in
second training image, and the third, and so on, until the paging behavior of visual procedures during train-
eventually the strategy is general enough to find the ing and testing.
object in every training image. As it generalizes, each
new strategy is guarenteed to be less likely to fail on a 4.2 Predicting Robustness
new image than the strategy it was generalized from,
and this implies that SLS's strategies can be analyzed A more difficult task is to predict the robustness of a
using techniques introduced by Valiant [1984] (see be- strategy. Intuitively, a robust strategy is one that reli-
low). ably recognizes objects in test images. For the sake of

analysis, however, we will concentrate on the subprob-
lem of how robustly a strategy generates goal-level hy-
potheses from images through chains of intermediate-

4 Statistical Properties of Learned level hypotheses 5 . For example, if the goal is to locate
Strategies a building to within three feet of its actual position,

what is the probability that at least one correct hy-
pothesis will be generated when presented with a pic-

As discussed in the introduction, the most immedi- ture of the building? The analysis has to take into
ate, practical problem with knowledge-directed vision account the possibility of failure at any step in the
is the time needed to construct knowledge bases, a process, as well as the redunancy in many strategies.

problem that SLS solves by automatically learning
recognition strategies. Another problem with hand- 4.3 Assumptions
crafted strategies, however, is that even when they can
be constructed, there is no way to ensure their valid- Any analysis of an algorithm must make certain as-
ity, since their performance, in terms of accuracy and sumptions about the data. In this case, the analysis
reliability, is unknown. SLS addresses this problem rests on three assumptions about the knowledge base
by estimating, for each recognition strategy it learns, and training set:
1) the expected cost of applying that strategy, and 1. Deterministic VPs. The behavior of a visual
2) a probabilistic bound on the likelihood of failure. procedure is fully determined by the properties of
Given the recognition graph formalism, predicting the
expected cost is trivial; predicting robustness, on the 5SLS's learning algorithm is not a strict generalization
other hand, requires more complex probabilistic rea- algorithm when goal-level verification is included in the
soning. analysis.

562



Transformation Procedure Input Output Ref
Moravec Operator Image or ROI 2D Points [Moravec 1981]
Line Extraction Image or ROI 2D Lines [Boldt and Weiss 1989]
Region Segmentation Image or ROI Region Set [Beveridge, et. .1. 1989]
Color Classification Region Set Region (sub)Set [Duda and Hart 1973]
Polygonal Approx. Region 2D Lines
Parabola Fitting Region Parabola
Pencil Grouping 2D Lines Pencil [Collins and Weiss 1990]
Vanishing Point Anal. Pencil 3D Orientation [Collins and Weiss 1990]
Triliedral Grouping. 2D Lines Trihedral Jcts
Trihedral Angle Anal. Trihedral Jcts 3D Orientation [Kanatani 1988]
Reprojection(1) 3D Orientation & Region 3D Plane
Reprojection(2) 3D Orientation & 2D Points 3D Points
Absolute Orientation 3D Points Pose [Horn 1987]
Subgraph Isomorphism 2D Lines 2D Lines [Ullman 1976]
Point Resection 2D Points Pose [USGS]
Geometric Model Match 2D Lines Pose [Beveridge and Riseman 1992]

Table 1: The current library of transformation procedures (TPs) in SLS. SLS integrates procedures at a syntactic
level, based solely on knowledge of the types of hypotheses a procedure takes as input and produces as output.
As a result, new procedures can be easily added to its library.

its arguments. the lemma overestimates the number of training sam-

2. Knowledge base sufficiency. Every object in- pies needed by assuming only that the probability of

stance can be recognized by some sequence of VPs seeing a new color on the first sample was at least as

in the knowledge base. By definition, when this high as the probability on the last sample. The lemma
assumption is violated there is no good recogni- applies because the probability of seeing a new color
assumption rer . decreses monotonically.) Significantly, the probability
tion strategy, bound h holds for any distribution of colors.

3. Randomly selected training images. Train- Valiant notes in his proof that h- 1 is used in two sepa-
ing images are drawn at random from the same rate probabilistic bounds. Qualitatively speaking, the
image distribution as the test images. Although first (calit bo)nds tepsibily that the
often violated in practice, this assumption pro- 1(call it hj") addresses the possibility that the
vides the theoretical basis for predicting a strat- randomly selected training samples may not be rep-

egy's performance on test images from its perfor- resentative and therefore may not include a frequently

mance on training images. occurring sample type. The second prcbability (call
it hi-1) reflects the observation that if some colors are
very rare, they will probably not be seen during train-

4.4 PAC Analysis ing, even though there is a finite probability that they
may occur during testing. It is these double proba-

A method for formally analyzing algorithms that gen- bilities that give probably almost correct learning its
eralises from positive examples was introduced by name: with probability h,"1, the learned concept or
Valiant as part of his work on probably almost correct s
(PAC) learning [Valiant 1984]. Valiant proved (based straterg accounts for all but h il of the samples in the
on earlier work by Chernoff) that the probability of underlying distribution, hence it will probably be al-
fewer than S successes in n independent Bernoulli tri- most correct. Moreover, there is no reason why Vh hasals, each with probability h-1 or greater, is less than to be equal to h2 . Nonetheless, we will follow Valiant

s, hwithe r o in setting h, = h 2 and using Equation I (See [Kearns
1990] for a treatment that considers h1 and h2 seper-

n_2h(S + n ). (1) ately.).

As an example of how Equation 1 might be used,
Valiant considered the traditional problem of select-
ing marbles from an urn. Assuming S distinct colors
of marbles, the probability that the (n + 1)th marble 4.5 Analysing Strategies
selected at random will be of a different color from all
of its n predecessors is less than h-', by Equation 1.
(Alert readers may notice that the probability of see- Valiant used Equation 1 as the foundation for a com-
ing a new color drops each time a new color is seen, but putational theory of machine learning [Valiant84], but
that it is always at least as high as the final probabil- we will use it for a much more modest purpose, namely
ity, which is sufficient to satisfy the lemma. In effect, estimating the robustness of recognition strategies. At
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each step in its learning process, SLS has a strategy 6  esm
that is capable of recognizing every training instance I( +oS(1))ine$ + in in em
seen so far. When a new training instance is presented, e5 m
the current strategy is tested on it; if the strategy is al- z (1 + I(1)) S + In m
ready capable of recognizing the new object instance,
then the current strategy is not changed, otherwise it
is generalized to account for tQe new example. The Implying that:
situation is exactly analagous to Valiant's example of n
drawing balls from an urn, where the current strat- h •. (I + o(-))2(S (3)
egy corresponds to the set of colors seen so far. As a + ln n - in 2)
result we can place a lower bound on the robustness Equation 3 estimates a lower bound on the robustness
of a strategy (i.e. an upper bound on the probability of a strategy from the size of its training set and the
that it will fail) by counting the number of training number of generalizations during training, assuming
instances and how often during training the strategy only that n > 2(S + In n - In 2) > 0. In particular, it
had to be generalized, and applying Equation 1. asserts that the probability of learning a strategy that

Unfortunately, Equation 1 is not in a convenient form fails more often than h-' is less than h 1 .

for determining the robustness of a strategy h from
the number of training samples n and the number of 5 conclusion
failures during training S. Doing some algebra (and
substituting m for i)" For small domains, knowledge-directed vision systems

m = h(S + In h) can recognise objects accurately and efficiently, in part

em = eShehlnh because knowledge engineers are able to select the ap-
h propriate procedures and devise efficient control pro-

= e~kh• cedures for applying them. Unfortunately, as problem
= (eSh)h domains become more complex, it becomes impossible

(S (e h)"es to hand-craft solutions to every recognition problem.
e = (e h) SLS presents a solution to this knowledge engineer-

ing problem by having the system learn specialized

Substituting c for (e")" s and y for (e5 h), we get an recognition strategies from training images and object

equation of the form c = fo. Solving for y: n models, without the aid of a human knowledge en-
gineer. SLS selects the most appropriate recognition

In c = yIn y (2) techniques for a target object from a library of visual
procedures, and builds a strategy that efficiently and

In Inc = In y + In In y effectively controls their application. Just as impor-
S(1 + o(l))ln y tant, SLS does what most knowledge engineers were

1 unable to do, namely analyze its strategies and pre-
In Y 1+o(1" In In c dict their expected cost and robustness.

Substituting for In y from Equation 2 yields: References
inc
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Inc =Z y (1+ ) Inlnc Merging," International Journal of Computer Vi-

Inc sion, 2:311-347 (1989).
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Much Perspective Spoil the View? A Case Study
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Abstract tify the actor if known to them [Johanason, 19731. For
certain recognition tasks, as illustrated above, motion

The recognition of repetitive movements char- alone is sufficient.
acteristic of walking people, galloping horses, Duplication of some of these motion recognition abil-
or flying birds is a routine function of the ities in machine systems would be useful in a numberhuman visual system. It has been demon- iisi afn ytm ol eueu nanme
strat thsualsyt humascan r eognizemsuchc- of applications. One area is in automated surveillance.tivity solely on the basis of motion informs - Motion detection via image differencing can be used fortion.yWolely penthe bai novl com tiona i map- intruder detection; however such systems are subject toproach for detecting such activities in real im- false alarms, especially in outdoor environments, sinceproage s odequencsong tuhe bastivs of th e a peio - the system is triggered by anything that moves, whetherage sequences on the basis of the periodic sa- it be a human, a dog, or a tree blown by the wind.gests a low-level feature based activity recog- Motion recognition techniques, both of the discrete andnition mechanism. This contrasts with earlier textural variety have the potential to disambiguate themodel-based approaches for recognizing such motions of different origin. Another application is inactivities, industrial monitoring. Many manufacturing operationsinvolve a long sequence of simple operations each per-

formed repeatedly and at high speed by a specialized
1 Introduction mechanism at a particular location. It should be possi-

ble to set up one or more fixed cameras that cover theTv ys- area of interest, and to characterize the allowed motions
tem is remarkable. People are able to distinguish both in each region of the image(s).
highly structured motion, such as that produced by
walking, running, swimming or flying birds, and more A useful first step in recognizing motion from gray-
statistical patterns such as that due to blowing snow, level image sequences is to classify motions according to
flowing water or fluttering leaves. More subtle move- the spatial and temporal uniformity they exhibit. We
ment characteristics can be distinguished as well. For define temporal textures to be the motion patterns of
example, human observers can not only distinguish walk- indeterminate spatial and temporal extent, activities to
ing from other activities, but can also recognize a friend be motion patterns which are temporally periodic but
walking at a distance by his or her gait. Similar dis- are limited in spatial extent, and motion events to be
crimination abilities have been observed in non-human isolated simple motions that do not exhibit any tem-
animals. This biological use of motion probably reflects poral or spatial repetition. Examples of temporal tex-
the fact that for certain tasks, visual motion provides tures include wind blown trees or grass, turbulent flow
more effective cues than other modes of visual percep- in cloud patterns, ripples on water, the motion of a flock
tion. Motion is a particularly useful cue for certain types of birds etc. Examples of activities are walking, running,
of recognition due to the fact that it is relatively easy to or flying individual, rotating or reciprocating machinery,
extract the motion field independent of illumination and etc. Examples of motion events are isolated instances of
shading of the image. opening a door, starting of a car, throwing a ball etc.

The classic demonstration of pure motion recognition It turns out that temporal textures can be effectively
by humans is provided by Moving Light Display experi- treated with statistical techniques analogous to those
ments. In these experiments, reflective pads are attached used in gray-level texture discrimination. A previous
to the joints of a person and his or her movements are paper [Polana and Nelson, 19921 describes this. Activ-
filmed against a black background so that only the light ities and motion events, on the other hand, are more
reflected off the pads is visible. When people are shown discretely structured, and techniques similar to those
these images they dismiss single frames as meaningless used in static object recognition would be expected to
dot patterns, but they recognize the sequential presen- be useful in their classification. Since different sorts of
tation of them as walking, running or jumping etc. Sub- techniques must be used to distinguish the different sorts
jects can also identify the actor's gender and even iden- of motion, it would be useful to have a method for mak-
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ing a preliminary classification of the motions present in They propose the use of the resulting trajectoryi primal
an image. In this paper, we describe a robust method sketch in a motion recognition system. Koller, Heinze
for detecting and localizing periodic activities, including and Nagel [1991] developed a system that tracks moving
ones, such as walking or flying, that involve simultane- vehicles and characterizes their trajectory segments in
ous translation of the actor. The method is based on terms of natural language concepts.
frequency domain analysis of a image in which low-level A few studies have considered highly specific aspects
motion information has been used to isolate and track of motion recognition computationally. Pentland [Pent-
likely locations of activity. The method also suggests land and Mase, 19891 considered lip reading, and imple-
a way of using low-level structural features to classify mented a system that could recognize spoken digits with
activities once they have been detected. 70%-90% accuracy over 5 speakers. The system required

the location of the lips to be entered by hand, and de-
2 Related Work pended on an explicitly constructed lip model. Some

temporal pattern recognition work has been done in the
Although motion plays an important role in biological context of speech processing [Juang and RIabiner, 1985,
recognition tasks, motion recognition in general, has re- Tank and Hopfield, 1987, Elaman, 1988]. But the appli-
ceived little attention in the literature compared to the cability of the techniques to motion recognition has not
volume of work on static object recognition. Most com- been considered.
putational motion work in motion in fact, has been con-
cerned with various aspects of the structure-from-motion 3 Activity Detection
problem. There is a large body of psychophysical litc.
ature addressing the perception of motion, most of it Activities involve a regularly repeating sequence of mo-
concerned with primitive percepts. A modest amount tion events. If we conside- an image sequence as a spatio-
of this work addresses more complicated motion recog- temporal solid with two spatial dimensions and one time
nition issues lJohansson, 1973, Cutting, 1981, Hoffman dimension, then repeated activity tends to give rise to
and Flinchbuagh, 1982, Hildreth and Koch, 1987], but periodic or semi-periodic gray level signals along smooth
the models and descriptions have typically not been im- curves in the image solid. We refer to these curves as
plemented. Various computational models of tempo- reference curves. If these curves could be identified and
ral structure, have been proposed (e.g. [Chun, 1986, samples extracted along them over several cycles, then
Feldman, 1988]) but much of this work is at a fairly high frequency domain techniques could be used in order to
level of abstraction, and has not actually been applied judge the degree of periodicity.
to visual motion recognition except in rather artificial Two important cases are stationary activities, and ac-
tests. tivities that result in a more or less uniform translation

Goddard [1989] considers recognizing event sequences of the actor, i.e. locomotory activities. If the activity is
from Moving Light Display (MLD) images. His work stationary, the reference curves are lines parallel to the
addresses the representation of motion event sequences temporal dimension. For example, a circularly rotating
and their recognition assuming certain invariant im- ring gives rise to a temporally periodic signal at every
age features. His input consists of the joint angles pixel. In the case of uniform translation, the curves are
and angular velocities computed from the motion of straight lines at some angle that depends on the velocity.
the dots in the light displays. The joint angles and For general translation and perspective projection, the
angular velocities are invariant to rotation in the im- lines associated with a given actor form a bundle with
age plane, scale and translation. A challenging part a common intersection, the vanishing point. For many
in computing these invariants is to recover the con- practical situations, however, the vanishing point is far
nectivity of the individual dots (by body parts) in the enough removed that the lines can be considered to be
MLD images. A domain independent approach to this effectively parallel.
problem is given by Rashid. Rashid [Rashid, 1980, Consider, for example the case of walking. This is
O'Rourke and Badler, 1980] considered the computa- an example of a non-stationary activity; that is, if we
tional interpretation of moving light displays, particu- attach a reference point to the person walking, that
larly in the context of g it determination. This work em- point does not remain at one location in the image. If
phasized rather high-level symbolic models of temporal the person is walking with constant velocity, however,
sequences, an approach made possible by the discrete na- and is not too close to the camera, then reference point
ture of the moving light displays. The results were quite moves across the image on a path composed of a con-
sensitive to discrete errors and thus highly dependent stant velocity component modulated by whatever pe-
on the ability to solve the correspondence problem and riodic motion the reference point undergoes. Thus, if
accurately track joint and limb positions. This severely we know the average velocity of the person over sev-
limits the general applicability of the method. eral cycles, we can compute the spatio-temporal line of

Anderson et al. [Anderson et al., 1985] describe a motion along which the periodicity can be observed. If
method of change detection for surveillance applications the person moves with average velocity (u, v) the spatio-
based on the spectral energy in a temporal difference temporal line of motion will be determined by the equa-
image. This was not generalized to other motion fea- tions (z, y) = (u, v) * t + (zo, yo), where (x, y) is the
tures or more sophisticated recognition. Gould and Shah position of the object in space at time t and (zo, to) is
[1989] represent motion characteristics of moving objects the position at time zero. This applies to any object
by recording the important events in their trajectory. undergoing constant velocity locomotion.
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3.1 Periodicity Detection suppression, where the periodicity measure is obtained
From Fourier theory we know that any periodic signal for each power spectrum separately. Each frequency w
can be decomposed into a fundamental and harmonics. is then assigned a value equal to the sum of the peri-
That is, we can consider the energy of a periodic signal to odicity measures P. from all the signals whose highest
be concentrated at frequencies which are integral multi- amplitude occurred at that frequency. The result is the
pies of some fundamental frequency. This implies that if same as suppressing all but the maximum frequency in
we compute the discrete Fourier transform of a sampled each transform, weighting each by the periodicity mea-
periodic signal, we will observe peaks at the fundamen- sure of the signal, and summing them. The maximum
tal frequency and its harmonics. Hence, in theory, the value of this combined signal is taken as the fundamental
periodicity of a signal can be detected by obtaining its frequency, and the associated periodicity measure is the
Fourier transform and checking whether all the energy average of the periodicity measures of the contributing
in the spectrum is contained in a fundamental frequency signals.
and its integral multiples. Thus, the periodicity measure P for an entire image

The real-world signals, however are seldom perfectly sequence is defined as
periodic. In the case of signals arising from activity P = max(Pw,/nw,)
in image sequences, disturbances can arise from errors
in the uniform translation assumption, varying back- where nw and Pw are the number of pixels at which
ground and lighting behind a locomoting actor, and the highest amplitude frequency is w and the sum of
other sources. In addition, for computational purposes, periodicity measures at those pixels respectively.
we need to truncate the signal at some finite length which Finally, in order to apply the technique to real data,
may not be an exact integral multiple of its period. Nev- we need a way of extracting reference curves and the
ertheless, the frequency defined by the highest amplitude associated signals from an image sequence. In the fol-
often represents the fundamental frequency of the signal. lowing, we assumed that any activity that existed in the
Hence we can get an idea of the periodicity in a signal by data would be either stationary, or locomotory in a man-
summing the energy at the highest amplitude frequency ner that produced an overall translatory motion. We
and its multiples, and comparing that quantity to the also assumed that there was at most one actor in the
energy at the remaining frequencies. In practice, since scene, though a certain amount of background motion
peaks in a Fourier transform tend to be slightly broad- could be tolerated. The first assumption turns out not
ened for a variety of reasons, including the finite length of to be too restrictive - a large number of natural periodic
the sample, we define the periodicity measure p! of a sig- activities fit into one of the two categories. The second
nal f as a normalized difference of the sum of the power can be relaxed with some additional preprocessing. The
spectrum values at the highest amplitude frequency and first step is to identify locations in the scene where move-
its multiples, and the sum of the power spectrum values ment of any sort is occurring. This is done by computing
at the frequencies halfway between. That is, the normal flow magnitude at each pixel between each

= ( Fi,• - 7 F +12 ))/(V F•,• + • +1) successive pair of frames using a spatio-temporal deriva-
:( -F(iw+W/2))J L+ Fi+w 2 ) tive method. Those pixels at which significant motion is

i i i i present are marked, and the centroid of the marked pix-
where F is the energy spectrum of the signal f and w is els computed in each frame. The mean velocity (if any)
the frequency corresponding to the highest amplitude in of the actor is then computed by fitting a linear tra-
the energy spectrum. jectory to the sequence of centroids. This is where the

The measure is normalized with respect to the total one-actor assumption comes into play. If several actors
energy at the frequencies of interest so that it is one for a were present, simple clustering techniques could be used
completely periodic signal and zero for a flat spectrum. to isolate the regions in the scene corresponding to differ-
In general, if a signal consists of frequencies other than ent activities. The reference curves were taken the lines
one single fundamental and its multiples, its periodicity in the spatio-temporal solid parallel to that generated by
measure will be low. the linear-fitted trajectory of the centroid. Signals were

Because the signal along any given reference curve in extracted along these curves, and those that displayed
the image solid may be ambiguous, we need a way of significant spread over a period of at least half as long
combining periodicity measures of a number of signals as the signal were selected for processing. This had the
from reference curves associated with the same actor. effect of eliminating the need to process regions in which
The simplest idea would be simply to sum the power no motion occurred, as well as regions affected only by
spectra of the various signals, and apply the periodic- an occasional blip.
ity measure to the resultant curve. Unfortunately, this
does not work, primarily because, although there is a 3.2 Experiments
fair amount of energy at the fundamental frequency, and We ran experiments on four different activities, and a
quite a few signals in which high periodicity is present, number of non-periodic motions. The sequences were
there are also a lot of samples where the periodicity is first recorded on video and then digitized later with suit-
not evident, or which appear periodic at some other fre- able temporal sampling so that at least four cycles of the
quency. The net affect, is that all this energy at other fre- activity were captured in 128 frames. Following * a de-
quencies can swamp the main signal if they are combined scription of each activity and the conditions under which
additively. What does work, is a form of non-maximum they were digitized.
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" Walk: A person walking across a room viewed in by back-projecting the reference curves having high pe-
profile. Six sequences of 128 frames of size 128x128 riodicity measures into the image solid.
pixels were obtained. Half the sequences contained So far we have assumed that the actors giving rise
one person and the other half a second. to the activity move with constant velocity along lin-

"* Exercise: A person performing jumping jacks. Four ear paths. The case of nonlinearly moving objects can

sequences of 128 frames of 128x128 pixels, two each be handled by tracking the object of interest given a

of two different people. coarse estimate of its initial location and velocity. This
would generate reference curves that were not straight

"* Swing: A person swinging viewed from the side. lines. We have already demonstrated the usefulness of
Six sequences of 128 frames of 128x128 pixels, three the centroid of motion for computing the velocity of lin-
each of two different people. early moving objects. It could also be used for tracking

"* Frog: A toy frog simulating swimming activity the actors moving on more complex trajectories. Use of
viewed from above. Four sequences of 128 frames the motion centroid can be unreliable in estimating the
of 64x256 pixels. centroid of the object if the shape of the object changes

"* Nonperiodic: Various sequences taken from televi- as it moves. In this case use of a prediction and correc-
tion mechanism using past values over a sufficiently long

sion shows and live outdoor shots: splashing wa- period can help.
ter, closeup of crowd at a political rally, a plane The detection scheme also assumes that there is only
flying overhead, a robot hand picking up and ma- one activity in the scene except for some background
nipulating objects (2 sequences), the input to an clutter. If there are multiple activities in the scene, this
eye tracker (eyeball movements), leaves fluttering detection technique can still be applied provided the ac-
in the wind, turbulent flow in a stream. In all, 8 tivities can be spatially isolated so that they do not inter-
sequences of 128 frames of 128x128 pixels. fere with each other. In this case they can segmented us-

The swing and exercise activities were shot outdoors and ing the motion information and later tracked separately.
contained background motion as well. Among the peri- Even an occasional crossing of different activities can be
odic activities, a single sequence of uniform rotation is tolerated as long as the regions can be separated again
included as well. Sample images of periodic activities later.
are shown in figures 1. The complexity of detection is proportional to the

The periodicity measures computed using the above number of pixels involved in the activity. About half the
algorithm are plotted for all 20 periodic and all 8 non- work is computing the fast Fourier transforms at each of
periodic sequences in figure 2. As is evident from the the pixels. Most of the rest of the time is occupied by
graphs and the projected scatter plot, the technique sep- the motion detection process. The detection procedure
arates complex periodic from non-periodic motion nicely. currently runs on an SGI machine using four processors
The requirement that an empirically determined thresh- and it take approximately 15 seconds to process a 128
old be used is not a great drawback in this case, nor frame sequence of 128x128 images.
is it particularly surprising, since even the the intuitive
notion of periodic activity falls on a continuum. Is the 4.1 Recognition of Activities
motion of a branch waving somewhat irregularly in the The first stage in recognizing an activity is to detect that
wind periodic or non-periodic? Here, we classified it as an activity exists, and localize it in the scene. This paper
non-periodic, but it had one of the higher periodicity has described a technique for accomplishing this. Future
measures, as might be expected. work will utilize information computed in the detection

stage for recognition and classification of specific activi-
4 Discussion ties. The detection scheme utilizes only the magnitude of

eperiodicity detection method we described satisfies the Fourier transform to obtain the periodicity measure.
The peral detection It is invariatimage The phase of the Fourier transform is also computed atthe several desirable invariances. It is invariant to image each location in the image and we propose to use this in-

illumination, contrast, translation, rotation and scale. It formation along with other low-level information in the

is also invariant to the magnitude of locomotory motion image, for recognition. For example, walking can be de-

and the speed of the activity. It is also fairly robust with scribed as a sequence of motion events regularly occur-

respect to small changes in viewing angle. The period- rine as a sequenc e of motion events

icity measure does not depend on the number of pixels ring at each spatial location. The cycle of motion events

involved in the activity. If desired, a restriction on the at different spatial locations in the image have a fixed

minium umbe ofpixes cn b impsedso tat nly phase difference. These phase differences are valuable inminimum number of pixels can be imposed so that only characterizing the activities.

activities of a minimum size can be recognized. The

swing and exercise sequences were taken outdoors where 5 Conclusion
there is a small amount of background motion. This
comprises not only moving trees and plants, but also We have described a method of activity detection. This
moving people and occasional crossing of a car. That pe- technique uses a periodicity measure on gray-level signals
riodicity can be detected even in this case demonstrates extracted along spatio-temporal reference curves. We
that the technique is reasonably tolerant of background have illustrated the technique using real-world examples
clutter and an occasional disturbance. The technique of activities, and shown that it robustly detects complex
also provides a method for localizing activity in the scene periodic activities, while excluding non-periodic motion.
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Figure 1: Sample images from periodic sequences: walk, exercise, swing and rotation
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Abstract in which objects appear or are expected to appear. The
idea of sufficing vision is that vision modules are designedWe hypothesize that selective perception allows for and only executed in such contexts. For example,

more accurate solutions to visual tasks to be when looking for the carrots at a dinner table it may be
found in less wall-clock time than non-selective sufficient to look for a big blob of orange and then check
techniques. The best way to assess the practi- the orange things are roughly elongated. In another situ-
cal truth of this hypothesis is by studying, de- ation it may be sufficient simply to look for a big blob of
-stheigning ard buidingacmpenteavisi systems iorange. Two things are required in order for sufficing vi-
-O the issues are fundamentally systems issues. sion to work. First, a system is needed that establishes
On the other hand, special-case systems are not contexts and uses them to specify exactly what vision
convincing: we present the T-world problem as modules to run. Second, a large repertoire of flexible
an abstraction of an interesting class of real-vionmdlssnee.

world vision problems. T-world has enough vision modules is needed.

structure to support basic study of fundamen- Historically, vision modules have been engineered to
tal tradeoffs inherent in selective computer per- produce relatively high-level outputs, ones humans can
ception. Our complete system is called TEA-1: reason about. Sufficing vision systems may be less trans-
it is a purposive and sufficing vision system that parent: A human may find it difficult to understand or
solves a version of the T-world problem. TEA- specify exactly what a vision module in a sufficing vi-
1 is a fully implemented system, and extensive sion system is really doing and why, since the context
experiments in the laboratory and simulation may not be known to the human and the significance of
have explored the key factors that make the the extracted information within that context may not
selective perception approach appealing, ana- be obvious. While in general it may be difficult to design
lyzing how each factor affects the overall per- and integrate such vision modules, there are two causes
formance when solving a set of automatically for optimism. First, learning techniques may be able
generated (in simulation) T-world domains and to tune and select modules in the context of the whole
tasks. system, even though humans can not easily specify the

modules explicitly and a priori. Second, one aspect of

1 Selective Perception the sufficing vision idea is that existing (relatively sim-
1 epIe) vision modules may be more useful than they may
1.1 General Concepts seem, when intelligently applied and interpreted within

Purposive vision. A purposive vision system works specific contexts.

to achieve a goal (i.e. solve a visual task) in minimal Selective perception. A selective perception system
wall-clock time. Goal-directed operation can make the is purposive and sufficing.
system fast by limiting the amount of data processed and Control of selective perception. The general
by limiting the extent to which that data is processed. problem that we are interested in is to control (select

Sufficing vision. Sufficing vision is the use of (usu- actions and make decisions in) a computer vision system
ally simple, cheap, and general) vision modules whose that has a repertoire of actions (sufficing vision modules)
output is ambiguous unless considered in a known con- such that the system operates in a purposive manner.
text. We make the following general assumptions: The com-

It is essentially impossible to design a vision module puter vision system has (high-level) knowledge about a
that performs well in all possible contexts. However, it domain and a set of tasks. A repertoire of actions is
is quite possible that through partial visual analysis or available that provides many different ways to obtain im-
prior knowledge, the vision system has some informa- perfect information about a scene. Characteristics (re-
tion about the situation in the scene and the contexts liability, time needed) of the actions are known. The

"This material is based on work supported by DARPA computer vision system has a pointable vision sensor,
Contract MDA972-92-J-1012. The Government has certain requiring that it make decisions about moving the vision
rights in this material, sensor.
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The tasks the system must solve are in one sense very mains and tasks. One crucial factor is the amount and
simple. If a complete symbolic description of the scene nature of structure in the organization of objects in the
were available, a subset of that information directly de- scene.
termines the solution to a task. The problem is that (a) TEA-1 shows one reasonable way to design a computer
the system must try to retrieve information about each vision system using Bayes nets (aka influence diagrams)
member of the subset one at a time, (b) the scene is and decision theory. Other computer vision and robot
complex so it is difficult to locate the desired informa- systems have been built that use decision theoretic tech-
tion, and (c) only imperfect information can be obtained. niques, Bayes nets, Dempster-Shafer or similar modeling
The visual actions are parameterized, providing infor- techniques (see Section 5), usually in the lower-level ca-
mation of varying quality. The control problem, crudely pacity of supporting sensor fusion for single object recog-
described as deciding "what to do next", really consists nition or building environmental descriptions. TEA-1
of several problems: what to look for next, where to look addresses high-level computer vision, is one of only a
next, and how to look for things. few systems that consider how to control an actively

pointable sensor, and is the first to emphasize purposive
1.2 Hypotheses and sufficing control in high-level vision. Since TEA-1 is
Our goal is to prove or at least support the following a fully implemented system, we have been able to per-
hypotheses. form extensive experiments in simulation and in the lab,

A (high-level) computer vision system (with limited and to analyze factors that affect selective perception -
resources and working in complex environments) that is these are fundamentally systems issues - using complete
purposive and sufficing is better than one that is not, runs on a large number of scenes.
meaning that it solves tasks in less wall-clock time. There are many approaches to control in a selective

Bayesian and decision theoretic techniques offer a perception system ranging from brute-force and heuris-
sound formal basis for control of a purposive and suf- tic search through hand-crafted evaluation functions to
ficing computer vision system. a formal planning system. Our work explores this spec-

A control algorithm based on a carefully designed eval- trum of choices, studying and experimenting with some
uation function with lookahead can implement purposive of the choices and exploring the issues in control and
and sufficing vision, how each choice deals with those issues.

The performance of a purposive and sufficing vision
system depends on the amount of "structure" there is in 2 The T-world Problem
a scene, meaning the various ways that objects may be This section defines the T-world problem, a formaliza-
grouped in a scene and the spatial relationships between tion of some key problem characteristics that can be ex-
objects and groups. ploited by a selective perception system.

A sufficing computer vision system requires a large A scene. A scene consists of many objects within
repertoire of actions whose performance characteristics a large two-dimensional rectangular area. Each object
are controlled by a set of parameters. has a location (for its centroid), rectangular dimensions,

1.3 Fundamental Contributions a type, and a set of properties. Each property has a
set of possible values. There may be any number of

We believe that the best way to address many of our hy- objects in the scene. Objects may overlap each other,
potheses is by studying, designing and building complete but this does not affect the performance of a visual action
vision systems - the issues are fundamentally systems (see below). The objects in the scene may be organized
issues. The contributions of our work so far are summa- into a set of mutually exclusive groups, and groups may
rized below, have subgroups, subsubgroups, etc. Subgroup structure

We define the T-world problem, a simple class of vi- is determined by the domain rules (see below).
sion problems that still contains many of the key factors The sensor. The sensor, called a camera, is a fixed-
motivating the selective perception approach. We be- size rectangular window that is in the plane of the scene
lieve T-world is an adequate problem for easily studying and is much smaller than the extent of the scene. The
some of the basic issues in selective computer perception, window may be moved (by an camera movement ac-
and that the T-world problem can be mapped to a va- tion, see below) to any location in the scene, specified
riety of real-world applications [Rimey, 1993]. We have by the coordinates for the center of the window in a
worked with the abstract T-world problem in static and two-dimensional world coordinate system. The window
dynamic scene simulations and a real-world application defines the camera's field of view. A fixed-size rectangu-
(dinner table scenes) in the lab. lar window, called the "fovea, is much smaller than the

We present the TEA-1 system, an example of a pur- field of view's size, and may be moved around inside the
posive and sufficing vision system that solves a version field of view.
of the T-world problem. Analysis and experiments are A low spatial-resolution image that covers the entire
provided that explore the advantages of the TEA-1 sys- field of view is available and is called the "peripheral
tem's purposive and sufficing behavior on the T-world image". A high spatial-resolution image that covers the
problem. We explore the key factors that make the selec- fovea is available and is called the "foveal image". (Al-
tive perception approach appealing, analyzing how each ternatively, a resolution pyramid of images may be used.)
factor affects the overall performance when solving a set A domain. A "domain" consists of a set of scene
of automatically generated (in simulation) T-world do- types and a set of probabilistic rules for each scene type
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that specifies the number, type, location (and grouping 3 TEA-i: A Decision-Theoretic
structure) and properties of objects in a scene. Solution for Control of Selective

A task. A task is defined as determining the value Perception in the T-world Problem
of a task variable, which is a (probabilistic) function ofa subset of the number, type, location and properties of TEA-i is an implemented, compact, flexible, selective
objects in the scene, computer vision system, which solves a version of theT-world problem and has a solid foundation of well-

Camera movement actions. Given a specified lo- established formalisms - Bayesian statistics and deci-
cation in the scene (in the two-dimensional world coor- sion theory. TEA-i uses Bayes nets for representation
dinate system) a "camera movement action" moves the and a cost and benefit analysis extending over action se-
camera so it is centered on the specified location. This quences to decide which visual or non-visual action to
action always moves the camera exactly to that loca- perform next. We believe TEA-i's current design pro-
tion. The time to execute a camera movement action is vides a general software tool sufficient to study a variety
a function of the distance moved, of basic issues in high-level and low-level selective anal-

ysis and behavior in computer perception.
Visual actions. Visual actions try to obtain infor- A probabilistic knowledge representation is appropri-

mation about the portion of the scene visible inside the ate for a selective system, and Bayes net and Dempster-
field of view (i. e. from image data). There is a large Shafer approaches are two obvious alternatives. We
collection of visual actions designed to obtain many dif- choose the Bayes net approach because it is flexible and
ferent types of information. We currently use two types easy to use, and works well for the variety of tasks and
of visual action: one tries to detect a specific type of ob- domains we have in mind. We developed a version of
ject in an image, and the other tries to obtain the value Bayes nets, called a composite Bayes net, which con-
of a specified property of a specified object in an image. sists of domain-specific knowledge (including geometri-

The behavior of an action depends on whether the cal) and a specification of the desired task. The compos-
target object is truly in the field of view or not, the true ite net includes a new application of Bayes nets to repre-
type, location and properties of the target object and sent relative object locations and geometric relations. A
of all the other objects in the field of view. An action task is specified by a net that makes explicit the relation
may have a precondition that must be satisfied before of evidence needed to accomplish a specific perceptual
the action can be executed. task to the components of the domain-dependent knowl-

edge representation.
The performance of an action is a function of several We have used generic, easily-tuned, sufficing vision

parameters, which must be specified for each action: the utilities (histograms, Hough transforms) from our soft-
image resolution (currently either foveal or peripheral ware library. These sufficing algorithms are in general
resolution, and generally a level in a resolution pyramid), simple and fragile; in a known context they are simple
the image area to process, and the length of time to and robust. Our goal is to be able to use intelligently
process a unit of image data. Note that several actions whatever visual operators are at hand. The control sys-
may have the same purpose, but different performance tem can apply a vision module in a very specific spatial
characteristics. The time to execute a visual action is a or semantic context, knowing how the context affects the
function of the specified parameters. performance of that module.

TEA-I's design assumes all the details in the T-worldThe problem. Given a scene from an identified T- definition in Section 2. TEA-I programs can transpar-
world domain and a specified T-world task, the problem ently run either with a T-world simulator providing in-
is to sequentially collect evidence from the scene to sup- put and accepting output or in the laboratory (for a
port a decision about the answer to the task, with a de- dinner table domain).
sired level of confidence, so that the total wall-clock time More details about TEA-i are available in [Rimey and
for executing the actions is minimized. Solving the prob- Brown, 1992a, 1992b, 1992c, 1992d, Rimey, 1993], in-
lem involves the following general steps: decide what ac- cluding the various decision making algorithms, example
tion to execute next, execute that action, incorporate runs the sys de r eakin talg resule
the results from that action, decide on the answer to the runs of the system, and other experimental results.
task, and decide whether to gather more evidence or to
stop. 4 Factors Affecting the Performance of

Selective Perception
A set of programs has been written that allows TEA- I

to analyze scenes and solve tasks in a simulated T-world We are currently analyzing the relationship of several
(in addition to a version that runs in the lab). One pro- key factors to the overall performance of a selective per-
gram simulates an instance of T-world (scene, camera, ception system, using T-world and TEA-I: (1) auto-
actions, etc.) as specified by a database of rules and matically generate a large number of simulated T-world
models. Another program automatically generates the domains, scenes, and tasks; (2) run TEA-I on the gen-
database files that specify new instances of T-world do- erated scenes and tasks; and (3) compute the average
mains, and scenes and tasks for each domain. The same solution time over all scenes for each task. This ap-
program automatically generates the knowledge repre- proach lets us show how each factor affects the average
sentation structures used by the TEA-I system. solution time. Factors falling in four categories are be-
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Figure 1: Plots of belief over time for various action eval- tj
uation functions. Belief: that a table setting is not fancy
when it actually is, averaged over 10 scenes generated by I
the T-world simulator. U5 is a constant evaluation, or
random choice of operation, and sophistication increases
from U4 to UO. Better performance means both that the (c) (d)
final belief value is lower and that it gets lower faster.

Figure 2: Some examples of how a scene of nine objects
could be structured. The smallest squares are objects.

ing analyzed: control method, scene structure, systems The other squares depict groups or subgroups. (a) No
parameters, and parameterizable actions [Rimey, 1993]. grouping. (b) Three groups of three objects. (c) Two

rather dense groups, with five and four objects in each.

4.1 Control Method (d) A subgroup structure.

Our early work explored a variety of evaluation functions
(and related issues) for deciding what camera movements 4.2 Scene Structure
to make and what visual actions to execute. For exam- Several aspects of scene structure can have a significant
pie, Figure 1 shows the performance of TEA-i solving impact on performance, mainly because geometric rela-
a table setting task with six different action evaluation tions define contexts in a scene, which help locate things
functions, holding other factors constant. We have also in the scene and thus help obtain more accurate infor-
explored several different evaluation functions for mak- mation more cheaply. See [Rimey and Brown, 1992a,
ing camera movement decisions, and have compared the 1992b, 1992d] for an example in a dinner table domain
evaluation function approach with a state-space search of that shows how a cup's expected area gets narrower and
all possible action sequences [Rimey and Brown,1992a, how an actual cup detection action performs after each
1992c]. of the table, plate, and napkin have been located (in that

Many fundamental questions remain, however, as to order).
the most effective ,ontrol and cost/benefit evaluation We are currently studying several specific scene-
mechanisms. For example, the original TEA-1 design tructure factors via simulated T-world domains, such
used a Vat. = value/cost measure, though some (cam- as: number of groups and number of subgroup levels
era movement calculations) used Vimm = value - cost. that objects are organized into, average number of geo-
Calibration between value and cost is necessary in either metric relations between objects, and shape (and type)
method. Computing the value of an action as V4 mm em- of geometric relation distributions between objects. For
phasizes finding the best single action to perform now, example, Figure 2 shows several different ways that a
but maximizing Vr,., ensures the fastest improvement scene of nine objects could be structured.
over time, which is also an important consideration. The Another factor that we classify under scene structure
latest TEA-1 design maximizes a combination of V,..4 t is whether it is inherently easier to detect and obtain
and Vi,., (and action value is now based on the expected properties of some objects than others. For example,
value of sample information rather than on average mu- certain large objects (like runways) may be easier to find
tual information). Preliminary results using T-world and than small objects (like service vehicles), while highly
TEA-1 regarding these questions are encouraging. We constraining the location (or properties) of smaller ob-
are currently changing some more details of the imple- jects. Wixson demonstrated that the efficiency of ac-
mentation to be more consistent, so tighter results can tively searching for a specified target object in a room
be obtained for comparisons, and so more extensive com- can be improved by a factor to 2 to 8 when a related
parisons can be made. intermediate object is located first [Wixson, 1992].
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The T-world problem contains significantly more op- .
portunity for and kinds of scene structure than Wixson's wee; C a
object search problem, which contains only the simple Non -, 9 -
"look near" relation. The solution to a T-world problem
can involve several types of information about several ob-
jects, rather than simply detecting one object. It will be
interesting to compare the performance gains obtained
by using relations with more than one object to those "
obtained by using relations with only one object. - 0.,

Some of the task complexity factors that T-world en-
ables us to analyze experimentally are: the minimum
number of (independent) scene features needed to solve
the task; loosening the independence restriction; and
whether all features have the same impact on the task, or
some features contribute more information to the task's 2 n. .. .
solution. tim

4.3 Parameterizable Actions Figure 3: Performance for a dinner table task as the
Selective perception (and qualitative vision) tightly cou- camera movement cost is varied.
pies high-level control with the low-level vision modules,
specifically so the vision modules can be asked to provide
only the minimal information needed to solve the current emerge. T-world circumvents knowledge engineering and
task. How much and what type of flexibility must exist other practical difficulties in experiments with complex
in the vision modules, and how does the control system scenes, so we can study these issues.
mesh with such a repertoire of very flexible vision mod- With cheap vision, humans may not use their innate
ules (e.g. with several parameters)? This question has powers of representation and memory and may prefer
not received much attention: most vision modules have just to update short-term memory. This strategy seems
been designed to recover as complete a description as to be found in humans [Ballard et al., 1993] in repeti-
possible, to support traditional vision tasks like single tive sequential hand-eye tasks. On the other hand, hu-
object recognition or scene property reconstruction. man eye fixations during even simple tasks clearly show

The value of some vision algorithms is affected by pa- evidence of rational seuential contrl ([Yarbus, 1971,
rameters (depth of search, spatial resolution, iteration and see Figure 4). Further, vision is expensive when
count, annealing schedule, etc.) that change operation peripheral vision is reduced, when there are distractors,
cost. Our decision-theoretic formalism can be extended noise, low contrast, etc. Humans do manage their vi-
to a continuous range of benefit/cost choices that will sual resources, even for static scenes, and their manage-
allow the control of monotonic or anytime algorithms ment strategies are open to investigation through several
whose results get better with longer running times, avenues. We are hopeful that we can relate decision-

theoretic control to human performance by using mod-
4.4 System Parameters ern eye-, head-, and hand-tracking technology to observe

The system parameters category includes: performance humans performing T-world tasks.

model of a visual action (a table of probabilities), rel-
ative costs of visual and non-visual actions, size of the 5 Related Work
camera's field of view, size of the fovea, relative speed of Extensive references can be found in our other papers
computation (in the multiprocessor version of TEA-i). Eeive referen, 1a, b , 1ound 1992d, other sFigre shws he ffet o vryig te cst f acamra [Rimey and Brown, 1992a, 1992b, 1992c, 1992d, Rimey,Figure 3 shows the effect of varying the cost of a camera 1993]. Our work on task-based vision is most directly
movement, which is generally to stretch the performance 1 o ur wo on as d viio is m tictly
curve over time [Rimey and Brown, 1992a]. (Wixson dis- comparable to d Hutchinson and Kak, 1989], which put
cusses the effect of some similar parameters on an object a carefully designed version of model-based hypothesissearch task in [Wixson, 19.)verification vision into a Dempster-Shafer setting, and

Varying some system 1992].) the related [Wu and Cameron, 1990, Hager, 1990]. Ad-tern's overall pattern of parameters will change the sys- ditional key computer vision and robotics applicationstem' ovral pater ofbehavior, meaning the best se- ofdcsnthryae[vittal,18 ndDantquence of actions to execute, which can produce inter- of decision theory are [Levitt 19 a.., 1989] and [Dean et
esting effects and raises interesting issues. For example, al, 1990].
making camera movements more expensive means that
more time is spent analyzing more of the things visible Acknowledgements
at each camera fixation. Peter von Kaenel helped build parts of the T-world simu-

lator and several vision modules and visual actions. Tim
4.4.1 Cycles Becker improved modularity of the T-world/TEA-1 sys-

The combination of cheap camera movements and tem, and parallelized several parts of it. Martin Jager-
"anytime" visual actions [Dean and Wellman, 19911 sand obtained the eye movement recordings in Figure 4,
could encourage cyclic fixation and analysis patterns to using software being developed by Jeff Pelz.
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Exploratory Active Vision
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Abstract We need to emphasize that this work is of a theoret-
ical nature. By no means do we suggest that an active

What is an active observer? In the literature, observer needs to perform a complete reconstruction of
it is considered to be an observer capable of con- the scene in view. On the contrary, our recent stud-
trolling its sensory apparatus, and thus its image ies indicate that this is not necessary. In this paper,
acquisition process. Activities can be movement, we simply show that an active observer which needs to
tracking, zooming, focusing, etc. when the sen- recover information about the structure of the scene in
sory modality is vision. But whatever the par- view can employ many activities. We prove that one
ticular activity may be, its effect is to alter the of the activities in this set will provide the most stable
visual input so that it becomes easier to extract solution (in an algorithmic sense), and we show how it
from it the visual quantities of interest, can be found. This, in turn, suggests that it is fruit-

If we examine various activities more closely, ful to study exploratory active perception, whatever the
we find that they amount to to the addition of a sensory modality or the activity may be.
motion field to the visual input. In cases such as
movement and tracking (whether smooth pursuit 1.2 Motivation for this work
or saccade tracking), this field is a rigid motion One of the main topics of research in modern com-
field corresponding to a 3D motion. It was shown puter vision is the "shape from x" problem. Following
([Aloim88b]) that equipping the observer with the paradigm introduced by David Mart ([Marr82]), nu-
any movement capability makes various visual re- merous models and algorithms have been proposed that
covery problems easier and gives them uniqueness attempt to explain or mimic the behavior of modules ob-
properties as well. served in the human or animal visual system and that

But what happens at the algorithmic level? recover the geometry of an observed scene, using cues
Are all activities-rigid motions in this case-the such as shading, texture, motion, stereo, etc. The goal
same as regards stability issues? In other words, of Marr's paradigm was not only to provide models to ex-
can the active observer explore the space of all ac- plain animal vision, but also to offer a methodology and
tivities in order to discover the one that provides tools for designing artificial visual systems that could be
the most stable solution? This is the problem we used in robotics tasks, visual navigation tasks in partic-
investigate in this paper. ular. By clearly separating the visual module from the

motion planning module, it allows them to be studied

1. Introduction and developed independantly from each other.
The great appeal of the Marr paradigm resides in its

1.1 Overview generality: regardless of the task to be performed (and,

From a theoretical point of view, an active observer therefore, regardless of the type of robot in question),
needs to perform various partial recovery tasks in or- the interface between sensing and planning is provided
der to take the appropriate action, and the question we by the depth map computed by the visual module. In
pose is "what activity (motion) will provide the most this respect, the static (open-loop) position-based, look-
robust solution regarding the structure of the scene in and-move controller (using the classification proposed
view?" While addressing this problem, we present as a by [Sande83]) represented in Figure 1, corresponding
by-product of our analysis a solution that unifies shape for example to the hand-eye system of Tsai and Lentz
from shading, shape from texture, and shape from mo- ([TsaiL89]), can be considered to be the general model
tion. No optical flow or correspondence are used in our of a visual reconstruction-based system. Although a dy-
approach. namic (closed-loop) version of this model is theoretically
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possible (and was discussed in [Sande83J), it has virtu- smooth variations of light intensity over the image
ally never been realized, mainly due to the prohibitive ([GibsoS0], (Horn77]).
computational cost of visual reconstruction (calibration) e shape from texture, which is concerned with the
processes. What is generally presented as closed-loop variation of distributions of image discontinuities or
control is therefore a sequence of error-reducing runs of elementary discontinuity patterns ([Gibeo5Oj).
an open-loop controller. 0 shape from motion (or structure from motion, as

OP..-op.,a.)..• J O 1it is more often called), which attempts to extract
OR M.MO,• ,.n,) vdepth information from the displacement of image

features ([TsaiH84]) or the modification of the image
4 1 intensity ([HornS81]) resulting from the motion of

the observer or of objects in the scene.

"lp F Q"MPVbMF1.4 The active observer

, ,,The concept of Active Perception was introduced in
[Bajcs86] and further analyzed in [Aloim88b]. An active
observer, when engaged in an activity, modifies the con-
straints underlying a given phenomenon (and the equa-
tions describing them) and thus creates new information

Figure 1 - Position-based open loop control that helps to eliminate ambiguities and make the solution
easier to find and, often, more reliable (that is, more ro-

At the other end of the robotics problem, current bust). It was shown in [Aloim88b] that classical, difficult,
work on robot motion planning, even when assuming the or even ill-posed vision problems can be made simpler if
existence of a visual sensor (whether in a theoretical anal- the observer accomplishes some activity chosen from thp
ysis, as in [Chati85], or in an implemented system such space of possible activities such as movement, tracking,
as the ones described in [Weiss84] and [Fedde89]), com- focusing, eye convergence, touch, etc. Active vision can
pletely ignores the sensing process. In particular, it is also be seen as a technique for the integration of shape
always assumed that the visual module can provide reli- from x modules, for example, the shape from texture and
able information, regardless of the activities of the robot shape from shading modules ([Aloim89]).
observer".

The results presented in [Aloim88b] clearly demon- 2. Shape Recovery
strate that this is not the case; some activities (motions) 2.1 Notation
of the observer can be shown to make the visual algo-
rithms more stable. The question that naturally comes The observer considered here is a monocular optic
next is: Can such a good activity be determined a priori? system (camera), which we represent by a classical pin-
This question is immediately followed by: How can this hole model (Figure 2).

choice of a "good" activity (in terms of visual computa-
tions) be incorporated into the motion planning process
(in terms of the task)?

1.3 Shape from x modules Z

The goal of this paper is not to demonstrate that X 0 ----- 9A
extraction of information about the structure of the vi- 'K --
sual environment can be facilitated by the employment M _(K YZY

of an active observer. This has been demonstrated in mY ,.,, \
a previous paper [Aloim88b]. We simply demonstrate
that among the infinite class of activities that an ob-
server can employ, there exists one which is optimal in
the sense of stability-i.e., when the observer employs Figure 2 - Pinhole model of the observer
this activity, information about shape is recovered in the
most robust manner. Since information about shape is The 3D space is referenced to a viewer-based coor-
hidden in shading, texture, and motion, in a sense our dinate system R = (0, OX, QY, OZ), where 0 and OZ
work unifies the following shape from x modules: are the optical center and the optical axis of the camera

* shape from shading, which is concerned with the respectively, and OZ intersects the image plane orthog-

I Work dealing with uncertainty in motion planning ia no ex- onally at o, with d(Oo) = f, the focal length of the
ception to this observation, since at one point or another, perfect camera. OX and OY are defined so as to be parallel to
information about the scene or the motion is needed in all work the axes of the image plane.
published so far.
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Let M = (X, Y, Z)' be a point of the 3D world. M * Equation (4) does not give the optical flow, but the
projects onto the image plane as a point m = (z, y, f)'. normal Bow, i.e. the component of the flow along the
Since we use a pinhole model, the following relation holds direction of VI. Providing we add extra constraints
between M and m: (smoothness), regularization techniques can give us

a solution ([HornS81]); unfortunately, they do not
m = M. (1) handle discontinuities well. Theories of discontinuous

z
This allows us, if we consider m as a function of M, to regularization have been proposed ([Shulm88]), but

compute the Jacobian matrix have only been partially applied to the problem of
optical flow computation ([Shulm89]).

D where D 0 (2) A direct exploitation of (4) requires the computation
w = 0 -Y of VI, which is known to be an ill-posed problem

0 0([Poggi85]). Furthermore, it restricts the applicabil-

2.2 Motion of the observer ity of the module to the case of smooth variations of

The observer is moving with a known rigid motion the intensity (i.e. shape from shading).

composed of a translation T = (tl,t2,t3)' and a rota- e Even assuming the flow can be calculated, the crite-
tion w = (WI, W2, w3)'. A point M in the observed scene rion optimized by the depth map thus obtained re-
is therefore seen as moving with the apparent velocity mains unnatural (smoothness of the flow) or unclear.
v = -w x M - T. In order to simplify the expressions What does it imply about the flow when we minimize
to follow, we define fl to be the antisymmetric matrix norms of its derivatives? What does the depth map
associated with the linear operator w x.: corresponding to such a flow look like?

0 -W3 It seems clear that an important flaw in flow-based meth-
0 -w W3 ods is that they require pointwise calculations of deriva-
W3 0 W i 0 tives and other operators, while the data we are given

-W2 Wi 0 / (intensities) are locally inaccurate . On the other hand,
Using these equations, we can now express the appar- the reliability of averages computed on portions of the

ent motion of world point M, as seen by the observer, as image is quite satisfactory. This is why we introduce
M = -fl -M - T. The motion of M's projection on the linear features ([Amari86]) in our theory.
image plane, m, defines the motion flow

8mn dM Ib m .M -U - = -Z D . (-[I. M - T). (3) A linear feature is a triple LF1 = (pa, ept, EI) where

2.3 The optical flow equation * El is an image window.

For a given motion of the observer and two consec- * The measuring function pi is a differentiable function

utive images of a scene or surface, I(to) and I(to + At), defined over El.

with At assumed to be small enough to justify a differ- a V1 is defined as a moment over El:
ential approximation, we want to reconstruct the shape
of the surface, i.e. recover Z(z, y). Pa = Ids =d pi(z, y) I(z, y) dzdy.

An apparently simple idea would be to compute the
optical flow i, and report it in (3) to obtain Z for each It can be shown (see Appendix) that if we adopt (4)
point in the image. The optical flow constraint tradition- as a model of intensity variation the time derivative of

ally used to relate the unknown optic flow to the image (pi takes the following for.n:

intensity data is the one proposed by [HornS81]: d .

_II= Ids) I 5 = IV t, ds. (5)dl EI Eo l,

d-t . - (4) If we now replace ih in (5) by the expression (3) for the
This equation merely states that the images of M at motion flow, we obtain the following equation, where Z
times t and t + dr, m(t) and m(t + dt) respectively, can is the unknown:
be considered to have the same intensity. Although this 1
simple model somewhat lacks realism-for example, it =1 I Vp, • (D . T ) ds
does not take into account specularity phenomena-it
has nevertheless been adopted by most researchers in -- 'If IVpi.(D.0lm)ds. (6)
this domain, partly due to its intuitiveness and to its E,I
analytic simplicity, but also due to the fact that more
complex equations do not perform significantly better. 2.5 Model-based solution of the equation

We can, however, formulate the following remarks before The right hand term of equation (6) is known; what
going any further in our analysis: we need now is a way to get 1/Z out of the integral
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sign. This can be accomplished if we model it as a lin- 3. Search for a Best Activity
ear combination of differentiable functions (for example, 3.1 Optimization in the space of activities
monomials, Gabor functions, or Fourier components): We have seen that an active observer can create new

1 "i information and will be able to solve problems which
- Ok 10k(z,Y). (7) were ill-posed for a passive observer. Still, common sense

k=1 tells us that not all activities are equally good; some will
Replacing 1/Z by its model (7) makes the vector not actually help eliminate ambiguities. If we want to

of coefficients A = (ak)kfl,m the unknown of the final choose a "good" activity, we need to answer the following
equation: questions:

in [* ] e is there a goodness criterion valid in the space of all
FD d possible activities?

k=1 .D TI ] e if such a criterion exists, can we find an activity which

-= 1 - Z! 11 ((IVu, .D.ra.m)ds. (8) op'fises it?
f If the problem treated here were purely mathematical,

or, in a more compact form: one could think of the accuracy of the computed shape
T -A = model (i.e. its distance from the actual Z(z,y)) as a

(S. T Agood estimate of the activity. Unfortunately, we are deal-
where S1 is an m x 3 matrix and rl is a scalar. ing with the real world: data are noisy and the reliability

2.6 The least squares solution of the camera calibration and of the motion parameters is
questionable. Under such conditions, the only criterion

Each linear feature (LFe ),sq provides a linear equax - that makes sense is the stability of the solution under
tion similar to (8). A least squares minimization exploit- prubto fteiptadprmtr:w att

ing this system of equations gives us the following equa- perturbation of the input and parameters: we want to

tion: pick an activity which will optimize the stability of the
solution calculated. But can we?n on

[ (SI .T.-T.-S')] A E Si -T rl (9). 3.2 Stability of the least squares solution
- - 0 1=1 We first comment that the rotational part of the mo-

R tion has no effect on the stability of equation (9), only
on the recomputed depth map, which is not the main

2.7 Comments on equation (9) focus of the work presented here. Our search for a best
We do not need to compute any pointwise derivatives, activity will therefore be reduced to an optimization in

In particular, the term VI does not appear in our equa- the two-dimensional space of translation directions.
tions. This allows discontinuities to occur in the image: An obvious condition that T has to satisfy is for Q
the method does not require any particular property of to be regular, i.e. Det Q A 0. But this is not enough;
the intensity map. not only do we want Q to be regular, we want it to be

The only derivatives we need to calculate in order to "as regular as possible". In other words, we want Q to
recover Z are the it = [•'Q(t + At) - •0s(t)] /At, where we behave well during the numerical solution of the equation
have to keep in mind that joj is obtained by integration (for example, small pivots should not be encountered in
over the image window El and is thus more stable and a triangulation of the matrix). This imposes conditions
reliable than values at individual points, on the eigenvalues of Q. If Q has small eigenvalues (at

We are not restricted to the use of the optical flow this stage, "small" is purposely vague, meaning, roughly
equation (4); every linear feature gives us a linear equa- "anything that will bring intermediate results close to the
tion. Choosing a big enough linear feature vector, we roundoff error"), it will not be singular, but it will be ill-
can get a solution by Hough transform or least squares conditioned and the computed solution will be unstable.
approximation. Let Xi, .-.. , Xm be Q's eigenvalues listed in increasing

The criterion optimized by the solution is observer- order (since Q is obtained by least squares minimization,
based; for a given shape model, the ak's we compute the Ai's are real and positive). The condition number of
are such that the expected intensity variation (which we Q is defined as the ratio
can predict, given I(z, g, to) over El, and the motion pa-
rameters) is closest to what is actually observed in the C =
image.

Satisfactory results obtained by similar techniques i.e. the ratio of the largest to the smallest eigenvalue of
(using a simplified version of (8)) have been reported in Q. If the condition number is infinite, Q is singular; if C
earlier papers ([Aloim89], [Aloim88a]) and will therefore is large, Q is ill-conditioned. The best T we could choose
not be reproduced here, since reconstructing the depth would be one which would minimize the condition num-
map is not the main focus of this work. ber. This problem, however, is difficult since we cannot
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give an analytic expression for C. Instead, we propose to OQ/Du is computed as the sum of the (oQ1/ou)1elq. and
minimize the following function: OQA(u) =C9 (St. T. S')

In ][ t = ln(DetQ)-m-In( (TrQ) =" o
LI( Q)' = (S, @12 ) (S.' 11)

ln(AIA2...Am) - m. In(A + A2 +... + Am).Out

This choice of g may seem somewhat arbitrary and needs = (St @ 12). 2 • St'

to be justified here: Finally, we obtain
"* First, 9 is well defined, since the determinant and the

trace of Q are invariant under a diagonalizsation pro- [(Q(u))-11 1
cess, and the fraction cannot be equal to zero (sinceJ TM Q(U) J
Am > A1 _> 0), unless Q is equal to the null matrix. I=n

"* The logarithmic term is used here to simplify the * E ((Ss 012). Tau S = 0. (10)
computation of the derivative, and does not affect the 1=1
location of the extrema. As opposed to the condition which is the condition for the existence of an extremum
number, which is dimensionless, 9 is scaled by the (whether an extremum uo is a maximum or a minimum is
translational speed, I1Th. We will therefore minimize then settled by analysis of the eigenvalues of the Hessian
it on the space of translation directions, that is, on matrix at uc).
the Gaussian sphere.

"* The ratio Det Q/Tr Q has the advantage of reaching
its (theoretical) absolute maximum for Al = Am and
its absolute minimum for A1, just as the condition
number does. It does not require a ranking of the
eigenvalues; it can be computed directly without di-
agonalizing Q; finally, we can derive it to study its
extrema, which is the problem we will address in the
next section.

3.3 Deriving g
We use the notation of [Roger80] with regard to matrix
derivatives. Since 11TH1 = 1, we can represent T as a
function of the spherical angle vector u = (9, p9', with
respec, to which we perform the minimization

T(u) = (cos 0 sin e, sin 0 sin e, cos 0)'.

The function to differentiate is

So Q(U) = g St" T(u). T'(u)• S1')• Figure 3 - One of the 640 x 480 images used for the experi-
\ l= 1merits

Applying the chain rule for matrix differentials, we get

Og (Q(u)) =[_ g(X) * (_,Q(u)\ 3.4 Experimental results: Part I
au [ x But X=Q * " In this series of experiments, the condition number of

We chose g in part for the simplicity of its derivatives: the Q matrix was computed for a 640 x 480 image such
as the one shown in Figure 3. The plotted suface corre-

[I ](X) = =[[ I ' 1 X sponds to a scanning of the translation direction over the
axJXfQ (X[-' •Ir Jx = half Gaussian sphere, that is, [-w/2, ir/2] x [-4/2, r/2].

-()1In the case of the plot shown in Figure 4, the mea-
-[(Q(u)) - 1 s. Suring functions pi were defined over 128 x 128 image

TQ(U) windows, and were generated by all combinations of
lnversion of Q is justified since we expect to find nonzero the form cos(a: + by + c), with a and b chosen among
eigenvalues. In order to simplify the computations, Q {0, 5,20,45,100), and c E {0, -r/2). The "reconstruc-
can be expressed as a sum of matrices: tion" functions 0& were defined to be the unit function

n over 32 x 32 image windows, thus defining a coarser grid
Q(u) = Ql(u) where Q1 = Si . T2 - Sl' and over the image.

T 2 = T.T'.
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3.5 Application to the case of ai mobile robot

A simplified form of equation (10) is be obtained
in the case of a mobile robot since the translation dis-
placements then take place in a plane. The translation
vector can thus be described by a single heading angle:
T = [IT1h .(cos ., sin 0, 0)'. Equation (10) then simplifies

12 to the following scalar equation:

1 20 Tr (U. V) = 0, (11)
85 where

0 U

10 5 and

1 I=M

20 V = E (SI-T 2 #,-S,')
5=1

Figure 4 - Condition number for data set 1 Let us consider a scene such as the one shown in Fig-
ure 6. The camera's optical axis is parallel to the motion
surface, which means that the focus of expansion corre-

In the case of the plot shown in Figure 5, a coarser sponding to the translation is situated on the z axis (the
64 x 64 reconstruction grid was used. The measur- white horizontal line in the image).
ing functions pi were still defined over 128 x 128 im-
age windows, generated by all combinations of the form
cos(az + by + c). This time, however, a larger number
of measuring functions was used, thus capturing more
information about the image. Coefficients a and b were
picked in {0,3,5,11,20,45,60, 100), and c E {0,--r/2).

11 Figure 6 - Directions of translation for a mobile robot
10

10- 5 What G provides is an estimate of which activities are
informative for the robot, in the sense that they make its
visual algorithms more robust, and hence, their results
more reliable. It should therefore be used as an addi-
tional constraint by the planning algorithm, the preim-

Figure 5 - Condition number for data set 2 age backchaining algorithms ([Latom89]). An even bet-
ter use of C could be made by artificial potential field al-

One of the most important conclusions we can draw gorithms ([Khati861): In addition to the attraction force
from the experiments we have performed so far is that exerted by the goal and the repulsion forces exerted by
the resolution of the reconstruction grid, as well as the the obstacles, the robot could be made to be influenced
number of measuring functions, if they affect the general by an "information" force, aiming at maximizing the
shape of the plotted surface, do not seem to have any quality of the data collected by the robot's visual sen-
significant influence on the locations of strong minima. sors. This extension of the original planning algorithms
The validity of this conclusion is much easier to see when would be feasible whether the visual data exploited by
the problem is reduced to the case of a robot constrained the controller is a classical depth map or the free space
to move in a plane, as we shall see in the next subsection. doors described in [Hervi91].
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3.6 Experimental results: Part H

As was the case with general 3D motion (over the Gaus-
sian sphere), linear features were defined by measuring
functions pi of the form cos(az + by) or sin(az + by)
(with a and b belonging to (0, 3,5,11,20,45,60, 100)),
whose domains were square windows over the image. The
"reconstruction" functions Ok were again chosen to be
unit functions defined over square image windows.

of Movt

Figure 8 - (a) Plot for data set 3. (b) Plot for data set 4

Figure 7 - (a) Plot for data set 1. (b) Plot for data set 2

Table I - Parameters for the first image

Fig. Ps windows a and b in Oh windows

71 0,3,5,11,20,
7(a) 128 x 128 45,60,100) 16 x 16

70,3,5,11,20,
7(b) 128 x 128 45,60, 100) 64 x 64

{0, 3,5,11,20, Figure 9 - (a) Plot for data set 5. (b) Plot for data set 6
8(a) 256x 256 45,60,100) 64 x 64

The first conclusion we can draw from these six para-
8(b) 128 x 128 (0,5,20,45, 100) 32 x 32 metric (polar) curves derived from our experiments is

that, for given choices of linear feature vector and of re-
construction function modelling the depth map, there are

9(a) 64 x 64 40, 5, 11,20,45,60) 32 x 32 directions of motion-actions-for which the visual algo-
rithms perform much better than for Athers. Since the

90, 5,420, curves plot the condition number of matrix Q, a pointclose to the origin coresponds to a more stable solution
of the reconstruction equations; a displacement in that

The first series of experiments were performed with direction therefore corresponds to an optimization of the
the 640 x 480 image shown in Figure 3; their results are algorithmic stability of the visual module. Conversely,
presented in Figures 7, 8, and 9. Table 1 gives, for each the points most distant from the origin correspond to
figure, the size of the linear feature window, the param- "bad" actions of the observer, resulting in maximum al-
eters used to generate the measuring functions, and the gorithmic unstability of the visual module, and should
size of the reconstruction window, therefore be avoided.
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The second conclusion suggested by our results is Table 2 - Parameters for the second image
that the location of the best and worst directions of dis-
placement (the strong extrema of the condition number) Fig. sit windows a and b in O, window
are not perturbed much by changes in the parameters of 40, 3,5, 11, 20,
the visual algorithms: 12 18x 128 45,1,0, o

"* The resolution of the reconstruction grid, from 16 x 12 1x24, 10 6 6

16 for Fig. 7(a) to 64 x 64 for Fig. 7(b). If these 10,3,5,11,20,
initial results are confirmed by further experiments, 11(a) 256 x 256 45,560,100) 64 x 64
it would mean that the information we obtain for
low resolutions about best and worst actions could 11(b) 128 x 128 10,5,20,45,1001 32 x 32
extend to higher resolutions.

"* As Figure 9(b) clearly shows, increasing the resolu-
tion of the reconstruction grid improves the details of
the condition number curve, but at the cost of nar-
rowing the "good" regions, now surrounded by sharp
peaks of bad performance. This may not be a very
surprising observation, judging by the difficulty en-
countered in all shape from x problems that aim at
extracting dense depth maps.

"* Similarly, changes in the linear feature vector have
little effect on the location of strong extrema, whether
the changes affect the size of the linear features' win-
dows (compare Figures 7(b) and 8(a)) or the mea-
suring functions themselves (Figures 7(a) and 8(b)).

"* As with the resolution of the reconstruction grid, it
is possible to change the linear feature vector so as to
obtain a more detailed condition number curve, but
again at the cost of increasing the overall instability
and narrowing the "good" areas of the curve.

Figure 11 - (a) Plot for data set 1. (b) Plot for data set 2

4. Discussion
4.1 Motion and perception

The first part of this paper presented an active ap-
proach to the problem of visual reconstruction, which

Figure 10 - Another example of 640 x 480 input image provides us with a model-based depth map of the ob-

served scene. However, there are reasons to believe that
Similar results have been obtained with other images, a depth map may not be necessary to accomplish com-

such as the 640 x 480 image in Figure 10. Table 2 gives for plex navigation tasks such as obstacle avoidance or visual
Figures 12, 11 (a), and 11(b) the size of the linear feature servoing. In fact, the process in which the visual re-
window, the parameters used to generate the measuring construction community has been engaged over the last
functions, and the size of the reconstruction windows, decade may prove much more worthwhile than the goal it
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has set for itself. On the way to the realization of shape 4.2 Limitations and drawbacks of the method
from x modules, we have learned about the computa- As is always the case when one attempts to extract
tional issues of the visual process and have accumulated information from of real images, ad hoc (or if one prefers
results and algorithms which all describe parts of the vi- a gentler term, heuristic) choices had to be made in the
sion problem, and can be directly exploited in the control work we presented here:
of robotic tasks.

0 We have already discussed the validity and limits-
tions of the optical flow equation, whether used point-
wise or integrated over image windows. The method
we presented is not restricted to the use of the equa-
tion proposed in [HornS81]. Any more sophisticated
constraint, however, involves the inconvenience of re-
quiring additional (unknown and variable) parame-
tens describing, for example, the reflective properties
of the objects in the scene.

_ As is generally the case when least squares optimiza-
tion is used, the main justification for the choice of
this criterion is that it keeps the mathematical ex-
pressions simple. We have at this point no way of
estimating the independence of the variables

0 Choosing the ok functions to represent the depth
poses more practical than theoretical problems, due
to the fact that the number of such functions deter-
mines the size of the system of linear equations to
solve. For example, if not for the prohibitive com-
putational cost of such a choice, one could imagine

Figure 12 - Plot for data set 3 defining the Okt's to be constant functions (giving the
value 1.0), over pixel-size windows.

Traditionally, it has been assumed that the role of 0 Choosing the measuring functions (P')' 1,,, however,
vision was to provide a depth map to a planning system poses more serious theoretical problems: what types
which would then decide on a next move for the robot. of functions capture the most information about the
This scheme implicitly incorporates elements of feedback image, or about a class of images? Could this be
(if only by the effects of the motion on the visual input), determined a priori? Here again, the goal is to make
but it separates task planning from action and sensing matrix Q as well conditioned as possible, but one
too sharply. Clearly, the boundary between them is much would now be looking for a minimax solution: the
fuzzier, and we would like sensing to take a greater part one giving the lowest condition number in the case of
in the decision process. the worst observer motion (the "best" displacement

Even if we avoid reconstructing a depth map, the al- may not be feasible in the context of the observer's
gorithms we will be using in our systems will be based on task).
reconstruction algorithms, since in one form or another,
some three-dimensional information is needed, whether
it is the time to collision or the distance to a particular 5. Conclusion
feature of the workspace or of the configuration space. In We have presented a theory about the extraction of
this context, it becomes useful-and even necessary-to the shapes of observed objects. Our approach combines
be able to determine a priori which action will result in the modules of shape from shading by fusing the infor-
good behaviors of the vision algorithms and which will mation relevant to each of them, without having to resort
provoke instability in the computations. to segmentation or explicit selection of one algorithm or

The determination of an "optimal" motion which we another for a given area of the image. By using linear fea-
proposed in the previous section is a first step in this di- tures (i.e. by considering variations of the intensity over
rection. Naturally, we cannot expect the planning mod- areas and not at isolated points), we avoid the pointwise
ule to apply this action, regardless of the task it has to computation of unreliable operators, which is a flaw of
accomplish, but it should treat as one of its constraints classical methods. Finally, we show that the observer
the need to keep the direction of displacement in the can determine a motion that optimizes the stability of
neighborhood of one of the "good" directions determined the equation to be solved, and therefore the reliability of
for the visual process. the solution.
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APPENDIX A Derivation of Equation (5) In the case that interests us, ,4'(z, y) = I(z, y). pl(z, y)

We are trying to prove that (the light intensity along a ray passing through the op-

tical center is considered constant) and ipo = f f A'ds.

( [ �, iv, ) d The expression turns out to be remarkably simple:

In order to do this, we have to express the conservation ji = l +IViii -
of a function A over a 3D domain V. F j h..

Conservation Law: Let V be a compact subset of 3  which, ombined with (A.2), given the expected result.
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Planning and Selective Perception for
Target Retrieval

Theodore Camus Jonathan Monsarrat Thomas Dean*
Department of Computer Science

Brown University, Box 1910, Providence, RI 02912

Abstract might use robots to fetch tools and building

Target retrieval tasks characterize an important materials. To expedite search the robot must

class of problems in mobile robotics. In such carefully deploy its sensors to deal with the un-

problems, a robot searches through a cluttered certainty in sensing.

environment and identifies objects matching a In the target retrieval tasks considered in this
specified description. To speed search, the robot
should avoid using slow, high-accuracy sensing paper, we assume that the boundary of the
in regions that are unlikely to contain the tar- arc area inown butcthat the iste ofget. We describe an approach in which search any prior information concerning the interior of

the search area. In particular, there is no prior
focuses on probable regions found with inex- information concerning the location of the tar-
pensive sensing. Decision making is performed get or locations of other objects (possibly sini-
by three modules: a high-level decision making ilar in appearance to the target) that may ira-
component based on Bayesian decision theory
provides the overall search strategy, a path plan- pede exploration or occlude the target. Due to
ner adds navigational refinements, and a low- tecomputina st of high-accucy obe
level controller executes the strategy while cop- recognition routines, we wish to use such rou-ing with obstacles and unexpected events. We tines sparingly; the robot searches those areas

ing ithobstcle andunepectd eents We that are believed with high probability to con-describe an implementation of our approach and thtaeblvdwihigpraiiytocntain the target, as determined by lower-cost, lessa series of initial experiments. accurate sensing routines.

1 Introduction

Many robotics applications require a mobile Our robot must also deal with the problem of
robot to fetch an instance of a particular type of navigation. In particular, it must move from
object in an unfamiliar environment. Such tar- one location to another efficiently while avoid-
get retrieval tasks represent an important class ing obstacles along the way. This involves both
of problems in mobile robotics. For example, re- high-level path planning and low-level naviga-
searchers in a lab may ask a robot assistant to tion routines, which must be able to commu-
locate and retrieve a particular piece of equip- nicate in a straightforward manner. The path
ment while they attend to more important mat- planner itself is required to build and maintain
ters. Similarly, workers at a construction site a map that facilitates both planning and navi-

gation.
*This work was supported in part by a National Sci-

ence Foundation Presidential Young Investigator Award
IRI-8957601, by the Advanced Research Projects Agency In the next section, we describe a three-level
of the Department of Defense monitored by the Air Force solution to the task retrieval problem. Then
under Contract No. F30602-91-C-0041, and by the Na- we consider the decisions made by each level.
tional Science foundation in conjunction with the Ad- Finally, we describe our experiments in active
vanced Research Projects Agency of the Department of
Defense under Contract No. IRI-8905436. perception and present our conclusions.
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2 Proposed Solution have abstracted away detail which would make
path planning expensive. The low-level control

Our solution consists of three levels of control: module need only give the path planner the es-
supervisory control, path planning, and low-level timated time cost of traversing the given path-
control. Each level has its own spatial represen- way.
tation that is consistent with the other two lev-
els yet is appropriate for its particular scale of The low-level control traverses edges efficiently,
spatial reasoning. avoiding any obstacles in the way. Low-level

control requires its own spatial model. Our sen-
The highest level of representation is the super- sors return obstacle information as the common
visory control. The supervisor directs the robot data structure that connects low-level control
to square areas called regions believed with high with the path planner. Our robot uses a laser
probability to contain the target object. This light striper for ranging information, along with
belief is based on sensor information provided near infrared sensors for obstacle avoidance and
by the robot itself, and may include data ac- navigation information.
quired in the course of the robot's low-level con-
trol phase. Once the robot has arrived at a location, search

for the target object can proceed. A list of can-
To reduce computational complexity, these re- didate target objects is generated using a quick
gions should be large. In our case the prac- scan with the light striper. The robot can then
tical limit of our sensors' ability to detect ob- move adjacent to the object and examine it with
jects is five meters, so these regions are modeled its stereo camera pair. A stereo algorithm is
as square areas approximately four meters on a used to recover the target's 3D structure. A set
side. These areas can be efficiently represented of algebraic invariants is then computed by com-
by a coarse occupancy grid [Moravec and Elfes, paring the recovered structure with that associ-
1985], with each grid element corresponding to ated with the object to be recognized. which is
a region. The path planning module has some stored in a database. If the computed invariants
freedom to direct the search because it is not match the ideal ones, the target is found and a
told exactly where in the region to go. The ex- successful recognition is signaled [Subrahmonia
pected time to find the target is reduced by first et al., 1992]. Otherwise, this step is repeated
choosing regions likely to contain it. for each object in the candidate list until the

target is found. If the target is not found in the
The path planner directs the robot's route to candidate list, the robot continues the search in
the region given by the supervisory control. A a new area as directed by the supervisor.
direct path may be impossible, risky, or in-
efficient in certain circumstances. Path plan- Once the robot has arrived at the region given
ning could use a direct model of each obstacle's by the supervisory control, search for the target
boundary, but this much detail is not required. object can proceed. A list of candidate target
It is much more convenient to model important objects is generated using a quick scan of the
locations in the world with nodes. Pathways robot's sensors. The robot can then move adja-
between locations are represented by edges in a cent to the object and examine it with its stereo
graph. camera pair.

To use this model for path planning, we make 2.1 Supervisory Control

the assumption that traversing an edge requires It is the responsibility of the supervisor to gen-
only local information. This allows us two ad- erate strategies for finding the target as soon
vantages. First, we are able to separate the low- as possible. To expedite search, the supervi-
level control module from the rest of the system. sor combines fast but error-prone sensing rou-
Thus, multiple low-level control routines may be tines with slower but more accurate sensing rou-
selected for different circumstances. Second, we tines. Each strategy corresponds to a sequence
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of navigation and sensing actions. The super- Path traversal consists of traversing each of the
visor uses a temporal Bayesian network [Dean component edges of the path. At each node, the
and Kanazawa, 1989] to compute the value of robot must realign itself toward the next node
various information gathering strategies, From and proceed if there are no obstacles in the way.
a given initial situation, the robot selects a set The path planner itself has insured to the best
of reasonable action sequences from a library of of its knowledge that there are no obstacles in
such sequences. The expected value of an action any of the component edges. can consult the oc-
sequence is measured in terms of the amount of cupancy grid for an estimate of the there being
information it provides about the location of the an obstacle in any given untraversed planner as-
target. sumes that the low-level control system is able

to deal with obstacles encountered in traveling
From the previous history of fast inaccurate from one node to another. Additional details
sensing, the supervisor has a distribution of regarding the path planner are in the longer ver-
places to visit and costs to arrive at those places. sion of this paper [Camus et al., 1993].
It chooses the visitation sequence with the high-
est expected value, and lets the path planner 2.3 Low-level Control

execute the first visit. Subsequent actions in
the chosen sequence may not occur. The lower The purpose of the low-level control system is to

levels of the system execute and report on the execute the path selected by the path planner.

success of the first visit. Success provides a list Execution consists of visiting in sequence each

of objects observed in the regional visit, with a component node of the chosen path, avoiding

measure of their similarity to the target. This all obstacles along the way. Each pair of nodes

list is added to the supervisory model, and used in the path are connected by an edgc represent-

to update the beliefs about the target's location. ing a pathway that contains all the information

The supervisor then creates a new visitation se- necessary to get from one node to another.
quence if needed. The low-level control system relies on deadreck-

2.2 Path Planning oning and the accuracy of a laser-light-striper
ranging system to reliably traverse edges in the

A path consists of a sequences of nodes con- network of nodes. Accurate edge traversal is

nected by edges, which may be real, if they have essential to maintain registration with the reap

been traversed and are known to exist, or vir- (network of nodes) being constructed during the

tual, if they are unknown quantities. The cost of search for the target.

a path is some non-global function of its compo- 3 Experiments
nent edges. Each edge has a weight associated
with it, determined by the underlying edge data, In this section we describe a series of experi-
and used by the path planner. For example vir- ments involving, Gort, a mobile robot especially
tual edges have greater weight than real edges. designed for this research. Gort is operates in
Edges that cannot be traversed due to obstacles an enclosed atrium filled with boxes and oddlv
are considered to have an infinite weight. shaped obstacles. A target shaped like the ob-

stacles is located in the area, and Gort searches
The path planner is required to quickly re- the area to locate the target. Gort uses stereo
turn a path with low cost. We use a variant vision both to identify candidate target objects
of best-first search and a set of heuristics to and to discriminate between the targets and ob-
eliminate paths that are unnecessarily compli- stacles.
cated. When the supervisor directs the planner
to move to a given region, the planner selects 3.1 Hardware
a destination node corresponding to a location
in that region if one already exists or creates a Gort consists of a circular, four-wheeled base,
new one otherwise. an on-board coml)uter, four sensors, and a
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power supply. The base, from Real World Inter- range is limited, so to detect potential target's
face, includes its own controller and comnmuni- at long range we use vision. We use a pattern-
cates with the on-board computer over a stan- matching algorithm which seeks to identify po-
dard serial line. The base carries large batteries tential targets at up to 8 meters away. This
that can power the robot for up to five hours. data is not as complete as that from the laser
Resting on the base is a metal cage that sup- light striper, and serves to inform the supervi-
ports the additional hardware of the robot. sory control of potential targets in neighboring

regions. The supervisor considers the informa-
The on-board computing equipment consists of tion from both these sensors in deciding where
a VME card cage containing a 68030 processor to direct the robot for future search.
board with a hard drive. The processor board
runs a UNIX variant that we can port software
to directly from our workstation development Our primary results concern the navigation
platforms. All the navigation and planning al- components: the path planning and low-level
gorithms run on the 68030 processor. However, controls. Each has been successfully tested in
a tether connects the robot to a separate work- both laboratory and target environments.
station for handling the vision routines.

The path planner has successfully dealt with
Two sensors are memory-mapped into the vir- sensing uncertainty and real time demands for
tual memory of the on-board computer: a ring robot control. Simulated results have shown the
of infrared sensors and a laser light striper, path planner to be a reliable method of return-
The infrared sensors are good proximity sen- ing efficient paths even when dealing with thou-
sors, providing more robust sensing of obstacles sands of locations. Physical results have shown
than most standard acoustic sensors. The laser the ability of the path planner and the low-level
light striper is a good medium-range sensor for control to coordinate efficiently through a field
detecting and measuring the shape of obstacles, of obstacles.

Also mounted on the metal cage are two cam- The low-level obstacle avoidance algorithms
eras, angled for stereo vision. The cameras have been successful in all experiments. Two
are connected directly to high-bandwidth ca- methods of using the light striper to detect oi-
bles that feed the vision information directly to stacles were originally developed. One method
a remote computer for processing. The cables makes use of the laser's wide-angle beam to de-
also provide communication between the remote tect objects in the periphery. Unfortunately the
computer and the on-board computer. laser stripe is thin and less visible off-center,
3.2 Target Recognition making additional checks necessary for accurate

sensing. These checks can increase the time it

A key component to the system is the acqui- takes to detect obstacles.
sition of probablistic information for the tem-
poral Bayesian network planner. The ability of Thus, we have chosen the second method, which
the supervisor to deal with noisy data is essen- is to rotate the robot base and sweep the cen-
tial in the overall success of the system. We use ter of thme laser beam (where it is strongest)
two sensor strategies to deal with this problem. back and forth across the search area. This
First, the laser light striper is used to detect ob- approach was very successful in detecting the
jects within the robot's same region. The laser boundaries of flat surfaces and boxes, and even
can detect objects with high accuracy within high-curvature objects such as tree planters.
this range. A full sweep with the laser thus Unfortunately, turning the robot to sense better
constitutes a thorough search of the robot's own led to rotational inaccuracy in the robot dead
region. reckoning.

Unfortunately the laser light striper's effective The integration of the navigational modules has
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been seamless. Once created, a node provides Retrieval. Brown University Technical Re-
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ance stage can be skipped for these previously Torasoand anaaa Keiji 199 aumdetraversed paths, for reasoning about persistence and causa-

tion. Computational Intelligence 5(3):142-

Preliminary experiments concerning the data 150.
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Abstract being developed which, based on geometric mod-
In this paper, we describe a method of incorporat- els of an environment and models of the sensors,
ing the sensor planning abilities of the "MVP" can generate sensor locations and settings which
Machine Vision Planning system to function in provide a robust view of specific features so that
a dynamic robot work-cell. By mounting a cam- the features are detectable, recognizable, mea-
era on a manipulator, it is possible to compute surable, or meet some other task constraints. In
a series of viewpoints and to move the camera general, the sensors are cameras and a robust
to them at appropriate times so that there is view implies that the camera must have an un-
always a robust view suitable for monitoring a obstructed view of the entire feature set, which
robot task. The dynamic sensor planning system must lie within the depth-of-field of the camera
presented here achieves this by analyzing geomet- and must be magnified to a given specification.
ric models of the environment and of the planned Sensor planning systems can then generate cam-
motions of the robot, as well as optical models of era locations, orientations, lens settings (focus-
the camera itself. It computes a series of view- ring adjustment, focal length, aperture), and in
points, each of which provides a valid viewpoint some cases lighting plans to insure a robust view
for a different interval of the planned task. Ex- of the features.
perimental results monitoring a robot operation
are presented, and directions for future research It is interesting to note that while research in
are discussed. robot motion planning abounds, research in sen-

sor planning has focused on sensor planning for
static scenes. It is our belief that an intelligent

1 Introduction robot system capable of planning its own actions

Recently, there has been much research in the should be capable of planning its own sensing
field of sensor planning [Cowan and Bergman, strategies. With a dynamic sensor planning sys-
1989, Hutchinson and Kak, 1989, Ikeuchi and tem, this goal is closer to a reality. Robots in-
Kanade, 1989, Tarabanis et al., 1991a]. The ba- volved in manufacturing or assembly can deter-
sic problem is that in setting up an automated mine appropriate sensor locations. Teleopera-
system for monitoring some process, the effec- tors can have the robot system guarantee robust
tiveness of the system can largely be determined viewpoints during the operation. The intelligent
by the locations, types and configurations of the motion plans which researchers spend so much
sensors used. To manually determine these pa- effort computing can be monitored in an intelli-
rameters on a case by case basis may not be cost gent fashion.
effective or accurate, and the resulting system
may not be optimal in any sense. It may be To that end, we have been exploring methods
better to have an automated system for deter- of extending the sensor planning abilities of the

mining the sensor locations and parameters for "MVP" Machine Vision Planning [Tarabanis,

monitoring a given task. 1991, Tarabanis et al., 1991a] system to func-
tion in environments where objects are moving.

To that end, many systems have been and are In particular, we focus on sensor planning in a
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dynamic robotic work cell environment. 3 Motion in the Work Cell

In previous work, we described a technique There are two basic cases which must be dealt
for sensor planning in a dynamic environ- with separately in the dynamic sensor planning
ment [Abrams and Allen, 1991], which was im-- problem. First is the case where the target ob-
plemented using a simulated model of a simple jects, i.e. those features which must be viewed,
moving object. Here, we present a detailed anal- remain stationary and other objects, such as the
ysis of the dynamic sensor planning problem and robot which is performing some operation on the
improved versions of the original algorithms. In stationary part, moves. This case can arises in
addition, experimental results using a model of teleoperatiorI and in many manufacturing tasks
a dual-robot work cell are presented in which we (i.e. spray-painting, spot-welding, etc.) Sec-
automatically monitor a task in the work cell. ond is the case where the targets to be viewed

are moving. This can also arise in teleoperation
and in other manufacturing tasks (i.e. pick-and-

2 Overview of Static Planning place, part insertion, etc.).

A complete description of the MVP system is The main difference between these two cases is
beyond the scope of this paper. For details, that in the first case, if a vikwpoint is found
see [Tarabanis, 1991, Tarabanis et al., 1991a, to be valid at some point during the task, it is
Tarabanis et al., 1991b]. In brief, MVP takes guaranteed to be valid with respect to all op-
a constraint based description of the vision task tical constraints at all times during the task.
requirements and synthesizes what has been This is because the functions defining the op-
termed a generalized viewpoint, which is an eight- tical constraints only depend on the target fea-
dimensional vector incorporating sensor loca- ture locations and the sensor parameters, and
tion, orientation, and lens parameters including not on the positions or orientations of obstacles
aperture and effective focal length. The con- in the environment. This fairly obvious, but im-
straints MVP considered in determining view- portant property allows us to ignore changes in
points are depth-of-field, field-of-view, resolu- the optical constraints over time and focus only
tion, and unoccluded visibility. on changes in the geometric parameters, i.e. the

MVP contains analytical relationships for the visibility constraint.

optical task constraints (resolution, focus, field- The second case is more difficult because it re-
of-view), and uses 3-D solid geometric models quires an examination of how changes in the po-
of the environment to formulate visibility con- sition and orientation of the target features effect
straints. (The geometric models are polyhedra, the optical parameters, particularly focus and
both convex and concave.) The constraint equa- resolution. However, if the viewpoint is consid-
tions can be thought of as defining hypersurfaces ered in terms of a coordinate frame attached to
bounding feasible regions in the 8-dimensional the feature set, the target can always be con-
parameter space of the generalized viewpoint. sitlered stationary with the entire environment
These constraints are combined in an optimiza- considered as moving. The only limitation is
tion setting to produce a generalized viewpoint that the entire feature set must be moving as
which meets all task constraints with as much a single rigid body, i.e. features can not move
margin for error in sensor placement and set- independently. While extremely important. in-
ting as possible (i.e., as far away from all hyper- dependently moving features are not yet handled
surfaces as possible). Using CAD descriptions in this work, although it is being examined as
of the object to be viewed and its environment. part of ongoing research.
MVP generates the visibility region for viewing
the desired features. This region is calculated To summarize, the exact problem we are deal-
to be the total volume in space from which the ing with is one in which an accurately movable
features are viewable without obstruction. This camera is being used to monitor a task. In this
volume is used in the optimization stage of MVP task, the actual target we are monitoring does
for finding the best viewpoint._

point we are actually referring to the gfnrralizcd viewpoint

Here, and elsewhere in this paper, when we refer to a riew- mentioned earlier.
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not move, but other objects in the environment, 5 Overview of Our Approach
such as a robot arm, or other mechanical parts,
move in a way which is known a priori. The The approach being taken is a Temporal Inter-
problem is to find where to place the camera, and val Search method, which is is based on the use
when and where to move the camera, so that at of swept volumes. The geometric models of the
aHl times during the task, we have a good view- moving objects are swept through their paths to
point for monitoring the task. compute the regions in space which, during some

interval, are occupied by some moving object in
the environment. The MVP algorithms are then

4 A Naive Approach run using the swept volumes for the occluding
bodies as opposed to the actual modelE, thus re-

At a first glance, it may seem that the dynamic ducing the dynamic sensor planning problem to
sensor planning problem can be solved trivially, a static problem. If no viewpoint is found consid-
The naive algorithm for computing a series of ering these swept objects over a time interval, a
viewpoints is as follows: temporal interval search is performed to find the

largest time intervals which can be -nitored by
1. Compute a viewpoint for the initial state of a single viewpoint. This allows us to plan a se-

the system, considering all obstacles in the ries of viewpoints and the times at which they
environment as they are before any motion become feasible.
takes place.

Given that we have an object 0 whose motion is
2. At every time interval At, test the current known over a time interval T, we define T(T, 0)

viewpoint against the model of the changed to be the volume swept out by 0 during T. For
environment, example, in 2 dimensions, if 0 is an axis-aligned

unit square moving one unit per second in the
3. If, at some instant t,, the viewpoint is found positive x direction, and T is 3 seconds, T(T, O)

to be invalid due to the movement of obsta- is a 1 x 4 square. The kLy to using swept objects
des, compute a new viewpoint based on the for sensor planning (or, in fact, for any collision
current state of the model, and go back to avoidance problem) is that in planning around
step 2. an obstacle given by T(T, 0), you guarantee that

you have avoided the actual obstacle 0 at any
There are several problems with this approach. ipstant in interval T. This observation was made
First, it makes no attempt to reduce the number by Cameron in [Cameron, 1984] for the "clash
of sensor placements required. Second, a view- detection" (robot collision avoidance) problem.
point is used up until the moment it becomes
invalid, or at least up until the point at which Let V represent visibility volume for T(T.0).
the margin for error becomes very small. This V is the set of all points (in 3-space) which give
defeats the purpose of MVP, which is to find a views of the target which have no obstructions
viewpoint which has as large a margin for er- (due to 0) for the entire time interval T. If V is
ror as possible. Worse, by the time a viewpoint a null volume, there is no single viewpoint which
is deemed unacceptable, due to errors in sensor would be valid for all of T. Even if V is not null,
placement, etc., the viewpoint may have been there is no guarantee that there are viewpoints
invalid for some time. within V which satisfy the optical constraints of

MVP.
The basic problem is that this technique does not
use knowledge of the motion in computing view- A possible problem when using swept volumes
points which will be valid for a long period of for collision avoidance type problems is that
time. It is conceivable that a new viewpoint will sweeping an object discards all information re-
be needed at every At, since objects are moving garding where the object is at any particular
in unaccounted for paths. A better approach, moment. We present a technique for recover-
such as the one presented below, uses its knowl- ing sufficient temporal information to plan sen-
edge of how objects in the environment move to sor locations. If using V as a visibility volume.
plan better viewpoints. MVP is unable to find a viewpoint which meets
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all constraints, we conclude that T is too large continues until a viewpoint has been found which
an interval to plan a single viewpoint for, given is valid until t,,. The critical times are the end-
the motion of 0. We have no information con- points of the intervals, i.e. the times at which
cerning when any particular viewpoint becomes the sensor must be moved.
invalid; we only know that we can not find a
single viewpoint which is valid for the entire in- The computation of swept volumes is central to
terval. Recomputing T(T, 0) for a shorter time this algorithm. Depending upon the format in
interval T will yield a smaller obstacle, a larger which the motion is known, the computation of
V, and MVP may now be able to find a view- swept volumes may not be expensive. If piece-
point, wise linear translational motion is all that is al-

lowed, then the computation of swept volumes is
We can now present the algorithm formally. As- certainly tractable [Weld and Leu, 1990]. How-
sume we have a polygonal target r which we wish ever, if more general types of motion are allowed,
to monitor during the time interval T = [to, t,]. as in the motions which would be executed by
During T, there is a set of known obstacles Oo a typical articulated manipulator (rotations in
through Om,, which move in known paths. The particular), the exact computation of swept vol-
goal is to plan a single viewpoint valid for the umes is more expensive, but not impossible. Un-
entire interval, if such a point exists, or to de- fortunately, sweeping is not closed over the set of
termine a sequence of viewpoints which, when polyhedra when rotational motion is permitted.
executed at the appropriate times, allow the fea- An articulated robot arm moves strictly in rota-
tures to be monitored for the entire interval. tions about its joint axes, so the resulting swept

volumes are not polyhedral (they would contain
aSearch circular arcs, spherical patches, and other curved

Temporal Interval Seach surfaces). These objects would not be useable
1. Compute T(T, s.) for each of the m obsta- in MVP. Korein gives an algorithm for comput-

cles. ing polyhedral approximations [Korein, 1985] of

2. Use MVP to compute a viewpoint using the swept volumes formed by the motion of ar-
T(T, 0o) through T(T, Ome) as well as all ticulated robot links. These techniques can be
stationary objects in the environment as the used to simplify the computation of the swept
set of potential occluding bodies. volumes.

3. If MVP can successfully find a viewpoint, use
this viewpoint for the entire time interval T. Strictly speaking, MVP directly computes vol-

4. If no such viewpoint is obtainable, divide the umes of occlusion, not volumes of visibility. In
if no erval scvwint halfyiseoinable, divide the theory, the complement of a volume of occlusion
time interval in half yielding T 1 = [to, tn/21. is a volume of visibility. In practice. the comple-
Go back to step 1 using interval T1 . ment of a volume of occlusion wit, -.prwt to the

5. If the entire time interval T has been workspace of the manipulator pi . - the Wensor
planned, we are finished. If not, go to step 1 yields the usable visibility volun.v i.e the cur-
using the remaining portion of the the orig- rent dynamic sensor plainning imple nentation.
inal interval T. instead of computing a swept volume, and then

computing its occlusion volume, we compute a
Note, this is not strictly a binary search. Step set of volumes of occlusion at discrete points
4 above only looks at the first half of the time along the trajectory. These volumes of occlusion
interval, i.e. T1 = [to, tn/ 2]. The algorithm are then unioned to form the volume of occlusion
searches for the endpoint of the first time interval for the entire interval. This is possible because
for which MVP can find one viewpoint. It does the volume of occlusion generated by the union
this by examining [to, t,], then [to, tn/2], [to, tn/ 4], of a set of obstacles (for viewing a particular tar-
and so on. Once a single viewpoint is found for, get) is equal to the union of the volumes of oc-
say, the interval [to, ti], step 5 sees to it that the clusion generated by each obstacle. One benefit
interval [ti, t,,] is examined. If no viewpoint is of this approach is that subdivisions of the time
found for this whole interval, [ti, ti+(n-i)/ 2] is ex- interval do not require recomputing new swept
amined, and so on, until a single viewpoint is volumes. Instead, the appropriate subset of the
found for, say, the interval [ti, tj]. This proess

602



instantaneous occlusion volumes can be unioned vent the computation of a viewpoint which is ei-
to approximate the volume of occlusion for any ther unreachable or has an occluded view. The
given interval, volume of occlusion is approximated using the

discrete union algorithm described earlier.

6 Realization of the Viewpoints In the experiment, the robot model is stepped

The result of the temporal interval search will be through a series of positions along its planned

a set of viewpoints and critical times at which trajectory. At each step, the volume of occlu-

to execute them. However, an explicit represen- sion is computed as in the static sensor plan-

tation of time is not required for the temporal ning problem. The individual volumes of oc-

interval search, in which case the critical times clusion are unioned together to form the vol-
ume of occlusion for the entire trajectory. In

are not times at all but, rather, critical events. thi wy we ap ro te the voluecof ou

If, for example, the motions of a robot have been

planned as a series of joint-space moves, the cr t sion for T(tTaskInterval, Robot) without explic-

ical events would be joint angle values. If the itly computing T( TaskInterval, Robotl). In fig-
motion was planned in cartesian space, the criti- ure 4 we show a discrete approximation to themo ntin wvolume swept out by Robot I during its task (i.e.
cal events would be cartesian positions. Finally, T(Tasklnterval, Roboti)). The volume of occlu-
if the robot motion was planned on some global
time scale (perhaps avoiding other moving ob- sion resulting from this motion is shown in fig-
stacles), the critical events would be actual times ure 5. The volume of occlusion resulting fromon tis cale Aslongas t tak eecuton ime the walls of the part (i.e. due to self-occlusions)
on this scale. As long as at task execution time is shown in figure 3. These two volumes were
there is a way to determine when the critical ion to fore 3. These o olusion.
events arise, (i.e. by waiting for the robot to be unioned to form the total volume of occlusion.
within some distance of the prescribed position), An approximation to the workspace of Robot II,
the viewpoints can be realized. the camera-carrying robot, (called the robot's

reachability volume) was generated. The total

7 Experimental Results occlusion volume was subtracted from this reach-
ability volume giving the reachable/visible vol-

We have modelled our laboratory environment ume. This volume, which containS all points in
using a CAD system (see figure 1). The model space where the robot can position the camera
includes two PUMA 560 robots and the object such that the target can be seen without occlu-
to be monitored during the task. The first robot sion, was used in the optimization stage of MVP
(I) executes tasks, while the second robot (II) in order to compute a viewpoint.
has a camera mounted on it. In the simulated
experiment, robot I passes over the object as if Since MVP was unable to find a valid view-
it were performing an operation on it, such as point for the entire task, the temporal interval
spray-painting. During the task, robot II needs search was used to find subintervals for which
to monitor a feature inside the object. A CAD we can find valid viewpoints. Instead of recom-
model of the object and the feature is shown puting the swept volumes for each subinterval
in figure 2. The target (i.e. the feature to be examined, the discrete approximation allows us
viewed) is the top face of the inner cube. to union the appropriate subset of volumes of

occlusion. The subintervals found for this task
In order to compute viewpoints for monitoring are shown in figures 6 and 7. The generated
robot I's task, we need to compute the visibil- volumes of occlusion due to the robot's motion
ity volume for the object as the robot moves in during each sub-interval are shown in figures 8
the vicinity of the object, i.e. the volume from and 9. These volumes were again unioned with
which the object is visible during the entire task. the self-occlusion volume and subtracted from
In other words, we need to compute the visibility the reachability volume forming the volumes of
volume for T( TasklntervalRobotl,.) The visibil- reachability/visibility shown in figure 10 and 11.
ity volume is computed by first computing the These volumes were used in the optimization,
volume of occlusion, and subtracting it from the and MVP was able to compute a viewpoint for
reachable work-space of robot II, in order to pre-
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each interval. Simulated views from these view-
points are shown in figures 12 and 13.

8 Motion Planning and Moving
Sensors

In this section we describe some alternate ways
of examining the both the static and dynamic
sensor planning problems. The observations and
discussions of this section are the motivation for
additional research which is currently being car-
ried out. Figure 1: CAD Model of the environment.

One can view the static sensor planning prob-
lem as a configuration space problem. Using this fact that the volume of occlusion between an ob-
view, the sensor's possible configurations are de- ject and a target depends on the relative orien-
scribed by the generalized viewpoint. The valid tation of the two. Thus, the constraints which
configurations are bounded by the constrain- are moving in configuration space-time are non-
ing hypersurfaces in the 8-dimensional parame- rigid. This makes it very difficult to determine a
ter space of the generalized viewpoint. However, convenient way of slicing a configuration space-
the combination of the highly nonlinear fashion time.
of the sensor constraining equations, plus the
high dimensionality of the generalized viewpoint, Another way of viewing the dynamic sensor plan-
standard techniques for searching configuration ning problem is to segregate the positioning of
spaces appear to be unpractical. This is one of the sensor from the orienting and adjusting of
the reasons why MVP takes a numerical opti- the sensor. This allows the computation of a
mization approach to searching the sensor's pa- 3-dimensional region from which all constraints
rameter space. However, the configuration-space can be met (i.e. the projection into 3-space of
analogy will be useful in motivating other ideas the set of valid 8-dimensional sensor configura-
below. tions). The moving polyhedral volumes of occlu-

sion generated by the moving obstacles in the en-
Dynamic sensor planning is to static sensor plan- vironment can be considered as obstacles which
ning what path-planning with stationary ob- the sensor must avoid while moving in the free-
stacles is to path-planning with moving obsta- space. This reduces the sensor planning problem
cles. Erdmann and Lozano-Perez [Erdmann and to that of keeping a single point away from the
Lozano-Perez, 1987] proposed a configuration boundaries of a set of moving polyhedra. Then.
space-time for solving such problems in two di- after the sensor path through 3-space has been
mensions. They presented two approaches, one planned, the other 5 (optical) parameters can be
for translating polygons and one for two-link ar- planned accordingly.
ticulated planar arms. Their approaches focused
on the efficient construction of slices of configu- This suffers from the same problem as the pre-
ration space-time. The slices were chosen so as vious approach, namely that the set of mov-
to include easily computable time-varying con- ing polyhedra (the volumes of occlusion). are
straints, simplifying the search from the start non-rigid bodies. Although moving polyhedra
configuration to the goal configuration. have been modelled and examined (i.e. [Canny.

1986. Cameron. 19841), non-rigidly moving hod-
In dynamic sensor planning with stationary tar- ies have not been examined in detail. It appears
gets, the only constraints in configuration space that an examination of how the volumes of oc-
which move are the boundaries of the visibil- clusion change with respect to movements of the
ity volume. Even if the obstacles are only al- obstacles will allow these approaches to be more
lowed restricted classes of motion. their volumes useful and appears very promising for future re-
of occlusion not only move but warp, due to the search.
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Figure 2: CAD Model of the part to be viewed. Figure 5: Volume of occlusion caused by the
The target itself is the top face of the inner cube. robot's motion during the entire task.

Figure 3: Volume of occlusion caused by other Figure 6: First task interval.
features on the object itself (i.e. self-occlusions).

Figure 7: Second task interval.
Figure 4: Swept Volume showing the robot's mo-
tion over the entire task. a useful way to extend static planning problems
9 Conclusion to dynamic domains. We have presented a con-

venient way to recover enough temporal infor-
In conclusion, we have successfully extended our mation from swept volumes to use them in plan-
MVP system to plan sensor locations in a time- ning tasks. Our immediate research plans are
varying environment. This is notable in that to to bring the results of this paper into our lab-
the best of our knowledge, motion has not been oratory and execute the task with the planned
widely addressed in the sensor planning litera- viewpoints. Also, we will be examining the al-
ture. 'The use of swept volumes which provides ternative sweeping techniques presented to see if
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Figure 8: Occlusion due to the robot's motion Figure 11: Intersection of reachable and visible
during the first task interval, shown with object. volumes for second task interval

Figure 9: Occlusion due to the robot's motion Figure 12: Simulated view from first computed
during the second task interval, with object. viewpoint.

V I

Figure 10: Intersection of reachable and visible Figure 13: Simulated view from second corn-
volumes for first task interval puted viewpoint.

they offer any performance improvements, similar characterization of how the optical con-
straints vary with the target's motion is also

There are several open issues in dynamic sensor important. Finally, it is hoped that these vari-
planning. There is work to be done in compu- ous characterizations can be combined to plan a
tational geometry to characterize the changes in continuous path through the sensor's parameter-
a volume of occlusion as the target and occlud- space, rather than computing a series of view-
ing bodies move with respect to each other. A points and critical times. This would complete
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A feature-based monocular motion analysis system
guided by feedback information *

Yong Cheol Kim and Keith Price
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

Abstract Thus we deal with the issues of using errorful data in
motion estimation and of using feedback from 3-D esti-In the feature-based motion analysis of an mation to feature extraction and feature matching.

image sequence, consistent feature extraction
and reliable matching are crucial factors for Conventional feature based motion analysis tech-
the motion estimation. Inconsistent feature niques use a sequential framework - feature extraction,
extraction and erroneous matching are closely establishment of correspondence, estimation of motion
related and hard to detect without additional parameters and recovery of 3-D structure. This sequen-
information. In this paper, we address the is- tial processing of data forces the overall analysis to de-
sues of using errorful data in motion estima- pend on the integrity of the earlier stages. The reliability
tion and of using feedback to improve feature of the estimated motion parameters depends on the quac -
extraction and matching in incremental anal- ity of correspondences, which are affected by the consis-
ysis of an image sequence. Thus we use 3-D tency of feature extraction. Feature extraction, feature
motion estimation as an aid in generating the matching and motion estimation have been studied ex-
data necessary for the motion estimation sys- tensively by numerous researchers, each as a separate
tem itself. Initial noisy correspondence data research topic.
are continuously refined by removing those Establishment of correspondence has been a challeng-
parts that do not fit the estimated 3-D mo- ing problem in motion analysis of real image sequences.
tion parameters. The feature extraction of a Sethi (Sethi and Jain, 19871 suggests a tracking method
tracked region is guided by its expected prop- based on the smoothness of motion in image plane. Their
erties which are obtained from the correspond- work assumes that the number of extracted points re-
ing object in the previous frames. The motion mains constant, except for one frame where some points
parameters and the environmental depth map may disappear due to occlusion. Cheng [Cheng and Ag-
are continuously updated with each additional garwal, 19901 uses a 2-stage tracking algorithm for point
frame. Finally, the surface of environment is correspondence in multiple frames. The rule-based sec-
reconstructed from a sparse depth map at cor- ond stage inspects the last four frames and updates pre-
ners, utilizing the relations among the regions vious matches by maximizing the smoothness of the 2-D
which underlie the corners. Test results for motion.
standard real image sequences are presented. In recent work on the integration of subsystems

into a working motion analysis system, attempts have
1 Introduction been made to use feedback from motion. Chan-

drashekhar [Chandrashekhar and Chellappa, 1991] uses
Recovery of relative motion between the camera and the predicted 3-D motion for feature correspondence with a
environment as well as recovery of the environmental partially known structure. Sawhney [Sawhney and Han-
structure is an active research area in computer vision, son, 1992] uses a predicted mask in the tracking of struc-
Much of the work has viewed this task purely in mathe- ture with hypotheses. The main use of motion in these
matical terms - given perfect data, how can we extract works is to reduce the search space in matching of in-
3-D information? In this research, we concentrate on terest points [Chandrashekhar and Chellappa, 1991], or
using 3-D motion estimation as an aid in generating the in grouping of linear segments [Sawhney and Hanson,
data necessary for the motion estimation system itself. 19901.

*This research was supported by the Advanced Research Little work has been done using feedback of 3-D mo-

Projects Agency of the Department of Defense and was mon- tion estimation to feature extraction and matching while,
itored by the Air Force Office of Scientific Research under in the analysis of an image sequence, the consistency of
Contract No. F49620-90-C-0078. The United States Govern- features extracted over the frames is a crucial factor for
ment is authorized to reproduce and distribute reprints for a reliable correspondence. In this paper, we present a
governmental purposes notwithstanding any copyright nota- feedback approach, where feature extraction, matching
tion hereon. and motion analysis are performed in cooperative man-
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gions and corners speed up computation and increase 3. Refinement of noisy correspondences Initial
stability of the matching. Each image in the sequence is noisy correspondence data are gradually refined and
segmented into regions (global segmentation), that are linked by 3-D motion. Details are found in [Kim
matched between adjacent frames. Then, corners corn- and Price, 1992a].
puted based on the linear segment approximation of the 4. Guide in local segmentation In incremental
contours are matched. For convenience, we use RMS mode, the extraction of a tracked feature is guided
(region matching sequence) and CMS (corner matching by its expected properties (size, mtuensiy) induced
sequence) to refer to a sequence of matched regions and from the matched regions in previous frames.
corners over multiple frames.

A recursive splitting technique [Ohlander et al., 1978] 3.1 Reference regions
is used for the segmentation of an image which uses
the statistics of image attributes (intensity for black and Regions can be related in two ways, region matching
white image). The segmentation procedure locates well- and corner linking. Matching of segmented regions be-
separated peaks in the histogram of the image value over tween adjacent frames becomes disconnected at those

"a masked area. The image is segmented into regions with frames where similar regions are not extracted or prop-
"a certain range of values of the attribute. Segmented re- erly matched. The regions in each disconnected RMS are
gions are recursively segmented into smaller regions until related. Regions in non-adjacent frames become related
the size of the region is too small or the attribute is in- by linking of the corners generated by the regions.
separable. After the initial frames in the sequence are Figure 2 illustrates all the cases of related regions. An
segmented this way, the segmentation of regions in the object is segmented into regions 1, 2, 3, 5, 6 in frames 1,
following frames is guided by the expected properties in- 2, 3, 5, 6. In frame 4, only part of the object is segmented
duced from previous matching results. into region 4-a and another similar object is segmented

Matching is performed both in forward and in back- into region 4-b. Since region matching fails at frame
ward direction to ensure one-to-one match of fea- 4, regions (1, 2, 3) and regions (5, 6) are two sets of
tures. Relaxation-based symbolic matching [Faugeras regions related by region matching. CMS-a and CMS-b
and Price, 19811 is used for both region and corner in frames (1, 2, 3) are linked with corners in region 4-a

matching. The matching system uses a feature-based and region 4-b, respectively. CMS-c in frames (5, 6) is

symbolic description for its input. For region matching, linked with a corner in region 4-a. From these relations,
the properties include average values of the image inten- regions (1, 2, 3, 4-a, 4-b, 5, 6) are all related. Since only

sity, size, location and simple shape measures. Relations local properties of the contour around the corner are

include adjacency, relative position and near-by. For cor- used in the linking process, there can be non-negligible
ner matching, the properties us-d include position and variations in the properties of the related regions. For

angular data of the line segments. frame 4, each of the two regions is considerably different

The 3-D motion parameters and structure of the from the rest in the other frames.

matched features are estimated using Chronogeneous We need a set of regions that is the most representa-

analysis technique developed by Franzen [Franzen, 1992], tive of these related regions to be used as the reference

which handles uniform acceleration with constant trans- in the local feature extraction. First, the set of regions

lation and rotation. Each point need not be visible in with corners that passed the refinement process are se-

all frames, but should be visible in at least 3 frames. lected. Then they are clustered into sets of consistent

The accuracy of the solution depends on the number regions. The regions in the dominant set are selected as

of frames with steady improvement as the number of the reference set. The criteria used in the clustering are:
frames increases. However, most of the improvement oc-
curs within the first 7 frames with a slight improvement
after frame 11. Thus, 7 to 11 frames provide a good CMS-b
compromise between computation time and accuracy.

Reg-4-b

3 Guidance of motion in feature
extraction

To accomplish consistent feature extraction and reliable ,.g4 2 4 RR)Reg4.
correspondence, the processing of features is guided by Image sequence R
feedback of information in various ways as follows, where
motion provides the major guidance information. (6frames) CMS-C

1. Guide in global segmentation The global seg- Related by region matching: (Reg-I Reg-2 Reg-3) (Reg-5 Reg-6)
mentation of the current frame is guided by the Related by corner linking: (Reg-I Reg-2 Reg-3 Reg4-a Reg-4-b)
intensity distribution of the regions extracted from (Reg-4-a Reg-5 Reg-6)

the previous frame. Finally: (Reg-l Reg-2 Reg-3 Reg-4-a Reg-4-1. Reg-5 Reg-6) am
all related.

2. Guide in feature matching Matching becomes
more stable and faster by limiting the search space
of matching along the predicted trajectory. Figure 2: Related regions by corner linking
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Criterion 1 Consistent intensity histogram: The segmentation. The role of guided segmentation, in
overlap range between the intensity peaks of two regions this case, is to fill in the gap of the original RMS.
is larger than a 1% of the minimum range of the two *When the size of an object is small, the correspond-
peaks, where a is usually 40. ing regions are missing in some of the frames in

Criterion 2 Consistent contour shape: The size of global segmentation. The resulting RMS includes
the difference of the masks of the two regions after proper noisy mismatched regions. When a fine set of refer-
scaling and translation to compensate for the motion is ence regions is provided, guided local segmentation
less than 0 % of the average area of the regions, where is successful in extracting the missing regions. An
,3 is usually 20. adaptive minimum size of regions is used in local

2 Intensive local segmentation segmentation, which is a function of the sizes of the
3.2 nreference regions.
The reference regions focus the segmentation on both from global segmentation is highly
the position and shape of the corresponding object. The noisy, stable reference regions are hard to obtain,
mask that covers the 3bject of interest is predicted from and thus the improvement from guided local seg-
the shapes of the reference regions. The peak selection antatho ispweak.
process in the intensity histogram of the masked area of mentation is weak.
the image is guided by the histograms of the reference Thus, the gaps can be filled in by extracting missing
regions. regions and a noisy region can be replaced by a locally

The mask for the local segmentation is obtained by segmented region. Global segmentation and guided local
scaling and translation of reference regions to compen- segmentation are complementary. Guided local segmen-
sate for the motion. The motion of a region is repre- tation is not used alone is because it is focused on an ob-
sented by that of its corners. When there are several ject which has been tracked and is not appropriate in ex-
refined CMSs, each CMS produces a predicted mask for tracting a new region. In incremental analysis, each ad-
the region in the next frame. Consequently, the mask ditional frame is globally segmented and matched. Mo-
is a union of all the predicted masks from the refined tion parameters and structure are computed from the
corner sequences of the reference regions. matching data and then local segmentation is performed

As the mask fits the desired region more closely, the for each RMS that underlies those CMSs that pass the
probability of the region being represented by the dom- refinement process.
inant peak gets larger. Since the predicted mask is the Since the performance of guided local segmentation
union of those from each refined corner sequence, usually is affected by the quality of the reference regions, we
it covers much larger area than the desired region and are conservative in using the results from guided local
thus the histogram of intensity in the mask area usually segmentation. A region is replaced when it is far more
consists of several peaks, where the desired region is not consistent with the reference regions. The same criteria
necessarily represented by the dominant peak. In local 1 and 2 in subsection 3.1 with more strict condition (a,
segmentation, the peak is selected which overlaps with / is 50, 10, respectively) is used for consistency measure.
the intensity peak in the union of the histograms of the A region in a CMS from global segmentation is replaced
reference regions. Thus, the role of the guidance is to by a new region from local segmentation only when the
pick the correct peak which, otherwise, may be hidden new one meets the criteria and the old one does not.
by a larger peak in the mask area. Since the intensity his-
tograms of the reference regions consist of similar peaks, 4 Selection from multiple
the union of their histograms usually forms a smooth interpretations of motion
peak. When the regio. size is small, the union of the
histograms with equal weighting may be dominated by From a set of correspondence data, multiple solutions
an irregular intensity distribution of a large region. To are generated each associated with a different 3-D MI
reduce such effects, all the reference regions are given (motion interpretation) of the features in the scene. The
equal weighting in the union of the intensity histograms. motion analysis algorithm used in our work [Franzen,

3.3 Merging of global segmentation and local 19921 is based on a search technique starting from multi-

segmentation ple initial guesses. The number of solutions is affected by
the quality of the correspondence data with 3-4 solutions

We applied guided local segmentation to improve the generated from reasonably noisy data.
quality of the globally segmented regions. Comparison In incremental analysis, several solutions are gener-
of the results from global segmentation and guided local ated with each new frame. Selection of the correct solu-
segmentation leads to the following conclusions: tion is important since the 3-D motion associated with

* When the globally segmented regions in an RMS it guides the processing of the next frame. The fitting
are good in most frames, then guided local segmen- error, which is a sum of the differences between the given
tation provides some improvement. If, in some of 2-D positions and the reconstructed 2-D positions in the
the frames, global segmentation fails to extract a image, could be a simple measure of the reliability of the
consistent region or fails to generate the desired re- solution. However, it is a good criterion only when the
gion at all, then guided local segmentation gener- quality of the input correspondence data is is very good.
ates regions with more consistent contour sl tpe, or The multiplicity of solutions from incremental analysis
regions which have not been extracted in tht. global provides a means to select a good solution by measuring
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relative positions of point m and n between MI(i) and
IV t MI(j) in 3-D space. Cp(m, n, MI(i), MI(j)) is scale

invariant since it compares the directions of the recon-
structed structure.

i N"' (0 Cp(m, n, MI(i), MI(j)) = acosOm + bCOSBO +ccOS mn
II a+b+c

n (1)
0 Top View Oý1 0: the origin in the object centered coordinate

C(QnM(i),Ml()) N() mi, ni, mj, nj: the 3-D position of feature m, n in
MI(i) and MI(j)

(a) Between points 6, O,: angle of (mi, o, mi), (ni, o, nj)

Omn: angle between the displacement (mini) and
NU(N.1.1) m.lthe displacement (mjnj )

a, b, c: weighting factor (0.2,0.2,0.6 is used)

The confidence factor of an MI is based on the
strength of compatibility with other MIs. The compati-
bility between MI(i) and MI(j) is:

,lAM:.N CM(MI(i), A =j ,.,m,n E F Cp(m, n, M I(i), M I(j))

N2 ' " "(2)

where F is the set of common point features and IIFIl is
its size.

5 3-D Reconstruction

Motion and structure estimation from corner correspon-
dence data generates a sparse depth map for corners in

hfl(.J M 2 the image. Since the selected corners are usually from

MI(N,I): 1-th motion Interpretation with reference frame N several objects in the image, regular surface interpola-
tion techniques cannot be applied to reconstruct the 3-D
surfaces. We build a dense range map using the sparse

(b) Between motion interpretations depth map of corners and the properties (shape and size)
and relations of the underlying region.

Since several corners are generated from a region, the
Figure 3: Compatibility measure range of a region is represented by the distribution of

the depth values of its corners. If the depth estimation
is fairly accurate, the local structure of a region could be

the confidence factor of the 3-D MI associated with each computed from the depths of several corners along the
solution. We believe that a solution which represents contour. If the number of corners is large enough, then
the actual environment is more likely to have coinciding low-confidence depth values can be eliminated statisti-
solutions in future frames than a solution which is far cally by disregarding those lying at the extremities of
from the real situation but happens to fit the given 2- the samples as done in [Smith ei al., 1992]. In our work,
D positions of the correspondence data. The motion a region usually contains 3 or 4 corners that are matched
parameters from each solution produce a 3-D structure. over the sequences. The numLer of well-behaved corners
The confidence factor of a solution is computed from the that pass through the refinement process is even smaller.
consistency of the 3-D structure over the sequence of the The criterion used in our work is the relative geometric
frames. stability of the estimated 3-D position in eq. 1. We se-

Figure 3 illustrates this compatibility measure. First, lected the corner that maintains the largest compatibility
the confidence factor of a point is computed as the throughout the frames.
weighted sum of its compatibilities with other points. We assume that the objects of interest represented by
The compatibility between two points is dependent on regions have shallow structure, where the thickness (the
the consistency of the relative positions and instanta- difference in depth within the whole structure) is small
neous velocity vectors of the two points. Then, the con- compared to the depth of the structure [Sawhney and
fidence factor of a solution is a weighted sum of the com- Hanson, 1992]. The depth of the region is represented
patibilities of the points in the feature set. by that of the corner with the most stable depth value.

The following definition of compatibility The 3-D structure for objects of interest are obtained as
Cp(m, n, MI(i), MI(j)) measures the consistency of the follows. The shape and size of the region is determined
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from its contour. We use 2 models, cone-type and box-
type object for the isolated regions which do not have any
descendants in the segmentation. The reference regions
from an RNIS are labelled at each frame, which depends
on the linear approximation of the contour of the region.
A region with one corner at the top and two corners
in the base is labelled as cone-type. All other isolatedregions are labelled as box-type. Consistent labelling

is obtained in most cases. When the labelling conflicts
among the frames, the model voted by the majority of
the reference regions is used as the label.

As stated in section 3, the shape of the contour of a
region of an RMS may have large variation from frame to
frame. Hence, the region to be used in the surface recon- (a) Rocket field sequence
struction cannot be taken from an arbitrary frame, but
should be from the reference regions, which are consis-
tent in contour shape and intensity. The contour of the
selected region is scaled and translated to compensate
for the motion since the frame number of the selected
region varies from RMS to RMS. The height and width
of the region is obtained from the bounding rectangle of
the contour of the region. The thickness is assumed to
be equal to the width of the region, which is not avail-
able from the data. A region which has descendants is
labelled as a base region. A base region is assumed to
have flat surface and the orientation of the surface is ob-
tained from an interpolation using the depth values of
the well-behaved corners that lie inside the base region. (b) Cone sequence

6 Results

The motion analysis system has been tested for standard Figure 4: First and last frames of the image sequence
sets of real image sequences. We presen: the results for
two image sequences provided by UMASS. The first one,
the Rocket field sequence [Dutta et al., 1989], is an out- segmentation over the initial mask of the whole image.
door sequence taken by a camera mounted on a vehicle But none of them represents the intensity values (17 -
on a terrain, whose motion is dominant translation with 41) of the front side of the building. While the area
some rotational component. Interframe motion is almost corresponding to each peak continues to be segmented
constant but has some minor variations, into smaller regions recursively, the area corresponding

The second one is the Cone sequence [Sawhney and to the building fails to be extracted into a region. In lo-
Hanson, 1992]. The sequence consists of 8 frames and cal segmentation, the mask is represented by the white
the motion is pure translation along the line of sight. solid line. The area of the building is represented by
The first and last frames used in the analysis are shown the dominant peak in the intensity histogram and is ex-
in figure 4. tracted into a region as shown in figure 5 (b). Though

the desired region is not necessarily represented by the
6.1 Guided segmentation dominant peak, the guidance from previously matched

Figure 5 (a) shows a region tracked from frame I to frame regions assures the selection of the correct peak if it ex-
6 of the Rocket field sequence. The region represents the ists in the histogram.
front of the building in the image. In global segmenta-
tion, the building is extracted into a region from frame 6.2 Refinement of noisy correspondence
I to 6 but the corresponding region is not, available in Figure 7 (a) shows the refinement of a CMS from the
frame 7. The building region in frame 7 is extracted building region. The extraction of the right, upper cor-
by guided local segmentation. In this case, the regions ner of the building is stable throughout the sequence.
from frame 1 through 6 are so consistent in intensity and The irregular position of the corner at the fourth frame
shape that all of them become the reference regions. In (numbered as 3) is due to the irregular motion of the
figure 5 (b), a local mask around the predicted position camera [Dutta et at., 19891. After the refinement, the
and the segmented region are shown, which is very con- corners in frames (0 1 2 4 5 9) are selected and the
sistent to the corresponding regions in frames I through corner in frame 3 is not used in the motion estimation.
6. In [Kim and Price, 1992b], the gradual improvement of

Figure 6 (a) (b) show the image and intensity his- the initial noisy correspondences for the Rocket sequence
togram used in global and local segmentation. Three is described in details.
peaks are found in the intensity histogram in the global Figure 7 (b) shows the refinement of a CMS for a
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(a) Whole image and histogram in global segmenta-
tion

5 6

(a) Building region in frame I to 6 from global
segmentation

(b) Building region in frame 7 from guided local
segmentation (b) Partial image and histogram in local segmentation

Figure 5: Guided local segmentation Figure 6: Histograms of intensity

cone in the Cone sequence. For this indoor sequence,
the interframe motion of the camera is uniform. Most are used with 2 to 4 solutions generated at each step. At
feature matches are correct. The irregular motion at each frame, the solution is selected that has the highest
the third frame (numbered 2) comes from an imperfect compatibility, which is a linear sum of the compatibili-
segmentation at the frame. The erroneous frame 2 is ties with the selected solutions in the previous frames. In
discarded in the refinement process. table 1 is shown the compatibility value between the 3-D

structure from the selected solution at each frame with
6.3 Incremental analysis the ground truth, which is computed from the motion of
We tested the automated selection of solutions based on the vehicle and the locations of 18 objects in the scene.
eq. 2. The input data are the corner correspondence The number of the tracked CMSs are much larger (393
data from the first 14 frames of the Rocket field Se- CMSs) and only those corners are used in the compat-
quence. In each incremental step, the latest 7 frames ibility measure that are common both to the set of the
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6.4 3-D structure

Figure 8 (a) and (b) show the reconstructed trajectories
and the top view of the objects for the Cone sequence.
The estimated motion of the camera shown as a straight

69 gap line in the top view is very close to the real motion. The
estimated positions of the cones and the trash box agree
with the data given in [Sawhney and Hanson, 1992]. Fig-
ure 8 (c) shows a rendered view of the reconstructed 3-D
structure of the cones and the trash box, seen from a
different viewing angle.

(a) A building in rocket sequernce

Selected comers = (0 12 4 5 9) 7 Conclusion

In this paper, we presented an approach to use feed-
back in the domain of feature-based motion analysis for

40d a monocular image sequence. We extended the scope
of the guidance of the feedback of 3-D motion from re-

_ _ _ _finement of features to feature extraction. The incoming
frames are analyzed incrementally with several solutions
generated at each frame. We devised a scheme of au-
tomatic selection of the correct solution that is based
on the relative geometric stability of the estimated 3-D

(b) A cone in cone sequence position.

We applied this approach in an automated motion
analysis system that is built on hierarchical feature ex-
traction and matching. Standard real image sequences

Figure 7: Refinement of noisy corner trajectories are used as the test set of our system and the results
for two image sequences (one outdoor sequence and one
indoor sequence) are presented.

We showed that the initial noisy correspondence data
Frame number I Compatibility Number of are gradually refined and that the extraction of a tracked

I1 1 common corners region is improved when guided by its expected prop-
7 0.795 4 erties obtained from the corresponding objects in the
8 0.831 4 previous frames. 3-D surfaces of the objects are recon-
9 0.849 6 structed using the sparse depth map from the estimates
10 0.883 7 of 3-D point positions and the motion parameters.
11 0.888 7 Our motion analysis system is based on very common
12 0.887 7 subsystems. We believe that the idea of using feedback
13 0.889 7 to improve the extraction and matching of features can
14 0.892 7 be applied to other motion analysis system. A draw-back of our system is that the refinement of correspon-

dence assumes that most of the objects in the scene
Table 1: The compatibility of the best solution from each belong to one major motion group as is the case with
frame with ground truth values for the Rocket sequence the egomotion of the camera in stationary environments

When there are multiple motion groups none of which
are dominant, the result of the refinement process is un-
predictable in the present implementation. This problem

tracked objects and to the set of objects with ground can be solved using a clustering of the correspondences
truth. The compatibility value increases as the frame with hypotheses of multiple motion, which requires a
number increases and the improvement is slow after a costly computational process.
value of 0.89 (The maximum possible value is 1.0).

Figures 9 (a), (b) show the reconstructed trajectories
and the top view of the objects with ground truth for the
Rocket sequence. The top views in the incremental anal-
ysis for the eighth, tenth, twelfth and fourteenth frames Acknowledgments
are shown in figures 9 (c), (d), (e), (f). When compared
with the ground truth top view in figure 9 (b), we find The authors would like to thank Harpreet S. Sawhney
that the order of depth is reversed for part of the objects at University of Massachusetts, Amherst for providing
but the estimated motion of the camera is close to the the Cone image sequence data.
real motion.
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Figure 9: The top view of estimated structure in incremental analysis for Rocket sequence
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Abstract ries are extended. There is little information avail-
able for the initial matching of features in the twoThis paper is concerned with three-dimensional in- frames. So any matching constraints are potentially er-

terpretation of image sequences showing multiple ror prone and must be further confirmed against subse-
objects in motion. Each object exhibits smooth quent frames. Such initial matching of features is done
motion except at certain time instants when a mo- based on the similarity of the image plane arrangements
tion discontinuity may occur. The objects are as- of their neighbors. Clearly, this only holds for those
sumed to contain point features which are detected neighbors which are detected in both frames, and pro-
as the images are acquired. The problem of esti- vided the neighbors do not belong to another neigh-
mating initial feature trajectories, in the first two boring object. Once the first two frames are matched,
frames, is that of feature matching. As more images the initial segment of each feature trajectory is found.
are acquired, existing trajectories are extended. There is now more information available for matching
Both initial detection and extension of trajectories of the features in the second frame with those in the
are done by enforcing pertinent constraints from third, i.e., for trajectory extension. The extension of
among the following : similarity of image plane ar- trajectories must be consistent with continuation of the
rangement of neighboring features, smoothness of three-dimensional motion of the object. However, this
three dimensional motion and smoothness of image is only true when the object is not undergoing a motion
plane motion. As trajectories are estimated, they discontinuity. Further, this constraint can be applied
are segmented into subsets each corresponding to only if features have been segmented into objects so
a different object. Both detection and segmenta- that three-dimensional motion of an object can be esti-
tion are formulated as cost minimization problems mated. When the smoothness of the three-dimensional
which enforce appropriate sets of the above con- motion cannot be enforced, smoothness of trajectories
straints. Cost minimization in each case is done are constrained to have only two-dimensional smooth-
using a Hopfield network. Experimental results on ness which is possible once the initial trajectories are de-
several image sequences are shown. tected, i.e., beyond the second frame, and which is cor-

rect except across temporal discontinuities in motion.
1 Introduction Thus, several different constraints are used to detect

This paper is concerned with three-dimensional inter- and extend trajectories, but each of these constraints
pretation of image sequences showing multiple objects must be used when it is applicable.
in motion. Each object exhibits smooth motion except As the images are acquired and trajectories are es-
at certain time instants when a motion discontinuity timated, they are segmented into subsets each corre-
may occur. A common type of motion discontinuity is sponding to a different moving object. This is done
in motion direction, e.g. when an object undergoes a by identifying neighboring correspondences and break-
collision. Between such instants of temporal disconti- ing these neighbor relationships if they are found to be
nuity each object exhibits a smooth motion. very dissimilar.

The objects are assumed to contain point features Both problems, feature matching and trajectory de-
which are detected as images are acquired. Trajec- tection, as well as segmentation are formulated as cost
tory detection begins with the first two frames wherein minimization problems. The costs are defined in terms
it amounts to the standard problem of feature match- of the constraints mentioned above, such that only ap-
ing. As more images are acquired, existing trajecto- propriate constraints are used at any given image loca-

*This work was supported by the Defense Advanced Re- tion at any given time. Each of the two problems is
search Projects Agency and the National Science Foundation mapped onto a different Hopfield network which does
under grant IRI-8902728 the cost minimization.
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have been no attempts though, to integrate cost inea- tuting the hypothesis. The neighbors discussed here are
sures from several constraints, as discussed above, to thie Delaunay neighbors of the points. To determine the
solve more complex scenes with multiple moving oh- cost associated with a match hypothesis, we must try
jects exhibiting temporal discontinuities in their motion. to find a subset of neighbors of the point in the first
Also, none of the previous approaches offer any scheme frame that match a subset of neighbors of the point in
to eliminate wrong matches which result from settling the second frame. The similarity in the image plane ar-
down to a local minimum while performing energy mrin- rangement of these subsets is used to compute the cost
imization. This makes the approach more robust to associated with the match. We look for similarity in the
variations in scene parameters like inter-frame motion subsets rather than the entire set of neighbors because
of objects which can vary from 0 to 20 pixels. missing feature points and object boundaries cause dis-

Section 2 gives the details of the formulation of fea- tortions in the set of neighbors. This cost computation
ture matching and trajectory detection problems. Sec- scheme is explained in Section 4.1. The costs associated
tions 3 and 4 describe the mapping of the problems of with all the possible N, x N2 hypotheses are then incor-
feature correspondence and trajectory finding onto the porated into an energy function which when minimized
Hopfield network. Section 5 describes the algoritlmi to yields NI2 trajectories of length 2.
eliminate wrong correspondences that result from de-
scending to a local energy minimum. Section 6 describes 2.2 Trajectory Detection
a segmentation scheme to segment the correspondences The trajectory detection problem is just an extension of
into groups representing rigid objects. Finally. Section the feature correspondence problem where the trajecto-
7 contains results on several image sequences. ries obtained till the previous frame are to be matched

to the points in the current frame if such a match does
2 Feature Matching and Trajectory exist. In addition to constraints like uniqueness of a

Detection match and image plane similarity in the arrangement
of neighbors around points corresponding to a correct

2.1 Feature Matching match, other constraints like 2-D (image plane) conti-

The problem of feature correspondence deals with find- nuity of trajectories and 3-D motion continuity can be
ing a match in the current frame, if it. exists, for every imposed,
point in the previous frame. In order to find the cor- Consider the I)roblem of extending the Nt2 trajecto-
rect match, constraints like uniqueness an(d image plane ries obtained thus far to the third frame. The problem
similarity in the arrangement of neighbors around the can be restated as that of having to match the N1 2 tra-
points are imposed. The uniqueness constraint implies jectories to the N3 points in the third frame. In this
that a point in the previous frame can match at most situation, we have a matrix of N12 x N3 hypotheses. Of
one point in the current frame and vice versa. The other these hypotheses, there will be a subset of hypotheses
constraint implies that the point in the current frame that represent matches between trajectories and points
which is the correct match for a certain point in the pre- in the third frame that lie within their circles of interest.
vious frame should have a similar geometrical arrange- The costs to be associated with each of these hypothe-
ment of neighbors around it. These constraints are then ses have to be determined. All of the other hypotheses
incorporated into an energy function in such a way that (those involving trajectories and points outside their cir-
the energy function attains a minimum when the poinits clees of interest) will be assigned very high costs. The
are either correctly matched or not matched at. all. This costs associated with each hypothesis are representative
energy minimization is done using the gradient descent of the following three constraints,
approach that is implemented using a tlopfield network. I. Similarity between the arrangement of neighbors

Let the first frame have N, points and the second around the last. point of the trajectory and the point
frame N2 points. We have a matrix of N, x N., pos- in the third frame. This is exactly the same as the
sible match hypotheses where elenent (i,j) indicates constraint imposed on point correspondences.
that the &th feature in the first frame nmatches the P 2. (Continuity of the 3-D motion computed from the tra-
feature in the second frame. Only a subset of these are jectories already known.
correct and these represent the correct. matches. A cost.
is associated with every hypothesis such that a low cost :. 2-) continuity of the trajectories.
is assigned to a correct hypothesis and a high cost is The extent to which the hypotheses satisfy each of the
assigned to a wrong hypothesis. Since the inotion of above constraints is determined separately. This results
the feature points is bounded by a maxinmum possible in three different cost. measures that need to be merged
motion, we compute the costs for only those hypot heses before being incorporated into the energy function. The
where the point in the second frame is within a tnit second method is now explained. Having obtained the
of interesl of the point in the first frame. All other ly- trajectories till the previous frame, any applicable mo-
potheses are assigned a fixed high cost. The costs art, !ion and structure algorithm can be used to estimate
computed based on the image plant, similarity iii ti,. the 3-1) motion an(d structure of the objects and these
arrangement of neighbors around the two poiiits consti- estimates can be used to predict the positions of the
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feature points in the current frame. Based on the pre- scheme. Once the merged cost associated with every
dicted positions, a cost can be associated with every hypothesis is computed, they are incorporated into an
hypothesis that a trajectory extending upto the previ- energy function along with the uniqueness constraints.
ous frame matches a point in the current frame. Before This energy function is minimized using the Hopfield
applying any motion model one has to segment the tra- network.
jectories into groups that correspond to rigid objects.
This cost computation scheme is described in detail in 3 Mapping the feature correspondence
Section 4.2. and trajectory finding problems onto

The third method to compilte the cost to be associ-
ated with a trajectory and a point in the third frame the Hopfield Network
that lies in its circle of interest is based on the ira- 3.1 Mapping the feature matching
age plane continuity of the trajectory across the frames. problem onto the network
This is done as follows. The time axis is collapsed so
that the problem of fitting a function to the trajectory Consider the case in which there are two images of the
becomes a one-dimensional problem. A Lagrange in- scene taken at two different time instants, t, and t2 .
terpolation is done between the points constituting the The feature extractor is run on the two images and two
trajectory and the slope at the last point of the trajec- sets of feature points are obtained. Let, the first image
tory is computed. Then, the slope of the line segment, have N, points and the second image have N2 points.
joining the last point of the trajectory and the point The problem at hand is to find a subset of points, N1 2
in the current frame that is competing for the match is in number, in the first frame that has matches in the
computed. The cost associated with the hypothesis is second franie.
then based on the similarity of the two slopes. The |lopfield network [6] used for the above problem

We thus have three different cost. measures that are consists of a two-dimensional array of processing ele-
associated with each competing hypothesis. A nmethod ments (PEs) having N, rows corresponding to the N,
to merge these three costs and associate a single cost points in the first. frame and N2 columns corresponding
measure with each competing hypothesis is devise'd. to the N, points in the second frame. Each PE is es-

sentially a nonlinear amplifier that produces an output
2.3 Cost Merge Algorithm Vi which is related to its input ui by the equation

Three cost computation schemes have been outlined =
above. Each method works well in some case- but. = g(Au3)= +tanh(Au)) (1)
fails in others. The 2-D geometrical cost computation
method might not yield good results at points close to there )P is called the gain parameter. The input uo to
object boundaries because of differences in the motions the it' PE is the weighted sum ofthe outputs of the PEs
of the two objects. It could also happen that though a that are connected to it. The processing element (i,j)

certain point in the current frame is the correct match represents the hypothesis that the it" point in frame

for a point, in the previous frame, there might be no I matches the jth point in frame 2. Each processing
subset o,' neighbors that match for the two points. Tihe element has a potential associated with it. This poten-

cost computed using the assumption of 3-D motion con- tial corresponds to the quantity v discussed previously

tinuity across frames yields better results than the 2-4) and can take on a continuum of values between 0 and

method but again fails at. object, boundaries because the 1. The value I represents a sure match between the

rigidity assumption is violated across boundaries. This corresponding points in the two frames and the value

method also fails when there is a temporal discontinuity 0 represents a nonmatch. Any value between 0 and I

in the motion of objects. Finally, the cost computation signifies the level of confidence in the match between

scheme based on the 2-D continuity of trajectories gives the corresponding points.

good results at object boundaries but. fails when there The connections between the processing elements and

is a temporal discontinuity of motion. In a situation in the weights associated with them depend on the energy

which there is a temporal discontinuity in the motion. function that has to be minimized. The energy function

only the cost based on the 2-D arrangement of neigh- used in this problem has the form

bors can be used. Table I lists the cases in which tIhe N, N N, N2

three methods fail or apply. Eflg = -i NI N N N

This suggests that there is a need to nerge t hese, costs 2 L• ' T vj 'Yk

and determine a single cost measure for a certain match i=1 j=1 1-=1 1=1

that does not fail at either object, boundaries or muotion N, N2

discontinuities. One could suggest mnany methods to -FZZ-' F t i

achieve this. In this system we have taken the simple i=1 j=1
approach of choosing the least of the three costs. Ihi our N, N 2

experiments we have seen that thisnmethod works pretty + F - ' --. y-1(v~dv (2)
well, and there is no need for a more complex cost imerg" = =
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Table 1: Comparative analysis of the effectiveness of the three cost computation schemes

Cost Computation Schemes Fails Works
2-D arrangement of neighbors When no subsets of neighbors All other times including when

match there is a temporal discontinu-
ity in the motion

Continuity of 3-D motion At object boundaries and All other times
temporal motion discontinuities

Continuity of trajectories Temporal motion All other times
discontinuities

where, tij represents the potential of the (i. j)th PE. is NV12 . This term ensures that there are approximately
7 j,kI represents the weight of the link from the (k, 1)"' N1 matches obtained when the network stabilizes. At
PE to the (i, j)gh PE, kj represents the bias input to t lit tihe energy mnininmum, in most cases, we will not have
(i,j)t5 element and Rij represents tI li resistance seen at exactly NI., matches but some number that is close to

it. In this problem we set N12 to min (NI, N2 ). The
the input of the (i, j)lih PE. fourth terni deals with Cost Based Row Inhibition. For

Ignoring the integral term io the previous equation a certain point in the left frame, all of the points in the
which was present due to the introduction of an inter- secondl fraime compete for a match. If a certain point
mediate variable uf, the energy function can also MIT in the second frame has a lower cost associated with it
written, specifically for the problem of feature corre,- than another point, then it. tries to reduce the potential
spondence. as oho the other hypothesis by issuing an inhibitory signal.

-N N2  N. This reduces the potential of the other PE. In this term
Energy = 2 E E Vij V m, again D determines the relative weight that this term

2i= j=l '= 1.A';i has in the final expression. Analogously, the last term
,deals with C Cost Based Column Inhibition. Ideally the

B - C N , -,' .2 last two terns should also be 0 when the network sta-
+- Vij 'Vj + 2 (Z Z " -- Y .ilizes on a solution.

j=1 i=1 k=l.kfi i=t j=t ('omparing EquIations (2. and (3) we obtain

DN1 N2  N2

+(Cost(ij) - (Eost(i, (I - b) - B (l - ) - C
2=I j=l k=Ik'fj -D(('ost(i, j) - Cost(k, l))6ik (1 - bjI)

E N2 N, N, -E(('ost(i~j) - Cost(k,l))6,ji( - iX4

+ - (Cost (ij) ('. j)) (.'. (1) where In,, I if in = n and l ,l , = 0 if m r n. Wej=l =1 k,k$i also obtain

Each term in the above equation has a physical expla- Ii = 'NI2 (5)
nation that is outlined below. The first terni deals with
Row Inhibition. This term ensures that, when thle net- We use the gradient descent method to approach the
work stabilizes, there is at. niost, one PE in each row energy mnimmmnia. The equation for gradient descent can
that has a potential of I whereas all of the other el- 1w written as
ements have value 0. The constant .1 deternine• lieth
relative importance this terni is givewn w.r.t. lhe other (6) O(Lnc'fy)
terms. The second term deals with (Colunim Inhibit ion. dt O()
This is the column analog of tihe first terni. When the which yields
network stabilizes, at most one in each coluimn has a po-
tential of 1. Again the constant B3 decides thfe relative .,
importance this term is given w.r.t. the otiher teriiis. (dII, = + ii (7)
The first two terms in the above equation enforce the dt I TI
concept of uniqueness of a match, i.e.. a point in Ihe first
frame can mnatch at inost one point in the second fra,ie where rj = Ri( '. the time constant. In our formulation
and vice versa. Since both of these terms are vqliva- oftI he problem. we have assumed that the time constant
lent, we generally give thein equal iminportancv, i.x.. %-, is the sane for all processors. This does not affect the
have A = B. The third term ini the energy equal ion solhition Imu only decides the rate of convergence.
deals with Global Inhibition. This terin is miniimiiim. A digital sinijilation of this systemn requires that we
i.e., 0, only when the total nuiiiber of Is it l er a'rr;i. iMtegraht Ithe.w, eqIations iinierically. For a sufficiently
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small value of At, we can write the method used to calculate the costs associated with

N 1 N2  
every competing hypothesis. In the case of feature cor-

j T "k- + I, i~ j respondence between two frames, we rely only on the= - T, .t -- - A ( cost based on the image plane similarity in the arrange-
k=1 1=1 ment of neighbors around the point pairs constituting

The values of uij can be iteratively updated according the hypotheses. In the case of correspondence between
to the following rule. the trajectories and points, there are three cost mea-

sures. These are based on the image plane similarity
u1j(t + 1) = uij(t) + Auij (9) in the arrangement of neighbors around the last point

of each trajectory and the point in the current frame,
The final output potential of the PE is given by coutinuity of 3-D motion, and continuity of trajecto-

1 ries. The details of the implementation of these three
= g(u) -" 1 + tanh 2 ) (10) cost computation schemes are given in the next section.

If we substitute Equations (4) and (5) into 8 we obtain 4 Cost Computation
the following result:

N2  4.1 Two-Dimensional Geometrical Cost
Auij = J -A V ia. - B 1 !A.J This cost is computed to reflect the similarity in the

" k=IJ0j •.•o.=l image plane arrangement of the Voronoi neighbors of
NI N2  the two points constituting a candidate match. Let the

-C(S:E 17i - IV1_) Voronoi neighbors of point i in the previous frame be
k=1 1=1 (a. b r d c) and that. of j in the current frame be

N 2  (a'. c' d'). We have to determine which subset of
the liles (ia, ib, ic, id, ie) matches a subset of lines- '/_., (Cost(i,j) - ('o.kt(ijk))u,•. (ja', jb', jc', jd' ). This is done using a two dimen-

k 1, k•j sional Ilopfield network similar to the one described in
N 1  Section 3. When this match is determined, the simi-

-E E (Cost(i.j) - Cost(k,j))ur.j]At larity in the image plane arrangement of the neighbors
k=l.k~i can be estimated. The cost function needed to initialize

(11) this network is based oil the similarity in the lengths
and orientations of the lines competing for a match.

Equations (9) and (11) describe the dynamics of the This function is defined as
network. Now only the initial values of the potentials of
the PEs ( vii for the (ij) 1 ' PE ) have to be specified. .simii = ( - ((A..leytha,,at - ALENGTH)
Having done this the network could be allowed to evolve
in time until it attains a steady state, i.e., a stage where -(C"(Aori'ntationctual-AORIENTATION)) (12)
the outputs of the PEs do not change. The output of where F is a non-linear function defined by F(x) =
each PE is initialized to vii = 1.0 - ('ost(i,j). The iiii- (> and F(x) = C4 , x < C4, and C 4 =

tial output could then be viewed as the probability that -'. ('an (.t'=C4,RIE<T4, Here

the corresponding hypothesis is true. The network can -(CqI+(',_,ALENGTH+Cl3AORIENTArTION). Here

then be allowed to evolve in time until it. stabilizes. The Alingtha(tle and Aoricntatioengthat are the actual ab-
procss f eoluionis utoassciaion rh adantges solute differences in the length and orientaion betweenprocess of evolution is auto-association. Thie advanutages the lines constituting a match hypothesis. ALENGTH

of this initialization scheme are that a fewer nuimber of and AORIENTATION are constants to be provided

iteration steps are needed and the solution obtained is

better than that obtained using random initializatiou. a priori. The similarity measures are normalized and

After the network stabilizes, all of the PEs have oit- the cost. for each match is computed as cost = 1.0 -

puts equal to either 0 or 1. Those that have outputsimilarity.

1 have been identified as the correct hypotheses wleih, After the network comnputes the right subset of

those that have outputs 0 have been ideliutilied as Ile matched lines, then for every matched line pair ia and

wrong hypotheses. ja', the quantity 1.0- dotproduct of ij and aa' is com-
puted. The minimumn of time above quantity over all

3.2 Mapping the trajectory detection the matched pairs is the final two-dimensional geomet-
problem onto the network tic cost.

The problem of establishing the correspondence 4t-
tween the trajectories computed until the previous.

frame and the points in the current frame is simmilar, The correspondences obtained between the first two
in formulation, to the problem of feature correspoi- frames can be segmented into groups belonging to dif-
dence between two frames. The only differv'wo, is in f.r,-nt rigid objects as described in Section 6. A motion
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model can be used to predict the positions of the fea- Tijw = -IOOcost(i,j), and u; and vi are the input and
ture points in the next frame. Depending on the inim- output of the ith PE. All those PEs that survive when
ber of correspondences available, suitable motion riod- the network stabilizes are retained. With this reduced
els could be used. We have used the local translation set. of correspondences, the entire process is repeated till
model where we fit the model to a correspondence and no more correspondences are removed. This eliminates
its Voronoi neighbors. Based on the 3D motion coin- wrong correspondences.
puted, the positions of the feature points in the current
frame are predicted such that each trajectory till the 6 Segmentation of trajectories
previous frame has one predicted feature point, in the
current frame associated with it. The cost of matching The underlying assumption made in the segmentation
a trajectory till the previous frame to a point in the procedure proposed in this paper is that the motion be-
current frame is done by determining the similarity in tween two frames is small due to dense sampling in time.
the image plane arrangement in the neighbors of the The segmentation algorithm is outlined below. After
predicted points and the actual points in the current the wrong corespondences are eliminated using the net-
frame. This is done in the a manner similar to Section work discussed in Section 5, the Voronoi neighbors of
4.1. As the length of the trajectories increases, more every correspondence are determined. The lines join-
complex motion models could be used. ing the correspondences to their neighbors are called

edges. These edges could be inter-object edges where
4.3 Cost based on the continuity of the correspondences on either side belong to two differ-

trajectories ent objects or within-the-object edges. For inter-object

Consider a trajectory of length (n + 1) extending fromi edges the similarity between the two correspondences

the first frame to the (n + 1)th frame. Let. the image omi either end is low whereas for within-the-object edges

plane co-ordinates of the points constituting the trajec- it is high. We construct an energy function

tory be (XO, YO), (X I, Yl), ... , (X,, ';,). We fit. a function #offdg t,,'

to this set of points using Lagrange interpolation. The E= Z A(I.0- vi)costi+vi+o g-1(v)dv (13)
degree of the polynomial is limited to 3 or 4. Consider 0
two vectors, the tangent to the function at the last. point
of the trajectory, and a line joining the last point of the that needs to be minimized to give the right segmen-
trajectory to a candidate point match in the current tation. Here costi is the cost reflecting the similarity
frame. The cost associated with this match is related of the correspondences on either end of the edge, vi is
to the dot-product of the two vectors. the probability that the edge i is an inter-object edge

The three costs computed above are merged together and A and a are constants weighing smoothness of mo-
for every candidate match and the Hopfield network tion versus discontinuities. This is minimized using the
is initialized to vi = 1.0 - cost(i,j), where cij is the gradient descent approach according the equations
probability that the trajectory i till the previous framie - E = -
matches point j in the current frame. The network is dt = - -u1 + Acosai --

allowed to evolve and the hypotheses that. survive are where ui and vi are related as in the Hopfield network.
the right matches. All the inter-object edges are discarded. This gives the

segmentation. This method fails when the motion be-
5 Eliminating wrong correspondences tween frames is very large or when the motion between

Wrong correspondences that result from the network neighboring objects is similar. The second case is inher-

settling down to a local minimum are eliminated us- ently difficult to handle because if two nearby objects

seting adone-dimensional inieuwoark einwhere each have similar motions, they act as a single object. In theing a one-dimensional Hopfield network whr ah first. case, a better motion model nmust be found that
PE represents the probability of correctness of a cor- rst. uis o b le m ents.

respondence. Each PE is connected to a process-

ing element that represents a Voronoi neighbor cor-
respondence that is most. similar to it.. The simii- 7 Results
larity measure is calculated as similaritl = 1.0 - Experimmeiats were conducted to evaluate the perfor-
cost = (1.0 - angcost)lengthcost + oanyCO.st where mance of the system on multiple, discontinuous mo-
lengthcost = 0.5[1.0 + tanh (1.5(Alc..yth - 2.0))] and tion image sequences and smooth motion real image
angcost = 0.5[1.0 + tanh (0.15(Aanghl - 20.0))]. The sequences. Time latter were taken from those made avail-
network is simulated using the following equatiomi for able at, the 1991 IEEE workshop on visual motion.
every PE Figure 1 shows the first frame of a sequence of 10

d" = -IUi + li + Toovi• franies of a scene with 3 objects moving in different
directions. Their motion varies from 4 to 10 pixels.

* vi = 0.5[1.0 + tanh (Au,)] 200 feature points corresponding to local intensity max-

where j(i) is the most similar neighbor to i. 1i is the ima and minima were automatically detected in every
bias input, chosen to be 50 in all the experiiments. frame. The trajectories determined are shown in Figure
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2. Figure 3 shows the result of segmenting the corre-
spondences between the first two frames. 10

Figure 4 shows the first image of a sequence of 10 in-
ages of a scene with one object having a temporal dis-
continuity in its motion between the 51h and 61h fraie.
The object moves to the left, for the first five franies
and then moves towards the upper right hand corner of
the image. Again around 200 points were automatically
detected in each frame. Figure 5 shows the trajectories
obtained.

Figure 6 shows the second frame of a sequence of im-
ages of a laboratory taken front a camera mounted on
a PUMA robot arm that was rotating. This caused
the entire scene to rotate around the optical axis of the
camera. The motion of the features varied from 0 to
30 pixels. Figure 7 shows the correspondences obtained
between the 2 nd and 3Yd frames of this sequence.

Figure 8 shows the 4 th frame of a sequence of images
of an outdoor scene taken by a camera mounted on a
robot moving along the pathway seen in the image. Th'e
feature points had a motion of 15 - 20 pixels. Figure
9 shows the correspondences obtained between the It" 2.
and 5 1h frames of this sequence.
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Motion constraint patterns

Cornelia Fermfiller*
Computer Vision Laboratory,

Center for Automation Research
University of Maryland, College Park, MD 20742-3275

Abstract scribed as a reconstruction procesb, that is, a problem
of creating representations of increasing levels of ab-

The problem of egomotion recovery has straction, leading from 2-D images through the pri-
been treated by usngo tionpt lcay imag mal sketch and the 21D sketch to object-centered de-been treated by using as input local image2

motion, with the published algorithms uti- scriptions. Applied to visual motion perception this
lizing the geometric constraint relating 2- led to the computational theory known as "struc-
D local image motion (optical flow, corre- ture from motion" theory. The goal is to recover

spondence, derivatives of the image flow) from dynamic imagery the 3-D motion parameters
to 3-D motion and structure. Since is has and the structure of the objects in view. The sug-
proved very difficult to achieve accurate in- gested strategy attempts to solve the problem in two
put (local image motion), a lot of effort has stages. First, accurate image displacements between
been devoted to the development of robust consecutive frames have to be computed, either in
techniques. In this paper a new approach the form of point correspondences [7, 19] or as denseto the problem of egomotion estimation is motion fields (optical flow fields) [4, 8, 11]. Then,

taken, based on constraints of a global na- in a second step, the 3-D motion and the structure
ture. It is proved that local normal flow are computed from the equations relating them to
measurements form global patterns in the the 2-D image velocity [1, 5, 9, 13, 14, 17, 18). This
image plane. The position of these patterns computational theory has been uncritically accepted,
is related to the three dimensional motion and as a result, most studies on visual motion percep-
parameters. By locating some of these pat- tion are to be found at the algorithmic level of the
terns, which depend only on subsets of the problem, addressing either the estimation of image
motion parameters, through a simple search motion or the recovery of 3-D motion and structure
technique, the 3-D motion parameters can from image motion.
be found. The proposed algorithmic proce- The problem addressed in this paper is not the
dure is very robust, since it is not affected general "structure from motion" problem. We are
by small perturbations in the normal flow concerned only with the estimation of 3-D motion
measurements. As a matter of fact, since independent of depth. For a monocular observer un-
only the sign of the normal flow measure- dergoing unrestricted rigid motion in the 3-D world,
ment is employed, the direction of transla- we compute the parameters describing this motion.
tion and the axis of rotation can be esti- Using the perspective transformation as our geomet-
mated with up to 100% error in the image ric imaging model, only five unknowns can be derived
measurements. from 2D images, namely three rotational parameters

and two parameters describing the direction of trans-
lation. In the literature this problem is known as1. Introduction "passive navigation".

The methodological theory of computational vision eIn this paper an alternative approach to the prob-
presmenthodological t15heory ofomputathe nasisiforr lem of passive navigation is taken, which is differentpresented by Marr 115] has formed the basis for re- fo xsigmtos tbt h h opttoa
search in visual motion understanding. Vision is de- from existing methods, at both the the computational

and the algorithmic level.
"Permanent address: Department for Pattern Recog-

nition and Image Processing, Institute for Automation, First, we do not compute the exact 2-D image
Technical University Vienna, Treitlstrafle 3, A-1040 Vi- velocity. In general, the estimation of optical flow
enna, Austria
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is an ill-posed problem and additional assumptions rotational motion was studied, and linear equations
must be made in order to estimate it. If these as- relating the rotation parameters to the normal flow
sumptions hold, as in the case of some model-based were derived. A similar result was reported by Horn
approaches [6, 12], for special purpose applications, and Weldon [10], who presented several methods for
optical flow can be computed and as a result 3-D solving the problem of motion and structure com-
motion can be derived. In the general case, how- putation not only in the purely rotational case, but
ever, any algorithm will produce imperfect output also for pure translation, for known rotation, and for
(erroneous output, if the assumptions do not hold). known structure. The constraint of positive depth
Therefore, we use as a representation for image mo- was used by Negahdaripour [16] to estimate the fo-
tion the so-called normal flow. As the only available cus of expansion for purely translational motion and
constraint on the flow (u, v) of the time varying image in [20] translation and rotation were estimated for an
I(x, y, t) we consider the motion constraint equation observer rotating around the direction of translation.
[11] I4U + I~v + Ig = 0, where the subscripts denote
partial differentiation. This constraint means that we
can only compute the projection of the flow on the 2. Geometric constraints
gradient direction ((I., I,) . (u, v) = -It).

motion from noisy flow fields has For a monocular observer undergoing unrestrictedRecovering 3-D mtofrmniyfwfelshs rigid motion in the 3-D world we compute the pa-

turned out to be a a problem of extreme sensitivity, raerd motion If the co odnte

with researchers reporting very large errors in the mo- systems fixe nt the obr It the ctrbing
tionparmetr etimaes nde smll prtubatons system is fixed to the observer with the center being

tion parameter estimates under small perturbations the nodal point of the camera and f the focal length,in the input. Even optimal algorithms [171 perform then the equations relating the velocity (u, v) of an

quite poorly in the presence of moderate noise. Al-

though a formal proof is still lacking, it has been image point to the 3-D velocity ((U, V, W) transla-
argued a2] that the estimation of 3-D motion from tional and (a, 0, 7) rotational) and the depth Z ofargued [2 htteetmto f3Dmto rm the corresponding scene point are [13)

image motion is itself ill-posed, because it does not

continuously depend on the input.1 Thus, in order
to estimate 3-D motion in a robust way, we have to (-U f+ xW) zy x
consider the fact that no flow measurement (neither U = + aý-- " + + 7yoptical flow nor normal flow) can be perfect. In this Z f T
paper new global constraints of a geometric nature, (-VI + yW) +1
which relate 3-D motion to 2-D image measurements v = + a( 1 +fD - -)8r. (1)
(normal flow), are introduced. z f-

In our approach, we first compute the rotation The number of motion parameters a monocular
axis and the direction of translation. Motion rigidity observer is able to compute under perspective pro-
introduces a number of constraints on the normal flow jection is limited to five: the three rotational param-
values. These constraints take the form of patterns in eters and the direction of translation. We therefore
the image plane. In other words, for given positions introduce coordinates for the direction of translation,
of the translational and rotational axes, the normal (zo, yo) = (Uf/IW, V f/W) and rewrite the righthand
flow values form certain global patterns. Our algo- side of equation (1) as a sum of translational and ro-
rithmic procedure searches for these patterns. It uses tational components:
data from different parts of the image plane and con-
siders only the sign of the normal flow. The method u = Utrans + urot = (2)
for deriving the direction of translation and the rota- IuzV Y 2
tion axis is of a robust and global character and thus = + f
can handle a considerable amount of error in the in-
put. After having found the axis of rotation and the v = Vtrans + Vrot = (3)
direction of translation further constraints are con- = _+ _
sidered, and the complete set of motion parameters f f
is obtained.

Methods for estimating 3-D motion from only the Since we can only compute normal flow, the pro-
normal flow field without going through the inter- jection of flow on the gradient direction (n,, ny) (unit
mediate stage of computing optical flow have previ- vector), only on- constraint can be derived at every
ously appeared in [3, 10, 16]. In [3] the case of purely point. Tl,., \1ie u, of the normal flow vector along

__________the gradic ' ,'.-rtion is given by
'A problem is ill-posed if its solution does not exist,

is not unique, or does not continuously depend on the
input. un, + vnv , or
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Un= ((-.To+ Zf) W + CIY- #X yn

+ ((-Yo + Yf)-f + 0~(7 . +1f) - #~- -'Yx)ny (5)

The above equation demonstrates the difficulties
of motion computation using normal flow. A monoc-
ular observer not being able to measure depth is con-
fronted with a motion field of five unknown motion
parameters and one scaled depth component (W/Z)
at every point. Since there is only one constraint for Figure 2: The intersection of the image plane with
a single point and since we do not want to make as- a cone (defined by the circular path in 3-D and the
sumptions about depth, there is no straightforward rotation axis) defines the projection of rotational mo-
way to compute the motion parameters analytically. tion on the image plane.

2.1. Motion field interpretation point. Its image coordinates are * = Uf/W and

A motion field is composed of a translational and y = Vf/W; the flow there has value zero.

a rotational component. Only the first of these is In cases where the sensor is approaching the
dependent on the distance from the observer. This scene all the image motion vectors emanate from the
suggests the idea of searching for a way of deter- vanishing point, which is then called Focus of Expan-
mining the motion components by disregarding the sion (FOE) (Figure 1). Otherwise they all point into
depth components. The motion under consideration it, in which case we speak of the Focus of Contraction
is rigid. Every point in 3-D moves relative to the (FOC). The direction of every vector is determined
observer along a constrained trajectory. The rigid- by the location of the vanishing point, and the length
ity constraint also imposes restrictions on the motion of each vector is dependent on the 3-D position of the
field in the image plane and these restrictions are corresponding scene point. The vanishing point also
reflected in the normal field as well. This is the mo- constrains the direction of the normal flow vector at
tivation for investigating the geometrical properties every point; it can only be in the half plane contain-
inherent in the normal flow field. The motion estima- ing the optical flow vector at that point.
tion problem then amounts to resolving the normal
flow field into its rotational and translational compo- In cases of purely rotational motion every point
nents. in 3-D moves along a circle in a plane perpendicu-

)kr lar to the axis of rotation. The perspective image
of this circular path is the intersection of the image
plane with the cone which the circle defines together
with the rotation axis (see Figure 2). Depending on

V. V.1nthe relation between the opening angle of the cone
for a specific image point and the angle the image
plane forms with the rotation axis, the field lines of

X the rotational vector field (i.e the lines which have the
property that at each point the rotational flow is tan-
gential to them) form second order curves of different
types: ellipses, hyperbolas, parabolas, or even circles
when the rotation axis and the optical axis coincide.

Figure 1: Translational motion viewed under per- The conic sections generated by a rotational motion
spective projection: the observer is approaching the are defined by the axis of rotation. A rotation axis,
scene. given by the two parameters (Q) and (A), defines a

If the observer undergoes only translational mo- family (7' •;z, y) of conic sections:
tion, all points in the 3-D scene move along parallel 2(2 ) 22+2 + 2)2
lines. Translational motion viewed under perspective P-; Z'Y) ((2)* zy2 + Y
results in a motion field in the image plane, in which +2xf• + 2yf/ + f2)/(T2 + y2 + f 2 ) C (6)
every point moves along a line that passes through with C in [0... (1 + (2)2 + (P)2)]
a single vanishing point. This point is the intersec-
tion of the image plane and the line parallel to the
translation direction that passes through the nodal
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3. Properties of selected vectors

In this section geometrical properties of normal flow
vectors in selected directions are investigated. To be
more precise, we study the sign of the normal flow
in certain directions and the locations of normal flow
vectors of the same sign. Vectors which are perpen-
dicular to rotational vector field lines and vectors per-
pendicular to lines emanating from a point are con-
sidered. For these vectors we find that the normal
flow values in the image are separated into regions
in which they have different signs by a second order Figure 3: Field lines corresponding to an axis
curve and a straight line. (A, B, C) and positive coaxis vectors (A, B, C).

The normal flow vector ti is the projection of
the optical flow vector il on the gradient direction to be of positive orientation if it is pointing in di-
and the value of the normal flow is therefore defined rection n = (n.,, n.), whereas, if it is pointing in di-
by the scalar product of the optical flow vector and rection (-n,, -ny), its orientation will be said to be
the unit vector (ni, n.) in the gradient direction. The negative (see Figure 3).
flow vector can be decomposed into its translational Next we evaluate the translational components
and rotational components and the right hand side of the normal flow vectors in the chosen direction.
of equation (5) can be written as a sum of scalar The normal flow vector ch onetproducts: The value 4, of any translational vector component

at point (z, y) in direction (n., n.) is given by
U,= ((-o + xf), (-y0 + yf))(n., ny)+

(WE - WL + f) + 'yp),(W ! + f)- t, = ((X ,Y- o )T)

09LJI - Yz-)(n. , n.) -

(7) Since - is positive when the observer is ap-

Our goal is to achieve a separation between trans- proaching tre scene, a classification into positive and

lation and rotation. Therefore we classify the normal negative values independent of the distance from the
flow vectors according to their direction by defining image plane is possible. The translational compo-two classes which are motivated by the concepts of nents of the coaxis vectors (A, B, C) are separated
the rotation axis and the FOE. by a second order curve h(A, B, C, z0 , yo; z, y) given

by

Any possible axis given by an orientation vec- h(A, B, C, zo0,y, ;, ,y) =
tor (A, B, C), where A, + B 2 + C 2 = 1, defines an z 2(Cf + Byo) + y2(Cf + Azo) - zy Ayo + Bro)
infinite class of cones with axis (A, B, C) and apex -zf(Af + Cx0) - yf(Bf + Cyo) + f (Axo + Byo)
at the origin. The image plane gives rise to a set 0.
of conic sections, hereafter called vector field lines,
or field lines of the axis (A, B, C), or just (A, B, C) (8)
field lines. It is worth noting that the (A, B, C) field When h(z, y) > 0 the translational normal flow
lines are the lines along which the image points would values are positive; when h(z, y) < 0 they are neg-
move if the observer rotated around axis (A,B,C). ative; and when h(x, y) = 0 they have value zero.
Normal flow vectors are combined into a single class For any selected class of coaxis vectors there exists a
if they are perpendicular to the vector field lines of curve h which is uniquely defined by the two coordi-
the same axis (A, B, C). At a point (z, y) the orienta- nates x0, y0 of the FOE; furthermore it is linear in
tion perpendicular to the vector field lines (A, B, C) zo and Yo (see Figure 4a).

is given by a vector N = (N., Ny): The rotational components of the flow vectors

(N., Ny) = ((-A(y2 + f2) + Bzy + Crf), are defined only by the three rotational parameters
(Azy - B(X2 + f 2 ) + Cyf)) et, / and y. Along the positive direction of the coaxis

vectors the value rI, of the rotational components isand the unit vector il = (ni,,nvi) denoting the gra-

dient is thus ii = -1- We call the vectors of the r, = ((W. -• •,32 +1) + 7I),
class corresponding to the axis (A, B, C) the coaxis (a('2 + f) - _ -y)(n., n.)
vectors (A, B, C). In order to establish conventions
about the vectors' orientations, a vector will be said The coaxis vectors (A, B, C) and the rotational flow

vectors form a right angle for all points on a straight
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line. Thus, considering only the sign of the rota-
tional component along the coaxis vectors (A, B, C),
the image plane is separated by a straight line
g(A, B, C, o,,#, 7) into two halves containing values
of opposite sign, where

g(A, B, C, c, ,, o, y) = y(aC - -'A) - z(,OC - 7 B)+
3A~f - aB f =0

(9)
Again the sign of g(z, y) at a point (x, y) determines
the sign of the coaxis vectors (A, B, C). The straight
line is defined by only two parameters which char- (a)
acterize the axis of rotation, namely • and • (see
Figure 4b).

In order to investigate the constraints for general
motion the geometrical relations due to rotation and ...

due to translation have to be combined. A second
order curve separating the plane into positive and
negative values and a line separating the plane into
two halfplanes of opposite sign intersect. This splits
the plane into areas of only positive coaxis vectors,
areas of only negative vectors, and areas in which
the rotational and translational flow have opposite (b)
signs. In these last areas, no information is derivable
without making depth assumptions (Figure 4c).

We thus obtain the following geometrical result
for the case of general motion. Any class of coaxis
vectors (A, B, C) is separated by a rigid motion into
two groups. The FOE (zo,yo) and the rotation axis
(•,, •)geometrically define two areas in the plane,
one containing positive and one containing negative
values. We call this structure on the coaxis vectors
the coaxis pattern. It depends on the four parameters
zo, yo, A and 1. (c)

For the second kind of classification of the normal Figure 4: (a) The coaxis vectors (A, B,C) due toflowvetorsnamely the secodk nd o ficatoned of tpeno l translation are negative if they lie within a second
flow vectors, namely the one defined as "perpendicu- order curve defined by the FOE, and are positive atlar to the lines emanating from a defined point" (see all other locations. (b) The coaxis vectors due to

Figure 5), similar patterns are obtained. In this case, rotation separate the image plane into a halfplane

the rotational components are separated by a second otativepvate the a plane o a halues.
order curve into positive and negative values and the of positive values and a halfplane of negative values.
translational components are separated by a straight (c) A general rigid motion defines an area of positive
line. We call the vectors perpendicular to straight coaxis vectors and an area of negative coaxis vectors.
lines passing through a point (r, s) the copoint vec- The rest of the image plane is not considered.

tors (r, s). 2

At point (z, y) a copoint vector 6 of unit length

in the positive direction is defined as

(-y+ s,z - r)
S= - r)2 + (y - s)2

The functions which define the curves are given as fol-
lows: The straight line k(r, s, zo, yo, z, y) separating

2The copoint and coaxis vectors are dual to each other.

Figure 5: Positive copoint vectors (r, s).

633



the translational components is show how to tackle the problem. Clearly, such a re-
stricted use of of data will generally not result in a

k(r,s,zo, y0;zy) = - r) - x(yo -8)- Z0 s unique solution, but it allows us to either reduce the
-r 0 dimensionality of the problem (algorithm 1) or to em-

(10) ploy motion vectors from all parts of the image plane
and the second order curve 1(r, s, a,P3, 7; z, y) (algorithm 2).
separating the rotational components is (like
h(A, B, C, zo, yo, x, y)) defined as Algorithm 1.1 : a-, f3-, and 7-pattern fitting

1(r, s, a,)3, y, x, y) = -z 2 (13s + -if) - y2(ar + yf)+ One way to look at the optical flow vector is to
+xy(as + Or) + zf(of + 7r) imagine it as a sum of five vectors, each being due
+yf (3f + 7s) - f 2 (ar - 3s) = 0 to only one of the motion parameters (either one of

(11) the two translational or one of the three rotational
components). Consequently the value of the normal

The superposition of translational and rotational flow vector at a point is computed as the sum of the
values again defines patterns in the plane which con- five scalar products of these vectors and the unit vec-
sist of a negative and a positive area. These patterns, tor in the gradient direction. The scalar product of
called copoint patterns, are defined by the same four two vectors is zero if the vectors are perpendicular to
parameters which characterize the coaxis patterns, each other. Thus, by selecting normal flow vectors

in particular directions, one or more of the motion

4. Search for motion patterns components vanish.

The coaxis vectors which are dependent on only
Utilizing the geometrical constraints developed in the two of the three rotational parameters correspond to
last section, motion estimation for a rigid moving ob- one of the three coordinate axes. These normal vec-
server will now be addressed through a search tech- tors and their patterns have special properties.
nique. The strategy involves checking constraints
that a certain solution would impose on the normal The coaxis vectors (A, B, C) when the orienta-
flow field and in this way discarding impossible solu- tion vector (A, B, C) is the Z axis are perpendicu-
tions. The search is performed in three steps, where lar to circles whose center is the origin of the image
at each step the constraints become more restrictive; plane, and we call them 7-vectors. Similarly, when
hence the number of possible solutions computed at (A, B, C) is the X or Y axis, the (A, B, C) coaxis
each step decreases. First a set S, of possible solu- vectors are called a-vectors and #-vectors and the
tions for the FOE and axis of rotation is estimated corresponding field lines are hyperbolas whose major
by fitting a small number of patterns to the nor- axes are the image plane's z- and y-axes, respectively.
mal flow field. Two techniques, which use different Figure 6 depicts these sets of vector field lines and the
patterns defined on certain coaxis vectors, are pro- corresponding 7-, a- and 3-vectors in positive orien-
posed for solving this task. Both fitting processes tation.
use the input in a qualitative way, since only the sign The values of the a-, ft, and y- vectors due to
of the normal flow is employed. In the second step rotation only can be described by a one-parameter
the third rotational parameter is computed, and the function. Thus the dimensionality of the correspond-
space of solutions is further narrowed to a set S2. ingterns is theducedoby of the sorrespor
This is performed by using normal flow vectors that ing patterns is also reduced by one and the search for
do not contain translation (certain copoint vectors) these patterns can be limited to a three-dimensionaland thus approximating the remaining rotational pa- parameter-space. This becomes clear by substituting
rameter from the given rotational vectors. Finally, into equation (9) for the triple (A, B, C) the orienta-in the last step all impossible solutions are discarded tion vectors of the coordinate axes ((1,0, 0), (0, 1,0)in he astste al imossblesoltios ae dscaded and (0, 0, 1)). The rotational components of the "-fby checking the validity of the m otion param eters at ve t r a e s p r t d by a l n p s i g th o h t eever pontwhih rsuls ina st 5 asoutut.vectors are separated by a line passing through theevery p o in t, w h ich resu lts in a set S 3 as o u tp u t. c n e , w i h h s e u t o z o h o acenter, which has equation y -- •z. For the rota-

tional components of the a-vectors the line is parallel
4.1. First step: Pattern fitting to the x-axis and is defined by the equation z - •f.

The 13-vectors are separated by a line parallel to the
The direction of translation and the axis of rotation y-axis defined as x = •f.
define patterns on subsets of the normal flow vectors.
In the general case these patterns are described by The second order curves separating the transla-
four independent variables and searching for the solu- tional components of the a-, f3-, and y-vectors are ob-
tion would mean searching in a four-dimensional pa- tained from equation (8). For the -7-vectors the curve
rameter space. By concentrating, in an initial search, reduces to a circle, which has the FOE and the image
only on a small number of normal flow vectors, we
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(C) (C)
Figure 7: a-, fl-, and -y- patterns for a general rigid

Figure 6: If the (A,B,C) axis is the Z-, X-, or Y- motion.
axis, the corresponding vector field lines are circles
with center 0 (a), or hyperbolas whose axes coincide three successfully fitted patterns. Therefore the three
with the coordinate axes of the image plane (b and subspaces' patterns are combined and the parameter
c). Normal flow vectors perpendicular to these field quadruples which define possible solutions are deter-
lines are called y-, a-, and #-vectors. mined. Since only subsets of the normal flow values

are considered in the fitting process, the fitting alone
center as two diametrically opposite points. Equation does not uniquely define the motion, but just con-

stitutes a necessary condition. Usually there will bea number of parameter quadruples {zo, yo, a/-y, #/,y}

h(O, 0,1 , zo, Yo, ; z, y) = that are selected as candidate solutions through pat-
f(z - )2 + f(y _ 11)2 _ (L)2 + (SEIL)2 = 0 tern fitting.

The range of values for the coordinates of theThe curves separating the a- and /-vectors be- FOE and for and A is [-oo, +oo]. To cope with
come hyperbolas of the form all possible cases a coordinate transformation on the

h(1,0,0, z0,y,;z,y) = y 2 zo-zyyo-zf 2 +fazo-= 0 sphere is performed, in which case the coordinates
and are expressed by two angles.

Algorithm 1.2: Search for the rotation axish(0, 1,0, zo, ,o, ;z, y) = z2 yo - zyzo - y12 +f 2yo = 0
For any rigid motion there exists one class of

coaxis vectors which does not contain any rotationalFigure 7 shows the a-, in-, and 7-vectors for a components. This set is defined by the actual ro-
general rigid motion. tation axis A = • and B = The coaxis vec-

The algorithm which computes the FOE and the tors of this kind are due only to translation and the
axis of rotation from a given normal flow field by us- pattern of these vectors is solely defined by the two-
ing only the a-, #- and -7-vectors works as follows, parameter second order curve h(a, 0, f, zo, Yo; z, y).
With each subset of normal flow vectors is associated There is only one curve separating the positive from
a three-dimensional parameter space that spans the the negative values and thus the pattern is defined on
possible locations of the FOE and of a line defined the whole image plane. Since h(at, P, -y, zo, yo; z, y) is
by the quotient of two of the three rotational param- linear in zo and Yo the problem of finding the FOE
eters. A search in the three-dimensional subspaces from the normal vectors due to rotation reduces to es-
is accomplished by checking the patterns which the timating the linear discriminant function separating
subspaces' parameter triples define for selected values two classes (labeled positive and negative) of values.
of the normal flow field. The ar-patterns are fitted to
the a-vectors, which provides possible solutions for The pattern is due only to two parameters. In
the coordinates of the FOE: Zo, Yo, and the quotient order to find the axis of rotation a search in the
P. Similarly, the fitting of the #- or 7f-patterns results two-dimensional parameter space of 7and . is per-
in s n fformed. For every possible rotation axis the data isin solutions for Z0, y0, and , or ¥. The objective is to checked for linear discrimination. If a second order
find the four parameters defining the directions of the curve can be found that separates the positive from
translational and rotational axes which give rise to
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an equation of the form

+ +

(12)

Since the chosen normal flow vectors are due only
to rotation, the solution to the overdetermined sys-
tem gives the y value. In a practical application a
threshold has to be chosen to discriminate between

Figure 8: Normal flow vectors perpendicular to lines possible and impossible solutions. The value of the
passing through the FOE are due only to rotation. residual is used to confirm the presumption that the

selected normal flow values are purely rotational.
Usually "detranslation" will not result in only one

the negative values the quadruple (z0, y0, ., ,,) will solution, but will provide a set S2 of possible param-
be added to the set of possible solutions. eter quintuples.

Concerning the computational aspect of solving
the discrimination problem, different algorithms from 4.3. Third step: Derotation
the pattern recognition literature can be applied. For
example, the Ho-Kashyap algorithm decides whether The modules described so far considered only sub-
a data set is linearly discriminable and will also find sets of the normal flow vectors. Clearly, after having
the best discrimination. found possible solutions for the FOE and the axis

of rotation, we can test every candidate solution for

4.2. Second step: Detranslation its correctness on any class of coaxis vectors. Since
the quadruple (z0, yo, A, P) defines a pattern on ev-

Proper selection of normal flow vectors also enables ery class of coaxis vectors, we just have to test for

the elimination of the normal flow's translational the existence of this pattern. However, a pattern in

components. This can be achieved by choosing as the general case is defined only on parts of the image

normal flow vectors the copoint vectors defined by plane. Thus even by testing every possible class of

the locus of the FOE. With the location of the FOE coaxis vectors not every normal flow vector will be

the directions of the translational motion components tested.

are defined. The optical flow vectors lie on lines pass- In order to eliminate all motion parameters which
ing through the FOE. The normal flow vectors per- are in contradiction to the given normal flow field, ev-
pendicular to these lines (the copoint vectors (r, 0), ery normal flow vector has to be checked. This check
where r = xo and a = yo), do not contain transla- is performed by a "derotation" technique. With ev-
tional, but only rotational components. This can be ery parameter quintuple computed in the second step
seen from equation (5). If the selected gradient direc- a possible FOE and a rotation are defined. The three
tion at a point (z, y) is ((yo - y), (-zo + i)) the scalar rotational parameters are used to derotate the nor-
product of the translational motion component and a mal flow vectors by subtracting the rotational corn-
vector in the gradient direction is zero. This method ponent (urotvrot) At every point the flow vector
of eliminating the translational component, referred
to below as "detranslation", is applied to compute (uder, vder) is computed:

the third rotational component and to further reduce Uder = unnz - Urotn,
the possible number of solutions. (13)Vder = tinhi - Vrot n (13

For each of the possible solutions computed in
the second module, the normal flow vectors perpen- If the parameter quintuple defines the correct so-
dicular to the lines passing through the FOE have lution, the remaining normal flow is purely transla-
to be tested to see if they are only due to rotation tional. Thus, it has to have the property of an em-
(see Figure 8). This results in solving an overdeter- anating motion field. Since the direction of optical
mined system of linear equations. Since two of the flow for a given FOE is known, the possible direc-
rotational parameters are already computed, there is tions of the normal flow vectors can be determined.
only one unknown, the value 7f. Every point supplies The normal flow vector at every point must lie in a

half plane (see Figure 9). The technique checks all
points for this property and eliminates solutions that
cannot give rise to the given normal flow field.
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4.4. The complete technique
.. . . .. . . .. . . ......... .1f1l

In this section we give a summary of the complete ......---- ''Ii

technique in the form of a block diagram. The com- "- .......... •
putation of an observer's egomotion is performed in
three steps, where for the first step two alternative Optical flow field
modules can be chosen. The sets of candidate solu-
tions which are determined in the four modules are Figure 10: Flow fields of synthetic data.
called S1 , S2, S3 . To denote single solutions or single
parameters, subscripts are used: Sl,i, S2,,, Z0,i, yo,i,
etc. The input to the algorithm is a normal flow field step no quantitative use of values is made, since only
and the outputs are all possible solutions for the di- the sign of the normal flow is considered. This lim-
rection of translation and the rotation which can give ited use of data makes the module very robust, and
rise to this normal flow field. the correct solution for the axes of translation and

rotation will be found even in the presence of high
The algorithm determines the complete set of so- amounts of noise (up to 100%).

lutions. If for a giken normal flow field the algorithm
finds more than one solution, then from the normal The NASA-Ames sequence3 was used as a real
flow field alone the 3-D motion cannot be determined data set. In this sequence the camera undergoes only
uniquely. In this case one may use matching of promi- translational motion; we added different amounts of
nent features to eliminate the incorrect motion pa- rotation. For all points at which the translational
rameters. motion can be found, the rotational normal flow is

computed and the new position of each pixel is eval-
uated. The "rotated" image is then generated by

5. Experiments computing the new greyvalues through bilinear inter-
polation. The images were convolved with a Gaussian

Several experiments have been performed on syn- of kernel size 5 x 5 and standard deviation a = 1.4.

thetic and real data. For different 3-D motion pa- The normal flow was computed by using 3 x 3 large
rameters normal flow fields were generated, where the Sobel operators to estimate the spatial derivatives in
depth value within an interval and the gradient di- the x- and y-directions and by subtracting the 3 x 3
rection were chosen randomly. In all experiments on box-filtered values of consecutive images to estimate
noiseless data the correct solution was found as the the temporal derivatives.
best one. Figure 10 shows the optical flow field and When adding rotational normal flow of magni-
the normal flow field for one of the generated data tude on the order of a third to three times the amount
sets. The image size is 100 x 100, the focal length is of translational flow, the exact solution was always
150, the image coordinates of the FOE are (-5, +30) found among the best fitted parameter sets. In Fig-
and the relationship between the rotational compo- ure 12 the computed normal flow vectors and the fit-
nents is a : f : 7 = 10 : 11 : 150. In Figure I Ithe ting of the o-, pt-, and 7m-vectors for one of the "ro-
fitting of the circle and the hyperbolas to the oa-, f-, tated" images is shown. Areas of negative normal
and 7-vectors and the coaxis pattern(g, 1) is dis- flow vectors are marked by horizontal lines and ar-
played. Points with positive normal flow values are eas of positive values by vertical lines. The ground
displayed in a light gray level and points with nega-
tive values are dark. In the two modules of the first 3This is a calibrated motion sequence made public for

the Workshop on Visual Motion, 1991.
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Normal flow field
I I

Search for rotation axis:
a-, 6-, y-pattern matching: For every possible direction (all
Select a-, 8-, and y- vectors and A) check whether the class of
Fit a-patterns to a-vectors, j8-patterns toa-vetors an 'v-attens o 'yvectrs.coaxis vectors (A, B, C) could be due only to#-vectors, an d -y-p atterns to "t-vectors. t a s ai n fy s h nt ep st v
Find solutions for the direction of translation translation. If yes, then the positive
and axis of rotation that give rise to and negative coauis vectors are linearly

successfully fitted a-, 8-, and y-patterns. separable and finding the separating

I curve provides the coordinates of the FOE.

S1 (set of quadruples {zo, P , )) I

Detranslation:
For every S2,1 select the copoint vectors defined by z0,,, V0,,
Check if the system of linear equations is consisient with rotation
and compute the third rotational component.

S2 (set of quintuples { Zo, go, a, 6, /))

Complete derotation:

repeat until S2 is empty
For every $3,, derotate by (A,, B,, C,).
If all derotated normal flow vectors lie within the allowed halfplane
defined by { zo,,, 10,. ) keep the quintuple as a solution
S3 = S3 U S2,.
S2 = S2 - S2,.

S3 (set of quintuple(s) "o, V0, a, 0, Y))
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Figure 11: (a),(b),(c): Positive and negative ct-, 83-,
and 7f-vectors of synthetic data. (d),(e),(f): Fitting Figure 12: Natural scene: Normal flow field and fit-
of or-, fl-, and 7y-patterns. (g): Separation of coaxis ting of a-, 63-, and 7y-vectors.
pattern * *, .
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Abstract calibration of the camera system.

This paper presents a feature based approach Optical flow and feature-based methods are two jor
to estimating the kinematics of a moving cam- paradigms for motion analysis. Methods that are based
era (or cameras) and the structure of the ob- on the computation of spatial and temporal image gra-
jects in a stationary environment using long, dients can be broadly classified as optical flow methods
noisy, monocular and binocular image se- [1]-[4]. The optical flow is by definition the apparent
quences. Both batch and recursive algorithms movement of the brightness patterns in the image. It
are discussed. The image plane coordinates is assumed in the previously cited literature to be iden-
of the feature points in each frame are first tical to the motion field (the true 2-D velocity field of
detected and then matched over the frames. each image point), but this is seldom the case. Further-
These noisy image coordinates serve as inputs more the aperture problem states that only the compo-
to our algorithms. Due to the nonlinear na- nent of the optical flow in the direction of the brightness
ture of perspective projection, a nonlinear least gradient-commonly referred to as the normal flow-
squares method is formulated for the batch al- can be determined. In order to compute the full optical
gorithm, and a conjugate gradient method is flow, further arbitrary constraints must be introduced.
then applied to find the solution. A recursive Finally, the estimation of brightness derivatives is unsta-
method using an Iterated Extended Kalman ble and sensitive to image noise. These limitations have
Filter (IEKF) for incremental estimation of mo- resulted in alternative uses of image brightness deriva-
tion and structure is also presented. Since tives to obtain qualitative environmental information [5],
the plant model is linear in our formulation, or in direct estimation methods [6], or in methods mak-
closed form solutions for the state and covari- ing exclusive use of normal flow information [7]. The
ance transition equations are directly derived, feature-based approach uses discrete image features such
Experimental results for several real image se- as points, lines, or contours as input to the estimation
quences are included, process. The most critical problem for this method is the

so called correspondence problem: image features must
be extracted and matched over the frames both tempo-

1 Introduction rally and spatially (in the case of stereoscopic vision).
Visual motion analysis from image sequences is one of Another problem is the nonlinearity of the equations in-
the mostionallnngingsareom inmthe fiequee of com ter v- volved in the algorithm due to the perspective projectionthe most challenging areas in the field of computer vi- moe.Ithsperweakafaue-sdapoc.

sion. The goal here is to exploit useful 2-D informa- model. In this paper, we take a feature-based approach.
tion from images to infer 3-D information about camera Much of the early work on feature-based motion anal-
motion and scene structure. Apart from its relevance ysis is focused on two- or three-frame problems [8]-[13].
to the understanding of the human visual system, mo- The goal is to determine the transformation between se-
tion analysis has many applications in the areas of target lected feature points observed at two (or three) succes-
tracking, passive navigation, mobile robotics, missile and sive time instants. The resulting equations are usually
autonomous vehicle guidance, and space and underwater nonlinear; they are then made linear by increasing the
exploration. The task at hand is to design and analyze dimensionality of the parameter space. The advantage
algorithms for recovering 3-D information from 2-D im- of this approach is that it does not assume an arbitrary
age frames. Many approaches have been advanced by kinematic motion model for the objects being imaged
various researchers in the last two decades to address and that conditions for the uniqueness of the parame-
this problem. While the difficulties involved are now ters to be estimated can be found. The drawback of this
better understood, experimental results have had mixed method is its sensitivity to the presence of noise [14]-[16].
success. By its very nature this problem is ill-posed and, Also, because the rotation center is implicitly forced to
as will be discussed later, the bulk of the approaches in- be at the origin of the world coordinate system, the mo-
vestigated have proven to be very sensitive to even mod- tion parameters computed from every image pair will be
erate levels of error in the image information and in the different, which makes it impossible to predict the pose

641



of the camera or of objects at later time instants. It corporated it into their algorithm for stereo image se-
has been shown that increasing the number of feature quences.
points only moderately improves the motion-structure
estimates. 3 Outline

On the other hand, long-frame based methods can
fully utilize the image information and are more robust For the motion-structure estimation problem, given the
to noise. Approaches in this category usually involve perspective projection image model that we use, a non-
making an assumption about the nature of the motion linear least squares method is used in the batch algo-
model. This requires a certain degree of smoothness in rithms and an IEKF is used in the recursive algorithms.
the motion of the imaged objects. The difficulties in- The case of a moving camera and stationary scene, us-
volved in this method are related to the correspondence ing either monocular or binocular image sequences, is
problem mentioned earlier and the nonlinearity of the considered. Our approach is to model the motion of
dynamic and observation equations. Thus, methods such the camera(s) as a constant translational and rotational
as least squares estimation or nonlinear filtering are of- motion using nine motion parameters, namely the 3-D
ten adopted to solve these problems. vectors of the position of the rotation center and its lin-

ear and angular velocities. The structure parameters are
2 Literature Review the 3-D coordinates of the salient feature points in the

inertial coordinate system.
The following is a brief partial review of relevant liter- The justification for choosing this motion model is the
ature; due to space limitations, many other significant smoothness of the object motion. As long as the sam-
pieces of related work are not mentioned here. pling rate is high enough, the object motion can be ap-

In [17, 18], Gennery used a Kalman-like recursive fil- proximated over a short period of time using only a first
ter for the tracking of a known 3-D object using line fea- order motion model; deviations from this model can be
tures. Weng et al. [19] introduced a long-frame object treated as noise which can be taken care of later by the
motion algorithm based on a Locally Constant Angular recursive (tracking) filter. A standard rotation matrix is
Momentum (LCAM) model. Matthies and Shafer [20] used to describe the rotational motion rather than the
proposed a Kalman filter based method of navigating a quaternion representation used earlier. Under these con-
robot using stereo image sequences. Important work on ditions, linear plant models can be obtained and closed
outdoor vehicle navigation was done by Dickmanns and form solutions for the state and covariance transition dif-
Graefe [21, 22]. ferential equations can be directly derived without the

Shariat and Price studied the use of more than two need for a time-consuming numerical integration step.
frames for motion analysis assuming that the motion To handle the correspondence problem, the Gabor
is approximately constant [23]. In [24], Tomasi and wavelet method is used to extract salient feature points
Kanade used the singular value decomposition (SVD) from each image [31], and matching and tracking of these
technique to factor a matrix of image measurements into points are performed using the method originally pro-
two matrices that represent shape and motion, respec- posed in [32]. These image correspondences are then
tively. Zhang and Faugeras [25] developed a method of used as inputs to our algorithms. The noise in the
simultaneously performing motion estimation and object data includes quantization error, detection error, sys-
segmentation from a long stereo image sequence using tem (camera) parameter error, etc. Due to the motion
3-D line segments as features (tokens) and using an Ex- of the camera(s), some feature points may be outside
tended Kalman filter (EKF) for motion tracking. the image or temporarily occluded by other objects in

In [26], Broida and Chellappa proposed a Kalman the scene in some image frames; this is known as the oc-
filter-based recursive algorithm for estimating, from a clusion problem. In our batch algorithms this problem
long, noisy, monocular image sequence, the motion and is handled by omitting the measurements of the miasing
structure of a 2-D object undergoing 2-D motion. This points in the least squares criterion functions. Similarly,
work was extended to 3-D objects and more general kine- in the recursive algorithms we incorporate only the mea-
matic models in (27], where a batch estimation scheme surements obtained from the unoccluded points into the
was also presented. Broida et al. also used the Iter- measurement equations.
ated Extended Kalman Filter (IEKF) to effectively im- For binocular imagery, the traditional stereo triangu-
plement a recursive algorithm for 3-D motion and struc- lation method fails when the images from the two cam-
ture [28]. A batch algorithm was used to initialize the eras are not taken at the same time. For our binocular
recursive procedure. algorithm, however, since asynchronism is allowed, the

Chandrashekhar and Chellappa [29] developed a mov- two cameras can function independently.
ing camera algorithm for passive ranging using a monoc-
ular image sequence. Feature points were automatically 4 Monocular Imagery
extracted using Gabor wavelets, and the feature match-
ing process was interleaved with the recursive estimation The next two sections briefly explore the motion-
algorithm, which uses EKF, thereby reducing the search structure estimation problem for the case of a dynamic
time for finding matching points. In [30], Young and observer moving in a static environment. For detailed
Chellappa proposed a more general motion model which derivations and more experimental results, the interested
included constant precession and acceleration, and in- reader is refered to [33, 34].
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"-' Integrating Equation (2), we have

sho r.(t) = Im+ (t-to). (3)

-- "The six time-invariant components ofd and zb are called
"0, the translational motion parameters.

I w Let Wo be the constant angular velocity of the camera
0- lrelative to the inertial coordinate system I. The vector

SY Irepresentations of this quantity in C and I are the same
Sf because we have already assumed that C and I coincide

at time t = to. These three time-invariant components
of jo are the rotational motion parameters that we want

w-- -- to estimate.

," -as yeConsider another coordinate system C' whose origin is
.m. Yat d and which has the same directional vectors along the

z-, V- and z-axes as system C at all times. The camera is
rotating about the rotation center (whose location is d)

Figure 1: Monocular imaging and motion models of the with constant angular velocity to. If the ith feature point
moving camera. Pi has coordinates -ji in I, decomposition of rotation

and translation gives

4.1 Image Model s =i = (8lizYlIz)T

As shown in Figure 1, a camera is moving with respect to - r(t) + R (_., t - to). C,i(t) (4)
a fixed environment. A 3-D inertial (world) coordinate
system i is fixed on the ground, and the camera coor- Let us denote system C' at time t by C'(t); then at time
dinate system C is fixed on the camera with its z-axis t, vector ic'(to)i rotates to 4cP(t)i. Since vector sC'(to)i in
pointing along the optical axis. The focal length is f, C'(to) has the same coordinates as vector cqg(t)y in C'(t),
so the image plane is z = f in the C coordinate system, and the total angle rotated is IwI(t -to), the coordinates
Suppose that at time t the ith featu:e point Pi has 3-D of Fc,t)i in C'(to) can be shown to be
coordinates

.,(t) =- (sc.(t),sc,1(t),sc.(t))T  C¢'(s)i in C'(to) (5)

in coordinate system C. By the central projection model, = R0[•, , •T; Ii_.](t- to)] AC'a( t )
the coordinates on the image plane can be represented
as where R[n1, n2 , n3 ; 0] is the standard rotation matrix

X,(W f sCi: +nx.(t) which rotates a 3-D vector representation by the angle 0
J t = f + with respect to the unit directional vector (n 1 , n2 , n 3 )T.

sY) +L (1) Also, C'(t) is a shifted version of C(t), soY,(t) = ! + nit
sci t, Sjc,(t) = ici(t) - d_

where the n.'s are the additive noise variables.
The coordinate systems C and I are set to be coin- Using Equations (3) and (5), Equation (4) can be written

cident at time t = t o. As time proceeds, the system C as
starts to move with the camera and the system I is left
behind, fixed on the ground. The rotation center is as- - (sti ,
sumed to be fixed on the rotation axis in system C at all = r,(t) + R(to,t-to). [Ci(t) -d]
times. Let d be the coordinates of the rotation center in
C, and denote the trajectory of this center in I at time = d+(t-to)I+R(to,t-to). [(i(t)-d] (6)
t by :where

Since coordinate system C coincides with coordinate R(w(,t-to)=Ro[W, Wt7)
system I at t = to, we also have -I- It 1Ito1 ' 1

£t(to) = Rearranging Equation (6), we get

4.2 Motion Model (scz(t), 8Cp(t), SC,.(t))T (8)

Under the assumption of constant translational motion, = d+ R- (to, I - to). [_s/ - (t - to)j,]

the camera velocity _ can be expressed as where R-1 (m, t - to) = RT (m&, t - to) = R(Io,-(I - to)).

d In our algorithms, the three time-invariant compo-
.= -T, rt ) = 4r (2) nents of each 1i are called the structure parameters.
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4.3 Batch Formulation matrix R (and also of R- 1) with eigenvalue 1. This also

In this formulation, the unrecoverable global scaling fac- confirms the fact that any point along the rotation axis

tor is taken care of by normalizing the translational and can serve as the rotation center without affecting the

structure parameters by, say, the z-component of the image plane coordinates.

Mth feature point, SIMS. Then these normalized pa- 4.4 Recursive Formulation
rameters can be e as ISection 4.3, we set d, = 0; thus rjN(t) = (t-to) r'.N

d Nd NT

-- (d, ,d, d ) so that rj/(t) can be dropped out of the estimation pro-

T cem. The state vector N(t) chosen for the recursive( d d d algorithm thus consists of the following normalized mo-

- •M iMz S MS SIM tion and structure parameters:

NN ( N)T ( N ) N N•N • Vztif ,V. (9) N| -- ( rl. , Ilf Sims II/•" " S IMY'M)"

f . T Plant Equation
-- M, ' SI Under the assumption of constant translational and
N SMz NImz N angular velocity, the time derivatives of 4', Mo s•,

. ( .sI,,Shy )T Iz2, ... ,OM are all zero. Using this fact and Equa-

ST tion (2), we get the linear plant equation

= SIM' SIMS' SIMzS .N(t) - FN£N(t) (13)

In order to remove the redundant degree of freedom where FN is the sparse square matrix
caused by random shift of the rotation center, we set, F N= N F3- FN4 =; all other elements Fi• = 0}. (14)
say, d, = 0 in our algorithms. Using Equation (9), Equa-
tion (8) can be written as Measurement Equation

(scz(t), sc,,(t), sc1,(t))T (10) Let
--SIMz[dN.•.R-(.,_o)(N-• -(t) o)N)-= (r/z(t), r,(), (t •to)ji.)T

SiMs SiMz 81Ms /

Equation (1) thus becomes SIMS rf(, (t-I o)SM)T

X,()f = f + -° - (° + nx,() (11):Rl(.týto).[,_N-.-(--to),-N] Substituting this into Equation (11), we obtain the mea-
surement equation

+ ny,(+i) ')•e(t-) = A(KN(t,); t-] + V(Q) (1
Yit f a~ltt)[zN(_og• +T~i -nyNi~t);1,]-t N)i (15)

where R•- 1 is the Oth row vector of R- and d7 is set to where

zero in vector e - Xj, (t) / vxj,(t,)
The 3M + 7 unknown motion and structure parame- •, (ti) nyj, (ti)

ters for motion estimation from a sequence of monocular zNh(et+k) =+"kn on dt(ttuea e= "
images are chosen as I ( n (I

SN N N .N N )Ti 0 y

, ,M ,1 ,•. ,i (M ), ,•(i) Syj., (to)

The least squares estimate of the motion and structure and

parmetes 7 for Equation (11) is obtained by finding hN[£N(t,); t,]the minimum of the following cost function: NQ.)

'lxi(,,)- (,- o) r,,.+R2 ' (is:,-S.)-[,,-(,]miniNoN t E 1 N- ) ( RI(zJ,-,o).[LN --tNN(.•)

R,'(,t.-tO) I o)Nj I f,)-(,-o),,,+ ( ,-o). ,- ,]Xj 0 f-(12) f[L

3 j

If the answer obtained by our algorithm is d =
(d,,d,,0), then any vector I that has the form 4 =
d + ajw (where a is some constant) will also satisfy Equa- f ()
tion (8). This is because to is an eigenvector of rotation 1;'(J i.-f-) [T1L., -eN()t
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" " -in the left and right camera coordinate systems at time
t be ARc(t) and ILC(t), respectively. Suppose that the

w how two cameras are linked together; then the relative orien-
P Otation and the displacement vector between the cameras

% ,remain unchanged at all times. Thus, the transformation
I %% between these systems can be expressed as

aac(t) = - D
% ALc(to) = (18)

where D is the displacement vector from the origin of
the LC coordinate system to that of the RC system and

men is assumed to be known.
Suppose that at time t the ith feature point of the

scene, Pis, has 3-D coordinates tT
an -CM) (,c,.(0), SLC,,(t), ,Lc,,())T' and

Figure 2: Binocular imaging and motion models of the ARCi (t) (SltC,(t), 8)tC, 1'(t), SRCz(t))T

moving cameras. in the LC and RC systems, respectively. Then, by the
central projection model, the coordinates of the images
of Pi on the left and right image planes can be repre-

where il, j2 ... , j, are unoccluded feature points at sented as
time ti. Therefore, only unoccluded points are incorpo-
rated in the measurement equation (15). X" (t) = fi + nxls(t)

Since our plant model is linear, and matrix FN is 1 = + t
sparse, closed form solutions for the state and covari- '•idt) = LCJ Z +t)
ance transition equations can be derived directly without and
a numerical integration step. X'i(t) = IRCi(t)
State Transition Equation XA(t) (20)
i jN , 0, jv 2 ,...,OM are all constant in t under the L Yi(t) = j it+ flysit)

rigidity assumption and the model of constant transla- IRCis (t)
tional and angular velocities; this together with (3) gives where fl and f, are the focal lengths of the two cameras
the state transition equation and the n.'s are additive noise processes.

N] Similarly, the motion of the platform can be decom-
£N(t-+) = [I + (t-i - tt) FN] £N~t) (16) posed into a rotation about the rotation center and a

where I is the identity matrix, translation of this center. The rotation center is cho-
sen to be fixed on the platform and has coordinates _

Covariance Transition Equation in the LC coordinate system at all times. Denote the

By (14), we see that (FN)2 is a zero matrix. Direct sub- trajectory of the rotation center at time t in I by
stitution may then be used to verify that the covariance £r(t) =- (r,,(t), rl,(t), r.(t) )T

transition equation has the form Since systems I and LC coincide at time t = to, we have
ttFNT (7 = is(t) = d + (t - to) (21)

i+ T where S _' is the translational velocity.
I+ ( + I + (t4 1 - t+)FN]T.(17) Suppose the platform undergoes constant transla-

tional motion y as well as constant angular motion X
5 Binocular Imagery with respect to system I. Following the same procedure

5.1 Image and Motion Models as in the monocular case, the transformations betweenthe LC and RC7 systems and system I are found to be
As shown in Figure 2, the two cameras are installed on

a platform which is moving in a stationary environment. (LCi.(t), '.Ci,(t), SLCi.(t))T (22)
Two camera coordinate systems with the same orien- = d+ R- (i.&,t - to). [ig -d (t - to)k]
tation, LC and RC, are attached to the left and right and
cameras, respectively, with their z-axes coinciding with (snC,.(t), snC•(t),sRC.(t))T (23)
the optical axes of the cameras. A 3-D inertial coordi-
nate system I is chosen to be coincident with the left = + R-'(v,t- to). [ii,- d- (t- t0)v]
camera coordinate system at time t = to, without loss The three components of W are the rotational motion
of generality. As time proceeds, the platform moves and psrameters and the six components of d and £ are the
the inertial coordinate system is left behind, fixed on the transational motion parsmeters, while the three comn
ground. ponents of each i', are the structure parameters. Again,

Let a point have 3-D coordites gj in inertial coor- these components are all time-invariant under our model
dinate system I, and let itf' o,)r,-iOnate representations setup.
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5.2 Batch and Recursive Formulations
The 3M + 8 unknown motion and structure parameters
for motion estimation from a sequence of stereo images
are chosen as

S) ,... T

Using Equations (22) and (23), Equations (19) and (20)
become

x fi(t = .f,+"(. d -to). d,,-_-(t-to)s_] + nxii(t) (24)

Y11(t) = 1J R;'Oe,-to).[L,-t-Q--to)j] +nyai(t)

and

Xi(t) = f, do-D.+RZ'(Y-t.O).[L,,-(t--to) + xr() (a)

Y.,(t) = A- w -D.+Ri1- -to).[L,,-A-(,-to) I] + ny,(t)

where R7 1 is the jth row vector of R-I and d, is set to
zero in vector d.

The least squares estimate of the motion and structure
parameters V of Equation (24) is obtained by finding the
minimum orthe cost function, which has a similar form
to that in Equation (12).

In the recursive formulation, rj(t) is chosen as one
of the states instead of I, to account for the dynamic
property of the Kalman filter. Since d, is set to zero to fix
the rotation center, by (21) we have rr,(t) = (t-to) v,.
Thus if v, is included in the state vector, r, (t) is no
longer needed in the estimation process. Hence, the state
vector chosen for the recursive algorithm consists of the
following motion and structure parameters:

j(t) --- (rj.(t), tie(t),j ,..x ,s•j .. . s-, jm)T - (b)

Figure 3: Locations of the feature points in the firstThe plant, measurement, state and covariance transi- frame of each sequence: (a) the UMASS Rocket se-

tion equations can be derived similarly to their deriva- quence; (b) the NiARC suce.

tion for the monocular case. After these equations are

obtained, a standard IEKF can be used.
Detailed proofs of the uniqueness of the estimated pa- can only find the best matches at grid points; to oh-

rameters in the binocular case can be found in (33]. tain subpixel accuracy feature point correspondences, a
feature point in the current frame is first transformed to

6 Experimental Results the coordinates of the next frarre after the motion of the
camera has been computed using the image registration

This section describes real imagery experiments for both algorithm. The four grid points nearest to this feature
the monocular and binocular cases. For results on simu- point are found and their best grid point matches in the
lated imagery and additional real imagery experiments, next frame are located. An interpolation scheme is then
see [33]. applied to these four grid points to get the subpixel ac-

curacy correspondences. These correspondences serve as
6.1 Monocular Imagery the input to our algorithms. The detailed implementa-
Two real image sequences were tested. The inputs to tion of this point correspondence algorithm is described
our algorithms are the 2-D image coordinates of the in [32].
salient feature points detected using the algorithm pro- In our experiments, for comparison purposes, feature
posed in [32]. In this algorithm, the global image change points with 3-D ground truth are hand-picked in the first
due to unknown camera motion is first compensated by frame of the UMASS Rocket sequence. The point corre-
an image registration algorithm [35], which automati- spondence algorithm 132] is then used for the subsequent
cally detects feature points and estimates the rotation, frames. For the NASA sequence, feature points were au-
translation and scaling between two images. The feature tomatically detected and tracked in all the frames. The
points are then tracked over the image sequence using a locations of the feature points used for each sequence are
weighted cross-correlation match method. The method marked in Figure 3.
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The world coordinate system is set to be the first- structure error percentages are shown in Figure 5 (due
frame image coordinate system with the origin located to space limitations, only points I and 3 are shown).
at the center of the image plane. The z-axis points to the Since the camera was not calibrated in this experi-
right, the y-axis points upward, and by the right hand ment, we also tried to estimate the field of view of the
rule, the z-axis thus points out of the image plane. The camera as well as the center of the image. It was found
initial guesses of the parameters for the batch algorithm that the fields of view of the camera were very close to
are all 0.001. the given specification, but the center of the image was

estimated to be at (240,306) instead of the assumed lo-
6.1.1 UMASS Rocket Sequence .cation (256,270). This is because the original size of each

The 30-frame UMASS "Rocket" ALV sequence (36] is image is 512 x 484, and our location of the origin is at
used in this section; the first and the twenty-first images the lower left corner of a 512 x 512 image plane. The
are shown in Figure 4 (a) and (b). Eight feature points two poles in the far field were also tested, but since they
with known ground truth were used. Experiments with are close to the FOE and their depths are large, one-
the batch algorithm were based on four feature points, or two-pixel errors introduced by the feature detection
The computed motion and structure parameters and the algorithm can cause fairly large amounts of error in the
normalized structure ground truth of these points in the structure estimates.
first frame image coordinate system are shown in Ta-
bles I and 2. 6.1.2 NASA Sequence

A ten-frame NASA Helicopter (ARC) sequence, as
shown in Figure 4 (c) and (d), was also used. Since this

Table 1: Structure estimates for the UMASS Rocket se- sequence is too short to apply the recursive algorithm,
quence. only the batch algorithm was tested. Also, ground truth

1Feature1 Normalized structure Estimated information and camera calibration parameters were not
point ground truth structure available, so in running the batch algorithm, the field of

1 0.494 0.317 0.66 0.489 0.327 0.901 view was assumed to be 40 degrees and the optical center
Box 2 0.601 0.383 1.153 0.563 0.367 1.109
1-4 3 0.425 0.357 0.965 0.420 0.349 1.003 was assumed to coincide with the center of each image.

4 0.020 0.342 1.0 -0.001 0.351 1.0 The estimates of the structure and motion parameters
1 0.365 0.345 1.015 0.354 0.341 0.995

Con 2 0.433 0.433 1.394 0.457 0.456 1.456 are shown in Tables 3 and 4.
1-4 3 0.169 0.250 0.592 0.161 0.248 0.572

S 4 0.165 0.S41 1.0 0.162 0.347 1.0 Table 3: Structure estimates for the NASA Helicopter
sequence

Table 2: Motion parameter estimates for the UMASS Foint structure

Rocket sequence. eoinursruttma
Estieane d Estimd 1 0.036887 -0.045965 0.971495

rotational velocity translational velocity 2 -0.047572 -0.079270 1.071193
Cone 1 -0.00017 0.01027 0.00021 0.00253 -.0.0080 0.03347 3 -0.242800 -0.066243 1.002631
Box 1 0.00414 -0.00341 0.000131 0.01251 -0.00683 0.042161 4 -0.326975 -0.045814 1.0

From the image sequence, we see that there is almost
no rotational motion and the camera appears to be mov-
ing along a straight line going leftward and into the im- Table 4: Motion parameter estimates for the NASA He-
age plane. Thus the z-component of the translational licopter sequence
motion should be the lar,-est one, followed by the z- Estimated _ Estimated
component, and the y-con ponent should be very close rotational velocity translational veloity

to zero. (Recall that the depths of the feature points are r .0.0002 0.0194 -0.005-87 -0.0385 -0.0043 0.040ý5

all negative, so that after the normalization step, the z-
and z-components of the translational velocity should be
positive.) According to these observations, the transla- 6.2 Binocular Imagery
tional velocity computed in Table 2 for the box seems to The 10-frame "Forward" stereo image sequence is used
be accurate. in this section. The first and last image pairs are shown

In the recursive experiment, the set of four cone points in Figure 6 with the feature trajectories superimposed
in Table I was used. Because one of these points disap- on them. The inertial coordinate system is taken to be
pears after frame 6, one disappears after frame 10, and the first-frame left camera coordinate system with its
all the others are outside the image after frame 21, it origin located at (246.6, 225.6). The z-axis points to
was not possible to apply the normally used recursive the right, the y-axis points downward, and by the right
algorithm. Instead, the output from the six-frame batch hand rule, the z-axis thus points into the image. The dis-
algorithm was used as the initial guess, and the Kalman placement vector P is (1.0, 0, 0) inch, while the motion
filter runs from frame I to frame 21, acting like a non- of the platform is 0.2 inches/frame straight ahead (pure
causal smoother through the first six frames. Since mo- translation). Structure information was not available to
tion ground truth is not available, only the computed us.
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(a) (b)

(c) (d)

Figure 4: Image plane trajectories of feature points: (a), (b) first and 2 1't frames of the UMASS Rocket sequence;
(c), (d) first and last frames of the NASA sequence.
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Figure 5: Normalized structure error percentages for the UMASS Rocket sequence computed by the Kalman filter

(cone): (a) point 1; (b) point 3.
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(a) (b)

Rim

(c) (d)

Figure 6: Image plane trajectories of feature points (in circled areas) in the Forward sequence: (a) first frame of left
sequence, (b) last frame of left sequence, (c) first frame of right sequence, (d) last frame of right sequence.

Four feature points are used to test both the batch
and recursive algorithms; their locations are shown in Table 5: Structure and motion parameter estimates for
Figure 7. These feature points are first detected and the Forward sequence.
tracked over the frames of the left image sequence using Featurel Estimated Estimated

the method proposed in [32]. Then the first frame of point structure velocities
1 -4.414 0.527 22.338 Rotational (radians)the left sequence is registered with the first frame of the 2 -2.170 2.953 22.588 -0.0002 -0 0002 -0 0001

right sequence to find the corresponding feature points 3 -0.804 1.916 22.372 Translational
in these two frames [35]. The correspondences of the 4 4.168 0.542 26.788 0 0052 0.0009 0 1848

feature points in the first frames of the left and right se-
quences are shown in Figure 8. After the matching points
in the first frame of the right sequence are found, the 7 Conclusion
same tracking algorithm can be used for the right image Complete, automatic algorithms, starting from feature
sequence. The coordinates of these feature points then corplete s a ndmaielgo tion and fructure
serve as the input to our algorithms. The estimated mo- correspondences and yielding motion and structure esti-
tion and structure parameters using the 10-frame batch mates, are reported in this paper. Both the batch andmethd ae lstedin abl 5. he rro in he eloity recursive algorithms for motion and structure recovery
method are listed in Table 5. The error in the velocity are found to be robust in spite of different sources andalong the z-direction is around 8 percent. The outputs levels of noise. Our algorithms perform well even whento our recursive algorithm; the results for the estimated as few as four feature correspondences are used; this fact,velocity are shown in Figure 9. together with the ability to handle occlusion, makes itpossible to handle appearances and disappearances of

features as well as relatively short-span observations of
features, thus reducing the computational cost a&soci-
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Figure 9: Translational velocity for the Forward se-
quence computed by the Kalman filter. The even frame

Figure 7: Locations of feature point. in the tha frame numbers are for the right image sequence while the odd
of the left image sequence numbers are for the left image sequence.
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Recognition and Tracking of 3D Objects by 1D Search

Daniel F. DeMenthon
Computer Vision Laboratory, Center for Automation Research,

University of Maryland, College Park, MD 20742-3275

Abstract age coordinate terms. The advantage of this formulation
is that when initial estimates of these nonlinear terms are

We show that the bounded-error recognition made, tke uncertaimnt i these estimates can be modeled
problem for images of 3D objects using point as additional image uncertaimty. We obtain linear con-
features can be decomposed into ID search straints on two 4D vectors I and J proportional to the
tasks, along lines joining the origin of the object first and second rows of the homogeneous transformation
coordinate system to the feature points chosen matrix of the object. These linear constraints represent
to model the object. Points are constructed slabs of space which are perpendicular to feature vectors
along these lines at locations given by the co- (joining the origin of the object coordinate system to
ordinates of the detected image points; concur- the object feature points) at points that depend on the
rent bracketing of these points by segment tree image coordinates of these feature points. Regions of
search along each of these lines provides maxi- space where the largest numbers of slabs intersect corre-
mal matchings between feature points and im- spond to maximal matchings between object points and
age points. Depth of search is limited by pixel image points. To find these regions we adapt the binary
resolution. This method is well adapted to the tree search advocated by Breuel [3] for this type of prob-
task of tracking objects in the presence of vari- lem; in our formulation, the search can be decomposed
able occlusion and clutter, into ID searches by segment trees [9] along the feature

vectors. Simultaneous searches are performed for the
1 Introduction regions containing I and J, and are pruned by mutual

constraints resulting from the fact that I and J belong
The task considered here is model-based recognition and to slabs corresponding to the same image points. Other
tracking using point features to describe 3D objects. We pruning criteria use the fact that the first three compo-
formulate the problem using the techniques introduced nents of I and J define vectors which are perpendicular
by Baird [1] and extended by Cam [4], Breuel [2, 3], and equal in length. When an object is tracked, the non-
and others [7, 8]. The approach consists of matching linear terms of the equations can be evaluated from the
model features and image features to determine the pose pose results obtained for the previous image frame, and
of the object, while assuming that there are spurious the dimensions of the initial search space can be reduced
or missing image features, and uncertainties in detect- because the position and extent of this search space can
ing these features. The image features are assumed to be deduced from predictive techniques and bounds on
be located somewhere within bounded regions around admissible motions. This method accommodates the dis-
their detected locations; the problem posed with this appearance of features due to self-occlusion during the
uncertainty model is sometimes called the boanded-error object's motion.
recognition problem. Authors have mostly applied this
model to the matching of 2D images and the recognition 2 Notation
of flat objects. One of the major obstacles to the practi-
cal extension of past work to general non-planar objects In Figure 1, we show the classic pinhole camera model,
has been that the search in the general case has to be with its center of projection 0, its image plane at dis-
performed in an 8-dimensional transformation space [4]. tance f (the focal length) from 0, its axes O and Oy
The proposed method reduces this to ID search by seg- pointing along the rows and columns of the camera sen-
ment Irees along lines defined in the object model. sor, and its third axis Oz pointing along the optical axis.

We introduce new equations for expressing the rela- The unit vectors for these three axes are called i, j and
tionship between model points and image points in a k. In this paper, the focal length and the intersection of
perspective model of projection, generalizing a formu- the optical axis with the image plane (image center C)
lation introduced for iteratively computing object pose are assumed known.
(the POSIT algorithm; see Appendix and [5]). These An object with feature points M0, Ml,..., M,,..., M,
equations place the nonlinear terms of the transforma- is located in the field of view of the camera. The object
tion on the right hand side, in combination with the im- coordinate frame is (Mou, M0v, Mow). The coordinates
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z Mj in the second row vector, P 2, the coordinates j.,,.j,,j.

are the coordinates of a 3D vector j which is the secondV row vector of the rotation matrix; j is also the unit vector
N, for the y-axis of the camera coordinate system, expressed

in the object coordinate system (Mou, M0v, Mow). In
Sthe third row vector, P3 , the coordinates k,, k,, k. are

the coordinates of a 3D vector k which is the cross prod-
uct of i and j. In the following, we show how the vectors
SI = 1 -PI,J = 4-P2 can be computed. Once they are

Sobtained, T, is found by noticing that the first three co-
ordinates of I and J define 3D vectors R, and R 2 with
norms equal to fIT,. The completion of the object pose
matrix P is then straightforward (see step 3 in the Ap-
pendix).

OX 3 Fundamental Equations
Figure 1: Perspective projections rnj for object points The fundamental relations which relate the row vectors
Fi P1 , P2 of the pose matrix, the coordinates of the object

vectors MoMi in the object coordinate system, and the

coordinates zi and yi of the perspective images m, of Mi
(U,, V1, W,) of the points M, in this frame are known. are
The images of the points M, are called mi, and the in- MoMi I =
age coordinates (zi,,i) of each mi are known. In the MoMi .. J = yp, (2)
recognition problem, one of the goals is to be able to say
that mn4 is indeed the image of Mi, which is not obvious with
since the pose of the object is also unknown. In other I= LP, 3 - P2, (3)
words, the correspondences between the image points T. T.
and the object points have to be found. 4 1 zi(I + ci), & = yi(I + 6i), (4)

The rotation matrix R and translation vector T of the =
object in the camera coordinate system can be grouped and
into a single 4 x 4 transformation matrix which will be Ci = MoMi. Ps/T, - 1 (5)
called the pose matrix P in what follows: It is useful to introduce the unknown coordinates

i. i.,, T. (Xi,Y,,Zi) of vector MoMi in the camera coordinate
(1 . Tsystem for the sole purpose of demonstrating that these

Sk. k. k. T. (I) equations are correct. We remember that the dot prod-
0 0 0 1 uct MeMi . P 1 is the operation performed when multi-

plying the first row of the transformation matrix P by
To obtain the coordinates of an object point Mi in the the coordinates of an object point in the object frame
camera coordinate system using this pose matrix P in- of reference to obtain the z-coordinate Xi of Mi in the
stead of the more traditional rotation matrix and trans- camera coordinate system. Thus MoMi . P I = Xi. For
lation vector, one simply multiplies P by the coordinates the same reason, the dot product MoMi- P3 is equal to
of point M, or vector MoMi in the object coordinate Z,, thus (1 + ri) = ZI/T. . Also, in perspective pro-
system. This operation requires that point Mi or vector jection, the relation zi = fX,/Z, holds between image
MoM, be given a fourth coordinate (a fourth dimen- point coordinates and object point coordinates in the
sion) equal to 1. The four coordinates are said to be camera coordinate system. Using these expressions in
the homogeneous coordinates of the point or vector. In the equations above leads to identities, which proves the
the following, vectors and points are four-dimensional validity of the equations.
(4D) entities in this homogeneous space, unless other- Two problems must be addressed before applying
wise specified. these equations:

The first line of the matrix P is a row vector that we
call P1 . The other row vectors are called P 2, P3 and 1. The terms oP are generally unknown. These terms
P 4. The coordinates T.,,T,TT, 1, the fourth column of depend on Pa (Equation (5)), which can be co(e-
the matrix, are the coordinates of the translation vec- puted only after I ad J have been computed (Sec-
tor T (in Figure 1, the translation vector T is the vec-
tor OMO). In the first row vector, P1 , the coordinates 2. These equations can be used only after the corre-
i., i,, i, are the coordinates of a 3D vector, i, which is spondences between image points and object points
also the first row of the rotation matrix R of the trans- have been established. Only then can the correct
formation. Notice that i is also the unit vector for the values for the image coordinate z, be written on
z-axis of the camera coordinate system expressed in the the right hand side for a given vector MoMj on the
object coordinate system (Mou, Mov, Mow). Similarly, left hand side.
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Starting with the first problem of dealing with un- be viewed as geometric constraints on the vector I in
known ci, notice that z• = zi(l + ei) and 14 = yi(l + e,) space with respect to the feature vectors MoMi: If the
are the image coordinates of the object points Mi when foot of vector I coincides with M0, the head of I must
we use a scaled orthographic projection model. Indeed project on the feature line MoMi onto a point Hi, with
Zi = fXi/Zi can be written as zi = '+- .-Xi/T., and abscissa z'/IMoMi. Equivalently, the head of I must
we obtain z4 = fXi/T5 . In other words, image points belong to a plane perpendicular to MoMi at Hi (Fig-
(zý, yi) are obtained by "flattening" the object by ortho- ure 2). In the following, the points Hi are called z-
graphic projection of its points onto the plane z = T, points. They are points constructed on the feature lines
through M0 before performing a perspective projection. MoMi using the z-coordinates of the image points. Sim-
To obtain estimates for I and J, we first use zi and y, ilarly, the points Hi considered in constructing the vec-
instead of zý and 14 in Equations (2), thereby making tor J have abscissae 14/IMoMI and are called y-points.
errors ziei and yiei which are added to the estimates of In most situations, the terms zý = zi(l + ei) are
the image errors. Once estimates for I and J have been known only approximately. Bounds for the uncertain-
obtained, these estimates can be used to find more pre- ties in these terms can be computed by adding the im-
cise values of ei, which in turn lead to better estimates age error e and the error e' made in estimating ziei.
of I and J. The ci terms are the projections of the vectors MoMi

Regarding problem (2), in some computer vision ap- on the camera optical axis, divided by the distance T,
plications the correspondences can be obtained prior to from the camera to the point M0 along the camera op-
the pose information. For example, in calibration appli- tical axis (Equation (5)). Therefore an upper bound for
cations, the feature points may be the centroids of marks these terms is RID, where R is the radius of a sphere
that are easy to distinguish on the target calibration ob- centered at M0 containing the object and D is a lower
ject. Then Equations (2) can be solved iteratively by bound for the distance T,. Clearly, estimating tight up-
first making rough estimates of the ei's (setting them to per bounds for these errors is made easier if we have
zero when no information is available), solving the lin- some idea of the range in which the object is expected
ear systems for I and J, finding better estimates for ci, to be found. When the object is being tracked and an
and repeating the process. A least square object pose approximate pose for the object has been found from a
is generally found in a few iterations. The Appendix previous image, ri can be estimated from this previous
summarizes the steps of this algorithm, which was in- pose, and the uncertainty interval can be reduced and
troduced in a more geometrical form in [5]. The rest of centered around zi(I + Ei).
this paper addresses the more difficult situation where Because of these uncertainties, all we can say is that
the correspondences between image points and object the head of I projects onto the feature vector within
points cannot be obtained prior to the pose information, the uncertainty interval around an x-point H,,i. Equiva-

lently, the head of I must belong to a slab perpendicular
4 Geometric Constraints for the to MoMi at x-point Hi and with thickness defined by

Solutions I and J the uncertainty interval (Figure 2).
For I to be solution of a system of n Equations (2)

The following discussion shows that the solutions I and for i = 1,2,3,..., n, the head of vector I must belong
J are located within small polyhedral regions which can to the slab S11 defined at x-point H,1 on the feature
be identified with respect to the 4D homogeneous coor- vector MOM,, the slab S22 defined at H,,2 on MoM2,
dinate system of the object. etc. Therefore I must belong to the intersection of these

n slabs. A necessary condition for this to occur is that
there exists a region E in space contained in at least n
slabs S, (Figure 3).

IISimilarly, J must belong to the intersection of n slabs
mi Tii. A necessary condition for this to occur is that there

0 exist a region e in space contained in at least n slabs T7,
-_ Mi (Figure 3).

641, I / -- i Furthermore, the n slabs Sii that contain region E and
the n slabs 7i, that contain region 0 must be defined
by the same feature vectors MoMi and the same image
points mi. Therefore the n slabs Tii at the y-points Hi
computed from the same points mi which produced the
slabs S,, must intersect in a non-empty polyhedral region

Figure 2: Left: In the absence of uncertainties, the head E.
of vector I belongs to a plane orthogonal to the fea- As additional conditions, the solution vectors I and
ture vector MoMi at the z-point Hi located at abscissa J are constrained in relative amplitude and orientation;
z/J/MoMil. Right: Because of uncertainties in image the first three coordinates of I and J define two 3D vec-
detection and ci, the head of I lies in a 4D slab perpen- tors R, and R 2 . These vectors are proportional to i and
dicular to MoMi. j respectively, with the same coefficient of proportional-

ity f/IT.. Therefore R, and R 2 must be orthogonal and
Equations such as MoMi I = zý (Equation (2)) can have equal lengths. Therefore a pair of regions E and
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and 0 that contain the heads of vectors I and J. If
indeed at least no of the detected image points are images

M4 of object feature points, and if the bounds for the image
M3 and ci uncertainties are correct, there exists a pair of

regions (E, 6) such that E is contained in at least no
slabs, defined by x-points Hj, located on feature vectors

X X'3 MoMi and corresponding to image points min and such
that 0 in also contained in at least no slafs, defined
by y-points H,8 j located on feature vectors MoM8 and
corresponding to the same image points mi.

M 2  The method is based on eliminating pairs of regions
.Y2 of space which do not satisfy the geometric constraints

'defined in the previous section, proceeding from coarse
to fine regions by bisection of space. A region E' and a

I L. region (' cannot contain the heads of I and J if.

1. E' or W' is not intersected by no slabs (then no point
inside the region can be contained in no slabs).

Y,4 2. E' and W are not intersected by no slabs con-
Y MI structed from the same image points.

"3. The range of 3D distances from Mo to the points
of E' does not overlap the range of distances from

Figure 3: The head of I is found at the intersection of the Mo to the points of e'. (Hence the two regions
slabs corresponding to the z-coordinates z• (corrected cannot respectively contain heads of I and J at equal
by 1 + ei) of the feature points Mi. The vector J is distances from M0 ).
then found at the intersection of the slabs using the y-
coordinates £4 and the same correspondence. A further 4. The extrema of the 3D dot products of pairs of vec-

verification is obtained from the property that I and J tors with heads in each region have the same sign.

(or 3D vectors defined by the first three coordinates of I (Hence the two regions cannot respectively contain

and J in 4D) are perpendicular and have same lengths. heads of perpendicular vectors I and J).

There exists a pair of regions (E, 0) which cannot be
eliminated by the above criteria, and we can recognize

t can contain the heads of vectors I and J onIy if (1) and label in the image the no points that contributed
the range of 3D distances from M0 to the points of E to these regions. We find these regions by simultane-
overlaps the range of distances from M0 to the points of ously performing two recursive bisections of space. We
o, and (2) the extrema of the 3D dot products of pairs simultaneously explore two binary trees by depth-first
of vectors with heads in each region have opposite signs. search, pairing branches of the two trees and pruning

5 Finding Solution Regions With paired branches excluded by the above criteria.
To further verify the matching of the no points (and

Unknown Correspondences also to provide a more accurate pose matrix), we pro-

In the problem addressed here, the correspondences be- ceed as follows: The terms ci can now be computed
tween the N feature points and some of the n' detected from the pose matrix, using Equation (5). The terms
image points are not known. Given an object point M,, z = z,(1 + ,) and £ = y1(l + e) can then be com-
we do not know which image point among ml,m2,I]2 , puted, as well as reduced uncertainty intervals. These
etc., is the image of Mi. Furthermore, some points Mi corrected. coordinates and intervals define thinner slabs
may not have images, and some image points may not at slightly different locations which result in smaller re-
correspond to any of the object points. Let us assume gions E and e, less ambiguity between possible match-
for the moment that the number no of image points that ings, and a more accurate pose.
match the object points is known (finding this number
is the objective of the next section). 6 Finding the Best Regions

The best we can then do is to consider, for the N
feature points Mi, all the slabs defined by the n' detected The explanations so far have focused on finding regions E
image points. On each feature vector MoMi we can and 6 in the intersection of at least no slabs. We would
construct an x-point Hi, for each detected image point actually like to find regions contained in the intersection
mj, and consider the corresponding slab. Slabs obtained of the highest number of slabs, because this provides the
from a given feature vector MoMi are parallel, and slabs maximal number of matches between image points and
obtained from two different feature vectors intersect each object points. We start the search with no = n', the
other (object feature points Mi can be chosen so that the total number of image points detected. Usually, some
lines MoMi are well separated). image points have no matches, and the search quickly

The proposed method finds small regions of space E fails. We then decrement no until a search succeeds.
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7 Searching for Regions E and e become small enough to fit into the slabs; the elimina-

A binary tree search was advocated by Breuel for thi tion criteria use only the necessary (but not sufficient)

type of problem [3]. To search for a single region, say E, condition that a box be intersected by no slabs.
we start with a large box which is guaranteed to contain 7.2 Tests for Intersection of a Box With n
all the regions of interest, and recursively divide the box abest
into two child boxes. At depth 1, the plane used to divide
the box is perpendicular to the z-axis of the 4D space; at If a box does not intersect n slabs, no subdivision of
depth 2 the plaae is perpendicular to the y-axis, at depth this box will be contained in n slabs, and this branch of
3 to the z-axis, and at depth 4 to the k-axis. At depth the tree can be pruned [3]. This is one of the elimination
5 we are back to a division perpendicular to the z-axis, criteria defined above. The tests for containment and in-
and so on. Eventually, we have divided the space into tersection are simpler here than in Breuel's formulation.
boxes so small that at least one of them is contained in A box intersects n slabs if, for each of n feature vectors
the region E, in the intersection of no slabs. This process MoMi, the ID projection of the box on MoMi intersects
is illustrated in 2D in Figure 4. the uncertainty interval around an x-point He,,.

Instead of checking for intersections of intervals, we
augment the interval of the box projection on each side
by the amplitude of the uncertainty interval, and we

M M count the x-points contained in this interval. The uncer-
tainty intervals, and the lengths pdi of the projections
of a box at depth d on the feature vectors MoMi, are
precomputed (Figure 5).

MI

Figure 4: A search by bisection of space locates a box
contained in a region in the intersection of three slabs 24
(white box). Boxes which are not intersected by three 4
slabs are pruned (black box). Tests for intersections be- X

tween boxes and slabs are performed using box projec-
tions on the feature vectors.

Figure 5: The projection segment of a child box shares
one bound with the projection segment of its parent box.

7.1 Simultaneously Searching for Two Regions A binary search finds the other bound of this segment in
We start with an initial box A0 large enough to contain the sorted parent list of x-points. This position provides
the head of I and an initial box B0 large enough to con- the element count and the address for the child list.
tain the head of J (from Equations (2) and (3), one can
show that the coordinates of these vectors can be ex- The count of intersections between boxes and slabs is
pressed in pixels and are smaller than the largest image incremented by 1 for each feature vector when we find
point coordinates). Box A0 is divided into two boxes A, at least one x-point inside the (augmented) projection
and A2, and box B0 into two boxes BD and B2. The elimn- interval of the box. Thus we have to keep track of which
ination criteria of the previous section are then applied x-points are contained in the augmented projection in-
to the pair of boxes A, and B1 . If none of the criteria terval of the box. Having done this already for the parent
applies, the two boxes sre thý.-nselves divided, and the box, we know the list of x-points contained in the parent
process is repeated recursively. If any elimination crite- interval. Each child interval shares one bound with the
rion applies, another pair of boxes at the same depth, say parent interval. The other bound is inside the parent in-
Al and B2, is considered. If all four possible pairs are terval and must be located with respect to the x-points
eliminated, we backtrack to a pair which was not consid- (Figure 5). This is achieved by bisection of the parent
ered at the previous depth. If the previous depth is the list of x-points (the root list of x-points was sorted). The
root depth, the search has failed. The search succeeds location of this bound provides the element count for the
when two boxes of small predefined size (a few pixels, if new list. The list of x-points for the left child has the
the coordinates of I and J are expressed in pixels) survive same address as the parent list, whereas the list for the
the elimination criteria, and are contained in no corre- right child has an address offset by the position of its left
sponding slabs; this second test is added when the boxes bound in the parent list.
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7.3 Tests for Containment of a Box in a Region to slabs corresponding to the same image points. Other
We verify that a box at depth d is contained in no slabs pruning criteria use the fact that the first three compo-
by verifying that for each of at least no feature vec- nents of I and J define vectors which are perpendicular
tors MoMi, the ID projection of this box on MoMi is and equal in length. Most of the search is 1D search by
contained in the uncertainty interval around an x-point segment trees along the feature vectors.
H1 q.

The depth for which all the lengths pdi of the projec- Appendix: Iterative Pose Computation
tions of boxes at depth d on feature vectors MoMi are from Point Correspondences
smaller than the lengths ui of the uncertainty intervals
is also precomputed, and we start checking for contain- .,ere we summarize a simple iterative algorithm for find-
ment of the box projections in the uncertainty intervals ing the pose of an object when a matching between ob-
only when the tree search has reached this depth. In- ject feature points and image points is known. It is
stead of checking whether a projection is contained in an analytic formulation of the POSIT (Pose from Or-
an uncertainty interval around a point H,,,, we check thography and Scaling with ITerations) algorithm [5] in
whether there is a point Hij in the interval of length homogeneous form, which removes the need to locate

(ui - Pdi). the image of the origin M0 of the object coordinate sys-
tem. Note that this pose calculation is presented inde-

8 Tracking pendently of the search method described above, which
finds the matching and the pose by binary search of space

In a tracking task, we assume that the object has been when the matching is not known.
found in the previous image frame, and its pose has been The equations to be solved are Equations (2). The
estimated after finding acceptable vectors I and J (Sec- steps of the iterative pose algorithm can be summarized
tion 2). We perform the tracking in the 4D space where as follows:
the search for I and 3 takes place. First, the previ- 1. ci= best guess, or ci = 0 if no pose information is
ous pose allows us to compute estimates for the terms available
ci, and to take z = z,(1 + c,) and j4 = y,(l + c,) as
defining the positions of the x-points and y-points on 2. Start of loop: Solve for I and J in the following
the feature vectors. The error made by using ei from a systems (see next paragraph):
previous frame contributes to the uncertainty intervals MoMi .1 = x oM i, J Y!
around these points and can be computed from upper
bounds dO and dT on possible rotation angle and trans- with
lation increments between the two frames. Second, the = z (i1 + -), Y = Y,(I + c,)
vector I is transformed into I' = I + dA between the two 3. Rom I, get
frames, and the search for the head of I' can be limited R, = I, 1et
to a box centered around the head of I and of size larger R1 = (1i, 12, I3),
than JdIl, also depending on dO and dT. Predictive tech- f/T. = JRi 1,
niques can be used to predict F and the uncertainty on i = (T. /f)RI,
I' in order to further reduce the size of the initial search
box for I', and similarly for J'. P1 (T./f)I

Similar operations yield j and P 2 from J.
9 Summary 4. k = i x j, P3  = (k., k., k., T.), C, -

We have introduced new equations that express the rela- MoMK. P3/T, - 1
tionship between model points and image points in a per- 5. If all ci are close enough to the ci from the previous
spective model of projection, the nonlinear terms of the loop, EXIT, else go to step 2.
perspective transformation are placed on the right hand 6. P 1 , P 2, P3 , along with P4 = (0, 0, 0, 1), are the four
side in combination with the image coordinate terms. rows of the pose matrix.
The uncertainty in the estimates of these nonlinear terms
can be modeled as addit;onal image uncertainty. We ob- We now provide details about finding I and J for step
tain linear constraints on two 4D vectors I and J propor- 2 of the iterative algorithm. The equations for I are
tional to the first and second rows of the homogeneous Momi -I = Xý
transformation matrix of the object. These constraints
represent slabs of space which are perpendicular to fea- The unknowns are the four coordinates (1,, 12, 13, 14), of
ture vectors (joining the origin of the object coordinate I, and we can write one equation for each of the object
system to object feature points) at points that depend on points M, for which we know its position mi in the image
the image coordinates of these feature points. Regions of and its image coordinate zi. One such equation has the
space where the largest numbers of these slabs intersect form UiI,+ViI2+Wil 3 +I 4 = zx, where (Ui, Vi, Wi, 1) are
are used to locate the vectors I and J and correspond the four coordinates of Mi. These equations for several
to maximal matchings between object points and image object points Mi constitute a linear system of equations
points. Simultaneous binary tree searches are performed which can be written in matrix form as Al = V,, where
in regions containing I and J, and are pruned by mutual A is a matrix with i-th row vector Ai = (U,, Vi, Wi, 1),
constraints resulting from the fact that I and J belong and V. is a column vector with i-th coordinate zx.
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Similarly, J can be found by solving the linear system
AJ = V., where A is the same matrix, and V, in a
column vector with i-th coordinate 1.

Since there are four unknown coordinates in vectors
I and J, matrix A must have at least rank 4 for the
systems to provide solutions. This requirement is sat-
isfied if A has at least four rows and the object points
are noncoplanar; therefore at least four noncoplanar ob-
ject points and their corresponding image points are re-
quired. The pseudo-inversion operation is applied to ma-
trix A; the pseudo-inverse is called the object matrix B.
Since A is defined in terns of the known coordinates of
the object points in the object coordinate system, B de-
pends only on the geometry of these object points and
can be precomputed.

Experiments [5] show that this iterative approach gen-
erally provides an accurate pose of the object in a few
iteration steps, as long as the points Mi are contained
within a camera field of view of less than 90 degrees.
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Abstract placements caused by object motion and perspective de-
formation. Most existing methods require the camera

An automatic egomotion compensation based motion to be small and smooth. When tracking features
point correspondence and motion detection al- in a long sequence, the problem of feature drift exists, i.e.
gorithm is presented. First, the motion of the features may gradually change due to spatial sam-
the camera is compensated using a compu- pling and to the deformation of the image due to the
tational vision based image registration algo- motions of objects and/or the camera. Feature drift al-
rithm. Then consecutive frames are trans- ters the target being tracked and does not contain any
formed to the same coordinate system and the useful information. Feature drift correction is especially
feature correspondence and motion detection important for tracking automatically detected features,
problems are solved as though for a station- which may be located in relatively smooth areas and
ary camera. For point correspondence, feature hence may be more vulnerable to steady location drift.
points are detected using a Gabor wavelet de-
composition and local interaction based algo- In this paper, we introduce a two-step approach to
rithm. Methods of subpixel accuracy feature solving the feature point correspondence problem. First,
matching and tracking are introduced. For mo- the motion of the camera is compensated using a compu-
tion detection, we first determine the changed tational vision based image registration algorithm (14].
regions from the camera motion compensated A method for subpixel accuracy feature matching is thenframe differences. We then detect moving ob- implemented to improve the camera motion compensa-
jects by grouping these changed regions and os- tion. Then consecutive frames are transformed to thetimate the object motion parameters. Experi- same coordinate system and the feature point correspon-mental results on several real image sequences dence problem is posed as one of tracking moving objectsare presented. using a still camera. A subpixel interpolation method isuse to suppress feature drift.

Our approach is fully automatic and robust to various
1 Introduction kinds of camera motion. It is simple because it compen-
A practical issue in camera pose estimation and struc- sates for camera motion at the first step, which signif-
ture from motion problems in computer vision research icantly simplifies the matching process and reduces the
is the motion correspondence problem-automatic detec- computation. No higher level primitives such as edges,
tion and tracking of features over successive frames. The and no structure information, are required for the track-
basic task is to locate the same features over consecutive ing step, and no post processing method such as relax-
frames, a non-trivial problem when the camera motion ation [6] or Kalman filtering [5] is required. Good results
between the frames is complicated, for example when have been obtained for several real image sequences ac-
there is significant camera rotation and translation be- quired from indoor and outdoor scenes under different
tween the frames and the camera motion is irregular. camera motions. Successful motion estimates based on
Tracking becomes even more difficult when dealing with the method of trajectory estimation reported here are
automatically detected features since they may not al- described in [8, 11].
ways be located at significant points such as the cor- Automatic motion detection is an important practical
ners of buildings. Various methods for solving the cor- problem. Intuitively, motion detection can be accom-
respondence problem have been studied [3, 7]. In gen- plished by taking differences of successive images and
eral, feature displacements over consecutive frames can detecting non-zero parts. The problem becomes more
be approximately decomposed into two components: (i) complicated if the camera is on a moving platform so
displacements due to camera motion that can be corn- that translation, rotation, and scale change between the
pensated by image rotation, scaling, and translation; (ii) two images have to be taken into account? We introduce
displacements due to object motion and/or perspective a two-step motion segmentation algorithm for detecting
deformation. The displacements due to camera motion moving objects in image sequences acquired from a mov-
are usually much larger and more irregular than the dis- ing platform. First, the camera motion is compensated
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using a subpixel accuracy image registration algorithm. borhood around the feature point
We then select regions where changes may have occurred.
A method of detecting actual moving objects and esti- -Wa _ t~ ._ Wi
mating their motion parameters is introduced, we have (2wd + 1)' simultaneous equations

In the following sections, we first present the camera
motion estimation algorithm, then describe a subpixel- f= G!1 (3)
accuracy motion correspondence algorithm, and finally
discuss the motion detection algorithm. Experimental The offset vector 1 can be computed as
results on motion correspondence and motion detection 6 Z
from several real sequences are presented at the end of '5 by (G-()-'G4)
the paper.

where
2 Camera Motion Estimation (d(-w, -Wd)

2.1 Review of an Earlier Algorithm
Let (z,, 1h) be the image frame coordinates, measured d(0,0) (5)

with respect to the position of the camera at time ti, for
i = {1, 2}. The relationship between the two frames can d(wd, wd)
be approximated by [14] fi_,_w 8f1 (_4 ,._,)

Z C08( o. sin- +
= -sin0 cos0/yi + Ag) (1) y -

G = of 1(oo 9 10.01 (6)
where s = is the scaling factor, 0 is the ro- Bp

tation angle between the two frames, and (Az 2 , Ay 2) is 8f,(w.,d,) Of1( ,wd')
the translation measured in the image coordinate system oz Op
of frame t2. The effect of camera motion is characterized In our implementation of this algorithm we use a small
by the four parameters Az 2 , Ay2, 0, and s. wd, for example wd = 4, to reduce the computation and

We use the image registration algorithm reported in achieve better localization. Incorporation of subpixel ac-
[14] to estimate Az 2, Ay2, 0, and s. The camera rota- curacy feature matching significantly improves the accu-
tion is estimated and compensated early in the match- racy of camera motion estimation. A test involving the
ing process using an illuminant direction estimator [12]. estimation of simulated camera motion is presented in
A small number of feature points are then located us- Section 5.
ing a Gabor wavelet model for detecting local curvature
discontinuities[4]. The feature points extracted from dif- 3 Motion Correspondence
ferent frames are matched using a metric often used in
area-based correlation techniques. Here, however, cor- 3.1 Overview
relation is performed using feature points. Multiresolu- As pointed out in Section 1, the fundamental task in mo-
tion transform-and-correct matching is implemented to tion correspondence is to track features over the image
obtain accurate estimates of camera motion parameters. sequence. When the motion of the camera is compen-
At each resolution, frame t I is first transformed to the co- sated using the registration algorithm discussed in Sec-
ordinates of frame t2 using the estimated camera motion tion 2, the displacement of a feature point in the new
parameters (0, Az, Ay, a); then matching refinement is frame can only be caused by perspective distortion and
performed on the feature points of frame t2. the motions of objects. In this paper we use intensity

based area correlation to match features over consecu-
2.2 Subpixel Matching tive frames. A problem associated with intensity based
The area correlation matching used here can only find feature matching is that the locations of feature points
the best grid point to grid point matches. Further pro- are defined in terms of local intensity variations and may
cessing is required for subpixel accuracy matching. Since drift away after several frames. This can be caused by
a good initial match has been obtained by the area cor- quantization of the feature locations and/or perspective
relation step, a simple and effective way to achieve sub- deformation of the local image. In this paper, a method
pixel accuracy is by using an image differential method using subpixel accuracy tracking and weighted correla-
[1, 10]. Assume f2 is offset by (6z, 6y) relative to fl; then tion is introduced to overcome this feature drift problem.
the frame difference can be written as Consider the matching process illustrated in Figure 1.

d(i, j) = f1() - (0) Although a feature point is located at grid point P1 in
the first frame, its location will be transformed to P1 to

1Ofi(i, .z Of i,) (2 compensate for the camera motion. The exact location of
OrZ + y by (2) P1 is usually not at a grid point. Since correlation-based

of of matching can only locate the best matches at grid points,
where f, and of are derivatives of f, and can be ap- conventional approaches which approximate a feature lo-
proximated by forward differences. For a small neigh- cation to its nearest grid point will result in two types of
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Figure 1: Feature matching graph

approximation errors, resulting from approximating P• selection of the area size used in computing correlation;
and P2 to their nearest grid points. Both errors cause the larger the correlation area the better is the selectivity
the feature locations to migrate. The cumulative errors over similar features, but the less accurate are the feature
can be quite large when working with a long sequence. locations. For example, when occlusion(s) occur within
A subpixel accuracy tracking method is needed in or- the correlation area, or when a feature point is near the
der to obtain accurate trajectories. A three step sub- border of an object and the motion of the camera changes

the background significantly, the best cross-correlation
pixel accuracy matching algorithm is used here. First, will be away from the correct location, causing the fea-
an initial matching to the nearest grid point is achieved ture locations to migrate. One way to solve this dilemma
by a weighted cros correlation match. Secondly, the is to use a hierarchy of windows: use a large window to
differential method discussed in Section 2.2 is used to locate the correct matching peak, and gradually reduce
achieve subpixel accuracy matching for all four nearest the window size to better locate the feature points. We
grid points. Finally, the feature location is interpolated present a simple method using weighted correlation, in
from the matches of the four nearest grid points using which greater weights are put on the neighbors which
an interpolation function. are closer to the feature center. The weighted correla-

The main steps in the algorithm are as follows. Given tion method possesses good selectivity since a large area
is used, and at the same time it possesses good feature

an image sequence, we first compute the camera moo- localization since the central parts have higher weights.
tion parameters using the image registration algorithm The modified matching criterion is
presented in Section 2. Then, starting from the feature
points detected in the first frame,' for every two con- / +-j(m +i,n + j)f(u + i, v +j) (7)
secutive frames we transform the first frame and the co- Ui 12

ordinates of its feature points to the coordinate system
of the second frame. We then search the neighborhood where
of the anticipated feature locations for the best match. f1(m + i, n + j) = f1(m + i, n + j) - p1
The locations of the feature points are then refined us-
ing the subpixel accuracy matching method discussed in f2 (u + i, v +j) = f 2 (u + i, v + j) - P2
Section 2.2 and an interpolation formula introduced in
Section 3.3.

al = ,,t2(M + i, n + j)
3.2 Weighted Correlation Vi
As pointed out in Section 3. 1, there are two sources of er-
rors that cause feature drift: the error due to feature lo- C2 = 7INf(u + i, V +') (8)
cation quantization and the error due to image deforms- VJ
tion caused by the relative motion between the camera 1
and the objects. The feature location quantization error E1 =fm + i, n +
can be suppressed by using subpixel accuracy tracking. ,r
On the other hand, the error due to image deformation is 1
usually more difficult to remove, especially when the area P2 = - f2(u + i, v
correlation method is used. In implementing the area
correlation matching method, there is a trade-off in the =

'The feature points can also be obtained by other
methods--for example, manually selected, as in many mo-
tion analysis algorithms. The motion correspondence part is The %is are non-negative weights. In our implementa-
independent of the selection of feature points. tion, we let the y,3s be the same for pixels at the same
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distances from the center, where the distance is defined where &j and 1j, i={1, 2, 3, 4 ) are coefficients deter-
as the maximum distance along the z or y direction. To mined from the matches:
be more specific, we define the distance to be ii = li + &2% + 42M3 + (4

k = d,, = max(il, hI) (9) =s 61+ & + 2P+S + i 4(14)

Notice that N5 , the total number of neighbors at the where i = {11,12,21,22). The interpolation function
same distance k, is (13) can be expressed relative to the match of (zlI, I)

S1 for k = 0 M
Sfork>1 (10) -41, = ale, + a2Et + a4t.fe + a4

i"--ll = ht. + b sf + 63. 4  (15)
If we further require the sum of weights at each distance cc = X - X1
k to be constant (note that Nj, increases as k increases, cy = Y -1 1 1

hence as a pixel moves farther away from the feature Note that
center its weight decreases), the weighting coefficient 7,j2
can be generated using Z12 = z1 + 1 2 = ll

7.fC Z2121 = Z 21 = ll+I (16)
7i = 8(maxi,j)M' 1l4,IU0) 10 0oo) (11) Z22 = 211 + 1 122 = Yl + I

where 7-f, the weight for the central point, is positive, for The coefficients (ais and bis) are [13]

example -, = 1, and c is the ratio of y.. to the weights al = *12 - iln
of the outer layers. As shown in (11), the 'yj s are positive bi = 912- 1
and their values decrease as points move away from the -

central point; hence intensity similarities in the central a2 = Z21 - z:1
part are given higher weights. Using Cauchy's inequality b2 = 31l - ll
we can show [13] that the value of the weighted correla- as = -22 + *1 - *l2 - *21
tion (7) is in the range [-1, 1], reaching the boundaries b3 = 122 + 911 -2 - S21
of the range if and only if a4 = 0

fi(m+i,'n+j)-li =const. V{i,j()E (12) b4 = 0
f2(U + i, V + j) - 02 and the interpolation formula becomes

For example, when the two areas are identical we have fC = ill+ +(l - 1)C. + (i21 -*l0)•

fi(m+i,n+j)-p= f 2(u+i,v+j)-p•2  +(022 + i - i1 2 -zi 2 )fe 1  (17)

and , = 1. On the other hand, when f2 is the nega- = (il + (i12 - il)f. + (i - i)Ctive offz w-e have +022 + il - P1 - if)OCIC

fi(m + i, n + j) - pi = - [f2(u + i, v + j) - p2l For convenience in further discussion, we note that

and 0ksh = -1. P1 = (z1,la1) Pi = (i , i)P = (4-12412) h= 0(18)2
3.3 Feature Location Interpolation P3 = •(•1o22) P3 = 022422)
Using the differential method we can obtain subpixel P4 = (221, 121) P4 = (21, 021)
accuracy matches for grid points. But for the feature Equation (17) can be considered as a generalization
tracking problem, after camera motion compensation, of the affine transform. When quadrangle P1h5J34 is a
the features are usually not located at grid points. Con- ofrtheloffine ha ve
sider the general feature matching situation illustrated parallelogram we have
in Figure 1. A feature point p, in frame t, is trans- 122 + -+11,- i,2 - *21 0 (19)
formed to the coordinates of frame t2 and located at i22 + ill-i12- 2 0-(19
el = (z,y). Its four nearest grid points are (z21,111),
(Z12,12), (:21,Y2l), and (z22,Y22) determined by and (17) becomes

Z11 = Z21 = int(z) + l = Y12 = int(y) f*= f 11 + (i12 - SI)•cz + (121 - *1) (20)

where int(.) is the truncation function. which is the well-known affine transform. For more gen-
Assuming that the matches to these points in frame eral quadrangles, the affine transform cannot guarantee

t2 are (ill, ill), (*12,/12), (121421), and (224,22) re- correct matches at all four nearest grid points, while (17)
spectively, we define the feature location (*, •) in frame does, as discussed below. Compared to the well-known
t2 to be second-order wrap transform

( 2 i{a3+a=~ 4 *aoz 2 +ay +a~zp+asz+a 4 y+aa
S= biz +d2 1 +szy+ b 4  (13) { Oz2+biu24+b 2 zv+bsZ+6 4Y+ (21)
S= iz + + zy + b4 =boz2 + bl2 + b2Y + bsz + N~Y + b6
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(17) is simpler. Equation (21) has 12 coefficients to be When e, = 0 we have
determined, but only 4 matching pairs (8 measurements)
are available. Hence (21) is an ill-posed problem, while i l lii + 2a2 = 12 01 + i21)

(17) has only 8 coefficients and can be easily determined 2 (26)
from the matches at the four corners. In addition to its = l + 2 = 1 + (26)

simplicity, (17) possesses the nice properties discussed which is the center 'of pi and p4. Similarly at the other
below: end we have e. = I and

Proposition I The four corners pj, p2, p3 and a4 are =.ill + 1a2 + (a, + •,s) = J(*12 + i22)
mapped into P, P2, h and P4, rspectivel. 2 + (27)

Proof This is the constraint we use to define our map- 1z + J+ 2 + (bi + 123 ) = 1(12 + i22)
ping; hence it is always true. It can also be verified by which is the center of p2 and p2. So (25) bisects two
substituting the coordinates of pi, i {1, 2, 3, 4), into
(17). Oopposite sides of the quadrangle _____4. Similarly we

can show the bisector parallel to the Y axis bisects the
Proposition 2 Lines parallel to the z and y axes are other two opposite sides of the quadrangle P 16 4. E
mapped to lines in the transformed domain.mrope For lines in rallelto the trnsformeddoProposition 5 The center of the rectangle plp2psp4 is

Proof For lines parallel to the z axis we have es = mapped into the intersection of the bisectors of the quad-
constant and the interpolation functions can be written rungle PlIp~h 4, which is the center of the corners of the
as il +ale, +a2EV + 3,, quadrangle Pl5P1h34.

= *,I + aa02 + (al + ase,)Cg (22) Proof The center of the rectangle plp2P34 is at the
bll + b2 ey + b3C.eC intersection of the two bisectors. From Proposition 4,

= hi + b2 ey + (b +bCe)C. its imMe must be on the bisectors of the quadrangle
which is the equation of a 2-D line written in parametric Plhp2J4, i.e. the intersection of the bisectors of the
form. quadrangle Plfp•ps4.

Similarly, for lines parallel to the y axis we have e, = The center of the rectangle Pzp•p•p4 is (*Tii + J, i1 +
constant and the interpolation functions can be written •). Its image in frame f2 is
as

ill ~ + ale, + a2e, + a3eC 1  I & ill + J2012 - ill) + iJ021 - il
il= l+i + ale + (a2+3C,)Cp (23) +*(&*22 + ill - i12 - *21)

= lii+blc.+b 2 CV+bsc.cV = Lil + -*+12 + 12l+ 22) '8j = I• + bi c. + (b2e + bc.)ey •4(•+•+•+• (28)
=. I++bi2.+(b2 +b ), -= I- ) + '(' - I)

which again is the equation of a 2-D line written in para- +*(Jh2 + il - h2 - hl)
metric form. 0 = (Yý + i+P12+11i+ 2)

Propomition 3 The four boundaries of the rectangle
plp. 4'• are mapped into the boundaries of the quad- -
rangle j __4. (,)0 = 1 (I +P+PS+P4) (29)

Proof The boundaries of the the rectangle plp2p3p4 This shows that the center of the rectangle Pip2p3p4 is

are parallel to the axes, and from Proposition 2 we know mape2d into the centroid of the corners of the quadran-
they are mapped into line segments in the transformed gle olf)004.
domain. Also from Proposition 1 we have {p' -+ , g
i = 1, ... , 4). Since a line is uniquely determined by two Proposition 6 For a point inside the rect-
points, and the transform functions in (17) are continu- angle I2zpsp4, its image is also inside the quadrangle
ous, Proposition 3 follows. 0 plps2P4 provided the quadrangle Plhp3P4 is convex.

Proposition 4 The bisectors of the rectangle j Proof Any point inside the rectangle pip-2P- 4 in
are mapped into the bisectors of the quadrangle pih2Pa14. frame fl can be expressed as

Proof Note that the bisectors of the rectangle p = (X1 + 6z:, yn + 6b)
p••p-3p4 are parallel to the axes, and from Proposition 2 0 < 6z < 1 (30)
their images are lines. To show that these lines are theo 0 < 61< 1
bisectors of the quadrangle P11^a13P4 we only need to
prove that they bisect the opposite sides. First consider Its image in frame f2 can be computed as [13]
the bisector parallel to the X axis: = (I-6Y)[(1-6Z)jh+6021

X = x +1. 0<C'<1 (24) +6Y[(1 - 6z)04 + 6031 (31)

y = y/i+ 1/2. From Proposition 3 we know that P = (1 - 6z)jh + 6:½
Its image in the transform domain is is on boundary jp- and p = (I - 6z)034 + 6bx3 is on

boundary V4`p3. Hence the linear combination P = (I -

() 2 6y)p + 6 0 is inside the quadrangle P1hs 4 when the
;1n + 1b2 + (ba + 1b3)'. ( quadrangle hlplp3P4 is convex. 0
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Proposition 7 The convexity of a quadrangle aT a23 a34  changes due to object motion and changes due to image
can be verified by checking the areas of the triangles noise is that changes due to object motion usually occur
AiUaia3 , tA-alap, A -a23 3 4 , and /a 2-- 1a4 . The quad- in conjunction with changes in the intensities of nearby
tangle a1 3a2 a3 4 is convex if and onlyj if pixels, while changes due to image noise are usually iso-

SS 34S 4 (2 lated. Thus by checking the values of both the average
SIZ6'43 + S414463 = S + S (32) of the local intensity changes and the on-site intensity

Proof Four different triangles can be formed from the change, we can suppress image noise and detect changes

corners of the quadrangle. If the quadrangle is convex, due to object motion. Secondly, since the value of the

then the sum of the areas of the complementary triangles intensity change is dependent on the local contrast of

equals the area of the quadrangle. Hence equality holds the image, in high-contrast areas intensity interpolation
for (32). On the other hand, when the quadrangle is due to camera motion compensation can cause intensity

concave, the sum of one pair of complementary triangles changes. Hence the threshold used for segmenting mov-

still equals the area of the quadrangle. But the other ing parts should be adjusted according to the local image

two complementary triangles contain areas outside the contrast.

quadrangle. Hence the sum of their areas is larger than In this paper we classify a pixel (i, j) as belonging to

the area of the quadrangle and the two sides of (32) are a changing part if

not equal. min{•j', dj) > max{TD j, T) (34)
This is a simple way to check the convexity of a quad- wher(

rangle. The area of a triangle AN-I 2 -3 can be calculated where
as

S ai-3i23 =- 2z 1 (33) =
3 Y3 D1j = sup {,,,)- in f

where zr,ai = {1,2,3} are the coordinates of a,,i =

{1,2,3). d3 = Ifli - hi,1

3.4 Displacement Prediction 4fij : value in the first frame

The compensation for global rotation, scale, and trans- fij value in the second frame

lation between the two frames makes the displacement 'v: Threshold for relative difference

of feature locations between consecutive frames more T: Threshold for absolute difference
predictable. Accordingly, the search window for match- w: The neighborhood clique
ing can be decreased to reduce computations and mis- In our implementation, we took w to be the 3 x 3 neigh-
matches. Nevertheless, since the amount of displace- borhooei
ment is inversely proportional to the depth of the object borhood.
along the optical axis and proportional to the distance 4.2 Motion Estimation
between the feature point and the focus of expansion in When more than two successive frames are available, we
the image domain, for an object moving close to the cam-
era, the displacements of corresponding features can be can segment moving objects from the background and

camera estimate their velocities.
quite large. Fortunately, when the motion of the caeer& t e thei selontoamvg

is compensated first, feature displacements can only be Let 0 be the set of pixels which belong to a moving

translations, due to the motions of objects, and "pure" object, and let f01, f02 and f03 be these sets of pixels in

perspective distortions due to changes in the depths of the camera motion compensated frames ti, t 2 and t3 re-

the objects. Hence the displacements of the features in spectively. Using the method discussed in Section 4.1 we

the new frame can be predicted using results from previ- can detect S1 = f0l U f02 from the difference of frames tI

ous frames. We have used a zeroth order predictor; the and t2 and S2 = 112 U fl0 from the difference of frames

displacement of a feature in the two preceding frames is t2 and ts. In general, due to the similarity between

used as the bias in tracking the feature in the current pixels belonging to the same object, the virtually de-

frame. tected changed parts are Si, which is a subset of Si, for
i = 1,2. Assuming that the displacement from l 1 to n2

4 Motion Detection is (ul, v1), we have

4.1 Change Detection w r S= Si - ST (35)

With the camera motion parameters estimated using the where
procedure discussed in Section 2, we transform the im- Si* = f(i,j)l(ij)Eninf•,f,(ij)=I,(i_,,j_•,)I
ages into a common coordinate system and take the Similarly, assuming that the displacement from 02 to 03
difference between successive frames. We then detect imilU2, V2) thave
changed parts from the camera motion compensated is (u2,v 2)we have
frame difference. Two factors need to be addressed. -52 = S2- -3 (36)
First, since images always contain noise, an intensity where
change between frames can be due to either object mo-
tion or image noise. A difference between intensity S2 = ((j)l(ij)En~n(13.f2(ij)=f3(i-U~j-V)}
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Note that In [14] it was reported that the estimated parameters

(i~J) E fli *4 (i+ui,j+v1) E 012 were 0 = 89.8083", 6z = 49.907, by = 50.047, and

4* (i+uu+u 2 ,j+vu+v2) E 0s (37) & = 0.90138. For the same set of images, camera mo-
tion parameters equal to 9 = 90.0000, br = 50.0010,

So by = 49.9997, and & = 0.900018 have been obtained
by using the improved image registration algorithm dis-

(12 - 01 ( (Ul,VI) cussed in Section 2.2. The improvements are significant.
%s = (D$ (U2, V2) = III E (ul + U2, VI + v2)

where 4D adds the coordinates of each pixel in the left
operand to those in the right operand.

When u=u = u andvl =2 = vwehave

(0~) ESl 4*(i + u~J+v) E S
so that

S =S (u, v) (38)
Let (zi,,p) be the mass center of Sfl; then

Ns, (39)

Y, 1= j (40)Ns (j)es (a) B036

X2 ~ ~ i,7 +u=z1 +u (41)1 1 (1*2=N.(,*)Es; sn(,•)Es',

=2 .1 j - 1 j+v=y1 +v (42)
N 2 (ij)ES2 st(*j)Es'

where Ns, is the number of pixels in set S for i = 1,2.
The motion velocity (u, v) can then be estimated from
the change in the mass center of the detected changed
area.

We then refine the velocity estimate by shifting the
first frame by (u, v) and computing the subpixel accuracy (b) Transformed B036
match using (4). While doing this only pixels belong toF 2: I a nfo ed c e mi
S', are used to get f and G in (5)and (6). We next Figure 2: Images with synthetic camera motion.
construct a candidate set for f0l , 01I, as the closure of Our first tracking example is the PUMA2 sequence
S'-. TI~ is recursively generated from S, by connecting [2]. The sequence consists of thirty 256 x 256 images. 2

any two points which are inside Ul and have the same The camera motion is a continuous rotation. For dis-
value for one of their coordinates. Finally, we detect cussion purposes, in this example we give the tracking
0ll by translating frame fi by the estimated (u, v) (after results on twenty manually selected points.3 Figure 3.a
subpixel accuracy refinement) to get fl, and detect zeros shows the selected feature points on the first frame. Fig-
of If, -f2l. A pixel in?!, is classified as belonging to f1l, ures 3.b and 3.c show their trajectories tracked up to
the moving object, if lfi - fj I < and at least one frames 15 and 30 before the subpixel accuracy tracking
of the following conditions is satisfied: (1) (i,j) E SPI; technique was implemented. Figures 3.d and 3.e show
or (2) at least one of its 3 x 3 neighbors belongs to fl, the trajectories tracked up to frames 15 and 30 after

where c is a threshold for detecting the zeros in frame the subpixel accuracy tracking technique was used. Fig-

difference. ure 3.f shows the feature points hand-picked from frame
30. Note that without enforcing subpixel accuracy track-

5 Experiments ing, most of the trajectories gradually drift away from
the initial chosen points. Comparison of Figures 3.c, 3.e

5.1 Motion Correspondence and 3.f shows that the error in feature drift has been
Our first example shows the improvements in camera 2 There are black strips on the tops of the original images.
motion estimation that result from using the subpixel In Figure 3 these black strips have been removed, i.e. only
accuracy feature matching technique discussed in Sec- the bottom 256 x 242 is displayed.
tion 2.2. Figure 2 shows a pair of balloon images with 3 Results of tracking another set of manually selected
synthetic camera motion 114]. The true camera motion points and a set of automatically detected feature points are
parameters are 0 = 90*, 6z = 50, by = 50, and a = 0.9. given in [13].
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(a) (b) (c)

(d) (e) (f)

Figure 3: Motion correspondence fur PUMA2 sequence. (a) Feature points are manually picked in the first frame.
(b) Trajectories of the feature points tracked up to the 15th frame without using the subpixel accuracy tracking
technique. (c) Trajectories of the feature points tracked up to the 30th frame without using the subpixel accuracy
tracking technique. (d) Trajectories of the feature points tracked up to the 15th frame after using the subpixel
accuracy tracking technique. (e) Trajectories of the feature points tracked up to the 30th frame after using the
subpixel accuracy tracking technique. (f) The same feature points manually picked in the 30th frame.

significantly reduced. Table 1 lists the coordinates of
the feature points obtained by our algorithm as well as Table 1: Feature locations on frames 1 and 30
those selected manually. The differences in the feature Manually selected Tracking results

coordinates are within the limits of accuracy for manual feature frame I frame 30 frame 30
selection. No. Y X Y X '

Figure 4 shows an example using an outdoor image se- 1 38 94 167 100 168.82 100.36

quence. The original sequence consists of thirty 512x512 2 57 81 173 122 172.01 120.98
images. In this sequence, the motion of the camera is not 3 36 113 156 87 156.07 90.25

smooth. Also there are rapidly moving clouds causing 4 65 53 188 146 189.56 148.73

significant illuminant changes. In our experiments we 6 17 153 129 51 128.82 51.73

first cut 36 lines from the top and bottom of each frame 7 83 172 84 100 83.84 101.54
to remove the black strips on the bottoms of the original 8 102 17.3 75 116 73.74 117.38
images, so the sequence we are working with consists of 9 148 216 -..
the central 512 x 440 subinages of the original sequence. 10 179 180 6 204 7.17 205.39
Figure 4.a shows feature points automatically detected 11 157 206 .- --

from the first frame. Figures 4.b and 4.c show their tra- 12 159 213 --

jectories tracked up to frames 15 and 30 respectively. 13 105 58 166 179 166 08 180.39
As shown in Figure 4, the trajectories are ragged due to 14 148 59 140 221 139.48 221.55
non-smoot h camera motion. Nevert hess, the algorithm 15 138 86 125 196 124.00 196.87
non-smothe camerfeamtin. e16 108 39 179 193 178.18 193.62
tracks the same features. 17 122 103 117 175 116.12 175.85

Our third tracking example is a sequenrce taken from a 18 105 120 107 154 107.65 1 53.4.1
camera on a helicopter which was flying along a straight 19 137 119 95 181 95.6.&1 11.72
line path between rows of trucks parked on the runway 20 121 -36 86 160 S6 17 160.60
[9]. The original sequence consists of ten 512 x 512 im-
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((a) (a)

(b) (b)

.•"36 2-2. J• "33: 764

• (c)
Figure 5: Motion correspondence for NASA helicopter

(c) line sequence. (a) Feature points are automatically de-
Figure 4: Motion correspondence for the rocket se- tected in the first frame. (b) Trajectories of the feature
quence. (a) Feature points are automatically detected points tracked up to the 6th frame. (c) Trajectories of
in the first frame. (b) Trajectories of the feature points the feature points tracked up to the 10th frame.

tracked up to the 15th frame. (c) Trajectories of the

feature points tracked up to the 30th frame.
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Input frame 7 Detected changing regions Detected moving parts Detected moving object

- - -

Input frame 8 Detected changing regions Detected moving parts Detected moving object
(a) (b) (c) (d)

Figure 6: Moving object detection from a helicopter sequence. (a) Input frames. (b) Changing regions segmented from
camera motion compensated frame differences. (c) Moving part detected using our algorithm. (d) Superimposition
of the contour of the detected moving part on the image to show the correctness of motion detection.

Input frame 46 Detected changing regions Detected moving parts Detected moving object

Input frame 47 Detected changing regions Detected moving parts Detected moving object

(a) (b) (c) (d)

Figure 7: Moving object detection from an infra-red image sequence. (a) Input frames. (b) Changing regions
segmented from camera motion compensated frame differences. (c) Moving part detected using our algorithm. (d)
Superimposition of the contour of the detected moving part on the image to show the correctness of motion detection.
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ages. The images in this sequence exhibit perspective [4] B.S. Manjunath, R. Chellappa, and C. Malsburg,
deformations of close objects. Figure 5.a shows the fea- "A feature based approach to face recognition," in
ture points detected automatically in the first frame4  Proc. IEEE Conf. Computer Vision Pattern Recog-
Figures 5.b and 5.c show the trajectories up to frames 6 nition (Champaign, IL), pp. 373-378, 1992.
and 10 respectively.' The tracking is successful. [5] L. Matthies, R. Szeliski, and T. Kanade, "Kalman

5.2 Motion Detection filter-based algorithms for estimating depth from
image sequences," in Proc. DARPA Image Under-

Figures 6 and 7 show two motion detection results of- standing Workshop (Cambridge, MA), pp. 199-213,
tained by our algorithm. Figure 6 is the detection of 1988.

a flying helicopter from an image sequence taken from

another helicopter. Figure 7 is the detection of a mov- [6] S. Ranade and A. Rosenfeld, "Point pattern match-
ing automobile from an infra-red image sequence. In ing by relaxation," Pattern Recognition, Vol. 12,
both examples, (a) shows two frames of the input im- pp. 269-275, 1980.
age sequence; (b) shows the changing parts segmented [7] I.K. Sethi and R. Jain, "Finding trajectories of fea-
from the ramera motion compensated frame difference; ture points in a monocular image sequence," IEEE
(c) shows the detected object. The estimated velocity Trans. Pattern Anal. Machine Intell., Vol. PAMI-9,
for the moving helicopter is (u, v) = (-2.94,0.02) from pp. 56-73, 1987.
frames #6 to #7 and (u, v) = (-2.92,1.26) from frames [8] C. Shekhar and R. Chellappa, "Visual motion anal-
#7 to #8. The estimated velocity for the moving car ysis for autonomous navigation," Tech. Rep. CAR-
is (u, v) = (15.56, 0.47) from frames #45 to #46 and TR-607/CS-TR-2862, Center for Automation Re-
(u, v) = (13.87,0.36) from frames #46 to #47. (d) shows search, University of Maryland, College Park, MD
the contours of detected moving objects superimposed 20742, March 1992.
on the camera motion compensated images. As we see,
in spite of the complex background, poor image qual- [9] P. Smith, B. Sridhar, and B. Hussein, "Vision-
ity, and unknown camera motion, motion detection is based range estimation using helicopter flight data,"
quite good. The moving car is detected correctly from Tech. Rep. NASA-TM, NASA Ames Research Cen-
the infra-red image sequence. In the flying helicopter se- ter, Moffett Field, CA, 1991.
quence, some parts of the background are also detected [10] Q. Tian and M.N. Huhns, "Algorithms for subpixel
as belonging to the moving object. This is due to the registration," Computer Vision, Graphics, Image
fact that these background areas are uniform, yielding Processing, Vol. 35, pp. 220-233, 1986.
zeros in the translated frame difference. [11] T. Wu and R. Chellappa, "Experiments on esti-
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"Originally many points are detected around the labeling
letters at the top left corners of the images. These points are
removed from our feature list by requiring the locations of
valid feature points to be below a certain line in the image
domain. Among the removed feature points, there are points
on the body of the helicopter.

5The original images are 512 x 512 with black bars on the
bottom of each frame. In Figure 5 only the top 512 x 412
portions are displayed.
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Abstract We will then show with e:-periments on real image se-
quences how to apply this technique to measure time-to-

In the first part of this paper we show that a crash, by exploiting a recently proposed scheme [1]. The
new technique exploiting ID correlation of 2D latter scheme, which is robust and invariant to the posi-
or even ID patches between successive frames tion of the focus of expansion or the center of rotation,
may be sufficient to compute a satisfactory es- relies on sparse measurements of either the normal or
timation of the optical flow field. The algo- the tangential component of the optical flow (relative to
rithm is well-suited to VLSI implementations. a closed contour). We will also discuss some broad im-
The sparse measurements provided by the tech- plications of this work for the practical computation of
nique can be used to compute qualitative prop- the optical flow and for biology, in particular its relation
erties of the flow for a number of different vi- to Reichardt's-type models.
sual tasks. In particular, the second part of the There are two main and quite separate contributions
paper shows how to combine our ID correla- in this paper:
tion technique with a scheme for detecting ex-
pansion or rotation ([I]) in a simple algorithm 1. an efficient iD correlation scheme to estimate the
which also suggests interesting biological im- optical flow along a desired direction
plications. The algorithm provides a rough es-
timate of time-to-crash. It was tested on real 2. the experimental demonstration that a previously
image sequences. We show its performance and proposed algorithm for estimating time-to-crash
compare the results to previous approaches. performs satisfactorily in a series of experiments

with real images in which the elementary measure-
ments of the flow are obtained by the new ID cor-

1 Introduction relation scheme.

The problem of how to compute efficiently estimates of
the optical flow at sparse locations is of critical impor- 2 Computing the Optical Flow along a
tance for practical implementations in a number of differ- Direction
ent tasks. A specific exairple is the detection of expan-
sion of the visual field with a rough estimate of time-to- How can the component of the optical flow be measured
crash (TTC). The question has also interesting relations efficiently along a certain desired direction? As argued
with biology, as we will discuss later. In this paper we by Verri and Poggio [4] a qualitative estimate is often
propose an efficient algorithm for computing the opti- sufficient for many visual tasks. For the task of detect-
cal flow which performs well in a number of experiments ins a potential crash, for instance, it has been suggested
with sequences of real images and is well suited to a VLSI ([1]) that a precise measurement of the normal compo-
implementation. nent of the flow may not be necessary, since the precise

Optical flow algorithms based on patchwise correlation definition of the optical flow is itself somewhat arbitrary:
of filtered images perform in a satisfactory way [21 and it is sufficient that the estimate be qualitatively consis-
better in practice than most other approaches (see [3]). tent with the values of the perspective 2D projection
Their main drawback is computational complexity that of the "true" 3D velocity field for the particular stim-
forbid at present useful VLSI implementations. In this ulus. In other words, even estimates that don't really
paper we show that ID patchwise correlation may pro- measure image-plane velocity (like Reichardt's correla-
vide a sufficiently accurate estimate of the optical flow1. tion model or equivalent energy models), since they also

11n this paper we use mainly the L2 distance rather than for the purposes of this paper, we will often use the terms
the correlation itself. Since the two measures are equivalent "correlation" and "distance" in an interchangeable way.
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depend on spatial structure of the image, may be ac-
ceptable for several visual tasks, if their estimates are
consistent over the visual field. Certain uses of a crash
detector are good examples. It turns out that even a 0

rough estimate of time.to-crash (TTC) is possible using
approximate estimates of the optical flow field. Flies and
other insects rely for landing on what appears to be a
qualitative estimate of the time-to-crash!

2.1 1D correlation of 2D patches

A possit.le approach for an approximative estimate of -

the optical flow is to use a ID correlation scheme be- 0

tween two successive frames, instead of 2D correlation, .
as in [2]. The basic idea underlying the full 2D correla-
tion technique that we label RD-SD in this paper2 is to
measure, for each desired location, the (z, y) shift that
maximizes the correlation between 2D patches centered .
around the desired location in successive frames. The
patchwise correlation between the image at time t and
at time t + 6t is defined as

Figure 1: The search space for the ID - 2D scheme used
4(6z, 6y; t) a---(&®I P I'(ý, q; t)I(6z+t, 6y+q; t+6t)d(dqfor the computation of the : and y components of the

J(1) optical flow.

where W (t, q; t) is the image at time t windowed to the
patch of interest and set to 0 outside it. The L2 distance If we combine horizontal and vertical motion detectors
has very similar properties to the correlation measure 3. of our ID, winner-take-all type (see fig.1), we obtain an
In the context of this paper, minimizing the L2 distance appealing scheme to estimate the optical flow field at
is exactly equivalent to maximizing the correlation (the one point. The optical flow in one point is the vector
observation is due to F. Girosi). As noticed before [2], sum of the z and y components computed by using such
the previous idea can be regarded as an approximation motion detectors. The key aspect of this approach is its
of a regularization solution to the problem of computing reduction of the complexity of the problem, while main-
the optical flow4. Usually, one does not use grey values taining a good estimation of the flow field: a complete
directly but rather some filtered version of the image, two-dimensional search required in the winner-take-all
for instance through a Laplacian-of-a-Gaussian filter (see scheme (2] is reduced to two one-dimensional searches.
[2]), possibly at different resolutions. Let us call Vm,.z the maximum velocity expected on the

Let us call D(b, 6,,) the L2 distance between 2 patches image plane. In (2] the search space size to scan is
in 2 frames at location (z, y) as a function of the shift (2vma. + 1)2 for each point; in our approach, ite size
vector (6:, 6y). The "winner-take-all" scheme finds s" = is limited to 2(2vm,.. + 1).
(6;, 6;) that minimizes D (or maximize the correlation
function 0(6, 6b)) and assumes that the optical flow es- 2.2 ID correlation of ID patches
timate is u" = •'/At, where At is the interframe inter- So far we have discussed that ID correlation of 2D
val. patches gives a satisfactory estimate of the optical flow

It is natural to consider whether the component of between two successive frames, reducing the search space
u" along a given direction, for instance x, may be es- of corresponding points. This is equivalent to saying that
timated in a satisfactory way simply by computing the the
6z that minimizes D(6z, 0), that is the patchwise cor-
relation as a function of z shifts only. We have found min6,4(bz, 0)
in our experiments that ID correlation of a 2D patch
provides estimates of 6z" that are very close to the es- and
timates obtained from the RD-2D technique. We label
this technique ID-SD, since it involves one-dimensional min, 46(0, 6y)
correlations on 2D patches. give a satisfactory estimate of

'It is also called winner-take-all method.
3The L2 distance is in this case the square root of the mine,,61 4(6z, 6p).

sum of the squares of the differences between values of cor- This suggests a further simplification: instead of 4(6z, 0)
responding pixels. Other "robust" distance metric may be
used, such as the sum of absolute values. consider a projection on z of 4(bz, by) obtained by some

"4And in turn several definitions of the optical flow such form of averaging operation on y, that is
u Horn and Schunk's, can be shown to be approximations of
the correlation technique [5]. -6 * h2
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where h2 is a 2D filter such as a Gaussian elongated in
the y direction and * stands for the convolution ooerator.
By well known properties of the Gaussian function, h2
can always be written as

h2 =h.h,

where h are Gaussian functions of appropriate variance.
Assuming that we can neglet the patch size in the defi-
nition of 4, we can write:

0 * h2 = (It * h) 0 (It+a * h) (2)

where I, = I(z, y, t).
Thus, in the approximation of a large patch size, pro-

jecting the correlation function is equivalent to appropri-
ately filtering the two images before correlation. Since
it is usually better to discount the average intensity as
well as small gradients through a high-pass filtering op--
eration, in order to estimate the z-component of u, we
just perform a Gaussian smoothing in the y direction, as Figure 2: A TTC detector consisting of elementary mo-
shown in eq. 2, and then perform an additional convo- tion detectors (see figure 1) at several locations along a
lution with the first or second derivative of a Gaussian closed contour. Each of the elementary motion detec-
function elongated in the z direction. Therefore the in- tors could be replaced by a single detector normal to the
tensity function that is used in practice in the correlation circle.
operation is:

S(G., (y) * It) * G"(z) (3) Therefore, since for a linear field Vu = 2/1r where r* ,( is the time to crash (TTC), a TTC detector that ex-
where o, and oa define the receptive field of such an ploits the Green theorem just needs to sum over a closed
elementary motion detector. After this filtering step, it contour, say a circle, the normal component of the flow
is sufficient to evaluate the maximum of the correlation measured at n points along the contour. We assume
function only on 1D patches to obtain an estimate of the that the task is to compute time to crash (TTC) for
z component of the flow. The previous argument does pure translational motion. Possibly the simplest TTC
not strictly apply to the L2 distance measure that we detector of this type, shown in figure 3, is composed of
have used in our experiments. The very close similarity just 4 elementary motion detectors. In this case we have
between correlation and distance, however, suggests a to sum the z-component of u for the horizontal detectors
very similar behavior in both cases. We label this tech- and the y-component of u for the vertical ones, with the
nique the ID-ID scheme since it involves ID correlations correct sign.
of ID patches. Due to the invariance with respect to the position of

the focus of expansion (or contraction) we can in princi-
3 A crash detector: the Green theorem pie arrange a certain number of them (see fig.4) on the

scheme image plane. Our simulations suggest that one detec-
tor with a large radius (fig. 3) is better than several,

As described in [1] (see also [6]), the divergence of the "smaller" detectors (fig. 4) in situations in which the
optical field Vu(z, y) is a differential measure of the local whole visual field expands, probably because of better
expansion (Vu(z, y) + For a linear numerical stability of the estimates. Of course, a "large"

"fl (detector has a poorer spatial resolution and this may be
field (i.e. u(x) = Ax), the divergence of u is the same
everywhere. In the case of linear fields (and all fields can a problem in some applications (but not ours).
be approximated by linear fields close to the singularity), We his e oar scheme for deteting epn
the integral of the divergence over an area is invariant sion. Similar arguments hold for rotation. The Green
with respect to the position of the center of expansion. 's theorem relevant to this case is usually called Stokes'
Green's theorems show that the integral over a surface theorem and takes the form
patch S of the divergence of a field u is equal to the
integral along the patch boundary of the component of VA u(z, y) dS u. dr (5)
the field which is normal to the boundary (u • n). In s1
formula which says that the total flux of the differential measure

of "rotationality" of the field V A u across the surface
patch S is equal to the integral along the boundary C

Vu(z, y)dzdy =L1 u ndl. (4) of the surface patch of the component of the field which
is tangential to the boundary. As described in [1], each
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Figure 3: Time-to-crash detector that exploits Green Figure 5: Motion detector that exploits Stokes' theorem.
theorem.

In all experiments the movement of the vehicle was a
forward translation along a straight trajectory. We have
verified the results obtained from our ID-ID approach
with the standard winner-take-all (SD-SD) scheme [21

[1Figure 9 shows the first and last image of a setquence
composed of 100 frames. Each image of the sequence is
first convolved with a Gaussian filter having a = 0.5. In
both the algorithms we have used v... = 9 and v' =220
pixels, where vin.. is the maximum expected velocity of
the points on the image plane and P' is the ray of the
patch used for the evaluation of 4. In other words, the
correlation window used for the optical flow computation
is 41 x 41 pixels and the search space used is 19 x 19

* * by S9D-SD and 19 + 19 by ID-SD. Figures 10 shows the
optical flows computed by the two methods using two
successive images of the sequence. The position of the
focus of expansion was computed by using the approach
described in (7].

We have used the method described in [7] and [11 to
verify the TTC estimation. To compute the TTC at a

Figure 4: A possible arrangement of TTC detectors in point by using the method in (7], we used an area of
the image plane that is not as efficient as a single TTC 81 x 81 pixels around that point. The points were 10
detector with greater radius but has higher spatial reso- pixels apart. To compute TTC by using the method de-
lution. scribed in [1], we used a lattice of overlapping motion de-

tectors. The distance between two points on the lattice
elemntay dtecor valatesthetanental ow om- was 10 pixels. Each detectors had a receptive field of ray
elemntay deectr ealuaes he tngetia flo con- r = 40 pixels. In fig. 11, we compare the results obtained

ponent at the contour of the receptive field (see flg.5). by using the S0D-SD estimation of the optical flow with
In this case a detector has to compute the component of the iD-S*D one, by using the two different methods in the
u along the tangential direction at the contour. first stage of the TTC. Performing a linear best fit on the

TTC measurements, we obtain a slope of m = -1-036
4 Experimental results by using the optical flows computed by SD-SD and the

4.1 Te JD2D shememethod described in (7], and m = -1.139 by using the
4.1 Te iDSD 111fl6optical flows computed by MID-D and the method de-

We have extensively tested our approach on real image scribed in [1]. Comparing the true TTC (straight line
sequences. Each sequence was acquired from a camera in fig. 11) with the TTC measures obtained by using
mounted on mobile platform moving at constant velocity, the second method, we estimate an absolute error in the
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mean of 2.63, with a standard deviation of 3.35 frame
unit. In terms of relative units, the error in the mean is
5.7% with a standard deviation of 6.1%. Figure 8: ID distance function computed on the.y direc-

tion by using ID-iD.

4.2 The ID-iD scheme

In this section we compare the results obtained by us- tor, with receptive field of r = 80 pixel, composed by 32
ing SD-2D and ID-ID. In both techniques, we have used elementary motion detectors (see fig. (2)).
Vi.. = 9 and v = 20 pixels. In other words, the cor-
relation window used for the optical flow estimation is 5 Conclusions
41 x 41 pixels for ID-2D and 41 pixels for ID-iD. In
the filtering step we have used o,, = 6 and a. = 3 pix- 5.1 Extensions of the optical flow algorithm
els for computing the z-component of the optical flow. There are several directions in which we plan to improve
These values of o, produce a receptive field of an elemen- and extend our scheme:
tary motion detector equals to that used by 2D-SD (1681
pixels). The fig. (6) shows a plot of the 2D correlation 9 it may be possible to reduce further the number of
function used in SD-SD over a 2D search space and a sample points for Dp (i.e. the number of shifts) by
2D integration area. Figures (7) and (8) show a plot of using techniques for learning from examples such
ID correlation functions used by the ID-iD technique as the RBF technique ([8]) to approximate Dp(6z)
to estimate both components of the optical flow. In this a Dp(6z) = E'c.G(z - t.), and then find the
case we used two ID search spaces (in z and y directions minimum of D. in terms of the dynamical system
respectively) and a ID integration area. Notice that this dz/dt = -e E cnG'(z - t.). An alternative strat-
approach is capable of computing a reliable estimation egy is to try to learn directly the function minD,(z)
of the flow vectors, while reducing the complexity of the from the samples of D., using a few examples of Dp
problem. "typical" for the specific situation. The conjecture

Figures (13), (17), (21) show the first and the last im- is that the RBF technique may be able to learn the
age of three sequences acquired from a camera mounted mapping minD (z) from examples of functions of
on a mobile platform moving at constant velocity, along the same clas (compare Poggio and Vetter, 1992).
a straight trajectory. Figures (14), (18), (22) show the A similar idea is to try to learn how to sample the
optical flows computed by the two methods, by using correlation function as a function of past sampled
two successive frames of the sequences. The mean (con- values. Again, the training examples would be func-
tinuous line) and the standard deviation (dashed line) tions of the same clas. This would provide at each
of the error on the optical flow estimation is shown in t an estimate of the mosl. appropriate correlation
figures (15), (19), (23). Figures (16), (20), (24) show shifts to try.
the TTC estimation by using the two different methods. * instead of simply measuring Di,,._ 1 , that is the dis-
In each experiments, we have used only one TTC detec- tance between frame i and frame i- 1, we could inea-
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sure in addition also Di,i- 2, Di,i- 3 , ...and combine fly this is plausible, given the known summation proper-them in an estimate of the optical flow component ties of specific wide field lobula plate cells6 . Our ID-ID
by taking the average of Di,.-./At, Di,i_-/2At, scheme on the other hand would require a summation
D,,i_ 3/3At, etc. This technique may be improved over the z dimension only (in our example) but an ori-further by using a Kalman filter. ented filtering of the image with receptive fields elon-

" the same basic scheme of figure I may be used to gated in y before the elementary motion detectors. It
compute horizontal and vertical disparities among is possible that this second scheme may be used in the
the two frames of a stereo pair. fly by different summation cells with smaller receptive

fields. It is also possible that the wide field lobula plate" confidence measures will be developed to further im- cells effectively implement a scheme between the iD-2Dprove the performance of the technique. and the ID-ID by using some oriented filtering before
5.2 Biological implications of our ID technique motion detection and limited y integration of the output

of the elementary motion detectors. Similar considera-Poggio et al. ([1]) conjectured that "the specific type tions may apply to some of the motion selective cortical
of elementary motion detectors that are used to pro- cells.
vide the estimate of the normal component of the flow
is probably not critical. Radially oriented (for ex- 5.3 The Time-to-Crash detector
pansion and contraction), two input elementary mo-tion detectors such as the correlation model [9; 10; 11; The TTC detector we have simulated is not the onlyti o n d et e t o r s s u c a s h e c r r el ti o m o d l 1 9 1 0 ; 1 1 ;ib le s c h e m e . O t h e rs ar e p o s s ib le (s e e fo r in s t an c e12] - or approximations of it are likely to be adequate. psil sh eme. Oth ao re posilex ( orionstancThe critical property is that they should measure mo- [6])that take into account more complex motions than
tion with the correct sign." Our results confirming their just frontal approach to a horizontal surface.
conjecture (since they suggest that ID correlation (or L2  It is also conceivable that the scheme we suggest may
distance estimation) are sufficient for an adequate esti- be simplified even further in certain situations. For in-
mate of qualitative properties of the optical flow) have stance, it may be sufficient in the summation stage to use
interesting implications for biology. Consider a 2D array the value of the correlation for a fixed (and reasonable)
of Reichardt's detectors (for motion in the z direction) shift - instead of an estimate of the optical flow, that is
with spacing Ax and also detectors with spacings 2Az the shift that maximize correlation. This is equivalent
etc. Take the sum of all detectors with the same spacing to use directly the output of Reichardt's correlation nets
over a 2D patch. Perform a winner-take-all operation on instead of using the result of a winner-take-all operation
these sums. Select the set with optimal spacing as the on a set of Reichardt's nets with different spacings (or
one corresponding to the present estimate of optical flow. delays).
This scheme is analog in time but otherwise equivalent Another related idea is to continuously adjust the cor-
to the one we have implemented. In formulae relation shifts in order to track as closely as possible the

maximum of the correlation (or the minimum of the dis-E(Ii(t) - Ii+k(t - At))2  tance): in this way it may be possible to reduce the com-putation of the correlation to just a few shifts, especiallywhere At is the interframe interval in our implementa- if time-filtering techniques are also used.
tion and is the delay in Reichardt's model5 , k represents
the shift in our computation of D and represents the sep- Acknowledgments: We are grateful to John Harris and
aration between the inputs to Reichardt's modules, li(t) Federico Girosi for many discussions and very usefulcat
is the image value (in general spatially and temporally comments.
filtered) at location i and time t and the sum E is taken
over the 2D patch of detectors of the same type. References
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Figure 16: ITC estimation by using one TTC detector,
with receptive field of r = 80 and 32 elementary motion
detectors. The slope of the true TTC, computed by us-
ing the optical flows obtained by SD-SD, is mn = -0.672.
The slope of the straight line, computed by using the
TTC measures obtained by ID-ID, is m = -0.64. A
comparison of the TIC measures obtained by JD-iD
with the true TTC yields a mean absolute error of 9.02,
with a standard deviation of 9.54. The relative error in
the mean is 10.79% with a standard deviation of 9.49%.
In order to evaluate the error in the time to crash esti-
mation, the following steps have been performed. The
true time to crash was estimated from a linear best fit of
"the TTC measures obtained by using the SDOAD scheme
for the optical flow estimation. The figures show the
straight line that represents the theoretical behavior of
the TTC. A linear best fit of the TTC measures obtained
by using the IDID scheme for the optical flow estima- 1. -

tion was then performed in order to evaluate the slopesof the two straight lines. The aolute and relative error
between the "true TTC and the one measured by the
ID-ID scheme was then estimated. Let us call r* the
true TTC. The absolute error is E. = of- r and the
the relative error is E, = n- ri/IrI.

* 0 20 U C U 0 760 too

Figure 19: Mean (dotted line) and standard deviation
(dashed line) of the error relative to optical flow estima-
tion.

a b

Figure 17: (a) First and (b) last image of the sequence.
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Figure 20: TTC estimation by using one TTC detector,
with receptive field of r = 80 and 32 elementary motion Figure 23: Mean (dotted line) and standard deviation
detectors. The slope of the true TTC, computed by us- (dashed line) of the error relative to optical flow estima-
ing the optical flows obtained by SD-ID, is m = -0.77. tion.
The slope of the straight line, computed by using the
TTC measures obtained by ID-ID, is m = -0.83. Com-
"paring the TTC measures obtained by ID-ID with the
true TTC, we had a mean absolute error of 8.02, with a
standard deviation of 8.97. With respect to the relative T

error we had a mean of 10.9% and a standard deviation F ure
of 9.72%. -IM-
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n dwith receptive field oft = 80 and 32 elementary motion

detectors. The slope of the true 'TC, computed by us-
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The slope of the straight line, computed by using the
TTC measures obtained by ID-ID, is m-1 .14. Comn-

...... .paring the TTC measures obtained by ID-ID with the
L- true TTC, we had a mean absolute error of 7.8, with a

a b standard deviation of 7.9. With respect to the relative

Figure 22: Flow field obtained by using (a) ID-ID and erof 10.3a%. f 14 ndasanaddeito
(b) ID-iD.
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Conrad J. Poeman and Takeo Kanade
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3890

(Conrad.Poelman@cs.cmu.edu, tk@cs.cmu.edu)

Abstract Their method uses an orthographic projection
model, which is described by linear equations. It

In this paper, we present a method for recovering achieves its accuracy and robustness by using a
both the shape of an object and its motion relative large number of images and feature points, and by
to the camera, from a sequence of images of the directly computing shape without computing the
object, using feature points tracked throughout the depth as an intennediate step. The method was
sequence. Our method uses a projection model tested on a variety of real and synthetic images,
known as paraperspectve projection, which and was shown to perform well even for distant
closely approximates perspective projection by objec
modelling two effects not modelled under There are, however, some limitations of the method
orthographic projection; the apparent change in due to its use of the orthographic projection model.
size of an object as It moves along the camera's The model contains no notion at all of the distance
optical ais, and the diferent angle fom which an from the camera to the object. As a result, image
object is viewed as it moves parallel to the image sequences containing large trauslstions toward or
plane. Our paraperspecave factorization metnar away from the camera often produce deformed
can be applied to a wide range of motion scenar- object shapes, as the method tries to explain the
los, and can recover the distance from the camera size differences in the images by creating size dif-
to the object In each image. The method assumes ferences in the object. It also supplies no estima-
no model of the motion or of the object's shape, tion of translation along the camera's optical axis,
and recovers the shape and motion accurately even which limits its usefulness for certain tasks.
for distant objects.'

Fortunately, there exist several perspective approx-
1. Introduction imations which capture more of the effects of per-

spective projection while remaining linear. Scaled
Recovering the geometry of a scene and the motion orthographic projection, sometimes referred to as
of the camera from a stream of images is an impor- "weak perspective" [Mundy and Zisserman, 1992],
tant task in a variety of applications, including nay- accounts for the scaling effect of an object as it
igation, robotic manipulation, and aerial moves towards and away from the camera. Parap-
cartography. While this is possible in principle, tra- ezpective projection, first introduced by Ohta
ditional methods have failed to produce reliable [19811 and named by Aloimonos [19901, accounts
results in many situations [Broida et al., 1990]. for the scaling effect as well as the different angle

from which an object is viewed as it moves in aTomasi and Kanade [1991la, 1991Ib] developed a direction parallel to the image plane.

robust and efficient method for accurately recover-

ing the shape and motion of an object from a In this paper, we present a new factorization
sequence of images using extracted feature points. method based on the paraperspective projection

model. The paraperspective factorization method
1. This research was parily suppmed by the Avionics Labo- takes a set of points extracted from the images and
rawry. Wright Research md Development Cenam. Aemnsi- tracked from one image to the next, and computes
cal System Division (AFSC), U.S. Air Forcem Wriht- the shape of the object and the motion of the cam-
Patterson AFB. Ohio 45433-543 trader Contract M33615-90.
C1465. ARPA Order No. 7597. era. The method is still fast and robust with respect
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to noise. However, it can be applied to a wider goal is to recover the estimated shape of the object,
realm of situations than the original factorization given by the position I, of every point, and the
method, such as sequences containing significant estimated motion of the camera, given by if, if, it
depth translation or containing objects close to the and If for each frame in the sequence. Rather than
camera, and can be used in applications where it is recover if in world coordinates, we generally
important to recover the distance to the object in recover the three separate components if I-, ifr j1,
each image, such as navigation, and ir &,-

We begin by describing our camera and world ref- Implicit in this formulation is the requirement that
erence frames and introduce the mathematical every feature point be visible in every frame. Han-
notation that we use. We review the original factor- dling occlusion for the orthographic factorization
ization method as defined in [Tomasi and Kanade, method has been covered in [Ibmasi and Kanade,
1991b], presenting it in a slightly different manner 1991b], and handling occlusion for the paraper-
in order to make its relation to the paraperspective spective method will be covered in a future paper.
method more apparent. We then present our parap-
erspective factorization method. We conclude with 3. The Orthographic Factorization Method
the results of some experiments which demonstrate
the practicality of our system. This section presents a summary of the orthogra-

phic factorization method. A more detailed
2. Problem Description description of the method can be found in [Ibmasi

and Kanade, 1991a, 1991b].
In a shape-from-motion problem, we are given a
sequence of F images taken from a camera that is 3.1. Orthographic Projection
moving relative to an object. We locate P promi-
nent feature points in the first image, and track The orthographic projection model assumes that all
these points from each image to the next, recording rays are projected from the object point parallel to
the coordinates (xz,.yd of each point p in each the camera's optical axis so that they strike the
image f. Each feature point p that we track corne- image plane orthogonally, as illustrated in Figure 2.
sponds to a single world point, located at position
s. in some fixed world coordinate system. Each
image f was taken at some camera orientation,
which we describe by the orthonormal unit vectors
If, jf, and kf, where k. points along the camera's
line of sight, if corresponds to the camera image
plane's x-axis, and J, corresponds to the camera
image's y-axis. We describe the position of the
camera in each frame f by the vector t. pointing to
the camera's focal point. This formulation is illus- -":"if" __"trated in Figure 1. •'

/If world i

Cmera Figure 2. Orthographic projection in two
dimensions

Dotted lines indicate true perspective projection

world Under orthographic projection, a point p whose
legth I origin location is s, will be observed in frame f at image

Figure 1. Coordinate system coordinates (x,,.y,

The result of the feature tracker is a set of P feature

point coordinates (xv/y,) for each of the F frames We can rewrite these equations as

of the image sequence. From this information, our Xh, = m/Is, + cx, yf = no. s, + cy (2)
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where and shape are given by

cxf - -(t* If) cy, = -(t jO) (3) M = fA S = A-19, (9)

mf = If no= J (4) when the 3x3 invertible matrix A is selected
appropriately. We observe that the motion matrix

3.2. Decomposition M must be of a certain form. Because i1 and J. are
unit vectors, we derive from equation (4) that

We organize all of the feature point coordinates
(x1 ,,y) into a 2F x P measurement matrix W. MA = I [ = 1, (10)

and because they are orthogonal,

S......... m .I o = 0. (11)

W = xiri ... XFp (5) Equations (10) and (11) give us 3F equations
Y11 ... ylp which we call the metric constraints. Using these
S... ...... constraints, we solve for the 3 x 3 matrix A which,

yV, ... yP when multiplied by ft, produces the motion matrix
Each column of the measurement matrix contains M that best satisfies these constraints. Once theEachcolmn f th mesurmen matix ontins matrix A4 has been found, the shape and motion are
all the observations for a single point, while each computed from equation (9).

row contains all the observed x-coordinates or y-

coordinates for a single frame. We combine equa- 4. P Factorization Method
tion (2) for all points and frames into the matrix
equation

4.1. Paraperspective Projection
In this paper, we use an approximation to perspec-

where M is the 2F x 3 motion matrix, S is the 3 x P ive projection known as paraperspective projec-
shape matrix, and T is a 2F x I translation vector. tion, which was introduced by Ohta in order to

Up to this point we have not put any restrictions on solve a shape from texture problem. Paraperspec-
the location of the world origin, except that it be five projection closely approximates perspective
stationary with respect to the object. For simplicity, projection by modelling both the scaling effect and
we set the world origin at the center-of-mass of the the position effect (so called because the amount of
object, denoted by c, so that apparent rotation depends on the object's position

in the image relative to the center of projection
C= Y s, = P . (7) [Aloimonos, 19901), while retaining the linear

,S= properties of orthographic projection. The paraper-
This enables us to compute the iP element of the spective projection of an object onto an image,
translation vector T directly from W, simply as the illustrated in Figure 3, involves two steps.
average of the (h row of the measurement matrix. 1. The points of the object are projected along the
We then subtract the translation from W, leaving us direction of the line connecting the focal point of
with a "registered" measurement matrix W'. the camera to the object's center-of-mass, onto a
Because w' is the product of a 2F x 3 motion plane parallel to the image plane and passing
matrix M and the 3 x P shape matrix S, it's rank is through the object's center-of-mass.
at most 3. We use singular value decomposition to 2. These points are then projected onto the image
factor w' into plane using perspective projection. Because the

points are all on a plane parallel to the image
W'A= S. (8) plane, this is equivalent to simply scaling the

3.3. Normalization image by the ratio of the camera focal length and
the distance between the two planes.'

The decomposition of equation (8) is not unique. In In general, the projection of a point p along direc-
fact, any 3 x 3 non-singular matrix A and its inverse tion r, onto the plane with normal n and distance
could be inserted between ft and S, and their prod- from the ongin d, is given by the equation• - r. We drojgient the obequtipoint
uct would still equal vW. Thus the actual motion p' = p - r. We project the object point s,
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For simplicity, we assume unit focal length, I = 1.

We have not up to this point put any requirements
on our world coordinate system except that it be
stationary with respect to the object. We simplify
our equations by placing the world origin at the
object's center-of-mass, or setting c = 0, reducing
(14) to

Xf i-f(tt k,,If [if J+-k•.p

c~ Y,4= [if + !L f]-S (tr P/
Cf ZI

nf-o-nl.h world Tese equations can be rewritten as
Fegu .e origin xf, = m ,s,+cz1 x yf = of.sp+cyI (16)
Figure 3. Paraperspective projection inwhere

two dimensions
Dotted lines indicate true perspective projection = -tf. k/ (17)

• • indicate parallel lines.
t-i . (18)

along the direction c - t., which is the direction CX= _" cyt= (8

from the camera's focal point to the object's center-

of-mass, onto the plane defined by normal kf and m= Ifcx-k J-cy kf (19)
distance from the origin c. kf, giving Z1 I f

(s,- ký) - (c. kf) Notice that equation (16) is identical to its counter-
s't = s- (c- t () k, t) (12) part for orthographic projection, equation (2),

although the corresponding definitions of cxf, cyf,

The perspective projection of these points onto the in1 , and nf differ. This similarity enables us to per-
image plane is given by subtracting tf from s'f, to form the basic decomposition of the matrix in
give the position of the point in the camera's coor- exactly the same manner as we did for orthogra-
dinate system, and then scaling the result by the phic projection.
ratio of the camera's focal length to zf, the depth to
the object's center-of-mass, where zf = (c - t) . kc. 4.2. Decomposition
This yields the coordinates of the projection in the
image plane, We can combine equation (16), for all points p

I J (3 from i to P, and all frames f from I to F, into the
x, ( L, =-s-single matrix equation

5, ,

Substituting (12) into (13) and simplifying yields X11 ... XIP m, CT,
the general paraperspective equations for x., and ......... ......
YAP XWp ... XJrP = MI,. ]+cx[. (20)

in= _ {r - (c - th Y 1 ... YIP" Unt I .. P cYl 20

=1 [it-_f / ] • (s,-C) + (C-tf) .IV) ......... ......
f [ f(14) _Y t ..Y. .rip .CyF

if =1 i-. (c- 9 (SP-c) + ((-9 A/)
jP LZ ' 2t, kJf]ct, or

W = MS+T[E ... , C21)
1. The scaled orthographic projection model (also known as
"weak =e tive") is similar topeaperspective projection, where W is the 2F x P measurement matrix, U is
excepthat thedirection of the initial projection is parallel to the 2Fx3 motion matrix, S is the 3xP shape
the camera's optical axis rather than parallel to the line con-
necting the object's center-of-mass to the camera's focal poinL matrix, and T is the 2F x I translation vector. We
This model captures the scaling effect of perspective projec- have set c = 0, so by definition
tion. but not the position effect. See [Poe-man and Kanade,
1992I for a scaled orthographic factorization method.
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P vectors and are orthogonal. According to equation
C = s,= 0. (22) (19), we observe that

p-i

Using this and equation (16) we can write A + 1+4cxj Cy (28)
P P P 4zZ

xII= PI (m.s,+cx) =M1. ss,+Pcx,=Pcz, We know the values of cx and cy, from our initial
,, -i P (23) registration step, but because we do not know the

I Y•,= I (ua.+ s+cyf) = Df 7.sp +Pcy 1 = Pcy/ value of the depth z,, we cannot impose individual
P.1  p.- I" constraints on the magnitudes of m,, and n. as we

Therefore we can compute cx, and cy, immediately did in the orthographic factorization method. How-
from the image data as ever, from equation (28) we see that

C/= 2 T If, T= I Y,. (24) 1 _ Imi2  2

We subtract these values from the corresponding Therefore we adopt the following constraint on the
rows in w, giving the registered measurement magnitudes of m,, and ,,:
matrix

I. A 2X 1 +3A 2  = 0. (30)

In the case of orthographic projection, one con-
Y= X1 ... [i = mS [S ... sP straint on m.and nwas that they each have unit

.i. , n• magnitude, as required by equation (10). In the

.I........ ....... above paraperspective version of those constraints,
.Yin ... yP _Cp_ we simply require that their magnitudes be in a cer-

(25) tain ratio.

Since w" is the product of two matrices each of There is also a constraint on the angle relationship
rank at most 3, w' has rank at most 3, just as it did of m,, and nu. From the definition of m,, and n1, we
in the orthographic projection case. If there is noise have
present, the rank of w' will not be exactly 3, but by
computing the singular value decomposition cxmcy,
(SVD) of w' and only retaining the largest 3 singu- f2(

lar values, we can factor II" into The problem with this constraint is that, again, z. is

W = 0, (26) unknown. We could choose to use either value

where M is a 2F x 3 matrix and S is a 3XP Matrix, from equation (29) for l/zf2 , since theoretically
Using the SVD to perform this factorization guar- they should be equal, but we use the average of the

antees that the product W is the best possible rank two quantities. We choose the arithmetic mean
nto w, in the sense that it mini- over the geometric mean or some other measure in3approximation ow'inhessetaitmn- order to keep the constraints linear in Q = ATA.

mizes the sum of squares difference between corre- our second constraint beomes

sponding elements of w' and 0. Thus our second constraint becomes

CX"I CAD
4.3. Normalization ruM/ mJ1A 2 cx-cyA2 = 0. (32)

z2 (1 + cxf) 2 (1 + cyf)

Just as in the orthographic case, the decomposition This is the paraperspective version of the orthogra-
of W into the product of ft and S is not unique. We phic constraint given by equation (11), which
need to find the matrix A that gives the true shape required that the dot product of mf and n/ be zero.
and motion Equations (30) and (32) are homogeneous con-

M = ftA S = A-1S (27) straints, which could be trivially satisfied by the
solution M = 0. To avoid this solution, we impose

Again, we determine this matrix A by observing the additional constraint that
that the motion matrix M must be of a certain form.
We take advantage of the fact that i. and ji are unit [m,1 = L. (33)
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This does not effect the final solution except by a ^ i= =
scaling factor. it n~, X k11 kXMf(0

There is no guarantee that the I, and J, given by

Equations (30), (32), and (33) are the paraperspec- this equation will be orthonormal, because m1 and
Live version of the metric constraints, and we corn- n, may not have exactly satisfied the metric con-
pute the 3 x 3 matrix A such that M = ftA best straints. Therefore we actually compute the
satisfies the metric constraints in the least sum-of- orthono-rial It and 3, which are closest to the val-
squares error sense. This is a simple problem ues given by equation (40). Due to the arbitrary
because we have been careful to ensure that they world coordinate orientation, to obtain a unique
are linear constraints in the 6 unique elements of solution we then rotate the computed shape and
the symmetric 3 x 3 matrix Q = ArA. We use the motion to align the world axes with the first
metric constraints to compute Q, compute its frame's camera axes, so that 1, = Eo 0 OjT and
Jacobi Transformation Q = LALr, where A is the J 0 1 Of .
diagonal eigenvalue matrix, and as long as Q is J

positive definite, A = (LA' 4 ) . All that remain to be computed are the translations
for each frame. We ca! ;ulate the depth z, from

4.4. Shape and Motion Recovery either part or some com'nination of the parts of
equation (29). Since we already know cx., cy, it,

Once the matrix A has been determined, we com- and 3,, we can calculate if using equations (17) and
pute the shape matrix S and the motion matrix M (18).
using equation (27). For each frame f, however,
there is a more complex relationship between the S. Experiments
actual translation and rotation vectors and the m1
and nvectors, which are the rows of the matrix M. 3.1. Parameters
From equation (19) we can see that

To test our method, we created synthetic point
It = ZDC+ . ) quences using a perspective projection model of

From this and the knowledge that if, 3,, and &• must )bjects undergoing motion. We perturbed the coor-
be orthonormal, we determine that dinates of each point by adding gaussian noise,

whose standard deviation was varied from 0 to 4
If X×= (zhm,+cxif) x (zn.+cykfj) = if pixels (of a 512x512 pixel image). We used 3 dif-

i) Iz lm/+ c.A- 1 (35) ferent object shapes, each of unit size and contain-
ing approximately 60 feature points. All of the test

]Jzi = iz,,+cyI =1 runs consisted of 60 image frames of the object
Again, we do not know a value for z1, but using the rotating through a total of 30 degrees each of roll,
relations specified in equation (29) and the addi- pitch, and yaw. The depth, representing the dis-
tional knowledge that ILA = 1, equation (35) can tance from the camera's focal point to the front of

be reduced to the object in the first frame, was varied from 3 to
60 times the object size. In generating our synthetic

Gli= Hf, (36) images, for each depth we chose the largest focal
where length which would keep the object in the field of

view. For each combination of object, depth, and
[(Cnx if] ixnoise, we performed three tests, using different

SCira, _I f] (37) random noise each time.

_-cy We used several different methods to recover the
shape and motion of the object and compared !he

= +-cx- f = 1+-cyn- (38) accuracy of the results; the orthographic factoriza-
M i + I tion method, the scaled orthographic factorization

We compute if simply as method (see [Poelman and Kanade, 19921). the
paraperspective factorization method, and the full

/= GH/ (39) perspective method which iteratively solves the
and thnoperspective projection equations (see [Poelman and

and then compute Kanade, 1992]). Because iterative methods are
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generally very sensitive to initial conditions, we away from the camera by a total of one half the
tested the latter method using two different starting object's initial distance from the camera (thus in a
values: the results of the paraperspective factoriza- test case in which the object's depth in the first
tion method, and the true shape and motion. The frame was 3.0, its depth in the last frame was 4.5).
last method is unfortunately not an option in real These tests were done using a noise standard devia-
systems, but indicates what is essentially an upper tion of 2 pixels, which we consider a rather high
bound on the accuracy achievable using a least noise level. At low depths, perspective distortion is
sum-of-squares difference formulation of the full a significant source of error in the computed
perspective projection model, without making results. Interestingly, our experiments show that for
assumptions about the motion or object shape. objects farther from the camera than 7 times the

object size, refining the paraperspective solution
5.2. Error Measurement using the perspective iteration technique improves

the rotation and translation very little. However,
We present here the total shape eror, rotation error, even at depths beyond 30 times the object size, the
X-Y offset error, and Z offset (depth) error. The perspective refinement method significantly
term "offset" refers to translations along the cam- improves the shape.
era components; the X offset is i,. i, the Y offset is

it. J1, and the Z offset is i!. if. The shape and trans-
lations are only determined up to scaling factor, ...... ftW*Nf F
since it's not possible to distinguish a house 50m J 25- "
away from a 1/10th scale model of the house 5m -.... -~b Mob.'

away. To compute the shape error, we find a scaling = MM•W
factor which minimizes the root-mean-square ,s..0 A\ ,smA
(RMS) error between the true and computed shape, \ -...............

and then return this error. We use the same method
for the X-Y offset, and for the Z offset. The rota- SAO All
tion error is computed as the RMS of the size in -
radians of the angle by which a computed camera Do to to Pus D i Is Pss

frame must be rotated about some axis to produce .------. S." ......... i,

the true camera frame. -,FM4

5.3. Results ifW 29..

We found that the paraperspective method per- Nt ="
formed significantly better than the orthographic 40 ,. /
factorization method in image sequences in which 3=

there was depth translation or the object was not 20 10nn

centered in the image. In the experiments in which AO ,.00
the object was centered in the image and there was A.

no depth translation, we found that the orthogra- o a, 0- "D a 30•, 0
phic factorization method performed well, and the Figure 4. Methods compared for a typical case
paraperspective factorization method provided no
significant improvement. This is not surprising, The behavior of the paraperspective factorization
since the orthographic method is in effect incorpo- method for the same motion scenario over a range
rating knowledge about the object motion - that the of noise levels is shown in Figure 5. Once the
object is centered in the image and not translating object is far enough from the camera that perspec-
toward or away from the camera. tive effects are minor, the error in the computed
The average error results were very similar for all solution is nearly proportional to the amount of
of the objects, so our graphs show the average error noise in the input.
over all 3 runs of all 3 objects. Figure 4 shows how We implemented the methods in C and performed
the various methods performed in a scenario in the experiments on a Sun 4/65. Solving the system
which the object moved across the screen one unit of 60 frames and 60 points required about 20-24
horizontally and one unit vertically, and moved seconds foi each of the three factorization meth-
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41AI. an Tbe paraperspective factorization method corn-
7....... 1. putes the distance from the camera to the object in

-.... _each image, which enables its use in a wider rangeJ 3m *.,=':* -- of scenarios. The method performs well over a

". ...... Sin wide range of motions, is efficient, and is robust.
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Understanding Noise : The Critical Role of Motion Error in Scene
Reconstruction *

J. Inigo Thomas Allen Hanson John Oliensis
Department of Computer Science, University of Massachusetts

Amherst, MA 01003

Abstract been acquired. However, in order to recursively refine
the 3D structure, a reliable estimate of the error in the

In Structure from Motion algorithms, the error in the 3D structure is required. If the estimate of the error is
estimated motion affects each reconstructed 3D point in unreliable, this results in random behavior or possibly
a systematic way. This paper attempts to isolate the systematically erroneous behavior. One of the biggest
effect of the motion error (as correlations in the struc- problems in MFSFM is that it is difficult to represent
ture error) and shows theoretically that these correla- the error in the structure reliably.
tions can improve existing multi-frame Structure from One representation of the reconstruction error is a
Motion techniques. Finally it is shown that new experi- complete covariance matrix. That is, if the scene is
mental results and previously reported work confirm the reconstructed by n 3D points, then the reconstruction
theoretical predictions. error is represented by a covariance matrix of size 9n 2 .
1 Introduction This covariance matrix is difficult to compute, expensive

to store, and computationally complex to manipulate.
Due to problems in two-frame Structure from Motion Presumably for these reasons, almost all of the work in
(SFM) [4], an obvious solution has been to use more than recursive MFSFM has only used a portion of the covari-
two frames to reconstruct the environment. Although it ance matrix, with poor results. It is being argued in
is theoretically conceivable that using enough different [19] that, in general, every entry of the covariance ma-
views should make it possible to achieve any required trix is meaningful; arbitrarily neglecting entries in the
accuracy, achieving stable and reliable 3D reconstruc- matrix could amount to a bad approximation of the ac-
tions is still difficult. Based on an algorithm presented tual reconstruction error (for general camera motion).
by Thomas and Oliensis [18] [12] we show that in or- A simplistic explanation is as follows. The main source
der to obtain a stable and reliable reconstruction (for of error in all structure from motion algorithms is the
general motion), the effect of the interframe motion er- error in the estimated camera motion. The motion er-
ror has to be taken into account; we argue that ignor- ror affects all the 3D coordinates of the reconstruction
ing this component could have resulted in the failure of in a systematic way; i.e., the errors in all the 3D coor-
previous (recursive) multi-frame SFM (MFSFM) algo- dinates are correlated. For example, if the translation
rithms. The theoretical and experimental evidence for component of the camera motion is erroneous, each 3D
the critical role of motion error (in MFSFM) is the main coordinate would be displaced along the same direction.
contribution of this paper. Since every element of the covariance matrix represents

the correlation of the error between pairs of 3D points,
2 Problems in MFSFM arbitrarily neglecting portions of the matrix (e.g. all off-

diagonal terms) could have serious consequences. The
Using multiple images introduces different sets of prob- following section is a theoretical analysis of the meaning
lems, depending on whether the algorithms are batch and the role of cross-correlations in recursive MFSFM
methods or recursive methods. Due to the large search algorithms.
spaces involved, batch methods impose restraints on the
camera motion ([13] [2] [10] [5] [17]) or constrain the 3 Theoretical Motivation for Using
camera model [20]). However recursive MFSFM algo- Cross-correlations
rithms need not impose such restraints (although early
research typically was constrained; cf. discussion in Sec- Let R be the entire reconstruction, made up of n 3D
tion 4). Recursive MFSFM algorithms are also more points (R,, i = I...rn).
practical for robot navigation applications since neither Since each R, is obtained from a two-frame algorithm
time nor storage is lost waiting until enough frames have effectively by triangulation, it has two sources of error.

"This work was supported by DARPA (via TACOM) n- The first source is the error in the interframe motion,
der contract number DAAE07-91-C-R035 and by NSF under or the relative orientation of the cameras. The second
grant CDA-8922572. source of error is the noise in the image coordinates. A
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reasonable approximation of the total error in R, is to For the sake of exposition let us assume that the co-
express it (using first order terms) as the sum of the error ordinates of the two points have changed considerably
due to the interframe motion and the error due to the between the two images, resulting in large optical flow.
image coordinates; the error in R, is Therefore, a small error in the optical flow (which corre-

6k, 6k. sponds to a small error in I) has little effect on the error
dR, = ý--dW + -L. (1) in the motion, dW; i.e.

where W represents the interframe motion and I, rep- E(dWdIT) : 0 i = 1, 2 (7)
resents the image coordinates of the point; dW and dI. For this particular case, the expansion of Equation 6 is
represent the respective errors.

When the error in R is represented as a covariance 6R 1  -6 R2
matrix the elements of this matrix are given by the fol- E(dRi dR 2) = bwCOV(dW dW)- (8)
lowing equation :

O dR =( E(dR, dR) ... E(dR dR) Equation 8 shows that the cross-correlation is directly

COV(dR dRT) ... proportional to the motion error, represented as the co-
E(dR. dR 1) ... E(dR. dR4) variance of the error in the motion (dW). If Equation

(2) 7 does not hold the situation is more complicated: the
where E(m) denotes the expected value of z. cross-correlation is influenced not only by the motion

In this theoretical analysis, in order to bring out the error but also (indirectly) by the error in the image co-
meaning and role of the cross-correlation terms clearly, ordinates. In either case, the cross-correlation term is
we will assume that we have a reconstruction consisting closely related to the motion error.
of just two points. 3.2 The Effect of Cross-correlations in Kalman

3.1 The Meaning of Cross-correlations: The Filtering
Two Point Case In this section the analysis is extended to study the ef-

In this case, the covariance matrix is reduced to fect of cross-correlations on refining reconstructions us-
/ E(dR1 dRi) E(dR1 dR2) ing the Kalman filter.

COV(dR dR I RThe goal of the Kalman filter is to optimally fuse the
E(dR 2 dR1 ) E(dR 2 dR 2) reconstructions over time and obtain the best reconstruc-

(3) tion (by limiting the reconstruction error). If we assume
This covariance matrix has four correlation terms, two that the noise in every new reconstruction (R(t) at time
of which are equivalent (E(dR, dR 2) and E(dR 2 dR,)), t) is Gaussian, then the optimal fused reconstruction is
The other two (E(dR, dR,) and E(dR2 dR2 )) are the the sum of the individual reconstructions weighted by
covariance of the error in R 1 and R 2 ; these are typi- the inverse of their covariances. Given this the optimal
cally assumed to represent the complete error. However, fused reconstruction (A) at time t is as follows (i.e. stan-
here we will concentrate on the cross-correlation term, dard Kalman filtering [6]) :1
E(dRi dR 2).

Using Equation 1 the cross-correlation term can be t
expanded as in Equation 4: A(t) = N E COV(R(t))-' R(t) (9)d1, R ) 6 R2dW 6 R2d1 T

E(dR, dR 2 ) = E[(6WwdW+ý-dI,)(•2dW+ •-2 d12)T] In order to determine the exact contribution of a single
2 (4) reconstruction (COV(R)-i R or RW, for weighted R)

Since it is realistic to assume that any two arbitrary at any time (t) the covariance can be expanded using
image coordinates (of chosen points) are corrupted by Equation 3 (and assuming Equation 7 is valid) in the
independent noise, i.e. following way:

E(d11 d1 2 ) = 0 (5) COV(R) S1 + Mil M 12  (10)

one of the terms in the expansion of Equation 4 will M2 S 2 + M 2
vanish. The resultant expansion is given in Equation 6: where

61., ...... 6. COV6d
E(dR, dR 2) = R-- E(dWdWT) 6R- Si = -L.COV(dI a%)-) (11)

6R R R r,, W 6Ri

+6 LwE(dWdIT)•R2 + -R,- E(dITdW) (6) and
6W (6) 6' 61(2

M1, = T-COV(dW dW) (12)
Given Equation 6, the only way the cross-correlation W

term will end up being zero is when the three terms for- Si represents the error in the 3D coordinates due to the
tuitously cancel; in all other cases the cross-correlation error in the image coordinates (dl) assuming that the

term has an effect on the performance of the recur- motion is perfectly known; Mij represents the error in

sive MFSFM algorithm. Furthermore, the situations in the 3D coordinates due to the error in the interframe
which the three terms cancel each other out are most 'N (in Equation 9) is a normalizing term which is irrele-
likely rare. vant for this analysis.
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camera motion (dW) assuming that the image coordi- the full 9n 2 elements); only qualitative results are re-
nates are perfectly known, ported and the camera motion is restricted to a straight

The wveighted R can now be written as: line. Matthies et. al. [11] also use only n elements

R1 to represent the reconstruction error. However, in theirRw $+Ml M2 )1(R, experiment the camera motion is known accurately, in
M= 21  S2 + M2 2  R 2  which case the cross-correlations should not play a role;

(13) their reconstruction is within 0.5% error using 11 images.
Equation 13 can be expanded after Bar-Shalom and Shigang, Tsuji, and Imai [15] also use only n terms to
Fortmann [14]. In this analysis, let us now concentrate approximate their error, but consider more general mo-
on the effect of the cross-correlation on a single optimally tions than Heel. When they allow the camera to move
fused 3D coordinate (A1 ); all of the relevant information freely in a plane, their reconstruction error is 15% even
is contained in the first row in the expansion of Equation with as many as 40 images. Ando [1] also uses n ele-
13, which is: ments (for general camera motion) but only simulation

RW = S11 + M 11 - M 12 (S 22 + M22experiments are reported.
oWl 1M2 2 )-'MT)- The next category of approximations involve using

(R 1 - M12(S 22 + M2 2)-'R 2) (14) 9n elements to approximate the 9n 2 covariance matrix.
Stephens et al. [16] report reconstructions within 1%

The second term (in Equation 14) can be thought of as error for 1 point after 50 frames in the case of motion
a Corrected R 1 : straight ahead. Cui, Weng and Cohen [3] also use 9n

Corrected R, = R1 - M 12 (S 22 + M 22)-'R 2  (15) elements to approximate the full covariance matrix and
apply the algorithm for the case of general camera mo-

If there is no error in the motion - i.e. M 12 is zero - tion. The reported accuracy of the reconstruction (from
the Corrected R1 is identical to R 1. However, since this a real image sequence) fluctuates randomly. Since no
is generally not true in practice, the value of R 2 has a comparison with the ground truth is reported it is un-
corrective effect on R 1. The magnitude of the correc- clear as to how well this algorithm really does.
tion depends on the size of the cross-correlation M 12 . The algorithm developed by Thomas and Oliensis [18]
Since we have shown that the cross-correlation captures [12) is the only recursive MFSFM algorithm (for gen-
the motion error (cf. Section 3.1), the magnitude of the eral motion) that uses the full covariance matrix with
correction depends on the (shared) motion error that 9n 2 elements. Apart from using cross-correlations, their
corrupts both R, and R 2. algorithm is similar to previous recursive (Kalman fil-

The covariance of Corrected R1 is ter) MFSFM algorithms. Highly accurate reconstruc-
COV(Corrected R 1 ) = E([Ri-M12($22+M22)- R2]2) tions (as accurate as the ground truth) have already

(16) been reported by Thomas and Oliensis [18] for image
Again, this can be simplified to obtain: sequences with no constraints on the robot camera mo-

tion. Here, their algorithm is used to test for the effect of

COV(Correcied R1 ) = S1 +M 1•-M 1 2 (S 2 2 +M 2 2 )'-MT cross-correlations in real image sequences by comparing(17) results from the same algorithm with and without cross-
As stipulated by Kalman filtering, any contribution (to -correlations. Such a comparison has not been previously
wards the fused optimal estimate) has to be weighted done; it will be presented in the following section for two
by the inverse of its covariance. Thus we expect that real image sequences. 2

Corrected R, (Equation 15) should be weighted by the 4 1
inverse of its covariance. Since the right-hand side of Experiment I: Reconstruction of a
Equation 17 turns out to be equal to the first term of Rotating Box
Equation 14 above, this is ezactly the case. A box was rotated in steps of approximately 4 degrees

This analysis reveals that the cross-correlation terms around its vertical axis, and nine images were obtained
are important. If the interframe motion error is large, by a stationary camera (cf. Fig 1). The camera parame-
then the cross-correlation terms become significant and ters are: focal length 6cm, fov (23.40, 22.4'), and image
play a crucial role. Since in SFM the motion error is typ- size 256 x 242 pixels. The available ground truth had
ically large [4] we predict that without cross-correlations an accuracy of 1.5mm. In this experiment 35 corners of
the benefits of Kalman filtering are lost, i.e. the fused the white squares on the box were chosen to be recon-
reconstruction would be neither stable nor accurate. In structed; the corners were tracked using the algorithm of
the next section we present experimental evidence to this Williams and Hanson [23]. Due to the well known scale
effect. ambiguity in SFM [21], the scale of the reconstruction

was input as a single number at the beginning of the
4 Experimental Data process.

In order to determine how well the shape of the box is
The previously reported MFSFM algorithms conform to reconstructed, each reconstruction is rotated and trans-
the prediction of the last section. Heel [7] approximates lated (rigidly) to align with the ground truth. The
the entire covariance matrix by just the error terms relat-
ing to one coordinate Z (i.e., when reconstructing n 3D 2 Thanks to Harpreet Sawhney and Rakesh Kumar for
points, his covariance matrix has n elements rather than these sequences and the ground truth measurements.
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mismatch between the aligned reconstruction and the Again, using cross-correlations yields the best accu-
ground truth is the error in the shape. The alignment racy of the three approaches compared here. Fig. 4
that minimizes the mismatch error can be determined shows that the average reconstruction error falls al-
exactly (in closed form) by Horn's absolute orientation most monotonically, with a final error of 2.16% after
algorithm [8]. The overall error of the entire reconstruc- ten frames. The final reconstruction (after ten frames)
tion is reported as an average of the individual mismatch of the same MFSFM algorithm which ignores cross-
errors over the set of reconstructed points, correlations is 65% more erroneous than the final recon-

The performance of the algorithm with and without struction which uses cross-correlations.
the cross-correlation terms is presented here. For com-
parison we include the results from a standard two-frame 5 Conclusion
approach: Horn's relative orientation algorithm [9]. 3 We have argued that the cross-correlation terms capture

From the graph (in Fig. 2) it can be observed that the the interframe motion error and account for it. Ignoring
error in the two-frame reconstruction is fairly high (the the cross-correlations seem to have direct consequences
average error is 8.8 mm; the dimensions of the box are the ccurayand seem o he reconstruces
133 mm x 157 mm x 70 mm and the distance between on the accuracy and usefulness of the rconstructed mood-
any two points ranges from 15 mm to 207.19 mm). The els of the environment.
random and high fluctuations (e.g. in frame 4 and frame Although the cross-correlations have presumably been
7) make the two-frame reconstructions unreliable. In ignored because of their computational complexity, we
the case when cross-correlations of the error are ignored have shown that they are crucial enough to warrant an
in the multi-frame algorithm developed in [18], we can attempt to make using them computationally feasible.
see that after an initial drop in error, the error fluctuates Since the bottleneck of including cross-correlations is
around 11 mm, but has a very slow decrease. Notice also the time required to invert large matrices, one solution
that in frames 4 and 7 the error increases, showing that is a straightforward parallel implementation of the algo-
the algorithm is unable to ignore the erroneous individ- rithm on a SIMD parallel machine such as the Image Un-
ual two-frame reconstructions. However, when cross- derstanding Architecture [22]. Future research will also
correlations are not ignored, the average reconstruction be directed towards discovering other ways of reducing
error falls monotonically and remains as low as the er- computational time such as using smaller (intersecting)
ror in the ground truth (1.5 mm) for the last 4 frames. subsets of points which are yet large enough to capture
Note that the final reconstruction (after 9 frames) of the the underlying motion error.
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Translational Decomposition of Flow Fields*
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Abstract surface [Gibson, 1950; Lee, 1980]. The technique pre-
sented in [Lawton, 1982] was based on optimizing a mea-We introduce a low-level description of image sure which described the quality of feature matches re-

motion called the local translational de- stricted to lie along the radial flow paths associated with
composition (LTD). This description asso- a potential axis of translation. The optimization pro-
ciates with image features or small image ac - cess involved searching over the surface of a unit sphere
eas, a three-dimensional unit vector describing where each point corresponded directly to a possible di-
the direction of motion of the corresponding rection of translation. The optimization combined the
environmental feature or small surface area. determination of the direction of translation and the cor-
The local translational decomposition is deg responding image displacements into a single, mutually
rived by applying a procedure for processing constraining computation. It was possible to determine
purely translational motion to small overlap- the direction of translation to within a few degrees in
ping image areas. This intermediate represen- small image areas using a few distinctive features.
tation of motion considerably simplifies the in-

ference of motion parameters for ego-motion In this paper we extend the translational processing
and can support qualitative inferences for non- algorithm to work with general rigid body and other
rigid motions. We first show how to compute cases of motion by applying the translational procedure
the LTD from optic flow fields and then show to local portions of a flow field. This processing asso-
how the LTD is used to recover the parameters ciates a direction of relative environmental motion with
of rigid body motions. We present three cases a local portion of a flow field and also an error mea-
for which the recovery of motion parameters sure reflecting the validity of the translational approx-
is particularly robust: motion constrained to imation. We call this description of image motion the
a determined plane (the normal to the plane local translational decomposition (LTD). Comput-
is known); motion constrained to an undeter- ing the LTD begins by decomposing a flow field into
mined plane (the normal to the plane is not small overlapping neighborhoods and then approximat-
known); arbitrary motion relative to locally ing the motion for each neighborhood as being produced
planar surfaces. We then discuss techniques by translational motion of the corresponding portion of
for computing the local translational decom- the environment. This approximation associates a unit
position directly from real image sequences vector describing the direction of environmental motion
without the initial extraction of optic flow and with local portions of a flow field. Each unit vector has
other areas for future work. an associated fit-value reflecting the validity of the trans-

lational approximation.

1 Introduction The LTD is a low level representation of environmen-
tal motion which considerably simplifies the recovery of

In previous work [Lawton, 1982], we developed a tech- the sensor motion parameters. The local directions of
nique to process relative translational motion of a sensor motion and corresponding'error measures are used as
with respect to a stationary environment or indepen- constraints to determine the actual parameters of motion
dently translating objects. This and related algorithms and to recover the structure and layout of environmental
[Burger and Bhanu, 1989; Jain, 19831 are based on the surfaces. This is broken into four cases. For motion con-
strong geometric constraints on image motion in the case strained to a plane of a known orientation (See Section
of translation - radial motion of image features from a 2.1), the local translational approximation is recovered
focus of expansion (or contraction) determined by the directly from the intersection of flow vectors with the
intersection of the axis of translation with an imaging horizon line determined by the plane of motion. For mo-

*This research is supported by the Advanced Research tion constrained to a plane of unknown orientation (See
Projects Agency of the Department of Defense and is mon- Section 2.2), all of the computed LTD vectors must be
itored by the U. S. Army Topographic Engineering Center perpendicular to the normal of the unknown plane. This
under contract No. DACA76-92-C-0016 constraint leads to a direct fitting procedure to recover
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three-dimensional environmental point will be referred to
Y as pij = (zij, yij, zdj). The corresponding image point

is pj zij, AA The first subscript i is used to dif-
ferentiate between points. The second subscript denotes
the time interval. Thus, Pij refers to the ith point at
time j. A three-dimensional displacement which trans-
forms pij into pij+l forms a vector. This vector will be

Image plane referred to as vij. The corresponding optic flow vector
on the image plane is 6ij. In Section 2 a method for
estimating vi, is presented. This estimated vector will
be referred to as ij. If 6ij is correct, it will be parallel

X to vj, but its depth will be unknown. ti~j can be posi-
tioned anywhere along the rays of projection which pass
through Pij and Aij+,. Unless specified otherwise, 6ij
will be positioned at the image plane.

Q1 %" q The motion of the camera can be described by six pa-
rameters. Let r = (r,, r., r,) denote the axis of rotation,
and t = (ts,ty,t,) the direction of translation. We as-
sume the axis of rotation passes through the origin of
the camera coordinate system. The magnitude of r is
equal to the angle of rotation, and t is a unit vector.

2 Estimating Local Translation

In this section we show how to determine an axis of trans-
lation consistent with a local portion of a computed flow

Flow vector plane field. In section 4 we briefly discuss how to compute this
directly from textured images without the initial extrac-

vq tion of a flow field.
Figure 1 shows that the plane formed by a flow vec-

tor and the focal point of the camera must include the
estimated local translation vector (we refer to this as
the flow-vector plane for a given flow vector). In the

Pij. + case of purely translational motion, the estimated local
translation vector will be the same for all flow vectors in
the neighborhood. Therefore, the estimated local trans-

Figure 1: Camera coordinate system lation vector is the vector which is parallel to all of the
flow vector planes in the neighborhood. This observation
leads directly to a method of solving for the estimated

the plane of motion. For motion relative to locally planar local translation.

surfaces (see Section 2.3), the combination of local pla- Te plane

narity and rigidity is used. For arbitrary motion, rigidity The plane formed by iij and the focal point of the

between environmental points is used to recover motion camera must include biy. Let this plane be designated

parameters from a small number of image locations (See by its normal nij.

Section 2 and Section 3.1). nij = Pij x Aij+l (1)
The reminder of this section introduces the notation

used throughout this paper. Section 2 describes how the Since nij is perpendicular to 6ij
local direction of translation is estimated from a flow
field and cases of motion for which this is particularly ro- nij • 6ij = 0 (2)

bust. Section 3 describes how the parameters of relative In the case of purely translational motion, the direction
sensor motion can be recovered from the estimated local of tij is constant for all i. Therefore, Equation 2 can be
directions of translation. Section 4 discusses computing rewritten as
the local translational decomposition directly from real
image sequences without the initial extraction of optic ni. • ýj = 0 (3)

flow and other areas for future work. where 6i = 6ij for all i. This equation is linear with
three unknowns, and can be solved using a least squares

1.1 Notation technique.
The coordinate system used in this paper is shown in Fig- An error measure is used to evaluate the validity of
ure 1. The origin of this right-handed coordinate system the local translation approximation. The error measure
lies at the focal point of the camera. The image plane we use is the average, taken over the local neighborhood,
is parallel to the xy-plane and is centered on the point of the angle between each flow vector plane and the local
(0, 0, f), where f is the focal length of the camera. A translation. Using the normals nij from Equation 1, the
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Axis of rotation W, d pIM/
Figure 2: Local translation associated with a rotating V 1
line 11177

error measure is defined as ( Isin- ni (4) 111 Z 1,

where m is the number of flow vectors in the local neigh-
borhood. Alternatively (and with greater expense), this 4 %nbi
measure could be optimized directly by a search proce-
dure to determine an axis of translation. Figure 3: Flow field for an image containing occlusion

In general, bij is not constant for all i. However, in lo-
cal areas ,iij is approximately constant. For example, in
Figure 2, points which are nearby on a line segment are
shown to have approximately the same local translations
when the line is rotated about its midpoint. Points near
the axis of rotation would not have a good translational
approximation as would be reflected in the correspond-
ing error measure. Note that if the motion is composed
of both a rotation and translation, the approximation
will also be effected by environmental points at differ-
ent depths, especially at occlusion boundaries. Since the
flow vectors in the area of an occlusion boundary will
not consistently emanate from a focus of expansion, the
error measure given in Equation 4 returns a high value
in these areas. Using the error measure, the unreliable
occlusion areas can be avoided when computing the pa-
rameters of motion. Figure 3 shows the flow field for a
scene containing multiple depths and undergoing an ar-
bitrary motion. The error function derived from this flow
field is shown in Figure 4. The scene contains two planes
which occlude a planar background as well as each other.
The planes, as well as the background, are skewed with
respect to the image plane (i.e. the planes are receding Figure 4: Error function for an image containing occlu-
in depth). The locations of the occlusion boundaries are sion
obvious from the figure.

The method of LTD estimation discussed above was
tested on several synthetic optic flow fields like the one in Figure 7 reflects a strong correspondence between the
shown in Figure 5. This flow field is the result of a approximated translational vectors with the least error
rotation of 5.73* about the axis (5,4, 1), followed by a and the correct translational axes. This correspondence
translation of (100, 25, -75). All units are given in pix- has been found to be typical. Figure 8 (a)-(c) shows
els. The field of view of the camera is 900 in both the the correct local directions of translation with the val-
X and Y directions. The image is 63x63, and the fo- ues of each component displayed as separate intensity
cal length is 31. The rectangle overlayed on the flow plots. Since the translational vectors are represented
field represents the neighborhood over which the trans- as three-dimensional unit vectors with each component
lational approximation is performed. The actual angles in the range of -1.0 to 1.0, Figure 8 displays the x, y,
between the correct local translational vectors and the and z components of the local translation vectors with
approximated local translational vectors at each position pure white corresponding to the value of 1.0 and pure
in the flow field is shown in Figure 6. The computed er- black corresponding to -1.0. Figure 8 (d)-(f) shows the
ror measure-based upon Equation 4 is shown as a surface local translational values that were derived from the op-
plot in Figure 7. Notice that the computed error measure tic flow field using the approximation procedure. The
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Figure 7: Evaluated error measure for flow in figure 5

Figure 5: Optic flow field for a rotation of 5.730 about
the axis (5,4, 1), translation of (100, 25,-75)
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Figure 6: Actual errors for flow in figure 5.....-

derived LTD vector components have been thresholded i!•{•}i: ••..
using the error measure given in Equation 4, so that :i}{i•...•.:"
only the best values are shown. These are then used for I
inferring the overall parameters of motion. The corre-
sponding areas removed by the thresholding are shown
by the enclosed white regions which contain a T.

2.1 Motion Constrained to a Determined W€•
Plane

It is particularly simple to recover the local translation Figure 8: LTD vector components of an arbitrary
from flow fields produced by environmental motion con- rigid body motion (a) x-component (b) y-component
strained to a determined plane (the normal to the plane (c) z-component (d) derived x-component (e) derived y-
is known). In this case, the environmental displacement component (f) derived z-component
vector vij must be perpendicular to the normal of the
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Focal point

Flow vector plane

Figure 10: Optic flow field for a planar motion

Plane of Motion

lation is computed at each flow vector. Since the motion
that produced these local translations is constrained to

Figure 9: Motion constrained to a plane a plane, each of the local translations must be parallel
to this plane. This constraint can be written as

plane of motion. We know from Section 2 that vij also vij • n = 0 (5)
lies in the plane determined by its corresponding flow
vector rij and the focal point of the camera. The es- where n is a vector normal to the plane of motion. Us-
timated direction of motion lies along the intersection ing this equation, n can be computed by a linear least
of these planes. The estimated direction of motion O,,j squares technique.
can be determined by intersecting these planes. Figure 9 An example of processing in this case is shown in Fig-
shows the geometry, where the plane of motion is posi- ure 10 to Figure 12. Figure 10 shows the flow field pro-
tioned so that it intersects the image plane at the base duced by a rotation of 4.58* about the axis (-1, 1, 2),
of the flow vector ýij. In terms of image geometry, this followed by a translation of (120,20,50). Units are given
corresponds to intersecting the horizon line, determined in pixels. This motion is constrained to lie in the plane
by the plane of motion through the focal point, with a perpendicular to the normal (-1, 1,2). However, the
flow vector. The point of intersection is a Focus of Ex- plane is unknown, so initially the local translation vec-
pansion for the local axis of translation (or a Focus of tors must be computed by the method used for cases of
Contraction: which depends on the direction of the flow arbitrary motion.
vector relative to the point of intersection). Computing The angles between the correct local translational val-
the LTD in this case has been found to give extremely ues and the derived local translational values shown are
low errors (small fractions of a degree) in the estimated plotted in Figure 11. The error measure is shown in Fig-
local translations. ure 12. Since we have an error measure associated with

Motion constrained to a plane is typical in terrestrial each point describing the error of the translational ap-
circumstances. Several indoor robotic environments in- proximation, we can select several positions of minimal
volve robot motion constrained to a plane. In vehicular error for use in Equation 5. Using the error measure from
environments, the translational approximation is usually Equation 4 the best 15 local translations were selected
valid due to limitations in vehicle turning radii, mean- for the least squares fit. The recovered plane normal is
ing that the overall motion of a vehicle can be locally then (-0.4107,0.4129,0.8129) which is off by an angle
approximated as a translation. of 0.370 from the correct value. We can then use this

estimate to evaluate the directions of motion using the
2.2 Motion Constrained to an Undetermined technique for motion constrained to a determined plane

Plane from the previous section. The computed directions of
Processing in the case of motion constrained to an unde- motion are then shown in Figure 13 (d)-(f). Like the case
termined plane is similar to that of motion constrained to of motion constrained to a known plane, there is very
a determined plane. The only difference is that an esti- little error in the derived LTD vectors. The mean angle
mate of the plane of motion must first be recovered. Us- between derived and actual LTD vectors was 0.1760 and
ing the technique described in Section 2 the local trans- the maximum angle was 1.2740.
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49 Figure 13. LTD vector components of an undetermined
-' planar motion (LTD estimated using the determined pla-

nar motion technique) (a) x-component (b) y-component
(c) z-component (d) derived x-component (e) derived y-

Figure 12: Evaluated error measure for unknown planar component (f) derived z-component

motion
gorithm in greater detail.

2.3 Local Planarity and Rigidity-based LTD 2.3.1 Local Planarity Assumption
Estimation Given a candidate LTD vector, we wish to solve for

Another algorithm for computing the LTD is based on other nearby LTD vectors. In order to derive a rela-
the constraints provided by assuming motion relative to tionship between LTD vectors within a neighborhood,
locally planar, rigid environmental surfaces. The algo- we will assume that surfaces are locally planar. In this
rithm begins by searching over the half-plane defined by case directional derivatives of the LTD vectors along the
a flow ve'tor and the focal point of the camera as shown image plane are constant. Let z-i3,on, and t be
in Figure 1 (this plane is designated a half-plane because three collinear points on the image plane. Under the pla-
we only need to search over 1800). Each candidate LTD nar surface assumption, we have the following constraint
vector is used to solve for other LTD vectors in a local to - a =e-a-
neighborhood by making an assumption of surface pla- tini+lp - Aetee L1vto k - a neig h (6)
narity within the neighborhood. The consistency of thisurfaces are l plnrInts
local neighborhood of LTD vectors is then evaluated by Letting d ik be the current candidate LTD vector, Equa-
calculating the relative depths of the LTD vectors. This tion 6 consists of two independent equations and six un-
results in an error measure which is associated with each knowns. The remaining equations needed to solve for
candidate LTD vector. The candidate LTD vector with these six unknowns can be provided by the LTD vectors'
the lowest associated error is selected as the correct LTD corresponding optic flow vectors. Figure 1 shows that
vector. The remainder of this section describes this al- the plane formed by a flow vector and the focal point
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of the camera must include the LTD vector. This con-
straint can be written as ... .

(s-1,A + V,- 1,k) x P,-_,k+1 = 0 (7)

( + ýi+ik) x = 0 (8)

This provides four additional independent equations. ..........
Therefore, using the system defined by Equations 6, 7,
and 8, we can solve for the neighborhood LTD vectors
V,....,k and Oj+1,k.

2.3.2 Error Measure
The final step in evaluating a candidate LTD vector is

to construct an error measure from the neighborhood of
derived LTD vectors. The relative depth of all the LTD
vectors in a 3x3 neighborhood is calculated by position-
ing the candidate vector at the image plane. Using the
depth values, a plan- is fit to the neighborhood points.
The error measure is dentied as

± _,(ap•,,k - q,,k) (9)

where a• is the depth scale factor and qi,k is the point of
intersection of the fitted plane and the ray of projection
defined by Pi,k. Section 3.1 shows how to solve for the
depth scale factor ai. M..

An example of processing an arbitrary motion using /
the rigidity-based method is shown in Figures 5 and 14.
Figure 5 shows the flow field produced by a rotation of
5.73* about the axis (5,4, 1), followed by a translation
of (100,25, -75). Units are given in pixels. Figure 14
(a)-(c) shows the correct local translational values as in-
tensity plots of the vector components. Figure 14 (d)- 10
(f) shows the local translational values that were derived
from the optic flow field. Like the case of motion con- Figure 14: LTD vector components of an arbitrary rigid
strained to a known plane, there is very little error in the body motion (LTD vectors were derived using the lo-
derived LTD vectors. The mean angle between derived cal planar method) (a) x-component (b) y-component
and actual LTD vectors was 0.425° and the maximum (c) z-component (d) derived x-component (e) derived y-
angle was 2.6470. component (f) derived z-component

3 Inferring Parameters of Motion fromthe LTD determined, the solution for the parameters of motion
becomes trivial.

In this section we develop a technique to recover the pa- Two LTD vectors 6ik and Vj,k are asst d to have
rameters of motion given a flow field and the LTD. The undergone identical rigid body motions. W, ish to find
method presented in this section is based upon using the relative depth of these two vectors. Figure 15 shows
rigidity to solve for the relative depth of environmental the relationship between the two vectors. One of the
points associated with LTD vectors. The key result is vectors, bi,k, is fixed in depth so that it emanates from
that it is possible to infer the parameters of motion us- the image plane at the point 3ij. The unknown depth
ing only three determined LTD vectors computed from of the other vector can be expressed as aO3#,k where a
locations anywhere within the flow field. Thus, the infer- is some unknown scale factor. Since both of the LTD
encing can be done with a sparse LTD field which may vectors are the result of the same rigid body motion, we
have been strongly filtered by the validity of the mea- have the following constraint
sures reflecting the translational fit. Once the relative 11afj,k - Pi~kll -- + - + (10)
depth has been determined, the solution for the param-
eters of motion becomes straightforward. Squaring both sides and solving for a, Equation 10 can

be reduced to
3.1 General Rigidity Constraint
In order to find the parameters of motion we will first (213j,• V,, + Vjk •
solve for the relative depth of the LTD vectors using the 2 (Pj,k - ý,ik + Pik •),k + Vi,k - Vj,k)a +
rigidity constraint. Once the relative depth has been (

2
hi3,k . ),k + 1 i.k "ki,) = 0 (11)

703



inage plane ~~~~~~~~~Focal Point •-'-" ,•••,'.."-•,.•,'.'.•

k~ - --S -~ - -

"j. k .k.JrJ

kFigure 16: Optic flow field for motion relative to a curved
surface

3.3.1 Motion Constrained to a Determined
Figure 15: Relative depth of two LTD vectors Plane

In the case of motion constrained to a determined
plane, the LTD vector estimates tend to be highly ac-

This equation is quadratic in or and results in two feasible curate over an entire flow field. Typically, when using
solutions for the relative depth between two LTD vectors, three LTD vectors selected at random from the derived

local translations, the estimate of the axis of rotation
3.2 Inferring the Parameters of Motion and translation almost always are within a degree of the

Once we have determined the relative depth between correct axes and the angle of rotation is determined to

LTD vectors the estimation of the parameters of motion within a hundredth of a degree.

is trivial. The problem is equivalent to that of estimating 3.3.2 Motion Constrained to an Undetermined
the motion parameters from actual three-dimensional en- Plane
vironmental surface positions. A rigid body motion can The case of motion constrained to an undetermined
be expressed as plane is similar to the case of motion constrained to a

determined plane in that the LTD vector estimates are
=very good over the entire image. Three LTD vectors were

where r is the axis of rotation and t is the direction of selected at random from the derived local translations

translation. This expression is linear and can be solved shown in Figure 13. The estimate of the axis of rotation
using a least squares technique. The expression con- was off by 0.99¶ the angle of rotation was off by 0.0,11,
sists of six parameters and two independent equations. and the direction of translation was off by 0.830.

Therefore, it can be solved using a minimum of three 3.3.3 Local Planar Method
(non-collinear) LTD vectors. The rigidity-based method presented in Section 3.1 is

3.3 also capable of accurate LTD estimates over the entireflow field. Three LTD vectors were selected at random

The rigidity constraints were used to compute the pa- from the derived local translations shown in Figure 14.
rameters of motion from the derived LTDs presented in The estimate of the axis of rotation was off by 2.26*, the
Section 2. The results are shown for the case of arbi- angle of rotation was off by 0.18" and the direction of
trary motion, motion constrained to a determined plane, translation was off by 2.84*.
motion constrained to an undetermined plane, and the The camera was moved about a randomly curved sur-
rigidity-based method applied to arbitrary motion. In face. The optic flow field produced by this surface is
the previous section we noted that the parameters of shown in Figure 16. The three-dimensional environmen-
motion can actually be estimated using only three LTD tal surface was reconstructed from this flow field. Fig-
vectors. The feasibility of estimating the parameters of ure 17 (a) shows a plot of the original surface. Fig-
motion from a minimal set of data is demonstrated in ure 17 (b) shows the results of the surface reconstruc-
the results presented below. tion and Figure 17 (c) shows the resulting error in the
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ited number of points for which the local translation
needs to be determined to infer motion parameters.

"" Investigate local translational analysis with the use
of multiple cameras and longer image sequences.

" The local translation decomposition is similar to an
array of localized looming detectors which deter-
mine whether things are coming towards or away

(6) from an observer at a particular image position. It
may be possible to use such a distributed represen-
tation of motion relative to environmental surfaces
to control navigation and other behaviors directly,
without the inference of motion parameters from
the LTD.

* The local translation approximation can be used
as a criteria for computing flow to determine the

( 'LI LTD directly without the initial computation of a
flow field. In the experiments presented above, we

Figure 17: (a) Curved surface (b) Reconstructed surface have assumed a uniformly dense flow field of high

(c) Error resolution. The translation procedure developed in
[Lawton, 19821 was not applied to computed flow
fields, but to successive images for which interest-

reconstruction. The surface shown in this example is ing points had been extracted from the initial im-

not planar. However, the reconstruction is fairly accu- age. Given distinctive features (at least two), it

rate, despite the violation of the planarity assumption. was possible to compute the direction of transla-
Experiments indicated that surfaces which are approxi- tion in a small image area. This use of the trans-

mately planar in a local neighborhood can be successfully lational procedure can be seen as a local constraint

reconstructed. Therefore, any continuous surface can be on the determination of image displacements such

reconstructed, given an appropriate density of optic flow that the corresponding environmental motion can
vectors, be interpreted as being translational. For egomo-

tion, this wouldn't require computation over the
3.3.4 Arbitrary Motion entire flow field since only three LTD vectors are

Using the error measure shown in Figure 7 and the needed. Where the transhtional approximation is
derived LTD vectors shown in Figure 8, the three best poor there will be a large -,a I u- in the error mea-
LTD vectors were selected and used to compute the pa- sure reflecting weaker confide - in the validity of
rameters of motion. The estimate of the axis of rotation the approximation.
was off by 8.130, the angle of rotation was off by 1.090,
and the direction of translation was off by 12.020. In the References
previous section it was shown that the minimum num- [Burger and Bhanu, 19891 W. Burger and Bir Bhanu.
ber of LTD vectors which can be used to estimate the On computing a 'fuzzy' focus of expansion for au-
parameters of motion is three. However, we can use a tonomous navigation. In Proceedings of IEEE Con-
larger set of LTD vectors in a least squares procedure ference on Computer Vision and Pattern Recognition,
to obtain more accurate results. For example, when the pages 563-568, 1989.
ten best LTD vectors were used, the axis of rotation was
off by 3.650, the angle of rotation was off by 0.44*, and [Gibson, 19501 J.J. Gibson. The perception of the visual
the direction of translation was off by 9.32*. world. Houghton Mifflin, Boston, 1950.

[Jain, 19831 R. Jain. Direct computation of the focus of
4 Summary and Future Work expansion. IEEE Transactions on Pattern Analysis

We have introduced the local translational decomposi- and Machine Intelligence, 5:58-64,1983.

tion (LTD) as a low level representation of environmen- [Lawton, 1982] Daryl T. Lawton. Processing transla-
tal motion which can simplify the inference of motion tional motion sequences. Computer Vision, Graphics,
parameters from optic flow fields. We have found that and Image Processing, 22:116-144, 1982.
this is particularly robust and simple for cases of motion [Lee, 19801 D.N. Lee. The optic flow field: The founda-
constrained to a determined or undetermined plane, and tion of vision. Philosophical Transactions of the Royal
motion relative to locally planar surfaces. In addition, It Society of London, Series B, 290:169-179, 1980.
is possible to infer motion parameters from sparse LTDs.

Areas for further work include:

* Develop criteria to determine the the best set of es-
timated local translation vectors to estimate motion
parameters in order to take advantage of the lim-
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Structure and Motion from Region Correspondences and Affine
Invariants *

Chi-Yin Lee , David B. Cooper
Laboratory for Engineering Man/Machine Systems

Division of Engineering
Brown University

Providence, RI 02912

Abstract matching small corresponding regions in a pair of
images through use of a new class of affine moment

This paper proposes a region based method to solve invariants. The region to be matched can be at any
the structure and motion problem. Region match- arbitrary position and all the data points inside the
ing between images is done by using affine invariants. region are to be used. No feature extraction or seg-No feature extraction or segmentation is needed in mentation is needed in the matching process.
the matching process. Having recovered the region
matches a closed form solution for the camera mo-
tion and the 3D structures in the regions can be 2 Equations of the Apparent Motion
obtained. Structure consists of location and orien- Consider the system shown in Fig 1 the camera is
tation of local planar patch approximate to 3D sur- moving from frame 1 at time t, to Frame 2 at time
face.mvrg ft through a rotation R followed by a translation T.

Let G be a planar region on a 3D surface and P be
1 Introduction a particular point on it. The 3D coordinates of P

w.r.t. Frame 1 and Frame 2 are denoted by (z, y, z)Two primary, approaches to the estimation of 3D. ..
structure and camera motion are based on feature and (z', y, z'), respectively. (u, v) and (u', v') are
correspondence and optical flow, respectively. An in- the image coordinates of P at t, and at t2.
teresting example of the first approach is that taken By using the weak perspective projection, the pro-
in [4], in which the object of interest is assumed to jections (u, v) and (u', v') at ti and t2 are as follows:
be a 3D planar surface patch that is roughly perpen- -z
dicular to the optical axis of the camera(the shallow up) 1,v')=ik g' (2.1)
structure assumption). Then, the object is tracked where f is the focal length of the camera and 1, k are
and its depth is recovered by estimating four affine the depths( z component of the 3D coordinates) of
parameters through line matches. [3] is an example the centroid of region G w.r.t. camera Frame 1 and
of the latter approach. They compute the first or- camera Frame 2, respectively. With small rotation
der optical flow and estimate the camera motion and the 3D coordinates of P w.r.t. camera Frame I and
the orientation of the planar regions. Our approach camera Frame 2 are related by:
is a generalization where we assume the 3D surface
patch is planar where the plane has arbitrary ori- ( -in. in,:)

entation and location, and estimate both this plane _ -j I -W, y t: )and the camera motion from two images. Both the X-•vy ,•,X 20 ( t'
process of estimatingfeature correspondence and of (2.2

computing the optical flow are somewhat noise sensi- (2.2)
tive. Our approach is region based and less sensitive Represent region G by the equation ax' + + z +
to the noise of individual features or data points. d = 0 w.r.t. Frame 2. By combining equations (2.1)

The assumption in this paper is that objects of and (2.2), the 2D apparent motion of the projections
interest are well approximated by groups of planar of P between image 2 and image I can be expressed
patches, and each planar patch is small compared by:
with the patch-to-camera distance. Then the weak,, (,)
perspective model applies for the projection of the (I\ ( 1-,, -i. - bw,
3D surface into image planes, and a pair of images••wV fiw + aw, 1 + bw, t'

of points on the 3D planar surface patch are related ( - dWIN (2.3)
by an affine transformation [1, 4]. t, + din, )

The primary contribution of this paper is a set Clearly, (2.3) represents an affine transformation for
of low computational cost explicit expressions for the apparent motion. Denote the six affine parame-
the location and orientation parameters for these 3D ters as follows:
planar surface patches based on a pair of images and h= aw,) 4

for the motion specifying the two camera positions h2 =,(-w. - bsu,) hs ((s - dw( ) (2.4)
from which the pair of images were taken. A second
contribution is a low computation cost algorithm for h13 = T- (w + aw,) As = f(ty + din.)

Thus, the projections of region G onto Image2
"This work was partially supported by NSF Grant and lmagel are related by the affine parameters

#IRI-8715774 and NSF-DARPA Grant #IRI-8905436 hi, h2 ,..., ha. Without loss of generality, we assume
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the camera focal length to be unity in the following h7 = 2(1 - a'w,) hio = P(1 + b'w.)
derivations. hef= E(-w, - b'w,) All = (9 - d't,)

3 Problem Definition and Our 9, f Z(w.+ GWs) h1 = •(i, + d'9.)
Approach q,= p(-wuy + W.VD + 1) + t.

a puD+bpvB+p+ =0 (*)
In preceding section, we derived the ex ressions for Given two matched region pairs, 16 equations in 16
the parameters of the affine transformation that de- variables are obtaine&. Again, I is a scale factor
scribes the apparent motion of a planar region under which cannot be determined. As a result , we have
weak perspective projection. In order to estimate an overdetermined system with 16 equations in 15
the camera motion and the 3D scene structure, two variables. Our approach to handle this overdeter-
problems have to be solved, mined system is to use the first fifteen equations to

1. For each 3D planar surface patch, one in each solve for the unknown parameters. Then, the last

image, called 2D region matching, and recover equation (*) is used to verify the solutions. In [2] we
the associated transeformation between images. obtained the following polynomial after some ma-

nipulations of the fifteen equations
2. Based on results in (1), solve for the camera mo-

tion and 3D structure parameters of the regions ,1W 4 + A2W,3 + A3W,2 + ) 4W, + A5 = 0
where the coefficients Ai are functions of hl, 12 ,

Before explaining the scheme to solve the first prob- h3 , h4 , h7 , hs, ha, h1 0 .
lem listed above, in next section, we first give explicit
solutions for camera motion and 3D scene structure The above equation is a fourth degree polynomial
based on knowledge of the affine transformation de- in w,. For a fourth degree polynomial, there is a
scribing apparent motion. Then, we come back to closed form solution for the four roots. Given wz, the
present the 2D region matching algorithm and the other variables can be solved successively giving one
estimation of the affine transformation based on mo- set of solutions. Detailed derivation is in [2]. Thus,
ment invariants. we have four solutions in total. Then equation (*) is

used to eliminate redundant solutions. For each of
4 Motion and Structure Estimation the examples we tried, only one of the four solutions

satisfied (*). A numerical example is presented in
4.1 Solving the Motion and the Structure the next section to illustrate this.

Parameters
As shown in equation (2.4), a 2D matched region 4.2 Numerical Example to Illustrate the
pair has six equations relating the affine parame- Choice among the Four Solutions
ters with the surface patch parameters and cam-
era motion. The unknown parameters are k, i, a, b, Consider the camera motion parameters w,=0.06,
d, w, wI,wI, t",tI,t,. However, not all of the un- w,=0.05, w,=0.02, t,=5, ty=8, t,=2. Two pla-
known parameters are independent. Let (UA, VA) nar patches are given, having 0.15z' + 0.05y' + z' -
denote the projection of the centroid of G onto im- 153.75 = 0, 0.1333z'+0.2y' + z' - 201.3333 = 0, and
age 2. Then the centroid of G w.r.t camera frame 2 centroids (4,6,200) and (20,15,150), respectively, in
is (AUA, kvAk). By observing the last equation of camera frame 2. Equation (2.4) is used to gener-
(2.2), we obtain an equation relating the depths of ate the affine parameters. The four solutions are
the centroid of G w.r.t camera frame 1 and camera obtained by solving the fifteen equations described
frame 2. , before. In order to exploit equation (*) to verify the

I = k(-wyuA + WZVA + 1) + t' solutions, we compute the bias,
Since (kuý, kvA, k) is the centroid of region G, it where bias = a'puB + b pvB +P+ at'must also satisfy the plane equation a:' + by ' The correct solutions should be the ones with zero
d = 0. Thus, we have, bias. Table 4.1 shows the four solutions with their

akuý + bkvý + k + d = 0 bias and the ground truth values.

As a result, we have 8 equations for a given 2D
matched region pair. In these 8 equations, it is ob- 4.3 Practical Considerations
served that I is a scale factor which cannot be de-
termined and k,a,b,d, w:, w, w,, t,,t,,t, are the In real applications, the recovered affine coefficients
10 unknown parameters. Thus, it is impossible to for the matched regions are corrupted by noise and
solve for both the structure and the motion parame- thus the bias's for each of the four motion and struc-
ter given the apparent motion of a region that is the ture solutions are not zero in general. One reason-
image of only one planar patch. able choice of solution is that having minimum bias.

imae s e wSince each solution specifies the camera motion andtwo regions. In addition to the region G described the parameters of the 3D planar surfaces associated
twforegions.avn additontohthe region GB dhestibe with the two 2D regions, for each point inside the
before, we have another region F• with equation two regions in the reference image its corresponding
az' + by' +z + d' = 0 w.r.t. camera frame 2 location in the other image can be computed and the
and the depths of its centroid w.r.t. camera frame intensity difference between them can be computed.
2 and camera frame 1 are p and q respectively. Ad- The sum of all the intensity differences associated
ditionally, denote by (u', vý) the projection of the with all the points in the two regions is called the
centroid of GB onto image 2 and thus the centroid Projective intensity difference r. Thus, an alternate

way to select the solutions is to pick the one with
of GB w.r.t. camera frame 2 is (pu',pvý,p). Again, minimum Projective intensity difference. We em-
there are 8 equations for region GB. ployed this method in our experiments.
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5 Recovering the apparent motion 5.3 Region Matching and Recovery of the
A ine Parameters

The property of affine apparent motion of a region In [2], we introduced a two stages scheme to per-
between two images explained in section 2 enables form region matching and to recover the associated
us to use a powerful tool - affine invariance. Affine affine transformation using 2+D affine invariants.
invariants are functions of geometric structure which The idea of matchin& is to first compute the affine
remain unchanged under affine transformation. In invariants for the region to be matched in the ref-
the following paragraphs, we briefly describe the idea erence image , then locate the matched region in
of 2+D data, 2+D affine invariants, algorithms to the second image such that its invariants are closest
find 2D region correspondence between images using to that of the reference region. Having found the
the invariants and to recover the associated affine matched regions pair, the invariants also permit a
transformation parameters. trivial computation that provides a first estimate of

the affine transformation. We then get an improved
estimation of this affine transformation. Details of

5.1 2+D Data the algorithm are given in [2].

Regions g and g', the projections into camera image 6 Experiments
planes 1 and 2, respectivel, of the 3D planar region
G, respectively, are related by an affine transforma- 6.1 Experiment 1
tion. Let (ui, vi), (u', v') be the ith matched points This experiment simulates a general camera mo-
pair in g and g,, respectively. Then tion, described by the translation T = (1.563, 1.172,

vu' (h h 2  + (5.1.1) 0.391) in focal units and rotation angles 0l = (0.05,
Vi / h3 h4 v, J h6  -0.06, 0.08) in radians. The scene consists of two

Let the centers of g and g' be (me, m.) and (mt, rm,) distinct planar surfaces(left and right), represented
respectively. By simple calculation, by equations 0.5z' + 0.2y' + z' - 19.531 = 0 and

( s-m -m. hi h2 u( - 0.2zi + 0.6y' + z' - 23.438 = 0. Fig.6.I(a) and
vi -- My \ hh , mfm) (5.1.2) Fig.6.1(b) show the images taken before and after

Assume G is a Lambertian sur . T , v the camera motion, respectively.
andumG,is apeamrwitin tsurface. Then, (us, vi) Two circular regions are chosen in the reference
and (u:, vi) appear with the intensity, say Ii, in image as shown in Fig.6.1(b). The matching results
both frame 1 and frame 2. Multiplying both sides of are depicted in Fig.6.1(a). In Table 6.1, we present
(5.1.2) by I4, we get the results of the recovered motion and structure

(ui - m n,4)L\ h1  2  in - Iin parameters along with the ground truth values.
V.- ,h 3  h 4 / v-We see that the recovered values of the camera

im otion and the structure parameters are in good
(5.1.3) absagreement with the ground truth values. Take the
For convenience, denote the above equation as, left plane as an example: the true normal to the

ail ') (h 1  h2  (Oi ) (5an.1.4)h recoveredoeiffe nyb 4.5 dgees
.2a' / hl h4h / (5.1.4) and the error in the depth is 0.2%.

From (5.1.4), it is realized that (Oil, fti2),(0'j,ai2) 6.2 Experiment 2
are still an affine pair. Thus, we construct two This experiment is based on two images of a real
new data sets,{(oil,ai2)} for all points in g and scene taken by a moving camera. Fig.6.2(a) and
{(aol, I a2)} for all points in g'. These data sets are Fig.6.2(b) show the images taken by the camera be-
related by parameters hl, h2 , h3 , h4 and contain in- fore and after its motion. To begin the algorithm
formation about not only the location of the image partitions the reference image into 64 circular win-
points but also about their intensities. The more dows as shown in Fig.6.2(b). The windows are num-
interesting thing is that even with the additional in- beed from Uo to g~.
tensity information, the dimension of the data set Pror to i gn e
remains two and not three. So, we call them 2+D on the intensity histograms windows with small an-
data sets. tensity variation are discarded because they do not

contain sufficient information for reliable matching.
5.2 2+D Affine Moment Invariants Fig.6.2(c) and Fig.6.2(d) show the matching results.

It is observed that all the windows but g'l have
In [5], a new framework is introduced for generating food matches. One reason for the mismatch is that
affine moment invariants. The particular moment this window lies on two surfaces, thus resulting in
invariants developed are the eigen-values of certain a large affine intensity difference A. Such a large
matrices, whose coefficients are algebraic functions difference is easily detected by the system. Thus
of the location of 2D data. The computational cost the system collected all the regions which have good
of computing these invariants is low. As mentioned affine matches.
in the previous section, the dimension of the 2+D In section 4, we showed that two matched regions
data is two. Thus, we can apply the 2D moment in- pairs are needed in order to recover the motion and
variants directly to our 2+ D data and we called them structure parameters. So it paired g' 0 with each one
2+D moment invariants. In our experiment, five mo- of the other regions and computed the motion and
ment invariants are used, which are the eigen-values structure for each pair in parallel. As mentioned in
of a 2x2 and a 3x3 matrix Thus little computation section 4.3, the projective intensity difference r is
is involved in the evaluation of the invariants. also computed which is a measure of the goodness
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of the recovery. By using this measure, it is found [5] G. Taubin and D.B. Cooper. Object recogni-
that the recovery of the motion and structure pa- tion based on moment invariants (or algebraic
rameters for all the pairs described above was good invariants). Geometric Invariance in Computer
except for the parameters found by the matched re- Vnva dit e c by M ande i n MuTS.. ..Vision, Edited bp Mundp and Zisserman, MIT
gions pair of 930 and 92o. So the result found by Press, 1992.
that pair is discarded and the results of the others
are listed in Table 6.2. In table 6.2, the mean and
the standard deviation of the motion parameters and
the structure parameter associated with gao are also ". j :
computed. The recoveries are highly consistent, es-
peciilly in the estimations of w8 ,t., d.

The 3D reconstruction of the regions is displayed
in Fig.6.3 by setting I equal to 10000. The equation
of the planar surface associated with go is formed u..2

by the means of a b d shown in Table 6.2 From the
top left corner of Fig.6.3, we see that the recovered
surfaces associated with g17, g'9, .96 and the ones

associated with gig and g12 formed the two sides of
the big box. The patches associated with gg and gl 0
are sitting on the top of the box. The surface of the 2

book on the bottom left and the box on the far right f
are estimated well.

7 Conclusion 
Figure 1

This paper presents a new approach to the estima-
tion of 3D surface structure and camera motion,
based on two images. 3D surface structure is ap-
proximated by planar patches. The solutions are
explicit and reliability is possible because the pair
of images can be taken from two positions far apart, -,-- -rr- -0o .-ri- sm. 1.i

i.e., using a large baseline and because the matching h o."031 o.90,?2o 1.0011e8s 1.0o010 0."931
is area based and thus resistant to noise. The re- , 0.713,4s 2.247143 1.431"8 1.551075 O.7T818
quired matching that is used to solve for the param- a .133°33 0.0:00°0 -o.:144s73* -o.23s7W 1333M
eters of the affine transformation describing appar- b 0.200000 -2.23781 0.000000 o.oo2o 0.200000

ent motion is computationally modest because we * -o."Iru, -0.1604 -0.990 .1.0780 0.18000

use geometric invariants. Our approach can be used .000 .164,"2 0.3, 0.069732 0.0000
for alignmenting in pairs aerial photos taken from a' -.0.706M .. 13983 -0.45644 -0.36•64 -0.740,4

completely different azimuth and elevation angles. 0 .'00000 -o0008316 0.01o26 0.012389 0.04000
W, 0.00000 0.Z1630 -0.119178 -.0.0T871 0.0800"a
UP, 0.0200M0 0.0241"8 0.029644 0.030275 0.020000

9, 0.024733 :.0.403163 0.93874 0.141491 0.024733
Acknowledgement .o 0.039873 .002701 .0.00754 .0.007,7, 0.0,3

S 0.008 0.0274 0.003957 -0.00321 0.0008693
~ 000 030 8.324593 1.238173 1.158728

The authors would like to acknowledge Dr. Daniel ootitte. aem *e some In "a 4.1
Keren for useful discussions and suggesting the idea Table 4.1
of refining the affine parameters.

References

[1] D.B Cooper, Y.P. Hung, and G. Taubin. A new
model-based stereo approach for 3d surface re- I U I - , /, I I-/I I *./I
construction using contours on the surface pat- a "18-"d "- 1 0.0" 1 -9.005 1 9.00 1 0.0t 1 oAo I 9.o0, T
tern. Intl. Conf. on Computer Vision, pages 78-
83, 1988.

I I • I * I dj, i -' I *' I ,' I
[2] C.Y. Lee and D.B. Cooper. Structure form mo- tG ue 0: 0.36 4. 0.200 I 0.0.00 8

tion: A region based approach usin affine trans- - "c-ve ared o.e 438 0I.e -0.9 1 0.06 0. .

formation and moment invariants. Technical Re- s aws in , = .on 4.1

ort, LEMS-Ill, Div. of Engineering, Brown Table 6.1
niversity, 1992.

[3] S Negahdaripoour and S. Lee. Motion recovery
from images sequences using first order flow in-
formation. IEEE Workshop on Visual Motion,
pages 132-139, 1991.

[41 H. Sawhney and A Hanson. Identification and 3d
description of shallow environmental structure in
a sequence of images. IEEE Conf. on CVPR,
pages 179-185, 1991.

710



Figure 6.I1a qFigure 6~.2a ~ .Fgr i2

Figure 6.1b Figure 6.2h 6 Figure 6.2d

9 -1) 064 .0o I T 115 Il 1 013 -0 0%1 ( ,IR(2

1" .0 071 S1 09, 019 0 6:((9023

12.03 ( 1 0 129 1- 01 1 0 1 2
17-((..12I1 .1 12 (19 I 2 ~ 1 0

IS)( 0%3 .(0 W( 0 115 1-(047 -11 040 0 '27
.0 .10%9 0 .0.1, 0 115 (((: ::1 (( :46, ::12

Jr. '((90 . 009 :al ((7) .1'431

44 -11.07! 002 ( S 9 0(C 0(9

42 I01 (C00 018 05 .(10 03

9 b..(.1.Iy (1 6 4/I I/1

58(1 q3 - 81 9 I
- I om.9((( ( 1' .l( 114 01 J3- .11 W.9

m0 - 33 1 I :7% .( 972 .11 4-2- (1 1 "1 -.0 909
12 .11(0 ',076 0(0 02987 .t(676 .1 09A
1 7 1', 44 TA ((7 )1 9 ( 251, 0,16S9 .09A 1
I I m? 27. '3(1 .l¶. 0 16. 0.9N69 .0 "6
19 1 143 0 11:1ll( -.( (.1 0 J.32 .0 724 .1 ((77
26 .0.A6A6 -11 012 .0( (6A2 0 156 0 298 .0 940
33 .1.089 )001 -1( (1 911s94 :0 7741 0 19Z2 .0 957
34 ' 09 11 000 .19 .A69 0 1.94 .0.95

41 :n0 9777 0(1 . 1 960 0 ." -0" 974 0J1(11 .01.!
4 2 .0 N 87 (1100 .0 964 .092J1 01(82 .0 990

Figure 6. !,_______ I__ __:_ 1__ ("i" 1

14 t-tio- -i. the i.fl -t 1m .~t 4 1

Table 6.2

711



Section XIII

Object Recognition

Using

Invariance/Constraints



INVARIANT OBJECT RECOGNITION:
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Abstract been performed for recognition and segmentation of
texture areas on a sequence of gray scale images.

A learning-based approach to object recognition
under variable object characteristics is presented. 1. Introduction
The approach supports system capability of
recognizing objects in dynamic environments by Most research on object recognition has been
adapting the object models to perceived changes in focused on learning and recognizing objects under
object characteristics --- for example, caused by stationary perceptual conditions such as lighting,
variable perceptual conditions. This adaptation is resolution and positioning. Relatively little has
performed by the evolution of object models over been done on the problem of recognizing objects
attribute space, which is realized by integrating under dynamic conditions, particularly when the
within a close loop a vision module with an change of these conditions influence the change of
incremental learning module. While the initial object characteristics. This problem is particularly
acquisition of object models is driven by a teacher, severe for object recognition in outdoor
the later evolution of these models is performed environments where the variability of perceptual
over a sequence of images without the help of a conditions is extremely large [Bhanu et al., 1989,
teacher. Object models are applied to recognize 19901.
objects on the next images. The effectiveness of
such recognition and object extraction is monitored, To avoid some problems with the variability of
and when it is decreasing the system selects new object characteristics under the change of perceptual
training data and activates learning processes to conditions, we can apply, for example, (1) domain
improve its models. These processes are related to specific feature selection, (2) active vision, or (3)
active modeling performed by a system through the model projection and adjustment. All of them,
interaction with the dynamic environment. We have however, have significant limitations. Feature
implemented the model evolution approach within a selection [Tsatsanis and Giannakis, 1992] bases on
system and tested it for gradually changing the idea of selecting/building such features that are
resolution and lighting conditions. The sensitive to a given object in a wider range of
experiments presented have perceptual conditions. But in practice, these

features cause larger misclassification error. Active
vision [Bajcsy, 1988] approach bases on the idea of
manipulating camera parameters to maintain the

Ibis research vm conducted in the CGrter for Artificial same perceptual conditions. The problem with the
Intelligance at cbrg Muma University. The Omter's variability in resolution, for example, can be
research is supported in part by the Naional Science mitigated through camera adjustment and the
Foundation under grant No. II-9020266, in part by the application of multiscale operators. But with the

Defense Advanced search Pcts Ancy underth increase in the number of independently moving
s under the objects the vision system is becoming overloaded

grant N lN0014-91-J-1854, administered by the Office by camera manipulations. The problem remains
of NOval learch, and the grant Na F49620-92-J-0549, with the other conditions. Finally, model prediction
administered by the Air Force Office of S~ientific and adjustment bases on the projection of perceptual
Research, and in part by the (Ofice of Nval 1search under conditions that can occur in the future. Object
grant NiND0014-91-J-1351. models can be prepared respectively to these

projections. For example, the problem with a pose
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variability of structural objects can be practically transformation modules fitted to the stationary
eliminated by the generation of the aspect models models. This allows for capturing any variability of
[Ikeuchi, 1987]. But, these techniques seem not object characteristics without the knowledge about
practical for other representations --- in particular, object properties and without building complex and
for texture recognition problem. dedicated modules serving the change of a given

perceptual condition. Thus, an object model can be
The above methods are applicable to the recognition adapted to any combination of multiple perceptual
of an object on a single image when relatively more conditions, the combination of which creates an
time is given to perform the recognition task. But, infinite set of possible states. Moreover, the system
they are not optimal when objects must be can adapt to the change in the internal state of an
recognized, monitored and tracked through a object (e.g., to the change of the target heat
sequence of images and the characteristics of these signature --- in the Automatic Target Rrecognition
objects vary. These methods rely mostly on the a domain).
priori provided physical, structural, functional and
behavioral models of objects and the sensor. We Adaptation of object models to the perceived
agree that in the future the combination of them can changes in perceptual conditions is particularly well
be applicable to a very well defined and modeled suited to the problems where objects have been
problem. The possession of complete models, recognized once on an image, and they have to be
however, is questionable for most practical recognized, monitored or tracked on the other
problems in machine perception and other complex images or over a sequence of images acquired under
large-scale systems. varying perceptual conditions. The application

areas include, for example, scene annotation for
Most approaches to object recognition do not adapt navigation, autonomous surveillance, automated
an object recognition system directly to the dynamic target recognition, industrial inspection, and
environment; i.e., they do not modify on-line object material selection. This approach can also be
models to the changes of object characteristics. superior to the understanding of an action
These methods use stationary models once acquired performed by the object --- in the automatic damage
during the training phase, and they build a assessment through the analysis of change in object
transformation system between these stationary state.
models and the input data acquired from a dynamic
environment. Therefore, we call such an adaptation The model evolution proposed integrates a vision
an indirect adaptation. Such an approach requires system and a learning system working within a
that each condition influencing the change of object close loop over a set/sequence of images (see
characteristics is represcited in the transformation Figure 1). The primary aspect of this approach is
system. So, it suffers when the transformation that a system has to recognize objects on images
system is not preprogrammed to deal with a specific acquired over time. Images of such a sequence are
perceptual condition which might not be know at affected by the variability of conditions under which
the time of system development, objects are perceived. Object models once acquired

through a dialog with a teacher are then applied to
In the next sections, we present an alternative recognize objects on the next image. The
approach to the object recognition under variable recognition effectiveness of object models is
perceptual conditions which directly adapts object continuously monitored and compared with the
models to perceived changes in object results on the previous image(s) or with stated
characteristics. This approach is outlined in Section minimum requirements. If this recognition
2. An example implementation of the developed effectiveness decreases, then learning processes are
method within the CHAMELEON '92 system is activated to improve the models' discriminating
presented in Section 3. Finally, experimental power. While the system learns initial object
results are presented in Sections 4. models from teacher-provided data (training

examples), thereafter, the system has to update
2. Model Evolution Approach to Object these models automatically without teacher help. It

Recognition is done by automatic selection of new training data
and the activation of the incremental learning

Model evolution approach to object recognition processes.
under variable perceptual conditions rely on the
dynamic modification of object models according to Vision module selects new training data and
the perceived change in object characteristics. It is activates the learning processes when needed. The
done by close interaction of an integrated vision and modification of object models is performed by the
learning system with the environment (learning learning module. The learning processes
from the environment). A vision system adapts to incorporate new training data in such a way that
the changes in the environment by adapting the they modify the existing object niodels (rather than
object models directly rather than building data learning them from scratch) according to variability
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Fig. I Architecture for model evolution integrating machine vision and
learning systems-, the CHAMELEON 92 system

of object characteristics represented by new training 3. System Architecture and
dama This process is performed by fth incremental Implementation
learning --- further generalizing object models.

The CHAMELEON '92 system, presented in
Related research work has been reported by Figure 1, has been created to investigate fully
Goldfarb [ 1990] who introduced theoretical autonomous model evolution to the invariant object
background to the model evolution integrating recognition in dynamic environments on the
"Pattern Learning" of symbol formation and example of texture recognition. The domain of
recognition with Artificial Intelligence of symbol texture has been chosen because of high variability
manipulation. He suggested a Neural Net approach of texture attributional characteristics on the change
to system evolution but he has not provided an in perceptual conditions (such as resolution,
experimental confirmation of his approach yet. In lighting, positiong, weather conditions).
the most recent work, Bobick and Bolles [1992]
provide ex. :iint motivation for the work on model 3.1. Image data
evolution, fows on the evolution of representations
for object recognition, and indicate stability The experimental input data was a sequence of six
problems in such systems. They learn object 256x256 black and white images (256 gray levels
models everytime from a given image of a per pixel). The content of each image was
sequence, However, they do not evolve already simplified and each image was composed of six
existing models by new characteristic data which is overlapping fabrics only. The images, presented in
the subject of our work. Our previous work Figure 2, were affected by gradually changing
include the definition of the learning-based resolution and illumination. The distance between
approach to model evolution [Pachowicz, 1991], the camera and the textured scene was gradually
experiments with the CHAMELEON '91 semi- decreased to two thirds of the initial distance, and
autonomous system of model evolution, and the the light source was moved along with the camera.
analysis and improvement of the stability problems
in the dynamic model evolution [Pachowicz, 1992]. 3.2. Attribute extraction
The next section presents the CHAMELEON '92
fully autonomous model evolution system --- a In the first step, a single image is processed to
system that evolves models without teacher help. extract texture features (attributes). For each pixel,
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Fig.2 Experimental data - a sequence
of six images

a vector of attributes is extracted characterizing its Second, the distribution of a given attribute vary
local neighborhood. We applied the modified significantly from one image to the other. The
Laws' [1980] method of texture energy measure variability of perceptual conditions causes both the
[Hsiao and Sawchuk, 19891. This three step change of "shape" and the translation of the attribute
procedure (1) convolutes an image with a given distribution. These effects deteriorate model
mask, (2) applies local averaging of the absolute discriminating power when object models acquired
responses, and (3) applies non-linear filtering to from one image are applied to another image. And,
mitigate the borderline smoothing effect of this is why we have to adapt the vision system to a
previously applied averaging. The output is a dynamic environment by evolving its object
vector of eight attributes corresponding to eight models.
different convolution masks (i.e., S3S3, R5R5,
E5L5, L5E5, E5S5, S5E5, L5S5, and S5L5). 3.3. Initial training phase
Numeric attributes were then quantized into
subsymbolic intervals [Pachowicz, 19901. We In the training phase, models of texture D(t) are
have chosen this method of attribute extraction acquired from the first image of a sequence through
because of the fast computation and quite well the collaboration with a teacher. A teacher
discriminating power. However, the other more interactively indicates small sections of texture areas
powerful methods can be used as well. for the selection of the training data. Texture

sections are then searched randomly to extract a
Figure 3 presents an example distribution of texture given number of training data (examples) per class
attribute for a given class and over all six images of --- in our case, 300 examples (attribute vectors) per
the sequence. First, analyzing attribute class. This data is forwarded to the learning
distributions we found that the distribution is module. The AQ14 learning program (for more
multimodal for most attributes, classes, and images. details about this learning method and the program
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see [Michalski, 19831) is then applied to learn is called a set of positive examples. With respect to
texture models (rule descriptions) from provided this particular class, all other training data are
examples. However, the other learning programs negative examples. The AQ programs find object
can be applied to learn the models as well (e.g., the models over positive examples and no negative
ID programs learning decision trees; [Quinlan, examples.
1986]).

3.4. Recognition and segmentation
201 P(l) Once object models are acquired, they are applied to

10 classify pixels and segment the image into classareas. Each attribute vector x from the incoming
image is matched with the texture models. A single

20 - - match of an attribute vector with a model of a given20 P(2) class produces a pair [i - classification decision; c -
belief value]. The belief value c is maximum if the

" attribute vector is matched strictly (covered by) by
the object model. In another case, the belief value• • D .is lower than the maximum value. The belief value

P(3) is associated with the decision indicating the
strength of the match. Since we have more than

-.-.- - one object model, a vector of pairs [ i, c ] is theoutput produced by the recognition algorithm
0 --- applied to a single input attribute vector (at a given

20 P pixel position on an image) and for all object
hmodels (for i=l to 6 ; the number of texture10- ... classes).

SThe belief values corresponding to the same
20 P classification decision are then locally averaged over1the 3x3 window. This averaging, decision

10 - -. .... filtering, is repeated by a given number of iterations1-(i.e., 5 iterations). The final classification decision
0 , . is made by yielding the decision of the highest

20 averaged belief value. For better results, however,
I I P(6) this process can be replaced by a more effective but

0•'1- computationally expensive relaxation method.

3.5. Evaluation of the model0 J "discriminating effectiveness
0 10 20 Attribute value 50

Fig.3 Example variability of attribute If an image is segmented, the evaluation process is
distribution over images of the sequence run to determine the model discriminating power
(for a given texture class) and to compare it with the previous results. This

leads then towards a possible activation of the
Inductive learning acquires object models by incremental modification of object models and the
drawing inductive inference from teacher- or selection of new training data.
environment-provided training examples. The
learning process, incorporated by the AQ14 The evaluation is performed by automatically
program, is performed for each class separately. selecting some texture areas to compute recognition
Inductive learning applies a heuristic search effectiveness measure; i.e., the average and the
through the attribute space incorporating inductive minimum recognition rates (or belief values)
operators (generalization, transformation, through all classes of texture. The texture areas are
correction, and refinement). Inductive learning is found by randomly searching for the uniform
guided by background knowledge, which provides patches of 15x15 pixels of the same texture class
information about attributes, preference criteria, through the entire image (see Figure 4a and 4b).
inference rules, heuristics, and program dependent (The 15x15 image window is considered by many
procedures. The learning goal is to find the most researchers as the smallest window for the
preferred descriptions according to the preference distinction of a texture.)
criterion. The set of training examples of one class
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Fig.4 Extraction of new training data and its impact on the improvement of model discrnminating
power, a) segmented and annotated image by currently available models, b) randomly
searched uniform patches, c) filtered intermediate areas carrying information about the
change in texture charactenistics, d) automatically selected new training examples (for the
worst classes only), e) segmentation and annotation results for the updated texture models.

The patches of a single class are then divided into recognition rate for each class is calculated by the
three groups: (group~area 1) typical texture areas division of the number of correctly classified pixels
(those that are recognized with the highest belief), to the total number of pixels covered by the group
(group..area 2) intermediate texture areas (those area. Then, the average recognition rate and the
that represent change in texture characteristics), minimum recognition rate are calculated for the set
and (group~area 3) possible noisy texture areas of six texture classes.
(those that are mostly influenced by possible
classification and segmentation errors). The 3.6. Autonomous activation of incremental
division into these areas is done by computing the learning processes
deviation from the average belief value for each
texture patch. Only intermediate texture areas The activation of incremental learning processes for
(group~area 2) are selected for the evaluation, model modification depends on the current
which are shrunk twice to eliminate possible evaluation of the model recognition results (model
negative influence of the segmentation (see Figure discriminating power) when compared with the
4c). results from the previous images. If these

evaluation results deteriorate below a set or on-line
The recognition rate Rieff (see Figure 1) is then adjusted threshold level, then the vision system
found for each i-th texture class by the analysis of activates the learning module. In the
recognition data (before they were smoothed) CHAMELEON '92 system applied to texture
within the indicated group areas only. The recognition, both threshold levels (for the average
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and minimum recognition rates) have been set This modification of texture models is executed by
during the training phase run on the first image. their further generalization over the attribute space.
These thresholds are constant through the remaining
images of the sequence maintaining consistent stop 3.9. Verification of evolved models
criteria for the. control of the evolution loop.

Model evolution works in a closed loop,
3.7. Selection of new training data manipulating object models in order to adapt them

to the changes in the object characteristics. This
If the learning processes are activated then the areas adaptation is performed in a two-loop system (see
used to evaluate model discriminating power are Figure 5). The external loop adapts models to a
used to select new training data. For each class, the given image of a sequence, while the internal loop
data selection process groups the area pixels into the adapts models to the selected image data
following three files: pixels recognized by strict representing intermediate object characteristics.
match (the maximum belief value), pixels This schema was suggested by the early
recognized by flexible match (the closeness to the investigation of stability problems in the
object model), and pixels not recognized correctly. CHAMELEON '91 evolution systems [Pachowicz,
New training data is then selected from the second 1992].
and the third group. Only a limited number of
pixels is extracted; i.e., the data is filtered to
indicate the formation of new clusters only.

A set of new training data X is then forwarded to LEARNING
the learning module. The number of new training PROCESSES
examples depends on the performance of a given
class. A very limited number of new training
examples is allowed to be extracted (i.e., up to 20
examples per class). For the worse performing
class, the most training examples are extracted. For
the better performing class, practically no new data Fig.5 Two-loop evolution schemais extracted (see Figure 4di). The model evolution is competition oriented; i.e., a
3.8. Incremental model modification model of a given class is actually modified with the

respect to the other classes. An extensive evolution
We incorporated an incremental learning to modify of one class can cause weakness in the
the once learned object models. The incremental discriminating power of the other class. Therefore,
learning methodology has already been a balance between the classes the system is trained
implemented within several learning programs, i.e., to recognize should then be kept carefully.
within the AQ family of learning programs Progressing model evolution, the system has to
[Michalski and Larson, 1978], the ID family of verify the effect of the evolution. Regarding this
learning programs [Utgoff, 19891, the INDUCE-4 progress the evolution can be repeated with the
program [Bentrup, et al, 1987], and conceptual adjusted strategy and new training data.
clustering [Fisher, 1987, Gennari et al., 1989). Particularly, the evolution must be continued as
Incremental learning builds (modifies) object long as the recognition effectiveness is satisfied by
models dynamically according to newly provided stop criteria.
evidence --- new training data. Therefore, this
learning (model acquisition) technique was In the CHAMELEON'92 system, this verification
employed by us within the CHAMELEON '92 is performed on the data characterizing the change
system to modify texture models. It also has been in the object characteristics. Evolved models are
proved that incremental learning increases the speed applied to recognize those data. The recognition
of learning processes. Unfortunately, this learning characteristics are computed, and then evaluated. If
technique can give slightly more complex models they not fulfill the assumed threshold levels for the
and somewhat worse recognition effectiveness, average and minimum recognition rate, the

evolution process is repeated but with new training
In our system, newly extracted training examples data selected from the same areas. If they fulfill the
along with object models are forwarded to the assumed thresholds, this evolution loop is broken.
AQI4 incremental learning program. The results of
the learning process are texture models modified If the loop is broken, object models evolved over
according to the provided new object characteristics; indicated image areas (Figure 4c) are later verified
i.e., the previous models are extended over the on the same image again. This verification repeats
attribute space to include new training examples. all processes of texture recognition, segmentation,

and evaluation. If this evaluation does not satisfies
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Fig. 6 Experimental results of system adaptation to the last (6th) image run via the model
evolution through prededing sequence of images

the threshold conditions then the system activates characteristics were obtained when evolved texture
model evolution over indicated image areas as models were applied over and over again to the
described in previous sections. But, if this same image monitoring the evolution effect.
evaluation satisfies the threshold conditions then the
system goes to the next image of a sequence. The 4.2. Recognition characteristics
evaluation of the evolution processes run over the
"example image presented in Figure 4a is illustrated Figure 6 shows the recognition characteristicE for
on Figure 4e. The impact of the model modification the last image of the sequence; i.e., when models
by new training data shows the significant were applied everytime to the sixth image. We
improvement in segmentation and annotation results monitor (i) average recognition rate over six texture
for those two classes that were represented by new classes, (ii) standard deviation from the average
training data. recogniton rate, (iii) misclassification rate, and (iv)

minimum recognition rate from the set of six
4. Experimental Results classes. These diagrams are complemented by six

images illustrating recognition and segmentation
4.1. Testing data and methodology results on the sixth image over the consecutive

iterations of model evolution (see Figure 7).
Considering an objective analysis of the system
performance, evolution processes must be evaluated The experimental results show that initially learned
on different sets of data than data used in model texture models (i.e., from the first image) did not
evolution to modify object models. Therefore, recognize some of the classes on the last image of
testing data used to measure system performance the sequence. However, the model evolution over
was obtained from the same images but from the next consecutive images has adapted texture
widely spread image sections --- including sections models to changing texture characteristics. The
close to the borderline between different texture system was able to improve its average recognition
areas. We indicated these sections interactively and rate from 54% to 95%, while the minimum
extracted the testing data before the evolution recognition rate was drastically improved from 0%
processes were begun. to 89%. System maintained steady decrease in

standard deviation of the recognition rates
Since each image of a sequence is composed of six improving stability of the recognition system. In
classes of texture, six testing datasets were obtained the same time, the misclassification rate was
from each image. A single dataset contained 200 decreasing proving that texture models were not
randomly selected (from indicated areas) testing over-generalized; i.e., the competition with other
examples characteristic for a single texture class, class models kept model boundaries in balance.
The testing phase was applied everytime when
models were modified. The recognition
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Fig.7 Model evolution results presented on the last image of the sequence from figure 2
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Quasi-invariant properties and 3-D shape recovery of non-straight, non-
constant generalized cylinders

Mourad Zerroug and Ramakant Nevatia"
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, CA 90089-0273

Abstract and others, has indicated that studying the projective
properties of the contours, to find invariant properties,

We addrss projective properties of the ontours Of helps in scene perception in two important ways. Fmrt,
Right generalized cylinders with a Planar, but not nec they help detect the objects in the presence of noise,
essarily straight, axis and Circular, but possibly varying shadows and occlusion. Second, the properties provide
size, cross-sections (called Circular PR-Cs). This class important constraints for recovery of their 3-D shape.
introduces many difficulties beyond the classes previ- This work significantly extends the class of objects
ously studied, such as straight homogeneous general- which can be so recovered. One important distinction
ized cylinders (SHGCs) and their special case of from previous work is that for the new class, strict in-
surfaces of revolution (SORs), where the axis is variants are not found but quasi-invariant properties
straight, and planar right constant generalized cylinders (defined formally later) are derived and proven to be
(PRCGCs), where the cross-section size is constant, equally effective.
Previous work on 2-D "ribbon" descriptions does relate
to Circular PRGCs. However, it has not rigorously ad- Using contours as a source of constraints for shape
dressed or justified relationship between 2D descrip- has been the focus of research since the early days of
tions and projection of 3D descriptions. In this work, we COmputer vision. Early work addressed polyhedral ob-
derive important rigorous quasi-invariant properties of jects using constraints on junction labelling [Clowes
Circular PRGCs and invariant properties for subclasses 1971] and face orientations [Kalade 1981, Mackworth
of Circular PRGCs. We show that the derived quasi-in- 1973]. Subsequent efforts, such as [Gross & Boult
variants are useful for 2D description of the projections 1990, Malik 1987, Nalwa 1989, Nevaia & Binford
of such primitives and for recovery of complete 3D oh- 1977, Ponce et al. 1989, Sao & Binford 1992, Ulupinar
ject centered descriptions from the 2D contours. e & Nevatia 1990a, Ulupinar & Nevatia 1991, Zerroug &
demonstrate our claims on some examples. Nevatia 1993], have addressed curved surface objects.

These objects introduce more difficulties as some of
1 Introduction and previous work their contours, such as limbs and cusps (where the view-

ing direction is tangential to the surface), are inherently
One of the major problems in computer vision is the viewpoint dependent. To obtain rigorous properties, it is

recovery of shape of 3-D objects from a single 2-D con- useful to study classes of objects. Of course, to be of in-
tour image. This problem, known as shape from con- terest, such classes should include generic shape models
tour, is difficult because 2-D images contain with the ability to generate a large set of everyday ob-
aeaeof real 3-D objects, which are dependent jects. Generalized cylinders (GCs) [Binford 1971], are
on, and hence may vary with, the viewpoint. In mathe- one such adequate shape model. They have proved to be
maical terms, the problem is under-constrained due to particularly suited for structured shape description of
the loss of one dimension by the projective nature of the complex and articulated objects.
image formation. Human vision does show, however,
that shape perception from such contours is larely in- There is strong psychological evidence [Biederman
variant to changes in viewpoint. Previous work, ours 1987] that human perception of line drawings of com-

plex objects is influenced by perception of arrange-
*IThI reach wu supported by the Advanced Reeach Projects ments of a small number of simple volumetric

Agency of the Depunent of Defem and we monkoMd by th Air primitives. Those basic primitives, called geon (analo-Force Offic of Scientific Rmesech under Contrac No. P49620-90- piiie.Toebscpiiiecle en aaoc-oofs. of Unitic sm m u nd to F4960-90 gous to generalized cylinders), are characterized by dif-
and dieulbift repints for governmena PPO notwithuanding ferent cross-section shapes, axis shape and sweeps. This
any oopyright notation hereon. indicates that it is sufficient to address shape recovery of
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a small set of primitive generalized cylinders for a com- tors of the projection of curved GCs, assuming that the
putational approach to recovery of a large number of ob- 2-D descriptions correspond to the projection of the 3-
jects in our environment. A computational approach to D descriptions (ribbon axis and projection of 3-D axis,
the analysis and recovery of those primitives requires for example). However, the relationship between the 2-
the study of their projective properties and their usage D descriptions and the projections of the 3-D descrip-
for recovering 3D shape. tions was not rigorously addressed. It can be shown that

A number of researchers have addressed the use of in general they are not the same.

GCs and their projective invariant properties. Nalwa We were unable to find invariant properties of general
[Nalwa 1989] has proved that contours of surfaces of Circular PRGCs (except for special cases), and we be-
revolution (SORs), under orthographic projection, ex- lieve that none exist. The non-constancy of the cross-
hibit bilateral symmetry. Ponce et. al [Ponce et al. 19891 section and the curvature of the axis affect the contours
have proved that in the (perspective) projection of in very complex ways. However, we have been success-
straight homogeneous generalized cylinders (SHGCs), ful in finding quasi-invariant properties (following the
tangents to limbs at corresponding points intersect on a terminology of [Binford et al. 1987, Binford 1991]) that
line which is the projection of the axis and exploited this are useful for shape description and recovery. Quasi-in-
property for detection of the projection of the axis of an variance is a generalization of invariance. Invariant
SHGC from its image contours. Ulupinar and Nevatia properties are properties with constant measure with re-
[Ulupinar & Nevatia 1990a and b, Ulupinar & Nevatia spect to a set of parametric transformations (they hold
1991] have derived projective invariants of zero Gauss- independently of the parameters of the transforma-
ian curvature (ZGC) surfaces, SHGCs and planar, right, tions'). For example, the ratio of the lengths of two (3-
constant generalized cylinders (PRCGCs). For instance, D) parallel segments is known to be an orthographic in-
they have proved that cross-sections of SHGCs and variant. Quasi-invariant properties are properties that
limbs of PRCGCs project onto "parallel symmetric" may not be strictly constant, but their measure varies
curves under orthographic projection. They have ex- within a small range over a large set in the parameter
ploited those properties for recovering 3D shape from space of the transformations. For example, the previous
perfect contours. Sato and Binford [Sato & Binford lengths ratio is a perspective quasi-invariant, as its value
1992] and Zerroug and Nevada [Zerroug & Nevada is within 10% of the actual one over 90%o of the viewing
1993] derived and used projective invariant properties sphere [Binford et al. 1987].
of SHGCs for solving the figure ground problem in real In this work, we derive important quasi-invariant
image contours. projective properties of Circular PRGCs, invariant

The primitives addressed by previous work have ei- properties of their special cases, and show their applica-
ther a straight axis, such as SORs and SHGCs, or a con- tion for shape description and recovery. Our analysis
stant cross-section size such as PRCGCs. Some natural shows that a popular class of ribbons (so-called Brooks'
objects, however, such as human and animal limbs and ribbons, in the terminology of [Ponce 1988]) provides
horns, have a combination of curved axes and varying generally consistent descriptions (ones that correspond
cross-section size; some examples are shown in to projections of 3-D descriptions) of the projections of
Figure 1. Departing from the previously addressed cas- Circular PRGCs. Our recovery method need not be told
es of straight axis or constant cross-section, to include that it is examining Circular PRGCs, rather it contains
objects with arbitrary 3D axes, cross-sections and tests that can verify their presence. The recovery meth-
sweeping functions, introduces many new difficulties. od assumes that the viewpoint is general and that both
In this work, we address the class of GCs having curved end cross-sections of viewed Circular PRGCs are visi-
(planar) axes with non constant, circular, cross-sections. ble.
Following the terminology of [Shafer & Kanade 1983],
they can be called circular planar right GCs (Circular pe organize the discussion as follows. In section 2 wePRC-Cs) as the cross-section is orthogonal to the axis, provide a mathematical analysis of the projected con-

tours of Circular PRGCs. In section 3, we derive projec-
--- tive invariant properties for special Circular PRGCs and

-- "'x in section 4 we derive quasi-invariant properties for
general Circular PRGCs.We also discuss relationship of
the derived properties with previous work. In section 5,
we discuss the application of the derived quasi-invari-

Figure 1 Sample Circular PRGCs. ants for 2D description of Circular PRGCs and for rig-
orous recovery of complete 3D models of Circular

Some previous efforts, such as [Brooks 1983, Neva-
tia & Binford 1977, Rao & Nevada 1989], have used lexcept perhaps on a so of measawe zero in the pamineter
ribbons (2-D counterparts of GCs) as intuitive descrip- space; Ie. almost everywheri.
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PRGCs from their 2D contours. We also demonstrate A point on the GC surface is a limb point iff the view-
our methods on some examples. We conclude this paper ing direction is orthogonal to the surface normal at that
in section 6. point. The surface normal at a pointP (s, e) is given by

aP aP aP
2 Limbs and projections of Circular PRGCs N(S) - X W *where P - P (s, 0) (2)

Let (a (s), 0 (s)) be the angular coordinates of the
We begin by giving a formal definition of a GC, then unit viewinit vector V in the Frenet-Serret frame

proceed to the analysis of limbs and projections of Cir ('(s),A(s),b(s)) (Figure 2b), then
cular PRGCs.Throughout the analysis, orthographic
projection will be assumed. V = cosC(s)t (s) + sin(s) cosa(s) A (s) +

Defnitionil: a generalized cylinder (GC) is the sur- siP() sina(s) b(s) (3)

face obtained by sweeping a given cross-section curve Using the Frenet-Serret theorem [Millman & Parker
C along a 3D (axis) curve A, while transforming it by a 19771 relating the above basis vectors and their deriva-
function r. tives and writing the orthogonality of r(s) and V'

For GCs wher the cross-section is orthogonal yields the following limb equation:

axis (Right GCs), the surface can be parameterized as sinO(s) [1- c(s)pr(s)cose]cos(o- a(s))- p i (s) cosp(s) = 0
follows (using a notation similar to [Ponce & Chelberg where i(s) is the curvature of the axis and r(W) the de-
19871): rivative of r (s) . Assuming sin f (s) * 0 2 this equation

can be rewritten as:
[l- 4s) pr(s) cose] ces(O- a(s)) = p r (s) coW(s) (4)

where A (s) is an arclength parameterization of the The limb equation usually has two solutions e.(s) for
axis curve A, u (s, 0) the cross-section function and A i - 1, 2. We can derive limb equations for sPou io l cases
and b respectively the normal and binornal to the axis such as SORs and Circular PRCGCs (constant sizecurve. For homogeneous cross-sections (i.e. rigid cross-section; note the difference with the more general
sweeps) u (s,0) - r (s) p (0) , where r (s) is the Circular PRGCs where the cross-section is non con-
scaling function and p (0) the cross-section curve. stant). For SORs, the axis is straight (Kc (s) = 0) and we
Figure 2a illustrates this parametrization in the case of a obtain the SOR limb equation:
Circular PRGC.

Cos(0 -a (S) Pi p(S) cot 0(S) (5)
z b P which, for every i yields two solutions of opposite an-

axis - gular distance from0a (s) (Figure 3.a).

P (s, P (s,01)

a. 2 -a( • -a(s)

.a.

P 1,• P2 0-(s,0)
b.

b. A P (S'(0)2  P (s 0()

Figure 2 Generalized cylinder parameterization
and viewing geometry b.

2.1 Deriving limbs of Circular PRGCs Figure 3 Limb points properties. a. SOR b circular
PRCOC

For lack of space we omit the details of the limb der- For Circular PRCGCs, the sweeping function is con-
ivation process as a detailed analysis is given in [Ponce stant (r(s) -0) and we obtain the equation
& Chelberg 19871. We limit the analysis to defining
limb boundaries and expressing their equation. We fur- 2this does not hold only when the viewing direction V is par-
ther limit the analysis at this stage to Circular PRGCs aBel to i, a non general viewpoint for which the limb equation
(i.e. zero axis torsion and p (O) = p and p (e) = 0). has an infinite or rwo number of solutions.
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(1- K(s) pr (s) cos0) cos (0- a(s)) =0, which im- To make the discussion in subsequent sections rigor-
plies ous, we give a number of definitions clarifying our ter-

cos(O- a(s) ) =0 (6) minology. See Figure 4.
Definition2: a correspondence segment is the 2D linesince sin15(s) * 0 and 1 - i(s) pr(s) cosO = 0 would segment joining corresponding limb points.

imply 1/ v(s) = R(s) < pr(s); i.e. the object self intersects,

an undesirable irregularity (R(s) is the radius of curva- Deflnition3: the 2D axis (axis of the projection) is the
ture of the axis and pr(s) the cross-section radius). Tus, locus of midpoints of correspondence segments.
in the case of Circular PRCGCs, limb points are deter- From equation (8), a correspondence segment t. be-
mined by 0 - ± n/2 + a (s) ; i.e. two diametrically op- tween projections of limb points P (s, 0,), P(s,e02).
posite points (Figure 3.b). can be expressed in its local 2D frame as

For the general case of Circular PRGCs (Kc (s) *0 and
i (s) * 0), the relationship between the two limb points (Cos15 (cos (02- a) -)cos(0 1 -t) (

is not as straightforward as the two sub-cases discussed r• sin (02 - a) - sin (0 - a)
above. However, in section 4, we will show that they do
have a well behaved relationship. and its midpoint is thus given by

2.2 Deriving projecions of Circular PRGCs

The orthographic Irojection of the (3D) Frenet-Serret r ( cos(0 2 -a) + cos((01C( (10)
frame ((s),h(s),b(s))on a plane orthogonal toV 2 sinn(0e2 a) +sin(0 1 -a) )
gives a 'moving' local 2D frame in the image for each correspondence
value of s. The relationship between the 3D and the 2D "" segment
frames is as follows (we will omit the argument s): corresponding limb ection of

Let P - et + nk + bb be a point expressed in the 3D points < 3D axis point
frame, then its projection, p, on a plane orthogonal to 2D axis point
is given by
p = (- sine t + cos1cosa n + cososina b) 6 + (- sina n + cosa Figure 4 projection of a Circular PRGC

b) V, (7)

where k - , (s) is the projection of't and o - o (s) is 3 Projective invariant properties of special
orthogonal to U, following the right hand rule. Written in Circular PRGCs
vector form, local 3D coordinates (t, n, b) t project as
local 2D coordinates In this section we derive projective invariant proper-

(- sinP t + coslcosa n + cosfsina b, - sina n + cosa b)t. ties of the two special cases of Circular PRGCs: SORs
and Circular PRCGCs. Figure 5 illustrates those proper-The projection of the axis point A (s) is thus the on- ties. We will address the general case in section 4.

gin of the local 2D frame.
From equations (1) and (7), a point P (s, 0) on the sur- 3.1 Circular PRCGCs

face can be shown to project as Property 1: In an orthographic projection of a Circu-

prfCos sin (0-a) J (8) lar PRCGC, the 2D axis and the projection of the 3D( sin (0 - a) axis coincide regardless of the viewing direction.
Without loss of generality, from this point, we will nor-
malize the scaling function by fixing p - 1 3. Proof: from equation (6), at limb points, we have

In sections 3 and4 we will derivetwo types ofprop- cos (0-a) - cos(0 2 -a) - 0 and thus

erties. The first one relates the projection of limb points sin(0 1 -a) - -sin(0 2 -a) - +1 ,for each s along
of the same cross-section (i.e. for the same s along the the axis. Therefore, f equation (10), the 2D axis

axis). We call such points corresponding limb points, point is given by (0, 0)1, the origin of the local 2D

Fincdin such relationships is useful not only for a con- frame which, as discussed in section 2.2, is the projec-
sdisen 2Ddesuchriptionsp bt ufor recovery onyfo 3 hape a- tion of the axis point A (s) no matter what the viewpointsistent 2D description but for recovery of 3D shape as (ie yaad0 so
well. This has also been the focus of previous work in (given by a and 1) is o.
[Ponce et al. 1989, Ulupinar & Nevatia 1990a, Ulupinar 4there may be many ways to describe 2D surfaces (such as dif-
& Nevatia 1991]. The second type addresses the rela- fernt casss ofribbons), not all of them being projections of

tionship between the axis of the projection of a Circular 3D descriptions. For example, points on the same cross-sac-
PRGC and the projection of its 3D axis. These latter two tion of a 2D ribbon are not necessarily projections of points on
are not the same in general (Figure 4). the same 3D cross-section. We call a 2D description consistent

__ _ sai oWiwhen it does relate projections of corresponding 3D points
3 the scaling fuinction wll only change by a constant factor. (i.e. the 2D description is the projection of the 3D one).
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Property 2: In an orthographic projection of a Circu- tently described by a ribbon with 2D cross-section
lar PRCGC, correspondence segments and tangents to (correspondence segments) orthogonal to the (2D) axis
the 2D axis at their midpoints are orthogonal. tangent (so-called Brooks' ribbon with right angle).
Proo.f reporting the results of the previous analysis in 4 Quasi-invariant properties of general
equation (9), we obtain the expression of the correspon- Circular PRGCs
dence segment r (0, 12) t. The 2D axis shown to be the
projection of the 3D axis, its tangent vector is the pro- In the more general case where the axis is non straight
jection of the 3D tangent vector i. This latter, from the and the cross-section non constant, the limb equation
projection equation (7), is given by (-sin 0, 0) t which is (4) can be rewritten as follows (dropping the argument
orthogonal the previous correspondence segment o. s and as previously mentioned normalizing the scaling

correspondence segments are function by fixing p = 1)
otoonalto 2D axis (1-ecos0)cos(0-a) = rcotp (11)

where e = xr = r / R (R being the radius of curvature of2D axis and projectioni the axis). e is a local measure of the relative thickness ofof 3D axis coincide I the shape of the Circular PRGC. Smaller values indicate
aPRCGC rather elongated surfaces (small cross-section radius

compared to axis curvature radius) whereas larger val-

Figure 5 Projective invariants for special ues thick and curved surfaces. We will call e the thick-
Circular PRGCS ness ratio. i is a measure of how fast the cross-section

Note that it can be easily verified that for a Circular changes its size (radius).
PRCGC, the length of the correspondence segments (in Equation (11) indicates that two pairs of parameters
2-D) is constant and equal to the (constant) diameter of affect the behavior of the contours of a Circular PRGC:
the 3-D cross-section. • (a, 0) corresponding to the viewing direction

3.2 SORs * (e, r) corresponding to the object parameters

The following properties are related to the bilateral (local shape measures)

symmetry property derived by Nalwa in [Nalwa 19891 For the two sub-cases of Circular PRGCs, the study

where non algebraic proofs were used. We state our was simplified by e - 0 for SORs and i - 0 for Circu-
properties here and give algebraic proofs. lar PRCGCs (for cylinders, the simplest Circular

Properties hee In aPRGC, both are zero). In the general case when both areProperty 3: In an orthographic projection of a SOR, non zero, the properties discussed previously are not in-
the 2D axis and the projection of the 3D axis coincide variant. This can easily be seen by expressing the tan-
regardless of the viewing direction. gent w2D to the 2D axis in the general case (omitting the

Proof. from equation (5), we have cos(0 1 - a) = cos(02  details of its derivation):
-a) and thus sin(O1 - a) + sin(02 - a) = 0. Reporting this
in equation (10), the 2D axis point is given by (r / 2) (0.Sco8 [1 (c1 +c2 ) - ,(01c1 + 02c2)] - sin (1 - 0.5Xc
(cosO [ cos (2 - a) + cos (e, - t)], 0 )t which is always a (cosO1+cos02)),O.5(i (s, + s2) + r (Oc , + 2c2)) (12)
point on the u-axis of the local 2D frame; i.e. the direc. where ci = cos(0i - a), s, = sin(O - a), 0i - oiA)s for
tion of the projection of the tangent to the 3D axis. Note i - 1,2 (at limb points).
that unlike property I, this point does not coincide with Using the expression of the correspondence segment
the projection of the 3D axis point A (s). However, (eq. (9)), the dot product with the 2D axis tangent is giv-
since the 3D axis is straight, its projection is also en by
straight and it is determined by the origin of the local 2D
frame (projection of A (s)) and the projection of the 3D (0,.2)= [ 0.5 cos (2 - cc)[ (c, + c2) -
tangent; i.e. the u-axis c. r(01 c1 + 02c2)] - sin (c2 - cO) [1 - 0.Sicr (cos01+ cos02)] +

Property 4: In an orthographic projection of a SOR, 0.5(42 -sXr (S + s2) +r(Olc1 + 02c2) )] (13)
correspondence segments and tangents to the 2D axis at This expression has been proven to be zero for SORs
their midpoints are orthogonal. (where K - 0, 61 - -02, cn M c 2 and s, M -S2) and

Proof: from the previous proof and equation (9), the for Circular PRCGCs (where r - 0, c1 I c2 m 0 and
correspondence segment is given by s- M -s2 = ±-1), in the previous analysis. In the general
r (0, sin (02 - a) - sin (0, -a)) ; i.e. parallel to the v-axis of case, it is non zero.
the local 2D frame. But also from the previous proof the No property has been found to be projective invariant
2D axis is the u-axis, orthogonal to the v-axis o. for the general case (and we conjecture that none exist).

These properties say that in the image plane, the pro- However, we demonstrate that the properties discussed
jection of a Circular PRCGC or of a SOR can be consis- previously are quasi-invariant properties of general
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Circular PRGCs with respect to both the viewing direc- of observation. (Notice that in 3D, the segment connect-
tion parameters (a. 15) (i.e. orthographic quasi-invari- ing limb points is orthogonal to the tangent to the 3D
ant) and to (e, r) (i.e. object parameters quasi- axis since the cross-section is planar and orthogonal to
invariant). For this we have to: the axis). Unlike an invariant property, algebraic analy-

a) define our space of observation (space of values sis of a quasi-invariant property is difficult. Instead, we
of the parameters) analyze it numerically by quantizing the space of obser-

b) show that the property holds up to some small vation and, for each point (a, 5, e, r) of the space, solv-

b) over most of that space ing the limb equation and deriving the projections of
range ocorresponding limb points and the tangent to the 2D

4.1 Space of observation axis. Although there exists an analytical expression for

The whole space of observation is a 4-D space the tangent to the 2D axis (eq. (12)), it requires knowl-
.For the same object, those parameters vary edge of how 0 varies with respect to s at limb points,

(a, 15,re,s). a and san take any valu ete vary which is not known in general. Instead, we have used
as s varies, a and can take any values on the viewing the following method (of which, we omit the details):
sphere for which the limb equation admits a finite (non
empty) set of solutions; i.e. a E [0,2n ) and for each set of parameters (a,, 01,re,, il) (atsomes)
15E (0, n) u (n, 2n).Letting a E [0,n] and 15E (0, n) do
is sufficient as the limb equation (11) is symmetric with - select an arbitrary 3D frame F, - (t, hi,,b•b)
respectton for a and p. 0 solve the limb eq. (11) to obtain the two limb

The 2D subspace (e, r) is also constrained. We have points E) and 6
1 el ! 1 (the cross-section radius is smaller than the radi- p 1 12
us of curvature of the axis), otherwise as mentioned pre- • determine (a 2, (32, e2, r2) at s+ds (for some
viously, the surface self-intersects. r is also small ds)
constrained, since I I - ecos 01 < 2 (as l el -< I) and thus, • solve eq. (11) for the second pair of limb points
from equation (11), lil* 21tan(3I.This implies that, at 021 and 022 (at s+ds) and express their coordi-
each point, the closer the viewing direction is to the axis nates in F,
tangent direction (i.e. smaller I tan 01 ), the smaller I d
has to be (otherwise there would be no visible limbs). using eq. (8) determine the projection of the
Thus, for a surface point where (3 - 150, for example, two pairs of points P (s, 011), P (s, 012) and
the cross-section has limbs if fii < 0.53. Objects seen in P (s + ds, 02 ), P (s + ds, 022) (say P, I P12 ,
daily environments, such as animal limbs or industrial P21 and P 22 )
parts, appear not to have, at the same time, high values • determine the angle between the correspon-
of e and r; i.e.when e is high Iil is small (otherwise the dence segment given by PuI and P12 and the
thickness ratio would rapidly increase, which would 2D axis tangent given by the line joining the
cause self-intersection) and when I H is high e is small. midpoints of P1 I P12 and P21 P22-
Shapes with high thickness ratio and high sweeping We have derived the angles in the image between cor-
slope self-occlude over most viewing directions. In the
analysis, values of I11 will be given as rates of change of respondence segments and 2D axis tangents over thethe cross-section radius r per unit arclength along the space of observation defined by at E [0,hir, (3E (0, i),
thexos.e • <0.5 and I*l < 0.5 (sweep rates less than half the cur-rent cross-section radius per unit arclength). The results
4.2 Quasi-invariant properties show that over 84.30% of that 4D space (excluding spe-

Property 5: In an orthographic projection ofaCircu- cial values e - 0 or i - 0; i.e. SORs and Circular
lar PRGC, orthogonality of correspondence segments PRCGCs) the 2D angle is within 50 of 90. and for over

and tangents to the 2D axis at their midpoints is a quasi- 92.6%eo the spaes win 10" of 90e the isu-
invariant property (the angle they form is "almost" right mainzes the sizes (in percent) of the regions on the view-

over most of the space of observation) with respect to ing sphere where the 2D angle is within 5"of 90" for
the viewing direction (a, (3) and object parameters certain values of (e, 0). The size is with respect to the(e, i). space region where limbs exist. (It can be seen, fromthis table, that the size of the space where the property

Note that this property is related to the description of holds (2D angle within 5" of being right) gradually de-
the projection of a Circular PRGC by a Brooks's ribbon creases as both e and i take higher values). Figure 6a
with right angle. shows a 3D plot of the 2D angle as a function of (a, (3)

To prove property 5 and analyze to what extent the 2D for (e, ) - (0.2,0.2) and Figure 6b shows the corre-
angle is "almost" right, we analyze the behavior of the sponding display of the half viewing sphere ((a, (3)
angle between a correspondence segment and the tan- sub-space). This last figure shows where the property
gent to the 2D axis for all parameter values in our space holds, where it does not hold and where limbs do not ex-
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ist. In the display, vertical circles correspond to constant gions where limbs do not exist (for unlikely view-

1 values with a 50 step. points). Notice that because the size of the regions on

I e=0.1 e-0.2 e-0.3 e-0.4 e=0.1 e-0.2 e=0.3 e-0.4

.- 0.1 196.72 92.4 SOU- 8Y5.37- 0.1 96. 93M 9223- VI76-

r - 0.2 96.86 89.44 83.62 78.55 r = 0.2 99.21 95.45 93.01 90.78

r = 0.3 97.11 88.25 80.05 74.83 r - 0.3 100 97.31 94.27 92.82

r = 0.4 97.29 87.57 78.72 72.86 - 0.4 100 99.00 96.30 194.07
Table I Viewing sets sizes (percent) where the Table 2 Viewing sets sizes (percent) where the

observed 2D angle is within S5 of W tangent to the 21) axis is within 30 of the tangent to

2D angle within 50 of 90P (thin lines) the projection of the 3D axis

2D angleange 0 2D angle difference is 30 or less

no.im reio 2 angle more:;', flgl 50•

""';"i s (t ick 1 (thin lines)

a. b.•'•' - a :.Q;7;7&no limb region 2D angle more tam 5° * :•A
(medium line) of 90P (thick lines) &a. librginbnolimb region b

Figure 6 Property 5 for (e, r) - (0.2,0.2). (medium lines) 2D angle difference is
a. 3D plot. b.half viewing sphere. greater than 30 (thick lines)

Notice that the sub-space where the property holds is Figure 7 Property 6 for (e, r) - (0.2,0.2).
connected and the property is well behaved. It tends to a. 3D plot. b. half viewing sphere.
gradually degrade for small values of I tan pl, that is
close to regions where limbs do not exist. Notice that a the viewing sphere where limbs do not exist is mainly
small value of ý tanf4 requires a very specific viewpoint influenced by r (as discussed in section 4.1), the relative
where the viewing direction V is not only close to being size of the region where the property holds may tend toin the axis plane but also almost parallel to the 3D axis

in te ais lan butals alostparalelto he D ~ increase as r increases (the ratio is over a smaller re-
tangent; i.e. an unlikely viewpoint. Therefore, even if V increhse ls exist at alll.
is close to being in the axis plane, the property would gion, where limbs exist at all).
degrade only at points where the axis tangent is in the Notice that for SORs and Circular PRCGCs this prop-
direction of V (a small set of points) and it would still erty is a projective invariant as we have proved the
hold for the rest of the surface (a much larger set). stronger property that the two axes coincide. For Circu-

Property 6: In an orthographic projection of a Circu- lar PRCGCs the tangents are the same since the axes co-
lar PRGC, the tangent to the 2D axis and the tangent to incide precisely at corresponding points. For SORs, the
the projection of 3D axis for corresponding points are axes are collinear (although they do not coincide at cor-
"almost" parallel (within a few degrees of each other) responding points), thus they have parallel tangents.
over a large fraction of the space of observation. Notice also that it can be verified from equations (10)

To show this property and analyze the extent to which and (13), that the properties hold exactly (perfect or-
the two 2D tangent vectors are "almost" parallel, we thogonality and coincidence of axes) for general Circu-
have used the method discussed previously for property lar PRGCs for the two viewpoints, where the viewing
5. The results showed that the two tangents are within 3P direction V is orthogonal to the axis plane (i.e. side
of each other over 94.48% of the previous space of ob- view, cosca - cos§ - 0, -0 , e I n) and where it
servation and within 50 over 96.90% of that space. Ta- is in the axis plane (i.e. frontal view, sina - 0,
ble 2 gives the sizes of the regions on the viewing sphere cosoi - cosO2, sin0f M -sin02).
where the two tangents are within 3' of each other for
some values of (e, r) .Figure 7a gives the 3D plot of the These two properties are quasi-invariant with respect
angle difference as a function of (a, 0) for to transforms parameterized over the 4D space of obser-
(e, r) - (0.2,0.2) and Figure 7b the corresponding vation. Thus they are orthographic quasi-invariants

half viewing sphere, such as discussed for Figure 6b. (with respect to (a, 0)) and object-shape parameters
The behavior of this quasi-invariant property is similar quasi-invariants (with respect to (e, ) ). Usage of these
to the previous one. It tends to degrade only close to re- properties is discussed in the next section.
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5 Application to shape description and original method (projection method) consists of dis-
recovery cretizing the orientations of the axis (or equivalently of

the correspondence segments) and casting regularly
In this section we discuss how the projective proper- spaced lines. We have used a variation of that method

ties of the previous section can be used to derive con- using a quadratic B-spline representation of the con-
straints on shape recovery for Circular PRGCs. In tours of Circular PRGCs. Line casting is done from the
section 5.1 we discuss the usage of property 5 for a 2D extremities of each B-spline segment. The complexity
consistent shape description. In section 5.2 we discuss of this process of 0 (kin) where k is the number of se-
how constraints derived from both the 2D description lected orientations and m the number of B-spline seg-
(property 5) and property 6 can be used to recover the ments. In the original method, m is the number of
3D shape of Circular PRGCs from a single image of points, which is much larger than the number of B-
their contours. The recovery method provides tests as to spline segments. Local right ribbons are detected for
whether the contours are projections of Circular each pair of lines intersecting a pair of curves at nearby
PRGCs, thus it does not make assumptions about the B-splines (Figure 8). The local axis can be determined
class of objects being viewed. At this stage, we are as- analytically given the desired extremities mo and m.
suming perfect contours to be given as our purpose is to and their tangents To and T,. A local right ribbon is hy-
address usage of the new projective quasi-invariants. pothesized if there exists a L adratic B-spline segment
Our ultimate goal is to handle real image contours. Pre- (local axis) for those extremities and the following con-
vious experience with SHGCs shows that projective in- straint is satisfied (see Figure 8):
variants help solve the figure-ground problem in dist (pa, pm) Idist (pi, qi) < Vi; where Pa is a point
complex real images [Zerroug & Nevatia 1993]. We on the local axis, pi, qi hypothesized corresponding
plan on implementing a similar approach for handling points (intersections of the line orthogonal to the axis at
Circular PR-Cs using the derived quasi-invariants, in with opposite B-splines) and pm the midpoint ofthe near future. Pa wt poieBslns n , h ipito

piqi; i.e the local axis should be the locus of midpoints
5.1 2D shape description of correspondence segments.

Property 5 indicates that the projection of a Circular B-spline2 hypothesized connecting
PRGC can be described by a ribbon whose cross-sec- Pa segment"" "qi
tions (correspondence segments) are orthogonal to the local axis
(curved) axis. This type of ribbon has been addressed in B-spline .................
the past by many researchers. Nevatia and Binford m".,
[Nevatia & Binford 1977] used it to describe complex m, P .. . . ... ....... 0 ', T
objects from contours obtained from range data. In AC- - .o,,
RONYM [Brooks 1983], Brooks used these ribbons in . B-splinel
a model based interpretation of image contours and Rao
and Nevatia [Rao & Nevatia 1989] used them to de- hypothesized connecting p,
scribe complex shapes from imperfect contours. In segment
[Ponce 1988], Ponce compared those ribbons (Brooks' Figure 8 Local right ribbons detection using
ribbons5) to other types of ribbons commonly used in B-splines.
the literature. We will call the ribbons in our analysis Several such local right ribbons are usually obtained
right ribbons, between each pair of curves. To obtain a global descrip-

In such previous work, right ribbons have been used tion (of the whole surface), we perform a grouping of
as a means for 2D shape description without rigorously these local ribbons based on contiguity of their sides
addressing the relationship between the obtained 2D de- and their orientations. Selection of the 'best' global de-
scriptions and the 3D descriptions of viewed objects. In scription uses measures of continuity of orientations of
this discussion, we have shown that right ribbons are in- correspondence segments and axes. For lack of space,
deed good descriptors of the orthographic projection of we omit further details of the method as they are similar
Circular PRGCs. They provide a consistent 2D descrip- to [Rao & Nevatia 1989]. Figure 9, shows the obtained
tion by identifying corresponding limb points, projec- right ribbon descriptions for the two Circular PRGCs of
tions of points on the same cross-section of the 3D Figure 1 using the above method.
shape.

Detection of right ribbons has been addressed in 5.2 3D shape recovery
[Nevatia & Binford 1977, Rao & Nevatia 1989]. The The 2D descriptions can be used to recover complete

3D object centered descriptions from 2D contours of
5Ribbons in our analysis are a special case of Brooks' ribbons Circular PRGCs. To do this, we have to recover the 3D
with a right angle between cross-sections and axis tangents. cross-section, the 3D axis and the sweeping function.
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- In 3D, rotate a reference extremal cross-section, sy
C1,bytherotationR(A I, W) which rotates A to W.
Call the resulting circle Cr and its projection cr.

Find, on Cr, the two points whose tangents are the
same as the tangents )t and t 2 to the projected
limbs at pl and p2

7. Call them q? and q2.
Figure 9 Resulting right ribbon descriptions forCircular PRGCs of Figure 1.* Since lengths ratio of parallel segments is an ortho-

graphic invariant, the scale of the desired cross-sec-
For this, we assume that the viewpoint is general and tion with respect to the reference one is given by
that the two extremal cross-sections are (at least partial- r -- dist (PII P2) Idist (q1, q2 )"
ly) visible. Since the cross-section is known to be circu-
lar, recovery of the two extremal 3D cross-sections can - Scale cr by r and translate it so that p1 and qI co-
be done by finding the orientation of the 3D circles, (C1  incide. Call the resulting cross-section cp.
and C2 in Figure 10), whose prvections coincide with e The desired 3D cross-section is the backprojection,
the visible elliptic cross-sections .The 3D circle finding of c so that its center backprojects on the 3D
method also yields the 3-D orientations ', and thot ftep

'd2 ofthe axis plane. This gives us the 3D cross-sections
two extremal 3D cross-sections. The orientation of the (thus, the 3D sweep as well).
3D axis plane is, thus, Aa - 'I xA2. The depth of the
axis plane can be arbitrarily fixed. The 3D positions of - The 3D axis is the locus of the centers of the 3D
the two extremal cross-sections are automatically fixed cross-sections so recovered.
since their centers belong to the axis plane. Results of the application of this 3-D recovery method

P, ........ to the descriptions of Figure 9 are shown in Figure 11.
q ..... The figure shows the 3-D ruled surfaces, showing cross-

"' C '*I.- .. sections, meridians and the 3-D axes, and the corre-
t -- C2 sponding shaded displays, using different poses of the

A recovered 3-D shapes
Cr t2 .... This method produces estimated 3-D shapes from the

2 "' P2 observed 2D crntours, since the determined 2-D con'e-
S..... q2spondences are themselves estimates of the actual ones.

Figure 10 Recovering 3D models of Circular However, the derived quasi-invariants show that the
PRGCs from 2D contours projections of the 3-D correspondences and the estimat-

ed 2-D correspondences are close to each other over
As previously mentioned, the 3D axis is not the back- most viewing directions. Therefore, the (unique) back-

projection of the 2D axis on the axis plane, as property projections of those 2-D correspondences are close to
6 relates only 2D tangent orientations, not axis points, the actual 3-D ones; i.e. the recovered 3-D shapes are
However, the 2D description, based on property 5, gives good approximations of actual ones. Notice also that the

us a good approximation of corresponding points (pro- method does not make assumptions about the viewed

jections of points on the same 3D cross-section; p1 and objects. It provides tests as to whether the objects are

p2 in Figure 10). Moreover, property 6 gives us a good projections of Circular PRGCs. The tests involve con-
aproximationeof the oreovei, of the 6 og ion, say sistency of orientations of extremal cross-sections asapproximation of tang entation projection,) predicted by the 2-D correspondences and as deter-
Il of the 3D axis tangent (3D cross-section orientation), mined by the 3-D circle finding method. The former ori-
The (unique) 3D cross-section whose projection passes entations are determined by the backprojections of the
through P1 and p2 can be determined as follows (s 2-D axis tangents, at the extremities of the surface, on
Figure 10): the axis plane. The latter ones are the normals hI and h2

• Backproject W- on the 3D axis plane to obtain the mentioned previously. Other objects would produce in-
orientation of the 3D cross-section, say W_. consistencies in those orientations as the extremities of

the limbs would not be matched by the right ribbon find-
6of the two possible solutions for each ellip we choose the ing method (we have found that non Circular PRGCs do

one that makes the exterior part (outside the ribbon) point not satisfy the properties 5 and 6 as Circular PRGCs
away from the viewer. In the cae of a visible half ellipse, the do).
part of the 3D circle corresponding to the visible half ellipse is
made closer to the viewer than the one corresponding to the in- ir 'he projection, cross-sections and limbs are mutually tan-
visible (occluded) part. gei, toI, and vector parallelism is an orthographic invariant.
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case of Circular PRGCs (non straight axis and non con-
stant cross-section size), we have derived rigorous qua-
si-invariant properties for the general case and have
shown that they are invariant for special cases. Those
quasi-invanants have been derived by analyzing the be-
havior of limb projections as a function of viewing pa-
rameters and object shape parameters. The derived
quasi-invariants provide strong constraints for consis-
tent 2D descriptions and 3D shape recovery from 2D
contours and we have demonstrated their application on
some examples. We believe that the results derived in
this analysis constitute an important progress towards
handling complex objects with non simple primitives.

In the near future, we plan on addressing recovery of
Circular PRGCs from real image contours. Other efforts
have shown that projective invariants help solve the fig-
ure ground problem for SHGCs in real image contours
with breaks, markings, and occlusion [Zerroug & Neva-
tia 19931. We believe that quasi-invariants are also a
source of strong constraints for the figure ground prob-
lem for non simple GC primitives. Our aim is to develop
a system that handles compound objects made up of
several GC primitives.
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Abstract [Hartley-Gupta-92] and verified in [Hartley-93a] to be
This paper describes a pair of projectivity invari- useful at distinguishing different point configurations.

ants of four lines in three dimensional projective space, The present paper considers invariants of straight lines
P•. Invariants are derived in both algebraic and ge- in P3 computable from a pair of images. Since straight
ometric terms, and the connection between the two lines occur commonly in man-made objects and may
ways of defining the invariants is established. Since be effectively extracted from the image using an edge
a count of the number of degrees of freedom would extraction algorithm, invariants of sets of lines may
predict the existence of a single invariant, rather that prove to be more useful than invariants of point sets
the two that are shown to exist, an isotropy of the in object recognition applications.
four lines must exist. The nature of this isotropy is The invariants of lines in space can not be corn-
investigated. puted from two views of lines only. It may be seen

It is shown that once the epipolar geometry is that virtually no information about the cameras can
known the invariants of four lines may be computed be derived from two views of a set of lines in space.
from the images of the four lines in two distinct views This is because given two images of a line and two
with uncalibrated cameras. An example with real im- arbitrary cameras, there is always a line in space
ages is computed to shows that the invariants are ef- that corresponds to the two images. In other words,
fective in distinguishing different geometrical configu- two images of an unknown line do not in any way
rations of lines. constrain the cameras. This point is discussed in

[Weng-92]. If on the other hand the epipolar geom-
1 Introduction etry of the two views (as expressed in the essential

Projective invariants of geometrical configura- matrix) is known, then the locations of lines may be
tions in space have recently received much atten- determined up to a projectivity of ? 3 from their im-
tion because of their application to vision problems ages in the two views. There are many ways of deter-
([Mundy-Zisserman-92J). Although invariants of a mining the epipolar geometry from views of points or
wide range of objects in the 3-dimensional projective lines in two or three images ([Higgins-81, Hartley-93b,
space P'do exist ([Abhyankar-92]), one is restricted Zisserman-Hartley-93]).
in vision applications to considering those that may
be computed from two-dimensional projections (im- 2 Line Invariants
ages). For point sets and more structured geomet- In this section invariants of lines in space will be
rical objects lying in planes in P1, many invariants described. It wili be shown that four lines in the 3-
exist ([Coelho-92]) which can be computed from a dimensional projective plane, lSgive rise to two in-
single view. Unfortunately, it has been shown iin dependent invariants under projectivity of p 3 . Two
?Burns-92] that no invariants of arbitrary point sets different ways of defining invariants will be described,
in 3-dimensions may be computed from a single im- one algebraic and one geometric.
age. One is led either to consider constrained sets of
points, or else to allow two independent views of the 2.1 Algebraic Invariant Formulation
object. An example of the first approach is contained Consider four lines Ai in space. A line may be given
in [Zisserman-921 which considers solids of revolution, by specifying either two points on the line or dually,
This paper takes the second course and considers in- two planes that meet in the line. It does not matter in
variants that can be derived from two views of an which way the lines are described. For instance, in the
objec. It has been recently proven in [Faugeras-92] formulae (2) and (3) below certain invariants of lines
and [Hartley-Gupta-92] that a 3 dimensional scene are defined in terms of pairs of points on each line.
may be constructed up to a projectivity of space The same formulae could be used to define invariants
from two views with uncalibrated cameras. This al- in which lines are represented by specifying a pair of
lows us to compute invariants of 3-dimensional con- planes that meet along the line. Since the method
figurations from two views. Invariants of six points of determining lines in space from two view given in
in space have been suggested in [Faugeras-92] and section 3.3 gives a representation of the line as an in-
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tersection of two planes, the latter interpretation of Taking determinants, it is seen that the net result
the formulae is most useful. of choosing a different representation of the lines Ai

Nevertheless, in the following description, of al- and A, is to multiply the value of hi AI by a factor
gebraic and geometric invariants of lines, lines will det(Di) det(Dj). Since each of the lines Ai appears in

e represented by specifying two points, since this both the numerator and denominator of the expres-
method seems to allow easier intuitive understanding. sions (2) and (3), the factors will cancel and the values
It should be borne in mind, however, that the dual of the invariants will be unchanged.
approach could be taken with no change whatever to Next, it is necessary to consider the effect of a
the algebra, or geometry. change of projective coordinates. If H is a 4 x 4 invert-

In specifying lines, each of two points on the line ible matrix representing a coordinate transformation
will be given as a 4-tuple of homogeneous coordinates, of p3 , then it may be applied to each of the points
and so each line Ai is specified as a pair of 4-tuples used to designate the four lines. The result of apply-

ing this transformation is to multiply the determinant
Ai = ((ai, a, 2, aai, 4)(b ib 2,Ob3 , b4 )) I AA I by a factor det(H). The factors on the top and

bottom cancel, leaving the values of the invariants (2)
Now, given two lines Ai and Aj, one can form a 4 x 4 and (3) unchanged. This completes the proof that I,
determinant, denoted by and 12 defined by (2) and (3) are indeed projective

invariants of the set of four lines.
ail ai2  ai3 ai4 An alternative invariant may be defined by

[hhldet h,1  a32  a,3  a34  . (1) ______________

- bil bi2  b i3  b i4J I=dt a~tjl I aj2 aJ33 aj4b 4 I3h'2h'4-[lAlA4 JA21\3(4

(b; I bJ2  bi 3  bJ4 ) 13 ( 1\, 1\2, 13, 14)P\ I 1A 1\3 A12A41 (4)

Finally, it is possible to define two independent invari- It is easily seen, that 13 = 11/12. However, if 1AP\ 2 1
ants of the four lines by vanishes, then both I, and 12 are zero, but 13 is in

general non-zero. This means that 13 can not always
1A(A 21 ,A3 A41 be deduced from I, and 12. A preferable way of defin-

1\ 1 ,1 \A2, A3, \ 4) 3 1\2A41 (2) ing the invariants of four lines is as a homogeneous
vector

a n d (, \ 1I \2 1 I 1 3 14 1 I ( 1\ , \2 , 1\ , \4 )

I2(\1,'2,\3,A4) =I\l 1\41 IA3A1 (3) (I\\ 21 1A3 1\, 41 I1AI31 IA2A41, AI, A41 IP2,31)(0)

It is necessary to prove that the two quantities so Two such computed invariant values are deemed equal
defined are indeed invariant under projectivities of p3 . if they differ by a scalar factor. Note that this defini-
First, it must be demonstrated that the expressions tion of the invariant avoids problems associated with
do not depend on the specific formulation of the lines, vanishing or near-vanishing of the denominator in (2)
That is, there are an infinite number of ways in which or (3).
a line may be specified by designating two points lying The definitions of 11 and 12 are similar to the defi-
on it, and it is necessary to demonstrate that choos- nition of the cross-ratio of points on a line. It is well
ing a different pair of points to specify a line does known that for four points on a line, there is only
not change the value of the invariants. To this end, one independent invariant. It may be asked whether
suppose that (aiI, ai2 , ai 3 , ai4 )T and (biI, bi2, bi 3, bi4 )T I, may be obtained from 12 by some simple arith-
are two distinct points lying on a line Ai, and that metic combination. This is not the case, as will be-
(at 13ai2 ,aiai 4 ) and (b' bh bb3,.bi 4) are another come clearer when the connection of these algebraic
pair of points lying on t4e same line. Then, there invariants with geometric invariants is shown.
exists a 2 x 2 matrix Di such that 2.2 Degenerate Cases

The determinant AiA, I as given in (1) will van-
al.I a/ a. 4  =' D ail ai2 (a3 ai4  ish if and only if the four points involved are copla-

h W 3 4 bit bi2  bi3  bi4  nar, that is, exactly when the two lines are coincident
S2 3(meet in space). If all three components of the vec-

Consequently, tor I(AA2,AA 3 ,A4) given by (5) vanish, then the in-
variant is undefined. Enumeration of cases indicates( i al athat there are two essentially different configurations

s a 2 ai3 a14 of lines in which this occurs.

V. V2 M3 aia.3 1  1. Three of the lines lie in a plane.
1 2 3 3j4 2. One of the lines meets all the other three.

a i l  ai2  ai 3  ai4
Di 1 bi 2  bi3  bi4  The configuration where one line meets two of the
0 Dj aj I aj 3  aj4 other lines is not degenerate, but does not lead to very

bji bj2  bj3  bj4 much useful information, since two of the components
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of the vector vanish. Up to scale, the last compo- through x and Xi. The condition that there exists a
nent may be assumed to equal 1, which means that line passing through x meeting each A, means that the
two such configurations can not be distinguished. In three planes vi meet along that line.
fact any two such configurations are equivalent under Next, we formulate this last condition algebraically
projectivity. and give a method of computing the formula for the
2.3 Geometric Invariants of Lines quadric surface. As before, letting (ail, a 2,ai3,ai 4 )T

Consider four lines Ai in general position (which and (bil, bi2, b,3' b,4 )T be two points on the line %,, the
means that they are not coincident) in p3. It will plane ; passing through x = (z, y, z, t)T and the line
be shown that there exist exactly two further lines rl Ai may be computed as follows. Consider the matrix
and r 2 , called transversals, which meet each of the
four lines. Once this is established, it is easy to define a nil ai2 ai3  ai4
invariants. bi bi2  bi3  bi4 (6)

The points of intersection of each of the four lines z y z t
A, with one of the transversals rj constitute a set of
four points on a line in p 3. The cross ratio of these The plane ri is given by the homogeneous vector
points is an invariant of the four lines Ai. In this way, (pi1,Pi2,Pi3,pi4)' where (-I }pi, is the determinant
two invariants may be defined, one for each of the two of the 3 x 3 matrix obtained by deleting the j-th col-
transversals. umn of (6). Consequently, each pij is a homogeneous

Invariants may be defined in a dual manner as fol- linear expression in z, y, z and t. Furthermore, since
lows. Given a transversal, rj, meeting each of the lines point (z, y, z, t)T lies on this plane it follows that
,Xi, there exists, for each ,i a plane denoted < rj, Ai >,
containing r, and Ai. This gives rise to a set of four -Pi] + YPA2 + Zp,3 + tpi 4 = 0 . (7)
planes meeting in a common line rj. The cross-ratio
of this set of planes is an invariant of the lines A,. Now the fact that the three planes v- meet along a

It is easy to see that this dual construction does not common line translates into the algebraic fact that
give rise to any new invariant. Specifically, consider the rank of the matrix
the cross-ratio of the four planes meeting at rT. The ( Pll P12 P13 P14
cross-ratio of four planes meeting along a line is equal P = 2 P22 P23 P24
to the cross-ratio of the points of intersection of the P31 P32 P33 P34
planes with any other non-coincident line in space.
The line r 2 is such a line. Hence, the cross ratio of is 2. This is equivalent to the condition
the planes < r1 , Ai > is equal to the cross-ratio of the
points < rm, Ai > n r2 , where the symbol n denotes det (P(j)) = 0 for all j , (8)the point of intersection. However, plane < r"1, A, >
meets r 2 in the point Ai nr2 . In other words, the cross- where pM) is the matrix obtained by removing the j-
ratio of the four planes meeting along 1" is equal to the th column of P. Since each entry pi, of P is a linear
cross-ratio of the four points along r2, and vice-versa, homogeneous expression in the variables z, y, z and
2.4 Existence of Transversals t, the determinant det (Pi)) is a cubic homogeneous

To prove the existence of transversals, we start by polynomial. A point on the required locus must satisfy
considering three lines in space. the condition det (P(i)) = 0 for j = 1, ... , 4. However,

Lemma 1. There exists a unique quadric surface con- because of condition (7) these four equations are not
taining three given lines A1, A2 and A3 in general po- independent. In particular, if pj represents the j-th
sition in p 3 . column of P, then (7) implies a relation

Proof. For a reference to properties of quadric sur- ZPI + YP2 + ZP3 + tp 4 = 0
faces, the reader is referred to [Semple-Kneebone-52].
It is shown there that a quadric surface is a doubly Then
ruled surface containing two families of lines A and z det (p(4)) = z det (p, P2 P3)
B. Two lines from the same set A or B do not meet, = det (ap1  P2 P3)
whereas any two lines chosen one from each set will al- = det t z P3P
ways meet. Assuming that the lines \i lie on a quadric = det l-yp2 - z 3p - tp4 P2 P3)
surface, since they do not meet, they must all come = tp4 P2 P3)
from the same family, which we assume to be A. Now = -t det (P2 P3 p4)
consider any point x on the quadric surface. There = -t det (P(')) .
is a unique line passing through x and belonging to (9)
the class B. This line must meet each of the lines Ai, This equation implies that z divides det(P(1)) and t
which belong to class A. divides det(P(4)). Furthermore, applying the same ar-

We are led therefore to consider the locus of all
points x in p 3 for which there exists a line passing gument to other coordinates gives rise to an equation
through x meeting all the lines Ai, i = 1,...,3. To this det(P(l))/z det(P(2))/y = det(p(3))/z =
end, let x = (z, y, z,t)' be a point on this locus. For
each of the lines Ai we may define a plane iri passing -det(P( 4))/t = R(r,y, z,t)
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where R(x, y, z, t) is some homogeneous degree-2 poly- serve as transversals. Next, we mark off points a1 ,
nomial. Then the defining equations (8) of the locus a2 , a3 and a 4 along r, in such a way that their cross
become ratio is equal to any arbitrarily chosen invariant value.

Similarly, mark off along r2 points bt, b 2 , b3 and b4
zR(z, y, z, t) = yR(z, y, z, t) = zR(z, y, z, t) - having another arbitrarily chosen cross-ratio invariant

tR(x,y,z,t) = 0 value. Now, joining ai to bi for each i gives a set of
four lines having the two arbitrarily chosen invariants.

This implies that either R(z, y, z, t) = 0 or z = y - Next, it will be shown that the two invariants corn-
z = t = 0. The latter condition can be discounted, pletely characterize the set of four lines up to a pro-
since (0,0,0,0) is not a valid set of homogeneous co- Jectivity. Consequently, let four lines in space have
ordinates. Consequently, the desired locus is described two given cross-ratio invariant values with respect to
by the degree-2 polynomial equation R(z, y, z, t) = 0, transversals T1 and r 2 respectively. Let the points of
and is therefore a quadric surface. Since it is easily intersection of the four lines with Ti be a,, a2 , a3
verified that the three original lines Ai lie on this sur- and a4 and the intersection points with r2 be bi, b2 ,
face, the proof of the lemma is complete. 0 b3 and b4 . Let a second set of lines with the same

invariants be given, with transversals rJ and intersec-
It is now a simple matter to prove the existence of tion points aý and bU. Our goal is to demonstrate that

transversals. there is a projectivity taking ri to r for j = 1,2, tak-

Theorem 2. There exist exactly two transversals to ing points ai to a• and bi to b for i = 1,.. 4. It will
four lines in general position in 'P3 . follow that the projectivity takes one set of lines Ai

onto the other set.
Proof. We choose three of the lines A\, A2 and A3 and Choosing two points on each of T1 and r2, four
construct the quadric surface S that they all line on. points in all, and two points on each of I, and r4 a
Let x, and x2 be the two points of intersection of the further four points, there exists a projectivity taking
fourth line A4 with the quadric surface. The construc- the first set of four points to the second set, and hence
tion of S in Lemma 1 shows that any transversal to taking r, to rl and r2 to r4 Suppose that this pro-
lines A1 , A2 and A3 must lie on S. Further, the lines jectivity takes ai to aý' and bi to bM', it remains to
Al, A\2 and A3 all belong to one of the families, A, of be shown that there exists a projectivity preserving rl
ruled lines on the quadric surface, S. Let ri and r2  and r'I and taking a:! to a: and bý' to bM. Without
be the lines in the other family B passing through xi loss of generality it may be assumed that r, is the line
and x2 . Then r, and r2 are the two transversals to all x = y = 0 and that r2 is the line z = t = 0. With this
four lines. 0 choice, we see that a projectivity of p 3 represented by

Of course, it is possible that A4 does not meet the a matrix of the form (H, 0 ) where each Hi is
surface S in any real point, or is tangent to S. The /0 H2 )
statement of the theorem must be interpreted as al- a 2 x 2 block, maps each 7, to itself. Furthermore each
lowing complex or double solutions. In the case of four Hj represents a homography of the line i. Since the
real lines in space, there are either two real transver- points a! and aý' on r, have the same cross-ratio, there
sals or two conjugate complex traversals. In the case is a homography of r taking a: to a:' for i . , 4,
of complex traversals, there is no conceptual difficulty
in defining the invariants as in the real case. The and the same can be said for the points bM and bW' on
cross-ratio of points of intersections of the lines with r2 . Hence by independent choice of the two 2 x 2 ma-
the two conjugate transversals will result in two in- trices H, and H2, both mappings can be carried out
variants which are complex conjugates of each other. simultaneously and the proof is complete.

Various degenerate sets of lines also allow two 2.6 Existence of an Isotropy
transversals. or instance suppose that A1 and A2 are Four lines in p 3can be represented by a total of 16
coincident, and so are A3 and A4. One transversal to independent parameters. On the other hand, there are
the four lines passes through the two points of intersec- 15 degrees of freedom for projectivities of P3. This
tion of the pairs of lines. The other transversal is the suggests that there should be only one invariant for
line of intersection of the two planes defined by A1 , A2  four lines in space, but we have seen that there are
and by A3 , A4 . The cross-ratio invariant correspond- two. The discrepancy arises because of the existence
ing to the first transversal is zero, but the invariant of an isotropy ([Mundy-92a]). To understand this, we
corresponding to the second transversal is in general need to determine the subgroup of all projectivities of
non-zero and is a useful invariant for this geometric 'P3 that fix four given lines. Any such projectivity will
configuration. This is similar to what happens for the also fix the two transversals as well as the four points
algebraically defined invariants (see Section 2.1). of intersection of the lines with each transversal. Since
2.5 Independence and Completeness four points on each transversal are fixed, every point

I shall now show that the two geometrically defined on the transversal must be fixed. This shows that a
invariants are independent and together completely projectivity of P3fixes four given lines if and only if it
characterize the set of four lines up to a projectivity fixes the two transversals pointwise. Assuming ms be-
of p 3 . fore that the two transversals are the lines x = y = 0

To show independence, we start by selecting rT and and z = I = 0, it is easily seen that a projectivity
r 2 , two arbitrary non-intersecting lines in space to fixes the transversals pointwise if and only if it is rep-
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resented by a matrix of the form diag(kl, k1, k2, k2) homogeneous coordinates by a 3 x 4 matrix P known
where k, and k2 are two independent constants. Al- as a camera matrix and the correspondence between
lowing for an arbitrary scale factor in the matrix, this points in object space and image space is given by
implies that there is ti one-parameter subgroup of pro- t4 s Pxi where the symbol s. means equal up to mul-
jectivities fixing the four lines. This reduces the num- tiplication by a non-zero scalar factor.
ber of degrees of freedom of the group action of pro- For convenience it will be assumed that the camera
jectivities of P'on sets of four lines in space to 14, and placements are not at infinity, that is, that the pro-
explains why there are two independent invariants. jections are not parallel projections. In this case, a
2.7 Relationship of Geometric to Alge- camera matrix may be written in the form

braic Invariants P = (M I -Mt)
The fact that for real lines the algebraic invariants

defined in Section 2.1 must be real whereas the geo- where M is a 3 x 3 non-singular matrix and t is a col-
metric invariants may be complex indicates that they umn vector t = (t., 'Y,, t,)T representing the location
are not the same. However, since the geometric invari- of the camera in object space.
ants completely determine the four lines up to projec- 3.2 The Essential Matrix
tivity, it must be possible to determine the algebraic Consider a set of points {xI as seen in two im-
invariants •iven the values of the geometric ones. Con-
sider four lines with geometric invariants a and /f. We ages. The set of points {x,) will be visible at image
desire to determine the values of the algebraic invari- locations {ui I and {u4 } in the two images. In normal
ants given by (5). To this end, we may assume that circumstances, the correspondence {ui} - {u } will
the transversals are the lines x = y = 0 and z = t = 0 be known, but the location of the original points {x1)
and that the points of intersections of the four lines will be unknown. As shown in [Higgins-8 i] there exists
with the transversals have coordinates a matrix Q, called the essential matrix, such that

a 2  - (0,0,0,I)T urQui =0 for all i . (11)al = (0, 0, C,1I)T
a3 = (0,0, 1, )T Given at least 8 point correspondences, the ma-

a4  = (0,0, 1 O)T trix Q may be computed from (11). Longuet-
Higgins ([Higgins-81]) suggested a linear solution of
the equations (11). Other methods ([Horn-91, Tsai-84,

and Spetsakis-92]) have been suggested relying on proper-
b = (1, 0 , 0 )T ties of the essential matrix.
bi = ( W,1,0,0)T Although the essential matrix was originally de-
b3  = 1,0, fined for calibrated cameras, it may also be defined
b4 = (1,0 ,0 0 )T for uncalibrated cameras using the same equation (11).

Methods of computingthe essential matrix for uncal-
These points have cross-ratio invariants a and /6 ibrated cameras have been suggested using point cor-

on the transversal lines z = y = 0 and z = t = 0 respondences ([Faugeras-92]) or line-correspondences
respectively. ([Hartley-93b]).

From this it is easy to compute the value of the For calibrated cameras, the essential matrix deter-
invariant (5) to be mines the camera matrices uniquely, up to a scaled

Euclidean transformationi. For uncalibrated cameras,
I = (a/,I, 1 + a/6 - a -/6) . (10) this in not the case. The connection between essential

matrix and camera matrices for uncalibrated cameras
Hence, it is easy to compute the algebraic invariants will be explained below. For proofs of the following
from the geometric ones. Similarly, given I, it is easy theorems, see (Hartley-Gupta-92].
to solve (10 for a and /3, which indicates that the Given a vector, t = (t,,ty,tz)T it is convenient to
algebraic invariant (5) is complete. introduce the skew-symmetric matrix

3 Computation of Line Invariants (0 -t t\
It will be shown in this section that invariants of [t t' = -t1 (12)

lines in space may be computed from two images with -t t' (1

uncalibrated cameras, provided that the epipolar cor-
respondence is known (in the sense to be explained Theorem 3. If Q is an essential matrix corresponding
below). to a pair of uncalibrated cameras, then Q factors as a
3.1 Camera Models product Q = P[t]. for some vector t and non-singular

Nothing will be assumed about the calibration of matrix P. Then, one possible choice of camera matri-
the two cameras that create the two images. The ces consistent with Q is given by
camera model will be expressed in terms of a gen-
eral projective transformation from three-dimensional M = (I 10) M'= (P'I- Pt)
real projective space, p3, known as object space, to where P is the inverse transpose of P.
the two-dimensional real projective space P2 known as wee_ istenvrerapoefP

image space. The transformation may be expressed in 'Strdctly xpeaiskig there, are fitr potille w,,tit.inin,
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Given a pair of camera matrices and some image Now, given two images I and 1' of a line A in space
correspondences ux ,-- ux it is easy to compute the cor- as taken by two cameras with camera matrices M and
responding object points xi by the solution of a set of M', the line A is the intersection of the planes M'1
linear equations (in effect by triangulation). The pair and M"rl1.
of camera matrices given in Theorem 3 is not neces-
sarily the correct pair, and hence the reconstructed set 4 Experimental Results
of object points will not necessarily be correct. How- Three images of a pair of wooden blocks represent-
ever, the following theorem shows that the points are ing houses were acquired and vertices and edges were
nevertheless correct up to a projectivity of P7. extracted. The images are shown in Figures 1, 2, and

Theorem 4. Suppose Q is an essential matrix and M 3. Corresponding edges and vertices were selected by
and M' are any pair of camera matrices consistent hand from among those detected automatically. The
with Q. Let ux ,-. u be corresponding points in the edges and vertices shown in Fig. 4 were chosen. There

were 13 edges and 15 lines extracted from each of the
two images and {xi} be a set of object points such images. The dotted edges were not visible in all images
that u, s Mxi and uý %. M'xi. Now let Mf and M' and were not chosen. Vertices are represented by num-
be a different pair of camera matrices consistent with bers and edges by letters in the figure. Because of the
Q and let {f} be the respective set of object points. way edges and vertices were found by the segmenta-
Then there is a projectivity h of PT taking each xi to tion algorithm, the edges do not always pass precisely
ii. through the indicated vertices, but sometimes through

a closely neighboring vertex. On other occasions, the
The algorithm for computing invariants may ~incw full edge was not detected as a single edge, but was

be formulated in broad terms as follows, broken into several pieces. This is usual with most

1. Compute the essential matrix from re corre- edge detection algorithms, and is a source of error in
spondences using any available algoriti a. ithe computation of invariants.The essential matrices Q12 for the first and second

2. Select a pair of camera matrices M and M' ac- images and Q23 for the second and third images were
cording to Theorem 3. computed from the point matches. Compatible set of

camera matrices were computed, the locations of the
3. Reconstruct the scene geometry using the chosen lines in p 3were reconstructed and invariants (5) were

camera matrices. computed algebraically.

4. Compute invariants of the scene. 4.1 Comparison of Invariant Values
3.3 The invariant (5) is represented as homogeneous.Computing Lines in Space vectors. Two such vectors are considered equivalent

To be able to compute invariants of lines in space, if they differ by a non-zero scale factor. Because of
it is sufficient to be able to compute the locations of arithmetic error and image noise, two computed in-
the lines in P3 from their images in two views (step 3 variant values will rarely be exactly proportional. In
of the above algorithm outline), order to compare two such computed invariant values

Lines in the image plane are represented as 3- (perhaps when attempting to match an object with a
vectors. For instance, a vector 1 = (I, m, n)T rep- reference object), each homogeneous vector is multi-
resents the line in the plane given by the equation plied by a scale factor chosen to normalize its length
iu + my + nw = 0. Similarly, planes in 3-dimensional to 1. This normalization determines the vector up to
space are represented in homogeneous coordinates as a multiplication by a factor ±-1. Two such normalized
a 4-dimensional vector ir = (p, q, r, s)T. homogeneous vector invariants v, and v 2 are deemed

The relationship between lines in the image space close if v, is close to v2 or to -v 2 using a Euclidean
and the corresponding plane in object space is given norm. Correspondingly, a metric may be defined by
by the following lemma.

Lemma5. Let A be a line in p 3 and let the image of A d(vi,v 2 ) V=.V 1- ' 1/2 (14)
as taken by a camera with transformation matriz M be 11v111 lIv 21j
1. The locus of points in 'p3that are mapped onto the
image line I is a plane, v, passing through the camera For any v, and v 2, distance d(v1 ,v 2) lies between 0
centre and containing the line A. It is given by the and 1. A value close to 0 means a very good match,
formula v = MTl. whereas values close to 1 are mismatches.

Proof. A point x lies on ir if and only if it is mapped to 4.2 Invariants of 4 lines
a point on the line I by the action of the transformation Six sets of four lines were chosen as in the following
matrix. This means; that Mx lies on the line 1, and so table, which shows the labels of the lines as given in

Fig. 4).
ITMx = 0 • (13) Si = BB,C,J,KI

S2 = BG,J,NJ
On the other hand, a point x lies on the plane v if and S3 = lA, B, H, NI
only if wrx = 0. Comparing this with (13) lead to the S4  = {B, D, E,G}
conclusion that fr T IT M or 7r = MTI as required. Sr = 1A,C,O, J

4 S2 = B,I,L,N
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Table (15 shows the results. The (i,j)-th entry of the [Hartley-93b] R. Hartley, "Camera Calibration Using
table shows the distance according to the metric (14) Line Correspondences", in these proceedings.
between the invariant of set Si as computed from the
first image pair with that of set Si as computed from [Higgins-81] H.C. Longuet-Higgins, "A computer al-
the second image pair. The diagonal entries of the gorithm for reconstructing a scene from two
matrix (in bold) should be close to 0.0, which indicates projections," Nature, Vol. 293, 10 Sept. 1981.
that the invariants had the same value when computed [Horn-91] B.K.P. Horn, 'Relative Orientation Revis-
from different pairs of views. [Hrn91 Jorn, oRelatice ocietytof Aer-

The only bad entry in this matrix is in the posi- ited", Journal of the Optical Society of Amer-
tion (4, 4). This is because of the fact that the four cn1
lines chosen contained three coplanar lines (lines B, D 91.
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Abstract provide the same value independent of the -.i".w of the
It is known that a set of points in 3 dimensions object.

is determined up to projectivity from two views with In a similar way, it has been shown in [Faugeras-92]
uncalibrated cameras. It is shown in this paper that and [Hartley-Gupta-92] that a set of points in 3-
this result may be improved by distinguishing between dimensions is determined up to a 3-dimensional pro-
points in front of and behind the camera. Any point jectivity by two images taken with uncalibrated cam-
that lies in an image must lie in front of the camera eras. Both these papers give a constructive method
producing that image. Using this idea, it is shown for determining the point configuration (up to projec-
that the scene is determined from two views up to tivity). This permits the computation of projective in-
a more restricted class of mappings known as good variants of sets of points seen in two views. An exper-
projectivities, which are precisely those projectivities imental verification of these results has been reported
that preserve the convex hull of an object of inter- in [Hartley-92] and is summarized in this paper.
est. An invariant of good projectivity known as the The papers just cited make no distinction between
cheirality invariant of a set of points is defined and it is points that lie in front of the camera and those that lie
shown how the cheirality invariant may be computed behind. The specification of the front of a camera will
using two uncalibrated views. As demonstrated the- be termed the cheirality of the camera (from Greek
oretically and by experiment the cheirality invariant : Xcip = hand or side). It is well know that camera
may distinguish between sets of points that are pro- cheirality is valuable in determining scene geometry
jectively equivalent (but not via a good projectivity), for calibrated cameras. Longuet-Higgins [Higgins-81]
These results lead to necessary and sufficient condi- uses it to distinguish between four different scene re-
tions for a set of corresponding pixels in two images constructions. No systematic treatment of cheirality
to be realizable as the images of a set of points in 3 of uncalibrated cameras has previously appeared, how-
dimensions. ever. Investigation of this phenomenon turns out to be

Using similar methods, a necessary and sufficient quite fruitful, as is seen in the present paper. Cheiral-
condition is given for the the orientation of a set of ity is valuable in distinguishing different point sets
points to be determined by two views. If the perspec- in space, especially in allowing projectively equivalent
tive centres are not separated from the point set by point sets to be distinguished.
a plane, then the orientation of the set of points is The major results of this paper are summarized
determined from two views, now. In Definition 4 a class of projectivities called good

Good projectivities and the cheirality invariant are projectivities is defined, consisting of those ones that
also defined for point sets in a plane, which allows preserve the convex hull of a set of points of interest.
these new methods to be applied to images of planar In section 5 an invariant of good projectivity is de-
objects. fined - the cheirality invariant. Theorem 13 strength-

1 Introduction ens the result of [Faugeras-92, Hartley-Gupta-92J by
showing that a 3-dimensional point set is determinedConsider a set of points {xi) lying in a plane in up to good projectivity by its image in two uncal-

space and let (iu} and {u)} be two images of these ibrated views. This sharpening of the theorem of
points taken with arbitrary uncalibrated perspective [Faugeras-92, Hartley-Gupta-92] results from a con-
(pinhole) cameras. It is well known that the points sideration of the cheirality of the cameras. In section
x4 and u: are related by a planar projectivity, that 9 an example of computation of the cheirality invari-
is, there exists h a projectivity of the plane such ant for 3D point sets shows that it is useful in dis-
that huM = uý for all i. This fact has been used tinguishing between non-equivalent point sets. In sec-
for the recognition of planar objects. For instance in tion 7 the concept of good-projectivity is applied to
[Rothwell-92 planar projective invariants were used orientation of point sets, explaining why some point
to define indexing functions allowing look-up of the sets allow two differently oriented reconstructions from
objects in an object data-base. Since the indexing two views, whereas some do not. The relationship of
functions are invariant under plane projectivities, they this result to human visual perception of 3D scenes is
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briefly mentioned, suggesting that the brain accepts combination of the columns of M, it follows that M
various interpretations of a scene differing by good must have rank 3. In other words, M is non-singular.
projectivities, but not by arbitrary projectivities. Summarizing this discussion we have

2 Notation Proposition 1. IfP is a camera transform matrix for
We will consider object space to be the 3- a camera with perspective centre not at infinity, then P

dimensional Euclidean space R3 and represent points can be written as P = (M I -Mt) where M is a non-
dimenRasioa 3Ecl Simide a rlynimag space ine sent thents singular 3 x 3 matrix and t represents the perspectivein R3 as 3-vectors. Similarly, image space is the 2- centre in Ra.

dimensional Euclidean space R2 and points are repre-

sented as 2-vectors. Euclidean space, R' is embedded There exist points in Pathat are mapped to points
in a natural way in projective 3-space PSby the ad- at infinity in the image. To find what they are, we sup-

dition of a plane at infinity. Similarly, R2 may be pose that fi = (u, v, 0)T = P*. Letting pT, P T and

embedded in the projective 2-space pWby the addi- P3 T be the rows of P, we see that p 3 Tj = 0. In other
tion of a line at infinity. The simplicity of considering words, a point i in PWthat maps to a point at infin-
projections between p 3 and p 2has led many authors ity in the image must satisfy the equation iTp 3 = 0.

to identify P3 and p 2 as the object and images space. Looked at another way, if p3 is taken as representing
This point of view will not be followed here however, a plane in p 3, then a point : lies on the plane p3 if
although when necessary we will consider points in R2  and only if •Tp 3 = 0. In other words, the condition
and/Ro to as lying in P 2and p 3 respectively, via the for i to map to a point at infinity is the same as the
natural embedding. condition for k to lie on the plane p3. Since Pt = 0,

Vectors will be represented as bold-face lower case we see in particular that p3T i = 0, and so t lies on
letters, such as x. Such a notation represents a column the plane p3. To summarize this paragraph, the set of
vector. The corresponding row vector will be denoted points in P3 mapping to a point at infinity in the im-
by x T. The notation x usually denotes a vector in age is a plane passing through the perspective centre
R3 , whereas u represents a vector in R2 . Elements and represented by P3, where P3 T is the last row of
in projective spaces ?3 and pP

2will be denoted with a P. This plane will be called the meridian plane of the
tilde accent. For instance, k is a homogeneous 4-vector camera.
representing an element in *p3 , and ii is a homogeneous Restricting now to RV, consider a point x in space,
3-vector representing an element of p2 . not lying on the meridian plane. It is projected by the

The notation ; represents equality of matrices or camera with matrix P onto a point u where wil = Pi
homogeneous vectors up to an arbitrary non-zero fac- for some scale factor w. The value of w will vary
tor. if x = (Z, y, z)T is a 3-vector representing a point continuously with x and the set of points where it

vanishes is precisely the meridian plane. It follows
in RU, then * is the vector (1,yz, 1)T. Similarly, if that on one side of the meridian plane w > 0 and on
u "- (Uv)T, then f represents the vector (u,v, 1)T. the other side, w < 0. It can be shown, but is not

The notation a - b means that a and b have the used in this paper, that w is in fact proportional to
same sign. For instance a -1 has the same meaning the distance of x from the meridian plane.
as a > 0. Any real camera can only view points on one side

p3 Pof the meridian plane, those points that are "in front
3 Projections in of" the camera. Points on the other side will not be

A projection from Wpinto p2 is represented by a visible. In order to distinguish the front of the camera
3 x 4 matrix P, whereby a point k maps to the point from the back, a convention is necessary.
ii ;, Pfc. It will be assumed that P has rank 3. Since Definition 2. A camera matrix P = (M I -Mt) is
P has 4 columns but rank 3, there is a unique point tpi =(0,00)T.said to be normalized if det(M) > 0. If P is a nor-
such that Pt = (0,0, 0)T. In other words, the projec- malized camera matrix, a point x is said to lie in front
tive transformation is undefined at the point t, since of the camera if P* = wii with w > 0. Points x for
(0,0, 0 )T is not a valid homogeneous 3-vector. The which w < 0 are said to be behind the caiivera.
point i will be called the perspective centre of the cam- Any camera matrix may be normalized by multiply-
era. We will assume that the perspective centre is not ing it by -1 if necessary. It will always he assumed

I ) that camera matrices are normalized. The selection
a point at infinity so we may write i ;z:t = of which side of the camera is the front is simply a

where t is the perspective center as a point in R. convention, consistent with the assumption that for a
Now, the camera matrix P may be written in block camera with matrix (I I 0), points with positive z-
form a hs mea P =(MI)whereMisay b3 writte 3 block ancoordinate lie in front of the camera. This is the usual

is a column vector. N ow sac n~ign- ]
stance in [ltiggins-81].

The following statement expresses the fact that a
1 =Mt+c=O , camera sees only those points that lie in front of it.

/ Proposition 3. A point x in R3 is mapped to a point
and so c = -Mt. In future, we will write P = (M I u in R2 by a camera with normalized matrix P if and
-Mt). Now since P has rank 3 and -Mt is a linear only if wf = Pi for some constant w > 0.
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4 Good Projectivities Theorem 6. If B is a point set in a plane (the "ob-
A subset B of R" is called convex ;f the line segment ject plane") in R' lying entirely in front of a projective

joining any two points in B also lies entirely within B. camera, then the mapping from the object plane to the
The convex hull of B, denotedB is the smallest convex image plane defined by the camera is a good projectiv-
set containing B. ity with respect to B.

Definition 4. Let B be a subset of R1 and let h be Proof. That there is a projectivity h mapping the ob-
a projectivity of P'. The projectivity h is said to ject plane to the image plane is well known. What
be a "good projectivity" with respect to the set B if is to be proven is that the projectivity is good with
h-I(L,,) does not meet B, where Lo is the plane (or respect to B. Let L be the line in which the meridian
line) at infinity. plane of the camera meets the object plane. Since B

lies entirely in fcont of the camera, L does not meet
A good projectivity with respect to B is precisely the convex hull of B. However, by definition of the

one that preserves the convex hull of B. It may be meridian plane L = h- (L,,), where L,, is the line
verified that if h is a good projectivity with respect at infinity in the image plane. Therefore, h is a good
to B, then h- 1 is a good projectivity with respect projectivity with respect to B. 0
to h(B). Details are omitted for the sake of brevity.
We will be considering sets of points {ui,) and {1' } As an example, Fig. 1 shows an image of a comb
that correspond via a projectivity. When we speak of and the image resampled according to a naughty pro-
the projectivity being good, we will mean good with jectivity. Most people will agree that the resampled
respect to the set {u}. image is unlike any view of a comb seen by camera

An alternative characterization of good projectivi- or human eye. Nevertheless, the two images are pro-
ties is given in the following theorem. jectively equivalent and will have the same projective

invariants.
Theorem 5. A projectivity h : •"' -- "P" represented Note that if points ux are visible in an image, then
by a matrix H is good with respect to a set B = {ux } C the corresponding object points must lie in front of the
R" - h- 1 (Loo) if an only if there exist constants wi, camera. Applying Theorem 6 to a sequence of imag-

a eh ing operations (for instance, a picture of a picture ofall of the same sign, such that Hfii = wiu'i a picture, etc), it follows that the original and final
Proof. To prove the forward implication, we assume images in the sequence are connected by a planar pro-
that h is a good projectivity. By definition, constants jectivity which is good with respect to any point set

exist such that Hiih = wpe iit . What needs proof is in the object plane visible in the final image.
withat t h that H am sign. Thalue of in Similarly, if two images are taken of a set of point
that they all have the same sign. The value of w in {xt1 in a plane, ui and u' being correponding points
the mapping wu- = Hiti is a continuous function of in the two images, then there is a good projectivity
the point u. If wi > 0 for some point iii, and wj < 0 (with respect to the Ut) mapping each ui to un, and so
for another point uj, then there must some point ti. Theorem 5 applies, yielding the following proposition.
on the line segment joining U% to uj for which w = 0.
This means that h(i,,) lies on the line at infinity, Proposition7. If {uj) and {u9} are corresponding
contrary to hypothesis. points in two views of a set of object points {xi } lying

Next, to prove the converse, we assume that there in a plane, then there is a matrix H representing a
exist such constants wi all of the same sign. Let S be planar projectivity such that Hui4 = wuiiý and all wi
the subset of R" consisting of all points u satisfying have the same sign.
the condition Hu = wu' such that w has the same sign
as all wi. The set S contains B and it is clear that This fact was pointed out to me by Charles Roth-
S n h- I(L,) = 0. All that remains to show is that well (private communication) and served as a starting
S is convex, for then S must contain the convex hull point for the current investigation. Rothwell derived
of B. If ui and ii are points in S with corresponding this result using the methods of [Sparr-921.
constants w, and wi, then any intermediate point u An integer valued invariant
between iii and u, must have w value intermediate 5
between w, and wv1. Consequently, the value of w must Given aset ofN > n+2 points {ui=1,..., N in
have the same sign as tui and tvi, and so n lies in S AT, it is possible to define an invariant of good projec-
also. This completes the proof. 0 tivity as follows. Let el .... e,+2 be points in R" such

that {Ii I form a canonical projective basis for P". For
As just noted, if a projectivity is not good, then n = 2, the points (0, 0 )T, (1,0 )T, (0, 1)T and (1, I)T

there are points in the convex hull for which w equals will do. Assume that the points iii are numbered in
nought (0). For this reason, a projectivity that is not such a way that the first n+2 of them are in general po-
good will be called "naughty"'i. sition (meaning that no n + 1 of them lie in a codimen-

This theorem gives an effective method of identify- sion 1 hyperplane). In this case, there exists a projec-
ing good projectivities. The question remains whether tivity g (not necessarily good) such that g.(u,) = ei for
good projectivities form a useful class. This question i = 1,..., n + 2. Now, for each i = 1_...., N we define
will be answered by the following theorem. a value r/i as follows. If g(ui;) lies on the plane at infin-

ity, we set ?Ji = 0. Otherwise, there exists a further e,
IThis ternivinlgy wAx miggeutted to ii, Iy David F¢,rsyth such that g(itu) = ei. If g is represented by a matrix
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G, then th is defined by the equation Gfij = 0h6j. We We introduce some new terminology. A triplet
show that, except for possible simultaneous negation, (Q, {u }, {u}) is called an epipolar configuration if Q
the values signr(in) are an invariant of good projec- is a rank 2 matrix satisfying the epipolar constraint
tivity. Here sign(i~,) is defined to equal 1, -1 or 0 equation t1' QTi" = 0 for all i. A weak realization of
depending on whether Ti~ is positive, negative or zero (Q, {lui}, fu: }) is a triplet (P, P', {xi}), where P and
respectively. The invariant value is of course depen- P are a choice of normalized camera matrices cor-
dent on the choice of canonical basis {ei }. responding to the essential matrix Q and the points

To prove the invariance, suppose that h is a {xij are oaject points satisfying the equations (2) for
good projectivity with respect to points {u,} and let each i. A strong realization is such a triplet satisfy-
h(ui) = ttu. Consider the projectivity g' defined by ing the additional condition that all the w, and w are

9'(uý) = ei for i = 1, .... , n + 2. Values ri may be de- positive. The triplet (Q, {u 14. {u•}) is called a feasible
fined as before in terms of the projectivity g'. On the configuration if a strong realization exists.
other hand, values wi may be defined in terms of the The following lemma sets notation and derives a
projectivity h mapping each u% to u' as in Theorem basic technical result.
5.

Since h and g'-I o g agree on a set of basis points, Lemma8. Let (P,P',{x}) and (P,', ",{i}) be
it follows that h = g-' og. Consequently, wi = ri/,. two weak realization of a feasible configuration
However, under the assumption that h is a good pro- (Q, {ui}, {uft-}). There exists a 4 x 4 matrix H such
jectivity, all the wi have the same sign, and so, for all that P , PH, P' , P'H and ii : H- xi. Assume
i, we have i -- ec i, where c = ±1. In other words, the that P, P', P and P are normalized and let constants
set of values sign(ii) are an invariant under good pro- e, ,Th, wi and fti be defined by the equations
jectivity, except for possible simultaneous negation.

It is possible to code the values i7/ into a single P = ePH
number according to the formula =

N WiUj = Pxi

X(ul,u2,...,UN)= sign(yik)3'- 1  (1) tDiXi = P[xi (3)
I Then wifvicyi = 1.

The value X(ui) is an invariant under good projectiv- If constants w, tDj, and c' are defined in a similar
ity of the ordered set of points ut. It will be called the way then uiie' --* 1.
cheirality invariant of the points. Proof. The existence of the matrix H is proven in

6 Three dimensional point sets [Hartley-Gupta-92]. Now,
We now consider three-dimensional point sets. The

Suestion that will be addressed is : "Under what con- wif4j = Pici
itions can points ui and x4. in two views be the im- = efrhPHH-'Xi'

ages of a three dimensional point set xi corresponding -
to two arbitrary uncalibrated cameras ?". One well-
known necessary condition ([Higgins-81]) is the epipo- whence wi = %ibj. Multiplying each side of this equa-
lar constraint, fjZTQ~ij = 0 for all i and some rank-two tion by wi gives the required result. The proof for the
matrix Q. We will ignore the effects of noise, so that primed quantities is of course the same. D
the epipolar constraint equation will be assumed to
hold exactly. The question is whether this is also a A further useful technical result follows.
sufficient condition. The answer is no.

It will be assumed that there are sufficient points for Lemma 9. Let H be the matrix
the matrix Q to be determined unambiguously, that is
at least 7 ([Hartley-92]) or 8 ([Higgins-81]) points. Un- H k( I T 0
der these conditions as shown in [Hartley-Gupta-92], kvT k
and [Faugeras-92] it is possible to determine the lo-
cation of points ii and cameras P and P' such that Then with the notation used in Lemma 8, f -e r,
ii ;, PiR and fit ;, P'fi, and furthermore, the choice e - y'j' and for each i, i T- kvT, where t and t'

is unique up to projectivity of P'. Assuming that are the perspective centres of P and P'. (Remember
none of the reconstructed points xi is at infinity, we that - denotes equality of sign.)
can write

wi ii.,= Pici (2) Proof. One verifies that
Si li -" P ¢

If all the wi and wi are positive, then according to H-=( I T 0

Proposition 7 the points xi map to points un and 14- \ k
in the two images. Normally, this will not be the case.
It is possible, however, that another choice of P, P' Let P = (M I -Mt) with det(M) > 0 and P = (M I
and xi exists with the desired property. -Mt) with det(M) > 0. The from the cP = PH` it
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follows that cM = M(I + tvT). Taking determinants &i ' - 1 we derive sWwiCir.C2W, - 1, from
and signs gives which it follows that tbi -' 1. This shows that

c - det(I+tVT ) -1I + VTt = T (P, P, {fi}) is a strong realization as required. 0

Since the epipolar configuration derived from two
as required. The same proof holds for e. images of a real scene must have a strong realization,

From (3) we have H -= ki,. Multiplying this this theorem gives a necessary and sufficient condition
out and considering only the last component yields for a set of image correspondences to be realizable as
S= k(vTxi + 1) W kvT*, as required. a a three dimensional scene. Theorem 10 is illustrated

in Fig 2.
Applying Lemma 8 to the case where one of the For planar object sets, Theorem 6 established the

realizations is a strong realization leads to a necessary existence of a good projectivity between the object
and sufficient condition for an epipolar configuration plane and the image plane. For non-planar objects
to be feasible. seen in two views, strong realizations of the epipolar

configuration take the r6le played by sets of image
Theorem 10. Let (P, P', {xi1) be any weak realiza- points in the two dimensional case.
tion of an epipolar configuration (Q, {u,}, ft9) and
let wi and &i be defined as in (2). There exists a Theorem 11. Let (Q,{f%1,{u:}) be an epipolar con-
strong realization (P, ,Pki) of(Q,{uf},{f4) if and t iorem 1et(Qu`,{x}) andepipa boonlyif ~w~hasthesam sin fr al ~figuration and let (P, 1", {x, }) and (F, F', {ii)}) be two
only if witi has the same sign for all i. separate strong realizations of the configuration. Then
Proof. We begin by proving the if part of this theorem, the projectivity mapping each point xi to *i is good.
and apply Lemma 8 to the case where (P, P',ki) is a
strong realization. In this case, ivi - 1 and so wii - Proof. With notation as in (3), wi --* =i -" 1, and
1. Similarly, wriihe -' 1. Therefore wiurJi2ce' --* hence from Lemma 8, rh7e -* 1, which means that all
from which it follows that wiwu --' c' which is constant q have the same sign. Therefore, by Theorem 5, H is
for all i. a good projectivity. 0

Now, we turn to prove the converse. Let X+ be
the set of points xi such that wi > 0 and let X- be The particular case where one of the two realiza-
the set of points such that wi < 0. The sets X+ and tions is the "correct" realization is of interest. It is
X- are separated by the meridian planes of each of the analogue in three dimensions of Proposition 6.
the cameras. Now, we seek a plane that separates X-
from X+ and satisfies the additional condition that
the perspective centres of the two camera lie on the Corollary 12. If {xiI are points in R3 , image coor-
same side of the plane if wi•u > 0 for all i, or on dinates {ui) and {u9-1 are corresponding image points
opposite sides of the plane if wi&; < 0 for all i. Such in two uncalibrated views, Q is the essential matrix
a plane can easily be found by slightly displacing the derived from the image correspondences ui 4-.

meridian plane of one of the cameras2 . and (P, P', {i,}) is a strong realization of the triple
Let this separating plane be represented by a 4- (Q, {uil, {f4}), then there is a good projectivity tak-

vector i. The condition that both perspective centres ing each xi to xi.
t and t' lie on the same or opposite sides of the plane
may be written as iTi *- r. and jT ' -- Kicw where From this corollary, we can deduce one of the main
ic is some non-zero value and sign(wiwv) is a constant results of this paper.
for all i by hypothesis. The condition that the plane v
separates X- from X+ may be written as -'=w, Theorem13. Let (P,P',{xf}) and (P, P', {}) be
for some constant •. Now, let H be the matrix two different reconstructions ofSD scene geometry de-

rived as strong realizations of possibly different epipo-
l IT O lar configurations corresponding to possibly different
= vT r pairs of images of a 3D point set. Then there is a

good projectivity mapping each point xi to ,i.
Then according to Lemma 9, - K-, ' -

T an, - - NowWhat this theorem is saying is that if a point set inKw•T 'W and Y ti- ci ` 42wi. Now substi- R3 is reconstructed as a strong realization from two
tuting into the equation witbiv h --* I from Lemma 8 separate pairs of views, then the two results are the
yields wi1idK 2 Qwi- 1 from which it follows that same up to a good projectivity.
tbi -* 1 as required. Similarly, from the equation

2 For this constnrltiot, to work, it oew.eini ,ir.ressary to make Proof. By corollary 12 there exist good projectivities
the additional aa,,mptio,, thlat the. poilt Mt {.,) in hontled ma ping each of the sets of reconstructed points 1xi)
i,s the ivnage. pla,,e. This Astmptio, will lie tn,e for any rea. andT{*, to the actual 3D locations of the points. The
monA|,le Oinlioe camera, which cam, w,,t have am immage. of ivmfinite result follows by composing one of these projectivities
extent., with the inverse of the other. 0

749



7 Orientation since in view of Theorem l Ithe point sets are related
We now consider the question of image orientation, via a good projectivity. Whether or not oppositely ori-

A mapping h from K' to itself is called orientation- ented strong realizations exist depends on the imaging
preserving at a point x if the Jacobian of h has positive geometry. Common experience provides some clues
determinant at x. Otherwise h is called orientation here. In particular a stereo pair may be viewed by
reversing. Reflection of points of /n with respect to presenting one image to one eye and the other image
a hyperplane (that is mirror imaging) is an example to the other eye. If this is done correctly, then the
of an orientation reversing mapping. A projectivity h brain perceives a 3-D reconstruction of the scene (a
from P" to itself restricts to a mapping from /' - strong realization of the image pair). If, however, the
h-1 (Loo) to R", where L,, is the hyperplane (line, two images are swapped and presented to the opposite
plane) at infinity. Consider the case n = 3 and let H eyes, then the perspective will be reversed - hills be-

e a 4 x 4 matrix representing the projectivity h. We come valleys and vice versa. In effect, the brain is able
wish to determine at which points x in R - h-I (L,,) to compute two oppositely oriented reconstructions of
the map h is orientation preserving. It may be verified the image pair. It seems, therefore, that in certain cir-
(quite easily using Mathematica [Wolfram-88]) that if cumstances, two oppositely oriented realizations of an
Hix = wxk' and J is the Jacobian of h evaluated at x, image pair exist. It may be surprising to discover that
then det(J) = det(H)/W4 . This gives the following this is not always the case, as is shown in the following

result. theorem.

Proposition 14. A projectivity h of p3 represented by Theorem 17. Let (Q, {ui }, {uf}) be an epipolar con-a matrix H is orientation preserving at any point in figuration and let (P, P', {xi1) be a strong realizationa 3 -mh-x(LH) if and only if det(H)p> o. of (Q, {ui}, J{)). There exists a different oppositelyoriented strong realization (P,/P, {x,}) if and only if
Of course, the concept of orientability may be ex- there exists a plane in R3 such that the perspective
tended to the whole ofp 3 , and it may be shown that h centres of both cameras P and PI lie on one side of
is orientation-preserving on the whole of p 3if and only the plane, and the points xi lie on the other side.
if det(H) > 0. The essential feature here is that as a
topological manifold, p 3is orientable. The situation Before proving this theorem, we need a lemma.
is somewhat different for P2 , which is not orientable Lemma 18. Let (PP',{xi)) be a strong realization
as a topological space. In this case, with notation
similar to that used above, it may be verified that of an epipolar configuration (Q,{ud},{u.). Thendet() =detH)/w. Tereorethefolowin prpo- there exists a aim ilarl&¶ oriented strong realizationdet(J) = det(H)/w3. Therefore, the following propo- (P, P', {fk }) for which P =(I 1 0).
sition is true.

Proposition 15. A projectivity h of p 2 is orientation Proof. Suppose P = (M I -Mt), with det(M) > 0.
preserving at a point u in R2 - h- I (L..) if and only Then multiplication by the matrix

if wdet(H) > 0, where Hu = wi'.
This theorem allows us to strengthen the statement of 0 1)
Theorem 5 somewhat.

Corollary 16. If h is a good projectivity of p 2 with transforms P to the required form. Furthermore, H- 1

defines an orientation-preserving good projectivity onrespect to a set of points {u4} in R2 , then h is either the points xj. 01

orientation-preserving or orientation-reversing at all
points ii. Suppose the matrix H corresponding to h is Now
normalized to have positive determinant (by possible we may prove the theorem.
multiplication by -1) and let Hui = wif4.. Then h is Proof. (Theorem 17) In light of Lemma 18 it may be
orientation-preserving if and only if wi > 0 for all i. assumed that P and P are both of the form (I

An example where Corollary 16 applies is in the case 0), because an oppositely oriented pair of realizations
where two images of a planar object are taken from exist if and only if an oppositely oriented pair exist
the same side of the object plane. In this case, an satisfying this additional condition.
orientation-preserving good projectivity will exist. be- Let us assume that such an oppositely oriented
tween the two images. Consequently, all the wi defined pair of strong realizations exists and H represents the
with respect to a matrix H will be positive, provided orientation-reversing good projectivity relating them.
that H is normalized to have positive determinant. We define c, eand iN as in (3). If necessary, H may

The situation in 3-dimensions is rather more in- be multiplied by a constant so that e' - 1. Since
volved and more interesting. Two sets of points {xi} wivbi -" 1, it follows from Lemma 8
and J*i,) that correspond via a good projectivity are that I- 1 for all i and e - 1. From the equation
said to be oppositely oriented if the projectivity is (I I 0)H = (I 1 0) the form of H may be deduced
orientation-reversing. This definition extends also to
two strong realizations (P, P', fxi)) and (P,P', *,=))
of a common epipolar configuration (Q, {f }), {14 }), kvr k
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for some 3-vector v and, since H is orientation revers- and determine how errors in the input data affect the
ing, k - - 1. sign of each YA. An investigation of noise propagation

Now, according to Lemma 9, /i -* kvirXj, and since is underway with the purpose of assigning a computed
Ili 1 and k - -l it follows that vT i -- -1. This error bound to each value Yh. The developed methods
condition may be interpreted as meaning that all the have not been implemented at present, so in the fol-
xj lie on one side of the plane defined by v. lowing discussion noise effects are ignored.

On the other hand, by applying Lemma 9, we get In Hartley-93] projective invariants of 3D point
S 1 and j' 1. These equatisets were discussed. As an experiment in that pa-

T and 1. These equations per, a set of images of some model houses were ac-
mean that t and t' lie on the opposite side of the plane quired. Figures 1, 2 and 3 of [Hartley-93] show the
" from all the points xi. This completes the only if three images. Corresponding vertices were selected by

part of the proof. hand from among those detected automatically. The
The converse may be proven by working backwards 13 vertices used are shown in [Hartley-93],Fig 4.

through this proof. Assuming the existence of a sep- Six sets of six points were chosen as in the following
arating plane i one constructs the orientation revers- table which shows the indices of the points as given in
ing matrix H as above and verifies that the resulting [Hartley-93], Fig 4.
(P, P', {:i}) is a strong realization. 0

Note that the existence of such a separating plane S = 1, 2, 3, 6, 9, 10

as described in Theorem 17 may be checked using any S2  = 2, 4, 6, 8, 10, 12
strong realization. S3 = 1, 3, 5, 7, 9, 1154 = 1, 2, 3, 6, 7, 8

8 3D cheirality invariants 55 = 1 1, 4, 7, 10, 13, 12
The cheirality invariant of a set of points may be Ss = 2, 5, 8, 11, 12, 13

computed from two views by constructing a strong Rom image correspondences in two
realization of the epipolar configuration and then in- views (iHartley-93], Figs 1 and 2) the essential ma-
yoking Theorem 13. If in addition each pair of views
is discovered to satisfy the condition of Theorem 17 trix Q was found and a weak realization (P, P, {xj)

then the orientation of the set of points with respect was computed. For each of the six sets of indices i
to a canonical basis gives a further invariant, shown above a complete projective invariant of the

In general, finding a strong realization involves sub- points {zi} was computed by mapping the first five
stantial computation. It is therefore convenient to be points onto a canonical basis. The coordinates of the
able to compute the cheirality invariant of a set of mapped sixth point constitute a projective invariant
points from a weak realization. This may be done of the set of six points.
using the following theorem This computation was repeated with a different pair

of views ([Hartley-93L, Figs 2 and 3). Theory predicts
Theorem 19. Suppose (P, P', {xi}) is a weak realiza- that the invariants should have the same value when
tion of an epipolar configuration (Q,{f,,,,{;u9) and computed from different views, and should distinguish
let constants rli be defined for each xi as in the def- between non-equivalent point sets.
inition of the cheiral invariant. Suppose that P*i = Table (4) shows the comparison of the computed

N invariant values.
wifit and define ri, = qliwi, then lm, sign(ih)3i- 1  inain v .91
is the cheiral invariant of a strong realization of 0.096 0.970 0.975 0.619 0.847 0.823Q{)0.995 0.015 0.064 0.841 0.252 0.548
(Q'{ufIif1). 0.967 0.066 0.013 0.863 0.276 0.516

Details of the proof will not be given. It is simply a 0.617 0.830 0.873 o.oi6 0.704 0.752
matter of considering the composition of two projec- 0.861 0.238 0.289 0.708 0.005 0.590
tivities : from the strong realization to the weak real- 0.828 0.544 0.519 0.719 0.574 0.026

ization and from the weak realization to the canonical (4)
frame. The (i, j)-th entry of the table shows the distance

according to an appropriate metric between the in-
9 Experimental results variant of set Si as computed from the first image

In considering real images of 3-D configurations it pair with that of set Si as computed from the second
is necessary to take into account the effects of noise. image pair. The diagonal entries of the matrix (in
In particular, because of measurement inaccuracies, it bold) should be close to 0.0, which indicates that the
will (virtually) never be the case that a point xi in a invariants had the same value when computed from
strong realization will map by chance exactly onto the different pairs of views.
plane at infinity under the mapping to the canonical Although the projective invariants computed here
basis. For this reason, in practical experiments I have are quite effective at discriminating between differtnt
preferred to define the cheiral invariant by interpreting point sets, indicated by the fact that most off-diagonal
the values YN as bits of a binary integer ; riq > 0 corre- entries are not close to zero, entries (2,3) and (3, 2) are
sponds to a I bit, and Oi < 0 to a 0 bit. In some cases, small indicating that the point sets numbered 2 and 3
a value of rqi will lie so close to 0 variations due to noise are close to being equivalent up to projectivity.
can swap its sign. For robust evaluation of a cheiral Next, the cheirality invariants for each of the point
invariant value, it is necessary to select a noise model sets were computed from the weak realization using
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the method described here. The computed values for References
each of the six point sets were as follows : X(Si) = [Faugeras-92] Faugeras, 0., "What can be seen in
28, x(S2) = 3, x(Sa) = 59, x(S4) = 60, X(S5) = three dimensions with an uncalibrated stereo
21, X(S6) = 27. As expected these invariant values rig?", Proc. of ECCV-92, G. Sandini Ed.,
were the same whether computed using the first pair LNCS-Series Vol. 588, Springer- Verlag, 1992,
of views or the second pair. Note that the cheirality pp. 563 - 578.
invariant clearly distinguishes point sets 2 and 3. In
fact, all six point sets are distinguished. [Higgins-81] H.C. Longuet-Hig/ins, "A computer al-

gorithm for reconstructing a scene from two
Reordering: Although there are no invariants of projections," Nature, Vol. 293, 10 Sept. 1981.

projectivity for 5 points in p3 , the cheirality invari- [Hartley-92] R. Hartley, "Invariants of 3D point sets",
ant is defined. In order to estimate its effectiveness submitted for publication.
for distinguishing different configurations the follow-
ing experiment was carried out. Five points in P3 were [Hartley-Gupta-921 R. Hartley, R. Gupta and T.
selected and the cheirality invariant computed for all Chang, "Stereo from Uncalibrated Cameras",
permutations of the five points. The result was that Proceedings Computer Vision and Pattern
10 different invariant values were found (out of 16 pos- Recognition conference (CVPR-92), 1992.
sible), each one occuring 12 times. It may be seen
that this will be true whichever 5 points are selected [Hartley-93] R. Hartley, "Invariants of Lines in
(though the invariant values will be different). In Space", In these proceedings.
short, there is about one chance in 10 that two sets
of five arbitrarily selected points will have the same tem fo r Doing Mathematics by Computer,"
cheirality. Addison-Wesley, Redwood City, California,

When this experiment was carried out with 6 points 1988.
arbitrarily chosen the results were seen to vary accord-
ing to the particular configuration of the points. For [Rothwell-92] Charles A. Rothwell, Andrew Zisser-
various choices of points it was seen that the proba- man, David A. Forsyth and Joseph L. Mundy,
bility of getting a chance match for arbitrary permu- "Canonical Frames for Planar Object Recog-
tations of the point set is about one chance in 20 or nition", Proc. of ECCV-92, G. Sandini Ed.,
30. LNCS-Series Vol. 588, Springer- Verlag, 1992,

pp. 757-772.
Conclusions : These results show that the cheiral-
ity invariant is quite effective at distinguishing be- [Sparr-92] Gunnar Sparr, "Depth Computations from
tween arbitrary sets of points. Given the relative ease Polyhedral Images", Proc. of ECCV-92, G.
with which the cheirality invariant may be computed, Sandini Ed., LNCS-Series Vol. 588, Springer-
it may be extremely useful in grouping points. In ad- Verlag, 1992, pp. 378 - 386.
dition, it may conveniently be used as an indexing
function in an object recognition system. It has been
demonstrated that the cheirality invariant gives sup-
plementary information that is not available in pro-
jective invariants. As a theoretical tool, the cheirality
invariants provide conditions under which image point
matches may be realized by real point configurations.
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Figure 1. At the left a comb. At the right a naughty projection of the comb.

Weak Realizations of
Feasible Configurations

Weak Realizations of
Infeasible Configurations

Figure 2. Each camera is shown symbolically as a line representing the meridian plane and an arrow indicating
the direction of the front of the camera. Each diagram represents a weak realization of an epipolar configuration.
The two top configurations of points and cameras satisfy the condition of Theorem 10 and may be converted to
strong realizations. The two lower configurations do not, and hence can not be weak realizations of a real scene.
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Abstract has not been realised in the case ofcurved surfaces. 1w-
cause the outline of a curved surface is extremely hard
to interpret. This paper denionstrates how a useful

It is known that rotationally symmnietric surfaces range of descriptions for rotationally sylmletric sur-
can he recognized front their outlines alone. using faces and for straight homogeneous generalise'd cylin-
cross-ratio's of bitangent intersections. This paper ders can be be determined from ain oulline in a single
demjonstrates a sutccessful implementation of this tech- image, using simple geometric argumiels. 'lThese. le-
nique, using a novel bitangent finder, that w'orks oi scriptions are invariant to camera position. orilial iou
inmages of real scens. The technique is shownm to ex- and calibration.
tend to the case of straight homogeneous generalised
cylinders, and a dual construction for computing fur- 1.1 Description for recognition
ther invariants from outlines is displayed. A number of recent papers have shown how projec-

tive or affine invariants can be used to index a niodel,
1. This paper is about recognizing Stl(C's ani ro- and thereby avoid searching a model base (e.g. [it.

tatioially symzmietric ,ljects. using outlines oh- 47. 35. 211). To be used for indexing. a fuuction must:
tained front a single Oivr 1ny ' an uncalibrated canm-
era. at an unknown viewring position. 1. be computable front image out line informalin

2. This paper demonstrates a syvstem that w'orks. alone.
hluilt using theory described in another paper 2. ideally should have different values for differntt

(Iroc ECCA'92). It shows how this theory natu-
rally extends to SHG("'s. front rotationally sym- objects and

metric objects. It then demonstrates construe- 3. be uinaffected by ol)jecl pose and hitnriiisic param-
tions that yield further information about the sur- eters of the camera.
face. based on the dual of a surface.

3. One- section briefly describes material already Functions with these properties have thie same valhe
Ipuhlished. for background information onl. an'd for any view of a given object. and so can be use'd

ad to iu(Iex into a mxodel base witlhouit search: 1,y ;ih,ilsw
some of the paragraphs in the introduction ap- of tierminolgy. we call suIch wrihe iins 'ilexiarl ig rim,•-
Iear in a paper submitted to the International onster Ining we all su c I vvi, "'irmlrxi -
(Conference on (omputer Vision: all other uiaie- ions". Indexing f1n' ions hay,' l,','nouislrahtu
rial is original, for polyvh,,dra [37] (derived, as alway., from a single,.

unknown view), and for rotat ionally syvmuletric sur-

I Introduction faces [II] (again. compuited from at; tuiliun' ii a sin-

Outlines are a potentially important source of iu- gle. unknown view). A comlpaniotn paper [12] provos
formation about the objects in a scene because image the remarkable fact that a single outline yilds all file
edges appear at. niost outline points, and image edges projective geometry of an algebraic surface. amild
can be compulted reasonably reliably. This potential denionsitrates that all the projective. iiv.ariamts of anl

algebraic surface call. iii principle. be cnt liimed for a
*%Vqrk at (-,E as soopported in parl by the DARPA under single imniage. lin this papfr. we delOilisl ra-te siccess -

(Contract Ni,. MDA,72-9l--('-uo!53 ful indexing for a range of images of real scelnes using
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the constructions of (111. W~e show that t hese cot'- tended to include straight. homogeneous generalised
structions also yield indexing fujict ions for st raight ho- cylinders [8]. Relationships betweeni sections of the

I oge'neous generalised cylinders, and we (lemlonst rate out line of a straight homiogeneous geiieralimed cylinder
how furt her indexing (1111(1 jul1 may lie obta~ined usIing have been widely studied, and are known to yield a va-
thle concept of tile dual surfacy. riety of surface 'paramteters in orthlographic -views [28.

Ini a t~ypical recognition system for planar objects. 44 45].
p~roject~ive' invariantstm art, computed for at range of ge- In flthe caw of plane objects. indexing functions are
oniet~ric pbrimit~ives in the image. If the values of these easy to compute. because viewing a plane curve front
invariants miatch thle values of' the invariants for a anl arbitrary focal point induces anl action of tile proo-
known iniodel. we have good evidence that the ini- jective group on lthe curve. (ionstrueting indexing
age features are within a c-imera transformation of fuinctions for three dimensional objects. is challenginig.
tile model features. Object inodels consist of sets of because it. is niore difficult to enisure that t iese four-
invariant values alld are therefore relatively sparse. tions are copsopulable fromi, oulm(inii .formationi a'lmpi(.
meaning that liypodt lieis verification is rt-quired to as changing viewing position no longer induces at group
confirin a mnodel miatch. However, 110 searching of action onl thle outline.
flt, miodel base is required because tlie hypothiesised 1.2 The outline and its geometry
object~s identity is determined by thle invariant deC-Thog utIlep erw asmalidlzdpl-
scriptors aineasured. As a result., systemis with1 rela- Througou taea lhee camer. eas psuume an idealizedntian-

Iiel for oe aes alh ostutd.Ss an aiumagr plan. For each point in space, there is n line
teints of t. is sort, have been demniost rated for lanie through that point and tlite focal point. filie point iii
objects in a number of papers [10, 36. 49. 21. 42. space appears in tile imiage as thle intersection of this
48]. line with the image planme - figure I illustrates such a

This paper concentrat-es onl thle more difficult prob- camiera.
lemin of recognising curved surfaces froni a single out- It is easy to see that if the focal point is fixed( and
line. Previous approaches include attempts to exteind the imiage plane is mnoved, the resulting (distort ion of
line labelling [13. 221, the development of constraint.- thle im1age is a collineatioiu 3 . Ini what follows, it is as-
based svst~envs [4]. and lthe study of how thle topology sumledl that neither lthe posit ion of tilie imuage planie
of a surface's outline changes as it is viewed fromt dif- with respect to the focal poinut nor thle size and aspect
ferent. points. fornialised into a structure known as anl ratio of thle pixels oii the camnera plane is known', 1SO
asptect graph (for example, [18, 19). 27, 33. 34]). As- that the image pre'senited to time algorithInn is. within
pect. graphs canl be extremnely complicated for even sonitc arbitrary colhineatioti of ltie "correct." i~ma~ge. Ini
Sinpie curved surfaces; somne examples appear iii 133. this abstract. model. the iniage plamie mnakes 11o con-
3-1.1. Recently. there have beeni at~tenmpt~s to represent tribution to thme geonmet ry. and( it~s posit ion iii space
the svstenm of outlines of a, curved surface as a linear is ignored. Notice that ani orthographic view occurs,,
coumbination of soine small iiumber of outlines (see, for when the pinhole is "at infinity-.

example. [1, 21). This approach is reprewemtted as pro- Thme outit,, of a surface is a p~lane curve ii tI le im-
vidiiig ami approximiat ion sufficiently accurate for somne age. which itself is thle project ion of a space curve.

purposes, although it cannot capture all the comiplex- known as a conloar gfi(raloraiJ. Thie contour genera-
ities that. the asp~ect graph (loes. tor is given by those points onl tilie surface where Ilite

Another area that. has been extensively studied surface turns away fromnt Ilie imiage plane: formially, I lie
is thle relat ionshmip between thme differeit~ial geomie- ray through thme focal point to the surface is faimgeull

tyof the outline aind of the surface, both for sin- to the surface. As a result. at aii outlliim .v oinii. ifI i
geitry e H.21an o nto sqecs 11 relevant, surface patch is visible, nearby pixels in lthe
gi6 m g s [9 3 n o 4oio se u n e [1) imiage will see vastly differet, mlpoints onl thme surface'.
6, 6it. It is generally accep~tedI that thle problemt and so outline points tisually have sharp change's tim

of recognmising a surface fromn its out line alonme is in- imiage brightness associated .with t heim. Figure I il-
tractable if the surface is constrained onmly to be ls ae hs ocps

snmoot~~~~~~l]is orte piecwis sioooI.asii hi cs sgnf

icant changes call be immade t~o thme surface geomietry .%neigrttoal y mti h
without. affect-ing the ouitline front a given viewpoimit ,ects
As a result. anl import ant part. of thle p~roblemi iii- It. is shown in [I I] thlat:
volves constructing as large a class of surfaces. as pos-
sible that call either be directly rccogniseta. or use- e Lemiumi: Except where t lie imntige-iiuthue ctisps".
fully constrained. frontm their outlinie alonme. Dhonte' a plane tangent to t he suurface' ;t at point oi lithe
ft at. showed that for a class of rotationally svii- Arsinaioiacifiw%.sse-i mptkgte
nmetric surface, ob.jec(t pose co0uld( be recovered for a A ce1tljtine IAll 14- til .tte,,. 141e em-#.-.a maps fitaksi t,,

known. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I calbrte 8anradicrirae hsfc on: atty cotlhireat mio is a plaine imrec'. lie' I raii~fi rcisal i. lot.
inito a recognition schieme [7]. which was later ex- `Ih~ (utiaI1Iities call be mieasticed with v'arying 'klcgre, ofr

______________________________ lifficulli%: they (in n~ot app~ear t(, le parti~iettarly stable' whtic'.
'A clear iuiroductit jooI. applying invariant theory ill coin- r'aumecas are moved. %hcaken o 'marlrppe'.t. Ic wwcveri.

Mutier vi'sitm appears ill ('241. "There are a niumber of widely itsed term-m fur lboth Ir ccira's,

20irreiii syste'inn iming itid~exing ftinctioias have inodel-bases and 114) standard teriniawicIgv- has' yet enccergedr.
cttttaiuligg of lte. order -of thirty objects. "We ignlore' .'msps ill tile iniage' a"uitlice' ill What fininlows.
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________________these cross-ratio's are mn'railat to cauaufra calibration,
and so call le used witlh ni unknown caturria. lit sec-
tion 2. we show hlow these cross-ratios call be com-
p~ut~ed reliably front image dat~a, and (lemiouislrate a
simplIe recognition system using t(lies cros-ratio's: in
section 3. we show that these cross-ratios call be used
to index straight. homogeneous generalim-d cylinders.

OWSM rwrom ~~~~~~and in( ii sect ion 4. we show a body of i miathemt-i ta ti c it IIec Ii-
nliques that canl be used to construct further indexing
functions for rotationally symmietric surfaces. and for
straight, homogeneous generalised cyliniders.

2 A recognition system using cross-
ratio's

A recognit iou system using cross-ratio's ats iiidexing
functions works &; follows:

Figure 1: The out line and contour generator of a
curved object, viewed fromt a perspective camera. * cross-ratio's are constructed for corresp~onin(ig

p~airs of bitangent~s in anl imiage;

contour generator (by definition, such a plane * thiese cross-ratio's are used as keys t~o a hash-
passes through the focal point).) projects to a. line table that. contains, the corre-spondeiice belwet',
tangent. to the surface outline, and conversely, a surfaces, andl croiss-ratio's to yield recognit~ioii hy-
line tangent t~o thle outline is the image of a plane pot heses:
tangent to the surface at. the corresponding point.
omi the contour generator. e the recognition hypotheses are tallied. verified

"* Corollary 1: A line tangent. to the outline at twoanacetdorjce.
distinct. points is the imiage of a plane through lin our existing system, we do not, verify recogniition
the focal point. and tangent t~o the surface at twvo hypotheses, as edge-ba-sed verificatrionl for curved suir-
distinct points. b~ot~h onl the contour generator. faices is difficult without. pose information. which is not

* Coollry : Te iterecton f to lnes hi available. The system's modlel-base contains three stir-" Corllay 2:Theintesecion f to liesbi- faces, and the systeni assumets t hat. t here is onily onetangent. to the outline is a point, which is the iifl sufci ahinage to simplify the computtiion of
age of tI le intersection of the two bitangent Iplanes corresponding bitaiigent~s.

repreente by he lnes.The main step is computing cross-ratios front omit-

"* Lemina: For a rotationally symmetric suirface, lines. This process requires that.:
the envelope of the bitangent. planes must be a 1. all bit angents to the out~line he founid, and
right, circular conie, or a cylinder (a cone with ver-
tex at. infinity). 2. correspondiing bit~aigent~s identified and inie-r-

"* Le~mia: The vertices of the cones bitangent. t~o sected.
a rotationially sy innmetric surface miust. lie onl the
axis (by synmmetry). andl so are collinear. The 2.1 Finding bitangent lines to a curve
vertices of the bit aigeimt coines appear iii thme iiii A tangent. line canl be represented 1)y IHoughi traiis-
age as the intersections of a pair of lines bitangent. formation as 1(0, 1 ), where 0 is thle orient ation of thle
to the outline: thle imange of the axis of the surface line and I is the distance fromt the image center t~o
is it line passing thlroughli tese bitangent intersec- the line. as shown in figure 2. Anly line in the iii-
t ioli. age canl be mapped into a particular cell in t he liougli

"* Indexing theorem: ('ross-ratios of correspond- transform table b~v its locat ion andl its oriental ioi. if
iixg imiage bitangent. lines mieasure projective in tanigent. lines derived fromi two (differeint point~s Fall inito
variant~s of the surface. These projective inivarm- the saume cell in tit(e Houghi t ransformnat ion table. I lien
anits are cross-ratios of vertices of the bitan gent those tangent lines are at bitaingemit line'. The l)roce',s~
coiies which project. t~o the bitangent. lines. Tlicse of finding bit angent~s p~roce'eds, t hierefore. hy:
invariants are dleterminmed fromt thle outline alone. . onui*teag-istohecrendlmh
Emirth he-rinore. t hese iniage intersections call be crnsoi rmit ngi thlie t lingemis;t h ui md14ci
used to construct. the imiage of the axis of a rota-trnfmigheeles
tiommally syumimetric surface fromt its out limit. 2. checking the Hough tranisfornmed systemm for cells

Thuus, rro.,.-ralwos (if mit rs(ctioII jiomtis of corruspond- containing more t hani one line. which are' hitan-
ing bilangEi It ntis yuild indfring fittiltoaaM for rota- gents.
tionally *yminduutac .suafac~s. Note, in particular. that
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L P.

7 I.

Figure 2: it Hough transforination table at tihe right is Figure 3: Inl tihe left. half of tihe figure. all eigcn-
created with 0 and 1 indices. A tangent. line to curve vector fitting linle 1i is constructed from seven points
('is relpresent-ed by 0 and I and stored in the cell (0. ") ) P-.P_. it i il i'.adP+•adtetn

iu te loughtrasforatin talegent linle at point Pi isli. whic'h passes through Pi and
is parallel to I. In the right half. I is a bitangent line

2.1. Coputng ad Hughtranforing wlhich is inissed because I is not booked in I lie llough
tangenomptins n og tasom transformnation table while scanning Pi and Pi+,.

T a ng e nt lin e s a r e c o m ip u t e d u s in g a ll e ig e n v e c t~o r li nle -a r .i g e r l , s c e u v s . n d r e e a "fitting inethod [9]. As shown inl the left. half of figure 3.,b are illgnerraspaietcrves i n s ace. rlae

byamrors nty nsaa

I is the best eigenvector fitltin~g line based onl the 7
points around Pi. lit the experinnents, we used all I1I In effect. this theorein is a stronger way of slating
point neighbourhood. Tile tangent linle at. Pi is the that the outline of a rotat~ionally synnet~ric surface
line pa~ssing through Pi aud parallel to 1, labelled I inl canl be separated into two sides. which are related by
the figure. plane projectivity. To w.ee that the two sides of tihe

WVhen the curve has high curvature, the 0 antd ") contour iln the ilnage are Iprojectively equivalt,.nf, fo~r
values of consecutive tangent lines call be quite dif- all arbitrary view. construct. the plane containing theferentt because of the sanmple spacing with the result axis of the surfae and the focal point. rhe surface
that two consecutive tdndes Aang be arked ine cells then has a f irror syninsetry iu this planev as do". tlie
soine way apart. ib the houaga space. As a result., bi- cone of rays through the iocal point. and tlagent to
tangent lines call he t n isseo , because . hgentine at Thihs coe yields tse. outline when it is
seguients of curves call lead to widely scattered points intersected witph the inage plane.
in the tlough space, which iay not interswct prop- If tce imisage plane is perpendicular o toie Ilane of

erly (see the right hialf of figure 3 for all examiple), syninietry, then tihe outline has a ntirror syuninitry:
T.e solution to this problean is to interpolate between but the outline in any other i.age plane is within a
points in the Hough spacet using either a linear or projective -ap. say T of this outline (by construction,
quadratic imertolate dependi in the l alf tof ig with the focal point as the centre of arojeclion). and
0 (for our experinints we used a quadratic interpo- 1 so we call constremi a strogivial projective nlapping
late if n o0 > 6e r and otherwisen a linear interpolate). that takes the outline to itself as P = T o . r1 o T-,
This strateig leads to continuousd curves it the Hough where 31 is a irror syntnetwry. Sidce hy cohstrruct ion
space. and is succesful in finding bitangentg. T is a projectivit.y and T is a projectivity (it call he

given as dicv [h. - 1. 1]). P is a project ivitiy.

2.2 Determining corresponding bitan- This delivers a uniforni niethod for d,,terinining
gents points lying onl tle- proj,,ctl-io of flie, 3D synmtiitry

Once all bitangents have been found. it is necedsary axis. Any projeclively covariac t cothstruea liout inil (I,.
to deterwine which uIirs of bitangents correspoar d (i.n . particular (syninretriy) intag i plane whiach gdentrao
hoeh cowe frot tinle sahse cone of ritangayts). This points Oil thre oiage axis. cal be upnd ian ay intage.
probtent can be solved by exploiticg a he following re- Exasrples i sclude.

jiarkable syininetry prol~erty of rotsationally sylniliet- 7ytfs emtota ewl dli h .,ti esiti

semetsofcrvs anladtowiey catee pont i this.ct wel wineth a th e wimage l p llaine. t tk T1i

ric st rface•o : we weun th perforim tle cons irpetiomi in cita fr , th lea nd oh'

pr(ject the rpsumlt to a ouew ratite. or if we werr ot, srfyin-tai threThesolom: There is a non-trivial plane pro- consbruction it the inew frany e on a pr-laion is with ,riginal
.,ctivity which nHo lag s the outline of a rotl- ciarv,: consctie ti.ms wit this% property are (byd contrucd tci-
tionally syiiintetric surface to itself. The con- dence and eountfio g properties. For exntple, a tangetin" im) a

2 our geteralorm corresponding to each half cvartTist constiruction.
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1. Find corresponding pairs of distinguished points
oil each side of lie outline, say a corresponding to
a'. b corresponding to b'. Then the lines ab', a'b
intersect on the symmetry axis. Appropriate dis-
tinguished points are covariants such as: points
of contact of bitangents and inflections.

2. Determine the projective transformation that ( view II lamp ambiguous, includiing amp t other [ ,,ss
maps the contour to itself, and find the points 1 0 o
that are fixed by this transformation. These 2 1 0 0 0
points will form the projection of the axis. This 30 0 0
construction might well be the best method (in a 1 0 0 0
LMS sense), but has not yet been implemented. 5 1 0 0 0

In practice, we use approach I (above) with dis- Table 2: Hash-table returns for five views of a lamp,
tillguished points derived from a bitangent's contact using a hash table preloaded using a sixth view of that
with the curve. Any pair of corresponding bitangents surface, and views of two other surfaces. Note that the
then generates two points on the axis image: one by surface is clearly identified in each case by choosinmg the
the intersection of the bitangents (i.e. the lines ab return with the most votes.The colunis show the la-
and a'b'), the other by the cross-copistruchioa above bel returned from the hash-table: alternatives are thie
(i.e. the lines ab'. a'b). This is a simple and successful correct label, a number of labels including the correct
construction. Note that the order of the points of tan- label, a collection that does not include the correct.
gency omi each bitangent can be given with reference label, and nothing at all.
to their intersection point and so is uniquely defined.

Now, select any two bitangent lines in the image.
We give a vote to line c, from both their intersection
and cross-construction. The total number of votes for
the correct image of the central axis. it, is the number
of distinguished bitangent cones eorestructed by the
shape of the object.. The total number of votes for
each incorrect image of the central axis clearly must
be I or small if the surface is not degenerate, and so
the line with maximum number of votes is the image
of tile real central axis. This voting system is refined
further by noting that. for real views, it is extremely
hard to arrange the camera such that corresponding
bitaiigeint hines are more than a few degrees away from
parallel. Currently. pairs of bitangents where these [ view 1I stand ambiguous, including stand ]other7 &i ts-
lines are more than 40 off parallel do not contribute 1 4 -0 0
to thle vote. 2 H 4 0 o

in a total of 15 test images, the correct object was 6 21 0 0_identified in each case. Recognition proceeded by com-
puting all possible cross-ratio's of bitangent intersec-
tions from an image, rounding these values to a single Table 3: Hash-table returns for six views of a stand.
digit, and using them as a key to a hash-table, which using a hash table preloaded usin a seventh view of
was preloaded with the names of the surfaces, using that surface, and views of two other surfaces. Note
cross-ratio's computed from one image of each sur- that the surface is clearly ideitiflied in each cast- bv
face. Tables 1 3 show the details of the returns from choosing the returi with tie mcwt votes.Tlr columns
the hash-table for a range of different images of differ- show the label returned from the Imsh-lahle: al.erima-
emt objects, and table 4 shows the data collated. In show the lorreturned from the of labes althring
particular, for the stand and the doorknob, a number tives are the correct label, a number of labels inchlelitig
of cross-ratio's could be com ted from each image,label a colectio that does not. iclude te
and the final identification was made by voting for correct label, and nothing at all.
the object with tIle greatest. numnlber of returns. Note
that tile technique described is showing a degree of
robustness, as surfaces are correctly identified despite
-lie differing number of cross-ratio's computed for each
image as a result of noise-related difficulties in obtain-
ing all bitangents.
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view 1 "d oor *noF I ambiguous. includ ing "doork-nob) ot. e~r ms

2 4 01 1 0
3 4 0 1 0
4 4 0 1 0

Table 1: Hash-table returtns for four views of a doorknob, using a hash table preloaded using a lifili view or
that. surface, and views of two oilher surfaces. Note that the surface is clearly identified inl each case by choosing

Ithe ret urn with the most votes. The columns show thie label returned fronm the hash-table; alternatives are thle
correct label, a number of labels includiag the correct. label, a collection that does not include the correct. label,
andi nothing at. all.

suirface nunmber of views numb er correctly icdentiti ed rait ir-es

doorknob 4 4
lamlp 5 5 0
stand 6i 5 (0

Table 4: Conmposite results of indexing surfaces fronm a range of views, showing fihe surfaces identified by a ret urn
fromt a hash-table, indlexed by itivariants compuited fromi image information. Note t hat inl each case, fill- %-ast
majority of returns from the hiash table either untiquely identify the correct surface, or contain I-he correct surface
as ait option inl an anmbiguouis return. To idenitifyv surfaces. all returns are taken as votes for the surfaces ret urnted.
and the surface receiving the maximum number of votes is accepted. Iniito views, of a total of 15. wvas tile finial
ident ilicat jol incorrect.

3 Indexing straight homogeneous genl
eralised cylinders

A straight hionogeneous genceralised cyliniler
(SHG1C) call be defined as a surface dihat.. inl somie Eii-
clidean frame. call be 1paramtttrisedl as:

Thtus. 'ii the appl.rop~riate frame. tflit- sect ions of this
stirface corresponding to platies = onstaid are titi-
formily scaled copies of thle p~lane ciire(qm(, .y(*))
As a result., inl this frame ( lie --coordiuatle axis formis
an "-axis" for the surface. which has a siimilar role to
the axis of a rotationally symmnetric surface.

Now conisidler thle fantily of platies thlrougli Ihitsaxis:
ati arbitrary p~lanie fronm this fiamiily is given by uax +
by = 0, for some a. b. lit coordiniates iii this platte. thme

ititrset in let~ee th surfce amid thle planie can lbe
givenl by.

(Off(t). LA,'))

whlere A is a futtict ion of ~( figtire 6). lit pa rticnIfar.
only, A' chantges as we move -'m'u plate' to plane 'iit Owi
t' aillilv. We have:

Lemma: The envelope of f lie- famtily (,I
plantes tang~enit to thle suirface alonig a 4i eii
fixed I (a Tparallel- ). is a colic or au ('vilider.

'rite letmnia is prve by noting t hat every taimigi'ii
platte inl this fanmily iutersect s flie- --axis inl the samte

Iligfire 4: Typical iniages of real rotationally syininet- piu hs i i spo~ib hwn htIle
nic objectq. timed to olbtamn the recognition resuilts: thle il-intercept of a line taniig'n to a cuirve of tflie- foiri
top figure shows the kntob. the lower figure shows the (Aft (1F)j.!(t)) is the same for any\ A ?6 0. Note that
Stand, the cone-s or cylinders are also SIIC.( ''s. wvithi the :-axis
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Figure 6: Plane sections of a straight homogeneous
generalised cylinder, illustrating meridians and paral-

__lels.

S"as their "axis' and with the same cross-section as the
surface.

From this lemma, we have immediately:

SLemma: Families of planes bitangent. to
- SHGC's form cones. with their vertices oil

the axis of the surface.

Thus, we can construct indexing functions for Si((GC's
in exactly the same way as we constructed indexing
functions for rotationally symmetric surfaces.

4 Using the dual to construct further
indexing functions

The previous constructions have been shown to
yield indexing functions for rotationally symmetric

S•-surfaces, which we have shown have genuine value for
identifying the surface. Simple constructions like hi-
tangent cones appear to yield no furtlher invariants:
for that, we must pass to the dual of the surface.

- There is a natural duality between pointfs in space
M and planes in space; a point. is given by four homoge-
-M neous coordinates, and so is a plane. This duality can

be extended to the case of surfaces, where the dual o[
"a surface is defined to be the object given by the col-
lection of points dual to the surface's tangent planes.

*, For example:

Os iS a, * The dual of a plane is a point.

Figure 5: This figure shows all tile constructed bi- * The dual of a cone is a plane curve: to see this.
tangent lines and the outlines of the images of three note that the planes tangent to a cone all p~ms
samples: a lamp (top). a knob and a candle stand through its vertex. aud hetce all satisfy a si,,gle
(bottonm). linear equation. Thus. all thie points on the dual

must satisfy a single linear equation. and so the
dual must 6e a plane curve.

* The dual of a quadric surface given by lihe eqtia-
tion XTQX = 0 is a quadric surface givenl by the
equation xTQ-Ix = 0.

The dual has the following important property:
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Th'leoremi: Thew owitlie of*,a suirface lit a per-
spelvc e view is v(Iliivaleiit t~o a planle sect ion
o, Ilie du1al of, that sulrface, where thle sec-(
honinig plane, is the plaiie duial to thle focal
ptoinit

A versisonl of tiiis restiut hias I nei i well-kni own a iiion 'st
geolliet els k)%r a longI I Iilte (5]. bitnt it doets not apq 'ear to
have diffulsed into tIlie, vision conlillillinitv to dat'.. Tile
re~sult follows frointilthe observation t hat flthe out line is..................
elssellit iallv, foriiied by tilie faiiiily of plane.s tangent t(.
Ilie, surface, anid passing through the focal point. Thiis.

ItI is given by a famuily of planes tangent to tble surf~ace.
aund .soli.sjcpiii yinqlc hnu1,' iar/0itn. Ill t urn-1. this
iiieanls that thet fanililv is a planle sect ion of tilt dual,1
stirfa ce. We list be. low how t aking diia Is aff~c t s a ra i ge
of' geoniet ric coilcept s:

D~efine a pro.Itectij e rot atjoilaIliv sinn111et tic (PBRS)
suirface, to Ibe a suirface t hat Is wit hiii a 31) prio ect ivitv
of a rotat iona llv sviiiietric surface. Thent t he follow-
Iing is easily jpi'oVeilv

Thjeoremx: The duial of a 1PBS suirface Isl a
PBRS suirface. Ilii part icuilar. if .1l is a uterid-
iaiu of the original P1[IS suirface S takf in th(

faitin ab ich i t is~ r'Platiin (illy syill in . F(tr 7: Thsfg(IC.sa tfaavvism fthen tilte diial of 'S is withliii a 3D proJectiv- Figue7 hsfgr hw u-wyvrino
it~v of a rotationially symmiietric suirface whose hit angetitsyoft ie tiridim-av:n ot.it nlo~i i
mieridian is Wl. laget f(imrdan

4.1 Example: proving existing results
Here Nive reklerlvte the results of section 1.3 uising

thet concept of a dutal suirface. Notice that because
we are dealing wit Ii a rotationally syiiiniet~ric suirface.
thle bitaiigeiits fomcones: tilie du1a~ls of thlese cones
are t hen plaine curives ill tilie diial space, where thle
planie tilie cuirve lies on is (ilial to thle vertex oftilhe cone
(froiii above). Thuis. t here is a Sv-stenil of dist iligliisliedl
planies in thei dutal spce where the dutal suirface hias
self-initersect ioins (dwn uito bit angents ). All thlese planes
have file further pr qcert% t hat tihey- are drawii fromi a
siiigle penc(il of plaiies (tiht, points to which tiltey% are
du1al ai'e collinear). Since aI pencil of planes is ;I one- .S

parameteri f'atlitly (If* planlt's. paraniet ri',d Ihy a hueit.
hiu'se plaii.'s have 'I ini'aiiingfiil cross-rat to.
Ilii a plantie sect ion of Ilthe dtiiu .any self-iut ersect ionls

thIatI cross thle I dane will be obviouls as self 1-2

iittet'sect ioiis of tilt- sect ion (figure 8). Note that for
solite sect iouiiiig plaiies, the singuflarities- of tIlie dutal2
do not appear in thle sect ioni. aiid this corresp~onds
to those awkward viewling posit ions whiere' the oiit-
fiue of a rutat ioiial "v svu'iliiietric suirlfac.' tlo.s notl hiam,
hit ailgelits - for1 exaullilcl.. a vicw (downi thei. axis. II'
we colistuc Ihet line ts- c'onniectiing ('0liesp)owii~lg -,in-
giilarit jes, we obctaini lilies diawn fromn a pencil: butl
the cross-ratio offt i.-se lines is ,tuivalenut to t hi,' cro,.-

rati Iol'1 t hie planles. andl so) is a project ive iiivariaiit ()I
the( surface. t hat is Iinvariant to choice of' svet ioiing FI guilt.' 8: lThis figiure show's a 'it-wa V''irsi' il 14 I lit.
Idlalile as long as it cali be observed. dual of tfile, surface- iii figure. 7. N t ilt , te .',sp1 :11~i

42 A new invariant edlges. correspoildiiig to Iiiifletions, (4, tw le iiuiiliati.
4.2 A and tilte self-inttersections. correspcondhing to blitangu'ntiMotof t h IS d.sljslssi(Oii is buased ar1oiultlied fil ollow- "I.i.s;;ll thlese' slingiflarit is Ii'' on parcallels.itig uisefull leiiiiia . which is dulal to t hat giving a Pcro-

762



Original Space Dual Space

incidence tangency
tangency incidence
plane point.
Ioint p!lane
inme lille

cone of tanglent planes through the focal point plane cross section of the dual
lbitaligent plane self-intersection
bitangent cone plane curve of self-intersections
parabolic line cuspidal edge
generic surface surface with cuspidal edges and self intersections
order of contact with line same order of contact with line
asymptotic curves asymptotic curves
flecuodal curves flecnodal curves
sign of K:; sign of KG

jectivity from tie outline of a rotationally symmetric plane section's symmetry is expressed as diag[- 1, 1. 1]:
surface to itself: then any intersection between a rotationally syunimet-

ric quadric and the surface, that. passes through three
Leuntma: There is a non-trivial, plane pro- singularities, must appear in the section in the forth
jectivity that takes any arbitrary plane sec- ,r2 - ay2 - by - c = 0. Three incidence conditions
tion of a PRS to itself. determine this curve exactly, and since the result is

unique, it must be a section of the unique quadric
To prove this, we work in a frame in which the sur- passing through the corresponding circles. Thus, the

face is, in fact. rotationally symmetric. In this frame, intersection points between this curve and the plane
construct a plane through the axis of the surface at section correspond to intersection points between the
right, angles to the sectioning plane. The constructed dual and the quadric. and we are done.
plane yields a plane in space about which the surface
and the sectioning plane are synmnetric, and so yields a Returning to non-dual space, the dual of the
line in the sectioning plane about which the plane sec- quadric intersecting the dual surface is again a PRS
tion has a symnietry. It turn, this symnmetry (which is quadric. but here tangent to the original surface at the
a projectivity of space, say, I) yields a map that takes two circles of inflections. and tangent to the bitangent
the section to itself in the same way that the symmetry cone (again a circle of contact). The projection of this
of an) outline from a special viewing position yields a quadric in the image is the unique conic tangent at
inap that takes the outline to itself (section 2.2), that corresponding inflections and bitangent. lines on both
is, a map of the form Pf - I)IP, where P and I are "sides" of the outline. New invariants can then be
projectivities of space. generated from this conic. For example. correspond-

Given a surface is a PRS. its dual is a PRS too; iig bitangents between this conic and the outline in-
now consider dual surface, which is PRS, and let us tersect on the axis in the same manner as bitangeits
work in the frame in which this dual surface is rota- of the outline.
tionally symmetric, with the -- axis as its axis. For These invariants can be constructed from image
a general surface, the dual will have self-intersections data, by taking the dual of the out lne, which will
which are circles lying on planes of constant z. and .5o have the features described, and perforliinig the con-
we call construct. a quadric which contains any three structions described on that dual. it is not vt
of these circles. InI our frame, the quadric will have known whether more efficient algorithms ,xist. nor is
the equation: it. known how many independent. invariant-, call be ob-

tained in this way..r2 + y= - (a=2 + bz + c) = 0

The lemnna certainly allows mainy invariants to be
It. is easy to see that this quadric exists, is unique for constructed, either by constructing higher dIe.gree iii-
three distinct circles and can lbe constructed: further- terpolants and using them in Oli,' sain,' way t lie guadlric
more. any intersections between the quadric and the was used. or by noting that. for any plane section of
dual surface will be circles., again lying on planes of the dual, if time section is in the frame ill which its syIuI-
constant. -. Since the quadric is uniquely defined by nmetry is of the forin diyu[-l . I. I]. tilen l1ints nln thhe
iicidence relations alone, the construction is proJec- outline with the sanle y value corr,'spounld to lit sanue
lively covariant, and so any cross-ratio's incorporating parallel. It the parallel call he identified from plane
this quadric's intersection planes will be projective in- section to plane section. for exaniple, by tlie pre•r.ce
variants. of a surface marking. a change ini colour, or all ilnci-

'To show that these invariants call be measured dence property (similar it) t hos• ahove), it Can b, n. d
from a single, unknown inmage, we need to show that to gcnrraf cr'oss-rato's. Thus. a rather full invari-
they catn be umeasured from a single plane section of ant description of a rotationally syiniuetric surface is
the dual. For this. work in a fraime iii which the possible froum a single outline.
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Projective Invariant and Structure from Two
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Abstract be used to create an equivalence class of images of an
object of interest. This approach can be realized byWe address the problem of reconstructing 3D storing a few number of "model" views (two, for exam-

space in a projective framewcrk from Iwo views, ple) and with the help of corresponding points between
and the problem of artificially generating novel the model views and any novel input view, the object is
views of the scene from two given views. We "re-projected" onto the novel viewing position. Recogni-
show that with the correspondenices coming tion is achieved if the re-projected image is successfully
from four non-coplanar points in the scene and matched against the input image. We refer to the prob-
the corresponding epipoles, one can define and lem of predicting a novel view from a set of mod-il views
reconstruct (using simple linear methods) a using a limited number of corresponding points, as the
projective invariant that can be used later to problem of re-projection.
reconstruct the projective or affine structure of problem of re-projection.
the scene, or directly to generate novel views The problem of re-projection can in principal be dealt
of the scene. The derivation has the advantage with via 3D reconstruction of shape and camera mo-
that the viewing transformation matrix need tion. For purposes of stability, however, it is worthwhile
not be recovered in the course of computations exploring more direct tools for achieving re-projection.
(i.e., we compute structure without motion). Most of the current tools available for this purpose as-

sume orthographic projection [28, 14, 22]. The method
of epipolar line intersection is a possibility for achiev-

1 Introduction ing re-projection under perspective [3, 23] but, however,
This paper presents a study on the geometric relation is singular for certain viewing transformations. For ex-
between objects and their views (perspective and ortho- ample, numerical instabilities arise when the centers of
graphic) geared towards developing tools with applica- projection of the three cameras are nearly collinear, or
tions to 3D reconstruction and visual recognition. For equivalently, when the object rotates around nearly the

same axis for all views. The re-projection method intro-this purpose we define a new projective invariant that duced in this paper is not based on an epipolar intersec-
can be computed from image measurements across two tion, but rather is based directly on the relative structure
views (four corresponding points and the epipoles) using of the object, and does not suffer from any singularities,simple linear methods. The invariant is then used for a finding that implies greater stability in the presence of

reconstructing the 3D scene in projective or affine space, noise.
and for generating novel views of the scene/object di-
rectly - without going through projective coordinates We derive a geometric invariant defined by a single
and camera transformation. cross ratio along a ray cutting through the frame of ref-

We adopt the projective framework for representing erence. The invariant can be used later to recover homo-
3D space as was also done recently by [6, 19, 11]. In geneous coordinates if desired, or used directly to achieve
a projective framework the scene is represented with re- re-projection onto a third view. The derivation has the
spect to a frame of reference of five points whose location advantage that the viewing transformation need not be
in space are unknown and can assume arbitrary general recovered in the course of the computations - only the
configurations in 3D projective space [29]. This allows us projections due to two faces of the tetrahedron of ref-
to work in a framework that does not make a distinction erence. The geometric construction we use requires the
between orthographic and perspective views and does projections of four scene reference points onto two views,
not require internal camera calibration, i.e., the internal and as the fifth reference point we use the camera's cen-
camera parameters are folded into the camera transfor- ter of projection via the epipoles. The epipoles are used
mations. both as a fifth corresponding pair and a means for de-

Related to 3D reconstruction is the application to vi- termining correspondences due to projections of various
sual recognition. The alignment approach to recognition faces of the tetrahedron of reference.
[9, 18, 27, 13, 28] is based on the notion that the ge- Part of this work originally appeared in [24] describ-
ometric relation between objects and their images can ing the geometric invariant and its application to re-
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projection, and was derived independently of [6, 19, 11]. w
The later stage of reconstructing homogeneous coordi-
nates given the recovered invariant is inspired by the
work of [6]. P

2 Projective Framework and Related oo*

Work

In a projective framework the location of an object point , u
is measured relative to a frame of reference of five points
(a tetrahedron and a'unit point) whose positions in space ":,
are unknown and which are allowed to map onto any gen-
eral configuration of five points in 3D projective space. T Ex
It is not difficult to show [25] that the space of images we
can get out of this framework are no more than perspec-
tive and orthographic images of the scene, and images T
of images of the scene, produced by a pin-hole camera
in which the camera's coordinate frame is allowed to un-
dergo arbitrary affine transformations in space.

The projective framework enlarges the equivalence Figure 1: A non-homogeneous representation of space.
class of images of an object compared to the metric The points 0 , V, W define the tetrasedron of refer-
framework, but in return does not require internal cam- ence. The point Px is at the intersection of the plane
era calibration and does not make a distinction between PVW with the x-axis (the line PU). The point T" is
orthographic and perspective projections. The internal similarly constructed by replacing P with the unit point
camera parameters (focal length, principal point and im- T (not shown in the drawing). The z coordinate of P
age coordinates scale factors) are folded into the affine is defined as the cross ratio of 0, T1, P), U (see (29], pp.
transformation of the camera coordinate frame ([20], for 191).
example) and, therefore, can assume arbitrary values
(which can also change from one view to another). Or-
thographic images are included in this framework be- tween the scene and the two views.
cause any of the reference points (including the COP) Faugeras [6] proposes a linear algorithm for recovering
can be anywhere in 3D projective space. These features the camera transformations and the homogeneous coor-
of the projective framework imply greater stability in dinates. The projections of five scene reference points are
the presence of noise compared to the metric framework used to determine each camera transformation matrix
(see [1, 5, 26, 4, 23] for discussions on the performance of up to one unknown parameter (a camera transformation
metric structure-from-motion in the presence of noise). has 11 parameters and the correspondence between the

Projective space can be represented by homogeneous reference points and their projections add five more un-
or non-homogeneous coordinates. In a non-homogeneous knowus, but produce 15 linear equations). The epipoles
representation a point P is represented by three cross are then used as a sixth corresponding pair to fully de-
ratios along three axes of the tetrahedron of refer- termine (projectively speaking) the camera transforma-
ence (see Figure 1). A homogeneous representation tions. Once the camera transformations are recovered it
is a tetrad (z, y, z, t) of coordinates which is typi- becomes a simple matter to recover the homogeneous co-
cally realized by assigning the standard coordinates ordinates of any scene point whose projections in both
(0,0,0,1),(1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1) to views are known. Faugeras then considers the case of
the vertices of the tetrahedron 0, U, V, W and the unit having four corresponding points instead of five. In that
point T, respectively (see Figure 2). For example, the case the camera transformations are recovered up to four
points with t = 0 are on the plane UVW, and the projec- unknown parameters. Once these parameters are set (ar-
tion of P via 0 is the point with coordinates (z, y, z, 0) bitrarily), then affine reconstruction becomes possible.
(i.e., orthographic projection in coordinate space). In In our framework we do not recover the camera trans-
general, any ordered set of four numbers, not all zero, formation matrices in order to achieve reconstruction.
determine uniquely a point in space. Instead we regard the camera's center as part of the pro-

A geometric reconstruction of non-homogeneous co- jective reference frame making it necessary to use only
ordinates was recently proposed by Mohr et aL. [19]. four corresponding points coming from the scene. This
The authors use the projections of five scene reference still enables a projective reconstruction, and in addition
points and the epipolar geometry (the "Essential" Ma- to achieve an affine reconstruction in case the scene un-
trix of [16] which is found by matching eight points) to dergoes only affine transformations in space.
determine the projections of the various stages of the In the next section we derive the projective struc-
construction needed to determine the three cross ratios ture invariant and show how it can be computed given
for each point. The construction is elaborate and instead projections of four scene reference points (four corre-
the authors propose and implement a direct non-linear sponding points) and the corresponding epipoles. Sec-
algorithm for recovering the camera transformations be- tion 4 describes the method by which 3D reconstruc-
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Figure 2: Homogeneous coordinates in space. If P is 0 ps
any point not on a face of the tetrahedron of refer-
ence, there exists four numbers z,y,z,t, all different
from zero, such that the projections of P from the Figure 3: Projective structure of a scene point P is
four vertices (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) defined with respect to four reference point. Pi,...,P4respectively onto their op- and the center of projection 0 of the first camera po-
posite faces are(0, y,Oz,t),(z,0,z,),(z,y,0,),(z,,,0) sition. The camera's center serves as the unit point in(see [29a, pp. 194-195). the projective frame of reference instead of a fifth scenepoint. The cross ratio, denoted by ap, of the four points

P, 16, P, 0 uniquely fixes P with respect to the frame of
tion is achieved given the recovered invariant. Section 5 reference. The cross ratio can be computed from the
describes two schemes for achieving re-projection, one projections of P, P, P, 0 onto the second image plane.
using the invariant directly, and the other using the re- The projection of 0 is the epipole V' which can be com-
constructed structure. Section 6 briefly goes over two puted from eight corresponding points [6]; the other pro-
schemes for recovering the epipoles. Finally, Section 7 jections fl,91 can be recovered using the projections of
shows computer simulations intended to test the robust- the four reference points and the corresponding epipoles
ness of the schemes against noise in image correspon- v, V'. Finally, since ap is invariant it can be used for re-
dences. projection onto a third view and for reconstructing the

projective structure of the scene.
3 The Projective Structure Invariant

Let the tetrahedron of reference consist of four scene with respect to some image origin (say the geometric
points P1 , ..., P4 and let the fifth reference point be the center of the image plane). Consider next a second view
camera's COP denoted by 0. Let P be an arbitrary of the scene. The points P, 25, 6, 0 project onto gener-
point of interest, and consider the ray from 0 to P. As ally distinct points denoted by p,'7, , v' which are also
illustrated in Figure 3, the ray OP intersects the two collinear. Because the two tetrads of points are projec-
faces P1 P2 P3 and P 2P3 P4 at 2P and P5, respectively. We tively related, we have
define our projective structure invariant as the cross ratio ap =< Pp, P, 0 >=< 1 ' A, >'>
of P, P6, Pl, 0, denoted by ap: and therefore the structure invariant up can be computed

- O P - from the projections onto the second view. The projec-
-=< P, P, P, 0 P-0, tion of 0 onto the second view is the epipole V', and simi-

larly the projection of 0' (the COP of the second camera
where distances are measured along the ray OP. We will position) onto the first view defines the other epipole v,
use ap for reconstructing the homogeneous coordinates and therefore v and V9 are corresponding points. We as-
of P and for re-projecting P onto novel views, but first sume for now that the epipoles are known, and we will
we describe the way ap can be computed from image address the problem of finding them later (Section 6).
measurements alone. The point p' is given to us (as we assume that corre-

In the first view all points along the ray OP project spondences between the two views has been established,
onto a single point, denoted by p, in the image plane. as for example by [22, 23, 2]), and we can assign the co-
Because internal camera parameters are folded into the ordinates p' = (z', y/, 1), where (z', y) are the observed
affine component of camera motion, we can assign p = image coordinates with respect to an arbitrary image
(z, y, 1) where (z, y) are the observed image coordinates origin. What is left is to recover the points Y and 9.
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In order to determine P and j/ we must recover the ([101, for example) as follows: we represent V' and / as
projective transformations due to the two faces P1 P2 P3  linear combinations of v' and 9:
and P2 P3P4 , respectively. This can be done by iden-
tifying four coplanar points on each of the two faces, W = vp + kP
but instead we can make use of the epipoles again. For p9 = Vt + •'7,
example, we can use the projections of P1 , P 2 , P3 onto
both views and the corresponding epipoles to uniquely then ap = 1 (note that p and k are fully determined,
recover the 2D projective transformation A, that when and so are p and kV). Note that we have made use of
applied to p will produce 9/, up to a scale factor. This the epipoles twice in our derivations. First, is because
is expressed in the following preposition: of having 0 as one of our reference points - this by

definition brings the epipoles into the picture. Second,
Proposition 1 A projective transformation, A, which the epipoles were used in order to determine the image
is determined from three arbitrary, non-collinear, cor- correspondences due to two faces of the tetrahedron of
responding points and the corresponding epipoles, is a reference. Without the epipoles we would have needed
projective transformation of the plane passing through an extra point on each face, hence loosing some gener-
the three object points which project onto the correspond- ality because some of the reference points would have
ing image points. The transformation A is an induced been coplanar. The computations for recovering ap are
epipolar transformation, i.e., the ray Ap intersects the simple and linear, and for convenience are summarized
epipolar line p'v' for any arbitrary image point p and its below:
corresponding point p. 1: Recover the transformation A that satisfies pV' =

Proof: Let pj *-- p, j = 1,2,3, be three arbitrary Av and
corresponding points, and let v and v' denote the two ppj = Api, j = 1,2,3. Similarly, recover the trans-
epipoles. First note that the four points pi and v and formation E that satisfies pv' = Ev and pji =
the corresponding points p.., v are the projections of four Epi, j = 2,3,4.
coplanar points in the scene. The reason is that the plane 2: Compute ar as the cross ratio of 9, Ap, Ep, v', for
defined by the three object points P1, P2:, P3 intersects all points p.
the line 00' connecting the two centers of projection,
at a point - regular or ideal. That point projects onto One can easily see how the projective invariant can be
both epipoles. The transformation A, therefore, is a pro- used to re-project the scene onto a third view. Sim-
jective transformation of the plane P1P2P3 . Note that ply perform Step 1 between the first and novel view
A is uniquely determined provided that no three of the (only four corresponding points and the corresponding
four points are collinear. epipoles are required). For any fifth point p, its corre-

Let pi' = Ap for some arbitrary point p. Because lines sponding point 9' in the third image can be found via
are projective invariants, any point along the epipolar ap that has been recovered from the correspondence be-
line pv must project onto the epipolar line 'v'. Hence, tween p and e (three points on the epipolar line and the
A is an induced epipolar transformation. 0 cross ratio uniquely determine the fourth point 9'). We

Given the epipoles, therefore, we need just three will discuss re-projection and 3D reconstruction in more
points to determine the correspondences of all other detail later, but before doing that it may be worthwhile
points coplanar with the plane passing through the to consider the situation of orthographic projection.
three corresponding object points. The transformation As mentioned previously, it is the property of the pro-
(collineation) A of the face PIP 2 P3 is determined from jective framework that orthographic projection becomes
the following equations: a particular case that does not require special treatment

- this because the reference frame can map onto any
Apj = pjp, j = 1,2,3 configuration including the case where 0 is at infinity.
Av = pv', Within the proposed geometric construction there are

two points worth mentioning regarding the case of or-
where p,pj are unknown scalars, and A3,3 = 1. One thographic projection. First, the invariant ctp remains
can eliminate p, pj from the equations and solve for the fixed under any projective transformation of the second
matrix A from the three corresponding points and the image plane (the view on which a. is computed). In
corresponding epipoles. This leads to a linear system of particular the projection onto the second view can be
eight equations (for more details see appendices in [20, orthographic (cross ratios are well defined for parallel
23]). Similarly, we can solve for the matrix E accounting rays as well). Second, consider the case when the first
for the projection of the face P 2 P3 P4 from the equations view is orthographic, i.e., 0 is at infinity. In this case 0.
below: turns into an affine structure invariant:

Epi = pjyp, j = 2,3,4 1P _ P
Ev = pv'. ap < P, P, Poo >=

P-P
If we set P' = Ap and f/ = Ep (note that /' and P are As a result, the projective invariant is defined and re-
somewhere along the rays UP/ and U'P, respectively), covered under both orthographic and perspective pro-
then the cross ratio ap can be computed using the linear jections. Therefore, in addition to enabling the use of
combination of rays result known in projective geometry uncalibrated cameras, we have the property (associated
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Sedge of ap we can determine the coordinates of P. We
P (1.0.0.0) can also do that in a simpler way without recoveringP,

Mx.Y.Z.T) as follows. We know that

,AP = 0 + s'),

(01.0.0 (0.1.0,) anda, = o r-. Because the third coordinate of P is always
1 zero, we have a' = -. Thus,

P \\
(0.0.0,1) We have arrived to the following result:

Theorem 1 In the case where the location of epipoles
are known, then four corresponding points, coming from
four non-coplanar points in space, are sufficient for com-

o puting the 3D homogeneous projective coordinates for
(1.1.1.1) all other points in space projecting onto corresponding

points in both views. In the case the scene is undergoing
Figure 4: Reconstructing homogeneous coordinates of P an affine transformation in space, then the reconstructed
(see text). scene is related to the true one by some unknown affine

transformation.

with the projective framework and not to the particular Note that the assignment of standard coordinates to
algorithm we proposed) that the size of field is no longer the frame of reference is an arbitrary choice of repre-
an issue as in a metric framework [1, 5]. sentation and therefore, in the general case, the recon-

We next show how to reconstruct the homogeneous co- structed structure is unique up to an unknown projec-
ordinate representation of the scene given that we have tive transformation of the scene. When the scene un-
recovered ap. Taken together, the central result is that dergoes only affine transformations in space, then the
we can recover projective structure without recovering COP can have fixed coordinates in space while allowing
the camera transforms using only four corresponding the remaining basis points P1, ..., P4 to have any arbi-
points and the corresponding epipoles. trary representation in projective space. Because the

COP is part of the reference frame, it is always assigned
4 Reconstructing Homogeneous the same coordinates regardless of the viewing position

RContrucin g Hfrom which we choose to reconstruct the scene. There-
Coordinates fore, the reconstructed scene, using the algorithm de-

Given the invariant structure a, we can easily recon- scribed above, will be unique up to an unknown affine
struct the homogeneous coordinates (X, Y, Z, T) of any transformation in space, and not a general projective
fifth object point P (its actually a sixth point overall, transformation. For convenience one can projectively
but its the fifth object point). We first assign the stan- transform the reconstructed coordinates (X, Y, Z, T) to
dard projective coordinates to our frame of reference (X, Y, Z, X + Y + Z + T) which ensures that the fourth
as follows: the coordinates (1, 1, 1, 1) are assigned to 0 coordinate is non-zero.
(the COP of the first camera position), then the coordi- In comparison with Faugeras' [6] results, the bottom
nates (0,0,1,0),(0,1,0,0),(0,0,0,1) and (1,0,0,0) are line is the same, i.e., with four corresponding points
assigned to the four reference points P1, P2, P3 and p4, and the corresponding epipoles we can achieve 3D re-
respectively (see Figure 4). construction of projective or affine space. The approach

In this choice of coordinate system we have that =6 and the reconstruction algorithm are different, mainly

(0, j, i, I and P = (f, j, 0, i). Note also that the projec- because we go about the reconstruction process directly

tion of P4 onto the plane Pi P 2 Pa is the point with coordi- without first recovering the camera transformation ma-

nates (0, 1,1,1). In order to recover P we map the image trices and instead recover first a geometric invariant ap,
planes onto the plan P). P2 orr by r olverng wer the pje- which then can be used to reconstruct the homogeneous
plane onto the plane PB P2tP by solving for the projec- coordinates. Faugeras goes first through full recon-tive transformation B that is determined by the four struction of the camera transformations using five corre-
following correspondences. Let ei, ... , e4 be the vectors

(0, 1,0),(1,0, 0), (0, 0, 1), (1,1,1). The correspondences sponding points and the corresponding epipoles. In the

p -, e(, j = 1,...,4, fully determine the projective case of four corresponding points (and the corresponding

transformation B, i.e., Bpf = pdet. We can therefore epipoles), Faugeras shows that the camera transforma-
tion can be recovered up to four unknown parameters.

set the coordinates of/35: Once these parameters are set (arbitrarily) then recon-
struction follows directly, and if one uses the same setting

Bp =of the four parameters when reconstructing the scenefrom different view-points, then the reconstructions are
In a similar fashion we can recover P and with the knowl- only an affine transformation away from each other. In
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our case, instead of fixing four parameters in the camera Ps
transformation from the scene to the first view, we fix P
the coordinates of the COP by having it being part of P1
the reference frame.

We next discuss the use of these results (the projective
invariant or the reconstructed scene) for obtaining re-
projection onto a third view.

5 Achieving Re-projection

Considering the two views we worked with so far as
"model" views of an object of interest, we can use the
projective invariant ap or the homogeneous coordinates
to re-project the object onto any novel view given a small
number of corresponding points across the three views.

First, consider the use of a, to achieve re-projection. 06
Assume we have four corresponding points across the
three views pj ,-- pj -. p, j = 1,...,4, and the 0 PS
epipoles v, v' between the two model views and u, 0"
between the first model view and the novel view. From Figure 5: The geometry of locating the left epipole using
the correspondences pj -* p, j = 1, 2,3, and u +-+ 0o"
we recover the collineation B, and similarly from the two points out of the reference plane.
correspondences pi +-- p"', j = 2,3,4, and u .-- u" we
recover the collineation Y. Then, for any corresponding seven points (non-linear algorithm, see [8]), or eight
points p -ý e', the third correspondence p" can be points [6]. The basic idea behind the six point method is
recovered from the cross ratio ap (computed from the that the ray connecting the COP of the first camera posi-
two model views) and the three points Bp, Dp, 0". tion 0 and any object point P projects onto an epipolar

An alternative method is to first reconstruct the ho- line in the second image, and therefore the epipole can be
mogeneous coordinates of all points of interest from the found by intersecting two epipolar lines (see Figure 5).
two model views (by using four corresponding points and Given six points P1 ,...,Pe where Pi,...,P4 are copla-
the corresponding epipoles). We then need only six cor- nar and PS, P6 are out of that plane, first recover the
responding points between the first model view and the projective transformation A that satisfies pjpj = Api,
novel view in order to recover the camera transformation j = 1, ..., 4, then the epipoles Vt and v are obtained as
matrix T from the scene onto the novel view: follows:

p'p•-= TP, j 1, ... , 6. v'= (P~JAp)× x Aps),

Note that we have 11 unknowns for T and 6 more un- V (ps x A-%P) x (P6 x A-P)•
knowns for p,, but we have 18 linear equations. Then, Note that the epipoles are represented as rays with re-
for any point p for which we have recovered homogeneous spect to the camera centers, and therefore the case of
coordinates of the corresponding scene point P, we can parallel epipolar lines leads to a ray parallel to the im-
recover the projection of P onto the -novel view by, age plane (third coordinate vanishes).

pp" = TP. The basic idea behind the eight point method [61 is
that since epipolar lines in both images are projectively

This method, although less direct than the previous one related, then the epipolar geometry may be represented
does not require the epipoles between the first model as a 2D correlation matrix. Let F be an epipolar trans-
view and the novel view (which requires eight corre- formation, i.e., F1 = al', where I = v x p and P = v' x e
sponding points), and therefore achieves re-projection are corresponding epipolar lines. We can rewrite the pro-
with fewer corresponding points with the novel view. jective relation of epipolar lines using the matrix form of

For completeness we review next two methods for re- cross-products:
covering epipoles from point correspondences between
two views. Both methods are linear - one requires cor- F(v x p) = F[v]p = pl',
respondences coming from six points, four of which are where [v] is a skew symmetric matrix (and hence has
assumed to be coplanar, and the second method requires rank 2). From the point/line incidence property we have
eight general correspondences. that p'. I' = 0 and therefore, e"F[v]p = 0, or p"Hp = 0

6 Recovering the Epipoles where H = F[v]. The matrix H is a 2D correlation
(i.e., maps points onto lines) and is also known as the

The problem of recovering the epipoles is well known "essential" matrix introduced by [16], and is of rank 2.
and several approaches have been suggested in the past One can recover H (up to a scale factor) directly from
[17, 21, 15, 8, 12, 7]. eight corresponding points, or by using a principle com-

In general, the epipoles can be recovered from six ponents approach if more than eight points are available.
points [15] (four of which are assumed to be coplanar), Finally, it is easy to see that Hv = 0, and therefore the
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epipole v can be uniquely recovered (up to a scale factor). 7.1 Testing Deviation from Coplanarity
Note that the determinant of the first principle minor of In this experiment we investigated the effect of translat-
H vanishes in the case where v is an ideal point, i.e., ing Pi along the optical axis (of the first camera position)
hith22 - h 12h 2 1 = 0. In that case, the z,y components from its initial position on the reference plane (z = 100)
of v can be recovered (up to a scale factor) from the third to the farthest depth position (z = 125), in increments
row of H. of one unit at a time. The experiment was conducted

using several objects of the type described above (the
six points were fixed, the remaining points were assigned

7 Computer Simulation random positions in space in different trials), undergoing
the same motion described above. The effect of depth

We ran computer simulations to test the robustness of translation to the level z = 125 on the location of p, is a
the re-projection method under various types of noise. shift of 0.93 pixels, on p' is 1.58 pixels, and on the loca-
Instead of measuring the error due to reconstruction we tion of p' is 3.26 pixels. Depth translation is therefore
measured the errors due to re-projection onto a third equivalent to perturbing the location of the projections
view. The assumption being that the performance of of P, by various degrees (depending on the 3D motion
the system (reconstruction and re-projection) largely parameters).
depends on the quality of ap, so we may as well oh- Figure 6 shows the average pixel error in re-projection
serve noise effects on re-projection. We tested the sys- over the entire range of depth translation. The average
tem using both schemes for recovering the epipoles. In pixel error was measured as the average of deviations
general, the 8-point scheme is significantly more sensi- from the re-projected point to the actual location of the
tive to noise, and in practice additional corresponding corresponding point in the novel view, taken over all
points are required to achieve reasonable recovery of the points. Figure 6 also displays the result of re-projection
epipoles. The experiments we describe below use the 6- for the case where P1 is at z = 125. The average error
point scheme for recovering the epipoles. Because the is 1.31, and the maximal error (the point with the most
6-point scheme requires that four of the corresponding deviation) is 7.1 pixels. The alignment between the re-
points be projected from four coplanar points in space, projected image and the novel image is, for the most
it is of special interest to see how the method behaves part, fairly accurate.
under conditions that violate this assumption, and under 7.2 Situation of Random Noise to all Image
noise conditions in general. Locations

The object we used for the experiment consists of 26 We next add random noise to all image points in all
points in space arranged in the following manner: 14 three views (Pi is set back to the reference plane). Thispoints are on a plane (reference plane) ortho-parallel top )the image plane, and 12 points are out of the reference experiment was done repeatedly over various degrees ofplae. Themrefee plane, and1 oints lcated otwofe refo engs noise and over several objects. The results shown hereplane. The reference plane is located two focal lengths have noise levels betweeL 0-1 pixels randomly added toaway from the center of projection (focal length is set the z and y coordinates separately. The maximal per-to 50 units). The depth of out-of-plane points variesthe direction of
randomly between 10 to 25 units away from the refer- turbation is refom, the becal e iretive
ence plane. The z, y coordinates of all points, except the perturbation is random, the maximal error in relativepoints P1, ... , P6 , vary randomly between 0 -- 240. The location is double, i.e., 2.8 pixels. Figure 7 shows the
points P1, ..., P6 have z,y coordinates that place these average pixel errors over 10 trials (one particulhr object,poits 1, .. ,P6 avez, cordnats tat lac thse the same camera motion as before). The average error
points all around the object (clustering these points to- tes ara motion As be or) T he reserogether will inevitably contribute to instability), fluctuates around 1.6 pixels. Also shown is the result

of re-projection on a typical trial with average error of
We applied the following camera motion: The first 1.05 pixels, and maximal error of 5.41 pixels. The match

view is simply a perspective projection of the object. between the re-projected image and the novel image is
The second view is a result of rotating the object around relatively good considering the amount of noise added.
the point (128,128, 100) with an axis of rotation de-
scribed by the unit vector (0.14,0.7,0.7) by an angle of 7.3 Random Noise Case 2
29 degrees, followed by a perspective projection (note A more realistic situation occurs when the magnitude
that rotation about a point in space is equivalent to ro- of noise associated with the six points used for setting
tation about the center of projection followed by trans- the construction (epipoles and projections of the tetrahe-
lation). The third (novel) view is constructed in a dron of reference) is much lower than the noise associated
similar manner with a rotation around the unit vector with other points, for the reason that we are interested in
(0.7, 0.7, 0.14) by an angle of 17 degrees. tracking points of interest that are often associated with

We conducted three types of experiments. The first distinct intensity structure (such as the tip of the eye in a
experiment tested the stability under the situation where picture of a face). Correlation methods, for instance, are

P),..., P 4 are non-coplanar object points. The second known to perform much better on such locations, than
experiment tested stability under random noise added on areas having smooth intensity change, or areas where
to all image points in all views, and the third experi- the change in intensity is one-dimensional. We therefore
ment tested stability under the situation that less noise applied a level of 0-0.3 perturbation to the z and y co-
is added to the six points, than to other points, ordinates of the six points, and a level of 0-1 to all other
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Figure 6: Deviation from coplanarity: average pixel error due to translation of PI along the optical axis from z = 100
to z = 125, by increments of one unit. The result of re-projection (overlay of re-projected image and novel image)
for the case z = 125. The average error is 1.31 and the maximal error is 7.1.
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Figure 7: Random noise added to all image points, over all views, for 10 trials. Average pixel error fluctuates around
1.6 pixels. The result of re-projection on a typical trial with average error of 1.05 pixels, and maximal error of 5.41
pixels.

points (as before). The results are shown in Figure 8. tures of the approach (shared with [6, 19, 111) is that
The average pixel error over 10 trials fluctuates around the system treats orthographic and perspective projec-
0.5 pixels, and the re-projection shown for a typical trial tions alike, and internal camera parameters are folded
(average error 0.52, maximal error 1.61) is in relatively into the projection matrices, thereby allowing for views
good correspondence with the novel view. With larger to be taken by uncalibrated cameras.
perturbations at a range of 0-2, the algorithm behaves The structure invariant was recovered from four
proportionally well, i.e., the average error over 10 trials point matches arising from the projections of four non-
is 1.37. coplanar object points, and the epipoles. The epipoles

played a double role: first, the corresponding epipoles
8 Summary served as the projection of a fifth point in space, thereby

allowing us to have a projective frame of reference while
We have described new techniques for two related prob- observing only four point matches from the scene. Sec-
lems: the problem of recovering structure from point ond, with the epipoles we could determine the projec-
matches, and the problem of visual recognition via align- tions of various faces of the tetrahedron of reference - a
ment (the problem of re-projection). Our approach was task that otherwise would have required observing point
based on recovering a geometric projective invariant that matches coming from four coplanar points on each face.
can then be used for both purposes: reconstruction and We then described two applications for which the invari-
re-projection. ant can be used for. First, we have shown that with the

The key distinct features of our approach is, first, invariant we can achieve projective or affine reconstruc-
the role played by the center of projection and the tion of the scene. Second, re-projection onto a third view
epipoles. Second, the approach is primarily geomet- was shown possible using the invariant directly without
rically motivated with the definition of a new invari- going through an explicit reconstruction of projective
ant which then drives the applications of reconstruc- structure.
tion and re-projection. Thirdly, shape reconstruction Finally, the algorithms for reconstruction requires
and re-projection are achieved without going through eight corresponding points, or six assuming four of them
the computations of the camera transformation matri- are coming from coplanar points in the scene. For re-
ces (e.g., structure without motion). The overall fea- projection, the result is that the more we recover about
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Figure 8: Random noise added to non-privileged image points, over all views, for 10 trials. Average pixel error
fluctuates around 0.5 pixels. The result of re-projection on a typical trial with average error of 0.52 pixels, and
maximal error of 1.61 pixels.

the scene and the camera transformation the less point [7] O.D. Faugeras, Q.T. Luong, and S.J. Maybank.
matches are needed. We have seen that if projective Camera self calibration: Theory and experiments.
structure is recovered, then only six point matches with In Proceedings of the European Conference on Corn-
the novel view are required for linear re-projection (via puter Vision, pages 321-334, Santa Margherita Lig-
recovery of the camera transform matrix). If the projec- ure, Italy, June 1992.
tive invariant is used instead, then eight point matches [8] OD. Faugeras and S. Maybank. Motion from point
are required. matches: Multiplicity of solutions. International
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Abstract input to it from the previous stage. Important informa-
tion may be lost through this communication process.

A multilevel energy environment has been de- For example, in the typical approach to DRC described
veloped that simultaneously performs delin- above, the delineator "sees" only the input image and
eation, representation and classification of two- its performance is dependent on the extraction parame-
dimensional objects by using a global optimiza- ters. The edge information passed on to the representor
tion technique. The energy environment sup- is generally incomplete and may contain false alarms,
ports a novel multipolar shape representation thus potentially propagating errors of the first and sec-
which allows the delineation and representa- ond kinds. The representor creates its polygonal ap-
tion tasks to be viewed as a single operation. proximation of the contour based only on this edge map;
The delineator acts as a hypothesis generator this process can introduce its own errors into the sys-
for the multipolar representation, which uses tem. These compounded errors are then carried on to
minimum description length tests to determine the classification stage, where the final decisions of the
whether to establish new polar centers. The recognition process are made.
polar representations at these centers are com-
pared with a database of such representations Energy function (EF) based approaches are of interest
in order to identify pieces of objects. This in the DRC problem because of their ability to incorpo-
method is more robust than conventional mul- rate many different objective functions into a single cost
tistaged approaches to object recognition be- to be minimized. These approaches include a paradigm
cause it incorporates all the information about called "snakes" first proposed by Kass, Witkin and Ter-
the objects into a single decision process. zopoulos [10]. This is an active contour model approach

which uses controlled continuity splines. The EF con-
sists of a linear combination of three components which

1 Introduction attract the snake to edges, lines and terminations. The

This paper presents a novel approach to two-dimensional first component attempts to minimize a cost relating to

object recognition, which entails the solution of three the image data-for example, to maximize edge strength

sub-problems: delineation, representation and classifica- or stereo disparity. The next component minimizes in-

tion (DRC). Due to the difficulty of solving this problem ternal energy and has an effect on how flexible the snaketion(DR). ue o te dffiultyof olvng hisprolem is allowed to be. These components are integrated over
in its totality, conventional object recognition systems is aowto hese components are integated ove
address each of the sub-problems separately, and solve the contour; hence, local influences are propagated glob-
them sequentially. For example, a typical system might ally throughout the contour. Other components allow
first extract the contour of a region (delineation); then external influences or volumetric information [2] to af-

polygonally approximate the contour (representation); fect the delineation process. The optimization process is

and finally match pieces of the polygon to polygonal driven by an iterative solution of the Euler equations; it

approximations of objects in a database (classification). can be trapped at local minima and is therefore sensitive
Much work has been done on each of these sub-problems to initialization. The process is also computationally ex-andh torkhe s reevnt litera e is exchoftensie. Atteptbs tpensive [12]. Moreover, it does not provide a mechanismand the relevant literature is extensive. Attempts to con- for incorporating knowledge about the expected region
centrate on a particular stage always involve (often im- for incor t ingaknowledgesabout the epc d io
plicitly) assumptions regarding the quality of the avail- shapes into the delineation process; in other words, it
able input information. These assumptions are often to does not integrate the processes of delineation and clas-
strong and may lead to unpredictable errors in the recog-
nition process. Another EF approach is typified by the minimum de-

A well-known theoretical framework describes the scription length (MDL) algorithm due to Leclerc [11].
kinds of difficulties encountered by these conventional Here the function involves two components: a "lan-
systems. Each of the steps in the DRC process can be guage" component which represents chain code descrip-
thought of as a sequential stage in a communication sys- tions of region boundaries, and a "noise" component
tem [8]. The output of each stage depends only on the which measures the degree of variability of the pixel
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intensities within the regions. The function is applied EF, which results in a single-stage recognition process.
globally (i.e. to the entire image), starting with the par- The optimization method used is simulated annealing,
tition in which each pixel is a separate region, and em- which provides the means of driving the energy to its
ploys a graduated nonconvexity algorithm [1] to drive the lowest value, and hence leads to an MRF state with the
description length to a near global minimum. This ap- highest probability.
proach is computationally expensive and provides only Sections 3 and 4 extend the approach to "compound"
a global mechanism (the non-convexity parameter) for objects, which are unions of small numbers of compact
guiding the search. Fua and Hanson [6, 7] presented an objects; here the contour visibility requirement is relaxed
MDL-based DRC t-chnique using a high-level compo- and the objects are allowed to have deep concavities and
nent which incorporated chain code models for object lobes. For this clas of objects we use a "multipolar" rep-
shapes. Due to its use of a global approach their algo- resentation, in which segments of the object's contour are
rithm could not easily perform local description adjust- represented by radius functions defined over sectors that
ments because these adjustments had little effect on the emanate from a set of centers, as described in Section 3.
global cost. As we shall see in Section 4, this allows us to perform

Another possible framework for addressing the DRC DRC using a set of sector MRFs. It also overcomes the
problem has emerged from the work of Geman and Ge- occlusion problems from which the single-polar represen-
man [9]. By pointing out the duality between Markov tation suffers.
Random Fields (MRFs), which are defined by con-
ditional spatial probabilities, and Gibbs distributions, 2 Compact Object DRC
which are determined by an EF, Geman and Geman pro-
vided a domain within which sub-processes could operate 2.1 The 1-D Cyclic MRF
and communicate. Moreover, the resulting algorithms Let R = (r,..., r,.) be a vector of discrete random vari-
are naturally parallelizable, and also contain a natural ables ri which represent radii emanating from a given
mechanism for hypothesis generation, namely the Gibbs center, I < i < n, and let w = (w 1,... , w,,), a vec-
sampler. tor of radius lengths, define a possible configuration

Geman and Geman employed a MAP estimation (rl = w0, r2 = 02, . . ., r, = wn) of R; the set f0 of such
paradigm (which, together with some assumptions about w's is the MRF's sample space. A 1DCMRF is then
the noise model, resulted in the EF format) to perform defined by
image restoration by simulated annealing, using a two- P(R = w) > 0 Vw E 0 (1)
level MRF. At the first level, MRF sites were pixel in-
tensities with spatially homogeneous clique potentials; P(ri=wilri =&aj;j9i)=P(ri=wirj =wi;jE N,) (2)
the second level introduced a line process which elimi- Vi E (1, n); Yw E Q,
nated the cliques at suspected contour locations. The
line process did not provide an easy way of incorporat- where Ni is a neighborhood of ri. For simplicity, we
ing information about arbitrary region shapes. Also, the take Ni to be (i - 1, i + 1) and we use equispaced radii
computational cost of implementing such an MRF, even at angular intervals of AO 2 -r. Since we are dealing
for a 64 x 64 image, was prohibitive, with a closed contour, rn+. = rT and the neighborhoods

A more efficient way of using the Gemans' approach are defined modulo n. We also assume that the wi take
was introduced in a paper by Friedland and Adam [4]. on discrete values in a bounded range [1, uext].
Here, a one-dimensional cyclic MRF was proposed, Figure 1 illustrates a 1DCMRF, its sites (radii), its
where the MRF sites were radii emanating from a given sample space (radius values), its center location and its
center. This had the effect of reducing the size of the neighborhood system. Note that an MRF configuration
MRF by at least two orders of magnitude. The paper R = w defines the polar representation of a contour
presented an approach to determining cavity boundaries relative to the given center.
in echocardiograms using an EF whose components rep-
resented edge strength, contour smoothness, and cavity MRF site
volume. These factors were considered simultaneously =+1 +1 configuration
since they all resided in the same EF. ri=(Oi

This paper presents an integrated approach to DRC ...

based on EF minimization. Section 2 describes a DRC / "• : upp.
algorithm for what we call "compact" 2-D objects. A,%
compact object is star-shaped, i.e. its entire contour is bound on oi
visible from an interior point; in addition, we require
that the distances from this point to the contour of the
object are not highly variable, so that the contour can be
represented in polar form by a smoothly varying radius
function. Compact object DRC is performed using a I-
D cyclic MRF which provides a framework for a polar
object representation, and in which delineation and clas-
sification are performed by appropriate EF components.
Thus local and global criteria are combined in the same Figure 1: The 1-D cyclic Markov random field.
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The 1DCMRF is initialized by choosing a center,
which is assumed to lie somewhere inside the object's
contour. (The problem of object detection is not ad-
dressed here; if an object has been detected but its loca-
tion is known only approximately, it may be necessary
to try a set of initial centers in order to insure that at
least one of them 1-s inside the object.) Each of the n
radii emanating from the center is assigned a randomly
chosen initial value in the range [1,wext].

Our implementation of the 1 DCMRF allows the center
to shift. At given steps in the optimization process we
calculate the centroid of the current 1DCMRF configu-
ration w. This centroid becomes the new center. Using
this new center the 1DCMRF is regenerated; w is trans-
formed into w' defined relative to the new center. This
ability to shift the center eliminates the need to choose
a "good" center initially. As we shall see (Figure 2), the
shifting process tends to eventually shift the center to a
position close to the object's centroid. As a result, the
polar representations of similar objects tend to be simi-
lar; thus it is meaningful to use these representations for
classification purposes.

2.2 The Energy Function

Creating an EF framework for compact object DRC in-
volves defining energy components to perform the ap-
propriate subtasks. Our EF consists of two parts: a
Low Level (LL), consisting of locally computed quanti-
ties that are used to delineate the object's contour; and
a High Level (HL), which matches the polar representa-
tion of the contour to a database of polar contour models
to perform classification. Symbolically,

E(w) -= W, x ELL(W) + W2 x EHL(W) (3)

where W1, W2 are weights and ELL, EHL are the LL and
HL energy components, respectively. The weight W2
in Equation (3) is allowed to vary in the course of the
optimization; its value depends on the difference between
the current polar representation and its best-matching
model in the database, as described in Section 2.2.2.

Figure 2: An example of our approach to compact object
2.2.1 The Low Level DRC.

The LL component of the EF favors a delineation of
the object that maximizes contour smoothness and edge
sharpness. These properties depend on very localized where g(.) is the gray level at a given point. These two
regions along the contour. Edge sharpness is measured measures are combined linearly into the LL component
along each radius individually, while contour smoothness of the EF:
is measured by comparing the values of each radius ri AlEtep(W)l
and its neighbors ri-I and ri+i. ELL = C1 XEsmoothne--(W)+C12X(1-- (6)

The contour (non)smoothness measure is where al,a2 are weights and MAXGRAY is the gray

a nW, - .5 x (Wi..I +Ws+0) level range in the image.
Esmoothnes(W) - ext ( (4) The LL can also be used to introduce information

i=i about the contrast between the object and the back-
where i_ I, wi, wi+1 are consecutive radius values. The ground. If we have prior knowledge about what the con-

trast of the edges should be, edges with improper con-
edge sharpness measure along each radius is a difference trasts can be ignored in Equation (5), allowing the LL
of average gray levels; thus to consider relevant edges only.

i M M-I The LL component of the EF is assigned a constant
E.t.p(w)= " g(wi+k)-E g(w'- k) , (5) weight WI throughout the optimization. Its initial roleif:= C=t + =0 is to construct an initial approximation of the object's
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contour; later, when the HL component acquires more 2.3 The Compact Object DRC Algorithm
weight (see Section 2.2.2.), the LL component insures The algorithm is initialized by choosing a center and es-
that the HL does not "hallucinate" matches that are not tablishing a 1DCMRF R by choosing n radii emanating
corroborated by the image data. from this center at angular intervals of 2w/n. A random

2.2.2 The High Level initial guess configuration R = w0 is assigned to the
1DCMRF so that an initial Gibbs density, which corre-

The HL component is responsible for object classifica- sponds to the probability density of each site ri E R, can
tion. Its contribution to the optimization process con- be calculated (see [4]). Then the optimization process is
sists of two parts: a fast process, which actively partici- allowed to begin. At every k'h iteration of the process,
pates in the optimization at every iteration, and a slow the center is shifted to the centroid of w. A model which
process which, at regular iteration intervals, selects an best matches the resulting configuration is selected from
object model that best matches the current MRF con- the database. This model is subsequently used in the HL
figuration (i.e., the current polar contour representation) component of the EF. The Gibbs densities are also re-
and adjusts the value of the weight W2. Specifically, determined. This process continues until either a closely

" At every kth step (for some preselected k) of the iter- matching model has been found, the halting criterion

ative optimization process, we compare the current has been satisfied, or an upper bound on the number of

MRF configuration R = w with a database of polar iterations has been reached.
contour models Sobie', where obj is an object and It is important to stress that the process uses the same
0 is the object's orientation. The models are stored EF system throughout, though the EF itself undergoes
in normalized form, i.e. each of them is divided by changes as the process proceeds.
the mean of its radius values, and are rescaled to , 2.4 Experimental Results
the mean of w, for matching purposes.

"In this section we demonstrate some of the characteris-
In the matching process, the match error is defined tics of the compact DRC algorithm through an example,
by using an image of a tank obtained by a forward look-

1 . _ l i -WX ×sbJ" ing infra-red (FLIR) sensor. Figure 2 shows the MRF
n o x sbj' '() configuration at every tenth iteration. The initial image

"S window (85 by 85 pixels) is shown on the upper left; the

where s8bj,0 is the ith radius value of the model location of the center is marked with a small +. Note

Sobj,'. The process selects the model Tobjie that that throughout the process, the + remains in the cen-

has the lowest Er value. This error value can be ter of the window; as the center shifts, the window shifts

used to define a halting criterion by comparing it to With it.

a cutoff threshold. The images have had their gray scales compressed
from [0,255] to [60,195] for display purposes. The white

The weight W2 assigned to EHL is inversely dependent contour (gray level 255) superimposed on each image
on the lowest Er value: shows the current MRF configuration. The black con-

' 0tour (gray level 0) shows the current best matching
W2 a3 x max(l - Erob J). (8) model, scaled by C and rotated by 0. The number in

obj,# the top left corner of each image designates this object,

The updated HL component is the sum of the quantities and the number in the upper right corner represents its
degree of match, 1 - Er. The two lower numbers are the

X &J,6 1  contrast between the object and the background (left)
EHL(W•) - Wext (9) and the iteration number (right).

We see that in the first 70 iterations the algorithm
The weight W2 controls the influence of the selected thinks it has detected a tank (model no. 1 or 2)in the

object model on the optimization. The smaller the error, lower left part of the target. At iteration 80, the LL
the larger W2 becomes relative to W1 . Thus the HL begins to express its "doubts" about the validity of this
component acquires more weight as its confidence in its erroneous target identification. As the MRF begins to
match increases. Since all the models in the database acquire the correct target (no. 0), center shifting allows
are compact, any of them helps the LL attain contour the MRF to generate configurations which increasingly
smoothness in the initial stages of the optimization. As resemble the correct result. This was possible because
the optimization approaches the global minimum of the simulated annealing allowed the process to escape the
energy, and the MRF configuration approaches one of local minimum in which it was initially trapped.
the models in the database, W2 grows. As a result the More details about our MRF approach to compact oh-
HL component becomes more dominant and speeds up ject DRC, and many additional examples, can be found
the final convergence of the optimization. in [5]. It should be pointed out that major occlusions

Note that the HL is an active participant in the EF, cannot be handled by this approach, because they in-
not merely a postprocess. This gives the system top- troduce major distortions in the polar representation,
down qualities, a very important point. Also, by provid- which interfere with finding correct model matches. In
ing a halting criterion, the HL allows a result of "don't the following sections we will introduce a more flexible
know" to be obtained, approach.
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3 The Multipolar Representation ri

3.1 Introduction

In this section a novel multipolar shape representation
scheme, MPR, is presented. MPR generalizes the polar
representation (PR) used in Section 2, which consists of
a center (x0, yo) and n radii spaced at angular intervals d2
of 2w/n, to a form which allows a shape to be represented
by many "centers" (zi, %), i E (1, 2,.. ., N), each with ni Figure 3: The sag function.
radii, spaced over an angular sector at angular intervals
of 2w/n, which define a polar representation of a segment Although the sag function is not a true approxima-
of the shape's contour. tion to curvature (being scale invariant), it does have

MPR, because of its multiple centers, is far less sensi- the following properties:
tive to occlusion than PR because matches to unoccluded e For a straight line, where the curvature is zero, di
contour segments can still be found. At the same time is also zero, so the sag is zero.
MPR shares many of PR's strengths. Its shape descrip-
tions are relatively concise and are invariant to scaling, e At curvature extrema d, is maximized, while d2 is
translation and rotation. Also, like PR, MPR is highly minimized; hence the sag function has maxima at
compatible with MRF environments, the same locations as the curvature, provided the

Several stages are involved in creating an MPR. Ini- radii are spaced closely enough to capture the con-

tially, a PR of the shape is created. Next, contour cur- tour's behavior.
vature extrema are detected. Due to the discrete nature After the sag function has been calculated at each ra-
of the representation an approximating "sag function" is dius ri, its significant extrema are extracted using the
used to estimate the curvature, and extrema of this func- following heuristics:
tion are found (see Section 3.2). Segments of the contour * A maximum/minimum location must have a posi-
that contain extrema define candidate MPR centers. In- tive/negative sag value.
ternal centers, i.e. centers which are inside the contour,
are defined for contour segments that contain curvature * The nearest neighbors of a maximum/minimum
maxima, and external centers, lying outside the contour, must also have positive/negative or zero sag values.
for segments that contain minima (i.e., negative max- * The next nearest neighbors must have sag values
ima). that have at most a given difference from the values

To insure a compact representation a candidate MPR at the nearest neighbors.
undergoes a minimumn description length (MDL) test, Once these extrema are identified the contour is par-
and is accepted only if it is more compact than the orig- titioned into segments. A partition point r" is chosen
inal PR. This process is then repeated for each of the between each pair of consecutive extrema as follows: If
centers in the MPR until no further creation of new cen- the extrema are of opposite type, r" is chosen at the lo-
ters is accepted. To avoid fragmentation, a lower bound cation of the most significant sag zero-crossing. If they
is imposed on the number of radii associated with each are of the same type, e is chosen at the location of the
center. most significant instance of sag of the opposite type.

For each contour segment (r-extremum-r*), we esti-
3.2 Contour Segmentation mate the coordinates (z,#, YeO) of the center of a circular-
A simple function which we call the "sag function" is arc fit to the segment. Note that if the extremum is
used as an estimate of the curvature of the contour. positive (the segment is convex), the center will be in-
The sag at r1 is calculated using ri(z, y), ri- I (z, y) and ternal to the contour, while if it is negative (a concave
ri+ (z, y), the Cartesian coordinates of the endpoints of segment), the center will be external.
radii ri, ri- and r,+l, where ri-I and r,.+ are the left This method of choosing candidate centers has a num-
and right neighbor radii of ri. (If ri is the first or last ra- ber of benefits. A representation based on a partition of
dius of its contour segment, one of its neighbors is taken the object's contour into segments, each containing a sig-
to be the last or first radius of the adjacent segment.) Let nificant curvature extremum, is quasi-invariant, i.e., it
d2 (ri) be the length of the chord ri-,(Z, y)ri+l(z, y), and does not change greatly under modest aspect changes.
let di(ri) be the length of the perpendicular from ri(z, y) Thus the MPR does not vary significantly if aspect
to the chord (see Figure 3). Sag(ri) is then defined as changes are small. Furthermore, occlusion nearly always

involves a situation where a convex part is missing; thus
±l if a representation which breaks the contour into convex

Sag(r,) d2 • , (10) and concave segments provides a natural framework for
0 otherwise dealing with occlusion.

The contour segment is now represented in a polar
where e is a small quantity used to eliminate spurious ex- coordinate system centered at (ze,, Ye,). The angular
trema along straight contour segments. They can also be support of the segment relative to this center is tested for
eliminated by smoothing the contour before calculating a systematic counterclockwise (for internal centers) or
the sag. clockwise (for external centers) progression. A portion of
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the segment that violates this condition is merged with a
neighboring segment of opposite type. If such a neighbor
does not exist, a new candidate center of opposite type
(external or internal) is defined for that portion.

3.3 The MDL Criterion

The number of bits required to encode a given realization
of an i.i.d. Gaussian random vector (z 1 , ..., Zm) is given Figure 4: MPR example: four-lobed object.
by

M log(2u2 + E -- ___._)2 11)

where p is the mean of the vector, o2 is its variance, and
the units are bits.

Using Equation (11), we can compute the number of
bits needed to describe a candidate center as follows:

"* The coordinates of the center: 2 x 9 bits (assuming Figure 5: MPR example: FLIR tank.
a 512 x 512 image).

"* The directions of the left and right boundary radii:
2 x 5 bits (assuming 32 radii per center).

"* The mean radius length p: 6 bits (assuming that
the range of radius values is 64).

"* The number of bits needed to encode the variations
from p: M log(2iro2 )+y - (I, - p)2 (assuming
the center has m radii of lengths l1,...,nIm which Figure 6: MPR example: leaf.
have i.i.d. Gaussian distributions around p).

Therefore approximately

2 1r + - 2 and provides descriptions of the lobes. Figures 5 and 6
+2 log(2r ) + 2 (ij i) 2  (12) show MPRs of two real objects: a tank taken from a

j=1 FLIR image and a leaf.

bits are needed for a center that has ni radii with mean These examples illustrate how the MPR representa-

length pi. The variance ar2 is assumed to be the same for tion provides a partition of an object into simple parts.

all centers; it needs to be determined from observation. The MDL test and the heuristic method of choosing sig-

The MDL test used to determine whether the candi- nificant extrema prevent excessive fractionation of the

date centers actually become new centers is then object. The result is an efficient and plausible repre-
sentation. Numerous additional examples, and further

K details about MPR construction, can be found in 13).
Eb, < b0  (13)
i=1 4 Compound Object DRC

where K is the number of candidate centers, bi are these
centers' bit values, and b0 is the bit value for the original 4.1 Introduction
center. The PR used for DRC in Section 2 changes significantly

if a significant part of the object is missing, e.g. occluded,
3.4 Examples because the radii of the partial object are all measured
In this section we present a few simple examples of from a different centroid. As a result the classification
MPRs. In the figures, angular regions of support are process will be ineffective even if the delineation is per-
indicated by black lines that run from each contour seg- formed correctly. This problem applies to all global
ment's endpoints to the center associated with the seg- shape recognition techniques, i.e. techniques iv which
ment. All the examples are initialized by a PR. If the recognition is based on properties of the entire shape.
MDL test is met the PR is partitioned (repeatedly, if Because of this, when dealing with potentially occluded
necessary) into an MPR. The total description length in objects, shape recognition techniques which examine seg-
bits of the PR/MPR, as calculated for each center by ments of the contour are usually employed.
Equation (12), appears in the lower righthand corner of In this section we describe an MRF-based DRC system
each image, rounded to the nearest integer, which makes use of the MPR described in Section 3. The

Figure 4 shows a four-lobed synthetic object. Here, MRF structure consists of a set of radial MRFs, defined
although the PR adequately describes the contour, the over angular sectors emanating from a set of centers;
MPR has a shorter description length than the PR. It the configurations of these MRFs define polar represen-
also explicitly tells us that we have a four-lobed object tations of segments of the object's contour. This MPR-
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MRF structure can handle compound objects, parts of f finds the best match between its current MRF config-
which may be occluded. uration and a compatible (see below) contour segment

model (i.e., part of an MPR model) in the database.
4.2 The MPt-MRJ' The HL periodically resets the weight W24 to reflect the

The compound DRC process is initialized, as in Sec- quality of this best match. Sectors f for which the best
tion 2, by choosing a single center (c0, It) inside the ob- match is very good have high W24 values, so that the HL
ject and constructing a IDCMRF. The initial stage of the has high weight in the optimization process, while cen-
algorithm compares the configurations of this MRF with ters with only poor matches have low W2 values, so that
PR models in the database to see if a good match can be the LL dominates.
found. If not, the algorithm proceeds to the next level of The set of compatible contour segment models for sec-
MPR partitioning and attempts to find matches between tor 4 is defined by
the configurations of the sector MRFs and parts of MPR
models, i.e. polar representations of contour segments of modelst '_ {Vk: (Ivk - vi 1 <thr,) A (typet = type()),
database objects. At each sector MRF for which a match (15)
is found (as defined by a convergence criterion), the op- where k is a segment model; type is internal or external; v
timization process is terminated and the sector's center is a unit vector in the direction of the middle radius of the
is not considered for further MPR partitioning. sector (or segment model); and thr, is a threshold which

Formally, the MPR-MRF " consists of a set of sectors depends on how much orientational freedom is expected
f E 2 emanating from centers (xc, ys). Each sector f in the objects to be recognized.
consists of radial sites ri E Rf. As in Section 2.1, each The match between C and model k (k E modelst) is
radial site is a discrete random variable with values in the defined as
range [1,Wext]. The radii are spaced at regular angular
intervals of 2w/n, and the neighbors of radius i are i - 1 1 1 _
and i + 1. Note that these sector MRFs are no longer m -, = 1 - C•- ( W - w)2

cyclic. ni d=1

To allow the sectors to align themselves relative to
contour segments and provide initialization-independent if mf,k 2! thrm; (16)
polar representations of the segments, the MPR-MRF
allows the centers to shift, as in Section 2.1. Ideally, the 0 otherwise,
angular supports of the centers should just "cover" the where nc is the number of radii in f, ( is their average
entire contour. However, when a center shifts, its angu- length, and thrm is a threshold below which the match
lar support changes, possibly resulting in incomplete or is considered inconclusive. The wt are angularly aligned
overlapping coverage of the contour. The center shift- with their w! counterparts by making the middle radius
ing algorithm tests for this and initializes additional ra- of & coincide with the middle radius of C or with one of
dial sites, or deletes redundant sites, as needed. If this its neighbor radii. Radii ofdk that fall outside sector

results in a center having its number of radial sites re- are ignored, while radii of f that fall outside k's sector
duced below the fragmentation threshold, that center is aregarded whie radii of a that hase
eliminated and its sites are assigned to nearby centers. are having corresponding radii of z that havezero length.

4.3 The Energy Function Let model ki give rise to the maximum (nonzero) valueThe nerg Funtionof mc,k. The updated HlL component is then defined by
The MPR-MRF is responsible for the representation por-

tion of the DRC task, while the delineation and classi- _ (ý( X Wk I 1
fication portions are the responsibility of the EF. As in EHL(Wi) = minm SIZE (17)
Section 2.2, the EF is defined symbolically as I I

where SIZE is a threshold, and the i's in the numerator
E(w) 4 E WI' EL(w) + W2 X E•HL(w)l, (14) are offset if necessary to allow for the angular alignment.

SThe weight W2 assigned to this component is

where C is the index representing the MPR-MRF sectors;
ELL, EHL are the LL and HL energy components for Wk = GHLm(18)

each sector; and W1•, W2 are weights associated with
each sector. 4.3.3 Object Classification
4.3.1 The Low Level Let -' be the set of sectors 4 for which best matching

The LL components of the EF enable the system to models k have been found, and let n' = E,= nf be the

perform object delineation. Their definitions are similar total angular size of these sectors. We assign the weight

to those in Equations (4-6) of Section 2.2.1. wc = nc/n' to each of these sectors, and zero weights
to the remaining sectors. This weighting scheme gives

4.3.2 The High Level higher weights to classified sectors that have larger an-
The role of the HL is to periodically classify the con- gular supports, since these sectors contain more contour

tour segments found by the LL delineator. Each sector information.
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Figure 7: The original objects.%.

The evidence for a database object is tbeil defined as .E-'(A
fobj W(mnk maxlyhkt(:1, (19) #

(E='

where the max is taken over all the contour segment
models I that are parts of MPR models for obj in the AA "
database, and rh is a match measure between pairs of
models, defined as in Equation (17). Evidently, if we are
actually dealing with a database object, the evidence for
that object should be very high, and it should be rela-
tively high even if the object is partly occluded, as long
as significant segments of its contour are not occluded.

4.4 The Compound Object DRC Algorithm t"
The MPR-MRF DRC algorithm consists of two pro- -____._ .._.__

cesses: a fast process, which performs simulated anneal-
ing optimization on all MPR-MRF sites, optimizing the Figure 8: MPR-MRF database.
EF defined by Equatioii (14), and two slow processes-
one which detects matches, updates the HL weights, and
updates center locationis, and one which performs con- The second slow process partitions the contour seg-
tour partitioning and new center creation. ments of the non-converged sector MRFs and creates

The algorithm is initialized by establishing a single- new centers, if the MDL criterion is satisfied; this is
center MPR-MRF R' = w° which is equivalent to a done every 100th iteration. In our experiments, we lim-
1DCMRF. This 1DCMRF configuration is used to de- ited the total number of iterations to 290, i.e. the second
termine the initial Gibbs density. At this early stage slow process was applied only twice.
the HL component performs matching only between the
MRF configuration and the PR models in the database. 4.5 The Model Database

In general, let the set of MPR-MRF centers be E. For Ou model database was constructed from a set of six
all ý E -E, the fast prore(ss iteratively visits each radial "cu ut" objects on a uniform background which were
site rf of ý and attempts to modify its configuration .4. sami ed and digitized. The use of these artificial objects
This is done by generating a candidate configuration us- was necessary because it provided a domain in which
ing the Gibbs sampler, (valuating its energy using Equa- distortion and occlusion could be controlled. The origi-
tion (14), and deciding whether to accept the transition. nal objects are shown in Figure 7. They are (from left

At every 10th iteration of the fast process, the first to right, top to bottom): taukl, tank2, truckl. truck2,
slow process updates eah center's location to the cen- apcl, and apc2.
troid of its current sector MRF configuration, finds the An MPR-MRF delineation algorithm similar to the
best matches for these configurations, updates the sec- recognition algorithm was used to create PR and NMPR
tors' W2 values, and recalculates the centers' Gibbs sarn- representations of the objects starting from various ini-
piers. Sector MRFs whose match values mect a conver- tial center locations. This sometimes gave rise to more
gence criterion are declared "converged" and the fast than one MPR for a given object, because the sparse set
process is no longer applied to them. The evidence for of radii sometimes failed to detect small features of the
each database object is checked at the end of this stage, contour, resulting in variations in the contour segments.
using Equation (19), and compared to a threshold to The database consisted of the PR and MPH representa-
determine if an object match has been found. tions of all the objects. Figure 8 shows all the MlPHs in
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Figure 9i D~istorted versions of the original objects.

the database. These MPRs all correspond to plausible
descriptions of the objects. Due to the low resolution
(30-50 pixels across an object), the possible number of
variations is small.

4.6 Experimental Results

The compound DRC algorithm was tested on a set of
real FLIR images of non-occluded targets resembling the *A
database objects, as well as on images of both occluded . -
and non-occluded distorted versions of the objects (ex-
amples of the distorted versions are shown in Figure 9).
As an example, Table 1 and Figure 10 show results for
a distorted version of apc2. The evidence column in-
dicates the total evidence for each object. The num- .
bered columns list the evidence contributions on a sec-
tor by sector basis. Figure 10 shows the optimization
process for this example from initialization to termina-
tion (which occurred at 150 iterations because all sec-
tor MRFs converged). Iterations 00 through 90 show
the development of the PR. At iteration 100, the black
dots show the radius endpoints, and the white dots show
the locations of significant sag extrema. The MPR con-
structed using these extrema reduced the description
length from 1016 to 283 bits (see iteration 110) and was Figure 10: MPR-MRF results for a distorted "apc2".
accepted. It has three internal centers (two of which co-
incide) and one external center. During the succeeding only iterations 00, 90 (with the PR configuration and
40 iterations, the sector MRFs all converged to config- best matching PR model), and 290 (with the MPR con-
urations that were good matches to database models. best matching pa rts of MPR mon-
When a sector MRF has converged to match part of an figuration and best matching parts of MPR models).
MPR model for a database object, the contour segment Figure 11 and Table 2 give results for a FLIR truck.
represented by this model is displayed in white, together Although the database does not include this truck, thewith the number of the object (see iterations 140 and process finds very high evidence for truckl, and little
1w0th tevidence for any other database object. The PR clas-
150). sification was apc2; however, once the MPR-MRF was

initialized, this choice was discarded in favor of the more

Table 1: MPR-MRF evidence for a distorted "apc2". correct solution, truckl. The results are similar, though
less clearcut, for a second truck, as shown in Figure 12

Index Target Evidence 1 2 1 4 5 and Table 3. In Figure 13 and Table 4, results for a
I 12 I apc2 1 .834 I 4451 ,045 .000 1201 224] FLIR tank image are presented. Tankl.1 and tank2.2

9 truck231 743 1 3821 000 206 154 - are the contenders; the actual tank has a turret that is
more similar to tank2's, and a body that is slightly more
similar to tankl's.

The next group of figures and tables shows results ob- Not surprisingly, the results for occluded objects tend
tained for three non-occluded targets in real FLUR im- to be more ambiguous, because the visible parts of such
ages, using the same model database. Each figure shows an object often resemble more than one database model.
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Table 2: MPR-MRF evidence for the first truck in a
FLIR image.

I lndex I Torot I Evidencel 1 1 2 1 3 1 4 1

_I________I___I_1._____.__1_____ t .0.0 .1. -
- 8t, . . . . " i .

Figure 11: MPR-MRF results for the first truck in a Table 3: MPR-MRF evidence for the second truck in a
FLIR image. FUR image.

Indexl Target I Evidencel 1 2 1 3 I 4 1 5 6 6 1

5 1 truck1.2 .769 1.3 1. 2 841. .071 -. Io-. II apcl I ". .376 I. O661.0000.1 - I

2 tank3.1 1 .35 1.00106.044.00U.7461-

Table 4: MPR-MRF evidence for a tank in a FLIR im-
Figure 12: MPR-MRF results for the second truck in a age.
FUR image. I Indexl Target IEvidence 2 I 4 I

1 1 Itank1.1 .9o 1.3381.0861.1031.E63]
13 ltank2.2l .781 1.2351.0891.1071.3041

Table 5: MPR-MRF evidence for an occluded "truck2".

S-lndexi Target iEvidencel 1 4 6 6 171

1 7 Itruck2.1l .668 I.5361.01.0001.1321- i - I-1s Itru k2.21 .612 1.0001.0 .1.841.427 .01.0001.01
Figure 13: MPR-MRF results for a tank in a FLIR im- 1 4 Itruck1.1 .128 1.0001.01.0041.4001.01.2s18 -

age.

modest sized databases and correspondingly small search
costs. The approach is also efficient because of the small
sizes of the sector MRFs and their configuration spaces.
The average processing time for our implementation of
the system on a SPARCstation IPX was on the order of
20 seconds.

Figure 14: MPR-MRF results for an occluded "truck2". Though the results obtained so far are quite encour-
aging, the system is still a prototype and many improve-
ments could be made in it, as regards both further DRC

Figure 14 shows an example in which there is relatively integration and more efficient implementation. The abil-
little ambiguity (see Table 5), in spite of the fact that ity to obtain real FLIR data representing various con-
over half of the object is occluded. Many other exam- trolled situations would greatly enhance developmental
ples, as well as further details about the MPR-MRF al- capabilities.
gorithm, can be found in [3]. The EF could easily be modified to incorporate phys-

ical information about the expected objects and back-

5 Concluding remarks ground, e.g. textural information about the background,
or the expected contrast between the objects and the

The MPR-MRF system described here provides a pow- background (for FLIR, this depends on the time of day).
erful framework for integrated DRC. The EF environ- The latter modification would provide a further basis for
ment allows versatility in integrating the DRC modules. differentiating between real targets and decoys.
Delineation and classification are handled by appropri- The system could be extended to handle compound
ate components of the EF, while the MPR provides the objects in which the parts have different gray level
representation. The system poses the DRC task as an ranges; for example, an MPR-MRF could first delineate
optimization problem and achieves a near-global opti- the brightest parts, and HL information could then di-
mum using simulated annealing. The experimental re- rect the establishment of additional centers to delineate
suits demonstrate the ability of the integrated approach other parts. Still another extension would involve mod-
to identify a variety of objects under conditions of oc- eling (simple or compound) ribbon-like objects, using
clusion and distortion. Due to the low resolution, the pieces of medial axis instead of centers, and "radii" per-
number of MPR representations is limited, resulting in pendicular to these axes.
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The system could be generalized to 2.5D for range data
and to 3D for CT images. Another possible extension
involves using time-varying models to perform DRC on
sequences of images.
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Recognition with Local and Semi-local Invariants*

Ehud Rivlin and Isaac Weiss
Computer Vision Laboratory, Center for Automation Research,

University of Maryland, College Park, MD 20742-3275

Abstract vision only one projective invariant, the cross ratio [Duda
and Hart 1973], was used until recently.

Geometric invariants are shape descriptors that Projective invariants of curves and surfaces were first
remain unchanged under geometric transforma- introduced in vision by the second author [Weiss 1988].
tions such as projection, or change of view- In that paper we reviewed both algebraic and differential
point. A new method of obtaining local pro- methods for obtaining invariants and pointed out their
jective and affine invariants is developed and usefulness for object recognition.
implemented for real images. Being local, these One can distinguish between two kinds of invariants:
invariants are much less sensitive to occlusionthvariants g ale invarieants. nsite ttion ofsin- global and local. Global invariants describe a shape as a
than global invariants. The computation of in- whole so they require knowledge about the whole shape.
variants is based on a canonical method. This Examples are the moment invariants often used in the
consists of defining a canonical coordinate sys- Euclidean case. Global (algebraic) projective invariants
tem using intrinsic properties of the shape, in- were described in [Weiss 1988]. They have been applied
dependently of the given coordinate system. successfully by Forsyth et eL [1990, 1991] to industrial
Since this canonical system is independent of objects. Like any global descriptors, these quantities are
the original one, it is invariant and all quanti- quite sensitive to occlusion. Local (differential) invari-
ties defined in it are invariant. The method is ants are more immune to this problem. They have been
applied without the use of a curve parameter treated in [Weiss 1988, 1991]. So-called "mixed" invari-
by fitting an implicit polynomial to a general ants were developed by Van Gool et al. [1990], Barrett
curve in a neighborhood of each curve point. ef .L. [1990] and Bruckstein et al. [1991]. In this paper
Several configurations are treated: a general we develop both local and "mixed" invariants using a
curve without any correspondence, and curves new approach that is simpler and more robust to noise
with known correspondences of one or two fea- than previous methods.
ture points or lines. Experimental results for ta rvosmtosreal 2D objects in 3D space are presented. Local invariants can be defined at each point of ashape, and can be used to obtain a "signature" of that

shape. In the Euclidean case, for instance, it is com-

1 Introduction mon to plot the curvature against the arclength, both
of which are local Euclidean invariants. Such plots or

Geometric invariants are shape descriptors which remain "signatures" of curves can then be matched even if part
invariant under geometrical transformations such as pro- of a curve is missing due to occlusion. We obtain such
jection or viewpoint change. They are important in ob- signatures in the projective and affine cases.
ject recognition because they enable us to obtain a signa- One can build an object recognition system that uses
ture of an object which is independent of external factors invariant "signatures" of curves, rather than the curves
such as the viewpoint. In this paper we treat projective themselves, for matching. Therefore the matching does
(viewpoint) and affine invariants in various geometrical not require a search for the correct point of view. This
configurations. is possible because of a general completeness property.

The subject of invariants has recently increased in im- The completeness property of differential invariants
portance and recognition in the vision community. Pro- can be described as follows. Given a plane curve and a
jective invariants were a very active mathematical sub- transformation group, there are two independent invari-
ject in the latter half of the 19th century. However, in ants of the transformations at each point of the curve.

These invariant functions contain all the information
"The authors were supported in part by the Defense Ad- The curve, exct for the ta formation

vanced Research Projects Agency (ARPA Order No. 8459) about the curve, except for the transformation to which

and the U.S. Army Topographic Engineering Center under they are invariant. Accordingly, given two invariants for

Contract DACA76-92-C-0009. The second author was also each curve point, we can reconstruct the original curve
supported in part by the Air Force Office of Scientific Re- up to a transformation belonging to the group.
search under Grant F49620-92-J-0332. More accurately, the following theorem holds [Guggen-
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heimer 1963, p. 144): All differential invariants of a before it enters the invariant expressions and adds to an
(transitive) transformation in the plane are functions of accumulation of errors. In addition, the explicit method
two invariants of the lowest order and their derivatives, assumes the existence of some ordering among the data
Thus, given a curve, one can find a corresponding invari- points so that a parameter can be assigned to them,
ant curve, which we call its signature, that describes it which is not always possible.
uniquely, except for the relevant transformation. These considerations are especially important in the

This method applies to all kinds of local invari- projective case in which there is no natural parameter
ants. Projective and affine invariant signatures are used such as arclength. But even in the Euclidean and affine
in [Weiss 1992] (with an explicit method) and [Weiss cases, which do admit a natural arclength, it needs to
1992b]. At each point of the given curve we calculate two be obtained from the image and the same robustness
invariants, 11, 12. We plot these numbers as a point in considerations apply. The implicit method avoids the
an "invariant plane" whose coordinates represent invari- parameter altogether and thus increases robustness.
ants. In effect, we plot one invariant against the other. Most previous work on local invariants [Wilczynski
In this way the given curve maps into an invariant signs- 1906] was done using the explicit approach. An im-
ture curve in the invariant plane. The signature uniquely plicit approach was used by Halphen [1880] but it did
identifies the curve regardless of the point of view. not provide all the invariants and was cumbersome to

Global invariants are often associated with algebraic implement. We present here a simple way of deriving lo-
methods and require no differentiation (although inte- cal invariants in the implicit approach, without a curve
gration may be used for finding moments). Local invari- parameter. The approach is based on transforming the
ants involve some form of differentiation. Larger trans- shape to a canonical (intrinsic) system of coordinates,
formation groups need higher orders of differentiation; rather than obtaining closed form formulas for the in-
projective invariants need a higher order of differentia- variants.
tion than affine, which in turn need a higher order than The canonical approach has another advantage for our
Euclidean. purposes. A problem that arises in finding invariants is

We deal here mainly with curves. General curves can fitting a curve to the data points in an invariant way, i.e.
be treated in several ways. Two main camps exist among the fitting method has to be invariant before the curve
geometers: those who favor an explicit representation invariants can make sense. This is particularly true if
and those who prefer an implicit one. In the explicit the fitting error arises mainly not from random noise
method a curve is represented as functions of some pa- but from the shape itself, for instance when trying to
rameter along the curve, e.g. z(t), y(t). In the implicit fit a conic to a polygon. In previous methods [Forsyth
approach a curve in represented by a relation f(z, y) = 0, 1991] invariant fitting could be done only in the affine
without a parameter. The advantage of the implicit ap- case. The canonical method presented here is capable of
proach is that it does not require introduction of a pa- obtaining an invariant fit in the general case.
rameter, which is not in fact part of the geometry of the Several kinds of situations will be treated here. The
curve itself. The relation between z and y is sufficient to first involves general plane curves without any correspon-
completely characterize the curve. The explicit method dence information. These require the highest number of
makes it easier to obtain closed form formulas for general derivatives so their signatures are the hardest to obtain.
curves. Next, shapes consisting of a curve and one known fea-

In finding invariants, the parameter is undesirable for ture point will be treated. For the feature (or reference)
the following reasons. The essence of finding invariants point it is assumed that a correspondence can be estab-
is the elimination of unknowns from the system, such lished between two images. This enables us to eliminate
as the unknown quantities describing the point of view. some of the transformation parameters and reduce the
The parameter is also in general unknown since it can amount of information needed from the curve itself, i.e.
be chosen in an arbitrary way. It has to be eliminated the orders of the derivatives. Using a curve and two
so that the invariants will not depend on it. The more reference points reduces this amount even further. The
unknowns we have to eliminate, the more information we authors mentioned earlier treated these situations with
have to extract from the image, which translates in the the explicit approach, using derivatives with respect to
explicit method to higher, and less reliable, derivatives, a curve parameter. We will treat them here without a

Another reason to avoid the parameter is the qual- parameter. We will also treat curves with reference lines,
ity of the fitting. In fitting a curve to data points, we which have not been previously treated, to our knowl-

make the assumption that the average squared distance edge.
is minimal, and the problem arises of how to estimate
the distance of a point from a general curve. In the 2 Finding Local Invariants-A
explicit method, the minimized functions are z(t), y(t), Canonical Approach
measuring distances parallel to the z, y axes. These dis-
tances are very unstable when the curves themselves are In principle, one can find invariants of a curve f by one of
almost parallel to the axes, and can introduce substan- the known methods. However, these invariants will not
tial errors. We also have to obtain two fitted functions be local; they will depend on the window size and the
z(t), y(t) rather than one. An implicit fit minimizes the curve order. In addition, the common methods are very
distance (roughly) perpendicular to the curves, and it cumbersome for high order curves and require the use of
thus seems more natural. It eliminates the parameter a symbolic manipulation program. Their robustness is
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questionable. variance and locality. We can generalize the method by
Here we obtain these local invariants in a quite sim- using an osculating curve, which is a generalization of the

ple and intuitive way. The basic idea is to transform tangent. A tangent is a line having at least two points
our coordinate system to a canonical one, i.e. a standard in common with the curve in an infinitesimal neighbor-
system which is defined by the intrinsic characteristics hood, i.e. two "points of contact". This can be expressed
of the shape itself. Since this system is intrinsic, all as a condition on the first derivative. Similarly, a higher
quantities measured in it are independent of the initial order osculating curve has more (independent) contact
system and are therefore invariants. One can give a sim- points, and the condition on the derivatives can be writ-
ple example as follows: Given an image of a rod, we can ten as
calculate its length, which is a Euclidean invariant, by dh
applying the formula for Euclidean distance. An alter- w-(f (z, Y) - X(z, y)) = 0, k = 0... n (1)
native approach is to transform the coordinate system
into a canonical one, in which the rod lies along the z with fr being the osculating curve, f the given curve,
axis and the origin is at one end of the rod. Then the and n the order of contact. Since the derivatives van-
z coordinate of the other end is the rod's length. We ish, this condition is invariant to the parameter t. (We
see that by moving to a canonical system we have oh- will derive the osculating curve without this parame-
tained the invariant length without an explicit formula. ter.) Since it has a geometric interpretation with points
The canonical system was determined by the properties of contact, the condition is also projectively invariant.
of the shape rather than by some external factors. And since it is expressed as derivatives, it is also local.

An important differential example is finding Euclidean Thus all the independence requirements set forth earlier
invariants of curves. We can move the coordinate system are met. (The derivatives will be calculated analytically
so that the z axis is tangent to the curve at some point from f.)
that we choose on it, i.e. I/ = 0 there. The second deriv.- In the following sections we will use an osculating im-
tive y" at this point is now equal to the curvature and plicit curve r satisfying the above condition. This curve
is invariant since we obtain the same canonical system will be chosen as the simplest one that meets our needs;
regardless of which system we started with. We see that its shape is thus known. Thus it will be easier to handle
by determining some of the properties of the system, the than the original f which can be any function that fits.
others are also determined and become invariant. According to our needs we find either a cubic or a conic

We generalize this approach to larger transformation which osculates our fitted curve. We then transform theW n generalze thi arachtors lnatrg orm n c coordinates so that this cubic or conic takes on a partic-
groups. In general, the factors in a transformation can

be eliminated by using the same kind of transformation, ularly simple, predetermined form, i.e. we eliminate all
with the same number of factors, to go over to the canon- its coefficients. In this new (canonical) system all quan-
ical coordinates. The Euclidean invariants can be ob- tities are invariants and we pick the ones that best suit
tained by using a Euclidean transformation to obtain a our needs.
Euclidean canonical system, etc. We will describe the correspondenceless case in full

The general projective transformation can be decom- and summarize the other cases.

posed into simpler transformations: translation, rota-
tion, skewing, scaling (making up the affine group), tilt 3 Local Projective Invariants Without
and slant. We will use these to canonize the coordi- Correspondence
nates step by step. At each step some of the viewpoint We use the osculating curve method to eliminate all the
parameters will be eliminated until we are left with a projective unknowns and obtain two local invariants at
coordinate system independent of the original viewpoint any curve point. The outline of our method is as follows:
and defined by the shape itself.

There are two basic requirements that the canoniza- * Repeat the following steps for each pixel that be-
tion process has to meet: it has to be invariant, i.e. longs to the curve to obtain two independent in-
produce a result that is independent of the original sys- variants at that point of the curve:
tem, and it has to be local, i.e. independent of the exact - Define a window around the pixel and fit an
fitting details such as the window size or fitted curve, implicit polynomial curve to it, say a cubic or a

The Euclidean example above meets these require- quartic. All the following stages are performed
ments. The requirement of tange~ncy is an invariant one, analytically.
because the tangency property is unchanged under a pro- - Derive a canonical, intrinsic coordinate sys-
jective transformation. The locality requirement is also tem based invariantly on the properties of the
met, because the tangency means that the first deriva- shape itself, independently of the given coor-
tive dy/dz vanishes. A derivative is a local property and dinate system. By doing so we eliminate all
is independent of the size of the window in which it was the unknown quantities of the original system
calculated. It is also independent of exactly what curve (the viewpoint). To accomplish this: define an
was fitted (as long as the fit is good), because any fit- "auxiliary curve" which osculates the original
ted function can be expanded in a Taylor series with the fitted curve with a known order of contact. The
same first derivatives. canonical system is defined so that in it the os-

For the Euclidean case we used the tangent to obtain culating curve has a particularly simple, prede-
a canonization process that met our requirements of in- termined form.
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- Transform the original fitted curve to this new becomes. This is especially important in our case be-
system. Since the system is canonical, all shape cause of the relatively large number of independent quan-
descriptors defined in it are independent of the tities that we need to obtain, at least in the hardest case
original coordinate system and are therefore in- (the projective correspondenceless case). To maintain
variants. Pick two invariants that are indepen- the accuracy of the fit in a wide window, a higher order
dent of the window size or the order of the fitted curve has to be fitted. This prompts us to use quartic or
curve, and depend only on the shape itself. higher curves, even though a cubic has enough param-

"* Plot one invariant against the other to obtain an in- eters. The increased number of parameters needed for

variant signature curve. This is based on the com- the higher order curves is not a problem because they do

pleteness property discussed above, not all need to be independent; at most ten independent
ones are needed.

"* If an invariant fit is needed, we repeat the previous In practice we have found it convenient to restrict our-
steps, i.e. redo the curve fitting in the new canonical selves to fourth order (quartic) curves although higher
system, and iterate until convergence, orders may be worth investigating. In the sequel we will

In the following sections we describe the above steps deal with the fitted quartic
in more detail. f(z,y) = ao+a l z+a 2y+a 3z

2 + a4zy + a5 y2 (2)

3.1 Curve fitting + a6 z3 + a7 z2y + aszy2 + agyi + alozx

The method described above involves fitting an implicit + ailZ3 Y+- a12Z2e+2l3ZY +I" a1l4 4 = 0
curve to the available data points. To do so we have to with the cubic being the special case in which coefficients
determine parameters such as the order of the curve and 41o, ... a14 Vanish.
the window size. Once the curve order and window size have been cho-

To determine the curve order, we need to know the sen, the fitting itself can be done by standard methods.
minimum number of coefficients needed, or the amount Simple least square fitting is quite ill conditioned be-
of information that needs to be obtained from the image. cause of the relatively large number of unknowns. The
To find invariants, we have to eliminate the information SVD (Singular Value Decomposition) method [Press et
in the image which is specific to the coordinate system. of. 1986] is very successful in overcoming this problem
For example, given a pencil that can move or rotate on and we obtain a quite reliable fit.
a table, the position of the pencil and its orientation We have thus obtained a local algebraic (parameter-
are not invariant but its length is a Euclidean invariant, less) representation for the data. We will now find its
Given the coordinates, say of the ends of the pencil, we invariants (analytically).
can eliminate the position and orientation and calculate
the length. Thus from the four measured coordinates 3.2 Deriving a canonical, intrinsic coordinate
we have eliminated the three Euclidean transformation system
parameters a.nd found one invariant. 3.2.1 Euclidean canonization

Similar arguments apply to other transformations. In First we detail the Euclidean canonization stage. As
the projective case, we want to eliminate eight parame- a convention, we denote the new coordinates after each
ters of the transformation, so the number of coefficients anonization we denote the bars bfte eoih
to be obtained from the image should exceed eight. Since canonization step by •, • and drop the bars before goingwe ned wo idepnden inarints t ech pxel we to the next step, and similarly for other quantities.
we need two independent invariants at each pixel, we The first step is translation, moving the origin to our
need ten independent quantities. A cubic has nine coef-Our pixel , does not necessarily lie on
ficients, but we also have the position of the point on the cutre pit. Obut it is close to it. Thus, we find a point
cubic for a total of ten quantities. Thus it is sufficient t h d curveb is co to it .Ths woifrom purely geometrical considerations to fit a cubic to zo, y• which does lie on the curve, i.e. we solve eq. (3) for
our data. However, other considerations push us towards yo, given z 0 . This is easy to do with Newton's method
aoh er d Hor ver, c erv. cbecause yo is a close initial guess. We now translate
a higher order curve a the origin to z 0 , yo. (We could simplify the solution by

We can see here an advantage over the explicit method first translating so that z 0 = 0 and then solving for yo.)
that requires differentiation of a(t), y(t) with respect to We drop the star from y*. We now transform the curve
the curve parameter t. The elimination argument above coefficients to the new system and obtain new di. This
applies to this unknown parameter, i.e. this parameter is done by expressing the old coordinates in terms of the
has to be eliminated along with the coordinates, so that
the invariants will be independent of it. This increases new, x = sy+x, substituting in eq. (3) and rearranging.

the amount of data that needs to be extracted from the In this new system we have ao = 0 which can be seen by
image, e.g. The orders of the derivatives. In Wilczynski's simply substituting (0,0) in eq. (1).imaet, teeg. The next step is to rotate the coordinates so that the
method, the eighth derivatives of both z and t were z axis is tangent to the curve. It is easy to see that
needed, a total of 18 quantities. This reduced the re- in the rotated system we must have d1 = 0 (because
liability of the invariants. Thus avoiding the parameter df(z, y)/dz = 0). To satisfy this condition we again

from the outset reduces the number of quantities we need

to obtain from the image and improves reliability, express the old coordinates in terms of the new, with

Regarding the window size, we have found (Weiss 1991] the rotation factor u.:

that the wider the window, the more reliable the fitting z = z + ur9 y = i - Uri (3)

792



Now al is transformed to f and f, eq. (1). The first derivative (and the zeroth)
vanish because of the tangency to the z axis. To deter-

ai = a, - nra2 mine the five coefficients ci we need five more derivatives

To make this vanish we have to rotate by the amount to be equal, i.e. up to the sixth one. The condition of
equal derivatives ensures the locality of the treatment

Ur = al/a2 and also its invariance, as discussed earlier.

Since translation and rotation make up the Euclidean To go further, we need to calculate the derivatives
transformations, we have reached a Euclidean canonical d'.y/dzn of the fitted curve. This is done analytically
system. All quantities defined in it are Euclidean in- from f(z, y). To do it we use the fact that all the deriva-
variants. The curvature at xo is now simply the second tives of f vanish, since f vanishes identically (eq. 1). The
derivative, d2 y/dx2 . The arclength is )dzJ since dy = 0. first derivative, for example, is

3.2.2 Eliminating the projective unknowns df _o•f + 4f dy
Of the eight parameters of the general projectivity we dz - Oxz ay d

have already eliminated three by translation and rota-
tion, so our osculating curve should have five coefficients, This is a linear equation for dy/dz. It is superfluous
while passing through the origin and being tangent to the because we have already demanded its vanishing (tan-

z axis. Following [Halphen 1880] we :hoose the "nodal gency). However, each successive differentiation gives

cubic" one linear equation for one higher y(') in terms of lower
derivatives. The calculation is tedious and we used a

fr = Coxs + cJ3 + c2zy2 + C3 z2y + C4y2 + zy = 0 (4) symbolic manipulation program to calculate up to y(s)
This curve intersects itself at the origin so it has two in terms of the ai.

= _,, 0 w hv
tangents there, one lying along the z axis. The other Setting a 2 = 1 and denoting d4 = Lr (0) we have

tangent is called the "projective normal" [Lane 1942]. d2 = -a 3  (6)
Our treatment of the nodal cubic differs from Halphen's
and yields the full range of invariants. (We also had the d3 = -a6 - d 2 a 4  (7)
advantage of a symbolic manipulation program.)

Our goal is now to transform the coordinates so that d4 = -alo - d 2a 7 - d~a5 - d3 a 4  (8)
this nodal cubic takes on the simple coefficient-free form

x3 +y3  xy= 0(5) ds = -d 2a11 - d~as - d3a7 - 2d2d3as - a4d4  (9)Z 3 + I? + ZY= 0 (5)

It is known [Bronshtein 1985] as the folium (leaf) of d6  = -d'a 1 2 - d3aai - d,3a 9 - 2d2das (10)
Descartes (Figure 1). In a nutshell, we obtain it as fol- -d 4 a7 - a4 d5 + (-2d2d4 - d2)a5

Given theý:e derivatives we find the coefficients cý, of
the nodal cubic (4) as follows. We write the nodal cubic
as

6

y(x) =: )Idnx"
n=0

and substitute it in the cubic expression, eq. (3). Col-
lecting terms with the same power n" we obtain five
equations for the five ci in terms of the dn. Their solu-
tion is

c0=-d 2  (11)

- d•(d'# 4 d2)# (-id+2d3 d4 "w-2 )ttad'd:-3da3a+ (12)
Cl= & dvd-,ddsd 4 +~2 d,5,

C2 ds(d do-d~dd)+d2(dsda-ad
2 d.)+Sdzddd-3dA (13)

Figure 1: Osculating nodal cubic (left), folium of d~ds -3ddsd 4 +2dd3

Descartes (right). C3- d(+d14(-)d-d&-2d-)+1sd~d•-,-71
C3= d'd,-3d1.3d4 +2d 2 d ' (14)

lows. We skew the coordinates so that the projective C4=- d!4+d-%(-4d'd*-2d,2)+10dd dý'- (15)
thed' d&-3d'd d*+2d~d-

normal becomes perpendicular to the x axis, thus pro- 2=ds 2 add+2 d

viding a canonical y axis. This eliminates c4. We scale Having found the coefficients ci, we proceed to elim-
the axes to eliminate co, cl, obtaining an affine canonical inate them. First, we orthogonalize the axes, i.e. skew
system with new e2, c3 . These are now affine invariants. the system so that the two nodal tangents become per-
We tilt and slant to eliminate them too, obtaining the pendicular. This will eliminate the C4 term in the nodal
projective canonical system. cubic (4). Our skewing transformation is

We now find the nodal cubic f* using the osculation
condition, i.e. the equality of the first n derivatives of X = i + uy
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with u, = -c 4 being the skewing factor. y remains The only remaining question is how to select functions
unchanged. Substituting the above equation in the cu- of the invariants di which best suit our needs.
bic (4) and rearranging we obtain new coefficients As mentioned before, the condition of locality dictates

that we use derivatives of the curve rather than some
Cl -Coc84 + C3C4 - c2c4 + C1 (16) arbitrary functions of the di. The first six derivatives at
C2 = 3coc2 - 2c3c4 + c2  (17) zo are already determined by the canonization process
e3 = cs-3coc4 (18) (as do,. .. ,d = 0, 0,-1,0,0,1,0). Thus we need the

seventh and eighth derivatives. These can be obtained
We again drop the bars from ci and x. in this particular system similarly to eqs. (6)-(10). With

One advantage of the orthogonalization is that it the above values of d. we have (dropping the bars)
makes it possible to decouple the next transformations,
i.e. the slantings and scalings in the z and y directions. I, = dr = a13 - a7 + 2as (22)
We can now proceed with these transformations in any 12 =d = -a 14 - aol + 2as - a4d7  (23)
order to eliminate the remaining ci.

We next scale the axes with the scaling factors sa, sv: These quantities are our local projective invariants.
In conclusion, we started with a curve fitted to data

z = 4/sf, y = 9/sV (19) points around zo, yo, and after a series of transformations
2/3 1/3 1/3 2/3 of this curve we arrived at local invariants which are

where s, = co Ce , sy = co cl . Substituting this in independent of the fitting details or the point of view.
the orthogonalized cubic we obtain We can repeat the process for other points to obtain an

i + • 93 + C2.t2 + e3j29 + j. = 0 (20) invariant signature. No correspondence is needed.

with 3.4 . Experimental implementation
C2 -, C3 = - The above method was implemented to extract local in-

BY s, variants from a set of real images. Each image was pro-
These quantities are local affine invariants because we ceased to obtain a contour curve for the relevant object,

have reached an affine canonical system. We have used using standard techniques of edge detection and thin-
all possible affine transformations (translation, rotation, ning. We used a window about 50 pixels wide around
skewing, scaling) to eliminate all possible affine trans- each contour point and fitted an implicit curve to it, min-
formation factors and arrive at the above form of the imizing the square distances with SVD. The coefficients
cubic, so the remaining coefficients are uniquely defined of this fitted curve were used to calculate the invariants.
regardless of which system we started with. Figure 2 shows two views of a hanger. Effects of

A projective canonical system is obtained by elimi- perspective distortion can be seen. Figure 3 shows the
nating the last two coefficients using slants, which are hanger under partial occlusion. Figures 4, 5, and 6 show
purely projective, in the z and y directions. To do this, the local invariants for the three hanger images. A good
we drop the bars from the last cubic form (20), and sub- match of the signatures is obtained. A check for a match
stitute z, y in terms of the projective canonical i, 9: is demonstrated in Figure 7. The match is between the

_._ 3 hangers in Figure 4 and Figure 6, where it is partially
= 1 + i + 0143 Y= + +urt + (21) occluded. It can be seen that the occlusion does not

prevent us from obtaining a good signature. We should
with the z- and y-slant factors mention that symmetry helps in getting a full signature

for the hanger. For asymmetric objects only part of the
0: = -ce, Oii = -c2 signature is obtained.

This finally brings us to Descartes' folium, eq. (5). Figure 8 shows a different object, a coat rack, from
This concludes the elimination of the cubic coefficients two different viewpoints. We used the parts of the rack

and brings us to the projective canonical system. This on which coats hang. These parts are somewhat similar
system was defined invariantly by intrinsic properties of in character to the hanger (under projectivity). Accord-
the curve such as the shape of the osculating nodal cubic, ingly, the signature has some similarity to the previous
which is independent of the original coordinate system. one but it is different enough to distinguish the hanger

3.3 Projective invariants from the coat rack.
The invariant signatures are presented (one on top of

We now have an invariant canonical system and affine the other) in Figure 9. The local invariants obtained
invariants, but still no projective invariants. To obtain from the coat rack (Figure 8) are compared with those
them, we transform the original fitted curve f, eq. (1), of the first hanger image (Figure 2). The result of this
to our canonical system. We collect all the transforma- comparison is presented in Figure 10.
tions that were performed during the canonization pro-
cess. We have already translated and rotated f (with 4 Local Invariants With Some
the factors zo, yo, ur); we now perform the rest of the Correspondence
transformations making up the projectivity (with factors
us, or, or,,, as, s) on f. The coefficients of f transform to While the previous process does not require correspon-
new ones di, which are now all invariants because they dence, it leads to fitting rather high order curves, which
represent a fitted curve defined in the invariant system. may be sensitive to noise. This problem is discussed in
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Figure 2: Two view of a hanger.
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[Weiss 1991] and it is shown that one way of'overcoming -0 ,'

-40-4 -3 4

it is to use a wide window. Figure 5: The invariant signature of the second hanger

Another approac~h to increasing robustness is to use iaesome reference features, e.g. points or lines, for which iae

the correspondence is known. For example, a silhouette
of an airplane can contain both curved parts and straight The "parameterless" method described above is per-
lines. We can use this information to eliminate some of fectly suited for this situation, and again leads to a re-
the parameters of the projective or affine transformation; duction in the number of quantities needed from the im-
fewer curve descriptors will be needed for the elimination age and to increased reliability. Here we use a canonical
of the remaining ones. Invariants involving both deriva- method similar to that used in the correspondenceless
tives and reference points were found by Barrett el al. case in order to find local invariants while avoiding the
[1990] and Van Gool et al. [1990]. However, they still curve parameter. This makes the method more robust
use a curve parameter t which also has to be eliminated, as there are fewer unknowns to eliminate. In addition, as
and this reduces the robustness of their method. in the previous case, the canonical frame makes it possi-

ble to obtain an invariant fit using an iterative process,
which should increase the robustness further.The first stage is similar to the previous case: fit a

high order curve over some window around some z0, It
S. and then translate and rotate until the origin is at z0, &t

" ' • • :and the x axis is tangent to the curve. We need a smaller

window than before and a lower order curve because we

S~Again we obtain an auxiliary osculating curve that will

help us find the canonical system. However, we do not
need the nodal cubic; a conic, with three parameters,
will suffice in all cases:

f = c(r, Y/) = Cox 2 + ctty2 + c•ry + y = 0 (24)
The exact process of finding the conic and canonizing

differs in each case. However, the principles of invari-
Figure 3: The hanger under partial occlusion. ance and locality must be maintained. In the following
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Figure 10: The invariant signature of the second object
(the coat rack) presented on top of the signature of the
first object (the hanger). y =

"* A Curve and Two Feature Points:
This case requires only the second derivative to de-
termine the osculating conic, rather than the fourth
as before. We first find the conic that osculates
the fitted curve with second order contact, and
also passes through the two reference points. This
uniquely determines the conic. We then find the line
that passes through the two reference points. This paaboa

brings us to the same situation as before, namely a
conic plus a line, but with two fewer derivatives. Figure 11: On the left, an osculating conic. On the right,

"* A Curve and Two Feature Lines: the canonical conic and point.
This case requires only the second derivative to de-
termine the osculating conic, rather than the fourth
as before. We first find the conic that osculates the (This involves the inverse of the rotation of the curve
fitted curve with second order contact, and is also eq. (3), because points transform with the inverse of the
tangent to the two reference lines. We then find the curve transformation.)
intersection point of the reference lines. This brings The reference (feature) line bo +blx+b2 y is translated
us to the case of a conic plus a point that we dealt and rotated as
with before, but with two fewer derivatives.

"* A Curve, a Point and a Line: 10 = bo + bizo + b2y0 (27)
As before we require that the conic osculate the fit- b, = b, - u,-b2  (28)
ted curve up to second order contact. In addition
we require that the reference line be polar to the ref- b2 = b2 + urbl (29)
erence point w.r.t. the conic. This provides enough
conditions to determine the conic. Achieving this We again drop the bars from all quantities.
brings us again to the situation of a conic plus a
point, to be canonized as before, again with two
fewer derivatives.

In what follows we describe the above processes in
detail, and also give experimental results for some of the
cases.

4.1 Transforming to a Euclidean canonical
system

In all of the above processes the reference points and
lines need to be transformed to the Euclidean canonical
system. For a feature point z1, y, the transformation is

ii = (r, - X0 - .'(7/ - yo))/(i + U2) (25)

il = (y, - It + u'(z1 - zo))/(l + u2) (26) Figure 12: The relation between a polar line and a point.
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Figure 6: The invariant signature of the occluded hanger
image.
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conic. Polarity of a point and a line is an invariant
- . relation. Given a point, we can draw from it two

Figure 7: The invariant signature of the occluded hanger tangents to the conic, creating two points at which
image presented on top of the signature of the unoc- these tangents touch the conic. The line joining
cluded hanger. these two points is the polar line of the given point

w.r.t. the conic (Figure 12).

we will briefly describe the processes for the different The conic is found in the same way as in the previ-
possible cbiefoyndes.ribe Ehe knowesse featu he pointeree ous case, requiring osculation in the fourth deriva-
possible combinations. Each known feature point or line tives. After obtaining the polar point in a Euclidean
reduces the number of derivatives needed by two, be- canonical system, we are in the same situation as in
cause it eliminates two transformation factors. the previous case, having a conic and a point, and

"* A Curve and One Feature Point: we can proceed to find invariants as before.
We draw a line joining the given reference point
z1,y, to the curve point zo,yo (Figure 11). This _0

is obviously a projectively invariant operation. We
use this line as our new y axis. As before we skew f~z ..1 •
the system so this line becomes perpendicular to x. 10 •

We thus obtain an orthogonal system which we can
scale and slant as before. o " • ,,--.-
To do this, we obtain an osculating conic to our
fitted curve f. We need only fourth order contact, -10
rather than sixth as before.
After fitting the conic, our goal will be to transform -20 ,*

to a canonical system in which the conic is a unit .0

parabola z' + y = 0, and the distance between the
curve point and the reference point is unity (right
hand side of Figure 11).

"* A Curve and One Feature Line:
We convert to the previous case by finding the polar Figure 9: The invariant signatures of the coat rack. The
point of the given line with respect to the osculating signatures are presented one on top of the other.
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4.2 A Curve and one feature point 4.3 A curve and one feature line

We first find the first four derivatives of f using eqs. (6)- The conic is found in the same way as in the previous
(10). From these we find the coefficients of the osculating case, requiring osculation in the fourth derivatives. The
conic by the same method we used for the nodal cubic. polar line is found as follows:
The result is Given a point x0 in homogeneous coordinates, we can

co = -d 2  (30) write the coefficients bi of its polar line with respect to
C =a homogeneous conic

Cl = -(d 2d4 -dg)/d_3 (31)

C2 = -d3/d2 (32) C = Cj(Z,)2 + C1(e) 2 + C2Zhp) + ?zh = 0

To orthogonalize the system, we want to obtain 21 = 0. as

This is achieved by skewing (eq. 19) with the skewing b0 = (3) =
factor u, = zl/yl. The orthogonalization changes the IX 1
conic coefficients to b, = = 'cozx + cyz (38)

S0 2 F lxl + +~
el = cl + COU(3 + C2U, (33) b2 = =C I , = 2clyl + c2z4 + z' (39)

Z2 = c2 + 2cou, (34) 8 1x1

We drop the bars from the c,. The reference point coor- (C is first differentiated and then the point coordinates
dinates are now (0, yl). x4 are substituted in the right hand side.) In our case we

For the affine case we only need scaling, eq. (19). know the line bi and the conic C in the above equation,
hIt is easy to obtain a distance of unity between the so we have a set of linear equations for the point x,.

origin and the reference point by scaling the y axis with Solving these equations we obtain
s, = "l/yl. (The sign is taken to be the same as the sign X
of co.) Scaling in the z direction is done by requiring co = I -b1 + c2bo (40)
1, which is achieved by s. = vF-1. Substituting the = - 2 cobo (41)
scaling transformation (19) in the conic (24) we obtain zi = blc 2 - 2cob2 + (4cocl - c2)bo (42)
(dropping bars)

2+a 2 % CGoing back to regular coordinates we have the polar
zX +-y + -zy + p = 0 point in our Euclidean canonical system

The two remaining coefficients, cl/s, and c2 /s., are = /Zl, P1 = iit/Zt

affine invariants. (The conic here is not a unit parabola We are now in the same situation as in the previous
but has these two invariant coefficients.) case, having a conic and a point in a Euclidean canonical

For projective invariants, we first have to slant the system, and we can proceed to find invariants as before.
shape in the z and y directions. (This has to be done
before scaling.) The terms containing cl and c2 are elim- 4.4 A curve and two feature points
inated using the transformation (21) with the z, y slant We need here the formula for the conic coefficients in
factors being a,. = -c2, a,, = -cl. We n eed h er iva for the referents in

As in the affine case we use the reference point for terms of the second derivative and the reference points:

scaling, but now its distance has changed because of the co = -d2 (43)
slant. The new distance is now yP = yl/(1- 7yyl). cO(zlzYl - Z22 2 ) - Yl(z2Y2 - ZlY2) (44)
We want to scale y so that this distance is unity, so cl = 2 - 2 (44)
sB = 1/yP (again with the sign of co). T2Yg2 - zlylY

At this point the conic is reduced to coz 2 + y/s, = 0. -co(z•y? - y2 + yl - Pg2

To obtain a unit parabola and get rid of c0 we scale in C2 = z 2py2 - zy (45)
the z-direction with s, = /.Y.

We have thus obtained the projective canonical sys- where z1 , yp, z 2 , y2 are the reference point coordinates
tem. To obtain the invariants, we have to transform in the Euclidean canonical system.
the original fitted curve f to this system. Again all the Here (43) is the same condition on co as in all previous
transformed ai are invariants, but we need the ones that cases, and (44)-(45) are obtained by substituting the
are local in nature and independent of the fitting details, reference points in the conic (24) and solving for cl and
namely derivatives. Since we have used up the first four C2.

derivatives we need the fifth and sixth (two less than in The affine invariants are calculated from the ci as in
the correspondenceless case). To obtain them we sub- the previous case. The projective invariants are now
stitute in the expressions (6)-(10) the canonical values the third and fourth derivatives, two lower than before.
do,. .. , d4 = 0,0, -1,0,0 and obtain Substituting d2 = -1 in eq. (6) we obtain

/ =-d5 = all-as (35) d3  - -E4+a 4  (46)

12 =-d6  = ag - a1 2 - a4d5  (36) d4= -aio + a? - as - a4ds (47)

These are our local projective invariants. which are our local projective invariants.
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4.5 A curve and two feature lines 1 -

The only new thing here in finding the conic. The tan-
gents to a conic satisfy the equations of the "line conic",
which is the dual of a regular conic. When representing
the conic in matrix notation, the line conic matrix is the
inverse of the point conic matrix. The inverse matrix ..

of (24) is

'10 -C20

C-1 ( 0 2CO
-C2 2co 2- 4coci /

co is determined as before by the second derivative d2 .
The reference lines satisfy the equations bc-1b' = 0,
from which cl and c2 can be found. We obtain the conic -s 0 '10 i 20 2

co = -d 2  (48)
C2= I I• bb2o)/2 +2co(bab~2 , •.,.2•.(b'•"o "I-b' 2  / +2 o b 0 - b~b'l°) (49)

= blbo -2 b(49

0
C1= Of - 2c2bobi + 4cobob 2 + c•b°o (50)

where 1i, Mb are the coefficients of the two reference lines
in the Euclidean canonical system.

10 0 "9xm•.le3••-

10 0

;'W - -0
0 9-5 0 S 10 11 20 2S 30

Figure 15: The affine invariant signatures of the hanger
-10 and the coat rack.

-210 . Experiments

-.0 The images of the hanger and the coat rack were used
to derive local signatures using two feature lines. The

• 0signature obtained from the coat rack image is'presented
-1. ;S o , - in Figure 13. A comparison of the two signatures for the

Figure 13: The invariant signature of the coat rack im- hanger and the coat rack is presented in Figure 14.
age. The curve and two feature lines method was used to

achieve affine invariants for the same objects. The re-
suits of the invariant computation are presented in Fig-

20 • ure 15. A comparison of the invariants of the two objects
• -- m-.1" • ,is shown in Figure 16.

4.6 A curve, a point and a line
0 We require that the conic osculate the fitted curve up

to second order contact. In addition we require that the
..- .reference line be polar to the reference point w.r.t. the

* ;conic. This provides enough conditions to determine the
conic. Achieving this will bring us again to the situation

* .of a conic plus a point, to be canonised as before, again
"0 .with two fewer derivatives.

"" .As before, the osculation condition leads to co = -d2.
Setting z, = 1, the first of the polar equations (37) leads

4." . i s to Vi = bo, and the line coefficients have to be normal-
ised so that this equation is satisfied. This leads to the

Figure 14: The invariant signatures of the images of the suobstitution
hanger and the coat rack presented on top of each other.

b, .- biv I, l 2 .- b2fI/bo
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Abstract these topics are discuissed iii the paper.
This paper describes an oIbject -oriented mjachine vi- 1. InpcinadC tnu sPr ut

*sioai softwiare.%systemj for industrial part inspection and 1 InsproeeontadCniuu rdc
ainaaiifact iring prcs paramieter tinderstanding &,ii mpoemn
mionitoring being developed at the GE Corporate He- The traditional mnodel for induistrial part. qutality
.search .& Dev-elopmnent Center. Kiey concepts in thi assesiineat. involves two steps; in-proCess anid post-
sYstenj have b~een adIaptedI fromj defense-related ini- process or final inspection. Most, inachine vision inl-
age tin(Ierstanding research, including geomietric con- spect ion systemis W~ilt in the past 30 years have been
straint programmning and object-oriented design hi built, along thiese lines. One probilemi wvith validathiig
mnachine vision. We describe the imiplemjentation of a suich systemns is that. flaw occurence rates canl be very
working sse frprtisetofrm -ryias. low an~d hence time practical advantages of uishi anl ail-
We otitliiie some new restilts in the area (If (limjel- tomnatedl syst-emi (repeatability. aeccuracy. speedf) is not
sion (paraineter,) estimiation in the presence of mmaea- readlily realized until after a long validation period.
suiremjent uincertainty uising Ba *yesian techniques to The notion that. part geomietry call b-e uised to help
comiptte part dimnjension distributtions fromt imiage se- guide indutstria~l imiage interpretationi has beeni arotiiid
qutenres. W~e indicate somie newv directions for ouir wvork- for somie time. Early "geomiet ry-drivetii approaches,
which address9 cvntral i~ssues in ajppliclt ion-dri veii comn- at tempt~ed to uise anl actutal copy of thle part itswlf as
piater v-ision, a reference or "golden t~emplat.& [Decker. 1983]. Thle

imnmnediat~e objection is that the specific part tiiay not(
Keywords: object-oriente(I methodology, constraint rep~resent. the ideal dinmensions. Flirt her, a ina~jor prob-
processing. (leformiable temiplates. antomnated 2D lin- lemn is how t~o interpret, differences between thie refe~r-
age analysis. dunal-tise technology ence part. and the part. to be inspected. Them- differ-

ences canl arise fromi irrelevant, variations in iintensjt~v
1 Introduction cauised 1wv illumnination, uniformity or shadows. Eveii

This paper describes anl on-going effort. at, GE ('or- ifther will be uavo(Itiheio part-o-pr cariahe controlich
porat~e Research k Development t~o transfer recent. adl- terwilb nvdaept-oatvrainshc
vances ill mo1del-based vision and object recognition t~o buttii areirreevt troi the qualtitofactthe prt..s Altseiilf.
ildi(st~rial inachimie vision ap~plicat~ions. Iiidiist~rial part, biar revntote talyofhept.Atoig
demsign and manuifacture offers a wealth of oprtn- the part. reference approach hias proven highly mic-

ties t~o add~ress imnamiv of time central iqssues in comiputer csfdiltecs fVS htli or iti ns
vision research iincluding defect. classification problents inspect-ionl [Huiang. 1983, Okainoto 0 al., 1984] it. is
(feat tire enhancemntf- an(I signal processing). part. tol- difficuilt t~o see how to extenid this siniipde approacli
erancing andI measuirement. error analysis (niodelling tot ie inslct tired ofrl niorem conilextroire-iiiigs vsionial.
uising const~rahints with uincert-ainty), object-orientd mnfc ired art it us reitw ant bo iiimgsidri'si or iiq-
design for mnachine vision software (11T standards). tuire defining vrosrgoi ndloinamso i
nitiuti-nniodalit~y iiiiage analysis and fuision. and perfor- part geomietry.
niiance assessineiit. of image analysis algorithmis (i- Ali alt ernative appiroachi that hecanic i upiilar iin
.spectioin/recognit~ion system accutracy) We hiave fo- th 9tsasteiaofungompitrid'lmsii
ctissedl oni two of thiese. themies, geominetric constraint- (C AD) miodels to derive the ntecessary inforimation Ito)
processin cnd I bject-oriented miachinie vision sot- auitomatically prga ital inlspectionl [X*t, (I a/..
ware. and1 are applying theni to buiild anl X-ray- inl- 1991, (Clen andl Nluhlgaonkar. 1991]. I'lhe adv-awat;ge of
spedt ion software system for induistrial parts. We hav-e t his approach is thamt the geoniet my oft lie object lo lie
also liegiini to look at. lpart toleramiciing in filie presence isetdai t oeacsci i'seiidb i
of niieasireineicit error as a step toward iinderst anii~ig (Al) niodel and uised to derive opt iiniiii li~Iithiig anid
imianuifact tire process variability from images. Both of vivwinýr coiifigtirat ionis as wvell as pr'ividt' coiitext for
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the application of iniage analysis processes.r_7
On the other hand. thle ('AD approach lias not yet

beeni broadly successful because imiages resuilt froiti
comiplex phylsical plwnitioeua. such as specular re-
flect ion anid muttual illuininatfioii. A more signifiicant
problem i mitiing (lit' use of' CAL) models is that the ac-
tual manuifactured parts may differ significantly fromt

the idealized niodel. During product dlevelopmnent ait__ _

part design can change rapidly to accommodate the
realities of inanutfact tiring processes and the original
CAD representation can quickly become olbsolete. Fi- _______________

imally. for curved ob~ject~s, thle derivation of tolerance
offset. surfaces is quit~e complex and, at the very least.
requires the solution of' high degree polyiioniial equa- ...

Dutrinig the 1980*s. iiianufact~uring indutst ries at -
templt~ed to introduice p~rocesses for continuous prod-
uct uimprovemient or total quality. The idea be-
hind Ihiis was to achieve increment al imuprovementis Figure 1: G(onmm try Iih iirchy.
in lprodiict design and manmufacture by monitoring
and controlling critical manufacturing process paralin-
eters throuighouti part product ion and to imove away We represent critical part. geonmetr by it coiis-rahitii-
froint the one or two step inispect~ion miodel to inulti~ oe hc sdfndb niileto uigiipc
jpie st~ep (i.e. near coniit~inuis) inspect ion. AlthIough m-one whchisipae. ine consru n ion. These I inidate-defigie

relaivey smpl. secilizd vsio-baed nontorlig relationships providle a flexible structure which caii
devices have beenm siiccessfully demionstrated, these adp omnifctirgpoesvrainswlet
,are, not ofteni cost.-effective soluitions in the long run ade ait. t fain at uinsisig ~ocethe varimati onstwhie at
Mnd rapidly become out-dated as maiiufact~uring piro- tesaeIi nitigo th praycostans
cedlures chaiige. requiiredl for a good quality part. We accoig n odate

Ifi is clear dhat. thme key t~o long termn accep~taince of these part-to-part variat ions by solvinig each titine for
industrial vision svstieni for part quaiaty assessment an instance of the t~emp~late which satisfies all of time
is the nit rodtiction of gene -ric methodologies t hat cal sfpecified constraints. while at tlie same t~i inc aCCOn11
be readfilyf -rgauedt e u imlrpr miodatiiig for thle observed imjage featutres which dehijiu
omietries ridpconrailis e top ewi It bot inheilren at imging lhe actual part. geomiet~rv. The statistics of' incidental

disorions cand palso eopewthy bothatinhrnt. ioaddnis variat ioins can be accumulated over at large nimmilwcr
thseisst~oious wii pare geiometryvariations. tompaddesasa of parts. The resulting pa;raumet~er dist ribuitions cani
Miedisues fo e haeinosdiustra paansecitn taniduaterstasda thiein be used t~o (lefiiie mioriiial ranges of piari geonetry.

niedunifor ndutria jal. ns~etioi auI un~lest nd- Since t lie, template is (designed directlIy froint iilshpct io;n
iiig/nion itoring miamuifact tiring process parameters to- iaetetmlefatir'ae(() .stcf vh1((1
getlier with I U standards as a way to standardize coii pnartgeo.tmetr tepatd fneaet Imsaren dnistort. witonsb.t
cept s aiid software prolocols across appldicationis, and pr emtyai neet laiu itr os
inmaging modalities (current ly x-ray, uilt rasounmd . 0ti-. Our current geonuet ry hierarchy is shown ini ligmie I
cal I). aiid includes 2D/3D points, as wvell as represenltat ions
We have currently reduced our ideas to practice ini for 2D/3D curves and surfaces which are coimimonuly
the forin of an X-ray image analysis svstenii for part UseId iin nmanufactutring and design. A geonmetric de-
inispect ion. This systemi. which is called thie Imiage script ion is built up froiii a set of I riiuuit ive geolmei ric
interpretation Fouuudat~ions (12 F) system is described classes such as pioint, line and conic.
iii detail below. The lpri ' it ives are, imubedded in at topological nmet -

work which defiines various coinnect iou relations Ibv-
2 Geometric Constraint Templates Iweeii the primuitives. For example, a set orfilhe seg-

The fociis in inspect ion awil part iiuouiltoriiig k int ayb joiuuei at. coI1uuuuomm endploiitis to toimi11 au
on tihe geoiiitr ry oh a p~art . Our anmaly .sis is there- p()lypial chain. (General g~eometriic relat ions or (ol

forelarelybase ongeoetr-cen er~l el ieset a staints mnay be deffitied bI t ween Ilie, prinii lives sm-i(i
lion whi-fiwe allte~il~avs.as p~arallel, equidistant. amid tani'iivt vonfiniunity.

whit rapch cal templates.oiesternt o Thme fitter 'oiiilit ion 1.'mstircs t1,1 hat ) t seue giiiiiiis

liiourappoac a euiliatej~rvi~est le 'uitxt or have equal t aujienits at a coiimiu'im minitrs~ct iou sit
"* muoiiitorimig geoineie nieasiiremiemts across It is poussible ;() bulild 1ull tum~itc CoMPmilshx "1ud Iexi4 a

1.) t I nIIcs mmgoels fruni thlese- primiit ives umid rebuti mis.
dies. Except for scalar uuicastires Such as leilgt i ul an1-1 11

"* sliape-based nmaterialI chiaract erizat ittiu gle. each ge-asumgetnc entity i-, represeuitel by a em mifigu-
ration. which Is an alijuus t ransforiumiltm inimatrnix ret-p

"* iioniiuial and variat ioiial part geomnetrY ext ract ioni reseut-iiig thle t raimslat ion. rot ation. amid scalliiug Cr' cii
inumauufactuitrvi p tart tolerancinig). and, the local coordinate frame ( N.VI) ofthle shape 0 to Ihle

inimage fraiie (.r. y). Symibohically. lii I wo-dimietim"ions.
"* iuteiisity sigima I veriticat ion ( flaw analy sis). at configuration has 3i pa ramuet ers. Iticatoion. 'riemit a-
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tioii aild size represented by 2D vectors of variables. Quani.i 19881 and Power Visioni [AMc(oiltell anid Law-
The location of a shape is dlescrib~ed by 1I toti. 1988]. The Im1age tunderstanding Eavironinvieits

U., 1,),r. This location is usuially the ceniter or the (ItrE) Project. ftunded by DAR PA [Munidy di al.. 1992]
origini of the local framie of the primitive shap~e. has also made a miajor'Cont~rilbutijoii to this area.

The orientation of a shape inl the planie is de- The 12 F Systemi is anl image tunderstandinig soft-
scrib~ed by ani angle 0. or by a unit, vector o = ware system designed using object-orintiied mnethIodl-
(0, 'o ) = (COS 0, Sill 0 )T. The latter is used to avoid ology andl imnplemiented using the (-'++ laiiguage aid
trigoniotiiutric fuuictiouis amid use only lpolynoliiial funlc- tile X-t~oolkit.. bIterViews [Liut~on I al., 1988]. Ky
tionis of int-eger powe~rs. features of our systemi include:

The size of a shape like anl ellip~se is represeiitedl
lby a vector havinig 2 scale factors, (kr k.) alonlg the e The use of the subject-view paradigmi for pro-
miajor anld miniior axes (a. b)T. To avoid division of viding tile relat~iouships bet~weeti al object, i.e.
polyuoittials. Itle iniverse of the size is relpresentedl: k t the subject. anul the graphics display or I lie view
(kk)oT = (a-1, b- I)T. of the object.. This approach peruitts the develop-

The description of the primitives anid tile geomet.- ntient. of object. libraries which are miot depenident.
nic relationship betweent primitives is thlieu represemited onl specific display mecltanismins.
ill a uniformi muaimer as a systemi of jpolylilonials ini * Adhierenice t~o h le coticept~s aid format~s delhied
the coiifigura~tion atid cojistraijit. paramieters. We have by the PIK (Programminers Imiaginkg Kerntel) Stanm-
foundl that, this genieric rejpresenita~tioni is adlequat~e for darcl [ANSI, 1990]. It. is exp~ect~ed that, mianyv uni-
mainy applications such as temlplat~e editing, and teii- age accelerator nmaanufact~urers will suipport. the
plate solvinig and allows niew algorithms to be read- PIK standard so that, thme Code developed ini 1'2F
ily' prot~otyp1ed with minimiiial effort. Ini part~icular, will transparently run with increased t~hroughpu t
the use of a unliform polyuiiomiial systemi for the conl- oil a P1K standard accelerator.
straiit~s perinits the (leveloliiment of anl efficient conl- 9Aietuiesto u etr lse hcst~raiint. solver which is dlescribed ini sectioni 4.3. ar An lxtesiel siegte of t im geoif f atre classes which

2.1 Template Variants to facilitate time geomjetric represendat~iou olt image,
Temiplates are (lelhiedl ini terms of a. set. of geomiet.- evenlts.

ric enitities anid a set of Sp~atial, fiunctional, or (lescrip- e New object. concept~s to support geometric colt-
tive ob~jects. Spatial relationlships betweeni geometric straint. irogra~liilinihg. A hierarchy of) geunoiet.n
ob 'ject~s are (lefinied by a constraint (see sectioni 2). p~rimfitives aimd paraimeterizedl tranisloritationis of
Fujittiomal ob 'jects deffine the context. withini which the primnitives is p.rovidled t~o allow the descrip-
geomietry is used iin anl analysis algorithmii. For ex- tioni of curvedl shiapes aiid t~o accomnt. for global
amiple, a chiecker is used for local intensity sigiual geometric relations betweenl hlniinit ives.
analysis where a geoiietric lpriiit~ive (lefilies the imiage
Collt~our/ regioni of interest, extracted fromn the imiage. Over a 2 year period the 12F system has mat tired
(Iurve- a~sed checkers hi tide contour-chiecker (this hinto a collect~ioni of libraries containuing a plroxi iiitat ely
ext~ract~s aii hitiitesit~y signal along a cont~our), amid a 300 classes dedicated to imiage anialysis algorit~hims'.
hiolle-chiecker (this enihanices and extracts the signal display utilities and interactive tools. ( Figure 2). The.
profile alonig low contrast liniear features). These are software is dhividled int~o 2 major library grouips: the
generic image p-ocessiiig represetit~at~ions t hat, are also IU Standards, which cont-ains fund ioiiality like sey-
useful for building flaw-detection algorithmis. (for aii iienitationi, imiage filtering. geometry. topolIogy, that
exaimplle see sectiot -14A). A monitor can be attached are conunon to all (i.e. niot. just. ind~ustrial iimage III-
to a coiifigurat~ioi and( is used to record~ (i.e. inotu- terpret ation) III applicationIs. anld tI, lie 2F SI aiieIa rd s
tor) a cojifigurationi parameter or dimenes-ion over iiill whlich are built. onl top of thle hIII Stiiandartds and( ini-
age se 1uieiices. Descriptive labels canl also be attached chide temiplat~e-specific representations anid funiction-
to geomiietric primnitives, for examuple a hiole to a Itile' ality. As illustrated ini Figure 3, iiidividutal app licit-
prtimitive, a row to a grouip of circles or a cavity to tionis are built onl top of these two library grouips.
a poly oni/face. This providles a higher-level interface
t~o an itv~sis which is imore iii line with thie terminology 4 The FF Inspection System
use.d in inspection. lII this sectioni we discuss I lit, cuitrtilv iiiimiiieita-

tioti of anI hinspctioni syst eni which 1`6ctises oni X-ray
3 Object- Oriented Design in Machine ittage analysis of parts. A flowv chart 4e t1he svslemtts

Vision slmowit iii Figure 4.
'Fhe itiaiti aclvait ages of object-orietied designi are 4.1 Template Creation

flexibility anil code sharing. The definiitioii oh'genieric A typical example Is showni in Figim r 5. 'l'li getieral
(object. classeS4 provide s stait~lar h iiterfaces so that. tiew tentplate creat ioit perocess inivolves Ii rsi specci1*viiig;a set
codle cal hi e quiickly d.evelop)ed awil integrated sitice the of geomiet fri' priiitit ves awl~ I lieui est aid isli ig' I lie re Ia-
iiuiport~aiit. dat~a st rtictuires anid variables are already ini t ioisiips betweeti themi. InI ouir sysvit e I his is ach ieve'l
place. Two miajor vision systemis have already h~eeti using a graphical tetmiplat e editinig tool itilde~mineted
itiilpleiiieutied along (,b~iect.-orieiitedl (esigit principles. usitig interViews [Lhitoni t al.. PON~]. The tool allows
thle C art~ographic Nlolelimmg Eiiviromituetit [hlatisoni amid thle uiser to build a tenmplate cotmposed of a select ioni
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of the 4 types of geometric primitive specified in sec-
Figure 2: Con It" Standards Librarus. tion 1.1 which are related by any of I-le 12 pos.,sible

const-raint types. A "siiap-sliot" view iin the process
of creathig a template is illustratedl ill Figure 5a. The
set, of configuirationis in the template contains a nuim-
her of lines and a tiunber of points. These geonietric
entities (or rather their comnterlparts in thle jetiage) are
stibject~ed to a nmlmber of constrahits. The template
after deforniationj is shown in Figure 51).
4.2 Feature Extraction and Correspon-

dence
InI tile cuirrent imlllenientation leattire ext ract iOn

Application DevelopmointwIilh IF is achieved by either a comiujnationi of morphological
signal enihanicement and segmnentafion [Noble, 1992] or
the Canny edge detect or [Canny, I 9(461. We list, vgeli-
vect~ors of the featutre point scatter miatrix t~o est imiat~e
the paranieters of expel-iiint al geo"metric primitives

i l l ~~dence step) thlen p~erformls local adjustmnent t~o register
the image features with thle t emplate
Our.. phlsph1stoke the local feat ire corre-

spouudeuice -simple and to rely oin a global teu~updati'
L_______________________________________ regist rat ion stepl to place t liet, Ieulila ti in c-lose a ppro x-

iniiation to the image fe-atures. This is donme by rvgis-r~~Y r ~ .. terilig oil olue or more geomuetric leat ures on ~a part
LL...L.J ~that are inivariant to part-to-part variat ions. TIli~sa

features are determiined in anl experimuenut run oil au sel
of good parts using a monfitor temuplatte to deleeruuin III

Figuire 3: (2F (or( .~ofticar( sy-sh( prfortd(.% tht basis~ regist rat ion featutres which do not shuift bet wecul mu-
for (I rarit fy of it nip/alt -ba.std toidustrial appijlii-*eif . ages. TIhe geometric t ranusformiat ion is f'omptltedl for

eachiiew imlageamid apl~lied tot lthe inspect ioni tvnipl~att
prior Ito applyinig thle inspect ion algorit liuii
4.3 Solving Constraints

The objective of the const raiiit solver is to finmd ant
instmaice of thle inispect mon temp 1 late which satisfies all
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of the geometric conistraints defined by the template
and at. the same time. miiiiniizes the inian-square er-
ror betweeni the t~emplate p~rimit~ives anid the imlage
features. The ineani-sqluare error call be expressed as
a conive~x fmnction of the t~empllat~e paramieters and a
geometric descrilptiolI of the image features.

The two goals of finding the global iviiinmum of a
convex funiction, Vf(x) = 0. and satisfyinig thie coma-
strainits. li(x) = 0. ate combinied to give a const~rajiIed
nunimiiizat ion problem. A lintear approximnat~iomm to I his
optimization probl)em is:

72f(X)d = (fx.X1{ Vli(x) dx=-1()
Since tlie two goals canniot inl general be sinult -a-

nleoulsly satisfied. a least-square-error satisfac ion of
Vf(x) = 0 is sought.. The constraint. eqimatiolis are
multiplied by a factor v~c which determines tilie weight
giveii to satisfyinig thme constraintls versums mmiiiiimmizi ug
the cost funiction. Each iteration of (1) hasa in
search that, miiiiniizes the least.-s(juiare-error:

= 7B +~~)I t c III(xWj (2)

which is a merit. funiction similar to t he ob~jectiv-e of'
thme standard penialty mnethodl.

St art ing with y'c = 0, syst em (I ) converges t o t he
unicoust rainied global minimiiium first, and so avoids lo-
ca~l minimiiia anul singularities oil thle coist raiimt smi-
face. This conivergenice is efficient., because thle fit-
ting error f(x) is well approxinmated by a. quadratic.
and~ so tile Hessiani 7' i almost ostit.'imi

the Hessiani 7 2f is, constant, thme best-fit surface is
a himear subsp~ace with zero curvatture atid nio sill-
gimlarity. a lot, simpler thani the constraint( surface.
Not~e that. this app)lroachl is very similar t~o the coni-
st rtmctioni of a Tiklfouov stabilizimig fuiict ional [Bert
ero (I al., 1988]. The convex fitting fmmiictimoi 1(x)

... canl be viewed as a regiularizer Inl tihe solution oh* (Ix.
It. makes thme comst~rahimt, problIemi well-posed by us-

. . ... ing empirical data wheniever additional constraints
are nee(Ied to pill dowmi free variables ini l(x) =0.
Leveniberg and Marquardt. have shown that varyi ug

c I,,, factors of 10 is anl effective mmet hod to force
conver-gence for nionliear syst ems [Nlarquardl.. I11163.
Press t al.. 1!988].
4.4 Part Verification and Flaw Decision-

Making
The out put fromi the constrainit solver is a set of de'-

.. formed lprimijt~ie ich amb used to lurt her reflne
the paranmet er v-allies amid tolerances of t lie iimsp~ct i'ii

Figure 5: Tf miipleih constrchoni atid *solrisg. template. or for flaw (Iecisioni-mnakiiig. Uor exaimi'he,
the parameters derivedI fromi the deforimed pritmit ives
call be coimpared to thle teimlllatle paraimielers to dletect
geometric flaws such as inaccuarat e d rilledi hole diaiime-
t~ers [Noble 0 al., 1992].

Thle adapted inspectioni t enplaht primitives caii
aliso p~rovide the coit~ext for applvkiim specialized alKO-
rit.hims to characterize shape anid int ensit y-based prop-
erties of subt le flaws. lin figuire 6i we ilhtist rate on ex-
ample inl which a checker is associated with each of

805



:1 drilled-holes. In physical termns, flaws can arise if Bo

the drilling process goes wrong and surplus material. ftOud4161
In anl x-ray iniage anl absence of mnaterial appears as WGrm

anl unexplained low intensity region. Automated flaw
inspection involve,, extracting ID flaw signals in the "O~n

dlirection along the hole and classifying the signal by '

comjparingý the flaw profile against. the exp~ected profile Figure 7: Error' modl.
in intervals along Itle signal length. We are currently
iniplenienting a dlat~abase of generic flaw' algorithms of
this kind that. canl be selected t hrough ait ins-pection1
algorithmi editor Iby a user t~o build specialized inspec- aiice) is added wlhen the part is made. After inip,,ing
lion algorit hils for p~art~s wit h different, geomnet ries. In the part, fuirther mneasuremient error is initrodIuced. If
p~ract~ice. a typical part, may have to be checked for we assumle anl additive noise miodel I lieun the jui hinea-
between I andt 20 different flaw types. surement onl the ithI part., xirU can be miodeled by:

5 Toward Continuous Product Ini- I~j= J + ýi + 11 (3
provem-ent

By comiputer vision ap~plied to continuous prod- Here. x' is the true (unknown) dinmesion, i~ is I-ie
nct. imiprovemient we mnean using iniage-based analysis perturbation dues to0 nanufacturing error (toleranice)
techniques to understand mianufacturing prcs vari- and qjj~ is tlie pert urb~ationl due to iiieasiirenieiit vr-
ability (hlow a design part. differs froin a iiianufact ured ror. This is called a irandomi effect model [Box amnd
part.) and to implement. vision systemis for monitoring Tiao, 1973] and provides a statistical iiiodel for pair(
part. inainufa-cthre on-line. To date, our research in tolerancing with mneasuremient error. Not~e also I hat
this area has foctissed on dleveloping techniques; to re- we could go one step further by adding aniot her "p~ro-
liably extract, mia nu fact.u red part, dimensions andl mod- cess" layer to the hierarchical iii figure' 7 and relpreselmt
els fromn imiages in the presence of mneasurenient error. batch-to-batch variations by a third variance compo-
The issue hiere is that. what you mneasure in an imiage mient.
is a. nomninal dimension + nianufact uring toleranmce + However, consider the case of two variance coinpo-
imiaging noise. However. t~o verify daat a part meets nents, whmere our goal is t~o separate oit. the part. toler-
des~ign specs. you neced t~o know t~hat, a p~art. (nimel- alice (process variation) fromn thr mecasuremient error.
sion lies within mianumfacturiný tolerance bounds. Put It. turns out. that. thle solution t~o t his problem for the
anmother way, y.ou canl not. t~ake the estimiates of the cae of a siingle dimiension canl be foinid by Bayesian
paranmeter (list!ibmiions comput~ed fromn the hnagc as variance component. analysis of rantlou effect.' nod-
the paramneter distributions of the part because iniag- els usine, the Gibbs sampling niethod[llast~imgs. 19)70,
ing the part. has introduced somie mteasuremnent. error. Genman and Cteman. 198.1. Clelfand 0i al., 1990, Tant-
(Not~e that. since you are typically dealinmg wvith a 2D ncr. 1991]. The Bavesiami philosophy allows yon 1()
project~ion of a. 3D5 object., a correct~ioniiniay also have iniput. prior knowledge (the "'design" 'dimiiensifin) andI
t~o mnade for poseC variation between imiages. However the data samnples miodify t his t~o reflect minainfach~iriiig
we dlo not. consider this p~roblemn here). So how do v.on vaality Futenatrcvept il
dlist~ingiuish between variability duec t~o manufacturing advantage of this approach is that. it. canl be realized
and variability dIue t~o imaging noise ? Our] approach t~o vpr sipl with an experimental set up whereby sep-
solve this problemi is based oii t lie analysis of variance verye sini sae ae fdfeetsmlso atarate imagest' aren takemal ofhiqe daffrei saiis obriapfrt.
dcrnibiedt~ usnb Byelowecn.usad sbrel figure 8. Finally, anl advanitage inii sing ( ,iblbs samm-

describeri below.pling is that, it. provides a inichlanmisini for est-imnat iig.
5.1 Bayesian Part Tolerancing with Mea- numnerically, a paranieter (list ribut ioni rather than just

surement Error a "best" estimate for t lie nomniial value of a pairaiiie-
Part. tolerancing is generally perceived as the prob- ter. This is dlesirab~le froiii a uiiamiuraturer's perspec-

heni of determining thle varia~tions in dinmeiisions for live as it has been shown that tolerance analysis itsimig
ain object where thle errors originate froni the inammm- p~aramiete~r distribit ions (st~at istical t oheramicinig) leads
factumring p~rocess. On the ot her hand miieasuireniemit to larger allowable tolerance limits on design variables
error anialysis typically refers to the problem of quaim- t han canl be achieved using uppocr/lowe'r limiit anialysis
lfying the variations inii easnremiients due( to the (worst case t oleranciiig) [Michi ael and' Sidde a II. 1981I].

sensing/imiaging prces Although the solid in10(- H~enice. parts cani be ii ade using le's.s precis. (an 11t(1 hu n
ellinig cornimmunity is beginning to mnake progress in I lie chmea per) mna imfactimmnilg 1)roe'sses proided~it t hat Owli
first area [Parkinson. 19)84. Light. aind ( '08sAr-d, 1 982. pm! eabil ity (list ribut ions of' critical parit pa ianii't crs
Tlurner. 1988, hlefqirhia 1983. Hequ ichia and ( 'halii. cami be mionitored.
1986. Flemniig, 19881. and (here has bee.n conside'ralele We have performed preiiniimary expfeiniumm'mms lisilig

wvork iii the latter area ( thIoughi sumrprisinigly iiot so a Gibbs sampler for single dimtension part tole'raiuc'-
iii coimpuiter visin), little, if ammy at tent ion has beeni ing with measuremniit error and have recent ly sI art ('(I
given t~o tackle thme probleni of p~art t olera ucing irithI looking, at varianice ('11Iompieiit ana lvsis for co nst ra int
iiieAsuiremiient.. teniplat es. We caui analyze the case of' a linear con-

Suppose we caii take a number of imeasurenients of st rainit (eg a linear size gradlienmt ) usinmg t lie (vil cbs sa ii-
elach part.. figure 7. Nlaimufactumring error (part toler- plimig solutioii to thle Bay 4sian linear Iiiodlel [Lindley
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template registration signal Vedileti..

dehot

tparameter distribution

Figure 6: Te nplaft- based flaw signal decision-ripaksing.

and Smith. 1972]. The extension to tioulinea~r con,-
straints is iiot. so st-raightfforward alld is the subject. of
our current research. Our ultimate goal is to be aile
to derive a tolerance template froinu sequetices of int-
ages of good parts where toleranices, capture p~roce~ss
varial)ility and to use this to guide part. verification
and flaw dIecisioni-making.

6 Summary
In t~his paper we have Ipreselt-ed an overview of

0 the 12 F System. anl ob~ject-orient~ed imiage analysis be-
ing developed for macline vision induistrial inspect~ioji

0 andI process mionit~oring.,' We have dlescrib~ed aspects

0 0 0 of time systemn design and a soft~ware inspection sy~s-
0 0 tem for detectinq flawrs in parts. WVe have also dIis-

knowN M fiftcussed some preliminary work in the area of part to0l-
ku0 0 MP- eranciný. There are many topics we plh to stdy

further including: multi-scatle feature correspomndence-.
niliariable extensions of varianct- cotuponegil. aital-

vsis for conistrainti t~emplates of parts; algorithmn per-
0 formiance assessment: appllicat ion to ot ht-r inodalil ies.

0 (ultrasound and infra-red imagesý) and part initegrity
L ~verficat~ion for 3D (volumetric) images.

Figure 8: Variancf conopovinit analysis for a siiigh Acknowledgement .s
,~arane hr.The 12F team. namnely Jimt Farley. Vaia-Dmmc Nguyeni

andl Aln-Ttman Trait is respousible for t he developuteni
and imlJkemiet~ation of muany of the ideas des4cribed iii
t~he paper. This work has also I)ent-fited froin hipilu
b~y Bill h1offmian amid Patti NVrnlel. .Jeaii Police matdc
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Abstract recognition in range images [Bhanu, 1984, Bolles et
al., 1987, Grimson and Lozano-Perez, 1987, Ikeuchi

We describe three components of our Vision and Kanade, 1988, Fan, 1990, Kim and Kak, 1991,
Algorithm Compiler for recognizing rigid ob- Stein and Medioni, 19921.
jects in range images: realistic sensor model-
ing, a novel hypothesis-generation algorithm Most model-based vision systems do not utilize re-
and a robust localization method. alistic prior models of the appearance of the ob-
We use sensor modeling to build prior models jects. This affects both efficiency and robustness
of object appearances that account for con- of the recognition algorithm. Without an accurate
straints due to sensor and feature-extraction model of sensor and segmentation characteristics,
algorithm characteristics in addition to model the hypothesis-selection procedure must compensate
geometry. We approach hypothesis genera- for the inaccuracies by loosening the constraints and,
tion as a search for the most likely set of hy- thus, increasing the number of incorrect hypothe-
potheses based on our prior knowledge. The ses that are generated. Our solution is to use sen-
Markov random field (MRF) formalism and sor modeling to build accurate prior models of con-
Highest Confidence First estimation provide straints due to sensor and segmentation characteris-
us with an efficient and effective technique for
performing this search. Our algorithm has tics in addition to model geometry.
shown the ability to recognize objects while A requirement that image features be separated into
limiting the number of hypotheses requiring groups belonging to single objects is a weak point
verification. common to many recognition systems. This group-
Our pose refinement algorithm uses a robust ing operation is not in general possible with a purely
estimator to deal with the problem of abun- data driven segmentation algorithm. Our algorithm
dant outliers from our models in images due does not require that image features are segmented
to occlusion and noise. The algorithm has
been found to be much less sensitive to out- into groups belonging to single objects.
liers than the least squares solution. When unknown objects are present in the image, the

performance of most systems degrades drastically.
1 Introduction A recognition system should not expend precious

resources on unlikely possibilities. Our hypothesis-
generation algorithm is intended to reduce the num-

Recognizing known objects in images is a fundamen- ber of hypotheses requiring verification by accurate
tal problem in computer vision. Much work has selection of hypotheses and optimal ordering of hy-
been done on object recognition in intensity images potheses for verification. We formulate the task of
as well as range images. Several researchers have "optimal" hypothesis selection as a search for the
developed model-based vision systems for object most likely set of matches based on our prior knowl-

"Supported by a National Science Foundation Grad- edge. This is accomplished by integrating observed
uate Fellowship. image features and our prior knowledge (constraints)

tThis research was sponsored by the Avionics Labo- in the formalism of Markov random fields (MRF).
ratory, Wright Research and Development Center, Aero- With the MRF formulation, our search for the most
nautical Systems Division (AFSC), U. S. Air Force, likely hypotheses is phrased as a marimum a poste-
Wright-Patterson AFB, OH 45433-6543 under Contract riori (MAP) estimate of the MRF. The number of
F33615-90-C-1465, Arpa Order No. 7597. The views and verifications is further reduced by ordering the hy-
conclusions contained in this document are those of the potheses in terms of their likelihood based on our
authors and should not be interpreted as representing prior knowledge.
the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency, the U.S. The effects of partial occlusion are not explicitly
Government, or the National Science Foundation.
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modeled by most recognition systems. The assump- Our current system's sensor modality is range data
tion that enough unoccluded features will be visi- and our low-level vision routines supply us with
ble to perform recognition/localization is not always segmented planar surfaces. In our application, a
true. Our localization algorithm explicitly models hypothesis is a match between a planar region R1
the effects of partial occlusion by using an error dis- of the image and model face Mi, and each re-
tribution that is relatively insensitive (compared to gion R1 is described by a vector of feature values
least-squares approaches) to outliers due to occluded f,.i = (f, f,?i,...,Jfi). The features for this sys-
features or noise. tem are specified over 3-D surfaces corresponding

In this paper, we present three components of to planar regions extracted from images. Our first-

our recognition system which take steps to re- order features include region area, maximum second

duce or eliminate the above problems. We present moment, minimum second moment, and maximum

the sensor-modeling approach to generating real- axis length. Second-order features include simulta-

istic constraints for object recognition, an effi- neous visibility, relative orientation, and maximum

cient hypothesis-generation algorithm, and a robust distance between surfaces.

method for localizing hypothesized models in range The constraints used by our hypothesis generation
images. Sensor modeling, hypothesis generation uti- algorithm are in the form of probability distribu-
lizing MRFs, and localization are key elements of our tions of the appearance of model faces represented
Vision Algorithm Compiler (VAC) for object recog- by conditional distributions P(ffIMj). The sam-
nition [Wheeler and Ikeuchi, 1992]. Our current ple range images are generated using an appearance
system is designed to recognize polyhedral models simulator developed by [Fujiwara et al., 1991]. We
in range images. There are three distinct compo- can use these sample segmented images to compute
nents of our VAC system: user-defined modules, the a prior distribution P(flIMj) for each feature and
compiler, and the executable recognition program. each model face Mj. The prior distributions are ap-
The user-defined modules consist of object models, proximated by generating many sample images (320
sensor models, image processing and segmentation images) of our object models and segmenting the
modules, and the feature modules. The VAC uses images using our low-level vision routines. The sim-
the user-defined modules and sensor modeling to ulated images are segmented and the features of each
generate the recognition program for the specified image region are calculated. Figure 1 shows an ex-
models and sensors. The compiled prior models are ample iteration of this process. In this work, the
integrated with the hypothesis-generation and local- viewing directions are "uniformly" distributed on
ization algorithms to form the executable recogni- the unit sphere; however, it would be easy to modify
tion program. the distribution to reflect real world constraints and

In section 2, we describe the sensor-modeling process biases for particular objects (i.e., the bottom of a

for generating realistic prior models of the object's stapler is rarely visible).

appearance. We present our MRF formulation for Since this is a simulation, we know the correspon-
hypothesis generation in Section 3. Section 4 de- dence between the model surfaces and the segmented
scribes our robust localization algorithm. In sec- regions. Thus, we can build a list of the sampled
tion 5, we present some results from recognition and feature values for each model surface. The feature
localization experiments. Section 6 summarizes the values for each model face are tabulated and used
advantages of our methods. to formn the prior distribution. Figure 2 shows a

sample distribution of a model face's area value as
computed using our sensor model. The simulated

2 Sensor Modeling distributions are not normally distributed, and they
are biased due to inherent characteristics of the seg-

The constraints used by the hypothesis-generation mentation algorithm. Additional bias occurb from
self occlusion when viewing some object from cer-process of most model-based vision systems are

based solely on the geometric models of the objects tain directions. There are secondary modes corre-

and do not account for sensor or feature-extraction sponding to oversegmentations, whert, a single ob-

characteristics. Without an accurate model of sensor ject surface is segmented into multiple regions. The

and segmentation characteristics, the hypothesis- sensor-modeling approach builds utaodels of the in-

selection procedure must compensate for the inac- formation that the recognition algorithm will actu-

curacies by loosening the constraints and, thus, in- ally have available when viewing a known object.

creasing the number of incorrect hypotheses that are This information is dependent on the imaging pro-

generated. Our solution is to use sensor modeling cess and segmentation algorithm, in addition to the

to build accurate prior models of constraints due known geometric characteristics of the model. An

to sensor and segmentation characteristics in addi- additional benefit of t his approach is that model sur-

tion to model geometry. The inclusion of imaging faces that are, because of geometric properties of the

and processing effects is the essential difference be- object, not detectable by the segmentation program

tween our prior models and the view-variation dis- will not affect the hypothesis generation.
tributions used by [Burns and Riseman, 1992].
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Figure 1: Generation of feature distributions. An object model and viewing direction are selected. The
simulator is used to produce a range image of the object which is then segmented into regions which are
used to compute the feature distributions.

3 Hypothesis Generation

Given a set of primitive features (i.e., planar sur-

faces or regions) extracted from the input image by
a feature-extraction algorithm (i.e., segmentation or
edge detection), the hypothesis generation proce-
dure produces a set of possible model primitive to
image primitive matches (hence referred to simply
as hypotheses). Optimally, the generated hypothe-
ses include all of the correct correspondences and

urnlaftie •Poa Acta exclude as many incorrect hypotheses as possible.
Diitributn To exclude incorrect matches, we must apply con-
DD*tlon straints derived from our prior knowledge.

We are considering many hypotheses simultaneously
and wish to choose the most likely subset of these.
We can think of the hypotheses as forming a random
field of variables each of which can be assigned a
discrete value of on or off. A hypothesis labeled

Re•u of on indicates that the hypothesis is assumed to be
ovelnentatin correct.

The hypotheses display Markovian characteristics.
_ For example, if two hypotheses provide mutual sup-

0 0 2000A port for each other, and one of them is correct, it is
4000 6000 more likely that the other is correct. A similar de-

Apt" AMpendency exists between contradicting hypotheses.
(a) MOdM Sude These dependencies can be thought of in terms of

Figure 2: An example distribution of a given fea- conditionally dependent probability distributions.

ture value (area) over a model face. The distribu-
tion was generated by sampling resulting area values 3.1 Formulation of Hypothesis
from synthetic images of views of the object. A nor- Generation using Markov
mal distribution centered around the actual model Random Fields
area value is shown to demonstrate the difference be-
tween the usual assumption of performance and the MRFs are used to represent the probability distribu-
actual performance of the segmentation program. tion of values, wi, of a set of random variables, Xi,

each of which may be conditionally dependent on a
set of neighbor variables. Given a set of independent
observations, Oi, the most likely state of the MRF
variables can be found by minimizing its posterior
energy function

U(WJO) - E v,(w) - T J"log P(O0i~w,) (1)
cEC i

where C is the set of cliques of related (neighbor)
variables in the MRF. The posterior distribution is
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in terms of things we may be able to calculate or O " "F"
specify: clique potentials V1(w) (represent higher- 10
order, prior constraints among related variables) and -
prior distributions for our observations P(Oilwi).

By representing our hypothesis space using a MRF, OF OFF

we can formulate the search for the most likely hy- 4.0 0.0 4.0 5.0 -1.0 0.0 0.0

potheses as a maximum a posteriori (MAP) estimate
of the MRF. For a review of MRFs and their ap- Figure 3: Clique potentials for the six possible con-
plications to computer vision, we refer the reader figurations of hypothesis labels and neighbor types
the descriptions found in [Chou and Brown, 1990, in 2-cliques and the two possible 1-cliques.
Cooper, 1989].

We phrase our search for the most likely hypotheses The above rules essentially state
as a MAP estimation problem by defining our con- that hypotheses corresponding to the same region
straints in terms of clique potentials and likelihoods are contradictory-we would like one hypothesis per
in the MRF framework. With this formulation, we region. The rule that determines the N+ neighbor-
can apply a MAP estimation procedure to our MRF hood is:
with the result being the set of hypotheses with the
highest probability of occurring based on our prior (modeR(M, ) = model(M,)) (
knowledge. Each variable in the MRF represents a consistent((Ri, M.), (Rj, M)) (
match hypothesis, (Ri, Mj), between region R, and ((R.,M.),(R, M.)) EN
model face Mj. The variables can be labeled either
on or off indicating our belief or disbelief in the hy- where modei(Mm) is the model in the model base
pothesis. to which the face Mm belongs, and consistent() de-

termines whether the two hypotheses are spatially
The ith region is described by a vector of feature and geometrically consistent based on the relational
values f,.i = (fJ,,, f,-, If). For computational rea- features. This rule specifies that if two hypotheses
sons, we assume that these features are independent are consistent with respect to our prior constraints
for a given model face. If the features are not in- then they provide mutual support for each other.
dependent, then we have redundant features which
are not providing new information and should be If it is possible to group regions into sets belong-
removed. The independence assumption gives us: ing to the same object, a neighborhood specification

log P(jri JMj) =Elog P(fri IMj). (2) rule can easily be added to enforce the required con-
() straints. We do not use this constraint since we do

n not assume that grouping regions belonging to the
We need to determine the likelihood that an image same object is possible from a purely data-driven
region, R1, arose from the presence of a model face, approach to segmentation.
Mj, in the scene. This is the probability of observing
R, assuming that the match hypothesis (R, Mj) is For efficiency concerns, we limit our energy func-
correct. We model this using a prior distribution. In tion to 1-cliques and 2-cliques. The clique poten-
terms of our label set, we equate tials (corresponding to V,(w) in equation 1) used

P(RI(R,,M,) = ON) = P(RIM,) = P(.,IM,), (3) in our experiments appear in Figure 3. For exam-
and we can easily calculate it with equation 2. To pie, the first clique in the figure shows that when
calculate the likelihood that a hypothesis (R., M.) the hypothesis is on and a consistent (N+) neigh-
is incorrect, we equate this to the likelihood that h: bor hypothesis is on, -5.0 is the potential of that
actually arose from any of the other model faces: 2-clique. The potentials were determined experi-
P(RI(R,, M,) = OFF) = E P(RIMk) =E P(flMk). mentally to conform with our sense of consistency

I PkiIo k. and mutual support among hypotheses; of course, a
(4) systematic method would be preferred. We are able

to compute distributions over relations between re-
Equations 3 and 4 provide us with the prior prob- gions, but at this point have not integrated these
abilities of the observations P(Oilwi) required for distributions into our formulation. Instead, we gen-
the posterior energy function of Equation 1. Next, erate thresholds from these distributions to compute
we need to specify the clique potentials which first the relation consistento.
requires a definition of the neighborhoods of the hy- We can now construct a MRF and search for thepotheses (variables).WeannwontutaMFndsrcfrth

most likely hypotheses. To help the reader visualize
The two neighborhoods over the hypotheses are N+ a typical resulting MRF, a very simple example is
for supporting hypotheses and N- for contradictory shown in figure 4. This is an example MRF con-
hypotheses. The rule that determines the N- neigh- structed for a model base containing two similar ge-
borhood is: ometric models and an image of the first model. In

VR,,Mm, M. # Mm ((R,,Mm),(R,,Mn))E N- this case, a hypothesis is generated for all pairs of
(5) regions R, and model faces Mi that have nonzero
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MRF NegbodioodTypeb•tween Hypouve the first variable and its neighbor variables are recal-

9 I ,9. R2 P,.9.3 culated, and the heap is adjusted. The use of confi-
, , 1 R1,.1 dence values essentially forces the algorithm to start

with variables where a value is "most obvious" or has
S:- the least competition among possible values. The

,n,.Mo2 F', LL• m1 behavior of the HCF search for the most likely set
I 'of hypotheses is very similar to the idea of the "focus

con(s)iste feature" method of [Bolles e al., 1987]. When there
are obvious matches available, the HCF search dives

M.),Iastnt in by turning on the most obvious match first. This
creates a ripple effect for matches consistent with

Figure 4: An example MRF produced from a sim- obvious matches. Given a MRF with N variables,
pie scene containing two regions with a model base the HCF algorithm takes O(N log N) to initially cre-

containing a tetrahedron. ate the heap and O(log N) to adjust the heap after
modifying a variable's value, assuming the size o€
the neighborhoods is constant. In practice, [Chou

conditional probabilities P(RIMi). The neighbor- and Brown, 1990] found that the variables are mod-

hood relation of these hypotheses is simply that hy- ified slightly more than once on average (consistent

potheses for the same region are inconsistent, and with our experience in this application) giving an

hypotheses for the same model are consistent. O(N log N) performance.

After HCF estimation is completed, the hypotheses

3.2 Highest Confidence First Search labeled on are considered for verification. From the
results of HCF, we can create a list of consistent

At run time, the recognition program segments the cliques (of order 3 and lower) of matches using the

image and computes the first-order features over all active hypotheses and their neighbor relations. The

regions and relational features over all pairs of re- verification phase must determine which of these hy-

gions. The segmentation algorithm used here is the potheses describe objects that are in the scene.

same as used in the sensor modeling phase. The A successful verification of a hypothesis elimi-
segmented regions are used to build our MRF, which nates other competing hypotheses from considera-
represents our hypotheses and prior constraints. Us- tion. Therefore, a good ordering of 'the hypotheses
ing equations 2 and 4, we first compute the log- for verification can reduce the number of hypothe-
likelihoods of the observation of Ri, given that hy- ses requiring verification. Traditionally, hypothe-
pothesis (R,, Mm) is correct, logP(RJi(R,, Mm) = ses are ordered based on the saliency (discrimina-
ON), and incorrect, logP(RiI(R1,Mm) = OFF). tion ability) or size of the image features. These
When computing P(.fiIM,,m), we use a lower bound heuristics have proven useful for hypothesis order-
of the probability to cut off the computation and ing; however, to minimize verifications, we want to
essentially throw away highly unlikely hypotheses. first verify the most likely hypotheses-not neces-
This lower bound is chosen such that reasonable hy- sarily those with the most salient or largest image
potheses are not thrown away and seems to have features. We order the hypothesis cliques by the
very little effect on the final results, while reducing average of the likelihood ratios, P(RPI(Ri,M^) =
the size of the MRF considerably. With the thresh- ON)/P(RiI(R,,Mj) = OFF) (see section 3.1), of
olded hypotheses, we then determine the neighbor- their constituent match hypotheses-checking the
hood systems N+ and N- using the rules specified most likely first. Thus, our hypothesis-generation
in Equation 6 and 5. method is "optimal" in terms of ordering for verifi-

Once the MRF is created, we wish to find the cation with respect to our prior knowledge.

most likely set of hypotheses based on the con-
straints of the image. We use an estimation proce- 4 Localization
dure called Highest Confidence First (HCF) devel-
oped by [Chou and Brown, 1990]. HCF is a sub- Several factors exacerbate the localization prob-
optimal estimation procedure but was chosen be- lem: we may not have enough constraints from our
cause of its efficiency and evidence of good perfor- matches to determine the location of the model ac-
mance in other applications [Chou and Brown, 1990, curately, inaccuracies in our region data due to noise
Cooper, 1989]. HCF performs a steepest-descent and partial occlusion will lead to errors in location
search in an augmented state space. The MRF vari- estimates, and our objects may vary slightly from
ables are placed in a heap ordered by the confidence the models causing errors in alignment along edges
in the variable's current value. The confidence is de- and surfaces. Using primitive matches alone, we
fined as the energy difference between the current are able to get crude estimates of rigid transforma-
and best value. The variable at the top of the heap tion parameters. Thus, localization based on our
has its value changed to the best possible (in the matches is assumed to be inaccurate but can serve
current state of the MRF). The confidence values of as a good starting point for a local search for the
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4., P(.1 .b. -Log P(.) In this work, we use a Lorentzian distribution

P() 10 ,or I+1 !_)2

to perform the MAP estimate of our model param-
eters. The Lorentzian is; similar in shape to the

Wc, dC-Log P(z,)/ dt (d)• 1 Z d (-Log1P(,,,,/dZ Gaussian distribution, but the tail of the distribu-
tion is much larger indicating that outliers are as-
sumed to occur with a higher (relative) probability
than in the Gaussian noise model. Figure 5 com-
pares the (unnormalized) Gaussian distribution with
the Lorentzian distribution. The important graph
is Figure 5(d) which shows the weighting (relative

Figure 5: Comparison of Gaussian and Lorentzian to magnitude) of the error vectors under the Gaus-

distributions and their effect on outliers. The sian and Lorentzian distributions. The effect of the

Lorentzian is in bold. (a) Gaussian and Lorentzian Lorentzian is to eventually give zero weight to the

distributions, (b) p(z) of the Gaussian and true outliers hence improving the estimation of pa-

Lorentzian distributions, (c) the derivative of p(z) rameters. It is thus, in some sense, providing robust

which is the magnitude of the "force" corresponding estimate of parameters.

to the data error, (d) the weight of the error vector The goal is to improve our model parameter estimate
as a function of the error magnitude for Gaussian using the range data of our image. We define q to
and Lorentzian distributions, be the the vector of model parameters (rigid body

translation and rotation parameters). Using

p) = ZlogP( ))),
best set of model parameters. A(•)= log(- + (7)

We can define a parameterized template to model we can find the MAP estimate of P(q) =l' P(,)
our object and specify an energy function over the by minimizing the energy function
model parameters which relates how closely the
model matches the image data. Then, we can per- E(q) Pz(q))
form a search over the parameter space to find the o(
best parameters by minimizing the energy func- iEV(q)

tion. Since we are dealing with 3-D images, we de- where V(q) is the set of visible model points for the
fine the template of a model to be a set of points given model parameters q, zi(q) is the error of the
sampled from the surface of the model. Our con- ith model point given the model parameters q, and er
straint on the templates is that visible points on the is the normalizing factor for the Lorentzian function
model surface match range data points in the image. which specifies the width of the distribution.
The template of a rigid model is parameterized by
rigid-body transformation parameters (rotation and We define the error to be the distance between the
translation). model point and the data point nearest the model

We assume that parts of the object surfaces are of- point:
ten occluded. Occlusion can be due to self-occlusion, = m q(

nearby objects in the scene, and even sensor shad- where D is the set of three dimensional data points
ows (visible portions of the scene which don't receive wher e D is the sonl data oints
light from the light-striper in a light-stripe range ith model point transformed using the model param-
finders). Occluded points are considered to be out- eters q. The calculation of the nearest data point dis
liers as are noisy points due to illumination irreg- optimized by using a k-dimensional nearest-neighbor
ularities and sensor error. If outliers are likely, a search [Friedman et al., 19771.
least-squared-error estimation procedure is not de-
sirable since the estimated parameters will be af- We use aspect information computed offline to define
fected more by noise than the actual data. The an efficient approximation of V(q) for determining
shape of the error distribution determines how likely the visibility of each point. With the definition of
outliers are assumed to occur. Least-squares esti- the energy E, we utilize a form of gradient-descent
mates are very sensitive to outliers since all errors search to minimize the energy. In order to reduce
are equally weighted proportional to their magni- the effect of discontinuities in E produced from us-
tude. Instead, we would like an estimation proce- ing sampled aspects to determine model point visi-
dure which throws out (or gives low weight to) the bility, we perform all gradient-descent line searches
true outliers. This simply corresponds to a MAP utilizing the same set of visible points for the en-
estimate using a distribution where large errors are tire line search. Thus, the energy function is kept
more likely than in a normal distribution, smooth throughout the line search.
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Figure 7: Comparison of the results of the least-
squares formulation and the robust. formulation of
the error distribution on three localization problems:
initial model location (top), final localized model lo-Regions Possible Selected Verified Result cation using least-squares (left), and final localized

Hypotheses Cliques Cliques model location using robust formulation (right).
16 2672 48 14 penbox

note-disp
stapler

im- while limiting the size of the search. It. also showsFigure 6: Example recognition results: intensity i- that our method can function in spite of slight par-

age (left), segmented regions (middle), wire frame tiat occlusions and segmentation "errors" (see the

overlay of models (right). The table lists the number stapler(.

of hypotheses generated and verified for each itera- stapler).

tion of the algorithm using the specified occlusion We performed a test on an image containing no
parameter for computing the log-likelihoods, known models. The algorithm greedily selected 107

hypothesis cliques that it thought were likely enough
to justify verifying out of an absolute worst case of

5 Recognition Re 3ults and ; 23383. In the case of no known models in an
image, each verification fails, which means that allExperiments hypothesis cliques generated by the hypothesis gen-

eration phase must be verified. "Greedy" hypoth-
To evaluate the performance of our hypothesis- esis generation is a beneficial attribute because al-
generation algorithm, we are interested in the num- most every scene will most likely contain unknown
ber of hypotheses requiring verification since the ver- objects, and the performance of the system will de-
ification stage requires localization which is the ex- grade quickly if the system attempts to verify every
pensive component of our algorithm. Experiments possibility. For all of the images tested, model sym-
were conducted using a model-base of 8 polyhedral metry is the major source of unnecessary hypothesis
objects including a stapler, hole-cube, rolodex, cas- verification.
tie, tape dispenser, stick, note dispenser, and pencil We performed tests to compare the performance of
box. our localization algorithm using both the Gaussian
On tested images containing known models, the cor- and Lorentzian distributions. Figure 7 compares
rect hypotheses were consistently high in the list of their solutions for an example localization task. The
selected hypotheses ordered for verification. When least-squares solution is noticeably occlusion sensi-
this occurs, the number of hypotheses verified is tive while the results using the Lorentzian distribu-
greatly reduced. After the known objects are recog- tion are relatively insensitive to occlusion. In ex-
nized, all that is left are hypotheses for regions that periments, we have found that, the initial (rough)
do not correspond to known objects. Unfortunately, location estimates can be perturbed by a few cm in
we must verify all of the hypotheses generated for translation and around 20 degrees in rotation with-
these regions since the verification will not succeed. out affecting the resulting solution.

Figure 6 shows the recognition results of our algo- Our prototype recognition program was imple-
rithin on a sample image. This example is typical Inented in Common Lisp for a Sun i1 workstation.
of other tests and demonstrates the ability of our The approximate execution time was 2 minutes for
hypothesis generation to select accurate hypotheses the segmentation. 2-5 ninutes for building t lIh, IF.
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and 2-5 seconds to perform HCF and order the hy- [Bolles et al., 1987] Robert C. Bolles, Patrice Horaud,
potheses for verification. The prototype of the local- and Marsha Jo Hannah. 3DPO: A three-dimensional
ization procedure takes approximately 1-3 minutes part orientation system. In Martin A. Fischler and Os-
per localization. We have not concentrated on mak- car Firschein, editors, Readings in Computer Vision:
ing the implementation efficient. Instead, we have Issues, Problems, Principles, and Paradigms, pagesing he ipleentaion355-359. Morgan Kaufmann, 1987.
opted for fast a development environment in which

to test our ideas. [Burns and Riseman, 19921 J. Brian Burns and Ed-
ward M. Riseman. Matching complex images to mul-
tiple 3d objects using view description networks. In

6 Conclusions Proceedings of Computer Vision and Pattern Recogni-
tion, pages 328-334. IEEE, 1992.

We have introduced the use of sensor modeling for [Chou and Brown, 1990] Paul B. Chou and Christo-
hypothesis generation for object recognition. The pher M. Brown. The theory and practice of Bayesian
sensor-modeling approach has the following advan- image labeling. International Journal of Computer
tages: Vision, 4:185-210, 1990.

[Cooper, 1989] Paul Cooper. Parallel Object Recogni-
"* it provides realistic (accurate) constraints for tion from Structure (The Tinkertoy Project). PhD

"optimal" hypothesis generation by explicitly thesis, Department of Computer Science, University
modeling the effects of the sensor, the seg- of Rochester, 1989. Technical Report 301.
mentation algorithm, the geometry of the ob- [Fan, 1990] Ting-Jun Fan. Describing and Recogniz-
jects (including self-occlusion), and feature de- ing 3-D Objects Using Surface Properties. Springer-
tectability, Verlag, New York, 1990.

"* it can be used to model the effect of partial [Friedman et al., 1977] J.H. Friedman, J.L. Bentley, and
occlusion through simulation, R.A. Finkel. An algorithm for finding best matches

"in logarithmic expected time. ACM Transactions on* it builds prior models that are robust with re- Mathematical Software, 3(3):209-226, 1977.

spect to segmentation capabilities, and
[Fujiwara et al., 1991] Yoshimasa Fujiwara, Shree Na-

"* real world constraints about likely viewing di- yar, and Katsushi Ikeuchi. Appearance simulator for
rections for particular objects can be utilized by computer vision research. Technical Report CMU-RI-
the sensor-modeling approach to improve the TR-91-16, Carnegie Mellon University, 1991.
hypothesis generation performance. [Grimson and Lozano-Perez, 1987] W. Eric L. Grimson

and Tomas Lozano-Perez. Localizing overlappingThe MRF formalism combined with sensor modeling parts by searching the interpretation tree. IEEE
provides a framework for "optimal" hypothesis gen- Transactions on Pattern Analysis and Machine Intel-
eration with respect to the prior knowledge from our ligence, 9(4):469-482, 1987.
sensor model. HCF estimation provides an efficient [Ikeuchi and Kanade, 1988] Katsushi Ikeuchi and Takeo
and effective method of performing the estimation Kanade. Automatic generation of object recognition
over our MRF. Our algorithm does not require that programs. Proceedings of IEEE Special Issue on Corn-
image features are grouped into sets belonging to puter Vision, 76:1016-1035, 1988.
single objects. In experiments, our hypothesis gen- [Kass et al., 1987] Michael Kass, Andrew Witkin, and
eration algorithm has demonstrated the ability to re- Demetri Terzopoulos. Snakes: Active contour models.
duce the number of hypotheses requiring verification International Journal of Computer Vision, 2(1):322-
by accurately selecting hypotheses and "optimally" 331, 1987.
ordering the hypotheses for verification. [Kim and Kak, 1991] Whoi-Yul Kim and Avinash C.

Our localization algorithm is driven by the range Kak. 3-d object recognition using bipartite match-
data and does not reiv on matches between high- ing embedded in discrete relaxation. IEEE Transac-
level image features and model features. The pose tions on Pattern Analysis and Machine Intelligence,

estimate is refined through energy minimization in a 13(3):224-251, 1991.

manner similar to deformable templates, active con- [Stein and Medioni, 19921 Fridtjof Stein and Gerard
tours, and snakes [Kass et al., 1987]. The novelty Medioni. Structural indexing: Efficient 3-d object
of our algorithm is the use of a robust estimator for recognition. IEEE Transactions on Pattern Analysis
the energy function being minimized. The robust and Machine Intelligence, 14(2):125-145, 1992.

estimator is insensitive (relative to least-squares ap- [Wheeler and Ikeuchi, 1992] Mark D. Wheeler and Kat-
proaches) to outliers occurring due to partial occlu- sushi Ikeuchi. Towards a vision algorithm compiler for
sion of the object as well as other effects of compli- recognition of partially occluded 3-d objects. Tecbni-
cated scenes. cal Report CMU-CS-92-185, Carnegie Mellon Univer-

sity, 1992.
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Quasi-Invariants: Theory and Exploitation
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Abstract use in evidential inference. For a minority of
cases, quasi-invariant observables give bad es-
timates of corresponding body measurements;

Geometric invariants and quasi-invariants have those quasi-invariants generate false hypothe-
become effective methods for real vision prob- ses that are rejected by a verification phase, in

lems. Quasi-invariants extend invariants to most cases at low cost. This hypothesis gen-

widespread occurrence in computer vision. eration and verification mechanism depends on

This paper presents analytic results for quasi- making some accurate measurements and some

invariants and practical methods for their ue. accurate hypotheses; the mechanism tolerates

The mathematical definition of quasi-invariants local errors. Computational complexity can be

has been used for more than 20 years. We in- low. Limited completeness results are shown.

troduce a number of quasi-invariants and prove
their quasi-invariance. We compare the taxon-
omy of invariants with that of quasi-invariants. 1" INTRODUCTION
Several common quasi-invariants are nearly in-
variant.
The intent in using quasi-invariants is make Geometric quasi-invariants are one of the oldest
approximate measurements of a class of Eu- threads in computer vision, dating to the late 1960s.
clidean invariants, 3-space shape parameters. Binford introduced them to extend geometric invari-
We discuss examples of the use of invariants ants in shape perception. The intent and use of quasi-
and quasi-invariants in computer vision, in invariants is somewhat different from that of invariants.
grouping and hypothesis generation for recogni- Geometric invariants have become a major topic in
tion. Generalized cylinders (GCs) express pow- computer vision, beginning about 1980. Invariants have
erful quasi-invariants for grouping image fea- a long tradition in mathematics; many of the classic
tures that define a mechanism for discrimina- results in algebraic invariants date from the last cen-
tion of GC parts, figure-ground discrimination. tury. Invariants have potential advantage in computa-
Quasi-invariants permit estimates of shapes of tional complexity over view-sensitive methods, e.g. as-
GC parts and objects formed of GC parts that pect graphs. Invariants enable view-insensitive classifi-
enable generation of hypotheses that are ver- cation of objects. Aspect graph methods have very high
ified by globally coherent interpretation by a computational complexity. Both aspect graphs and in-
Bayes net for evidential inference, variants accomodate very little variability in object class.
Quasi-invariants are inexact; a quantitative Invariants computed on one view of an object can be
probabilistic interpretation enables efficient use used as a key to index into a structured database of
of quasi-invariants in recognition in a paradigm object models. A number of important invariants can
of hypothesis generation and verification. For be measured well from experimental image data. Where
a majority of cases, quasi-invariant observables they exist, invariants have great utility. In many cases,
are approximations to corresponding body there are no invariants available. Invariants are known
measurements in space; those quasi-invariants for special cases: e.g. 4 or more points on a line; 5 or
generate accurate hypotheses. Distributions of more points in the plane; algebraic curves in the plane;
deviations are known or can be derived for algebraic surfaces in 3-space; multiple views of objects.

There are known to be no invariants for single views of
"OThis research .vw supported in part by a contract general 3d point sets.

from the Air Force, 6,10602-92-C-0105 through RADC from Invariants are valuable in important special cases.
DARPA SISTO, "Mor' based Recognition of Objects in Their limitations are: 1. There are no invariants for
Complex Scenes: Spatial Organisation and Hypothesis many important cases; invariants are relatively few in
Generation".
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practical vision. 2. Invariants are useful for individual to more vision problems, e.g. figure-ground discrimina-
objects identical to models in the database; they do not tion and hypothesis generation in real, complex vision
tolerate variation, e.g. stores on aircraft or open tank problems. E.g., for five points in a plane there are two
hatch, i.e. articulation. 3. Current use of invariants is invariants. There are no invariants for 3 or 4 points in
computationally expensive, e.g. computing and index- a plane, although quadrilaterals (4 points in a plane)
ing two invariants for all combinations of 5 points in the or triangles (3 points) are important. There are many
plane. quasi-invariants; they are widely applicable, e.g. in cases

The pose estimation problem is to identify classes of in which there are known to be no invariants. There are
objects from known classes and their poses from images 4 quasi-invariants for 4 points in a plane and 2 quasi-
of scenes of objects; an object class is composed of iden- invariants for 3 points in a plane.
tical objects without variation, i.e. no surface marks, no Quasi-invariants provide a mechanism for figure-
articulation, no shape variation. Typical pose estimation ground discrimination with unknown objects with great
methods are practical only with few objects. variation, based on quasi-invariant relations on GC

Pose estimation is a very limited problem compared parts. Quasi-invariants provide a mechanism for hypoth-
to biological vision. The generic interpretation prob- esis generation by estimating the approximate shape of
lem is to discriminate objects, identify their classes and GC parts in 3-space and shape of objects formed of GC
estimate their shapes and their poses as completely as parts. Estimating 3-space shape from image measure-
possible with available information; object classes are ments is an inverse process. Indexing is done using par-
composed of objects with considerable variation, e.g. hu- tial, structured 3d shape descriptors as in Nevatia and
mans and trees; some object classes may not be known. Binford [Nevatia 83]. Structured means part-whole de-

View-sensitive methods for pose estimation match a scriptions. Verification, i.e. matching, is accomplished
dense set of views of all objects with all combinations of with full 3d shape descriptions. This can be called struc-
image features. The computational complexity of aspect tured, 3d interpretation by inverse methods.
graph methods is proportional to the number of com- The sti tctured 3d interpretation paradigm matches
binations of image features times the number of views object descriptions in 3-space. In contrast, view-
summed over all objects. One great contribution to com- sensitive methods match image descriptions. There is
putational complexity in recognition by view-sensitive much more variation in images than there is in 3-space
methods is matching the number of views of objects. because of surface markings, pose, lighting, sensor re-
The dominant contribution to computational complex- sponse and obscuration. Our paradigm reduces com-
ity is matching all combinations of image features. Scene plexity of matching by reducing complexity of descrip-
complexity dominates over the number of views of ob- tions at the cost of complexity in generating 3d descrip-
jects. Both aspect graph methods and invariant methods tions. For the structured 3d approach to succeed, seg-
introduce simple grouping or ad hoc grouping to reduce mentation, figure-ground discrimination and 3d shape
combinatorics of sets of image features. This work pro- inference must all be effective. Most researchers choose
vides principled mechanisms for grouping. to avoid dependence on effective segmentation, figure-

Each view is a different object in the aspect graph ground discrimination and 3d shape inference. View-
paradigm. There are no object classes, i.e. all objects in sensitive methods suffer complexity of matching com-
a class are identical" there are no relations among objects plex descriptions by ignoring generating 3d image de-
other than name. E.g., the class "cars" has no meaning scriptions. In reality, they cannot avoid grouping, i.e.
other than a name that includes individual cars. There figure-ground discrimination; it is essential to reduce the
is no idea of similarity. Invariants, where available, re- combinatorics of combinations of image features. The
duce this complexity; they are view-invariant and enable balance in terms of complexity swings far in favor of gen-
indexing for object. erating 3d descriptions. The majority of recognition by

Grouping to avoid matching all combinations of im- aspect graphs uses 3d data with 3d objects, even though
age features is the figure-ground discrimination prob- it is possible to measure Euclidean invariants directly
lem. From the point of view of computational com- with 3d data. Recognition from monocular intensity
plexity, figure-ground discrimination (grouping) is a ceu- imagery is much more difficult, using 2d data for 3d
tral problem in recognition. An effective mechanism for objects. Structured, 3d interpretation is effective with
figure-ground discrimination distinguishes few possible 3d data, but monocular image intensity data presents a
objects among many possible combinations of image fea- great challenge. Striking results have been achieved with
tures with low complexity. Grouping typically refers to monocular intensity images.
ad hoc methods for figure-ground discrimination. The structured 3d approach reduces computational

Avoiding matching all views of all objects is the hy- complexity by reducing the number of combinations of
pothesis generation and indexing problem. Effective hy- image features by figure-ground discrimination and re-
pothesis generation and indexing generates few hypothe- duces the number of object hypotheses by hypothesis
ses including the correct set of hypotheses, i.e. few views generation and indexing.
of few objects. Hypothesis generation and indexing is a In this paper, we define quasi-invariants, give exam-
second important problem. Invariants aid in hypothe- pies of quasi-invariants, and discuss systematics of the
sis generation and indexing but give little aid in figure- family of quasi-invariants. We also discuss the use of
ground discrimination. quasi-invariants in computer vision.

Quasi-invariants were introduced to extend invariants
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2. USE OF INVARIANTS shown below. Parallel cross sections for SHGCs, straight
homogeneous GCs, have edges that are scaled versions
of one another. That property is quasi-invariant. It in-

The use of invariants is discussed to clarify strategies cludes the previous case of cylinders. A search is fea-
for use of quasi-invariants. Consider an example: the sible for corresponding pairs of curves that scale. De-
two invariants for 5 points in the plane [Barrett 91]. tecting correspondence appears to have low complexity.

[Barrett 91] show an example of recognition of aircraft Complete 3d descriptions were generated for a number
based on the two invariants for 5 points in a plane. They of complex objects [Sato and Binford 92a, 92b].
compute invariants for 5 tuples of points in the image Statistical distributions for quasi-invariants enable
and indexing into the database to match invariants for their use in Bayesian networks. It is important to note
models. An aircraft is not planar but it was possible to that successful recognition is not dependent on assump-
find 5 points on a plane. tions behind these statistical distributions, but compu-

[Mundy 92] also demonstrate recognition of buildings tational complexity depends on distributions of pose of
using invariants for five points in a plane. A rectan- objects. That is because the statistical distributions are
gular building has only 4 points, but there might be used primarily in indexing where they measure the prob-
small structures on the roof. An L-shaped building has ability of detection and the probability of false alarms,
6 points in a plane; a U-shaped building has 8 points in i.e. the probability that a surface will be viewed from a
a plane. In these examples, there are typically 10,000 favorable viewpoint that aids indexing. Indexing oper-
points or lines in a large image. The number of combi- ates in the paradigm of hypothesize and test. In typical
nations of 5 points is 0 • 1018 invariant calcula- cases, only part of the information can be used to gen-
tions and indexes. That number is prohibitive. Simple erate hypotheses with low complexity. There is more
grouping was used, corresponding to curvilinearity and information than is used in indexing, adequate informa-
intersection at vertex. Although the paradigm initially tion to verify correct identity if the correct hypotheses
was single step indexing, it has been found essential to were known. I.e., typically, if we were told the correct hy-
test hypotheses generated by indexing. For now, points pothesis, there would be more than enough information
are somewhat difficult to estimate. to test that hypothesis; verification would require little

computation. A key issue is to use all available infor-
mation in verification, i.e. matching.. Quasi-invariants

3. USE OF QUASI-INVARIANTS facilitate indexing by building an approximate 3d model
from single monocular images or from partial 3d data.

To motivate the mathematical analysis of quasi- Quasi-invariants exist for a broad class of measure-

invariants, this section examines their use in effective use ments that parameterize shape, i.e. ratios of dimensions,

in computer vision. Quasi-invariants have been used in angles, ratios of curvatures. Quasi-invariants are valu-

stereo correspondence [Arnold and Binford 80], in recog- able because they are almost always available.

nition with Bayes nets [Binford 87] and in interpretation
of complex objects [Sato and Binford 92a, 92b]. 4. DEFINITION OF INVARIANTS

A quasi-invariant was found for two views of an edge
in stereo vision [Arnold and Binford 80]. For human
stereo, two views of an edge element have approximately For intuition in defining quasi-invariants, consider a
the same angle in two views in the canonical stereo co- definition of invariants and a concrete example.
ordinate system. This stereo quasi-invariant is nearly Let A be a collection of appearances (mathematical
invariant. The difference between the two angles has a objects). Let V be a collection of values (mathematical
distribution with 1 degree full width at half maximum. objects). Let p : A -- V be a function that defines an
Another stereo quasi-invariant was found for the dis- equivalence relation on A:
tance between pairs of edges in two views. See figure 1.
The quasi-invariants were incorporated in two systems a1 , a 2 E A; a2 s, a, 4* p(a2 ) = p(al) 1
for stereo reconstruction [Arnold 83, Baker and Binford Comment: appearances and values are names for intu-
81u. ition only; they have no mathematical significance.

Quasi-invariants for angles and ratios of lengths of A mapping 0 : A --+ V is an invariant of the equiva-
straight lines were developed. Statistical distributions lence relation defined by p if it is constant on equivalence
were incorporated into a Bayes net for recognition of classes of A. A complete invariant distinguishes any two
plumbing parts: valve, elbow or other [Binford 87]. inequivalent objects.

Generalized cylinders provide quasi-invariants that An invariant satisfies
group curves on surfaces to form hypotheses of object
parts. This provides a viable mechanism for figure- a,,a2 E A;a, s. a2 =*. (al) = 0(a2) 2a
ground discrimination in complex scenes. The gener-
alized cylinder representation generates quasi-invariants A complete invariant satisfies:
for a large class of shapes. Parallel cross sections for 0(al) = 0(a2) €+ at s a2 2b.
cylinders with arbitrary cross sections, SCGCs, straight
constant cross section GCs, have edges that are parallel
in space. Parallelism is quasi-invariant in projection, as
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Example For intuition, the definition of quasi-invariants (semi-
invariants) will be as nearly parallel as possible to the

A concrete example will help make the definition clear, definition of invariants and the example above. Later,
For appearances A take the set of all views of all sets of 4 the definition of quasi-invariants will be compared to ex-
colinear points in 3-space. For the equivalence relation, isting mathematical usage of the terms semi-invariants
consider equivalent any two views of 4 colinear points or quasi-invariants.
with the cross ratio computed in three space. p --+ R. Let A be collections of appearances (mathematical
is the cross ratio computed in three space. Sets of 4 objects). Let V be collections of values (mathematical
colinear points with different lengths but the same cross objects). Let p : A -- V be a function that defines
ratio are distinct in a Euclidean sense but are equivalent equivalence classes on A by:
under p.

Let G be the set of translations with rigid rotations; it a,, a 2 E A; a, %t a2 4* p(a2 ) = p(al).
is a noncompact group. Intersect G with the fat sphere, A mapping 46 : A - V is a quasi-invariant (semi-
i.e. the portion of the infinite viewing ball beyond a invariant) of p at a E A if it is locally constant on
minimum radius. An equivalence class of appearances equivalence classes of A (defined below) and if 0 is
is a set of 4 colinear points with the same cross ratio locally equivalent to p at a.
computed in three space, with origin in the fat sphere,
i.e. a subset of all translations and rotations. Exposition

The cross ratio of 4 image points 0 : A -- R1 is a
scalar function that projects 4 colinear points and com- 4 is locally constant, i.e. locally invariant, if the Tay-
putes a scalar, i.e. V = R1. The cross ratio of 4 image lor series for 4, at a E A is constant to second order
points is known to be a projective invariant; it is invari- under differential group actions. 0 is locally equivalent
ant for the equivalence relation defined by p, i.e. it is to p at a if it has the same Taylor series to first order.
constant on all sets of 4 colinear points with the vame Make definitions to implement those Taylor series. Let
cross ratio computed in space. A = R"" and V = Rno. Let -Y E R*O be an infinitely

4, the cross ratio of 4 image points, is complete in differentiable representation of G with parameterization
this example; 4, has different values for any pair of 4 u E R". Let p be infinitely differentiable with parame-
colinear points with different values of p, the cross ratio terization v E R".
computed in three space. The cross ratio is not com-
plete on the other equivalence relation mentioned above, ] m no

equality of Euclidean lengths of the three intervals of 4 4i = + +

colinear points. •' j=i k=1 0I'2.L duk
It is useful to think of internal structure independent mo mo o no 024, 07" 0Y3'

of external variation. Internal structure is equivalent to + 1 -]'- duidum 3
the set of equivalence classes determined by p, the cross j=1 k=i 1=1 M=rn-i 04,,0 42 a 09Up0

ratio in this example. In other cases, internal structure A mapping 4,: A -- V is quasi-invariant if the follow-
is parameterized by various measures, e.g. Euclidean ing two conditions hold:
lengths of intervals, other shape parameters for more
complex structures, or by kinematics or dynamics, e.g. o =0 = o 4a
quantum numbers. External variation is determined by auk 0 0-yj a uJ 0
G, e.g. the translations with rigid rotations T3 x SO3 . k= 1

The classical definition of invariants is slightly less Io
general. Consider affine invariants, invariant under lin- 490i = -= .•' Lj 4b
ear transformations. K is a field of characteristic zero, Ev.
e.g. the reals R or C , the complex numbers. G is j--J

GL(n, K), the general linear group with dimension nC
over field K. F is a homogeneous form of degree d in Comments
n variables f 1 ... & with coefficients in K. o E G is a A differentiable representation of G implies a met-
linear transform on an affine space, the action of G on
the polynomial ring R, a matrix defined by the rational ric and differentiability of a E A. A quasi-invariant is

representation of o. a complete quasi-invariant. It distinguishes any two in-

g is a relative invariant if ag = a(a)g; further, a(a) - equivalent objects locally. A trivial quasi-invariant has
(det a)'. g is an invariant of weight w. g is an absolute the same value on all equivalence classes. Trivial quasi-invariant if w g 0. invariants have no interest.

Rielative invariants on the ring R[41 ... ] are covari- An example helps to clarify the definition of quasi-

ants. I.e., covariants involve both coefficients and coor- invariants. See figure 2a. The collection of appearances

dinates. Not every equivalence relation is determined by A is the set of all views of all sets of three colinear

group action. points. G is the set of translations and rigid rotations
intersected with the fat sphere. The equivalence classes
are defined by p : two views are equivalent for 3 colinear

5. DEFINITION OF QUASI-INVARIANTS points with the same colinear ratio computed in three
space. Equivalence classes are all views of 3 colinear
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points with the same colinear ratio computed in three 4) must be a reasonable approximation to p over a large
space. part of the parameter range. In equation ???, the second

4 : A -- R' is a scalar function, e.g. the projected term is zero because the gradient is zero. The range over
colinear ratio of 3 projected image points. ) , the pro- which the quasi-invariant is useful is determined by the
jected colinear ratio is quasi-invariant at z - oo, 0 = 0; range over which the quadratic term and all higher terms
the gradient is zero there, both partials vanish. The have a sum small compared to the constant term, e.g.
projected colinear ratio is constant to second order at 1/3 of the constant term. For quasi-invariant examples
z = oo, 0 = 0 over equivalence classes, colinear triples of interest, it will be useful to examine the quadratic
with the same colinear ratios evaluated in three space. term to determine the range of stability. By definition,
The projected colinear ratio is even constant to third or- the linear term is zero.
der at z = oo, 9 = 0 i.e. second partials are zero also. That condition is related to a probabilistic interpre-
The projected colinear ratio at z = oo, 0 = 0 is lin- tation of quasi-invariants. In many situations, it is not
early equivalent to the true colinear ratio evaluated in possible to restrict very much the viewing conditions of
three space; it has the same value and first derivative the observer relative to the object. If it were possible
at z = oo, 0 = 0 . The colinear ratio is locally com- to restrict the view, that would be very useful and could
plete on A. It takes a different value near z = oo, 0 = 0 probably be included in an analysis like this. For a quasi-
for non-equivalent triples of points, views of 3 colinear invariant to be useful, it should be a good approximation
points with different ratio. The colinear ratio is not com- over a large fraction of views, i.e. over a large part of
plete on equivalence classes defined by Euclidean length the fat view sphere, the hollow viewing ball.
of intervals. Two sets of 3 colinear points with the same For several of the quasi-invariants considered here, all
colinear ratio could differ in Euclidean lengths of inter- second partial derivatives vanish. This makes the or-
vals. der of zero higher at m, hence intuitively stronger. The

analysis of the range of useful quasi-invariance then re-
Previous Definitions of Semi-Invariants quires third-order differentiability and equivalent behav-

ior for third-order terms of the Taylor expansion. There
Two uses exist for the term semi-invariant. The defi- is an equivalent definition for third-order differentials.

nition similar to this definition is semi-invariants of Lie Even analytic functions contain many wildly misbehav-
groups. Let G be a Lie Group. Let K be R or C. p is ing functions. These conditions on differentials are much
a differentiable representation of G, p(G) C GL(n, K), stronger than continuity. Fortunately, those differentials
the general linear group. p defines an action of G on are small enough for quasi-invariants to be quite useful.
K[zl,. . .,zn]

For infinitesimal Xa, a semi-invariant or invariant el-
ement f satisfies: X.f = 0 (VX.) or: X.f = aikf, cr E 6. SUMMARY
K (VX.) INVARIANTS AND QUASI-INVARIANTS

Another definition is equivalent to relative invariant;
that definition is uninteresting. R is a commutative ring.
The group action or E G defines an automorphism: f - For an excellent summary of results in invariants and
orf E R and u(rf) = (Ur)f for a, r E G. their relations to computer vision, see [Mundy 91a], es-

f in R is G-semi-invariant if for each o E G, pecially the introduction [Mundy and Zisserman 91b].
f is invariant up to an invariant multiplier depend-
ing on a: oaf = a(o)f. That definition is equivalent Colinear Points
to relative invariant. There is an integer w such that For the line, there are no invariants for 1, 2 or 3 co-
"a(") = (det(or))w. linear points. For 4 colinear points, the cross ratio is

invariant. For more than 4 points, other invariants ex-
Stability of Quasi-Invariants ist.

For 3 points, the colinear ratio is quasi-invariant. For
more than 3 points, quasi-invariants and invariants exist.

The intent of quasi-invariants is that a quasi-invariant
4) approximates a 3-space measurement p . For p to Coplanar Points
be interesting, it must be a Euclidean invariant. E.g.
as above, choose p the colinear ratio measured in 3- For coplanar point sets, there are invariants for lines
space, a Euclidean invariant. The image colinear ratio embedded in the plane. Colinearity of three or more
4 approximates p. points is invariant. The invariants of the line are inher-

As defined, quasi-invariants are local invariants. Con- ited in the plane.
tinuity is a very weak condition. Even if 4) has con- For coplanar point sets that are not colinear, there are
tinuous derivatives of all orders, it could be very badly no invariants for 1, 2, 3, 4 points. There are 2 invariants
behaved, i.e. 4 could be a poor approximation to p ex- for 5 points. Because lines and points are dual, there are
cept very near the quasi-invariant. The utility of quasi- also 2 invariants for 5 non-degenerate lines. For more
invariants depends on their stability. It turns out that than 5 points or more than 5 lines, more invariants exist.
many quasi-invariants are quite stable. The invariants assume correspondence of points.

For quasi-invariants to be useful, the quasi-invariant With one fewer point, quasi-invariants exist. For 4
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points in the plane, 4 quasi-invariants exist. 4 non-
degenerate lines form a quadrilateral, hence 4 quasi- - - A; 6 =
invariants exist for four lines in the plane.

With 3 points, the angle and ratio of lengths or longi- Ii 12 '2 / q21; 13 - IqsI;
tudinal and transverse ratios are two quasi-invariants. 3 q, fl X f2_;

points define the simplex, i.e. quasi-invariants exist on 1- ; Cs E e2-e3 - x.
any face of a polyhedron. 3 non-degenerate lines form a
triangle; for 3 non-degenerate lines there are two quasi- q1s". coo 6-- q3, q1.
invariants. Just as with invariants, quasi-invariants re- Iml1 ' ;ll3

late corresponding points. = 6 X f2
For 5 or more points, there are invariants and quasi- Iq10 1W12

invariants. Choose the view frame as in figure 2c with an or-

Plane Curves thonormal triple E1 , E2 , E3 , with Pi along an arbitrary
axis ("right") in the image plane, and with 1 3 along

Because all conics are equivalent under projection, the principal axis, the normal to the plane of projection,
there are no invariants for conics. For two conics there toward the center of projection. Then E2 is "down" in
is an invariant involving the bi-tangents, lines tangent the image plane in a right-handed frame.
to two conics. There is an invariant for a conic and two Consider four coplanar points initially in a frame
straight lines, aligned with the view frame;

One quasi-invariant exists for a single conic. E.g. i' = El; i' = E2; it = Es.
for an ellipse, the ratio of minor/major axis is quasi- 1  2  3

invariant. Transform the coplanar points into the four points in a
Invariants exist for algebraic curves of third and higher general frame:

order. Classical results of algebraic curves give an exten- A -* A; -* •; i - ; -.
sive theory of invariants. Rotate through Euler angles, 0, 0, i and translate to

3 space: Single View P6. Rotate first about £l through 0 to align i6 -- i
perpendicular to the plane of A and ft. Then rotate by

Invariants exist for algebraic surfaces. They appear to 9 about the transformed '2, i.e. about il to bring the
be sensitive to measurement error. Invariants are known normal of the view frame into the normal to the plane
not to exist for single views of general point sets in 3D. of the four coplanar points: A -# fa. Rotate by t' about

A large number of quasi-invariants are known for 3d fi.
surfaces. The utility of quasi-invariants is related to the The rotation matrices are R#, R4, R1:
generalized cylinder representation of object parts. [Sato
and Bin ford 92a] /*=cos 0 -sino 0|

3 space: Multiple Views s coo 0

0 0 1
While no invariants exist for single views of general 1

point sets in 3D, there are useful invariants for multiple coo 0 0 - sin/
views [Barrett 91]. 4 = 0 1 0 1;

Quasi-invariants for stereo were found for angles of Lsin 9 0 cos 9 J
edges and intervals between edges, as mentioned above 1
[Arnold and Binford 80]. R o = Cosn -osinc 00 7.2.

sini coot 00

7. QUASI-INVARIANTS FOR COPLANAR POINTS 0 0 1
The combined rotation matrix is

For three points, there are two quasi-invariants. For R = RR#R# 7.3.

four coplanar points, there are four quasi-invariants. The coordinates of the points Ao, •I,, A, A in the view
Figure 2b shows four coplanar points in a general posi- frame are:
tion relative to the viewframe: fo,01,p, - Those four R = Re/R.i + o 7.4.
points in a body-centered frame are: P 0, pi,• pi. Projected coordinates of the points are:

0b [11 12 COS Cr P,= -P; 7.5
Pa0 = [ ; Pi[= ; [ 0  J ' where Z0 is the image distance, zi is the distance to

point fi in the view frame. Define image differencer13coOP0 vectors:
13= IIsinf P 7.1. - - -- -

1 0 d =QiAP-Po; Q2 =PA- Ao; 4 3 =P3 -PA. 7.6
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Quasi-Invariants for Four Coplanar Points 9p = _ 0P L OP LP
Y0: 49 1Z 040. C910b

Define two quasi-invariants PI, P2 for images of four z -- o0; 0 -- 0.
coplanar points in a general frame, in terms of image & I - oo,-.,
difference vectors O l, Q 2, , Q P, : P pi ;p' Op . Op. a a O

= -Q2Q31 + Q21Q32 . = "ý7y W = "0 = "W = T-"
P1 -Q22Q1 +-Q21QI2' z - o0;8 - . 7.9

-Q32Q11 +Q12Qs7. Figure 3 shows the two-dimensional distribution of
P2 = - Q 2QI' 77 , p in terms of fractions of the view sphere. The two

where Qj is the jth component of the ith image differ- quasi-invariants are not strong quasi-invariants, i.e. sec-
ence vector 4i. There are two additional quasi-invariants ond derivatives are non-vanishing. They are nearly in-
for three coplanar points. For now, consider MI,P2 • dependent.
They are strong quasi-invariants.

To show that P1, P2 are quasi-invariant under projec- The Image Colinear Ratio is Quasi-Invariant
tion at z = oo, 0 = 0, show that they are equal to the
Euclidean invariants and that the gradient with respect The cross ratio is invariant for four colinear points.
to view frame parameters vanishes: The image colinear ratio is quasi-invariant under projec-

P1 -'• Pi;P -- P2; Z -- oo,k -- 0, tion for three colinear points at Z2 = oo, 0 = 0 on the fatsphere.
Opi Op. = Op. = O1P. Op= OpI. Three points in space ZO, z1, Z2 project to three image

19 = 0= (-y =0z 0 09 ' O= - points Xo,XXX2 .

00~o;0 - 0. 7.8. [Z 1] -- 3

Substitute variables from equations 7.6, 7.5, 7.4, 7.2 0= 0 -j/- 0 P ]
and 7.1 into equation 7.7. Conditions 7.8 were demon- ZO J
strated in maple; however, only the condition z -- oo is
necessary; the condition 9 -+ 0 is not necessary. 0 7.10A stronger result was proved: all second derivatives 'I= ri-Pl [X =]7.10
vanish at z -- 0. [oc]o. L [7

-9U ai0; v 6 {:,Y,z,4.,0,0}. 0 ~ ] =[ 2  f2
These are strong quasi-invariants, constant to third or- Represent the line in space by the center point Z2, two
der. line segments 11, 12, and two angles, 0, azimuth and 0,

inclination, line segment: :2,11,12, 4., 9 Choose ~i and
Three Coplanar Points z1 along the line, and 62  and X2 normal to the line.

Thus 4. = 0.
With three coplanar points with the notation above,

there are two independent quasi-invariants at z -. z1 = Z2 -1 cos 9; z = Z-11 sinO 7.11
oo, 9 -- 0, the angle between the two difference vectors = Z2 + 12 cos 9; z3 = Z2 +12 sinO
and ratio of lengths of difference vectors: The colinear ratio is computed in 3-space:

coo. 2f P2 = Q2 -__2_12
IosI= d P Q1  r = 11 +12

Those quasi-invariants are equivalent to the ratios of ion- The image colinear ratio is computed in the image by the
gitudinal and transverse components of 452 to the length ratio of one interval in the image to the sum of intervals.
of Qi. of .Q2Q 0 01 R = (:3Z2 - Z2Z3 )Z3 ZI 7.12

Pa = - r; P' OR (3Z1 - :Izz)zsz2

Both 7, p satisfy the condition that the image esti- R = X 3 -X 2 = 3 -3:

mates are identical to the Euclidean invariant at z -. X- 1 Z -
00,0-0. From equation 7.12, calculate the ratio using equation

7 --+,7 ; -- b ; PZ - -00, 0 --- 0, 7. 11 for zI, z3:

tOY =~ 00 =y 'a/ 0' 7 8 _ 07- 12 Z2 cos - X261109-IlsinO co@9 - lasing)5= = -Z = 8 = R= 1+ =• T Ocos9- Rsin1

z -- oo;0 -- 0. 7.13
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Now, determine that the colinear ratio is quasi- The standard deviation is o, = .016; invariant to 1.6%.
invariant by computing its derivatives at z2 = co, 0 = 0. * For aerial photography, q = .375

dR , dR at z2 = oo; = 0. V = i.375s = .0517.

d-2 at 0O 0 12

The colinear ratio is quasi-invariant at z2 = 00; 0 = 0 if The standard deviation is a = .117, invariant to 12%.
derivatives vanish. It is an afline invariant. These values are very tight, nearly invariant.

Now consider the worst case, i.e. the largest values of
11/Z2. Human and aerial limits that follow are extremes. Length is not Quasi-Invariant
For most objects, 11 /z 2 values are much smaller.

* For human perception, a line 20 cm at 30 cm 11 /z2 Projected length is not a quasi-invariant under per-

.1 subtends a large visual angle. spective or weak perspective. Projected length does

o For aerial photography with a 9" by 9" image with equal Euclidean length at one distance but the gradient

a focal length of f=12", 1i/z 2 <5 4.5/12 = .375. At 6 with respect to view parameters does not vanish there.

miles altitude, 11 + 12 > 4.5 miles. At z = oc, the gradient does vanish, but the value of

Consider e contours of the colinear ratio: projected length does not converge to Euclidean length.
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Figure 1: Stereo quasi-invariant: difference in angles of two views of one vector.
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Figure 2a: Three colinear points.
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Figure 2W Four coplanar points.
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Figure 2c: Egocentric coordinate frame.
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Figure 4: Epsilon contours of colinear ratio quasi-invariant.

All values above and left of epsilon contour lie within the contour.
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A Spherical Representation for the Recognition of Curved
Objects
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AbstractI tern. The resulting representation is global in that the
implicit function represents the entire shape of the object

In this paper, we introduce a new surface representa- or of a large portion of the object. The generalized cylin-
tion for recognizing curved objects. Our approach der (GO is a representative of this group. Although
begins by representing an object by a discrete mesh of encouraging results have been obtained in recognizng
points built from range data or from a geometric model GCs in intensity images, using generalized cylinders for
of the object. The mesh is computed from the data by recognition is difficult due to the difficulty of extracting
deforming a standard shaped mesh, for example, an GC parameters from input images.
ellipsoid, until it fits the surface of the object. We define Supetqadrics (SQ) representation also belongs to
local regularity constraints that the mesh must satisfy. the class of global representations [21]. The SQs repre-
We then define a canonical mapping between the mesh sent a limited set of shapes which can be extended by
describing the object and a standard spherical mesh. A adding parameters to the generic implicit equation of
surface curvature index that ispose-invariant is stored at SQs. A possible extension is to segment objects into sets
every node of the mesh. We use this object representation of superquadrics [10], although the computational cor-
for recognition by comparing the spherical model of a plexity of the scene analysis may become prohibitive. An
reference object with the model extracted from a new interesting attempt to handle a large class of natural
observed scene. We show how the similarity between ref- ob in discussed in [4].
erence model and observed data can be evaluated andwe show how the pose of the reference object in the EGI and CEGI map surface orientation distributions
observed scene can be easie y computed using to s repre- to the Gaussian sphere [13] [14] [17] [16]. Since the
obse edsene cGauss map is independent of translation, the representa-
sentation, tion is quite suitable to handle convex curved objects. In
1.0 Introduction this case, recognition proceeds by finding the rotation

that maximizes the correlation between two EGIs
In this paper, we propose a new representation for 3- [14][7]. However, when part of the object is occluded,

D objects which is suitable for object recognition and these techniques cannot reliably extract the representa-
pose determination. Many representations have been tion.
proposed to address this recognition problem. Local Recently, new approaches based on the idea of fitting
approaches attempt to represent objects as sets of primi- a bounded algebraic surface of fixed degree to a set of
tives such as faces or edges. Most early local methods data points [22][23][11] have been proposed. Although
handle polyhedral objects and report effective and encouraging results have been obtained in this area, more
encouraging results. Representative systems include research is needed in the areas of bounding constraints,
[12](19][15]. Few systems can handle curved surfaces. convergence of surface fitting, and recognition before
Examples include early work in which primitive surfaces this approach becomes practical. For a survey of other
enclosed by orientation discontinuity boundaries are techniques that can be used for global surface fitting, see
extracted from range data [20]. Other systems determine [5].
primitive surfaces which satisfy planar or quadric equa- Another class of approaches attempts to match sets of
tions [9]. Techniques based on differential geometry points directly without any prior surface fitting. An
such as [3] segment range images using Gaussian curva- example is the work by Besl [2] in which the distance
tures. between point sets is computed and minimized to find the

The global methods assume one particular coordinate best transformation between model and scene.
system attached to an object and represent the object as Our approach is a combination of the pointset
an implicit or parametric function in this coordinate sys- matching and of the original EGI approach. As i the

case of the point set matching, we want to avoid fitting
'This research was supported in part by the DARPA Ima Under- analytical surfaces to represent an object. Instead, we use
standinS Proplram, through ARPA Order No. 4976, sA monitored by a representation that simply consists of a collection of
the Air Force Avionics Laboratory under contract F33615-57-C-1499, points, or nodes, arranged in a mesh covering the entire
and inpai by DARPA under conutact DACA 76-89-C-0014 monitored surface of the object. This has the advantage that the%!weAm opgahcEgnern etr object can have any arbitrary shape, as long as that shape

Anny To apogqhic Enierng Center.views and conclusions contained in this report are dhw Of theauthors aZd should not be interpreted a repreaenang the official oi is topologically equivalent to the sphere. To avoid prob-
cies, either expressed or implied, of D S. lems with variable density of nodes on the mesh, we need
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to define regularity constraints that must be enforced. We condition is illustrated in Figure 1. The condition that the
use an extension of the deformable surfaces algorithms length of the two segments PP, and PP, are the same is
introduced in [8] to compute the meshes. As in the EGI equivalent to the condition that the projection of node P
algorithms, each node of the mesh is mapped onto a reg- on the line joining its two neighbors P, and P 2 coincides
ular mesh on the unit sphere, and a measure of local sur- with the center of P, and P2. This is obviously a more
face curvature, the simplex angle, is stored at the complicated way of formulating the simple regularity
corresponding node on the sphere. We call the corre- condition, but it will become useful when we extend this
sponding spherical representation the Simplex Angle notion to three dimensions.
Image (SAI). Finally, we define the regularity constraints p
such that if 9(is the mesh representing an object, and M' 'r
is the mesh representing the same object after transfor-. .... ........... G.
mation by a combination of rotation, translation, and Figure 1: Local Regularity
scaling, then the corresponding distributions of simplex The last step in representing two-dimensional con-
angles on the spherical representations S and 5' are to build a circular representation that can be used

same up to a rotation. Therefore, to determine whether for recognizing contours. Let us assume that the contour
two objects are the same, we need only compare the cor- is dividedzinto nts wit vs assume an th

responding spherical distributions. is divided into N segments with vertices P,,.,P,, and with

This approach appears similar to the EGI approach. corresponding angles 4p,,.,4pN. Let us divide the unit circle
However, one fundamental difference is that a unique using N equally spaced vertices C,,.,CN. Finally, let us
mesh, up to rotation, translation and scale, can be recon- store the angle T, associated with P, at the corresponding
structed from a given SA. In the case of the EGI, this circle point C, (Figure 2). The circular representation of
property is true only for convex objects. Another funda- the contour is invariant by rotation, translation, and scal-
mental difference is that the SAI preserves connectivity ing. As the density of points increases, the circular repre-
in that patches that are connected on the surface of the sentations of two contours are identical up to a rotation
input object are still connected in the spherical represen- of the unit circle. This property allows or comparing
tation. The latter is the main reason why our approach contours by declaring that two contours are identical if
can applied to arbitrary non-convex objects. Connectiv- there exists a rotation of the unit circle that brings their
ity conservation is also the reason why the SAI can be representation in correspondence. Also, when comparing
used for recognition even in the presence of significant contours, the distribution of the vertices C, on the circle
occlusion, as we will see later in the paper, whereas EGI must be uniform. We refer to this property as global reg-
and other global representations cannot. ularity.

The paper is organized as follows. In Section 2.0, we ('"
describe a simple representation of closed 2-D curves i+1
which we extend to three dimensional surfaces in Section
3.0. In Sections 3.0 to 5.0 we describe the fundamentals
of the SAI algorithms in the case of complete object
models. In Section 4.0, we show how to obtain SAIs
from range data. In Section 5.0, we describe the SAI ofriginal shape presentatiom
matching. We address the problem of occlusion and par- Figure 2: Mapping from Shape and to Unit Circle
tial models in Section 6.0. 3.0 Representation of 3-D Surfaces

2.0 Representation of 2-D Curves In this section we extend to three-dimensional sur-

A standard approach to representing and recognizing faces the concepts of curvature measure (Section 3.3),
contours is to approximate contours by polygons, and to local and global regularity (Section 3.2 and Section 3.1),
compute a quantity that is related to the curvature of the and circular representation (Section 3.4). We consider
underlying curve. The similarity between contours can the case of representing surfaces topologically equiva-
then be evaluated by comparing the distribution of cur- lent to the sphere. (Cases in which only part of the sur-
vature measurement at the vertices of the polygons. In face is visible will be addressed in Section 6.0.) Detailed
this section, we introduce the basic concepts that can be presentations of the basic results on semi-regular tessel-
used to manipulate polygonal representations of con- lations, triangulations, and duality can be found in
tours. The concepts discussed in this section are well [18][24][25].
known and have been studied extensively. Our purpose
here is to introduce them in a way that facilitates their 3.1 Global Regularity and Mesh Topology
extension to three-dimensional surfaces. A natural discrete representation of a surface is a

In order to quantify the curvature of a contour, we use graph of points, or mesh, such that each node is con-
the angle (p between consecutive segments. Like the cur- nected to each of its closest by an arc of the graph. It is
vature, the angle p is independent of rotation and trans- desirable for many algorithms to have a constant number
lation. One problem is that if the lengths of the segments of neighbors at each node. We use a class of meshes such
representing the curve are allowed to vary, the value of p that each node has exactly three neighbors. Such meshes
depends not only on the shape of the curve but also on the can always be constructed as the dual of a triangulation.
distribution of points on the curve. One way to enforce As mentioned in the previous section, global regular-
uniform distribution is to impose a local regularity con- ity can be easily achieved in two dimensions since a
dition on the distribution of vertices. The local regularity curve can always be divided into an arbitrary number of
condition simply states that all the segments must have segments of equal length. It is well known that only
the same length. Another geometric definition of this approximate global regularity can be achieved in three

dimensions. We use a quasi-regular triangulation con-
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structed by subdividing each triangular face of a 20-face 3.4 Simplex Angle Image
icosahedron into N2 smaller triangles. The final mesh is We have extended the notions of regularity and sim-
built by taking the dual of the 20N faces triangulation, plex angle to three-dimensional surfaces; we can now
yielding a mesh with the same number of nodes. For the extend the circular representation developed in two
experiments presented in this paper, we used a subdivi- dimensions to a spherical representation d three dimnen-
sion frequency of N = 7 for a total number of nodes of sions. Let Mbe a mesh of points on a surface such that it980. has the topology of the quasi-regular mesh of Section
3.2 Local Regularity 3.1. Let S be a reference mesh with the same number of

The definition of local regularity in three dimensions nodes on the unit sphere. We can establish a one-to-one

is a straightforward extension of the definition of Section mapping h between the nodes of M1 and the nodes of S.

ea ne o be i thr The mapping h depends only on the topology of the mesh
2.0.LetP b noe ofthemes P P3 and the number of nodes. Specifically, for a given size ofneighbors, G be the centroid of the three points, and Q be the mesh, M = 20xN2, where N is the frequency of the

the projection of P on the plane defined by P1, P2, and P3  mesh (Section 3.1), we can define a canonical numbering
(Figure 3). The local regularity condition simply states of the nodes that represents the topology of any M-mesh.
that Q coincides with G. This is the same condition as in In other words, if two nodes from two different M-mesh
two dimensions, replacing the triangle (P,, P2, P) of Fig- have the same index, so do their neighbors. With this
ure 1 by the tetrahedron (P,, P,, P4, P). The local regular- indexing system, h(P), where P is a node of the spherical
ity condition is invariant by rotation, translation, and mesh, is the node of the object mesh that has the same
scaling, index as P

PP2 Given h, we can store at each node P of S the simplex

G center of (P1 ,P2,P3) P3  P2  angle of the corresponding node on the surface g(h(P)).I ,The resulting structure is a quasi-regular mesh on the
unit sphere, each node being associated with a value cor-Pl 1 responding to the simplex angle of a point on the original

Figure 3: Local Regularity in Three Dimensions surface. By analogy with the EGI, we call this represen-
tation the Simplex. Angle Image (SMI). In the remainder

3.3 Discrete Curvature Measure of the paper, we will denote by g(P) instead of g(h(P))
Before defining the discrete curvature measure, we the simplex angle associated with the object mesh node

need to define some notations (Figure 4 (a)). Let P be a h(P) since there is no ambiguity.
node of the mesh, P, P2, P3 its three neighbors, O the If the original mesh 9dsatisfies the condition of local
center of the sphere circumscribed to the tetrahedron (P, regularity, then the corresponding SAI has several
P1 , p 2, P3), Z the line passing through 0 and through the important properties. First, the SAI is invariant by trans-
center of the circle circumscribed to (P,,P2 ,P/3 ). Now, let lation and scaling of the original object, given a mesh Mi(

us consider the cross section of the surface by th plane This condition is satisfied because the simplex angle
s containingdZeandrP.The intersection of 11 with the tet- itself is invariant by translation and scaling (Section 3.4),

racontaining Z and i One vertex of w the tr e t and because 9M(still satisfies the local regularity conditionrahedron is a trise gle. One vertex of the triangle isP , and after translation and scaling (Section 3.2).

().Wdeiethe baenppsi e p .is i the pange betweenP3  th tw From this definition of the mapping h, we can easily
te(b)). We define the angle o as the angle between the two see the origin the property of connectivity conservation
edges of the triangle intersecting at P. By definition, 4p, is mentioned in the Introduction. If two nodes P, and P2 are
the discrete curvature measure at node P. We call q). the connected on the spherical mesh, then the two corre-
simplex angle at P, since it is the extension to a three- sponding nodes M,=h(P,) and M,=h(P2 ) on the object
dimensional simplex, the tetrahedron, of the notion intro- mesh are also connected by an arc of the object mesh.
duced in Figure 1 for a two-dimensional simplex, the tri- The property holds because of the definition of h which
angle. depends only on the topology of the mesh, not on the

.Z P3..positions of the nodes.

0 The fundamental property of the SAI is that it repre-
sents an object unambiguously up to a rotation. More

P3  precisely, if Manda 9Vare two meshes on the same object
o pwith the same number of nodes both satisfying the local

0 regularity condition, then the corresponding SAIs S and
0 S'are identical up to a rotation of the unit sphere. This

r property holds even in the case of arbitrary non-convex
(a) (b) objects because of the connectivity conservation prop-

Figure 4: Definition of the Simplex Angle erty. Strictly speaking, this is true only as the number of
nodes becomes very large because the nodes of one

It is clear that the simplex angle is invariant by rota- sphere do not necessarily coincide with the nodes of the
tion, translation, and scaling. In the remainder of the rotation version of the other sphere. (This problem is
paper, the simplex angle q4o at a node P will be denoted addressed in Section 5. 1.)
by g(P). It is important to note that other definitions of
g(P) are possible as long as the definition guarantees that 4.0 Building SAIs from 3-D Data
g(P) is invariant by rigid transformations and by scaling.
We selected this definition because it is easy to compute In the previous sections, we have defined the notion
and it is reasonably stable with respect to small variation of locally regular mesh and its associated SA. In this
of the surface. section, we describe the algorithm for computing such a
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mesh from an input object. We assume that we have Once the initial ellipsoid is generated, the mesh gen-
some input description of an object. The only require- eration is completely independent of the actual format of
ment is that the input description allows for computing the input data. The only data-dependent operation is the
the distance between an arbitrary point in space and the computation of the object point closest to a given node.
surface of the object.

The general approach is to first define an initial mesh 4.3 From Mesh to SAI
near the object (Section 4.2) and to defoirn it by moving Once a regular mesh is created from the input data, a
its nodes until the mesh satisfies two conditions (Section reference mesh with the same number of nodes is created
4.1): It must be close to the input object, and it must sat- on the unit sphere. The value of the angle at each node of
isfy the local regularity condition. Once the mesh is cre- the mesh is stored in the corresponding node of the
ated, the simplex angle is computed at every node and is sphere. The SAI building algorithm is illustrated in Fig-
mapped on the unit sphere (Section 4.3). ure 6 with range data as input and in Figure 8 with a poly-

hedral model as input. Figure 5 shows three views of a
4.1 Mesh Deformation green pepper from which three 240x256 range images

The formalism of deformable surfaces [8] is applied were taken using the OGIS range finder. The images are
to deform the mesh. Specifically, each node is subject to merged and an initial description of the object is pro-
two types of forces. The first type of forces brings a node duced using the deformable surface algorithm. Figure 6
closer to the input surface, while the second type forces (a) and Figure 6 (b) show the initial mesh mapped on the
the node to satisfy the normal constraint. Let F. be the ellipsoid and the mesh at an intermediate stage. Figure 6
force of the first type applied at a given node N, and F, (c) shows the final regular mesh on the object. Figure 6
be the force of the second type at the same node. If P,.,, (d) shows the corresponding SA. The meshes are dis-
P,, and P,-, are the positions of node P at three consecu- played as depth-cued wireframes.The SAM is displayed

by placing each node of the sphere at r -listance from thetive iterations, the update rule is defined as: origin that is proportional to the angle swted at that node.Ptl=P+Fo+Fg+D(Pt-Pt- 1)

This expression is simply the discrete version of the
fundamental equation describing a mechanical system
subject to two forces and to a damping coefficient D. In
practice, the iterative update of the mesh is halted when
the relative displacements of the nodes from one iteration
to the next are small.

F, is defined by calculating the point P, from the
original surface that is closest to the node, that
is:F 0 = kPPC, where k is the spring constant of the
force which must be between 0 and 1.

The curvature force F9 is calculated by computing
the point P, that is on the line normal to the triangle
formed by the three neighbors of P and containing G Figure 5: Three Views of an Object
(Figure 3), and such that the mesh curvature at P and P,
are the same: g(P) = g(P). Those two conditions
ensure that P. satisfies the local regularity condition
while keeping the original mesh curvature. F, is defined
as a spring force proportional to the distance between P
andP,: Fg =aPPg

4.2 Initialization
For the iterative mesh update to converge, the mesh (a) Initial Ellipsoid (b) Mesh After 10 Iterations

must be initialized to some shape that is close to the ini- 7.,

tial shape. We use two different approaches depending
on whether the input data is measured on the object by a
sensor, or a synthetic CAD model.

In the case of sensor data, we use the techniques pre-
sented in [8] using deformable surfaces to build a trian-
gulated mesh that approximates the object. Once a
triangulation is obtained, the mesh is initialized by tes-
sellating the ellipsoid of inertia of the input shape. (c) Final Mesh (d) SAI
Although the ellipsoid is only a crude approximation of Figure 6: Building SAI from Range Data
the object, it is close enough for the mesh deformation Figure 8 (a) and Figure 8 (b) show the mesh and the
process to converge. SAI, respectively, in the case of an object initially

In the case of a synthetic CAD model as input, for described as a polyhedron as generated by the VAN-
example a polyhedron, the ellipsoid of inertia is com- TAGE CAD system shown in Figure 7. The arrow
puted directly from the synthetic mr.odel. A regular mesh twe Figure 8 h(a) an Figure 8 The co-
is mapped on the ellipsoid in the same manner as in the between Figure 8 (a) and Figure 8 (b) shows the corre-
previous case. spondence between object mesh and its SAL The vertical
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crease in the middle of the SMI corresponds to the con- differences between the simplex angles at the nodes of
cave region between the two cylinders. The top and bot- one of the sphere and at the nodes of the rotated sphere:
torn regions of the SAI exhibit large values of the angle
corresponding to the transition between the cylindrical D(S, S', R) = Z (g'(P)-G(RP))
and planar faces at both extremities of the object. In this

example, the SAI exhibits some noise in regions that are The minimum of D corresponds to the best rotation
near the edges between faces of the object. In practice, that brings Sand 3' in correspondence.
the SMI is smoothed before being used for recognition. It is important to note that the rotation is not the rota-

tion between the original objects; it is the rotation of the
spherical representations. An additional step is needed
to compute the actual transformation between objects as
described below.

5.2 Computing the Full Transformation
The last step in matching objects is to derive the

transformation between the actual objects, given the
rotation between their SAIs. The rotational part of the
transformation is denoted by R., the translational pan by

Figure 7: Geometric Model of an Object T,. Given a SAI rotation R, for each node P' of S' we
compute the node P of S that is nearest to RP'. Let M,
resp. M', be the point on the object corresponding to the
node P of S, resp. P'. A first estimate of the transforma-

" tion is computed by minimizing the sum of the squared
distances between the points M of the first object and the
corresponding points RM'+T. of the second object The
resulting transformation is only an approximation

•-:-, . because it assumes that the nodes from the two meshes
correspond exactly. We use an additional step to refine

__-___ - the transformation by looking for the node M closest to
(a) F'ial Mesh (b) SAI M' for every node of the mesh and by computing again

Figure 8: Building the SAI from a Polyhedral Model t optimal pose.

5.3 Reducing the Search Space
5.0 Matching Objects As mentioned in Section 5.1, the brute force

approach to finding the best mesh rotation is too expen-
We now address the matching problem: Given two sive to be practical. However, several strategies can be

SAIs, determine whether they correspond to the same used to make it more efficient. The first strategy is to use
object and find the rigid transformation between the two a coarse-to-fine approach to locating the minimum of the
instances of the object. As discussed in Section 3.0, the function D of. In this approach, the space of possible
representations of a single object in two different poses rotations, defined by three angles of rotation about the
are related by a rotation of the underlying sphere. There- three axis, ( is searched using large angular steps
fore, the most straightforward approach is to compute a (Aqp, AO, Ai). After this initial coarse search, a small
distance measure between the SAIs and to find the rota- number of locations are identified around which the min-
tion yielding minimum distance. The fuMl 3-D transfor- imum may occur. The space of rotations is again
mations can be computed based on this rotation. i searched around each potential minimum found at the
approach is expensive because it requires the testing of coarse level using smaller angular steps (8p, 80, 8).
the entire 3-D space of rotations. We discuss strategies to
reduce the search space in Section 5.3. Before that, in Typical values are A9-= AO= AV= 100. More levels of
Sections 5.1 and 5.2, we discuss the distance measure search may be more efficient, although we have not yet
and the computation of the final rigid transformation, tried to determine the best combination of coame-to-fine
respectively, levels.

The second approach is to use a priori knowledge
5.1 Finding the Best Rotation about the relative poses of the objects to reduce the

Let S and 3' be the spherical representations of two search space. For example, the rotation defined by the
objects. Denoting by g(P), resp. g'(P), the value of the axis ofinertia of the SAIs can be used as a starting point
simplex angle at a node P of S, resp. P of S, S and S' are for the search. In practice, using the axis of inertia is very
representations of the same object if there exists a rota- effective in pruning the search space as long as the visi-
tionRsuchthat g'(P) = g(RP) foreverypointP blepanoftheobjectislargeenough.
of S'. Since ?he SAI is discrete, g(RP) is not defined 5.4 Example
because in general RP will fall between nodes of 3'. We Figure 9 shows three views of the same object as in
define a discrete approximation of g(RP), RP), Figure 6 placed in a different orientation. A model is
interpolating the values of g at the four nodes of S' near. bure threeicorres ng orange mages us
est to RP. built from the three coresponding range images using

the approach described in 4.3. Figure 12 illustrates theThe problem now is to find this rotation using the dis- difference 4 pose between the two models computedcrete representation of S and S'. This is done by defining from th- two sets of images. Figure 10 shows the valuea distance D(S, S3 R) between SAls as the sum of squared
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of the SAI distance measure. The distance measure is 6.0 Partial Views and Occlusion
displayed as a function of (p and 0. The displayed value
at ((pO) is the minimum value found for all the possible Up to now we have assumed that we have a complete
values of W. This display shows that there is a single model of the object, as in Figure 8, or that we have data
sharp minimum corresponding to the rotation that brings covering the entire surface of the object, as in Figure 6.
the SAI in correspondence. Figure 11 shows one of the This assumption is appropriate for building reference
models back-projected in the image of the other using the models of objects. During the recognition phase, how-
transformation computed from the SAI correspondence ever, only a portion of the object is visible in the scene.
using the algorithms of Section 5.2. Figure 11 (a) is the The matching algorithm of Section 5.0 must be modified
original image: Figure 11 (b) is the backprojected model. to allow for partial representations. The algorithm used
To illustrate the accuracy of the registration, Figure 12 for extracting the initial surface model is able to distin-
(a) shows the superimposition of the cross sections of the guish between regions of the mesh that are close to input
two models in the plane before matching. Figure 12 (b) surfaces or to data points, and parts that are interpolated
shows the same cross sections after matching. These dis- between input data. The first type of region is the visible
plays show that the transformation is correctly computed part of the mesh, and the second type is the occluded part
in that the average distance between the two models after of the mesh.
transformation is on the order of the accuracy of the The situation is illustrated in Figure 14 in the case of
range sensor. a two-dimensional contour. In Figure 14 (a) a contour is

approximated by a mesh of eight points. The mesh is
assumed to be regular, that is all the points of the mesh
are equidistant. Let L = 81 be the total length of the mesh.
Figure 14 (b) shows the same contour with one portion
hidden. The occluded portion is shown as a shaded
curve. The visible section is approximated by a regular
mesh of eight nodes of length L, = 81,. Since the occluded
part is interpolated as a straight line, the length of this
mesh is smaller than the total length of the mesh on the
original object: L > L,. Conversely, the length of the part
of the representation corresponding to the visible part, L,
shown in Figure 14 (d), is greater than the length of the
same section of the curve on the original representation,

Figure 9: Three Views of the Object of Figure 6 L* shown in Figure 14 (c). In onrer to compute the dis-
tance measure of Section 5.0, the SAI of the observed
curve must be scaled so that it occupies the same length
on the unique circle as in the reference representation of
the object. If L* were known, the scale factor would be k
=L*IL2. In reality, L* is not known because we do not yet
know which part of the reference curve corresponds to
the visible part of the observed curve. To eliminate L*,

minimum- we use the relation LJIL = L*/27T. This relation simply
"expresses the fact that the ratios of visible and total
length in object and representation spaces are the same,

Figure 10: Distance Between SAIs as Function of ((p,O) which is always true when the mesh is regular. L* can be
eliminated from these two relations, yielding an expres-
sion of k = 27EL,/L2 L.

The situation is the same in three dimension except
that lengths are replaced by areas A, A,, A, A*. The pre-
"vious expression becomes k = 4ltA,/AA.

The direct extension from two to three dimension is
' only an approximation because the relation A,/A = A*I

47t, holds only if the area per node is constant over the
entire mesh. In practice, however, the area per node is
nearly constant for a mesh that satisfies the local regular-
ity condition.

Figure 11: Display of the Model in the Computed Pose total leng visible length: L1 L*

S•t interpolateOd
(a) Object (b) Partial View (c) SAI

Figure 13: Matching Partial Representation in 2-D
(a)'Before matching (b) After matching Once k is computed, the appropriate scaling is

Figure 12: Relative Positions of the Two Objects applied to the SAI by moving the nodes on the surface of
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the sphere given the scaling ratio k. After scaling, the dis-
tribution of nodes on the part of the SAI corresponding .. ........
to the visible part of the object in the scene and the dis-
tribution in the corresponding region of the model SAI
are identical. The key in this algorithm is the connectiv-
ity conservation property of the SAI mentioned previ-
ously.

We now show two examples of recognition in the
presence of occlusion. In the first example, a range image
of an isolated object is taken. Then a complete model of
the object is matched with the SAI representation from ) ': minimum
range data. Figure 15 shows the model backprojected in
the observed image using the computed transformation. Figure 15: Distance Between as Function of (0 and 0
In this example, the reference model was computed by
taking three registered range images of the object as in
the example of Figure 6. Only about 30% of the object is
visible in the image. The remaining 70% of the represen-
tation built from the image is interpolated and is ignored
in the estimation of the SAI distance. Figure 17 displays
the graph of the distance between SAIs as function of
rotation angles. Figure 16 shows two views of the dis-
tance as a function of p and 0. Figure 17 shows the same
function displayed in (p-A' space. These displays demon- .
strate that there is a well-defined minimum at the optimal ' -
rotation of the SAIs. Figure 16: Distance Between as Function of (p and AV

In the second example, the reference model is the
CAD model of Figure 8. The result of the matching is
shown in Figure 18 in which the model is displayed in the
orientation computed from the range data using the SMI
matching. Only part of the object is visible in the image
because of self occlusion and because of occlusion from
other objects in the scene.

In both examples, the deformable surface algorithm -

is used to separate the object from the rest of the scene
and to build an initial sface model, as described in [8].
If there is no data point in its vicinity, the visible portion
of the object mesh and the corresponding SAI are identi-
fied by marking a node of the mesh as interpolated. To
illustrate the effect of scaling, Figure 19 (a) shows the ) Input Image odd after Transformatiom
SAI computed from the image of Figure 15, Figure 19 (b) Figure 17: Model Registered with Input Image
shows the SAI after the scaling in applied to compensate
for occlusions. The density of points increases in the
region that corresponds to the visible part of the object occluded region visible region
(indicated by the solid arrow). Conversely the density of .
points decreases in the region corresponding to the - I.
occluded part of the object (indicated by the shaded
arrow). These examples show that the SAI matching
algorithm can deal with occlusions and partial views,
even when only a relatively small percentage of the sur-
face is visible.

(a) SAf from Scene (b) SAI after Scaling

Figure 18: Effect of Occlusion-Compensating Scaling

7.0 Conclusion
In this paper, we introduced a new approach for

building and recognizing models of curved objects. The
basic representation is a mesh of nodes on the surface
that satisfies certain regularity constraints. We intro-
duced the notion of simplex angle as a curvature indica-

(Inputhnage (b) Model after Transformatior tor stored at each node of the mesh. We showed how a
Figure 14: Model Registered with Input Image mesh can be mapped into a spherical representation in

canonical manner, and how objects can be recognized by
computing the distance between spherical representa-
tions.
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The SAI representation has many desirable proper- [11] Forsyth, D.A., Mundy, J.L., Zisserman, A., Coelho,
ties that make it very effective as a tool for 3-D object C., Heller, A., Rothwell, C., "Invariant Descriptors for
recognition. The SAI is invariant with respect to transla- 3-D Object Recognition and Pose", PAMI, Vol. 13,
tion, rotation, and scaling of the object. This invariance October 1992
allows the recognition algorithm to compare shapes [12] Grimson, W. E. L. and Lozano-Perez, T., "Locali:-
through the computation of distances between SAIs ing Overlapping Parts by Searching the Interpretation
without requiring explicit matching between object fea- Tree", PAMI-9(4), July 1987
tures or explicit computation of object pose.The SAI pre- [13] Horn, B.K.P., "Extended Gaussian Images", Proc.
serves connectivity between parts of the object in that of the IEEE, 72(12), December 1984
nodes that are neighbors on the object mesh are also [14] Ikeuchi, K., "Recognition of 3-D objects using the
neighbors on the SA. Thus the SAI can handle non-con- extended Gaussian image", International Joint Conf. on
vex objects, partial views, and occluded objects thanks to Artificial Intelligence, 595-600, 1981
the property of connectivity conservation of the SAI. [15] Ikeuchi, K. and Hong, K.S., "Determining Linear

Results show that the SAI representation can be used Shape Change: Toward Automatic Generation of Object
to determine the pose of an object in a range image. This Recognition Program,"CVGIP:IU, 53(2), pp.154170,
approach is particularly well suited for applications deal- March 1991
ing with natural objects. Typically, conventional object [16] Kang, S.B. and Ikeuchi, K.,"Determining 3-D
modeling and recognition techniques would not work Object Pose using the Complex Extended Gaussian
due to the variety and complexity of natural shapes. Image," Proc. CVPR-91, Hawaii, June 1991

Many issues remain to be addressed. First, we need [17] Little, JJ. , "Determining object attitude from
to improve the search for the minimum distance between extended Gaussian images" , Proc. of 9th Intern. Joint
SA~s during the recognition phase. This improvement Conf. on Artificial Intelligence, 960-963, 1985
can be achieved by improving the coarse-to-fine [18] Loeb, A.L., "Space Structures", Addison-Wesley,
approach to extrema localization, and by using cues 1976
computed from the original data to restrict the area in [19] Lowe, D.G., "Three-dimensional object recogni-
which the extrema are searched. Another important tion from single two-dimensional images" , Artificial
extension is the use of appearance information such as Intelligence, 31 , 1987 , 355-395
hue or albedo, in addition to geometric information. Such [20] Oshima, M. and Shirai, Y. , "Object recognition
information can be included in the SAI representation by using three-dimensional information", PAMI-5(4), July
storing appearance data at every node of the SAI in addi- 1983
tion to the curvature measure. Appearance data can be [21] Pentland, A. P., "Perceptual Organization and the
incorporated in the distance measure between SAIs to Representation of Natural Form", Artificial Intelligence
help disambiguate between shapes that are similar geo- ,28,2,293-331 ,1986

metrically but have different appearance features. We are [22] Taubin, G., "Recognition and Positioning of Rigid
now pursuing such an approach using color images. Objects Using Algebraic and Moment Invariants", PhD

Dissertation, Brown University, 1990
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Abstract tures derived from synthetic range images.

An extension to the alignment approach is pro-
posed that includes a pose refinement step be- 1 Introduction
fore verification. In the alignment approach the 1.1 The Statistical Approach and Object
pose estimates of the initial hypotheses tend to Recognition
be somewhat inaccurate, since they are based
on minimal sets of corresponding features. A In this paper, visual object recognition is approached
method is described that refines the pose esti- via the principles of maximum-likelihood (ML) and
mate while simultaneously identifying and in- maximum-a-posteriori probability (MAP). These princi-
corporating the constraints of all supporting pies, along with specific probabilistic models of aspects
image features. The strategy also makes prac- of object recognition, are used to derive objective func-
tical initial alignments based on low resolution tions for evaluating and refining recognition hypotheses.
features - which, being less numerous, allow The ML and MAP criteria have a long history of suc-
faster running times. cessful application in formulating decisions and in mak-
Two statistical formulations of model-based ing estimates from observed data. They have attractive
recognition are described: MAP Model Match- properties of optimality, and are often useful when mea-
ing, and Posterior Marginal Pose Estimation surement errors are significant.
(PMPE). These formulations use a normal In other areas of computer vision, statistics has proven
model for feature fluctuations. Empirical ev- useful as a theoretical framework. The work of Yuille,
idence is provided from the domain of video Geiger and Biilthoff on stereo [1] is one example, while
edge features indicating that normal probabil- the work of Geman and Geman on image restoration [2]
ity densities are good models of feature fluctu- is another. The statistical approach that is used in this
ations - better than uniform densities in that paper converts the recognition problem into a well de-
domain. The evidence is provided in the form fined (although not necessarily easy) optimization prob-
of observed and fitted cumulative distributions. lem. This has the advantage of providing an explicit
The results of some statistical tests are re- characterization of the problem, while separating the
ported. specification of the problem from the description of the

algorithms used to attack it. Ad-Hoc objective functions
The Expectation - Maximization (EM) algo- have been profitably used in some areas of computer vi-
rithm is discussed as a method of carrying out sion. Such an approach is used by Barnard in stereo
local searches in pose space of the PMPE ob- matching [3], Blake and Zisserman [4] in image restora-
jective function. A recognition experiment is tion and Beveridge, Weiss and Riseman [5] in line seg-
described where the method is used with fea- ment based model matching. With this approach, plau-

'The author is currently affiliated with Harvard Medical sible forms for components of the objective function are
School, Brigham and Women's Hospital, Department of Ra- often combined using trade-off parameters. Such trade-
diology, Surgical Planning Laboratory. off parameters are determined empirically. An advantage

tThis paper describes research done at the Artificial In- of deriving objective functions from statistical theories is
telligence Laboratory of the Massachusetts Institute of Tech- that the assumptions become explicit in that the forms
nology. Support for the laboratory's artificial intelligence re- of the objective function components are clearly related
search is provided in part by an Office of Naval Research to specific probabilistic models. A second advantage is
University Research Initiative grant under contract N00014- that the trade-off parameters in the objective function
86-K-0685, and in part by the Advanced Projects Agency can be derived from measurable statistics of the domain.
of the Department of Defense under Army contract number
DACA76-85-C-0010 and under Office of Naval Research con- 1.2 Alignment
tract N00014-85-K-0124. Summer support was provided by
Group 53 at the Massachusetts Institute of Technology, Lin- The basic strategy of the alignment method of recogni-
coln Laboratory. tion [6] is to use separate mechanisms for generating and
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testing hypotheses. The interpretation of the features in an image is rep-
Recently, indexing methods have become available for resented by the variable F, which describes the mapping

efficiently generating hypotheses in recognition. These from image features to object features. This is also re-
methods avoid a significant amount of search by look- ferred to as the correspondences.
ing up, in pre-computed tables, the object features that
might correspond to a group of image features. The r - {FIF 2 ... r,} rF E M u .i.
geometric hashing method of Lamdan and Wolfson [71 In an interpretation, each image feature, Yi, will be
uses invariant properties of small groups of features un- assigned either to some object feature Mi, or to the
der affine transformations as the lookup key. Clemens background, which is denoted by the symbol 1. This
and Jacobs [8] describe an indexing method that gains symbol plays a role similar to that of the null character
efficiency by using a feature grouping process to select in the interpretation trees of Grimson and Lozano-Perez
small sets of image features that are likely to belong to [9]. Each variable ri represents the assignment of the
the same object in the scene. corresponding image feature Y,, it may take on as value

1.3 Align - Refine - Verify any of the object features M,, or the background, 1.

The recognition strategy advocated in this work may be 2.1 Independent Correspondence Model
summarized as "align-refine-verify." The key observa- In this section a simple probabilistic model of correspon-
tion is that local search in pose space may be used to re- dences is described. The intent is to capture some infor-
fine the hypothesis from the alignment stage before ver- mation bearing on correspondences before the image is
ification is carried out. With the alignment method, the compared to the object. This model has been designed
pose estimates of the initial hypotheses tend to be some- to be a reasonable compromise between simplicity and
what inaccurate, since they are based on minimal sets accuracy.
of corresponding features. Better pose estimates (hence, In this model, the correspondence status of differing
better verifications) are likely to result from using all image features are assumed to be independent, so that
supporting image feature data, rather than a small sub-
set. This paper describes a method that refines the pose p(r) = fp(r 1 ) . (1)
estimate while simultaneously identifying and incorpo-
rating the constraints of all supporting image features. There is evidence against using statistical indepen-

The strategy also makes practical initial alignments dence here, for example, occlusion is locally correlated.
based on lower resolution features. Using low resolution Independence is used as an engineering approximation
features in indexing is attractive, because there are fewer that simplifies the resulting formulations of recognition.
features at low resolution, allowing faster running times. It may be justified by the good performance of the recog-

nition experiments described in Section 8. Few recogni-
1.4 Structure of the Paper tion systems have used non-independent models of corre-
In Sections 2 and 3 probabilistic models of feature spondence. Breuel described one approach [10]. In [11]
correspondences and feature fluctuations are described,, the independence assumption of Equation I has been
while Section 4 discusses linear models of feature projec- relaxed in a Markov Random Field (MRF) model of cor-
tion. Section 5 describes a statistical method of simul- respondences that is meant to capture the correlated as-
taneously evaluating correspondences and object pose. pects of occlusion.
Building on this, Section 6 outlines a statistical method The component probability function is designed to
of object pose evaluation: Posterior Marginal Pose Esti- characterize the amount of clutter in the image, but to
mation (PMPE). Section 7 describes the use of the ex- be otherwise as non-committal as possible:
pectation - maximization (EM) algorithm for solving the
PMPE objective function. An experiment using the EM griJ B if r, =i.
algorithm with features derived from synthetic range im- p(-BI. - otherwise (2)
ages is presented in Section 8, and related work is dis- The joint model p(F) is the maximum entropy prob-
cussed in Section 9. ability function that is consistent with the constraint

gFeature Correspondence that the probability of an image feature belonging to
Modeling Fthe background is B. B may be estimated by taking

Let the image that is to be analyzed be represented by simple statistics on images from the domain.
a set of v-dimensional point features The independent correspondence model is used in the

Y = {YiY2 ... Y, ) , Yi E RV experiments described in this paper.

Image features are discussed in more detail in Sections 3 Modeling Image Features
3 and 4. 3.1 Uniform Model for Background Features

The object to be recognized is also described by a set
of features, these are represented by real matrices: Image features belonging to the background are as-

sumed to be uniformly distributed throughout the v-
M = {MIM 2 ... M.) • dimensional coordinate space of the image,

Additional details on object features appears in Section 1
4. P(YW I r,,i) _ v1... w if F, =1 (3)
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(The PDF is zero outside the coordinate space of tthe a fitted normal density is plotted in the left figure as
image.) The position and orientation, or pose of the heavy dots over the observed distribution. The distribu-
object is described by fl. The Wi are the dimensions of tion was fitted to the data using the maxime m-likelihood
the feature coordinate space. method. These figures show good agreement between

Equation 3 describes the maximum entropy PDF con- the observed distribution, and the fitted normal distri-
sistent with the constraint that the coordinates of image bution. The observed cumulative distribution is shown
features are always expected to lie within the space of again on the right in Figure 3, this time with the cumula-
the image. tive distribution of a fitted uniform density over-plotted

in heavy dots. As before, the uniform density was fit-
3.2 Normal Model for Matched Features ted to the data using the maximum-likelihood method.
Image features that are matched to object features are This figure show relatively poor agreement between the
assumed to be normally distributed about their pre- observed and fitted distribution, in comparison to the
dicted position in the image, normal density. Similar results obtained for the parallel

deviations, and for a similar set of coarse features [II].
p(Y I r, P) = Gp,j (Y, -?(Mi, 0)) if r, =m, . (4) Kolmogorov-Smirnov tests were carried out [II] to

G~•, is the v-dimensional Gaussian probability den- evaluate the compatibility of the data with the fitted
sity function with covariance matrix ij: G, (x) = normal and uniform distributions. In the cases of fine

(2ir)-IIftiIij eXp (_ I XT0i1). The covariance matrix perpendicular and parallel deviations, and coarse per-
'I 8 -xpendicular deviations, refutation of the uniform model

tkij is discussed more fully in Section 3.3. is strongly indicated. Strong contradictions of the fitted
When Ii = Mj, the predicted coordinates of image normal models are not indicated in any of the cases.

feature Y, are given by P(MJ, P), the projection of object
feature j into the image with object pose 13. Projection 3.3 Oriented Stationary Statistics
and pose are discussed in more detail in Section 4. The covariance matrix tb, that appears in the model of

3.2.1 Empirical Evidence for Normal Model of matched image features in Equation 4 is allowed to de-
Feature Fluctuations pend on both the image feature and the object feature

This section describes some empirical evidence from involved in the correspondence. Indexing on i allows de-
the domain of video image edge features indicating that, pendence on the image feature detection process, while
in that domain, normal probability densities are good indexing on j allows dependence on the identity of the
models of feature fluctuations, and that they are bet- model feature. This is useful when some model features
ter than uniform probability densities. The evidence is are know to be noisier than others. This flexibility is car-
provided in the form of observed and fitted cumulative ried through the formalism of later sections. Although
distributions. Additionally, the results of some statisti- such flexibility can be useful, substantial simplification
cal tests are reported. results by assuming that the features' statistics are sta-

The data that is analyzed are the perpendicular devi- tionary in the image. In its strict form this assumption
ations of edge features derived from video images. The may be too limiting. This section outlines a compromise
features are shown in Figure 1. approach, oriented stationary statistics, that was used

The model features are from mean edge images (these in the experiments described in Section 8.
are averaged with respect to illumination), and the edge The Oriented Stationary Statistics method involves
operator used in obtaining the image features is ridges attaching a coordinate system to each image feature.
in the magnitude of the image gradient. These edge The coordinate system has its origin at the point lo-
detection methods are described in [11]. The smoothing cation of the feature, and is oriented with respect to the
standard deviation used in the edge detection was 1.93 direction of the underlying curve at the feature point.
pixels. The object is at the same pose in the model and When (stationary) statistics on feature deviations are
image scenes, the variation in features is due to changes measured, they are taken relative to these coordinate
in lighting, the presence of background features in the systems. When an image is presented for recognition,
"image" scene and the vagaries of edge detection. the constant feature covariance is specialized by rotating

For the analysis in this section, the feature data con- it to orient it with respect to each image feature. Ori-
sists of the average of the X and Y coordinates of the ented Stationary Statistics is described in more detail in
pixels from edge curve fragments. The features are dis- [Ill.
played as circular arc fragments for clarity. The edge
curves were broken arbitrarily into 10 pixel fragments. 4 Linear Projection Models

Correspondences from image features to model fea-
tures were established by a neutral subject using a Pose determination is frequently framed as an optimiza-
mouse. These correspondences are indicated by heavy tion problem. The pose determination problem may be
lines in Figure 2. Perpendicular and parallel deviations significantly simplified if the feature projection model is
of the corresponding features were calculated with re- linear in the parameters of the transformation (the pose
spect to the normal vectors to edge curves at the image vector). The system described in this paper uses a pro-
features. jection model having this property, this enables solving

Figure 3 shows the cumulative distribution of the per- the embedded optimization problem using least squares
pendicular deviations. The cumulative distribution of Linear projection models may be written in the following
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Figure 2: Feature Corrdpondences

form: length of the vector is the inverse of the range at the
17i --P(Mi, 0) =Mift • (5) discontinuity. The counterparts in the image are given

The pose of the object is represented by fl, a column by ci' and c-.
vector, the object model feature by Mi, a matrix. %i, the This transformation is equivalent to rotation by 0,
projection of the model feature into the image by pose scaling by s, and translation by T, where
,6, is a colurmn vector. ] •

Several linear projection models were described in [12], T 8 =tf1 +,2aca
and in [Ill. ty (Ps = / 2 0=aca

4.1 -D Oiened-Rnge eatre MdelThe aggregate feature translates, rotates and scales
4.1 -D Oiened-Rnge eatre Mdelcorrectly when used with imaging models where the ob-

A 2-D projection and feature model that incorporates ject features scale according to the inverse of the distance
local information about the coordinates, normal, and to the object. This holds under perspective projection
range at a point along a curve of range discontinuity, with attached range data when the object is small comn-
is defined by pared to the distance to the object.

•z i• Pi•1 0This projection model was inspired by a method used
A pi pi. 0 1by Fangeras and Ayache in their vision system HYPER

17i CI C i .= P i v 0 0 [13], and it is used in the experiments described in Sec-

Ci, pici,, 0 0 tion 8.

p 5 MAP Model Matching

V II

aFi 2: This section outlines MAP Model Matching , a meansfogth of evaluating joint hypotheses of match and pose using

t• the MAP criterion.
The coordinates of model point i are piM and piv. The Briefly, probability densities of image features, condi-

coordinates of the model point i, projected into the im- tioned on the parameters of match and pose ("the pa-
age by pose o, at e md ature y M ,, a a vector rameters"), are combined with prior probabilities on the
who's direction is perpendicular to the range discontinu-
ity and pointing away from the discontinuity, while the 'An early version of this work appeared in [12] and [14].
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Figure 3: Observed Cumulative Distribution with Fitted Normal and Uniform Cumulative Distributions

parameters using Bayes' rule. The result is a posterior Next, a joint prior on correspondences and pose is con-
probability density on the parameters, given an obsei ,., i structed. Prior information on the pose is assumed to be
image. An estimate of the parameters is ther "Ymula(.ed supplied as a normal density,
by choosing them so an to maximize their s•teriori
probability (Hence the term MAP). MAP estinitors are p1)= G,(- l)= (2r7 ,#1-1exp ( zo )

especially practical when used with normal probability 2
densities. (8)

The parameters to be estimated in matching are the Here Op is the covariance matrix of the pose prior and
correspondences between image and object features, and z is the dimensionality of the pose vector, 6. With this
the pose of the object in the image. choice for the form of the pose prior the system is closed

The probabilistic models of image features, condi- in the sense that the resulting pose estimate will also
tioned on match and pose, that is described in Equations be normal. This is convenient for coarse-fine. If little is
3 and 4 may be written as follows: known about the pose a-priori, the prior may be made

I quite broad. This is expected to be often the case. If
py I ,P!&I..W if Iri =i1 nothing is known about the pose beforehand, the pose

Go,(w -•(j•) fI•=M prior may be left out. In that case the resulting criterion

J., -p P5, ) i i=m

(6) for evaluating hypotheses will be based on maximum-
Here Oj is the covariance matrix associated with im- likelihood for pose, and on MAP for correspondences.

age feature i and object model feature j. Thus image Assumrio in dependence of the correspondences and
features arising from the background are uniformly dis- the pose (before the image is compared to the ob-
tributed over the space of the image ( is te he im- ject model), and using the independent correspondence

age space along dimension i is given by Wi), and matched model of Equations I and 2, a mixed joint prior proba-
image features are normally distributed about their pre- bility function may be written as follows,
dicted locations in the image. In some applications
could be a constant - an assumption that the feature p(r,()8G),(#- 6o) B 1 -

statistics nae r ton b the si mted i m ay depend Hri o m
only on i, the image feature index. This is the ta no when
the oriented stationary statistics model is used (see Sec- The variable B has been generalized here to have an ire-
tion 3.3). age feature dependent subscript, i. In the experiments

Assuming imath endpent features, the joint probabiity reported in Section 8, E = B for all i. This general-
density on image feature coordinates may be written as ization is explored more fully in [te]. This probability

follows function on match and pose is now used with Bayes' rule

p(YI r,, ) =. , I(r, )) (7) as a prior for obtaining the posterior probability of r and

pi, I Y) = g(Y I r,#Pr )(9)
x (AY) a

fu arisinfro where p(Y) is the probability of the image being an-
cu aGcn, (Y - P(Mt, ta talyzed - a constant in terms of the parameters being

t :r,e =i estimated.
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The MAP strategy is used to obtain estimates of the terms of the component densities:
correspondences and pose by maximizing their posterior
density with respect to r and ft, as follows , - P(P) I

r, =argmaxp(r, I Y)
r,p Breaking one factor out of the product gives

The search for maximizing joint hypotheses of match n-1

and pose may be ordered as either a search in correspon- P( Y) - ) - flp(Y r,,rnp(r,)]
dence space, or a search in pose space. Recognition ex- P ) r, r._, s I

periments in correspondence based search were reported
in [12], where heuristic beam search was used. In [11] " Y, I rn, )p(rn)
it is shown that searching a specialization of this MAP
criterion in pose space is equivalent to robust chamfer
matching. Continuing in similar fashion yields

6 Posterior Marginal Pose Estimation pA I Y) - ip) 1f [Zp(ya I ri,#)grd]

In the previous section the object recognition problem
was posed as an optimization problem resulting from a This may be written as
statistical theory. In that formulation, a hypothesis was
the position and orientation, or pose, of the object - as ( ) =Y) P(= f-p(Y, 11), (10)
well as the correspondences between object and image A(Y)
features.

The formulation of recognition that is described in this since
section, Posterior Marginal Pose Estimation (PMPE) 2 P(Yi I10) = "P(Ya I ri, )gi) (11)
, builds on MAP model matching. It provides a smooth
objective function for evaluating hypotheses that are Splitting the ri sum into its cases,
simply the pose of the object. The pose is the most im-
portant aspect of the problem, in the sense that knowing p(Yi iJ) = p(Y1 I ri =_1,/)p(ri =1L)
the pose enables grasping or other interaction with the + EpY, I ri = , #)p(r, Mi)
object. + ,

PMPE was motivated by the observation that in
heuristic searches over correspondences with the objec- Substituting the densities assumed in the model of Sec-
tive function of MAP model matching, hypotheses hay- tion 5 in Equations 6 and 2 yields
ing implausible matches scored poorly in the objective 1
function. Additional motivation was provided by the p(Yi 10) = (12
work of Yuille, Geiger and Biilthoff on stereo [1]. They W, ... W.
discussed computing disparities in a statistical theory of + 1 Gq, (Y. _ _'(M, "6)) m
stereo where a marginal is computed over matches. m

Here we use the same strategy as MAP Model Match- M3
ing for evaluating hypotheses now consisting only of pose Installing this into Equation 10 leads to
- they are evaluated by their posterior probability, given
an image : p(O I Y). The posterior probability density B_ B2 ..- B. p(P )
of the pose may be computed from the joint posterior P(*0 1 Y) = (WIW2 ... W,)7 p(Y)

probability on pose and match, by formally taking the
marginal over possible matches: 1 I ,..W iG , Y ( j )

p(p I Y) = -p(r,1 I Y) . I +i M[ 1-W A G (Y-P(M , ))

r The objective function for posterior marginal pose es-

In Section 5, Equation 9, p(r, #3 I Y) was obtained via timation may be defined as the scaled logarithm of the
Bayes' rule from probabilistic models of image features, posterior marginal probability of the pose, as follows,
correspondences, and the pose. Substituting for p(r, # A
Y), the posterior marginal may be written as L(_) In[I.___ ]

s (# I Y) = P(Y I r, &(r, 0) where K is a constant that has the following definition:
r A )Bi B2 .. •n -W) I2 1:,'-L I

Using Equations I (the independent feature model) K = (WIW2 ... W. -p(2-")

and 7, we may express the posterior marginal of 1 in
K has been chosen to simplify the form of the objective

2An early version of this work appeared in (15]. function. This leads to the following expression for the
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objective function (use of a normal pose prior is assumed, Imposing the condition of Equation 14 on the posterior
as in Equation 8) probability of the pose of an object, given an image, of

I =Equation 
10 yields the following,L(O) =-(ft - fo)T0ý'(# - fl0) + E Vn(•

2 = VOW) + Vpp(Y, 1) (15)

In[l+ w1''.w. I- -A Using the linear projection model, Equationn 12 may
+ i Bd A #. b e P re-w ritten as B 1 1

(13) P(Yi 1) B, +- EB, GIY
This objective function for evaluating pose hypotheses W1 W2• ... W, m G -Ml8

is a smooth function of the pose. Methods of continuous
optimization may be used to search for local maxima, The zero gradient condition of Equation 15 may now be
although starting values are an issue. expressed as follows,

The first term in the PMPE objective function (Equa-
tion 13) is due to the pose prior. It is a quadratic penalty VP( +)0 +for deviations from the nominal pose. The second term P(A)
essentially measures the degree of alignment of the ob- 1-Ba E . NGp(Y, - MjVG)
ject model with the image. It is a sum taken over im- m J-.A
age features of a smooth non-linear function that peaks B -B. -M
up positively when the pose brings object features into , ..W + M E Gv, 3(Y -

alignment with the image feature. The logarithmic term Using the normal pose prior, and differentiating the nor-
will be near zero if there are no model features close to mal densities yields
the image feature in question.

When the MRF correspondence model mentioned in 0 = • (J_ -0)+

Section 2.1 is used in PMPE, a simple closed form ex- 1-B aj Go, (Y, - MjO1)Mj i07'(Y. - M,13)
pression for the estimator no longer obtains. However, a Bi n

tractable dynamic programming method for evaluating + wi4. G (
the resulting PMPE objective function at a specific pose
is described in [II]. Finally, the zero gradient condition may be expressed

compactly as follows,
7 Expectation - Maximization = 0-(0 - 00) + WjMf0'(Y. - M

Algorithm + J V a jf) (16)

The Expectation - Maximization (EM) algorithm was with the following definition:
introduced in its general form by Dempster, Rubin and
Laird in 1978 [16]. It is often useful for computing es- Gp,,(Y, - M,13) (
timates in domains having two sample spaces, where W B, = (17)
the events in one are unions over events in the other. :- WXPWW . + -j Gp,,,(Y, - Mi 0)
This situation holds among the sample spaces of poste- Equation 16 has the appearance of being a linear equa-
rior marginal pose estimation (PMPE) and MAP model tion for the pose estimate # that satisfies the zero gra-
matching. In the original paper, the wide generality of dient condition for being a maximum. Unfortunately, it
the EM algorithm is discussed, along with several previ- is not a linear equation, because Wj (the "weights") are
ous appearances in special cases, and convergence results not constants, they are functions of j. To find solutions
are described. to Equation 16, the EM algorithm iterates the following

In this section, a specific form of the EM algorithm tw
is described for use with PMPE. It is used for hypoth- o steps:
esis refinement in the recognition experiments that are 9 Treating the weights, W,, as constants, solve Equa-
described in Section 8. A linear model is assumed for tion 16 as a linear equation for a new pose estimate
feature projection. /#. This is referred to as the M step.

In PMPE, the pose of an object, P, is estimated by * Using the most recent pose estimate /, re-evaluate
maximizing its posterior probability, given an image. the weights, Wij, according to Equation 17. This is

/= arg max p(# I Y) • referred to as the E step.
The M step is so named because, in the exposition

A necessary condition for the maximum is that the of the algorithm in [16], it corresponds to a maximum
gradient of the posterior probability with respect to the likelihood estimate. As discussed there, the algorithm
pose be zero, or equivalently, that the gradient of the is also amenable to use in MAP formulations (like this
logarithm of the posterior probability be zero: one). Here the M step corresponds to a MAP estimate of

the pose, given that the current estimate of the weights
0=Vplnp(/0IY) . (14) is correct.
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The E step is so named because calculating the Wij second image in Figure 5. To simulate post sensor pro-
corresponds to taking the expectation of some random cessing, the corrupted image was "restored" via a statis-
variables, given the image data, and that the most recent tical restoration method of Menon and Wells [19]. The
pose estimate is correct. These random variables have restored range image appears as the third image of Fig-
value 1 if the i'th image feature corresponds to the j'th ure 5.
object feature, and 0 otherwise. Thus, after the itera- Oriented range features, as described in Section 4.1,
tion converges, the weights provide a continuous-valued were extracted from the synthetic range image, for use
estimate of the correspondences, that varies between 0 as model features - and from the restored range im-
and 1. age, these are called the noisy features. The features

It seems somewhat ironic that, having abandoned the were extracted from the range images in the following
correspondences as being part of the hypothesis in the manner. Range discontinuities were located by thresh-
formulation of PMPE, a good estimate of them has re- olding neighboring pixels, yielding range discontinuity
appeared as a byproduct of a method for search in pose curves. These curves were then segmented into approx-
space. This estimate, the posterior expectation, is the imately 20-pixel-long segments via a process of line seg-
minimum variance estimator. ment approximation. The line segments (each represent-

Being essentially a local method of non-linear opti- ing a fragment of a range discontinuity curve) were then
mization, the EM algorithm needs good starting values converted into oriented range features in the following
in order to converge to the right local maximum. It may manner. The X and Y coordinates of the feature were
be started on either step. If it is started on the E step, obtained from the mean of the pixel coordinates. The
an initial pose estimate is required. When started on the normal vector to the pixels was gotten via least-squares
M step, an initial set of weights is needed. line fitting. The range to the feature was estimat ' by

An initial set of weights can be obtained from a par- taking the mean of the pixel ranges on the near s Jf
tial hypothesis of correspondences in a simple manner. the discontinuity. This information was packaged into an
The weights associated with each set of corresponding oriented-range feature, as described in Section 4.1. The
features in the hypothesis are set to 1, the rest to 0. model features are shown in the first image of Figure 6.
Indexing methods are one source of such hypotheses. Each line segment represents one oriented-range feature,

the ticks on the segments indicate the near side of the
8 Range Feature Recognition range discontinuity. There are 113 such object features.

Experiment The noisy features, derived from the restored range
image, appear in the second image of Figure 6. There

In this section, an experiment is described where the EM are 62 noisy features. Some features have been lost
algorithm is used in a coarse - fine scheme to estimate due to the corruption and restoration of the range im-
the pose of a vehicle appearing in synthetic range images, age. The set of image features was prepared from the
without the need for feature correspondence information, noisy features by randomly deleting half of the features,
The region of convergence of the coarse - fine algorithm transforming the survivors according to a test pose, and
is explored. The object has four degrees of freedom - adding sufficient randomly generated features so that 8

translation, rotation, and scaling in the plane. Similar of the features are due to the object. The 248 image
experiments, with full freedom of motion in 3D are de- features appear in the third image of Figure 6.
scribed in [11]. 8.2 Coarse-Fine Method

8.1 Preparation of Features A coarse-fine search method was used for finding max-

The preparation of the features used in the experiment ima of the pose-space objective function. Two levels of
is summarized in Figure 4. The features were oriented- smoothing the objective function were used. Peaks, ini-
range features, as described in Section 4.1. Two sets of tially located at the coarsest scale, are used as start-
features were prepared, the "model features", and the ing values for a search at the next (less smooth) scale.
"image features". Finally, results of the second level search are used as

The object model features were derived from a syn- the initial values for search in the un-smoothed objec-

thetic range image of an M35 truck that was created tive function. This coarse-fine method combines the ac-
using the ray tracing program associated with the BRL curacy of the un-smoothed objective function with the

CAD Package [17]. The ray tracer was modified to pro- larger region of convergence of the smoothed objective
duce range images instead of shaded images. The syn- function.
thetic range image appears in the first image of Figure The objective function was smoothed by replacing the
5. stationary feature covariance matrix 0 in the following

In order to simulate a laser radar, the synthetic range manner:
image described above was corrupted with simulated P '--' + 'P.
laser radar sensor noise, using a sensor noise model The effect of the smoothing matrix ', is to increase
that is described by Shapiro, Reinhold, and Park [18]. the spatial scale of the covariance matrices that appear
In this noise model, measured ranges are either valid in the objective function. The smoothing matrices used
or anomalous. Valid measurements are normally dis- in the experiment were as follows,
tributed, and anomalous measurements are uniformly
distributed. The corrupted range image appears as the DIAG((2.0) 2 , (2.0) 2 , (.01) 2 , (.01) 2 )

846



arm WESWA

Figur 4:PeaaEnmfFaue

Figue 5 Sythetc Rngeiague NoisyeRaraing ofmFagues n etrd ag mg

4 x

I I '

Figure 6: Model Features, Noisy Features, and Image Features

847



and This facilitates continuation-style optimization meth-
DIAG((5.0) 2, (5.0)2, (.025)2, (.025)2) . ods by variation of the temperature parameter. There

where DIAG(-) constructs diagonal matrices from its ar- are some similarities between this approach and using
guments. These smoothing matrices were determined coarse-fine with the PMPE objective function.
empirically. There is a similarity between posterior marginal

pose estimation and Hough transform (HT) methods.
8.3 Results Roughly speaking, HT methods evaluate parameters by

Figure 7 illustiates the approximate region of conver- accumulating votes in a discrete parameter space, based
gence of the coarse-fine search with the EM algorithm on observed features. (See the survey paper by Illing-
described above, when used with the image and model worth and Kittler [25] for a discussion of Hough meth-
features described in Section 8.1. Eight poses are dis- ods.)
played with the truck shown with light lines - the true In a recognition application, as described here, the HT
pose of the truck is shown for reference with heavy lines, method would evaluate a discrete pose by counting the
These eight poses are displacements from the true pose number of feature pairings that are exactly consistent
in both directions along the four coordinate axes of the somewhere within the cell of pose space. As stated, the
pose space. They represent, approximately, the region HT method has difficulties with noisy features. This
of convergence of the coarse-fine method - the algorithm is usually addressed by counting feature pairings that
converges from these poses, but not from much farther are exactly consistent somewhere nearby the cell in pose
away from the true pose. space.

An image displaying a sequence of poses from an EM The utility of the HT as a stand-alone method for
iteration at the coarsest scale appears in Figure 8. The recognition in the presence of noise is a topic of some
algorithm converged in 21 iterations. controversy. This is discussed by Grimson in [26], pp.

220. Perhaps this is due to an unsuitable noise model
9 Related Work implicit in the Hough Transform.
Green [20] and Shapiro and Green [21] describe a theory oPMPE evaluates a pose by accumulating the logarithmGree [2] ad Sapir an Gren 21]descibea teor ofposterior marginal probability of the pose over image

of maximum-likelihood laser radar range profiling. The features.

research focuses on statistically optimal detectors and The connection between sT methods and parameter

recognizers. The single pixel statistics are described by evaluation via the logarithm of posterior probability has

a mixture of uniform and normal components. Range been described by Stephens [27]. Stephens proposes to
profiling is implemented using the EM algorithm. Under call the posterior probability of parameters given im-
some circumstances, least squares provides an adequate age observations "The Probabilistic Hough Transform."
starting value. A continuation-style variant is described,
where a range accuracy parameter is varied betweeiý LEM He provided an example of estimating line parameters
convergernces froma cyparsevalueter its tarued b ee. M where image feature point probability densities were de-convergences from a coarse value to its true value. srbda aiguiomadnra opnns i

Cass [221 describes an approach to visual object recog- scribed as having uniform and normal components. He'
nitisn22]tdesrcries an approspach tor v axisal obje ogn- also states that the method has been used to track 3D

nition that searches in pose space for maximal align- objects, referring to his thesis [28] for definition of the
ments under the bounded-error model. The pose-space method used.

objective function used there is piecewise constant, and

is thus not amenable to continuous search methods. The Lipson [29] describes a system that does refinement of

search is based on a geometric formulation of the con- alignments under Linear Combination of Views. The

straints on feasible transformations. method iterates solving linear systems. It differs by

There are some connections between PMPE and stan- matching model features to the nearest image feature
under the current pose hypothesis, while the method de-dard methods of robust pose estimation, like that de- scribed here entertains matches to all of the image fea-

scribed by Haralick [23]. Both can provide robust es-

timates of the pose of an object, based on an observed tures, weighted by their probability.

image. The main difference is that the standard meth-
ods require specification of the feature correspondences, 10 Acknowledgments
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Scalable Data Parallel Geometric Hashing: Experiments on MasPar

MP-1 and on Connection Machine CM-5

Ashfaq Khokhar and Viktor K. Prasanna *

(Summary of Results)

Abstract phase are also reported.
Geometric hashing has been recently proposed as a tech-
nique for model based object recognition in occluded
scenes. However, this technique is computationally de- 1 Introduction
manding; a probe of the recognition phase on a serial This paper is in continuation of our efforts in studying
machine can take several minutes to complete. In this parallel techniques for solving high level vision problems
paper, we present parallel algorithms and several fast [10; 9; 11; 12; 161. In this paper, we present scalable
parallel implementations on MasPar MP-1, a Single In- parallel techniques to implement the object recognition
struction Multiple Data (SIMD) machine, and on the problem using geometric hashing. Object recognition, a
Connection Machine CM-5 operating in Single Program high level vision task, is a key step in an integrated vi-
Multiple Data (SPMD) mode. Based on the results, we sion system. Most model based recognition systems work
compare the merits of the above classes of architectures by hypothesizing matches between scene features and
for vision. In earlier parallel implementations, the num- model features, predicting new matches, and verifying
her of processors employed is independent of the size of or changing the hypotheses through a search process [3;
the scene but depends on the size of the model database 4; 5; 6; 191. Geometric hashing [20] offers a different and
which is usually very large. We design new parallel more parallelizable paradigm. However, parallel tech-
algorithms and map them onto MP-1 and onto CM-5. niques are needed to use geometric hashing in real time
These techniques significantly improve upon the number applications.
of processors employed while at the same time achieve In geometric hashing, given a set of models and their
much superior time performance. Earlier implementa- features points, for each model, all possible pairs of the
tions claim 700 to 1300 msec for a probe of the recog- feature points are designated as a basis set. The coordi-
nition phase, assuming 200 feature points in the scene nates of the features points of a model are computed rel-
on an 8K processor CM-2. Our implementations run on ative to each member of its basis set. These coordinates
a P processor machine, such that 1 < P < S, where S are then used as indices into a hash table. The records
is the number of feature points in the scene. Our re- in the hash table comprise of (model, basis) pairs. In the
suits show that a probe of the recognition phase for a recognition phase, an arbitrary pair of feature points in
scene consisting of 1024 feature points takes less than the scene is chosen as basis and coordinated of the fea-
50 msec on a 1K processor MP-1 and it takes less than ture points in the scene are computed. The new coordi-
10 msec on a 256 processor CM-5. The model database nates are used to hash into the hash table and the cor-
used in these implementations contains 1024 models and responding entries of the hashed bin are accessed. The
each model is represented by 16 feature points. The im- (model, basis) pair winning maximum number of votes
plementations developed in this paper require number of is chosen as candidate for matching.
processors independent of the size of the model database There have been two prior efforts in parallelizing the
and are scalable with the machine size. Results of con- geometric hashing algorithm [1; 18]. Both implementa-
current processing of multiple probes of the recognition tions have been performed on SIMD hypercube based

"This research was supported by the Defense Advanced machines. These implementations are among the early
Research Projects Agency under contract F49620-90-C-0078, efforts in using parallel techniques to solve high-level vi-
monitored by the Air Force Office of Scientific Research sion problems. One of the major problems in both the
and in part by the Army Research Office contract num- implementations is the requirement of large number of
ber DAAL03-89-C-0038 with the University of Minnesota processors. In our results, we exploit the fact that the
Army High Performance Computing Research Center. The number of votes cast in an iteration of the recognition
United States Government is authorized to reproduce and phase is bounded by S, the number of feature points in
distribute reprints for governmental purposes notwithstand- the scene. Therefore, no more than S locations of the
ing any copyright notation hereon. hash table are accessed during the execution of the recog-
Address: Department of EE-Systems, EEB 244, University
of Southern California, Los Angeles, CA 90089-2562, email: nition algorithm. This allows us to reduce the number
4ashfaq + prasanna)Ghalcyon.usc.edu of processors employed to at most S, the number of fea-
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ture points in a scene. Previous implementations used ometric relations are encoded using a minimal set of such
O(Mn3 ) processors, i.e., the number of bins in the hash features. The task becomes more complex if the objects
table, where M is the number of models in the database overlap in the scene and/or other occluded unfamiliar
and n is the number of feature points in each model. In objects exist in the scene.
addition, the implementation by Bourdon and Medioni Many model based recognition systems are based on
[I( suffers due to inefficiency of the routing algorithm, hypothesizing matches between scene features and model
This inefficiency limits the scope of their implementation features, predicting new matches, and verifying or chang-
to a small model database. In [18], Rigoutsos and Hlum- ing the hypotheses through a search process. Geometric
mel suggest to use radix sort to implement histogram- hashing, introduced by Lamdan and Wolfson [201, of-
ming, a technique used in their implementation to count fers a different and more parallelizable paradigm. It can
the votes for each (model, basis) pair. The use of radix be used to recognize fiat objects under weak perspec-
sort in histogramming is advantageous only if the num- tive. For the sake of completeness, we briefly outline the
ber of levels in the histogram is much less than the num- geometric hashing technique in Section 2.1. Additional
ber of data points [15]. In case of geometric hashing, this details can be found in [20].
is not true. In this paper, we present several fast parallel
techniques to implement the object recognition problem 2.1 Geometric Hashing Algorithm
using geometric hashing on SIMD and SPMD machines. The algorithm consists of two procedures, preprocessing
We also provide implementation results of the techniques and recognition. These are shown in Figures 1 and 2
developed in this paper on the Connection Machine CM- respectively.
5 operating in SPMD mode, and on MasPar MP-1, an Preprocessing:
SIMI) machine. The preprocessing procedure is executed off-line

In our implementations, we provide various parti- and only once. In this procedure, the model fea-
tioning, mapping and routing techniques to address the tures are encoded and are stored in a hash table
above issues. These lead to significantly less num- data structure. However, the information is stored
ber of processors to be used, while achieving much su- in a highly redundant multiple-viewpoint way. As-
perior time performance. Earlier implementations [1; sume each model in the database has n feature
18] claim 700 to 1300 msec for one probe of the recog- points. For each ordered pair of feature points
nition phase, assuming a scene of 200 feature points, on in the model chosen as basis, the coordinates of
an 8K processor CM-2. We provide techniques to im- all other points in the model are computed in the
plement the recognition phase on a P processor array, orthogonal coordinate frame defined by the basis
such that 1 < P < S, where S is the number of feature pair. Each such coordinate is quantized and is used
points in the scene. Our results show that one probe as an entry to a hash table, where the (model, ba-
of the recognition phase for a scene consisting of 1024 sis) pair, at which the coordinate was obtained,
feature points takes less than 50 msec on a 1K processor is recorded. The complexity of this preprocessing
MP-1 and it takes less than 10 msec on a 256 processor procedure is 0(n 3 ) for each model, hence O(Mnn)
CM-S. The model database used in the implementations for M models.
contains 1024 models and each model is represented us-
ing 16 feature points. The implementations developed in Recognition:
this paper require number of processors independent of In the recognition procedure, a scene consisting of
the size of the model database and are scalable with the S feature points is given as input. An arbitrary
machine size. Results of concurrent processing of mul- ordered pair of feature points in the scene is cho-
tiple probes of the recognition phase are also reported. sen. Taking this pair as a basis, the coordinates of
Based on the implementation results, we compare the the remaining feature points are computed. Each
merits of classes of machines used for vision algorithms, such coordinate is used as a key to enter the hash

The organization of the paper is as follows. The table (constructed in the preprocessing phase), and
geometric hashing technique for object recognition is for every recorded (model, basis) pair at the corre-
outlined in Section 2. Section 3 discusses parallelism sponding location, a vote is collected for that pair.
in geometric hashing. I, Section 4, implementation The pair winning the maximum number of votes
details are shown and experimental results are tab- is taken as a matching candidate. The execution
ulated and compared. Conclusions are presented in of the recognition phase corresponding to one ba-
Section 5. This paper summarizes our work. Re- sis pair is termed as a probe. Finally, edges of the
lated results and additional details can be found in [11; matching candidate model are verified against the
7]. scene edges. If no (model, basis) pair scores high

enough, another basis from the scene feature points
2 Object Recognition Using Geometric is chosen and probe is executed. Therefore, the

Hashing worst case time complexity of the recognition pro-
cedure is O($3). However, if some classification fhr

In a model-based recognition system, a set of objects is choosing a basis from the scene is available, the
given and the task is to find instances of these objects complexity can be reduced to O(S) [13].
in a given scene. The objects are represented as sets of The time taken per probe depends on the hash func-
geometric features, such as points or edges, and their ge- tion employed. The vision community has experimented
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Preprocessing() 3 Scalable Data Parallel Geometric

for each model i such that I < i < M do Hashing

Extract n feature points from the model; In this section, we present parallel techniques to imple-
for j = I to n ment the recognition phase on a P processor machine.

for k = I to n Algorithms presented in this section are implemented
- Compute the coordinates of all other features on Connection Machine CM-5 operating in SPMD mode

points in the model by taking this pair as basis. and on MasPar MP-1, an SIMD array. In an SIMD
- Quantize each of the above computed coordinates machine, each processor executes a stream of instruc-

and use it as a key to enter into a hash table tions in a lock-step mode on the data available in its
where the pair (model, basis), i.e., (i,jk), local memory. The instructions are broadcast by the
is recorded.

next k control unit. The SPMD mode of execution combines
next the characteristics of SIMD and MIMD modes. In this

next i mode, the control processor broadcasts a section of the
end data parallel program to the processing nodes, rather

than broadcasting an instruction at a time (as in a typ-
Figure 1: A sequential procedure to construct a hash ical SIMD machine). At the start of the execution of a
table consisting of (model, basis) pairs. program, the complete program is sent to all the nodes

with pseudo synchronization instructions embedded in
the code. Each node executes the program independent

Recognition() of others until an embedded synchronization instruction
1. Extract S feature points from the scene; is reached. It resumes the execution of the program only
2. Selection: after all the nodes have reached the synchronization bar-

Select a pair of feature points as basis rier. The control unit assists in enforcing the synchro-
3. Probe: nization barriers embedded in the program. This op-

a. Compute the coordinates of all other features eration mode is also referred to as synchronized MIMD
points in the scene relative to the selected basis.

b. Quantize each of the above computed coordinates mode [2].
and use it as a key to access the hash table We will not elaborate on parallelizing the preprocess-
containing the entries of the (model, basis) pairs. ing phase, since it is a one time process and can be car-

c. Vote for the entries in the hash table. ried out off-line. However, details of that procedure can
d. Select the (model, basis) pair with the maximum be found in (71. The size of the model database (the

votes as the matched model in the scene. number of hash bins) is O(Mn3 ).
4. Verification:

Verify the candidate model edges against the 3.1 Partitioned Implementation of the
scene edges. Recognition Procedure

5. If the model wins the verfication process, remove the We use P processors such that 1 < P < S, where S is
corresponding feature points from the scene.

6. Repeat steps 2, 3, 4, and 5 until some specified the number of feature points in a scene. Each Processing
condition. Element (PE) in the array is assumed to have O(-p-)

end memory.
The input is a scene consisting of S feature points. In

Figure 2: Outline of the steps in sequential recognition. the recognition phase, possible occurrence of the models
(stored in the database) in the scene is checked. The
models are available in a hash table created during pre-

with various hash functions and hash functions distribut- processing. All the models are allowed to go under rigid
ing the feature points uniformally into the hash table are and or similarity transformations. An arbitrary ordered
known [18]. We will be using these hash functions in our pair of feature points in the scene is chosen. Taking
implementations. Assuming that S feature points of the this pair as a basis, a probe of the model data base is
input scene leads to O(S) total number of votes, the vot- performed. The main steps of a parallel algorithm to
ing process in a probe of the recognition phase can be im- process a single probe of the recognition phase are given
plemented in O(S log S) time using sorting. Other parts in Figure 3.
of the computation are time consuming, even though As we are using less number of processors than the
they do not contribute to the time complexity. Note size of the hash table, each PE will have several hash
that the total number of (model, basis) pairs is O(Mn 2 ). table bins stored in its local memory. Two issues arise
The voting time can be reduced to O(S + Mn 2 ) by em- during the execution of the procedure Parallel.ProbeO.
ploying O(Mn 2 ) boxes to collect the votes. Through out 1. More than one feature point in the scene may cast
this paper, we assume S << MnO. their votes to the same location in the hash table,

resulting in a contention for a single memory loca-
tion in a PE (see Figure 4).

2. More than one feature point in the scene may cast
their votes to different bins stored in a PE, resulting
in a congestion at a PE (see Figure 5).
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ParallelProbe(S, P) ImI Tom

/* S is the number of features in the input scene/i:
and P is the number of processors.
Initially each PE is assumed to have S/P distinct i
scene feature points stored in a local array FPOl. */

- Choose an arbitrary pair of feature points in the
scene as a basis and broadcast it to all the PEs.

- ComputeKeys()o k 3

- Voteo ?
- Compute-Winner0 b

end

Figure 3: A parallel procedure to process a probe of the
recognition phase.

Figure 5: Congestion at a PE while accessing different
hash bins stored in a PE.

Ruh Ta~e

/over the network.

Similarly, in order to address the processor congestion
} problem, we propose to store multiple copies of the hash

key table in the array. In the worst case, a copy of the hash
table can be assigned to each sub-array of suitable size.

k"3 This increases the size of the memory required within
* each processor. Each PE restricts its search for the hash

table bins within the corresponding subarray. This solu-
j--uss ( tion localizes the congestion problem to the sub arrays.

MergeKeys(INPUT)

Figure 4: Contention for a single hash bin. - Sort(INPUT)
- In parallel, each PE,, 0 < i < P- 1

for each distinct key j, 0 < j _< S/P - 1.
Identify the leader key and mark it in the array

The worst case in both the cases will be O(S) con- INPUT[j].
tention and congestion. Such a scenario can lead to no - In parallel, each PE,, 0 < i < P - 1
speedup at all. On the other hand, other researchers for each leader key,
have used large number of processors to avoid congestion Count the number of keys same as the leader key

and contention problems. However, in their implemen- end and store it in OUTPUTFI.
tations the processor utilization is extremely low. Also,
such solutions result in enormous communication over- Figure 6: A parallel procedure to merge quantized coor-
heads in performing global operations, such as global dinates of feature points of the scene.
max and histogramming, as evident in the implemen-
tations proposed in [1; 181. In the following, we ad-
dress these issues and present efficient mapping and rout- In the following analysis, we ignore the initialization
ing techniques to resolve the contention and congestion costs, such as loading the scene points to the processor
problems arising in performing a probe, while using a array, loading hash table locations to the processor array,
small number of processors. and initialization of memory locations used inside each

In order to eliminate the memory contention prob- PE. These assumptions are also made in the previous
lem in the array, we introduce a AfergeKey() procedure implementations reported in [1; 18].
shown in Figure 6. This procedure sorts the hash table For asymptotic time analysis, we employ a model of
keys corresponding to the input scene. The keys having CM-5 operating in SIMD mode of operation. The fat tree
the same key value reside in a block of PEs and in each [14] is the underlying interconnection network of CM-5.
block the least indexed PE holds the leader key. The We assume an SIMD mesh array, shown in Figure 8, for
leader key has the sum of the number of elements in its asymptotic time analysis on MP-1.
block. During the voting process, each leader key ac- Theorem 1 Given a fat tree architecture consisting of
cesses the PE holding the corresponding location of the P leaf nodes, one probe of the recognition phase can be
hash table and casts a vote on behalf of all the keys in its processed in 0( log S) time on a scene consisting of S
block, i.e. if there are in elements in the block, m votes p p
will be registered for the corresponding location in the feature points, ulhere log2 P _ logS. 0.
hash table. This reduces the number of accesses to the The restriction on P can be relaxed if sufficient num-
hash table stored in a PE and thus reduces the traffic ber of copies of the hash table is available. Based on the
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4.2 The MasPar MP-1

The MP-1 is a massively parallel SIMD computer system
with upto 16K Processing Elements. The system con-
sists of a high performance Unix Workstation as Front
End (FE) and a Data Parallel Unit (DPU). The DPU
consists of PEs, each with upto 64 Kbytes of memory
and 192 bytes of register space. All PEs execute instruc-
tions broadcast by an Array Control Unit (ACU) in lock

% M rIP.,2 sP-1 step. PEs have indirect addressing capability and can
be selectively disabled.

Figure 7: A fat tree model. The machines used in the implementations differ
w.r.t. mode of operation, processing speed of the PEs,
and interprocessor communication bandwidth.

In CM-5, a coarse grain SPMD machine, each pro-
t~w cessing element (PE) is a powerful SPARC processor.

The high computing power of each PE and relatively
expensive communication among processors motivates

Elmn to partition the data such that the algorithms exhibit
........ less communication among PEs at the cost of redun-

dant computation within each PE. However, a balance
between these two is needed to attain speed-ups.

In MP-1, a fine grain massively parallel SIMD ma-
chine, each PE is a 4 bit processor. Interprocessor• " gEmmal

•Mmo €communication is supported through two communica-
tion networks, 1) Xnet for regular communication and

. . 2) router for random communication. As in the geo-
metric hashing algorithm the communication pattern is
irregular, the router network provides superior perfor-

Figure 8: A mesh array model. mance over the Xnet [17]. It is also experienced that the
ratio of unit-floating-point-computation time over unit-
communication time (thru Xnet or thru contention free

above theorem, the algorithm for the recognition phase router) is approximately 1 [8]. It suggests to carefully
isaproesshorem time optimalandiscalesrlinearlyowithfo r ppartition the data such that both the computation and
is processor time optimal and scales linearly with P for communication capabilities of the architecture are fully1 < p < S12. 

utilized.
Theorem 2 Given a mesh array of VP x IP proces-
sors, such that P = S, one probe of the recognition phase 4.3 Partitioning and Mapping

can ie processed in O(v-P) time on a scene consisting of Three procedures, Computekeys(s, Vote(), and Corn-
S feature points. o. puteWinner() shown in Figures 9, 10, and 11 respec-

Detailed analysis of the running time on these archi- tively, correspond to the steps described in the Par-

tectures can be found in [7]. aleLProbe0 procedure (i.e. Figure 3). The Com-
puteKeys0 procedure computes the transformed coor-

4 Implementation Details and dinates of the scene points and quantizes them according
to a hash function fo. The transformed and quantized

Experimental Results coordinates are stored in NEWFP0. We use the same

In this section, first, we describe the underlying mod- hash function as in[18]. This hash function distributes
els of the machines used in our implementations and the data uniformly over all the hash bins. The trans-

then present data mapping and partitioning strategies formed coordinates are then used as keys to access the

employed on these machines. data in the hash table. The Voteo procedure routes
the keys to their corresponding hash locations stored in

4.1 The Connection Machine CM-5 PE,(ke). The function go defines the mapping of the

A Connection Machine Model CM-5 system contains be- hash table entries onto the processor array. The loca-

tween 32 and 16,348 processing nodes. Each node is a tions in the hash table accessed during voting are stored
32 MHz SPARC processor with upto 32 Mbytes of local in CANDIDO array. This array is used in computing the

memory. A 64 bit floating point vector processing unit final winner. The size of this array is much smaller than

is optional with each node. Each processing node is a the size of the hash table stored in each PE.

general purpose computer that can fetch and interpret Next, the Compute.Winner() procedure determines

its own instruction stream. System administration tasks the model-basis pair having the maximum number of

and serial user tasks are performed by control proces- votes. The winning pair is then sent to the control pro-

sors. Input and output is performed via high-bandwidth cessor to perform the final verification.
I/O interfaces. Based on the above described subtasks of the Paral-
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Compute.Keys(FP, P) ComputeWinner()
In parallel for all PE,, 0 < i < P - 1, do /* Each PE is assigned -" 2 distinct model-basis

for r = 0 to S/P - 1 pairs to compute the number of votes cast to them.*/
- Compute the transformed coordinate of the

feature point FP[r] relative to the basis In parallel, in each PE., 0 < i < P - I
and store it in NEWFP[r]. Send every element of the CANDIDO array to the PE

- Quantize NEWFP[r] using hash function Jo. assigned for computing the total number of votes for
next r that element.

Parallel-end In parallel, in each PE,, 0 < i < P - 1
end Count the total number of votes for each distinct

(model, basis) pair received and store it in
Figure 9: A parallel procedure to compute the coordi- VCOUNT[model, basis].
nates of feature points of th e scene. In parallel, in each PE., 0 < i < P - I,

Compute the local maximum of VCOUNTO array and
store it in locaLmax.

Vote(FPNEW, P) Compute the maximum of local.maz over the

In parallel, each PE,. ti < < P - 1, do entire processor array.

k := 0;
for j = 0 to SIP - I /* The (model, basis) pair with maximum number
- Send a vote (additive write) to processor and of votes is the matched model in the scene.

location specified by g(NEtVFPU]). end
- If a vote is received, copy the contents of the

corresponding hash-table entry in the array Figure 11: A parallel procedure to compute the winning
CANDID[k++]. (model, basis) pair.

next j
ParlIel-end
end which correspond to hash table locations stored in

Figure 10: A parallel procedure to vote for the possible its local memory.

presence of a model in the scene. . Executes the Compute- Winner() procedure.

Algorithm B:

. The control processor broadcasts SIP scene points
leLProbe() procedure, several data mapping and parti- to each processor
tioning strategies are developed, which affect the overall along with a basis pair.
execution time of the recognition phase. * Execute the CompKeys() procedure

In the following we present four algorithms, which we
have experimented with. These algorithms differ with re- e Execute the SortKeys() procedure.

spect to partitioning and mapping of the hash table onto . Execute the Vote() procedure
the processor array. Various strategies ar"- employed to * Execute the Compute_ Winnerf) procedure.
take into account practical considerations, such as avail-
able memory in each PE, processor speed, and I/O s Algorithm C:
of the machines. In Algorithm A, and Algorithm B,ofassume the m h es.h prncAlgorithms asgned A tinthm , In this algorithm, we assume multiple copies of the hash
we assume that each processor is assigned A distinct table stored in the processor array.
hash table locations. In Algorithm C, each sub-array
of processors is assigned a complete copy of the hash * The control processor broadcasts SIP scene points
table. Each processor in a sub-array of size, s2, where to each processor

1< s< vr, has M"47 distinct entries of the hash table. along with a basis pair.

The case of large number of processors is considered e Execute the CompKeA's() procedure
next. Algorithm D performs concurrent processing of * Execute the SorLKeysO procedure.
multiple probes of the the recognition phase. The array * Execute the Vole( procedure such that the data
is divided into disjoint sets of S processors. Each set of search is bounded with in its sub-array
PEs processes a probe using a basis (a different basis for
each set). * Execute the Compute-Vinner() procedure.

Algorithm D:

Algorithm A: In this algorithm, we assume that the number of PEa

"* Execute the CompKeys() procedure serially in the is larger than the number of feature points in the scene.

control processor and broadcast * The control processor broadcasts SIP scene points
the encoded points (keys) to each processor in the to each PE.
processor array. e The control processor broadcasts a basis pair to all

"• Each processor scans through all the keys and ac- PEa in each
cumulates votes for the keys subarray of size S.
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"* Execute the CompKeys() procedure. Larger MP-Is have been used for concurrent process-

"* Execute the SortKeys() procedure. ing of multiple probes (Algorithm D) and results are
reported in Table 3. Several interesting observations on

"* Execute the Vote() procedure the interplay between various components of the MP-1

"• Execute the Compute- Winner() procedure. architecture can be made from this table. As the number
of PEs increases with the number of concurrent probes,

4.4 Experiments and Summary of Performance it affects various components of the execution time. For
Results example, larger size machines mean larger diameter im-

We have used a synthesized model database, contain- plying more time for global operations. On the other
ing 1024 models, each model consisting of 16 randomly hand, larger machine size reduces the load on each pro-
generated points. These points are generated according cessor, hence less time is spent on local operations.
to a Gaussian distribution of zero mean and unit stan- Figures 12 and 14 show the performance of Algorithms
dard deviation. The models are allowed to undergo only B and C. The bin access time and voting time reduces
rigid transformation. However, results from other trans- linearly as the number of copies of the hash table in
formations do not affect the performance of the parallel the processor array increases. The hash bin access time
algorithm. Similarly, scene points are synthesized using refers to the time taken to access hash bins correspond-
normal distribution. We apply the equalization tech- ing to feature points in the scene. The voting time cor-
niques, given in [18], to the transformed coordinates, responds to routing the information within each voted
i.e., for each of the transformed point (u, v), following bin, (model, basis) pairs, to compute local maximum for
hash function is applied, each pair. In Figs. 13 and 15, we simulate worst-case and

2 2 semiworst-case scenario. For the worst-case, we assume
f(u, v) = (1- e - '-- , atan2(v,u)) that all the scene points hash to locations stored in a

single PE and in the semiworst-case, all the keys hash
The above hash function uniformally distributes the to locations stored in a small subset of PEs. The results

data over the hash space such that the average hash bin show the performance of various partitioning strategies
length is constant. We assume a data base of 1024 mod- adopted in algorithms B and C. In the case of hash bin
els with 16 points in each model. This gives a hash table access, the access time decreases linearly with the in-
size of 4M entries. Each entry may consist of several crease in the number of hash table copies resident in
(model, basis) pairs. We have experimented on various the processor array. On the other hand, beyond a cer-
data granularities in the hash table comprising of aver- tain number of copies of the hash table, the voting time
age bin lengths of 1, 4, 8, 16 and 32. These granularities starts increasing (see Fig. 15). This is due to the in-
can be chosen according to the local memory available creased network traffic generated by larger number of
within each PE. We have executed these algorithms on copies.
various sizes of CM-5 and MP-1, both in terms of number
of PEs in the array and local memory available within
each PE. Contrary to the results reported in [18], we
claim that for a single probe of the recognition phase,
machine sizes larger than S would deteriorate the time
performance. This is due to the fact that interconnec-
tion networks with larger diameter takes more time to .
perform global operations. We also show, in algorithms
D, larger size machines can be used for concurrent pro- ,
cessing of multiple probes of the recognition phase. i

In the following, we tabulate our results for partition- I .
ing algorithms A, B, C, and D. Raw timing data are Ab="..

included in the Appendix A. Table 1 presents execution ...........
times of various subtasks using partitioning algorithms ......
described in the previous section. The Algorithm A ad-
dresses the congestion and contention problem by com- 1 2 ,
puting the keys in the control processor/array control
unit at the cost of redundant processing in each proces-
sor in the array. As shown in Table 1, for Algorithm A, Figure 12: Hash bin access time vs Number of hash table
the computation time in the control processor becomes copies for Algorithm B and Algorithm C on a 512 PE
the dominating factor in the overall execution time. We CM-5.
did not execute Algorithm A on MP-1 because of the
large computation time and insufficient memory avail- In Table 4, we compare our results with those reported
able within the control unit. We are unable to execute in [1; 18]. We assume no hash table folding, symmetries,
Algorithm B on various size of MP-I as the smallest size and or partial histogramming on the hash table data.
MP-I consists of IK processors. The performance of Al- Our serial implementation shows that one probe of the
gorithms A, B, and C on various sizes of CM-5 and MP-1 recognition phase takes about 13.4 seconds on a SUN
is shown in Table 2. SPARC2 operating at 25MHz and 32 Mbytes of on board

RAM.
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Figure 13: Hash bin access time vs Number of hash ta- Figure 15: Voting time vs Number of hash table copies
ble copies for Algorithm B and Algorithm C simulating for Algorithm B and Algorithm C simulating worst-case
worst-case scenario on a 512 PE CM-5. scenario on a 512 PE CM-5.
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Figure 14: Voting time vs Number of hash table copies
for Algorithm B and Algorithm C on a 512 PE CM-a.

in the voting process, performance of SIMD machines
degrades drastically. Such computation and commu-SPer ncari M- snication characteristics suMest the use of SIMD and

CM-5 SPMD machines in applications with varied character-istics. Traditionally, SIMD machines are known to beDuring the implementation of geometric hashing algo- well-suited for low level vision operations. However, MP-
rithm, we experimented with various aspects of the MP n 1, with an additional router network motivates the use

and CM-5. Usually, SIMD machines employ fine grained of MP-1 for applications with moderate computational
massive parallelism and computationally less powerful needs and regular global communication patterns. Sev-
processing elements. In MP-1, we could access ma- eral heuristic techniques in high level vision fall in this
chines with upto 16K processors. However, each pro- category. SPMD machines, such as CM-5, are suitable
cessor has a 4-bit ALU. It takes 2.51 msec to encode a for applications with high computational needs and mod-
scene point. The encoding process comprises of approx- erate global communication requirements. In addition,
imately 7 floating point operations and 5 integer arith- in the absence of efficient data partitioning and routing
metic operations. On the other hand, SPMD (synchro- techniques, the performance of such machines degrades
nized MIMD) machines employ coarse grain parallelism for applications with local neighborhood communication
with powerful processors as processing nodes. It takes requirements. The m,. iory available with each proces-
0.0825 msec to encode a scene point. However, com- sor also affects the usage of the underlying architecture.
munication intensive subtasks perform poorly on CM-5. Traditionally, due to limitations of VLSI and cost con-
For example, computing maximum of data elements, one siderations, memory available within each processor is
element per processor, takes 0.32 msec on a 512 proces- relatively less in SIMD machines, compared with SPMD
sor CM-5, and it takes 0.055 msec on a 1024 processor machines. Limited memory can affect the performance
MP-1. If communication pattern is irregular, such as
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of applications which require storage of large volume of [9] A. Khokhar and W. Lin. Stereo and image matching
on-line data. on fixed size linear arrays. In International Parallel

Processing Symposium, Newport Beach, CA, 1993.
5 Conclusion [10] A. Khokhar, W. Lin, and V. K. Prasanua. Stereo

We have presented scalable data parallel algorithms for and image matching on fixed size mesh arrays.
geometric hashing. Based on these algorithms, we have In International Conference on Computer Architec-
obtained fast parallel implementations. The implemen- tures and Machine Perception, Paris, France, De-
tations achieve much superior time performance than cember 1991.
those known in the literature. These implementations [11] A. Khokhar, V. Prasanna, and C. Wang. Object
are developed after carefully studying the characteris- recognition using geometric hashing on the Connec-
tics of the underlying architectures of CM-5 and MP-I, tion Machine CM-5. Technical report, Department
i.e. fat tree and mesh array, respectively. Various exper- of EE Systems, University of Souther California,
iments were conducted to fine tune the partitioning and Los Angeles, CA, September 1992.
the mapping strategies to suit the communication and [12) V. K. Prasanna Kumar. Parallel Algorithms and
the computation capabilities of these machines. Based Architectures for Image Understanding. Academic
on these experiments, data parallel algorithms were de- Press, 1991. Edited Volume.
signed to efficiently utilize the architectural and pro-
gramming features. This experimentation has assisted (13] Y. Lamdan and H. J. Wolfson. Geometric hash-
in achieving uniform distribution of work load in the ma- ing: A general and efficient model based recognition
chines during the execution of algorithms leading to fast scheme. In International Conference on Computer
and scalable implementations. Our early work in using Vision, pages 218-249, Tempa, FL, December 1988.
CM-5 and MP-1 for high level vision is very encourag- [14] Charles E. Leiserson. FAT-TREES:universal net-
ing and brings a promising future to the applications of works for hardware efficient superomputing. In
parallel processing techniques in realizing real time inte- International Conference on Parallel Processing,
grated vision systems. pages 393-402, 1985.
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(Partitioning 1Machine Encoding IHash Bin IVoting Computing Local Computing Global ITotal1

Algorithm Type Scene Points Access Maximunm of Vo,, Maximum of"ote. Time

A CM-5 33.3 5.45 1.04 1.83 0.29 41.45
B M-W5 0.33 1.96 2.27 1.83 0.29 6.68
C -CM-5 0.33 1.33 1.96 1.83 0.29 5.74
B MP9IF--1 2.51 -18.5TT 24.10 3.36 0.055 487

C M-1T 2.51 6.78 20.02 3.36 . .055 32.72

Table 1: Execution times (in msec) of various subtasks in a probe using different partitioning algorithms for a scene
consisting of 1024 feature points on a 256 CM-5 and IK MP-1.

Machine Size/Type Algorithm A (in msec) Algorithm B (in msec) Algorithm C (in msec)

32/CM-5 78.07 35.38 25.48
64/CM-5 61.04 19.75 16.02
128/CM-5 50.02 10.77 8.96
256/CM-5 41.45 6.68 5.74
512/CM-5 51.74 4.41 3.8
1K/MP-1 XX 48.76 32.72

Table 2: Execution times (in msec) of various algorithms on a scene consisting of 1024 feature points.

Number of Machine Encoding Hash Bin Voting Computing Local Computing Global Total

Probes Size Scene Points Access Max of Votes Max of Votes Time

1 IK 2.51 18.53 24.10 3.36 0.055 48.76
2 2 223.16 3 8.0.15
4 4K 2.51 40.36 49.86 8.16 0.314 101.20
8 8K 2.51 54.62 49.72 8.16 0.608 115.62

Table 3: Execution times (in msec) of Algorithm C on a scene consisting of 1024 feature points with concurrent
processing of multiple probes on various sizes of MP-1. Average bin size is 8.

Methods * of Models Machine I # of Scene Total

(16 points/model) Size/Type Point. Time

Our Method (A) 1024 256/CM5 1024 42.76 msec
Our Method(C) 1024 1256CM-5 1024 5.74 msec

Our Method (B3 1 1024 IK/MP-1 1024 1 53.37 mnsec
Our Method 1024 1K/MP-1 1024 1 38.89 msec
Our Metho B 1024 1 -1 209 4"- 5"m-sec
Our Method(1) 1024 256/CM-5 200 4.50 msec

Hummel et. al.118] 1024 8K/CM-2 200 800 msec
Medioni et. al. [11 x 8K/CM-2 x 2.0-3.0 sec

Table 4: Comparison with previous implementations.

"0Each processor in CM-5, CM-2, and MP-I operates at 32MHz, 7MHz, and 12.5MHz respectively.
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Abstract database and the sensed data may also have under-
This paper presents a new robust low-computational- gone a general linear transformation, due, e.g., to the

viewing of a target boundary on the ground from ancost system for recognizing freeform objects in 3D range arbitrary aerial viewing direction. Hence, an objectdata or in 2D curve data in the image plane. Objects are in the database has to be rotated and translated in

represented by implicit polynomials (i.e., 3D algebraic checking its match to the sensed data. This usually
surfaces or 2D algebraic curves) of degrees greater than checking ab a d to the datfo
2, and are recognized by computing and matching vec- the boundary model moved to many different posi-
tors of their algebraic invariants (which are functions of tions and linearly transformed, thus incurring a huge
their coefficients that are invariant to translations, rota- amount of computation. The approach presented in
tions, and general linear transformations). Implicit poly- this paper avoids both these drawbacks.
nomials of 4th degree can represent complicated asym-
metric free-form shapes. This paper deals with the de-
sign of Bayesian (i.e., minimum probability of error) rec- 2 Recognition Approach
ognizers for these models and their invariants that results
in low computational cost recognizers that are robust to The approach in this paper is to model 3D and 2D
noise, partial occlusion, and other perturbations of the objects of interest by algebraic surfaces or curves,
data sets. This work extends the work in [4] by devel- respectively, i.e., by the zero sets of implicit polyno-
oping and using new invariants for 3D surface polyno- mials. The zero set is the set of points (z, y) in 2D
mials and applying the Bayesian recognizer to operating (or (z, y, z) in 3D) for which the polynomial function
on invariants. The recognizer seems to be ideally suited f(x, y) on 2D (or f(z, y, z) on 3D) is zero. Then, a
to robot vision, handprinted character recognition, ATR stored model is simply the set of coefficients for the
when used with Kimia's partitioning algorithms [10, polynomial model. These are global 3D models, un-
5], and other applications. like explicit polynomials where z is given as an ex-

plicit function of z and y as in a depth map. Most
of the early work on implicit polynomial curves and

1 Introduction surfaces was limited to quadrics, thus dealing with
The simplest 2D or 3D recognition problem is that a representations that had modest expressive power.
boundary model is stored in a database for each of L Implicit polynomials of degree greater than 2, on the
rigid objects. (By an object boundary, we mean the other hand, have great modeling power for compli-
3D object surface, and external and internal bound- cated objects and can be fit to data very well. In [7],
ary curves for a 2D object.) Data along the entire Taubin, formerly of our laboratory, has presented a
boundary or over a portion of the boundary of an very well organized and understandable introduction
object to be recognized is collected from a sensor. to these polynomials and some of their properties,
Object recognition is to be realized by determining and developed very effective approaches to low com-
the stored boundary model that fits the sensed data putatiopal cost algorithms for fitting these polyno-
the best. By best, we mean in the sense of mini- mials. Hence we can now use these high degree im-
mum mean squared distance from the data points to plicit polynomials for representing complicated ob-
a boundary model. This shouid produce the recog- jects. In addition, we have developed a technique for
nizer functioning with the highest relative frequency fitting polynomials with bounded zero sets, which re-
of correct recognition. What are the drawbacks to suits in better and more stable description of objects
this approach? There are two, both computational. [3].
First is that, if there are N data points, order of For the implicit polynomial models, checking the
NL computations must be made for checking on the fit of a stored surface or curve to data involves fitting
mean square fits of L r-,.)red object boundaries to N an implicit polynomial to the data, and then com-
data points. This can oe considerable if L is large. paring the resulting polynomial coefficients with the
Second is that the position of the object being sensed L coefficient vectors (one for each object) stored in
will be different than the position of the object in the the database. If the object to be recognized is in a

different position than the object in the database,
"This work was partially supported by NSF Grant the coefficients for the best fitting polynomial to the

#IRI-8715774 and NSF-DARPA Grant #IRI-8905436 data will be different than the coefficients for the
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same object in the database. Our solution to this variants [4, 2], is
problem is to use a vector of algebraic invariants for 2
a recognizer. An algebraic invariant is a function of 216a?21 a202 - 648a112ai3oa202 + 1296ao4oa2O2-
the implicit polynomial coefficients that is invariant 108a11a2121a211 + 972a1o3a 1 3oa21 l - 648a031a2O2a2il+
to rotations and translations for 3D surfaces and is 216a022 611 + 216a• 12 a220 -2 64861o3a121a2o+

invariant to translations and general linear transfor- 432ao22a2o2a220 - 648a013a211a220 + 1296aOO4a2o-
mations for 2D curves. The required computation 3888a04oa103a331 + 972a031 a112a301 - 648a022a121 a301+
for comparing the set of coefficients or the set of in- 972ao13a13oa301 + 972ao31aio3a31o - 648a022a112a310+
variants is roughly the order of the number of data 972ao13a121a310 - 3888aoo4a13oa310 + 1296aS22a40o-
points (which is the amount of computation required 3888a0136031a400 + 15 5 5 2 aoo4ao4oa4oo
to fit an implicit polynomial to the data set). Un- Experimental results on using these invariants for
fortunately, the situation is not quite so simple, and object recognition are given in section 4.
a problem arises here. This paper presents the solu-
tion to the problem and the resulting recognizer. 3 Asymptotic parameter

The problem that had to be solved is that small distribution and Bayesian
changes in a data set often result in large changes
in the coefficients of the best fitted polynomial, and, Recognition
hence, large changes in the algebraic invariants. The L
reason for this variability is due to the fact that the Let a denote the vector of coefficients of the polyno-
data used in fitting the polynomials provides con- mial f(s , y, z) that describes the given object. We
straints among the coefficients of a fitted polyno- assume thatithe rngendata points Z1, Z2 ,..h.i , ZN
mial, but the data may be insufficient to uniquely are statistically independent, with Z, having proba-
determine the coefficients. Hence, since the fitted bility density function (pdf)
curve and stored curve coefficients may differ greatly, 1 1 f 2( Zi)
we cannot compare the curves over the local region p(Zi I a) 70,2 exp - 1 I (1)
of interest based on their coefficients or the invari- 20"2 [I Vf(Z,) 112'
ants, which are functions of these coefficients. Our
solution to this problem is to treat recognition as The assumption is that Zi is a noisy Gaussian mea-
Bayesian statistical recognition in the presence of surement of the object surface in the direction per-
noisy data, and to use certain asymptotic results pendicular to the boundary at its closest point.
which permit a computationally low cost recognizer. This model is introduced and discussed in [1, 6,
The resulting recognizer involves comparison of the 4]. Thus, the joint probability of the data points
measured vector of invariants, but not using the Eu- is
clidean distance. Rather, the error measure requires N
the use of a weighting matrix which is a function ofI i f 2 (Z,)
the specific data set being recognized. The required p(ZN I a) - exp[- f2(Zi)
computation for computing this matrix is of the or- "2 (2)

der of the number of data points, and hence, modest (2)
and suitable for real time recognition. The beauty Being able to write this joint probability for a data
of this approach is that even though it uses global set in terms of a complicated curve or surface is an
models - implicit polynomials and coefficient vec- important result and permits the application of a
tors - it behaves as though recognition is based large range of tools from statistics and probability
on the matching of a local data set to a boundary theory. The maximum likelihood estimate &N of a
model. Hence, it works excellently even if the data giver the data points is the value of a that maxi-
set is over only a portion of the object boundary, mizes (2). A very useful tool for solving the prob-
which will be the case due to self occlusion if range lems of object recognition and parameter estimation
data is taken for a SD object from one direction, or is an asymptotic approximation to the joint likeli-
which may be the case if one or more objects are hood function, (2), which can be shown to have a
partially occluding the object to be recognized. Gaussian shape in a [1, 6], i.e.,

The known invariants in the mathematical liter- p(ZN
ature are affine invariants (i.e., quantities that are p(Z a
invariant under translations, rotations and stretch- [P(ZN 6 &N)] exp{-½(a - &N)

t *N(a - GN)}
ings along the x, y and z axes) that are functions of (3)
only the leading form. The leading form is the part where g*N is the second derivative matrix hav-
of the polynomial that contains terms of the high- ing i, jth component - 82 In p(ZN I a) Ia=&N"es dgee orexmle 2oz + 1z oy2 is 8,0
est degree. For example, a20X2 + aIy +. a02Y is Hence, all the useful information about a is sum-
the leading form of the second degree implicit poly- marized in the quadratic form in the exponent of
nomial f(x, y) = a20Xo + al 1 xy + ao2y2 + alox + equation (3). If %N is not singular, then it is the
aoly + a00, in 2D. We extend this in [8, 2, 4, inverse covariance matrix of &N. The matrix %N is
9] where new large classes of affine and Euclidean called the Fisher Information matrix of &N. Various
invariants of all the coefficients in a polynomial extremely useful generalizations of (3) are developed
are introduced. An example of a new affine in- in [6].
variant for a fourth degree polynomial in x, y, z, The asymptotic approximation (3)gives an under-
f(x, y, z) = "i+j+k<4 aijkx'yi zk, found using our standing of the extent to which the data constrains
symbolic method for discovering new algebraic in- the coefficients of the best fitting polynomial [4].
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The next section deals with using this approxima- costly computation here is that for *N which is lin-
tion for designing a metric based on the geometric ear in the number of data points and is of the order
invariants for comparing two polynomial zero sets of the computation in step 1. Hence, the computa-
over the region where the data exists. tion of the Mahalanobis distance for 200 data points

and a 4th degree curve is a fraction of a second on
3.1 Mahalanobis distance between two sets a SPARC 10 and can be sped up by orders of mag-

of Invariants nitude with parallel architectures.
The scenario for recognition that we consider in this Experimental results illustrating the use of the
paper is one where we have a set of objects labeled Mahalanobis distance for recognition are given in the
I = 1, 2, ... , L in the database, all modeled by poly- next section.
nomials of the same degree. Let G1 denote the
vector of invariants for the polynomial describing 4 Experimental Results
object 1. Then, given a set of range data points,
ZN = {Z 1 , Z2 , ... , ZN}, the optimum recognition The experiments illustrate the use of the Maha-
rule is 'choose I for which p(ZN I GI) is maximum'. lanobis distance in the space of invariants for recog-
Thus, the recognition problem reduces to computing nizing 2D and 3D objects from real data that may
the likelihood of the data given G. In [6], we have be partial and that is noisy. The experiments also
shown that illustrate the fact that the Mahalanobis distance has

better discriminatory power than does the Euclidean
(Z ) [(zN * ] HI- distance.

SI G) ;PZe I 'N)J (2) I 'N (4) The first set of experiments illustrate the perfor-
exp- 1(G - 4N),*G(G - dN)} mance of the recognizer for 3D objects. The ob-

p N -jects in this experiment are keyboard mice. Figure
where an H . 1 shows the four mice used in this experiment. Fig-where and are the Information matrices ures 2(a)-(d) are the data sets and the polynomial

of the vector of invariants and a vector of nuisance fits for the mice in standard position. (The polyno-
parameters, respectively, and dH is the number of mial fits were obtained using our approach for fitting
nuisance parameters. bounded polynomials). The data sets were obtained

Using (4) for the simplest case of recognition, using the Brown and Sharpe Microval Manual coor-
the optimum recognition rule becomes - 'Choose dinate measuring machine. All the data sets are well
I for which the Mahalanobis distance, (GI - fit by fourth degree polynomials in z, y, z. These
GN)t*G(GI - GN), is minimum.' This is be- are the four objects in the database.
cause, the only part of (4) that is a function of 1 Figures 3(a)-(d) are the data sets and polynomial

is G-N)* (G -fits or the rotated and translated versions of the
is exp{-N(G- - GN)J- mice in the database. We used 7 invariants for a

The beauty of this recognizer is that the computa- fourth degree polynomial in z, y, z. All of them
tional cost is negligible, but the recognizer is equiv- are listed in [2]. The goal in this experiment is to
alent to checking how well the data fits the models recognize the mice in Figures 3(a)-(d) using the Ma-
stored in the database for different linear transfor- halanobis distance measure and compare the results
mations of the models for which the computational with those using the Euclidean distance.
cost is enormous. Tables I and 2 show the Mahalanobis and the Eu-

In summary, object recognition using invariants is clidean distances, respectively, between the vector of
done as follows. invariants for the polynomial fits to the rotated mice

1. Fit the best polynomial to the data set. in Figure 3 and the vectors of invariants for the four
mice in the database. The Mahalanobis distance2. Compute the invariants GN which are functions measure does a great job of discriminating between

of the coefficients of the polynomial. the right object and the rest. Also, the Mahalanobis
3. Compute the Mahalanobis distance, (GI - distance has much better discriminatory power than

GN) to each object in the does the Euclidean distance.

database and pick the i for which it is a mini- The next experiment illustrates the use of the Ma-
mum. halanobis distance for recognizing 2D and 3D objects

from partial data.
This computational cost for step 1 is linear in the Figure 4 shows the partial data (with the polyno-

number of data points, and typically is a fraction of mial fit superimposed) for the mouse in Figure 2(a).
"a second on a SPARC 10 for 200 data points and The partial data in this experiment is what a stereo
"a 4th degree implicit polynomial curve. In step 2, sensor would see when looking at the mouse from
invariants such as that in section 2 must be com- a point near the bottom left corner. The Maha-
puted. Computation time for 5 to 10 of these is less lanobis and Euclidean distances between the vector
than that for step 1. The only time consuming com- of invariants for the polynomial fit to the occluded
putation in step 3 is the computation of qN . This object and the stored vectors of invariants are:
matrix is given by Mahalanobis distance:

Mousel :1.0 Mouse2 : 1065
N = (DG)t' 1,=&, *N(DG)t I Mouse3 : 30.31 Mouse4 : 1.004

Euclidean distance:
where t implies pseudo-inverse and D(G) is the Ja- Mousel :1.0 Mouse2 : 18.39
cobian of the transformation from a to G. The Mouse3 : 1.619 Mouse4 : 0.901
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The Mahalanobis distance to Mousel is the small- sity, February 1992. Accepted for publication as a
est. However, the Mahalanobis distance to Mouse4 regular paper in the IEEE Transactions on Pattern
is almost the same as that to Mousel. This is be- Analysis and Machine Intelligence.
cause the occluded data does not contain the curved [4] D. Keren, J. Subrahmonia, D. B. Cooper, and
front part of Mouse1, and since that is the part that G. Taubin. Bounded and Unbounded Implictd
really distinguishes Mousel from Mouse4, it is hard Polynomial Curves and Surfaces,Mahalanobis Dis-
to distinguish between them based on the partial tances, and Geometric Invariants, for Robust Ob-
data. The distances to Mouse2 and Mouse3 are large ject Recognition. In Proceedings: Image Under-
compared to those to Mousel and Mouse4. The Eu- standing Workshop, pages 769-778, San Diego, Jan-
clidean distance does not give good recognition re- tani W , 6 S g
sults with partial data. In fact, the Euclidean dis- uary 1992.
tance from the occluded object to Mouse4 is smaller [5] Kaleem Siddiqi and Benjamin B. Kimia. Parts of vi-
than that to Mousel. sual form: Computational aspects. In CVPR, 1993.

The data sets for the 2D examples are handwrit- [6] J. Subrahmonia, D. B. Cooper, and D. Keren. Prac-
ten characters. The objects in the database are the tical Reliable Bayesian Recognition of 2D and 3D
handwritten characters, 'a', 'q', 'g' and 'w', shown in Objects Using Implicit Polynomials and Algebraic
Figures 5(a)-(d). The data sets are well fit by fourth Invariants. Technical Report LEMS-107, Brown
degree polynomials in x, y. Figure 6(a) is another University, May 1992. Under review for publica-
instance of the handwritten character 'w' that is a tion in the IEEE Transactions on Pattern Analysis
rotated, translated, occluded and noisy version of and Machine Intelligence.
the one in the database. We fit a fourth degree poly-
nomial to the occluded object in order to compare [7] G. Tanbin. Estimation of Planar Curves, SuDaces
its inwariants with those for the unoccluded database and Nonplanar Space Curves Defined by Implicit
objects. Figure 6(b) is the fourth degree polynomial Equations, with Applications to Edge and Range
fit to the data set in 6(a). Three invariants for a Image Segmentation. IEEE Transactions on Pat-
fourth degree polynomial in z,y obtained using our tern Analysis and Machine Intelligence, 13:1115-
approach are 1138, November 1991.

1. 3a2- 8a04 a22 + 2a 13a31 + 3a21 - 32a 40 a0 4 - [8] G. Taubin and D. B. Cooper. 3D Object Recogni-
13-8a4  a+ tion and Positioning with Algebraic Invariants and

8a22a40, Covariants. pages 147-182, July 1990. A chapter
2. 3aO4 +2ao 4 a22+a13a31-+2ao4 a4o+2a22a 4o+3a~o, in Symbolic and Numerical Computations- Towards
3. a2  aIntegration, pages 147-182, B. R. Donald, D. Kapur

22 - 3ala31 + 12a4a4, and J. Mundy editors, Academic Press, 1992.
Since the invariants should be independant of multi- [9] G. Taubin and D. B Cooper. 2D and 3D Object
plication of the coefficients by a constant, these three Recognition and Positioning System Based on Mo-
functions yield only two invariants. One set of two ment Invariants. In Proceedings of the DARPA-
invariants is I and U. Thus, for object recognition, EePIRITvWorkshop on Geometricgsnoa tantsRPA-3 03ESPIRIT Workshop on Geometric Invariants , Rik-
we use the Mahalanobis distance between the ratios javik, Iceland, pages 235-258, May 1991. Also
of invariants. The Mahalanobis distance from the in book Geometric Invariance in Machine Vision,
letter in Figure 6(a) to the letters 'a', 'g', 'q' and 'w' pages 375-397, J. Mundy and A. Zisserman editors,
in the database are : MIT Press, 1992.
'a':1.00 'q':12.9 'g':12.2 'w':4.81 [10] Kathryn J. Tresness, Kaleem Siddiqi, and Ben-
(The distance to 'a' in the database is normalized
to have value 1.0.) The distance to 'w' is minimum. jamin B. Kimia. Parts of visual form: Ecologi-

However, the distance is small to 'a' and 'q'. This cal and psychophysical aspects. Technical Report

is because, the data set in 6(a) also fits the model LEMS 104, LEMS, Brown University, May 1992.
for 'a' and 'q' as shown in Figures 6(c) and 6(d).
The experiment illustrates that even under a large
amount of occlusion, the recognizer comes up with
the best possible results.
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TABLE 1 (Mahalanobis distances):
Mousel Mouse2 Mouse3 Mouse4
(rotated) (rotated) (rotated) (rotated)

Mousel 1.000e+00 3.517e+02 1.379e+O1 3.519e+00
Mouse2 2.463e+O1 1.000e+00 1.560e+02 2.109e+O1
Mouse3 2.622e+02 3.717e+03 1.000e+00 1.489e+02
Mouse4 2.872e+00 2.818e+03 6.096e+O1 1.000e+00

TABLE 2 (Euclidean distances) :
Mousel Mouse2 Mouse3 Mouse4

(rotated) (rotated) (rotated) (rotated)
Mousel 1.000e+00 2.535e+00 9.614e+00 2.74 le+00

Mouse2 1.822e+00 1.000e+00 1.125e+00 1.547e+00
Mouse3 1.351e+O1 2.322e+00 1.000e+00 7.568e+00
Mouse4 1.446e+00 1.327e+00 2.435e+O1 1.000e+00
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Reflectance Based Recognition

Shree K. Nayar and Ruud M. Bolle

Department of Computer Science, Columbia University, New York, N.Y. 10027 *

Abstract The problem of computing the reflectance of regions
in a scene was first addressed by Land [21. In general,

Neighboring points on a smoothly curved surface h i cn asfrtadesevyLne2] ngnrl
s ave image brightness is the product of surface reflectance

similar surface orientations and illumination conditions. and illumination. Land developed the retinex theory
Hence, their brightness values can be used to compute that suggests computational steps for recovering the re-
the ratio of their reflectance coefficients. Based on this flectance (or lightness) of scene regions in the presence
observation, we develop an efficieut algorithm that esti- of varying illumination. Subsequently, several hardware
mates a reflectance ratio for each region in an image with implementations for the retinex theory were proposed
respect to its background. The region reflectance ratio [3], [4]. The main idea underlying Land's lightness com-
represents a physical property of a region that is invari- putation is global consistency. The lightness value com-
ant to the illumination conditions. The ratio invariant is puted for any particular region must be consistent with
used to recognize objects from a single brightness image those computed elsewhere in the image. However, realis-
of a scene. We conclude with experimental results that tic images include shadows, occlusions, and noise. Each
demonstrate the power of using reflectance and geomet- one of these factors can cause a region boundary to go
ric properties of objects, simultaneously. undetected or the computed lightness of a region to be

erroneous. Such errors can greatly affect the lightness
1 Introduction values computed for all other regions in the image. For

Object recognition has been an active area of machine this reason, Land's global method is not applicable to
vision research for the past two decades [1]. The tradi- most real images.
tional approach has been to recover geometric featuresfromimaes nd hen se hes feture tohyptheize In this paper, we develop an alternative scheme for
from images and then use these features to hypothesize computing the ratio of the reflectance of a region to that
and verify the existence of three-dimensional objects in of its background. The image is first segmented into re-
the image. Edges and vertices are examples of geometric gions of constant (but unknown) reflectance. Next, a re-
features often used by recognition systems. In the past, flectance ratio is computed for each region and its back-
little attention has been given to the use of other phys- ground using only points that lie close to the region's
ical properties of objects for recognition. In addition to goundausIn only poisha the re gion's
its geometry, an object may be characterized by intrinsic boundary. In this approach, the reflectance ratio com-
properties such as reflectance, roughness, and material puted for any particular region is not affected by thosetyp. Cearytherepesetaionof n ojet uingallofcomputed for regions elsewhere in the image. Land's
type. Clearly, the representation of an object using all of analysis [2] was restricted to planar (two-dimensional)
these intrinsic properties is useful only if the recognition scenes with patches of constant reflectance. In contrast,
system is able to compute the properties from images. r derivatio

In this paper, we present a method for computing thethe
reflectance of regions in a scene, with respect to their analysis of regions that lie on curved surfaces. In the
backgrefltnd, ofreiomasine imagen, wiTh respect is aphy- case of curved surfaces, image brightness variations re-
backg ro fom a single image. The result is a phys- sult from both illumination variations as well as surface
ical property of each scene region that is invariant to normal changes. For curved surfaces, our reflectance ra-
the intensity and direction of illumination. This photo- tio invariant is valid when a region and its background
metric invariant, referred to as the reflectance ratio, pro- have the same distribution (scattering) function but dif-
vides valuable information for recognition tasks. The re- ferent reflectance coefficients (albedo).
flectance ratios (photometric features) of object regions
and the spatial configuration (geometric features) of the Recently, Finlayson [5] proposed computing his-
regions are used to represent the object. tograms using ratios in different color channels for object

recognition. Histograms, however, are in general sensi-*This research was supported in part by DARtPA Contract No. tive to the scale and rotation of objects in the scene
DACA 76-92-C-0007 and in part by the David and Lucile Packard

Fellowship. R. M. Bolle is supported by the IBM T.J. Watson and hence are not effective for three-dimensional object
Research Center, Yorktown Heights, N.Y. 10598, U.S.A. recognition and pose estimation. Here, we use the re-
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flectance ratio invariant to recognize objects from a sin- by using an alternative approach which does not require
gle image. This approach is very effective in the case of making assumptions about the spectral distribution of
man-made objects that have printed characters and pic- the incident light and the spectral response of the sen-
tures. Each object is assumed to have a set of regions, sor. Consider a narrow-band filter with spectral response
each with constant reflectance. The reflectance ratio and f(A), placed in front of the sensor. Image brightness is
center of each region are used to represent objects using a then:
hash table. Recognition and pose estimation algorithms
are presented that use the reflectance ratios of scene re- I = f(A) s(A) e(A) r(s, v, n, A) dA (3)
gions to index the hash table. The result is a hypothesis
for the existence of an object in the image. This hypoth- Since the filter is narrow-band, it essentially passes a sin-
esis is verified using the reflectance ratios and locations gle wavelength A' of reflected light. Its spectral response
of other regions in the scene. Recognition results are pre- can therefore be expressed as:
sented for realistic scenes with occlusion, shadows, and
illumination variations. These results show the simulta- f(A) = 6 (A' - A) (4)
neous use of reflectance and geometry to be a powerful The image brightness measured with such a filter is:
approach to object recognition problems. I = s' e' r(s,v,n, A)(5)
2 Reflectance Ratio Invariant

where s' = s(AW) and e' = e(A'). Once again, the re-
The reflectance of a surface depends on its roughness flectance function can be decomposed into a geometrical
and material properties. In general, incident light is function and a reflectance coefficient:
scattered by a surface in different directions. This dis-
tribution of reflected light can be described as a function I = s' e' p' R'(s, v, n) (6)
of the angle of incidence, the angle of emittance, and the
wavelength of the incident light. Consider an infinites- In this case, R'(.) represents the distribution of reflected
imal surface patch with normal n, illuminated with light for a particular wavelength of incident light. On
monochromatic light of wavelength A from the direction the other band, for white-light illumination, R(.) repre-
s, and viewed from the direction v. The reflectance of sents the distribution computed as an average over the
the surface patch can be expressed as: r(s, v, n, A). Now entire visible-light spectrum. However, the individual
consider an image of the surface patch. If the spectral terms in both (2) and (6) represent similar effects. Since
distribution of the incident light is e(A) and the spectral we have used the white-light illumination assumption in
response of the sensor is s(A), the image brightness value our experiments, we will use the following expression for
produced by the sensor is: image brightness in our discussion:

I = kpR(s,v,n) (7)
I s(A) e(A) r(s, v, n, A) dA (1)

The constant k = s.e accounts for the brightness of the
If we assume the surface patch is illuminated by "white" light source and the response of the sensor. The exact
light and the spectral response of the sensor is constant functional form of R(s, v, n) is determined to a great ex-
within the visible-light spectrum, then s(A) = s and e(A) tent by microscopic structure of the surface; generally
= e. We have: R(.) includes a diffuse component and a specular com-

ponent [6]. Once again, the reflection coefficient p is the
I = s e p R(s, v, n) (2) fraction of incident light that is reflected by the surface.

where p R(s, v, n) is the integral of r(s, v, n, A) over the I represents the reflective power of the surface and is

visible-light spectrum. We have decomposed the result sometimes referred to as surface albedo.

into R(.) which represents the dependence of surface re- Consider two neighboring points on a surface (Figure

flectance on the geometry of illumination and sensing 1). For a smooth continuous surface, the two points may
e be assumed to have the same surface normal vectors.and p which may be interpreted as the fraction of the Further, the two points have the same source and sensor

incident light that is reflected in all directions by the sur- directions. Hence, the brightness values, I, and 12, of
face. Incident light that is not reflected by the surface is the two points may be written as:
absorbed or transmitted through the surface. Two sur-
faces with the same distribution function R(.) can have 1 = kp 1R1(s,v,n) (8)
different reflectance coefficients p. 12 = kp 2 R2(s,v,n) (9)

As a result of the white-light assumption, the re-
flectance coefficient p is independent of wavelength. This The main assumption made in computing the reflectance
enables us to represent the reflectance of the surface ele- ratio is that the two points have the same reflectance
ment with a single constant. The same can be achieved functions (R1 = R2 = R) but their reflectance coefficient
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Now, we have -1 < p <- 1. We will use this definition of
the reflectance ratio in the following sections.

3 Reflectance Ratio of a Region

To this point, we have focused on two neighboring
points. Now consider a surface region that has con-
stant reflectance coefficient p, and is surrounded by a
background region with constant reflectance coefficient

P2. We are interested in computing the reflectance ratio
P(S) of the surface region S with respect to its back-

Figure 1: Neighboring points on a surface. ground. The brightness of the entire region cannot be
assumed constant for following two reasons. (a) The
surface may be curved and hence the surface normal can

P, and P2 may differ. An example is that of two neigh- vary substantially over the region. (b) While the illumi-
boring Lambertian points that have different albedo val- nation may be assumed to be locally constant, it may
ues because they lie in regions that have different shades vary over the region. These factors can cause bright-
or colors. Then, the image brightness values produced ness variations, or shading, over the region and its back-
by the two points are: ground as well. However, the reflectance ratio can be ac-

curately estimated using neighboring (or nearby) points
I, = k Pi R(s, v, n) (10) that lie on either side of the boundary between the region

12 = k p2 R(s, v, n) and the background. The reflectance ratio for a region
can then be determined as an average of the reflectance

The ratio of the reflectance coefficients of the two points ratios computed along the boundary of the region. The
is: computed ratio is also a photometric invariant; it is in-

P = h1/12 = P1/P2 (11) dependent of the three-dimensional shape of the surface
and the illumination conditions.

Note that p is independent of the reflectance function, Details of the reflectance ratio algorithm are given in
illumination direction and intensity, and the surface nor- [8]. Due to space limitations, we will simply outline the
mal of the two points. It is a photometric invariant that main steps of the algorithm. The algorithm can be di-
is easy to compute and does not vary with the position vided in two parts. First, a sequential labeling algorithm
and orientation of the surface with respect to the sen- [7] is used to segment the image into connected regions.
sor and the source. Further, it represents an intrinsic During sequential labeling, the reflectance ratio of neigh-
surface property that can be used for object recognition. boring pixels is used as a measure of the "connectivity"

We have assumed that the scene is illuminated by a between the pixels. In the second stage, a reflectance ra-
single light source. Now consider the same scene illu- tio for each segmented region is computed as the mean
minated by several light sources. The brightness of any of the ratios computed for all points on the boundary of
point can be written as: the region. The algorithm is computationally efficient in

that reflectance ratios of all scene regions are computed
I = p [ki R(si, v, n) + k2 R(s 2 , v, n) +.. + kR(s,,, v, n)](12) in just two raster scans of the image [8].

where S8, 92, - ., ,s, are the directions of the n sources 4 Object Recognition
that are visible to the surface point under consideration
and ki, k2 , ... , kn are proportional to the brightness of In this section, we apply reflectance ratios to the prob-
the n sources. Since the reflectance ratio is computed lem of object recognition. The recognition methods pre-
using neighboring points, it can be assumed that both sented here are effective for objects that have markings
points are illuminated by the same set of sources. Then, with different reflectance coefficients. Man-made objects
from (11) and (12) we see that the reflectance ratio p is with pictures and text printed on them are good exam-
unaffected by the presence of multiple light sources. pies of such objects.

Note that by definition p is unbounded; if the second Learning Object Models:
surface point is black, 12 = 0, then p = oo. From a com-
putational perspective, this poses implementation prob- Since, our objective is to recover the three-dimensional

lems. Hence, we use a different definition for p to make pose of an object from a single brightness image, the ob-

it a well-behaved function of the reflectance coefficients ject model must include reflectance ratios of the object

p, and P2: as well as the three-dimensional coordinates of the cen-
troids of each region. This is done using a range finder.

P = (1I - 12)/(11 + 12) = (Pi - P2)/(P1 + P2) (13) We use the image sensor of the range finder to also ob-
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tain a brightness image of the object. As a result, the ((xi, PI), (x 2 , P2 ), . ..). For recognition, a set of three
range and brightness images of the object are registered. regions is selected from the list LR. Consider the three
The reflectance ratio algorithm is applied to the bright- regions (i, j, k). This set is used only if the image cen-
ness image and the ratios (Pm) and centroids (Xm) (in troids of the regions j and k lie within the radius of
the image) of the object's regions are determined. Next, c3herence DR from the centroid of the region i. The
the range map is used to obtain the three-dimensional ratios of the three regions are used to form the index
coordinates (Xm) of points of the object surface that < Pi, Pi, Pk >. If this index does not have an en-
correspond to the region centroids in the image. We try in the hash table, the next set of three regions is
assume that though the object surface may be curved, selected from LR. If an entry does exist, we have a
each constant reflectance region is small compared to hypothesis for the object (say MK). The entry in-
the size of the object and hence can be assumed to be cludes the 3-D centroids of the regions (i, j, k) and a
planar. Under this assumption, centroids of regions in set of centroid-ratio pairs for other regions on the ob-
the image correspond to centroids of the regions in the ject MK. Assuming the object hypothesis is correct,
3-D scene. Usin$ the above approach, a ratio-centroid we have a correspondence between the image centroids
list LA = ((X 1 , PO), (X 2 , P 2),... ,(Xm, Pm'), ... ) is ob- (xi, xi, xk)and the 3-D centroids (Xi, kX, Xk) in the en-
tained for each object. Here, Xm, m = 1..., M are the try. Under the weak-perspective assumption, the trans-
3-D centroids of the regions and P,, m = 1,...,M are formation T from the 3-D scene points to 2-D image
the reflectance ratios. points can be computed from the three corresponding

Next, a hash table [9] is initialized. All object mod- 3-D centroids and image centroids using the alignment

els are stored in the same hash table. The indices in technique proposed by Huttenlocher and Ullman [11]. In

the hash table are invariants that can be computed from general, however, there exist two solutions to the trans-

a single image of the scene. There are no useful ge formation [11]:

metric invariants that can be computed from the spatial x = TKI(X) and x = TK2(X) (14)
arrangement of the region centroids [10]. This is because
object rotation in the scene changes the relative config- Weinshall [12] has shown that instead of computing these
uration of the region centroids in the image. Hence, we two transformations the inverse of the Grammian of the
rely on the photometric invariance of reflectance ratios points Xi, Xi, and Xk can be used to predict the image
for indexing into the hash table. We select three re- coordinates i. of a fourth 3-D point X[ in the entry.
gions, i, j, and k on the object and use their reflectance Again, two solutions to *o exist but if the initial object
ratios to obtain an index < Pi, P•, Pk >. Indices are hypothesis is correct, one of the two solutions is likely to
formed using only those region triplets (i, j, k) whose be close to one of the centroids in the list LR. Further,
centroids in 3-D space lie within the radius of coherence the relectance ratio P,, (in the entry) and P, (in the list
DA. This ensures that the number of indices generated LR) must be similar. The point.*0 is not gauranteed
is O(N), with N the number of visible regions on the to be in the list LR since it may not be visible to the
object, and not combinatorial in N. Associated with sensor or it may be occluded by other objects in the
each index in the hash table is an entry. In the entry are scene. In any case, for the object to be verified, one or
stored, the object identifier M 1 , and the 3-D coordinates more projections of the 3-D regions in the entry must
of the centroids (Xi, X3 , Xk) of the three regions used match in location and ratio with regions in the list LR.
in the index. The entry also includes the ratio-centroid If so, the object MK has been recognized and its pose
pairs (Xm, Pm,,), of other object regions that are used for is given by either TKI or TK2.
object verification and pose estimation. At this point, all regions used as indices and those

The above procedure is applied to all sets of three re- that are verified are removed from the list LR. A new
gions in the list LA. Each object is typically represented set of three regions is selected from the list and used
by several indices and entries in the hash table. This to form the next index. This process is repeated until
process is repeated for all objects, M i, I = 1,..., 0, of either all objects in the hash table have been recognized
interest to the recognition system. The resulting hash ta- or all regions in the list LR have been explained.
ble represents the complete object-model database which
is ready for use by the recognition system. 5 Experiments
Recognition and Pose Estimation In this section, we present experimental results related

to the invariance of reflectance ratios as well as the appli-
Though model acquisition requires the use of both a cation of ratios to object recognition. Figure 2(a) shows

brightness and a range image of each object, recogni- a brightness image of an object with several constant re-
tion and pose estimation is accomplished using a sin- flectance regions. The image was obtained under ambi-
gle brightness image. The reflectance ratio algorithm ent lighting conditions. Figure 2(b) shows the result ob-
is applied to the scene image to obtain the list LR = tained by applying the reflectance ratio algorithm. Ratio
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values between -1.0 and 1.0 are offset and scaled to lie e We have used reflectance ratios to recognize objects
between 0 and 255 image brightness levels. Note that all from images. This approach is in constrast to pre-
letters in the word "KRYLON" have similar ratio values. vious recognition methods that rely solely on geo-
The white dot in the center of each region represents the metric features for recognition and pose estimation.
centroid of the region. * The recognition technique presented here is capable

The invariance of computed ratios to the illumination of automatically learning models of the objects of
direction is illustrated in Figure 3. The direction of a interest.
single light source is varied (about the axis of the ob-
ject) from -70 degrees (left of the object) to 20 degrees Acknowledgement
(right of the object) in increments of 10 degrees. As The authors would like to thank Ushir Shah for his
seen from the figure, the reflectance ratio for region "K" assistance in implementing the model acquisition and
demonstrates remarkable invariance to illumination di- recognition algorithms and Daphna Weinshall for pro-
rection. viding the alignment code.
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Figure 2: Rleflectance ratios of regions computed from a
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I- (b) Object recognition and pose estimation.
Source Direction tdegrecc% Figure 4: M~odel acquisition andl object recognition re-

Figure 3: lnvairiatice of reflectance ratios to the direction suIlts obtained for a three-dimensional recognit ion prob-
of illumination. len i.
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1 Abstract Many applications of tactile sensing for data col-
lection concentrate on driving the position of the

This work describes the development and testing of robot by machine vision in order to collect discrete
a 3-D dual-drive surface tracking controller that en- data points on the surface of an object. The work
ables a robot to track along any specified path on presented here differs in the respect that the dual-
the surface of an object. The dual-drive controller drive controller allows the robot to stay in contact
computes the normal and tangent vectors relative with a surface and in general the result is that more
to movement along the path. The result is con- data points can be collected in a shorter period of
trolled movement in 3-D on the surface of an object. time. This paper will show that tactile force sensing
This tactile data collection method is referred to as can be used to control the robot and could be the
"object-dependent" sensing because the location of main data collection method. Machine vision would
the sensing paths is driven by comparisons made by be used as a secondary data collection method that
the recognizer to a model data base. It is assumed supplements tactile surface tracking by providing in-
that the path is generated by an external recognizer formation about the bounding outline, and an esti-
in such a way that the data points collected by tac- mate for the surface normal and thus the approach
tile sensing along the path will maximize the prob- vector for tactile surface contact points at the be-
ability of correctly identifying the object. The ap- ginning of each path.
plication for such a data collection system is object This controller is implemented and tested using
recognition tasks in environmental exploration and an IBM 7565 Cartesian robot equipped with strain
manipulation. gauges on the end effector. The tracking controller

is designed so that the robot will be able to track
2 Overview any free form complex objpct. Experimental results
In the complete "object-dependent" tracking are presented to show that with the 3-D dual-drive

n tSys- controller, the robot is able to track an arbitrary
tem, we envision an external recognition program path on a complex 3-D object.
that uses partial data sets collected by tactile sen-
sors on the object's surface to attempt an identifi-
cation and to direct future data collection to limit 3 Prior Results - Dual-Drive in 2-!)
uncertainty in making an identification. "Object- The 2-D dual-drive force/velocity controller is de-
dependent" tactile sensing with the 3-D dual-drive scribed in [Kaza88]. Given the value of the magni-
controller is an improvement over the general 3- tude for the desired force and velocity, the action of
D object tracking algorithm [Korz91] with the 2-D the controller is to zero both the force and veloc-
dual-drive controller. The 3-D dual-drive controller ity errors. The result is that the robot maintains
allows the robot to track along any path with the contact with an object, moving along the surface.
end effector in any orientation. Whereas the 2-D In this hybrid controller, separate servo loops han-
dual-drive controller limits tracking to the horizon- dn the forid pontion caration s hef -tal and vertical planes in the base frame. By adding die the force and position calculations. The force
talogndizerticl panf tion tthe tracking scheme, tac- servo loop is a damping controller with saturation.tile sensing is no longer limited to general tracking Basically, the force error, the difference in magni-methods that may be spending time collecting ex- tude between the desired and actual force vectors, istraneous data or ignoring features on an object that converted to a velocity value by a damping constant.taneos dtical o ignridengifiatuion. aThe resulting velocity is compared to the desired ve-
are critical to its identification. locity and integrated to obtain a reference position

"This work was partially funded by the NSF in con- for the robot.
junction with the Advanced Research Projects Agency The dual-drive controller assumes that the normal
of the Department of Defense under Contract No. IRI- and tangent vectors will always be orthogonal. This
8905436 relation between the velocity and the force can be
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Figure 1: Determining the Sign of Force and Velocity Figure 2: Top View - Cross Section of an Object

maintained if the tracking surface is sufficiently stiff A general 3-D object tracking algorithm was de-
and the friction between the surface and the end ef- veloped using the 2-D dual-drive controller [Korz91].
fector is negligible. If the surface is frictionless, the The robot tracked around an unknown object, col-
normal will be in the same direction as the force vec- lecting horizontal planar slices of data for use in
tor F (see Figure I). Using the force sensor readings iti on. Thensubject of der f ts
the outward unit normal and unit tangent vectors isg t he expasio of the rive ontrolare given by, report is the expansion of the 2-D dual-drive control

equations for use in tracking arbitrary paths in 3-D

N -(F,,F,) (1) space.

T -L(-rF, F.) (2) 4 General Surface Tracking
F1F Dual-Drive Control in 3-D

In the case of a stiff surface, the velocity due to
force corrections is small and V is tangential. The The dual-drive controller operates on the assump-
outward unit normal and unit tangent vectors are, tion that the actual normal and tangent vectors will

be orthogonal. One of the requirements for this is
N l-v (V,, -V.) (3) that surface friction must be negligible. A low fric-

1V tion point for surface tracking occurs when the end
T -(V,,Vv) (4) effector is aligned near the surface normal. It has

Ml been found experimentally that this restriction can

where IF -= anv2 + V2. be relaxed so that the angle between the end effector
_F+ FW2 lnd Jvi = Vand the surface normal, 0 may actually be within a

These four equations for the unit normal and unit determined range, i.e. 10 9:5 0tAreah.d. If the sur-
tangent vectors give four different dual-drive imple- face normal greatly varies along the tracking line
mentations. See [Kaza88] for more details, and I J > Pt~hre.w.d, the end effector is reoriented,

then the dual-drive equations are recalculated and

xsgn + state I or 4 tracking continues.
II I - I state 2 or 3 II The extension from dual-drive control in 2-D to

ysga I + I state 1 or 2 3-D can be illustrated in the following way. A recog-
- state 3 or 4 nition program generates a bounded path that will

be projected onto a surface. The path is projected

Table 1: Combinations for the Sign of Force and by passing a plane between the bounds on the path

Velocity generated by the recognizer. The orientation of the
plane should be near the surface normal. This will

In the tracking application considered here, the become the orientation of the end effector, and the

complete tracking trajectory, the shape of the ob- robot will track the path moving in the plane. Fig-
ject, is not known prior to tracking. As the robot ure 2 illustrates the determination of the tracking
moves around an object, the signs of the x-y com- path.
ponents of the actual force and velocity change as The direction of the vector connecting the
shown in Figure 1. These changes are summarized bounded points of the path is the tangential direc-
in Table 1. The equations for determining the sign tion of motion for the robot. As the surface changes
of the actual force and velocity vectors are, locally, the normal and tangent vectors adjust and

s.9n(.,t = sgnfzsgn(V,)) - vsgn(Vz)] (5) the result is that the robot's movement occurs in

=sgn[xsgii(F.) - yagn(fo)] (6) the 2-D plane. Dual-drive tracking occurs relative
to the 2-D plane in the dual-drive Da frame. This

The configuration of the dual-drive controller im- plane can be oriented in 3-space and given the ap-
plied by the equations (1) through (6), was used to propriate mapping between the two frames the result
track and collect data points to identify 2-D objects. is dual-drive tracking in the world frame 0.
See [Bradg90 for more details. By using the orientation coordinate transforma-
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Figure 3: Frame Axes Between Base and Dual-Drive Figure 4: 3-D Dual-Drive Controller - Block Dia-
gram

tion matrices, for yaw pitch and roll rotations
[Wolo87], to find the mapping for the force/velocity
and position components between the 0 and Da
frames, Ro , one is able to make dual-drive 2-D with the base frame. This is a necessary calcula-
force velocity calculations in reference to the di- tion to move the axes to a common starting point in
rected tracking path. The components of force and order to generalize the equations and correctly ap-
velocity in the D. frame are a function of the 3-D ply the following rotations. The rotation between
force components of the force and velocity in the 0 the 0' and T' frames, a pitch rotation p, brings
frame. The resulting 2-D motion in the dual-drive the XT, axis in alignment with the surface normal.
frame is mapped to 3-D motion in the base frame. The rotation between the T' and D! frames, a roll

rotation -f, brings the yD' axis in alignment with
5 Mapping Vector Quantities the vector that connects the bounding points on the

tracking path. This is the direction of motion forBetween Frame Axes the robot. A final yaw rotation of 41, degrees is
made between the D' and D. frames. The dual-

transformation matrix function of angle drive calculations in frame D. are made with FD. =
R °' _ 2 f(fzo, Yo,Pzo) = (XD.,fYD.) and VD. =
R u. _ 1_ f(vZO, vyO, vzo) = (VXD., vyD.) along with the as-

R%, 02 sociated xsgn and ysgn for the vectors. The ma-
RT01 p trix equations become, FD. = RDf. RTD D' Rgt F

D#, 7 and VD,. = R&'RTý,R:Ro•Rg;o" Vo. In Figure 3
R__ _2 (b), a similar calculations is made between the D
R` 01 and 0 frames for mapping the calculated displace-

R'u ments back to the base 0 frame. The yaw rota-tion that is applied first is 10, then 02. The dis-
placements are computed Po. = f(pZD.,PYD.) =

Table 2: Relating Orientation Matrices to Angles (pzo., po,., pzo.). The matrix equation is Po =
R0'RT• DDRPOD D OD,.D D°. The matrices and the re-

For general yaw angle rotations 1, the calcula- spective transposes are functions of the rotation an-
tions for the mappings between frame axes is per- gles as listed in Table 2.
formed in two steps. Velocity readings are given by
the system's sensors in reference to the 0 frame, The range on the total yaw angle rotation is,
(Vo, VYo,Vzo). The force strain gauges are assigned 00 < 0 _< 360*. This allows the robot to track
to associated axes in frame 0, (fo,, fyIfz0 ). In around an object. The pitch rotation is related to
Figure 3 (a), the zo. axis corresponds to the yaw of the orientation of the end effector. The range on the
the end effector. The tool is oriented along the zo. pitch rotation is -90 < p !5 90*. The roll rotation
axis. In order to make the necessary calculations, is related to the direction of motion given by the vec-
the velocities are needed in the 0, frame. First the tor connecting the end points of the tracking path
to. axis in frame 0. is yawed by an amount equal generated by the recognition program. The range
to 01 = Omod90W to rotate the axes to line up with on the roll rotations is -90 _< <7 _< 90*. This range
the X, Y, or Z axis in the base frame 0. This al- along with positive and negative velocity specifica-
lows the force and velocity along the xo. and yo. tions for the robot's direction of motion, allows the
axes to be expressed in terms of the forces and ve- robot to track along any given direction of motion.
locities in the zo and yo axes. The orientation ro-
tation matrix used in this mapping is R~oo, a yaw The complete block diagram for the 3-D dual-
matrix. The next yaw rotation, 02 = 0 - ;mod900, drive controller is shown in Figure 4. The orientation
is applied to frame 0 to align the axes in frame 0' mapping matrices are included in the diagram.
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6 Matrix Multiplication

It was decided that the yaw and roll angles will be VZD. = vZo (c1 (c2 02cP- _8_ (sSPc _ -CYS2))

expressed as positive and the pitch angle will be ex- -s01(c02cps02 - s0(87y8ps2 + cYc0))
pressed as negative. The matrices reflect this choice. +vo (,So (c2 02cp - s8 (s78spcO - c78s0))

The force readings are taken in reference to the +C01o(42CPS02 - 8C02 (s7sP82 + - cscC))

O frame according to the way the end effector +V8 0 (-C02SP - e0ayCP)

is aligned along the axes. These force readings, VID. = '-o(C01(s0cPc0 + c10(s-Pc2 - c7802))
Fos - , , f~oo) are mapped to the D. -s 2C1(8pcP + cV(a'aps• + c~cV•)))
frame, FD. = (f-D., fYD. ). Note that by definition, +Vr,(S,01(C1(e902cpc0 + c02(s'IspcO2 - c78-02)))
only the X and Y components of the forces in the +cOI 8(s2+cp0+c¢2(s,/sPs + c-/¢C0)))
Da frame are used in the dual-drive calculations. +zo(-S02sp + c02S7cp)

FDo = RD' RT'1 V RoFo
D. D, The displacements for the robot must be spec-

R =o ified in reference to the 0 frame. The dual-
Do drive calculations produce the displacements PD. =

(C'2 -30 0 1 0 0(P1D.,pND.). These are mapped to the 0 frame,s 0 2 C 0 2 0 o C-f 8-f P O = (P zo , P Yo , P jo ).0 0 11 0 -STy

DO' D~aD' D D. pDmultiplied by Po = Roo'o,"R' RD, RD

I- c• 01 cID -s• 0 C02cp 0 0 /10 0=

0 1 0 0 0 S 02 C2 0 0 1 0 0 .7 -3T
0 0 1 -s p10 O 0 cy

The resulting equations for FD. are, multiplied by

hD= (C 210 + 82 'k2C_7)fo. + (CO280 _ C02~S02C7)fo, C02 s'102 0 4' %' -801 0

fvhD=(02O 302~C7c*)fO. + (S 21t'2 + C2 *a2Cv)fa, \0 0 1J0(sc ) +((s)o 0- ) 0~ ~ 1 o
+(c42sr)ko. The resulting equations for Po. are

The velocity readings are given by the sensors in Po.. = p.D* (Co1(cpc 2 02 - s32(S-•SpCO2 - C-s32))

reference to the 0 frame. These velocity readings +s01 (cPCsO282 + c02 (saspcO2 - c7s30)))
Vo = I vVo, v8o) are mapped to the D. frame, +PMD. (-801 (cOC 20 - 8•2(sasp#2 - C-1s32))

VD. = (v.o , VIo). In the D. frame by definition +cOI(cpc28s•2 + c02(sTpcT 2 - c-•73)))
there is no velocity along the zD. axis. The velocity
equations to be used in the dual-drive calculations Pyo. = Pzr). (cI(cPSc02C2 - 30(s7sps02 + cVYC2))

are given by the following matrix multiplications. +8l.((cps '22 + C-s(s1sps02 + cW'1c)))+PYD. (-s101 (CPs024 - s027(s02ss¢ + •C-YC) )
V D. RTh oo'.o.o I 0  +c01 (cpa2 ,02 + c102 (S3SpsP 2 + c-cY0))))VD° a.D R iD, RD1 T' -RI07 'O° Vo

Ro. P.O. = P.o. (C01 (-spCO2 - s023sfCP))

(C0'2 -8102 0 1 0 O\+PVD. (-3101 (-SPCO'2 - SfP2S'YCP))
8102 C102 0 0 Cyf Cv) +C101(-SP8S'2 + -C02)

0 0 1 0 -8-s o7

mult.iplied by 7 Experiments and Applications( cp 0 -SP C C02 s02 0 The 3-D dual-drive controller was implemented0 1 0 -8102 C028s0 0 cp 0 0 1 and tested using an IBM 7565 Cartesian robot.
Presently, the actions of the recognition system are

multiplied by simulated. The location and bounds on the tracking
path and the orientation of the end effector are sup-(COi s0 0 plied manually. Given the end effector orientation

-s10 col 0 and the approach vector, the robot moves toward
0 0 1 the surface until contact is made as indicated by the

force sensing strain gauges. At this point surface
The resulting equations for VD. are, tracking and data collection commences.
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Figure 5: Velocity Data Plots, I Vd,,id I = Figure 6: Force Data Plots, I Fdeired I 1.1lbs
1.0in/sec

ous tracking methods in order to more intelligently
Controller modifications are added to monitor 0 apply the controllers to handle changes in surface

and the force at the end effector. If surface con- along the tracking path interval. Prior knowledge
tact is lost during tracking the dual-drive controller about surfaces that appear in the environment may
is temporarily deactivated until contact is regained also be included depending on the requirements of
via a surface searching routine. The robot moves the tracking algorithm and object recognition. The
in an outward turing square spiral until contact is purpose of this work will be to develop an algorithm
regained, then surface following continues. tha. will enable the robot to track complex real-

A reading lamp was chosen to show the perfor- world objects on a specified tracking interval using
mance of the 3-D dual-drive controller. In Figure the 3-D dual-drive controller.
5 and Figure 6 the velocity components vXD°, VYD.,

I vD. I and force components f.- , fy,,., I fD. I References
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face in order to recognize the object. It is assumed [Khat87] Khatib, 0., "A Unified Approach for Motion
that an external recognition program generates the and Force Control of Robotic Manipulators: The
location of the tracking line. Data points that are Operational Space Formulation", IEEE Journal of

Robotics and Automation, vol. 3, no. 1, 1987, pp.
collected as the robot moves along the line will limit R a-5n.

the uncertainty with which an identification can be 4 K i. W.
made. [Korz91] Korzeniowski, K.A. and Wolovich, W.A.,

Given a desired force and velocity, the dual-drive Robotic 3-D Object Recognition Using Dual-Drive
Givtrollen adesiroedb force and velocity, therdrie sControl", Proceedings of the 30th IEEE Conferencecontroller zeroes both force and velocity errors so on Decision and Control, December 1991.

that the robot's end effector moves across the sur-

face. The result is 3-D controlled tracking motion. [Rayf88] Rayfield, J.T., "Armstrong, a Loosely-Coupled
It has been demonstrated that the controller can be Multiprocessor Testbed for Reconfigurable Topolo-
successfully applied to tracking real-world objects. gies", Ph.D. Thesis, Brown University, May 1988.

Work is currently underway to develop a 3-D [Wolo87] Wolovich, W.A., "Robotics: Basic Analysis
tracking algorithm. The chief purpose of the algo- and Design",Holt, Rinehart, and Winston, 1987.

rithm will be to combine continuous and discontinu-
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Inferring Global Perceptual Contours from Local Features*

Gideon Guy and Girard Medioni
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273

Abstract and Medioni 1993], [Sugihara 1984]), also rely heavily
on the connectedness of the edges, and can benefit from

We attempt to solve the problem of imperfect data the removal of noise (erroneous segments). Pattern rec-
produced by state-of-the-art edge detectors through the ognition schemes (like [Stein and Medioni 1992]) rely
implementation of laws of Perceptual Grouping, de- on (at least) partial connectedness of the edges, and can-
rived from the psychology field, not function if the edge image is very fragmented. Also,

We introduce a saliency-enhancing operator capa- the amount of noise is directly proportional to the com-
ble of highlighting features (edges, junctions etc.) putational cost of finding 'real' objects in a scene.
which are considered 'important' psychologically. It Using global perceptual considerations when at-
also infers features which are not detected by low-level tempting to connect fragmented edge images can allevi-
detectors. We show how to extract salient curves and ate many of the above problems, as shown later.paper.
junctions and generate a description ranking these fea- In a previous paper ([Guy and Medioni 1992a]), we
tures by the likelihood of them occurring accidentally. have introduced a general algorithm capable of high-

We also treat the problem of illusory contours ap- lighting features due to co-curvilinearity and proximity.
parent in end-point formations. The scheme is particu- We suggested the Extension Field as a 'voting pattern'
larly useful as a gap filler and in the presence of a large representing a large family of smooth curves, all at
amount of noise. It is interesting to note that all opera- once. Here we further explore the properties of the Ex-
tions are parameter-free, non-iterative and are linear tension Field. We also suggest specialized fields that can
with the number of edges in the input image. be used within the same computational paradigm to re-

veal perceptual phenomena such as end-point forma-
l Introduction tions and straight lines. Experimental results with dif-

An area which is likely to improve results in com- ferent types of distortion applied to the input are also
puter vision is the one of perceptual grouping. Percep- presented. We start by explaining the original algo-
tual Grouping can be classified as a mid-level process rithm, then describe some of the properties of the Exten-
directed toward closing the gap between what is pro- sion Field. We follow by a comparison with the classical
duced by state-of-the-art low-level algorithms (such as Hough transform and conclude by offering a set of other
edge detectors) and what is desired as input to high level fields for special purposes.
algorithms (perfect contours, no noise, no fragmenta- 1.1 Perceptual Grouping
tion, etc.). Many researchers resort to using synthetic Perceptual Grouping refers to a class of visual phe-
data as their input because of these weaknesses. nomena where clustering of physically non-connected

Methods for edge labeling (like [Clowes 1971], elements in the image occurs. This task is equivalent to
[Waltz 1975]) assume perfect segmentation and connec- a figure-ground discrimination when patterns are em-
tivity, and define constraints which are only valid under bedded in noise. Figure I depicts examples of perceptu-
these assumptions. These methods cannot work on al groupings which are of intercst to us, and considered
'real' edges. Other methods, like shape from contour to be the result of a pre-attentive process. Such process-
[Ulupinar 19911, and representation of objects ([Rom es are known to take several hundreds of milliseconds
* This research was supported by the Advanced Research Projects (200-500 s) to complete, and are thus not likely to uti-
Agency of the Department of Defense and was monitored by the Air lize any high-level reasoning mechanism in the brain
Force Office of Scientific Research under Contract No. F49620-90- [Boff, et al. 1986].
C-0078. The United States Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding The circle in the middle of figure l(a) is easily dis-
any copyright notation hereon. tinguishable from its noisy background. Furthermore,
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we tend to fill the gaps, or more precisely, we are able to 1989a) assume a-priori knowledge of the contents of the
complete the circle mentally. The same holds for the scene (i.e. aerial images). A model of the desired fea-
geometrical patterns in l(b). Figure l(c) depicts a dot tures is then defined, and groupings are performed ac-
formation. Again, grouping of certain dots is possible, cording to that model. In a later work [Mohan and
and salient curves are noticeable. A more striking exam- Nevatia 1989b], groupings based explicitly on symme-
ple of illusory contours is found in the Kanizsa illusion tries are suggested, but the first connectivity steps are
[Kanizsa 1976] shown in Figure 1(d). Here we perceive performed locally.
edges which have no physical support whatsoever in the Sha'ashua and Ullman [Sha'ashua and Ullman
original signal. 1988] suggest the use of a saliency measure to guide the

The Gestalt psychologists (e.g. [Boff, et al. 19861) grouping process, and to eliminate erroneous features in
were among the first to address the issues of pre-atten- the image. The scheme prefers long curves with low to-
tive perception. Many 'laws of grouping' were formu- tal curvature, and does so by using an incremental opti-
lated, but none put in any computational (or algorith- mization scheme (similar to dynamic programming).
mic) language. Furthermore, the rules tend to supply The main features of some of the more important
conflicting explanations to many stimuli. This makes works are summarized in table I, and contrasted with
the computational implementation of such laws non- our scheme.It is interesting to note that virtually all pro-
trivial. With input in the form of edges, the laws most posed algorithms use local operators to infer more glo-
relevant to our work relate to proximity and good con- bal structures. Also note that many of the schemes are
tinuation. iterative, relying on one relaxation (or minimization)

Lowe [Lowe 19871 discusses the Gestalt notions of scheme or another, and are similar in that sense. The
co-linearity, co-curvilinearity and simplicity as impor- main differences are in the choice of the compatibility
tant in perceptual grouping. Ahuja and Tuceryan [Ahuja measures or the function to minimize.
and Tuceryan 1989] suggest methods for clustering and
grouping sets of points having an underlying perceptual 2 Overview of Our Approach
pattern. As was demonstrated before, the physical evidence

Dolan and Weiss [Dolan and Weiss 1989] demon- extracted locally from images (e.g. through edge detec-
strate a hierarchical approach to grouping relying on tors) is in many cases ambiguous and does not fully cor-
compatibility measures such as proximity and good respond to the human perception of the image. It is thus
continuation. Mohan and Nevatia [Mohan and Nevatia necessary, we believe, to impose global perceptual con-

siderations at the low-level process.
-- .In our method, each site (pixel or other cell) collects

votes from every segment in the image. These votes
contain orientation and strength information preferred
by the voting segment. A measure of 'agreement' (in

S- terms of orientation) is now computed, and sites which
have high agreement values are considered salient. In
more technical terms, a vector field' is generated by

I each segment, and a function over the whole space de-
termines points of saliency. A subsequent step links ar-

(a) (b) eas of high saliency to produce a description in terms of
curves and junctions.

" "8 * . _ Our voting scheme is somewhat related to the
*" ; *" .• "•Hough transform approach [Hough 1962], but can de-
. . .tect shapes defined by their properties (smoothness etc.)
. .rather than by their exact shape (lines, circles, etc.). A

study of the relations between our scheme and the
. ." d Hough transform is given in section 11.

W • • iarThe process is likely to produce features more sim-
ilar to what we perceive, both in terms of saliency and
connectivity. Also, since noise is not likely to produce

(c) (d) high 'agreement' values, it becomes attenuated and thus

Figure 1 (a) & (b) Two instances of perceptual ar- reduces the complexity of the image (e.g. in terms of the

rangements. (c) A dot formation. (d) The Kanizsa number of useful edges).
Square. 1. Which we later call the Extensmn Field.
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Table 1: Comparison of different grouping techniques

[Mohan and[Lowe 1987] [Ahuja and [Dolan and [Sha'ashua and !
Tuceryan 1989] Weiss 19891 Nevaa Ulman 19881

1989b U

Operator Local Local Local Local Extensible (local) Gla .............

Primitives Straight lines Dots Straights curves straight lines and dot, f•him•..........
c:uves cW:

Control One pass Iterative Iterative Relaxation Parallel-progres- One. ...It.I....
Progressive sive (iterative) ...........,-

Noise immunity Not clear Good Good Good Moderate Wry pio4

Scale One One Hierarchy One One One

Parameters Yes No Yes Yes Yes e .. ..................

Pre-attentive Yes Yes Yes No (yes) Yes ..............
(Domain free) ...

Special feature First Dot clustering. Multi-reso- Symmetry, Saliency map Salie::::::::
parameter free lution high-level con. fio4euw

Sensitive computa- Yes No Yes? Yes Yes ..................
d ons ......

2.1 Model of the Input the direction of the local edge. This value is accurate
We would like to associate with each site of an im- only up to the resolution of the set of masks, and can be

age a direction, strength and a degree of uncertainty for used as an uncertainty measure in our scheme.
that direction. This can be nicely approximated by an el- Obviously, our ability to extract useful features is

directly proportional to certainty, because the informa-
tion content is reduced when uncertainty is introduced
in the input.

tcposwithless Prefer2.2 Model of the Outputlikelihood (shorter) direferrod
refrction Our model of the output is related to Ullman and

Figure 2 A simple input site model. Every site is Sha'ashua's[Sha'ashua and Uliman 1988] in the sense
associated with a preferred direction, strength that a saliency map is first constructed from an edge im-
and eccentricity (or uncertainty), age, and higher-level features are inferred later. The sa-

lipse (as illustrated in figure 2). With such an input mod- liency map assigns a value and a direction to every po-
el, one site could be classified as being a part of a curve sition in the image.
with known orientation and no uncertainty, while anoth- Ideally, such saliency map should assign large val-
er as being a point with completely uncertain orienta- ues of likelihood along illusory lines (as well as along
tion. physical curves), and also specify a direction of most

We can thus use as input either a thresholded output probable continuation of any given segment. This will
of any edge detector (with no linking) or even an un- enable us, at a later stage, to group features by following
thresholded version of the edge detector output. It can the salient connections between the primitives. The map
be verified experimentally that our system yields almost should assign a value of zero to areas of no saliency.
the same results with different choices of this threshold, Furthermore, curves with strong saliency should be as-
as long as a sufficient number of useful features are signed larger values than weaker curves.
present [Guy and Medioni 1992b]. 2.3 Rationale for the Extension Field

Uncertainty with respect to orientation is inherent in In order to define saliency qualitatively, we start by
the process of edge detection since, in many cases, a dis- writing down the major constraints which govern our
crete set of oriented masks are convolved with the im- mechanisms of saliency (at least according to the theory
age, and the one with the largest response determines of the Gestalt).
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2.3.1 The perceptual constraints We would thus want to consider all the curve in
Our underlying goal is to keep the interpretation as such a way that the extension is smooth, influenced

simple as possible in the 'Gestalt' sense. This translates most by the behavior of close-by points of the curve, but
into four major constraints: can assume any form. Note that such extension can be
I) Co-curvilinearity - In the lack of other cues, smooth constructed even if the curve is fragmented, and is ro-

continuation is the only interpretation, and so is co- bust, being the 'average' of many segments.
curvilinearity. We go further than that. Rather then having only the

2) Constancy of curvature - We tend to extend a curve best extension, we would like to list all possible exten-
of some constant curvature with the same curvature, sions in the order of their likelihood. This suggests the
keeping the interpretation as simple and regular as use of some kind of afield (or flow) emanating from the
possible, yet consistent with our sensory informa- end-point of a segment. The idea of afield plays a major
tion. This principle is called Pragnanz by Gestaltists role in our scheme, as we will show later.
(see Figure 3). 2.3.3 Best Connection between Two Line Segments

The situation occurs whenever a 'compatibility fig-
S ofure 2' of two close-by segments is computed in order to

decide whether these segments should be grouped to-
* t gether. When determining the compatibility of two lines

Figure 3 An obscured figure (a) triggers the per- we would like to consider for each line its best extension
ception of simple shapes (b), instead of the more (or extension field, as discussed in 3.1) and arrive at
complex (c) and (d). some compromise as to the best path between them. In

3) Favoring low curvatures over large ones - Humans
seem to connect fragmented line segments in a way compromise
that the increase in total curvature is minimum (see
[Sha'ashua and Ullman 1988]).

4) Proximity - Closer segments influence each other
more than distant ones. Figure 5 What is the best path between these twocurves?
With that in mind, we have devised a technique that

implicitly imposes the above constrains in the form of other words, each of the curves votes (using its field) for
an Extension Field emanating from each edge segment, a family of curves. If the curves should really be con-
as discussed in the next few sub-sections. nected then some extension from curve I would align
2.3.2 Extending a Curve with another extension of curve 2, to form the compro-

Given a line segment we ask the question: What is mise3. The idea of a compromise between extension
the shape of the most 'natural' extension, based on the fields is also central to the approach, and will be pre-
mentioned constraints? sented in a more formal way later.

majOt be inferred from. N It is not reasonable to expect that extension curves
from two different extension fields will align through-
out their extent. It is more likely that such extensions

Figure4. ...... moenatur align locally in many places. For that reason, the exten-not likely------r A... .. •-more natural sion field will consist of local best candidates for exten-

sions. In the next section we define the exact shape and
Figure 4 What is the shape of the most 'natural' ex- usage of the Extension Field.

tension to a given curve?
3 Extension, Point, and intermediary Fields

Many approaches in the past (e.g. [Dolan and Weiss 3.1 The Extension Field
19891,[Lowe 1987]) used the tangent of the end-point to Definition: An Extension Field is a non-normal-
determine the best extension. This approach cannot al- ized probability directional vector field describing the
ways work properly for three reasons: contribution of a single unit-length edge element to its
1) The tangent is very sensitive to noise and may intro- environment in term of length and direction.

duce large errors. In other words, it votes on the preferred direction
2) The end-point may not be determined uniquely if

the curve in question is fragmented. 2. A measure of 'agreement' between two curves, based on the dif-
3) The extension can only be a straight line (first or- ference of the end-point tangents and separation. (as used by [Dolan

der), thus not taking into consideration the global and Weiss 19891, [Lowe 19871. [Mohan and Nevatia 1989a&)
3. Which is not necessarily the best continuation of any of the exist-shape of the curve. ing curves, or even a connection between the given end-points.
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and the likelihood of existence of every point in space revised4) measure of Total Curvature (as used by
to share a curve with the original segment. The field is [Sha'ashua and Ullman 1988]) encompasses most of the
of infinite extent, although in practice it disappears at a desired constraints. We define the Total Curvature (TC)
predefined distance from the edge. Figure 1 depicts the to be:
Extension Field.

3.2 Design of the Extension Field (Orientation TC = ds a> (
and strength) Tid

Since we favor small and constant curvature, field
direction at a given point in space is chosen to be tan- s iste ing the curv ature (brought to
gent to the osculating circle passing through the some power) along the curve, where 0 is the tangent
segment and that point, while its strength is proportional along thhecurv to The variable so is traditionally taken

sento e equal to 2 but it can he shown that the choice of a
tangent to cad k circle as the connecting curve in the scenario shown in

Poiv0is wing Figure 6 minimizes the TC for all values of a greater
Point~ ,'I Wace 0." 1 care than 2 [Guy and Medioni 1992b]. A laiger a would just

penalize sharp turns more than a smaller one. %W thus
set the orientations of the field elements to be tangent to
a circular arc connecting the origin and that point in
space.

Figure 6 Assigning a direction for every point in Although different grouping laws compete, we
space claim that by finding the correct weighting values

to the radius of that circle. Also, the strength decays once, and given a sufficient amount of useful data5 ,
wih twe can resolve most conflicts. The best way to deter-with the distance from the origin (the edge segment). mine these values is by considering an intentionally am-The choice of a circular extension agrees with the con- biguous or undecidable case. The assignment of actual

straint of smallest total curvature, probabilities to the field is thus performed as follows:
In trying to computationally evaluate the various We consider two short edge segments, perpendicular to

constraints over a given curve we find that a (somewhat each other and apart6 (see center of Figure 7). This sce-

Edge element

V350 1t

....... ( .......... .--,-,- - - -.
."." o. ,-----------,------- ---- maxwi uundcidabioy

....... .... Figure 7 5 arrangements of two segments, each
......... with a different separation angle. Angles much

:.I, *":'' . "......................" smaller than 90 degrees suggest a corner, while'I, ' angles much larger than 90 degrees suggest a
-::smooth connection.

(a)
"nario, we claim, is a middle point between a clear choice
of a connection by a sharp junction and a connection by
a smooth curve. We regard this to be a most competitive
scenario in terms of grouping of the two line segments.
We thus assign probabilities to the field elements in such
a way that all paths connecting these segments are as-
signed roughly the same saliency, and there does not ex-
ist any single best path between the two. More precisely,
we set the field element strengths such that all values
within the marked triangular region are the same. Such

4. In [Sha'ashua and Ullman 1988,. a,=2 is used, and the absolute
(b) value is redundant.

5. A more precise definition of 'sufficient' is given in section 10.5.
Figure I The basic Extension Field. (a) Direction, while addressing the issue of noise.

and (b) Strength. 6. This scenario is termed 'the marimwm undecidabiry arrange-
meiw .
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a scenario, when repeated for all scales, removes all de- put, they are 'cut' into unit length segments and each
grees of freedom as to the choice of values for the field, convolved with the field. We will discuss (in section 6)

The reason all values beyond the two main diago- the properties of the resulting field when applied to a
nals are zeros, is a technical one. Having a segment vote long curve (either straight or curved). The strength of
for a point in space which is more than 90 degrees away the field is proportional to the strength9 of the segment,
(along a circle) could potentially cause unrelated seg- so that stronger segments have stronger votes, through-
ments to vote for the same curve, even though such a out the space.
curve should not connect them. Also, it is quite obvious Note that, although the process is local in essence,
that extending a curve beyond the 90 degree point does the fields impose some global order, and one line seg-
not satisfy the minimum curvature constraint. ment can implicitly 'vote' for a large curve without any
3.3 The Point Field explicit global reasoning involved.

A dot image, is a degenerated case of an edge ir- 4.2 Combination at each Site
age, where the edges have no direction. Such maximum Ideally, we would want an averaged majority vote
uncertainty7 in the input fits our input model well, and regarding the preferred orientation of a given position.
allows us to handle such cases in a uniform way. Obvi- In practice, we treat the contributions to a site as being
ously, perception is weakened by the loss of orientation vector weights, and compute moments of the resulting
data, and we are only able to handle cases with a mod- system. Such a physical model behaves in the desired
erate amount of noise. The only applicable perceptual way, giving both the preferred direction and some mea-
law is that of proximity. sure of the agreement. We use the direction of the prin-

A suitable field must have circular symmetry, and in cipal axis (EVmin) of that physical model as the chosen
practice is constructed by convolving our original ex- orientation (See equation (2)).
tension field with a 'multi-directional' edge segmenL A rm ml E n01
typical input is shown in Figure l(c), where a broken [2 ". i EVminrT EV4m4. (2)
sine wave and a random set of points on a circle are em- L1 moj LEVmax 0

bedded in noise. This acts as an approximation to the desired major-
Another scenario where the point field could be use- ity vote, without the need to consider the individual

ful is in images where co-curvilinear formations be- votes, but rather the statistics of the ensemble.
tween features other than dots are present. In such cases Image
we would like to treat the image as if it was made out of Pnnopal A m g
non-directional tokens (or dots), and apply the point
field to it.

We unify the maximum certainty (Extension) field
and the Point field (and all fields in between) by consid-
ering a continuum of eccentricities associated with the
multi-directional edge. The Extension field is construct-
ed from a degenerated instance of an ellipse (a line), Figure 8 The principal axis of the votes collected at a
while the Point field is created from a 'circular' edge site is taken as an approximation of the preferred
point. This makes full use of our input model (in section direction.

2.1) and allows treatment of mixed images8 in a consis- The saliency map strength values are taken as the
tent and unified way. values of the corresponding kmax at each site. So, large

4 CMlues would indicate that a curve is likely to pass4 Computation of the Saliency Map th ugh this point. This map can be further enhanced (as
4.1 Directional Convolution shown later) by considering the eccentricity, or

The process of computing the saliency map can be i - O)nin/Xn). When that value is multiplied by the
thought of as a directional convolution with the above previous saliency map we achieve better selectivity, and
field (mask). The resulting map is then a function of a only curves are highlighted. This results in a map de-
collection of fields, each oriented along a corresponding fined by XMaX - Xmin.
short segment. Each site accumulates the 'votes' for its 4.3 Justification
own preferred direction and strength from every other Basically, what we are looking for is a function that
site in the image. These values are combined at a site as accepts positive vectors as input and results in a mea-
described next. When long curves are present in the in- sure of the agreement in their orientation. The result

7. w.r.t. orientation should satisfy several criteria:
8. i.e. having varying certainty measures (or a mixture of dots and
lines) 9. in terms of contrast.
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* We want the result to be normalizable, so that we can practice). The eccentricity value is 1, but the site is of no
compare different sites on a standard scale. importance.
- The measure needs to be monotonically increasing However, consider A itself. Obviously,
with the addition of positive contributions. X +X
- It should give higher values to 'better' (more direct- 2A m !5 ! X . +X (7)
ed) spatial arrangements of vectors. 2 n= mIn

* We want the affect of proximity to be independent to By (7) it is bounded from both sides by the proxim-
the affect of agreement. ity measure in (6) and has the eccentricity coded into it.

When the value leans towards the left side of (7), eccen-It is easy to show how the model behaves when a tiiyi o n ievra
single vector is added to it. Assume the variance-cova- trcity is low and vice-versa.

riance matrix is as follows at state t: Thus, •max is chosen as the raw saliency mea-
sure in our scheme.

20 • This choice however, may still amplify locations
S= [ l m 2 (3) which are very strong in term s of num ber of votes, but

11 s weak in eccentricity11. The product of E and Xm) pro-
The sum of the eigenvalues is the trace of the ma- duces the desired result, termed the enhanced saliency

trix: measure SM, or

]mm + m 0 m0+m02 (4) SM = X - (1- nn/m) = )L -7. • (8)
mm max

T Thus, Xmax.),mn is chosen as the enhanced sa-
Now adding a new vector V = [RcosO,RsinO] to usency measurm.

the system will result in a new state t+W: It is important to note that other functions of the

-t ma+l+ I= +m0 2 + (RcosO) 2+ (RsinO) 2 eigenvalues can also satisfy the same conditions of
+ + (5) monotonicity, but the ones chosen seem to be the sim-

mO + mO2 + R2 plest possible indicators of the desired behavior.
Note that the angle 0 has disappeared on the r.h.s. of 5 Detection of Junctions

(5). This means that the sum of eigenvalues is indepen-
dent of the orientations of the voting vectors and can A junction is defined as a salient point having a low
hence be used as an indicator of proximity (a wider eccentricity value.
sense of proximity of course), and as a primitive salien- Regular (non-junction) points along a curve are ex-
cy measure. pected to have high eccentricity values. On the other

Equation (5) can obviously be written as: hand, junction points are expected to have low eccen-
IV tricity, since votes were accumulated from several dif-

+M = ma (6) ferent directions. By combining the eccentricity and the
= t eigenvalue at a point, we acquire a continuous measure

Where N is the number of segments in the original im- of the likelihood of that site being a junction. Mt rede-

age. fine our previous definition of eccentricity slightly, so

We define the eccentricity E = 1- ,ý/ as a that low eccentricity scores high, or

measure of agreement. Obviously this value is between (E= . A 05 E5 1 (9)
0 and 110. Our intuitive notion of 'agreement', or of a
majority vote on a continuous scale, is consistent with The product of our new eccentricity measure and
the above definition. This means that in all cases where the raw saliency measure Imax yields the junction sa-
we feel that collection A has better 'agreement' than liency operator:
collection B, the corresponding eccentricity values will
share the same relationship (i.e. E(A)>E(B)). This is not E. max = (Xm " = (10)
to say that both functions are equal, but merely that both This process creates a Junction Saliency map. Inter-
are monotonic. estingly enough, this map evaluates to just Xmin at every

Eccentricity values by themselves cannot perform site (as shown in (10)), which simply means that the
as saliency measures since sites with very little voting largest non-eccentric sites are good candidates forjunc-
strength can produce high eccentricity values. In fact, tions. By finding all local maxima of the junction map
consider a site far away from where the 'action' is, we localize junctions (see results in Figure 15).
which accepts exactly one vote (This can happen in

11. For example, accumulation points and junctions! (whaet
10. Since Xim 5 X,. and they are both non-negative. "
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6 Properties of the extension field raw saliency map of the same line. The Enhanced Sa-
6.1 A longer line implies a stronger and more liency map is simply the product of the two maps, point
directed field, but up to a point, by point, and will obviously sharpen the edges of the

Using a simple example we demonstrate the behav- correct curves, thus creating a Non-maximum suppres-
ior of the field when extending a straight line. Figure 9 sion affect(Figure 10(c)). Similar maps for a perfect cir-

shows a cross-section of a saliency map computed on a cle are depicted in Figure 10(d-0.
series of straight lines with increasing lengths. Clearly, The low eccentricity in the vicinity of the correct

curve is due to the large variance of votes in these areas.
These votes along the correct curve, when convolved,

..................................................... _:. ...................... all vote for all sites, thus making the sites almost non-
directional.

Contamination
V It may look at first sight that the field, while voting

for the correct curve, contaminates the environment by
voting for many other cells in the image. This can be re-

Length of segment garded as noise, and is inherent to the process. However,
Figure 9 Saliency of a line as a function of length. It while the fields voting for a curve agree along the curve,

converges to some value which is the infinite straight they disagree in any other area of the image. This means
integral of the extension field. that the contribution of a complete curve to the environ-

ment is almost isotropic and cannot affect the direction
the saliency grows as a function of the length, and the of true votes in any area. It has been shown in the previ-
map becomes more directed (thinner ridge). Also, sa- ous section that close-by areas get low agreement val-
liency converges to some finite value which is just the ues, and far away areas get low voting weight. In both
infinite integral along the main axis of the Extension cases, the interference is small.
Field. This observation can be used to estimate absolute This is true for all smooth curves in the image. Ran-
saliency. dom segments12 do contaminate the environment, and
6.2 The Non-maximum Suppression Phenomena their effect is reduced through the robustness of the vot-

We have mentioned the superior selectivity of the ing scheme. In the experimental results section we em-
Enhanced Saliency map. To illustrate this behavior, we pirically test for allowable levels of noise.
look at the eccentricity only map of a straight line
(Figure 10(a)) Note how low the eccentricity is close to Special purpose fields The straight eld

Special purpose fields are fields synthesized to en-

hance a special feature in an image. For example, in
aerial images, a desired feature could be rectangular
rooftops. It is possible to construct a saliency operator
to enhance all straight line formations in the image, and
at the same time suppress other smooth curves.

We now derive the shape of a field capable of find-
ing all straight, or almost straight line formations in a
cluttered directional edge image. This can be done in

(a) (b) (c) two ways.
The first method would just use the part of our orig-

inal Extension Field that applies to straight lines. This
simply means cutting off all field elements that are out-
side some pre-defined angle. The actual angle is of
course a function of the amount of error one wishes to
allow for a straight line.

A second and better motivated method would be to
generate a new field (mask) by convolving with a piece

(d) (e) (W) of a straight line. This last method is more in the spirit
Figure 10 (a) Eccentricity only map of a saliency map of our previous special fields, and also retains the no-

of a straight line. (b) raw saliency map. (c) Product tions of feature fuzziness and continuum of saliency
of(a) and (b). (d) -(f) same for a perfect circle, values. Again the length of the straight line with which

where the real line passes. In Figure 10(b) we see the 12. segments that should not belong to any curve
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we convolve, will determine the amount of desired error 8.2 Convex T-junctions are more common
in our definition of straightness. We believe that the a priori probability of having

8 Analysis of the End-point field convex T-junctions is larger than concave T-junctions.
This observation can be illustrated through a simple ex-

In many cases we tend to interpret end-points as be- ample, as shown in Figure 12. Many other experiments
ing a partially occluded line. If enough end-points are
available, they support the hypothesis of a shape oc-
cluding a collection of lines. Illusory edges appear to
outline the said occluding shape. Figure 11 illustrates an ve
end-point scenario.

R a convex

S I/ . I/Figure 12 Convex and concave T-junctions. The
. / .. Kanizsa square has two valid 3-D interpretations,

/ I \but only one of them is perceived (b). The other one
S\\in (a) requires us to imagine concave T-junctions.

(a) (b) (c)
Figure 11 An end-point formation. (a) A center egg- (such as in [Boff, et al. 1986]) indicate that end-point

like shape is not only perceived but also looks formations that require concave T-junctions are not nor-
whiter (after IBoff , et al. 19861). (b) An invisible mally perceived. Also, real objects tend to have longer
circle occludes lines. No sensation of a circle is convex boundaries, than concave ones, and since
evident, because angles of intersection are not boundary length is proportional to the probability of an
suitable. (c) The inner circle is perceived, but the intersection, convex T-junctions are more common. We
outer one is not! claim that humans use this property and tend to hypoth-

8.1 Straight angles in T-Junctions are more esize mainly convex T-junctions.
likely than any other 8.3 Building the End-Point Field

We derive the distribution of T-junction angles in a The angle distribution derived previously suggests
random world and show that close-to-straight T-junc- convolving our original Extension field with a multi-di-
tion angles are more likely to appear than any other an- rectional edge having a diameter function of a sinusoid,
gle. We claim that our human perception uses this prop- as was done for the point field, and shown in Figure 13.
erty, and thus attempts to perform perceptual tasks on
end-points stimuli only when the illusory intersection
angles justify it. In Figure 11 (a) all lines meet the illuso- sincteio
ry contour with almost straight angles, thus making the
shape 'visible'. In Figure 11 (b) the lines are occluded by
an exact circle, but the angles are much more acute. No
perception of shape is evident, even though the end-
points trace an exact circle.

Claim: Given two unit size segments, we indepen- Figure 13 A multi-directiona edge constructor for
dently drop each one of them on a finite board, with uni- the End-Point Field. (envelope shown)
form probability with respect to position and angle. We
then look at the distribution of the intersection angles This kind of field will vote strongly for straight angle T-
between the two segments. We claim that angles close junctions, and weakly for other directions. This merely
to 90 degrees are more likely to appear then acute inter- means that more support is needed for more acute an-
section angles. (We do not count cases where the seg- gles. Results are given in section 10.
ments do not intersect.) The proof can be found in [Guy
and Medioni 1992b]. 9 Complexity Issues

Curved objects can be approximated by linear seg- A naive way to implement the algorithm requires
ments to any degree of accuracy 13 and should thus sat- 0 (nWk) operations, where n is the side size of the im-
isfy the same distribution. The same is true for lines of age, and k is the number of edge elements in the input
different lengths. It is easy to see that the length of the image. In practice, the local density of edgels restricts
segment does not change the probability of a given in- the useful scope of the field. This means that a smaller
tersection angle. finite field can be used. The complexity becomes now

0 (k) .This last modification has the disadvantage of not
13. Non fractal curves, being able to bridge gaps larger then the size of the field.
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Alternatively, instead of computing a dense saliency 10.3 Point Field
map, we can compute the saliency of existing edgels We tested our system on the image in figure 17(a).
only. This results in complexity of 0 (P), and can be Initially, the system was run using the Point field. This
useful as a focus of attention map. This mode allows resulted in a saliency map with orientation data. A sec-
then for a second pass on the salient features only. ond phase of computation was then performed, using

the directional Extension field (Figure 1). That stage
10 Results produced the final saliency map as shown in figure

10.1 On Synthetic Images 17(b).

We have tested our approach with the synthetic data
shown earlier in Figure 1. The saliency map produced is :.-"-.: ' -

.° .f ." . • . %

(a) (b)
Figure 14 The Saliency maps of images in figure 1. Figure 17 (a) A non-directional input image. (b) Sa-

shown (strength only) as grey-level image in figure 14 liency map, after applying the Pointfield and the
and the result of following the path of highest saliency directional extension field
produces a "clean" circle. Figure 14 also shows the re- 10 4
sult of the same procedure for the other scenes. Figure . Straight Field
15 shows an example of the steps involved in producing We tested our straight line operator on the previous

..... .example, as shown in Figure 17. Clearly the straight

W W(i (c) (c) " i
Figure 15 Extracting the most salient features. (a) Ec-

centricity enhanced map. (b) Junction saliency map,
and (c) linking. Figure 18 The enhanced saliency map of the

a high-level description of a given image, using the straightfield
junction map in conjunction with the saliency map line appears to be salient. The ellipse is still vaguely vis-

10.2 Real Images ible, since it can be viewed as being straight to some de-

In figure 16 we show a real image example. The gree.
10.5 Noise Breakdown Point

Since we want our algorithm to mimic human per-( ~ ceptual capabilities, we actually prefer to fail where hu-
"�" mans fail, unlike the Hough transform, for example,

.....-. ...... k. ........ which may find line formations even in a very cluttered
image, where such formations are not visible, and could
be a result of accidental alignments.

(a) (b) () We have performed a controlled experiment to de-
Figure 16 Example of a real image. (a) A tape dispens- termine the amount of random noise which still allows

er image. (b) All edges. (c) Eccentricity enhanced for a correct following of a curve, given a constant fac-
saliency map. tor of existing edge. The test is whether all points along

the perceptual circle belong the local maxima, as de-
original image was processed with a simple edge detec- fined before. Only uniform noise is space and orienta-
tor (5x5 step masks), without any linking. Note that the dion was applied to the original image. The circle has a
edge image is fragmented and has a lot of noisy seg- radius of 25 pixels and consists of 33 segments and the
ments. Figure 16(c) shows the resulting Saliency map. percentages of noise applied are 2,4, and 6 percent. This
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means that about a quarter of the circle edge exists. Up Our scheme is thus capable of finding shapes de-
to 4 percent of noise, the circle (or large parts of it) is re- scribed by their properties (smoothness etc.) rather than
coverable. With 5 percent noise and more, the saliency by their exact analytical parameters (as in the Hough
map degrades, and it is no longer possible to apply the Transform).
following algorithm. More detailed results can be found
in [Guy and Medioni 1992b]. For example, to implement a circle finder using our

10.6 The End-Point field scheme, we would simply use our Extension Field, but
We tested the end-point field with the synthetic im- with all field strengths set to the value 1. Coding of theage in Figure 11. It is clear that the outer circle receives other constraints is where the strengths of the individual

field elements come into play. This is not possible with

the original Hough Transform.

The down side is that the result is not found at an
- "isolated peak of the parameter space, but rather as a con-

] \• tinuous ridge of peaks (in the case of the Extension
S..Field). Also, note that the parameter field we use is al-

(a) (b) (c) ways the image plane, which, in many cases, is smaller

Figure 19 Results of applying the end-point fel/d. than a classical Hough parameter space. This 'Compac-

Note that the outer circle is not highlighted! (a) tion' of data is the cause for the low selectivity com-
Original image. (b) Saliency map. (c) after thresh- pared to Hough transforms.
olding single votes.oldin sinle vtes.Table 2: Comparison between the Hough

relatively low saliency, and can be completely removed Tabe2 fompan bte theme
if we consider single votes in the plane as wrong hy- Transform and Our Scheme
potheses (see Figure 20). Our scheme Hough Transform

11 Comparison with the Hough Transform
The classical Hough transform ([Duda and Hart Complexity Same for afl Grows with the num-shapes and prop- ber" of parameters

1972],[Hough 1962]) was invented to detect co-linear erties
formations within a dot image in the presence of noise.
11.1 The classical Hough transform Space Require- Constant Grows with the nu-

Consider the Hough transform for straight lines. A merits (O( image size)) ber ofparmeter and
2D array of accumulators is constructed and each token resolution.
in the image votes for a family of straight lines which Properties (Faro- Yes, by defining Not in any obvious
may pass through that dot. Using the common (O,d) line ilies of shapes) suitable fields way

parameterization it is easy to show that the voting pat- coding

tern is a sinusoid. Analytical Yes, by the same Yes
The next phase in the process is to search for peaks shapes method

in the parameter space array. That line is only defined in
terms of the above two parameters and further process- Voting pattern' 2-D
ing is needed to localize the actual segment in the image Loczation of Yes Not always. Further
plane. Note that this process is absolutely global, as it shape processing is needed
ignores distances between contributing candidates. If to find location
some orientation data is known at a site, less candidates
are voted for, and the ability to reveal the desired shape Means of output A ridge of .max- A peak in parameter

gets better. im1 space
The same scheme can be extended for other shapes Choice of bin Always image Hard (May be cru-

[Ballard 1981], by extending the parameter space. size resolution cial)

11.2 Our scheme as a Hough transform Selectivity Low (Because of High
Our system can be viewed as a Hough Transform compaction)

where the parameter space is the image plane itself.
This allows for many more degrees of freedom in the Transformation Non-Linear Linear
choice of shapes, and in the basic definition of the de- a. Our nomenclature. Refer to text for definition.
sired shapes. This choice of the parameter space allows b. Or at least one dimension less that of the problem.

us to define other voting patterns14 which enable us to
encode the constraints (see 2.3.1). 14. Similar to the sinusoid defined for the straight line detector
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However, for Perceptual Grouping this loss of se- [Duda and Hart 19721R. O.Duda and P. E. Hart, Use of the
lectivity seems to be an advantage. Note that the Hough Hough Transformation to Detect Lines and Curves in
Transform could find formations (e.g. straight lines) Pictures, Communications of the ACM, bl 15, 1972,
even when they are not salient to humans, because the pp. 11-15.

notion of interfering features does not exist 15. This [Guy and Medioni 1992a]G. Guy and G. Medioni, Per-
makes the Hough Transform a linear Transformation ceptual Grouping using Global Saliency enhancingoperators, Proc. of ICPR92, The Hague, Holland,
which is not suitable for perceptual grouping. Our 1992, pp. 99-104
scheme, on the other hand, is highly non-linear and [Guy and Medioni 1992b]G. Guy and G. Medioni, Per-
takes into account the interference by computing the ec- ceptual Grouping using Global Saliency enhancing
centricity measure at each site. Table 2 summarizes the operators, IRIS-USC Technical report, to appear.
main differences and similarities of the two methods. [Helson 19331H. Helson, The Fundamental Propositions

of Gestalt Psychology, Psychological Review, 1933,12 Summary And Conclusion 40, pp. 13-32.
We have introduced a unified way to extract percep- (Hough 1962]P.V.C. Hough, A Method and Means for

tual features in edge images. By 'unified' we mean that Recognizing Complex Patterns, U.S. Patent No.
all low-level features (edgels, points) are treated in a 3,069,654, 1962.
uniform way, and no special cases exist. The scheme is [Kanizsa 19761G. K. Kanizsa, Subjective contours, Scien-
threshold-free and non-iterative. It is especially suitable tific American, April 1976.
for parallel implementation, since computations of the [Lowe 1987]D.G. Lowe, Three-dimensional object recog-
saliency maps are independent for each site, and parallel nitionfrom single two-dimensional images, Artificial
algorithms for line following are known and can easily Intelligence 31, 1987, 355-395.
be adapted. Also, calculations are simple and stable, as [Mohan and Nevatia 1989a]R. Mohan and R. Nevatia,
no curvatures or any other derivatives need to be corn- Segmentation and description based on perceptual
puted on the digital curves. organization, Proc. CVPR, Jun. 1989, San Diego,

Ca., pp. 333-341.The system can rank features based on their percep- [Mohan and Nevatia 1989b]R. Mohan and R. Nevatia,
tual importance. This allows a real-time application to Using Perceptual Organization to Extract 3-D Struc-
process as many features as time permits. tures, IEEE Trans. on PAMI, Vol. 11, No. 11, Novem-

Srme of the issues which have not been addressed ber 1989, pp. 1121-1139.
are the resolution dependency of the description. At this [Parvin and Medioni 1991]B. Parvin and G. Medioni, A
time, only one level of description is possible. Also, we Dynamic System for Object Description and Corre-
have not tried to localize end-points of curves ending spondence, Proc. CVPR, Jun. 1991, Maui, Hawaii,
abruptly.Since all computations are performed on a dis- pp. 393-399.
crete grid, quantization and rounding errors restrict the [Rom and Medioni 1993]H. Rom and G. Medioni, Hier-
selectivity and amount of clutter the system can handle. archical Decomposition and Axial Shape Descrip-

tion, IEEE Trans. on PAMI, to appear.
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Abstract the locations of region edges and skeletons. It is argued
that the usual convolution and matching approach has

This paper describes a new transform to extract inherent limitations in edge detection. The main moti-
the edge contours and skeletons of image regions at vation and contribution of the approach is to avoid a pri-multiple scales. The application of the transform ori models of edge geometry but still allow detection of

to detecting edge structure is explained in detail. It region boundaries with arbitrary curvature. Instead of

is argued that linear processing based approaches, searching for and fitting spatial models of edges and re-

such as convolution and matching, have the funda-

mental deficiency of using a priori models of edge gions over image neighborhoods to select edge locations
gementry. deficienprosing tanprorm avoids this li- and orientations, the structure is allowed to "emerge"
geometry. The proposed transform avoids this lim- from "interactions" among the pixels. A pixel's interac-
itation by letting the structure "emerge," bottom- tion with all other pixels is considered instead of testingup, from interactions among pixels, in analogy with specific neighborhoods for a specific structure.

statistical mechanics and particle physics. The

transform involves global computations on pairs of A central feature of the proposed transform is to com-
pixels followed by vector integration of the results, pute affinities of pixels for grouping with other pixels,
rather than scalar local linear processing. An at- such that the groupings reflect the image structure. For
traction force field is computed over the image. pi'--ls on either side of a region boundary, the transfor-
Pixels belonging to the same region are mutually m, tion yields high affinities, but there is little affinity
attracted whereas those across edges repel each between pixels across regions. The strength of inter-
other. Scale is an integral parameter of the force action, and therefore affinities, between pixels depend
computation. The resulting groupings of pixels rep- upon their distances and contrasts, and this relates the
resent multiscale image structure. The properties computed affinities to the different scales present. Due
desired in multiscale edge detection are given, and to the global interpixel interaction allowed, the trans-
it is theoretically and experimentally shown that form can be viewed as collecting spatially distributed
the transform possesses these properties. Along evidence for edges and skeletons and making it avail-
with their contours, the transform diso extracts able at their locations. In this sense, the transform per-
skeletons of mutiscale regions. Experimental re- forms Gestalt analysis. The transform brings out the
suits with synthetic and real images are given to image structure which makes its subsequent detection
demonstrate the properties of the transform. easier. The objective of this paper is to introduce the

transform; algorithms for structure detection from the
transformed image are beyond its scope.

1 Introduction In the rest of this paper, we will first illustrate in de-
tail the use of the transform for edge detection, and then

This paper is concerned with the problem of detecting briefly discuss its use for region skeleton extraction. For
low level structure in images. It introduces a transform concreteness, we will assume that image regions have
to facilitate integrated edge and region detection at all uniform gray levels and are surrounded by step edges,
geometric and photometric scales at which structure is although the approach extends to other types of re-
present in a given image. At each scale, the transform gions and edges. Section 2 discusses some basic desired
helps identify groupings of pixels which comprise homo- characteristics of edge detection and the motivation for
geneous regions surrounded by edges by distinguishing the proposed approach. Section 3 proposes a family

"This work was supported by the Defense Advanced Re- of transforms intended to achieve the above character-
search Projects Agency and the National Science Founda- istics, and describes some of its properties of interest.
tion under grant IRI-8902728. Thanks to Mark Tabb who Section 4 proposes a specific transform from the fam-
produced the experimental results included in this paper. ily and examines its performance for edge detection in
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greater detail. Section 5 briefly discusses the applica- [4] ) is thus also subject to the validity of the assumed
tion of the transform to extracting skeletons of regions. model of the edge geometry.
Section 6 describes some experiments conducted to test The issue of the validity of the models of edge pro-
the performance of the transform. file has been addressed and different models of edge

(step, ramp, roof) have been mentioned. However, the
2 Background and Motivation limitations and impact of the assumptions made about

This section explains the motivation behind the ap- edge geometry have received much less attention. These
proach presented in this paper. For concreteness, we assumptions cause significant errors in the results as
focus on the problem of edge detection. The arguments can be seen, for example, from the performance of the
extend to the dual case of region detection which is dis- Laplacian-of-Gaussian for different edge geometries [2].
cussed in Sec. 6. We first examine the critical aspects The second major aspect of edge detection is related
of the performance of an edge detector (Sec. 2.1) which to scale [15, 16, 8]. There are two important ways in
suggests certain basic desired characteristics of multi- which edges are associated with scale: geometric and
scale edge detection (Sec. 2.2). Then we explain salient photometric. One example of geometric scale is struc-
design features of the approach proposed in this paper, ture size. Only large structures may be visible at a

and how they help meet the desired performance char- coarse geometric scale while smaller sizes and features

acteristics. may be detected at finer scales. An analogous process
characterizes contrast across an edge. An edge contour

2.1 Two Aspects of Edge Detection which separates two regions of a given contrast at a
given scale may not be detected at a higher scale. Thus,

There are two major aspects of edge detection which are there are scale variations associated with both geometricof central importance to its performance. The first one and photometric sensitivity to detail. The exact num-

has to do with the photometric and geometric model of ber and parameters of scales present in a given image

an edge. An edge separates two different regions and beanprmtrsosclsrsntiagvniae
thus two different types of gray level populations. It is a priori unknown. Therefore, for an edge detector to
thus commondioreat types poblem gr edgel pou tionas. I work at multiple scales, it should automatically iden-is common to treat the problem of edge detection as tify the scales present and detect edges corresponding

mainly that of selecting a point along the intensity pro- to each scale.

file across edge, assuming such a profile can be extracted

from the image, Accordingly, a model of the intensity 2.2 Desired Characteristics of Multiscale
profile is used to precisely define an edge and to opti- Edge Detection
mally detect its location. Different types of intensity
models of an edge have been proposed, according to the The above discussion leads us to the following desired
nature of the two populations and the spatial profile characteristics of an edge detector.
of the transition from one to the other across the edge A. Shape Invariance: The edge should be correctly
[13, 12, 3, 5]. To meet the assunption that edge profile detected regardless of the local curvature. Thus, an
through a pixel can be identified, it is common in edge edge point must be detected at only one and correct
detection work to use a model of edge curvature. The location, regardless of whether the edge in the vicinity
requirement for the identification of edge profile may of the point is straight, curved or even contains a corner.
be explicit or implicit. The geometric model constrains B. Contrast Scaling: It should be possible to detect
the number of possible ways in which subdivisions of the edges according to their contrast. For example, as scale
pixel neighborhood into two regions can be made. Each increases, the required contrast of detectable edges may
subdivision must be implicitly or explicitly tested for increase.
the presence of an edge profile in some direction. For C. Geometric Scaling: It should be possible to detect
example, the assumption of local straightness of edge edges of regions according to their sizes. For example, as
is common which makes it very easy to select neighbor- scale increases the required size of detectable geometric
hoods on the two sides of an edge. [10] assumes that the features may increase.
edge is locally straight (and that the intensity changes D. Stability and Automatic Scale Selection: Im-
linearly along a direction parallel to the edge.) Nalwa age structures at different scales correspond to locally
and Binford [11] assume straightness to extract a sample invariant (stable) descriptions with respect to geometric
edge profile. Even the computation of gradient which is and contrast sensitivities. Since for an arbitrary image
common to many edge detectors [9] implicitly assumes these scales are a priori unknown, they should be iden-
local edge straightness. The same can be said about tified automatically.
Laplacian based edge detectors. The use of straightness
is very explicit in the different types of discrete edge 2.3 Limitations of Convolution, and the
masks each of which is meant to detect a different edge Proposed Approach
orientation [14]. To detect intensity facets meeting at The approach we present in this paper has been moti-
an edge [6], a model of edge geometry is required so vated by the desire to satisfactorily address both aspects
candidate neighborhoods from each side of the edge can of edge detection discussed in Sec. 2.1 and to achieve
be identified. The work on optimal edge detection (e.g., the desired characteristics listed in Sec 2.2.
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The basic limitations put on the performance of an throughout this section will address general properties,
edge detector by the use of models of edge geometry sug- in qualitative terms, since the family of transforms has
gest that no linear, convolution based approach could only been characterized in general terms. A specific
be satisfactory. This is because the convolution kernel transform from this family will be examined in Section
represents a template for the edge, expected edge geom- 4 with more quantitative performance analysis. To sim-
etry. In the digital case, one could attempt to circum- plify the presentation, the regions are defined as being
vent this problem by exhaustively considering all possi- homogeneous in gray level. We will consider the case of
ble edge geometries in a neighborhood. But the number uniform gray level regions whenever doing so simplifies
of resulting kernels will fast increase with neighborhood analysis without loss of applicability of the results to
size and will be prohibitively large for any reasonable the case of regions having only statistical homogeneity.
size neighborhood.

The approach presented in this paper uses a method 3.1 A Family of Transforms
involving computations on pairs of pixels followed by Consider a transform over the image which computes
vector integration of the results, rather than scalar, an attraction-force field wherein the force at each point
weighted averaging over pixel neighborhoods. This denotes its net affinity to the rest of the image. The
avoids making assumptions about edge geometry. The force vector points in the direction in which the point
inspiration for the proposed solution comes from physics experiences a net attraction from the points in the rest
where microscopic homogeneity of physical properties of the image. For example, a point inside a region would
leads to islands of, say, similar particles or molecules, experience a force towards the interior of the region.
An island shape is congruent with the space occupied by This force is computed as the resultant of attraction-
a set of contiguous, similar particles, whatever the com- forces due to all other image points. Let F(p, q) denote
plexity of the boundary! The particles group together the magnitude of the force vector F(p, q) with which a
and coalesce into regions based on the similarity of their pixel P at position p is attracted by another pixel Q at
physical property only. The homogeneity of the phys- location q. Thus, F(p, q) = F(p, q)ipq , where ipq
ical property then characterizes the resulting regions. denotes the unit vector in the direction from P to Q,
As an alternate analogy, the grouping process is like i.e.,
the alignment of microscopic domains in large areas of
a ferromagnetic material, with a reversal of magnetiza- pq _ q-p
tion direction taking place across the boundary between lIq - p1l
two similar poles facing each other. The key process is In the continuous image plane, an image is trans-
that of interaction among particles, which leads to bind- formed into a continuous vector field. The resultant
ings among them based on their physical properties. attractive force vector Fp at P is given by

The problem of edge detection has similarities to the
above physical process. The goal is to find a partition
of the image, regardless of the boundary complexity, Fp = q F(p,q)ipqdq (1)
such that each cell of the partition is homogeneous, say, J Image
in gray level. The physical analogy suggests a formu- In the discrete case,
lation of the edge detection process in terms of a suit-
ably defined process of interpoint interaction - a process Fp = F(p, q)ipq
that would group, bottom-up, each set of points of the qdImage
same property, say gray level, corresponding to a region. We must now specify what forms could the force func-
Since points are the primitives of structure, they could to Fust q) tae.ifW will dors consd the
group together to follow any region boundary. Being tion F(p,q) take. We will do so by considering the

a parameter of the grouping process, different degrees properties that F must possess. The properties will de-

of acceptable homogeneity within a r would yield fine a family of transforms. Any choice of F that has
groupings a oerptabl e reneity wit region woule yie- these necessary properties will suffice. A specific choicegroupings over different regions, making scale an inte- o ilyedoemme fti aiy

gral part of structure detection. of F will yield one member of this family.

In the next section, we propose a family of transforms Since the presence of an edge must be determined by

which achieves the above grouping. These transforms its immediate vicinity (adjoining regions) rather than by

can be viewed as yielding an attraction-force field in distant points across other intervening regions, the force

which all points are mutually attracted except those should be a decreasing function of distance. This will
across edges. be accomplished by making the force exerted on a given

pixel P by another pixel Q to be inversely proportional
3 A Family of Transforms for to the distance between P and Q. Further, a pixel should

be attracted more to a pixel within its own region than

Multiscale Edge Detection to one in a different region. This is 'ccomplished by
In this section we first describe a family of trans- making the force to be inversely proportional to the
forms and discuss how these transforms possess the de- difference between the gray levels of P and Q. The rate
sired characteristics listed in Section 2. The discussion at, which the force decreases with distance determines
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the geometric scale (size) of the regions whose structure a disk D of radius r centered at P, r > as, is symmetric
is reflected in the force field. Similarly, the rate at which about P. Then the direction of Fp points into the region
the force decreases with gray level difference determines and is normal to the boundary at P.
the photometric scale captured by the force field. We
will use as and aE as the geometric and gray level scale Proof:
parameters. Thelarger their values, the larger will be Since r > a• by assumption, the force Fp at P gets
the force on a pixel due to another pixel having a given little influence from the points outside disk D. Consider
distance and gray level difference, respectively, a point Q inside the region as well as D, and along the

We will now examine some basic properties of the normal to the boundary at P. Since the boundary of
force field F. These properties serve to illustrate quali- W within D is symmetric about P (Fig. 2), the line
tatively the basic motivation behind the use of the fain- through P and Q divides the region of intersection of
ily of transforms of Eqn (1). More quantitative and de- W and D into two symmetric halves. For each point M
tailed evaluation of the performance will be presented in one half, there exists another point M' in the other
for a specific transform in Section 3. half such that the components of the force at Q, orthog-

onal to PQ, due to M and M' are equal and opposite.

1. Magnitude and Directionality: The magnitude Thus, the net force at all points along PQ, including P,
of Fp increases as P moves closer to the region bound- is along PQ and, from the directionality property, away
ary. The direction of Fp points toward region interior, from the boundary.

Proof: 3. Smoothness: If F(p, q) is a continuous (or differ-

Consider a homogeneous gray level region W sur- entiable) function for any p and q, and the intensity

rounded by another region X of gray level contrast C. value within any image region is continuous (or differ-

Now consider an arbitrary point P inside W and a disk entiable), then so is F at all nonboundary points of the

of radius r centered at P. For sufficiently small values of region.
r, the disk is contained inside W, and because of gray
level isotropicity around P, the resultant force on P due Proof:
to the pixels inside the disk is 0. Figure la illustrates Consider a nonboundary point. Then Fp is given by
this for the simple case where W is a half plane. As r [F(p q)ipqdq
increases to some value R, the disk will touch W. For J
r > R, the force on P due to the pixels inside the disk . Consider a point at p + Op in the vicinity of p. Then
will be nonzero because of asymmetery. Due to the the differential change aF from location p to location
gray level difference between P and the pixels outside p + Op is determined by the corresponding differential
W, there will be a net reduction in the force on P from changes OF(p, q) and (Wpq. Now, oF(p, q) is given,
the direction of intersection with X, and therefore, the from its definition, in terms of the change Od(p, q) in
net force on P will point away from the region of in- distance to q, and the change ag(p, q) in gray level rel-
tersection (Fig. la). That is, the resultant force Fp ative to q. Oifpq simply depends on p. Since g(p, q)
on P and the direction PQ will satisfy the condition is given to be continuous (differentiable) away from the
Fp • ipq < 0. For a region boundary having a simple region boundary, and d(p, q) and ipq are certainly con-
shape around the point nearest to P, the larger (r-R) tinuous (differentiable) functions of p, F is also contin-
is , the larger will be the anisotropicity, and hence, the uous (differentiable) with respect to p away from the
larger the magnitude of Fp. Therefore, for any fixed region boundary. Across a region boundary, the gray
r > R, the closer the point P is to the border (i.e., level variation is discontinuous, and therefore, so is F.
the smaller R is), the larger the magnitude of Fp. As
P moves closer to the boundary the force continues to 3.2 Multiscale Edge Detection
point away from X and its magnitude increases. In this section, we show that the field defined by F

makes the interregion edges explicit and this makes the
For regions having more complicated shapes than a task of edge detection easier. Consider an edge point

rectangle, as r increases there will in general be multiple P on the border of a region W with another region X,
connected components of intersection between the disk and a neighborhood around P of radius r. Further as-
and the surrounding regions, due to the complex shape sume that the conditions of Property 2 are met, namely,
of the region boundary. Therefore, the rate of decrease r > or, and W's boundary is symmetric about P within
in the value of Fp will depend on the exact shape of the neighborhood. Then, from Property 2 above, as P
W's boundary. Fig. 1 illustrates Fp for the case of is approached from the side of W, the direction of F
a rectangular region (Fig. lb) and an arbitrary region is orthogonal to the edge at P and points toward W.
(Fig. Ic). Similarly, from Property 2, as P is approached from

the side of W', the direction of F is orthogonal to the
2. Orthogonality: Consider a point P just inside the edge and points toward W'. Thus P is a point of direc-
boundary of a region W, such that the boundary within tional discontinuity, and the direction changes by ir/2
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Figure 2. If the boundary is symmetric about
p P the point P, the force direction at P is inward

and perpendicular to the boundary.

Figure 3. Stability and scale selection in the
scale space definied by pray level scale parameter
(x-auis) and spatial scale parametr (Y-Auis).
Hashed areas denote transitions from one stable
scale to another.

Figure 1. The force at a point P on the region boundary
depends on the region boundary complexity contained B
within the disk used. (a) a long linear boundary, (b) a
boundary with corners, and (c) a boundary with
arbitrary currant.

B. A'

Figure 4. Closed form computation of fmce field at
an edge point near a corner. Point P is d away from
the corner point B'. The force is computed from
within a disk of radius R. For Case in the text,
forces at P due to disk parts ABC and A'B'C" cancel
ouL The force due to part ABC' is symmetric to that
due to part A'B'C. The force due to part ABC' is
computed as the sum of those due to ABP and APC'.

897



while traversing from W into X. Further, recall that in a, leads to the emergence/loss of a structure due to
from Property 3, F varies smoothly on either side of changed geometric sensitivity, or a change in a'g leads
the edge. Therefore, for each point of directionl discon- to a split/merge of regions due to changed contrast sen-
tinuity, there is another point P' in the vicinity of P sitivity. Consequently, changes over much of the range
which is also a point of directional discontinuity. Since of a, and a2 should preserve the force direction pattern
with appropriate choice of scale parameter each such in any given image area. This implies that F should be
point is along the region border (true edge), and regions stable and the significant scales in any image area could
have closed borders, the points of directional discontinu- be automatically identified as corresponding to those or,
ity found using appropriate scale parameter form closed , oa values (unhashed areas in Fig. 3) for which there is
curves. little change in the direction pattern. Such scale iden-

These properties also hold near vertices where more tification should be quite robust since it is based upon
than two regions meet. This is true because the force at qualitative changes in F.
each point in the vicinity of a vertex points toward the
interior of one of the regions, and the above arguments 4 A Proposed Transform
hold for each region. Further, any variation in the val- In this sec.~ion we describe a specific transform belong-
ues of a, results in incremental changes in F due to the ing to the family defined by Eqn (1), and examine its
smoothness property. These observations lead us to the performance as a multiscale edge detector.
following result:

4.1 Transform
RESULT: Region borders are characterized by a dis- We decontinuity in the direction of F. The magnitude of the We dfine F(p, q) in Eqn (1) as a product of two Gaus-

contnuiy i th dirctin o F.The agntud ofthe sians, one a decreasing function of the distance d(p, q)
discontinuity is 7r/2 for optimal choice of scale parame- between P and Q, and the other a decreasing function of
ters at each point and decreases gradually for subopti- the gray level difference, g(p, q) between P and Q. The
real choices. standard deviation for the spatial variation is the spatial
3.3 Performance Analysis scale parameter as, and the standard deviation for the

gray level variation is, the scale parameter for gray level
We will now examine the performance of F with respect difference, ag. The choice of Gaussian for each part is
to the desired characteristics listed in Section 2.2. First, made mainly because of its optimal localization prop-
the very motivation for proposing F comes from char- erties in both spatial and transform domains, although
acteristic A, namely, invariance to local edge geometry. other properties such as separability are also desirable.
Sec. 3.2 explains how this characteristic is possessed by Therefore, the proposed transform Fp at an image
F. With regard to desired characteristic B, scale param- point P at location p is defined by:
eter a9 provides a mechanism to accomplish contrast
scaling. As a. increases, adjacent regions may merge. - p ) g2
This is because the attraction of a point in one region Fp (p, q) (p, q)
from another point across region boundary may increase JqImage 2a 2o' ipqdq (2)
sufficiently so that the directional discontinuity in F re-
sponsible for the edge may vanish. Thus changing a, As we will see later, empirically the performance of
achieves region split and merge based on contrast values the transform for edge detection seems to be quite in-
[7], and therefore, desired contrast scaling. Analogously, sensitive to the nature of the decreasing function; the
scale parameter a, helps achieve geometric scaling. As formulation of interpixel interaction as a vector inte-
a, increases, the force field at a point starts to get influ- gration of pairwise pixel similarities, rather than scalar
enced by increasingly global structure. Therefore, as o, weighted averaging over neighborhoods, appears to be
increases, the sensitivity to fine local details is reduced the key factor in capturing the image structure.
resulting in a characterization of more global shape.

We now consider the performance with respect to de- 4.2 Performance Analysis
sired characteristic D. First, recall that the region edges In this section, we will examine the performance of the
are represented by discontinuities of F. From the above transform of Eqn. (2) for edge detection with respect
discussion, the structures at different scales must be de- to the various desirable characteristics listed in Section
tected by appropriate values of (a,,oa). Since there 2. Specifically, we will discuss the performance of the
could be only a small number of scales associated with proposed transform with respect to (A) sensitivity to
any specific area of the image, the parts of the (oa, o,) edge geometry, (B) sensitivity to intensity model, and
space associated with the different scale structures in (C) multiscale behavior.
any given area must be small in number. For any arbi-
trary a, and ag , the force field should have a direction A. Sensitivity to Edge Geometry: For an edge
pattern in which borders of only certain regions coin- through a point P which is smooth in the vicinity of
cide with direction discontinuities. This force field di- P, we have seen that the edge is well represented as a
rection pattern should not change except when a change directional discontinuity in F. That is, if the edge is
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smooth around P and as is small relative to the radius These components determine the magnitude and the
of curvature of the edge contour, the transform cap- direction of the force at P', a point just inside X and
tures the edge information. However, if the curvature infinitesimally far from P. The direction of Fp is given
assumes a high value or is undefined near P, e.g., when a by
corner is present along the edge close to P, the behavior
of the transform needs to be examined. This is because tanV6= (FL +F ,L')
there may be a qualitative change in Fp as as increases (FoL + F•L)
and begins to to include significant contributions from where 6 is the clockwise angle that Fp makes with -x
the parts of edge beyond the corner (or high curvature) wis The force at a point just inside W and infinites-
part of the edge. Consider the corner of angle 0 shown islly far from P is equal and opposite to that at P'.
in Fig. 4. Point P is located a distance d away from the Thus, the force direction has a discontinuity of r/2 at
corner. As as increases, F changes significantly, from P but the absolute direction 6 of the force relative to
that corresponding to a long linear edge, to that corre- the edge direction, which is desired to be fr12, depends
sponding to the boundary of a wedge shaped region. upon the parameters of the corner per the above equa-

To study the performance of the transform on a cor- tion.
ner, we attempted to derive a closed form expression for
F as a function d, 0 and o,, and or. Due to the use of B. Senstitivity to Intensity Model: There are two
the Gaussian, some of the integrals did not appear tohave closed form solutions. However, we could derive aspects of intensity model with regard to which the sen-
hav closed form expresions. Howhevser, owlinear decay sitivity could be evaluated: presence of noise in intensitya closed form expression for the case of a line , values, and deviation from the homogeneity assump-(instead of Gaussian) in attractive force with distance. tion we have made about region gray level. The first

4) case is simple. If the regions contain independently dis-(Fig. 4), the components Fx and Fy of F are given by tributed, zero-mean, additive noise, then the expected

_c2 deviation in force at any point P is 0 compared to the
-Fx = (FOL + Fo' )(1 - e 2 ) case without noise. This is because changes in region

intensities due to additive noise are spatially symmetric
F V2 with respect to P, thus the deviation in attraction by

2 (F.•L 2 one noisy pixel is cancelled on an average by another
pixel on the opposite side of P. Therefore, the expected

where FoL + FoL value of Fp is the same with or without noise. Second,
if the region is not homogeneous in intensity then the

I 'Ra2 [+dcosOl force at a point in the region will depend upon the rate
-o R sin 1  R + change of intensities away from P. For the simple case

of an intensity ramp, the changes in intensity around

2o P are still symmetric although nonzero as for the ho-

dsinR - dsin2 In d(1 - cos ) mogeneous case. Since force depends on the absolute
dsi0 cs R( _- d2 s , intensity difference only, P still experiences equal and2, R(1 Id 12

-- aopposite forces from the up and down directions of the
ramp resulting in a zero force as for the homogeneous

cos0 . si..}1dsin0 0 l1 case. This continues to hold for a ramp containing inde-
+-{d- RI pendent, zero-mean, additive noise for the same reason

and F, L + F•L as for noisy homogeneous regions. For regions charac-
terized by more complex distributions, e.g., polynomial

1 variation in intensity, Fp may show direction disconti-

-R[I- R s] I d2 sin 2  + d sin 2 0 nuities which reflect the structure. Such detected struc-

2=1 R 1 2 + R ture must be computed using Eqn. (2) for the specific
case at hand. We have verified this edge preserving
property of the transform about a corner (details in next

+dsin inOln(R)+ Section).

C. Multiscale Behavior: Variation of scale parame-
s)ters as and ag leads to stable direction pattern of F as

dsinOcos0n d( - cos0) was discussed for the family of transforms in the pre-
2c', +V - n - ) vious section. These parameters change from point toR( +Rpoint and therefore further processing is necessary to

obtain a multiscale description of the image structure.
+ sin0 _ R)(-cos .sin-l(dsin )-0 }1 This further processing is beyond the scope of the cur-

2n9R) rent paper, therefore we will not address it any further
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for the specific transformed proposed. geometry. The synthetic image was designed to contain
linear and curved segments as well as corners formed

5 Multiscale Shape Description by them. The directional discontinuities coincide with

There are two ways in which the proposed approach edges for all parts of boundary without any smooth-

yields multiscale description of region shape along with ing. The skeletons of the regions are also clear from the

multiscale edges. First, we have seen that the detected directional discontinuities present along them. Fig. 7

edges form closed contours surrounding the correspond- shows the directions of F for the corner image of Fig.

ing regions. Therefore, mutiscale edge detection im- 4. This image was used in Sec. 4 to analytically evalu-

plies detection of multiscale regions. The second way ate the sensitivity of the transform to edge geometry by

in which the transform extracts multiscale region shape deriving closed form expressions for directional discon-

information is by making explicit their skeletons. Re- tinuities along the edges. The experiments were con-

call from Property I above that in the vicinity of an ducted with corners of angles 15, 30, 45 and 90 degrees,

edge point the magnitude of F decays away from region with clean (binary) images as well as after adding zero-

boundary and its direction points away from the bound- mean Gaussian noise having standard deviations of 10

ary point. This implies that for the appropriate val- and 30. In all cases, the edges were mostly preserved as

ues of the scale parameters at each point, as one moves there is a large directional discontinuity across edges.

away from region boundary towards the interior there is The magnitudes of the directional discontinuities cre-

a curve across which the force changes direction, from ated away from the edges due to noise are comparatively

facing one side of the region boundary to another. If very small and easily distinguishable from those along

scale parameters not specific to the different points are the edges. Fig. 7 shows F for only two of the cases for

used, this and other properties may not be observed, brevity, including the sharpest corner (15 degrees). The

For example, if a value of Ors which is too small is used vectors are shown as line segments at each point in the

inside a region, then the force may become 0 because vicinity of the corner. The length of the line segment

of the homogeneity throughout the neighborhood over represents the vector magnitude and the tail of the vec-

which the transform value significantly depends. tor is indicated by the end having a small filled circle.
Such corners present a challenge to the common meth-

6 Experimental Results ods of edge detection. However, the results of the trans-
form show that the directional discontinuities coincide

This section describes the experiments we w sve done to with even the edges of the 15 degree corner without any
test the performance of the proposed trai•sf e.m. Since ronigNtiehttemaiudofheorewy

the combination of scale information from multiple pix- rounding. Notice that the magnitude of the force away

elsis utsde he cop ofthi paertheexprimnts from the boundary decreases as expected and hence it
els is outside the scope of this paper, the experiments is more susceptible to noise even though the expected
were carried out to demonstrate the various properties response value is still the correct one. This will not hap-
of the transform, instead of obtaining edges or skele- pen after processing of the transform results with auto-
tons for images. To demonstrate each property, we have matically chosen scale parameters since the value of a,
chosen appropriate parameters of the transform. These would be large towards the region interior, giving larger
parameters would be selected automatically in the sub- force magnitude and thus eliminating the increased sus-

sequent processing as outlined earlier. Our experiments ceptibility to noise.

demosntrated that the transform is fairly insensitive to

the choice of the decay function. The results are rather References
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and bright gray levels occur at adjacent image loca- and Machine Intelligence, pages 679-698, 1986.
tions. The corresponding discontinuities should be ig-
nored. Edges and region skeletons can be seen as direc- [5] L.S. Davis. A survey of edge detection techniques.
tional discontinuities. The extracted structure would Computer Graphics and Image Processing, pages
improve after the subsequent automatic processing of 248-270, 1975.
the transformed image not done in this paper. Fig 6 [6] R. M. Haralick. Digital step edges from zerocross-
demosntrates the sensitivity of the transform to edge ings of second directional derivative. IEEE Trans-
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Figure 5. (a) A gray level image and (b) the force direction computed from the transform; the brightness

at each pixel is proportional to the direction angle. When thc directions corresponding to the dark and

bright gray levels occur on adjacent image locations. artifact edges arc visible which should be ignored.
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Figure 6. The sensitivity of the transform to edge geometry. (a) A binary synthetic image designed to test the
performance of the transform near edges of different curvaum and their junctions. (b) The force directions
computed by the transform shown as in Fig. 5. The edges and skeletons are visible as directional discontinuities.
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Scene Segmentation and Volumetric Descriptions of SHGCs from a Single
Intensity Image

Mourad Zerroug and Ramakant Nevatia*
Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles CA 90089-0273

Abstract ever, most previous work on inferring 3-D shape from
We present an approach for solving the figure-ground 2-D contours assumes that the problem of object (sur-
problem and computing volumetric descriptions in face) segmentation has been solved, whereas this is a
complex real images for an important class of objects: key and difficult ster in monocular scene analysis. Real
straight homogeneous generalized cylinders. Past work images produce contours with many imperfections such

as distortions, breaks and occlusion. Further, not juston shape description and recovery from contours as- ,re l im g co t u s a e p s nt n an m g .S rf e
sumed that perfect contours are given or that the scene 're imge coos are prese an image Surfchas already been segmented. We address the problems markings, shadows and noise also produce contours.
of scene segmentation and shape recovery together. Our Figure 1 shows an example of a real image and its ex-method is based on exploiting mathematical invariant tracted edges (by a Canny edge detector [Canny 1986]).
properties of the contours of generalized cylinders in a The difficulty in dealing with such imperfections is that
multi-level perceptual grouping approach. The method it is impossible, by just looking at the contours individ-
handles SHGCs in complex scenes with occlusion and ually, to tell which constitute real contours and of what
markings. We demonstrate the application of our meth- objects and which do not, or simply how many objects
od on complex real images. We also demonstrate the us- there are in the scene. This problem is known, in psy-
age of the obtained descriptions for recovery of chology, as the figure-ground problem and is more dif-
complete 3-D object centered descriptions of viewed ficult in the presence of occlusion as substantial object
objects. contours may be invisible. To address this problem, it is

necessary to use a grouping process to collect relevant1 Introduction features together and discard the irrelevant ones.

One of the fundamental problems in computer vision
is the recovery of the shape of viewed objects in a scene
from a monocular intensity image. A basic source of
difficulty is the ambiguity caused by projection. Human
vision does show that substantial information can be in-
ferred from a single intensity image. This includes both
segmentation of the scene into different objects and per- 7

ception of their 3-D shape. To achieve such ability in
machines has continued to be one of the most challeng-
ing problems in computer vision. Figure 1 A real image and its extracted contours

Among the cues that can be used for shape recovery Given the hierarchical nature of object and scene Iea-

from an intensity image, contour is the richest in geo- tures, it is important to address the figure ground prob-
metric information and most robust to changes in view- lem by using feature grouping at different levels of this

ing conditions. Using contour as a cue for shap e m byuigfauegopn a e tlvl fti
descrdiptions a nd re covory h as receivd the a tape hierarchy. In order to be of interest for imperfect con-description and recovery has received the attention of tours, the grouping constraints should be locally appli-many researchers since the early days ofthe field. How- cable so as to handle occlusion and gaps. Yet, they

* This research was supported by the Advanced Research Projects should provide global criteria that discriminate between
Agency of the Department of Defense and was monitored by the Air true instances and accidental ones.
Force Office of Scientific Research urnder Contract No. F49620-90-
C-0078. The United Stae Government is authorized to reproduce In this paper, we describe our approach to the figure
and distribute reprints for governmental purposes notwithstanding ground problem based on these observations. It address-
any copyright notation hereon. es the problem of shape description and scene segmen-
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tation in the presence of multiple objects, broken line between them. An example of a specific model
contours, markings and occlusion for SHGCs, an im- based approach is Acronym [Brooks 19831 which uses
portant subclass of GCs [Binford 1971]. SHGCs do cap- stored models to predict and match image features. That
ture a large number of objects such as industrial parts system has been used for the detection of airplane mod-
and tools. Our method exploits projective invariant els (straight GCs) from a top view. Generic model based
properties of SHGCs in order to guide the segmentation methods use 2D properties of generic 3D shapes, with-
and description processes. We believe that invariant out using specific objects as models. Ponce et al. [Ponce
properties of generic shapes greatly help in solving the et al. 1989] have derived projective invariants of the
figure-ground problem. In fact, an essential characteris- contours of SHGCs and used them in a simple method
tic of the segmentation of an image of a 3D scene should to detect their axes. Richetin et al. [Richetin et al. 199 1]
be its viewpoint invariance. The method we propose also used properties of the contours of SHCs for pose
consists of a bottom up, perceptual grouping approach estimation from an image of a single object. These last
handling a hierarchy of three levels of features: curves, two methods do not address the segmentation problem.
symmetries and SHGC surface patches. Throughout Rao and Nevatia [Rao & Nevatia 1989] and Mohan and
this hierarchy, the invariants are used for local feature Nevatia [Mohan & Nevatia 19891 have proposed two
detection, grouping of those features into consistent glo- different method for the figure-ground problem in com-
bal ones and completion of missing features using only plex scenes with occlusion, in the context of ribbons.
information from the image itself. Both methods address the problem of selecting symme-

We have implemented a system that produced satis- tries and ribbons, a necessary task for the figure-ground
factory results on rather complex scenes by the stan- problem. Those methods use rather intuitive con-
dards of currently developed methods. We have used straints. Sato and Binford [Sato & Binford 1992a and b]
these results for 3D shape recovery and we believe that have recently proposed a method to detect SHGCs.
they also have application in recognition. Their method and ours are quite similar in the principle

The remainder of this paper is organized as follows, of using projective properties. However, they differ in
In section 2, we discuss related previous work. In sec- the way those properties are used and in the complexity
tion 3, we discuss the projective invariant properties of of the scenes they can handle. Most notably, their sys-

SHGCs we use. In section 4 we give an overview of our tem does not handle occlusion. We will compare it to
approach. Sections 5 and 6 discuss in detail the upper ours in more detail in section 7.
two levels of our hierarchy. Examples of obtained re- 3 Properties of SHGCs
suits are also given. Section 7 includes a discussion of Projective invariant properties provide strong con-
robustness issues and a comparison of our method with Pro ectii n operieshpe strong c-
others proposed in the literature. In section 8, we dem- straints for the detection of generic shapes. Thus, detec-
onstrate the usage of those results for 3-D shape recov- tion of contours satisfying those constraints is anery. We conclude this paper in section 9. important step of the figure-ground problem and en-

sures that image segmentation is itself a viewpoint in-
2 Previous Work variant process. Here, we include relevant properties

Previous methods on generic shape detection and re- from previous work and new properties we have de-
covery can be classified into two broad classes: those rived. First, we give the definition of an SHGC.
assuming perfect data and those using real images. Definition 1: An SHGC [Shafer & Kanade 1983]

Methods of shape recovery from perfect data focus on (straight homogeneous generalized cylinder) is the sur-
the recovery of 3D shape and assume that the problem face obtained by sweeping a planar cross-section curve
of image segmentation has been solved. The method of C along a straight axis A while scaling it by a function r.
Ulupinar and Nevatia [Ulupinar & Nevatia 1990a and b, Let C(t) = (u(t),v(t)) be a parametrization of C, r(s) the
Ulupinar & Nevatia 1991] addresses 3D recovery of scaling function and a the angle between the cross-sec-
certain classes of surfaces such as zero gaussian curva- tion plane and the SHGC axis (s-direction), then the sur-
ture surfaces, SHGCs and planar right constant general- face of the SHGC can be parameterized as follows
ized cylinders. Their method is based on the observation (using the formulation of [Shafer & Kanade 1983]):
that certain types of symmetries provide strong con-
straints on 3D shape. The method of Gross and Boult S (t, s) - (u(t)r(s)sina, vt)r(s), s + uQ)r(s)cosa) (1)
[Gross & Boult 1990] addresses 3D recovery of SHGCs When a = n /2, we obtain a right SHGC (RSHGC).
using a combination of constraints from contour and in- Figure 1 shows an RSHGC and the chosen configura-
tensity information. tion of the axes. For an LSHGC the scaling function is

Methods of shape from real images explicitly address linear;, i.e. r(s) = a(s - so). Curves of constant t are called
the problems of real image imperfections. They can be meridians and curves of constant s are called cross-sec-
classified into two classes: specific model based and ge- tions (also parallels).
neric model based, although there is no clear dividing In [Ulupinar & Nevatia 1990a], a class of symmetry
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V crass-sections jection of the axis at a common point [Ponce et al. 1989.
m a Ulupinar & Nevatia 1990a].
meridians The properties we add have been reported, without

sign wi proofs, in an overview of this work in [Nevatia et al.
s .gn-etwith SHGC axis) 1992]. Equivalent ones have been independently de-

e2 SHGC coordinate system and terminology rived by [Sato & Binford 1992a and b]. Here, we stateFigure2 SG ordnt ytman emnlg the new properties and give their proofs.

called parallel symmetry is defined that is present in

SHGC contours under certain conditions (discussed lat- Property P4: We give this property in the form of a the-
er). Its definition is given here. orem and its corollary.

Definition 2: Two planar unit speed curves' Cl(wl) Theorem P4: Lines of correspondence between any pair
and C2 (w2) are said to be parallel symmetric if there ex- of cross-section curves are either parallel to the axis or
ists a continuous and monotonic function f, such that intersect on the axis at the same point. The proof of this
T1(wl) = T2(ftw1 )). Where Tjwi) is the unit tangent vec- theorem is given in appendix A. .1.
tor of C/ýwi). Thus, corresponding points have parallel Corollary P4: In 2-D (orthographic projection), lines of
tangent vectors, parallel symmetry between any pair of projected cross-

sections are either parallel to the projection of the axis
Cc 2  or intersect on it at a common point. The proof of this

corollary is given in appendix A. 1.2.
T2 Property P5: Let Cl(u) and C2(v) be two unit speed par-

Figure 3 Example of parallel symmetric curves allel symmetric curves with a linear correspondence

The correspondence is said to be linear iff is a linear f(u) = au + b. Then for all u and u' the vectors

function. In this case the two curves are similar up to V, = C(u') -Cl(u) and V2 = C2(au + b) -C2(au + b) are

scale and translation. The axis is the locus of midpoints parallel and IV2VIVll = a (i.e. the ratio of their lengths is

of lines of symmetry (correspondence lines). Figure 3 constant and equal to the scaling of the correspon-
gives an example. A property of linear parallel symmet- dence). The proof is given in appendix A. 1.3.

ric curves is that lines of correspondences are either mu- SHGC axis -- Tangents at
tually parallel (for a unit scaling) or all intersect at one - corresponding points
point (apex). corresponding P lroperty P3.

Now we state projective invariant properties of segments. Parallel Symmetric
SHGCs. Some have been derived in previous work Property P5. - Cross-sections.
[Ponce et al. 1989, Shafer & Kanade 1983, Ulupinar & Property Pl.
Nevatia 1990a]; we state those without proofs. Others Lines of ParallelSymmetry. :
are introduced here; proofs of these are contained in the Prmety.
appendix. Figure 4 illustrates those properties.
Property Pl: Cross-section curves of an SHGC are mu-
tually parallel symmetric with a linear correspondence. Figure 4 Projective invariant properties of SHGCs
This property holds in 3-D and in the 2-D (orthograph- The usage of these properties will be discussed
ic) projection. The proof can be found in theorem 4 and throughout the description of the method in the next
its corollary in [Ulupinar & Nevatia 1990a]. sections.
Property P2: Contour generators (limbs) of an LSHGC 4 Overview of the approach
are straight (they are meridians). This property holds
also for the 2-D projection of limbs which are projec- Our method operates at three perceptual grouping lev-
tions of those meridians. Therefore, in 2-D, the tangent els: the curve level, the parallel symmetry level and the
line and any correspondence line at each limb point are SHGC patch level. The curve level grouping is aimed at
colinear. The proof can be found in Section 4 of [Shafer forming contours from edges detected in a real image.
& Kanade 1983]. The input to that level is an edge image and the output
Property P3: In 3-D, tangents to the surface in the di- are global contours. Contours are first formed by an
rection of the meridians at points on the same cross-sec- edge linking process based on simple contiguity criteria.
tion, when not parallel, intersect at a common point on Those contours are then segmented at comers. Obtained
the axis of the SHGC [Shafer & Kanade 1983]. In 2-D, contours are usually discontinuous. At this level, a con-
tangents to the projections of limbs intersect on the pro- servative co-curvilinearity based process is used for

bridging short breaks. A method similar to [Mohan &
la curve is unit speed if it is parameterized by arc length. Nevatia 19891 is used here, which consists of using an
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energy function measuring zeroth order and first order
continuity between curve ends.

The parallel symmetry level grouping is aimed at
forming global linear parallel symmetries between con-
toirs formed at the curve level. A hypothesize-verify
process of several steps is used for that purpose. Linear
parallel symmetries are used to hypothesize cross-sec-
tions of SHGCs. &

The SHGr_ patch level grouping is aimed at forming Figure 5 Local parallel symmetry correspondences
global SHGC surface descriptions whenever possible. (axes are in thick lines)
Another hypothesize-verify process is used that starts similar to the scale I ý I / I R suggested by the grouped
by detecting local SHGC patches (defined later) and symmetries (global scale). In practice, we also use a
generating grouping hypotheses of those patches and connection measure for each grouping hypothesis. For
produces verified global SHGC hypotheses. this, we distinguish two cases, continuous connection

The perceptual grouping nature of our method allows and discontinuous connection.
to handle discontinuities in descriptions caused by oc- 1) Continuous connection: in this case the two symme-
clusion and large gaps. The constraints for detection of try elements have a common curve (Figure 6.a). The
features (parallel symmetries, SHGC patches) and connection measure is based on the relative gap,
grouping of those featureb "-ebased on projective in- E-= I II/sI between the non connectea .urves. A
variant properties discussed in section 3. Those proper- grouping hypothesis is generated ifE is less than a fixed
ties are also used for completion of missing features threshold. This measure gas been introduced so as to pe-
such as broken contours and surfaces. nalize distant symmetry elements, a case that might oc-

For lack of space, we will not discuss the curve level cur between unrelated symmetries (involving markings,
grouping. In section 4, we discuss the parallel symmetry for example).
level and in section 5, the SHGC patch level.

5 Parallel Symmetry Level Grouping S..

verify process of several steps, firc,,n detection of local . r S

correspondences to forming consistent global ones. The Psy• " R
steps are discussed below.
5.1 Detection of local correspondences a. continuous connection b. discontinuous connection

Local parallel symmetry correspondences are detect- E - l. I/ls'l E - (lM/ISI) (a2 -.12 )
ed using the method of [Saint-Marc & Medioni 1990].
This method consists, first, of fitting quadratic B-splines local-scales - WIM/ global-scales - I 1/IRI
to curves then finding correspondences analytically. Figure 6 Grouping of parallel symmetry elements
The correspondences obtained are generally noisy,
sparse due to breaks and may involve both desired and 2) Discontinuous connection: in this case, the symme-
undesired symmetries (involving markings, for exam- try elements do not share a common curve. Another
ple). Further, the correspondences may not be linear, connection measure is used in this case, E = (l'I/
which is a requirement for cross-sections of SHGCs I SX&a2 + 12), and is as shown in Figure 6.b. It controls
(property P1). Figure 5 gives some examples of corre- boththegapandthecontinuityofthesymmetric -rves.
spondences given by that method. The second example Gaps that involve change in curvature sign are r, -on-
has of the order of a thousand such symmetries. Group- sidered.
ing and selection of relevant correspondences are the
objective of the next steps. This local compatibility constraint prevents grouping

5.2 Grouping of parallel symmetries of symmetry elements such as the ones of Figure 7.a
and Figure 7.b. Notice that grouping of symmetry ele-

The purpose of this step is to generate grouping hy- ments implies grouping of curves involved in the sym-
potheses (connections) between symmetdy elements. metries. Therefore, this step implicitly handles (cross-
For this, we use a grouping method based on a local section) curve groupings that have not been generated at
compatibility constraint derived from property PS. As the curve level due to large gaps or non smooth connec-
shown in Figure 6, two symmetry elements ps, and ps2  tions.
are considered for grouping if the vectors ' and ý de-
fined by the end points of the symmetries are parallel 5.3 Selection of hypotheses
and the ratio of their lengths I s I1i •l (local scale) is The previous step may produce a large number of
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This is shown by the dashed curve in Figure 6.a. This
........- .. operation is done efficiently by the use of B-splines. The

S-cross-section gaps in Figure 9.a and b have been so
completed.

r2) Discontinuous connection: in this case, there are
a. b. gaps on both sides of the connection. The completion is

Figure 7 Non grouped symmetries, a. non parallel done in two steps.
connections. b. non similar local and global 1) boundaries are inferred up to the extremities of the
scales.

connection hypotheses, some of them conflicting. Con- continuing curves (dashed curves in Figure 6.b).
fficts arise when there is more than one connection hy- The same procedure as the one discussed previously
pothesis involving the same curve at the same end. is used here.
Figure 8 gives an example. At this level, it is difficult to 2) the two remaining gaps are filled in each by a qua-
decide which, among competing hypotheses, is the right dratic B-spline (dotted curves in Figure 6.b).
one. Consequently, all alternative combinations involv- The two filled in boundaries are parallel symmetric,
ing non competing hypotheses (conflict free sets) are in- thus producing a consistent boundary completion with
vestigated. the symmetry requirements. Figure 9.c is an example of

such completion.
s the gap in the middle curve is Finally, only symmetries involving closed curves are

s differently influenced by the selected. Closure is defined by the existence of a cycle
P upper and lower curves of curves connecting both extremities of a given curve.

Gaps between adjacent curves in the cycle are complet-
Figure 8 Competing hypotheses. Grouping ofps, and ed by B-splines. This method has produced satisfactory

P$2 competes with that of ps3 and ps4. results for all tested examples. Closed curves involved
5.4 Verification of global correspondences in parallel symmetries are likely to correspond to cross-

In this step, hypothesized connections are checked for sections of SHGCs (Property P1).

geometric consistency. The objective is to retain only Figure 9 shows the results obtained in this level on
those groupings that produce global parallel symmetries some objects. Figure 9.d shows the completed cross-
with linear correspondences. The verification consists section of the cone of Figure 5.b.
of checking the similarity between the scale given by ,.r.

the global correspondence and the scales of each of its A .
component parallel symmetry elements and connec-
tions (property PS). This is necessary because the local ..
compatibility constraint only ensures scale similarity of / . ,
two neighboring local correspondences 2.
5.5 Boundary completion , ---

Selected global correspondences are used in order to ,
fill in the gaps. Since symmetries are similarity relation- a. b. c. d.
ships, missing boundaries of a curve can be inferred Figure 9 Results obtained in level 2. Original
from corresponding boundaries of a symmetric curve, contours and completed correspondences.
Boundary completion is different for the two types of 6 SHGC Patch Level
connections discussed in 5.2. We discuss them separate-ly. At this level, the objective is to produce complete

SHGC descriptions. Due to large gaps, usually caused1) Continuous connection: in this case, the common byoluinasngesraemyotedteedi-

curve of the connected symmetry elements is used as a by occlusion, a single surface may not be detected mm-

model for the missing boundary of the connection. Ts ply by searching for closed contours, or by expecting

is done as follows. connectivity between surface extremities as in [Sato &
Binford 1992a]. Furthermore, junctions and corners

1) the part of the model curve that corresponds to the may not be reliable as cues for surface segmentation in
gap is detected. For this, the global scale is used. a real image, as those features are themselves difficult to

2) the missing boundary is obtained by scaling and detect and sensitive to image imperfections. However,
translating the previous part so that it fills the gap. even under heavy occlusion, local surface patches, or

surface segments, can still be detected. A fragmented
2 due to the usage of similarity measures, the relation may not be surface can then be recovered by grouping those surface
transitive, patches whenever there is evidence that they project
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from the same global surface. In this level, we use a by- yields a set of recovered cross-sections (see
pothesize-verify process of several steps in order to de- Figure 11). Between each pair of such cross-sec-
tect local SHGC patches and generate grouping dons having different scales, the intersection point
hypotheses of these patches. The constraints used in this of lines of symmetry is determined (Figure 10.c). A
process are based on projective invariant properties dis- local SHGC patch is hypothesized if the locus of
cussed in section 3. such points is a straight line (using fitting criteria).

6.1 Detection of local SHGC patches This line is a local estimate of the projection of the
axis (corollary P4). We call this patch a non-linear

Definition 3: A local SHGC patch is given by a hypoth- SHGC parh. W

esized closed cross-section and a pair of corresponding We bethi

limb curves (limb patches) satisfying the projective We believe this method of finding axis points to be

properties P2 or P4; i.e. the limb patches are either more robust and accurate than the method, used by

straight (for a local LSHGC) or have the property that Ponce et al. [Ponce et al. 1989], based on tangent lines

lines of symmetry between any pair of projected cross- (property P3), as the latter is sensitive to distortions of

sections intersect on a straight line (projection of the the limbs. In a sense, property P3 can be thought of as

axis). Figure 10 shows sample local SHGC patches. the limit case of corollary P4 where the two cross-sec-
tions get arbitrarily close to each other. The error in the
slope of a line of correspondence is inversely propor-
tional to the distance between the cross-sections. Thus,CD small errors in the tangent line direction greatly affect

e7-: 0the position of the intersection (axis) points. Further,
our method can be applied to 0(n 2 ) cross-sections (all

"a"b. C! combinations), providing more points for the voting

Figure 10 Sample local SHGC patches. a. cylindrical process than the O(n) property P3 would.
patch. b. conical patch. c. non-linear patch 6.2 Grouping of local SHGC patches

For each hypothesized cross-section, the method con- The previous step may generate sparse local patches
sists of finding limb curves having such a correspon- not all corresponding to perceived objects, as surface
dence. Curve segments lying between the two curves of markings and contours from different objects may pro-
a parallel symmetry (involving the hypothesized cross- duce false hypotheses. Further, due to breaks and occlu-
section) are classified in two sets lying on the two sides sion, several local patches can be obtained for the same
of the parallel symmetry, say "left" and "right" side. For (global) SHGC. In this step, grouping hypotheses are
each pair of such candidate limbs we check whether generated so as to form global patches describing com-
they form corresponding limb patches. Using the given plete primitive SHGCs. A combination of local geomet-
cross-section, the correspondence can be found using a ric and structural compatibility constraints is used for
method that minimizes the scale of the cross-section 3  hypothesis generation.
joining corresponding points [Ulupinar & Nevatia Geometric compatibility between two patches is
1990a] (call it limb based cross-section recovery). Pairs based on corollary P4 and property P2. Depending on
of candidate limbs having such a correspondence are the types of the patches, several cases can occur:
checked whether they form local SHGC patches: e non-linear and non-linear: the axes must be (al-

" Ifthelimbpatchesarestraight, thenalocalLSHGC most) colinear (Figure ll.c and d)
patch is hypothesized. The patch is further classi- • non-linear and conical: the cone apex must lie on
fled as being cylindrical if the two limb segments the axis (up to some error, Figure 11.a)
are parallel, or otherwise conical. In the first case, e non-linear and cylindrical: the direction of the cyl-
the limbs give an estimate of the direction of the
axis (corollary P4). In the second case, the intersec-
tion of the lines supporting the limbs of a conical • conical and conical: either the limbs are colinear
patch gives the cone apex, which belongs to the axis (same apex as in Figure 1I .b), or a line is generated
(also corollary P4). Cross-section recovery in this (between to the apexes) 4

case is simple since all limb correspondence seg- • conical and cylindrical: a line is generated (apex
ments are parallel (property PS). and direction)

" If the limb patches are not both straight then corre- • cylindrical and cylindrical: the limbs must be colin-
sponding points between the limb patches are iden- ear (for the same LSHGC), otherwise the directions
tified using the limb-based recovery method. This must be parallel

3the scale is with respect to the hypothesized (completed) cross- 4the line will be constrsined to be colinear to the global SHGC
section (which we will henceforth call "top" cross-section) axis
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Figure 11 shows some examples of geometrically form a global conical LSHGC whose apex is the inter-
compatible local SHGC patches. section of the global limbs. Otherwise, the global axis

(line) is detected by combining the recovered cross-sec-
tions of all component local SHGC patches in the same
way discussed for the non-linear patches in section 6.1
(i.e. using corollary P4) and fitting a line to the obtained
axis points. Figure 12 illustrates this procedure.

apexes A ,-- global axis

a. b. c. CL
Figure 11 Examples of geometrically compatible

local SHGC patches. corresponding c" localpoints "' SheStructural compatibility involves measures of prox- S0 patches

imity and continuity between SHGC patches. We distin-
guish two cases: continuous connection where the
patches share a limb curve segment as for the SHGC in Figure 12 Global axis detection
Figure I1 .c, and discontinuous connection where there

is no common limb as in Figure 11 .d. A connection hy- Verification between the global axis and the compo-
pothesis is generated between an SHGC patch and a nent local ones uses the rules described for geometric
geometrically compatible neighbor if the connection is compatibility in section 6.2. Successfully verified
continuous or is discontinuous with the constraint that groupings form a global SHGC with a more accurate es-
the limb extremities are co-curvilinear or form self-oc- timate of the axis.
clusion 5. The co-curvilinearity measure uses looser 6.5 Boundary completion
thresholds than at the curve level since more informa- Global SHGC patches formed in the previous step
tion about the contours is given at this more global lev- consist only of aggregates of local patches believed to

make up a single global surface. The descriptions of
Note finally, that a grouping of local SHGC patches those global surfaces may thus be discontinuous if they

implies a grouping of their limb curves. Therefore, gaps are occluded or simply bounded by broken contours.
that have not been bridged in the curve level using co- This can be seen in the case of the occluded vase of
curvilinearity may be bridged at this more global level. Figure 9d, for which the surface boundary does not ter-

6.3 Selection of hypotheses minate due to that occlusion (another example is the
Because of the highly constrained nature of the com- case of the objects in Figure I Ic and d). However, our

patibility measures, conflicting hypotheses are rare at (human) perception of a surface is clear there. In fact,
this level. When they do happen, they involve alterna- we can even guess the shape of the hidden boundary due
tive connections at the same extremity of some local to the symmetric nature of the shape. We show that pro-
SHGC patch. The only selection done at this step con- jective invariants can also be used for completion of
sists of preferring continuous connections over discon- surface descriptions. In this step, gaps in descriptions of
tinuous ones. Among the remaining hypotheses, the one verified global SHGCs are completed. Boundary corn-
involving the closest connection is selected. pletion is done for connections between adjacent local
6.4 Verification SHGC patches and terminations where a local SHGC

patch, at an extremity of the global SHGC, has an in-
In this step, grouping hypotheses (candidate global complete limb correspondence due, say. to occlusion as

SHGCs) generated in the previous steps are checked for is the case for the lower part of the occluded vase in
global consistency. Global consistency is checked by Figure 9.d. The method consists of, first, recovering
first determining the global axis of each set of connected cross-sections at all points of the unmatched limb patch,
patches, then verifying its compatibility with the axis of using a method we call axis-based cross-section recov-
each of those patches. ery, then finding the (missing) corresponding limb patch

The global axis detection depends on the nature of the using a method we call limb reconstruction method. We
local patches. If all the local patches are cylindrical with discuss the two methods separately.
mutually colinear limbs, then they form a global cylin- Axis-based cross-section recovery
drical LSHGC with an axis direction determined from
the direction of the global limbs. Similarly, if all the lo- Given the axis of the global SHGC and a reference
cal patches are conical with colinear limbs, then they cross-section (of any of the local patches), this method

recovers cross-sections for unmatched limb patches (at
5 self-occlusion can be detected by T-junctions and discontinui- connections or terminatinis). First, for each point P, of
ties in cross-section scaling between local SHGC patches. a given unmatched liwio, its corresponding point R, on
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the reference cross-section is found (they have parallel Limb reconstruction method
tangents). See Figure 13. The scale of the recovered Cross-sections recovered by the previous method for
cross-section relatively to the reference one is deter- a connection or a termination can be used to infer the
mined as follows: missing limb boundary. The limb reconstruction meth-

In the case of an LSHGC (Figure 13.a), the corre- od finds a point on each of the recovered cross-sections
sponding point Pc is simply the intersection of the that is a limb point (in the projection of an SHGC, limbs

line from P. parallel to the limb correspondence line and internal cross-sections are tangential to each other).
of the reference cross-section (line R.- Rc in the fig- The method consists of finding the tangential envelope
ure6) and the other straight limb of the LSHGC. The of the set of recovered cross-sections. Given a starting
scale is given by the ratio dist(P,,Pc)/dist(R.,Rc) point, call it Po as in Figure 15, taken to be an extremity
(property P5). at the open side of the connection (or termination), the

method consists of finding a point P, on the first recov-
In the case of a non-linear SHGC (Figure 13.b), let ered cross-section whose tangent line passes throughP0 .
P7 be the intersection of the line connecting Pu to , P1 is marked as a limb point. The process is then repeat-
and the axis7. Then, by the property of linear paral. ed for P1 and the next cross-section until the limb point
lel symmetry between the cross-sections, it can be on the last cross-section is so determined. Since the
shown that the scale is given by the ratio dist(PJP)I axis-based cross-section recovery produces a dense set
dist(Ru.Px)" of very close cross-sections, the method essentially

Px treats the infinitesimal patch between two successive
Rc Ru f RRU cross-sections as being an LSHGC patch (where line

tangents and limbs are colinear; i.e. property P2).

.. ...........

P

P . ...........P
a. b.

Figure 13 Axis based cross-section recovery method.
a. for LSHGCs. b. for nonlinear SHGCs Figure 15 Limb reconstruction method.

For a termination, the method is applied until the end For LSHGCs the limb reconstruction is straightfor-

of the unmatched limb is reached or there is overlap be- ward as it only consists of extending the known straight

tween the recovered cross-section and the bottom end limbs for continuous or discontinuous connections (or

cross-section of the SHGC. In doing so, we obtain a terminations). For discontinuous connections of a non

more accurate segmentation of limbs from cross-sec- linear SHGC, the boundary completion is not performed

tion. Figure 14.a shows the cross-sections so recovered as no cross-sections could be recovered for the holes

for the connection of the SHGC of Figure 9.b and the mentioned previously. However, the SHGC can still be

termination of the SHGC of Figure 9.d. used for 3-D shape recovery and recognition (the hole
region will be left unspecified). Figure 14.b shows the

Dlimb boundaries so completed for the SHGCs of
/ Figure 14.a.

Completed SHGCs are further verified for closure.
Closure verification consists of checking required junc-
tion properties for the global SHGCs. Using the termi-

a. b. nology used in [Malik 1987], limb curves and the to
Figure 14 Cross-section recovery and limb cross-section generally form three-tangent junctions.

reconstruction for previous SHGCs. At the bottom cross-section, they form curvature-L
junctions. Because junctions cannot be expected to be

For discontinuous connections where there are no perfect in real image contours, we use measures basedlimb patches on either side of a connection, no cross- onpxityadngarvitosatjcinpit.
sections can be recovered. This leaves holes in the final on proximity and angular variations at junction points.
desecrition(scanbe recoered. This lves h s ind th fil For lack of space, we omit the details of this process.
description (see third SHGC in Figure 16a and b for Hptee ihnncoe bet r eetd

which discontinuity is caused by self occlusion). In the Hyotheses with non closed objects are rejected.

case of LSHGCs, however, the recovery is straightfor- Results of this level are given in Figure 16.
ward as the limbs are known on both sides. Figure 16.a shows the detected global SHGCs whose

original contours have been given in Figure 9, except
6R, is the point on the top cross-section whose tangent is parasil the last example whose original contours are given in
to the other straight limb.7the reference cross-section is chosen so that the correspondence 3in the case of edges (non limb boundaries) arrow and Y junc-
line is not parallel to the axis. tions are formed.
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Figure 1 (for this latter, notice the completion of the oc- ones produced 17 connection hypotheses compared to 4
cluded vase and cone). Recovered cross-sections and for the default values. Also, changes by 50% of the lin-
axes are shown. Figure 16.b shows the ruled surfaces earity thresholds, in the SHGC patch level, produced 95
(recovered cross-sections and meridians), local SHGC patches compared to 94 for the default val-

ues. Most importantly, the same final results have been
S:-obtained by changing the values of the parameters; i.e.• one grouping hypothesis and two terminations accepted

(selecting 4 local SHGC patches from the 94 originally

hypothesized), resulting in the last three SHGCs given
in Figure 16.

By way of comparison, the method of Sato and Bin-
ford [Sato & Binford 1992a and b] is similar to ours in
the principle of using projective invariants to detect
SHGCs. It differs, however, in two ways. First, applica-

a tion of the projective properties in their method is some-
what restricted to surfaces of revolution (SORs) and
LSHGCs. Their application of the properties to surface
detection, for example, may not give accurate results for
general SHGCs as limb projections are generally not
meridian projections. For example, in their system, cor-
respondence segments between limbs are assumed to be
parallel, whereas it can be shown that this is the case
only for SORs and LSHGCs. We also believe that ourapplication of the properties is more robust. For exam-
ple, their parallel symmetry detection uses a Hough

b. transform to detect the point of intersection of corre-
b. Ispondence lines between symmetric curves. For sym-

metries with a scaling factor close to 1, the error in the
detected point can be large. We use property 5 which is

Figure 16 Results obtained in level 3.ba. Obtained more robust to errors in correspondences as such errors
global SHGCs. b. Corresponding frled cause only small changes in length ratios and directions
surfaces.The last example is from the of corresponding segments.The main difference be-

tween their method and ours, however, lies in handling
7 Discussion and Comparison occlusion and large gaps. The authors note that their

We have tested our method on several images, about system does not handle occlusion as simple connectivi-
ten including variations of the one in Figure 1, and sat- ty criteria are used for surface detection. Our SHGC
isfactory results have been obtained. Four such exam- patch level grouping handles breaks and occlusion by
pies are shown in Figure 16. Some of the simple detecting visible local surface patches and grouping of
examples have been presented here so as to illustrate the compatible ones into global surface descriptions. Fur-
different steps of the method. The others involve multi- ther, our method also detects non-visible parts of the ob-
ple ob.jects in different arrangements such as the last ex- jects and completes them adequately thereby producing
ample in Figure 16. Also, a number of parameters have complete surface descriptions.
been used in the implementation of our system. We have 8 3-D Shape Recovery
mentioned them throughout the description of the meth-
od. For example, connection measures in the parallel We have applied the method of (Ulupinar & Nevatiasymtylevel, linearity of limbs and axes and junction 1990a] on our results. That method produces a viewer
symmetryes ine arityh lmbs an axe and ion centered description, not the whole object description.
measures in the SHGC patch level. In all the tested im- However, it is often desirable to recover a complete 3-D
ages, the values of all parameters have been constant. obetcnrddsriinofvwdojcsalop-
Robustness of the system to changes in those parame- object centered description of viewed objects also pro-
ters has been tested by changing their values by 50% of viding volumetric information. For this, we propose a
their default ones. Those changes have only affected the method that uses constraints from both our 2-D descrip-
number of hypotheses and consequently the size of the tion and the viewer centered description mentioned
search space. Looser thresholds produce larger search above. The method assumes that we have a Right SHGC
spaces. In the case of the contours of Figure 1, for ex- (i.e. a = 7d2 in equation (1)). This equation becomes:
ample, increasing the values of the connection measures S(t, s) - (r(s) u), r(s)v(t),s) (2)
of the parallel symmetry level by 50% of their default Without loss of generality, we assume that s = 0 for
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the top cross-section and that r(O) = 1 (the scaling is rel- Application of this method to the descriptions oh-
ative to the top cross-section). Note that our 2-D de- tained in Figure 16 is shown in Figure 18, where the ob-
scription already provides the values r(s) (the scaling jects are displayed for different values of slant and tilt
function is an orthographic invariant). However, it does from their original ones.(The right most object in the

not provide the values si (call them s-values) necessary
for a complete description of the sweeping function.

Figure 17 gives the configuration of the coordinate
systems relevant to this analysis. We denote

VV'

u Figure 18 Recovered 3-D descriptions of previous
SHOCs shown from different viewpoints.

o s figure has been interpreted as a LSHGC because the
e• scaling function is close to be linear, producing sraight

limbs over its surface).

Y 9 Conclusion

x' We have presented an approach to the figure-ground
OW •problem in real monocular images containing objects

Figure 17 SHOC representation and projection that can be described as SHGCs. It is based on two fun-
geometry damental aspects. First, the study and derivation of pro-

S = (OS, u, v, s) the SHGC coordinate system, jective invariant properties of SHGCs. Second, the
W = (OW, x, y, z) the viewer coordinate system, multi-level perceptual grouping approach to scene seg-
i = (OW, x, y) the image coordinate system, V the view- mentation and shape description. The projective invari-
ing direction (assumed, without loss of generality, to lie ant properties are the basis for detecting local
in the u-s plane of S; orthographic projection assumed). correspondences, hypothesizing groupings, estimating
V> makes an angle a with the s-axis (SHGC axis). Con- more accurate global correspondences, verifying global
sider S' = (OS, u', v', s') obtained by rotating S around v consistency and completing missing boundaries. Thus,
by aso that the new s-axis (s') is aligned with 0. Let 0
be the angle between the projection of the SHGC axis in a sense, our method not only filters out irrelevant fea-

and the x-axis. Consider W = (OW, x', Y, z') obtained by tures but detects where relevant ones are missing and
rotating W by 0 around the z-axis so that the new x-axis completes them adequately. Our method differs from
(x') is parallel to the projection of the SHGC axis. Let other perceptual grouping methods in that it uses rigor-
I' = (OW, x', y') be obtained by rotating I by 0. Then, in ous constraints for the segmentation process as opposed
1' the SHGC axis is horizontal, and 5' and W' differ only to intuitive ones used by those methods. It also differs
by a translation OS-OW. The relationship between coor- from other methods of invariants-based generic inter-
dinates in S, S', WI and F are as follows (from now on pretation of image contours in that it uses a hierarchy of
we omit the arguments t and s in the expressions). grouping levels handling substantial occlusion. We

Letting (x,, y3, z,) be the coordinates of OS in W', a have also demonstrated the usage of our results to 3-D
point P with coordinates (ru, rv, s) in S has coordinates shape recovery, using a single image of a scene.
(cosoru + s sing, rv, -sinoru + s cosa) in S',(cosoru + s sine + xs, ri' +Ys, -ainoru +5 sCOSO + Zs) in W' We plan on extending this approach to handling
and its projection har s coordinaW curved axis primitives (see [Zerroug & Nevatia 1993]

(cosaoru + s sinci + x,, rv +y,) in i'. In the remainder of for the derivation of quasi-invariant properties of
this analysis, we consider image measurements in 1'. curved axis GCs), and composite objects. These latter
World coordinates will be expressed directly in W'. are made up of simple GC primitives. Detection of such

To recover a complete 3-D description of the SHGC, objects can proceed by first detecting the component

it is necessary to determine the 3-D top cross-section, GCs and analyzing their structural and geometric rela-

the orientation of the axis, the coordinates (x3, y3, z') of tionships. Such objects introduce many difficulties that
its origin (point where the axis pierces the cross-section, have not been addressed in this work, including incom-
not necessarily at its center) and the values si (i = I...n) plete cross-sections and non-parallel surface cuts of
(s-values) of the cross-sections (parallels) of interest, primitives, especially at joints. We believe, however,
The recovery of those parameters is discussed in appen- that the constraints and the methods developed here will
dix A.2. be an important part of handling those objects.
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Appendix tion of sweep. It suffices to recover the s-value for the

A.1 Proofs last ("bottom") cross-section. Let P = (x, y) be a point on
that cross-section and P0 = (xo, Yo) its corresponding

A.1.1 Proof of theorem P4 point on the "top" one. Then, using the relationship be-
Let P, = S(t, sl) and P2 = S(t, s2) be two corresponding tween coordinates of C = P - P0 in I' and S', we obtain

points on two different cross-sections. The line L join- s = (x- xO) / sina.
ing these points can be parameterized as follows: For a cone (a * 0), we can determine a, the s-value of

u = [u(t)sina (r(sl) - r(s2))]m +u(t)sinar(si) (3) the last cross-section and the apex of the cone. Using the

v = [v(t) (r(sl) - r(s2))]m + v(t)r(sl) (4) normal h = (nx, n, n,), determined by the method of
S = [s, -"s2+u(t)cosa (r(sl) -"r($2))]m + $1+u(t)csar(s) (5) [Ulupinar & Nevatia 1990a], at a point P (as above) and

writing that A and the meridian C = P - P0 are orthogo-

Case 1: r(s1 ) * r(s2). The intersection point of L with the nal (a LSHGC surface being developable, C is in the
SHGC axis (s-axis) is given by setting u = v = 0; this tangent plane at P) yields:
yields m = -r(s1 ) / (r(sl) - r(s2)) and the intersection s = - (cosany(y - yo) + (x - x0) (coscan, - sinan,)) / n,.
point M has coordinates (0, 0, (s2r(sl) - sir(s2)) / (r(sj) - Using the value r of the scaling of the last cross-sec-
r(s2 )) which are independent of t (i.e. of the particular tion (given by our 2-D description), a is given by a - (r -
points on the two cross-sections). 1) / s. Writing that the apex of the cone, given by its 2-

Case2: r(sl) = r(s2). In this case the direction of L is giv- D coordinates (Xa, ya) is the intersection point of all

en by the vector (0, 0, s I- s2 ) which is independent of (straight) meridians and using the relationship between

tandparalleltotheaxis o its coordinates in' and S' yields the coordinates of the
SHOC center x,-xa-sina(s/(l-r)); y=-ya; z,=-

A.1.2 Proof of corollary P4 (NA2 + Nyys) / N,.

An algebraic proof is not necessary as it is similar to A.2.4 Recovery of Non linear SHGCs
the previous one, except that the expression of lines ofcorrespondence is in the image plane. Instead, we give For each cross-section (parallel) Cj of interest, it is

necessary to recover the value s. along the axis. Our 2-
the following argument. D description already provides tKe values rj (the scaling

If the correspondence lines are parallel to the axis, with respect to the top cross-section). Let P, be a point
then they are also parallel in the image (orthographic on the surface of the SHGC (on any parallel). Let
projection), otherwise the intersection property holds A
also true in the image since intersecting lines in 3D (m-,(m.,my, m.) be the tangent to the meridian

((Me, ty) can be computed in the image) and
project onto intersecting lines in the 2D image (general (n, n,) cn e c e n t image ) an
viewpoint) (n, n, n) the surface normal at P. Let (rju, rv, ) be

the coordinates of Pj in S, (x, y, z) its coordinates in W'
A.1.3 Proof of property P5 ((x,y) are known from image measurements) and

C1(u') - Ci(u) r. TI(s)ds - f' T2(as + b)ds (xo, yo, zo) the coordinates of P0, the corresponding point

= 1Iaf v'2 (t) dt Ila ( ) - j C.of P* on the top cross-section ((xo, yo, zo) are determined

A.2 Recovery of SHGC Parameters (3-D as discussed in A.2.1).
Object Cenoered DesHc ription)Writing that h and A are orthogonal (basic differen-Object Centered Description) tial geometry) and equating expressions of the tangent

A.2.1 Recovery of the 3-D cross-section curve to the meridian in S' and W' yields u - v ((cosam, -

The method of [Ulupinar & Nevatia 1990a] deter- sinam,) / my); where v can be computed with good accu-
mines the orientation N = (N., Ny, N)w, of the cross-sec- racy using the relationship between coordinates of P0 in
tion plane. The back projection of the top cross-section S' and W', by v Yo - Ys (Y, is the constant second coor-
points (xi, ydr is thus given by (xi, yi, zi)w,, where zi = - dinate of the projection of the axis in I'; recall that in
(Nxi + Nyyi) / Nz (the plane is arbitrarily fixed to pass that system the axis is horizontal). Equating expressions
through the origin of W). of the correspondence vector C - Pj - P0 in r and S'

A.2.2 Recovery of the viewing direction yields sj - (x - x0 - cosou(rj -1)) I (sino).
In practice, the above process is performed on points

From Figure 17, ois the viewing angle (between the where the tangents to the meridians are not parallel to
z-axis and the SHGC axis). The axis of the SHGC has the axis or orthogonal to it. More than one point is used
its direction given by -N. Thus coso = -N, and for each cross-section. The obtained values are aver-
a = acos(-Nd). aged to obtain an estimate of the value of sp.

A.2.3 Recovery of LSHGCs Let Cy be an arbitrary cross-section, rj (rj, *1) its scaling

For LSHGCs r(s) = (as + 1) in equation k2 ). For a cyl- with respect to the top cross-section, and sj its s-value
inder, a = 0 (constant size cross-section). N is the direc- computed by the method described previously. Let
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(Xa, Ya) be the image coordinates of the intersection [Ponce et al. 19891 J. Ponce, D. Chelberg and W.B.
point of all lines of symmetry between Cj and the top Mann, "Invariant properties of straight homoge-
cross-section ((xa, Ya) are given by our 2-D description). neous generalized cylinders and their contours,"
From (2) and the analysis in appendix A. 1.1, the 3-D co- IEEE Transactions PAMI, 11(9):951-966, 1989.
ordinates of that point in S are (0, 0, sj / (I - rj). Equating [Rao & Medioni 1988] K. Rao and G. Medioni, "Useful
these with their expression in W' yields x, -x. - (sin=sr)I geometric properties of the generalized cone," In
(1 rj); Ys - Ya.; and z, = - (NAXS + N.ys) / N,. Proceedings of IEEE Computer Vision and Pattern

Recognition, pages 276-281, 1988.
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Abstract among neighboring potential partition points that may
be salient at different "scales of resolution."

This paper summarizes the underlying ideas and algo- While our focus in this paper is on curve partitioning
rithmic details of a computer program that performs at in a generalized setting (the curves in our experiments
a human level of competence for a significant subset of are mostly without semantic meaning), and where the
the curve partitioning task. It extends and "rounds out" criterion for success is duplicating normal human perfor-
the technique and philosophical approach originally pre- mance, finding salient points on image curves (potential
sented in a 1986 paper by Fischler and Bolles. In par- partition points) plays a critical role in both two and
ticular, it provides a unified strategy for selecting and three dimensional object recognition, in curve approxi-
dealing with interactions between salient points, even mation, in tracking moving objects, and in many other
when these points are salient at "different scales of res- tasks in machine vision.
olution." Experimental results are described involving In many approaches to 2-D object recognition, objects
on the order of 1000 real and synthetically generated are represented by their boundaries, and the recogni-
images. tion techniques depend (directly or indirectly) on locat-
Index Terms: computer vision, salient points, critical ing distinguished points along the boundary; typically
points, curve partitioning, curve segmentation, curve de- these distinguished points are discontinuities or extrema
scription of local curvature (sometimes called "corner points") and

inflection points [e.g., Mokhtarian86J. "Corners" on the

1. Introduction contours of imaged objects are often used as features for

A critical problem in machine vision is how to break up tracking the motion of these objects and for comput-

(partition) the perceived world into coherent or meaning- ing optical flow [e.g. Mehrotra90]. In 3-D recognition,

ful parts prior to knowing the identity of these parts. Al- partitioning is typically one of the first analysis steps -

especially when objects can occlude each other. Hoffmanmost all current machine vision paradigms require some and Richards [Hoffman82] argue that when 3-D parts are

form of partitioning as an early simplification step to and Ricrds complex objethat wh en e

avoid having to resolve a combinatorially large number joined to create complex objects, concavities will gener-
ally be observed in their silhouettes, and that segmen-

of alternatives in the subsequent analysis process. Given tation of image contours at concavities ( the maxima of
this critical role for partitioning as a functional require- negative curvature along the contours) is a good strat-
ment of a complete vision system, it is a major challenge egy to decompose (even unmodeled) objects into their
to find some significant subset of the partitioning prob-. "natural parts."
lem for which an algorithmic procedure can duplicate In cartography, computer graphics, and scene anaysis,
normal human performance. This paper (a compressed it n cato raphy comput ics, an sene anayversion of a much longer document which will appear it s often desirable to partition an extended boundary
in IEEE PAMI later this year) summarizes the under- or a contour into a sequence of simply represented prim-
lying IdEas and algorithmic detailsuofmar uther pdro- itives (e.g., straight line segments or polynomial curves
lying ideas and algorithmic details of a computer pro- of some higher degree) to simplify subsequent analysis
gram which performs at a human level of competence and to minimize storage requirements [e.g., Teh89].
for a significant subset of the curve partitioning task. It In o ownimi re wor k r e remen t h de line atingextends and "rounds out" the technique and philosophi- In our own current work concerned with delineating

exteds nd rouds ot" he echiqueandphiosohi- linear structures in aerial images, the technique pre-
cal approach originally presented in a 1986 PAMI paper linea in aerial agesethe chne pre
by Fischler and Bolles [Fischler86]. For example, it pro- syened in tAs entia cm nt pofted
vides a unified strategy for resolving conflicts in selecting system (briefly described in Appendix C) that produced

________________the results displayed in Figure 6.

"This work was performed under contracts supported by the
Defense Advanced Research Projects Agency.
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2. Problem Statement chine vision. It has been widely assumed that in order

In its most general sense, partitioning involves assign- to reduce the combinatorics of scene analysis to a man-

ing, to every element of a given "object" set, a label ageable level, it is necessary to decompose images into

from a given "label" set. For our purposes in this pa- their meaningful component parts as one of the first steps

per, the object set is the set of points along a curve (or in the analysis process. The difficulty arises from the

contour segment) lying in a prescribed region of a two- need to partition the image into parts before we know

dimensional plane. While we deal with cases where the the identity of those parts. The underlying assumption

points in the object set do not form a continuous dig- then is that there are generic criteria, independent of the

ital curve, in most of our exposition in this paper we goal of the analysis, that if discovered, could be used to

will assume that the curves are continuous I and non- obtain useful (or at least, intuitively acceptable) parti-

intersecting. Our label set is binary, points will be called tioning; additional problem dependent criteria could be

either significant (critical) or non-significant, for some always added to produce a more relevant result for some

specified purpose. In Fischler and Bolles [Fischler86], particular purpose.

it is demonstrated (or at least argued) that perceptual The partitioning problem becomes progressively

partitioning is not independent of some assumed task harder as we increase the number of dimensions in which

or purpose. In this paper we focus on one of the three we are working; in this paper we only address the 1.5-D

tasks discussed in the above reference: Selecting a small problem of partitioning planar curves. A specific crite-

number of points (called crilpts) along a curve segment non which can form the basis of such partitioning was

which could be used as the basis for reconstructing the originally proposed by Attneave [Attneave54] - points

curve at some future time. Figure 1 shows the specific at which the curve bends most sharply are good parti-

instructions and curves used in one set of relevant exper- tion points. 2 This idea has been the starting point for

iments involving human subjects; this figure also shows most of the subsequent efforts in curve partitioning, but

the critpts that were selected by the subjects, and the attempts to convert this abstract concept into a com-

comparable results produced by our algorithm (called putationally executable procedure, that gives intuitively

the Saliency Selection System, or SSS, and discussed in acceptable results, has meet with limited success. 3 Ref-

Appendix B). erences [Imai86, Mokhtarian86, Pavlidis74, Rosenfeld73,

In order to separate the generic partitioning criteria Teh89, Wuescher91] are representative of work in this
used by human subjects from criteria based on their area. p
past experience, such a,, when the subject is able to as-
sign a name to the curve (e.g., the curve looks like the (a) A way of assigning a measure (or degree) of
letter "s"), we used "random" curve segments for our saliency/criticality ' to each point on a curve.
experiments; the technique employed to generate the Most investigators have equated sharp bending of
segments is described in Appendix A. We also wanted a curve with the mathematical concept of curva-
to avoid having to deal with the recognition of global ture, but curvature is not well-defined for a finite
features (e.g., symmetry or repeated structure, .or even sequence of points (which is how our sensor ac-
straight lines and analytic curves) as a condition for mak- quired curves are generally represented). Further,
ing critpt selections; avoiding this problem is justified if it is not obvious that the mathematical definition
we are correct in our belief that local and global anal- of curvature is the best computational approxima-
ysis are accomplished by separate mechanisms. In or- tion to the human criteria for criticality. In Fis-
der to deal with global features, the complexity of any chief and Bolles [Fischler86], bending is interpreted
solution would be expanded enormously since a whole
new vocabulary of such features and their representa- 2Hoffman and Richards [Hoffman82] give convincing evidence
tions would have to be implemented. The generation that we should distinguish between positive and negative curva-

eof random curves took care of this problem also ture maxima. That is, on closed curves, extreme points of nega-and use otive curvature - associated with object concavities - have greater
(i.e., it is highly unlikely that symmetries or repeated utility as partition points than positive curvature maxima, but the

structure would ever be generated by our random pro- positive maxima (and inflection points) play an important role in

cess). describing the individual segments.
3 As noted later, most of the work on the curve partitioning

problem, especially recent work, has not been concerned with du-
3. Relevance, Prior Work, and Critical plicating generic human performance, but rather with performing

specific visual tasks having different criteria for success.
Issues 4 The approach taken by Wuescher and Boyer is distinct in that

they first extract contour segments of approximately constant cur-
The partitioning problem has been a subject of in- vature and then infer the locatio'• f partition points as a secondary

tense investigation since the earliest work began in ma- operation.
""'We will use the terns saliency and criticality somewhat inter-

Each point of the non-branching one pixel wide curve, with changeably in this paper. However, saliency can be considered to
coordinates (x,y), has one or more neighbors with x-coordinates in be the generic subset of points that are critical for some partition-
the set (x+l, x, x-1), and y-coordinates in the set (y+l, y, y-l). ing task.
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as deviation from straightness - it is closely related so that our program would make the same selections
to proposed approximations to mathematical cur- as human subjects when there was near unanimous
vature, as illustrated in Figures 2 and 3, but has agreement among these subjects. This algorithm is
a number of advantages: it is an easily measured described in Appendix B.
quantity, even for digital curves (i.e., sequences of
coordinate pairs), and as discussed in the next sec- 2. An analysis of how geometric scaling of the in-
tion, its local extrema are in better accord with hit- put curve, and resolution specific operations on the
man preference (choices based on approximations curve, can be equated, and thus the development of
to the definition of mathematical curvature o(ca- a basis for normalizing criticality scores across scale.
sionally include anomalous points as shown in the 3. Development of a general approach to the problem
examples of Figures 2 and 3). of resolving the competition/cooperation interac-

(b) A w:..y of adjusting the criticality of a given curve- tions of geometrically related objects based on "lo-

point to take into account its interactions with its cal dominance." The same machinery used to deal

neighbors; i.e., local context. It is obvious that with interactions at a given scale of resolution is

human subjects will often avoid assigning a critpt also used to resolve conflicts across different scales

label to both members of a pair of points, even when of resolution.

both points have high (independent) criticality val- In the remainder of this paper, we describe our so-
ues, if the points are close neighbors along the curve. lutions to the problems enumerated above, and then
The basic approach of local non-maximum suppres- present examples and experimental results to justify the
sion is not sufficient, in itself, to duplicate human design decisions we made and to illustrate the perfor-
performance. mance capabilities of our algorithm.

(c) A way of dealing with the interactions between
critpts that are significant at different scales of 4. Evaluation of Saliency
resolution. If a human subject looks through a
fixed sized window at the same curve segment dis- Saliency is a critical attribute (for description and
played at two different magnifications, the selected recognition) assigned to perceived things in the world

critpts will not always be the same, and the selection by the human visual system (HVS). While an elusive

at the lower resolution will not always be a subset of concept in general, task specific specializations of this

those at the higher resolution (e.g., Figure 4). This concept are easily found that elicit consistent choices

is in contrast to the commonly held assumption that across human subjects. An acceptable computational

critpt assignment should be independent of "scale of definition of contour/curve saliency must provide 6

resolution." 9The specification of a procedure that quantifies the
(d) A threshold of significance; a minimal level of abruptness and extent of the deviation of a curve

criticality below which variations are considered to from its straight-line continuation; a sharp bend is

be noise and no critpt designations are made. (Some more salient than a shallow one, and the greater
investiia. rs reject the idea that any user supplied the excursion, the more prominent/salient the "fea-
parameteis or thresholds should be necessary.) ture."

We have addressed the above issues through the solu- o Agreement with human judgement in terms of both

tions to a set of subproblems: selection, and accuracy of placement, of the critical
points (in some well defined context).

1. Definition of an algorithmic procedure (which is pa-

rameterized to deal with noise and scale) for assign- 4.1 A Computational Definition of
ing criticality values to each point on a curve in- Saliency
dependent of decisions made about the locations of Conventional definitions of curvature present a num-
(other) critpts. The solution to this problem, es-sentially the procedure given in Fischler and Bolles ber of serious problems with respect to their use as a
[Fischler86], provides answers at a human level of saliency measure in computational vision (CV). First,

the mathematical definition is based on the properties
performance for isolated critpts (i.e., along a sec- of a curve in the infinitesimal neighborhood about the
tion of a random curve, generated as described in
Appendix A, for which human subjects select only 'In this paper we are primarily concerned with saliency based

one critpt). Thus, for the domains we experimented on Ioc41 cues; locations on a curve where there is a transition

with (and especially the domain defined in Ap- from one type of curvature behavior to another, e.g. from per-
fectly straight to "wiggley," may also be psychologically salient,

pendix A), we were able to assign fixed values to but such forms of global saliency are beyond the scope of our cur-

scale/resolution and noise/significance parameters rent investigation.
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point at which curvature is being measured. For the fi- invoke (at least) local context. For example, in Figure 3
nite precision quantized curves dealt with in CV, it has we see a case (double arrow) where two critpts were se-
been difficult to find a suitable approximation to the lected at almost adjacent locations along the curve. This
limiting process originally intended for use on rnathe- undesirable behavior was not eliminated by the simple
inatically continuous curves. Second, it is readily ob- "non-maximum suppression" filter that produced good
served that saliency is not an infinitesimal point prop- results in most other situations. It is necessary to use
erty, but is based on some finite extent of the curve. A more specific criteria in deciding when two critpts are
proposed solution to both problems, offered by Rosenfeld too close together, and also, what to do when the ad-
and Johnston [Rosenfeld73] was to find an appropriately jacent points have equal saliency scores (e.g., arbitrar-
sized segment of the curve about the point in question, ily eliminate one of them or eliminate both and place
and take a "snapshot" of the limiting process at this a new critpt between them). In Figure 3 we see cases
single (implied) scale. That is, rather than the rate of (two single arrows) where almost invisible features were
change of tangent angle with respect to curve length, chosen as critpts because they did have locally extreme
R/J proposed measuring the angle between two fixed curvature scores; how do we decide when to reject such
length chords, where the lengths correspond to the com- occurances. In Figure 2 we see a case where a critpt (des-
puted "natural scale" of the curve about the given point. ignated by an arrow) was inserted at a location displaced
We will call this curvature-analog the R/J-Curvature. from the position we consider correct: this was due, in
There are a number of other definitions of mathemati- part, to the length of the arms of the angle measuring
cal curvature (e.g., the limiting radius of a circle whose "operator" relative to the size of the feature (see Figure
three defining points converge at the curve-point in qnes- 2d) - it is not always possible (or practical) to find an
tion) which have analogs that could have been used in appropriate operator size for every potential feature. In
place of the angle measure in R/J-Curvature but these the following sections (and appendices) of this paper we
definitions are monotonically related, and do not really describe and justify the methods we employ to deal with
present distinct alternatives. Thus, R/J-Curvature is a these problems. The issue we are primarily concerned
suitable representative for the whole class of mathemat- with in this section is the choice of a basic saliency met-
ical curvature-measure analogs. ric. We justify our preference for the F/B-S metric on

In Fischler and Bolles [Fischler86], our concern was two grounds:
not to find a good digital analog for curvature, but rather
to find an effective measure of saliency. The quantity 1. Unlike the fixed scale mathematical (FSM) curva-

defined in that paper can be viewed as a curvature- ture analogs (e.g., R/J-curvature), F/B-S rarely

extremum measure in which the limiting process (in makes an error in positioning a critpt, or in ignoring

scale) is replaced by a scanning process (in space) more a salient point that human observers would select.

appropriate to digital curves. The scanning process is The issue here is robustness, F/B-S integrates infor-

parameterized by scale, and the resulting measure is a mation over an extended set of"looks" at the curve
signed quantity which we call F/B-Salieucy (F/B-S). segment containing the point whose saliency is be-

While the particular choice of a curvature measure ing measured. FSM techniques take a single look

as a component in a complete system for selecting the at the situation. Thus, our main problem with the

most salient points (critpts) on a planar curve depends F/B-S metric is selecting the most. salient of the se-

on many factors, it is still interesting to compare the raw lected critpts to be retained as our final result (the

scores returned by curvature-analogs representcd by thc filtering operation generally involves the elimination
R/J-Curvature with the extreme points (ultimately) se- of less than half of the points originally selected).
lected by our algorithm (SSS) as shown in Figures 2 and 2. The F/B-S metric is responsive to both the curva-
3 for a randomly generated curve. In these figures we ture and the size of a curve "feature." This pro-
observe problem situations that highlight some of the vides a common basis for ranking critpts at a given
differences between the two underlying metrics (R/J- scale (so that the larger of two geometrically sim-
Curvature and F/B-Saliency). 7 ilar objects is assigned a higher saliency score) as

There are some problems with any raw measure of cur- well as across scales by taking into account the size
vature that must be dealt with by using procedures that of the operator. The FSM-curvature analogs are

71n both of the figures, we used fixed common scale paramne- insensitive to the size of the feature - they inherit
ters for both metrics as noted in the figure captions. It should be the mathematical property that curvature is a point
remembered that R/J-curvature, as we define it in this paper, is property and only the smallest neighborhood about
representative of a whole class of curvature-based metrics and is a point that allows us to measure curvature is rel-
not intended to duplicate the complete Rosenfeld/Johnston algo-
rithm - they also incorporate a procedure for finding a preferred evant (this implies a single "natural scale" at any
stick length. However, man, of the problems with the performance point on a curve: a concept we reject., e.g.. see Fig-
of the complete algorithm, which are discussed in Davis77 and in tire 4).
other of the papers we reference, can be observed in the perfor-
mance of the R/J-Curvature metric.
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4.2 Comparison of the Saliency Selection scale can be difficult to describe or measure if the mea-
System (SSS) with Human Performance surement must be referenced to the global geometry of

The primary criterion for judging the competence of the object. One of the main issues we address in this
the overall saliency selection system (SSS) we present paper is how to define extrema in the "bending" of a
in this paper is its ability to match human performance curve as a local effectively scale-invariant property that
- both in the defined task and with respect to generic is in agreement with the judgement of the human visual
evaluation of the selected critpts. We performed a set of system.
informal experiments with 11 human subjects (also see If we define criticality of points on a digitally rep-
the experiments described in Fischler86). The instruc- resented curve in terms of quantities that have dimen-
tions given to the subjects and the resulting selections sions that must be measured by some physical process,
are shown in Figure 1. We also show the selections made then there is no direct way of invoking such formally
by the SSS algorithm. The results of these (and addi- defined mathematical concepts as the derivative, or cur-
tional but not described) experiments can be summa- vature, which require limiting processes of infinite reso-
rized as follows lution. Approximations to these concepts are resolution

dependent (e.g., the size of the operator employed) and
" At least 9 of the 11 subjects selected the same set measurements made on most objects will not "scale" in

of six or more critpts on each of the four curves we any simple or uniform way. Further, if we examine a
used in the experiments, and the 555 chose the same curve through a fixed size window (either a fixed region
set of critpts. Every critpt selected by the SSS was of a computer screen, or the foveal region of the hu-
also selected by at least one human subject. man retina), and we successively increase the resolution

" In spite of the high degree of consistency in the at which the curve is displayed, some of its parts will
overall selection of salient points, the human sub- eventually disappear from view, and some of the smaller
jects differed in the order in which they chose these original structures, that were not significant, will now
points. We tried a number of experiments in which dominate the visible appearance of the curve (e.g., Fig-
the only difference was a very slight change in the ure 4).
wording of the instructions, and obtained different If the mathematical definition of curvature were ap-
orderings (across the same set of selected points) plicable to digital imagery, then many (but not all) of
from our subjects. It is obvious that the subjects the issues of scale could be resolved. There is still the
used a global strategy to match the task (differ- problem that a very small "glitch" can have a very high
ent for each subject) to cho-se the order in which value of curvature but a very low psychological signifi-
the points were selected - even though the specific cance. Thus the scale or size of a "feature" (e.g., the
points selected were largely determined by local con- glitch) is an issue. The term "feature" does not appear
text. in our problem definition; in fact, by focusing on local

curve properties, we had hoped to eliminate the need to
In addition to the curves used in the human experi- invoke this concept since an appropriate definition is far

ments, we ran the SSS algorithm on (the order of) 1000 from obvious. s Since scale can't be ignored (even if
randomly generated curves with no obvious errors. Fig- we had a good approximation for curvature in the digi-
ure 5 shows the results of a (typical) sequence of 40 con- tal domain that was independent of scale) the following
secutive experiments. questions arise:

5 The distinction, if any, between resolution and scale5. Dealing with the Problems of Scale
and Resolution * How to choose a range of scales appropriate to the

A vision system, concerned with creating a descrip- specified performance criteria

tion of some object that may be encountered again in * How to measure criticality at different scales
the future, perhaps when the object is closer or further
away, must take scale or magnification into account when f How to compare criticality values computed at dif-
deciding what shape elements to pay attention to. Un- ferent scales
der extreme changes in resolution, when salient features 9 The relationship between smoothing and scale
might appear or disappear, it may not be possible to change
make an informed judgement in the assignment of rela- 5 Intuitively, there are sections of any given curve that we can
tive saliency scores; but for a limited range about a given features; these entities provide the psychological basis for the se-
resolution, this should indeed be possible. lection and relative saliency of the associated critpts. Critpts are

Obviously, geometric properties of objects that are in- markers that define the shape and boundary of features - the ex-
variant over scale are especially valuable in describing tent of the curve corresponding to a feature will generally sub-

sumre the "region of support" for the curvepoints comprising the
and recognizing the objects, since absolute scale is of- feature. Features can overlap, and their boundaries are not always
ten impossible to judge in an image, and even relative apparent.
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"* The relation between operator size and scale change unaltered under a scale change). It will be the case,
"• How to make cooperation/competition judgements however, that for smooth curves, the local extrema willacross scales be found at corresponding locations - but even here, the

numerical values of curvature will not scale in any simple

" How to determine the features for which we ex- way (curvature is a nonlinear function).
pect consistency (of criticality scores) to hold across 5.2 SSS Mechanisms for Evaluating
scales, and where such consistency can't be expected Saliency at Different Scales and Resolu-
(if the latter were never the case, we could always do tions
our analysis at one scale and compute the criticality In designing a computational module to evaluate
values at other scales as needed). saliency subject to the ideas discussed above, we can

While consistency at all scales and for all features is pursue at least three distinct strategies:
not possible, over some range of scales (say 5:1) we ex-
pect there to be a "normalization" factor which allows 1. Assume that saliency is independent of scale, or that
us to compare the saliency scores computed at one scale there is a natural scale associated with each location
with values computed at other scales. We would also on the curve that must be discovered.
expect that relative locations of local extrema for cer-
tain features would remain fixed as a curve is scaled, 2. Use a fixed scale saliency measure, but generate
regardless of the size/scale of the operator that assigns multiple versions of the given curve at some pre-
the criticality scores. determined set of scales.

Some of the earliest work (e.g., Rosenfeld and John-
ston) on finding salient points merged the problem of 3. Parameterize the saliency measure to give results
assigning a curvature measure to a point with that of de- approximating those that would be obtained from
termining the scale at which to measure curvature. The strategy (2) for the selected scales.
key idea is that each point has a single scale at which
its curvature should be measured - this scale is usually We previously argued against strategy (1) on the as-
found by a search process over successively larger scales sumption that a unique natural scale cannot generally
until s6me measured quantity achieves a local extremum. be associated with a single curvepoint (see Figure 4).

We have chosen strategy (3) since strategies (2) and (3)5.1 Change of Scale Vs. Change of Res- are conceptually compatible, but (3) could be compu-
olution tationally more efficient if we can find a simple way to

If we magnify a continuous curve that was originally use some combination of operator scaling and score nor-
represented at infinite precision, every point of the new malization so that both approaches give (nominally) the
image corresponds to a point in the original image, but same scores in most situations. Intuitively, doubling the
its x and y coordinate values have been multiplied by stick length (in the F/B-S metric) for a simple convex
some real number which we will call the scale factor. section of a curve should result in four times the score
No information was introduced nor lost, but the phys- assigned to the corresponding critpt: The stick is now
ical space required to render the curve has increased, positioned twice the distance from the critpt in most of
However, if the original curve was represented at finite its "looks" (i.e., placements of the stick which subsume
resolution (e.g., each point as a pair of integer coordi- a curve segment containing the critpt), and there are
nates), then (say) doubling the scale leaves us with a twice as many looks. Thus, the procedure we employ,
disconnected set of points. Filling in the gaps requires normalizing all scores by dividing by the square of the
introducing new information. Here we will say that a sticklength, will leave invariant the saliency scores as-
change of resolution has occurred (a change in resolu- signed to features which should be scale invariant, such
tion can also result in the loss of information, as in the as the angle formed by two (effectively) infinite straight
case of demagnification or smoothing at some fixed reso- lines. On the other hand, for those features that have
lution). Thus, the concept of a scale change corresponds limited extent along the curve, comparable to the scales
to a reversible transformation, while, in general, a change we wish to discriminate among, the larger scaled versions
in resolution involves an irreversible process in which in- of the features will be assigned higher scores.
formation is lost (as in smoothing), or new information
is introduced (as can occur in zooming).

If we compute the curvature for points on a continuous 6. Cooperation/Competition Interac-
(infinite resolution) curve at two different scales, we will tions Between Critical Points
generally get two distinct sets of values (e.g., a circle An important contribution of this paper over the work
with radius 2 is a scaled version of a circle with radius presented in Fischler and Bolles [Fischler86] is a major
1, but by definition, their curvatures are in the ratio revision of the approach to filtering the critpts, based
1:2. On the other hand, the angles of a triangle remain both on comparisons at a given scale as well as across
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different scales. At a conceptual level, there are two main existing value stored in the slot to capture it. If a new
differences. critpt captures a slot occupied by (as opposed to sim-

First, in the earlier work we did not use the informa- ply being owned by) a previously dominant critpt, all of
tion about the sign (concavity/convexity) of the com- the slots of the now dominated critpt are also captured.
puted F/B-Saliency; in our current algorithm, we sepa- This mechanism provides a way of avoiding the need to
rate all the candidate critpts into two sets correspond- choose a fixed-sized "base of support" for a critpt.
ing to positive and negative F/B-S. 9 These two sets
are processed independently of each other (by identical 7. Algorithm Performance
procedures) and the resulting selections are combined by T
logical union to produce the final output. Our own obser- he algorithm discussed in the previous sections of
vations confirm those of other researchers (e.g., Hoffman this paper, and described in Appendix B, has been com-

and Richards), that positive and negative curvature ex- pared with human performance (Figure 1), and has been
trema appear to be distinguished from each other by the run on hundreds of randomly generated images (as de-
HVS, in part because they play different roles in parti- scribed in Appendix A) without making any obvious er-
tioning and description tasks. rors. In all these cases the same set of parameters were

Second, in the earlier work we used a simple "domi- used with no operator involvement. Figure 5 shows 40

nance" criterion for competition of closely spaced critpts consecutively generated random curves and the critpts

detected at different scales.. A critpt detected at some selected by the algorithm. Figure 6 in Appendix C shows
given scale would suppress all critpts detected at smaller results of the algorithm run on curves extracted from real

scales (shorter "sticklength") that were located within a images.

specified scale related distance from it. This rule rarely
produced "ugly" errors, but occasionally caused the ob- 8. Discussion
viously correct critpt to be deleted in favor of one slightly Curve partitioning is an active research area which
displaced from the preferred location. A significant por- not only is of theoretical interest as a basic element in
tion of the work described in this paper has been fo- pictorial description (e.g., Attneave, Bengtsson and Ek-
cused on finding a more effective and uniform basis for lundh, Hoffman and Richards), and for providing insight
establishing "local dominance." In other sections of this into the partitioning problem in general (e.g., Fischler
paper we provided a justification for a normalization fac- and Bolles), but has many potential applications. Some
tor which would permit us to assign a saliency ranking of the more immediate ones include: data compression
to competing critpts, regardless of the scale at which by using critpts as the basis for regenerating a curve
they were originally detected. Thus, competition, both by straight line or spline interpolation (e.g. Imai and
within and across different scales is now treated in a lri, Teh and Chin), matching/recognition using critpts
uniform manner. In the following subsection we discuss and/or the partitioned curve segments (e.g., Mokhtar-
some of the specific problems that must be resolved in Jan and Mackworth, Wuescher and Boyer), and as a key
competition resolution, and the algorithmic procedures component of an interface for man-machine communi-
we invoke to deal with these problems. cation about pictorial objects (the ability to point at

6.1 Mechanisms for Filtering Competing icons representing symbolic objects has revolutionized

Critpts the computer-user interface; to extend this capability,
one would like to be able to point to a location in an

One of the algorithmic mechanisms we devised to deal image and have the machine be able to deduce the com-
with the above problems (described in greater detail inAppedixB) s t contrut a aray wth ne lotfor ponent being referred to - image partitioning in gen-
SAppendix B) is to construct an array with one slot for eral, and especially curve partitioning, are critical to this
each indexed location along the curve (conceptually two goal).
such arrays, one each respectively for positive and nega- In this paper we have focused on one specific aspect
tive saliency scores). Each slot is either free or "owned" of the curve partitioning problem: Duplicating human
by exactly one critpt. A critpt occupies only one of the performance in the selection of a small number of points
slots it owns - this occupied slot corresponds to its actual (called ceinpis) along a curve segment which could be
location along the curve. A "new" critpt, 10 contending used as the basis for reconstructing the curve at some
for a slot, must have a normalized score greater than the future time. While there will generally be a significant

9 For an open curve segment, the assignment of positive vs. neg- degree of overlap in the points selected by the tech-
ative is arbitrary; the important consideration is that we use the niques referenced above (focused on different applica-
information about the direction of deviation of the curve from the tions), there are also significant differences. There has
stick to separate detected critpts into the two possible categories been very little recent work on the generic problem of
which are then processed separately. choosing psychologically salient points with which to di-

10 All the potential critpts are detected, sorted, and then entered
into the array in increasing order of saliency to avoid sequence rectly compare our results. On the other hand, we have
dependent effects, conducted a relatively large number of experiments with
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uniformly good results (e.g., see Figure 5). Our approach to local saliency selection can be con-
There are two major paradigms 11 underlying the pub- sidered a form of automated preattentive perception.

lished work on partitioning planar curves. The first in- Potential extensions could include dealing with more
volves obtaining a mathematically differentiable repre- global curve features, such as recognizing the intersec-
sentation of the given digital curve by the use of splin- tion of extended straight line segments, or transition
ing or Gaussian convolution (e.g., Mokhtarian86). This points between analytic curves with different parame-
gives good results for many applications, but the salient ters, or global symmetries and repeated structure. Rec-
points on the smoothed curve are often displaced from ognizing these more global structures, and ranking them
their original locations (or eliminated). This paradigm with respect to human perceived saliency, may well fall
is not suitable for our purposes in this paper. outside the competence of the basic approach described

The second paradigm, which includes the work de- in this paper.
scribed here, is to first measure some approximation to
the curvature at each point on a curve. This usually in- 9. Appendices
volves choosing, or finding, an appropriate scale at which
to make the curvature measurement. This is typically ac- 9.1 Appendix A: Generation of Random
complished by making the curvature measurement over Curves
increasingly larger curve segments (centered on the curve The following method was used to construct the ran-
point being evaluated) until either the computed curva- dom curves used in the experiments described in the
ture at the point, or some related quantity, reaches a lo- body of this paper.
cal extrema. Each point is assigned a saliency/criticality (1) Thirty (x,y) pairs are generated for each curve.
value (its estimated curvature) and an interval length Each value of x and y are generated by a uniform-
along the curve centered on the point (called its re- distribution (0-1) random-number generator and then
gion of support). The region of support is then used for
non-maximum suppression - each point suppresses other multiplied by 100 to produce numbers (coordinate-
points with lower criticality scores falling in its region of values) uniformly distributed between 0 and 100.support. (2) The thirty points are next linked by a minimal-

Major differences between our approach and other spanning-tree (MST).
w ajork udierethis s etweon p radigm rinclue a(3) A diameter path is extracted from the MST, and

work under this second paradigm include: the ordered subset of the original randomly generated

" A generic saliency measure which often selects points that fall along this diameter path are the input
points Agener spondiengy tomeoalur vahturen selets sequence provided to a spline-fitting routine [Cline74]points corresponding to local curvature extrema, which returns a continuous curve represented by ase
but which in many situations is in better accord whcreunacotuusuveepsnedbas-

twhich iuman malectiony situonse iand b mentt accd quence of (x,y) coordinate pairs. These sequences, typ-
with human selection preference and placement ac- ically containing on the order of 150-250 points, are the
curacy. random curves used in our experiments.

"* A distinct approach to the problem of dealing with 9.2 Appendix B: An Algorithm For
curve features salient at different scales. The con- Computing Curve-Point Criticality
ventional approach is to associate a single scale with The partitioning algorithm described in Fischler and
each curve point which in turn defines a fixed re- Bolles [Fischler86] has been modified and extended as
gion of support to be used for non-maximum sup- summarized below.
pression. In our approach, we measure the saliency The algorithm collects candidates (peaks) for the crit-
of each curve point at a number of different scales, ical points of a curve by examining the deviation of the
and have developed procedures for allowing poten- points of the curve from a chord or "stick" that is it-
tial critpts, found at different scales and spatial loca- eratively advanced along the curve. Sticks of different
tions to compete 12 with each other. This competi- lengths are used to find critical points that are salient
tion is not restricted to any fixed extent. of the curve at different "natural" scales on the given curve. (Except
(which thus avoids anomalous selections caused by when explicitly stated otherwise, two sticks were used
an important event occurring just beyond the fixed for all the experiments discussed in this paper; one of
limit of search, i.e., the horizon effect). length 10 pixels and the other of length 20 pixels.) The

"1t Additional approaches are available for partitioning I-D algorithm provides the option of using arc-length along
curves; for example, see Fischler and Wolf [Fischler83] or Witkin the curve, or the euclidean length of the stick, to de-
[Witkin83]. As noted in Appendix B, the 1-D partitioning tech- termine the separation of the endpoints of the stick on
nique in the Fischler83 reference is tined as a component of the SSS the curve; we used the euclidean length of the stick for
algorithm, all of the experiments discussed in this paper. One end

12It is interesting to note that we have not found a use for coop-
erative reinforcement - cooperation appears to be a global relation, of the stick is advanced along the curve, one pixel at a
Competition is important at the local level (e.g., lateral inhibition) time, and the other end is placed at the first. (sequential)
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position further along the curve for which the Euclidean the INDEX for a peak that was entered previously, the
distance equals or exceeds the specified stick length. support information for the new peak replaces the sup-

For each placement of the stick, an accumulator asso- port information of the old peak wherever it occurs in
ciated with the curve-point (in the interval of the curve the support array (i.e. even outside of the new peak's
between the two endpoints of the stick) of maximum original support region).
deviation from the stick is incremented by the absolute After the above processing, the critical points for the
value of the distance from the point to the stick if this curve are designated as those points whose index into the
distance exceeds a predefined noise threshold. However, support array equals the index stored in the information
for the given stick placement, if there is more than one list of the array element.
excursion (exit and return) outside the noise region, the It can be seen that the order in which peaks are en-
underlying model is violated and the accumulators are tered into the support array can affect the final selection
not incremented. (The noise threshold was uniformly of the critical points because a peak's region of support
set to 20 percent of stick length; thus a euclidean devi- can be altered by the "capture" process, and thus de-
ation of more than 2 "pixels" from a stick of length 10 pends on the state of the support array at the time the
was required to cause any modification of the associated peak is entered. In our implementation of the algorithm
accumulator.) for running the experiments, we entered the peaks into

To deal with direction dependent effects, a complete the support array as soon as they were computed in or-
traverse is made in both directions along the curve sum- der to gain computational efficiency and simplicity, and
ming the results in the same accumulators. The points still obtained excellent results. In the current version of
which have locally maximum scores in the accumulators the algorithm we collect all the peaks for all the sticks,
(called peaks) for any of a given set of sticks are the sort the peaks by their normalized scores, and then enter
points from which the critical points will be selected. them into the support array in order of increasing score.

The following information is collected for each peak There are some additional aspects of the algorithm
and used to find the critical points: that are further discussed in the more complete version

"* INDEX: the sequence number along the curve of the of this paper, including ways to handle problems aso-

point at which the peak was located. ciated with very sharp angles and competing critpts of
approximately equal saliency scores,

"* STICK: the length of the stick (in pixels) used to
find the peak. 9.3 Appendix C: Partitioning Curves

Extracted From Aerial Imagery
"* DEV: the sign of the deviation of the peak with A technique for detecting and delineating low resolu-

respect to the curve. tion linear structures appearing in aerial imagery, such as

"* NSCORE: the "normalized" score which is the score roads and rivers, was described by the authors of this pa-
in the accumulator for the peak divided by the per in an earlier publication [Fischler83]. The algorithm
square of the stick length. was effective in finding such structure, but it provided no

mechanism for distinguishing between the semantically
The peaks are divided into two groups with like-signed meaningful objects and the "accidental" and irrelevant

deviation DEV. The critical points for the two groups linear features found in most real images. In work now in
are found independently of each other and their union is progress, we use the SSS algorithm to "slice up" the in-
returned as the set of critical points for the curve. dividual curves found by the delineation algorithm. We

In finding the critical points, we stipulate that each throw away the very small resulting segments which are
peak's score has a region of support, plus and minus half typical of accidental linear formations, and then further
its associated stick length, on each side of its position filter the longer segments with respect to a set of seman-
along the curve. An array (the support array) equal to tic constraints. Those segments that pass through the
the length of the curve is used to store the support in- filtering process are then "glued" back together to pro-
formation. The support information for a peak is a list duce the desired delineation. This process is illustrated
(NSCORE INDEX STICK). For each peak, the support in Figure 6. Figure 6a shows an aerial image, and 6b
information may be entered at every index location coy- shows the linear segments extracted by use of the orig-
ered by the region of support depending on what was inal delineation algorithm. Figure 6c shows those seg-
previously stored in the location. ments that passed through the filters mentioned above,

For all locations in the support region for the new and Figure 6d shows the result of a final step to retain
peak (in the support array), an entry at J is replaced by only the more significant roads and trails. The two panes
the information for the new peak if there is no previous of Figure 6e show the results of applying the SSS algo-
entry in the array or if the score for the new peak is rithm to some of the 120 curves highlighted in Figure
> than the score in the existing entry in the array. In 6b (they have been isolated and separated into the two
addition, if the entry J is being replaced, and J is also panes to allow clear display of the partition points and
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CURVE PARTITIONING: Instructions

For each enclosed curve:

Assume that 10 years from now you will be asked to reconstruct the given curve.
A reasonably correct reconstruction will be rewarded by a large sum of money (say
$5000). You can record, for later use, the locations of up to nine points along the
curve to help you do the reconstruction - but it will cost you $200 for each such
point (to be subtracted from your prize if you receive the reward). Please mark your
selected points on the curve. Do not select the endpoints, they will be provided free.
Do not take more than one minute per curve.

Points chosen by 9 of 11 test subjects

Critical points found by the SSS algorithm

Points chosen by at least 1 of 11 test subjects

Figure 1: Comparison of human and SSS algorithm performance in the curve
partitioning task. (Each of the curves used in the experiments with human
subjects was contained in a square that was 1.5 inches on a side.)
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(a) Test curve 189 (b) SSS selected critpts

(c) R/J-curvature (d) Anomalous area
selected critpts (magnified)

w0 .. 1 2- 3 .....4 . ...... 671 . .... . 9 ......10 ... 11....

so0 .. .. .. ;.. ,
100:. ... .

120 ....

140 
..... .1 6 0 . . . . . . . ... . .

I S O . . . .. . . . .. . .... . . . . . .
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 190 190

(e) Plot of R/J-curvature along test curve. Abcissa = sequence number of point on curve.
Ordinate = angle (in degrees) computed at point. (Angle-arms are 10 units each for

R/J-C; standard stick lengths of 10 and 20 units are employed by SSS.)

Figure 2: Comparison of SSS and R/J-curvature metrics evaluated on test curve 189.
The continuous curve in (e) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (e) mark the sequentially numbered critpts selected by SSS as shown

in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (e). The arrow in (c), and in the corresponding location in (e),
illustrates an anomalous selection using R/J-curvature. (d) shows the computed values of
R/J-curvature, 153°, at the preferred location and 1220 at the location of the anomalous
selection.
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(a) Test curve 166 (b) SSS selected critpts (c) R/J-curvature
selected critpts

100: 1..3 4 5 6.7

120

140: .. ..

160.. ..

0 10 20 30 40 5060 705090 100 110 120 130 140 150 160 170 180 190 200210

(d) Plot of R/J-curvature along test curve. Abcissa = sequence number of point on curve.
Ordinate = angle (in degrees) computed at point. (Angle-arms are 10 units each for
R/J-C; stick length is 20 units for F/B-S.)

Figure 3: Comparison of SSS and R/J-curvature metrics, evaluated on test curve 166.
The continuous curve in (d) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (d) mark the sequentially numbered critpts selected by SSS as shown
in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (d). The arrows in (c), and in the corresponding locations in
(d), illustrates anomalous selections using R/J-curvature.
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(a) (b)

Figure 4: Curvature and saliency are functions of curve resolution. As illustrated in (a)
above, we can draw more than one visually acceptable tangent to many of the points on this
curve at the given resolution. As resolution increases, tangent 2 would dominate at point x;
as resolution decreases, tangent 1 would dominate at the same point. In (b), the angle at x
can be seen as 450 at one scale and 900 at a larger scale. Thus, curvature and saliency are
not unique properties of curve points.

Figure 5: Critical points found by the SSS algorithm for a set of 40 random curves.
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(a) Aerial photograph (b) Initial extraction of
linear structure

(c) Filtered linear structure (d) Delineation of major
using SSS algorithm roads and trails

(e) Partition points found by SSS algorithm on curves from (b)

Figure 6: Application of the SSS algorithm to the problem of delineating linear features in
aerial photographs.
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Detecting Occluding Edges Without Computing
Dense Correspondence

Lambert E. Wixson°
Computer Science Dept.
University of Rochester
Rochester, NY 14627

email: wixson@cs.rochester.edu

Abstract occlusion-detection techniques attempt to detect not
occluding edges, but rather occluded points in a

This paper presents an algorithm for detecting oc- stereo or motion pair (Mutch and Thompson, 1985,
cluding edges in stereo pairs. The algorithm de- Geiger et al., 1992, Jones and Malik, 1992, Weng
scribed here does not require dense correspondence et aL., 1992]. These are points that appear in one
estimates and hence may be applied in a selective image but do not appear in the other, and hence
manner. It extracts intensity edges and tests them cannot be matched from one image to the other.
for occlusion by sampling edgels along each edge. Such points appear in the vicinity of occluding edges.
The algorithm works by searching for matches, in Because of the difficulties of determining matching
the right image, for the regions to the left and right points, occluded-point detection is typically incor-
of a left-image edgel. The method is based on that porated into algorithms for determining dense corre-
of Toh and Forrest [1990], but extends that work in spondence maps. Unfortunately, such algorithms are
several ways. First, it adds an algorithm for auto- time-consuming, and even once the occluded points
matically selecting an appropriate size for the corre- have been located, the occluding edges still must be
lation windows used to detect the occlusions. Sec- inferred. Methods that do not involve dense corre-
ond, it adds a simple technique for classifying an spondence and that directly identify occluding edges
entire edge by sampling only a few pixels along the would be more desirable.
edge. Finally, it identifies two situations that !ead to Three such methods have appeared in the literature.
false positive and false negative classifications, and The first uses active adjustment of a camera's depth-
describes solutions to these problems. of-field [Toh and Forrest, 1990, Brunnstrom et al.,

1991]. The remaining two techniques involve stereo

1 Introduction pairs. Little [1990] identifies points near an occlusion
edge by examining the distribution of match good-

Occluding edges provide important information nesses as a window around the point is shifted hori-

about one's environment. Knowledge of the loca- zontally. If the window overlaps surfaces at different
tions of occluding edges can be used to increase the depths, this distribution is bimodal. Finally, [Toh

robustness of object recognition programs (Thomp- and Forrest, 1990] presents a method that examines

son and Whillock, 1988]. Also, occluding edges can two adjacent image patches. Its operation is illus-
denote surface discontinuities such as holes or cliffs. trated in Figure 1. Given a near-vertical edgel' e in

Finally, occluding edges identify the borders of re- the left image L, this algorithm operates by selecting
gions that cannot be imaged from the current cam- two windows in L. Window PL runs leftwards from

era viewpoint, and hence can be used to guide a e, while window NL runs rightwards from e. The

camera to look into these regions. For all of these right image R is then searched, along roughly the

uses, it seems sufficient to view occluding edges as epipolar line, for the regions PR and NR that best

qualitative phenomena; it does not seem necessary match PL and Nl, respectively. Let Cp and CN be

to construct a dense depth map. 1 An edgel is simply & pixel at which a significant intensity
Traditionally, however, occlusions have been de- gradient exists. This paper describes only the use of near-
tected as a side-effect of the construction of dense vertical edgels because it is effectively impossible to match
correspondence maps. The most widely-described horizontal edgels in left and right stereo pairs - usually a

match at one disparity is indistinguishable from a match at
"*This material As based on work supported by DARPA another. Of course, the same algorithms could be applied to

Contract MDA972-92-J-1012. near-horizontal edgels given a top and bottom stereo pair.
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sented. Additional details can be found in [Wixson,
1993].

ViJ2 Selecting the width of the
matching windows

Consider the stereo image pair shown in Figure 4.
It contains little surface texture near many of its
intensity edges. Yet many occluding edges can be
seen in this image pair by comparing the distance
between pairs of edges. For example, consider the
distance between the left edge of the detergent box

: . *. R and the right edge of the cylinder to its left. In the
"left image, this distance is larger than in the right
image, and therefore it follows that the left edge of

L IN the box is a right-occluding edge, i.e. an occluding
NL edge whose right side is closer to the camera than

its left. Similar inferences can be made based on
Figure 1: Visual cue indicating the presence of an the relationship between the right side of the card-
occluding edge. If e is a right-occluding edge, then board box and the left edge of the decahedron and
the surface to its right spanned by NL will be visible the coffee cup and the decahedron. At the same
in the right image. On the other hand, the surface time, of course, the distances between many of the
to e's left is blocked from the right image's view. As surface markings on the detergent box are the same
a result, the region spanned by PL is not visible in in both images and hence these are not occluding
the right image. edges. Thus we see that in order to detect occluding

edges in untextured scenes, the match windows must
be wide enough to reach the next adjacent edge.

the goodnesses-of-match between PL and PR, and This suggests that a good strategy for selecting the
NL and NR, respectively. If Cp and Cpj are both width of the matching window might simply be to
high, and PL and PR are next to each other in R, make the window wide enough to contain the closest
this means that the regions on both sides of e were strong intensity edge. This can be done as follows:
visible in the right image, and therefore that e is an To find the right bound XN of the NL window to
intensity edge but not an occluding edge. If Cp (CN) the right of edgel x, ye, step rightwards from x.
is small, however, then this means that PL (NL) is until the x-derivative exceeds a threshold 6 and from
not visible in the right image, and that e is a right- there keep stepping rightwards until the n-derivative
(left-)occluding edge. (A right-(left-)occluding edge falls below a threshold c. The purpose of stepping
is an edge such that the surface to its right (left) is until falling below c is to ensure that enough of the
closer to the camera.) adjacent edge is contained within the window for it

This paper describes experience with Toh and For- to influence the goodness of match.
rest's algorithm. It contains solutions to two prob- To ensure that the window is big enough to allow
lems that arise in practice, namely how to select robust matching, a minimum distance m between
PL and NL so that they contain enough texture for x, and ZN is required. If ZN - X, < M, ZN is reset
the matching algorithm to be able to truly deter- to xe + rn. On the other hand, no limit is imposed
mine whether or not matches exist in the right im- on the maximum window width.
age, and how to use the detector to rapidly clas- The left bound zp of the left match window PL is
sify edges. The paper also identifies two situations computed similarly. If the algorithm for selecting xp
that can cause misclassifications. First, if diagno- or ZN runs off the side of the image before a pixel
sis is based only on Cp and CN, situations exist is found that meets the criteria, the edgel z,,yY is
in which false negative responses can be obtained, classified as "unmeasurable".
i.e. occluding edgels can be classified as a surface To increase robustness, both match windows are
marking. Second, false positive responses can also given some vertical extent, i.e. are more than one
be obtained - a non-occluding edge e will be clas- row high. However, this amount is fixed rather than
sified as an occluding edge if a true occluding edge adaptive.
is closer to the camera and passes through e's PL The above method for selecting window size is ad hoc
or NL window. Solutions to these problems are pre- but effective. A more principled method is described
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in [Kanade and Okutomi, 1990]. CN _ r

yes no

3 Matching
dpN :_ A

Because the sizes of the correlation windows vary yes yes no Ieft-occ
depending upon the surroundings of the edgel being marking I left-occ
tested, and we would like to have a single threshold Cp > T

that determines whether a match is a good match,
the similarity measure must be independent of win- no right-occ not-visible
dow size. Therefore, match goodnesses between win-
dows in the left and right image are computed using
normalized correlation [Ballard and Brown, 1982, p. Table 1: Diagnosis p-ncedure for determining the681:Tae1:Dansspedrfodeemnnth

pq - p V nature of an edgel giveh. Cp, CN, and dpN. Cp and
C(p,q) = a(p) (1) CN are goodnesses-of-match between PL and PR,

and NL and NR, respectively, where PR and NR are
where p and q are image patches, and a(p) and u(q) the windows in the right image that best match PL
are the standard deviations of the pixel values in the and NL. dpN is the distance in pixels between the
patches. right edge of PR and the left edge of NR.

4 Analyzing the matching re- visible in the right image, but the right image also

suits contains a region of the cardboard box to the left of
this portion.

Given the windows PR and NR in the right image
that best match PL and NL, let Cp and CN be the 5 Classifying edges based on
corresponding similarity measurements between the
windows, and let dpN be the distance, in pixels, be- sparse measurements
tween the right edge of PR and the left edge of NR.
Let r be the threshold over which a match is con- One advantage of the occlusion detection method
sidered to be a good match. Then the diagnosis as presented above is that, since it is non-iterative and
to the nature of the edgel e that PL and NL abut is does not involve smoothing, it does not require dense
determined according to Table 1. An edgel can be di- measurement of the pixel disparities. As a result, the
agnosed either as a surface marking, a left-occluding algorithm can be selectively applied only to points
edgel (which means that the left side of the edgel is of interest, saving computation time. One obvious
the closer surface), a right-occluding edgel, or as a method for selecting these points of interest is to se-
point that is not visible in the other image. lect them along previously-extracted intensity edges.
Table 1 is for the most part straightforward, except This approach has several advantages. If long edges
for the case in its upper-left corner, where both Cp are more likely to be important than short edges, the
and CN indicate good matches. In this case, it is edges can be tested in order of decreasing length,
necessary to examine dpN, because there are two thus creating a type of anytime algorithm. Also,
reasons why there could be good matches for both very short edges can be discarded to avoid wasting
PL and NL. The first, of course, is that e might only effort testing them for occlusion.
be a surface marking, not an occluding edge As a Using an intensity edge to select edgels to be tested
result, dpN should be small. The second possibil- for occlusion has one additional advantage. Edgels
ity is that e is a left-occluding edge, as illustrated that are on the same edge are likely to have the same
in Figure 2. In this case, the regions imaged by the properties. If, for instance, several edgels along the
PL and NL windows in the left image are both im- same intensity edge are left-occluding edgels, then
aged in the right image, but the right camera will the other edgels along the edge are highly likely to
also image some more of the background surface be- be left-occluding. This suggests that an intensity
tween the PR and NR windows. An example of this edge can be efficiently tested for occlusion by test-
phenomenon occurs with the right side of the de- ing only a subset of its edgels. In our implementa-
tergent box, a left-occluding edge, in Figure 4. In tion, we test only every k'th (typically k = 7) edgel
the left image, much less of the cardboard box be- along an edge. Of these, we discard all edgels discov-
hind the detergent box is visible. The portion of ered to be unmeasurable. If more than 20% of the
the cardboard box visible in the left image is aiso remaining tested edgels are determined to be right-
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,- magnitudes, may require modification depending on
Surface 2 " .- the sharpness of the image. These were selected by

Sufc1- "...''" examining the measured derivatives.

rightmost column of Figures 4-6. Right-occluding
.. * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6 P -ochietfedocuin de aeds lay d ingth

• . edges are displayed as solid lines, while left-occluding
edges are dotted lines. The figures show that most

L R .surface markings and edges that are too distant to
have significant stereo disparity are filtered out by

dPll the occlusion detector, and that it succeeds in de-
tecting many of the true occluding edges, such as

Figure 2: A left-occluding edge (e) may not be de- the right-occluding edges created by the left edges
tectable using only the match goodnesses for the left of Figure 4's detergent box, mug, and decahedron,
image's P and N windows. Here the regions imaged and the left edges of the chair seat and chair back in
in the left P and N are also viewable in the right Figure 5.
image. The clue that e is a left-occluding edge is Note that in some cases, significant vertical occlud-
that there is a gap between the right image's match ing edges were not labeled as occluding edges. No-
to P and its match to N. The width of this gap is tably missing in Figure 4 are the top section of the
denoted by dpv. detergent box's left edge, the detergent box's right

edge, both edges of the cylinder, the left edge of the

(left-)occluding, then the edge is classified as a right- tape dispenser, and the right edge of the decahedron.

(left-)occluding edge. If both the number of left- These edges were unmeasurable because on one side

occluding edgels and the number of right-occluding of them, no matching window could be selected; the

edgels exceed 20%, the edge is classified according border of the image was encountered before another

to whichever has the most votes, significant edge could be found that could serve as
the match window border.

6 Experimental results 7 False positives
The above algorithm was applied to the stereo pairs
in Figures 4, 5, and 6. Vertical edges were extracted Inspection of the results in Figures 4-6 reveals some
by chaining together pixels at which the absolute falsely detected occlusions. There are three causes of
value of the intensity x-derivative exceeded b and these false positives. The first is a problem with all
was a local maxima. Chains of length < 8 were correlation-based matching algorithms - they fail
discarded. The remaining edges are shown in the to obtain good matches on curved surfaces or sur-
figures' third column. faces that slope sharply away from the stereo base-
The edges were classified using the incremental test line. Therefore, a surface marking on the mug in
strategy described in the previous section. This Figure 4 and the nearest edge of the chair back in
strategy resulted in a significant reduction of com- Figure 5 are falsely classified as occluding edges, and
putation; for each of the 240 x 244 pairs in Figures the right side of the white box in Figure 6 is misclas-
4-6, the number of edgels tested for occlusion was sified as a left-occluding edge.
between 300 and 500, which is much less than the The second, relatively minor, cause of some false
total number of either pixels or edgels in the images. positives is failure to detect the proper terminating
The parameter values used to determine the width edge of the PL or NL window. This occurred for the
of the match windows were 6 = 6, c = 1.1, and m = lower right quadrant of the circle on the detergent
13. Using these parameters on images that were box in Figure 4. The portion of the detergent box's
244 columns wide, the median width of the resulting right edge that is to the right of these edgels does
windows selected in these images was between 15 not give rise to a significant image gradient. As a
and 20 pixels, while the average width was 25 pixels, result, their NL windows are extended to the right
The match windows were 2v + I pixels high, and v edg,' f the box behind the detergent box. Since
was 3. >!i- ý ltarae is not the same in the right image, the
The parameter values used to diagnose edgels were N. f-h fails and the edgels are diagnosed as left-
r = .75, and A = 3. The m, 7, and A parameters h,- Ii

are quite robust and are unlikely to require modifica- 1, 7 c; cause of false positives is fairly important
tion from image to image. The b and c parameters, and is most clearly illustrated by the wall socket that
which are thresholds based on measured derivative appears near the chair back in Figure 5. Its left edge
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ity across the edge, which would provide a hint as drew K. Forrest. Occlusion detection in early vi-
to the size of the occluded region. However, the al- sion. In Proceedings of the International Confer-
gorithm could be augmented to estimate the depth ence on Computer Vision, 1990.
discontinuity magnitude by computing the relative
disparity of non-occluded regions near each side of [Weng et al., 1992] Juyang Weng, Narendra Ahuja,
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Robust Shape Recovery from Occluding Contours
Using a Linear Smoother

Richard Szeliski Richard Weiss
Digital Equipment Corporation, Computer and Information Science Department,

Cambridge Research Lab, University of Massachusetts at Amherst,
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Cambridge, MA 02139

Abstract for recovering the 3D contour locations from two or
more images under known camera motion [Marr and

Recovering the shape of an object from two Poggio, 1979; Mayhew and Frisby, 1980; Arnold, 1983;
views, or stereo, fails at occluding contours Bolles et al., 1987; Baker and Bolles, 1989; Matthies
of smooth objects because the extremal con- et al., 1989]. However, for smooth curved surfaces the
tours are view dependent. For three or more critical set which generates the profile is different for
views, shape recovery is possible, and several each view. Thus, the triangulation applied in two-frame
algorithmssehave preently been developd for stereo will not be correct along the occluding contour
this purpose. We present a new approach to for smooth surfaces. For the same reason, it is not
the multiframe shape recovery problem which possible to determine the camera motion from the im-
does not depend on differential measurements ages unless some assumptions are made either about
in the image, which may be noise sensitive. In- the surface or the motion [Arborgast and Mohr, 1992;
stead, we use a linear smoother to optimally Giblin et al., 1992]. On the other hand, the fact that the
combine all of the measurements available at critical sets sweep out an area means that the connec-
the contours (and other edges) in all of the tivity of the surface points can be determined, i.e. one
images. This allows us to extract a robust obtains a surface patch rather than a set of points.
and dense estimate of surface shape, and to
integrate shape information from both surface The problem of reconstructing a smooth surface from
markings and occluding contours. its profiles has been explored for known planar mo-

tion by Giblin and Weiss [1987] and subsequently for

1 Introduction more general known motion by Vaillant [Vaillant, 1990;
Vaillant and Faugeras, 1992] and Cipolla and Blake

Most visually-guided systems require representations of [Blake and Cipolla, 1990; Cipolla and Blake, 1990;
surfaces in the environment in order to integrate sens- Cipolla and Blake, 1992]. These approaches are based
ing, planning, and action. The task considered in this on a differential formulation and analysis or use three
paper is the recovery of 3D structure (shape) of objects frames. Unfortunately, determining differential quan-
with piecewise-smooth surfaces from a sequence of pro- tities reliably in real images is difficult. This has led
files taken with known camera motion. The profile (also Cipolla and Blake to use relative measurements in order
known as the eztremal boundary., or occluding contour) to cancel some of the error due to inadvertent camera ro-
is defined as the image of the critical set of the projec- tation. Their approach used B-snakes which require ini-
tion map from the surface to the image plane. Since tialization for each contour that is tracked. In addition,
profiles are general curves in the plane without distin- B-snakes implicitly smooth the contours in the image.
guished points, there is no a priori pointwise correspon- Since the recovery of 3D points is a linear problem, the
dence between these curves in different views. However, smoothing can be done in 3D on the surface where more
given the motion, there is a correspondence based on the context can be used in the detection of discontinuities,
epipolar constraint. For two images, i.e., classical stereo, so that detailed structure can be preserved.
this epipolar constraint is a set of straight lines. These To overcome these limitations, the approach we de-
lines are the intersection of the epipolar planes with the velop in this paper applies estimation theory (Kalman
image plane. The epipolar plane through a point is de- filtering and smoothing) to make optimal use of each
termined by the view direction at that point and the measurement without computing differential quantities.
camera translation direction. First, we derive a linear set of equations between the

In the case of contours that are not view depen- unknown shape (surface point positions and radii of cur-
dent, e.g., creases (tangent discontinuities) and sur- vature) and the measurements. We then develop a ro-
face markings, many techniques have been developed bust linear smoother ([Gelb, 1974; Bierman, 1977]) to

*The second author acknowledges the support of grants compute statistically optimal current and past estimates
TACOM DAAE07-91-C-RO35, NSF IRI-9208920, and NSF from the set of contours. Smoothing allows us to com-
IRI-91 16297. bine measurements on both sides of each surface point.
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Our technique produces a complete surface descrip- neighbors of each edgel based on proximity and conti-
tion, i.e., a network of linked 3D surface points, which nuity of orientation. Note that in contrast to some of
provides us with a much richer description than just a the previous work in reconstruction from occluding con-
set of 3D curves. Due to self-occlusion and occlusion tours [Cipolla and Blake, 1990; Cipolla and Blake, 1992],
by other surfaces, some parts of the surface may never we do not fit a smooth parametric curve to the contour
appear on the profile. Since the method presented here since we wish to directly use all of the edgels in the shape
also works for arbitrary surface markings and creases, a reconstruction, without losing detail.
larger part of the surface can be reconstructed than from We then use the known epipolar lines (Section 3) to
occluding contours of the smooth pieces alone. Our ap- find the best matching edgel in the next frame. Our tech-
proach also addresses the difficult problem of contours nique compares all candidate edgels within the epipolar
that merge and split in the image, which must be re- line search range (defined by the expected minimum and
solved if an accurate and complete 3D surface model is maximum depths), and selects the one which matches
to be constructed. most closely in orientation (see Figure 1c).

The method we develop has applications in many ar- Since contours are maintained as a list of discrete
eas of computer vision, computer aided design, and vi- points, it is necessary to resample the edge points in
sual communications. The most traditional application order to enforce the epipolar constraint on each track.
of visually based shape recovery is in the reconstruction We occasionally start new tracks if there is a sufficiently
of a mobile robot's environment, which allows it to per- large (2 pixel wide) gap between successive samples on
form obstacle avoidance and planning tasks [Curwen et the contour. While we do not operate directly on the
al., 1992]. spatiotemporal volume, our tracking and contour linking

Our paper is structured as follows. We begin in Sec- processes form a virtual surface similar to the weaving
tion 2 with a description of our edge detection, contour wall technique of Harlyn Baker [19891. Unlike Baker's
linking, and edge tracking algorithms. In Section 3, we technique, however, we do not assume a regular and
discuss the estimation of the epipolar plane for a se- dense sampling in time.
quence of three or more views. Section 4 presents the
linear measurement equations which relate the edge po- 3 Reconstructing surface patches
sitions in each image to the parameters of the circular arcbeing fitted at each surface point. Section 5 then reviews The surface being reconstructed from a moving camera

can be parametrized in a natural way by two families
robust least squares techniques for recovering the shape of curves [Giblin and Weiss, 1987; Cipolla and Blake,
parameters and discusses their statistical interpretation. 1990]: one family constists of the critical sets on the
Section 6 shows how to extend least squares to a time- surface; the other is tangent to the family of rays from
evolving system using the Kalman filter, and develops the camera focal points. The latter curves are called
the requisite forward mapping (surface point evolution) epipolar curves. The problem is that any smooth surface
equations. Section 7 extends the Kalman filter to the lin- reconstruction algorithm which is more than a first order
ear smoother, which optimally refines and updates pre- approximation requires at least three images and, that
vious surface point aseiest ex from new measurements. in general, the three corresponding tangent rays will not
Section 8 presents a series of experiments performed both be coplanar. However, there are many cases when thison noisy synthetic contour sequences and on real video will be a good approximation. One such case is when
images. We close with a discussion of the performance the camera trajectory is almost linear.
of our new technique and a discussion of future work. Cipolla and Blake [1990; 1992] and Vaillant and
2 Contour detection and tracking Faugeras [1990; 1992] noticed that to compute the cur-

vature of a planar curve from three tangent rays, one can

The problem of edge detection has been extensively determine a circle which is tangent to these rays. The
studied in computer vision [Marr and Hildreth, 1980; assumption that one needs to make is that the surface re-
Canny, 1986]. The choice of edge detector is not cru- mains on the same side of the tangent rays. This is true
cial in our application, since we are interested mostly in for intervals of the curve which do not have inflections.
detecting strong edges such as occluding contours and Note that for the reconstruction of opaque surfaces, the
visible surface markings.1 For our system, we have cho- epipolar curve on the surface ends at an inflection be-
sen the steerable filters developed by Freeman and Adel- cause the critical set disappears from view. This gener-
son [19911, since they provide good angular resolution at ally corresponds to a cusp of the profile. In addition, the
moderate computation cost, and since they can find both epipolar curve can end where the normal to the profile
step and peak edges. An example of our edge detector is parallel to the instantaneous axis of rotation or where
operating on the input image in Figure la is shown in the critical set is occluded as at a T-junction [Giblin and
Figure lb. Weiss, 1993].

Once discrete edgels have been detected, we use local Given three or more edgels tracked with our technique,
search to link the edgels into contours. We find the two we would like to compute the location of the surface and

its curvature by fitting a circular arc to the lines de-
'Unlike many edge detection applications, however, our fined by the view directions at those edgels. In general,

systems does provide us with a quantitative way to measure a space curve will have a unique circle which is closest
the performance of an edge detector, since we can in many to the curve at any given point. This is called the os-
cases measure the accuracy of our final 3D reconstruction. culating circle, and the plane of this circle is called the
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Figure 1: Input processing: (a) sample input image (dodecahedral puzIle), (b) estimated edgels and orientations
(maxima in ]G112), (c) tracked edgels, (d) correspondence of points on the occluding contours using the epipolar
constraint.
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"c = (zc,yc) and radius r (Figure 2), we find that the
tangency condition between line i and the circle can be
written as

q cizc + siyc + r = (1)

where ci = tio, si = -ti" fio, and d. = (qi - qo)
" TThus, we have a linear estimation problem in the quanti-

t(•, YC) io ties (zx, Ye, r) given the known measurements (c1 , si, d,).
,r This linearity is central to the further developments in

the paper, including the least squares fitting, Kalman
q0 I io z filter, and linear smoother which we develop in the next

three sections.
t-i i5 Least squares fitting

q While in theory the equation of the osculating circle can
be recovered given the projection of three non-parallel
tangent lines onto the epipolar plane, a much more re-
liable estimate can be obtained by using more views.

L1  /0 11 Given the set of equations (1), how can we recover

Figure 2: Local coordinate axes and circle center point best estimate for (z, Y, r)? Regression theory [Al-

calculation bert, 1972; Bierman, 1977] tells us that the minimum
least squared error estimate of the system of equations
Ax = d can be found by minimizing

osculating plane. It is easy to see that the epipolar plane e = JAx -d12 = -(ai• - d,)2. (2)
is an estimate of the osculating plane [Cipolla and Blake, i
19921, and the lines defined by the view directions can This minimum can be found by solving the set of normal
be projected onto this plane. equations2

The relationship between the curvature of a curve such (ATA)i = AT d (3)
as the epipolar curve and the curvature of the surface
is determined by the angle between the normal to the or
curve in the osculating plane and the normal to the sur- (Z aiarT)i d
face. The curvature of the curve scaled by the cosine of A i
this angle is the normal curvature. Meusnier's Theorem A statistical justification for using least squares will be
says that the normal curvature is the same for all curves presented shortly (Section 5.1).
on the surface with a given tangent direction. Thus, if In our circle fitting case, aj = (c1 , si, 1), x = (zc, r)c,

one were to project the epipolar curve onto the plane and the normal equations are
spanned by the view direction and the normal to the [ •.C? Cj8i "j 1 [ Zc 1 [ c Cidj 1
surface, this would give the normal curvature. Instead, .sic s s*2 YC : . sid, .
we do our fitting in the epipolar plane; we can always i c .i si -i 1 r i d,
recover the normal curvature, if desired, by Meusnier's (4)
Theorem. If we solve the above set of equations directly, the es-

timates for zc and r will be very highly correlated and
4 Measurement equations both will be highly unreliable (assuming the range of
Once we have selected the reconstruction plane to be the viewpoints is not very large). This can be seen both by
epipolar plane for fitting the circular arc, we must com- examining Figure 2, where we see that the location of
pute the set of lines in this plane which should be tangent c is highly sensitive to the exact values of the d•, or by
to the circle. This can be done either by projecting the computing the covariance matrix P = (ATA)-l (Sec-
3D lines corresponding to the linked edgels directly onto tion 5.1).
the plane, or by intersecting the tangent planes (defined We cannot do much to improve the estimate of r short
by the edgels and their orientations) with the reconstruc- of using more frames or a larger camera displacement,
tion plane. but we can greatly increase the reliability of our shape

We represent the 3D line corresponding to an edgel estimate by directly solving for the surface point (z,, y,),
in frame i by a 3D point qi (say, where the viewing ray where Ts = zc+r and y. = yc..3 The new set of equations

hits a reference z plane) and a direction ii = AK(qi - is thus

ci), where c, is the camera center and ,V normalizes a ciz, + siy8 + (1 - ci)r = d,. (5)
vector. We choose one of these lines as the reference ' Alternative techniques for solving the least squares prob-
frame (fro, to) centered at q0 (where fio to x fiepi), lem include singular value decomposition [Press et al., 19861
e.g., by selecting the middle of n frames for a batch fit, and Householder transforms [Bierman, 1977].
or the last frame for a Kalman filter. This line lies in 'While the point (z., Y.) will not in general lie on the line
the reconstruction plane defined by repi. (qo, io), the tangent to the circle at (z,, y.) will be parallel

If we parameterize the osculating circle by its center to to.
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While there is still some correlation between z, and r, 5.2 Robustifying the estimate
the estimate fot z, is much more reliable (Section 5.1). To further improve the quality and reliability of our es-
Once we have esthnated (zx, y,, r), we can convert this timates, we can apply robust statistics to reduce the ef-
estimate back to a 3D surface point, fects of outliers (grossly erroneous measurements) [Hu-

P0 = qo + si0io + yt.0, (6) ber, 1981]. Many robust techniques are based on first
a 3D center point computing residuals, ri = d, - ai • x, and then re-

c = q0 + (X, - r)fio + yt0 = P0 - rui0 , (7) weighting the data by a monotonic function

or a surface point in some other frame i (ail)-' = o•r2g(IrjJ)

pi = c + rfi = Po + r(fi1 - fio), (8) or throwing out measurements whose Iril >» o. Alterna-
where tively, least median squares can also be used to compute

fit = ti x iiepi a robust estimate, but at an increased complexity.
is the osculating circle normal direction perpendicular to In our application, outliers occur mainly from gross
line li (Figure 2). errors in edge detection (e.g., when adjacent edges inter-

fere) and from errors in tracking. Currently, we compute
5.1 Statistical interpretation residuals after each batch fit, and keep only those mea-

The least squares estimate is also the minimum variance surements whose residuals fall below a fixed threshold.

and mazimum likelihood estimate (optimal statistical es- 6 Kalman filter
timate) under the assumption that each measurement
is contaminated with additive Gaussian noise [Bierman, The Kalman filter is a powerful technique for effi-
1977]. If each measurement has a different variance ai2, ciently computing statistically optimal estimates of time-
we mu3t weight each .erm in the squared error measure varying processes from series of noisy measurements
(2) by w1 =a•-2, or, equivalently, multiply each equation [Gelb, 1974; Bierman, 1977; Maybeck, 1979]. In com-
ai • x = d. by a7'1 puter vision, the Kalman filter has been applied to di-

In our application, the variance of d, a?, can be deter- verse problems such as motion recovery [Rives et al.,
mined by analyzing the edge detector output and com- 1986], multiframe stereo [Matthies et al., 1989], and pose
puting the angle between the edge orientation and the recovery [Lowe, 1991]. In this section, we develop a
epipolar line Kalman filter for contour-based shape recovery in two

S = a(i,_ fiepi) 2 = a721(1 _ (Th, _ parts: first, we show how to perform the batch fitting of
the previous section incrementally; second, we show how

where o-, is the variance of qi along the surface normal surface point estimates can be predicted from one frame
rhi. This statistical model makes sense if the measure- (and reconstruction plane) to another.
ments d. are noisy and the other parameters (cj, si) are The update part of the Kalman filter is derived di-
noise-free. This is a reasonable assumption in our case, rectly from the measurement equation (1) [Gelb, 1974].
since the camera positions are known but the edgel loca- It provides an incremental technique for estimating
tions are noisy. The generalization to uncertain camera quantities in a static system, e.g., for refining a set of
locations is left to future work. (zr, y, r) measurements as more edgels are observed.

When using least squares, the covariance matrix of the For our application, however, we need to produce a
estimate can be computed from P = (ATA)- 1 . We can series of surface points which can be linked together
perform a simple analysis of the expected covariances into a complete surface description. If we were using
for n measurements spaced 0 apart. Using Taylor series batch fitting, we would perform a new batch fit centered
expansions for ci = cos Oi and si = sin 6i, and assuming around each new 2D edgel. Instead, we use the complete
that i E [-in... m], n = 2m+ 1, we obtain the covariance Kalman filter, since it has a much lower computational
matrices complexity. The Kalman filter provides a way to deal

[60-4 0 - 6 0- 4 with dynamic systems where the state xi is evolving over
P• = 0 ½-2 ! 0 time. We identify each measurement xi with the surface

-6 0 - 42 0 6 0-4 point (z., y,, r) whose local coordinate frame is given by

and (fii, ii, fi.pi) centered at qi in frame i. The equations for
1 0O 20-20 1 the prediction part of the Kalman filter are derived from

P3' = 0 10-2 0 the mapping equations between frames (8) [Gelb, 19741.
S-20-2 20 60- 4  The overall sequence of processing steps is therefore

the following. Initially, we perform a batch fit to n > 3
where Pm is the 3 point covariance for the center-point frames, using the last frame as the reference frame. Next,

urface-point formulation .aAs th e cint svariance ofo we convert the local estimate into a global 3D position
surface-point formulation. As we can see, variance of (6) and save it as part of our final surface model. Then,
the surface point local x estimate is four orders of mag- we project the 3D surface point and its radius onto the
nitude smaller than that of the center point. Similar re- next frame, i.e., into the frame defined by the next 2D
suits hold for the overdetermined case (n > 3). Extend-
ing the analysis to the asymmetrical case, i E [0... 2m], edgel found by the tracker.4  Then, we update the state
we observe that the variance of the x, and y, estimates 4 For even higher accuracy, we could use the 2D projection
increases, of our 3D surface point as the input to our tracker.
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estimate using the local line equation and the Kalman For these features, we would prefer to produce a sin-
filter updating equations. We repeat the above process gle time-invariant estimate. While the detection of sta-
(except for the batch fit) so long as a reliable track is tionary features could be incorporated into the Kalman
maintained (i.e., the residuals are within an acceptable filter or smoother itself, we currently defer this deci-
range). If the track disappears or a robust fit is not sion to a post-processing stage, since we expect the esti-
possible, we terminate the recursive processing and wait mates of position and radius of curvature to be more
until enough new measurements are available to start a reliable after the whole sequence has been processed.
new batch fit. The post-processing stage collapses successive estimates

which are near enough in 3D (say, less than the spacing
7 Linear smoothing between neighboring sample points on the 3D contour).

The Kalman filter is most commonly used in control sys- It adjusts the neighbor (contour) and temporal (previ-

tems applications, where the current estimate is used ous/next) pointers to maintain a consistent description

to determine an optimal control strategy to achieve a

desired system behavior [Gelb, 1974]. In certain appli- 8 Experimental results
cations, however, we may wish to refine old estimates
as new information arrives, or, equivalently, to use "fu- To determine the performance of our shape reconstruc-
ture" measurements to compute the best current esti- tion algorithm, we generated a synthetic motion se-
mate. Our shape recovery application falls into this lat- quence of a truncated ellipsoid rotating about its z axis
ter category, since we wish to obtain t)- most :urate (Figure 3). The camera is oblique (rather than per-
estimate possible for the complete surf and not just pendicular) to the rotation axis, so that the motion of
the 3D curve corresponding to the curi, iy visible oc- the pixels is not one-dimensional, and the reconstruc-
cluding contour. tion plane is continuously varying over time. We chose

The generalization of the Kalman filter to update pre- to use a truncated ellipsoid since it is easy to analyt-
vious estimates is called the linear smoother [Gelb, 1974]. ically compute its projections (which are ellipses, even
The smoothed estimate of xi based on all the measure- under perspective), and since its radius of curvature is
ments between 0 and N is denoted by xSlN. Three kinds continuously varying (unlike, say, a sphere or a cylinder).
of smoothing are possible [Gelb, 1974]. In fized-interval When we run these edge images through our least-
smoothing, the initial and final times 0 and N are fixed, squares fitter or Kalman filter/smoother, we obtain a
and the estimate xiIN is sought, where i varies from 0 to series of 3D curves. The curves corresponding to the
N. In fized-point smoothing, i is fixed and i 11N is sought surface markings and ridges (where the ellipsoid is trun-
as N increases. In fized-lag smoothing, xNf-LIN is sought cated) should be stationary and have 0 radius, while the
as N increases and L is held fixed. curve corresponding to the occluding contour should con-

For surface shape recovery, both fixed-interval and tinuously sweep over the surface.
fixed-lag smoothing are of interest. Fixed-interval We can observe this behavior using a three-
smoothing is appropriate when shape recovery is per- dimensional graphics program we have developed for dis-
formed off-line from a set of predetermined measure- playing the reconstructed geometry. This program al-
ments. The results obtained with fixed-interval smooth- lows us to view a series of reconstructed curves either
ing should be identical to those obtained with a series sequentially (as an animation) or concurrently (overlayed
of batch fits, but at a much lower computational cost. in different colors), and to vary the 3D viewing param-
The fixed-interval smoother requires a small amount of eters either interactively or as a function of the original
overhead beyond the regular Kalman filter in order to camera position for each frame. Figure 4 shows all of
determine the optimal combination between the outputs the 3D curves overlayed in a single image. As we can
of a forward and backward Kalman filter [Gelb, 1974; see, the 3D surface is reconstructed quite well. The left
Bierman, 1977]. hand pair of images shows an oblique and top view of a

For our contour-based shape recovery algorithm, we noise-free data set, using the linear smoother with n = 7
have developed a new fixed-lag smoother, which, while window size. The right-hand pair shows the same al-
sub-optimal, fits in naturally with the batch and Kalman gorithm with oi = 0.1 pixels noise added to the edge
filter approaches developed in the previous two sections. positions.
Our fixed-lag smoother begins by computing a centered To obtain a quantitative measure of the reconstruc-
batch fit to n > 3 frames. The surface point is then pre- tion algorithm performance, we can compute the root
dicted from frame i- I to frame i as with the Kalman fil- median square error between the reconstructed 3D coor-
ter, and a new measuremernt from frame i+ L, L = [n/2J dinates and the true 3D coordinates (which are known
is added to the predicted estimate. The addition of mea- to the synthetic sequence generating program). Table 1
surements ahead of the current estimate is straightfor- shows the reconstruction error and percentage of surface
ward using the projection equations for the least-squared points reconstructed as a function of algorithm choice
(batch) fitting algorithm, and various parameter settings. The table compares the

The batch fitting, Kalman filter, and linear smoothers performance of a regular 3-point fit with a 7-point mov-
all produce a series of surface point estimates, one for ing window (batch) fit, and a linear fixed-lag smoother
each input image. Because our reconstruction takes (labeled Kalman) with n = 7. Results are given for
place in object space, features such as surface marking the noise-free and or = 0.1 pixels case. The different
and sharp ridges are stationary in 3D (and have r = 0). columns show how by being more selective about which
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Figure 3: Four images from synthetic truncated ellipsoid sequence. The top and left hand side are truncated (cut
off), while the front and back sides are inscribed with an ellipse (surface marking).

a n

S. S- '__.

Figure 4: Oblique and top view of reconstructed 3D surface (all 3D curves are superimposed). The left pair shows
only the reconstructed profile curves, while the right pair shows the profiles linked by the epipolar curves (only a
portion of the complete meshed surface is shown for clarity). A total of 72 images spaced 50 apart were used.

[ algorithm I n F I n_3 [ n!>7 [ n!>7^o.<0.5 I

XKalman 7 0.0 .0074 (779)" .0046 45%) .0044 38%"
Kalman 7 0.1 .0114 (74%) .0054 (417) .0051 36%)
batch 7 0.0 .0042(79%) .0036 56 5 .0035(43%1

I batch 7 1 0.1 1 .0074 77%) .0054 (53%) 1 .0051 (42%)
_tch 3 0.010o8 .0 77% Ibatch 3 0.1 .0159 (75-7b)

Table 1: Root median square error and percentage of edges reconstructed for different algorithms, window sizes (n),
input image noise ai, and criteria for valid estimates (nj: minimum number of frames in fit, o2: covariance in local
z estimate). These errors are for an ellipse whose major axes are (0.67,0.4, 0.8) and for a 128 x 120 image.
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Figure 5: Sample real image sequences used for experiments: (a) dodecahedron (b) diet coke (c) coffee (d) tea.
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3D estimates are considered valid (either by requiring [Arborgast and Mohr, 19921 E. Arborgast and R. Mohr.
more frames to have been successfully fit, or lowering An egomotion algorithm based on the tracking of at-
the threshold on maximum covariance), a more reliable bitrary curves. In Second European Conference on
estimate can be obtained at the expense of fewer recov- Computer Vision (ECCV'92), pages 467-475, Santa
ered points. Margherita Liguere, Italy, May 1992. Springer-Verlag.

We have also applied our algorithm to the four real ir- [Arnold, 1983] R. D. Arnold. Automated stereo percep-
age sequences shown in Figure 5. These sequences were tion. Technical Report AIM-351, Artificial Intelligence
obtained by placing an object on a rotating mechanized Laboratory, Stanford University, March 1983.
turntable whose edge has a Gray code strip used for read-
ing back the rotation angle [Szeliski, 1991]. The camera [Baker and Bolles, 1989] H. H. Baker and R. C. Bolles.
motion parameters for these sequences were obtained by Generalizing epipolar-plane image analysis on the spa-
first calibrating the camera intrinsic parameters and ex- tiotemporal surface. International Journal of Com-
trinsic parameters to the turntable'top center, and then puter Vision, 3(1):33-49, 1989.
using the computed turntable rotation. [Baker, 1989] H. H. Baker. Building surfaces of evo-

Figure 6 shows two views of each set of reconstructed lution: The weaving wall. Internatior'd Journal of
3D curves. We can see that the overall shape of the Computer Vision, 3(l):50-71, 1989.
objects has been reconstructed quite well. We show only
the profile curves, since the epipolar curves would make [Bierman, 1977] G. J. Bierman. Factorization Methods
the line drawing too dense for viewing at this resolution. for Discrete Sequential Estimation. Academic Press,

New York, New York, 1977.
9 Discussion and Conclusion [Blake and Cipolla, 1990] A. Blake and R. Cipolla. Ro-

This paper extends previous work on both the recon- bust estinmation of surface curvature from deformation
struction of smooth surfaces from profiles and on the of apparent contours. In First European Conference
epipolar analysis on spatiotemporal surfaces. The ulti- on Computer Vision (ECCV'90), pages 465-474, An-
mate goal of our work is the construction a complete de- tibes, France, April 23-27 1990. Springer-Verlag.
tailed geometric and topological model of a surface from [Bolles et al., 1987] R. C. Bolles, H. H. Baker, and D. H.
a sequence of views. Towards this end, our observations Marimont. Epipolar-plane image analysis: An ap-
are connected by tracking edges over time as well as link- proach to determining structure from motion. Inter-
ing neighboring edges into contours. The information national Journal of Computer Vision, 1:7-55, 1987.
represented at each point includes the position, surface
normal, and curvatures (currently only in the viewing di- [Canny, 1986] J. Canny. A computational approach to
rection). In addition, error estimates are also computed edge detection. IEEE Transactions on Pattern Anal-
for these quantities. Since the sensed data does not pro- ysis and Machine Intelligence, PAMI-8(6):679-698,
vide a complete picture of the surface, e.g., there can November 1986.
be self-occlusion or parts may be missed due to coarse [Cipolla and Blake, 1990] R. Cipolla and A. Blake. The
sampling, it is necessary to build partial models. In the dynamic analysis of apparent contours. In Third Inter-
context of active sensing and real-time reactive systems, national Conference on Computer Vision (ICCV'90),
the reconstruction needs to be incremental as well. pages 616-623, Osaka, Japan, December 1990. IEEE

Because our equations for the reconstruction algo- Computer Society Press.
rithm are linear with respect to the measurements, it
is possible to apply statistical linear smoothing tech- [Cipolla and Blake, 1992] R. Cipolla and A. Blake. Sur-
niques, as we have demonstrated. This satisfies the re- face shape from the deformation of apparent contours.
quirement for incremental modeling, and provides the International Journal of Computer Vision, 9(2):83-
error estimates which are needed for integration with 112, November 1992.
other sensory data, both visual and tactile. The appli- [Clark and Yuille, 1990] J. J. Clark and A. L. Yuille.
cation of statistical methods has the advantage of provid- Data Fusion for Sensory Information Processing Sys-
ing a sound theoretical basis for sensor integration and tems. Kluwer Academic Publishers, Boston, Mas-
for the reconstruction process in general [Szeliski, 1989; sachusetts, 1990.
Clark and Yuille, 1990.

In future work, we intend to develop a more complete [Curwen et al., 1992] R. Curwen, A. Blake, and A. Zis-
and detailed surface model by combining our technique serman. Real-time visual tracking for surveillance and
with regularization-based curve and surface models. We path planning. In Second European Conference on
also plan to investigate the integration of our edge-based Computer Vision (ECCV'92), pages 879-883, Santa
multiframe reconstruction technique with other visual Margherita Liguere, Italy, May 1992. Springer-Verlag.
and tactile techniques for shape recovery. [Freeman and Adelson, 1991] W. T. Freeman and E. H.

Adelson. The design and use of steerable filters. IEEE
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Integrating Multiple Range Images Using Triangulation*
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Abstract spherical coordinates, for example) are very restricted,
so that only compact (star-shaped) objects can be repre-We address the problem of constructing an Integrated Sur- sented. Integration can also be done at a high level, after

face description of an existing object from multiple range im- description of each view has been obtained [Parvin and
ages. The two main problems that need to be solved in such a Medioni 19911. The disadvantage of performing high
task are integration and description. We propose to use sur- level integration is that accuracy may be sacrificed since
face triangulation as our representation for object descrip-
tion and data integration, since we believe that intermediate we lose information when we go to a higher level. In ad-
level representations, such as planar surface patches, are dition, building descriptions from each individual view
very flexible for shape description and their construction is is more difficult than if complete data were available,
local. We start from an triangulated shell and project the shell since single views are inherently ambiguous due to self-
onto the range data points. An integrated approximation er- occlusion and noise.
ror measure is introduced to effectively evaluate triangle ap- Therefore we believe that integration should be
proximation error in the context of data integration. An performed at a relative low level with a flexible repre-
iterative subdivision process is then applied to improve the sentalion. We have found approximation by triangles
approximation error of the triangulation to the desired preci- (e will cl tae t riagu ation o y triangl-
Sion. Test results on real range data are shown. (we will call it surface triangulation, or simply triangu-lation hereafter) to be a good candidate for such tasks,

because it is a relatively low level representation and its
1 Introduction construction is local. A triangulated surface model can

Our goal is to construct an integrated surface de- represent a variety of solid objects, and theoretically to
scription of an existing object from multiple unregis- any kind of resolution. We certainly understand the lim-
tered range images. The two main problems that need to itations of a triangulated representation. It is not ideal
be solved in such a task are integration and description. for high level vision tasks, such as recognition, because,
Most of the previous research deals with the issues in first, the representation is still at low level, second, it is
description, that is, the choice of representation, how to sensitive to many parameters, and therefore unstable.
achieve it, etc. Less work has been done on sensor data However, we think that it is a good intermediate repre-
integration. It is our belief that these problems should be sentation for integration and for building high level de-
dealt with together, since how we perform data integra- scription through surface interpolation from triangula-
tion directly affects our choice of representation tion [Peters 19901.
schemes, and thus the capability of the representation in In this paper we present a new approach to object
describing objects. description using multiple range images by triangula-

Data integration can be achieved at the pixel level tion, with emphasis on integration. We start with a trian-
relatively easily, once we have all the range image gulated shell and map it onto the object surface. The tri-
views registered [Chen and Medioni 1992]. But the rep- angular approximation is refined by a triangle subdivi-
resentations that can be used (an image parameterized in sion process. In the rest of this paper, we first review

some previous research on object description using tri-
angulation (section 2). Then we introduce the mapping

* This research was supported by the Advanced Research Projects by projection method (section 3), followed by approxi-
Agency of the Department of Defense and was monitored by the Air mation error estimation scheme (section 4). We presentForce Office of Scientific Research under Contract No. F49620-90- some test results on real data in section 6 and discuss the
C-0078. The United States Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding some future extensions to our system in section 7.
any copyright notation hereon.
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2 Triangulated Representation and achieve such a mapping without solving large dynamic
Triangulated Shell systems.
In previous work, researchers have addressed the 3 Mapping the Triangulated Shell by

problem of achieving triangular approximations of sin- Projection
gle view range images ([De Floriani and Puppo H r esen
1988],[Schmitt and Chen 19911). The main idea is to Here we present a new method formapping the tri-
extend some existing 2-D triangulation techniques to angulated shell to the object surface. In this method, a
find 3-D triangulations that approximate arbitrary 3-D triangulated shell is first initialized around the object
surfaces. Then the triangles are mapped onto the object surface

Busch [Busch 1989] builds a triangulated surface by projecting them in the radial direction from the cen-
of an entire object from its voxel representation by an ter of the projection. The projection is obtained by comn-adaptive, locally controlled growing process, which is puting the intersections of the lines of projection and the
mainly heuristically driven, object surface represented by the range images. V& first

Soucy and Laurendeau [Soucy and Laurendeau present the details of the method and then discuss the
1992] use triangulation to describe objects from multi- advantages and disadvantages of the method.
pie range images. In their approach, the registered range 3.1 Input Data
image views are first triangulated and then integrated to Our input is a set of range image views of an object
form the so-called canonical views. Then the canonical acquired with a liquid-crystal range finder [Sato and In-
views are further triangulated and the results merged by okuchi 1987]. In a previous paper[Chen and Medioni
deleting overlaps and closing gaps. Their approach re- 1992], we have presented a method to register range im-
quires that the range image views be segmented along ages of an object, which can find registration transfor-
depth discontinuities before being triangulated. mation between range images of the same object from

Building a triangulation of an object can also be different views. We then register the acquired views and
considered as mapping of a triangulated mesh onto the record the global transformation information for each
surface of the object, so that the triangles locally ap- view. Although registered, the individual views might
proximate the surface. Instead of building pieces of the rnot align exactly everywhere, partly reflecting some de-
triangulation and then putting them together, we can fects present in the raw data and partly due to mis-reg-
tanlsostartwith a closed surface thesoelather wih an istration caused by noise and other defects. Vv assumealso start with a closed surface tessellated with trian- that the range data is dense enough for evaluating sur-
gles, or any suitable primitive surface patches in gener- face properties such as surface normals using neighbor-
al, and map it onto (or deform it so as to match) the sur- hood fitting.
face. This way we can avoid much of the heuristic ap- 3o2dInitiing a
proach in dealing with growing the triangulation or 3.2 Initializing and Projecting the Triangulated
merging the pieces of triangulation. The adaptive shell Shell
proposed by Vasilescu and Terzopoulos [Vasilescu and Our goal is to map a triangulated shell onto the sur-
Terzopoulos 1992] and the deformable surface by face of an object. We start with an icosahedron and di-
Delingette et al. [Delingette et al. 1991] are two exam- vide each of its triangular faces into N x N sub-triangles
pies of such an approach. [Delingette et al. 1991] (Figure 1. (a)), where N is the

There are two issues we need to consider in such a order of initial subdivision. The triangulated shell is
mapping. The first is the capability of the mapping in then re-initialized into an ellipsoidal shell of approxi-
handling objects with complex shape (e.g., non-star- mately the size of the object (Figure 1. (b)), based on the
shaped objects). The second is the computational com- distribution information of the sample points from the
plexity and convergence. The two aforementioned range images. This helps in finding the intersections be-
methods all use a dynamic shape model which incorpo- tween the line of projection and the object surface, as
rates internal surface forces and external data forces. In explained later.
principle, these methods are able to describe complex The triangulated ellipsoidal shell is projected onto
objects. The difficulty lies in defining a good external the object surface by projecting the vertices, from the
energy function that can be both easy to compute and center of the projection (see later in this section for the
accurate in reflecting the fit of the shape model to the selection of the center). To find the projection for a ver-
data. There are also problems in selecting an initial sur- tex, a ray (the line of projection) is constructed from the
face and in dealing with local minima. The computa- center of the projection through the initial position of
tional cost is also very high for such dynamic systems. the vertex and the intersection between the ray and the
In addition, their approach does not address the problem surface is computed using an iterative algorithm [Chen
of integration, which is one of our goals. We also try to and Medioni 19921. This line-surface intersection algo-

rithm works directly with range images without an ana-
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shell is ideal for initializing the vertices close to the ob-
ject surface, while (a) requires that a center of projection
be selected. The requirements for such a point are that it
lies inside of the object, and there is as much as possible
surface areas visible from this point. We discuss the im-
plications of these requirements further in section 7.
3.3 Multiple Intersections

Since the input data is in the form of multiple range
"images from many view points, there are overlaps in the
surface areas that each range image covers. This results
in multiple projection points on the range images when
a vertex is projected using the method described above.
Assuming that there is only one intersection between
"the projection ray and the object surface, we need to

(a) An icosahedron with each (b) An initialized ellipsoid combine the set of intersections computed from range
ofitsfaces subdivided into 25 (with sample data super- images of different views into one. Simple averaging of
sub-triangles (N=5) imposed) all the points is one solution, but it does not work well

as it assume the noise distribution to be Gaussian. This
Figure 1. Initializing the ellipsoidal shell is clearly not the case when two surface are slightly out

of registration. We have adopted a weighted average
method that takes into account the reliability of the in-
put data. This is because range data from the surface ar-
eas facing the sensor are much less noisy and thus more
reliable than data from areas with large incidence angles
with respect to the sensor. Letp, E R3, i=1 ... m be the in-

tersection points of the line of projection with range im-
age view V., and ni and s the surface normal at P, and

the sensor direction for range image V1, respectively.

The weighted average p of the intersection points p, is

defined by

• (ni"* $i)P

Figure 2. Result of projecting the ellipsoidal shell p = n()
onto the surface of an object. Shown with the n
wire frames are sample surface points from the J'n * si
range image views of the object. i

where a . b stands for the inner product of two vectors
lytical representation of the surface. At each iteration, a and b. In our experiments, the surface normal vectors
the object surface near the prospective intersection are obtained from the range images by using a neighbor-
point is approximated linearly using its tangent plane, hood surface fitting technique.
which intersects the line in consideration. This intersec-
tion converges to the intersection of the surface with the 4 Approximation via Triangle Subdivision
line. The starting point for such an iterative algorithm When the triangulated shell is projected onto the
must be relatively close to the intersection point, which object surface, each triangle may or may not approxi-
also means close to the surface. In our case the starting mate the covered surface well. In this section, we dis-
point is chosen to be initial position of the vertex itself, cuss how to evaluate the approximate error of the trian-
Thus an initial triangulated shell approximating the ob- gles, especially in the context of data integration, and
ject surface is desirable. An example of the projection is how to improve the approximation error by subdividing
shown in Figure 2.. the triangles.

In summary, what are essential in the projection are The first problem is to define the data points that
(a) the direction of the projection (in this case the radial need to be considered in evaluating the approximation
direction), and (b) an initial point on the line of projec- error for a triangle T. Naturally we do not need to con-
tion. As we have mentioned early, the initial ellipsoidal sider those range images on which none of the triangle
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truly reflect the status of the approximation in such sit-
uations. Therefore we have adopted a statistical ap-

Approximating triangle T proach which allows us to eliminate the bad data points
and bad range image views for each approximating tri-

* angle.
Let b. be the projected 2-D triangle of T for range

image view V1. i=1l... m, where m is the total number of
% range images that have at least one vertex of Tprojected

View 2 on them. Let Q,= {q) be the set of 3D points in V.cov-

ered by Tr, and e.. be the signed Euclidean distance of

"""Y. qs to the plane containing T. We can compute the mean

and standard deviation of e..:

Projected 2-D triangles i n 0i =q 1  iQ (2)

Figure 3. A 3-D triangle projected into range image where n.=IIQI is the cardinality of the set Q,. Then we
parameter space. adopt a majority vote scheme to effectively eliminate

the bad views from being considered in the final approx-vertices have projections. For the range images on imation error estimation for that triangle. That is, we
which at least one of the vertices has projections, we compute a subset G g (Q,, i= I... m), such that the abso-
project (not to be confused with the projection men-
tioned early) the triangle T into the range image param- lute value of the difference of the mean approximation
eter space to obtain a 2-D triangle T', as though the tri- error e, between any pair in G is below certain thresh-
angle had been in the place when range images were old:
taken (see Figure 3.). G = {Qi I VQkr G.Iij-iý < El (3)

In the simplest case of a Cartesian range image, and that the cardinality of G is at least half of the origi-
where the depth value z is indexed by the x and y coor- nal set:
dinates as z=-J(xy), 7" is simply the orthographic projec- G4)
tion of T. In general, however, the projection Tr of T in- 11 G 11 2t 0.5 1 Q 1(4)
volves a perspective transformation from 3-D world co- The value of e can be set based on the range image
ordinates into sensor coordinate. Such a transformation resolution and the statistics of the registration errors
is usually available from system calibration of the range from the registration process [Chen and Medioni 19921.
finder[Sato and Inokuchi 1987]. Once the projected 2-D Once G is selected, we recompute the mean and stan-
triangle for each view is obtained, all surface points in dard deviation of the approximation error for all the
that view that fall insid of the 2-D triangle will be con- points in G for triangle T. Let the results be e and ; re-
sidered in evaluating twe approximation error. We call spectively. In the case when G is an empty set, or G is a
those 3-D points the covered points of triangle T. minority group, then we simply select the Q, that has the

The second problem in the approximation error least absolute 7.:
evaluation is to define a measure for the approximation
error. In triangulating single view range images
[Schmitt and Chen 1991] (or the reparameterized, com- = {Q1 I I = minQ, {Q1 } (IQI) } (5)
bined range images as in [Soucy and Laurendeau
1992]), we could just use the maximum Euclidean dis- The overall approximation measure is defined as
tance of the covered points to the plane containing the E = i + sign(e-)cu (6)
triangle in consideration. But this will not work when
there are multiple views. The reason is that although the where signs returns I or- depending on whether its ar-range image views are well registered in general [Chen gument is larger or smaller than 0. ac is a constant that
and Medioni 19921, some views might deviate from the reflects the noise present in the data. The approximation
rest. There can also be regions that contains contaminat- measure E in equation above is used to simulate the
ed data. A simple maximum distance measure does not
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I.

(a) A free-style wood blob (the "wood")

.. ...... I

(C)

Figure 4. Triangles are subdivided in groups with
the same type of approximation errors. The
dashed lines define the new triangles.

found a-=2 to be a good choice, which can eliminate
most of the outliers in the data.

(b) A plaster model tooth (the "tooth")
5 Triangle Subdivision and Reprojection

Once the approximation error for a projected trian- Figure 5. Intensity images of the test objects.
gle is evaluated, those triangles whose approximation
error E does not meet the predefined approximation surface normals of the object at that location, which can
threshold must be subdivided and remapped. Our subdi- be approximated by the average normal vector of the
vision algorithm tries to subdivide triangles without al- surrounding triangles of the vertex, weighted by the ar-
tering the neighborhood adjacency property of the trian- eas of those triangles. The difference between this pro-
gulation, i.e., each triangle must have 3 neighbors that jection and the initial projection is the direction in
share an edge with it. This regularity makes it easy for which the projection is done.
higher order surface reconstruction in the future. For This division-and-projection process continues un-
this reason, we group triangles with the same type of ap- til all the triangles have an approximation error within
proximation error (i.e., triangles with i of the same sign the desired threshold.
and their Iel exceeding a certain given threshold) into
connected components. Here, two triangles are connect- 6 Experimental Results
ed when they share an edge. The subdivision method is Now we show some test results of the triangle sub-
illustrated in Figure 4., categorized by the size of the division and approximation. Figure 5. shows two ob-
connected components. jects ("wood" and "tooth") in intensity images, which

The rule here is that, except for the components that are approximately 8 and 10cm high respectively.
contain only one triangle, triangles with one neighbor- Range images are acquired for each object from 16
ing triangle in the connected component will be divided different viewpoints and then registered. Figure 6.
into two, those with two neighbors three, and those with shows four views of the range images of "free" used in
three neighbors four. To improve the fit of the triangles the test. Figure 7. shows wire frames of the triangle sub-
to the object surface, the newly created triangles must division process. Figure 7. (a) shows the triangulated
be remapped onto the object surface. This is done by shell projected onto the object surface. Figure 7. (b)
projecting the triangle vertices in the direction of the shows the shell after one subdivision iteration with ap-
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(a) Before subdivision

(a) Range image view 1 (b) Range image view 2

(b) After 1 iteration

(c) Range image view 3

(d) Range image view 4 (c) After 3 iterations

Figure 6. Sample range image views of the
object "wood" used for model construction, Figure 7. Iterative triangle subdivision
shown here as shaded images.

proximation error threshold set to 2mm (see Section 5 range images have a resolution of about I to 2mm with
and equation (6)). Figure 7. (c) is the final result after a comparable registration error.
three iterations with all triangles having approximation
errors under 2mm. As can be seen, most of the subdivi- 7 Working with Complex Objects

sions take place around the ridge line in the lower part As mentioned in section 5, in projecting the initial
of the object. Figure 8. and Figure 9. show some ren- triangulated shell, we need to select a projection center,
dered intensity images of the "wood" and the "tooth" which must be inside of the object. This is because, if
using the derived triangulation models from various the center is outside of the object, the projected triangles
view points. In both cases, the initial icosahedrons are will not always be able to maintain their proper relation-
subdivided with N=5 and the center of the fitting ellip- ship among them and surface self intersection may oc-
soidal shells are used as the center of the projection. Our curs, as shown in Figure 10. (a). Another important is-
test programs are written in Lisp. On a Sun SparcStation sue is that when the object is non-star shaped, we will
2, with Sun Common Lisp, the test on the "wood" com- have multiple intersections when performing the pro-
pleted in 3 minutes and 18 seconds, resulting a total of jection, regardless of where we put the projection cen-
649 triangles, while the "tooth" took 3 minutes and 34 ter, as shown in Figure 10. (b). There are two possible
seconds yielding 872 triangles. Note that the original ways to deal with such situations. The first is to choose

the inner most (closet to the center of projection) inter-
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Figure 8. Two rendered views of the constructed
• triangulation of the object "wood"

sections (Figure 10. (b)) and the second is to choose the
outer most intersections (figureFigure 10. (c)). In both
cases, the problems whizh remain are how to identify
triangles that cut through the object and how to properly
group them together and find a local projection center
for subdivided triangles derived from them.

8 Conclusion
We have presented a new method for constructing

an integrated surface description from multiple range Figure 9. Three rendered views of the constructed
images based on surface triangulation. Our system com- triangulation of the object "tooth"
bines the surface description and data integration
through an effective evaluation for triangle approxima-
tion error using an integrated error measure. Projecting
a triangulated shell onto the surface of the object has References
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Abstract further, integration of the only remaining mechan-
ical action of camera panning with focusing and

This paper is concerned with active sensing of range range estimation. Thus, imaging geometry and op-
information from focus. It describes a new type of tics are exploited to replace explicit sequential com-
camera whose image plane is not perpendicular to putation. Since the camera implements a range
the optical axis as is standard. This special imaging from focus approach, the resulting estimates have
geometry eliminates the usual focusing need of ii- the following characteristics as is true for any such
age plane movement. Camera movement, which is approach [3, 5]. The scene surfaces of interest must
anyway necessary to process large visual fields, in- have texture so image sharpness can be measured.
tegrates panning, focusing, and range estimation. The confidence of the estimates improves with the
Thus the two standard mechanical actions of fo- amount of surface texture present. Further, the
cusing and panning are replaced by panning alone, reliability of estimates is inherently a function of
Range estimation is done at the speed of panning. the range to be estimated. However, range esti-
An implementation of the proposed camera design mation using the proposed approach is much faster
is described and experiments with range estimation than any traditional range from focus approach,
are reported. thus eliminating one of the major drawbacks.

The next section describes in detail the pertinence
1 INTRODUCTION of range estimation from focus, and some prob-

lems that characterize previous range from focus
This paper is concerned with active sensing of range approaches and serve as the motivation for the work
information from focus. It describes a new type of reported in this paper. Then, Section 3 presents
camera which integrates the processes of image ac- the new, proposed imaging geometry whose center-
quisition and range estimation. The camera can be piece is a tilting of the image plane from the stan-
viewed as a computational sensor which can per- dard frontoparallel orientation. It shows how the
form high speed range estimation over large scenes. design achieves the results of search over focus with
Typically, the field of view of a camera is much high computational efficiency. Section 4 presents a
smaller than the entire visual field of interest. Con- range from focus algorithm that uses the proposed
sequently, the camera must pan to sequentially ac- camera. Section 5 describes the results of experi-
quire images of the visual field, a part at a time, and ments demonstrating the feasibility of our method.
for each part compute range estimates by acquiring Section 6 presents concluding remarks.
and searching images over many image plane loca-
tions. Using the proposed approach, range can be 2 BACKGROUND&
computed at the speed of panning the camera.
At the heart of the proposed design is active control MOTIVATION
of imaging geometry to eliminate the standard me- 2.1 Range Estimation From Focus
chanical adjustment of image plane location, and and Its Utility

*The support of the National Science Foundation and Focus based methods obtain a depth estimate of a
Defence Advanced Research Projects Agency under grant scene point by varying the focal-length (f) and/or
IRI-89-02728 and U.S. Army Advance Construction Tech- the focus distance (v). Without loss of general-
nology Center under grant DAAL 03-87-K-0006 is gratefully ity, we will always assume that the parameter be-
acknowledged. ing controlled is v. This means that the v value
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is changed by mechanically relocating the image SF cone. The vertex angle of the cone represents
plane. When the scene point appears in sharp the magnification or scaling achieved and is propor-
focus, the corresponding u and tv values satisfy tional to the f value. Figure 1(b) shows a frustum
the standard lens law: I + I = 1. The depth of the cone.
value u for the scene point can then be calcu- Only those points of the scene within the SF cone
lated by knowing the values of the focal length are ever imaged sharply. To increase the size of
and the focus distance [14, 2, 6]. To determine the imaged scene, the f value used must be in-
when a scene is imaged in sharp focus, several aut- creased. Since in practice there is a limit on the
ofocus methods have been proposed in the past. usable range of f value, it is not possible to image
[7, 16, 17, 8, 12, 15, 10, 9, 2, 13]. the entire scene in one viewing. The camera must
Like any other visual cue, range estimation from be panned to repeatedly image different parts of
focus is reliable under some conditions and not so the scene. If the solid angle of the cone is w, then
in some other conditions. Therefore, to use the cue to image an entire hemisphere one must clearly use
appropriately, its shortcomings and strengths must at least • viewing directions. This is a crude lower
be recognized and the estimation process should be bound since it does not take into account the con-
suitably integrated with other processes using dif- straints imposed by the packing and tessellability of
ferent cues, so as to achieve superior estimates un- the hemisphere surface by the shape of the camera
der broader conditions of interest [1, 11, 4]. When visual field.
accurate depth information is not needed, e.g., for If specialized hardware which can quickly identify
obstacle avoidance during navigation, range esti- focused regions in the image is used, then the time
mates from focus or some other cue alone may suf- required to obtain the depth estimates is bounded
fice, even though it may be less accurate than that by that required to make all pan angle changes and
obtained by an integrated analysis of multiple cues. to process the data acquired for each pan angle.

The goal of the approach proposed in this paper
2.2 Motivation for Proposed Approach is to select the appropriate v value for each scene
The usual range from focus algorithms involve two point without conducting a dedicated mechanical
mechanical actions, those of panning and for each search over all v values. The next section describes
chosen pan angle finding the best v value. These how this is accomplished by slightly changing the
steps make the algorithms slow. The purpose of thie camera geometry and exploiting this in conjunc-
first step is to acquire data over the entire visual tion with the pan motion to accomplish the same
field since cameras typically have narrower field of result as traditionally provided by the two mechan-
view. This step is therefore essential to construct ical motions.
a range map of the entire scene. The proposed ap-
proach is motivated primarily by the desire to elimi- 3 A NON-FRONTAL IMAGING
inate the second step involving mechanical control.
Consider the set of scene points that will be iri- CAMERA
aged with sharp focus for some constant value of The following observations underlie the proposed
focal length and focus distance. Let us call this approach. In a normal camera, all points on the
set of points the SF surface'. For the conventional image plane lie at a fixed distance (v) from the
case where the image is formed on a plane perpen- lens. So all scene points are always imaged with a
dicular to the optical axis, and assuming that the fixed value of v, regardless of where on the image
lens has no optical aberrations, this SF surface will plane they are imaged, i.e., regardless of the cam-
be a surface that is approximately planar and nor- era pan angle. If we instead have an image surface
mal to the optical axis. The size of SF surface will such that the different image surface points are at
be a scaled version of the size of the image plane, different distances from the lens, then depending
while its shape will be the same as that of the ira- upon where on the imaging surface the image of a
age plane. Figure 1(a) shows the SF surface for a scene point is formed (i.e., depending on the pan
rectangular image plane. angle), the imaging parameter v will assume dif-
As the image plane distance from the lens, v, is ferent values. This means that by controlling only
changed, the SF surface moves away, or toward the the pan angle, we could achieve both goals of the
camera. As the entire range of v values is traversed, traditional mechanical movements, namely, that of
the SF surface sweeps out a cone shaped volumie changing v values as well as that of scanning the
in three-dimensional space, henceforth called the visual field, in an integrated way.

'Actually, the depth-of-field effect will cause the SF sur- In the rest of this paper, we will consider the sim-
face to be a 3-D volume. We ignore this for the moment, as plest case of a nonstandard image surface, namely
the arguments being made hold irrespective of whether we a plane which has been tilted relative to the stan-
have a SF surface, or a SF volume. dard frontoparallel orientation. Consider the tilted
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image plane geometry shown in Figure 2. For dif-
ferent, angles 0, the distance from the lens center
to the image plane is different. Consider a point
object at an angle 0. The following relation follows
from the geometry:

dcosoa

I OC I cos(0 - a)

Since for a tilted image plane, v varies linearly with
position, it follows from the lens law that the corre-
sponding SF surface is a plane whose u value mir-
rors the v variation. The SF surface is shown in
Figure 3(a). The volume swept by the SF surface
as the camera is rotated is shown in Figure 3(b).
If the camera turns about the lens center 0 by an
angle 0, then the object will now appear at an angle

bits" Mittsofft0+0. The new image distance (for the point object)
Typi=.any w S aprffiilk will now be given by the following equation.

i in thin pllowý f.,am 14- d cosaIn lli u by the I z Pit I. ]0C J=

cos(4, + 0 - a)

As the angle o changes, the image distance also
(a) SF surface changes. At some particular angle, the image will

appear perfectly focused and as the angle keeps
changing, the image will again go out of focus. By
identifying the angle o at which any surface ap-

s.wu si d•m.a,•.sai. - pears in sharp focus, we can calculate the image
f ~I jdistance, and then from the lens law, the object

surface distance.
Lo • As the camera rotates about the lens center, new

parts of the scene enter the image at the left edge2

and some previously imaged parts are discarded at
the right edge. The entire scene can be imaged and

hi ranged by completely rotating the camera once.

S .4 RANGE ESTIMATION
ALGORITHM

Chow M. iffil-Let the image plane have N x N pixels and let the
range map be a large array of size N x sN, where
s >= 1 is a number that depends on how wide a
scene is to be imaged. The kth image frame is rep-
resented by I1. and the cumulative, environment

(b) SF cone centered range map with origin at the camera cen-
ter is represented by R. Every element in the range
array is a structure that contains the focus criterion

Figure 1: (a) Sharp Focus object. surface for he staii- values for different image indices, i.e., for different
dard planar imaging surface orthogonal to the optical pan angles. When the stored criterion value shows
axis. Object points that lie on the SF surface art ini- a nmaxinmm, theni the index corresponding to the
aged with the least blur. The location of the SF surface maximuinm can he used to determine the range for
is a function of the camera parameters. (h) A frustum i that. scene point.
of the cone swept by the SF surface as the value of v is 2Or the right edge. depending upon the direction of the
changed. Only those points that lie inside the SF colne rot ation
can be imaged sharply, and therefore, range-from-focus "Knowing the index value, we can find out the amount
algorithms can only calculate the range of thes, points, of camera rotation that was needed before the scene point

was sharply focused. Using the row and column indices for
I he range point. and the image index, we can then find out
Ihe exact distance from the lens to the image plane (tv). We
can t h.n ise tfie lens law to calculate the range.
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Figure 2: Tilted Image Surface. A point object, ini-
tially at an angle of 0, is imaged at point C. The focus
distance OC varies as a function of 0. When the cam- (a) SF surface
era undergoes a pan motion, 0 changes and so does the
focus distance.

3D efrm - swap ib do

Let the camera start from one side of the scene and SF,,mam *-onm

pan to the other side. Figures 4(a) and 4(b) illus-
trate the geometrical relationships between succes-
sive pan angles, pixels of the images obtained, and
the range array elements. •, Fo tM fo0

4.1 Algorithm

Let j = 0. 0 = 0. Initialize all the arrays and then
execute the following steps.

"* Capture the jth image Ij.
"* Pass the image through a focus criterion filter to

yield an array C, of criterion values. Law.

"* For the angle 0 (which is the angle that the cam-
era has turned from its starting position), cal- (b) SF cone
culate the offset into the range map required
to align image Ij with the previous images.
For example, Pixel Ij[50][75] might correspond Figure 3: (a) The SF surface for the proposed camera
to the same object as pixels Ij+1[50][1251 and with a tilted image plane. The SF surface is not parallel
Ij+215 0 ][17 51. to the lens and the optical axis is not perpendicular

"* Check to see if the criterion function for any to the SF surface. (b) The 3D volume swept by the
scene point has crossed the maximum. If so, proposed SF surface as the non-frontal imaging camera
compute the range for that scene point using the is rotated. For the same rotation, a frontal imaging
pan angle (and hence v value) for the image with camera would sweep out an SF cone having a smaller
maximum criterion value, depth.

" Rotate the camera by a small amount. Update
4 and j.

" Repeat the above steps until the entire scene is
imaged.
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5 EXPERIMENTAL RESULTS
In these experiments, we attempt to determine the
range of scene points. The scene in experiment
I consists of, from left to right, a planar surface
(range = 73 in), part of the background curtain
(range = 132 in), a planar surface (range = 54in)
and a planar surface (range = 38 in). The scene in
"experiment 2 consists of, from left to right, a planar

objec.. surface (range = 70 in), a planar surface (range =
50 in), and a face of a box (at a depth of 35 in).
The camera is turned in small steps of 50 units (of
the stepper motor), that corresponds to a shift of

i .... "15 pixels (in pixel columns) between images. A
Object. .scene point will thus be present in a maximum of

thirty four4 images. In each image, for the same
ran" map ktra" scene point, the effective distance from the image

'fj1 plane to lens is different. There is a 1-to-I relation-
ship between the image column number and the
distance from lens to image, and therefore, by the
lens law, a 1-to-i relationship between the image

(a) column number and the range of the scene point.
The column number at which a scene point is im-

S112111 F cfi aged with greatest sharpness, is therefore also a
ormm- 39q- A-•,,,• measure of the range.

Results Among the focus criterion functions that

were tried, the Tennegrad function [17] seemed to
have the best performance/speed characteristics.
In addition to problems like depth of field, lack
of detail, selection of window size etc., that are
present in most range-from-focus algorithms, the
range map has two problems as described below.U Consider a scene point, A, that is imaged on

pixels, 11[230][4701, 12[230][455], 13[230][440]...
Consider also a neighboring scene point B, thatU is imaged on pixels 11[230][471], 12[230][456],
13[230][4411 ... The focus criterion values for
point A will peak at a column number that isU 470 - n x 15 (where 0 < n). If point B is also

TWamy .oc. a at the same range as A, then the focus criterion
1. Tara d tI. "Wtg"o". values for point B will peak at a column number

W-•"_w- that is 471 - n x 15, for the same n as that for
,. upmdo - I acao- point A. The peak column number for point A
alr .-,o will therefore be 1 less than that of point B. If we

have a patch of points that are all at the same
distance from the camera, then the peak column
numbers obtained will be numbers that change
by I for neighboring points5 . The resulting range

Ma 1R=VMapuy. m.b. cmm I ft .m .d.we. map therefore shows a local ramping behavior.
fn/fin dm •ausc.kulamd for I~zt m pint 4u vuy

Iwpl•no-0-id: - o As we mentioned before, a scene point is imaged
about 34 times, at different levels of sharpness

(b) (or blur). It is very likely that the least blurred
image would have been obtained for some camera

"4Roughly
Figure 4: (a) Panning camera, environment fixed range 'Neighbours along vertical columns will not have this
array, and the images obtained at successive pan an- problem
gles. Each range array element is associated with mul-
tiple criterion function values which are computed from
different overlapping views. The maximum of the val-
ues in any radial direction is the one finally selected
for the corresponding range array element, to cOmlite
the depth value in that direction. (b) Steps involve'ld in 963
obtaining range from focus.
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Figure 5: Range disparities for experiments I and 2. Parts of the scene for which range values could not be
calculated are shown blank. The further away a surface is from the camera, the smaller is its height in the range
disparity map.
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parameter that corresponds to a value hetween [6] John Ens and Peter Lawrence. A matrix
two input frames. based method for determining depth from fo-

To reduce these problems, we fit a gaussian to the cus. In Proc. IEEE Conf. Computer Vi-
three focus criterion values around the peak to de- sion and Pattern Recognition, pages 600-606,
termine the location of the real maximum. For Maui, Hawaii, June 1991.
brevity, we have not included some sample images [7] Berthold Klaus Paul Horn. Focusing. Tech-
from the experiments. Figure 5 shows two views of nical Report 160, MIT Artificial Intelligence
the range disparity values for experiments I and 2. Lab, Cambridge, Mass., 1968.
Parts of the scene where we cannot determine the [8] R. A. Jarvis. Focus optimisation criteria
range disparity values are shown blank. for computer image processing. Microscope,

24:163-180, 1976.
6 SUMMARY AND [9] E. P. Krotkov. Focusing. Technical Report

CONCLUSIONS MS-CIS-86-22, GRASP Laboratory, Univer-
sity of Pennsylvania, April 1986.

In this paper we have shown that using a camera [10] E. P. Krotkov, J. Summers, and F. Fuma.whose image plane is not perpendicular to thle opti- Computing range with an active camera sys-

cal axis, allows us to determine estimates of range tem. In Eighth International Conference on

values of object points. We showed that the SF Pattern Recognition, pages 1156-1158, Octo-

surface, which appears in sharp focus when imaged ber 1986.

by our non-frontal imaging camera, is an inclined ber 1986.

plane. When the camera's pan angle direction Eli] Eric P. Krotkov. Active Computer Vision

changes, by turning about the lens center, an SF by Cooperative Focus and Stereo. New York:
volume is swept out by the SF surface. The points Springer-Verlag, 1989.
within this volume comprise those for which range [12] G. Ligthart and F. C. A. Groen. A compari-
can be estimated correctly. We have described an son of different autofocus algorithms. In Proc.
algorithm that determines the range of scene points Sixth Intl. Conf. Pattern Recognition, pages
that lie within the SF volume. We point out. some 597-600, Oct. 1982.
of the shortcomings that are unique to our method. [13] Shree K. Nayar and Yasuo Nakagawa. Shape
We have also described the results of some experi- from focus: An effective approach for rough
ments that were conducted to prove the feasibility surfaces. In Proc. IEEE Intl. Conf Robotics
of our method. and Automation, pages 218-225. Cincinnati,

Ohio, May 1990.
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Abstract formation for depth recovery:

This paper studies the problem of obtain- 9 Depth From Focus: We try to determine dis-
ing depth information from focusing and tance to one point by taking many images in
defocusing, which have long been noticed better and better focus. Also called "autofo-
as important sources of depth information cus" or "software focus". Best reported result
for human and machine vision. In depth is 1/200 depth error at about 1 meter distance
from focusing, we try to eliminate the local [Subbarao, 1992].
maxima problem which is the main source * Depth From Defocus: By taking small number
of inaccuracy in focusing; in depth from of images under different lens parameters, we
defocusing, a new computational model is can determine depth at all points in the scene.
proposed to achieve higher accuracy. This is a possible range image sensor, compet-
The major contributions of this paper are: ing with laser range scanner or stereo vision.
(1) In depth from focusing, instead of the Best reported result is 1.3% RMS error in terms
popular Fibonacci search which is often of distance from the camera when the target is
trapped in local maxima, we propose the about 0.9 m away [Ens and Lawrence, 1991].
combination of Fibonacci search and curve
fitting, which leads to an unprecedentedly Both methods have been limited in past by low pre-
accurate result; (2) New model of the blur- cision hardware and imprecise mathematical models.
ring effect which takes the geometric blur- In this paper, we will improve both:
ring as well as the imaging blurring into
consideration, and the calibration of the * Depth From Focus: We propose a stronger
blurring model; (3) In spectrogram-based search algorithm with its implementation on a
depth from defocusing, a maximal resem- high precision camera motor system.
blance estimation method is proposed to * Depth From Defocus: We propose a new esti-
decrease or eliminate the window effect. mation method and a more realistic calibration
This paper reports focus ranging with less model for the blurring effect.
than 1/1000 error and the defocus rang-
ing with less than 1/200 error. With this With this new results, focus is becoming viable as
precision, depth from focus ranging is be- technique for machine vision applications such as
coming competitive with stereo vision for terrain mapping and object recognition.
reconstructing 3D depth information.

2 Depth From Focusing
1 Introduction

Focusing has long been considered as one of major
Obtaining depth information by actively control- depth sources for human and machine vision. In
ling camera parameters is becoming more and more this section, we will concentrate on the precision
important in machine vision, because it is pas- problem of focusing. We will approach high pre-
sive and monocular. Compared with the popular cision from both software and hardware directions,
stereo method for depth recovery, this focus method namely, stronger algorithms and more precise cam-
doesn't have the correspondence problem, therefore era system.
it is a valuable method as an alternative of the stereo Most previous research on depth from focusing con-
method for depth recovery. centrated on developments and evaluations of dif-

There are two distinct scenarios for using focus in- ferent focus measures, such as [Tenenbaum, 1970,
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Krotkov, 1987, Nayar and Nakagawa, 1990, Sub- be within interval [z,zl), otherwise the unimodal
barao et al., 1992]. As described by all these re- assumption will be violated. Therefore, if we can
searchers, an ideal focus measure should be uni- properly choose x1 and z 2, the peak can be found
modal, monotonic, and should reach the maximum optimally. Fibonacci search is the optimal search
only when the image is focused. But the focus mea- under the unimodal assumption.
sure profile has many local maxima due to noises
and/or the side-lobe effect ([Subbarao el al., 1992]) Figure 1 shows the target used for testing the focus
even after magnification compensation ([Willson and measure, and Figure 2 is the focus measure profile
Shafer, 1991]). This essentially requires a more com- of the target.
plicated peak detection method compared with the
Fibonacci search which is optimal under the uni-
modal assumption as in [Beveridge and Schechter,
1970, Krotkov, 1987]. In this paper, we use a rec-
ognized focus measure from the literature, which is
the Tenegrad with zero threshold in [Krotkov, 1987]
or M 2 method in [Subbarao et aL., 19921. Our ma-
jor concern is to discover to what extent the preci-
sion of focus ranging can scale up with more precise Figure 1: Step Edge Image as Target
camera systems and more sophisticated search algo-
rithms. We propose the combination of Fibonacci It is clear from Figure 2 that Fibonacci search will
search and curve fitting to detect the peak of focus fail to detect the peak precisely because of the jagged
measure profile precisely and quickly. profile. Fortunately, those local maxima are small in

To evaluate the results from peak detections, an er- size, and therefore can be regarded as disturbances.
ror analysis method is presented to analyze the un- From previous paragraphs, we know that the Fi-
certainty of the peak detection in the motor count bonacci search only evaluates at two points within
space, and to convert the uncertainty in the motor the interval, which gives rise to the hope that when
count space into uncertainty of depth. We compute the interval is large, Fibonacci search is still appli-
the variance of motor positions resulted from peak cable because it will overlook those small ripples.
detections over equal depth targets. The Rayleigh
criterion of resolution is applied to the distribution As the search goes on, the interval becomes smaller
of motor positions to calculate the minimal differen- and smaller. Consequently, Fibonacci search must
tiable motor displacement. With the assumption of be aborted at some paint when the search might be
local linearity of the mapping from the motor count misleading. We can experimentally set up a thresh-space to focus depth, the minimal differentiable ma- old, when the length of the interval is less than the
tar displacement can be converted to the minimal threshold, Fibonacci search is replaced by an exhaus-tordiffe tablemdepth. ctive search. After the exhaustive search, a curve isdifferentiable depth. fitted to the part of profile resulting from the ex-
The lack of high precision equipment has been a lim- haustive search.
iting factor to previous implementations of various In our experiments, we set the threshold to be 5
focus ranging methods. Many implemented systems, mn ou nts , wen the thrchold rrows
such as SPARCS, have fairly low motor resolution, motor counts. So when the Fibonacci search narrows
which actually prohibits more precise results. We dawn the whole motor apace to [a,b], where b-a <5,
will give brief description of the motor-driven camera an exhaustive search is fired on the interval [a -

system in Calibrated Imaging Lab later, and further c, b + c], where c is a positive constant. A Gaussian
details can be found in [Willson and Shafer, 1992]. function is fitted to the profile in the interval [a -

c, b + c] using the least square method described in
[Press et al., 19881.

2.1 Fibonacci Search and Curve Figure 3 shows the result when Fibonacci search
Fitting alone is applied to the focus measure profile. Ap-

parently, the search is trapped in a local maximum.
When the focus motor resolution is high, we usually Figure 4 shows the result from Gaussian function
have a very large parameter space which prevents fitting. Both graphs show only a part of the whole
us from exhaustively searching all motor positions. motor space.
Based on the unimodal assumption of focus measure
profile, Fibonacci search was employed to narrow the
parameter space down to the peak [Beveridge and 2.2 Error Analysis
Schechter, 1970]. Because of the depth accuracy we expected, a di-

Assume the initial interval is [z,y], and we know the rect measurement of absolute depth is impossible.
focus measure profile is unimodal in this interval, if Instead, we prefer to use the minimal differentiable
z < z1 < z2 < y and F(zl) < F(z 2 ), where F is depth as an indication of the depth accuracy. If
the focus measure function, then the peak can not we assume the peak motor positions resulting from
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Figure 2: Focus Measure Profile

A.... -- i

I•..1

SI. , ,!, !o ,, -:: .o

Figure 3: Fibonacci Search Figure 5: Minimal Differentiable Motor Displace-
ment

". -" d is the depth, m the motor count and f the map-
. ping, we have

Ad

"•" •" where f'(m) is the first order derivative with respect
S~to m. Because what we really want to know is the

minimal differential depth or depth resolution Ad,
S ..... • and we already have the minimal differentiable mo-

tor displacement Am, the only thing need to be cal-
Figure 4: Curve Fitting ibrated is f'(m). If we assume f°(m) is a constant in

the vicinity of d = D, and the motor count distribu-
tion has its center at m = M, then when the target

the same repeated experiments have a Gaussian dis- is moved AD, the distribution center moves AM,
tribution, we can define the minimal differentiable and we will have the minimal differentiable depth
motor displacement as the minimal difference of two Am
motor counts which have pre-defined probability of Ad = X--•AD (2)
representing different peaks. For example, in Fig-
ure 5, the Gaussian distribution is artificially cut at where Am is the minimal differentiable motor dis-
90% line, so we can say, if we do one focus ranging placement.

experiment on a target at the depth corresponding
to the peak a, there is a 90% of probability the motor 2.3 Implementation and Result
count will be within the interval A.

There can be different pre-defined probability for the 2.3.1 Hardware
definition of minimal differentiable motor displace- We implemented this focus ranging algorithm in
ment. We define the minimal differentiable motor t eC lb ae m gn a oaoy sn h u

th5- baedIagn abrtoysigth u

displacement based on Rayleigh criterion for res- jinon/Photometric camera system (Willson and

olution [Born and Wolf, 1964] which specifies the
saddle-to-peak ratio as 8/w2s. In case of the Gaus- Shafer, 1992]. The focal length can change between

sian distribution, the cut-off line corresponding to 10 min to 130 mm with 11100 motor steps, and thethe Rayleigh criterion is about 0.9ar. fous distance can change from approximately c me-
ter to infinity with 5100 motor steps, the aperture

There is a mapping from a motor count to an abso- can change from FI.7 to completely closed with 2700
lute depth value definitely. Assume d = f(m) where motor steps. The SNR of the camera can be as low
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as 400/1 because of the pixel by pixel digitization imaging blurring, and another one by a wide aper-
and the -40*C temperature of the sensor. ture camera [Pentland, 1987]. In this paper, we in-

tend to employ two images which are defocused to

2.3.2 Experiments and Results different extents.

Window effects have largely been ignored in the lit-
We put the target of Figure 1 at about 1.2 me- erature of this field, except [Ens and Lawrence, 1991,
ters away from the front lens element of the cam- Ens, 1990], where the author derived a function of
era. Maximal focal length and maximal aperture RMS depth error in terms of the size of window.
are employed to achieve the minimal depth of field. For example, when the window is 4 pixels by 4 pix-
The evaluation window is 40x40, while the gradient els, the RMS error from the window effect can be
operator is a 3x3 Sobel operator. as large as 65.8%! The maximal resemblance esti-

The distribution of motor positions are sketched in mation method we propose is capable of eliminating
Figure 6 resulting from an experiment repeated 40 the window effect. It is also noticed that the size
times. With the mean as the center of a Gaussian, of the window is the decisive factor that limits the
and the standard deviation as or of the Gaussian, we resolution of depth maps if we try to obtain a dense

have the minimal differentiable motor displacement depth map. Therefore if we can use smaller win-
as 2 x 0.9 o = 4.5 motor counts. dow without reducing the quality of the results, the

resolution of dense depth maps can be much higher.

Previous work has employed oversimplified camera
models to derive the relationship between blurring
functions and camera configurations. In [Pentland,
1987, Subbarao, 1988, Bove, 1989], the radius of
blurring circles are derived from the ideal thin lens
model. In this paper, we will propose a more sophis-
ticated function which directly relates the blurring
function with camera motors. Experimental results

/J are very consistent with this model as to be shown
" L •o -later.

Figure 6: Motor Position Distribution
3.1 Background

Then the target is moved toward the camera 1 cen-
timeter, and we repeated the above experiments. The depth from defocus method is based on the idea

The center of the motor count distribution moves that, the amount of blurring change is directly re-

38 counts. Therefore, by Eq. 2, we have the mini- lated to the depth and camera parameters. Since

mal differentiable depth: the camera parameters can be calibrated, the depth
can be expressed by the amount of blurring change

Am 4.5 correspondingly. To estimate the amount of blur-
A m 38 ring change, we need a model of the optical blur-

And the relative depth error is about 0.118 / 120- ring. Traditionally, the blurring effect is modeled
And98%. tas the convolution of Gaussian in computer vision
0.098%. literature, partly due to its mathematical tractabil-

ity. Here we will still assume a Gaussian model, i.e.

3 Depth From Defocusing (considering 1D case):

The depth from defocusing method uses the direct ,+OO

relationships among the depth, camera parameters I(z) = 1-0 Io(,)9g(d,C)(z - ,)d( (4)
and the amount of blurring in images to derive the
depth from parameters which can be directly mea- 1
sured. In this part of the paper, we propose the max- g.(z) = -- e e (5)
imal resemblance estimation method to estimate the
amount of defocusing accurately, and a calibration- The basic idea of the depth-from-defocus method is
based blurring model. that, in Eq. 4, since the I(z) which is the image and

Because the blurring in an image can be caused by c which results from camera calibration are known,
either the imaging process or the scene itself, it gen- and d and Io(z) are unknown, we can take two im-
erally requires at least two images taken under dif- ages under different camera settings c, and c2 , then
ferent camera configurations to eliminate this ambi- at least theoretically d can be computed. But be-
guity. Pentland solved this problem by taking one cause the Eq. 4 is not a linear equation with respect
picture by a pin-hole camera, which can be regarded to unknown d, directly solving d is either impossi-
as the orthographic projection of the scene with zero ble or numerically unstable. Pentland proposed a
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method to solve d by Fourier transforms [Pentland, A fZ 2 1 W(Z) 12 df = (14)
19871: A f W(z)12 df 2

If The above equations state that, in the frequency
,I(z) = Io(z) * g", (z) (6) domain, two frequency components Af away can't

12(W)= I0(z) * ga9(Z) (7) be discriminated, and in the space domain, two im-
then, pulses Az away can't be discriminated either. Ap-

parently, one interpretation of why Eq. 8 doesn't
In )= In" (f)= In Z'(f)"C,(f) hold is that Af is not zero.

= In 9.1(f) 3.3 Maximal Resemblance= 1 Y ) Estimation
1-,

- 2 -0.l ) (8) Rom observation, we know that when a, is ap-
01 = 0(d, cl) (9) proaching 0"2, Eq. 12 also approaches zero, in other
0'2 = ao(d, c2) (10) words, when or1 almost equals 02, the Eq. 8 can be a

good approximation in terms of absolute error. This
Replacing Eq. 9 and Eq. 10 into Eq. 8, we can get: observation suggests an iterative method in which

2•_ 2,2 the blurring difference A is refined by blurring one
In', U -f2(0. 2 (d, c1 ) - a(d, c1 )) (11) image to resemble the other in the vicinity of one

2(f) pixel. In symbols: (Assuming A(k) is the the kth
where the function or can be calibrated, estimation of or? - _2)

Obviously, in Eq. 11, the only unknown is d, there-
fore, depth recovery from two images is straightfor- 1. 1°) I, 1(0) = 12 and A = 0.0, k - 0;
ward. 2. Z(k) "- r[k)W,

3.2 Gabor Transform and Window 2 2= W1

Effect Z ")
3. Fit a curve to In - -f 2A(k)/2. (Refer to

The method explained above is based on Y[I(z)], Eq. 8) 2
which is the Fourier transform of the entire image,
Thus, only one d can be calculated from the entire 4. A = '
image. If our goal is to obtain a dense depth map 5. If A > 0, then
d(z, y), we are forced to use the STFT (Short Time 1 k+l) = ;
Fourier Transform) to preserve the depth locality. I(k+1) /2 *

To eliminate the spurious high frequency compo- =
nents generated by the discontinuity at the window else,
boundary, people usually multiply the window by a I(k+,) -I *G
window function. Unfortunately, the elegant cancel- I(k+l) I 12;
lation in Eq. 8 doesn't hold any more if we introduce Note all these convolutions are done very lo-

the window function W(z): cally because of the window function multipli-

cation in step 2.

In[11(z)W(z)] ,In I(f) * W(f) 6. If the termination criteria are satisfied, exit.

In Y[12 (z)W(z)] 12(f) * W(f) 7. k = k+1, go to step 2.

= In (10 (f)f. ()) * W(f 2) All above operations involve only local pixels, and
("I(M)902(f)) * W( ' don't require taking new pictures. Therefore, the

cin computation can be done in parallel to all pixels toThe convolutions in Eq. 12 introduce blurring in obtain a dense depth map.

both the time (space) and frequency domains. The

Gabor transform [Rioul and Vetterli, 1991], which Let's trace the above iterations, at the first cycle, we
uses a Gaussian as the window function, can mini- have (Assuming a1 > 0.2):
mize the production of spatial uncertainty and spec-
tral uncertainty. Assuming a Gaussian function is A(0) = (al 6)2

used as W(z) = g0,(z), and its Fourier transform is 2 +
W(f) - e-•-U2/2, we have: while E(0) is the error of estimating or, - .r.

W2 ) = 1i = lo * G.1

f2 IW(f)12 df (13)IW(f) I df -20) 1(') 12 * G.,a = lo * Gvr,-,r+-7
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We can see, after the first iteration, we actually From Eq. 16, we know this estimation problem is a
switched to estimate E(o). So after k iterations, we typical linear regression problem. With the uncer-
have tainty measurement approximated in Eq. 19, ar- 2

can be estimated robustly. More details about lin-
h ear regression methods can be found in [Press et al.,

A = A = r2 -_ ' + E(i) (15) 1988].
i=o There is one more problem need to be addressed.

Since we obtain images under different camera con-
Now the problem is whether the sequence E(k)(k = figurations, the total energy within one image is dif-
0, 1,2, ... ) converges to zero. Unfortunately, there is ferent from that within the other. Usually, a bright-
no way to prove this mathematically because it de- ness normalization is performed to every image be-
pends on the fitting method used in step 3. Notice fore Gabor transforms, as in [Subbarao and Wei,
that if in step 3, we get an estimate of o 2 - tr only 1992]. But since this normalization will have differ-
based on one particular frequency component, E(k) ent effects over the noise in two images, which will
may diverge. Previous depth from defocus methods complicate the uncertainty analysis, we prefer not to
usually counted on a pre-selected frequency band, normalize the brightness in two images. Instead we
such as in [Pentland, 19871, sometimes this may assume:
cause a very large error if there is not enough energy I (Z) = ci 0o (z) * g., (z) (20)
of the image content within that frequency band. 12 W = C2 10(Z) * 9-.(W, (21)

3.4 Fitting Algorithm where cl and C2 are two unknown constants. Re-
placing the two equations into Eq. 16, we have:

Common to any frequency analysis, we need a robust
algorithm to extract or2 - 2r in Eq. 8 in a noisy en-1 ff2 in Eq. 8in a noisy en-I Z•l(f) 12 =_~r 2 2
vironment. Ignoring the phase information resulting In IZ2(f) 12 = 2f2(? - o) + 2 In c, (22)
from Gabor transform, Eq. 8 becomes: cl

I I1(f) 12 _ (16) which is still a linear problem, while the uncertainty
in I12(f)12 = -1 2 (r _ Or2) analysis still holds.

Assuming an additive white noise model, we have: 3.5 Blurring Model

In uI(f) 12 +ni = ln(j 2i(f) 12 +nj) - Since the defocus ranging method derives the depth
I 12(f) 12 +n 2  instead of searching for the depth, it requires a direct

ln(I 22(f) 12 +n 2 ), (17) modeling of defocusing in terms of camera param-
eters and depth. Previous researchers usually de-

where nj and n2 are energy of noises. Because ln(z+ rived the relation among lens parameters, the depth
dx) ;: Inz + •dz, if we assume I 1(f) 12 > n and and the blurring radius, such as in [Pentland, 1987,

I 12(f) 12 > n2 , Eq. 17 can be approximated as: Subbarao, 1988]. For example, in [Pentland, 1987],
by simple geometric optics, Pentland derived the for-

I II(f) 12 +( n n2 8 mula:
In 122(f) 12 i 11(f) I1 1_12(f) 12 (18) Fvo (23)

Therefore, at each frequency, the left hand of Eq. 16 where D is the depth, F the focal length, f the f-
can be approximated by dividing corresponding number of the lens, v0 the distance between lens and
spectral energy of two images at the specific fre- image plane, or the blurring circle radius, and k a
quency, provided that the energy in that frequency is constant.
much larger than the energy of noise. The deviation The basic limitation of this approach is that those
of this approximation can be expressed as: parameters are based on the ideal thin lens model

and in fact, they can never be measured precisely

19 1 (9 on any camera. We desire a function which is in
al = cn 11 (f) 12--22(f) 12 (19) terms of motor counts, which are measurable and

controllable. For instance, if we use m, for zoom
where cn is a constant related to the noise energy of motor count, m! for focus motor count, and m.
the camera. for aperture motor count, we wish to get a func-

Certainly, Eq. 19 is an approximation to model the tion in the form of D = F(m 5 , mi, IMn, ) or ar =
error distribution as an Gaussian. As an intuition, F(m,nin,m.,D). Due to the depth ambiguity in
when I 11(f) 12 or I 12(f) 12 is large, i.e. the energy the former form ([Pentland, 1987], Appendix), we
within the frequency is high, the deviation is small, prefer to express the blurring radius or as a function
and vice versa, of motor counts and the depth.
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From Eq. 23, we can express a as: .;

VO - F Fvo/kf (24).7 -(24) -
kf D

Since all the lens parameters can be thought as de- -._ -

rived from motor counts, we can rewrite Eq. 24 as:

o= ki(rnM1,M.)+ k2 (m,, mI m.) (25)S=/l~,, sto +D +k•3(mm,,v ) (25)
D + k3M., Mf, M.)Figure 7: Iterative Estimation of all - or

Notice that there is another term k3 added. Because F 7
D is the distance between lens and object, and the
position of lens changes as camera parameters are
changed, we intend to use a fixed plane perpendic- ... . ..
ular to the optical axis as the depth reference plane W \ . - .,
at z = k3 . From now on, we always refer to depth ...
as the distance between the target and the depth /
reference plane.

Eq. 25 says, at some point, a will drop to zero, which
is the best focused point. But we knew that we can
never get a real step edge, because there is always .... 048." ds ........
high frequency loss in the imaging process. It can be
attributed to the pixel quantization, diffraction, etc. Figure 8: Variation Measure and Threshold
Similarly, we can model this as a convolution with
a Gaussian independent of the geometric blurring
which we already modeled. We use k4 to model its the functions, that is, when the a of the Gaussianwidth. h ucinta s we h fteGnsa

function is too small with respect to the pixel width,
Since two consecutive convolutions with Gaussians the discrete Gaussian is no longer a good approxi-
are equivalent with one Gaussian convolution: mation of the real Gaussian function, and the results

G", * G,2 =CG%/r+, (26) begin to degenerate. Generally, in the absence of
noise, the estimation errors are less than 1/1000 of
the true values.

we have our final blurring model expressed as:

2 + L2 (M., i, in.) 2 3.6.2 Variation Measure and

(i in, ) D + k3(m., mn, mi.)) Thresholding

m,, inm) (27) Certainly, if there is no texture or little texture
within the image, we can not expect to obtain ac-
curate estimation of depth. Therefore, we need a

3.6 Implementation and Results measure which can discriminate image patchs with
enough texture from those without enough texture.

3.6.1 Simulation Another reason why we need a variation measure
is because of the so-called edge bleeding [Nair andOur first simulation examines how precise the esti- Stewart, 1992].

mate of 2' - a' can be. We use step function as
I0, and convolve it with two different Gaussian Go, Assuming the image patch is f(z,y), we have the
and G,,. The window function is also a Gaussian variation measure expressed as in Eq. 28.
with or equals to three pixel widths. 1 From Eq. 14,
the locality of the window function is about 2 pixel V (((i Y) 12+ If(Z Y) 12
widths. if (I 8z ,y9

The result of the iterative method is illustrated in g9, (z, y)dzdy (28)
Fig. 7. And we can see that, when the window func-
tion is narrow, how poor the first estimation can be.
As the iteration goes on, the estimated value con- To better illustrate the relation between the varia-
verges fast to the true value. Experimentally, the tion measure and the result of estimate of v2? - or,

final error is lower bounded by the discretization of we demonstrate the selection of the threshold to ex-
clude the effects of the low variation content and the1In this paper, all ao values are in pixel width. edge bleeding in Figure 8.
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3.6.3 Calibration of Blurring
Function and Blurring Model ____..,

First, we tried to confirm our assumption that the
blurring function can be approximated by the Gaus-
sian function. Ideally, if we have a point light source,
the image of this light source should be the blurring
function because

6(z) * F(z) = F(z). (29) . . . . .. , ...

Due to the technical difficulty of an ideal point light
source, a step edge image is used instead as shown Figure 10: Blurring Model
in Figure 1. Assume the step function is u(z), the
image of the step edge should be

g,(z)* u(z) = j 1 2 l . dtJ+ 7=r-e -.

= c1+C 2 Erf(----2) (30)

where Erf is the error function, cl and c2 are two
constants.

The Figure 9 illustrates the least square fitting re-
sults for a blurred step edge. Figure 13: o2-Map Recovery Without Maximal Re-

semblance Estimation

then after a point, it becomes larger and larger. It
is very clear that the this effect can be well modeled
by Eq. 27.

"" 3.6.4 ar2-Map and Shape Recovery

-- The first step toward a dense depth map is to com-
"- - pute oz = o0, - 2, without loss of generality we

assume a1 Ž! f2, for every pixel, using the maximal
Figure 9: Blurring Function Fitting resemblance estimation. In Figure 11, we bent a

sheet of paper in different directions about 1.0 inchs

The coefficients k1 , k2 , k3 , k4 are constants in Eq. 27 and took images. The target is about 100 inchs away
when moefficientors , ae f . We cane onthecantsibran q from the camera. The focal length is 130mm, the f-when motors are fixed. We can move the calibration number is f/4.7 for (a) and (c), f/8. 1 for (b) and

target over four different places, and assume at the (d)b

first place, the depth of the target is zero (Note the (d).

depth is w.r.t. the reference plane), we will have Then we recover a 2 -map for those two objects. The
four non-linear equations with four unknowns. To rectangle in Figure 11 (a) is the area for k2-map.
suppress noise, we can measure at more than four The a. for Gabor transform is 5.0 pixel size. Fig-
places and fit the blurring model to the results. ure 12 shows the o2 -map recovery based on the im-

Using the rail table in CIL ([Willson and Shafer, ages in Figure s T holes within the e-maps are

1992]), the whole process of calibration can be con- those patchs without enough texture.

trolled by the computer. The target moves from Compared with the or -map recovery without itera-
about 1 meter from the camera to about 3 meters, tive maximal resemblance estimation showed in Fig-
and the blurred edges are fed to the least square fit- ure 13, we can see that results without iteration are
ting, the resulting o's are, in turn, fitted against the much more noisy.
model expressed in Eq. 27. With u2-map recovered and the coefficients in Eq. 27

Experiments have shown very consistent results with calibrated w.r.t. the two camera configurations, the
the model as illustrated in Figure 10. The target is depth map recovery is straightforward by using the
moved from far to near, at the furthest distance from Brent's method [Press ef aL, 1988] to numerically
the camera, the rail motor position is zero. And solve the nonlinear equation. Figure 14 showed the
when it moved through the whole range of the rail, depth map (in inch) of the convex object in Fig-
the blurring circle first becomes smaller and smaller, ure 11 (c) and (d), with respect to the depth refer-
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(a) Concave Object Image No. I (b)Concave Object Image No.2

(c) Convex Object Image No. I (d)Convex Object Image No. 2

Figure 11: Pictures of Different Objects

(a) Concave Object (b) Convex Object

Figure 12: o2-Map Recovery
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Figure 14: Shape Recovery For the Convex Object
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ence plane, which is behind the object. A conserva- [Nayar and Nakagawa, 1990] Shree K. Nayar and
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Conference on Robotics and Automation, pages
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A VLSI Smart Sensor for Fast Range Imaging
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Abstract-- We have built a range-image sensor that acquires a Stripe
complete 28 x 32 range frame in as little as one millisecond. Using
VLSI, sensing and processing are combined into a unique sensing ,e
element that measures range in a fully-parallel fashion. The ac-
curacy and repeatability of the sensed data is 0.1% or better. In
this paper, we review the cell-parallel method used, describe our (<
VLSI implementation, outline procedures for calibrating the cell- s
parallel sensor and present some experimental results. We con-
dude by describing a second-generation range sensor integrated -irr-
circuit which is now being tested. Mirror

I. INTRODUCTION
Laser

A cell-parallel implementation greatly improves the perfor-
mance of a light-stripe range-imaging sensor[ 1, 2, 3]. Though
equivalent to conventional light-striping from optical and ge- "l

ometrical standpoints, cell-parallel light-stripe sensors incor-
porate a fundamental improvement in the range measurement Fig. 1. Traditional fight-stripe range imaging.
process. As a result, the acquired range data is more robust and
more accurate. Furthermore, range image acquisition time is
made independent of the number of data points in each frame. been developed[4]. Of these, the light-stripe methods have
By fully exploiting the capability of VLSI to both sense and proven to be among the most robust and practical.
process information, we have built a smart sensor that acquires Fig. 1 illustrates the principle on which a light-stripe sensor
a complete frame of 10-bit range image data in a millisecond. is based. The scene to be imaged is lit by a stripe - a plane of

light formed by fanning a collimated source in one dimension.
The stripe is projected in a known direction using a precisely

II. A CELL-PARALLEL APPROACH TO LIGHT-STRIPE controlled mirror. When viewed by an imaging sensor, it ap-
RANGE IMAGING pears as a contour which follows the profile of objects. The

shape of this contour encodes range information. In particu-
Range information is crucial to many robotic applications. lar, if projector and imaging sensor geometry are known, the

A range image is a 2-D array of pixels, each of which rep- distance to every point lit by the stripe can be determined via
resents the distance to a point in the imaged scene. Many triangulation.
techniques for the direct measurement of range images have A conventional light-striperange sensor builds a range image

This research was supported in part by an AT&T Foundation Grant, the using a "step-and-repeat" procedure. A stripe is projected onto

National Science Foundation, under grant MIP-8915969, and the Defense a scene, as described above, and one column of range image
Advanced Research Projects Agency, ARPA Order No. 7511. monitored by data is measured. The stripe is stepped to a new position and
the NSF under grant MIP-9047590. the process is repeated until the entire scene has been scanned.

Published in the Proceedings of the 1992 IEEE/RSJ International Conver- Unfortunately, step-and-repeat implementations are slow. In
ence on Intelligent Robots and Systems (IROS '92), Pages 349-58, Raleigh,NC, uly -10,992.order to build a complete range image using data from N stripeNC. July 7-10. 1992. -

O-7803-0737-2/92503.001992©)IEEE positions, N intensity images are required. The total time Z'fs
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to acquire the range frame is Baseline

= e NTX xs OS
l T Coordinate

3.3 seconds is required. Coordinate
The frame time of a step-and-repeat sensor has been im- ZrI

proved by imposing additional structure on the light source.
For example, the gray-coded sources used by Inokuchi[5] re- Fig. 3. Cell-parallel system geometry.
duce the factor of N in (1) to log 2 N. However, achievable
frame rates are still too slow and the fundamental problem
remains - range frame time increases with spatial resolution. required to acquire the range frame is independent of its spatial

resolution -

A. The Cell-Parallel Method ffl= f (2)

The cell-parallel technique is an elegant modification of The frame time 7T1Ifi of a cell-parallel sensor is set by the
the basic light-stripe algorithm. The technique is a dynamic bandwidth of the photo-receptor used in its sensing elements.
one, with time an important aspect of the range measurement Very high frame rates (I /f'2 e) can be achieved. The photodi-
process[6]. odes used in our cell design have bandwidth into the megahertz.

Consider the geometry of a three-pixel, single-row cell- They can detect a stripe moving at angular velocities in excess
parallel range sensor, seen from above in Fig. 2. In the fig- of 6,000rpm.
ure, the stripe plane is perpendicular to the page. The stripe is
quickly swept across the scene from right to left, briefly illumi-
nating object features. A sensing element, say S2, monitors the B. Cell-Parallel System Geometry
light intensity 12 return-d to it along a fixed line-of-sight ray
R 2. When the position of the stripe is such that it intersects R 2  Cell-parallel system geometry can be described using homo-
at a point on the surface of an object, a "flash" will be observed geneous coordinate transformations[7, 81. Referring to Fig. 3,
by the sensing element. the origin of the frame Os is placed at the optical center of

Range to the object is measured by recording the time t 2  the imager. The stripe is a half-plane which radiates out from
at which the flash is seen. The location of the stripe as a an axis-of-rotation aligned with the y-axis of the frame and
function of time is known because its projection angle 0 L (t) passing through the point
is controlled by the system. The "time-stamp" t 2 acquired by
the sensing element measures the position of the stripe when XL = [ b 0 0 1 ]. (3)
its light is reflected back to the sensor. The three-dimensional
coordinates of one object point are uniquely determined at the Stripe rotation 0L is measured counter-clockwise about its axis
intersection of the line-of-sight ray R 2 with the stripe plane at when viewed from the positive y direction and defined to be
0L (0 2 ) on the surface of the object. zero when the stripe lies in the yz-plane. In a homogeneous

A sensor which collects a dense range image is formed by representation, a plane is described in terms of a column vector
arranging identical sensing elements into a two-dimensional P that satisfies the scalar product xP = 0, where x is a ho-
array. The cells of the array work in parallel, gathering a mogeneous point that lies in P. In the sensor coordinate frame
range image during a single pass of the light stripe. The time defined above, the stripe plane is modeled in terms of b and 9 L
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The position xs = (as, ys, zs) of a sensing element on the
sensor image plane defines the line-of-sight ray Rs. The para-
metric equation for a line in three dimensions is used to repre-
sent Rs as

x = - (xs - Os) + Os (5)rs

where rs = )]xsfl = vo/m + &2 + zs. The line parameter
r, when normalized by rs, is simply the distance along Rs ' '"
measured from Os heading toward the object.

The point of intersection xo, between the stripe and the Fig. 6. Sensing element circuitry.
line-of-sight, is found by solving XPL = 0 for r:

A. A 28 x 32 Cell-Parallel Sensor Chipb- - (6)
as - zs tan 0L The multi-pixel cell-parallel range sensor we have developed

is shown in Fig. 5. This chip consists of 896 sensing elements
In the coordinate frame of the sensor, this point is arranged in a 28 x 32 array. It was fabricated using a 21&m

X0 -!-as M Y S M . p-well CMOS, double-metal, double-poly process and mea-
o s sures 9.2mm x 7.9 mm (width x height). Of the total 73 mm2

chip area, the sensing element array takes up 59mm2, read-
Thus, the 3-D position xo of imaged object points can be out column-select circuitry 0.37 mm 2 and the output integrator
recovered from the scalar distance measurement r. 0.06mm2 . The remaining 14 mm 2 is used for power bussing,

signal wiring, and die pad sites.
I1I. VLSI RANGE SENSOR

B. Sensing Element Design
A practical implementation of the cell-parallel range imag-

ing algorithm requires a smart sensor - one in which optical The architecture chosen for the range sensing elements
sensing is local to the required processing. Silicon VLSI tech- is shown in Fig. 6. Areas of interest in the diagram in-
nology provided the means for building such a sensor. clude the photo-receptor (PDiode), the photo-cu..-ent trans-

Fig. 4 summarizes the operation of elements in the smart cell- impedance amplifier (Photofmp), threshold comparison stage
parallel sensor array. Functionally, each must convert light (n2Comp), stripe event memory (RSFlop), time-stamp track-
energy into an analog voltage, determine the time at which and-hold circuitry (PGateI/CCe.1) and cell read-out logic
the voltage peaks and remember the time at which the peak (PGateO/TokenCell).
occurred. In operation, sensing elements cycle between two phases -

979



Output

Q I

Fig. 7. Non-linear transimpedance amplifier. Fig. 8. The cell-parallel range-finding system.

acquisition and read out. could be devoted to photo-current amplification if cell area
During the acquisition phase, each sensing element imple- was to be kept small. The three transistor amplifier design

ments the cell-parallel procedure of Fig. 4. The photodiode of Fig. 7 satisfies both requirements. Its logarithmic transfer
within a cell monitors light energy reflected back from the characteristic provides freedom from output saturation even
scene. Photocurrent output is amplified and continuously com- when input light levels vary over several orders of magnitude.
pared to an external threshold voltage Vth. When photorecep- The output rise-time of photodiode/amplifier test structures in
tor output exceeds this threshold, the "stripe-detected" latch in response to a stripe was measured to be a few microseconds.
the cell is tripped. The value of the time-stamp voltage at that
instant is held on the capacitor CCe11, recording the time of D. Analog Signal Processing
the stripe detection. Analog signal processing techniques played an important

The acquisition phase is synchronized with stripe motion and role in the design of this smart sensor. As shown in Fig. 6,
ends when the stripe completes its scan. At that time, the array
sensing elements recorded a range image in the form of held sensing elements uspeanalog circuitry to amplify the photo-time-stamp values. This raw range data must now be read from current, to detect the stripe and to record the per-cell time-
the chip. stamp information. Stripe timing is represented in analog form

At lt i d r t sas a 0-5 V sawtooth broadcast to all cells of the array. ThisA time-multiplexed read-out scheme off loads range image allowed the time-stamp value to be stored as charge on the I pf
data in raster order through a single chip pin. One bit of token aloethti-smpvueobetrdascrgonheIfatate in rasterde througthe sensing element array, selecting capacitor within each cell. The digital equivalent of latchingstate is passed through ta count into a multi-bit register would be significantly larger
cells for output. Dual nip-transistor pass gate structures are in area and would require that the digital time-stamp counters
used throughout the time-stamp data path. gsey permit the use run during the acquisition phase. Thus, analog processing kept
of rail-to-rail time-stamp voltages, maximizing the dynamic cell area small and minimized digital switching noise during
range of the analog time-stamp data. photo-current measurements in the acquisition phase.

C. Stripe Detection IV. PROTOTYPE RANGE IMAGE SENSOR

One of the more challenging aspects of the cell design in-
volved the circuitry which detected the stripe. The 28 x 32 element VLSI sensor prototype described in the

A photodiode forms the light sensitive area within each cell. previous section was incorporated into the light-stripe range
This diode is a vertical structure, built using the n-substrate system shown in Fig. 8. System components visible in the pho-
as the cathode and the p-well of the CMOS process as the tograph include (from the left) the stripe generation assembly,
anode. An additional p+ implant, driven into the well, reduces the VLSI sensor chip and its interface electronics, a calibration
the surface resistivity of the anode and increases the device target and the 3-DOF positioning system. Table I provides
bandwidth. details of the configuration shown.

The non-linear transimpedance amplifier of Fig. 7 was a key
element of the sensor cell design. Reflected light from the V. CELL-PARALLEL SENSOR CALIBRATION
swept stripe source generates nano-amp photo-current pulses
and thus a very high-gain amplifier is required to convert this Calibration provides the complete specification of system ge-
current into a usable voltage. In addition, very little die area ometry necessary for converting cell time-stamp data into range
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TABLE I &IS
CEL' PARALLEL SENSOR SYsTEM SUMMARY

Baseline 300 mm

Laser Source Laser Diode (Collimated) &14

Wavelength 780 nm
Output Power 30 mW
Stripe Width 1 mm z Rdm

Stripe Spread 400 (3 dB) ,I * z.MM..

Sweep Assembly Rotating Mirror OA z.•,,,

Sweep Angle 400

Sensor Optics 1/2"-Format CCD Zoom Lens am -

Focal Length 12.5 to 75 mm
f-number f/1.8

A/D Precision 12 bits

a w Yw • 0 i t ; e m, M IO & 16 2 &14 &IO " l RiB

X (usedr)

SPositioner Fig. 10. Cell (13,15) measured line of sight.

A planer target out of which a triangular hole has been cut as
shown in Fig. 9 is used to map out sensing element line-of-sight
rays. The target is mounted on the positioner so that its surface
is parallel to the world-ay plane.

S c A single 3-D point on the line-of-sightof a particular sensing
path element is found as follows. The target is moved to some z-

Point of /position in world coordinates and held. The bottom edge of the
triangular hole is located by moving the target around in z and
y as indicated in Fig. 9. When a small motion in either a or y

ine-of h causes a large change in the time-stamp value reported by thecell, occlusion of the line-of-sight at an edge of the triangular

Fig. 9. Line-of-sight measurement. cut is indicated.
Once many points along the bottom edge are located, a line,

known to lie in the plane of the target, is fit. The location of
images. Two sets of calibration parameters must be measured, the top edge is found in a similar fashion. The intersection of
First, 3-D sensor chip geometry and optical parameters must the top and bottom edge lines define one 3-D point that lies on
be measured - the imager model. Next, a mapping between the cell's line-of-sight. A number of these points are located
time-stamp values Os and distance T for all sensing elements is by moving the target in z and repeating the process. The line-
developed - the stripe model. of-sight for a single cell can then be identified by fitting a 3-D

line to these points. Experimental data from the calibration of
A. Imager Model Calibration one sensing element's line-of-sight is shown in Fig. 10.

Mapping the line-of-sight rays for all 896 sensing elements
This method measures component model geometry using in this manner is too time consuming. In practice, line-of-sight

reference objects, manipulated in the sensor's field of view with information is measured for 25 cells, evenly spaced in a 5 grid.
an accurate 3-DOF(degree of freedom) positioningdevice. The The geometry of the remaining cells is approximated using a
following two-step procedure is used (Fig. 3): pinhole-camera model.

The pinhole-camera model( Ill constrains all sensing ele-
"* the line-of-sight rays Rs for a few cells are measured, and ment line-of-sight rays to pass through a single point focus of

"* a pinhole-camera model is fit to measured line-of-sight expansion at the optical center of the camera. Fig. I I graph-
rays in order to approximate line-of-sights for all sensing ically illustrates the process. Sensing element locations are
elements. assumed to lie in some sensor plane, at locations evenly spaced

in a 2-D grid on the plane. Eleven model parameters must be
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Fig. 11. "Pinhole" line-of-sight approximation. 0

determined that identify the transformation matrix Tsw and the
geometry of the the sensor plane. A least-squares procedure
is used to fit pinhole-model parameters to line-of-sight infor- Fig. 12. Time-stamp calibration.
mation measured in the first calibration step. Imager model
geometry is now fully calibrated. discussed in Section VII, returns multi-bit intensity image data

which further assists imager geometry calibration.
B. Advanced Imager Model Calibration Use of the LCD mask significantly reduces the time required

to perform imager-model calibration. In the previous method,
Unfortunately, calibration of the imager model via line-of- two edges of a triangular hole had to be mapped out, via accurate

sight measurement is not suitable for use outside of the labo- back-and-forth movement, in order to yield a single calibration
ratory environment. "One-at-a-time" measurement of sensing point. In the new method, one calibration point is measured
element geometry, as outlined above, is slow and cumbersome. from a single LCD-generated pattern without mechanical X-Y

We are developing a faster, more precise method for imager movement. Precise calibration of the low-spatial resolution
model calibration. In this new calibration method, the 3-DOF range sensor is possible because high-precision patterns are
positioning system is replaced with a liquid crystal display generated by the LCD mask.
(LCD) mask that need only be accurately positioned along one The use of an LCD mask to project precise 2-D patterns
degree of freedom. The LCD mask is used to define precise has application beyond the calibration of our light-stripe range
black-and-white images that are "seen" by the range sensor. sensor. For example, this technique could be used to assist
The method relies on intensity image information, measuring more traditional camera calibration procedures or to present
geometry through analysis of reference object images[9], training data to image-based neural net systems. LCD displays

The LCD mask is placed between a diffuse planer target have several advantages over CRT displays for applications
and sensor chip at a known position and is backlit by shining like these - they are fast, they are static (not refreshed), and
the system stripe source on the planer target. The pattern they form images which are stable and well defined.
displayed on the LCD forms a black-and-white image on the
sensor. Only illuminated sensing elements will latch the stripe-
detected condition (Section III-B). A single-bit intensity image C. Stripe Model Calibration

is derived by identifying the time-stamp output of illuminated The second part of the calibration procedure determines the
sensing elements. mapping between time-stamp data and range along all sensing

Sensing element line-of-sight geometry is found by varying element line-of-sight rays. As shown in Fig. 12, a planer target
the LCD mask pattern in a controlled fashion. For example, a with no hole replaces the target used in step one. The new
circular pattern, whose 3-D center is known, can be projected. target is held at a known world-z position, parallel to the ay
A calibration point is found by measuring the 2-D location of plane, and time-stamp readingsOs from all sensors are recorded.
this circle's center in the intensity image returned by sensor. This process is repeated for many z positions. Using this
Additional calibration data is measured by varying the position information, the function which maps cell time-stamp values
of the circle on the LCD mask and the position of the LCD Os into line-of-sight distance r for each sensing element is
along zs. Also, by measuring the center different radii of the approximated by fitting a parabola to each. Experimental data.
circle at a fixed position, we can compensate for the low spatial showing the fitted r verses Os functions for several sensing
resolution of the current sensor. The new sensor chip design, elements, is shown in Fig. 13. Calibration of the cell-parallel
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. VI. SYSTEM PERFORMANCE

h •-b A. Range Accuracy and Repeatability

\- \ n

-, \ • \The quality of the range data produced by the cell-parallel
S• range sensor was measured by holding a planer target at a

S~known world-2 position with the 3-DOF positioning device. In
•. v • the experimental setup, the world-2 axis heads almost directly

\ \\ • :toward the sensor with the zw = 0 point roughly 500 nun away.
• * Analog time-stamp values from the sensor array were digitized,
S• • using a 12-bit analog-to-digital converter (A/D), and recorded

X* +xz.:. ,-z".- • , \ for 1, 000 trials. Light-stripe sweep (acquisition phase) time

0- .. U.

0 Z.. :- • • for each scan was 3 msec.

'E ' '

FA histogram of the range data reported by one ell is plotted

+0 lm Z. 1.\ in Fig. 14. Thbe horizontal axis represents the digitized time-

.la- i(2S•rn

S• • \stamp value, converted to world-2 distance via the calibration
gmodel. Data for six world-e positions are combined in this

\ • •plot. The vertical axis shows the number of times (plotted

\\

G" M ..I Im in '14 IM" "1M a "'m " 23 j. logarithmically), out of the 1, 000 trials, that the sensing ele-
tm-tmv v• ment reported that world-z distance. The sharpness of each

Fpeak is an indication of the stability (repeatability) of the range

Fig.13. 13m-stap clibrtio resltmeasurements.

Averaged statistical data for 25 evenly-spaced sensing ele-
ments is plotted in Fig. 15. In order to measure accuracy and
repeatability, the position of the target, as reported by the cell-
parallel sensor, is compared to the actual target z position. The

"boxed" points in the plot represent the mean absolute error,
expressed as a fraction of the world-F position and averaged

for the 25 elements at 2W. One standard deviation of "spread".
also normalized with zw, is shown (]1) above and below each
box.

The experiments show the mean measured range value to be
within 0.5nrm at the maximum 500i rg 2- an accuracy of
i. 1%. he aggregate distance discrepancy between world and
measured range values remains less than 0.5 mm over the entire
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Fig. 15. Range data accuracy and repeatability.

360 mm to 500 mm z range. The cell-parallel sensor repeatabil-
ity is found by computing the standard deviation of the distance
measurements. The measured repeatability of histogram data
is less than 0.5mm - 0.1% at the maximum 500mm posi-
tioner translation. The 0.5 mm repeatability decreases with
the distance to the sensor - essentially with the slope of the
time-stamp to distance mapping function (Fig. 13).

B. Range Image Acquisition

Fig. 16 shows a wire-frame representation of one 28 x 32
range image produced by the sensor. The imaged object is the
cup shown in the figure, approximately 80 mm in diameter at its
opening and 80 mm high. The range sensor is looking directly at
the object from a distance of 500 mm. The viewpoint of the plot
is at a point directly above the optical center of the sensor. The
complete range image was acquired during a 3 msec stripe scan.
The intersection points of the wire-frame plot are positioned on
cell line-of-sight rays at the measured distance along the ray
and the focus of expansion is located in front of the cup. Thus,
the smaller "squares" represent object surface patches closer Fig. 16. Range data wire frame.
to the sensor. This is opposite the manner in which straight
perspective would make an object with a grid painted on it
appear, and at first glance gives the false impression that the
"mold" used to make the cup has been imaged.

The curved smooth front surface of the object is clearly
visible in the range data. The 20mm handle of the cup is
readily distinguished, as is the planer background behind the
cup. The curved surface of the object halfway down the cup TABLE i1

directly across from the bottom of its handle includes a slight CELL-PARALL.E SMSOR PEXKWm-M SUMARY

shift of the wire-frame. The imaged cup is slightly narrower at Spatial Resolution 28 x 32
its base by about 2 mm. The cell-parallel sensor is measuring Frame Time Up to I msec
this small 3-D feature at the 500 mm object distance. Operating Distance 350 to 500 mm

Accuracy < 0.5 mm

C. Sensor Performance Summary Repeatability <0.5 mm

A summary of the cell-parallel sensor system performance
is given in Table II.
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Fig. 19. Second-generation sensing element circuitry.

tor Qp enables capacitor C, to track the rising intensity input
voltage transitions. No path is provided for Cp to discharge
when photoreceptor output transitions downward. At the end
of a scan, the largest intensity reading observed will be held.
Stripe detection is easily accomplished by comparing the peak-
intensity value Vf with the amplified photodiode output V,.
When V, falls below the Vf, the output from the comparator
is used to record a time-stamp value.

Using Spice[ 101, operation of of the second-generation sens-
ing element design was simulated. The simulation results are
plotted in Fig. 20. The output from the peak-following cir-

Fig. 18. Second-generation sensing element layout. cuit ILSCELL.30 acts as a dynamic threshold for each cell,
replacing the externally applied global threshold of the first-
generation design (Section IlU-B). Comparator input offset

VII. A SECOND GENERATION SENSING ELEMENT mismatch made setting a global threshold level, valid for all
cells in the array, difficult. Thus, stripe detection is made more

A second-generation implementation of the light-stripe sen- robust by this modification. In addition, the "true" peak de-
sor array has been fabricated. This new chip, seen in Fig. 17, tection of the new design provides better quality range data
incorporates several advantages over the first design. The die because the new stripe detection schenm identifies the location
area of the new cell, shown in Fig. 18, is 216im x 216pm, of the peak in time more accurately than simple thresholding.
40% smaller than that of the cells of the first-generation sensor The peak-intensity value held within the second-generation
(photoreceptor area has been kept constant). Stripe detection is cell is an important artifact of the ranging process and, in the
done in a more robust manner and range data read-out circuitry new design, is provided as an additional sensing element out-
has been simplified. In addition, the new cell provides a means put. The illumination source in the system, the stripe, is of
to record and read out the value of the peak intensity seen when known power. Intensity reduction from I /r-type losses can be
it acquires a range data sample. The peak intensity informa- accounted for because range to the object is measured. The
tion provides a direct measure of scene reflectance because intensity value therefore provides a direct measure of scene
stripe output power is known and distance to the object point is reflectance properties at the stripe wavelength. It is an image
measured. In addition, the availability of intensity information aligned perfectly with range readings from the cell array.
allows for efficient sensor calibration (Section V-B). The area in each cell dedicated to time-stamp read out is

Peak detection is done using the circuit of Fig. 19. Operation much smaller in the new design. Direct addressing of the cell
of the circuit is straightforward. The source following transis- to be read, using row and column selects, eliminates the token
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Abstract [17]. There are considerable problems with shape deter-
We present a novel robust methodology for correspond- mination of smooth featureless objects uing feature-point

ing a dense set of points on an object surface for 3-D stereo based stereo vision algorithms.
computation of depth. The methodology utilises multiple Grimson [5] was the first to consider utilizing the re-
stereo pairs of images, each stereo pair taken of exactly flectance properties of surfaces to augment shape determi-
the same scene but under different illumination. With just nation from stereo vision. UtiU" diffuse shading infor-
2 stereo pairs of images taken respectively for 2 different mation from two camera views Grmson determined sur-
illumination conditions, a stereo pair of ratio images can face orientation at zero crossings using this in addition
be produced; one for the ratio of left images, and one for to depth information at these points to more accurately
the ratio of right images. We demonstrate how the pho- interpolate a surface. Diffuse reflection was assumed to
tometric ratios composing these images can be used for be Lambertian and a Phong [13] specular component was
accurate correspondence of object points. Object points also assumed to exist. Local surface orientation was de-
having the same photometric ratio with respect to 2 differ- termined by a modified photometric stereo technique [20]
ent illumination conditions comprise a well-defined equiv- adapted to binocular stereo.
alence class of physical constraints defined by local surface Smith [161 considered the correspondence of points in
orientation relative to illumination conditions. We show a stereo pair of images of a smooth featureless Lamber-
how for diffuse reflection the photometric ratio is invari- tian reflecting surface utilizing a mathematical formula-
ant to varying camera characteristics and viewpoint and tion he termed the Stereo Integral Equation. What is
that therefore the same photometric ratio in both images unique about this work is that except for knowing a prsors
of a stereo pair implies the same equivalence class of phys- the correspondence of endpoints along an epipolar line, all
ical constraints. Corresponding photometric ratios along points can be properly corresponded between these end-
epipolar lines in a stereo pair of images under different points purely from photometric values. This in turn pro-
illumination conditions is therefore a robust correspon- vides for a very dense depth map from stereo vision.
dence of equivalent physical constraints, and determina- There has been work by Blake, Brelstaff, Zisserman
tion of depth from stereo can be performed without know- and others J2], (3], [21] that has exploited the geometry of
ing what these physical constraints being corresponded specular reflection viewed from a stereo pair of cameras
actually are. This implies a very practical shape-from- to derive constraints on surface shape. This work however
stereo methodology applicable to perspective views and depends upon the correspondence of segmented speculari-
not requiring any knowledge whatsoever of illumination ties rather than the correspondence of actual photometric
conditions. This is particularly practical for determina- values, which is the primary concern of this paper.
tion of 3-D shape on smooth featureless surfaces which The major advantage of being able to accurately cor-
has previously been hard to perform using stereo. We respond photometric values between a stereo pair of im-
demonstrate experimental 3-D shape determination from ages, besides being able to determine the shape of smooth
a dense set of points using our stereo technique on smooth featureless surfaces, is that this would provide for a very
objects of known ground truth shape that can be accurate dense depth map. There are a number of practical issues
to well within ±1% relative depth. concerning stereo vision which makes this very difficult.

First and foremost is that stereo vision requires 2 cam-
1 INTRODUCTION eras, and no two cameras even if they are exactly the

There has been extensive work on computational stereo same model number, records image intensities exactly the
vision including [11], [10], [4], [14], and [11. A large col- same. Even if a surface were perfectly Lambertian reflect-
lection of articles on stereo are contained in the recent ing so that reflected radiance is completely independent
book by Mayhew and Frisby [12]. Much of the work com- of viewpoint, because of camera problems and the details
puting depth from stereo vision involves the correspon- of image formation described in the Problem Background
dence of image features such as intensity discontinuities section, the same reflected radiance from an object point
or sero crossings determining image edges. These are fea- will be recorded with an unpredictably different gray value
tures that can be computed directly from an image with- for each camera. In fact, diffuse reflection is not even
out any knowledge of the image formation process. A Lambertian as such reflection is actually dependent upon
possible disadvantage of depth determination from 3-D viewing angle. Specular reflection is observed at different
stereo using edges is that this data can be sparse and object points from different views which further compli-
a number of methods have been developed to interpo- cates the situation.
late smooth surfaces to sparse depth data from stereo [41, We present a novel practical methodology for reliably
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corresponding photometric values in a stereo pair of im- F-stop setting, the effective lens diameters can still be
ages that overcomes most of the problems inherent to us- slightly different. The focal lengths as well can be slightly

g a stereo pair of cameras without having to perform different and recalling the classical thin lens law
a large amount of camera calibration. We need the ad-
ditional requirement of at least 2 illumination conditions + 1
but never need to know anything about these illumina- I + 0
tion conditions. Our methodology corresponds the left
and right ratio images of the same scene under arbitrar- this will influence the image distance, i, in turn effecting
ily different illumination conditions. We prove that the the image irradiance. Even in the ideal case where focal
photometric ratios arising from diffuse reflection are in- lengths are precisely equal, the image distance, i, can be
variant to most characteristics varying between a stereo slightly different for a stereo pair of images even though
pair of cameras as well as invariant to viewpoint and dif- the images "appear" equivalently in focus when in fact
fuse surface albedo, that make pixel gray values by them- they are not precisely in focus. On top of all this is the
selves unreliable for stereo correspondence. We also show dependence of image irradiance in perspective images on
that corresponding photometric ratios is equivalent to cor- pixel location relative to the optical center of the image
responding classes of well-defined physical constraints on plane. The farther a pixel is radially away from the opti-
object points. Furthermore, correspondence of photomet- cal center, the larger is the light incident angle, a, which
ric ratios can be done to subpixel accuracy using interpo- strongly effects image irradiance. Image irradiances aris-
lation. ing from the same object point appear in different parts of

A technique that is somewhat related to our stereo a stereo pair of images making them difficult to compare.
methodology is "dual photometric stereo" pioneered by
Ikeuchi [81. There are however major conceptual and im-
plementation differences. The idea of dual photometric LAM M D iH, M.

stereo is to apply photometric stereo [20] to a smooth
object surface from two camera views. Surface orien-
tation estimates produced from photometric stereo are
segmented according to where they fall on a tessellated
Gaussian sphere. Segmented orientation classes are cor-
responded between the stereo pair of images using area, , _ M ,
mean surface orientation, and, epipolar constraints. A ,
coarse depth map is computed, and then refined using an FIGURE 1
iterative scheme that forces the gradient of the depth map Equation 1 only takes into account the optics involved
to be consistent with surface orientation. While Ikeuchi in image formation. Image irradiance is converted into
corresponds surface orientation estimates produced from pizel gray value using electronics. In general the conver-
multiple illumination in a stereo pair of images, our sion of image irradiance, E, into pixel gray value, I, can
methodology corresponds equivalence classes of physical be described by the expression
constraints between a stereo pair of images without ever I = gE, + d, (2)
having to compute these physical constraints explicitly.
Ikeuchi does have the extra information provided by sur- where g is termed the gain, d is the dark reference, and, 7,
face orientation to refine his depth map, but this is re- controls the non-linearity of gray level contrast. It is typ-
stricted to nearly orthographic views and known incident ically easy to set 7 = 1.0 producing a linear response, and
orientation of at least 3 distant light sources. The 3-D easy to take a dark reference image with the lens cap on,
stereo method using multiple illumination that we are then subtracting d out from captured images. However,
proposing never requires knowledge of any of the multiple we have observed that not only can the gain, g, be vari-
iumintion conditions and is applicable to perspective able between identical model cameras but this can change
views. over time especially for relatively small changes in tem-

perature. Unless g is calibrated frequently, comparing
2 Problem Background pixel gray values for identical image irradiances between

We describe the problematic issues of comparing image a stereo pair of cameras can be diffcult.
intensities between a stereo pair of cameras. To do this A widely used assumption about diffuse reflection from
we need to understand about the image formation process materials is that they are Lambertian [9] meaning that
and the nature of reflection from objects. light radiance, L, incident through solid angle, dw, at an-

We describe the formation of image intensity values be- gle of incidence, 0, produces reflected radiance:
gnning with the familiar relation from Horn and Sjoberg
[7]: Lp cos ' dw

E = L, (r/4)(D/i)2 cos a, (1) independent of viewing angle. The independence of diffuse

relating image irradiance, E, to reflected radiance, L,. reflected radiance with respect to viewing angle makes
The lens diameter, D, image distance, i, and light angle, it theoretically feasible to associate radiance values with
a, incident on the camera lens are depicted in Figure 1. object points in a stereo pair of images. However, even
Equation 1 assumes ideal pinhole optics. The effective for ideal Lambertian diffuse reflectance the above discus-
diameter, D, of a lens can be controlled with an aperture sion outlines the practical difficulties in achieving an ac-
iris the sise of which is measured on an F-stop scale. As F- curate correspondence of pixel gray values produced from
stop is the ratio of focal length to effective lens diameter, reflected radiance in a stereo pair of cameras.
image irradiance is inversely proportional to the square of The physical reality of diffuse reflection makes it even
the F-stop value on a camera lens. Image irradiance is more practically difficult to associate diffuse reflected ra-
therefore very sensitive to F-stop. While a stereo pair of diance with object points across a stereo pair of images.
cameras can use identical lens models at exactly the same A recently proposed diffuse reflectance model for smooth
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dielectric surfaces [18], [[19] these proceedings] empiri- tion as r. function of imaging geometry and camera param-
cally verified to be more accurate than Lambert's Law, eters. For incident radiance L through a small solid an-
expresses the dependence of diffuse reflected radiance on gle, dw, at an angle of incidence, V, the gray value formed
both angle of incidence, 0, and viewer angle, 40, (see Fig- from viewing angle, q$ (assuming we subtract out the dark
ure 2), as reference, d) is:

Lp[1-F(,O,n)lcos,0[1-F(sim-i( ),/n)]dw (3) 1 = g[(ir/4)(D/i) 2cos4aLp[1-F(#,n)] x cosd
x [1 - F(sin, (- ), 1/n)] dw

where the functions, F0, are the Fresnel reflection coeffi- n
cients (15], and, n, is the index of refraction of the dielec- For a general incident radiance distribution, L(O), on
tric surface, and, p, is the diffuse albedo. Figure 3 shows an object point the gray value will be:
the significant dependence of diffuse reflection upon viewer
angle. Diffuse reflected radiance from an object point as
seen from the two different viewpoints of a stereo pair of cos4 a
cameras will almost always not be equal. I = g [(x/4)(D/i)2  f L(O)p[I-P(0,n)] x cos

The dependence of specular reflection upon viewpoint snin
is even more severe due to its highly directional nature x [1 - F(sin- n ), 1/n)] dw )l7
and the geometry of angle of incidence equals angle of
reflection. = g [t(r/4)(D/i)'cos4 a [1-F(sin- 1 (! -), 1/n) I p]/

LUGHT/

yxAwE INCIDENCE x [ oL(O)[1 -F(O,n)] cos.dw Ii/' (4)
, NORMAl AN=L

VIEMNG Consider this object point first illuminated with an in-
SAN=cident radiance distribution, L1 (O), and then illuminated

with an incident radiance distribution, L2 (0). From equa-
tion 4 the photometric ratio of gray values is:

F U - [ JLi(i)[-F(t",n)]cos ~dw ]'/ (5)
FIGURE 212 -[ fL 2(O) [1- F(#O,n)1cos4'dw 11/7 )

This photometric ratio is invariant to all camera param-
eters (except 7), viewing angle, 4$, and diffuse surface
albedo, p. Note that expression 3 for diffuse reflection
is a separable function with respect to both variables, 0,

ft..." 91t .......... . and, q$, and that is why the viewing angle cancels out in
A ... " .... the photometric ratio.

',., 3.2 Corresponding Photometric Ratios
-.2 Most cameras have a default setting of linear response

43, (i.e., 7=1.0). If not, the intensity values can be linearized
' 0 , 3 ... , by inverse 7-correction. If gray values are linear- or are
"" A" """o ... ... od m* linearized- for a stereo pair of cameras, then the invari-

FIGURE 3 ance of equation 5 guarantees that diffuse reflection from
an object point will have the same ratio 1 /12 with respect

3 Using Photometric Ratios For 3-D to both cameras. Specular reflection observed from any

Stereo of the stereo pair of cameras at the object point will per-
turb this invariance, but fortunately only diffuse reflection

The discussion and analysis of the previous section has exists at most object points on dielectric surfaces. The nu-
shown that pixel gray values by themselves are unreliable merical value of 1,/12 can be corresponded along epipolar
in being associated with object points in a well-defined lines in a stereo pair of cameras to subpixel accuracy us-
way for correspondence between a stereo pair of images. ing interpolation. This is done completely independent
We show that the ratio image produced from 2 images of of knowledge of the illumination distributions L1(O) and
diffuse reflection from the same scene respective to 2 dif- L 2(0b). For a smooth surface this produces a very dense
ferent (but not necessarily known) illumination conditions depth map from stereo correspondence. It is possible that
is invariant to the differences in physical characteristics of multiple points along an epipolar line can have the same
cameras discussed in the previous section, as well as view- associated photometric ratio and correspondence can be
point and diffuse surface albedo. Furthermore, these pho- aided by estimates of stereo disparity and disparity gra-
tometric ratios can be associated with well-defined physi- dient [1, [14.
cal constraints on object points making them suitable for With 3 different illumination conditions 2 unique ratio
robust correspondence in a stereo pair of images. This is images can be generated and now 2 photometric ratios will
particularly useful for recovering the 3-D shape of smooth be invariant for object points viewed between a stereo pair
featureless surfaces from stereo which has previously been of cameras, which can be used to further disambiguate ob-
very difficult to perform. ject points. More than 3 different illumination conditions
3.1 Photometric Ratios As An Invariant may provide redundant information. We intend to study

Combining equations 1, 2 and 3 gives us an expression the case of using more than 2 multiple illumination con-
which precisely relates pixel gray value, I, to diffuse reflec- ditions for stereo correspondence.
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3.3 Isoratio Curves and Physical Constraints 4 Experimental Results
The ratio of equation 5 expresses a physical constraint We tested the accuracy of a dense depth map deter-

consisting of the inter-relationship between the local sur- mined from correspondence of photometric ratios between
face orientation at an object point and the two illumina- a stereo pair of images on a cylinder and a sphere of known
tion distributions, L1 (0), and, L2(4,). Object points hav- ground truth. A pair of Sony XC-77 cameras with 25 mm
ing the same photometric ratios form equivalence classes lenses were used with a stereo baseline of 3 inches. The
that we term in this paper isoratio curves. Different cameras were not verged so that the epipolar lines were
than for isophotes which are curves of equal gray value the scanlines themselves. The radius of the smooth plas-
in an image, an object point belongs to an isoratio curve tic cylinder shown in Figure 4 is precisely 1 3/8 inches,
based on the geometric relationship of its surface normal and the radius of the smooth sphere shown in Figure 8
with respect to illumination independent of diffuse surface is a precisely 1 3/16 inch radius billiard cue ball. The
albedo. Corresponding photometric ratios along epipolar most frontal portion of these objects were placed 20 inches
lines between a stereo pair of images is identical to corre- from the stereo baseline which is far relative to the sises
sponding points that are at the intersection of equivalent of these objects themselves. Each illumination condition
isoratio curves and the epipolar lines. was produced from one of 2 point light sources incident

We analyze the physical constraints governing isora- at approximately ±25* separated along the baseline. Ac-
tio curves for distant point light source illumination. To cording to the analysis of the previous section separating
simplify analysis somewhat we consider a Lambertian re- point light sources parallel to the baseline increases the
flecting object. Consider point light source illumination at perpendicularity of isoratio lines with respect to epipolar
incident orientation in gradient space coordinates (pl, qi), lines. Again, it is not necessary at all to know how these
and (p2, q2). These produce the following reflectance maps light sources are positioned.
in gradient space respectively [6]; Figure 5 shows the photometric ratios that were used

1 + PIP + qiq to correspond pixels for the cylinder across one scanline
R, (p, q) + p2 + q2  1 -+ p2 + of the left and right stereo images. Note that there are

1 ++ q2 a couple of photometric ratios on the left hand side of
S+ P2p + q2q the left image scanline that are higher than any of the

R2 (p, q) = photometric ratios along the same scanline in the right
V11 + p2 + q2 /1 + p2 + q2 image. This is because the left camera sees a small por-

The surface orientation of object points with photomet- tion of the cylinder which is not in the view of the right
ric ratio, 11/12, is constrained in gradient space by the camera. The photometric ratio of a pixel in the left image
expression is corresponded to subpixel accuracy in the right image

_ __1___ _ 3 using linear interpolation of photometric ratios between
It = R, (p, q) 1 + pip + qlq x V + P2 + ql pixels. Figure 6 shows a color bitmap of isoratio curves
12 R2(p, q) - 1 + p2p + q2q V/1 + pe + q1' across the cylinder for different photometric ratios in the

left and right images. Figure 7a shows the height map of
resulting in the following linear constraint in p and q: the cylinder from the ground truth depth map of the cylin-

-l der and Figure 7b shows the height map of the cylinder
(P--k p2)p+(qi-k•q2)q + 1 = 0, (6) from the derived depth map from stereo correspondence

2 12 12 of photometric ratios. At a distance of 20 inches the av-
where erage depth error across the cylinder, before smoothing,

k =/1. + p• + q• was ±0.17 inches which is ±0.85%.
k /1 + pA + qR

Therefore object points lying on a particular isoratio curve
produced from two distant point light sources all have lo-
cal surface orientation that lies somewhere along this line
in gradient space. Diffuse reflection resulting from ex-
pression 3 introduces a slight nonlinearity in this physical
constraint. Finite light source distance also introduces
nonlinearity.

While distant light source illumination is a simple case,
analysis such as this provides important intuition about
the correspondence of photometric ratios. For best corre-
spondence we would like isoratio curves to intersect epipo- FIGURE 4 FIGURE 8
lar lines as perpendicularly as possible. We observe for Figure 9 shows the isoratio curves for the sphere for
equation 6 that incident light source orientations lying different photometric ratios in the left and right images.
along, q = mp, the line through the origin with slope m Figure 10a shows the height map of the sphere from the
in gradient space, produce photometric ratios with isora- ground truth depth map of the sphere and Figure 10b
tio curve linear constraints that are parallel to the line shows the height map from the derived depth map from
q = -(1/m)p. These linear constraints are perpendicu- stereo correspondence of photometric ratios. The aver-
lar to the line in gradient space along which the incident age depth error across the sphere, before smoothing, was
light source orientations lie. Hence, assuming nonverged ±0.09 inches which is ±0.45% depth variation at 20 inches.
cameras, there is the best chance that isoratio curves will Clearly this methodology using photometric ratios for
be most perpendicular to epipolar lines if the incident di- stereo correspondence can be very accurate. While this
rections of the light sources intersect the baseline for the methodology does not require any knowledge of each illu-
stereo pair of cameras, or at least the separation between mination condition, there are illumination conditions that
the light sources be parallel to this baseline, produce better measurement accuracy than others.
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5 Conclusion and Future Work [7] B.K.P. Horn and R.W. Sjoberg. Calculating the
We have proposed and demonstrated a new practi- reflectance map. Applied Optics, 18(11):1770-1779,

cal methodology for achieving accurate correspondence of June 1979.
photometric values between a stereo pair of images. The
advantage of using photometric values for stereo corre- [8) K. Ikeuchi. Determining a depth map using a dual
spondence is the ability to generate dense depth maps, as photometric stereo. International Journal of Robotics
well as determining the shape of smooth featureless ob- Research, 6(1):15-31, 1987.
jects. Because of characteristics that vary from camera to [9] Jcamera and the dependence of diffuse reflection on view- [9 .H. Lambert. Photometria sive de mensura de grati-

bus luminis, colorum et umbrae. Augsberg, Germany:
point, pixel gray values by themselves are unreliable for Eberhard Klett, 1760.
stereo correspondence of object points. We have intro-
duced the notion of using photometric ratios, produced [101 D. Marr. Vision. Freeman, San Francisco, 1982.
from different illuminations of a scene, for stereo corre-
spondence which are reliable because of their invariance [11] D. Marr and T. Poggio. A theory of human stereo
to various camera characteristics and viewpoint. Using vision. Proceedings of the Royal Society of London B,
only 2 illumination conditions we have demonstrated the 204:301-328, 1979.
high accuracy of depth determination from the stereo cor-
respondence of photometric ratios on objects of precisely [12] J.E.W. Mayhew and J.P. Frisby. 3D Model Recogni-
known ground truth. Because this methodology does not tion from Stereoscopic Cues. MIT Press, 1991.
require knowledge of illumination conditions, and works
well in perspective views, it can be applied both in ma- [13] B.T. Phong. Illumination for computer generated im-
chine vision and in the less controlled environments of ages. Communications of the ACM, 18(6):311-317,
computer vision. For instance, depth in an outdoor scene June 1975.
can probably be accurately determined from a stereo pair [14] S. Pollard, J. Mayhew, and J. Frisby. Pmf: a stereo
of images taken at different times with illumination vary- correspondence algorithm using the disparity gradi-
ing due to position of the sun and/or variation in cloud ent limit. Perception, 14:449-470,1985.
cover. Future work will entail using this stereo methodol-
ogy in these types of settings. [15] R. Siegal and J.R. Howell. Thermal Radiation Heat

In addition to proposing photometric ratios as a re- Transfer. McGraw-Hill, 1981.
liable way of corresponding a stereo pair of images, we
introduced the notion of the isoratio curve which unlike [16] G.B. Smith. Stereo integral equation. In Proceedings
isophotes are invariant to diffuse surface albedo. There- of the AAAI, pages 689-694, 1986.
fore isoratio curves are moie directly related to the actual
geometry of the surface itself and can give a large amount [17] D. Terzopoulos. The role of constraints and disconti-
of information to object recognition with minimal knowl- nuities in visible-surface reconstruction. In Proceed-
edge of illumination. We are currently studying the use ings of IJCAJ, pages 1073-1077, 1983.
of isoratio curves for improving the performance of object [18] L.B. Wolff. A Diffuse Reflectance Model for Dielectricrecognition in robotic environments. [8 .B of.ADfueRfetneMdlfrDeeti

Surfaces. Johns Hopkins Technical Report CS-92-04,
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Learning and Feature Selection in Stereo Matching

Michael S. Lew Thomas S. Huang Kam W. Wong
University of Illinois at Urbana-Champaign

Abstract - More experimental rigor in vision research
- ResParchers should address the integration

of isolated modules at each visual
We present a novel stereo matching algorithm which ocessing ulevel

integrates learning,feature selection, and surface

reconstruction. First, an instance based learning This paper addresses these two issues by performing
(IBL) algorithm is used to generate an approximation extensive empirical testing of our algorithm on a wide
to the optimal feature set for matching. SecondW range of real images, and integrating the modules of
develop an adaptive method for refining the feature learning, feature selection, and surface reconstruction.
set. This adaptive method analyzes the feature error to
locate the sources of mismatches. Then the search We will use the following assumptions and definitions:
through feature space for maximizing the class
separation function is guided by eliminating the We are given two intensity images, L and R.
sources of mismatches. Third, we introduce a method (xl,yl) denotes the image axes of L
for determining when apriori knowledge is necessary (xy) denotes the image axes of R
for discriminating between the correct match and the (xp,yr) denotes a specific point in (xRyl)
sources of mismatches. If the apriori knowledge is
recessary then we use a surface reconstruction model (xcysd denotes a specific point in (xrlYr)
to discriminate between match possibilities. We Correspondenc s o l
performed comprehensive comparison of our algorithm We (xpya and (fYc).Weare given n feature classes (e.g. intensity,
and a traditional pyramid algorithm on a wide set of Laplacian, etc.).
real images. Finally, extensive empirical results of Feature set refers to a set whose members are
our algorithm based on real images are presented. feature classes

Feature vector refers to a vector of size n
1 Introduction composed of the values of every feature class

at a specific point.
Stereo matching is an important problem in computer

vision. It is necessary for passive range finding. It In stereo matching, our goal is to find correspondences
greatly simplifies navigation and automated modeling between two intensity images of roughly the same
of objects and terrains. In human body measurement, content. Given knowledge of the camera calibration
we could automatically create models of human bodies and the correspondence (xp,yp) to (Xc,yc) we can then
for manufacturing apparel or create ergonomic reconstruct the 3-D coordinates of the object in the
equipment for the office or home use. In flight world.
simulation and the new area of virtual reality, we
could automatically create models of terrain and other This paper presents a new multi-feature stereo
natural environments, matching algorithm. We use the following features in

our algorithm:
In the final report of the NSF Workshop on
"Challenges in Computer Vision Research; Future - image intensity
Research Directions," two of the major - x derivative of intensity
recommendations on research topics and issues - y derivative of intensity
included [S. Negahdaripour and A. Jain 1992]. - gradient magnitude

- gradient orientation
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- Laplacian of intensity hierarchical structure based on different scale features,
- curvature of 2D edges specifically, bodies, surfaces, junctions, curves, and

edges. Hoff and Ahuja [1985] used zero-crossings to
In the sense of using "Landmark" as something which integrate surface modeling and stereo matching at a
is unique, we call our algorithm the "Landmark Stereo particular initial level and strictly approximated
Matching Algorithm" because the central idea of the toward the finest level. Surfaces were modeled as
method is to find a feature set for (Xp,yp) that will planar and quadratic patches. Barnard [1987] used an
make the point unique. annealing approach for finding global optima from

matching all points simultaneously. The match error
There are essentially three steps in our method which was an energy function combining intensity difference
is shown in Figure 1. The first step produces an and local changes in disparity. Cohen, Vinet, and
approximation toward the optimal feature set. The Sander [19891 used an edge hierarchy to integrate
second step refines the feature set toward the optimal segmentation with stereo matching.
feature set in the sense of making the selected point
(xpyp) unique. The third step treats the case where The progression of stereo research appears to be
the feature set is ambiguous. toward using more features of varying levels of

abstraction. The most recent work includes using a
Landmark Stereo Matching Algorithm variety of waveforms as primitives [McKeown and
(1) Find an initial feature set Hsieh 1992]. Marapane and Trivedi [1992] used

Method: apply a concept learning algorithm multiple primitives in a hierarchy [Marapane and
Input: values of the features at (x yp) Trivedi 1992]. In addition, Weng, Ahuja, and Huang
Output: a subset of the available features. ie. [1992] used edgeness, and positive and negative

(intensity, gradient magnitude) cornerness in a hierarchical based matcher.
(2) Improve the feature set

Method: find the feature set which maximizes This paper is organized as follows. Section 2
matching accuracy describes the instance based learning algorithm, which

Input: a feature set. ie. (intensity, gradient is essentially step 1 of our algorithm. Section 3
magnitude) describes the feature set improvement, which

Output: a feature set ie. (gradient corresponds to step 2 of our algorithm. Section 4
magnitude, Laplacian of intensity I describes the actual stereo matching once the feature

(3) If the feature set is unambiguous then use set has been found. It also explains the method of
the feature set for matching. resolving ambiguous matches, which is step 3. Section

Else apply apriori knowledge to resolve the 5 presents the results of using the algorithm upon the
matching ambiguity. set of real images. Section 6 summarizes the

Method: apriori knowledge is to fit to a thin conclusions and contributions.
metal surface model.

Input: a feature set 2 Instance Based Learning
Output: a correspondence, (xn,y,) -> (x,.,yr.)Figure 1. The Landmark stereo matching -algorithm. This section explores the problem of finding an initialfeature set in step I of Figure 1. Given that the

The history of stereo research has provided a rich and combinatorial explosion from searching for an optimal
extensive background for the ideas in our research. feature set may be prohibitive, we explore a method of
Moravec [1980] found interesting points in the left finding an initial point from which to begin the search
image and used the binary-search method of an image through feature space. Computational expense can be
pyramid to find the correspondences. Hannah made saved by generating a first approximation of the
improvements to his method but kept the optimal feature set using a concept learning algorithm
unidirectional coarse-to-fine search method [M. J. such as a neural net or an instance-based learning
Hannah 1988]. Marr, Poggio, and Grimson used zero- algorithm [Aha and Kibler 1989].
crossings of the Laplacian of Gaussian at different
spacings as matching primitives. Some preliminary terminology for instance based
They found matches at a particular initial level, learning algorithms is reviewed below:
enforced continuity of zero-crossings, and then
approximated the match down the pyramid from Exemplar refers to a list of two elements, where
coarse-to-fine [D. Marr and T. Poggio 1980; W. E. L. the first element is a feature vector, and the
Grimson 1981]. Lim and Binford [19871 used a second clement is a feature set. The
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classification of the feature vector is assumed where 8(ft, fT) is the metric between the exemplars in
to be the associated feature set.

Exemplar list refers to a list of exemplars. C which are in class, k, and the new instance, fT.
Then the classification for fT would satisfy

There are two stages in the instance based learning Max(S(k)),k = L. c
paradigm. First, a training set which has the form of
an exemplar list is used to build a concept, C. This is where c is the number of classes. Intuitively, this will
called the learning stage. Second, after the training set result in a few incorrect points being suppressed by the
has been fully processed, new input feature vectors are vote of the many correct points, as the Gaussian
classified using C. A simplistic IBL algorithm would weighting will give greater support to nearby
simply copy the training set to C for the learning stage. exemplars, and less support from farther exemplars in
A simplistic IBL algorithm classifies input feature feature space.
vectors as follows:

Another issue in designing instance based learning
(1) Find the euclidean distance between the input algorithms is minimizing the size of the concept C.

feature vector and the feature vector of each Note that in Figure 2, the classification for any new
exemplar in C. input feature vector will not change if we eliminate the

(2) Classify the input vector as the feature set of the exemplars on lines 1 and 4. In general, we can reduce
vector in C which has the minimum distance. the size of C by grouping exemplars, which are close in

feature space, into a single exemplar. Furthermore, if
Advantageous characteristics of instance-based the feature vector of an exemplar in C has a different
learning algorithms [Aha and Kibler 1989] are (1) Gaussian support classification than it's associated
simple representations for concept descriptions, (2) low classification, then we can delete the exemplar from C.
incremental learning costs, (3) small storage
requirements, (4) produce concept exemplars on The instance-based learning algorithm which is used
demand, (5) ability to learn continuous functions, and for the Landmark algorithm is based upon Growth
(6) ability to learn non-linearly separable categories. NT[Aha and Kibler 1989] with some modifications

toward improving training order independence
Consider an example where the input feature vector for (creating the discard list), and concept size
(xp,yp) is [100,9,20]. The feature vector of the minimization. Given that T denotes the training set,
exemplar on line (2) of Figure 2 is closest to the input NT2 is shown in Figure 3.
feature vector. Then, we would classify the input
feature vector as (intensity). Instance Based Learning Algorithm

(1) Initialize C to the set of fiu-st exemplar in T.
Line Concept C (2) For all subsequent training exemplars t in T:
(1) ([100, 0, 20], (intensity)) (3) k = Gaussian Support Classification of t by C.
(2) ([100, 10, 20], (intensity)) (4) If (k equals the associated classification of t)
(3) ([100, 30, 20], (orientation)) THEN add t to the discard list
(4) ([100, 40, 20], (orientation)) ELSE add t to C and check the discard list for
Figure 2. An example of a concept containing 4 incorrectly classified instances.
exemplars. The feature classes of the feature vector are (5) Delete redundant and noisy exemplars from
[intensity, magnitude, orientation]. Intensity and
orientation are the only possible classifications. Figure 3. NT2, the instance based learning algorithm.

This algorithm shows the first stage of
Our approach toward noise tolerance is to classify the instance based learning algorithms, where the
new element using the entire concept C instead of the concept is created.
nearest neighbor. Specifically, we accumulate the
support from each exemplar in C toward a particular 3 Feature Set Improvement
classification. The classification with the highest
support is then chosen. The Gaussian weighted This section explores the problem of improving the
support function is chosen as current feature set in step 2 of Figure 1. In order to

optimize the feature set, we need a function to
i(8(r~r)V•2 maximize. We shall use the concept of the class

S(k) =Y, e- 2 separation distance in formulating the optimality
lecC, criterion. Consider that each feature set will result in a
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specific error function with respect to (xpYp). The
optimal feature set should have the quality that its _ 1R-_ wx-M)
minimum is at the correct (xcYc). The ideal error J(w- F) =- 1e 2

function would have one minimum at the correct N.

(Xr,Yr), whereas the worst case error function would be where xG refers to the global minimum of the error

a flat plane, which would be the most ambiguous function, N. refers to the total number of minima, and

situation. M represents all x such that x is a local minimum but
not xG. Thus the class separation, J varies between 0

By defining the class separation distance in terms of and 1, the minimum and maximum class separation
the error function, we only need to consider the distances, respectively.
minima instead of every point in the image. This
allows us to significantly reduce computational In image space, sufficient conditions for a local
expense. Let us consider the case of multiple minima minimum are
in the error function. Each minimum is associated (w. F(x)). = 0 and (w- F(x)), = 0
with a different stereo correspondence, where only one
correspondence is correct. The other minima are then and
called sources of mismatches since they lead to
incorrect correspondences. (w" F(x)),, (w-F(x)), >

With respect to stereo matching, we want to maximize 1(w. F(x))Y. (w F(x)),, >0
the distance between the value of the error function at Now, the goal is to find w such that J is maximized, or
the correct correspondence and the value of the error
function at all the sources of mismatches. J(X) = max J(w- F)

w

Thus, we define a measure which will give a higher With consideration of all possible feature sets, we have

class separation distance to greater differences reached the discrimination limit of the feature classes

between minimums in the error function, that is, when and metrics. For suboptimal search we could stop
the difference between the first and second minima is searching at a sufficiently high class separation.
large, the class separation distance is also large. But, Henceforth, this will be called a distinct feature set as
we would also like the class separation distance to opposed to an optimal feature set. Nevertheless, it is
gracefully diminish with additional minima which are possible that there is no w which results in a single
close to the global minimum. The Gaussian function distinct or optimal minimum. This case is explored in
was chosen because of these properties. section 4.

Let n be the total number of available features, then the A straightforward method of feature selection is to
error function for a feature set is maximize J(.) between (xp yp) and R. Intuitively, this

Error = w F will result in obtaining the most distinct error function

where from the set of feature classes. If we were to use this
w = [w1 w2 ... Wn] approach, we would also use one of the traditional

with feature selection search methods: Branch and Bound
[Narendra and Fukunaga 1977] for the optimal feature
set, or one of many feature selection algorithms

ywi [Whitney 1971; Kittler 1978; Marill and Green 1963;
=Kutler 1978] for a less computationally expensive but

and suboptimal set. We have another interesting
F= [fl f2 ... fn] possibility.

where fn is the error due to the nth feature with respect
to (xpyp). Note tlhat fl refers to fl (xrYr), which is the Instead of maximizing J(.) between (xp,y,) and R, we
error from using the first feature class between (xp,yp) could maximize J(.) between (Xp,y,) and L. This
and every point in (xr,Yr). Similarly, f2 refers to possibility has the following significant advantages: (1)
f2(xr,Yr), which is the error from using the second we would know which minimum in the error function
feature class. corresponds to (xpyp) and which minima correspond

to sources of mismatches; (2) if we compute the error
Then if we choose Gaussian weighting, the class only at the minima for the features not in the feature
separation distance becomes set, then we could guide the addition of features to the
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feature set by adding the feature which has the greatest
total error at the minima. (1) The feature set, Fi, is distinct

(2) The feature set, Fi, is not distinct
The disadvantage is that once the feature set is
selected, we will have to search through R for the If the first is true, then the feature set appears to be
global minimum, which in the straightforward method able to discriminate between the correct match and the
would already have been performed. sources of mismatches. Consequently, we apply the

feature set to the corresponding epipolar line of R, and
Both methods share the important advantage of the determine the correspondence as the point of minimum
ability to determine when the feature set is insufficient error.
for matching (xpyp). This situation occurs when the
class separation distance is lower than a threshold, Jt. In the second case, the discriminatory ability of our
Although many stereo matchers will reject a feature set is insufficient to properly distinguish
correspondence if the final feature error is too high, it between the possible matches in R. There are two
is rare for a stereo matching algorithm to be able to options in this situation. We could reject the point, or
determine if there are too many points with low feature apply a heuristic to select one of the minima. Thus,
errors (ie. when J < Jr). the solution will depend upon the particular application

to which the feature selection is being applied.
Let Fc = list of n feature classes. The algorithm is
shown in Figure 4. For stereo matching we chose to decide between match

possibilities by fitting the previous matches and the

Feature Set Improvement Algorithm current match to the quadratic variation, E [Grimson

(1) Fi = Feature set approximation from the IBL 1981; Terzopoulos 1983, 1984, 1988].

algorithm with respect to (xp,y p)
(1.1) Jold = J(Fi) = Initial class separation U)2 + Q 2zu)2
(2) if the feature set is distinct ( J(Fi)>Jt ) then E= +

go to Stereo Matching AIgbrithm (in

Section 4 or step 3 of Figure 1.)
(3) Mt = minima in Fi applied to L and (xp,yp) The surface reconstruction method of Harris [1987]
(4) Apply Mt to Fc. was chosen because it could potentially be

(5) Let f be the element in Fc which has the implemented in hardware, and it can incorporate slope

maximum total error over Mt, information. The quadratic variation including slope

(5.1) If there are no features left (f=NULL) then go information is shown below

to Stereo Matching Algorithm
(5.1) Add f to Fi. =2[( )• 2 2 + 2 dy
(5.2) Delete f from Fc E ux-p +(uy-q)2 + P.+ + +
(5.3) if the current feature set is distinct (J(Fi) > JL)

then go to Stereo Matching Algorithm
(5.4) if J(Fi) > Jold then Joid = J(Fi); go to 5(5.5) Delete f from Ft. Go to 5 If we consider (xpyp) and the sources of mismatches

as a set of points in L. Then map them to the minima
Figure 4. The feature set improvement algorithm. in R, the interpolated depth can be used to compute

the quadratic variation. Thus, the correspondence

In summary, the central idea of the guided or adaptive which satisfies

method of finding distinct feature sets is to record the

points of minima of the current feature set with respect min ( w -F + Quadratic Variation)
to (xp,yp). Then, features which have the largest total
error at the minima are added to the feature set if Jincreases. Thus, we can perform an informed addition over (xp,yp) and the sources of mismatches in L andof features to the feature set. This information the minima in R is taken as the correct correspondence
constrains the searching in an intuitively pleasing of (xp,yp). Furthermore, if we have access to a dense
cainser surface map generated from previous coiTespondences

between L and R. then we can also use the surface map

4 Stereo Matching Algorithm to fit (xpyP) diretly.

In step 3 of Figure 1, we have two possibilities:
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The stereo matching algorithm which incorporates the Unfortunately, due to space limitations we can not
two cases is shown in Figure 5. include all of the visual results in this paper.

Stereo Matching Algorithm The volleyball poster in Figure 8 was chosen because it

(1) If the feature set, Fi is distinct, then go to 2 demonstrates the basic matching accuracy in object

Else go to 3 space. Since all of the points lie on a plane it is trivial

(2) Apply Fi to R and (xp,yp) to find the to check whether a match is correct. The greatest

correspondence, (xc,yc) deviation in the Z axis for the reconstructed surface

(2.1) Update surface reconstruction map z=f(x,y) from the average was 0.8 cm. Figure 9 shows the 8216

(2.2) Update the learning algorithm concept, C. matched points. Figure 10 shows the reconstructed

(2.3) STOP surface from the matched points using the Landmark

(3) If the reconstructed surface map is dense then algorithm.

set (xc,yc) to the minimum which agrees
closest with the surface reconstruction map. For the following images, the matches were checked

If the map is not dense then select the visually. Thus the expected accuracy is approximately

correspondence which minimizes the one pixel.

normalized sum of the feature error and the
quadratic variation, E over (xp,yp) and the The rock wall stereo pair in Figure 11 depicts a rock

sources of mismatches.. wall which changes rapidly in depth. This image was

(3.1) Update surface reconstruction map. selected because it shows the potential for a stereo

(3.2) STOP matcher to perform automated terrain mapping, and
for benchmark reasons. It was in the "difficult"

Figure 5. The stereo matching algorithm. category of the Stuttgart standardized image set

[Forstner 1986, Gulch 1988]. Figure 12 shows the
5 Results 2281 matched points. The reconstructed surface in

Figure 13 shows the mismatched points as sharp
In this section we test the Landmark algorithm and a jagged peaks.
conventional pyramidal algorithm upon the test set of
real images. We present the comparative matching The robots stereo pair in Figure 14 shows three
accuracies, and then we show the test images, and industrial robot arms. This stereo pair was chosen for
other visual representations of the matches found from the similarity to industrial manufacturing
the Landmark algorithm. environments. Note that points along the background,

the robots, and the curved white tubing were matched.
The algorithms were written in the C programming The outline of the two robots on the left can be seen
language, and were ported from a UNIX-based against the door. The outline of the robot on the right
Hewlett-Packard workstation to a 50-MHX Zeos side can be seen against the wall. Figure 15 shows the
486/AT. 1275 matched points. The reconstructed surface is

shown in Figure 16.
The Landmark Algorithm and a pyramidal algorithm

were tested on stereo pairs of real images. The results Figure 17 shows the face stereo pair. This stereo pair
are shown in Figure 6, and graphed in Figure 7. The was chosen to show the potential for human body
pyramidal algorithm is presented as a benchmark. The measurement using stereo matching. Note that the
data structure for the pyramidal algorithm is a resolution was sufficient to show the eyes and nose, but
Gaussian intensity pyramid. Linear search was not the lips. The matched points occur in curves,
performed at the starting level, and then hill climbing because these represent equal intensity areas on the
through the pyramid image structure was used to face. Figure 18 shows the 726 matched points. The
implement the refinement to the finest resolution. The reconstructed surface in Figure 19 shows that the eyes
matching feature was intensity and the metric was the are slightly too sunken. This is due to the limitations
normalized correlation coefficient. of the resolution of the image to resolve depth

The 256x256 images include a poster of a volleyball sufficiently accurately.

player, a person standing in front of a plain Finally, we briefly consider the effect of the learning
background, an outdoor scene of a street, and a rock module. The learning module is used in order to
wall image from the Stuttgart standardized image set reduce the time required to search for a distinct feature
[Forstner, W. 1986; Gulch, E. 1988], robot arms set, and that the time used by the learning module will
against a complex background, and a face. depend upon the size of the exemplar list as well as the
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size of the training instances. When we switched off The Landmark stereo matching algorithm satisfies all
the learning module, the average time was 1.03 of the above properties by (1) using a noise tolerant
sec/point. When we used an exemplar list of instance based learning algorithm to generate an
maximum length 100 with the seven features described approximation to the optimal feature set; (2) using an
in section 1, the average time was 0.44 sec/point, adaptive method to maximize the distinctness of the
Thus, the learning module resulted in more than selected point (xp.yp); (3) implementing the complete
doubling the matching speed. algorithm on a persbnal computer, (4) extensively

testing the Landmark algorithm upon a wide range of
Poster Person Street Wall Robots Face real images.

Pyramid - 78 71 48 61 67 5216x 16 Furthermore, from the final report of the NSF

Pyramid - 85 74 75 69 84 89 Workshop on "Challenges in Computer Vision
32x32 I Research; Future Research Directions," two of the

Pyramid - 83 84 68 74 79 95 major recommendations on research topics and issues

64x64 included [S. Negahdaripour and A. Jain 19921.

Landmark- More experimental rigor in vision research

Figure 6. A table of the comparative matching - Researchers should address the integration
accuracies in percentage of the Landmark algorithm of isolated modules at each visual
versus the pyramid algorithm. Note that the pyramid processing level
algorithm required a starting level at which the initial
matches were found by linear search. The numbers The Landmark algorithm addresses both of these
such as 16x 16, 32x32, or 64x64 refer to the resolution recommendations.
of the starting level.

The set of test images were real images of complex
scenes which would be found in practical applications

PSMW of • CWMUsuch as terrain mapping, human body measurement,

-0 and industrial manufacturing. For the purposes of
70 -bench marking, the Landmark algorithm was

Scompared to a single feature pyramid matching
3 ._ 0'*'= algorithm. The matching accuracy of the Landmark

lot algorithm ranged from 91% to 99% while the
0 matching accuracy for the pyramid algorithm ranged

from only 52% to 95%.

The main contributions of this paper are

Figure 7. The percentage of correctly matched points
over a variety of images between a pyramidal matcher (1) Integrating the modules of learning, feature
with starting resolutions at 16x16, 32x32, and 64x64, selection, and surface reconstruction.
and the Landmark algorithm. (2) Extensive empirical testing upon real images

(3) A method to determine when the feature set is

6 Conclusions insufficient to discriminate between match
possibilities.

For practical applications, a robust stereo matching (4) A method of guided maximization of the class

algorithm should be (I) sufficiently general to analyze separation criterion for selecting the best

the image content and select the appropriate features; feature set.

(2) it should use features which minimize the (5) A noise tolerant instance based leaning

possibility of a wrong match; (3) it should be able to algorithm

realize its own limitations. Spc-cffically, it should Future research will focus on recognition applications,
know when it is unable to find a reliable and accurate
match; (4) it should not require excessive in particular, facial feature recognition.
computational power nor resources; (5) it should be The software for this algorithm, and a stereo
sufficiently noise tolerant to match real world scenes as workbench complete with automated testing routines,
opposed to artificial or laboratory scenes. found correspondences,stereo test images, manually fudcrepnecs

and graphics input and output routines is available
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Figure 8. Volleyball poster stereo pair
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Figure 9. Matched points of the volleyball stereo pair

Figure 10. Reconstructed surface of the volleyball poster stcreo pair at different viewing angles
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Figure 11. Rock wall stereo pair
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Figure 12. The Matched Points of the Rock Wall Stereo Pair

Figure 13. Reconstructed surface of the rock wall stereo pair at different viewing angles. Note that the
rock wall is a slanted wall which slants away from the viewer. The spike in the left surface plot is due to a
mismaich.
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Figure 14. Robots stereo pair
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Figure 17. The face stereo pair
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Figure 18. Matched points of the face stereo pair

Figure 19. Reconstructed surface of the face stereo pair at different viewing angles
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Implementation and Performance of
Fast Parallel Multi-Baseline Stereo Vision

Jon A. Webb
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

A fast implementation of multi-baseline stereo many careful trade-offs that apply to vision sys-
vision on a parallel computer is described. For tems and parallel machines in general. This
three 24Ox256 images, the algorithm runs in 64 paper closely analyzes the performance of this
ms on 64 iWarp processors, exceeding 15 Hz one system in order to derive general lessons
frame rate. This is a speedup of 51 over an concerning the performance of parallel systems
implementation on a SPARC H and represents on computer vision problems.
the fastest correlation-based stereo vision sys-
tem reported. Implementing this algorithm this 2. Stereo vision algorithm
efficiently required careful trade-offs in algo-
rithm design and, particularly, in the imple- The stereo vision algorithm used here is
mentation of the basic communication KMnade-Okutomi multi-baseline stereo [2].opertion. Abuilingbloc aproac is Multi-baseline stereo uses multiple camerasoperations. A building block approach is along a single baseline to provide redundant
described for achieving best efficiency in com- along a single b ltov r ndmumatzn; he asi oeraion tht te pr- information. This allows a simple matchingmunication; the basic operations that the par- algorithm to give very good results.
allel computer can do at maximum speed are
identified, and then these primitives are used to The principle of multi-baseline stereo is
construct the communications functions needed illustrated in Figure 1. In normal stereo, there
by the algorithm. are two images, a reference and a match image.

For each pixel in the reference image, and for

1. Introduction each possible disparity, the error is calculated
between the reference and match images.

We have achieved the highest reported per- Ordinary Stereo
formance ever of a stereo vision system based Reference image Disparity
on correlation: 64 mns for 2404256 imagery, _______ /
exceeding 15 Hz on a 64-processor iWarp com-
puter. Achieving this was not simply a matter of
increasing processor performance but involved Matc image Mut ima

This research was supported by the National Science Reference image
Foundation under Grant MIPS 8920420 and by the
Defense Advanced Research Projects Agency and
monitored by U. S. Army Training and Doctrine in
Fort Huachuca, Arizona under Contract DABT63- Disparity
91-C-0035. Single minimum
The Government has certain rights in this material. Match images
Any views, opinions, findings, and conclusions or Multi-baseline Stereo
recommendations expressed in this material are
those of the author and do not necessarily reflect the Figure 1. Ordinary and multi-baseline stereo.
views of the National Science Foundation.They
should also not be interpreted as representing the
official policies, either expressed or implied, of the Ordinary stereo can give multiple false
U.S. Government. matches, as illustrated. Multi-baseline stereo
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reduces this problem by taking advantage of The difference step can be implemented eas-
redundant information. As illustrated, we have ily and efficiently in Adapt. However, if the
arranged the cameras so that a disparity of d in minimize step is implemented in the obvious
the first match image corresponds to 2d in the way processor utilization is poor. This is
second. It is unlikely that a pixel in the refer- because the number of rows h in the window is
ence image will match pixels at corresponding generally large compared to the number of
disparities in both images unless the match is rows per processor, for example, the image size
real. may be 240x256 and there are 64 processors,

while the window size is 13x13. When the win-
The error is calculated by summing the error dow sum is formed, each processor will be

between the images over a small window of repeating the work of other processors with
size hxw. With a naive algorithm, this calcula- overlapping rows. As a result, there will be lit-
ton over a image of size rxc will take rchw add dIe or no speedup as the number of processors is
operations. By maintaining row and column increased beyond the point at which the number
sums, we can reduce this to 4rc operations plus of rows per processor equals the window
some overhead. However this also reduces the height, or about 18 processors in this case.
available parallelism, because the row and col-
umn sums must be updated sequentially. The solution to this is to pre-calculate the

partial sum of the difference image in the differ-
3. Parallel design issues ence step. Each processor can simply add its

four rows together, forming a sum image,
Adapt was used to implement the stereo which is distributed to other processors before

vision algorithm. Adapt is a specialized lan- the minimize step. The minimize step then
guage for image processing on parallel comput- forms its initial row sum by adding in appropri-
ers that has been extensively described ate rows of the sum image, together with what-
elsewhere [3]. The Adapt compiler automati- ever image rows are needed to make the
cally parallelizes image processing programs, window height exactly h rows.
but requires the programmer to write them in
terms of a series of image to image operations, 4. Computation Issues
each of which is described as a program to be
applied at every pixel or every row of the Table 1 summarizes the performance of the
images in parallel. computation in the stereo program and com-

pares the performance of the assembly-lan-
Multi-baseline stereo vision divides natu- guage routines used with C-generated code.

rally into two steps, which are repeated for each Language Assembly C
disparity d: Difference 2.0 msi(257 36.0 ms (157

1. Difference. Calculate the difference image, I IMFLOPS) MFLOPS)

which is the pixel-by-pixel error between Minimie17.3 ms (369 40.I7 (
the reference image and the match images. MFLOPS) MFLOPS)

This is done by forming the sum of squared TOta, 39.3 ms 76.7 ms j

differences between the reference pixel Table 1. Stereo Computation Times
and the match images shifted within rows for three 240x256 images and 16 disparity
by appropriate multiples of d. levels, on 64 processors.

2. Minimize. At each pixel, sum the differ- There are two reasons why the assembly
ence image over the hxw window and code is significantly faster than the C code: (1)
compare this with the best error so far. If The compiler optimizes code primarily within a
less, replace the error value by the new basic block. In assembly coding, there is no
value and the previous disparity by d. such restriction. (2) Bugs in the C-step imple-
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mentation of the iWarp component, impact the - Distribute: distribute an image presently in
performance of the compute-and-access the SIB to other processors, by row
instruction, which allows floating point add and swaths. 80 MB/s.
multiply operations to proceed in parallel mwith • Collect: collect an image distributed on the
memory access operations. Since the C com-
piler must generate code for the most general the SIB. 80 MB/s
case, it cannot generate the most efficient code.
However, within Adapt these bugs either can- - Create working copy: obtain the grace
not occur or can easily be avoided, bands needed for processing a swath of the

image from adjacent processors 160 MB/
5. iWarp Communications Structure s.

Before discussing communications issues in These bandwidths are achieved (to within
the stereo program, we first discuss the commu- about 10%) in our implementation of Adapt on
nication capabilities of the iWarp computer, iWarp, even for relatively small amounts of
more detail is available elsewhere [1]. It is a data. To do this, we define primitive maximum
two-dimensional torus, each of which is con- bandwidth operations and then implement all
nected to its nearest neighbor by input and out- :ommunications operations in terms of them,
put ports, each of which can transfer data at 40 ensuring maximum performance for communi-
MB/s. Cell (0,0) of the processor array is con- cations. The primitive I/O for iWarp are:
nected to the SIB, a slcial iWarp processor 1. Receive. Data is taken from the pathway
that can communicate with I/O devices across a and stored in memory.
VME bus; all data processed by the iWarp array
must pass through the SIB. 2. Send. Data is taken from memory and sent

to the pathway,

SIB 0,0 0,1 03. Pass. Data is passed from one pathway to
• I another.

7, 7,1 4. Receive and pass. Data is be passed from
one pathway to another and simulta-

V neously copied into memory.
Figure 2. iWarp Physical Layout 5. Receive and pass twice. Data is be copied

into memory and also sent to two other
iWarp supports connections which define pathways.

communications routes among processors.
Within connections messages can be used to 6.1 Broadcast
allow more than two processors to communi- Broadcast can be implemented in a variety
cate on a single connection. Within messages,data can be sent word by word (called systolic) of ways. The SIB is connected to the processor
or with a DMA-like operation called spooling array at two points, so data can be sent eitherwhich transfers the data in the background g entirely from one connection or over both con-nections simultaneously. Once the data is inside
6. Communications Issues array it can be transferred from cell to cell in a

pipeline using receive andpass or in a tree fash-
The communications operations in Adapt ion by also using receive and pass twice. We

and their theoretical maximum physical band- will consider these three techniques: using one
widths are: SIB connection and pipelined transfer within

the array (method (a)); using both SIB connec-
• Broadcast: duplicate data presently in the tions and pipelined transfer (method (b)); using

SIB on all processors. 40 MB/s. one SIB connection and tree transfer within the
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array (method (c)).

All of these methods achieve the same max- 80.0

imum bandwidth. The only difference between m 60.0
them is in latency. These differences in latency
lead to a significant difference in performance, • 40.0
as illustrated in Figure 3.

40.0.40.0 .o .....2 .0
Total image size (bytes)

20.0 Figure 4. Performance of distribute.
2.6.3 Collect

210.0 Collect can be implemented using one or
two pathways, just as with distribute. The per-

0.0 32 1 formance of the two pathway method is shown
Message size (bytes) in Figure 5. As with distribute, the graph rap-

idly exceeds the maximum bandwidth with a
Figure 3. Performance of different single pathway (at 12K bytes the bandwidth is

implementations of broadcast. 42 MB/s), so this method is chosen. However,
the maximum bandwidth achievable in collect
seems to be 60 MB/s, which is less than the the-Currently, Adapt uses method (a) for broad- oretical maximum of 80 MB/s. This is due to a

cast, because it was the easiest to implement. bug in the iWarp hardware that limits the max-
imum physical bandwidth while transferring

6.2 Distribute into the SIB to 30 MB/s over any one physical

There are only two fundamentally different pathway.

methods of implementing distribute. In the first 60.0
method, data is sent systolically from the SIB 7
over one pathway; each cell executes a receive O50.0
followed by a pass. In the second method data
is sent from the SIB over two pathways, one • 40.0
that goes in a forward direction through the -
processors and the other that goes in a reverse 4
direction. Processors in the forward pathway c 30.0
act as before, while processors in the reverse it

pathway execute at pass followed by a receive. 2 0 .QK ..... 32K 64K 96K 128K
Total image size (bytes)

Since the second method has a maximum igure S. Performance of collect.
physical bandwidth of 80 MB/s versus 40 MB/
s for the first method, it is to be preferred if it
does not impose too high startup overhead. We 6.4 Create working copy
therefore examine the transfer rate for images
of various sizes in Figure 4. From this graph we In create working copy each cell initially has
observe that even for small images of 8K bytes, several rows of data, and will obtain some rows
the transfer rate exceeds the maximum that can of data above and below its rows from adjacent
be expected from using just orie pathway. We cells. The behavior is shown in Figure 6. From
therefore adopt the two pathway method.r this figure, it is clear that create working copy
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can be implemented as two s/uft operations, in 6.5 Stereo I/O times
which processor i sends its rows of data to the
next or previous processor in the array, depend- Table 2 summarizes the stereo a/O times.
ing on whether the shift is in a forward or Th e mesfr direbtly and create wor
reverse direction. Create working copy consists copy wer measured directly, and the times for
of one shift in the forward direction and one broadcast and collect were estimated from the
shift in reverse, work earlier in this section (these times could

not be estimated directly in a running system
since they are overlapped with other computa-

Proc. n-2 IP[oc. n-2 tion; thus, the times reported here are overesti-
mates in terms of the impact of these times on

j~oc. n-] MF - total execution time.)

Broadcast 1.92 ms
iroc. n] -------- Proc. n ] Distribute 3.00 ms

..."'. Create difference 8.76 ms
Proc. n+ ....... [. o. working co image

Before After sum image 4.90 ms
Collect 4.16 ms

Figure 6. Create working copy. Total 22.7 ms

Table 2. Stereo 1/0 times for three 240x256
Each shift operation can be implemented images and 16 disparity levels

with send and receive operations in the obvious
way. Using spooling, each processor can be 7. Scaling with number of procesors
sending and receiving data for both shifts
simultaneously, giving a maximum bandwidth Figure 8 gives the scaling of the stereo
of 160 MB/s. vision algorithm (for three 240x256 images

150.0 with a 13x13 summation window) from 16 to
64 processors. The execution time does not
decrease smoothly with increasing numbers of

ý100.0 processors because the program is sensitive to
(U the match between the number of rows in the

image and the number of processors. This leads
50.0 to a significant loss of efficiency with processor

numbers of 40, 48, and 56.I-

0 *%°12 1 2 rK V 81 1 5K 64K 250.0
Data transferred (bytes) 1200.0

Figure 7. Performance of create working _

copy. 150.0
.9

The performance of the 1/0 in create work- 100.0
ing copy is shown in Figure 7. The transfer rate 6
seems to peak at 150 MB/s, instead of the 50. T 4
expected 160 MB/s; some of this difference Number of processors
must be due to the same hardware limitation Figure 8. Scaling of performance with
that led to the maximum 60 MB/s transfer rate number of processors.
to the SIB in collect.
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8. Conclusions and Future Work speed stereo vision in the real world. The fast-
est VME-based framebuffer known to us is the

The stereo vision system described here is Ironics IV-FCFG, which supports a 5.12 MB/s
the fastest system for obtaining depth data pres- transfer rate, but requires transferring 4 bytes
ently available - it is even faster than laser for every pixel (in RGBO format), which qua-
ranging systems, for a comparable number of druples the data that must be transferred for dis-
depth measurements. Achieving this high per- play (the three input images can be transferred
formance was not simply a matter of reimple- as one RGB image). Using this framebuffer, we
menting an existing algorithm on a parallel have been able to achieve a cycle time for the
computer, but rather required rethinking of the stereo algorithm of 97 ms, including digitiza-
algorithm in one step, and particular attention tion, input, and output, for an image processing
to I/O within the algorithm: rate of 10 Hz. We are investigating other solu-

"* The introduction of the sum image in the tions that will allow us to achieve the 15 Hz
difference step made it possible to scale processing time possible on iWarp; several
the algorithm beyond 18 processors. solutions look promising.

" Thinking of the 1/0 in iWarp in terms of a Acknowledgments
collection of primitive operators that could
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Estimating Scene Properties from Color Histograms

Carol L. Novak Steven A. Shafer

Siemens Corporate Research School of Computer Science
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Abstract is defined by two color vectors: a body reflection
vector and a surface reflection vector. Every pixel's

One of the key tools in applying physics- color is a linear combination of these two colors. In
based models to machine vision has been 1987 Klinker and Gershon independently observed
the analysis of color histograms. We that the color histogram forms a T-shape or dog-leg
present here an algorithm for analyzing in color space [61, [2]. These histograms are corn-
color histograms that yields estimates of posed of two linear clusters, one corresponding to
surface roughness, phase angle between pixels that exhibit mostly body reflection and one
the camera and light source, and illumina- corresponding to pixels exhibiting surface reflec-
tion intensity. In addition, an understand- tion. This T-shape made it possible to identify char-
ing of the effect of these parameters upon acteristic body reflection and illumination colors.
highlight appearance allows us to make
better estimates of illumination color and However, there is more to be said about the shape
object color, of the color histogram. In previous work, we

showed that color histograms have identifiable fea-
We test our algorithm on simulated data tures that depend in a precise mathematical way
and the results compare well with the upon such non-color scene properties as surface
known simulation parameters. We also test roughness and imaging geometry [9]. In this paper
our method on real images and the results we show that three scene properties the illumina-
are reasonably close to the actual parame- tion intensity, the roughness of the surface, and the
ters estimated by other means. Our method phase angle between camera and light source
for estimating scene properties is very fast, may be recovered from three measurements of the
and requires only a single color image. histogram shape.

1. Introduction The functions that relate the scene properties to the
histogram measurements are interdependent and

Color histograms have long been used by the highly non-linear. Since an exact solution is not
machine vision community in image understand- feasible, we have developed a method that interpo-
ing. Color is usually thought of as an important lates between data from a lookup table. Our work
property of objects, and is often used for segmenta- has also shown how the colors observed in a high-
tion and classification. Unfortunately color is not light depend upon more than just the scene colors,
uniform for all objects of a given class, nor even but also upon the surface roughness and the imag-
across a single object. Therefore color variation ing geometry [9]. Thus, our estimates of these
must be modeled in some way. scene parameters allow us to improve initial esti-

mates of the illumination color. This means we are
The earliest uses of color histograms modeled the better able to discount the effect of the illuminant
histogram as a Gaussian cluster in color space [3]. to recover estimates of the object's reflectance.
In 1984 Shafer showed that for dielectric materials
with highlights, the color histogram associated We begin in section 2 with a brief explanation of
with a single object forms a plane [101. This plane the relationship between the color histogram fea-
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lures and the various scene parameters. Section 3
presents an algorithm to compute estimates of
these parameters from the histogram. Section 4 d
shows how our algorithm has been applied to real Highlight

images.cl c2 C1 c2

2. Understanding Color Histograms 4 b

When we talk about the color histogram, we mean Body Reflection Cluster
a distribution of colors in the three-dimensional
RGB space. For a typical imaging system with 8 indicates highlight

bits for each color band, there are 2563 "bins" into - indicates shading of
which a pixel may fall. In this work, we only con- body reflection
sider whether a bin is full or empty. We do not use Figure 1: Histogram of an object
a fourth dimension to record the number of pixels
which have a particular RGB value. A fourth body reflection with very little surface reflection. If
dimension would be difficult to visualize, but more there is no ambient illumination in the scene, this
significantly would also be dependent on such cluster begins at the black point of the color cube
things as object size and shape. (point a), corresponding to points on the surface

with normals 90 degrees or more away from the
In our work we use the "Dichromatic Reflection direction of the illumination. The point at the other
Model", where the light L reflected from a dielec- extreme of the body reflection cluster (point b),
tric object is the sum of two components: a body corresponds to the largest amount of body reflec-
component Lb and a surface component Ls [10]: tion seen anywhere on the object. Assuming that

L (1, 0i, Or, 0p) = Lb (X, 0, 0,,p) + body reflection is Lambertian, the magnitude term
Ls o3 x, 0i, 0,, OP) will obey the relation

Each of the two components is a function of the mb = yBbcOs (0) (1)
wavelength of light (k) and the angles of incidence where 0, is the angle of illumination incidence.
(0,), reflection (0r), and phase angle (0p). The The gain in converting photons measured by the
Dichromatic Reflection Model further states that imaging array into pixel values is represented by y.
each component in turn may be separated into a The brightness of the body reflection is represented
color term c that depends only on ., and a magni- by the term Bb. This factors in both the reflectance
tude term m that depends only upon 0,. 0, and 0p: of the object (albedo) and the intensity of the light.

L (X,, 0, Or, 0P) = cb (-.) mb (0i,0, ,O) + If the object exhibits all possible surface normals,
c, (L) m, (Oil 0,, 0v) the body reflection cluster will be full length and

Figure 1 shows a sketch of a typical color histo- densely filled. If the object is composed of a small

gram for a dielectric surface illuminated by a single number of flat surfaces, there will be gaps in the

light source. As labeled, the histogram has two lin- body reflection cluster. For this paper we will

ear clusters of pixels: the body reflection cluster assume that objects we are looking at have a broad,

and the highlight cluster. The first of these clusters continuous distribution of surface normals.

extends from the black corner of the cube (point a) A vector fitted to the body reflection cluster (from
to the point of maximum body reflection (point b). point a to b) will point in the direction of the body
The other cluster starts somewhere along the body reflection color, which is the product of the object
reflection cluster (point c) and extends to the high- color and the illumination color. If the illumination
light maximum (point d). color has been determined from analysis of the

highlight, the object color may be calculated by
2.1. The Body Reflection Cluster dividing out the illumination color, as shown in

The linear cluster that we call the body reflection some color constancy methods [ 11, [41, [5], [11 ].

cluster corresponds to pixels that exhibit mostly If we assume that there is some point on the object
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which has a surface normal pointing directly at the a given material [7]. Furthermore, for a wide range
light source (and which is visible to the camera), of plastics and paints, the indices of refraction are
then at that point cos (0i) = I. This means that the very nearly identical. For this paper we will
length of the fitted vector (the magnitude abI ) cor- assume that materials have an index of refraction
responds to the gain times the object's apparent of 1.5, corresponding to 4.0% Fresnel reflectance.
brightness Bb. If the intensity of the illumination is
also recovered from highlight analysis, then the 2.2.1. Length of Highlight Cluster
object albedo can be separated from the object's When looking at highlights on a variety of sur-
apparent brightness (assuming that the gain of the faces, we quickly observe that highlights are
camera had been calibrated). This makes it possi- brighter and sharper on some surfaces, while they
ble to tell a bright light shining on a dark surface are dimmer and more diffused on other surfaces.areodimmermandgmorehdiffused onbother surfaces
from a dim light shining on a bright surface. Very shiny surfaces exhibit only a tiny amount of
2.2. The Highlight Cluster scattering of the surface reflection, whereas very

matte surfaces have a great deal of scattering.

The cluster of pixels we call the highlight cluster We see from equation (2) that the sharpness of the
corresponds to pixels that show a non-negligible peak is determined by the standard deviation a,
amount of surface reflection. These pixels come and that the height of the peak is inversely propor-

from the areas of the image that form the highlight. tional to a. Intuitively this makes sense, since sur-

In the histogram, the highlight cluster starts where tion scatti ve r a sense, sinc sr
it intersects with the body reflection cluster (point face reflection scattered over a smaller area will be
in Figure 1) and extends upwards from there to the more "concentrated." A smooth object will have a
brightest point of the highlight (point d). small standard deviation of facet slopes (a) result-

ing in a long highlight cluster. A rough object will

In this presentation we use the Torrance-Sparrow have a large o, and so will exhibit a shorter cluster.
model of scattering [ 12]. This models a surface as a Equation (2) indicates that the intensity of the light
collection of tiny facets, with r describing the source B, also affects the magnitude of the surface
Istandard deviation of facet angles with respect to reflection, and thus the length of the highlight clus-
the global surface normal. Smooth surfaces will ter. It is obvious from equation (2) that the length is
have a small standard deviation while rougher sur- directly proportional to this brightness.
faces will have a larger standard deviation. The
equation for scattering gives the amount of surface Equation (2) also predicts that imaging geometry
reflection as will have an effect upon highlight magnitude, as

SO)aindicated by the cos (e) term in the denominator
M = exp P 0'1 (2) and the attenuation term G in the numerator. The

acos (0,) (. 2) 2 I effect on the length of the highlight cluster is small

where 0, is the off-specular angle and 0 is the but noticeable, causing the length to increase as the
angle of reflectance. B, is the intensity of the illu- phase angle is increased.
mination, y is the camera gain, and ca is a constant 2.2.2. Width of Highlight Cluster
that includes the facet size (a variable in the origi-
nal Torrance-Sparrow model). G is the attenuation Another difference between histograms for smooth
factor and is a complicated function of imaging and rough surfaces is the width of the highlight
geometry (see [121 for details), cluster where it meets the body reflection cluster

F is the Fresnel coefficient that describes the per- (the distance from point el to point c2 in Figure 1).

centage of the light that is reflected at the interface; The highlight cluster will be wider for rougher sur-

it is a function of geometry, wavelength, polariza- faces, and narrower for smoother surfaces. This is

tion state, and index of refraction of the material in because rougher objects will scatter surface reflec-

question. However it is very weakly dependent on tion more widely, over a larger number of reflec-

incident angle and wavelength (over the visible tance angles.

range), so we will follow the Neutral Interface In the color histogram, any amount of surface
Reflection model and assume that it is constant for reflection results in pixels that are displaced from

1015



the body cluster in the direction of the illumination described the highlight cluster as beginning "some-
color. If we take any highlight pixel and project where" along the body reflection cluster. Now we
along the surface color vector onto the body reflec- will show how to pinpoint the location. The dis-
tion vector, we can tell how much body reflection tance along the body reflection cluster where the
is present in that pixel. If we consider all the pixels two clusters intersect (the length of ac divided by
in the highlight area of the image and look at how the length of ab in Figure 1) shows the amount of
much body reflection is in each of them, we obtain body reflectance at those points on the surface that
a range of body reflection magnitudes. The rougher are in the highlight. Assuming that body reflection
the surface, the larger the range of body reflection is Lambertian, the amount of body reflection is
magnitudes, since the highlight is spread over a proportional to the cosine of the incidence angle. If
larger number of surface normals. This property is the two clusters intersect at the maximum point on
independent of the object's size and shape. the body reflection cluster, it means the highlight

occurs at those points that have the maximum
The brightness of the illumination, B,, will also ount of b o in , wh ere s fe normals

have an effect on the width of the highlight cluster, point directly at the light source. If the two clusters
As the light intensity is increased, points on the pondietyathlgtsur.Ifhewocses

meet halfway along the body reflection cluster, the
surface that had amounts of surface reflection too highlight must occur at points with surface normals
small to be noticed may become bright enough to pointing acos ( 1/2) or 60 degrees away from the
be included with the highlight pixels. Clearly the illumination direction.
width will grow as the light intensity grows. How-
ever the growth is very slow, much slower than the If the body reflection is Lambertian, it does not
linear growth of the length with increasing illumi- depend in any way upon the angle from which it is
nation intensity. This means that the ratio of the viewed. Thus the body reflection does not tell us
cluster length to the width grows as the illumina- anything about the camera direction. However, the
tion is increased, making it possible to distinguish surface reflection is dependent upon both the illu-
a bright source illuminating a rough object from a mination and camera directions. If we ignore for a
dim source illuminating a shiny one. moment the I/cos (0 r) term in equation (2), we

see that the maximum amount of surface reflection
Although the width of the highlight cluster does will occur at those points on the surface where the
not depend upon the object's size and shape, it does angle of incidence equals the angle of reflection.
depend upon the phase angle. To see why, consider Thus if the highlight occurs at a point where the
a highlight that spreads 15 degrees in every direc- surface normal faces 10 degrees away from the
tion from its maximum. If the camera and light light source direction, the light source and camera
source are separated by 30 degrees, the perfect must be 20 degrees apart with respect to that point
specular angle will be at 15 degrees with respect to on the surface.
the illumination direction. The highlight will
spread over points with surface normals ranging The I /cos (0r) term in equation (2) means that the
from 0 degrees to 30 degrees. (For this explanation, maximum amount of surface reflection will not
we will ignore the I /cos ( 0,) term in equation always occur precisely at the perfect specular
(2).) The amount of body reflection at these points angle. This is particularly true of rougher surfaces
will vary from cos (0) = 1.0 to cos (30) = 0.87, a where the highlight is spread over a wide range of
width of 0.13. On the other hand, if the camera and reflectance angles, causing significant variations in
light source are separated by 90 degrees, the per- I/cos( 0r). This causes "off-specular peaks"
fect specular angle will be at 45 degrees, with the described in [ 131. The result is that the intersection
highlight spreading from 30 degrees to 60 degrees. is slightly dependent upon the surface roughness.
Now the amount of body reflection will vary from
cos (30) = 0.87 to cos (60) = 0.50, giving a much 2.2.4. Direction of Highlight Cluster
larger width of 0.37. The highlight cluster is usually long and narrow in

2.2.3. Intersection of Clusters shape and a vector can be fitted to it (from point c
to d in Figure I). Klinker argued that this vector

When we introduced the diagram in Figure 1, we will usually correspond closely to the surface
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reflection color [5]. This is true for smooth objects with respect to the highlight cluster direction, so
where the highlight has a small area, and for imag- measurements of these features depend upon the
ing geometries where the body reflection changes estimate of the illumination color. If that direction
slowly over that area. In this case, the amount of is incorrect, the other histogram measurements will
body reflection at the base of the highlight cluster be affected. Obviously these factors are interdepen-
and the amount at the tip varies by a small amount. dent. Therefore we solve for the roughness, phase

On the other hand, if the object is rough and the angle, and illumination intensity simultaneously.

highlight occurs on a part of the object where the 3. Analyzing Color Histograms
cosine of the incidence angle changes more rapidly,
then the amount of body reflection at the base of The previous section described the relationship
the highlight cluster may vary significantly from between scene parameters and histogram features.
the amount at the tip. This has the effect of skewing Understanding the relationship is the first step in
the highlight cluster away from the direction of the analyzing color histograms. The next step is figur-
illumination color. The estimate of the illumination ing out how to actually exploit the histogram to
color made from fitting a vector to this cluster will recover quantitative measures of scene properties.
be somewhat inaccurate.

The known image parameters which can be mea-
An inaccurate estimate of illumination color will, sured from the color histogram are the body reflec-
in turn, bias estimates of the object color. The vec- tion cluster's length and direction; the highlight
tor fitted to the highlight cluster is a reasonable first cluster's length, width, and direction; and the inter-
estimate of illumination color, but we now know section point of the two clusters. This gives four
that it may be skewed. If we know the surface scalar values and two vector quantities. They will
roughness and imaging geometry, we can calculate be referred to by the following variables:
the amount of skewing and compensate for it. 1 - length of highlight cluster

In sections 2.2.1 and 2.2.2 we showed that the w - width of highlight cluster
roughness of the object affects the length and width i - intersection of two clusters
of the highlight cluster, but that there is some b - length of body reflection cluster
dependence on imaging geometry. Section 2.2.3
showed that the imaging geometry determines the d
intersection of the two clusters, but that there is db- direction of body reflection cluster

some dependence upon roughness. Furthermore, The unknown scene parameters which we would
the intensity of the illumination affects the length like to recover from the histogram can also be
and width of the highlight cluster as well, although divided into scalar values and vector quantities.
in different ways. The degree of dependence of These variables are:
each histogram measurement upon the scene
parameters is characterized in Table 1. O - ptal roghe____ ___ ________________________ 0, - phase angle

muminatlion B, - illumination intensityRoughness Phase Angle Intensity B, - object albedo

Length strong weak strong - chromaticity of light source
Width strong strong weak ,, - object chromaticity under "white" light

Intersection weak strong noneDependenion wea ostrongram fues For convenience, we have separated the illumina-
Table 1: De dence p gramters tion and object reflectance into intensity compo-

upon nents and chromatic components. As we

In this section we have shown that the direction of mentioned in section 2.1 the object's chromaticity
the highlight cluster may be skewed away from the c,, may be recovered in a straightforward way from

directiohi of the illumination color, depending upon the direction of the body reflection cluster di and

the roughness and the phase angle. The highlight the color of the light source ',. The red component

cluster length, width and intersection are defined of the body reflection vector is divided by the red
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component of the light source color, the green described in section 2.2.4, the highlight color may
component divided by the green component, and be estimated by fitting a vector to the pixels that
the blue component divided by the blue compo- form the highlight cluster. However that cluster
nent. The result is normalized to length I. may be skewed.

The albedo of the object B, is also recovered in a This is shown in Figure 2, which is the histogram
straightforward manner from the length of the body of a simulated rough object illuminated with white
reflection cluster and the illumination intensity, light. The dotted "measured" line shows the direc-
The length b is equal to the maximum amount of tion calculated for the best fit vector to the high-
body reflection, where cos (0,) = 1. The object light cluster. (In this case the best fit line to the
albedo B, is simply the cluster length b divided by cluster will not pass through the brightest point in
the illumination intensity B, and by the gain y. the highlight cluster.) The position of the dotted

line in Figure 2 shows the projection of the bright-
For the remaining unknowns the situation is not s est highlight pixel onto the body reflection vector

simpe. romsecton weknowtha th lenth is along the best fit vector, since the length is calcu-
related to surface roughness and illumination inten- lo m the bes ghtest pixe the ieal" in cdi-

sity bu isals depndet uon magig gomery. lated from the brightest pixel. 'Me "ideal" line indi-
sity, but is also dependent upon imaging geometry. cates the direction of the actual illumination color.
The remaining knowns (1, w, i. d,) and unknowns The skewing causes the measured length to be
(a, 0 , B,, ý,) will be examined in detail in the longer than it would have been if the correct illumi-
next few sections. nation color had been known.

3.1. Exact Solutions • 200

Equations (1) and (2) describe the amounts of body 150
and surface reflection, mb and m,, as a function of
imaging geometry and light intensity. Equation (2) 1 ....... easur
also shows how the amount of surface reflection -- /aalsur

varies with the roughness a. Unfortunately it is not 50

possible to directly solve for these scene parame-
ters from the histogram measurements. For exam- 00 50 100 150 200
pie, the length of the highlight cluster indicates the red
maximum amount of surface reflection seen any- Figure 2: Skewed length measurement
where. For given values of a, OP, and B,, the
length I may be calculated This contrasts the "ideal" length that we would like

to obtain from the histogram, with the "measured"

[-FG (0, e,, 0,) exp (- es1(3) length that can actually be recovered without a pri-
GL " cos (or) ,2a 2 )J ori knowledge of the illumination color. When the

over all values of 9i, 0 r, and 0,. However, since G highlight is skewed, the values measured from the

contains several trigonometric functions and the histogram will be different from the ideal values
roughness term a occurs both inside and outside that would be calculated from analyzing equation
the exponential, there is no analytic solution for d (2). In the absence of a priori information, we can
themexpnengther is nonly measure what is available in the histogram.
from the length I. How do we derive the ideal values from the ones

Although equation (3) has no analytic solution, it that are measured? Once that is done how do we
might be possible to solve it iteratively, through recover the image parameters in which we are
some sort of search (for example by gradient interested?
descent). However that assumes the length I can be
accurately measured from the histogram. In 3.2. Approximate Rolution
section 2.2.1, the length is measured from the tip of
the highlight cluster to its base along the direction approach isto recve s ramete by an
of the highlight color. Unfortunately the highlight approximate method, directly from the initial histo-
color is not typically known in advance. As gram measurements. Therefore, we do not need to
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recover "ideal" histogram values from the "mea- points. These values come from simulating an
sured" ones. The ideal values of the histogram are object with those parameters and then measuring
a useful abstraction since their relationship to scene the length, width and intersection of the highlight
parameters is easy to explain. However they cannot cluster in the resulting color histogram. By F:mu-
be obtained from the histogram without knowledge lating a large range of roughness values, phase
of the illumination color, angles, and illumination intensities, we create

Figure 3 shows the variation in the measured lookup tables of length, width, and intersection
lengure as soughnes vandrhatn ange ae chased. measurements. We then search through the lookuplength as roughness and phase angle are changed. table to find the scene parameters that correspondEach value of length describes a contour within the to a given set of histogram measurements.

space of roughness and phase angles. Given a

length measurement from a histogram, the associ- The other question is whether a unique solution
ated scene parameters must lie somewhere on that exists for a given triple (1, w, i). If some triple has
contour. When illumination intensity is considered more than one solution, that means that different
along with roughness and phase angle, these three combinations of scene parameters can give rise to
scene parameters form a three dimensional param- identical histogram measurements. It also means
eter space. A length measurement would then that a search through the contours in parameter
describe a two dimensional surface within that space cannot be guaranteed to converge. We have
space, showing the possible roughness, phase explored the distribution of possible (i, w, i) tri-
angle, and light intensity values that could give rise pies, and found that each set of measurements is
to a histogram with that length highlight cluster, associated with at most one set of scene parame-

ters. (Of course, many points within the measure-
ment space will not correspond to any set of scene
"parameters.) The only remaining problem is to

lie determine which set of scene parameters is associ-
AO "ated with a given measurement triple.

3.3. Generating Lookup Tables

The range of roughness values, phase angles, and
illumination intensities used to create the lookup

"_, 'table is shown in Table 2. The roughness value is
P ,P 41 .00t• ,the standard deviation of facet angles with respect

to the global surface normal. The phase angle is the
gnangle between the camera and light source with

changes in roughness and phase angle respect to the object. The light intensity is a per-centage of a hypothetical light's maximum output.
The intersection and width measurements will also
describe surfaces within the parameter space. The Min Max Increment Total Used
hope is that the surfaces for each of the histogram Roughness 10 150 20 8
measurements will intersect at a single point in the Phase Angle 00 900 10 10
parameter space, making it possible to recover Intensity 50% 100% 10% 6
unique values for surface roughness, phase angle, Overall 480
and illumination intensity. So obvious questions
are: how can we generate these contours of equal- Table 2: Range of parameters
length, equal-width, and equal-intersection; and dothes cotous itersct o gve niqu soutins? For each set of roughness, phase angle, and lightthese contours intersect to give unique solutions? i t n i y v l e , a s m l t d o j c s g n r t dintensity values, a simulated object is generated.
Section 3.1 pointed out that there is no analytic The histogram associated with the object is auto-
solution to generate t' e contours. However, matically separated into body reflection and high-
Figure 3 shows how the nighlight cluster length light clusters. The technique is similar to that
varies with roughness and phase angle at discrete described in [5]. Vectors are fitted to each of the
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clusters. B, = hn, (1, w, i) (10)

Once the direction of the highlight cluster has been Generating the lookup table is obviously very time
measured, the vector d., is used to project all hiqh- consuming (about 8 hours on a SPARC II) since it
light pixels onto the body reflection vector db. involves calculating almost 500 graphics simula-
These projections determine the relative contribu- tions. However, the table generation and coefficient
tions of the vectors in each pixel. Each color pixel calculation only need to be done once and can be
P in the histogram can then be defined as done ahead of time. At run-time our system takes a

p = m, + mbd/ histogram from an image with unknown parame-ters and automatically separates it into two clusters
This is essentially the dichromatic equation, and measures their dimensions. The polynomial
although the highlight cluster direction d, may dif- equations are then applied to quickly estimate the
fer from the actual surface color. The histogram roughness, phase angle, and illumination intensity.
measurements are then defined simply as The run-time portion is very quick, taking less than

I = MAX (mS) over all ' (4) 3 seconds on a histogram containing about 3600
pixels. If the histogram has already been split into

b = MAX (mb) over all • (5) clusters in the process of segmenting the image [61,

= mb/b for that ' with maximum m, (6) the time to calculate the scene parameters is less

w = [MAX (mb) - MIN (m.) I /b over all than I second.

' for which m,> T (7) To test the polynomial approximations, one hun-

The threshold T is set according to the noise level dred test images were simulated and then analyzed

of the camera. by our method. The surface roughness, phase
angle, and illumination intensity values used in the

3.4. Calculating Roughness, Phase Angle, test images were chosen by a pseudo-random num-

and Illumination Intensity ber generator. The test values were constrained to
lie within the ranges used in the lookup table.

Once the length, width and intersection have been
measured, the problem is to determine which scene The calculated values of ;, p, and B, were com-

parameters will give rise to that shape histogram. pared with the original values used to generate the

Our work uses a polynomial approximation to the image. In almost all cases the calculated values

lookup table data. We assume that the roughness were close to the original ones. However, for 2% of

can be approximated as a polynomial function of the cases, the values were very obviously wrong.

the length, width, and intersection measurements For example, a negative value of roughness or illu-

of the histogram. mination intensity is clearly unreasonable. Fortu-
nately, bad values can be detected automatically,

a - (1, w, i) (8) by checking to see if recovered values are within

A + Bl + Cw + Di + the allowable range. Recovered values that fall out-

El2 + Fw 2 + Gi2 + Hlw + Ili + Jiw + ... side that range indicate that a different method
should be used to recover the scene parameters. We

The lookup table provides the means for calculat- hav e und that the prob e p arsmifeasthir

ing the coefficients of the polynomial. It provides degree polynomial is used instead, although the

almost 500 sets of histogram measurements and the deree rroryno al case d is teadht l thi gher.

associated roughness values. Least squares estima- overall error on all cases is slightly higher.

tion is used to calculate the best fit nth degree poly- Table 3 shows the results for the remaining 98
nomial to the data. A fourth degree polynomial is cases where the fourth degree polynomial pro-
used in our experiments. duced reasonable estimates. It shows the average

Similarly, the phase angle and illumination inten- error in recovering the parameter, and also reiter-
ates the step sizes used in the table. The errors aresity are also approximated as polynomial functions loethnheabersuinhwnghene-

of the histogram length, width, and intersection. polation method is fiyfcv
polation method is fairly effective.

0, =g,(,wi(9 The results for calculating roughness and phase
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Parameter Average Error Table Resolution calculating Skew. In those 2% of the 100 test cases,
Roughness 1.200 20 the program did not attempt to calculate the illumi-

Phase Angle 4.40° lo nation color. For the remaining 98 test cases, the

Intensity 8.18% 10% skew angle was used to calculate the illumination
color. The results are shown in Table 4. The error
in estimating skew is the difference between the

Table 3: Results on simulated data correct skew angle and the skew angle calculated
by our method. The table shows the average error

angle are very good. They show that these non- over the 98 cases considered. It also shows the
color parameters may be calculated with reason- minimum, maximum and average of the actual
ably high accuracy just by considering the shape of skew values. For 69 of the test images, the scene
the color histogram. The error in calculating illu- parameters were such that the highlight was
mination intensity is a bit higher, although it still skewed by more than 10.
provides a useful estimate.

Average error 1.730

3.5. Calculating Illumination Chromaticity Average skew 8.630
Minimum value 0.01 o

As we pointed out in section 2.2.4, the highlight Maximum value 2.0

cluster may be skewed from the direction of the Maximum value 27.50

illumination color. The skew is particularly pro- Number of skews > i° 69

nounced for large phase angles and rough surfaces. Cases considered 98/100

These two factors determine how much the body Table 4: Results in calculating skew
reflection changes over the area of the highlight.

Therefore, if we know or can calculate the We will describe our algorithm's performance on
one of the test simulations. The test image is a red

surface roughness and the imaging geometry, we cylinder under white light. The simulation parame-
can in turn calculate the amount of highlight skew- ters are given in the first column of Table 5. The

ing. Once the skew is known, its effect can be sub- toram aiae d wt this image is sho
tratedfro th diecton f te hghlghtcluterto histogram associated with this image is shown in

tracted from the direction of the highlight cluster to Figure 4. The program automatically divided the
give the true color of the illumination, histogram into body reflection and highlight clus-

Section 3.4 showed how to estimate the roughness ters. The measurements made of the histogram are
and phase angle from the color histogram. These shown in the second column of Table 5.
estimates are now used to estimate the skew.
Again, a lookup table approach is used. When the Simulated Image Histogram Recovered

simulations are performed to fill the lookup tables

with measurements of length, width, and intersec- C,5 d5 = C. =
tion, the skewing of the highlight is also calculated [0.58, 0.58, 0.581 [0.81, 0.45, 0.37] [0.59, 0.57, 0.571
and stored in the table. Then a polynomial function o = 12.060 1 74.1 ; = 11.990
is used to calculate the skew angle as a function of = 63.300 = 0.47 0 = 67.05°
roughness, phase angle, and illumination intensity: P

Skew-=-An(a, Op, B) (11) B, =90% i =0.51 B, =89%

A third degree polynomial is used in our experi- Table 5: Example results
ments. The direction fitted to the highlight cluster is sig-

Once the skew has been calculated, the illumina- nificantly skewed away from the direction of the

tion color may be calculated from the measured actual illumination color. It represents a much red-
direction d, and the calculated skew angle. Obvi- der color than the white illumination color, and so

ously, if the polynomial functions described in would be a poor estimate of the illumination color.

section 3.4 produce bogus estimates of the rough- It would also yield an inaccurate estimate of the

ness, phase angle, or illumination intensity, there is object color when the illumination color is divided

little point in plugging them into the equation for out of the body reflection color.
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80 s4. Applying the Algorithm to Real Images
70.

60 Real images present many challenges for vision
so- researchers. These include camera noise, clipping,
40 chromatic aberration, blooming, color imbalance,
30 ýetc. We have modified our algorithm in systematic
20 ways to adapt to these conditions. These modifica-
10 tions are described in [8]. We will describe here

0 20 4 60 80 1oo o 140 160 some experiments we have performed to test our
red algorithm on real images.

Figure 4: Histogram of simulated image

Applying polynomial equations (8), (9) and (10) to 4.1. Estimating Phase Angle
the length, width and intersection measurements, An experiment was set up in the Calibrated Imag-
the program estimated the scene parameters shown ing Laboratory (CIL) at Carnegie Mellon Univer-
in the third column Table 5. We then applied sity to test our algorithm's ability to estimate phase
equation (11) to these estimates of y, Op, B.0, and angle from real images. A series of images was
estimated the skew between the highlight cluster taken with the camera and light source separated
direction and the actual illumination color to be by an increasing phase angle. The angle was esti-
18.750. Applying this skew to the cluster direction mated with a large protractor and strings to indicate
d, produced an estimate of the light source chro- the direction of the camera and light source. The
maticity that is very close to the original white angles measured by this method were estimated to
color. The complete algorithm is diagrammed in be accurate to within 5 degrees.
Figure 5.

The first image in the sequence was taken when the
Off-line: camera and light source were approximately 10

I Generate tables of 1, w, i, 4, by simulating degrees apart. The phase angle was then increased

range of values for a, Op, B,. by 10 degrees between each picture. The last image
in the sequence was taken when the phase angle

between the camera and light source was 90

Calculate functions f, g, h, A. degrees.

The program automatically split the color histo-

Run-time: gram of the object into two clusters, fit vectors to
those clusters, and calculated the values of length,

Separate histogram into two clusters, width, and intersection. This was repeated for each
Measure 1, w, i, 41 image in the sequence. The polynomial approxima-

tion described in section 3.4 was used to calculate
the phase angle from the length, width and inter-

Calculate y, 0, B,. section measurements. The results are shown in
Figure 6. The dotted line shows the correct answer,
using the phase angle measured by the protractor as

illumination ground truth. The average error in estimating angle
Calculate color of l oc. is 9.960.

Overall the method developed for estimating phase

Calculate color C1, and albedo B,, of object. angle from analyzing color histograms works fairly
I well, especially considering that the ground truth

measurement of the phase angle is fairly crude.
: alrieth ors Also the lookup tables were calculated without cal-

ibrating the simulated images to the conditions in

the CIL. In particular, the noise of the camera was
not measured precisely and the light source used in
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Figure 6: Results for calculating phase angle fron Figure 7: Results for calculating illumination
real images intensity from real images

the experiments was not a point source as was used trick-or-treating; in the lower left is a terra-cotta
in the simulations. ball; in the lower right a red plastic beach ball. In

the center is a red plastic pail.
4.2. Estimating Illumiation Intensity Table 6 shows the roughness calculated by the sys-

A second experiment was performed in the CIL to tern for each of these objects. The objects are listed
test the performance of the algorithm at estimating in order of decreasing roughness, as estimated by
illumination intensity. The light was plugged into a human observation. The calculated roughness
variable voltage supply with a manually operated number is the standard deviation of facet angles.
dial. A sequence of images was taken under
increasing levels of illumination, while the imag- Object Calculated Roughness
ing geometry and target object were kept constant. Alligator 10.070
Altogether six images were taken. The illumination Pumpkin 8.930
level was measured with a spot meter aimed at a Terra-cotta ball 3.610
white card. The spot measurements were estimated Red ball 0.400

to be repeatable to within 5%. Red pail 0.10l

Again, the program analyzed the histograms to Table 6: Results for estimating roughness
produce measurements of length, width and inter-
section for each image. The polynomial equation to There is no error measure for these results, since
calculate illumination intensity was then applied to there is no ground truth data for the actual rough-
these measurements. The results are shown in ness values. Nevertheless, the roughness ranking
Figure 7. The horizontal axis shows the values pro- from the program agrees with that produced by a

duced by the spot meter, while the vertical axis human observer. The pumpkin presents a particu-

shows the intensity estimated by the histogram
analysis. The gain of the camera has not been cali-
brated, so the program gives a relative estimate of
intensity. The dotted line shows the best linear fit to
the data. If the slope of that line is considered to be
the gain of the camera, then the average error in
estimating illumination intensity is 5.07%.

4.3. Estimating Roughness

A third experiment was performed to show how the
system estimates surface roughness from color his-
tograms. Figure 8 shows a composite of five
images of different objects. The upper left shows a
green plastic toy in the shape of an alligator; the Figure 8: Five objects with different roughness
upper right contains an orange plastic pumpkin for values
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Abstract ics, and, rubber. Almost all diffuse reflection from these
One of the most common assumptions for recovering materials physically arises from subsurface multiple scat-

object features in computer vision and rendering objects tering of light caused by subsurface inhomogeneities in
in computer graphics is that the radiance distribution index of refraction. In this paper we model inhomoge-
of diffuse reflection from materials is Lambertian. We neous dielectric material as a collection of scatterers con-
propose a reflectance model for diffuse reflection from talned in a uniform dielectric medium with index of re-
smooth inhomogeneous dielectric surfaces that is empir- fraction different from that of air. We propose a simple
ically shown to be significantly more accurate than the model of diffuse reflected intensity resulting from the pro-
Lambertian model. The resulting reflected diffuse radi- cess of incident light refracting into the dielectric medium,
ance distribution has a simple mathematical form. The producing a subsurface diffuse intensity distribution from
proposed model for diffuse reflection utilizes results of ra- multiple internal scattering, and then refraction of this
diative transfer theory for subsurface multiple scattering, subsurface diffuse intensity distribution back out into air.
For an optically smooth surface boundary this subsurface See Figure 1. In [191, 116] we formally derived and empir-
intensity distribution becomes altered by Presnel attenu- ically verified that if light is incident with radiance, L, at
ation and Snell refraction making it become significantly incidence angle, 0, through a small solid angle, dw, on a
non-Lambertian. The reflectance model derived in this smooth dielectric surface, then
paper accurately predicts the dependence of diffuse re- sine
flection from smooth dielectric surfaces on viewing angle, xL x (1 - F(0, n)) x cosb x (1 - F(sin-( ), l/n))dw
always falling off to zero as viewing approaches grazing. describes the diffuse reflected radiance into emittance an-
This model also accurately shows that diffuse reflection gle (i.e., viewing angle), 0. The terms F refer to the Fres-
falls off faster than predicted by Lambert's law as a func- nel reflection coefficients [11], n, is the index of refraction
tion of angle of incidence, particularly as angle of incidence of the dielectric medium, and, 0, is the total diffuse albedo.
approaches close to 900. We present diffuse reflection ef- We show that the total diffuse albedo, p, is directly re-
fects near occluding contours of dielectric objects that are lated to both the single scattering albedo describing the
strikingly deviant from Lambertian behavior, and yet are proportion of energy reradiated upon each subsurface sin-
precisely explained by our diffuse reflection model. Our gle scattering, and, the index of refraction n.
proposed diffuse reflection model has the added feature DENTREC
that it explains the physical origin of diffuse albedo which FIGURE 1 LIGT
is typically an ad hoc scaling coefficient. This can be used AIR
to explain the relative strengths of the specular and dif- .
fuse reflection components from inhomogeneous dielectric
surfaces purely in terms of the physical parameters of the 0.
surface itself. $ 1 M

The Lambertian term, cos o, embodied in the above
1 INTRODUCTION expression arises from a combination of subsurface diffuse

Perhaps the most widely used assumption about re- scattering described by Chandrasekhar's analysis using ra-
flectance from materials in computer vision and in com- diative transfer theory, [2], and a radiometric correction
puter graphics is Lambert's Law for diffuse reflection (7]. from distortion of infinitesimal angles due to Snell refrac-
Lambert predicted that diffuse reflection from a material tion across the air-dielectric boundary. Over ranges of in-
contributed by light incident from a specified direction is cident and reflected angles where the Fresnel coefficients,
proportional to the cosine of the angle between this inci- F, are insignificantly varying, this offers a formal proof
dent direction and the surface normal, independent of the that Lambert's Law does approximate well under these
direction of reflection. While relatively little physical mo- conditions. However, as a result of varying Fresnel coeffi-
tivation was given for this law when it was first published cients there are a number of conditions where diffuse re-
over 200 years ago, it has been adopted by the computer flection from smooth inhomogeneous dielectrics seriously
vision and computer graphics communities primarily be- deviates from Lambertian behavior.
cause it serves as a reasonably accurate and computation- In the past decade the computer vision and computer
ally simple approximation for describing diffuse reflection graphics communities have become increasinly aware of
under a number of conditions. accurate modeling of the reflectance properties of mate-

A prevalent class of materials encountered both in com- rials, particularly with respect to the specular compo-
mon experience and in vision/robotics environments are nent. The works by Torrance and Sparrow [14], and,
inhomogeneous dielectrics which include plastics, ceram- Beckmann and Spizzichino [1) have been amongst the
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most popular in providing computer vision and graph- pendent upon the single scattering albedo, p. An Nth or-
ics researchers with an accurate modeling of the specular der approximation to the Chandrasekhar H-function can
component of reflection from rough materials [31, [51, [12], be expressed; N
[8]. Only very recently has there been consideration of 1 Ili=,(# + pi)
non-Lambertian diffuse reflection within the vision and Hp(p) = A ... An a(1 + Kjp)A
graphics community. The paper by He and Torrance et
al. [4] proposes a comprehensive full-wave model for light defined in terms of the positive zeros, pi, of the even Leg-
reflection including the description of a directional dif- endre polynomial of order 2N, and the positive roots, Xa,
fuse component produced from diffraction and interfer- of the associated characteristic equation;
ence effects when the wavelength of light is comparable N
to the size of surface roughness elements. This model as- 1 = E 1 - 2• 2 "
sumes that diffuse reflection originating from subsurface
scattering within inhomogeneous dielectrics is Lambertian
and contributes to a uniform diffuse component. Torrance 3 DIFFUSE REFLECTION FROM
[13] is currently exploring full-wave solutions for light in- SMOOTH DIELECTRICS
cident on dielectric-air boundaries from subsurface scat-
tering. Tagare and deFigueiredo [12] propose as part of The Chandrasekhar diffuse reflection law alone does
their multiple lobed reflectance model for machine vision not provide a complete physically accurate description
a functional approximation to the Chandrasekhar diffuse of diffuse reflection from inhomogeneous dielectric sur-
reflection Law [2]. While we also use the Chandrasekhar faces. While gaseous molecules of stellar or planetary at-
diffuse reflection law for diffuse subsurface scattering, it mospheres are separated by empty space, particles within
is not nearly accurate for materials without consideration an inhomogeneous dielectric surface are assumed to be
of various dielectric-air boundary effects. Oren and Nayar separated by a uniform medium with index of refraction
[9] have been studying non-Lambertian diffuse reflection different from that of air. As we will be considering opaque
efects for rough surfaces assuming a statistical distribu- objects, the assumption of a semi-infinite medium of scat-
tion of Lambertian reflecting facets along with masking, terers is very well approximated. The parallel planes along
shadowing, and, intereflection. Apart from analysis of re- which the optical properties of subsurface particles are
flected intensity distributions for diffuse reflection, Shafer uniform are assumed to be parallel to the smooth planar
[101 proposed a dichromatic color reflectance model for surface boundary. There are at least 3 ways in which a
diffuse and specular components, and Wolff [15] proposed dielectric medium will alter a subsurface diffuse intensity
a polarization reflectance model involving the diffuse re- distribution with respect to its smooth boundary with air.
flection component for inhomogeneous dielectrics. The first 2 ways are a result of Snell's law [11], and the

This paper is a combined summary of most of the re- third is due to Fresnel attenuation:
sults from the papers [19], [17], [16], [18]. For exact details
of the derivations in this paper consult [19], [16], [18). a From Snell's law the angle at which light energy is

incident upon (reflected from) the plane of uniformity
2 CHANDRASEKHAR DIFFUSE RE- for the subsurface particles will be different than the

FLECTION LAW FROM MULTIPLE angle at which light is incident upon (reflected from)
the smooth surface boundary. See Figure 2.

SCATTERING * As a result of Snell's law the solid angle through
Chandrasekhar [2] formally derived a number of expres- which light energy is incident upon (reflected from)

sions for diffuse reflection from multiple scattering under the plane of uniformity for the subsurface particles
different single scattering conditions. While the original will be different than the solid angle through which
application was to transmission and diffuse reflection of light is incident upon (reflected from) the smooth sur-
light from stellar and planetary atmospheres, the same face boundary.
physical principles apply to subsurface scattering of light * Because of Fresnel attenuation for ttansmission of
within dielectrics. We are in particular interested in Chan- light from air into dielectric and vice versa, light en-
drasekhar's derivation for diffuse reflection assuming that ergy incident upon the plane of uniformity tor the
single particle scattering is isotropic. Chandrasekhar as-single particle scattering isaisotropic.s a lanrekaral in subsurface particles will be less than light energy orig-
sumes that the scattering particles are plane parallel in inally incident upon the smooth surface boundary,
that the optical properties (e.g., particle density) are uni- and, light energy transmitted back out through the
form within parallel planar layers. The geometry of inci- surface boundary will be less than light energy pro-
dent and reflected light is referred to with respect to the duced by subsurface diffuse scattering.
orientation of this plane of uniformity. In the case of a
semi-infinite medium of scatterers (i.e., an opaque dielec- -0-
tric surface) the result for the reflected radiance accord- 4 '1
ing to diffuse reflection from multiple scattering, assuming
an isotropic single scattering distribution, is expressed in g...
terms of the Chandrasekhar H-function: Lrc"COS _ COS4

Cp'(PincvpArj) 'A'n'~ HP(piflC)Hp(1A,.E),
where, A,,. and p,,! are the directional cosines of inci-

dent and reflected light with respect to the normal of the
plane of uniformity, respectively, p is the single scattering "IGURE 2
albedo (representing the proportion of energy reradiated FIGURE 2
upon each subsurface single scattering), and L is the in- Figure 2 defines incident angle 0 and emittance an-
cident radiance. The Chandrasekhar H-functions are de- gle 0, in air, with respect to the normal of the smooth
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dielectric surface boundary. The overline notation refers dielectric medium into air contributing to diffuse reflec-
to the corresponding angles inside the dielectric medium. tion, and some is specularly reflected back into the dielec-
This correspondence is made according to the following tric medium to be rescattered once again, and so on. The
expressions for Sneil's law: expression for l in equation 4 is the result of an infinite

1 _- sIs geometric series describing the sum of scattering distribu-
=~ sin-*( ), 4 = sin- 1 (sin -) (1) tions from successive internal specular reflections. It turns

e n sout that p is only weakly dependent upon imaging geom-
where n is the index of refraction of the dielectric. This etry (within 3%) and is interpreted as the surface diffuse
is typically in the range of 1.4 to 2.0 for most glasses, albedo. References [19], [16] show a plot of total diffuse
plastics, paint and ceramic.

The Fresnel coefficients varying between 0 and 1 inclu- albedo, p, vs. single scattering albedo, p.

sive describes the attenuation of incident light radiance
upon specular reflection from a planar material interface 4 EXPERIMENTAL RESULTS
of size larger than the wavelength of the incident light. Figures 3 and 4 show experimental results for an opti-
The Fresnel coefficients are dependent upon the angle of cally smooth piece of compressed white magnesium oxide
incidence and the index of refraction of the material. They ceramic. The ceramic was measured with a stylus pro-
are also dependent upon the polarization state of light. filometer to have a variation in height profile no greater

The Fresnel coefficient, FQ(, n) for unpolarized light than half the wavelength of green light. Using a Brewster
incident at angle 0 upon a dielectric with simple index of Opticaly Smooth White Ceramic
refraction, n, is given by: Emittace Angle = 0

F(10,n) = 2(F11 + F1 ) (2)

where a 2 - 2a cos 1 + cos2 4' ISO 0

F±(4,n) = a 2 + 2acosO +cos 24'

a 2 
- 2a sin 4 tan 4' + sin 2 ' tan2 '•

F1 ( 0, n) = a' -2a sin ' tan 0 + sin2 ' tan 4' Fi(0,n)

a= Fn2 - sini

See Siegal and Howell [11] for a formal derivation. / Soed. Proposed Model
The details of the derivation of diffuse reflection from Dused- Model

smooth dielectric surfaces is given in [19], [16J. It is shown / -. . .
that if light is incident with radiance, L, at incidence an- V -.0-.0-40-SO-40-,0-20-10 0 20 20 44 SGo 4 70 a90

gle, 4,, through a small solid angle, dw, on a smooth di- FIGURE 3 Aa& ofhcea
electric surface, then the reflected radiance is

Opticaily Smooth White Ceramic

xL x (I - F(O, n)) x cos.0 x (1 - F(l , 1/n)) (3) -"Angle o I -

where the total diffuse albedo, g, is given by- 0

-K(4) IO-Measured

where
p C,(cos0,cos0) p Hp(jI,•)Hp(7,,/)

=n cos = 4vrn 2  iin + •,,!

K = F(O', l/n) C,(cos4', 1.0)2-rsin 'do' . Solid- Poposdl Mo 0

10 Dahed- Lmbertian Model
It was stated that the derivation of the diffuse reflec- 0- Data Pint

tion formula in this paper includes the physical modeling -,0 -0 -4o -oo -oo -jo -io -10 10 20 .0 40 00 40 7. ,
of diffuse reflection produced from incident light refracting An of Emittan

into the dielectric medium (depicted in Figure 1), multi- FIGURE 4
ply scattering amongst subsurface inhomogeneities, and angle technique the index of refraction of the ceramic was
refracting back out into air. In fact, this is a first order determined to be n = 1.7. Our diffuse reflectance model
effect. As light is refracting out into air from the dielec- enables the empirical measurement of the single scatter-
tric medium, a significant amount of light is specularly ing albedo, p, by empirically determining the ratio of the
reflected back into the dielectric, particularly for internal strengths of the specular and diffuse components of re-
specular angles above the critical angle where specular re- flection at known angles of incidence and emittance. The
flection is 100%. This critical angle is sin-1 (1/n) which ratio of the specular to the diffuse reflection component
is typically about 40* for common dielectrics. Light spec- was measured very near normal incidence and emittance
ularly reflected back into the dielectric medium multiply and compared with the ratio in expression 7. The value
scatters once again, and the term K describes the propor- of p can be derived from this, and in turn, p can be com-
tion of light radiance that is internally rescattered. Some puted (see [19], [16], [18] for details). The empirically
of the light radiance that is rescattered refracts from the determined specular to diffuse ratio is accounted for by
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a single scattering albedo, p, just above 0.95 which is re- band" is in fact significantly wider in Figure 6a than pre-
markably energy conserving. dicted by the Lambert Law in Figure 6b. When rendered

In Figures 3 and 4, dashed curves represent predicted with the diffuse reflectance law proposed in this paper in
Larnbertian diffuse reflection, solid curves represent the Figure 6c, the actual size of the "shadow band" is more
diffuse reflection law of expression 3 with single scatter- accurately predicted. Again, this "shadow band" is not
ing albedo p = 0.95 and index of refraction n = 1.7 (it actually a shadow but rather smaller intensity values, and
makes little difference for 1.0 > p _> 0.9, 1.4 > n > 2.0 this clearly illustrates the sharper drop off of diffuse inten-
with respect to the shape of the diffuse reflection curve). sity values at higher angles of incidence than predicted by
Observe how in actuality diffuse reflection goes to zero as Lambert's Law and yet predicted by our diffuse reflectance
viewer angle goes to 90* ! Also, for large angles of inci- model (See again Figure 3). The implications for realis-
dence percentage error between Lambert's Law and em- tic rendering of diffuse reflection in computer graphics is
pirical measurements become quite large, exceeding 50% that diffuse reflection produces significantly larger darker
above 80". The proposed diffuse reflection law, expres- regions near shadow boundaries (i.e., at high angles of
sion 3, never deviates more than 3% from the empirical incidence) than predicted by Lambert's Law. This is par-
data while there exist sharp deviations from Lambertian ticularly true for shadow boundaries occurring at frontal
behavior. The results show that the Lambertian model surface orientations relative to the viewer where geometric
ca be assumed to within about 5% accuracy if angle of foreshortening of surface area is not significant.
incidence and angle of emittance are simultaneously no Figures 7a, 7b, and 7c show grey level representations
larger than 50*. Outside of this constraint range serious of isophote curves (i.e., image curves with equal intensity)
deviations start to occur. corresponding respectively to Figures 6a, 6b and 6c. Lam-

Figure 5 shows an ordinary scene where the Lamber- bert's Law predicts for this configuration of light sources

tian model strikingly breaks down altogether and yet is illuminating a sphere that equal reflected radiance occurs
explained with hig as for points forming concentric circles on the sphere about
eplinmde l winthhis papcur.y byhthe left-most and right-most occluding contour points.
flection model in this paper. A ceramic coffee cup of These concentric circles of equal reflected radiance ortho-
cylindrical body shape is illuminated from the left side graphically project onto straight isophote lines as depicted
by a point source. Starting from the left occluding con- in Figure 7b, with maximum diffuse reflectance occurring
tour going right the angle of incidence starts at 00 and i

eLambertian model predicts that image in- at the left-most and right-most occluding contour points
increases. The image in- where the angle of incidence is zero. Figure 7a which istensities should decrease going to the right. The image in-anct
tensities in fact increase to a maximum intensity at about that in al depiction of the isophotes of Figure 6a shows
65" surface orientation and then begin to slowly decrease. n fact lines of equal image intensity severely curve

The reason is because, 0 = 90* - 0, that is the emittance near the occluding contour of the sphere. Maximum dif-

angle starts at 90* at the occluding contour and decreases fuse reflection occurs at the center of the closed ellipti-

going right. Looking at the graph in Figure 4 diffuse reflec- cal isophotes near the left-most and right-most occluding

tion increases sharply as angle ofemittance decreases from contours, illustrating a 2-D version of the effect depicted

90*. At about surface orientation 65* (1 = 25*, 0 = 650) in Figure 5. Figure 7c shows the isophotes rendered using

the decrease of diffuse reflection with respect to increas- the diffuse reflectance model proposed in this paper which

in angle of incidence starts to overtake the increase of are remarkably similar to the actual isophotes in Figure
ing refle ictiden e witharects to odctreesthng inaregse of em 7a (except for the isophotes perturbed by the speculari-
difuse reflection with respect to decreasing angle of emit- ties). Comparing Figures 7a, 7b and 7c shows very clearly
tance, and a maximum occurs. (Note the graph in Figur how our diffuse reflectance model accurately predicts re-
5 is only for the diffuse component and does not include flectance features that are significantly deviant from Lam-
measurement of the specular component which occurs at bertian behavior.
relative orientation -45* in the picture of the cup.) Ac-
cording to Figure 5 the qualitative shape of the true dif- 5 COMBINED DIFFUSE AND SPECU-
fuse reflection curve (solid) is entirely different (e.g., its
not even monotonic) from that for the Lambertian model LAR REFLECTION
(dashed). The percentage error of the Lambertian model An important feature of our diffuse reflectance model
is also very high for frontal surface orientations where the is that it predicts the surface diffuse albedo for dielectrics
angle of incidence is large. This behavior of diffuse reflec- purely in terms of physical parameters. Inhomogeneous
tion occurs for a reasonably large range of lighting con- dielectric surfaces exhibit both diffuse and specular reflec-
figurations and can perhaps even aid in the detection of tion components. Previously, combined diffuse and spec-
dielectric occluding contours. ular reflection has been modeled as a sum of scaled diffuse

Figure 6a shows an actual white billiard ball illumi- and specular terms, with the scaling factors (i.e., diffuse
nated by two point light sources orthogonal to viewing, albedo and specular albedo) determined from experimental
one from the left side and one from the right side. Figure fitting for each particular surface. We propose the follow-
6b shows a computer graphics rendering of a sphere illumi- ing combined reflectance model for diffuse and specular
nated by the same configuration of 2 point light sources reflected radiance from smooth surfaces:
assuming Lambert's diffuse reflectance Law, while Fig- 10sin
ure 6c shows the same computer graphics rendering of a L L - F(O, n)] cos 0 (1 - F(sin -1/n)]dw
sphere using the diffuse reflectance law proposed in this

paper. While both shadow boundaries with respect to + L F(Vn) 6(V, - o) 6(8o +180-0), (5)
the left and right light sources coincide along the verti- for small incident solid angle, dw, at incidence angle V,,
cally oriented great circle at the front of the sphere, there incident azimuth angle 00, emittance angle 0 and emitted
appears to be a "shadow band" of darker (i.e., smaller) azimuth angle 8. The diffuse albedo, e, is that computed
intensity values about this shadow boundary due to the from equation 4 and is not just simply a scaling factor but
high fall off of diffuse reflectance at high angles of inci- determined from single scattering albedo, p, and index of
dence near 90*. Observe that realistically this "shadow refraction, n.
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The combined diffuse and specular reflectance model, References
expression 5 can be used to formally answer the question: [1] P. Beckmann and A. Spizsichino. The Scatter-
How bright is a specularity ? Taking the ratio of the ing of Electromagnetic Waves from Rough Surfaces.
strengths of the specular to diffuse reflection components Macmillan, 1963.
of expression 5: F(lo, n) [2] Chandrasekhar. Radiative Transfer. Dover Publi-

Se[r - F(en)] cos5 [I - F(sin) '(sin_•),l/n)]dw, (6) cations, New York, 1960.

[3] R. Cook and K. Torrance. A reflectance model for

which is independent of uniform incident radiance, L. computer graphics. Journal of Computer Graphics,
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F(0*, n) Conference on Computer Vision (ICCV), pages 151-

[I - F( 0o, n)][1 - F(0, I/)] (7) 160, London, June 1987.M[1- F0°,n)]1 -F(0, ln)]dw"[6] B.K.P. Horn and M.J. Brooks. Shape From Shading.
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dw 1d( dw ceedings of the DARPA Image Understanding Work-
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Polarization Camera Technology

Lawrence B. Wolff
Computer Vision Laboratory

Department of Computer Science
The Johns Hopkins University

Baltimore, Maryland 21218

Abstract being geared towards taking intensity images instead of
The more general capabilities of polarization vision for polarization images. In our conception, polarization vi-

image understanding motivates the building of camera son is no more a "multiple view" problem than is color
sensors that automatically sense and process polarization vision, and a camera sensor can be developed that can au-
information. Described in this paper are a variety of de- tomatically sense polarization components and even auto-
signs for polarization camera sensors that not only sense matically compute physical scene properties that are di-
partially linearly polarized light, but some of which com- rectly related to this polarization information. Such a
putationally process polarization information at pixel res- polarization camera sensor was originally suggested in [61,
olution to produce a visualization of sensed polarization, and in the past year in the Computer Vision Laboratory
and/or, a visualization of physical information directly re- at Johns Hopkins we have built and are continuing to de-
lated to sensed polarization. Described are designs that velop a variety of designs for such sensors. We discuss
include the use of radial polarization filters, liquid crys- in this paper a number of these designs for polarization
tals, beamsplitters, and, VLSI. All designs discussed are cameras that sense and process partially linearly polarized
currently patent pending. light information.

The polarization state of light characterizes its complete
1 Introduction: Polarization Vision and description as an electromagnetic wave, apart from wave-

length. Polarization is a more general physical description
Polarization Camera Computational of light than intensity which characterizes its energy. For
Sensors instance, intensity can be derived from a linear sum of po-

As human beings we naturally think of vision in terms larization components. Practically all light occurring in
of perception of intensity and color. Polarization of light robotic/vision environments and naturally occurring light
might appear to be of little relevance or benefit to au- fields is partially linearly polarized which means that the
tomated vision systems simply because the human visual polarization state of such light can be represented by the
system is almost completely oblivious to this property of superposition of unpolarised and completely linearly po-
light. In context of Physics-Based Vision there is a com- larized component states (this includes unpolarized and
pelling motivation to study polarization vision - the extra linearly polarized states themselves). A state of partially
physical dimensions of polarization, beyond that of i- linearly polarized light can be uniquely measured by sens-
tensity of ihMt, carry added information about a world ing light after passing through a dichroic material which
scene that in turn provides a richer set of descriptive ao on all component orientations of polarization except
physical constraints. As a result, the derivation of some g one axis (i.e., only one axis of polarisation is trans-
important low-level and high-level descriptions of imaged mitted through the material). If a dichroic filter is made
scenes, which may be infeasible or very difficult to obtain so that all parts of the filter have the same transmission
from intensity information alone, can be made possible or axis (e.g., a standard polarising filter) then the transmit-
can be immensely simplified from analysis of polarization. ted radiance of light through the filter as a function of
These include important visual tasks like material classi- angular orientation of the transmission axis will be a si-
fication according to relative electrical conductivity (e.g., nusoid with periodicity of 180* as depicted in Figure 1.
dielectric/metal), specular and diffuse reflection compo- This sinusoid can be experimentally recovered by taking

nent analysis, identification of specular reflection, color transmitted radiance measurements for 3 or more unique
constancy, and, image region and image edge segmenta- orientations of the transmission axis. The transmitted
tions. A detailed description of a variety of polarization- radiance sinusoid can be completely described by the pa-
based vision methods are contained in [41, [5], [7], [6], [2]. rameters I..s., I,•,~, and, the phase, 9, of the sinusoid

As Computer Vision algorithms have been designed to which represents its relative horizontal translation in the
performpunternVisity andcolgorvithsio have then vdesigraph of Figure 1 (e.g., the angular orientation at whichperform intensity and color vision so have the video cam- ~,, cuswt epc o0o h oaie ene)

era sensors (e.g., CCD, CID) that are used in Computer I,A t s occurs with respect to 0 w on the polarizer vernier).
Vision laboratories and for image understanding appli- Another set of three parameters which characterizes par-
cations. A criticism that has sometimes been leveled at tially linearly polarized light that are of direct importance
polarization-based vision methods is the inconvenience of to polarization-based image understanding are:
obtaining polarization component images by having to (partial polarization) Imens - mIni
place a linear polarizing filter in front of an intensity cam- Tmu +
era sensor and mechanically rotating this filter by hand or (total intensity) 1,.. + Im., (1)
by motor into different orientations. This inconvenience is
simply a result of commercially available camera sensors (phase) 9.
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It can be shown that partial polarization represents the plane of the completely linear polarized component, the
fraction between 0 and 1.0 that the linearly polarized com partial polarization, and the intensity of the light. There-
ponent makes up of partially linearly polarized light [3]. fore, in a polarization image, unpolarized light appears
The relative phase, 0, represents the angular orientation of achromatic and regions that are significantly partially po-
the linear component of polarization. Thus partially lin- larized appear chromatically saturated. The intensity of
early polarized light provides 2 extra physical dimensions light in a polarization image is simply the pixel intensity
of sensory information beyond intensity of light. itself, regardless of color, and can be easily processed by

intensity-based vision methods. This distinctly demon-
Transmitted Radiance Sinusoid strates how a polarization image is a generalization of a

250 gray level intensity image. A number of color polarization
images using this visualization are displayed on the last

200 --- -- - - -- -- page of this article.
Predictedlih

Transmitted 150 The use of partially linearly polarized light for image
Relative -nderstanding is explained in detail in [5],[7], [6], im],ag
Inteity 100 Only a few main points will be summarized ere. ign

cant partial polarization (i.e., above 10%) in a scene can
50[ -------- Imi, be due to specular reflection, and/or diffuse reflection from

inhomogeneous dielectric objects near occluding contours.
0 50 100 150 200 250 300 The transmitted radiance sinusoids for the specular and

FIGURE 1 A-& -l - P-- - diffuse reflection components are respectively 90* out of
phase. With respect to the plane determined by the sur-

The three parameters in equations 1 describing par- face normal and the viewing vector, the maximum trans-
tially linearly polarized light can be recovered by trans- mitted radiance for specular reflection occurs for orienta-
mitted radiance measurements 10, I45, I90 taken at 0', tion perpendicular to this plane, while for diffuse reflection
45*, and 90* angular orientation of the transmission axis, at occluding contours of inhomogeneous dielectric objects
respectively: the maximum transmitted radiance occurs for orientation

= + n I o - 2145 parallel to this plane. This is an important physical prin-0 = (1/2)0tan- I-o-- ) ciple that can be exploited to help distinguish between
partial polarization due to specular reflection and diffuse

if (Igo < Io) [ if (I4s < Io) 0 = 0 + 90 else 0 0 8 - 90] reflection. On smooth and mildly rough surfaces the phase
of the transmitted radiance sinusoid gives surface normal

I.no + I,,~, = I0 + I90, (2) constraint information [4], [6], [7]. The pattern of trans-
mitted radiance sinusoid phases from specular reflection

Imos - Imin _ 90o- Io occurring at multiple surface orientations on an object
In.. + In,. (Igo + I9) cos 20 gives physical shape cues that can be exploited for object

Of course, 3 other angular orientations could be used, and recognition.

more than 3 angular orientations can be used to overcon- Another important mode of physical information for
strain the transmitted radiance sinusoid. We have found interpreting objects in a scene is identification of intrin-
that the above measurements perform very well. sic material classification. It turns out that if the spec-

Polarization ular angle of incidence is between 30° and 80*, and the
Visualizing Pspecular component of reflection is strong relative to the

diffuse component, the quantity, In./Inin, derived from
Lenzth of vector - Partial Polarization = transmitted radiance sinusoid parameters, is a very reli-

:M: - :.N able discriminator for varying levels of electrical conduc-

Blue Cyan tivity. This ratio for most metals varies between 1.0 and
2.0 while for dielectrics this ratio is above 3.0. The theory

- 26 of this is explained in [5], [6].
..- ,T ........... Ma.enta , Gre.a Whether a polarization camera computes a visualiza-

tion of sensed polarization information at each pixel, or
computes a visualization of physical information (e.g., di-Z. PeN • w electric/metal composition) at each pixel related to sensed
polarization, a polarization camera is inherently a compu-

FIGURE 2 la~ ",,,÷, tational sensor. It should be fully realized that as in-
Because humans do not observe polarization directly tensity is a compression of polarization component in-

except with the aid of special filters, it is beneficial for formation, that a polarization camera can function as
a polarization camera to produce some kind of visualiza- a conventional intensity camera, so that intensity vision
tion for representing sensed polarization information (e.g., methods can be implemented by such a camera either
intensity-color representation) for scene analysis. We uti- alone, or, together with polarization-based vision meth-
lize a hue-saturation-intensity visualization for partially ods. As intensity-based methods are physical instances of
linearly polarized light Wolff and Mancini [8]. Such a polarization-based methods, a camera sensor geared to-
scheme was suggested by Bernard and Wehner [1] as a wards polarization vision does not in any way exclude in-
functional similarity between polarization vision and color tensity vision, it only generalizes it providing more phys-
vision for biological vision systems. Figure 2 shows a nat- ical input to an automated vision system! Adding color
ural one-to-one mapping of a state of partial linear polar- sensing capability to a polarization camera makes it pos-
ization into a hue, saturation (i.e., excitation purity), and, sible to sense the complete set of electromagnetic param-
intensity, derived respectively from the orientation of the eters of light incident on the camera.
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2 Polarization Camera Using Radial Po- pixels. A low cost "1-big-pixel" polarization camera can
larization Filters operate simply by mounting a radial polarization filter on

a camera lens and focused on a scene with nearly uniform
Figure 1 depicts the magnitude of light radiance of partial linear polarization within the field of view. At

transmitted partially linearly polarized light through a higher cost, multiple radial polarization filters can be uti-
particular transmission axis of a dichroic material, as this lized for higher resolution measurement of partial linear
transmission axis is rotated. Most standard polarizing fil- polarization across a field of view.
ters are made from a dichroic material with constantly
aligned transmission axis across the material. Using a 3 Polarization Camera Using Liquid
standard polarizing filter, recovery of the transmitted ra- Crystals
diance sinusoid at each pixel requires rotation of this Obtaining the transmitted radiance sinusoid by rotat-
axis and serially grabbing at least 3 images respective to ing a polarizing filter in front of an intensity camera sensor
unique orientations. is a mechanically active process that produces optical dis-

There is a simple way of implementing a "1-big-pixel" tortion and is difficult to fully automate. Unless the axis
polarization camera utilizing a radial polarization filter perpendicular to the plane of the polarizing filter is exactly
that allows recovery of the transmitted radiance sinusoid aligned with the optic axis of the camera, small shifts in
in a single image. Figure 3a depicts the concentric circle projection onto the image plane occur between different
configuration of transmission axes on such a filter. Assum- orientations of the polarizing filter. At intensity discon-
ing the same state of partial linear polarization striking tiniuites in a scene, significant shifts in image intensity are
across this filter, the magnitude of transmitted radiance observed giving the false interpretation of reflected partial
along each circular transmission axis will be a complete polarization even if it does not
sinusoid for every 180* of circular arc. Figure 3b shows lin-
early polarized light (produced by the square filter) pass-
ing through a circular radial polarization filter. The pat-
tern looks something like two pairs of paint brush bristles
emanating from the center of the filter. The darkest axis
going through the center of the circular filter in Figure 3b
is where linear polarized light is being extincted by tan- -

gents to circular transmission axes perpendicular to the
orientation of the linearly polarized light. The brightest -
axis, oriented 900 to the darkest axis, is where the orien-
,ation of linear polarized light is parallel to tangents of
circular transmission axes. 'M 4b 'a

r do

FIGURE 4
Figure 4 shows a liquid crystal polarization camera

that has been designed and built at Johns Hopkins using
a CCD intensity camera with a fixed polarizer and two
Twisted Nematic (TN) liquid crystals mounted in front.
The idea behind this liquid crystal polarization camera is

FIGURE 3a FIGURE 3b very simple. Nothing mechanically rotates; the polarizer
remains fixed while the TN liquid crystals electro-optically

Radial polarization filters are sometimes termed "axis- rotate the plane of the linear polarized component of re-
finders" as the darkest axis tells exactly the orientation of flected partially linearly polarized light. The unpolarized
the transmission axis of a linear polarizing filter. However, component is not effected. In general the transmitted ra-
we are suggesting here that they be used for a more gen- diance sinusoid can be recovered by the relative rotation
eral purpose- for automating the computation of the state of the plane of linear polarization with respect to the po-
of partially linearly polarized light. A radial polarization larizer. Each TN liquid crystal is binary in the sense that
filter makes it possible to simultaneously measure I,.a, it either rotates the plane of linear polarization by fixed n
I,.,, and the orientation (i.e., phase) at which these occur degrees, 00 < n < 90*, which is determined upon fabrica-
90* relative to one another. Clearly, from equations 1 the tion, and, 0 degrees (i.e., no twist). Two TN liquid crys-
partial polarization can be easily computed. In fact, the tals are used, one at n = 45*, and the other at n = 90*,
pattern produced by a radial polarization filter is quite to insure at least 3 samplings of the transmitted radiance
an intuitive visualization for partial linear polarization: sinusoid. Components of partial linear polarization are
the contrast between darkest and brightest axes is pro- imaged at pixel resolution under full automatic computer
portional to the partial polarization (unpolarized light is control, and these are processed on a Datacube MV-20
simply a uniform intensity across the filter), and for non- board programmable via Image flow software from a SUN
zero partial polarization the orientation of the darkest axis workstation. For details see Wolff and Mancini [8]. One
corresponds to the orientation of the linearly polarized program on the Datacube MV-20 computes from polariza-
component. It is straightforward to perform image pro- tion component images a hue-saturation-intensity visual-
cessing operations that will extract this information from ization at each pixel for partial linear polarization. An-
a pattern such as the one in Figure 3b across a large set of other program automatically computes dielectric/metal
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composition by thresholding I, . . Our liquid crys- illuminated with an extended light source. While the po-
tal polarization camera can generate up to 2.5 polarization larization image does not give completely unique surface
images a second. The main timing bottle-neck is the re- orientation information, the pattern of specular plane con-
laxation time of 100ms for each of the liquid crystals to straints gives enough rudimentary shape information to
switch states. With the most current faster liquid crystals distinguish different shape classes for object recognition.
we can at least double the rate of polarization images per For instance, on a cylindrical shape the lines of constant
second, and we intend to incorporate these newer liquid color hue are parallel to one another (Figure C2) while
crystals in our implementation. A nice feature about our on a spherical shape lines of constant color hue mutually
liquid crystal polarization camera is that with the Dat- intersect at a point (Figure C3). Besides being useful in
acube MV-20 board, it is a programmable computational sorting by shape systems in manufacturing, outdoor ob-
sensor in that sensed polarization components can be pro- jects illuminated by skylight serving as an extended illu-
cessed in a variety of ways. minator may be able to be distinguished by shape class as

Color Figures C1, C2, C3, C4, and, C5 at the back of well.
this article show polarization images taken with our liquid Figure C4 shows the polarization image of a white bil-
crystal polarization camera depicting partial linear polar- liard ball under point source illumination. Chromaticity
ization at pixel resolution in the hue-saturation-intensity at the occluding col' mur shows partial polarization of dif-
visualization scheme defined in Figure 2. fuse reflection. According to theory, I, nl, of the transmit-

Figu~e C1 shows how a polarization image provides im- ted radiance sinusoid occurs for orientation parallel to the

portant information about a scene that would be very dif- occluding contour edge, and the hues correspond to these

ficult and perhaps impossible to deduce from an intensity edge orientations around the ball.
image. The left intensity image of Figure C1 shows what Figure C5 shows the polarization image of a pond sur-
apparently are 2 mugs in a scene. Looking closely at the rounded by rocks, grass and trees. Even though skylight
intensity image reveals that there is some difference be- is partially polarized, at most angles specular reflection of
tween the 2 mugs; the left mug has its letters reversed, skylight off of water has Imin of the transmitted radiance
The only visual cues telling that the left mug is simply a sinusoid closely aligned with the surface normal to the wa-
reflection are very high level features such as the reversal ter, which since it is fluid is aligned with gravity. In this
of recognizable high level features (e.g., alphabet letters) color hue coordinate system, the Green color hue is for
or the edge of the glass mirror. Otherwise the reflected .Ii, occurring nearly vertical in this image. While there
intensity (and color) of the 2 mugs look essentially the is noted shift in color hue for ripples in the pond where
same. This type of problem occurs in vision fairly fre- surface orientation is perturbed, the water has a very dis-
quently such as when stray specular glare from objects tinct reflected polarization signature against the reflected
give the false interpretation that real edges actually exist polarization signature of trees and grass which has less
there. Consider the problem of an autonomous land vehi- chromaticity (i.e.,less partial polarization) and variegated
cle viewing a scene part of which is reflected by a lake or color hue (i.e., a wide range of polarization phase). Note
river. How does the vehicle know which are the "real" ele- also the significant partial polarization from the rocks.
ments of the scene ? How does a mobile robot know when Figure 5a shows a circuit board with solder metal, di-
it is running into a glass door, or if navigating accord- electric, and, solder metal covered with a translucent di-
ing to edge cues, which are geometric edge cues opposed electric material. The circuit board is illuminated with
to specular edge cues ? The right polarization image in an extended light source so that a strong specular com-
Figure C1 shows that the left mug has Cyan chromaticity ponent is reflected from all object points into our liquid
implying significant partial polarization. Cyan chromatic- crystal polarization camera. Figure 5b shows an image
ity is also observed at specular highlights on the right mug where I .. /I,,I is derived from partial linear polariza-
as well. (The very bright center of specularities saturate tion at each pixel (and scaled in the range 0-255). Darker
the camera so that pixels record gray level 255 regardless regions in Figure 5b represent higher electrical conduc-
of the state of the TN liquid crystals. This gives a flat tivity, lighter regions represent dielectric, intermediate re-
transmitted radiance sinusoid, and hence, the appearance gions are where translucent dielectric covers metal.
of unpolarized light, when in fact the reflected light from
these areas are significantly partially polarized. This is a
limitation of the dynamic range of the SONY XC-77 CCD
camera being used, and NOT our polarization vision algo-
rithm.) Significant partial polarization is also observed at
the occluding contour of the right mug as Red color. Note
that the hue colors Cyan and Red are complementary col- 1%
ors indicative of transmitted radiance sinusoids 900 out of
phase.

Figure C2 shows the intensity and polarization images
of a cylindrical cup illuminated with an extended light
source so as to proc(uce specular reflection from a number
of different surface orientations. The different color hues
shown in the polarization image correspond to specular
plane surface orientation constraints. In this example,
Cyan color hue corresponds to specular planes oriented
vertically in the image while the complementary color hue,
Red, would correspond to specular planes oriented hori-
zontal in the image. Almost the entire spectrum of color
hues is displayed here. Figure C3 shows intensity and
polarization images of one hemisphere of a plastic sphere FIGURE 5a
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3 "P and S component magnitudes are known with respect
to tile mutually orthogonal directions parallel and perpen-
dicular to the floor.

FIGURE 5b FIGURE 6
By adding a single TN liquid crystal to Figure 5 with

4 Polarization Camera Using Beamsplit- the 2 CCD chips and beamsplitter, the P and S com-

ter ponents can be measured respective to two mutually or-

A common design for high quality color cameras is to thogonal orientations. With 0 degree twist, the P and

use a beamsplitter that directs equal amounts of incom- S components orientations are parallel and perpendicular

ing light onto 3 separate CCD chips for red, green, and, to the page, with n degree twist the P and S components

blue. A similar idea can be used to direct light onto mul- are n degree rotations of parallel and perpendicular to the

tiple CCD chips, each chip covered by a uniquely oriented page. As long as n does not equal 90 degrees, the transmit-

polarizing filter. Unfortunately the polarizing properties ted radiance sinusoid is being sampled in 4 unique points
of and can be uniquely recovered with any 3 of these points.of most common kinds of beamsplitters can be variable There are obvious extensions using three CCD chips atacross standard wide fields of view, the expense of more difficult registration problems.

Figure 6 shows a 2-CCD chip polarization camera (i.e.,
using 2 CCD camerias) utilizing a polarizing plate beam- Polarization information from the 2-CCD polarization
splitter, built in the Johns Hopkins Computer Vision Lab- camera is processed on our Datacube MV-20 board using
oratory. The simplicity of this design stems from the use the formula
of a special coating on a glass plate producing a beam-
splitter that effects the polarization of transmitted and
reflected light in a nearly constant known way across a 11 P - S II (3)
fairly wide range of angles (i.e., ±200). The polarization P P + S 1(3
state of reflected and transmitted light is effected in a lin-
early independent way by the plate beamsplitter. If the In the case where the P and S directions are aligned
component of polarization parallel to the floor is repre- w the principal polarization component directions (i.e.,
sented by P, and the component of polarization vertical
to the floor is represented by S, then: the directions of Inin and Imcz), formula 3 is the partial

polarization (equations 1). In general, formula 3 is less

+bS 'tranomitted than or equal to the partial polarization of light, and even
aP + =though P and S may not be aligned with the principal

directions at a pixel, they can give a measure of "polar-
(1 - a)P + (1 - b)S = Ielected ization contrast" which can be useful. With the added

where a + b = 1, a, b > 0 a 5 b. The coefficients a, b single TN liquid crystal, the full transmitted radiance si-
nusoid can be recovered at each pixel, and processing of

are dependent upon the coating on the beamsplitter. This this polarization information is similar to the A zy it is
results in the solution done for the liquid crystal polarization camera.

Itc....itttd(l - a) - a/,,t,,t,d Clearly if a = b, there is no solution for the equations
S , solving for P and S above since the simultaneous linear

b - a equations to be solved are the same. The case where a = b

p It.a.mitted(1 b) bI. , eftleted represents a non-polarizing beamsplitter since the trans-
- b ..... miitted and reflected beams both have the same polariza-

a - b tien state as the incident polarization state, but one half

If the P and S directions happen to coincide wit' h • ih radiance of the incident beani. The only way polar-
rections of the maximum and minimum polariz;nt ! t•':tion components can be resolved in this case is to place
ponents, or, if the specular plane for specular r,' 1 ,,larizing filters over the CCD chips themselves, each chip
from an object surface is known, then the par-*1; L ri~ving a unique orientation. This can be a feasible design
ization and phase can be computed (i.e., the tr;,, ftr a polarization camera using a non-polarizing beam-
radiance sinusoid can be computed). Otherwise, pr"i 1h1, Splitter that o.perates over a sufficiently wide field of view.
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5 Polarization Camera Chips [5] L.B. Wolff. Polarization-based material classifica-
In collaboration with Prof. Andreas Andreou at Johns tion from specular reflection. IEEE Transactions on

Hopkins we are in the process of developing self-contained Pattern Analysis and Machine Intelligence (PAMI),
VLSI versions of polarization cameras that sense corn- 12(11):1059-1071, November 1990.
plete states of partial linear polarization on-chip, compute
state of partial linear polarization, and, compute visual- [6] L.B. Wolff. Polarization Methods in Computer Vision.
ization or physical information related to sensed polariza- PhD thesis, Columbia University, January 1991.
tion. VLSI offers very high computational throughput so
that VLSI polarization cameras can enable operations at [7] L.B. Wolff and T.E. Boult. Constraining object fea-

very high speeds. tures using a polarization reflectance model. IEEE
Transactions on Pattern Analysis and Machine Intel-

6 Conclusion ligence (PAMI), 13(7):635-657, July 1991.

We have introduced polarization camera computational [8] L.B. Wolff and T.A. Mancini. Liquid crystal polariza-
sensors that: tion camera. In Proceedings of IEEE Workshop on Ap-

plications of Computer Vision, pages 120-127, Palm
"* Compute sensed polarization from either an image Springs, California, December 1992.

pattern (e.g., radial polarization filters), a sequence
of polarization component images (e.g., liquid crystal
polarization camera), or, in parallel from multiple po-
larization component states (e.g, multiple CCD cam-
eras with beamsplitter, self-contained VLSI chip).

"* Compute a visualization of polarization information
sensed at each pixel (e.g., hue-saturation-intensity
representation for partially linearly polarized light).

"* Compute a visualization of physical information di-
rectly related to the state of sensed polarization at
each pixel (e.g., metal/dielectric classification).

We feel that there are considerable advantages to build-
ing a polarization camera sensor geared towards doing po-
larization vision. Polarization cameras have more general
capabilities than standard intensity cameras, and there
already exist polarization vision methods that can signif-
icantly benefit and enhance a number of application ar-
eas such as aerial reconnaissance, autonomous navigation

Se.g., UGV), target recognition, inspection, and, manu-
acturing and quality control. Polarization cameras make

polarization vision methods more accessible to these ap-
plication areas and others.
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Generalization of the Lambertian Model

Michael Oren and Shree K. Nayar

Department of Computer Science, Columbia University, New York, N.Y. 10027 *

Abstract assumptions in machine vision. It is used explic-
itly in the case of shape recovery techniques such

The Lambertian model is one of the most widely as shape from shading and photometric stereo.

used models in machine vision. For several real- It is also implicitly used by vision techniques
world objects, the Lambertian model can prove such as binocular stereo and motion detection

to be a very inaccurate approximation to the dif- to solve the correspondence problem.

fuse component. While the brightness of a Lam- For several real-world objects, however, the
bertian surface is independent of viewing direc- Lambertian model can prove to be a poor and
tion, the brightness of a rough diffuse surface in- inadequate approximation to the diffuse compo-
creases as the viewing direction approaches the nent. In the areas of machine vision, remote
source direction. In this paper, we develop a sensing, and computer graphics, each picture el-
comprehensive model that predicts reflectance ement (pixel) can represent a surface area with
from rough diffuse surfaces. The model accounts substantial roughness. Though the Lambertian
for complex geometric and radiometric phenom- assumption is often reasonable when looking at
ena such as masking, shadowing, and interreflec-tions between points on the rough surface. The a small planar surface element, the roughness of

the total surface covered by a pixel causes it toproposed model may be viewed as a generaliza- behave in a non-Lambertian manner. This devi-
tion of the Lambertian model and describes re- ation from Lambertian reflectance is significant
flectance characteristics that are not captured by for very rough surfaces, and increases with the
existing models. We have conducted several ex- angle of incidence. In this paper, we develop
periments on samples of rough diffuse surfaces, a comprehensive model that predicts reflectance
such as, plaster and sand. All of these surfaces from rough diffuse surfaces, and provide experi-
demonstrate significant deviation from Lamber- mental results that support the model. The pro-
tian behavior. The reflectance measurements posed reflectance model that may be viewed as
obtained are in strong agreement with the re-
flectance predicted by our model. We conclude a vast generalization of the Lambertian model.
with a brief discussion on the implications of Prior to developing the diffuse reflectance model,
these results on machine vision. we conducted a detailed survey of related work

in the areas of applied physics and geophysics.
1 Introduction Though the topic of rough diffuse surfaces has

Image brightness values are closely related to been extensively studied, a complete model such

the reflectance properties of points in the scene. as the one presented here has not been devel-

Hence, accurate reflectance models are funda- oped. In 1924, Opik [6pik, 1924] designed an

mental to the advancement of machine vision, empirical reflectance model to describe the non-

A surface with Lambertian reflectance appears Lambertian behavior of the moon. In 1941, Min-

equally bright from all directions. This model for naert [Minnaert, 19411 modified Opik's model to

diffuse reflection is one of the most widely used obtain the following reflectance function:k+l1

*This research was supported in part by DARPA Contract fr = (COS 0, COS 0r)(k-1) (0 < k < 1)
No. DACA 76-92-C-0007 and in part by the NSF Research 21r
Initiation Award. This function was designed to obey Helmholtz's
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reciprocity principle but is not based on any the-
oretical foundation. It predicts that the radiance
of non-Lambertian diffuse surfaces is svmmetri-
cal with respect to the surface normal direction. 00
We will show in this paper that this assump-
tion is incorrect. Hapke and van Horn [Hapke
and Horn, 1963] also obtained reflectance mea- (a) (b) (c)
surements from rough diffuse surfaces by varying
the source direction for a fixed viewer direction. Figure 1: Images of spheres rendered using the pro-
Their measurements show that the peak of the posed reflectance model for rough surfaces: (a) Lam-

sshifted from the peak bertian sphere (o, = 0); (b) rough Lambertian sphereradiance function is sitdfo thpekposi- ('=30 c og abrinshr a 0)
tion expected for a Lambertian surface. (o = 30*) (c) rough Lambertian sphere (a = 70').

The studies cited above, were attempts to de- cavities. Each V-cavity has two opposing facets
sign reflectance models based on measured re- and each facet is assumed to be much larger than
flectance data. In contrast, Smith [Smith, 1967] the wavelength of incident. This surface model
and Buhl et al. [Buhl et al., 1968] attempted to was used by Torrance and Sparrow [Torrance
develop a theoretical model for diffuse reflection and Sparrow, 1967] to describe specular reflec-
from rough surfaces. These efforts were moti- tion from rough surfaces. Here, we assume the
vated primarily by the reflectance characteristics facets are Lambertian in reflectance 2 First, we
of the moon. tinfrared emissions from the moon develop a reflectance model for anisotropic sur-
indicate that the surface of the moon reflects faces with one type (facet-slope) of V-cavities,
i.ore light back in the direction of the source (the and with all cavities aligned in the same ori-
sun) than in the normal direction (like Lamber- entation on the surface plane. This result is
tian surfaces) or in the forward direction (like then used to develop a reflectance model for
specular surfaces). This phenomenon is some- the more general case of isotropic surfaces that
times referred to as backscattering1 . Smith mod- have Gaussian facet-slope distributions with zero
eled the roughness of the moon as a random pro- mean (p = 0) and arbitrary standard devia-
cess and assumed each point on the surface to tion (ar). The standard deviation represents the
be Lambertian in reflectance. However, Smith's macroscopic roughness of the surface. Figure
analysis was confined to the plane of incidence 1 shows three images of spheres rendered us-
and is not easily extendable to reflections out- ing the proposed reflectance model. In all three
side the plane of incidence. Buhl et al. [Buhl cases, the sphere is illuminated from the viewer
et al., 1968] modeled the surface as a collec- direction. In the first case, (r = 0. and hence
tion of spherical cavities. They accounted for the sphere is Lambertian in reflectance. As the
interreflections using this surface model, but did roughness value increases, the sphere begins to
not present a complete reflectance model that appear flatter. In the extreme roughness case
accounts for masking and shadowing effects for shown in Figure ic, the sphere looks like a flat
arbitrary angles of reflection and incidence, disc with near constant brightness. This phe-

nomenon has been observed and reported in the
This paper presents a general and complete case of the full moon.
model for diffuse reflectance. This model can be
applied to isotropic as well as anisotropic rough We present several experimental results that
surfaces, and can handle arbitrary source and demonstrate the accuracy of our diffuse re-
viewer directions. Further, it takes into account flectance model. The experiments were con-
complex geometrical effects such as masking. ducted on real samples such as wall plaster and
shadowing, and intcrrcflcctions between points sand. In all cases, the reflectance predicted by
on the rough surface. We begin by modeling the model was found to be in strong agreement
the surface as a collection of long symmetric V- with the measurements. These results illustrate

'A different backscattering mechanism produces a sharp 
2

1n cases where the facets have a sperular component in
peak close to the source direction (see [|lapke and Imorn. 1963, addition to the diffuse component, the model presented in this
Oetking, 1966. Shibata ,t al., 1981, Fagare and deFigueiredo, paper can be used in conjunction with the Torrance-Sparrow
19911). This is not the mechanism discussed in this paper. model [Torrance and Sparrow. 19%.7].
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A It is the flux radiated by the surface per unit
solid angle, per unit foreshortened area. It de-

S pends on the direction of illumination and the
01 direction of the sensor. The relationship be-

X tween the irradiance and radiance of the surface
S• . is determined by its reflectance properties. Thebi-directional reflectance function (BRDF) is de-

•.A fined as the ratio of the radiance to the irradi-
X ance:

Figure 2: Geometry used to define radiometric 0,; e (3terms. = OO iO -- dr(r r iO
dE(Oi, Oi) (3)

that the deviation from Lambertian behavior can All of the above definitions are general, in that,
be very significant. For example, when the an- they are valid for surfaces with any reflectance
gle of incidence is 750, the brightness can vary characteristics. A special type of reflectance that
by a factor of three when the viewing direction is widely discussed in computer vision is Lam-
is varied. The results presented in this paper bertian reflectance. A Lambertian surface is an
demonstrate two points that are fundamental to ideal diffuser whose radiance is independent of
computer vision. (a) Several real-world objects the viewing direction of the sensor; it appears
have diffuse components that are significantly equally bright from all directions. Its BRDF is
non-Lambertian. (b) The reflectance of such ob- fr = P where the constant p is the albedo of the
jects cannot be accurately described using any surface.
of the previous reflectance models.

2 Radiometric Definitions 3 Surface Roughness Model

All surface models found in applied physics andIn this section, we define radiometric concepts geophysics literature can be divided into two
that will be extensively used in the remaining of broad categories. In the first case, the sur-
this paper. These concepts are discussed in de- face is modeled as a random process (see [Beck-
tail in [Nicodemus et al., 1977]. Figure 2 shows mann, 1965, Wagner, 1966, Smith, 1967]). Us-
a surface element dA illuminated from the direc- ing this approach, it is difficult to derive a re-
tion • = (Oi, 4,) and viewed by a sensor (image flectance model for arbitrary source and viewer
pixel, for example) in the direction 0 = (Or, Or). directions as well as to analyze interreflections.
We use 0 to denote zenith angles and 0 to de- In the second category, surfaces are assumed
note azimuth angles. The sensor subtends an to be composed of several elements with some
infinitesimal solid angle dw7 from any point on primitive shape, for example, spherical cavities,
the surface. V-cavities, holes, etc (see [Buhl et al., 1968,

The light energy reflected by the surface patch is Torrance and Sparrow, 1967]). As we show in

proportional to the light incident on the patch. this paper, the effects of shadowing, masking,
Irradiance is defined as the light flux incident per and interreflection need to be modeled in ordere as to obtain an accurate reflectance model. To ac-
unit area of the surface: complish this, we use the roughness model pro-

=dOi(i,Oi) posed by Torrance and Sparrow [Torrance and

dA Sparrow, 19671 that assumes the surface to be

This is the directional irradiance of the surface as composed of long symmetric V-cavities (see Fig-

it represents the light energy incident from the ure 3). Each cavity is composed of two facets.
The width of each facet is assumed to be smalldirection (Oi,Oi). T he brightness m easured by c m a e o i sl n t . T e r u h e s o h

the sensor is proportional to the radiance of the compared to its length. The roughness of thesurface patch in the direction (0r, 4 r). Surface surface is determined by a probability function
srfadice patcfintedi n S e used to model the distribution of facet slopes.radiance is defined as:

dO, (Or, Or; Oi, 00) ( We assume each facet area da is small compared
dA cos 0r dw& ( to the area dA of the surface patch that is imaged
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surfaces with different slope-area probability dis-
tributions are examined. (a) Uni-directional
Single-Slope Distribution: This distribution
results in a non-isotropic surface where all facets
have the same slope and all cavities are aligned

- dA- in the same direction. (b) Isotropic Single-
Figure 3: Surface modeled as a collection of V- Slope Distribution: Here, all facets have the
cavities, same slope but they are uniformly distributed in

orientation on the surface. (c) Gaussian Dis-
by a single pixel. Hence, each pixel includes a tribution: This is the most general case exam-
very large number of facets. Further, the facet ined where the slope-area distribution is assumed
area is large compared to the wavelength A of to be normal with mean zero. The roughness of
incident light and hence geometrical optics can the surface is determined by the standard devia-
be used to derive the reflectance model. The tion of the normal distribution. The reflectance
above assumptions can be summarized as: A2 < model obtained for each of the above surface
da < dA. The facets could be relatively small types is used to derive the succeeding ones.
as in the case of sand and plaster, or large as in
the case of outdoor scenes of terrain. The Projected Radiance:

Slope-Area Probability Distribution: Consider a surface area dA that is imaged by
a single sensor element in the direction b =
(0r,, r), and illuminated by a distant point light

We denote the slope and orientation of each facet sOrce in the direcio pi liThe
source in the direction i = (Oi, (i). The area

in the V-cavity model as (0,, 0,,). Torrance and is composed of a very large number of symmet-
Sparrow have assumed all facets to have equal nic V-cavities. Each V-cavity is composed of two
area da. They use the distribution n(6a, 0a) to facets with the same slope but facing in opposite
represent the number of facets per unit surface directions. Our approach is to compute the ra-
area that have the normal ai = (Oa, 0,). Here, diance contribution of each facet on the surface.
we use a probability distribution to represent the Then, the total radiance of the surface patch can
fraction of the surface area that includes facets of be computed as an aggregate of the contribu-
a particular slope. We refer to this as the slope- tions of all facets. Consider the flux reflected by
area distribution P(Oa, Oa). The facet number a facet with area da and normal 6 0
distribution and the slope-area distribution can As shown in Figure 3, the projected area on the
be related as follows: surface occupied by the facet is da cos 0,. Hence.

dA n(Oa, 0a) da cos Oa while computing the contribution of the facet to
P(Oa, -a) = dA the radiance of the surface patch, we need to use

= n(Oa,0ka)dacosOa (4) the projected area da cos 0 , and not the actual
facet area da. The radiance contribution of the

The slope-area probability distribution is easier facet thus determined is what we call the pro-
to use than the facet-number distribution in the jected radiance of the facet and is given by:
following derivation of the reflectance model. For dA~r(Oa,
isotropic surfaces, we simply have n(0a,Oa) = Lrp(O.,Oa) = (dacosO&) cosdOr (5)
n(O.) and P(Oa,O.) = P(O•,) since the distribu-
tions are rotationally symmetric with respect to For ease of description, we have dropped the
the global surface normal. source and viewing directions from the notations

for radiance and flux in the above expression.

4 Reflectance Model Total Radiance:

In this section, we derive a reflectance model for
rough diffuse surfaces. The V-cavity model is Now consider the slope-area distribution of facet
used to describe the surface geometry and each orientations given by P(Oa.•,j). The total radi-
facet on the surface is assumed to be Lamber- ance of the surface can be obtained as the aver-
tian in reflectance. The following three types of age of the projected radiance Lrp(Oao) of all
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the facets on the surface: by adjacent facets (see Figure 4). In the case of
[ 27r shadowing, a facet is only partially illuminated

L, /2 P(Oa,q0a)Lrp(Oa, Oa)dkadOa as the adjacent facet on the V-cavity casts a
80, =O) 0J=O shadow on it. In the case of masking, the facet

(6) is only partially visible to the sensor as its ad-

4.1 Model for Uni-directional Single- jacent facet occludes it. Both these geometrical

Slope Distribution phenomena affect the projected radiance of the
facet and hence must be taken into account. Tor-

The first surface type we consider has all facets rance and Sparrow [Torrance and Sparrow, 1967]
with the same slope 0,. Further, all the V- have studied these effects while deriving their re-
cavities are aligned in the same direction. The flectance model for specular facets. We analyze
results obtained for this anisotropic surface ge- the same effects here for Lambertian facets. The
ometry will later be used in the analysis of result is a geometrical attenuation factor (GAY)
isotropic surfaces. that lies between zero and unity. It represents

the reduction in the projected radiance of a facet
Radiance from a Lambertian Facet: due to masking and shadowing effects. Consider

Consider a Lambertk %.cet that is fully illumiA A

nated (no shadowing, ,d is completely visible A

(no masking) from the sensor direction. The ra- v -

diance of the facet is proportional to its irradi- . n
ance and is given by:

L,( . a = P-E O ,0 )(7) 0
The irradiance of the surface is E(0•, 4.) = (-) b)

E0 <.9,6>, where E0 is the irradiance when the Figure 4: Masking and shadowing effects.
surface is illuminated head-on. Using the defini-
tion of radiance, the flux reflected by the facet the masked and shadowed regions shown in Fig-
in the sensor direction is obtained as: ure 4. If the visible area of a facet is smaller than

the illuminated area, the masking effect domi-
d4', = £. Eo <S a,> <V a,> da dw• (8) nates. On the other hand, if the illuminated area

Substituting the above expression for reflected is smaller than the visible area, the shadowing ef-
flux in equation 5, we obtain the projected radi- fect dominates. We denote the length and width
ance for the facet: of the facet by I and w, respectively. Further.

Lrp(Oa, 0.) = 1 Eo cos 0i cos 0, m, and m, are the sections of the facet that are
shadowed and masked, respectively. The area of

(1 + tan Otan Oa cos(o. - 0i)) the facet which is both illuminated and visible is
(1 + tan 0,tan 0cos( - Or)) (9) 1. Min[w-m, w - mI. The gAY is obtained

by dividing this expression by the area w I of the
This expression clearly indicates that the pro- facet:
jected radiance of a tilted Lambertian facet is GAY = Min [1 - 1 - m(10)
not equal in all viewing directions. Hence, a -7 -w,1
rough Lambertian surface comprised of tiltedfacets reflects in a non-Lambertian manner; its We need to express the G.A.Ft in terms of the

source direction (0i, Oi) and the sensor direction
radiance varies with the viewing direction. This (09,Or). For any given set of source and sen-
phenomenon is observed even in the absence of sor angles, the shadowed and masked regions m,
masking, shadowing, and interreflection effects. and m, can be derived using trigonometry. This

derivation has already been presented in [Blinn,
4.1.1 Geometric Attenuation Factor 1977] and hence we will not discuss it here. The

If the surface is illuminated and viewed head-on, final expression for the GAY is found to be:

all of the facets are fully illuminated and visi- GAY = (11)
ble. For larger angles of incidence and reflec- i 1 2<n,a><ft,s> 2<it,a><in,tu>],
tion, however, facets are shadowed and masked M 1 ,a 0 < iisi> < a, >
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Projected Radiance and 9A.F: and van Doorn, 1983]:

The projected radiance of a Lambertian facet L'(i) = p- /f K(i,37)Lr(37)d37 (12)
is obtained by simply multiplying the geometric r r

attenuation factor with the projected radiance where i is a point on the facet whose interreflec-
obtained under the assumption of no masking tion component is determined as an integral of
and shadowing effects. Table 1 details the 9A" the radiance of all points :V on the adjacent facet.
and the corresponding projected radiance for all K(i,37) is called the kernel and represents the
cases of shadowing and masking. Note that the geometrical relationship between ,i and S;. Since
projected radiance is denoted as L'P; the super- the V-cavity is very long compared to its width,
script 1 is used to indicate that the radiance it can be viewed as a two-dimensional shape with
is due to direct illumination by the source. In translational symmetry. For such shapes, the in-
the next section, we will use L' to denote the terreflection component can be determined as an
radiance due to interreflections (multiple reflec- integral over the two-dimensional cross-section of
tions). the shape. The above interreflection equation is

therefore reduced to:

L'(x) = 9! K'(x. y)Lt((y))dy (13)
7r r

4.1.2 Interreflection Factor where x and y are the shortest distances of points
:i and :V from the intersection of the two facets

In our reflectance model, we also account for in- (see Figure 5). K' is the kernel for the transla-
terreflections; light rays bouncing between ad- tional symmetry case and is derived in [Forsyth
jacent facets. These effects are significant for and Zisserman, 1989] to be:
rough surfaces with relatively high albedo val- rsin2 (20.) xy
ues. We have the task of modeling interreflec- K'(x, y) = 2 (x 2 + 2xy cos (20o) + y2 )3/ 2

tions in the presence of masking and shadow- (14)
ing effects. In the case of Lambertian surfaces, We know that the orientation of the considered
the energy in an incident light ray diminishes
rapidly with each interreflection bounce. Hence, A

we model only two-bounce interreflections and . 7A

ignore subsequent bounces. The experimental "

results show that this approximation is a good
one. Interreflections are more significant for'-
very rough surfaces and less so for surfaces with - "
mostly "open" V-cavities. Since the long V-
cavity model is only an approximation to the X y
real surface, we propose to use a parameter X, -A -

where 0 < X < 1, to represent the coefficient of Figure 5: Interreflections in a V-cavity.
the interreflection component of radiance. The
real surface may not have very long cavities and facet is ti = (0a,,a) and the orientation of the
hence the parameter X can be adjusted to ac- adjacent facet is t' = , + 7r). The limits
count for such discrepancies. For very rough of the integral in the interreflection equation are
surface with deep cavities, X : 1, and for rel- determined by the masking and shadowing of the
atively open and shorter cavities (as in the case facets. Let m, be the width of the facet which is
of terrain), - : 0.5 - 0.75. visible to the viewer. Let ms be the width of the

In the following discussion, we refer to surface ra- adjacent facet that is illuminated. As in section

diance due to direct illumination by the source 4.1.1, expressions can be obtained for the visible

as Ll and the radiance due to the second bounce and illuminated sections:

(first interreflection) as L2. We will use the same [0-- Max[O, Alin[1, -< ]] (1.5)

superscripts for the projected radiance. The W
two-bounce interreflection component for a Lam- ms [.[ <'.9> 1]

bertian facet can be expressed as [Koenderink U= <&'.i> J (16)
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No Masking P- o,><,> =

or 1 PEocosOicosOa(1 +tan8a tan0icos(4,a -0)

Shadowing (1 + tan 0, tan 0, cos (0 -0)

Masking 2<fXh,><fila> AE 0 2<&,.9> =

__P-_E0 cos Oi cos Oa 2(1 + tan Oa tan Oi cos (Oa - 00)

Shadowing 2< f,9>< la> pE 2<fl,><daf><sa 7r 0 < 1b, ft > =

__E 0 cosO cosO9 2(1 + tan9a tanOr cos (6a - Or))

Table 1: Projected radiance of a facet for different masking/shadowing conditions.

By using the following change of variables: r = interreflections predicted by the V-cavity surface
x t = w, we get the projected radiance due to model and the real surface. Note that the uni-
two-bounce interreflections as: directional single-slope surface we have consid-

ered in this section has only two types of facets

LP ()Eo<a".><a'> with normals (0., 0a) and (6a, a + 7r). Hence,rp< , h<><V, > the radiance of the surface for any given source
- ]. direction and sensor direction is simply the av-f K'(r,t)drdt (17)

=- , t1)erage of the projected radiance of the two facet
types:

Using equation 14, the integral is evaluated as: = Lrp(O, .,) + Lrp(O., 4. + w) (22)

2 (2
j j K'(r,t)drdt= (18)

4.2 Model for Isotropic Single-Slope Dis-
m m d1, tribution

Sd W W We now consider a surface where all V-cavities

where: have facets with the same slope (8s), but the V-
cavities are uniformly distributed in orientation

d(x, / + 2xycos (2O•) + y2  (19) (0,,) in the plane of the surface. The result is a
surface with isotropic roughness. The reflectance

We refer to the above term as the interreflection model derived for this surface is based on the re-
factor (I.F). Then, the interreflection compo- suits obtained for the single slope surface in the
nent of the projected radiance of a facet with previous section. The results obtained in this
orientation (0a, 0a) can be written as: section are important as they can be used to ob-

S2 (p) 2Ecos0 cos Oi C 8tain a reflectance model for any isotropic surface.

1tan 0,,t an 0,, COS (Oa-Oi) (20) Consider a surface with only one type of V-
cavities that are distributed uniformly in the

(1 + tan 0 ,tan 0, COS (0€, - jr))T(O, ,/ ) plane of the surface. From the previous section,
we know the projected radiance L'p(O, 0,) of a

The total projected radiance of the facet is the facet with normal ai = (0a, Oa). All facets on the

sum of the projected radiance due to source illu- isotropic surface have the same slope Oa but dif-

mination (given in Table 1) and the interreflec- ferent orientation Oa. Hence, the radiance of the

tion component: isotropic surface is obtained as an integral of the
projected radiance over Oa:2p(( 2r•

Lrp(Oa,4Oa) = L p(Oa, Oa) + XL (Oa,Oa) (21) L lp( Oa) L lp(0a, Oa)dka (23)

As discussed earlier in this section, we use the 21rJIa

parameter X to weight the contribution due to in- For lack of space, we will avoid detailed deriva-
terreflections to account for discrepancies in the tions and focus on the main results obtained.
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We approach the problem as follows: Given a 1 29 tani(0-

source direction (0i, ii) and a sensor direction 2
(0 r, O~r) we need to find the ranges of facet ori- ( 2 n 2Si tnr-- tan 0. tan,3
entation 0. for which the facets are masked, Ai
shadowed, masked and shadowed, and neither 0
masked nor shadowed. The projected radiance if cos (0, -ai) > 0
for each range is given in Table 1. The prob-
lem then is to decompose the above integral into Similarly, the projected radiance in the perpen-
different parts each corresponding to a different dicular plane is determined as:
masking/shadowing range3 . Using basic geom-
etry, we have identified the limits of the inte- L p±(0,) = 2E0 cosOi cos 0o 1 + A3(O.; Or,Oi) (26)
grals corresponding to different ranges of shad- I I
owing/masking. These limits are represented by 0 OS, + O,• _< -2
the critical angles O'c (for shadowing) and Oc• (for 1. •

masking). The critical angle 40, is related to the A3 (0., Or, Oi) = \/tan 0, tn2 .- 1 +
slope O0, of all surface facets as follows: ,lsh( - +

Scos- 1 (anO'tan O) if (tan0. tanOi) > 1 ta n2. +tan2 i + >Iq•= 0 otherwise "iq

(24) The radiance of the surface in any arbi-
The critical angle 0' is determined using trary direction is approximated as the following
the same expression by replacing 9i with Or. weighted sum of Lr',ll(# 0) and L'pj(8a).
The critical angles are related to the mask- _

ing/shadowing ranges as shown in Table 2. LTP(Oa) zl Cos (cos -- Oi) I Lrpli(O.) +

Using the above critical angle expressions, Ta- (1- I cos(Or - ki) I)Lrpj(Oa) (27)
ble 2, and Table 1, we decompose the integral
of equation 23 into the sum of several integrals. This approximation was obtained by studying
Each integral can be evaluated for any given the expressions for the radiance components in
viewer directions. However, for arbitrary direc- the two planes. It is very accurate in general,
tions several cases arise and the results are not with a slight over-estimation only for Or = 9i and
easy to use in practice. Therefore, we have cho- 9i --* ir/2. Using the above linear combination of
sen to express the radiance of the surface for any the project radiance in the two planes, we obtain
arbitrary viewing direction (0r, Or) as a weighted the final expression for the projected radiance:
sum of the radiance L' in the plane of inci-

TpII
dence (4r = Oi, Oi + r) and the radiance Lr,.1  L' (O) = AE0 cos Oi cos 0  + (28)
in the perpendicular plane (0, = 4- ±). We t

use the following notation: a = Max[Oi,Or] and cos(Or - ki)a(A,( 0 ;a)tan + A 2(O0 ;f ,Or - +O)+
/ = Min[Oi,Or]; ifa = Oi,ekb = 4belse •' = ';/
and the same rules apply to 4O. The projected ( - Jcos (r - O)I)A 3 (O; Or, Oi)0
radiance in the plane of incidence is: I
L'(0.) = PEocosOicosOa I+ (25) Note that the above projected radiance is

P11 the same as the total radiance of the surface

fLr(0a) = LrP(Oa ) since we have only type of
cos(Or - 00 (A1(Oa;a)tan3+ A2( 0.;,3,Or - 00) facet slope on the surface (P(Oa) = 1). In the

above derivation, we have not considered multi-
where : ple reflections as the interreflection component of

= tan 2 sin 0 equation 21 is difficult to intergrate over all cav-
Ai(O0a;) tn + ity orientation angles Oa. However, in the next

section we present an approximation to the inter-
3 lrmagine a V-cavity rotated about the global surface nor-

mal for any given source and sensor direction. Various mask- reflection component for surfaces with Gaussian
ing/shadowing conditions can be observed, slope-area distribution.
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Partial Shadow No Shadow Complete Self-Shadow I1116.- Oi I<¢ 0, 13<510. - Oil <'-< I -(<03

Partial Masking No Masking Complete Self-Masking
10. - Or I < Oc" Ov <-- I 0a - Orl T - 0V 110. - (0, + 7r)l < 0V

Table 2: Masking/shadowing and the critical angles.

Once again, it is important to note that the ra- large set of numerical evaluations of the integral
diance of the rough surface considered here is in equation 29 by varying the surface roughness
not constant with respect to the viewing direc- a, the angles of incidence (0i, Oi), and the reflec-
tion (0,, Or). In other words, it behaves in a tion angles (0, Or). These simulations and the
non-Lambertian manner. We will study this be- identified basis functions were used to arrive at
havior more closely in the following section. an accurate functional approximation for surface

radiance. This procedure was applied indepen-
4.3 Model for Gaussian Slope Distribu- dently to the source illumination component as

tion well as the interrefiection component.

The surface considered above consists of V- The final approximation results are given below.
cavities with a single facet slope. Real surfaces As before, we define a = Max[Or, Oil and /3 =
can be modeled only if the slope-area distribu- Min[OT, Oil. The source illumination component
tion P(Oa, 0a) includes cavities with several dif- of the radiance of a surface with roughness a is:
ferent facet slopes. If the surface roughness is
isotropic, the slope-area distribution can be de- L'(0i, Oi; O,,;o) E0Cos i C1(a, P)
scribed using a single parameter namely Oa since (3

the parameter 46a for facet orientation in the sur-
face plane is uniformly distributed. The radiance COS ( - i) (C2(, , P) - Ca(0; 0, - Oi; a,,")) tan 13
of any isotropic surface can therefore be deter-
mined as: +(1 -Icos(0, - 0i))C 4(a;/3; o,,p) tan( 2

Xz 2

L, = Jf P(Oa)Lrp(Oa)dOa (29) where the coefficients are:
02 a 2

where the source illumination (no interreflec- C 1 + (r - 1),;2 +0.4
tions) component of Lp(O,) is given by equa- 2
tion 28. Here, we assume the isotropic distribu- C2 :. 0.4 (sina)(°56+•)a2+0.21
tion of facet slope to be Gaussian with mean it 0 if cos+( -02i) < 0
and standard deviation a, i.e. P(O,;or, p). Rea- C3  0 aotherwise

sonably rough surface, can be described using a 0
a2  (4a/2( +zero mean (p = 0) Gaussian distribution. The C4 0.11(a

roughness of the surface is then determined by ar+ 0.21
the parameter a. The functional approximation to the interreflec-

tion component of surface radiance is:
The reflectance model can be obtained by using [a r

the projected radiance Lv(O0 ) given by equa- L-2(0,,,0,; r) =p2 Eocos Oi+O. 0.04-
tion 28 and the Gaussian distribution P(Oa; a, 0) r C 2 +0.4
in the integral of equation 29. The resulting in- -1
tegral cannot be evaluated. Hence, we pursued 0.11cos(r - )(cos _)3 (sin3) (31)
a functional approximation to the integral that 2 J
is accurate for arbitrary surface roughness and The two components are combined using the in-
angles of incidence and reflection. In develop- terreflection parameter X to obtain the total sur-
ing this approximation, we carefully studied the face radiance:
functional form of L'rp(O9,). This enabled us to
identify some basis functions that can be used Lr(Oi,4 i;O0,; ;a) = (32)
in the approximation. Then, we conducted a L'(0,.i,; Or,,Or;a)+ kL2(Oi, (ýi;O,,; a)
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Finally, the bi-directional reflectance function S"&
of the surface is obtained from its radi- LMP

ance and irradiance as fr(Oiii;OrOr;a) = 0.1CCt

Lr(Oi, Oi; Or, Or; a) / E(Oi, Oi). It is important
to note that the approximation presented here
obeys Helmholtz's reciprocity principle. 0+1

Ls m e ---- -- -- - -- -

In the next section, we present several experi- ineftct0

mental results that verify the diffuse reflectance 0.02

model presented here. We conclude this section q~e,
with a brief illustration of the main characteris- -,S -W -,9 -,0 -15 1, 30 0 W 7 , Wk

tics predicted by the model. Figure 6 shows the o,,d bakw

reflectance predicted by the model for a rough Figure 6: Diffuse reflectance from a surface with
Lambertian surface with roughness a = 700, roughness a = 700 for angle of incidence 6i = 75*.
albedo p = 0.95, and X = 1. The radiance L, in The numerical integration is the thick line and the
the plane of incidence (0, = 0i, 0i + ar) is plotted functional approximation is the thin line.
as a function of the reflection angle 0, for the an-
gle of incidence 0i = 75*. Two curves are shown edly 2x2 inches. It is imaged using a 512x480
in the figure; one generated by numerical inte- pixel CCD camera that is mounted at the end
gration of equation 29 and the second (plotted of a 6 foot long beam. The other end of the
as a thin line) obtained by the model approxima- beam is attached to a rotary stage to facilitate
tion given by equations 30 and 31. Notice that precise variation of the viewing angle 0r. The
these radiance plots deviat: substantially from sample is illuminated using a 300 Watt incan-
Lambertian reflectance. The surface radiance descent light source. The illumination direction
increases as the viewing direction approaches the (Oi, Oi) is varied manually. Images of the sample
source direction. The plot can be divided into are digitized and the radiance is computed as the
three sections. In the backward (source) direc- average brightness over all pixels that lie on the
tion, the radiance is maximum and gets "cut- sample.
off" due to strong masking effects when 0r ex-
ceeds Oi. This cut-off occurs exactly at 0, = 0i sample
and is independent of roughness. In the middle
section of the plot, radiance varies as a scaled
tan 0r function with constant offset. Finally, the
interreflections dominate in the forward direc- a•/
tion where most facets are self-shadowed and the ra
visible facets receive light mainly from adjacent
facets. The deviation from pure Lambertian be- light source

havior increases with the angle of incidence 0i. Figure 7: Sketch and photograph of the set-up used
to measure reflectance.

5 Experiments Figure 8 shows results obtained for a sample of

We have conducted several experiments to ver- wall plaster. The sample has matte local re-
ify the accuracy of the reflectance model pre- flectance properties but is very rough; it is ex-
sented here. The experimental set-up used to actly the type of surface that our diffuse re-
measure the radiance of samples is shown in Fig- flectance model characterizes. Tile reflectance
ure 7. In the case of outdoor scenes, each sen- is represented by the radiance of the surface in
sor element (pixel) typically includes a large sur- the sensor direction. The radiance of each sam-
face area (several inches in dimensions and often ple is plotted as a function of the sensor direc-
more). Commercially available reflectance mea- tion 0, for different angles of incidence 0i. These
surement devices are applicable only to small measurements are made in the plane of incidence
samples. Hence, we developed our own mea- (O, = 0i = 0). The dots represent measured ra-
surement device. Each sample is approximat- diance values while the solid lines are predictions
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obtained using the reflectance model for Gaus- ..
sian surface roughness. The roughness a was Wall Plaster e0-. 3d

empirically selected to obtain the best match be-
tween measured and predicted radiance.

Similar results are presented in Figures 9 and
10 for sample B (painted sand paper) and sam-
ple C (white sand). For three samples, the ra--,__.____ -,_-,_,... ____

diance increases as the viewing direction 0r ap-
proaches the source direction e (backward re- Figure 8: Reflectance measurement and reflectance
flection). This is in contrast to the behavior of model (using a = 50*, X = 0.75) plots for wall plas-
rough specular surfaces that reflect more in the ter (sample A). Radiance is plotted as a function of

forward direction, or Lambertian surfaces where sensor direction (0r) for different angles of incidence

the radiance does not vary with viewing direc- (0i = 300, 450,600).
tion. For all three samples, the model predic- 0.2

tions and experimental measurements match re-
markably well. In all cases, a small peak is no- , Cr

ticed near the source direction. This is a differ-
ent phenomenon from the one described by our
model; it is the backscatter peak noticed by oth-
ers [Oetking, 1966, Hapke and Horn, 1963]. In
the case of sample C (sand), we see a small spec- -W .......... ........ r
ular component in the forward direction. This Figure 9: Reflectance measurement and reflectance
due to the specular characteristics of individual model (using a = 700, X = 0.50) plots for painted
sand particles. sand-paper (sample B).

Sand "

6 Implication on Machine Vision f 4

We conclude this paper with a brief discus- _ =..
sion on the implication of the diffuse reflectance
model presented here on machine vision algo-
rithms. Techniques such as shape from shad- s
ing and photometric stereo make assumptions re-
garding the reflectance properties of surfaces in Figure 10: Reflectance measurement and reflectance
the scene. Incorrect modeling of the reflectance model (using a = 700, X = 0.50) plots for sand (sam-
properties naturally leads to inaccurate shape pie C).
recovery. The reflectance model presented here
clearly indicates that rough diffuse surfaces can- Figure 11 compares the reflectance map of a
not be assumed to be Lambertian in reflectance; Lambertian surface with that of a rough Lam-
they appear brighter in the backward (source) bertian surface with a = 700. It is interesting
direction rather than the surface normal direc- to note that the rough Lambertian surface pro-
tion or the forward (specular) direction. Fur- duces a reflectance map that appears very sim-
ther, this deviation from Lambertian behavior ilar to the linear reflectance map hypothesized
increases with the roughness of the surface and for the lunar surface (our model predicts that
the angle of incident light. The model can there- this linearity of the reflectance map exists only
fore be used to improve the performance of shape when viewer direction is close to source direc-
recovery methods. It can also be used to recover tion). In a sense, the reflectance model presented
the macroscopic roughness (a) of surfaces from here establishes a continuum from pure Lamber-
diffuse reflectance measurements. The recovered tian to lunar reflectance by simply varying the
roughness can be used to predict the appearance roughness of the surface. Finally, the surface
of the surface under different illumination and roughness model used to derive the reflectance
viewer directions. model is the same as the one used by the popular
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Separation of Reflection Components

Using Color and Polarization

Shree K. Nayar, Xi-Sheng Fang, and Terrance Boult

Center for Research in Intelligent Systems, Department of Computer Science,
Columbia University New York, N.Y. 10027, U.S.A.

Abstract at the surface. This component is distributed
in a wide range of directions around the surface

Specular reflections and interreflections produce normal, giving the surface a matte appearance.
strong highlights in brightness images. These If the viewing direction of an image sensor is var-
highlights can cause vision algorithms, such as, ied, diffuse reflections from scene points change
segmentation, shape from shading, binocular slowly and in the ideal case of Lambertian sur-
stereo, and motion detection to produce erro- faces, it does not change at all. The specular
neous results. We present an algorithm for sepa- component, on the other hand, is a surface phe-
rating the specular and diffuse components of re- nomenon. Light rays incident on the surface are
flection from images. The method uses color and reflected such that the angle of reflection equals
polarization, simultaneously, to obtain strong the angle of incidence. Even for marginally
constraints on the reflection components at each rough surfaces, the specular reflections are con-
image point. Polarization is used to locally de- centrated in a compact lobe around the specu-
termine the color of the specular component, lar direction. This concentration of light energy
constraining the diffuse color at a pixel to a one causes strong highlights in brightness images of

dimensional linear subspace. This subspace is caenes trong highlights in b aus is of

used to determine neighboring pixels whose color scenes. These highlights can cause vision algo-

is consistent with a given pixel. Diffuse color in- rito produce erroneo nd s ha an-

formation from consistent neighbors is used to ysis ce erroneous results. If the sen-
sor direction is varied, highlights shift, dimin-

determine the diffuse color of the pixel. In con- ish rapidly, or suddenly appear in other parts of
trast to previous separation algorithms, the pro- the scene. This strong directional dependence
posed method can handle highlights that have a of specular reflection, poses serious problems for
varying diffuse component as well as highlights vision techniques such as binocular stereo and
that include regions with different reflectance motion detection. Hence, specularities are often

and material properties. We present several ex- undesirabti in images.

perimental results obtained by applying the al-

gorithm to complex scenes with textured objects In this paper, we present an algorithm that sep-
and strong interreflections. arates the diffuse and specular components of

brightness from images. Separation of reflection
1 Introduction components has been a topic of active research in

the past few years. We discuss only those efforts

Reflection of light from surfaces can be classi- that have resulted in algorithms that have been

fled into two broad categories: diffuse and spec- tested on real images. Most of this work is based

ular. The diffuse component results from light on the dichromatic reflectance model proposed

rays penetrating the surface, undergoing multi- in [Shafer, 85]. The dichromatic model suggests

pie reflections and refractions, and re-emerging that, in the case of dielectrics (non-conductors),
the diffuse component and the specular compo-

"This work supported in part by DARPA contract DACA- nent generally have different spectral distribu-
76-92-C-007 and NSF contract #IRI-90-57951
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tions. Hence, the color of an image point can tire highlight region. They also assume that the
be viewed as the sum of two vectors with differ- material type and surface normal do not vary
ent directions in color space. Using this model, within the highlight region. Using these assump-
[Klinker, 88] and [Gershon, 87] independently tions, an estimate for a constant diffuse term is
observed that color histogram of an object with obtained. We will show later that the assump-
uniform diffuse color takes the shape of a skewed tions made in [Wolff and Boult, 91] are often
T with two limbs. One limb corresponds to not practical in the context of real scenes.
purely diffuse points on the object, which have
the same color but differ in magnitude, and the This paper presents a new algorithm for the sep-
second limb represents a highlight region. They aration of specular and diffuse reflection compo-
proposed algorithms for automatically identify- nents from images. This algorithm uses color
ing the two limbs and used the directions of the and polarization simultaneously, to obtain new
limbs to separate the diffuse and specular com- constraints of the reflection components. As a
ponents at each object point. Later, [Bajcsy, et. result, it does not suffer from many of the prob-
al., 90] showed that the color histogram of an ob- lems associated with previous methods based ei-
ject could have additional limbs that correspond ther color or polarization. We assume that the
to highlights caused by interreflections between scene consists of dielectric objects. This leads
objects. More recently, [Lee, 91] proposed mov- to two assumptions: (a) the dichromatic model
ing a sensor and applying spectral differencing to is applicable, and (b) the specular component
color histograms of consecutive images to iden- is polarized while the diffuse component is not.
tify specular points in the image. This method The restrictions imposed by these assumptions
however does not compute accurate estimates of are discussed in subsequent sections. The pro-
the specular component at each image point, posed algorithm can estimate specular compo-

nents that result not only from direct source illu-
All of the above algorithms rely solely on color mination but also interreflections between points
information to separate specular and diffuse re- in the image. We show that, under reason-
flections from images. Since the separation is able assumptions, polarization information can
not possible when an image point is treated in be used to obtain the color of the specular com-
isolation, these methods analyze the anatomy of ponent independently for each point with a spec-
color histograms. Two major limitations result ular component. For each such point the result is
from the above approach. First, real scenes are a line in color space on which the diffuse vector
complex and include objects with texture and must lie. This line imposes strong constraints
varying reflectance. Color histograms of such on the color of the diffuse component of that im-
scenes are generally unpredictable and a set of age point. Neighboring diffuse colors that satisfy
linear clusters such as the skewed T are unlikely. these constraints are used to compute the diffuse
Second, all points on the highlight region are as- component of the image point.
sumed to have the same diffuse component (color
and magnitude). Even for an object with uni- Since the specular color of each image point
form ref. ,ctance, this assumption is valid only if is computed independently, our approach has
the object surface is very smooth. In the case the following advantages over previous methods:
of rough surfaces, the highlights spread over a (a) The diffuse component is not assumed to be
wider range of surface normals and the specular constant under the highlight region; (b) The
limb of the skewed T does not have a well-defined Fresnel ratio (which depends on the material
direction. properties and the angle of incidence) can vary

over highlight regions; and (c) the specular com-
Recently, [Wolff and Boult, 91] proposed a po- ponent may be textured. The algorithm requires
larization based method for separating specular that each image point has a few (at least three)
and diffuse components from gray-level (black neighbors that have the same computed diffuse
and white) images. Details of this method color (that is, direction in color space but not
will discussed later. Their polarization-based necessarily magnitude). Color Figure la (see
method assumes that the diffuse component pages with color photos) shows a highlight that
(color and magnitude) is constant over the en- spreads over an object with strong surface tex-
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ture. Color Figure lb shows the diffuse image
of the object recovered using the proposed algo- MU
rithm. In the experimental section, we present * Qumm
several other results obtained by applying the

//algorithm to complex scenes with multiple high- •t

lights and interreflections.

2 Reflection and Interreflection dium

We begin by describing the mechanisms involved
in the processes of reflection and interreflection. A

Specular reflections cause highlights in the im-
age that pose serious problems for a variety of
vision techniques. The objective of this paper is
to remove specularities due to single reflections Figure 1: Components of reflection and inter-
as well as interreflections. reflection.

Figure 1 shows two points, A and B, in a scene. value in the image as the sum of two compo-
Reflection from the point A has two components, nents, diffuse and specular. The specular com-
namely, diffuse and specular.1 The diffuse com-
ponent arises from the scattering of light rays pnetcnrsleihrfodrctlumainthatnentearithes srfacte scand eringof muhti res by a light source or due to the diffuse-specularthat enter the surface and undergo m ultiple re- o p c l r s e u a n e r f e t o s e a s m
flections and refractions. The specular compo- or spe specular reflection We senent, on the other hand, is a surface phenomenon that the specular reflection received by the sen-and results from single reflection of incident light from any given point is either due to source

rays Th sur ace may e a sume to be c rn- illum ination or due to interreflections and not
rays. The surface may be assumed to be corn- both. In other words, any given scene point is
posed of several planar elements, or facets, where poti. an ord to gien renect es
each facets has its own orientation. The result positioned and oriented to specularly reflect es-
is a specular component that spreads around the sentiely from either a light source or another
specular direction, the width of the distribution scene point but not both. This assumption holds
depending on the roughness of the surface [Tor- well except for very rough surfaces.
rance and Sparrow, 67]. 3 Polarization

Now let us consider the phenomenon of inter- The method presented in this paper uses a polar-
reflections. Points in the scene receive light notonly from the light sources but also from other ization filter to determine the color of the specu-
scene points. Assume that point B reflects, into lar component. In this section, we present a briefthe sensortlightsenergy from the direction of overview of polarization and discuss the type ofpthe senso, lght resnergy fom te dirihtiones oe surfaces for which it provides useful information.
point A. The resulting image brightness value Detailed discussions on the theory of polariza-
can be viewed as the linear combination of four tanle foussin on and Wof 65].rInpossible interreflection components: (a) diffuse- tion can be found in [Born and Wolf, 65]. In

possbleintrrelecioncompnens: a) iffse-the field of machine vision, polarization meth-
diffuse; (b) specular-diffuse; (c) diffuse-specular, th e fied in e in polaizatio mehand(d)spculr-seclar Ineah cseth fist ods were first introduced in [Koshikawa, 79]
and (d) specular-specular. In each case, the first who used ellipsometry for shape interpretation
term represents the component received from and recognition of glossy objects. More recently,
point A and the second represents the compo- [Wolff and Boult, 91] examined the use of linear
nent reflected by point B. In general, point B polarization for highlight removal and material
could reflect light due to both direct illumination classification.
by light sources as well as interreflections from
other scene points. We consider each brightness Figure 2 shows a surface element illuminated by

1 Recently, [Nayar, et. al., 911 proposed a reflectance frame- a source and imaged by a sensor. A polariza-
work that includes three primary components of reflection: the tion filter is placed in front of the sensor. As
diffuse lobe; the specular lobe; and the specular spike. In this he
paper, the two specular components can be combined to yield, in t previous section, let the image brightness
the specular component. value corresponding to the surface element be
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Figure 2: Surface element illuminated by a
source and imaged through a polarization filter. ____ ____________

aas: I - 'd +- , where, Id is the diffuse corn- Figure 3: Image brightness plotted as a function

ponent and 1, is the specular component. The of polarization filter position.
linear polarization of each light wave is deter-
mined by the direction of its electric field vec- waves in the directions perpendicular and paral-
tor. In general, the light energy (due to several lel to the plane of incidence, respectively. The
light waves) reflected by a surface may be par- relationship between Ic and I., and the Fresnel
tially polarized. The extent of polarization de- coefficients is:
pends on several factors including the material I. + I., F±(77, )
of the reflecting surface element, its orientation Isc +- (•l(r, V,) (2)
with respect to the image sensor, and the types
of reflection mechanisms (specular or diffuse) at The parameter 77 is the complex index of refrac-
work. tion of the surface medium, and depends on the

properties of the reflecting material. The param-The diffuse component of reflection tends to be 3

unpolarized.2 In contrast, the specular compo-
nent tends to be partially polarized; rotation of Note that the terms Id and lc in equation 1
the polarization filter varies the specular corn- are constant and can be represented by a single
ponent as a cosine function, as shown in Figure component lc = Id + Ic to obtain: I = lc +
3. The specular component can be expressed as I, cos 2(0 - a). For any given position 6i of the
the sum of a specular constant lc and a specu- polarization filter we have:
lar varying term that is a cosine function with
amplitude I,,: Ii = Ic + Is, cos 2(6i - a). (3)

I = Id + Ic + I., cos 2(0 - a) (1) This can also be represented as the dot product
of two vectors:

where, 0 represents the angle of the polarization
filter and a is the phase angle determined by fi = (1, cos 20i, sin 20i)
the projection of the normal of the surface el- v = ( Ic, sv cos 2a, Isv sin 2a)
ement onto the plane of the polarization filter. Ii = fi • v. (4)
The exact values of ISc and Isv depend on the
material properties and the angle of incidence. Let M be the total number of discrete filter posi-
This dependence is determined by the Fresnel re- tions used to obtain the image brightness values
flection coe.ficients F±(i7, •) and Fjl(W, 4') whichrepresent the polarization of the reflected light 3 Formetalsthetwo°Fresnelcoefficientsarenearlyequalex-

cept close to the grazing angle (when tP lies between 70 and 90
degrees). Thus, linear polarization based methods are gener-2 Note that this assumption does not hold near the occlud- ally not effective for metals. For dielectrics (non-conductors),

ing contour of an object, see [Boult and Wolff, 91]. That paper however, the two Fresnel coefficients differ substantially except
addresses the classification of scene edges based on their po- for near-normal angles of incidence (when i, is less than 10- 5
larization characteristics, degrees).
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{ Ii I i = 1, 2, ..., M}. If M = 3, equation 4 yields the curvature of the surface or due to texture on
a linear system of equations that can be solved to the surface. Secondly, the Fresnel ratio q can-
obtain the parameters Ic, Isv, and a. If M > 3, not be assumed to be constant since the angle of
we have an over-determined linear system that incidence can vary substantially over large high-
can be solved to obtain more robust estimates of light regions resulting from extended sources in
I,, Isn, and a, in the presence of image noise.4  the scene. The latter of these problems was dis-

cussed in [Wolff, 90] but no solutions were pro-
From Ic and Isv, we can obtain the maximum posed.
and minimum values of image brightness as:

4 Color
Imin = Ic - Isv, Im.x = Ic + 'sv (5)

We now discuss the role of color in the removal of
The degree of polarization at a scene point can specularities. We present an overview of the rep-
be determined as [Born and Wolf, 651: resentation of diffuse and specular components

in color space and discuss previous work on the
=max -= ifmin (6) removal of highlights using color. In contrast to

mnax + 'min gray-level images, color images represent wave-

The degree of polarization lies between 0 and length (A) dependence of the light reflected by
Iand can be used during highlight removal to a scene. Let x(A) be the spectral distribution of1 n a eue uighglgtrmvl the

classify points into those that are only diffuse the light reflected by a scene point, and s(A) rep-
(p < 1) and those that include a specular com- resent the response of the sensor to wavelength.
ponent. However, this measure must be used Typically, color images are obtained by using
with care as both Imin and Ias include the con- three filters with responses r(A), g(A), and b(A)stant specular component Ic as well as the dif- that have peaks close to the wavelengths thatfuse component Id; varying either Isc or Id has humans perceive as "red," "green," and "blue."the same effect on p. The resulting three brightness values measured

We conclude this section with a note on previous by a sensor element constitute the color vector
work on highlight removal using polarization. A I -= I r, Ig, b I for the corresponding point in
method fo- computing Id and Is by rotating scene. The three brightness values in the color
the polarization filter, is presented in [Wolff and vector are related to the spectral distribution of
Boult, 91]. From the above discussion, we know the reflected light as:
that Id and ISc are both constant. They can be
computed from Ic only if we know the ratio of Ir = f z(A) r(A) s(A) dA
the Fresnel coefficients, q = F±(i7 , O)/IFj(q, O), J
for the corresponding scene point. The Fresnel Ig = [ (A) g(A) s(A) dA (7)
coefficients are determined by the material prop- J
erties of the scene point as well as the angle of Ib = x(A) b(A) s(A) dA
incidence. Neither of these factors are known. i
To constrain the problem, [Wolff and Boult, 91]
use all points (pixels) on a segmented highlight. Each brightness value includes a diffuse compo-
They assume that both the diffuse component nent and a specular component. Hence, in three-

Id as well as the Fresnel ratio q are constant un- dimensional color space we have the following
der the highlight region, and estimate them us- decomposition: I = Id + Is.

ing all points within the highlight region. This The dichromatic reflectance model [Shafer, 85]
assumption, however, is unrealistic for two rea- susons. First, in real scenes, the diffuse component sggests that, for dielectrics, the spectral distri-

wons.Firsthin teahighlh regnes, my ve dnento bution of the diffuse component is determined by
Id within the highlight region may vary due to the colorant in the surface whereas the specular

4 This formulation of the problem using vectors saves sub- component preserves the spectral distribution of
stantial computations compared to the non-linear formulation the incident light. As a result, the two vectors
of the type a + b sin 2 (0 - a) used in [Boult and Wolff, 91] and
[Wolff, 90] that require the use of iterative non-linear estima- Id and Is generally have different directions in
tion techniques. color space. The two vectors will however have
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the same direction if, for instance, a gray object 5 Removal of Specularities using
is illuminated by white light. Color and Polarization.

In this section, we develop a method for remov-

B ing specular reflections from images. We make

the following assumptions.

(A) The dichromatic reflectance model applies at
Is each point. Hence the scene consists of di-

electric objects, and therefore specular re-
flections and interreflections are polarized
while the diffuse reflections are not. Fur-
ther, the color of the incident light at each
scene point is different from the color of theSG material.

(B) The specular interreflections result from ei-
R ther the diffuse-specular mechanism or the

specular-specular mechanism and not both.
Figure 4: Diffuse and specular components in In the first case, the incident light is unpo-
color space. larized and hence the Fresnel ratio is sim-

ply q = Fi(ii, V,')/Fj1 (7, 0). In the second
case, the incident light is partially polarized

As discussed in the introduction, [Klinker, and the effective Fresnel ratio for the sur-

88] and [Gershon, 87] independently used the face point is q = aFL(rq, i))/bF1I(,q, V,). The

dichromatic reflectance model to remove high- parameters a and b account for the partial

lights from images by the two limbs of the skewed polarization of the incident light.

T in color space., These methods are based on (C) Fresnel coefficients Fj(q, o) and F11(71, 0,)
two main assumptionF: (a) the object is seg- are independent of the wavelength of inci-
mented away from the scene and has a single dent light. This assumption is reasonable
uniform diffuse color and (b) the diffuse compo- (see [Driscoll, 78]) since we are assuming di-
nent is near constant within the highlight region. electrics and operating in the visible-light
These two assumptions must hold for a skewed spectrum. Assumptions (B) and (C) result
T to be formed in color space. The first assump- in the Fresnel ratio q being equal for all three
tion is often violated in real scenes where objects color bands.
may be textured or have patches with different
reflectance properties. The second assumption The color of the specular component is computed
can be valid only if the surface is very smooth, locally at each pixel. This places strong con-
thus producing a very compact highlight. Even straints on the diffuse component Id. Neighbor-
for marginally rough surfaces, the highlight is ing diffuse points that satisfy these constraints
expected to include object points with a range are then used to compute the diffuse component.
of surface orientations. In such cases, the spec- This approach has the following advantages over
ular limb of the skewed T spreads into a wide all of the previous methods for highlight removal:
cluster in color space that is difficult to separate
from the diffuse limb. This last observation has 9 In contrast to the previous methods based
also been made by Novak and Shafer [Novak and either on color or polarization, we do not as-
Shafer, 921. sume that the diffuse component Id is con-

stant within each highlight region. In fact,
the surfaces could be textured with patches

'Along the same lines, [Bajcsy, et. al., 90] observed that of different materials underlying the high-
the color histogram can include additional limbs that corre-
spond to highlights caused by interreflections. The highlight lights.
removal algorithms of [Klinker, 88] and [Gershon, 87] could, . T
in theory, be modified to identify additional limbs and remove he specular color of each point is com-
specularities due to interreflections. puted independently. This local approach
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does not require prior segmentation of ei- Recall that the specular components I., and IsV
ther highlights or objects in the scene. Fur- satisfy Ic + 1,, = 1 q. Unfortunately, the
ther, the highlights need not be compact; Fresnel coefficient q is not known as it depends
the method can handle substantial surface on the material properties and the angle of in-
roughness conditions. cidence. Though we have estimates of Ic and

ISV, we do not have a simple way of determin-
We describe the technique for specularity re- ing Id. The color measurements Ii obtained by
moval by focusing on a single image point x. rotating the polarization filter lie on a straight
The same procedure is applied independently to line L (see Figure 5) in color space. The diffuse
all image points. The color vector for the image component Id is unaffected by rotations of the
point is: I = Id + IL. Given the above assump- polarizer; only the specular component I, varies.
tions, the Fresnel ratio q is the same for all three The specular component varies along a straight
color bands. Hence the cosine term in equation 4 line since the cosine functions in the three color
will be in phase for the 3 color bands and for the bands are in phase (assumptions B and C).
polarization filter position Oi we have the color
vector: I, = I + Isv cos 2(0i - a). In our
experiments, we have used 6 or more polarizer B /L
positions. This gives us an over-determined lin- I ,
ear system of equations that are solved to obtain
robust estimates of I, I., and a. The color vec- k
tors corresponding to maximum and minimum
polarization (see equation 5) are:

win
Imax = IC + I" "/ Ip

Imin = Ic- Isv. - •- -

Two tests are used to determine if the image 0 / G
point x is to be processed any further. First, a %
degree of polarization p (expression 6) is com- ,
puted for each of the three color bands. If the
largest of three p estimates is less than a thresh- R .4p
old value T 1, the point is not sufficiently polar- Figure 5: Using neighboring points and specular
ized and is assumed to be purely diffuse. In this line constraint to compute the diffuse component
case, the next image point is examined. Id.

If the degree of polarization of the point x is
greater than T1 , the angle /3 subtended by the Though we are unable to compute the diffuse
vector k = lmax - Imin from the origin 0 is com- component locally, the specular line gives use-
puted (see Figure 5). If 3 is less than a threshold ful constraints on the diffuse component. These
T 2 , the color of the specular component is very constraints are applied to the neighboring pix-
similar to that of the diffuse component Id, and els of x to obtain the diffuse component Id.
the dichromatic model cannot be used with con- Assume that the diffuse component of x corre-
fidence. sponds to the point P. The position of P on the

specular line L can be parametrized as follows:
On the other hand, ifthe point xis polarized and P = Imin - p k where p (0 < p <! P) is the dis-
its i3 value is not small, we proceed to compute tance of P from Imin as shown in Figure 5 and j
its diffuse component Id. If we can determine Is, is defined as:
then the diffuse component can be computed as
Id = Ic - Is. Once this is done, the specular (Jin Ir , g , ib,).
component I can be separated from any one of = Min m [ming km i (t)

the images Ii. We can also obtain an approxima-
tion to the specular image we would see without . determines the point P that is the intersec-
a polarizer by subtracting Id from ½(Imax+Imin). tion of the specular line L with one of the three
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planes of the color space. In the example shown point P is computed by extending the vector S
in Figure 5, the specular line intersects with the to intersect the line L as shown in Figure 5. This
R - G plane. In general, however, L could inter- can be done without computing the projection S
sect any one of the three planes that constitute of Q on the plane Pl. Consider the plane P2 that
the color space. Define Pi to be the plane that passes through the points (0, Q, P). It can be
passes through the points (0, Imin, Imax). The expressed as D Ir + E Ig + F Ib = 0, where:
expression for P1 is: A Ir + B Ig + CIb = 0,
where: D = QgpbQbpg

bb _ .mg E = Qb pr - Qrpb (11)
A = kgImin-k min Q p
B = kb/rainr - krrain b (9) F = -rpg Qgpr

C = kr lming - kgImjinr. Since the planes P1 and P 2 are perpendicular,
we have: AD + BE + CF = 0,which can be

Since we do not have sufficient constraints to expanded using equations 9 and 11. By substi-

compute the diffuse component Id of the point x tuting the expression for P given by equation 8

from the color measurements Ii, we use neighbor- in the expansion, a solution for the line parame-

ing image points that satisfy the following con- ter p is directly obtained:

ditions: 4'A (QgIndn b _ Qb Imn)

(1) A neighboring image point y can be used if +B (QblInr - Qrlminb)
we know its the diffuse component Q. This +C(Qrlming - Qglminr)
occurs if y has a low degree of polarization p p p b
and hence can be assumed to be purely dif- A (Qgkb Qkg)
fuse, or if its diffuse component has already +B Qbkr - Qrkb
been computed. ±B (Qbkr- Q r)

(2) In color space, the vector Q must lie on the +C(Qrkg -
plane P 1. Further, it must lie between the (12)
vectors Imin and P, since the diffuse vector The above process is repeated for all neighbor-
Id of the point x lies on the line L between ing diffuse components Qj that satisfy conditions
the points Imin and P. Note, however, that (1) and (2). The result is a set of estimates
Q can lie inside or outside the triangle (0, fpj I j= 1,2 .... N}. If N < T4 (we use T4 =
Imin, P). 3 in our implementation) there are not enough

If these conditions are satisfied, the neighboring neighboring diffuse components to compute a ro-

point y is assumed to have the same diffuse color bust estimate of Id for the point x. If N > T4 ,

as the point x. Then, the line passing through the mean and standard deviation of pj are com-

Q and the specular line L intersect to give P, an puted as:

estimate of the diffuse component of x. _ wj pj (13)

Due to noise in the color and polarization mea- "Jiw=l wi
surements, the diffuse component Q of a neigh-
boring point is not expected to exactly satisfy - _ (Y= PJ)
the above conditions. To accommodate for such N - 1
discrepancies, we compute the angle -f subtendedby Q with respect to P1 (see Figure 5): where the weight wj given to each pj equals the

magnitude of the corresponding diffuse compo-
AsQr +- B Qg + C Qb nent, 11 Qj 11. The mean value p is accepted if

A Q2 + B 2 + C2 (10) the standard deviation ap is less than a threshold
A2 + B + C2 T5 , i.e. the estimates pj form a compact cluster

If -/ is larger than a threshold value T3 , Q is not Tetesiefrac ptle

used any further.6 If - is small (-y - T3 ), the have a very small diffuse component that lies close to the ori-
gin 0 and as a result is also close to plane r1,. Such a point

Note that we have used the angle -f rather than the dis- could have relatively large errors due to image noise and must
tance of Q from P1. This is because a neighboring point may not be used in the computation of Id.
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(a) Iavg for complex scene (b) Id (diffuse image) (c) Is (specular image)

(d) 4avg (e) Id (f)) L
Color Figure 3: Recovery algorithm applied to a very complex scene. (a) Orginal (Iatg) image. (b)
Recovered diffuse image Id. (c) Recovered specular component I. (d)-(f) show a close up of the
blue torus from the lower left corner of the scene.



on the line L. This constraint is used to ensure iterations are discontinued when no new diffuse
that different diffuse colors in the neighborhood estimates are obtained.
of x that happen to lie close to the plane Pl,
are not used together to obtain an erroneous es- 6 Experimentation
timate Of Id. Once T~ has been determined, the This section presents experimental results ob-
diffuse component Id = P of the image point x taied using the proposed algorithm. Here we
is obtained using equation 8. begin with very a short description of the ex-

Figure 6 compares the above algorithm with pre- perimental setup and a few details of the im-
vious techniques based on either polarization or plementation of the algorithm. This is fol-
color. The comparison is done using the 40X40 lowed by results obtained by applying the al-
image window shown in Color Figure 1d. The gorithm to scenes with textured objects, pri-
image window includes a highlight that spreads mary (source) specularities, and secondary (in-
over regions of different diffuse color. Figure terreflection) specularities.
6(a) shows the histogram in (R,G,B) color space
for the image window. Note that the anatomy Experimental setup is important as we need both
of the histogram is very complex and does not registration between color bands and also lin-
lend itself to the skewed T analysis proposed earization of camera response. Details of our
in [Klinker, 881. Figure 6(b) shows the cluster setup can be found in [Nayar et al., 1993]. That
obtained in the (Imin,Imna) space for the green report also contains more implementational de-
band of the image window.7 The polarization tails and experimental examoles.
based method for highlight removal proposed in It is worth noting, that the current setups have
[Wolff and Boult, 91] is based on the assumption some minor problems that might be overcome us-
that this cluster in (lmin,lmax) space is linear.ha se inusther igur 6(b), the acluster does linot. ing precision filter mounts and simple correctionAs seen in the Figure 6(b), the cluster does not methods. The first is that the movement of theform a straight line and hence the polarization polarizing filter can cause slight shifts of the im-
based method is not applicable. Finally, Figure ag filter c cauelslight shifts of thei
6(c) shows the result obtained using the algo- age (approximately 1 pixel). The second is thatwe have not corrected for chromatic aberrationrithm proposed in this paper. The figure shows of the lens. Finally, we are using CCD tech-
Imin, Imax, and the specular fine computed for o h es ialw r sn C eh
the center pixel of the window shown in Color nology which is prone to blooming affects near
thue enter p The window shacecownstr int Colre us strong highlight regions. All of these problems
Figure l(d). The color space constraints are used manifest themselves as errors in polarization fit-
the diffuse component Id of the pixelc ting (and hence specularity removal) in small (1-

2 pixel) neighborhoods of scene boundaries.

The algorithm proposed in this section is applied 6.1 Implementation Details
to all points in the image. Not all image points
end up with an Id estimate. An image point For each scene, a set of color images are ob-
may lie in the middle of a very large highlight, in tained by rotating the polarization filter. The
which case, it may not have a sufficient number images are first corrected using the calibration
of neighbors with diffuse colors that satisfy con- data. Then, the polarization parameters Iin,
ditions (1) and (2) or produce a compact clus- /max, and a are computed for each color chan-
ter of intersection points on the line L. Hence, nel. These parameters are computed using the
we apply the algorithm repeatedly to the image linear least squares (LS) fitting method. The re-
points. T his iterative approach is effective in the sults of the polarization fitting are 6 images for
case of complex scenes; each iteration provides a each color channel, Inin, 'max, 'avg (= • )
new set of computed diffuse colors thus increas- p (percent polarization), phase (the angle a).
ing the likelihood of finding neighboring diffuse and RMSE (root mean square error in fitting).
colors in the next iteration. A large highlight, for Of these, only the ndx and Imi images are di-
instance, shrinks in size with each iteration. The rectly used by the specularity removal algorithm.

The others are used only to debug the algorithm
7 The green band was selected as the average degree o• po- and analyze the results. The 'avg image is what

larization for the image window is maximum in this band. would be obtained without a polarizer but with
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a 50% neutral density filter instead. The RMSE polarization filter. Color Figure 1(b) shows the
gives the error in fitting the image data to equa- diffuse image Id computed using the proposed al-
tion 1, and most pixels in the image have fitting gorithm. Color Figure 1(d)-1(g) show close-up
errors that are less than 0.3 gray levels.8  views of the Iavg diffuse image, specular image,

and Ijin respectively, for a 40X40 image win-
The algorithm requires labeling of points as dow on the flower cup. Clearly, the algorithm
purely diffuse or partially specular, v, iich is done was successful in separating the two reflection
by using the degree of polarization p. Since components despite the texture underlying the
p depends on mmin, the noise level in p varies highlight region.
with Imin. Rather than using a fixed thresh-
old T1 on p to identify partially specular points, The second example includes strong interreflec-
our implementation uses a threshold that varies tion effects. Color Figure 2(a) shows the orig-
with Imin. T1 varies from around 5% for points inal image (Iavg) of a scene including a blue
with Imin > 200 to around 10% for points when plastic plate and a part of the McBeth color
Imin : 20. chart. Color patches on the chart are reflected

by the plate. There are pieces of plastic tape
The algorithm has three other thresholds that af- (some dark reddish and others black) stuck on
fect its performance; the threshold T2 for the an- the plate. Also visible is a film canister. which
gle 3, the threshold T3 for the angle -y, and T4 for interreflects portions of the color chart as well as
the standard deviation ap. The algorithm is not the surrounding environment. Color Figure 2(b)
too sensitive to T2 and T4, which have been set and Color Figure 2(c) show the diffuse and spec-
at 0.08 and arccos(0.99), respectively. The angle ular components computed by the algorithm.
threshold T3, which determines if points lie close We see that, despite the strong interreflections,
to the plane P1 , has a strong affect on the quality these images are quite accurate. We do, how-
of computed results as well as the computation ever, see that the primary highlight on the left
time. The current implementation starts with side of plate has not been completely removed.
a relatively small threshold value (T3=0.02), and This may have been caused by very high bright-
doubles it after every 10 iterations. ness values in the highlight region for which the

sensor calibration is not reliable.6.2 Experimental Results

In the each of the following examples, the images The final example is shown in Color Figure 3.
obtained after fitting the polarization parame- Color Figure 3(a) shows the Iavg image of a com-
ters are used to computed the diffuse color image plex scene for which the algorithm partially fails
Id. This image is then subtracted from the aver- in some regions. Color Figure 3(b) and 3(c) show
age color image Iavg to obtain the specular color the diffuse and specular components computed
image Is. Iavg is the color image we would ob- by the algorithm. The primary highlights oln
tain if the polarization filter were not used. The the blue and red tori are accurately removed.
first example is shown in Color Figure 1(a). It is Color Figure 3(d) - 3(f) show details of the re-
the Iavg image of a mug with a flowered pattern sults obtained for the blue torus. The diffuse
on it. The petals of the flower are of different and specular components are well separated in
colors and within each petal there is a moder- the highlight region. Errors in the separation
ate amount of diffuse color variation. Along the are however seen on the occluding boundary of
middle of the mug is a large highlight. Color the torus. This results from the strong polariza-
Figure 1(c) shows the Imin image obtained after tion of the diffuse component on the occluding
the polarization fitting process. This image rep- boundary; the assumption that the diffuse coin-
resents the best image (i.e. minimum specular ponent is unpolarized is violated.
component) obtainable by simply rotating the

Some of the interreflections on the left wall of
'lf the data is not consistent with the cosine model, one or the red box. such as the interreflection of the

more of the assumptions made by the algorithm are violated.
Hence, pixels whose RMSE value is greater than 6 gray levels white cup in the upper left corner of the scene,
are marked as outliers and are not used for specularity removal. are also removed. However, the results are not as
For reasons mentioned above, fitting near "cene edges is gen-
erally unreliable and hence errors in the specularity removal good for the interreflections of the blue torus and
occur mainly within 2-3 pix-Is around an edge.
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the marker pen. This is because of the follow- [Nayar et al., 19931 S.K. Nayar, X.S. Fang, and
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Figure 6: (a) The color histogram for a 40X40 window of the cup image shown in Color Figure I(d).
The anatomy of the histogram is too complex to identify the skewed T used in [Klinker, 88]. (b)
Cluster in (Irnin,Imax) space used by the polarization based proposed in [Wolff and Boult, 91).
This cluster does not form a straight line, an assumption that the previous method is based on. (c)
Separation of diffuse and specular components of the center pixel of the window using the proposed
method based on color and polarization.
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Local Step Edge Estimation: a New Algorithm,

Statistical Model and Performance Evaluation

Sheng-Jyh Wang, Thomas 0. Binford *

Robotics Laboratory, Computer Science Department,
Stanford University, Stanford, CA 94305, U.S.A.

Abstract With range images, a piecewise image surface descrip-

This research is intended to enable recognition tion is directly a piecewise description of the visible ob-
Tin realsoperation isiendes with enulti-sensoitioject surface. With intensity images, a piecewise imagein real operational scenes with multi-sensor im- description is a step toward inference of a piecewise ob-
ages by implementing generic image elements ject surface description.
determined from the physics of image forma- Image surface segmentation generates piecewise
tion. Segmentation aims at a piecewise com- smooth surfaces bounded by observable intensity discon-
posite description of the image surface, i.e. tinuities that result from discontinuities of surface geom-
smooth surfaces bounded by discontinuities, etry, of illumination, or reflectance. The intensity surface
A major failing is description of extended may have discontinuities at a point or along a curve. Dis-
boundaries of the image surface. Estimation of continuities along curves are edges of the image intensity
extended edges is limited by accuracy of local surface. Edges of the image surface are typically found
edge estimation (edgel) in angle and transverse by a local-to-global process of local estimation of discon-
position. Angular accuracy of usual edgel esti- tinuities followed by hierarchical linking into extended
mation is so bad that it is usually ignored. A boundaries. Complexity of linking is exponential in er-
new operator with improved accuracy has led ror of edgel orientation and transverse position. Errors
to preliminary extended edges that are greatly of stereo depth estimates or dimensional measurements
improved, made from image extended curves are linear in errors of
To incorporate image features in Bayesian in- edgel orientation and position.
ference, a statistical performance model is es- Little progress has been made on linking of extended
sential to provide conditional probabilities es- boundaries. Although a display of edgels can be inter-
sential for evidential accrual. Theoretical mod- preted by a human observer, the set of edgels are un-
els have been derived; they are verified by truth connected and are not extended edges; only the human
from synthesized imagery. For a previous op- perceives extended edges that enable interpretation. In
erator, results were verified from truth in one this paper, a new Wang-Binford edgel estimator is dis-
image. Preliminary results have been obtained cussed which has led to effective edgel linking with a
for other common edge estimation operators. preliminary algorithm.

Almost all work on local segmentation of image dis-
continuities has been intended for step discontinuities

1. Introduction between level, planar image surfaces. For typical images,
only about a third or less of discontinuities are of this

This research is intended to enable recognition in real limited class. Typical edgel estimation algorithms are
operational scenes with multi-sensor images by imple- sensitive to shading, both in estimating spurious step
menting generic image elements determined from the edges where there are none, and in making inaccurate
physics of image formation. Segmentation is common estimates at edges because of biases that result from an
across many types of images in the sense that image for- inaccurate model. Some workers ignore edgel angle in-
mation involves only a few physical mechanisms from formation in using edge data. The algorithm described
visible to IR: surface reflection, body reflection, emis- here makes more accurate estimates in the presence of
sion. The role of segmentation is to describe the image shading.
surface compactly as a piecewise smooth composite sur- [Herskovits and Binford, 1970] point out several types
face, i.e. smooth surfaces bounded by discontinuities. of discontinuities of the image surface are common in

"This research was supported in part by a contract real images, corresponding to step, delta and crease
from the Air Force, F30602-92-C-0105 through RADC from ("roof") defined along curves, Also, discontinuities at
DARPA SISTO, "Model-based Recognition of Objects in points (spots) are important. This research has made
Complex Scenes: Spatial Organization and Hypothesis an algorithm for edgel estimation for delta function dis-
Generation". continuities along curves, not described here.
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The local-to-global structure is motivated by complex-
ity, i.e. subdividing to describe small disks by simple ,
functions that are computationally tractable. The edgel G.(z, y) = [I(z, y) • G,(z, y)J
describes a step with parameters that are: a) orientation;
b) transverse position; and c) contrast. = I(z, y) y [-G.(z,y)]

The Roberts cross and Canny operators are based on
the gradient of intensity. The Canny operator is a one- G0(z,y) = --- [I(z,
dimensional operator with a heuristic extension to two y )

dimensions. Both have bias in orientation and position t9
in the presence of shading. The Binford-Horn operator = I(z, y) * f[-G.(z, y)]
was approximately a directional second-derivative. 8Y

For recognition in complex scenes, sensor and infor- where
mation fusion is based on Bayesian inference that de- G- (z, y) = - e- t
pends on conditional probabilities of data given hypothe- 0M
ses [Binford 87a]. An extensive statistical model of per- is the 2-dimensional Gaussian smoothing function, and
formance has been developed, with theoretical analysis • represents the 2-dimensional convolution.
verified by truth from synthesized images. For a previ- Moreover, the 2-dimensional convolution can be de-
ous version of the operator, the model was verified by composed into the product of two 1-dimensional Gaus-
truth from a real image. sian convolutions.

2. Wang-Binford Operator 2.4 Detection and Localization

2.1 Definition of a Step Edge For a blurred step edge, the direction of its gradient
is normal to the edge and the transverse profile of theThe profile of an ideal step edge can be expressed as gradient magnitude is a Gaussian function.

S(x) = A, - U..I (z) Without loss of generality, we can assume the step
edge coincides with the x-axis. Its intensity function is

where A, is a scalar and U_ 1 (z) is the unit step function expressed as
defined as S(z, y) = A. (U- 1 (y) 0 G&(y)){01 forx>=o

U-1(z)= 0 for X< 0 After the gaussian derivative, the gradient is(G.(z, y), G,(z, y)), with

But the intensity image is blurred by the optical sys-
tem and the impulse response of the sensor. The blurred 9
edge can be approximated by Gaussian convolution ex- G.(z, y) = [S(z, y) 0 Gm(Z)] 0 Gm(y)
pressed as:

= A2 (U~~z)0 G&x))= [A(u_..(y) ® a,(y)) 0 Wam(*)]0 Gma(y)sb (z) = A2.- (U-_I(Z) ®9 a•(-))
= 0O Gm(y)

where Gb(z) is a Guassian function with zero mean 0
and standard deviation Ob, and 0 represents the 1-
dimensional convolution. This is shown in figure 1. and

SbP Ga,(z, y) = [S(z, y) 9 G.(z)] 0 2-G (y)

= (A(U_ I (y) 0 G,(y)) 0 Gm(•)J 0 ,G.(y)

[AU-I(y) 0 G(y)] 0 • Gm(y)
A 2 8Y

A [U- I(y) 0 G,(y) 0 G.(y)]

XA ± A (U- I (y) 0 , G(y))
c•y

Figure 1. Profile of a Blurred Step Edge = A • Gr(y)
Canny solved the one-dimensional variational problem

of optimizing a combination of signal-to-noise and posi- where
tion location [Canny, 1983]. The result was approxi- G,(t) = 2V
mately a gaussian derivative.

with or = +
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However,if this edge is shaded, an extra term has to
be added to the gradient. Since the shading effect is 1 -2

smooth, we can assume this extra term is constant within min. (Gm(z+i, y+j)-Gmo 'e )
a local area, and the perturbed gradient function turns *,,,o i,j=-,
out to be where 9 is the orientation of the edgel, u is the transverse

(G.(z, y), Gy (z, y)) = (g., AGe(y) + gy) position shift from the center pixel, and Gino is propor-
tional to the contrast of the edgel. (as shown in figure

As shown in Figure 2, the direction of the gradient 3)
veers. If an edge detector depends on the gradient di-
rection, like the Canny Operator does, one would expect
it to have poor performance whenever shading is intro-
duced. It is difficult to remove this extra component
from the gradient if no information about the shading is
known in advance.

Figure 3. Parameters of a Blurred Step Edge

This is a nonlinear fitting problem. The or, which de-

pends on both am and Or, is assumed to be known before
the fitting. It can be estimated from the image easily.
This nonlinear fitting problem can be even simplified to
a linear one as follows.

SGradient of a Stop Edge The logarithm of the gradient magnitude of the
Gradient of the Shaded Edge blurred step edge is a quadratic:

Figure 2. Gradients of a Shaded Step Edge log(Gmo e c - )

Even though the gradient vector is perturbed, the gra- = log(Gmo) - (- sin 09 i+ cos .j - U)2

dient magnitude function still keeps the information we 2a0
need for unbiased localization. In the above case, its = az 2 + bry + cy2 + dz + ey + f
gradient magnitude function can be written as with

G(Z, Y)= g2+(A G.(y) + gy)2  a =,_ - sin
_T - sin 0.-cosO

The peak of Gn(z, y) coincides with the x-axis, that is, c = 7 1 cos2
it coincides with the true edge. The gradient magnitude d - - . • sin • u
function is still constant along the x direction and is an I ,
even function in the y direction. The gradient magnitude = =
extracts the orientation and position of the edge without f = log(Gmo) - . U 2

bias. Moreover, even though the transverse profile of

the gradient magnitude function is no longer a gaussian Therefore, a linear fit minimizes the objective function
function, a gaussian function can still be used as a good I
approximation that will cause only a small bias in the (log Gm (z+iy+j)-(ai 2 +bij+Cj 2 +di+ej+f)) 2

estimation of the contrast, which is less important than
bias in orientation and position. a t=-a

To detect the edge, that is to detect the peak of and the parameters of the edgel can be obtained from
the gradient magnitude function, the measured gradi- the coefficients of the parabolic function with
ent magnitude values are fit with a parametric surface, e -tan-=(c-a+/(a-P+b)
which represents the gradient magnitude function of a r
step edge with parameters 0, u (transverse position), and/ -dsinJ#ecos0
Gino (The gradient magnitude value at the edge). The U+e-_/(a-c) 2 +b2

fitting is done with a 3 by 3 support. Edge detection is
solution of: I log(G.o) f _-(a+ c)u2
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A linear solution gains efficiency and avoids conver- The pdf of the gradient magnitude is:
gence problems. It is not necessary to know o. before
the fitting. Logarithms are computed by table lookup. ,2w, 2-r"

Thus, the Wang-Binford operator has computation cost f-,.(z) =-4 0
comparable to the Canny operator. aJ01

z
2.5 Thresholding = 0e2 • z > 0

Edges occur only at a small part of the image. Edge If the false positive rate is set to be a, only (a- 100)%
fitting is done only at local maxima of the gradient mag- of gradient magnitude value at the background can be
nitude that are above threshold. greater than threshold gT. That is

The threshold is determined by a constant false alarm
rate (CFAR), that is, constant probability of detection of #7
an edgel where there is no edge actually. The variance of 1-0a = e;- -dz
the gradient magnitude is determined from measurement 100
of the variance of pixel intensity. The noise at pixel (ij) = r I 1 2

, n(i, j), is approximately an independent, identically j0 2e2 .(2xdz)
distributed (i.i.d.) Gaussian random variable with zero 2

mean, standard deviation o,. Its pdf can be expressed ( -3--T,
as 2o2

PIu - -1I~ -2P(.) = 12I

When there is no signal around (x,y), the gradient
becomes:

00 From the above equation, the threshold gT has value:
G.(Z,--) =7,,'2 - n(z+i,y.j) .+€,r=[26o2In(1)1.

i= -00 m '
r4-,1

I',-- n( + + i, 2+ ) 2.6 Details of Implementation

i~j=f4vm1 To compute the threshold for edge detection, the value
and of a., the standard deviation of pixel intensity, is needed.

It varies from image to image. It can be measured from
00 2 the sensor with controlled scenes. It can be estimated

GJ(Z Y) - e . n(z + i, y +j) from an existing image to a good approximation.
G '=-00 02•f22rm At any pixel of the image, the intensity value consists

2 2 of signal with noise. To separate the noise from the
. -- e- n (z + i, y + j) signal, consider the approximation to the laplacian:

2SC4'j=-r4'm,1
K(z, y) = I(r,,y) - (l(z -I, y)+-I(z +I, y)

Since G.(z, y) and G,(z, y) are linear combinations of +I(z, p - 1) + I(z, Y + 1)]

Gaussian random variables, they are again Gaussians.

The pdf of the gradient (G,(z, y), G,(z, y)) is: If the intensity surface of the signal approximates a
plane locally, then K(z, y) consists only of a noise term.

I - With the assumption of i.i.d. noise, the variance of K

forad.,orad(ZN becomes:

-2* Variance of K(x,y) = (1 + 4 .(0.25)2)ff•
= 1.25. *.2

where That is,

A [ dp21n = 0.8944V Variance of K(x,y)
0 O A digital image is sampled at discrete pixels. Both

the impulse response function of camera pixels and of
V = Y the Gaussian derivative contribute to discretization. The

I effect of discretization is large for small values of the

,2 - width of the Gaussian derivative. This effect has been
F = .,jiJ 4---,e t ft 'war examined theoretically and experimentally.
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Figure 4.1.a Intensity Image Figure 4.2.a Intensity Image

Figure 4.l.b Roberts Operator Figure 4.2.b Roberts Operator

Figure 4.1.c Canny Operator Figure 4.2.c Canny Operator

Figure 4.1A.d Wang-Binford Operator Figure 4.2.d Wang-Binford Operator
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The on of the smoothing filter has to be carefully cho- where P stands for the coefficients a,b,c,d,e,f of the
sen to avoid this effect. It has been claimed in [Canny, parabolic function, and W stands for the set of measured
1983] that the minimum value of the a of the Gaussian data J(z, y) = log(GO,(z, y)).
smoothing function, which is applied before sampling, is
approximately equal to the sampling interval r. With That is, the parameters are solutions for P such that:
a similar analysis, the value of aE, which depends on '4(P W)
both orn and or, has to be bigger than 1 to avoid the *(P, W) -OP )
discretization effect. This conclusion is support by em-
pirical data. Denote P0 as the solution of *(P, WO) = 0, where

Wo stands for the noise-free case. When noise is added,
3. Statistical Model of the Detected Edgel it causes the measured data to perturb a small amount

6W, which consequently causes a small fluctuation 6P
The first order statistical model of this operator is its in the coefficient space. The relationship between 6W

bias vector. The second order statistical model is its and 6P is given by:
variance. Together they specify a Gaussian probability
model for the operator to use in performance analysis '*(P0 + 6P, W0 + 6W) = 0
and in Bayesian inference. By expanding the above equation, we have

Noise in the intensities of image pixels causes the po-
sition, orientation, and contrast of the estimated edgel 0'? .P ?
to fluctuate. This statistical model can be estimated by "P -+ 9 6W . 0

either experiment or theory. We did it in both ways. It and thus
is found that the pdf of the fluctuation can be approx-
imated by a 3-dimensional Gaussian distribution, with 9*? 1(•--•) . W
mean vector m = 0 and diagonal covariance matrix A. bP W -("6p) . W

Moreover, the parameter of the edgel, E, is a function
3.1 Experimental Method of P with e = M(P). Thus:

A program was written to generate intensity images
with known gaussian impulse response function of a step
edge with given position, orientation, and contrast. Ran- 60 = aM(P) 6P
dom noise with given energy 0,2 , was added to image val- _ _M(P) C90
ues and the fluctuation of 0, u, and log(Gmo) was mea- =-1 ( ] -6W
sured. This process is repeated 5000 times to estimate O9P o•P W

the covariance for orientation, position and gradient as = Q -6W
a function of edge contrast. The 1st and 2nd moments of 60 can be computed as:

Orientations were 0, 11.25, 22.5, 33.75, and 45 degrees,
and contrast was 4, 8, 16, 32, 64, 128, and 256. The re- E(6e) = f . E(6W)
suit of this experimental approach shows that the pdf E(6e6eT) = fl. E(6W6WT). fT

of the fluctuation is approximated by a 3-dimensional Therefore, the statistical model of be follows from
Gaussian distribution with mean m = 0 and diagonal the statistical model of 6W.
covariance A. The model is insensitive to orientation,
while the standard deviation of the fluctuation is pro- 3.2.1 Statistical Model for the Measured Data
portional to ' as shown in Figure 5.

A similar simulatton was done for circular edges for With the linearity of convolution and the noise model
radius 5, 10, 20, 40, 80, 160, and 1600 pixels. The re- above, the fluctuation of gradient is caused by noise only
suit is about the same as the straight edge case when and is independent of signal. That is:
the radius is bigger than 10 pixels. When the radius is
smaller than 10 pixels, one extra constant term has to be ( -.-.

added to the standard deviation of log(Gmo) as shown bG,(x, y) = JJ 2 ' - u, y - v)dudv

in Figure 6.

3.2 Theoretical Analysis 6Gg,(z, y)=JJ - V-e4 -N(z- u,y-v)dudv

We use a perturbation method to get the analytic i n

model as follows: where N(ij) is the noise component at pixel (ij). It has

In detection, parameters of the edgel minimize the ob- been assumed to be an i.i.d. Gaussian random variable
jective function: with zero mean, and constant standard deviation or.

Since integration is a linear operation, 6G 1 (z, y) and
1 6G,(z,y)) are also Gaussians. With some straight-

4(P, W) = [log(Gm(z + i, y + j)) forward computations, we have:

E(6G.(z, y)) = E(6Gy(z, y)) = 0

-(ai 2 + bij + cj 2 + di + ej + f)]2  and
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These two models, from synthesized data and from the

E(6G (z, y)bG.(.i, j)) theoretical analysis agree for a straight step edge and
for circular arcs with radius of curvature greater than

= [ -( - X2 1 1-,)-_ ( y-• )-] 10 pixels. (see Figure 5.) When the radius is smaller
87 ) e 2 than 10 pixels, a constant term, 6(log(Gmo)), has to be

= Na (z - -y ) added to the standard deviation, as shown in Figure 6
and estimates of u and log(Gmo) are slightly biased.

A more complicated statistical model for 6W has to
E(6G (z, y)6Gy(i, y)) be made for edges with large curvature. This part is not

_ 2  1 )- - ..- [((-i)2+(V-i)2l finished yet. However, the model for the straight edge is
- 1 (z -v)(si - still good enough for most of the image.

= a• - i, y - •) 4. Conclusion

E(bG1, (z, y)bG,,(.i, ~In this paper, we demonstrated an algorithm for de-
E [ y ,tection and estimation of step edges which is insensitive

02 1' -( 2 1)2 ,- (-)•+(,-9)2] to shading. Even though this operator is designed espe-
=2 8le cially for straight step edges, it can also be applied to

= 2N,,(x - - y) most curved edges. The detected edgels are unbiased in
orientation and position. The resulting improved accu-
racy enables linking into extended edges and improved

Now, investigate the dependence of 1og(G,n(z, y)) with accuracy of estimation of image dimensions.
nowe. Bydefinvestigae tThe statistical edgel model was constructed and ver-

noise. By definition: ified. This model is valuable in the Bayesian network
== +for combining evidence. Even though this model is good

J(z, y) = log(Gm(x, y)) = log( G.(z, y)2 + Gy(z, y)2) enough for most images, we are planning to build a more

Therefore, complete model for highly curved step edges.
This operator is still not effective for many image fea-

6J(z, y) = G.(x, y)6G.(z, y) + G1 (z, y)6Gy(z, y) tures, e.g. lines or spots. A complete set of operators has
GZ(z, y)2 + G 1 (z, y)2  to be developed to deal with other basic image features.

Again, since 6J(z, y) is the linear combination of two References
Gaussian random variables, 60G(z, y) and 6G1 (z, y)), it
is also a Gaussian random variable with: [Canny, 19831 Canny, J.F. , "Finding Edges and Lines
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+ coso2 ONV (u, v) Electro-Optical Information Processing, 159-
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Performance Characterization of Edge Operators
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Abstract of the true edge gradient, edge operator's neigh-
borhood size, and the noise variance. Further-

Computer vision algorithms are composed of dif- more, we derive theoretical expressions for the
ferent sub-algorithms often applied in sequence. mean positional error as a function of the neigh-
Determination of the performance of a total com- borhood operator window size, noise variance,
puter vision algorithm is possible if the perfor- the width of the true ramp edge, and the true
mance of each of the sub-algorithm constituents edge gradient. We also outline an experimental
is given. The performance characterization of an protocol used for evaluating edge pixel position-
algorithm has to do with establishing the cor- ing errors and discuss the results obtained from
respondence between the random variations and the experiments.
imperfections in the output data and the ran-
dom variations and imperfections in the input
data. In the paper by Ramnesh and Haralick, [1], 1 Introduction
theoretical models for the random perturbation-
s in the output of a vision sequence, involving Computer vision algorithms are composed of dif-
edge finding, edge linking and line fitting were ferent sub-algorithms often applied in sequence.
presented. They modelled the process that de- Determination of the performance of a total com-
scribes the breakage of a true model line segment puter vision algorithm is possible if the perfor-
by a renewal process with alternating line and mance of each of the sub-algorithm constituents
gap intervals. However, their paper assumed in- is given. The performance characterization of an
dependence of gradient estimates obtained from algorithm has to do with establishing the cor-
neighboring pixel locations, respondence between the random variations and

In this paper we show how one can relax the imperfections in the output data and the ran-
independence assumptions and derive perturba- dom variations and imperfections in the input
tion models that include the effects of correlation data. In the paper by Ramesh and Haralick, [1),
between neighboring gradient estimates. Under theoretical models for the random perturbation-
the assumption that the ideal data is corrupt- s in the output of a vision sequence, involving
ed with additive, independent additive gaussian edge finding, edge linking and line fitting were
noise, we derive expressions that describe the re- presented. They modelled the process that de-
lationship between an edge gradient estimate at scribes the breakage of a true model line segment
a given location and an edge gradient estimate by a renewal process with alternating line and
for a neighboring pixel. We illustrate how the gap intervals. However, their paper assumed in-
model line breakage process can be modeled as a dependence of gradient estimates obtained from
Markov process whose parameters are functions neighboring pixel locations.

In this paper we show how one can relax the•This project ham been funded in part through a con- independence assumptions and derive perturba-
tract from DARPA. Funding for V.Ramesh from IBM in
the form of a IBM Manufacturing Research Fellowship is tion models that include the effects of correlation
also gratefully acknowledged between neighboring gradient estimates. Under
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the assumption that the ideal data is corrupt- the operation.
ed with additive, independent additive gaussian In reality, there is an overlap between the edge
noise, we derive expressions that describe the re- detector neighborhoods centered around pixel-
lationship between an edge gradient estimate at s and hence ther. is some dependence between
a given location and an edge gradient estimate gradient estimates obtained for neighboring win-
for a neighboring pixel. We illustrate how the dows. In addition, if one assumes that the noise
model line breakage process can be modeled as a at each pixel is locally dependent then the cor-
Markov process whose parameters are functions relation in the noise would introduce correlation
of the true edge gradient, edge operator's neigh- in the gradient estimates. In addition, the analy-
borhood size, and the noise variance. Further- sis in [1] did not include positional errors. These
more, we derive theoretical expr-L .ions for the positional errors are of significance if one wishes
mean positional error as a function of the neigh- to analyze higher-level matching algorithms.
borhood operator window size, noise variance, In other work, [2], we focussed on performing
the width of the true ramp edge, and the true theoretical model-based comparison of gradien-
edge gradient. This paper is organized as follows. t based edge finding schemes and mathematical
The first section provides a brief review of result- morphology based edge finding schemes. The
s discussed in [1]. The second section provides performance analysis was done by assuming an
an analysis of the positional error introduced by ideal edge model and a noise model and by deriv-
gradient based edge operators. The third section ing expressions for probability of false alarm and
provides a discussion of a perturbation model for probability of misdetection of edge pixels. Under
the edge output that takes into account the de- the Gaussian noise model assumption, the theory
pendence of estimates at neighboring pixels. A indicated that the morphological edge detector is
subsequent section provides a discussion of theo- superior to conventional gradient based edge de-
retical performance measure plots. tectors, that label edges based on gradient mag-

nitude, when a size 3 by 3 window was used. We
performed experiments to validate our theoreti-

2 Review of previous results cal results and the empirical plots indicated that
the morphological edge operator was also superi-

In this section we review some of the results or when a 5 by 5 window is used. However, the

outlined in the paper by Ramesh and Haralick theoretical plots did not confirm this because the

[1]. Our work extends the results given in [1]. theory provided only an upperbound. In [2] we

Ramesh and Haralick [1], describe a theoretical also included comparisons of results obtained for
model by which pixel noise can be successively real images. A simple analysis of hysteresis link-

propagated through an edge labelling algorith- ing was also done in this paper and it was shown

m, an edge linking algorithm and a boundary that hysteresis linking improves the performance

gap .illing algorithm. Assuming an edge ideal- of the edge operators.
ization of a linear ramp edge and i.i.d Gaussian
random perturbations on pixel grayvalues they
show how one could model the breakage of a 3 Positional Error Analysis
true line segment as a renewal process with al- of Gradient Based Edge
ternating segment and gap intervals. They show
that if one ignores the dependencies between ad- Detectors
jacent gradient estimates then the segment and
gap interval lengths are exponentially distribut- In this section we derive the expression for the
ed with parameters A, and A2 that are related mean error in the edge pixel location. We
to the true edge gradient, the neighborhood op- consider an ideal edge model that has an one-
erator size and the gradient threshold employed, dimensional intensity profile of a ramp. Specifi-

They also show how the output after a gap filling cally, the intensity profile is defined by:
operation could still be modeled as an alternat-
ing renewal process and derive the length distri- I(z) = a + Gz (1)

butions for the segment and gap intervals after for z = -K - 1/2,..., K - 1/2
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= a - G(K - 1)/2 for z <-K - 1/2 is, the edge pixel's index is ep when:

= a+G(K-1)/2fora>K-1/2 C(ep) > d(z) (2)

Vz > -(K - 1), a < (K - 1),: • ep
We assume that the edge detection is performed

by computing the gradient by fitting a planar Hence the probability that the location i is la-
surface to the grayscale values as in [I]. In belled as edge is given by a multivariate integral
1-dimension this problem is equivalent to fit- with appropriate limits specified by the gradient
ting a line to the data for each 1 by K neigh- threshold used. That is, the probability is given
borhood. There are two kinds of errors that by the expression:
are introduced in the fit, one error is the sys-
tematic bias that is introduced in the fit due Prob(ep = i)= (3)
to the approximation of the function 1(z) by 00 aIGxAE'diz
a linear fit in the 1 by K neighborhood and T =o
the other error is the error introduced due to i*i
the additive noise in the input. Let G(z) be + -T 0 fo

the gradient estimate obtained when the least + - ... f 4'(G(x), AEA')dzidzi
squares fit is performed for the window of ideal
data I(i), i = z - (K - 1)/2,..., z + (K - 1)/2.
Clearly, G(O), the gradient estimate when the where I is the multivariate normal distribution
neighborhood overlaps the entire ramp, is equal function. 5 has two sums in the integral because
to the true slope G. Also, G(z), Iml > K is e- the threshold T is actually on the absolute value
qual to zero. In addition, one can note that of the gradient. The mean error in the edge pixel
G(z) is a symmetric function since I(z) is sym- location is then given by:
metric. When the discrete samples are corrupt-
ed with additive i.i.d Gaussian noise with ze- p -i

ro mean and variance a2, then the estimates = L Prob(ep = i) (4)
for the gradient values, G(z), are normal ran-
dom variables with true mean G(z) and variance
a 2/ F i2 where the sum is taken over values of 4 Boundary Model incor-
i = -(K - 1)/2,..., (K - 1)/2. Neighboring porating Dependencies in
gradient estimates, 6(z) and G(z + 4), are de-
pendent random variables because of the overlap Estimates
in the neighborhoods used during the estimationprocedure. In the previous section we addressed how errorsin grayvalues propagate to errors in pixel loca-

We show in the appendix that if we viewed the tions at the output of the edge operator. An
sequence of 2K - 1 random variables 6(m), z = alternating renewal process with gaps and edge
-(K-I),...,K-1 as a random vector G then G' segments ([1]) is used to describe the breakage of
is distributed as a multivariate Gaussian random a true model segment into short edge segments

variable with mean vector G(x) and covariance and gaps. Under the assumption that the gra-
matrix AEA', where the matrix A is obtained dient across the edge is constant along the true
from fitting kernel coefficients as described in the model boundary and ignoring the dependence be-
appendix and E is the covariance matrix of the tween gradient estimates from local neighbours,
additive noise vector which is assumed to be a 21. it was seen in [1] that the edge segment length-
The matrix A captures the dependence between s and the gap lengths can be approximated as
the adjacent gradient estimates. exponential distributions. In this ser ion we il-

In order to compute the error in the edge pix- lustrate how the boundary model given in [1] can
el position, we assume that the pixel with the be extended to include the dependencies due to
maximum gradient magnitude along the gradi- correlation of gradient estimates.
ent direction is labelled as an edge, while all the We assume the ideal model for the intensity
other pixels are labelled as non-edge pixels. That profile across the boundary to be a ramp edge
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with constant gradient as one walks along the (26, 26) in the image. The gray value, I(r,c),
model line. In addition we assume that the sam- at a particular pixel, (r, c), in the synthetic im-
ples are corrupted with i.i.d. additive Gaussian age was obtained by using the function where
noise. It is shown in the appendix how one can re- p = (r - R)cos(O) + (c - C)sin(0).
late the gradient estimate obtained at a particu- I(r, c) < 0 (5)
lar location, (r, c), to the gradient estimate at a n-
earby location, (r+k, c+j). Using these relation- = , otherwise.
ships one can derive the expression for the prob- ,nin and In. are the gray values in the left and
ability that the gradient estimate 6(r + k, c+ j) right of the step edge. The variables R and C
is greater th.n the threshold T given that the righte step eg the vrabe R and C
gradient estimate G(r, c) > T. For simplicity, we designate a point in the image on which the stepedge boundary lies. In our experiments we set
can assume that the ramp edge is oriented across ,nmi to be 100 and ',a. to be 200. We used
the column direction. In this situation we are orientation (0) values of 0, 15, ... , 175 degrees.
interested in modelling the relationship between To generate ramp edges, we averaged images con-
the gradient estimates at successive rows. This taiing the step edges with a kernel of size 4by4 so
scenario is equivalent to the examination of the that the resulting ramps have 5 pixels width. To
gradient estimates in neighboring pixels, as one these ramp edge images we added additive Gaus-
walks along the true model line. We visualize the sian noise to obtain images with various signal to
sequence of edge labels (l's and O's) as we walk
along the model line as a series of binary random noise ratios. We define signal to noise ratio as:

variables. It is easily seen that if we are dealing SNR = 2og ")(6)
with independent Gaussian noise at each pixel, S og ,
the gradient estimate 6(r, c) is dependent on the
previous (6(r - k,c),k = 1,...,K) estimates. where s, is the standard deviation of the gray
In this sense, the binary edge sequence forms a values in the input image and rv is the noise s-
binary Kth order Markov chain. The Markov tandard deviation. We used SNR values of 0, 5,
chain can be specified by the conditional proba- 10, 20 dB. They correspond to ive/ly, values of
bilities: Prob(X,- = 1IX,_. - 1) k = 1,...,K 1,1.78, 3.162, and 10 respectively. Groundtruth
and Prob(X, = 11X'-- 1 = I,.. .,x ,j = 1),J = edge images were generated by using the follow-

2,..., K. These probabilities can be easily de- ing function where p = (r - R)cos(O) + (c -

rived from the joint distribution for the 6()'s C)sin(O).

by computing the appropriate multivariate in- i(r, c) = 0 p < -0.5 (7)
tegral. For example: Prob(X, = 1Xrk = 1) = 1 otherwise.
is equal to Prob(G(r, c) > TI6(r - k, c) > T) ( c) = 0 p<0.5
and is given by:Prob(G(r, c) >_ T, 6(r - k, c) >
T)/Prob(G(r - k, c) >_ T). The numerator in the = 1 otherwise.
above expression is obtained by integrating the I(r, c) = I,(r, c) exor 12(r, c)
joint distribution of e4(r, c) and 6•(r - k, c) with
limits of integration from T to oo. The denomi- The operators employed included the gradient

nator is the integral of the distribution function based (Gradient computed using the slope facet
for 6(r - k,c). model) operator and the morphological blur-

minimum operator discussed in [3]. In the Blur-
minimum morphological edge detector a pixel is

5 Protocol for image gener- assigned an edge label if the edge strength com-
puted is above a given threshold T. The edge

ation (for edge pixel accu- strength I, is given by the equation:

racy) and evaluation I, = min I,- erosion(II,disk(r)), (8)

Synthetic images of size 51 rows by 51 columns dilaiion(IIdisk (r)) - I,).

were generated with step edges at various orien- where 11 is the input image and r is the radius of
tations passing through the center pixel (R, C) = the disk that is used as the structuring element
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in the morphological erosion/dilation operations. strength threshold for the morphological opera-
We used 5 by 5 neighborhoods for the edge oper- tor and the gradient based operator. It is clear
ator and the blur-minimum operator. The edge from the plots that as the edge strength thresh-
accuracy evaluation proceeded as follows. The old is increased the run length drops to a value of
edge pixel location error E is defined as the dis- 1. When the gradient threshold is high, we label
tance along the gradient direction from the true lesser number of pixels as edge pixels in the out-
edge pixel to the nearest labelled edge pixel (if put and hence the runs encountered are of small
one exists, in the edge detector output). A given width. Another point that the plots illustrate is
ground truth edge pixel is assumed to be miss- that as the signal to noise ratio increases from
ing in the detector output if if there are no edge -5 to +20 dB the slope of the curve increases.
pixels in the detector output within an interval This effect is due to the fact that the noise has
centered on the ground truth edge pixel. The the effect of smoothing on the ideal run-length
interval is oriented along the gradient direction profile. Ideally, we expect the run-length to be
and the number of pixels in the interval is equal a linear function of the threshold (since the in-
to the edge operator width. We will refer to this put consists of linear ramp edges). Figures 2
interval, as the "valid zone" for each pixel, and 5 illustrate how the mean gap length varies

In addition to the computation of edge pixel with the edge strength threshold. As expected,
location error as given above, we also compute the mean gap length monotonically increases as
the following statistics from the output image. a function of the edge strength threshold. In the
We visualize the edge and non-edge labellings en- ideal case, we expect the mean gap length to be
countered as one walks along the valid zone as a a linear function of the edge strength threshold
sequence of alternating 0 and 1 runs. We com- and in the presence of large degree of noise this
pute the mean and variances for the lengths of ideal function is blurred. Figures 3 and 6 il-
the gaps and the edge segments. In the ideal case lustrate how the mean edge pixel positional error
when there is no error the edge segment lengths varies with edge strength threshold. It is clear
will have mean value of 1 and a variance of ze- that the error drops to zero when the signal to
ro, whereas the gap segment lengths will have a noise ratio is high. When the signal to noise ra-
mean value equal to the LW/2J, where W is the tio is 0 or 5 dB it can be seen that the mean
window operator neighborhood size. At low lev- error is as much as 0.5 pixels. A comparison
els of edge gradient threshold the edge detector of the plots for the morphological and gradient
responses are thick regions and the edge segment based operators indicate that the gradient based
length values may vary from 1 to W. The seg- scheme is superior for signal to noise levels of 0
ment length and gap length statistics capture this dB and higher. The gradient based scheme has
aspect. Given the true ground truth segment, the comparable errors when the signal to noise ratio
edge segment length and gap length statistics and is -5 dB. The conclusion in [2) was that the mor-
a value for the probability of misdetection of the phological operator had superior false alarm vs
edge operator, we can generate a realization of misdetect characteristics. The experiments here
the edge detector response by following the pro- point out that the morphological operator has
cedure outlined in the appendix. poorer localization performance. In a subsequent

paper we will attempt to compare the empirical
results obtained with theoretical results by utiliz-

6 Plots and Discussion ing the theoretical expressions for the mean pixel
positioning error. The exact expression for the

The results obtained from the experiments are distribution of pixel error for the morphological

given in figures 1 through 6. The curves were edge operator discussed in [3] still needs to be

obtained by taking the running mean of adja- worked out. We are also in the process of evalu-

cent samples. The window size for the running ating the noisy edge generation procedure, that
mean operation was 5. The results shown in the utilizes similar statistics as in our experiments,

plots are the results obtained after 10 replica- to see how closely it models errors that occur in

tions. Figures 1 and 4 illustrate how the mean real images.

length of the run of edge pixels varies with edge
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Figure 1: Plot of Mean edge run length vs Edge Figure 3: Plot of Mean pixel positional error

strength threshold for various signal to noise ra- vs Edge strength threshold for various signal to

tios. Orientation of the true edge was 15 degrees, noise ratios. Orientation of the true edge was 15
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Figure 2: Plot of Mean gap run length vs Edge Figure 4: Plot of Mean edge run length vs Edge
strength threshold for various signal to noise ra- strength threshold for various signal to noise ra-
tios. Orientation of the true edge was 15 degrees, tios. Orientation ,f the true edge was 15 degrees,
Window size 5 by 5 for Morphological operator Window size 5 by 5 for Gradient operator
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7 Conclusion
Mean gap length vs Edge strength threshold

(Grmdwo based *Pam"r)
4.0 In this paper we provided extensions of results

- SN•- -5 O provided in [1] and illustrated how one can re--SNR:= Cdi

---- C RfS1 lax the independence assumptions to derive ran---SNR=. 10 cl

-SNR.20cg dom perturbation models that include the effects
of correlation between neighboring gradient esti-

0 i./.J mates. Under the assumption that the ideal data
is corrupted with additive, independent additive
gaussian noise, we derived expressions that de-
scribe the relationship between an edge gradient

estimate at a given location and an edge gradient
2.0 estimate for a neighboring pixel. We illustrated

how the model line breakage process can be mod-
eled as a Markov process whose parameters are

functions of the true edge gradient, edge opera-
tor's neighborhood size, and the noise variance.

. . . . . . . Furthermore, we derived theoretical expressions"2N0.0 4N0.0 W00.0 WO0.0 1000.0

G.d4, for the mean positional error as a function of the
neighborhood operator window size, noise vari-

Figure 5: Plot of Mean gap run length vs Edge ance, the width of the true ramp edge, and the
strength threshold for various signal to noise ra- true edge gradient. We also outlined an exper-
tios. Orientation of the true edge was 15 degrees, imental protocol used for evaluating edge pixel
Window size 5 by 5 for Gradient operator positioning errors. The results from the experi-

ments illustrate that gradient based edge schemes
are superior (when edge localization is of inter-

Edge pixel localization error vs Edge strength threshold est) to the morphological scheme discussed in [3].

0(GraUM baIsd cpr*w.t,) We also provided an algorithm to generate syn-
thetic noisy edge images that utilize the statistics

- sNR -s dB used in the experiments.
- SNR=0dB
---- SNR,6dB
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8 Appendix 1 V +

We assume that the gray values in each neighbor- R,=R-N CC=C-M

hood in the input image can be approximated by JV
computing a planar fit. We assume further that and X".=-N =-M c2 "

each pixel in the input image is corrupted with The above results can be summarized in a com-

additive Gaussian noise, Ti(R, C), with zero mean pact fashion using matrix notation. Let V& de-

and variance 02. Let 0 R,c, #R,c, and 7R,c de- note a vector consisting of all the estimated &'s.
Let A denote the matrix whose rows contain thenote the estimates for the coe/fcients best fitting values of the kernel used to estimate &. Let E,,

plane that approximates the N by M neighbor- dnt h etrcnitn fteadtv as

hood surrounding the center pixel specified by denote the vector consisting of the additive Gaus-

row and column coordinates (R, C). In this ap- sian random variables i7(R, C)'s. It can easily be

pendix we derive expressions describing the re- seen that V& = ME, +aI For example, the ma-

lationship between the estimates &a+i,c+k and trix A for (&a,RC is given by the transpose
&RC for aR+i,c+, and aR,C. Let a, /, and - be OR+1,,C

the true plane coefficients. It can be easily shown of the following matrix:

that &R,C and 4R,C are equal to: -N 0

E-I _N EM rR C) -N + 1 -N
&RC = + I'=- N c=-M C (9) -1 -N+ 1

r -N 5'=- -, r2

EN M c0(R, C) 0 1
4RC = 3+ r=-N Yc=-M ( 10) 0 -1 (14)

N "- = MC 1 0

Now, we have: &aR+k,C+ = a+ : N N-1
,'=-NEMC=-Mrj(R+r+kC+c+ ) (II) 0 N

C=MN _2 (1N
F"1'=-N, M"•=-M r /E;where S = 1/ __=-N X-•i=- r2 , and the vector

The difference, aR+&,c - aR,C is given by: of Y's are given by:

C+M R-N+k-1

E E (R - R')iq(R', C') (12) (7R-N,C
C'=C-M R,=R-N . (15)

C+M R+N+k ( R+N+*1,C )

+ E E 7(R', C') If the 77's are Gaussian random variables with ze-
C'=C-.M R'=R+N+1 ro mean and covariance matrix E then we can

C+M R+N see that the values in the vector V& is distribut-
-(R', C') ed as a multivariate Gaussian random variable

C,=C-M R,=R-N+k with mean al and covariance matrix AEA'.

If we visualize the two overlapping neighbor-
hoods, the first term in the above equation cor-
responds to the difference contributed by the 9 Appendix 2 - Procedure
nonoverlapping portion of the left mask, the sec- for generation of Noisy
ond term corresponds to the contribution from
the nonoverlapping portion of the right mask and Edge images
the third term corresponds to the contribution
from the overlapped portion of the two masks. The procedure for generation of noisy edge re

Similarly the difference between the 4 sponse images is explained below. First a ground
S ', truth edge image is created. This image is now

,3R+h,C - i3RC, can be shown to be the ratio of: perturbed to obtain the noisy edge image. Let,
R+N+K C+M G(r,c) denote the pixel values in the ground
E c7I(R', C') - (13) truth ideal edge image,

R'=R+N+i C'=C-M WSIZE denote the edge operator width
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PMIS denote the probability of miedetection if ( CURPOS >VSIZE )
Gap-mean denote the mean gap length {
Gap-variance denote the gap length variance /* Output data consists of a gap
Edge-run-mean denote the mean edge run length followed by a truncated edge run; */
Edge-run-variance denote the edge run length vari- }
ance else
Then: {

for each pixel (R.C) in groundtruth image while ( CURPOS < USIZE )
if ( G(RC) -- EDGELADEL ) {

{ AXC[i] - Gsample(Gap-mean.
/A Ground truth pixel is an Gap-variance);

edge pixel */ AT i)- Gsample(Edge-run-mean.
Edge-run-variance);

X = Uniform(; /A Generate a uniform CURPOS += (AX[i] + AY[iD);
random number between i++;
0 and 1 */

if X I < Misdotect-Probability ) /* Output data consists of
{ alternating gaps followed
/A Edge pixel is to be perturbed by runs ,/

according to the edge run and
gap statistics e/ I

/A Currently. there are two modes of /A MODE2 corresponds to the
noisy edge generation. Mode 1 generation of an edge pixel run
corresponds to the generation of from the specification of the edge
gaps and edge runs in the positional errors.
direction of edge gradient when
the user provides the mean and if (MODE2)
variance values for the edge run {
lengths and gap lengths. X - Gsanple(Edge-run-mean.

*/ Edge-run-variance);
if ( MODEl ) Y = Gsample(pixel-error-mean,
{ pixel-error-variance);
/A Generate a gap that is of size /A Output data now consists of a

loss the width of the edge run of length X centered around
operator. The gap has to satisfy (R.C) + (r',c'). The values r',c'
this constraint because the edge are the coordinates of the pixel
pixel is deemed to lie within the that is of distance Y from (CRC)
edge zone line (oriented along along the line (oriented along
the edge gradient direction and the gradient direction).
is of width USIZE pixels.) Gsample ,/
is a procedure that generates a }
sample from a Gaussian distribution.

,/ }

else { /* Edge pixel was missed */ }
AX[0) = Gsample(Gap-mean,

Gap-variance); } /A End of "for each pixel
while ( X > USIZE ) in ground truth image" */

LI.(03 - Osaple(Gap-mean.
Gap-variance);

ATLO) - Gsample(Edge-run-mean,
Edge-run-variance);

CURPOS - A1(0] + AY(O];
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Section XVIII

Shape from X



Shape from Shadows under Error

David Yang and John R. Kender*

0 Abstract limited conditions [Shafer, 19851, object bound-a ary determination [Thompson et al., 1987], line
Kender [Kender and Smith, 1987] presented drawing interpretation [Waltz, 1975], and micro-

method for obtaining shape information from scopic object size measurement [Williams and

shadows cast at multiple angles of illumination. Wyckoff, 19441.

While the method is correct for perfect data, it

may not converge to a solution as a result of Unlike intensity-based algorithms like shape
noise in the data, digitization of the image, or from shading, shadow-based algorithms do not
thresholding errors when determining the shad- require knowledge of the surface reflectance
ows. This work extends this shape from shadows properties of the surface of interest. Implicit in
algorithm to work in the presence of these fac- this is the ability to handle surfaces with non-
tors. The constraints in the original algorithm uniform reflectance properties, though multi-
use trigonometric rules to relate the heights of colored surfaces and highly specular surfaces
discrete points (i.e., pixels) based on whether or may require adjustments in the thresholding pro-
not the points are in shadow. We supplement cess. Below, we give more details on how shad-
these constraints with rules on how shadows in ows have been used to determine object heights
one image constrain those in other images of the and surface profiles.
same scene and with the same viewpoint, but
with different illumination angles. A heuristic
is devised to filter the data to satisfy the con- 1.1 Shape from shadows
straints and produce a solution, and some results
are presented for errorful synthetic and real im- Given the direction of the sun and a reference
ages. surface a known distance from the camera, the

height of structures on this surface can be de-
termined by basic trigonometry [Paine, 1981].

1 Introduction Specifically, the height of a structure casting a
shadow equals the length of the shadow multi-

While shadows hide information in parts of an plied by cotan(Oi), where 0i is the incident angleimage (e.g., see [Beckmann, 19651), researchers of illumination.

have also taken advantage of the relationship be-

tween a shadow and the region of the image cast- Kender [Kender and Smith, 1987] use multi-
ing the shadow. The various aspects of this re- ple lighting positions and trigonometric rules to
lationship have been used for boundary segmen- generate a profile of a surface based on self-
tation [Hambrick and Loew, 1985], spline esti- shadowing. Their algorithm generalizes the
mation of surface shape MHatzitheodorou, 19901, above rule to handle the possibility of self-
structure hypothesis verification Irvin and McK- shadowing and enhances the algorithm with 3
eown, 1989], bounding of a discrete surface pro- additional constraints. The extra constraints
file [Kender and Smith, 1987], surface rough- permit the estimation of heights over the en-
ness measurements [Maerz et al., 19901, struc- tire surface, rather than just the few peak points
ture height estimation [Paine, 1981], scene regis- which can be estimated with the single rule. The
tration and stereo matching [Perlant and McKe- only restrictions placed on the surface is that it
own, 1990], surface gradient measurement under can be described by a function z(z, y), and is on

0 This work was supported in part by the Defense Advanced a reference surface. The first requirement sup-
Research Projects Agency under contract N00039-84-C-0165 ports a simple model of the surface, while the
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latter requirement allows the accurate determi-
nation of the incident angles of illumination, forward - upper

u(x) < u(ls(x)) - Ils(x) - xl * sis(x)

Since this paper will use much of the terminology forward - lower

of the previous work, we will summarize it here. f(w) >_ l(fs(o)) - tfs(x) - xl * sfs(x)

As can be seen in one possible set-up in fig. 1, the backward - upper

surface of interest is placed on a reference sur- u(fs(x))<au()k+r fs(-) - sfs(x)

face, and lighting is placed at several angles in backward - lower

the xz plane and the yz plane. Ideally, the light- l(ls(x)) _ 1(x) + [Is(x) - xl o ss(z)

ing should be collimated and far enough from the

surface to approximate lighting from an infinite where
distance. Intuitively, the lighting in the xz plane
is similar to discrete positions of the sun at the u(x) = current upper bound on x
equator; thus, east refers to the positive direction I(x) = current lower bound on x
along the x-axis, and north, south, and west refer ls(x) = shadower of x
to their respective directions. This also inspired fs(x) = failing shadower of x
the term suntrace, which is the bit matrix (or sls(x) = slope of illumination when x is
vector if only a single row or column of the image last shadowed
is being reconstructed) for a given image with a sfs(x) = slope of illumination when x is
specified illuminant position indicating whether first unshadowed
each pixel is shadowed or unshadowed. Equiv-
alently, a suntrace is the overhead view of the Fig. 3 shows synthesized suntrace data for a sim-
thresholded image. Fig. 2b shows the suntrace ple curve and the resulting bounds on the shape.
corresponding to the situation in fig. 2a. Hatzitheodorou [Hatzitheodorou, 1990] worked

Fig. 2a shows a sample one-dimensional curve on the related problem of finding the continu-
with illumination from the west. Since x2 is in ous function 2(x, y) which satisfies the forward
shadow, and x, is the closest unshadowed point upper constraints given by the shadow data and
to the west, x, is said to shadow x2. Further- minimizes the possible error. His approach was
more, if X2 is not shadowed for any higher west- to approximate the actual surface in a shadow
ern illumination, xI is called the last shadower of region with a spline function. Noise is handled
X2 . From here on, the last shadower will just be by considering a further constraint on the shape
called the shadower. Since x, is also the closest of the solution- e.g., a smoothness constraint.
unshadowed point to the west of the unshadowed
x3 , if x 3 is shadowed for all lower western illumi- 1.2 Outline for rest of paper
nations, x1 is called the failing shadower of x3.Fatiorsxiscalled the gvnsa eiong btween Of a X3  While the shape from shadows algorithm alwaysFor the given sh adow region betw een x, and X 3, c n e g s a d p o u e o r c o n s o h
x2 is called the last shadowed point, while x3 is converges and produces correct bounds on the
called the first unshadowed point. x0 marks the surface shape when the data is perfect, it may

western boundary of the image, while x4 marks not converge when there are errors in the sun-

the eastern boundary. traces. As will be shown, even an error of a sin-
gle pixel is enough to prevent convergence in the

The 4 constraints can be classified as upper or unmodified algorithm. The next section explains

lower, depending on whether they relate to up- the problems faced by the algorithm when deal-

per or lower bounds on the height. A forward- ing with errors in the data. Section 3 describes

upper constraint uses the bound on a shadower the heuristic. Section 4 presents results using

to constrain the bound on a shadowed point, both synthetic and real imagery. The final sec-

A forward-lower constraint does likewise for a tion summarizes and suggests future work.
failing shadower and a point it fails to shadow.
Backward constraints work in the opposite di- 2 Non-convergence
rection. The constraints are as follows:

The relaxation algorithm described in [Kender
and Smith, 19871 propagates constraints until
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no further changes in any bounds are possible. indeed estimates both points to be of the same
Inconsistencies between 2 or more images, how- height- note that upper and lower bounds con-
ever, may result in a cycle of constraints with verge at both points. Thus, when valid, mutual
a point indirectly constraining its own upper shadowing is useful in tightening the bounds.
bound to be lower, or its lower bound to be
higher. To be concise, from here on, only cy- 2.3 Single-point inconsistencies
cles which indicate such a multiple-point incon-
sistency will be called cycles. Below, we give an If x, is unshadowed with the light on a given side
example cycle and then cover two special cases. of the surface- e.g., the right side- then for any

higher light position on the same side, x, cannot

2.1 Example cycle become shadowed again. Fig. 4a shows a case
with the western suntraces for Oi = arccot(2/3)

Fig. 4c shows a simple cycle with three points and ei = arccot(1) at xi = 15. By summing
extracted from the suntrace data in Fig. 4a-b. the effect of the forward-upper constraint when
For purposes of the example, assume the up- x, is shadowed with the effect of the backward-
per bound on x, = 3 is initially 0, and the upper constraint when x, is unshadowed, it can
upper bound on all other points is +oo. The be seen that the upper bound of x, and its shad-
first constraint in the cycle shows x, = 3 shad- ower (x2 = 14) will be lowered indefinitely. Note
owing x2 = 25 when ei = arccot(1/3). Since that in a different surface model, x, could le-
xi has an upper bound of 0, the forward con- gitimately become shadowed again. To see why,
straint yields a new upper bound on x2 of -71. consider standing up a slice of swiss cheese on
The second constraint is another forward con- its end and moving a light source vertically up
straint, this time with the light on the eastern past it on one side. The holes in the cheese will
horizon, producing an upper bound on x3 = 13 result in unshadowed regions within the shadow
of -71. The last constraint is backward-upper cast by the cheese. As the light moves up, these
since x4 -x = 13 is the failing shadower for X3 unshadowed regions will become shadowed.
when 0i - arccot(2/3) and the illumination is
from the west. The result is a new upper bound
on x 4 = x1 of- 2. This will prevent termination 3 Adjustment Heuristic
of the algorithm unless adjustments to the data
are made. We call - 2 the error in the cycle. The chosen adjustment heuristic localizes theblame for an error. It starts by correcting mutual

shadowing and single point inconsistent shadow-
2.2 Mutual shadowers ing errors. A local maximum is chosen as the
If we are trying to reconstruct a curve, two points starting point, and both the upper and lower
cannot shadow each other (for different light po- bounds for this point are set to 0. From this
sitions) unless they each shadow the other when point, constraint propagation as in [Kender and
the light is on one of the opposing horizons. Smith, 1987] is performed. Each time a con-
Otherwise, the forward-upper or backward-lower straint changes a bound on a point, a check for a
constraints would form a cycle. Intuitively, such cycle in the constraints is done. If a cycle is de-
an error would imply that one of the points was tected, then a point in the cycle is chosen, and
higher than the other while the other was at the shadowing data for that point is adjusted
least as high. Equivalently, this constraint im- to either fix the cycle or at least alleviate the
plies mutual shadowing is valid only when the problem. The algorithm is explained in detail
two points are of the same height. This is re- for processing data for a single vertical sli e. and
flected in the equations for the forward-upper considerations for handling the whole surface are
and backward-lower constraints, covered as well.

In fig. 3, the mutual shadowing of points xi = 0 3.1 Initial adjustments
and X2 = 3 can be seen in the suntraces for
Oi = 7r/2 for western and eastern illuminations. It is noted that when the light is incident from
Since both suntraces are for illumination at the a given direction, all pixels along that bound-
horizon, there is no error. The reconstruction ary of the image should be unshadowed. If not,
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this may indicate that these pixels are shadowed off-screen objects, this includes all points along
by an off-screen object, which could produce er- any image boundary in the direction of one of
rors or overly loose bounds in the results. We the light positions used. The bounds for all
assume no such shadowing occurs and mark all other points can be interpolated from the bounds
boundary pixels on a given side of the image as for these points. This can produce a substan-
unshadowed for all suntraces with illumination tial speedup for relatively smooth surfaces (i.e.,
from that direction. with few shadowers) and few illuminant posi-

tions (i.e., with few last shadowed or first un-
The next step fixes single-point inconsistencies, shadowed points).
Here again there is a problem that if an unshad-
owed point becomes shadowed again, it is impos- An adjustment for a forward-upper constraint
sible to determine exactly when the point should can be made by shortening the length of the
first be unshadowed in the absence of further in- shadow (starting at the end away from the shad-
formation. Favoring the unshadowed status will ower), thus raising the upper bound of the newly
tend to create reconstructions with spikes. Fa- unshadowed points and, when constraints are
voring the shadowed status will tend to create propagated, of all the other points in the cy-
holes in the reconstruction. To avoid both, it cle. Similarly, shortening the shadow involved
may be necessary to first use a low-pass filter in a backward-lower constraint will decrease the
on points involved in single-point inconsistencies, lower bound of the failing shadower. On the
Currently, we favor the unshadowed status and other hand, adjustments for either forward-lower
do no filtering. or backward-upper constraints require lengthen-

ing the shadow.
For mutual shadowing, it is usually impossible
to know which pixel is wrong. If only one of the The amount by which to shorten or lengthen a
points is on the image boundary, it can be rea- shadow depends on the total amount by which
sonably assumed that the other point is wrong, the cycle lowers the upper bound (or raises the
though it is possible that there should be a shad- lower bound) of each point in the cycle, the light
ower of one of these points in between them. position for the given constraint, adjacent light
Otherwise, our current approach arbitrarily fa- positions from the same direction, and possi-
vors the point closer to the image boundary for bly the light position of the following constraint
the direction in which it is unshadowed. This in the cycle. For example, consider a point x
point is then marked as unshadowed for the sun- which is constrained by a forward-upper con-
traces in which it was originally marked as shad- straint from the east, and x constrains the next
owed by the other point. Note that this does not point in the cycle with a forward-upper con-
risk creation of a single-point inconsistency since straint from the north. Shrinking the shadow
it marks a point as unshadowed in all suntraces for the eastern suntrace will leave x shadowed
with the light to one side of the surface. at the next lower light position. If x's shadower

before the adjustment is still x's shadower, the
If lighting from both east-west and north-south effect of the adjustment on the error in the cy-
directions is used, mutual shadowing can involve cle is based on the difference between the slopes
many more than two points and constraints, but of both light positions. On the other hand, if
this can become very complicated to handle as a x constrains the next point in the cycle with a
special case. We leave such cases to the general backward-upper constraint to the west, the effect
processing of multiple-point inconsistencies, of shrinking the shadow for the eastern suntrace

can easily be greater than in the previous case.
3.2 Adjusting a shadow edge Nonzero slopes of the failing shadowers to the

west for the points which are newly marked as
We first note that for the 1-dimensional case of a unshadowed will raise the upper bound of the
single vertical slice, the only points that need to next point in the cycle even more.
be considered are those points which are shad-
owers, last shadowed points or first unshadowed Since each constraint is associated with a partic-
points in at least one suntrace. As a result of ular light position, any adjustment to the data
the assumption that no points are shadowed by
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for this light position should be made compatible Errors were then introduced into the suntraces.
with data for other light positions. If a shadow and the corrupted suntraces were used as input
is to be shrunk, the newly unshadowed points to the modified algorithm. As described earlier.
must not be shadowed for any higher light po- fig. 4 shows data for a simple step-function curve
sition in the same direction to avoid creating a where there is a multiple-point inconsistency. By
single-point inconsistency. If a shadow is to be lengthening the shadow region in the western
expanded. a corresponding check must be done suntrace where Oi = arccot(2/3) by just 1 pixel
with respect to lower light positions. to the right, the reconstruction in fig. 4d can

be obtained. Fig. 5 shows an 8x8 2-dimensional

3.3 Choosing edge to adjust case. Again, the the fix is a very slight change.

To minimize the amount of shadow data ad- Figs. 6- 8 show sets of 1-dimensional reconstruc-
justed, points involved in constraints of steeper tions along the east-west direction for a wooden
slopes are preferred since small adjustments pro- half-arch, some egg carton-shaped packaging ma-
duce bigger changes in the bounds. It is as- terial. and a crumpled sheet of aluminum foil.
sumed that the position of shadower points is materials with very different reflectance prop-
more likely to be correct than the position of erties. For clarity, not all row reconstructions
the far shadow boundary. Consequently, adjust- are shown. The images of the original objects
ments are not made to shadower points after the have illumination incident from the left at arc-
mutual shadowing errors are fixed. This implies cot(1/3). The aperture was generally set a little
an adjustment will not create a shadower. too wide to facilitate thresholding. The angles

of incident light used were r/2. arccot(1/3), ar-
ccot(2/3), arccot(1), and arccot(10).3.4 From one dimension to two

Once both north-south and east-west illumina- For the rows tested for the wooden block, there
eto determine a true were no multiple-point inconsistencies for sometin mar used, it. isTe 4trigonomof the rows north and south of the block, and

2-D map of z(x, y). The 4 trigonometric con- frm2t7suhicnsecesnteohrrw.

straints must now be applied in the 2 extra di- from 2 to 7 such inconsistencies in the other rows.

rections along the new axis. While the extension On a lightly loaded Sun 4. the cpu time needed

of the basic height estimation algorithm to 2 di- for one row, as measured by the Unix time com-

mensions is trivial, the interaction of these con- mand, was no more than 0.3 seconds. The real
straints does complicate the heuristic. Specifi- world time time needed was in all cases no morecally, when constraints along two axes are used, than 2.3 seconds. For the packaging material.

cycles may have to include points which do not the number of multiple-point inconsistencies de-

belong to the set of shadowers, last shadowed tected varied from 31 to 151. though some cycles

points, or first unshadowed points. This can were found mre than once. The cpu time for

happen when consecutive constraints in a cycle processing one row varied from 2 to 15 seconds.

operate along different axes. It is still desirable and the real world time varied from 13 seconds
to 1 minute and 22 seconds. For the foil. the

not to adjust (or create) shadowers, so when a
point in the middle of the shadow is in a cycle, number of cycles detected varied from 3 to 76.

it is necessary to find the last shadowed point of The cpu time for processing one row varied from
poisnt.f I to 7 seconds, and the real world time variedthe shadow at. which to make the adjustment from 9 to .12 seconds. The tipper bounds are

generally more accurate than the lower bounds.
4 Experimental results especially for certain points on the far left and

far right sides of the reconstruction. Points on
For the real images. we used a set-up similar one side of the image are sometimes in shadow
to that in fig. 1. using uncollimated illumina- for all light positions from the other side. Such
tion. We have successfully used the heuristic on a point will not be constrained by any forward-
both synthetic and real errorful data for 1 dimen- lower constraint. If the point does not shadow
sion. and for synthetic errorful data for 2 dimen- any points, it will not be constrained by any
sions. For the synthetic images. ideal suntraces backward-lower constraint. either. in which case
were derived from a discrete curve or surface.
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Figure 1: One possible set-up for shape from Figure 2: (a) A sample curve - the shaded region
shadows is the shadowed portion for the given angle of

illumination (b) The corresponding suntrace
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Figure 3: (a) Suntraces for western illuminations Figure 4: (a) Suntraces for western illumina-

- top to bottom, angles of illumination = 7r/2, tions - top to bottom, angles of illumination =

arccot(1/3), arccot(2/3), arccot(1) (b) Suntraces 7r/2, arccot(I/3), arccot(2/3), arccot(1) [Intro-
for eastern illuminations - top to bottom, angles duced errors are boxed here and in part (b)] (b)

of illumination = 7r/2, arccot(1/3) (c) Recon- Suntraces for eastern illuminations - top to bot-

struction - solid line is upper bound, dashed is tom, angles of illumination = 7r/2, arccot(l/3)

lower bound (c) Constraint cycle revealing error (d) Recon-
struction

1089



colunm 0 I 2 3 4 5 6 7

L]

Mw West mW east

22

Figure 7: Reconstruction of foam surface profiles
4 4

6 6

column 0 I 2 3 4 5 6 7

South [ J~ 1
Figure 5: Suntraces and surface reconstruction
of errorful synthetic 8x8; angles of illumination
- ir/2, arccot(1/3), and where included, arc-
cot(2/3), arccot(1) [Introduced errors are boxed]

Figure 6: Reconstruction of wood half-arch pro-
files [Viewing angle for reconstruction is 7r/4, as
in the next 2 figures] Figure 8: Reconstruction of foil surface profiles
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Shape and Motion from Linear Features*

Warren F. Gardner and Daryl T. Lawton
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract age frames. This paper introduces a method of extract-
ing shape and motion from directionally selective lin-

This paper introduces a technique for ex- ear feature correspondences. This line-based algorithmtracting structure and motion using direction- is capable of reconstructing shape and motion without

ally selective matches between linear features.

A world-centered coordinate system is used computing depth as an intermediate step. In addition to

to make these computations without the in- the orthogonality assumption, we assume that the three-

termediate calculation of depth. In order dimensional direction of gravity is known relative to each

to constrain the possible structure and mo- image in a motion sequence.

tion configurations, we assume that the three- The algorithm begins by searching for the orientation

dimensional direction of gravity relative to of one of the lines in the environment. This is a one
each image frame is known. The direction of dimensional search over 1800, constrained by the projec-gravity, along with the dirsn on.h ectin fve tion of the line on one of the image planes. Each candi-
linear feature matches, form a set of quadratic date line orientation, along with the position of gravity,
equations which can be used to determine forms a set of quadratic equations which constrain all
structure and motion. the other lines, as well as the rotation between image

frames. An error measure is computed from the derived
line orientations and used to evaluate each shape and

I Introduction motion configuration. Once the line orientations and

The extraction of environmental structure and motion parameters of rotation have been derived, the relative

from a sequence of two-dimensional images is a com- positions of the lines can also be computed from simplelinear equations.
mon problem in computer vision. Typically solutions to

this problem are expressed in camera-centered coordi- The remainder of this section introduces the notation
nate systems where environmental geometry is specified used throughout this paper. Section 2 shows how to
by the depth along an image feature's ray of projection. derive line orientation and camera rotation from a se-
Unfortunately, parameters computed from this camera- quence of two-dimensional images. Section 3 presents a
centered representation are dependent upon the depth to set of linear equations which can be used to solve for the
environmental features. This leads to erroneous results relative line positions. The algorithms presented in the
for objects located far from the camera, paper are applied to synthetic data and the results are

The recently introduced factorization method [Tomasi presented in Section 4. Finally, concluding remarks are
and Kanade, 1990; Tomasi and Kanade, 1992; Boult and given in Section 5.
Brown, 1992] has attempted to overcome the disadvan-
tages associated with a camera-centered representation. 1.1 Notation
This method uses a world-centered coordinate system, The notation used throughout this paper is shown in
along with an orthogonal projection assumption, in order Figure 1. An image frame at time f is delineated by
to compute shape and motion without the intermediate unit vectors if, jf, and k1 . A three-dimensional envi-
calculation of depth. A matrix of image measurements ronmental line is represented by a unit vector d, speci-
is constructed by making point correspondences between fying the line direction, and a point on the line p,. Line
image frames. The matrix is then factored into a shape (d,,p,) is projected orthog. xphically onto image frame
matrix and a motion matrix using Singular Value De- f. The direction of the projected line is represented by
composition. its unit normal ifi,. j31, refers to the projection of p..

One problem with the factorization method is that it The direction of gravity will be referred to as gf. The
relies upon accurate point correspondences between im- two-dimensional parameters iij, and ff, as well as the

*This research is supported by the Advanced Research three-dimensional parameter gf are all expressed in the
Projects Agency of the Department of Defense and is mon- coordinate system of image frame f. All other parame-
itored by the U. S. Army Topographic Engineering Center ters are specified relative to the world coordinate system.
under contract No. DACA76-92-C-0016 When fif, is specified in the world coordinate system it
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f+2
ya +,,+1

JZ iImage Frame f Figure 2: Normals are determined by intersecting a plane
X with a circular cone

Since the line normals fiip were formed by orthographic
projection, they must be perpendicular to the line dl.

Figure 1: Coordinate systems Therefore, one constraint is that the vectors nil must
lie within the plane perpendicular to di. An additional
constraint is provided by the gravity vector gj. The an-

will be referred to as nf,. gle between fif and gf must be the same as the angle
In the following section we present a method of solving between nil and the direction of gravity in the world

for the line orientations d5 , as well as the parameters of coordinate system (gw). These two constraints can be
rotation if, jf , and k1 . Section 3 shows how these initial used to solve for n, 1. Figure 2 shows the geometry of
quantities can be used to fix the relative positions of the these two constraints. Each normal (nf1 ) is determined
lines within the world coordinate system by solving for by intersecting a plane with a circular cone. The plane
a point p, on each line. is defined by dl. The cone is constructed by rotating a

vector about the direction of gravity at the appropriate
2 Line Orientation and Camera angle. Since the origin of the cone lies within the plane,

Rotation the intersection of the plane with the cone results in two
lines. There are only two possible solutions since the

In this section we present a method of solving for the normals are known to be unit vectors.
three-dimensional line orientations and parameters of ro- The constraints described above will now be examined
tation from a sequence of two-dimensional images. The in more detail. As stated earlier, the direction of gravity
algorithm begins by searching for the orientation of one g! relative to the line normals fip is known. This results
of the lines. This is a one dimensional search over 1800, in the following relationship
constrained by the projection of the line on one of the im-
age planes. Each candidate line orientation, along with n g, = ji " (1)
the position of gravity, forms a set of quadratic equations where g. is the direction of gravity in the world coor-
which constrain all the other lines, as well as the rotation dinate system. Letting g. = (0, -1,0) we can simplify
between image frames. An error measure is computed Equation 1
from the derived line orientations and used to evaluate np, = -niI, "g (2)
each shape and motion configuration. Section 2.1 shows In addition to the angle constraint we know that nil
how to solve for the position within the world coordi- lies within the plane defined by dl. This constraint is
nate system of the line normals (n!,) associated with expressed as
the candidate line. Section 2.2 shows how the candidate ee as
normals can be used to solve for the normals to all the n = 0 (3)
other visible lines. These line normals are then used in Finally, we know that the magnitude of each normal vec-
Section 2.3 to estimate the line orientations and camera tor (njI) equals one
rotations. linill = 1 (4)

2.1 Candidate Line Normals Equations 2, 3, and 4 can be combined into a single
The algorithm begins by searching for the orientation quadratic equation, resulting in two feasible solutions
of one of the lines. A candidate line is used to con- for each normal vector.
strain the position of all the other three-dimensional lines
so that a particular shape and motion arrangement can 2.2 Additional Line Normals
be evaluated. The first step in this process is to solve The next step in the extraction of line orientation and
for the position in the world coordinate system of the rotation is to solve for the position within the world co-
candidate line's normals. Let dl be the candidate line. ordinate system of the rest of the line normals. This is
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2.3 Parameter Estimation

Once the normal vectors (nfi) have been derived, the
process of-estimating the line orientations and rotational
parameters is trivial. The line orientations (do) are easily
estimated from their associated normals (nr,) using the
following equation

d, • h. -- 0 (8)

d, can be estimated with a minimum of two non-collinear
normal vectors. When more vectors are available, d,
can be solved for using a linear least-squares technique.
The rotational parameters are also easily obtained from
the normal vectors nrj,. Three linear equations can be
formulated for the three rotational parameters if, j,,

9 q and k,

ifl - -= fla..
i j" nf. = fif.,
kf - nf -= 0

There are also additional constraints available. One of
Figulare 3Nors athese constraints is that the vectors must be orthonormal
circular cones

if = Ji x kf

accomplished by using the candidate line normals. The if = k! x i
idea is essentially the same as in the previous section. kL = if x if
Two constraints can be formulated from the given geom-
etry. The first constraint is given by the gravity vector hyh - [I - Ilkjjj - 1
gf, and is identical to the constraint presented in the Additional constraints can be derived from the relation-
previous section. The angle between fi, and gf must ship between the rotational vectors and gravity as was
be the same as the angle between nf, and the direction done in Sections 2.1 and 2.2. These constraints are
of gravity in the world coordinate system. The second
constraint is that the angle between an image normal i/f g. = g!.
vector fi!o and the candidate image normal vector fif I "g, = gL.
must be the same as the angle between the associated k! - g. = gj.
world coordinate normal vectors nfi and n! 1 . These two
constraints can be used to solve for all the additional Of course, all of the equations presented above are not
normal vectors n!p. The constraints are shown geomet- independent, and all are not necessary. Currently we use
rically in Figure 3. The solution for a normal vector nf, the following subset of equations. Initially ir is deter-
is essentially the result of intersecting two circular cones, mined using a least squares formulation of
One cone is the result of rotating a vector about the di- kf -n!, = 0 (9)
rection of gravity. The other cone results from rotating
a vector about the candidate normal vector ni 1 . The The technique presented in Section 2.1 is then used to
intersection of two circular cones which share the same solve for if with the following equations
origin is two lines. Once again, the normals are known
to be unit vectors, resulting in two solutions. if • kS = 0 (10)

The following equations result from the above analy- if . g. = gL. (11)
sis. The constraint resulting from the gravity vector g, Finally if and kf are used to solve for if
is identical to the one presented in Section 2. Therefore,
from Equation 2 we can write if = - 1 x if (12)

hf!s, -- - a , g! (5) Equation 8 is used to solve for the line orientations
The second constraint relates the line normals nf, to the d,. Equations 9, 10, 11, and 12 are used to solve for
candidate line normals nf1 as follows the rotational parameters if, Jf, and ke. The following

hi, - 1nf = fi! s• fi 1 (6) section shows how to use these derived parameters to

Finally, we know that the magnitude of each normal vec- solve for the relative positions of the line segments, thus
tor (n/a) equals one completing the spatial reconstruction.

IInL.II = 1 (7) 3 Line Position
Equations 5, 6, and 7 can be combined into a single
quadratic equation, resulting in two feasible solutions The final step in the line segment reconstruction is to
for each normal vector. solve for the line segment positions relative to the world
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Figure 4: The first and last frames from a 20 image
sequence Figure 5: 10 image frames from a 20 image sequence

coordinate system. Initial assumptions about the posi-
tion of the image frames relative to the world coordinate 0

system are made, allowing a simple linear solution to X-COnpmeu
the problem. The position of each line is represented _,
by a point p, which is chosen arbitrarily. The world
coordinate system will be positioned at the center of im-
age frame 1. The points /1, are then chosen arbitrarily m.

= (z°, y.). We assume that all the image planes in- E
tersect along line dl. This means that the position of
each image plane is given by P1 + aid, where af is a 0
parametric scale factor.

Each line position p, = (x,, ya, z.) consists of one un- ZcONmo, -
known z,. The solution for z, is trivial. Each point p, -6
is constrained to lie within the planes perpendicular to .-
nf,. These planes are positioned by choosing some ar- . -opme.
bitrary point on the projection of each line, and then
determining the position of that point within the world
coordinate system. Let q be the point in world coordi- 0 I I I

nates 0 o 10 - 20

q = p + [if ]" (P P1) (13)r mr (1)

The equation of the plane is then written as Figure 6: The components of if for a 20 frame sequence.
The correct values are shown with solid lines, and the

nf .(-x q - ajdo.)+ derived values are shown with dotted lines.
no,(y°- qy - ajdo,) +

nhs. (z. - q, - afd,.) = 0 (14) the Y-component of if is errorless. This is because this

The two unknowns in this equation are z, and af. a! component is derived from the relationship between the
can be removed from the equation, and a least squares image frames and the gravity vector (gf) as shown in
solution can be found for z.. Equation 11. Thus the Y-component is unaffected by

the perspective projection errors.

4 Results The derived line orientations and parameters of rota-
tion were then used to reconstruct the line positions as

The algorithm presented in this paper was implemented discussed in Section 3. A top view of the original data
and tested on several sequences of synthetic data. The is shown in Figure 8. The reconstructed data is shown
first and last frames from a 20 image sequence are shown in Figure 9. Once again the errors are the result of per-
in Figure 4. Figure 5 shows 10 frames from the sequence spective projection.
(every other frame is displayed). This data was pro-
duced by random rotations and translations. The ro- 5 Conclusion
tational parameters if and ji associated with this se-
quence of motion are shown in Figures 6 and 7. The The technique presented in this paper is an early attempt
correct rotational values are displayed as solid lines, and at constructing linear feature based depth-independent
the derived values are displayed as dotted lines. All er- motion algorithms. The work has only been tested on
rors are the result of perspective projection. Notice that synthetic data, and it is not clear what effect perspective
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Figure 7: The components of j1 for a 20 frame sequence. Figure 9: Top view of the reconstructed house
The correct values are shown with solid lines, and the
derived values are shown with dotted lines. rection of gravity with another consistent direction. For

example, for an object that consistently moves in one
direction (such as a vehicle), the gravity vector can be
replaced by a vector specifying this direction (the for-
ward vehicle direction).

There are several areas for future work:

* Test this algorithm on noisy data and if necessary
develop a more robust formulation that will work
well in the presence of errors, including the errors
introduced from perspective projection.

S- * Test the algorithm on real image sequences.

* Integrate this rotation based method with the
translation based method discussed in [Lawton,
1982]. In this case the gravity vector is replaced by
a direction of translation vector. The integration of
these two methods will probably be accomplished
through temporal filtering using the Kalman Filter.

g I, I I I ,References
X Axis [Boult and Brown, 19921 Terrance E. Boult

and Lisa Gottesfeld Brown. Motion segmentation us-
Figure 8: Top view of the house data ing singular value decomposition. In Proceedings of

the Image Understanding Workshop, pages 495-506,
1992. San Diego, CA.

projection and other forms of noise will have. However, [Lawton, 19822 Daryl T. Lawton. Processing transla-

since the formulation involves linear least squares esti- tional motion sequences. Computer Vision, Graphics,

mation, it appears that it will be robust. The ability to and Imaoc Processin .22:116-144, 1982.

deal with occlusion is also straight-forward in this over- g

constrained system. Occluded line normals (nr,) are null [Tomasi and Kanade, 1990] Carlo Tomasi and Takeo
vectors and therefore have no effect on the least squares Kanade. Shape and motion without depth. In Pro-
solution. Notice that the first frame shown in Figure 4 ceedings of the Image Understanding Workshop, pages
contains occluded lines. 258-270, 1990. Pittsburgh, PA.

One drawback of this method is that the three- [Tomasi and Kanade, 1992] Carlo Tomasi and Takeo
dimensional direction of gravity is required. This mea- Kanade. The factorization method for the recovery
surement can be provided by a gravity sensor, but we of shape and motion from image streams. In Pro-
would like to relax this restriction. One way to remove ceedings of the Image Understanding Workshop, pages
the gravity vector from the algorithm is to replace the di- 459-472, 1992. San Diego, CA.
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Object-Centered Surface Reconstruction:
Combining Multi-Image Stereo and Shading*

P. Fua and Y. Leclerc
SRI International

333 Ravenswood Avenue, Menlo Park, CA 94025
(fua@ai.sri.com leclerc@ai.sri.com)

Abstract developing general-purpose vision systems, but
also in specialized areas such as the generation

Our goal is to reconstruct both the shape and re- of Digital Elevation Models from aerial images
flectance properties of surfaces from multiple images. [5, 12, 26, 53].
We argue that an object-centered representation is In this paper, we view the recovery problem
most appropriate for this purpose because it natu- as one of finding an object-centered description
rally accomodates multiple sources of data, multiple of a surface from a set of input images that is
images (including motion sequences of a rigid ob- sufficiently complete, in terms of its geometric
ject), and self-occlusions. We then present a spe- and radiometric properties, that it is possible
cific object-centered reconstruction method and its to generate an image of the surface from any
implementation. The method begins with an ini- viewpoint. In particular, the description should
tial estimate of surface shape (provided by trian- be sufficiently complete to reproduce the input
gulating the result of conventional stereo or othermean). he srfae sape nd eflctane pop- images to within a certain tolerance, given mood-
means). The surface shape and reflectance prop- els of the cameras, their relative locations, and
erties are then iteratively adjusted to minimize an
objective function that combines information from
multiple input images. The objective function is a Our surface reconstruction method uses an

weighted sum of "stereo," shading, and smoothness object-centered representation, specifically, a

components, where the weight varies over the sur- triangulated 3-D mesh of vertices. Such a rep-

face. For example, the stereo component is weighted resentation accommodates the two classes of

more strongly where the surface projects onto highly information mentioned above, as well as mul-
textured areas in the images, and less strongly oth- tiple images (including motion sequences of
erwise. Thus, each component has its greatest in- a rigid object) and self-occlusions. We have

fluence where its accuracy is likely to be greatest. chosen to model the surface material using

Experimental results on both synthetic and real ia- the Lambertian reflectance model with variable

ages are presented. albedo, though generalizations to specular sur-
faces would be relatively straightforward. Con-
sequently, the natural choice for the monoctlar

1 Introduction information source is shading, while intensity is
the natural choice for the image feature used

The problem of recovering the shape and re- in multi-image correspondence. Not only are
flectance properties of a surface from multi- these the natural choices given a Lambertian
ple images has received considerable attention reflectance model, they are also complementary
[6, 20, 35, 441. This is a key problem not only in [7, 30]: intensity correlation is most accurate

*Support for this research was provided by various wherever the input images are highly textured,

contracts from the Defense Advanced Research Projects whereas shading is most accurate when the in-
Agency. put images are untextured.
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The reconstruction method is to minimize information fusion.
an objective function whose components de- More recently, full 3-dimensional models have
pend on the input images and some measure of been used, such as 3-D surface meshes [46, 49],
the complexity of the 3-D mesh. The method parameterized surfaces [40, 33], particle systems
starts with an initial estimate for the mesh [42, 17], and volumetric models [36, 45, 37].
derived from the triangulation of conventional As with the 21 -dimensional representations,

2
stereo results, and uses a standard optimization 3-D representations have used a variety of sin-
technique called conjugate gradient descent to gle image cues for reconstruction, such as sil-
minimize the objective function. The image- houettes and image features [9, 11, 47, 48, 50],
dependent components of the objective func- range data [51], stereo [17], and motion [41].
tion are related to the two sources of informa- Liedtke[32] first uses silhouettes to derive an
tion mentioned above. We take advantage of initial estimate of the surface, and then uses
the complementary nature of the information a multi-image stereo algorithm to improve on
sources by weighting the components at each the result. Their approach to deriving an ini-
facet of the triangulated mesh according to the tial estimate for the mesh, as with Szeliski and
amount of texturing within the area of the im- Tonneson's approach [421, is significantly more
ages that the facet projects to. The projection powerful than the one we use in this paper. This
uses a hidden-surface algorithm to take occlu- is an important topic for future research.
sions into account. Of special relevance to this paper is research

In the following section, we describe related in combining stereo and shape from shading.
work and our contributions in this area. Fol- Using 2k-dimensional representations, Blake et
lowing this we discuss some of the key issues al. [7] is the earliest reference we are aware
in multi-image surface reconstruction and how of that discusses the complementary nature of
to combine different sources of information for stereo and shape from shading, but their exper-
such purposes. We then describe in detail our imental results are almost non-existent in this
specific procedure, discuss the behavior of our paper. Leclerc and Bobick [31] discuss the in-
procedure on synthetic data, and show some re- tegration of stereo and shape from shading, but
sults on real images. only use stereo as an initial condition to a dis-

crete height from shading algorithm. Cryer et
al. [101 combine the high-frequency information

2 Related Work and Contri- from a shape from shading algorithm with the
butions low-frequency information from a stereo algo-

rithm using filters designed to match those in
Three-dimensional reconstruction of visible sur- the human visual system.
faces continues to be an important goal Using full 3-D representations, Heipke [22]
of the computer vision research community. integrates the two cues, but assumes that the
Initially, much of the work concentrated images can be separated beforehand into zones
on 21 -dimensional image-centered reconstruc- of variable albedo (where one does stereo) and2
tions, such as Barrow and Tenenbaum's Intrin- areas of constant albedo (where one does shape
sic Images [6] and Marr's 21-D Sketch [35]. from shading). This is in contrast to our ap-
These preliminary ideas have been the basis for proach, in which the optimization procedure dy-
quite successful systems for recovering shape namically adapts to the image data.
and surface properties. Some have used sin- In this paper, we unify the idea of using 3-D
gle sources of information, such as sequences of meshes to integrate information from multiple
range data or intensity images [3, 25], stereo images with that of using multiple cues. Our
[12, 26, 52, 53], and shading [21, 24, 44]. Oth- specific approach to this unification, has led to
ers have combined sources of information, such a number of important contributions:
as shading and texture [8], features and stereo
[23], focus, vergence, stereo, and camera cali- e We correctly deal with occlusions by using
bration [1]. See [2] for further discussions on a hidden surface algorithm during the re-
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construction process. There are many object-centered surface rep-
resentations that are possible. However, there

" Our technique for doing stereo avoids the resenpati cis that are importanri
consant ept assmpton o trditinal are some practical issues that are important in

constant depth assumption of traditional choosing an appropriate one. First, the repre-
correlation-based stereo algorithms, effec- sentation should be general-purpose in the sense
tively using variable-sized windows in the that it should be possible to represent any con-
images. tinuous surface, closed or open, and of arbitrary

"* Our approach to shape from shading is genus. Second, it should be relatively straight-

applicable to surfaces with slowly varying forward to generate an instance of a surface

albedo. This is a significant advance over from standard data sets such as depth maps or

traditional approaches that require con- clouds of points. Finally, there should be a com-

stant albedo. putationally simple correspondence between the
parameters specifying the surface and the actual

"* We propose a dynamic weighting scheme 3-D shape of the surface, so that images of the
for combining shape from shading and surface can be easily generated, thereby allow-
stereo, and demonstrate that it leads to sig- ing the integration of information from multiple
nificantly better results than using either images.
cue alone using both synthetic and real im- A hexagonally connected mesh of 3-D ver-
ages. tices, as in Figure 2, is an example of a surface

representation that meets the criteria stated
To demonstrate the validity of the overall ap- above, and is the one we have chosen for this pa-
proach, we have implemented a computation- per. Such a mesh defines a surface composed of
ally effective optimization procedure, and have three-sided planar polygons that we call trian-
demonstrated that it finds good minima of the gular facets, or simply facets. Triangular facets
objective function on both synthetic and real are particularly easy to manipulate for image
images. and shadow generation, since they are the ba-

sis for many 3-D graphics systems. Hexagonal
3 Issues in Multi-Image Sur- meshes can be used to construct virtually arbi-

face Reconstruction trary surfaces. Finally, standard triangulation
algorithms can be used to generate such a sur-

In this section, we briefly discuss some of the key face representation from real noisy data [18, 42].

issues in multi-image surface reconstructions,
and outline how we address the issues in this 3.2 Material Properties and their
paper. These outlines will be expanded upon in Representation
Section 4.

Objects in the world are composed of many
3.1 Surface Shape and its Represen- types of material, and the material type can

tation vary across the object's surface in many ways.

The key issues, therefore, are the type of mate-
Since the task is to reconstruct a surface from rial we wish to consider, and how its variation
multiple images whose vantage points may be across the surface is to be represented. In gen-
very different, we need a surface representation eral, one can represent a material type by its re-
that can be used to generate images of the sur- flectance function, which maps the wavelength
face from arbitrary viewpoints, taking into ac- distribution and orientation of a light source,
count self-occlusion, self-shadowing, and other the normal to the surface, and the viewing di-
viewpoint-dependent effects. Clearly, a single rection into an image color. This function is
image-centered representation, such as a depth generally quite complex. However, there are re-
map, is inadequate for this purpose. Instead, flectance functions that are not only much sim-
an object-centered surface representation is re- pier, but are also quite common. Such functions
quired. are modeled using only one, or, at most, a few,
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parameters. Consequently, one can accurately resentation, however, we can do certain things
model the material properties of a surface by that cannot be done with a single image. First,
representing these parameters at every point on the information source can be checked for con-
the surface. sistency across all images, taking into account

Probably the simplest, and most common, occlusions. Second, the information can be "av-
such function is the Lambertian reflectance eraged" over all the images, when the source
function. For grey-level images, this function is consistent and occlusions are taken into ac-
not only has a single parameter, albedo, which count, to increase its sensitivity.
is the ratio of incoming to outgoing light in- The second class are those information
tensity, but the image intensity is independent sources that require at least two images, such
of viewpoint. For this reason, we have chosen as the triangulation of corresponding points be-
to restrict ourselves to Lambertian surfaces in tween input images (given camera models and
this paper. However, because we use a full 3- their relative positions). Generally speaking,
D representation, a generalization to specular this source is most useful when corresponding
surfaces would be fairly straightforward. points can be easily identified, and their image

Having chosen a specific reflectance function, positions accurately measured. The ease and
the remaining issue is how to represent the accuracy of this correspondence can vary sig-
spatially-varying parameter(s). In general, one nificantly from place to place in the image set,
needs to be able to represent independent pa- and depends critically on the type of feature
rameter values at every point of the surface. In used. Consequently, whatever the type of fea-
terms of the mesh representation of the surface, ture used, one must be able to identify where in
this implies some type of spatial sampling of the images that feature provides reliable corre-
each facet. Given the finite resolution of the spondences, and what accuracy one can expect.
images, and other practical considerations, we The image feature that we have chosen for
have chosen to use two types of spatial sam- correspondence (though it is by no means the
pling. The first is most appropriate when the only one possible) is simply intensity, because
parameters vary quickly across the surface, and the Lambertian reflectance model described ear-
the second when they vary more slowly. For lier implies that the image intensity of a surface
the former case, we use a uniform sampling of point is independent of the viewing direction.
each facet, where the inter-sample spacing cor- Therefore, corresponding points should have the
responds roughly to no more than one or two same intensity in all images. Clearly, intensity
pixels in any of the images. For the later case, can only be a reliable feature when the albedo
we use a single value associated with each facet. varies quickly enough on the surface (and, con-

As we shall see later, the two different repre- sequently, the images are highly textured), and
sentations are used somewhat differently, and the search space is sufficiently narrow. Other-
the choice of which representation to use is wise, there would be significant ambiguity in the
made on a facet-by-facet basis as a function of correspondence of pixels across the images.
the images. In contrast to our approach traditionai

correlation-based stereo methods use fixed-size

3.3 Information Sources for Recon- windows in images, which can only yield correct

struction results when the surface is tangential to the im-
age plane. Instead, we compare the intensities

There are a number of information sources that as projected onto the facets of the surface, which
are available for the reconstruction of a surface is equivalent to having variable-shaped windows
and its material properties. Here, we consider in the images. Consequently, if the original sur-
two classes of information, face is well modeled by a mesh surface, the re-

The first class are those information sources construction can be significantly more accurate.
that require a sipgle image, such as texture gra- The Hierarchical Warp Stereo System [39] is an-
dients, shading, and occlusion edges. When us- other example of a method that takes into ac-
ing multiple images and a full 3-D surface rep- count the variable shapes of windows required
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for accurate reconstruction of a surface, though 3.4 Combining and Using Informa-
it uses only an image-centered representation of tion Sources
the surface.

Simply put, our approach to surface reconstruc-
tion is to adjust the parameters of the surface

As for the monocular information source, we (in the case of the mesh, this means the coor-
have chosen to use shading. There are a number dinates of the vertices), until the images of the
of reasons for this. First, we are using a Lam- surface are most consistent with the informa-
bertian reflectance model, making shading a rel- tion sources described above. This approach re-
atively simple source of information. Second, quires a number of things. First, one must have
shading is most reliable when the albedo varies an initial estimate of the surface. In this pa-
slowly across the surface, which is the natural per, this is derived from a standard correlation-
complement to intensity correspondence, which based stereo algorithm. Second, one must know
requires quickly varying albedo. The comple- the light source direction, camera models, and
mentary nature of these two sources should al- their relative positions so that images of the sur-
low us to accurately recover the surface geom- face can be generated (we assume these are pro-
etry and material properties for a wide variety vided a priori). Third, one must have a way
of images. of quantifying what is meant by "most consis-

tent with the information sources." Here, we
use an objective function that is a linear com-In contrast to our approach traditional uses bination of components, one for each informa-

of shading information assume that the albedo tion source, whose weights are determined on a
is constant across the entire surface, which is a facet-by-facet basis as a function of the images.
major limitation when applied to real images. Finally, one must have a computationally effec-
We overcome this limitation by improving upon tive means of finding a surface, given the initial

a method to deal with discontinuities in albedo
estimate, that is reasonably close to the best ofaluded theo in tesummary ofacet usi0, te com- all possible surfaces according to the objective

pute the albedo at each facet using the nor- function.

mal to the facet, a light-source direction, and

the average of the intensities projected onto the Our combined objective function has three
components, two of which were mentionedfacet from all -images. Since we use the aver- copntstw of hih er mnindface frm al iage. Sice e ue te aer- above: an intensity correlation component, and

age of the projected intensities, this computed
an albedo variation component. A third com-albedo minimizes the mean squared error be- anlbovritncmpet.Ahrdc-tween the images of the mesh surface and the ponent is a measure of the smoothness of theenpth images. The variation of this computed surface. The first two components are weighted

input imgs h aito fti optd differently at each facet as a function of the im-albedo across the surface is the actual informa- ageeintensittes paofect ionoof the ileage intensities projectedl onto the facet, while
tion source used to recover the surface. For ex- the surface smoothness component has the same
ample, if the albedo of the real surface were
indeed constant, as in traditional shape-from- weight everywhere, but is typically decreased as
shading problems, then the measured variation the teratins p oeed.
in albedo will be zero for the correct mesh sur- Since the intensity correlation component de-
face, and we will have recovered both surface pends on the difference in intensity at a given
shape and albedo. The distinct advantage of point, it is most accurate when the images
this approach over the traditional one is that it are highly textured in the areas that the facet
can deal with surfaces whose albedo is not con- projects to. To see this, consider the case when
stant, but instead varies slowly over the surface. the images have constant intensity in the neigh-

borhood of the projected facet: the difference
in intensity will be a constant, independent of

In the fallowing subsection, we describe how small variations in the facet's position or ori-
these two sources of information are combined entation. On the other hand, when the images
and used to reconstruct surfaces. are highly textured, small changes in the 'acet
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can significantly change the value of this com- fiectance properties from multiple images is to
ponent. Thus, we weight the intensity correla- deform a three-dimensional representation of
tion component most strongly for those facets in the surface so as to minimize an objective func-
which the projected image intensities are highly tion. The free variables of this objective func-
textured. tion are the coordinates of the vertices of the

Conversely, the albedo variation component mesh representing the surface, and the process
is most accurate when the intensities within a is started with an initial estimate of the surface.
facet vary slowly. This is because we are assum- For the experiments described in this paper, we
ing that the albedo varies slowly enough across have derived this initial estimate by triangu-
the surface that a constant-albedo facet is a lating the smooth depth-map generated by the
good model for the surface. Since the facets are correlation-based stereo algorithm described in
planar, this should produce images whose inten- [19, 15]. Figure 1 illustrates the output of this
sities are constant within the projected facet. algorithm on a synthetic stereo pair.
Thus, we weight the albedo variation compo- Alternatively, we could have relied on more
nent most strongly when the projected intensi- sophisticated algorithms that can triangulate
ties within a facet vary slowly, noisy laser or stereo range-data to derive our

Since rapidly changing albedoes produce initial estimates [14, 18, 42]. All these meth-
highly textured image regions, our weighting ods tend to smooth the data and to interpolate
scheme, in effect, turns off the shading com- blindly in the absence of data so that their out-
ponent and turns on the stereo component in put needs to be refined by algorithms such as
such regions. Thus, it provides the shape from ours.
shading component with implicit boundary con- In this section, we describe more formally
ditions at the edge of regions of constant albedo. each part of our approach.

The surface smoothness component is re-
quired as a stabilizing term because neither of 4.1 Images and Camera Models
the above components is likely to be exactly cor-
rect, the surfaces are not exactly Lambertian, In this paper, we assume that images are
the camera positions are not exactly correct, monochrome, and that their camera models are
there is noise in the images, and so on. Cur- known a priori. The set of grey-level images is
rently, we use the heuristic technique of starting denoted G = (gl,gu,. .. ,g-). A point in an
with a relatively large weight for the smoothness image is denoted u = (u, v), and the intensity
component, and decrease it as the iterations of point u in image g u is lenoted gi(u). For non-
proceed. The theoretically optimal point at integer values of u we use bilinear interpolation
which the smoothness weight should no longer over the four points represented by the floor and
be decreased is still an open question, although ceiling of the coordinates of u.
a single, empirically determined, value has been The projection of an arleitrary point x =used with great success across all of the images (x, y, z) in space into image g, is dlenoted m;(x).
presented in this paper when using all of the There are well-known methods for correcting
components. both geometric and radiometric errors in im-compoents.ages, as surveyed in [4), pp. 68-77. Thus, we

In the following section, we describe the sur- ages, as eyed in [4], pp. 6-7 th eface representation and optimization algorithm assume that all effects of lens distortion and the
in more detailo like have been taken care of in producing the in-

put images, so that the projection of a surface
into an image is well modeled by a perspective

4 Details of Surface Model projection. Thus, u = mi(x) can be written as:

and Optimization Proce-
dure U X

V = M4 Y
As discussed in the previous section, our ap- W z
proach to recovering surface shape and re-
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(a) (b) (c) (d)

Figure 1: (a,b) A synthetic stereo pair generated by texture-mapping a real image of the Martin-Marietta
ALV test-site onto a Digital Elevation Model (DEM). (c) The disparity map using a correlation-based
algorithm. The black areas indicate that the stereo algorithm could not find a match. Elsewhere, lighter
greys indicate higher elevations. (d) The same disparity map after smoothing and interpolation.

u = U/W 4.3 Objective Function

/ WThe objective function E(S) that we use to re-

cover the surface is best described in two equa-

where Mi is a three by four projection matrix. tions. In the first equation,

4.2 Surface Representation E(S) = ADCD(S) + CG(S), (1)

We represent a surface S by a hexagonally-
connected set of vertices V = (v, v12,..., ,) C(S) is decomposed into a linear combination of

called a mesh. The position of vertex vj is spec- two components. The first component, CD(S),
ified by its Cartesian coordinates (xj, yj, z). is a measure of the deformation of the surface

Figure 2 shows such a mesh as a wire frame from a nominal shape, and is independent of the

and as a shaded solid surface. images. For this paper, the nominal shal.e is a

Each vertex in the interior of the surface has plane. Higher-order measures, such as deforma-

exactly six neighbors. The neighbors of vertex tion from a sphere, are also possible. This nom-

vj are consistently ordered in a clock-wise iash- inal shape represents the shape that the surface

ion. Vertices on the edge of a surface may have would take in the absence of any information

anywhere from two to five neighbors. from the images.

Neighboring vertices are further organized The second component,
into triangular planar surface elements called
facets, denoted F = (fl,f2,...,ffl). The ver- EG(S) = ACc(S)+ (2)
tices of a facet are also ordered in a clock-wise S +
fashion. In this work, we require that the initial
estimate of the surface have facets whose sides depends on the images, and is the one that
are of equal length. The objective function de- drives the reconstruction process. It is further
scribed below tends to maintain this equality, decomposed into a linear combination of the two
but does not strictly enforce it. The representa- information sources described in the l)revious

tion can be extended in a straight-forward fash- section: a multi-image correlation component.
ion to supp~ort different surface resolutions by Cc'(S), and a component that depends on the
sub-dividing facets (which we have (lone). How- shading of the surface, C'S(8).
ever, facets of a given resolution will still be re- These components, and their relative weights,
quired to have approximately equal sides. are described in more detail below.
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Figure 2: The top row shows a hexagonal mesh as both a wireframe and a shaded surface. The bottom row
shows several images of a scene. In our approach, these images are projected onto the mesh using camer
models.

4.3.1 Surface Deformation Component of vN,(j) and vN,(j+3), for any j.
Given the above, we can write a -easure ofAs stated earlier, the surface (leformation (or the deviation of the mesh from a I e as fol-

smoothness) component is a measure of the de- lows:

viation of the mesh surface from some nominal lows:

smooth shape. When the nominal shape is a
plane, we can approximate this as follows. n, (2xi - xk - xk,) 2 +

Consider a perfectly planar hexagonal mesh £D(8) = 1 (2y, - Yk - Yk')2+
for which the distances between neighboring j=l (2zi - Zk - Zk)2
vertices are exactly equal. Recall that the mesh k=N,(,)
is defined so that the neighbors of a vertex vi are k'=N,+3)
ordered in a clock-wise fashion, and are denoted
VN,(j). If the hexagonal mesh was perfectly l)la- Note that this term is also equivalent to
nar, then the third neighbor over from the jth the squared directional curvature of the stir-
neighbor, 1'N,(3 +3), would lie on a straight line face when the sides have approximately equal
with vi and VN,(,). Given that the inter-vertex lengths [27]. Also, this term can accommno-
distances are equal, this iml)lies that coordi- date multiple resolutions of facets by normaliz-
nates of vi equal the average of the coordinates ing each term by the nominal inter-vertex spac-
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ing of the facets. visible in that image, otherwise, it is not. Let
vi(x) = 1 when point x is determined to be

4.3.2 Multi-Image Intensity Correlation visible in image gi by the method above, and
vi(x) = 0 otherwise. Then, the correct form forThe multi-image intensity correlation Compo- the sum of squared differences in intensity at a

nent is the sum of squared differences in inten- point x is:

sity from all the images at a given sample-point

on a facet, summed over all sample-points, and
summed over all facets. This component is pre- I= vi(x)gi(mi(x))
sented in stages in the remainder of this subsec- -=1 vi(x)
tion. F-- 1 vi(x) (gi(m,(x)) _ U(X))2

First, we define the sample-points of a facet O(x) = V -x vi(x)
by taking advantage of the fact that all points
on a triangular facet are a convex combination Finally, summing a(x) over all sample-points
of its vertices. Thus, we can write the sample- and over all facets yields the multi-image inten-
points xk~t of facet fk as: sity correlation component:

ni n.

Xk,1 = -A1 ,1 X h,1 + A\,2xk,2 + A ,3 Xk,3, l 3,4,...n., nc(S) - Zck no(xk,l),

where Xk,l, Xk,2, and Xk,3 are the coordinates of k=1 1=3

the vertices of facet fk, and A1,t + A1,2 + A1,3 = I. where ck is a number between 0 and 1 that
In the top half of Figure 3(a), we see an example weights the contribution from each facet differ-
of the sample points of a facet. ently, depending on the average degree of tex-

Next, we develop the sum of squared differ- turing within a facet (see Section 4.3.4).
ences in intensity from all images for a given When the original surface giving rise to the
point x. Recall that a point x in space is pro- images is sufficiently textured, this component
jected into a point u in image gi via the perspec- should be smallest when the surface S closely
tive transformation u = mi(x). Consequently, approximates the original surface. However,
the sum of squared differences in intensity from when the surface has constant, or nearly con-
all the images, a'(x), is: stant, albedo this component would be small

for many different surfaces. As an extreme ex-

1n, ample of this ambiguity, consider a planar sur-
1'(x) = - •" gi((i(x)) face with constant albedo. This produces im-

ni=1 ages with constant intensity. Thus, this compo-
1 2i nent will not be able to constrain the shape of

n-'() (gi(m,(x)) - p'(x))2 the surface, since the difference in intensity will

be zero for all surfaces.
Figure 3(a) illustrates the projection of a An example of using only the intensity-
sample-point of a facet onto several images. correlation and smoothness components on the

The above definition of a'(x) does not take synthetic stereo pair of Figure 1 is shown in Fig-
into account occlusions of the surface. To do ure 5. The top row of the figure depicts the
so, we use a "Facet-ID" image shown in Fig- initial surface estimate. Figures 5(a) and (b)
ure 4. It is generated by encoding the index are shaded images of the mesh. Figure 5(c) de-
i of each facet fi as a unique color, and pro- picts the error from ground-truth elevation for
jecting the surface into the image plane using a the left image, where black indicates zero error,
standard hidden-surface algorithm. Thus, when and white indicates an error corresponding to a
a sample-point from facet fk is projected into few pixels in disparity. Figure 5(d) depicts the
an image, the index k is compared to the in- squared difference in intensity between the left
dex stored in the Facet-ID image at that point, image and the right images warped using the
If they are the same, then the sample-point is disparity map. Note that the worst errors occur
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(a) (b)

Figure 3: (a) Facets are sampled at regular intervals as illustrated here. We use the grey levels of the
projections of these sample points to compute the stereo score. (b) The albedo of each facet is estimated
using the facet normal •,the light source direction T and the average grey level of the projection of the
facet into the images.

(a) (b) (C)

Figure 4: Illustration of the projection of a mesh, and the "Facet-ID" image used to accomodate occlusions
during surface reconstruction. (a) A shaded image of a mesh. (b) A wire-frame representation of the mesh
(bold white lines) and the sample-points in each facet (interior white points). (c) The "Facet-ID" image,
wherein the color at a pixel is chosen to uniquely identify the visible facet at that point (shown here as a
grey-level image).

along the steep ridge of the terrain, where the 4.3.3 Shading
constant-depth assumption of correlation-based
stereo is most strongly violated. The shading component of the objective func-

tion is the sum, over all facets, of the difference
between the computed albedo of the facet and
the computed albedoes of all of its neighbors.

The bottom row of Figure 5 illustrates the re- The motivation for this component, and its pre-
sult of the optimization procedure, described in cise form, follow.
Section 4.4, using only the intensity-correlation Recall that the Lambertian reflectance model
and smoothness components. Note that the defines the intensity g at a point on a surface
overall error in both elevation and intensity is with a unit surface normal as:
lower, and that the error is no longer concen-
trated along the ridge. As a result, the ridge is
clearly sharper in the shaded views. g = a(a + b . "L), (3)
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a,b) Two shaded views of the mesh derived from the smoothed disparity map of Figure 1(d). (c)
Deviations in altitude from the elevation data used to generate the synthetic pair. (d) Intensity error image,
created by warping the right image into the left image using the disparities corresponding to the elevations
of the mesh facets and computing the squared difference between these two images (e,f,g,h) Corresponding
images after stereo optimization. Note that the ridge now appears much sharper in the shaded views, and
that the overall error is smaller and more evenly distributed.

where a is the albedo of the surface, a is the though some of these parameters could be in-
magnitude of the ambient light, b is the mag- cluded in the optimization, as was (lone in [31].

nitude of a point light source, and L is the The average intensity 4k of a facet is com-
direction of the point light source as depicted puted by scanning over all the Facet-ID images
in Figure 3(b). for index k, and taking the average cf the inten-

Note that g is independent of the viewing di- sities at matching points in the corresponding
rection. Consequently, if we were to image a images. This method provides an inexpensive
planar Lambertian facet from several points of way of computing the average intensity while
view, its intensity would be the same for all pix- taking occlusions into account.
els in the projection of the facet. Conversely, if
we were to measure the average intensity 4k of Now, if the original surface had exactly con-

all of the pixels within the projection of a facet stant albedo, and if our mesh surface were

fk, we could compute its albedo, "k, as follows: a good approximation to the original surface,
then the computed albedoes should be approx-

9lk . imately the same across all facets. Thus, some= .= (4)

(a + bN . L) measure of the variation in comiputed albedoes
would be a good measure of the correctness of

This assumes, of course, that the facet is well- the mesh surface. If the albedo varies slowly
modeled by a single albedo, and that the vari- across the surface, we propose that an appro-
ation in intensity is due only to noise. In this priate measure of this variation .., the difference
paper, we assume that the ambient and direct between the computed albedo at the facet and

illumination (i.(., a. b, and L ) are given, al- the computed albedoes of all of its neighbors:
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Thus, one needs to specify both the As, defining
nI the relative weights of the components, and the

Es(S) = E( - ck) E (1 - cj)(ok - aj)2 , cks, defining the relative weights of the facets in
k=N jEN1 (k) each of these components.

where N 1(k) is the set of indices of the facets The A weights are defined as follows:

that are neighbors of facet fk, and ck and cj are
numbers between 0 and 1 that depend on the AD
degree of texturing within facets fk and fj. AD =

An example of using only the shading and I CD(° I
smoothness components is illustrated in Fig- AC = Ac (6)
ure 6. Figure 6(a) shows a shaded view of V cEc(3°) [
the original surface, a hemisphere with constant AS
albedo. Figures 6(b) and (c) show shaded views As =

of the initial surface estimate, which was de- II VES("°) II
rived by adding white noise to the vertex co- where So is the initial estimate of the surface,
ordinates of the original surface. Figures 6(d) and the A's are user defined weights. Normal-
and (e) are the shaded views of the result af- ane the magritude of its
ter optimization, and Figure 6(f) is the albedo izing each component by the magnitude of its
map for the surface, i.e. the intensity in the im- initial gradient allows the components to have
age represents the albedo of the surface. Note roughly the same influence when the A's are
that the albedo and shape are well recovered ex- equal. Thus, the user can more easily specify
cept near the edge of the hemisphere where the the relative contributions of each component in
image intensity varies rapidly across the image. an image-independent fashion. This normaliza-
This is because the approximation we use in the tion scheme was used with great success in [16],
derivatives of this component is that the mean and is analogous to standard constrained op-

intensity within a facet does not vary signifi- timization techniques in which the various con-

cantly in the neighborhood of a facet, which is straints are scaled so that their eigenvalues have

violated for facets that straddle the boundary. comparable magnitudes [34].

This does not hurt us when combining shading As mentioned earlier, the ck weights are a

with the stereo component since, as explain in function of the degree of texturing in the in-

the following subsection, we turn off the shading tensities projected within a facet fk. A sim-

component in such areas. ple measure of the degree of texturing within a
facet is the variance in intensity of all the pixels

4.3.4 Combining the Components projecting onto the facet, denoted Uk(S) (us-
ing the Facet-ID image to accommodate occlu-

Recall that the objective function C(S) is a lin- sions). We have found that using the logarithm
ear combination of three components: of ao(S) yields the most stable results:

C(S) = ADED(S) + Ac~c(S) + AsCs(S), c; = alog(I + fA(S)) + b, (7)

where the last two components are themselves where a and b are normalizing factors chosen so

linear combinations of subcomponents com- that the smallest cA is zero, and the largest is

puted on a per-facet basis: one.

n, ,, 4.4 The Optimization Procedure

Cc(S) = FCk CA ,(Xk,1) (5) The purpose of the optimization procedure is to
k=1 1=3

nI iteratively modify the surface S so as to mini-

ES(s) = Z(1 - ck) Z (1 - cj)(ak - a,)2. mize C(S), given some initial estimate s(, and
k=i jEN1 (k) some value for the weights A', A' , and A'L

1108



101

a 1(cm

(d)(e

Figure 6: (a) Shaded image of a hemisphere of contant albedo. (b,c) Shaded views of randomized hemisphere
used as a starting point. (d,e) Shaded views of the same hemisphere after optimization using only the shading
component of the objective function. (f) The recovered albedo map.

(where A' + A' + A' = 1) defined in Equa- vature in the surface. In this paper we take the
tion 7. Ideally, one would like to use as small a initial value of A' to be 0.5. Given the initial
value of the deformation weight A', as possible estimate So, a local minimum of this approxi-
so as to minimize the bias introduced by this mate objective function is found using a stan-
term. However, in practice, A' serves a dual dard optimization procedure. Then, A' is de-
purpose. First, since the surface deformation creased slightly, and the optimization procedure
term is a quadratic function of the vertex co- is applied again, starting at the local minimum
ordinates, it "convexifies" the energy landscape found for the previous approximation. This cy-
and improves the convergence properties of the cle is repeated until AM is decreased to the de-
optimization procedure. Second, as will be dis- sired value. Finally we "turn on" the shading
cussed in the results section, in the absence of term, compute the ck weights and reoptimize.
a smoothing term, the objective function may In all examples shown in the result section we
overfit the data and wrinkle the surface exces- use A' = A'5 = .4 and A' = .2.
sively. Furthermore, the ck weights of Equations
6 and 7 are computed for the initial position of The stereo component effectively uses only
the mesh and are only meaningful when it is first order information about the surface (i.e.,
relatively close to the actual surface. the position of the vertices), whereas shading

uses second order information about the sur-
Consequently, we use an optimization method face (i.e., its surface normals). Thus, by op-

that is inspired by the heuristic technique timizing the stereo component first, we effec-
known as a continuation method [43, 28, 29, 30]. tively compute the zero order properties of the
We first "turn off" the shading term by setting surface and set up boundary conditions that the
A' (equation 7) to 0 and set A' to a value that shading component can then use to compute the
is large enough to sufficiently convexify the en- first order properties of the surface in texture-
ergy landscape but small enough to allow cur- less regions. In section 5, we will show that this
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leads to a significant improvement over using mal, which can be easily derived analytically,
the stereo component alone, and from the derivative of the mean grey-level

When dealing with surfaces for which motion in the facets. In this work, the shading term is
in one direction leads to more dramatic changes used mainly in the fairly uniform areas where
that motions in others, as is typically the case the latter derivative is assumed to be small and
with the z direction in Digital Elevation Mod- therefore neglected.
els (DEMs), we have found that the following
heuristic to be useful. We first fix the x and y
coordinates of vertices and adjust z alone. Once 5 Behavior of the Objective
the surface has been optimized, we the allow all Function and Results
of the coordinates to vary simultaneously.

The optimization procedure we use at ev- In previous sections, we have shown results of
ery stage is a standard conjugate-gradient de- the optimization procedure using only one or
scent procedure called FRPRMN (from [381) in the other of the image components of the objec-
conjunction with the a simple line search al- tive function. In this section, we first illustrate
gorithm. The conjugate-gradient procedure re- the behavior of the complete objective function
quires three inputs: 1) a function that returns using synthetic data. We then show that the
the value of the objective function for any S; 2) same behavior can be observed with real data,
a function that returns the gradient of c(S), allowing us to generate accurate 3-D reconstruc-
i.e., a vector whose elements are the partial tions of real surfaces from multiple images.
derivatives of C(S) with respect to the vertex
coordinates, evaluated at 3; and 3) an initial 5.1 Synthetic Data
estimate SO.

The gradient of E(S) is conceptually straight- To demonstrate the properties of the objective
forward, but is fairly complicated to derive man- function of Equation 1 and the influence of the
ually. We have used the Maple 1 mathematical coefficients defined in Equation 4, we use as in-

package to derive some of the terms. We sum- put the five synthetic images of a shaded hemi-
marize the calculation of the derivatives below sphere with variable albedo shown at the bot-
in general terms. tom of Figure 7, both with and without the ad-

The derivatives of the stereo term are lin- dition of white noise. Each column of the figure

ear combinations of image intensity derivatives illustrates the steps used in the creation of the

and of derivatives of the 3-D projections of image at the bottom of the column. We be-

points onto the images. Since we use bilinear- gin with a mesh and an albedo map, shown in

interpolation of image values, the first deriva- the top row. Then, for each view, two images

tives of image intensity are linear combinations are produced. The first image (second row of

of the image intensities in the immediate neigh- the figure) is the albedo map texture-mapped

borhood of the projection. Since sample-points onto the mesh from the final image's point of

are linear combinations in projective space of view. The second image (third row of the fig-

the mesh vertices, their projections are ratios ure) is a shaded view of the mesh, using a con-

of linear combinations of the projections of stant albedo equal to one. The final image is the

the vertices, which themselves depend linearly point-by-point product of these two images be-

on the vertex coordinates. Consequently, the cause, by Equation 3, the imaged intensity of a

derivatives of these projections are ratios of lin- Lambertian surface is the product of the albedo

ear combinations of the vertex coordinates and (first image) and the inner product of the light

squares of linear combinations of the vertex co- source and the surface normal (second image).

ordinates. Figure 8 depicts graphically the result of our

Similarly, the derivatives of the shading term experiments. In each experiment we random-

depend of the derivatives of the surface nor- ized the mesh by adding random numbers to
the coordinates of the mesh vertices, and added

1Trademark, Waterloo Maple Software different amounts of noise to the input images.

1110



.E

Figure 7: The making of synthetic images of a shaded hemisphere with variable albedo that conforms to
our Lambertian model.

*We then used our optimization procedure to es- there is a significant amount of self occlusion.
timate the true hemispherical shape and true Finally, the third column is for experiments us-
albedo map. More precisely, starting from our ing all five images. In this particular set of ex-
randomized initial estimate, we first use stereo periments, we fixed the boundaries of the mesh
alone and progressively decrease the value of and allowed only the z coordinates of the ver-
the A'D parameter of Equation 7 from 0.5 to tices to vary. However, the same overall be-
0. We then turn on the shading term by set- haviors can be observed without the boundary
ting both A' and A' to 0.4, compute the cks conditions.
of Equation 7 and optimize the full objective
function. To show the stability of the process, The first row from the top of Figure 8 is

we then recompute the cks for the optimized a graph of the average squared error in eleva-

mesh and perform a second optimization using tion (the abscissa) versus decreasing A' (the

the updated values. ordinate). To the left of the dotted vertical
line, only the intensity correlation component is

The first column of Figure 8 is for experi- used. To the right, both the intensity correla-
ments using only the first, second, and third im- tion and shading components are used. The dif-
ages from Figure 7, where there is little self oc- ferent curves are for different amounts of noise
clusion. The second column is for experiments in the input images. The bottom curve is when
using the first, fourth, and fifth images, where there is no noise (other than quantization error),
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Figure 8: Graphs of the errors and objective function components while fitting a surface model to the
synthetic shaded ph ere images of Figure 7 (These graphs are explained in detail in the text.). (a,b,c)
Averagv error in recovered elevation. (d,e,f) Average error in recovered albedo. (g,h,i) Stereo component of
the energy. Uj,k,l) Shading component of the energy.

the middle curve is for a noise variance of 4% es(le).
of the image dynamic range, and the top curvete inpt im age (ot cu re) adoe
is for a noise variance of 8%. The short verti- c
cal lines along the curves indicated the standard is used (i.e., as the ordinate is traversed right-

deviation of the average error over the 20 exper- wards to the dotted vertical fine), the average

imens prfomed o driv eac cuve.elevation error decreases when there is no noise
in the input image (bottom curve), as does

The second row of Figure 8 is a graph of the the average albedo error and the two compo-

average error in computed albedo. The third nents of the objective function. However, when
row is the average value of the intensity corre- the images are noisy, the elevation error (first
lation component, tc(S), and the fourth row row) stops decreasing and may even begin to
is the average value of the shading component, increase as we start fitting to the grey-level
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noise, even though the value of the intensity There is another important point to note
correlation component (third row) continues to about these results. The elevation errors in the
decrease (as it must). Furthermore, both the second row, i.e those generated using images 1,
albedo error (second row) and the shading com- 4, and 5 with a lot of self occlusion are very close
ponent (fourth row) also begin to increase when to those of the first row, i.e. those generated us-
the elevation error does. This is natural since ing images 1, 2, and 3 with little self occlusion,
for smaller values of A\D the surface becomes while those in the final row (using all five im-
rougher and its normals less well-behaved. As ages) are significantly better. Furthermore, in
a result, the estimated albedoes of Equation 4 this particular case, the results for images 1,4
become less reliable and noisier. and 5 are even slightly better than those for

In other words, an increase in the shading images 1,2 and 3 in the presence of noise be-
component provides us with a warning that we cause the former correspond to larger baselines.
are starting to overfit the data. This is a valu- In other words, having the same number of im-
able behavior in itself. Furthermore, by turning ages, but with significant self-occlusions, does
on the shading component of our objective func- not hurt our procedure. However, adding new
tion (those parts of the graphs that are to the images that contain significant self-occlusions
right of the vertical dotted line), we can bring actually improves the results.
down both the error in albedo and the value We now turn to real images and show that
of albedo component with at worst of modest the same properties can also be observed there.
increase in the value of the stereo component,
resulting in an overall reduction of the elevation 5.2 Real Images
error. Even when there is nothing but quanti-
zation noise in the image, the addition of the In Figure 9 we show the result of running the
shading component can make a small, but still stereo component of our objective function on a
noticeable difference. The reasons for this are real stereo pair corresponding to the same site
twofold: as the synthetic images of Figure 1. Note that

the radiometry of the left and right images are
1. The shading component averages over actually slightly different. We correct for this

whole facets and is therefore less sensitive by first band-passing each image by taking the
to uncorrelated noise. difference between the image and its gaussian

convolution. This is approximately equivalent
2. The shading component uses absolute in- to replacing the simple correlation that our ob-

tensity values whereas the stereo compo- jective function uses by a normalized correla-
nent uses intensity differences. Thus, in the tion, but is computationally more efficient. We
presence of noise in textureless areas, the then applied the optimization using exactly the
signal-to-noise ratio for the absolute values same schedule and parameters as in the syn-
(used by the shading component) is larger thetic case, with the exception that AS is not
than for the differences (used by the stereo reduced quite as much for the real images as
component), thereby making the shading for the synthetic ones in the first step of the
term more robust. procedure. Note that the recovered ridge is

even sharper than in the synthetic case. This
However, in our experience, the shading term is because the Digital Elevation Model used to

can only be used reliably when the surface is rel- produce the synthetic right image was actually
atively close to the correct answer. This is not a slightly smoothed version of the terrain, in
surprising since the stereo deals directly with el- which one side of the ridge is an almost verti-
evations whereas shading deals with derivatives cal' "iff. Thus, even though we do not currently
of elevation. Consequently we have chosen the have ground truth for the real case, the sharp-
optimization "schedule" described above where ness of the recovered cliff, which matches what
we first optimize using stereo alone and turn on is seen using a stereoscope, leads us to believe
shading only later. that the algorithm has performed well.
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Figure 9: (a,b) A stereo pair of real images of the Martin-Marietta ALV test-site used in Figure 1. (c)
Intensity error image computed using the method described in Figure 1(c) (d,e) Shaded views of the mesh
after optimization. (f) Intensity error image after optimization. Note that the ridge is now very sharp. This
corresponds accurately to the almost vertical cliff that can be seen when viewing the stereo pair with a
stereoscope.

In Figure 10 we show three triplets of images face eventually starts to wrinkle, without appar-
of faces. They have been produced using the IN- ent improvement in accuracy. The third triplet
RIA three camera system [13] that provides us poses an even more difficult problem: there are
with the 3 by 4 projection matrices we need to strong specularities on both the forehead and
perform our computations. In this case it is es- the nose that strongly violate our Lambertian
sential to have more than two images to be able model. Because there are very few other points
to reconstruct both sides of the face because of that can be matched on the nose, the algorithm
self-occlusions. For each triplet, we have com- latches on to these specularities and yields a
puted disparity maps corresponding to images 1 poor result.
and 2 and to images 1 and 3 and combined them In the bottom row of Figures 11, 12. and

to produce the depth maps shown in the right- 13, we show our final results obtained by turn-
most column of the figure using the algorithbis ing on the shading term and reoptimizing the
described in [19, 15]. meshes. For these images we did not know a-

The depth maps have then been smoothed priori the light source-direction, we therefore es-
and triangulated to produce the initial surfaces timated it by choosing the direction that nin-
shown in the upper left corner of Figures 11, imizes the shading component of the objective
12. and 13. In the first row of these three fig- finction given the surface optimized using only
tires, we show the result of the optimization the stereo component. In all three images. the
using stereo alone as we progressively decrease main features of the faces, nose, mouth and
the smoothness constraint ani( allow all three eyes have been correctly recovered. The ina-
vertex coordinates to be adjusted. Note that lProvelniient is particularly striking in the case of
for the first two triplets (Figures 11 and 12). the face in Figure 13. The shading component
we recover more and more detail iuntil the sur- was able to achieve this result because it uses
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Figre 0: ripetsof face images and corresponding disparit~y maps (courtesy of INRIA).

the monocular information around the specular- has been outweighed by the~ surrounin(I1g infor-
ities. The stereo component cannot take adlvan- mation. A more p~rinlcip~led appIroach to solving
tage of the information around the specularities this problem would he to explicitly includ~e a
because very few point~s are visible in at least specularity term in our shading modlel.
two imiages simultaneously, andl because there is Time graphs of Figure 14 depict the bhelav-
little texture. Of course, the effect of thme spec- ior of the stereo andl shading comlponenlts of the
ularities has not completely (disappeared (there ob~jective fuinction for the three triplets. The
is indleed still a small artifact oii the nose) but four values of the( scores to the left of the thick
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Figure 11: Results for the first triplet of Figure 10. (a) Shaded view of the mesh generated by smoothing and
triangulating the computed disparity map. We use it as the starting condition for our optimization procedure.
(b,c,d) The mesh after optimization using only the stereo term, with progressively less smoothing. (e,f,g)
Several views of the mesh after optimization using both stereo and shading. (h) The recovered albedo map.

dotted line, Sto to St 3 , correspond to the re- occlusions while merging information from sev-
suilts shown in the top row of Figures 11, 12, eral viewpoints, thereby allowing us to elimi-
and 13. The fifth value, St + Sh, corresponds nate blindspots and making the reconstruction
to ihe final results when shading is turned on. more robust where more than one view is avail-
These values have been scaled so that Sto is able. The reconstruction process relies on both
equal to one for all triplets. As in the synthetic monocular shading cues and stereoscopic cues.
case, when using stereo alone, the stereo com- We use these cues to drive an optimization pro-
ponent always improves, but as the recovered cedure that takes advantage of their respective
surface becomes rougher the shading term (ie- strengths while eliminating some of their weak-
grades dramatically. However, when we turn on nesses.
the shading component, the overall results im-

prove significantly, even though the stereo com- speificallyestreo ion is very ro-ponet d gra es sighlybuist in texturedl regions but potentially unre-
ponent degrades slightly, liable elsewhere. We therefore use it mainly in

such areas by weighting the stereo component

6 Summary and Conclusion most strongly for facets of the triangulation that
project into textured image areas. The compo-

In this paper we have presented a surface recon- nent compares the grey-levels of the points in
struction method that uses an object-centered all of the inmages for which the projection of a

representation (a triangulated mesh) to recover given point on the surface is visible, as deter-
geometry and reflectance properties from imnul- niined using a hiddhen-surface algorithm. This

tifle images. It allows us to handle self- comnparison is done for a uniform sampling of
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Figure 12: Results for tbh. second triplet, of Figure 10 presented in the same fashion as in Figure 11.

the surface. This method allows us to deal with mented to include specularities, shadows and
arbitrarily slanted regions and to discount oc- self-shadows. It can also support more complex
cluded areas of the surface. topologies, multiple resolutions and the shrink-

On the other hand, shading information is ing or growing of the surface of interest, though
mostly helpful in textureless areas. Thus, we in this paper we concentrated on a better under-
weight the shading component most strongly for standing of the behavior of the objective func-
facets that project into such areas. The com- tion. These extensions will be the subject of
ponent uses a new method for utilizing shad- future work.

ing information that does not need the tra-
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stead, it attempts to minimize the variation in
albedo across the surface, and can therefore deal We wish to thank Hervw Nlatthieu and Olivier
with both constant albedo surfaces and surfaces Monga who have provided us with the face images
whose albedo varies slowly. However, it does re- and corresponding calibration data that appear in

quire the boundary conditions that are provided this paper that have proved extremely valuable to
by the stereo information, our research effort. We would also like to apologize

We have developed a weighting scheme that to the members of the INRIA ROBOTVIS project
allows our system to use each source of informa- whose faces we have mercilessly deformed during the
tion where it is most appropriate. As a result, development of the algorithms discussed above.
for the large class of surfaces that roughly sat-
isfy the Lambertian model, it performs signifi- References
cantly better than if it were using either source
of information alone. [1] A. L. Abbot adl N. Ahbija. Active surface

Our surface niodel can 1we naturally aug- recons ruction by integrating focus, %'vrgcCVe,

1117



a(e) (C) (d)

"' - I

(d) (e Mf Wg

Figure 13: Results for the third triplet, of Figure 10 presented in the same fashion as in Figure 11.
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Provably Convergent Algorithms for Shape from Shading
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Abstract to be contrasted with traditional shape from shad-
ing algorithms which typically require thousands of

A new approach to shape from shading is described, iterations, and for which no convergence results are
based on relating this problem to an 'equivalent* known [Horn and Brooks, 1989].
optimal control problem. The approach leads natu- In this paper we develop the theoretical basis of
rally to an algorithm for surface reconstruction that our approach, extending some earlier partial results.
is simple, fast, provably convergent, and (under suit- In addition, we describe in Section 4 a new algo-
able conditions) provably convergent to the correct rithm [Oliensis and Dupuis, 1993] that unlike earlier
surface. The theoretical basis of the approach is de- ones can reconstruct a surface with no a priori in-
veloped in this paper, extending some earlier partial formation about it. Our previous algorithms, which
results. In addition, a new reconstruction algorithm we discuss in sections 2-3, required a small amount
is presented that unlike earlier ones can reconstruct of information about the nature of the surface at
a surface with no a priori information about it. singular points-defined as maximally bright image

points--and the relative heights of the surface at a
1 Introduction subset of these points. (.Rouy and Tourin, 1991a;

Rouy and Tourin, 1991b] actually require more
We have recently developed a new, practical ap- data). The algorithm presented in Section 4 com-
proach to shape from shading, based on relat- putes this information antomatically. It is capable
ing this problem to an *equivalent' optimal con- of fast, robust reconstruction of a general surface
trol problem [Oliensis and Dupuis, 1992; Dupuis even in the presence of -10% noise in the intensity.
and Oliensis, 1992a, Oliensis and Dupuis, 1991; Specifically, we prove in section 2 that (under ap-
Rouy and Tourin, 1991a; Rouy and Tourin, 1991b; propriate conditions) the surface corresponding to a
Bichsel and Pentland, 1992]. The approach leads shaded image has an explicit representation in terms
naturally to an algorithm for surface reconstruction of an optimal control problem. Uniqueness of the
that is simple, fast, provably convergent, and (under surface is an immediate consequence; thus, contrary
suitable conditions) provably convergent to the cor- to previous belief, shape from shading is often a well-
rect surface. In experiments on 200 x 200 and 128 posed problem and does not need regularization. In
x 128 real and synthetic images, convergence took Section 3, we derive two distinct shape reconstruc-
fewer than 15 iterations, and less than 10 seconds tion algorithms. These are proven to converge for
on a DECstation 5000 [Oliensis and Dupuis, 1992; both the Jacobi and significantly faster Gauss-Seidel
Dupuis and Oliensis, 1992a; Bichsel and Pentland, iteration, and shown to give the same surface recon-
1992]. Typically, the number of iterations required struction. It is an advantage of our approach that
for reconstruction is expected to be approximately a range of algorithms can be easily derived. Two
constant independent of the image size. It has also algorithms are convenient to work with since one is
been proven that the reconstruction converges to the more efficient computationally while the other has a
correct continuous surface in the limit where the simpler theoretical interpretation.
pixel spacing is infinitely small [Dupuis and Oliensis,
1992b; Kushner and Dupuis, 19921. These results awe 2 The Representation Theorem

"This work was supported by the National Sci-
ence Foundation under grants IRI-9113690, CDA- The purpose of this section is to prove the repre-
8922572tand NSF-DMS-91167625, and by a grant from sentation theorem that connects the shape to be
DARPA, via TACOM, contract number DAAE07-91-C- reconstructed and a deterministic optimal control
R035t. problem. The main result, given in (2.3) and The-
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orem 2.1, is the explicit representation for the sur- minima, and use these in determining the surface
face corresponding to a shaded image. We consider from its image. (Alternatively, our results could be
the idealised problem of shape from shading under derived using the local maxima.) To specify pre-
the usual assumptions. Note that although we as- cisely the conditions under which our results hold,
sume Lambertian surface reflectance and illumina- we introduce some nonstandard terminology. We
tion from a single direction, our results can be ex- say that a set A C 22 is smoothly connected if given
tended easily to any "convex" reflectance function any two points r and r' in A there is an absolutely
as described below. Under these assumptions, the continuous ("smooth') path connecting the two. We
intensity at an image point r (z, y) is given by the will assume that the set of singular points is a finite
image irradiance equation collection of smoothly connected sets. Then since

t)ft, Vf = 0 on S, f(.) is constant over each connected
(z,y) = ,component SC C S.

where L is a unit vector in the light source direc- We will refer to a connected subset SC as a set
tion, the optical axis is along the -z direction, and of local minima if there exists an e > 0 such that
fA is the surface normal at the corresponding surface d(r, Sc) < e implies f(r) > f(r') for r' C 8 c, i.e., if
point. I(.) is assumed to be defined on a bounded the "heights' f of nearby points are no less than the
open subset 7D of R2. Representing the surface by value of f on Sc. We will refer to a point as a local
the height function z(z, y), and assuming that z(.) minimum of f only if it is contained in such a con-
is continuously differentiable (though this is not es- nected subset Sc. An analogous definition is used
sential), for local maxima. A connected subset that is neither

(-Vz, 1) a set of localmaxiAorlocal minimais called a set
(1 + IIVzII2)1/ 2 " of saddle points, even though some of the points in

this set may be local minima according to the usual
When the illumination is from a general direction, definition (they cannot be strict local minima). Let
it is useful to represent the surface by its height 1 M M be the set of all the local minima in the above
measured along the light direction L: sense.

f(z, Y) = L. (Z, Y, Z(z, 0). The Lagrangian corresponding to H(.) is:

For simplicity, and without loss of generality, we as- L(r,,6) = sup. [-a .- - H(r, a)]
sume that L. = 0, L. > 0. In terms of f(.), the im- L! - LV - L. (12 (r) - J&12 _ J4 + L,12 ) 12
age irradiance equation can be rewritten after some (2.1)
algebra as H(r, Vf(z)) = 0, where the Hamiltonian if 1&12 + A + LV1 </1(r). Otherwise, L(.) = oo.
H (r, a) = I(r) (1+ 11112- V,2 + L Define U(r) 1{1: 2P= + A + L,12 < 1 2(r)) tobe

the domain on which L(r, .) is finite.

Note that H(r, a) is a strictly convex function of a. The Lagrangian L serves as the running cost in the
The fact that the image irradiance equation can be optimal control problem that provides a representa-
rewritten in terms of a strictly convex H is the es- tion for the surface, which we now define. Consider
sential property used below in the proof of the repre- an arbitrary path # in the image plane starting at
sentation theorem, and also in deriving algorithms. some r, and continuing for a time p. More precisely,
Our results can be extended to essentially any image
irradiance equation which can be written in terms of the path is de[0ned by (0) - r,i = u(it , where thea strictly convex H. control u : [0, eo) --, R is any integrable function.

For each such path, we define a cost which is the
Singular points have been recognized as playing a sum of two terms: 1) the total running cost, given
critical role in constraining the surface correspond- by the integral of the running cost L(4O, u(ý)) over
ing to a shaded image [Oliensis and Dupuis, 1992; the path, and 2) a terminal cost, which depends only
Oliensis, 1991b; Saxberg, 1989b; Bruss, 1982J, and on the end point of the path, i.e. on 4(p). The con-
they are crucial in the discussion here as well. The trol problem is to find the path giving the minimal
singular points are those image points where the total cost. The representation theorem states that
intensity achieves its maximal brightness I(.) = 1. under appropriate conditions the infimal value of the
Only at these points is the local surface orientation cost for starting point r is just f(r).
determined from the intensity alone. Let S denote Assume we are given an upper bound B for {f(r):
the set of singular points in the image. r E VP}. Then define the terminal cost

It is easy to see from the form of H(r,a) that I=1 = f(,) for r E M
implies a = 0, and therefore Vf = 0 on the set of g(r) B forrVM (2.2)
singular points S. Thus S includes all local maxima
and minima of f(z, y). We will focus on those sin- The terminal cost imposes the large penalty B on
gular points corresponding essentially to the local any path terminating at a point r J1 M. Finally, the
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total cost is the sum of the running and terminal As noted above, the minimizing trajectories for the
costs control problems we consider awe the two dimen-

rPA^T sional projections of the paths of steepest descent
V(r) = inf L(O(s), u(s))ds + g(O(p A )), on the surface. The amumption on 0 above states

[ 1 that the steepest descent direction is never directed
(2.3) out of g, and thus guarantees that any minimiz-ng

where pA• denotes min(p, r), r = infft : #(t) E 8lU trajectory that starts in 0 stays in g. When this as-
M} and the infimum is over all paths 0 and stopping sumption is violated for some point r E V, i.e. when
times p E [0, oo). Thus, V is the 'minimal cost the steepest descent trajectory starting at r exits l),
over all finite time paths, where the path terminates then f(r) cannot be represented as the minimal cost
either at time p determined by the controller, or else V(r). However, if a steepest ascent path starting
at the first time that the path exits V) or enters M. at r does remain in 2), then f(r) can be computed
We want to show that f(r) = V(r). in terms of a maximum cost for an analogous opti-

mal control problem. If neither of these possibilities
Preliminaries. For any H, including nonconvex hold, then the surface at r is not well determined.
H, it is easy to show that the definition (2.1) iam- In general, this is expected to be the case only for
plies that the running cost L(r, .) is convex on U(r). small sections of the image near the image boundary
In our case, it is strictly convex. Moreover, a direct [Oliensis, 1991a].
calculation shows that L is always nonnegative, and
L(r,O) = 0 only for r E S and = 0. Also, since Theorem 2.1 Amnme A.1, and tha B is an up-
H(r,-) is strictly convex, it follows by standard ar- per bound for f(-) on Q. Define L(., .) by (Li), g(.)
guments that by (2.2), and V(r) by (2.3). Then V(r) = f(r) for

H(r,a) = sup [-a.P- L(r, 0)], (2.4) a E

pEU(r)

and for each 6 E ER there exists a unique vector Proof. We first show that V(r) >/ (r). Let u(.) be
u(r, a) such that any admissible control and define

H(r, a) = -o . u(r, a) - L(r, u(r, a)) r + f'I(,)s,, 7 = inft: 4$(t) E nMI.

Define ft(r) for r E V by (2.6)
0 = H(r, Vf(r)) = -Vf(r).f(r)-L(rfi(r)). (2.5) Since L is the Legendre transform of H and since

From (2.4), ix(r) is given by H(r, Vf(r)) = 0 for r e 9,
v~s~,,)vz() =0Ž_ -vf(r). #-Lr)

V.H(r, )IV,(r) ý=for all 0 > R2 , and in particular

If (as we assume) Vf(r) is continuous, then the fact

that H(r, .) is C1 implies fi(r) is continuous on V. -Vf(#(t))• u(t) < L(#(t), u(t))
An explicit calculation shows that G(r) is propor- for t E [0, p A •. This implies that
tional to the projection in the (s, y) plane of the
steepest descent direction on the surface [Oliensis, -f(•(p A r)) + f(r) = --JA Vf(*(t)) • u(t)dt
1991a], where "steepest descent* is defined with re- < Jo L(¢(t),u(t))dt,
spect to the light direction L, rather than the verti-

cal direction (0, 0, 1). and thus

We consider subsets 0 of V satisfying the following j L(O(t), u(t))dt + f(*(p A r)) > f(r).
assumption.

A2.1 Assume that$ consist* ofa f c co f,, Since g(#(p A r)) >_ f(#(p A r)), we obtain V(r) _
disjoint, compact, smoothly connected sets, an tha f(r).

Vf(.) is continuous on the closure oflV. Let 9 C V Next we show V(r) <1 f(r). In order to do so we will
be a compact set, and assume Q is of the form 9 = verify that for each c > 0 there exists a control u(.)
n?=9 ,J < co, where each 9i As a continuously such that for # and r defined by (2.6) we have
differentiable boundacry. Let M be the set of local
minima of f(.) inside 9. Then we assume that the L((t), u(t))dt + g(#(r)) < 1(r) + e- (2.7)
value of f(-) is known at all points in M. Let ii Jo
denote the "asteepest descent" direction given by (2.5)
above. Define ni(r) to be the inward (with respect to Recall that U(r) = f(&,6) : L& I+ L4 +L41 2< 1)
Q) normal to 89i at r. Then•we also ssume that and L(r, 0) = 0 for r E S. Let 5c be a maximal
fi(r), ni (r) > 0 for l r E 9 , n =i ,..., J. smoothly connected component of S; For any two
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points r, r' in SC, there exists a path 0(t) and a A2.1 implies 0(t) cannot exit 9. Thus, since f(r) is
time t < 0o such that 0(t) E Sc for t E [0, t] and bounded on 7, (2.9) implies that 0(t) must enter the

r' = 0(t'). Write 0(t) = r+Jo u(s)ds in terms of the set {r : d(r, S) c in finite time, for any c. If 0(t) E
control u(t). Define a new control uA(t) m Aut(t), S for some t < co we define f't = inf{t : 4(t) E S)

where A > 0 is a constant, and let OA(t) = 0(tA) be and to = 0(i/r,). Otherwise, let t. be any sequence

the corresponding path. Since tending to co as i --+ co. Since g is compact we can
extract a subsequence (again labeled by i) such that

L(ru) -00 as nun --*0, *(t,) -V ufor some V E S. Let I be large enough

Oull that II#(t1) - wl _< <a Since J(O(t,)) I 1(u), we havef(O(t;)) > f(v). For thi can we define 9,. = t; and
for r such that I(r) = 1, we can choose A such that t = 0(9),).

L(•A ), U()) = dt Integrating (2.9) gives
10 (r') - 1(wo) =/f L(4.(t), (4t)).fo fi( X -)))d•.

Further, since ILJ < 1, there exists a > 0 such A0

that for any component Sc as above, and r such We then define the control u(t) to be used for t E
that d(r, SC) < a, we have the following. Let r' [0" ar,,r. + ft,) to be 6(0(t- a,.)).
be the point in SC closest to r. Then there exists
a time t, E [0, co), constant control u(.) = (r9 - We now consider the point to. We first examine the

r)/t. and corresponding path 0(t) = r + fo u(a)ds, case in which the solution to (2.8) does not enter S in
finite time. Since 1I1w -"Il < a, u.,(t) gives a control

such that 0(t.) = V and J" L(O(t), u(t))dt <_ /3. such that the application of this control moves 0(.)
Finally, this shows that for any SC, and r, j such from to to v with accumulated running cost less than
that d(r, Sc) _5 a and d(r, Sc) 5 a, there exists a or equal to e. We define u(t) = fii..(t - (/r, + a,,))
control fi,,,(t) and time a,,, E [0, c0) such that for for t E [a,,, + nr-, ow,, + r,. + c,,). If the solution
the corresponding path 0,,,(t) we have 0,,,(0) = to (2.8) reached S in finite time we define to = u and
r, O,,,(a,,,) = r', and a,, = 0. Let a = ar,,' + 17r, + a" ..

" (<Let us summarize the results of this construction.
To L(,,(t),i,,(t))dt < . Given any point r E S that is not a local minimum

we have constructed a piecewise continuous control

Since f is constant on Sc, then by choosing a > 0 u(.) and o < co such that if 0(t) = r + J0' u(s)da,
smaller if need be we can also assume that If(r) - then
1(r') I C f() - f(O(a)) = (r) - f(<) + .(r')

We now construct the control that satisfies (2.7). If J1(w) + 1(r) -J(r)
r is a local minimum then we simply take r = 0 and -W) + AW) _ AV)

are done. _ L(O(t), u(t))dt

There are then two remaining cases: (I) r is con- i..,

tained in some Sc with Sc nM = 0, or (2) r i S. If
case (1) holds then Sc nl M = 0 implies the ex- > -2e + J L(O(t), u(t))dt.

istence of a point 9 such that 1(r') < f(r) and O

d(r, Sc) < a. Since A2.1 implies S C 9u, we We have also shown that f(r) > f(u) = f(&)),
can assume that r9 E 0. In this case we will set 6(a) E S. Thus, either the component Sc contain-
u(t) = ,,, (t) for t E [0, 7,,.). ing 0(a) satisfies Sc n M $ 0, and we are done,

or we are back into case (1) above, and can repeat
Next consider the definition of the control for t >_ the procedure. Let K be the number of disjoint com-
U,,,. For c> 0 let b = inf{L(r, u) :I r E , d(r, 8)> pact connected sets that comprise S. Then the strict
c, u 6 Sr }. The continuity of I(.) rad the fact that decrease f(r) > 1(O(o)) and the fact that f(.) is
l(r) < 1 for r m S implies b > 0. Consider t ay constant on each Sc imply the procedure can be re-

solution (there may be more than one) to peated no more than K times before reaching some

k(t) = i(4(tO)), 0(0) = r'. (2.8) Sc containing a point from M. If case (2) holds we
can use the same procedure, save that the very first

According to (2.5), for any t such that 0(t) E 9\S step is omitted. Thus, in general, we have exhibited
and d(4(t), S) > c a control u(.) such that

=• = O (•(6))•(t)) L(O(t), u(t))dt + (•(-r)) <5 (r) + (2K + 1)c.

= -L(0(t),6(0(t))) (2.9) 0

< -b. Since e > 0 is arbitrary, the theorem is proved. U
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3 Shape Reconstruction Algorithms with all other probabilities sero. We also define the
sise of the time step to be At(u) = 1/(1u51 + I'uI).

In this section, we describe how algorithms for shape With this definition, and assuming for example
reconstruction can be derived from control represes- u., u. > 0, the average motion is
tations such as that given in the previous section. It
is important to note that many different algorithms (1, 0)Uw + (0, ')up = u- (u),
can be derived, corresponding to the many possibil- lusi + lUI
ities for rewriting the image irradiance equation in which approximates the continuous motion. This
terms of a Hamiltonian. Each choice for the Hami1- definition actually makes sense only when u : 0.
tonian leads in general to a different control repre- For u = 0, we define p(r, rJO) = 1, and At(O) = 1.
sentation (at least formally), and a different algo-
rithm. Nevertheless, the different algorithms com- For a given sequence of controls {ui}, let { : fo =
pute the same surface approximation from the im- r} denote the path starting at r which evolves at
age. Thus, for example, an algorithm can be gener- each time step i as determined by the control se-
ated from the Hamiltonian of the previous section, quence {u,} and the transition probabilities. Then
which we henceforth denote by H(O). Another p i for the representation and Lagrangian (now denoted
bility, used previously in [Oliensis and Dupuis, 1992J, L(M)) of the previous section, the infimal cost V(M)(r)
is to write the image irradiance equation in the form of the approximating stochastic control problem is
H(2)(r, Vf(r)) = 0, with H(2)(r, a) given by given by

+ +2(1 - _ (I _ )] [NAM)

1310) ,E )(fi, ni)W(nd)+ ((NAM)
where v(r) = 12(r) - L.2. Note that when w(r) < 0 I_-o
H(2)(r, a) is not a convex function of a. Never- where N = inf{i f! V 2) or (i E M}, and the
theless, an algorithm can be derived from this form minimisation is over all control sequences {ui} and
of the Hamiltonian, which, although it differs from stopping times M. See [Dupuis and Oliensis, 1992b)
the algorithm generated from H(1 ), reconstructs the for the description of the classes of allowed controls
same surface approximation. and stopping times. E. denotes the expectation.

Thus, V(M) is the minimum of the expectation of the
The algorithms are derived using a discrete approx- cost over all finite length control sequences, where
imation of the continuous control representation. In the path terminates either at discrete time M chosen
this discrete control problem, the object is to rai- by the controller, or else at the first time that the
imise the cost over all discrete paths on the grid of path exits 2) or enters M.
pixels. A difficulty in doing this is that a discrete
trajectory, where at each time step the path jumps Suppose that instead of considering paths of arbi-
between neighboring pixels, is usually a poor ap- trary length, we consider paths continuing for at
proximation to a continuous trajectory. In order to most n time steps. The infinal cost V.(,)(r) is
better approximate a continuous trajectory on a dis- ...
crete grid, an element of randomness is introduced. inf E, + g- () +1Thus the continuous optimal control problem is ap- n fi ..a /()•,u)tu)+g•NU,)
proximated by a discrete stochastic optimal control i-o
problem, and the cost of the continuous problem is (3.13)

approximated by the expectation of the cost for the Then V.1)(r) is clearly nonincreasing in n and
discrete problem. Note that the algorithms them- V.4l)(r) I V((r) as n --, oo. For a E 11, 2}, de-
selves are deterministic, even though the discrete
control problem involves a stochastic rather than de- fine W(O)(ru,, V.'))
terministic process. -L(')(r, u)At(u)+ -p(r,r'Iu)V"(')(r'), (3.14)

This, given a control u, we define the probabilities ri
for the path to jump to neighboring pixels so that where the sum is over 4-nearest neighbors of r. As
on average the discrete motion approximates the discussed in [Oliensis and Dupuis, 1992], it follows
continuous motion 0 = u. Let p(r, rlu) denote the from the principle of dynamic programming that
transition probability for the path to move from r to V(1)(r) and V0)?1(r) are related by
a 4-nearest neighbor site re in the current time step.
We define ] 1

p~~+sP(-(,J") u (3.11) VJ(+')I = mm[inf W•)(,ue),sr

Sx, +ssnx,)1o lu) + lul (3.15)

Ar, r + sign()(0, 1)lu) - lull (3.12) Clearly, we also have the initial condition V0V)(r) =
lus + lull' g(r). This, together with the recursive equation
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(3.15), gives an algorithm which converges mono- 2. Tke juscioa V(0)(.) egs be umiqely charac-

tonically down to V. terixud at e largest f poit o- f (3.15) (or

For the second control problem, we get a similar al- (3.15) if qIopriste) Lhat saisfies V()(r) <

gorithm. As before, Vo(2)(r) = g(r). If v(r) > 0, Vo(4)(r) for all r E V.

gr) =min[ W(2)(ru, V2)), g(r Remark. In using the algorithm, we always take
LU "J aj(')(r) = g(r), where g(r) is defined by (2.2). It is

else if v(r) < 0 proven in [Dupuis and Oliensis, 1992b] that if B in
(2.2) is an upper bound for f(r), then the surface

V2 ) M Up< ] reconstructed by the algorithms above converges to

=+, mp= .d W(2)(r, U, •2)), the correct surface as the pixe spacing goes to Seo.
0 Thus, the correct surface approximation is obtained

(3.16) by taking the largest of all the fixed points of the

The Lagrangian LM,• is derived from an equation iterations in (3.15) or (3.16).

analogous to (2.1): L(2)(r'f)
supa 1 if V > 0 Proof. For each fixed r e), any of the Jacobi

[-a H()(r,a)if w(r) < 0 and Gaum-Seidel iterations we have defined may be
= info, sup.. -a'.8- H(2) (r, a)] ifu(r) <~ 0. written in one of the following forms. For a E {1, 2},

(The cane (r) = 0 is given by the appropriate define W(of(r,u, VY)
limit as v(r) -- 0 from either direction.) The

difference from the previous algorithm is due to -(r,u)+ Fp(r,r'ju)V(o(r'),
the nonconvexity in the Hamiltonian for image re- so

gions where v(r) < 0. For more detail, and ex- where c(r, u) denotes the running cost for the given
perimental results obtained with the second algo- a) represents the rst of
rithm above, consult [Dupuis and Olieusis, 1992b; algorithm,1 and V~od(-) res pre-
Oliensis and Dupuis, 1992J. vious updates of the algorithm. Then the result

V.(') (r) after a new update in given either by
The algorithms described above are of the Jacobi newr a
type, with the surface updated everywhere in par- main [ (WLo•(r, ul Vo(€)), (r)] (3.17)
allel at each iteration. The algorithms can also be
shown to converge if implemented via Gauss-Seidel, or
with updated surface estimates used as soon as theyr 1
are available. In fact, we show below that the Gauss- mmin sup inf (w(&(r, u, ) , g(r
Seidel algorithms converge for any sequence of pixel S*IV<o S oJ

updates, as long as each site is updated a sufficient (3.18)
number of times. For example, it is possible to Note that for both (3.17) and (3.18) the right hand
change the direction of the sweep across the image
after each pass [Bichsel and Pentland, 1992]. Our sides are monotonically nondecreasing in 0(-)old f
experiments show that this produces a significant we use the partial ordering of real valued functions
speedup, changing the number of iterations required on V defined by wl(.) < w2(.) whenever wa(r) <
for convergence from order N to order 1 with a small w2(r) for all r E V.
constant, where N is the linear dimension of the im- For either the Jacobi or Gauss-Seidel iteration, the
age. first update at the site r will result in V,(&) (r) <nw•

Proposition 3.1 Consider either of the recursive V'0*)(r), since Vo0&)(.) ? g(.). Next, consider any
algorithms derived in (3.15) or (3.15). Let an ini- subsequent update of the site r. By induction, we
tial condition V('), where a E {f, 2}, be given and can assume that all updates are nonincreasing up
define the sequence {(W), i E N) according to e,. to this time. V(r) depends on "old' r
the Jacobi iteration (e.g. (3.15)] or the Gaues-Seidel which by the induction assumption is everywhere
iteration, where the pixel site* are updated in an ar- les than or equal to its value at the previous up-
bitrary sequence. Assume that Vo(d)(r) ? g(r) for all date at r. Since VnL,(r) depends monotonically
r E V. Then the following conclusions hold. on 0d)(r' it follows that V.nG)w(r) also satisfies

V1(.)ensr) < V()(r) for the current iteration. ThisI.- For each r E V), V,(&) (r) is nonincewing iJ n ew - old'

i and bounded from below. Define V()(r) = establishes the monotonicity of part 1.

lim-.o V(')(r). 7Ten the function V(')(.) is a Since for Control Problem I the running costs c are
fined point of (3.15) (or (3.16) if appropriat). nonnegative, V(M) is bounded from below, and the
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monotonicity proved above establishes the existence (Vw - w(r + (0, 1)) - w() if u, > 0
of V( 1)(r) = im,_.. 0V)(r). This is also the case for w(r) - e(r- (0,1)) if us <0.
Control Problem 2 when v(r) > 0. When +(s) < 0 in Since we assume r V S, L(O)(r, .) > 0 and only the
Control Problem 2, we first consider (3.18) assuming first expression on the right hand side of (3.19) need
V(2) = 0. A simple calculation shows that be considered. Then (3.19) is equivalent to

sup~< i~nf (Lc(2)(, u)) > 0, 0 = i [10) (r, u) + u- (Vw)u] , (3.20)

and therefore *where we have used the fact that LO() has a strictly

an() positive lower bound for r J1 8, and that it is finite
sup inf (L()(r, u)At(u)) > 0. only on a bounded domain. Also, the minimisation
vv< *. has been extended to u = 0 using the continuity of

Since the probabilities are nonnegative, and the bracketed expression in u

E,, p(r, r'Iu) = 1, this implies minr, V(2) (r) Apart from the dependence of (Vw)' on u, eq. 3.20is the Legendre transform

sup inf (L(2)(Z' U).t + ZP(r~r'Iu)V()(r'). H 1 ()=- [(1) (2, u)+ U a] . (3.2 1)old,• HO (,a) rin.
Ta < 0, V2) Therefore we have established a connection between

Thus for Control Problem 2 and (r) 0 Is the conditions for au(r) to be a fixed point and the
bounded from below by mmn. Vo( 2)(z). This gives equation H()(r, (Vw)u) = 0, which is a discrete
part 1 of the proposition. version of the original image irradiance equation.
We next turn to part 2. Let V(a) be any fixed point The plan of the proof is to relate in this way the
of (3.15) or (3.16) that satisfies r(G)(i.) • Vo(-)(r) fixed point conditions for any algorithm back to thef (image irradiance equation. Since all algorithms are
for all r E 2). An argument very similar to the one derived from this equation in the first place, this will
used to prove part 1 shows that allow us to prove that the fixed point conditions are

' ()_,)(r) ' O'a)(r) <vs(r). the same for all algorithms.

Therefore by induction Vl(&)(r) < V(&)(r) for all r E For simplicity, we consider only points r for which
V. a v(r) > 0. A more complete discussion can be found

Finalywe setc theprof tat te agorihmsof n [Dupuis and Oliensis, 1992b]. Then Hf(1)(r, a) =
Finally, we sketch the proof that the algorithms of mt i and only if H( 2)(r, 1) = 0, since both correspond

(3.15) and (3.16) converge to the same fixed point. t0 the image irradiance equation. Moreover, since
For a complete proof, see [Dupuis and Oliensis, both Hamiltonians are convex in M for e(r) > 0,1992bF . The me argument generalizes to show that
a wide range of algorithms corresponding to differ- H(1 )(r, a) > (<)0 if and only if H(2)(r, a) > (<)0,

ent choices of the Hamiltonian all converge to the respectively.
same fixed point. By a similar argument to that above, it can be shown

For specificity, consider Control Problem 1, and let that the algorithm for Control Problem 2 has a fixed
w(z) be a fixed point of the corresponding iteration point at a point r : v(r) > 0 if and only if
(3.15). We will only consider the case r g S and 0= min [L(2)(r,u) + u- (V)']. (3.22)
w(r) < g(r); the other cases can be handled simi- U L
larly. Then Divide the u plane into four quadrants Q, where

0 = infucmp[L()(r, u)&t(u)÷ each quadrant is characterised by constant values of
sign(u.) and sign(u.). Then (3.20) and (3.22) can

Er, p(r, rlu)(w(r') - w(r))] be rewritten as

Substituting the transition probabilities from (3.11), 0 = min [= (&)(r, u) + u - (Vw)l
(3.12) gives i=1,2,3,4 LUQJ

(1) (, uwhere a E {f1, 2, and (Vav)' is the appropriate
0 = minf L + ( ) () 0) choice of the discrete derivative for the given quad-

0 rain lu-I + lull 'J rant. Without loss of generality consider the quad-
(3.19) rant Q, where u., u, _> 0 and (Vuu)l(r) = (w(r +

where the second expression on the right hand side (1, 0)) - tw(r), ui(r + (0, 1)) - ui(r)). From a simple
corresponds to u = 0, and (Vw)u is a forward or argument using the convexity of the V), it can be
backward discrete derivative depending on u: proven (see for example (Rockafellar, 1970]) that

(w) {� - w(r)- w(r- (1 , 0)) if u. < 0, =-..>0
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where a E {1, 2}. Then, since the signs of HO1) and The new algorithm requires additional assumption
H(2) correspond, on the imaged surface, the most important of which

is that the surface height function is twice dif-

min [L(i)(r, u) + u. (Vw)'] > _ 0 ferentiable (these assumptions do not necessarily
ugq1 LL =j hold in our experiments). The strategy is as fol-lows. Suppose that a singular point a (=z, V)

if and only if, respectively, is known to be an isolated local minimum of the
, >height. The results of [Dupuis and Oliensis, 1992b;

min [L(2)(r, u) + u. (Vw)'] > }0. Oliensis and Dupuis, 19921 imply that the algorithms
UEQ1 L of the previous sections, if provided z(s) as an ini-

Since this is true for each quadrant, w(r) is a fixed tial datum, will reconstruct the correct surface in

point for Control Problem 1 if and only if it is one some neighborhood A, of s. In general, from the ar-

for Control Problem 2. N guments of [Oliensis, 1991b; Oliensis, 1991a], there
will be other singular points s' on the boundary of
the domain A. By continuity of the surface [Olien-

4 A General Shape Reconstruction sis and Dupuis, 1992], the heights of these points
Algorithm will be correctly determined by the local algorithm.

If it is possible to identify one of these points s'
The algorithms above are in a sense local. They as a local maxima, then we are in the same situ-
use the fact that a singular point-defined as & ation as before. The local algorithm can again be
maximally bright image point-uniquely determines applied with the height provided as initial datum at
the surface within some image neighborhood [Bruss, the new singular point 0', which extends the sur-
1982; Saxberg, 1989a; Saxberg, 1989b; Oliensis, face reconstruction over the region A,, U A,. The
1991b]. More precisely, this is true for singular arguments of [Oliensis, 1991b; Oliensis, 1991a] show
points at which the surface height has a local min- that iterating this process will eventually yield z(-)
imum or local maximum. The algorithms (in the at all local minima and maxima singular points, and
appropriate minimum- or maximum-based version) a correct surface reconstruction over the entire im-
are guaranteed to give the correct surface up to an age domain 9. For the above strategy to work,
overall translation in depth near each such singular the crucial requirement is a method for identifying
point, which of the points a' are local maxima (or min-

The surface over the whole image will also be deter- ima). This is nontrivial, since the surface recon-
mined, and correctly reconstructed by the local al- structed by the local algorithm assuming just the
gorithms, if it is known which of the singular points one singular point a will in general reconstruct all
in the image correspond to local minima of the sur- other singular points as inflection points. Such a
face height, and if the surface heights at these points method is described in [Oliensis and Dupuis, 1993;
are available. If this information is not known, then Dupuis and Oliensis, 1992b].
there is a potential convex-concave-saddle ambigu- A 128 x 128 synthetic surface is displayed in Figure
ity for the surface shape at each singular point. 1. The surface was generated by creating a ran-

We briefly describe and present experimental re- dom surface in frequency space, masking it with a
suits for a general shape from shading algorithm filter so as to reduce the high frequencies, and then
which can determine this information automati- fourier transforming to obtain the surface. The im-
cally. This algorithm reconstructs shape from shad- age was generated with the light from the direction
ing with no a priori information about the sur- (0, .3, .95). Using no boundary data other than I(.),
face. It incorporates the algorithms discussed in the surface shown in Figure 2 was reconstructed.
the previous sections, but also makes use of a global This reconstruction took less than 30 seconds of
consistency analysis of shape from shading similar CPU time on a DEC 5000 workstation. The sur-
to that of [Oliensis, 1991b]. A detailed descrip- face shown is the resslt of reconstructing with the
tion can be found in [Oliensis and Dupuis, 1993; algorithms given in previous sections, based on the
Dupuis and Oliensis, 1992b]. Typical reconstruc- local maxima and their heights obtained with the
tion times are less than 30 seconds on a DECstation extended algorithm.
5000 for 128 x 128 images. Our experiments with Figure 3 illustrates the reconstruction error, the
the global algorithm have so far been carried out magnitude of the difference between the original sur-
only for synthetic surfaces and images, though these face height and that of the reconstruction. The re-
are rather complex. Nevertheless, this algorithm is construction is good except near the edges of the
capable of reconstructing shape from general images image. As with our earlier algorithms [Dupuis and
with some degree of robustness, and is orders of mag- Oliensis, 1992b; Oliensis and Dupuis, 1992J, this is
nitude faster than traditional variational algorithms due in part to the fact that the imaged surface does
[Horn and Brooks, 1989].
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not obey the boundary condition A2.1 (or its analog [Dupuis and Oliensis, 1992b] P. Dupuis
for reconstruction based on local maxima)-that is, and J. Oliensis. An optimal control formulation
the steepest descent direction for the surface at the and related numerical methods for a problem in
image boundary is not everywhere into (respectively, shape recontruction. Submitted to Annals of Ap-
out of) the image. This is discussed futher below, plied Probability. Also UMASS CMPSCI TR 93-
The average reconstruction error in the interior of 03, 1992.
the image with 20 _< 10 _ 105 is 0.5 units, or about [Horn and Brooks, 1989] B.K.P. Horn and M. J.
2% of the height range. Brooks, editors. Shape Prom Shading. M.I.T.

We have also studied the effect of image noise. A Press, Cambridge, Massachusetts, 1989.
second 128 x 128 surface obtained as before is dis- [Kusliner and Dupuis, 19921 H.J.
played in Figure 4. The image was obtained using Kushner and P. Dupuis. Numerical Methods for
the same illumination as before, but with a random Stochastic Control Problem, in Continuous Time.
noise added at each pixel with a uniform distribu- Springer-Verlag, New York, 1992.
tion and a maximum amplitude of 0.1. Since the [Oliensis and Dupuis, 1991]
maximum image intensity is only I = 1, this a JOiensis and PDupuis, 1991
large noise of -10%. The reconstruction based on . Oliensui and P. Dupuis. Direct method for re-
the noisy image and using the recovered local mmi- constrcting shape from shading. In Proc. SPIu
ima is shown in Figure 5. Although there are large Conf. 1570 o, Geometric Meshod in Com1289er
errors in some parts of the image, the reconstuction V'usov, pages 116-128, 1991.
is still good over much of the image. The error in [Oliensis and Dupuis, 1992] J. Oliensis
the height is displayed in Figure 6, where saturated and P. Dupuis. Direct Method for Reconstruct-
white represents a height error of 3. The error is less ing Shape from Shading, pages 17-28. Jones and
than 3 units over most of the image, in comparison to Bartlett, Boston, 1992.
the overall height range for this surface of 44 units. [Oliensis and Dupuis, 19931
In the region of the image with 127 > Z1,2 > 40, J. Oliensis and P. Dupuis. A general algorithm for
the mean height error is just 1.6. This represents a shape from shading. In Proc. of the IEEE Inter-
surprising immunity to the large image noise. national Conference on Computer Vision, Berlin,

In Figure 7 the error is shown for a different recon- Germany, 1993.
struction from the same noisy image. It differs from (Oliensis, 1991a1 1. Oliensis. Shape from shading as
the previous one in being based on the recovered a partially well-constrained problem. Computer
local maxima. As expected, near the boundary of Vision, Graphics, and Image Proceinng: Image
the image, the region of accurate reconstruction for Understanding, 54(2):163-183, 1991.
the maxima-based method is complementary to that [Oliensis, 199141] J. Oliensis. Uniqueness in shape
of the minima-based one. Since the image bound- from shading. The IntrntioalJour of Com-
ary does not respect A2.1 (for either method), the fr sing heI):75alo4,1ofCi
maximum-based method does better at those points puter Vson, 6(2):75-104, 1991.
near the boundary where the steepest descent direc- [Rockafellar, 19701 R. T. Rockafellar. Convex Anal-
tion is outward, while the minima-based one does ysis. Princeton University Press, Princeton, 1970.
better where this direction is inward. Together, the [Rouy and Tourin, 1991al E. Rouy and A. Tourin.
two methods give reconstruction with error less than A viscosity solutions approach to shape-from-
three units over most of the image. shading. SIAM J. on Numerical Analysis, page

to appear, 1991.
References [Reuy and Tourin, 1991b] E. Rouy and A. Tourin.
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Abstract processors divide into groups that can perform
associative queries with independent comparands and
results). Its purpose is to process image data and extract

Work on the Image Understanding Architecture (IUA)" features and image data that can be represented in a
[Weems, 19891 has advanced in three major areas in the symbolic form. The intermediate-level processor
preceding year: hardware, software, and applications. In operates in Single Program Multiple Data (SPMD) and
the area of hardware, the first generation IUA (proof-of- Multiple Instruction Multiple Data (MIMD) modes, and
concept prototype) has been up and running for over a consists of an array of digital signal processors. The
year, the second generation is nearing completion, and low and intermediate levels communicate through a
we have started the evaluation and design process for the layer of dual-ported memory. The high-level processor
third generation IUA. With regard to software, we have is a coarse-grained MIMD system that will support
completed the compiler for the parallel C++ class knowledge-based processing. Again, a layer of dual-
library for the low level of the IUA (along with a ported memory connects the intermediate- and high-level
sequential version for workstations and a parallel processors. The low-level processor receives its
implementation for the CM-2), developed most of the instructions from the Array Control Unit (ACU), which
basic software for the intermediate level, and transported also directs the intermediate level (when it is operating
the Apply compiler for the low level to the second in SPMD mode) and coordinates interactions between
generation. We have transported severl algorithms and the low and intermediate levels. The ACU is directed by
applications to the first generation IUA, developed new the host and the high-level processors in a coarse-
parallel algorithms for depth from motion and extraction grained manner. Figure 1 shows an overview of the IUA
of straight lines, developed a parallel multi-prefix hardware. The architecture of the first generation IUA is
algorithm for the low-level processor, completed given a detailed treatment in [Weems, 19891.
refinement of the DARPA ILU Benchmark, and started
development of the next generation of the benchmark The IUA has gone through two generations of

development over the last six years. The first generation
1. Image Understanding Architecture had the goal of developing a proof-of-concept prototype

Hardware Development hardware and software system. A machine with 4K low-
level processors, 64 intermediate-level processors, and a

The IUA is a heterogenoeus parallel processor, single high-level processor was constructed. The
consisting of three different, tightly-coupled, parallel software system included both FORTH and C languages
processors. The processors are designed to address the with a library of parallel functions and the ability to
differing requirements of the low, intermediate, and high write expresssions on parallel variables. The system has
levels of a knowledge-based computer vision system. been up and running for more than a year. The
The low-level processor is a reconfigurable mesh- prototype is controlled by a very simple ACU which
connected array of bit-serial processors operating in was only intended to demonstrate and test the
Single Instruction Single Data (SIMD) associative and functionality of the system -- it was not intended to run
multiassociative modes (in multiassociative mode, the full applications. However, software has since been

developed to run such applications via the simple
controller. The applications are coded in the C++ class

This work was funded in part by the Defense Advanced library that is being developed for the low level

Research Projects Agency under contract number DAAL02- processor of the second generation IUA. We have thus

91-K-0047. monitored by the U.S. Army Research been able to develop applications for the second
Laboratories; and by a CII grant (CDA8922572) from the generation and run them on the first generation
National Science Foundation. hardware.
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CONTROL SUMMARY Controls low and Intermediate levels.
A* Takes commands from high level.

*Receives global summary info.

* RISC processors (MIMD).
HIGH LEV Instantlation of schema strategies.

* Construction of scene interpretation.

u Top-down MIMO control of grouping.

, Array of digital signal processors.
S- SPMD&MIMD operation.
* Executes grouping processes.

SStores extracted Image events.i Reconfligurable army of bit-serial

processing elements.
SIMD Associative / Multi-assoclative.

• Processes sensory data.

Stores up to 15 seconds of imagery.

Figure 1. Overview of IUA Hardware

processos is directly connected to every other group. In
1.1 Second Generation IUA place of a single high-level processor, a commercial

multiprocessor with four or eight elements may be
With the second generation, the goal has been to employed.
develop an updated and enhanced IUA that can be
embedded in the DARPA Unmanned Ground Vehicle The second generation system is now nearing
(UGV). The basic three-level structure of the completion. The custom chips used in the low-level
architecture has been retained, but the architecture of processor have been fabricated and tested. The 256 bit-
each level has been enhanced, the ACU has been serial processors on the chip, together with their caches,
designed to support real applications, and an I/O consist of roughly 600,000 transistors. The ACU for
subsystem has been added. the second generation has been assembled and tested. It

consists of a macrocontroller (a SPARC-based single
The 1/0 subsystem has been designed to support the board computer) that directs the microcontroller, which
equivalent of 20 simultaneous sensor inputs at 512 X is a horizontal microengine and microcode store with
512 X 8-bit resolution with automatic mapping onto queued interfaces to the processor array. The backplane,
the processor virtualization scheme used for the low power supply and chassis for the system have been
level, with almost no latency. The I/O subsystem will assembled and are being tested. The processor and
also support the selection of multiple regions of interest memory boards are currently being fabricated. A design
from an image. has been developed for an optional daughterboard to

enhance shared-memory access in the intermediate-level
At the low level, the density of the processors has processor. Hughes has indicated that the first machine
increased so that each chip now contains 256 elements should be assembled by the end of March, but without
instead of 64. The increased processor density has the I) subsystem (whose construction has not yet been
enabled quadrupling the number of processors while funded).
cutting the number of circuit boards in half. Memory
for the low-level processors has increased by a factor of 1.2 Third Generation IUA
four, and I/O is greatly simplified. At the intermediate
level there are still 64 processors, but they are now 32- Work has already begun on the analysis and design for
bit, 50 MFLOPS elements with six integral 20 the low-level processor of the third generation IUA.
megabyte per second communication channels in place UMass has developed a system for capturing traces of
of the first generation's 16-bit, 5 MIPS processors programs written in the C++ class library as they
which had only two 5 megabit per second channels. In execute on an abstract parallel machine. The traces are
the first generation, the communication channels were then fed to a simulation system that models hardware
to be connected by a centrally controlled crossbar architectures with different features and parameters. The
switch. In the second generation, each group of four system, called ENPASSANT (Environment for Parallel

System Simulation, Analysis and Test), allows us to
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gather real performance data for different architectural Connection Machine (CM-2) implementation using
configurations, and to analyze the data statistically. The C++ and PARIS. The implementation was carried out
performance data will then be contrasted with cost by a student who had no experience with C++, the class
estimates for the different configurations to produce a library, or PARIS in roughly five months of half-time
specification for the third generation IUA. Figure 2 effort.
shows the structure of the ENPASSANT system.

Low-level Vt neon Virte-v pcs, i e n

Input l M neabr

nsotwreor Simysteor t, mandmes

Target Machine Pexoimincen Raw S3 O ge adoterArch)lthugh yIoeenl s Msoteonte

Consrtructor,
Figure 2. ENPASSA BC System Structure

2. IUA Compilers and System 2.2 Intermediate Level SoftwareSoftware

For the intermediate-level processor, basic operating
Most of the system software development for the IA system support, multitasking, and messaging have been
is taking place at Amerinex Aroficial Intelligence Inc. implemented on a cMS32mC30 Single Board Computer
(AAI), alr o thowe University of Massachusetts is (SBC), and recently these were transported to another
developing additonal software for the second generation SBC with two TMS320C40 processors that are
IUA. configured to simulate the intermediate level of the

IUA. The operating system is based on extending
2.1 C++ Image Plane Class Library Spectron Microsystems SPOXTb real-time OS for the

TMS320 series to support multiprocessing and
AAI has completed development of the C++ class interprocessor communication. Programming at the

library for the low level of the itUA, including the intermediate level is done with the Texas Instruments C
incorporation of additional optimization code into the compiler for the TMS320C40, together with library
Gnu C++ compiler. They continue to refine the routines that support communication between processes

compiler optimization. The class library supports an on different processors. A multiprocessor debugger,
image plane data type. Planes may be specified to be of based on GDB, has also been implemented for the
any size, and their elements may be bit, byte, 16-bit intermediate level. Work is now under way totrnpt

integer, 32-bit integer, 16- and 32-bit unsigned values, the KBVisionTM system to the IUA, including the
and 32-bit floating point. If a plane is larger than the Intermediate-level Symbolic Representation (ISR)
size of the hardware array, it is automatically mapped to database.
a virtual processor array. In addtion to arithmetic
expressions on planes, neighborhood operations, and 2.3 Apply Compiler for the Low Level
reductions, the class library also supports general
routing with combining, and multiassociative UMass has implemented a version of the Apply
processing within regions called Coteries. An automated language [Hamey, 1989], for the low-level processor of
test system has also been developed for the machine's the second generation IUA. Apply is a special-purpose
microcode library, to facilitate regression testing of new mini-language based on an Ada-like syntax, which
releases of the class library run-time system. facilitates the programming of local-kernel image

operations. The compiler generates code compatible
As a test of the portability of the C++ class library to with the C++ class library. It permits us to easily
other parallel architectures, UMass developed a import image processing operations written for the
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CMU Warp or Intel iWarp machines. As part of testing orchestrating non-uniform data-dependent communica-
the compiler, we have also compiled and tested the Web tion using a single thread of control. In this section we
library of image processing routines, supplied with describe briefly how the method of "Coterie Structures"
Apply. can be used to overcome this difficulty and create

efficient region reduction and multi-prefix algorithms
3. Applications for the low level. This work is presented in detail in

[Herborct, 1992a] and [Herbordt, 1992b].
Most of the application development has taken place at
the University of Massachusetts, although Hughes has Previous reduction methods either use the standard mesh
implemented some algorithms for ATR. The Hughes connections to route and combine packets [Herbordt,
algorithms are proprietary and will not be described 1993], or use the coterie network to iteratively merge
here. However, they do demonstrate some of the rectangles [Jenq 90]. The problem with the first method
potential of the IUA when it is applied to real is that it requires a number of data transfers between
problems. neighboring processors that is proportional to the size

of the largest region. For many images, this factor is
3.1 DARPA Benchmark the diameter of the entire array. The second method only

requires a number of broadcast operations proportional
As recommended by the DARPA IU Benchmark to the logarithm of the size of the array. However, the
Workshop participants, much of the benchmark proportionality constant is at least 128, and broadcast
[Weems, 1988, 1990b] has been recoded as a set of operations are somewhat more costly than neighbor
library routines which are called by the core of the transfers. Rectangle merging is thus even slower than a
benchmark. It is thus possible for implementors to combining route for practical applications.
make use of the image processing operations in other
applications, and thereby amortize the development cost In developing efficient reduction algorithms for the
of implementing the benchmark. We have also begun CAAPP it is necessary to use the coterie network,
developing the second level benchmark, which will because it reduces the complexity from being
incorporate tracking of moving objects over a sequence proportional to the size of the image to being
of images. proportional to the log of the size of the image.

However, we use a very different approach than the
In order to reuse as much of the static benchmark as typical method of iteratively merging partitions of the
possible, the new benchmark will operate on the same regions. We begin by characterizing coterie structures
type of scenes -- a 2.5 dimensional mobile of rectangles (configurations of contiguous PEs sharing a circuit) by
with chaff, but in the new benchmark, the mobile and their geometric properties.
chaff will be blown by an idealized wind. The goal of
the new benchmark is to test system performance over a Some simple coterie structures are horizontal and
longer period of time so that, for example, caches and vertical lines, and rectangles. These structures are
page tables will be filled. The benchmark will also known to have the property of supporting reduction in
explore I/O and real-time capabilities of the systems log(N) broadcast operations. To these we have added the
under test, and involve more high-level processing. simple closed contour, boundary contour, singly

vertically (or horizontally) connected contour, spanning
3.2 Multi-Prefix On The Low Level tee, and the generic coterie structure, the coterie itself.

Examples of these structures, as derived from an actual
image segmentation, are shown in Figure 3. We have

The communication network in the low-level processor used a two part strategy: to create efficient reduction
of the InA is a square mesh, augmented with a second algorithms for whatever structures we can, and to create
(reconfigurable) mesh, called the Coterie Network transformation algorithms to partition more complex[Weems, 1990a]. The Coterie Network allows the mesh structures into simpler ones. Both parts of the strategy
to be partitioned, for example, into areas corresponding necessarily depend on information that PEs can obtain
to regions in an image. One particularly useful about the network configuration in constant time, so
operation is the ability to enumerate elements within a that they can dynamically repartition the array.
partition or to summarize (reduce) the information in a
partition to a single value. Parallel prefix is the general Some of the basic results we have obtained in our study
form of this type of operation. It is especially desirable of coterie structures are as follows:
to carry out parallel prefix in all partitions at once, i.e.
to perform a multi-prefix operation. * Reduction can be computed on singly vertically (or

horizontally) connected contour using log(N)
Since feature extraction algorithms typically process broadcast operations, thus matching the performance
thousands of regions during each of many passes over of this algorithm on simple rectangles.
an image, the efficient computation of region * Reduction can be computed on a spanning tree using k
parameters by a massively parallel processor requires * log(N) broadcast operations, where k is a small
that those regions be processed simultaneously. The
difficulty when the processor is a SIMD array is in constant.
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Figure 3. Example Coterie Structures. a) Image of a road scene, b) segmentation of the image, c) 32 x 32 pixel
subimage of the segmentation, (d-h) represent coterie structures derived from the subimage: d) coteries corresponding

to regions, e) horizontal lines, f) boundary contours, g) singly vertically connected contours, h) spanning trees.

Any coterie can be partitioned into a minimal set of of images taken by a moving sensor. The only
singly vertically (or horizontally) connected contours restrictions on the algorithm are that the motion of the
in constant time. sensor must be roughly in a forward direction, that is,

the focus of expansion must be in or near the area of the
These results have been integrated into three efficient images. It is also assumed that the rotational
algorithms for the simultaneous computation of component of the motion is small (a few degrees)
reductions on all contiguous aggregates (of arbitrary between the images. This would be typical of imagery
shape) in an image: obtained from a fixed camera mounted on a vehicle

"* A deterministic algorithm using log(N) + 4S broadcast moving forward through an environment. The algorithm
operterionisc algoreSithm asmal cog(nsa fr 4 oast has an average error of about 8 percent in depth, asoperations where S is a small constant for most computed from randomly sampling points
array partitions, corresponding to objects in the scene with known

"* A randomized algorithm, using an approach similar to distances from 21 to 76 feet from the camera. The
that of Phillips [Phillips 89] and of Miller and Reif algorithm also seems to be able to distinguish depths of
[Miller85] that uses k * log (N) broadcast objects at distances beyond what was measured in
operations where k is a small constant with high collecting the data -- trees at a computed distance of 90
probability for all images. We have also shown feet stand out clearly from the background, for example.
that the algorithm is much more practical when the
coteries can be preprocessed into spanning trees. The algortihm begins by determining pixel

"* A hybrid algorithm that combines the deterministic correspondences using a 3 X 3 correlation applied over
Ahybrdalgorithm witha iatmives technues andreqireis the entire image for all the possible displacements
algorithm with associative techniques anderequires between the two images, within a specified search
only log(N) + T broadcast operations, where T has window. It then selects the best image displacements
been found to be less that 20 for virtually all using an interest operator, and partitions the image into
images. tiles. Within each tile, the best of the best

displacements is selected and the intersections of all of
These algorithms are significant in that they are likely the displacement vectors are computed. A Hough
to be the fastest available for reconfigurable broadcast transform is applied to the set of intersections and a
networks for many images derived from real-world focus of expansion (FOE) is selected from the Hough
scenes, array. Once the approximate FOE is determined, an

optimization process is used to estimate the best
3.3 Depth From Motion rotational parameters and then the translational motion

is determined. Once the motion paramcters are
UMass has developed a parallel algorithm for the IUA determined, the image displacements, together with
that computes a dense depth map for a scene from a pair
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Figure 4. Result of Depth from Motion Algorithm: a) First image in sequence, b) second image, c) depth map

camera parameters, are used to determine the depths of map. Figure 5 shows an enlargement of the area around
points in the scene. the four cones in the right half of the scene in Figure 4.

The grey-coding of the depth map in Figure 5 permits
The experiments were done with fairly large greater resolution of depth in that part of the map. Three
displacements (four feet of forward motion between the of the cones produce distinct features in depth. The cone
images) so that a large (41 X 41 pixel) search window in the foreground is about 36 feet away, and the two
was required to establish correspondences. This results cones in the middle are about 56 feet away. The results
in 1681 image-to-image correlations being performed. of this algorithm are described in detail in an article by
In simulations on the second generation IUA, it was Dutta [Dutta, 19931, elsewhere in this proceedings.
determined that the execution time will be about 0.54
seconds, of which 0.53 seconds is taken up solely by 3.4 Line Extraction
the correlations. We are thus looking into approaches in
which an estimate of the motion is available or in UMass has also developed a parallel algorithm for
which a series of frames with smaller displacements can extracting straight lines from an image. The algorithm
be used (allowing the search window to be constrained), begins with a Sobel operation to compute a gradient

field. The gradient orientations exceeding a threshold areFigure 4 shows two images from a motion sequence then divided into two sets of overlapping buckets.
taken at Carnegie Mellon University, and a depth map Using these buckets, the image is segmented into two
that has been grey-coded into a small number of ranges. sets of regions using a connected component labelling
The border around the depth map corresponds to areas in operation. The regions correspond to areas with a high
the first image that have passed out of view in the gradient magnitude and similar orientation. Thus, they
second image. The other black areas represent regions in tend to be long and narrow areas surrounding candidate
which there is a low confidence in the correspondence. lines. These regions are naturally represented as Coteries
For example, the area in the upper right comer is near int eh reconfigurable mesh of the IUA.
the focus of expansion. It is possible to distinguish one
of the cones and two of the distant trees in the depth The two sets of regions are then merged into a single

(a) (b)

Figure 5. Enlargement of an Area in Figure 4
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Figure 6. Results from the line algorithm executing on the ILUA simulator: a) a road scene, b) the scene in Figure 4,c) a low-resolution (64 x 64) image of part of a house, d) an indoor hallway scene with obstacles

set by forming the intersection of the two sets. Pixels execution on the IUA simulator, the algorithm executes
in these overlapping portions of regions choose to in 31 milliseconds for images that map to the array
belong to the larger of the two regions, and the Coteries with a 1: 1 virtualization ratio. The execution time will
are appropriately reorganized. The regions are then split decrease once special optimizations for the 1: 1 case have
into three sections along their length. Within each been added to the compiler. However, higher
section, the three points with the greatest gradient virtualization ratios will be approximately direct
magnitude are selected. Then a line is fit to the nine multiples of this time (i.e. a 4:1 factor results in a Lime
selected points within each region. Finally, the of approximately 124 milliseconds). Figure 6 shows the
endpoints for the lines are computed and output. results of applying the algorithm to six different images
Optionally, a filter based on contrast and length can be taken from a variety of .scenes. No filtering has been
used to select different sets of lines for output. In applied to the lines in the figure.
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4. Conclusions [Jenq, 19911 J.-F. Jenq, S. Sahni (1991):
Reconfigurable Mesh Algorithms for the Area and

During the previous year, the Image Understanding Perimeter of Image Components, Procedings of the
Architecture has substantially advanced toward the goal 20th International Conference on Parallel Processing,
of developing a ruggedized, embeddable, reproducible Volume III, pp. 280-281.
hardware and software system for real-time image
understanding applications. The first generation system [Miller, 19851 G.L. Miller, J.H. Reif (1985): Parallel
is being used to test programs that have been developed Tree Contraction and its Applications, Procedings of the
with the second generation software environment. The 28th IEEE Conference on the Foundations of Computer
second generation hardware is nearly complete, as is its Science.
basic software environmenL Porting of the KBVisionTM
system to the second generation has begun. Research [Phillips, 19891 C.A. Phillips (1989): Parallel Graph
has continued in the areas of benchmarking, Contraction, Procedings of the 1st ACM Symposium
architectural analysis and design, and the development of on Parallel Algorithms and Architectures, pp. 148-157.
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Integrating the Lisp/CLOS-C/C++ Environments
An Approach to Modular Interface Formats

Jon L White
Lucid, Inc.

tel: 415-329-8400 (ext. 5514)
jonl~lucid.com

Abstract the compiled object-file called debug-info, and will thus
not impact standard linkers and loaders.

Our goal is to produce a major step up in the degree of Coordinated changes in the Lucid Common Lisp for-
integration of the C++-written and Lisp-written com- eign loader will take advantage of this information to
ponents of a large software project. Towards this end, provide automatic generation of Lisp-side class declara-
we propose to make a set of coordinated, minor, but non- tions. The loading of a compiled C++ class will auto-
proprietary, changes to the Lucid C and C++ compilers, matically give rise to a CLOS claws as a Lisp-side handle,
to the Lucid Common Lisp foreign loader, to the pub- which will be of a metaclass belonging to FOREIGN-
licly available debugger GDB, and to extend the publicly METACLASS. These CLOS classes will have an in-
available EMACS text editor for an increased Editor-to- stance creation and initialization protocol on the Lisp
Lisp communication. side which invokes the corresponding new object allo-

We believe it is preferable to co-develop a C++ cators, and constructors, on the foreign side. Further-
(and/or C) compiler and debugger (i.e., GDB) along more, they will support optimizable SLOT-VALUE and
with extending a Common Lisp's Foreign Language In- MAKE-INSTANCE protocols (meaning: under condi-
terface, rather than trying to focus the burden of imple- tions similar to those stated for metaclass STANDARD-
mentation entirely on one side or the other. Lucid, Inc. CLASS, the SLOT-VALUE calls can be open-coded to
is in a rather unique position amongst software vendors achieve an access timing not significantly more than a
to carry out this combined designed and implementation, few memory cycles worse than optimal open-coded C-
as it has developed and is currently marketing both a struct access; and similarly they will support Lisp-side
very high quality Common Lisp product and a very high optimizations such as are currently evident in the Lucid
quality C/C++ compiler product. In addition, Lucid is 4.0 product for the metaclass STANDARD-CLASS etc.)
maintaining a version of GnuEmacs and is cooperating C++ class members returned by calls out to foreign code
with the evolution of GDB towards this same end. will be easily recognized as belonging to this metaclass,

and as being members of their own direct CLOS class,
1 Overview upon which CLOS methods may specialize.

Additional advantages of the extra debug-info will

First, we plan to alter Lucid's C++ compiler in a way be taken to provide consistency checking between the
which, while not altering the semantics of the languages Lisp-side interface declarations existing at the time of
being compiled, will greatly increase the availability of object-file loading; and under an option, such declara-
typing and structural information both at the time of tions can even be automatically generated also, since
loading in the compiled object file, and at the time of ex- the object files will contain a sufficiently rich amount of
ecution of the program. This will provide better debug- type-declaration information about functions and their
ging with tools such as GDB and the Lisp "Inspector", arguments. Metaobject information will be available
and for increased automation in generating the inter- also to assure a Lisp-side reflection of the C++ super-
face descriptions necessary for Lisp's "Foreign Language classes chains, and also a dynamic INSPECT capability
Interface" (generally referred to as the "Foreign Func- for C++ objects.
tion Interface", or FFI, but for years it has been more We will improve and automate the interface between
general than merely a Function-to-Function protocol.) GDB and Lisp. From the GDB side, GDB will keep
These changes will add new information to a section of and extend normal symbol-table information for each file
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that is "foreign-loaded" into Lisp; and GDB will support out with Franz, Inc., who has already placed some
extended commands that know about the format of Lisp EmacsLisp code into the public domain for a part
data structures, so that "poking around" from GDB into of an Emacs side of such an interface. The intention
a stopped Lisp image will be relatively easy to do. For is that extending Emacs protocols will provide for
example, GDB will mimic the part of the Lisp package a common interface for symbolic debugging both of
system and PRINT and READ functions, to offer a Lisp- Lisp and of C++.
style interface instead of merely octal or hex "dumps";
it will be possible to set GDB breakpoints using Lisp We plan the specification of a GDB protocol for im-

function names, Lisp functions names will show up on proved interfacing and communications with a Lisp
the stack backtrace, and Lisp data will be printed out subprocess, and for making incremental additions to
in a format similar to what PRINT would do. From the its symbol table. This work will generally be done in

Lisp side, the foreign loader will prepare the necessary conjunction with GDB improvements being concur-
incremental symbol-table information for GDB, and the rently made by Lucid, Inc (for improvements to the

Lisp debugger will integrate the foreign function frames Energize product), by Cygnus, Inc (under contract
into its backtrace. from Lucid), and by the Free Software Foundation.

We will solidify the existing practice of Emacs-to-Lisp
interfaces by extending the current style of such inter- The specification of additional debug-info to be out-
faces and embedding it into our Lisp product. A pro- put by a C and/or C++ compiler, in support of

grammer desires of his development environment some improved typing at runtime for use such as by stan-

aids during the step of program preparation (for Coin- dard debugging tools like GDB and DBX or by

mon Lisp, this usually done in using a text-editor tool). a Common Lisp environment. Furthermore, tech-

A number of different approaches towards this end have niques will be documented for specific extensions to

already been tried out by end-users and by other Lisp Lucid's C and C++ compilers which will guarantee

vendors; we will integrate in the better ideas, and try to a necessary minimum of such debug-info in a com-
work for some sort of de facto standard with the other piled object-file, such that Lucid's object-file loader

vendors, in that the protocol on the EMACS side will within the Lisp environment (the so-called "Foreign

be freely-available EmacsLisp code using a network-like Loader") can mechanically extract necessary inter-

protocol. Indeed, any program -( her vendor's Lisp, or facing information for the Lisp side of the Foreign

random application-can respond to such a protocol. Language Interface. These would be implemented
in a product-level version of Lucid's C++ compiler,
as well as in a product-level version of the Common

2 Partitioning into "Protocols" Lisp product.

Since this work involves the integration of famil-
iar tools--Emacs, GDB, Common-Lisp, and C++ 3 Coordinated Extensions of the
compilers-the question arises as to whether the commu- C++ compiler and Lisp Envi-
nications between tools is an open protocol. We would
like to make it so, and plan the following steps to as- ronment
sure this. In addition, we are taking this opportunity to
see how much similarity we can find between the "For- Why extend the debug-info from a C/C++ compiler,

eign Function Interfaces" of some of the major vendors rather than tracking the compiler's decisions in a par.

of Common Lisp on Unix workstations. allel, possibly Lisp-written, program? This question al-
most answers itself when one considers the complexity of

" We plan the specification of a minimal, de facto fully correct parsing of C++ and of the current turblence
standard for a Foreign Language Interface for Coin- in C++ compiler technologies. It is safe to say that in
mon Lisp. Primarily, this will be worked out with general one may not inter-mix the object files from two

Harlequin, Ltd., whose basic FFI resembles Lucid's independent C++ compilers; although one may gener-

closely. We will work together to extend this as ally do this for C compilers on any particular platform
much as possible for C++ and for areas yet lack- (the so-called common object file formats work because

ing in Lucid's published designs; in particular, the there is a common notion of how to represent nomencla-
notion of a FOREIGN-METACLASS for CLOS will tures in the object files). It is easy and straight-forward
be spelled out. for a C++ compiler to emit a modest amount of extra

information into a pre-defined debug-info format; it is
" We plan the specification of a minimal, de facto easy for a Lisp's foreign loader module to continue pars-

standard for a user-interface for the Emacs/Lisp ing and remembering this extra information. But trying
communication necessary for an integrated debug- to track the compiler's decisions in a parallel parsing
ging environment. Primarily, this will be worked program will certainly be subject to the usual problems
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of parallel versions-trying to keep them lock-in-step for About three years ago, Lucid and Sun Microsystems
every internal decision about runtime representations. investigated what it would take to do what might be
An additional debug-info protocol emitted by the corn- called a "seamless" integration of Lisp and C coding,
piler is the safe step here. by re-implementing a Lisp system from the beginning

Furthermore, persons working totally in the C++ with the goal in mind. The effort was known by the
world often wish that their debugger had access to acronym NCL, meaning "Native Common Lisp", and the
more of the kinds of runtime typing information that outline of such a design was submitted to DARPA in
Lisp users are accustomed to. One of Lucid's compiler response to BAA 90-15. Although the NCL work was
wizards-himself a member of X3J16, the standardiza- not continued, ideas similar to it abound today in the
tion body for C++-notes that there are continuing form of one- or two-person research projects which are
suggestions to that body requesting more of the run- geared towards the demonstration of the feasibility of
time typing structures and capabilities in compiled C++ one or more components of it. See for example Bartlett
modules (see also Stroustrup 1992.) In short, exten- (1988); see also Muller and Rose (1992) and Hennessey
sions to C++ for increased availablilty at runtime of (1992).
typing information, at least in some sort of debugging Except for the work of Hennessey, most of these re-
mode, will likely be of as much use and desirability to search projects have been undertaken in Scheme rather
the general C++ community as to the Lisp community. than in Common Lisp. The main attractiveness of
While this goal is, in the long run, much greater than Scheme as a vehicle for r experimentation is that it
one project and one compiler vendor can handle, we feel can be taken to be a very s..all language; although most
that the Common-Lisp community could have much to commercially available Scheme implementations have ex-
contribute to these discussions, especially in view of a tensive development beyond the formal standard speci-
compiled Lisp/CLOS-C/C++ integration. fication (e.g., macros, etc.) a very small defined set of

Finally, the use of a conventional debugger like GDB capabilities is within the scope of a one- or two-man-
has until now been at a disadvantage because it (1) has year project. By contrast, a commercially rugged Com-
no access to the symbols of the dynamically foreign- mon Lisp effort is well beyond that in development cost.
loaded modules, and (2) has no understanding of Lisp (The successful Common Lisp vendors probably have
data formats including stack layout. We have a pilot more than 20 man years each invested in their prod-
version of a communication mechanism between Lucid ucts; and probably a guess of 100 man years might not
Common Lisp and GDB whereby GDB's symbol table be off the mark.) Simply because of the added com-
may be extended, by explicit user request, to incorpo- plexity of real Common Lisp systems, and the variety of
rate the Lisp Foreign Loader's symbol table information factors competing for trade-offs in the efficiency arena,
also. In the pilot, the Lisp user explicitly requests the it is difficult to say how-and even if-the limited suc-
dumping of the entire "foreign" symbol into a file; and cess of these Scheme prototypes would generalize to an
then from GDB the user explicitly overloads GDB sym- industrial-quality Common Lisp.
bol table with this file. Lucid is currently developing Although such radical re-implementation approaches
protocols in GDB for it to communicate with Lucid's En- are a fertile ground for research projects in advanced
ergize(Tm) product through a network socket protocol; programming language features, we do not believe this
we plan to extend these protocols so that it can auto- approach to be suitable to the needs of the RADIUS
mate the preparation and acquisition, incrementally, of projects. Our current proposal is an evolutionary ap-
the symbol-table information kept by. Lisp foreign loader. proach with much less associated risk.

A similar, evolutionary approach has been started

4 Other Research in Related by Harlequin, Ltd., which offers a modest extension of
their foreign-function interface to do some aspects of a

Areas C++ interface, including an extension to their CLOS
class system to be able to reflect C++ instances into

While most other vendors of Lisp have some form of the Lisp class hierarchy. The generation of such inter-
defined techniques for interfacing to foreign code, typi- faces manually (as required by the Harlequin approach)
cally with limitations similar to that found in the Lu- is well within currently accepted FFI technology; but
cid product for the past five years, there have always still there are a good many unresolved problems with
been nagging gaps: for example, incomplete ability to this approach, and with the Harlequin facility in par-
interface to foreign data. Indeed, Lucid's earlier imple- ticular. The most serious mismatches and unresolved
mentations, like several other vendors', only provided an problems are due to the lack of uniform runtime typ-
interface to functions; by extending the work found in ing on the C++ side, and due to the need to write Lisp
DEC's VAXLISP product, Lucid came up with a foreign programs which try to second-guess what a increasing
types interface [see Sexton 1988], and automated more number of incompatible C++ compilers are doing about
of the necessary data representation conversions, name mangling, about representation changes for opti-
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mizing efficiency, etc.
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Abstract porally separated images and quantitatively mea-
sure the image displacements. A consistent set of

This paper describes the design and implementa- motion parameters is then determined to explain
tion of a Single Instruction Multiple Data (SIMD) these displacements. Once the motion parameters
depth-from-motion algorithm on the Image Un- have been determined, the depth of environmental
derstanding Architecture Simulator. Correspon- points can be found by using their individual image
dences are established in parallel for two tempo- displacements.
rally separated images through correlation. The For autonomous navigation it is not enough to
correspondences are used to determine the trans- compute depth at a few hundred isolated points in
lational and rotational motion parameters of the the image. In order to detect and avoid obstacles it
camera through a parallel motion algorithm. This is is necessary to find depth at a dense set of points.
done by first determining the approximate transla- In addition, for practical scenarios it is desirable to
tional parameters and then constraining the search process a large number of high resolution images
for the exact translational and rotational param- within a small period of time. The example below
eters. Finally, the dense depth map is computed calculates the number of pairs of frames that must
from the image correspondences and the computed be processed per second in a typical scenario for
motion parameters. Results are analyzed for three motion analysis (through the use of point-based or
image sequences acquired from mobile vehicles (the feature-based correspondence methods).
Autonomous Land Vehicle, the Carnegie-Mellon Let us assume that our camera has a resolution
NAVLAB, and the UMass Denning Robot). Depths of 256 a 256 pixels and a field of view of 45l u
are obtaied at an average accuracy of about 8% in Let us further assume that the vehicle is moving
outdoor image sequences. The depth maps are pro- with a speed of 50 km./hour and it is necessary
cessed to locate relatively small obstacles like cans to determine depth to a distance of about 10-30
and cones to a distance of about 60 feet. Larger metres at about 10% accuracy (except in the re-
obstacles like hills are located even when they are mesiateabout0 auracy (excp in exre-
much further away. Issues related to the speedup gion immediately surrounding the focus of expan-and ccuacyof te cmpuatioall inensie pob- ion (FOE) 3 where errors in depth are necessarily
and accuracy of the computationalyy intensive prob- high). For correspondence-based methods it can
lem of motion analysis are explored in the context be proved theoretically [16] that in order to achieve
of the algorithm. this accuracy the vehicle must move about 2 m.

forward between the processing of successive pairs
1 Introduction and Motivation of frames. Since 50 km/hr is about 14 m/sec, the

Motion analysis is one of the most cmotion processing system should therefore be able
intsive tanysks ion computer vion computationally to process a maximum of about 7 pairs of framesintensive tasks in computer vision. Usually motion

algorithms have relied on some form of point or 2 For better recovery of rotational parameters it is best to
feature correspondences between two or more per- have large field of -iew cameras with high image resolution.

spective views [1-9]. These correspondence-based However, large field of view lenses give rise to various distor-

approaches take advantage of the image displace- tions and lower the effective resolution of the image. Our choice

ments induced by egomotion. Most such methods of camera parameters are typical of commonly available image
match a few hundred points or features in two tem- processing systems.

3
The FOE is the location in the image plane where the trans-

'This work was supported in part by the Defense Advanced lational component of the image displacement is zero. If the

Research Projects Agency (via Harry Diamond Labs) by con- camera moves straight ahead along its optical axis with no ro-

tract no. DAAL02-91-K-0(,47 and NSF grant CDA-8922572. tations, then the FOE is at the centre of the image.
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per sec. and thus, the computation associated with 2 The Image Understanding Archi-
each pair of frames should be approximately 140 tecture (IUA)
milliseconds.

In spite of this severe requirement for speed, We provide a brief description of the IUA [181 with

the problem of time complexity has not been ad- particular emphasis on the lowermost level of the

equately emphasized in the area of depth determi- machine. The IUA is made up of three levels, each

nation. Almost any reasonable motion algorithm having a particular type of processor:

needs to solve complicated non-linear equations re- 1. Low Level consisting of the Content Address-
lated to the 5 independent parameters of motion. able Array Parallel Processor (CAAPP).
The sequential algorithms have concentrated on the 2. Intermediate Level consisting of the Interme-
the use of approximations and search space reduc- diate Communications Associative Processor
tion for the solution of these equations. Further- (ICAP).
more, they have not attempted to compute depth 3. High Level consisting of the Symbolic Process-
at more than a few hundred locations in the image. ing Array (SPA).
However, when 7 complete pairs of frames need to
be processed per second and the computation asso- The CAAPP and ICAP levels are controlled by
ciated with each frame pair involves many floating a dedicated Array Control Unit which is directed
point computations a parallel design and implemen- from the SPA level. The low level processors are
tation is essential. If we could completely paral- ideal for fine-grained SIMD computing, whereas the
lelize the problem, theoretically we could achieve a intermediate and high level processors are ideal for
speedup by a factor of 65,536 times over the equiv- Multiple Instruction Multiple Data (MIMD) com-
alent sequential version with a 256 x 256 array of puting. Our algorithm uses only the low level of the
processors. IUA because of the nature of the task. The low level

or CAAPP level is a 256 x 256 square grid array of
None of the earlier work in parallel motion pro- custom 1-bit serial processors with local memory,

cessing [10-15p attempt a comprehensive solution one-bit registers, backing store, an ALU and data
to the problem of dense depth determination from routing circuitry. The bit-serial processing elements
a sequence of images. In the last few years a vai- are linked through a four way (North, South, East,
ety of processor arrays have emerged for solving low West) communications grid. Intra-level communi-
level processing in computer vision [17). The fine cation within the CAAPP can take place in several
grained SIMD array computers have proved par- ways [18].

ticularly versatile for solving such tow level tasks.

The AMT DAP series, the Connection Machine
and the lowest level of the IUA are three machines 3 Depth from Image Displacement
which embody this computational paradigm. The This section discusses the mathematical formula-
SIMD class of machine makes it feasible to attempt tion for the algorithm. Figure 1 shows a right-
real-time solutions to the dense depth-from-motion handed coordinate system fixed with respect to the
problem. The algorithm presented in this paper is camera. Let us also assume the right hand rule for
implemented on the Image Understanding Archi- rotations and consider the case where the camera
tecture (IUA) simulator. The IUA is a three lay- is undergoing motion. As can be seen from Fig-
ered parallel machine specifically designed for im- ure I the environmental point P, with world coor-
age analysis. The lowest layer of the IUA is the dinate (X, Y, Z), is projected onto point p, in the
CAAPP, a two dimensional grid of 1-bit serial pro- image plane with image coordinates (z, y). Let f
cessing elements, operating in the SIMD mode. be the focal length of the camera, and denote by

A common scenario in ground-based navigation T = (T 1 , T2 , T3), n = (0 1 , S12, (13) the transla-
occurs when the vehicle moves forward by undergo- tional and rotational rigid motion of the camera
ing primarily translational motion along with small (This implies that P' = -RP - T where R is
rotations. In this case the FOE is within the field of the rotation matrix and P' is the new position of P
view. The algorithm presented in this paper is de- after undergoing rigid motion to the next frame).
signed to take advantage of this situation. It first We shall use the small rotation 4 motion equa-
determines the approximate translation and then tions, and for simplicity use the following abbrevi-
constrains the search for the exact translational and
rotational parameters. In contrast to other methods 4

This means that the magnitude of rotation 1 9 I< 1. Also.

which have not demonstrated their ability to recover sin(S) :- Sand cos(O) 1 to order 0(62). Using the approxima-

dense depth maps and locate obstacles, our algo- tion10 I< I 1we note that even if 1 -- 0.1 radians (i.e. = 6*).

rithm is fast, simple and robust. the relative error incurred is 0.2% for sin(@) and 0.5%. for
cos(O). The small angle assumption is not a restrictive one in

We start by providing a brief description of the practical situations because large rotations induce such large im-

IUA which emphasizes the features most pertinent age displacements that correspondence algorithms are unable to

to our application, handle them reliably.
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translational with small rotations. For this kind
y of "approximate translational motion" the approxi-

_[,_ Lmate location of the focus of expansion [19, 20) can
-2 be found quite easily. This gives an initial approx-

imate estimate for motion parameters. If the focal
T2 length of the camera is unknown, but the focus of

Y _expansion is known, then the time-to-adjacency [19)
"- relationship is sometimes used to compute rough

ST1 - depth from the approximate estimate for motion
parameters. The time-to-adjacency relationship
gives

Z D
-L VT 3  -- = (6)3" T3 d

Figure 1: Coordinate System where

ations: * D = distance in pixels of point pi, from the

fl 2z nY FOE.
+f d = displacement of the point pi.

/+ fl 2 ) To find better depths a more elaborate scheme
J = t11 - (12z - fl 2f + flaY is needed. From equations (4) and (5) we can see

f ! that there are two ways of determining depth for
(1Yi fl2z - f , a particular set of motion parameters and image

K = f + flif - f13  displacement. Z, is the depth that is determined
from the z-component (u) of the image displace-

o = -fT 1 + XT3  ment and Z, is the depth that is determined from
S= -fT 2 + YT3. the y-com ponent (v) of the im age displacem ent. As

With the above abbreviations the image displace- u becomes close to 0, Z. becomes hard to deter-
ment 1", induced by the motion of the camera, mine. Similarly, as v becomes close to 0, Z, be-venI c by tcomes hard to determine. When the movement ofgiven by the vehicle is mostly forward a major portion of the

I = ui + V = (u, V) () image has significant magnitudes of both u and v
where i and j are unit vectors along the z-axis and and either Z, or Z4 can give good depths.
y-axis respectively, and For any point i in the image the depth Z,. is com-

1 + (a/Z) puted as the average of Z. and Z. (except in patho-
u I - (T3/Z) (2) logical cases where either u or v is zero). It is pos-

sible to arrive at an estimate of the reliability of Z.
K + (13/Z) (3) by noting the difference of Z. and Z, from each
I - (T3/Z)" other. The reliability C is defined as

The depth Z of an environmental point P can be UM(Z Z3)
determined from either equation (2) or equation (3). z +(7)
We denote by Z, the depth determined from equa-+
tion (2) and by Z. the depth determined from equa- where
tion (3). Hence, U(x,y) =Ix+ yI ifz_<0andyS<0

Z. Tu += I z - y I otherwijse (8)
Z U + - (4) The reliability scale varies from 0 to /2 (no mat-

T3 v + 0 ter what the values of the two depths) with 0 being
Z' Iv- K" (5) the best reliability. Qualitatively, we are testing

how well the depths computed from the two com-
Of courm for perfect data, these would be equal; ponents of the displacement vectors match. If bothhowever, in the presence of noise, they will in gen- depths are positive and equal then C is sero (i.e.
eral be unequal. high reliability). If both depths are negative then

It is also possible to write the depth in terms of then C is high (low reliability). In general, when
the displacement vector I and the motion param- one depth is positive and the other depth is nega-
eters by using equations (1),(2), and (3). However, tive then reliability is poor, although not as poor
the resulting expressions are cumbersome to manip- as the case when both are negative.
ulate. Let (i be the reliability for depth obtained at

In this experimental scenario the vehicle is mov- point i in the image. Let n be the total number of
ing forward into the scene. The motion is mostly displacement vectors. Z., and Z, are the depths
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computed by using the z and y-components respec- Shift each pizel in Frame-2 by the negative
tively of the ith displacement vector and the hy- of the hypothesized displacement
pothesized values of the motion parameters. Then Compute sum-of-absolute-differences cor-

relation between the pizels of frame-1
and the shifted frame-2 in a spiral pat-
tern [21].

t- (9) If the correlation at a pixel is the mini-
n mum obtained until now, then store the

The motion parameters for which K is minimum hypothesized displacement and the cur-
is the best set of motion parameters. Unlike several rent minimum correlation value in the
other approaches this optimization criterion allows local PE memory.
us to avoid the rather difficult problem of eliminat- END
ing the depths from the error functions (which has After all hypothesized displacements have
to be done somehow when the deviation between been considered the displacement cor-
the actual and predicted image displacements must responding to the minimum correla-
be minimized). We can call the error function r., tion at each pixel is the image displace-
given by equation (9) as the normalized absolute ment at that pixel. The value of the
deviation in directional depths. The nice property correlation gives a measure of the reli-
of r. is that it varies between 0 and vi. The lower ability of the match.
the value of r the better the minimization.

We follow this section with the algorithm for
depth determination. It should be noted that using sum-of-absolute dif-

ferences rather than the sum-of-squared differences
4 Depth Determination Algorithm as the correlation measure saves time by avoid-

The objective is to recover reliable depths of envi- ing multiplications. The repeated correlation com-
ronmental points over as large a part of the image putations are the most computationally intensive
as possible. The parallel algorithm works in the part of the algorithm and this is an important ef-
following stages: ficiency consideration. Integer representations are

also preferable because floating point computations
1. Determination of image correspondence. are costly in a bit-serial processor.
2. Selection of the best image displacements be-

tween frames. 4.2 Selection of best image displacements
3. Determination of the approximate transla- The coterie network of the CAAPP is used to par-

tional motion parameters. tition the image into equal divisions [18]. For ex-
4. Determination of the exact translational and ample, in one experiment the 256 x 256 image was

rotational motion parameters. divided into 64 sub-regions of 32 x 32 pixels each.
5. Depth determination. In each sub-region the pixel which has the most

reliable displacement vector is selected in parallel.
4.1 Image Correspondence Hence there are as many selected pixels as there
The algorithm for establishing image correspon- are sub-regions. The displacement vectors at these
dence takes as input two temporally displaced im- selected pixels are called "selected" displacement
ages and the maximum possible displacement at vectors. The FOE and motion parameters are de-
any pixel. Restricting the maximum displacement termined with the selected displacement vectors.
does not significantly limit the efficacy of the imple-
mentation since it is usually possible to predict it in 4.3 Approximate Translation
advance. The row and column displacements at ev- In dynamic imaging situations where the sensor is
ery pixel are computed through correlation match- undergoing primarily translational motion with a
ing. relatively small rotational component, approzimate

The parallel algorithm for computing image dis- translational motion algorithms may be effective in
placements works as follows determining approximate depth [20]. By restrict-

ing the processing to the two dimensions of trans-
lational motion, there is a tremendous reduction

Parallel Correlation in complexity from the five dimensions (excluding
Store Frame-I and Frame-2 of the im- the scaling component of sensor velocity) of general

age sequence in local processing ele- motion.
ment (PE) memory The FOE recovery algorithm works as follows.

FOR hypothesized displacements within First it draws a line through each selected displace-
the maximum displacement range DO ment vector in the image. Let these lines be called

BEGIN "extended" displacement vectors. Then it finds all
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the possible intersections of the extended displace-
ment vectors and votes in a Hough transform array
corresponding to each intersection [22]. The pa-
rameter space for the Hough transform is given by
the image coordinates where the extended displace-
ment vectors can intersect each other. The number
of votes for each intersection is an increasing func-
tion of the length and confidences of the displace-
ment vectors forming the intersection. This ensures
that longer displacement vectors are more heavily
weighted and that more reliable vectors are also
weighted more heavily. The point where the max-
imum number of intersections occur is the approx-
imate FOE. A contiguous region which surrounds
the approximate FOE and includes at least p frac-
tion of the votes is the region where the exact FOE
is likely to be present.

The parameter space for the Hough transform
is spread over all the processing elements of the Figure 2: First frame of the Sequence.
CAAPP. The intersections have an x-coordinate
and a y-coordinate. Since the CAAPP is a two
dimensional array, it is easy to map each possible
intersection into a distinct PE. The local memory
of each PE contains the number of votes for an ap-
proximate FOE. The contiguous region where the
exact FOE might be located is determined by sum-
ming up in parallel the votes gathered by neighbors
[22].

4.4 Exact Translation and Rotation

Once the region in which the exact FOE can lie is
determined the exact translational and rotational
parameters can be computed by the optimization
method stated in equation (9).

For example let the approximate FOE be at
(70, 55) with the exact FOE lying within 10 pixels
of the approximate FOE. Then a square whose sides
are 20 pixels is formed with (70, 55) as the intersec- Figure 3: Computed depth map.
tion point of its two diagonals. Then FOE's are
hypothesized at each pixel bounded by the square
(i.e. starting at (60,45) and ending at (80, 65)). Object True Computed
At each hypothesized FOE the normalized absolute depth Depth
deviation in directional depths x, is computed for (feet) sample
the three dimensions of rotations. The rotations #1 #2 #3
corresponding to the minimum r are the optimal conel 21 22 23 25
ro ational parameters corresponding to the hypoth- cone2 36 35 44 33
esized FOE. The minimum x is determined among cone3 56 45 53 54
all the hypothesized FOE's. The translation and cone4 56 54 55 56
rotation corresponding to minimum K are the exact can 46 41 4
motion parameters. cone5(*) 76 96 66 70

4.5 Depth Determination cone6 76 62 67 55
Treel - 50 51 51

Once the motion parameters are obtained the depth Tree2 58 59 57
at each point in the image can be found by using Tree3 =90 91 91
the image displacements and the intrinsic camera
parameters. Since each pixel of the image is rep- Table 1: Depth Values of some environmental
resented by one processing element in the CAAPP, points.(*) Cone5 is near the FOE and its depths
this stage is totally parallelized. The equations used are erroneous.
for this purpose have been described in Section 3.
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5 Experiments map indicates points at which depths are over 120
feet. Black indicates points where depth cannot be

The algorithm for parallel depth determination was computed reliably (e.g. periphery of the image that
coded on the IUA simulator. This section contains is not visible in both images, points where displace-
the results obtained on several image sequences. ment vectors are small or erroneous thereby giving

Carnegie Mellon NAVLAB sequence - The rise to wrong depths etc.). Parts of cones, can and
first set of experiments used a sequence of twenty trees stand out in the depth map in subsequent rep-
images. The images were collected on the Carnegie resentations.
Mellon NAVLAB. The first image of the sequence is Figure 4(a)-(l) shows the two frames, some inter-
shown in Figure 2. The vehicle was made to move mediate results and several depth maps at different
in an approximately straight line such that the dis- regions of the image. An explanation is necessary
tance between frames was 2 feet. The field of view for the legends which illustrate the depth maps.
of the camera was 450 and 256 x 256 images images The legends are histograms of depth maps. The
were collected. In order to determine the ground x-axis shows the depth values and the y-axis indi-
truth for environmental objects, traffic cones and cates the number of pixels with a particular depth
a can were placed at measured distances (ranging value. The shading of the histogram corresponds to
from 21 to 76 feet). Obviously with a total move- the shading of the depth map. For example, in fig-
ment of the vehicle of 40 feet, some of the cones ure 4(e) (whose histogram is shown in figure 4(f)),
disappeared from the scene in later frames. Figure the lightest region show depths of over 80 feet. The
2 shows environmental objects whose depths had top of cones and can stand out in the depth maps.
been hand measured (black dots), along with the Observers unaccustomed to seeing depth images of-
rest of the scene with objects whose distances were ten attempt to compare them with intensity images
not measured (e.g. trees). It should be noted that and draw erroneous conclusions. In the case of a
in general the scene is quite complex because of the cone standing upright on the ground in 3-D, the
presence of large homogeneously textured regions 2-D image will have the following characteristics:
like road and grass, and the occlusion of the dis-
tant buildings through trees. . The top of the cone is surrounded in the image

The quantitative results for the known envi- by locations which are much further away than
ronmental objects and some unknown objects are the cone.
shown in Table 1. Three visually selected pixels * The bottom of the cone has almost the same
were marked on each object. The value of depth depth as the ground in front of it and to its
returned by the algorithm at each of these pixels sides.
are recorded in Table 1. These recordings are re- Hence, in the depth map the bottom of the
ferred to as "samples" in the table. From the table cones and can merge with the surrounding ground
the average error in depth for the known objects whereas the top clearly stands out from its sur-
is computed to be about 8% 5. This corresponds roundings. Virtually all the major obstacles at least
quite well to the theoretical limits on depth deter- partially stand out in a magnified depth map. We
mination presented in our previous work [16]. have not magnified all the obstacles in Figure 4 be-

The depth map obtained by using the algorithm cause of space limitations. Nevertheless, it is quite
between the first and third frame of the sequence clear from the figures that portions of the two trees,
is shown in Figure 3 6. Complete separation of ob- the can and the cones clearly stand out in the depth
stacles (e.g. cones, can) is not possible from the map. Thus in addition to the quantitative depths
depth map because part of the surroundings of an the obstacles are also detected. It can be seen that
obstacle in the depth map is at almost the same even small obstacles like cones and can are detected
depth as the obstacle. This is very different from quite robustly by this algorithm to a distance of
an intensity image where all regions of an obsta- about 60 feet. Larger structure like trees can obvi-
cle usually have a different image intensity from its ously be detected more easily even when they are
surrounding. The darker the color the closer the en- quite far away.
vironmental point is to the camera (Since the gray- Autonomous Land Vehicle sequence- A sec-
level representation of depth on a printed page is ond experiment was done on a sequence collected
poor , the results will be presented in various rep- via the Autonomous Land Vehicle. The data collec-
resentations. On a high resolution display device tion process is detailed in [23]. Preliminary results
the depth maps appear a lot better to the human on this sequence are shown in Figure 5. It can be
eye. ). It should be noted that white on the depth seen that the mountain which is rather far away is

clearly identified.
5
The mean depth of each known object is the average of the Umass Denning Robot sequence- A third ex-

three smaples that have been shown in Table I periment was done on a sequence collected via the
GThe correspo-ndences in the experimental secti,,n are from Denning robot at the University of Massachusetts

a hierarchical correlation based algorithm which has not been at Amherst. This image was taken indoor under
completely parallelixed on the IUA. The completely parallel WUA poor lighting conditions. The robot moved 1.95 feet
implementation gives somewhat inferior results for depth.
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(a) First image. (b) Second image. (c) Image displacements.

(d)~~~~~~ ~ ~ ~ ~ ~ Hog Trnfom I wit leedi.i.f f)Lgn oi.e

I ,, 3 .I . J . .

(d) Hough Transform. a i () Depth map of fin ig. mg (f) Legend for fig. e.
note the gradual increase in depth with threes standing out

rI - -I

Ln

(g) Magnified can from fig. a. (h) Depth map of fig. g. (i) Legend for fig. h.

L The top of the marked can stands out whereas the bottom merges with the ground. j

I I I N IL

Uj) Magnified cones from fig. a. (k) Depth map of fig. j. (i) Legend for fig. k.
LThe tops of the three cones stand out whereas the bottoms merge with the ground.

Figure 4: Results for the CMU sequence.
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between frames. The results for the depth maps are motion parameters. This does not normally give
shown in Figure 5. rise to multiple minima for small rotations.

The system can compute approximate depth even
Timings when the focal length of the camera is not known.

Before presenting the timings let us caution the This is done by using the time-to-adjacency rela-
reader that these are results obtained by running tionship after determining the approximate FOE.
our algorithm on the simulator of an experimen- The drawback of the system is that the large num-
tal parallel machine under development 7. For the ber of floating point operations are expensive for a
Carnegie Mellon NAVLAB sequence the PE cycles SIMD machine. However, the large number of pro-
taken for the various stages are as follows: cessors more than compensate for this. The algo-

CYCLES rithm is being refined for getting faster and better

Correspondence stage 5315983 correspondences. Methods for taking care of larger

Trans. stage after vector selection 78513 rotations are are also being investigated.

Trans. and Rot. stage with depth 35318 To summarize, the key contribution of this system
is that it is able to recover dense depth maps and

Sum of the above three stages 5429814 locate obstacles quickly, simply and robustly. With
reasonable assumptions, the algorithm can run in

This gives us an estimate of about 0.54 sec. for real time on the IUA.
running the algorithm on an IUA running at 10
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(a) First image of ALV seq. (b) Magnifed region of fig a. (c) Depth map of fig. b.

The far away hill is shown to clearly stand out with the foot merging with the ground.

(d) First image of UMass seq. (e) Magnified region of fig. d. (f) Depth map of fig. e.
The two cones stand out very clearly with the botoms merging with the ground.

Figure 5: Results for the ALV and the Umass Hallway sequence
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Abstract1  robots and autonomous vehicles must act and react
in real time, so their software environments must

Experimental systems which must function in real- be highly efficient.
time application domains place significant
constraints on the underlying infrastructure and The challenge of MoPLSE, therefore, was to build
support tools and on the design of these tools. One an environment that satisfies the needs of the
of the more important tradeoffs involves efficiency growing real-time vision community without
versus flexibility. This paper discusses the design getting "bogged down" with rarely-used features
philosophy of MoPLSE - the Mobile Perception or excessive overhead. This required making hard
Laboratory Software Environment designed to choices about what features are necessary for real-
support real-time autonomous navigation, time vision. To some extent, these decisions
1. Introduction depended on our application and on our general

approach to computer vision. We therefore
The convergence of computer vision and robotics describe MoPLSE within the context of MPL and
has created the need for a new kind of software its algorithms. In a larger sense, however, the
environment which supports real-time computing. intuitions behind MoPLSE are based on fifteen
The need is becoming particularly acute as years of experience in building experimental
applications in autonomous vehicle and flexible vision systems at the Univ. of Massachusetts
manufacturing become more sophisticated. [Draper 891, and in building tools to support that
Although development environments for computer research [Kohler 82, Brolio 89]. MoPLSE differs
vision, such as KBVisionTm, ImageCalc and from previous vision environments because the
Khoros (and soon the DARPA IUE) do exist, these constraints of real-time vision forced us to
environments are not well-suited to real-time prioritize needs more strongly than in previous
applications. Conversely, robotic environments, systems, and although the details of MoPLSE will
such as VxWorks, do not supply much support for probably change over time, the need to prioritize
computer vision, will remain.

This paper describes the preliminary design of a 2. The Mobile Perception Laboratory
portion of MoPLSE, the software environment The Mobile Perception Laboratory (MPL) is a
supporting computer vision research on board the modified U.S. Army HMMWV with computer-
University of Massachusetts' Mobile Perception controlled steering, acceleration and braking. MPL
Laboratory (MPL; see below). More important was built as part of DARPA's Unmanned Ground
than MoPLSE itself, however, are the design Vehicle (UGV) project to test algorithms for
decisions that underlie it. Designing a software directing an autonomous military vehicle under
environment for real-time vision involves real-world conditions. Because of the generality
cost/benefit tradeoffs. On the one hand, because of the autonomous operation task, the algorithms
the environment is for research, it should be being tested on the MPL include many of the basic
general enough to support not only currently visual tasks of interest to the image understanding
available vision algorithms, but unanticipated community. In particular, the MPL was designed
future advances as well. On the other hand, one
cannot afford a profligate generality: mobile to support UMass research in 9andmark-basednavigation [Fennema 91, Kumar 92, Thomas

93a,b, Dutta 931, obstacle detection and automatic
IThis research has been supported in part by the model acquisition [Sawhney 92a,b, 93], and
Defense Advanced Research Projects Agency under massively parallel computation on the Image
TACOM contract number DAAE07-91-C-R035, by the Understand Architecture [Weems 89]. The
National Science Foundation under grant CDA- landmark navigation task requires that the MPL
8922572, and by RADC under contract number recognize landmarks (stationary recognizable
F30602-91 -C-0037.
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features and objects) from a map and
determine the position and orientation of
the vehicle relative to the landmark (i.e.
pose determination).

The obstacle detection task, whether on-
road or off-road, requires that MPL model
the surfaces in front of the vehicle and ,
determine whether that surface is flat
enough to traverse. The model
acquisition task has two sub tasks. The
first is to automatically acquire new -- '
landmarks from an initial (and possibly
sparse) set of landmarks. The second is
to improve the vehicle's map of an area as
it drives through (e.g. for use by
subsequent vehicles) or, in the extreme
case, to build up a map of an area from --- '
scratch. In addition, MPL also serves as a
secondary test vehicle for research being __ -_____-_-_.._'___-_-____.___.......
conducted at other sites on road
following, off-road navigation and stereo. Figure 1. The UMass Mobile Perception laboratory

Physically, MPL is a modification of the image as input and returns a steering angle. The
ambulance (996) model of the HMMWV (see centerpiece of the landmark recognition system, on
Figure 1). In front it has a pair of forward- the other hand, is a geometric model matcher that
looking, black-and-white CCD cameras for road matches 2D line segments at the highest resolution
following and obstacle detection. On top it has a available, extracted from an image, to 3D model
pan-and-tilt controllable stabilized platform, with a edges and determines the pose of the camera
360 degree field of view, that carries two color relative to the landmark. It was obvious, therefore,
CCD cameras and an infra-red sensor. One of the that we needed to support a wide range of
color cameras has a wide-angle lens for rapidly algorithms and data structures.
finding landmarks, while the other has a telephoto
lens for focusing on a landmark and determining The decision was made, therefore, to create an
its pose. In the back, MPL contains a complete environment based on the idea of visual modules.
computer laboratory, including power, air ALVINN, for example, would be one module,
conditioning and facilities for two researchers (in while the geometric model matcher [Beveridge 92]
addition to the safety driver). On-board would be another. Additional modules were
computing resources include a Motorola 68030 quickly defined for camera control, line extraction
processor for directly controlling speed and [Bums 861, pixel-based tracking, symbolic line
direction, a Datacube MaxVideo 20 image tracking [Williams 88, Sawhney 92a], and many
processor, and a four-processor 340GX other visual tasks. Each module is defined in terms
workstation from Silicon Graphics. Space and of its input and output, and a set of tuning
power is also provided for the Image parameters that allow the on-board researchers to
Understanding Architecture, a massively-parallel modify the performance of a module. The primary
heterogeneous processor being developed jointly function of the on-board software environment,
by the University of Massachusetts and Hughes then, is to facilitate the assembly of existing
Research Laboratory [Weems 891. modules into aggregates which perform high level

functions and to "optimize" the performance of
3. Software Environment Specifications this new function by tuning the parameters of the
The first step in designing any software component processes.
environment is to determine what features are
needed. In the case of the MPL, we needed to Part of the reason for this decision was the
integrate many different styles of visual algorithms realization that the on-board environment did not
within a single real-time environment. The have to support the development of new modules.
ALVINN road-following program [Pomerleau In general, basic algorithm development occurs in
90,92], for example, is a neural-net algorithm the indoor laboratory using data collected from
developed at CMU that takes a reduced (30x32) previous experiments. The long hours of algorithm
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design, implementation and initial debugging do form of tokens, in ISR and create new tokens
not occur on the vehicle. Only when modules have which they add to the database. (Strictly speaking,
been implemented and initially debugged are they it is a misnomer to call ISR a database; although it
put on the MPL, where they can be tested, revised does have facilities for writing data sets to files
and have any newly discovered bugs removed. As and reading them back in again, file access is too
a result, the module development environment is slow a data transfer mechanism for real-time
different from the on-board real-time environment, vision. The ISR keeps its data in memory, and
and is not constrained by its real-time demands, should therefore be called a data store.) What

separates ISR from other systems is that it's data
Within the laboratory, therefore, vision researchers access routines have been optimized for computer
are free to use any of the existing computer vision vision.
environments. At the University of Massachusetts
the most common choice for module development In particular, ISR must provide functions for
is KBVision, although the Khoros environment is accessing tokens by spatial location and by feature
also available. As discussed below, tools have value, as well as by name. Such access functions
been developed to help researchers convert their are important because tokens are rarely isolated
algorithms from KBVision or Khoros to run in the entities: typically, they have important symbolic,
MoPLSE environment. numeric and logical relations to each other.

Hierarchies of tokens are important, as when
The design of MoPLSE therefore focused on how surfaces are defined by ordered sequences of lines,
to support the controlled invocation of visual and lines are defined by pairs of endpoints. It is
modules, and how to pass data from one module to therefore important to be able to access all the
another. Before discussing these decisions, points in a given model, for example (a form of
however, it is helpful to review the KBVision and indirect named access). Just as frequently, tokens
Khoros development environments to see how any are organized less rigidly into sets, such as the set
of MoPLSE's features are actually real-time of lines extracted from a single image. In such
adaptations of features already available in these cases, it is important for a visual module to be able
products. to access subsets of these tokens, for example all

the lines in the upper comer of an image or all the
3.1. KBVision long lines in an image, examples of spatial and
KBVision [Williams 90] is a computer vision associative access.
software development environment developed by
Amerinex Artificial Intelligence (AAI). Although Furthermore, it is often convenient for visual
KBVision supports the development of visual modules to operate on tokens as elements of a set.
modules is several ways, its most unique and One form of this is when a user wants to combine
salient features are the ISR visual database and the multiple forms of access, for example by
Image Examiner graphics tool. accessing the long lines in the upper comer of an

image. Other times a visual module may need to
The ISR is a symbolic database for visual data operate over the tokens in a set, for example to
originally developed at the Univ. of Massachusetts find the average of the length of lines in a set. For
Brolio89J. ISR was motivated by the belief that these reasons, ISR includes operations for iterating
computer vision requires more than image-like over the tokens in a set, as well as taking the
arrays of numerical data; it depends on symbolic union, intersection and differences of sets3.
representations of abstract image events such as
regions, lines, and surfaces 2 and on mechanisms The Image Examiner is a very different kind of
for efficiently accessing the objects under various tool. It provides the visual modules designer with
types of constraints (such spatial proximity) Visual graphics support for displaying images and data.modules operate on these symbolic records, called As such, it is only one of many tools for
tokens, or on sets of tokens, and generally produce examining images, including displaying them ateither new tokens, fill in fields of existing ones, or different scales or with altered color maps. Whatboth. distinguishes the Image Examiner different frommost other tools (e.g. XV) is that it is integrated

The ISR serves as the data repository at the center with ISR and includes routines for displaying most
of the system. Visual modules access data, in the common forms of visual symbolic tokens. It is

therefore trivial, for example, to overlay a set of

2 The data exchange format of the TUE reflects a similar 3 The complement of a set is not well defined, since
belief, there is an infinite universe of possible tokens.
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lines on top of an image, or on top of a symbolic visual modules can be chained together simply by
image region. Tokens can also be pseudo-colored graphically connecting the output of one module to
according to feature ranges, allowing the user to the input of another (see Figure 2). Loops and
visually inspect symbolic data. branching sequences of modules can also be

graphically created. Adding a new module into the
graphical interface is easily accomplished by tools

•Lf~r • ~ lIUAhf V|iami Woumli bwfr'ain tar t i

in th hrs ytmcaldgzorrrr

I IN SMO

in

Figure 2. An Example Cantata Interface from Khoros

3.2. horosin the Khoros system called ghostwri.,er.
3.2. Khoros

Khoros [Argiro 91], although often compared to
KBVision, is in fact a very different type of 4. MoPLSE
system, designed for different uses. Like Unfortunately, neither KBVision nor Khoros
KBVision, Khoros is organized around a set of satisfied the needs of the MPL project. KBVision
visual modules. But whereas KBVision was has a central data store (ISR) and convenient
designed as a high-level image understanding graphics tools, but does not provide a flexible
environment, with facilities for reasoning about enough graphical interface for sequencing modules
lines, surfaces and other symbolic events, Khoros or putting them in loops. Khoros has a flexible
was designed as an image processing environment, user interface, but only provides support for
As a result, it has no equivalent to the ISR and image-like data. Moreover, neither system was
manipulates only image data. (It provides a set of originally designed for real-time research, in that
tools which are similar in function to what the both systems pass data through files and execute
Image Examiner provides KBVision, but again each modules in its own UNIX process. If used in
they apply only to image data.) a real-time application, the costs of file access and

process creation would prove unacceptable.
Where Khoros is effective, however, is in its user

interface. Khoros provides an execution A new software environment was therefore needed
environment, called Cantata, in which visual for the MPL. MoPLSE was built around an
modules are representing by graphical icons. improved version of the ISR database and
Clicking on an icon pops up a menu of the Khoros's user interface, with graphics facilities
modules parameters, and allows the user to adjust built on the XV system developed at the
those parameters without having to recompile the University of Pennsylvania. What follows is a
module or the system. Even more conveniently,

1158



brief description of MoPLSE in terms of these application, hundreds or thousands of tokens may
three components. be in memory at any one time. If modules have

uncontrolled access to these tokens and modify
4.1. ISR3 them, unpredictable interactions may cause hard-
The centerpiece of MoPLSE is the ISR. to-find bugs. On the other hand, it is not
MoPLSE's ISR (called ISR3) is conceptually uncommon for a process to access a hundred
similar to the earlier versions built at the tokens at a time, for example when a grouping
University of Massachusetts [Brolio 891 and to the routine looks for pencils of converging lines in
ISR embedded in KBVisionTm. Both systems vanishing point analysis. If such a process has to
provide facilities for defining symbolic token lock and unlock a token each time it reads a
types, adding new tokens to the database, and feature value, then given the relatively slow speed
accessing tokens by name, value and spatial of semaphores under UNIX, protection becomes
location (see above). ISR3 differs from the earlier unacceptably expensive.
versions, however, in that it stores native C data
structures, is memory-based rather than file-based, Our compromise, therefore, was to associate
and provides primitives for memory management semaphores with sets of tokens. When a set of
and multiprocess synchronization. However, ISR3 related tokens are created, for example the set of
does provide facilities for storing data to files for lines from a single image, a semaphore is allocated
debugging, to protect those tokens. Any ISR3 function thataccesses that set of tokens will first check the
Studying each of these improvements in turn, we semaphore; if users access them surreptitiously
begin with ISR3's ability to store native C structs through C pointers, they are expected to lock the
rather than special, ISR-defined records. semaphore before accessing the first token and to
KBVision's ISR includes a language for defining unlock it after the last token access. All ISR3
token types. Beside the conceptual overhead of access function that create subsets of a set of
learning another syntax, this forces users to access tokens will assign the same semaphore to the
fields of tokens through special ISR access subset that is used for the parent set.
functions, and at times to copy data into C
structures. In a real-time environment, speed of Finally, ISR3 provides a level of memory
data access is crucial, and copying data should be management. For non-real-time, file-based
avoided. In ISR3, tokens are C structures stored in systems, memory management is not a critical
shared memory, and in order to define a new token issue; for continuous, real-time systems, however,
type, a user simply adds a new structure definition it is crucial. ISR3 applications operate in real-time
to a file. By storing native C structures and loops, allocating new tokens on each iteration.
returning pointers to them, ISR3 obviates the need Memory allocation must be rapid. More
to copy data (other than for making local importantly, memory must be recycled, with space
destructive changes). Just as importantly, access allocated to old tokens being reassigned to new
to C structures is optimized by most commercial C ones once the old data is no longer needed.
compilers. Unknown to the user, ISR3 provides buffers for

tokens of every declared type, with freed tokens
By default, ISR3 structures are stored not in a file being returned to the appropriate buffer. For users
but in shared memory. (Users can also specify that who store tokens in hierarchies, ISR3 also
a token is local to a process and should be provides functions for tracing through a hierarchy
allocated in local memory.) As a result, when one and freeing all the tokens in it, so that it is easy,
process needs access to tokens created by another, for example, to free all the memory associated
it simply uses the 13R3 token access functions to with a given image once that image is no longer
get a pointer to the appropriate structures in current.
memory. This is much faster than in KBVision,
where one process has to write the data out to a 4.2. A Modified Cantata
file and the other has to read it back into its local MoPLSE's graphical user interface is a
memory. Moreover, ISR3 allows two processes to modification of the interface found in Khoros's
share data, which is not possible in KBVision. Cantata program. As in Cantata, an icon is created

for each visual module which, when clicked on,
Snared tokens in turn brings us to multiprocess gives the user access to, and an ability to change,
synchronization. One problem with shared visual that modules parameters. A module can be
databases in a multiprocess environment is how to executed simply by clicking on the icon's run
stop processes from accidentally overwriting or button, and libraries of available modules can be
destroying each other's data. In a typical selected with the mouse (see Figure 2).
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in research aboard MPL, such as surfaces and 3D
More importantly, MoPLSE borrows Cantata's lines, are not currently included among AAI's
facilities for sequencing modules. If process B predefined token types, another set of graphics
uses data created by process A, then the user tools are included in MoPLSE.
simply draws a line from the output of A to the
input of B. This tells the execution monitor to Fortunately, many other research institutions have
execute process A before process B, and to route developed graphics tools before us. One such tool
its output accordingly. Users can also create is XV, developed at the University of
infinite or counted loops in which B follows A and Pennsylvania. XV is a portable graphics facility,
A follows B, or branching sequences of control in with available source code, for displaying images
which the results of one module are used to select under X windows. Like Cantata's graphics tools,
one of two control flow branches. however, it is limited to displaying image-like

data. In order to build a facility for displaying
The problems with the original Cantata, as both standard and novel token types, we divided
mentioned before, are 1) that it only provides the graphics process into three steps, rasterization,
facilities for passing image-like data from one overlay and display. MoPLSE has modules for
module to the next, 2) it executes each module as a rasterizing lines, regions, displacement vectors,
separate process, and 3) data is passed from one and other types of tokens. These modules produce
module to the next through files. MoPLSE image-like data from symbolic tokens, and in
addresses the first problem by integrating ISR3 some cases multiple modules exist for rasterizing a
into the execution controller. Modules may output single type of token. Lines, for example, can be
a token or set of tokens of any type known to displayed with or without arrows indicating their
ISR3. Graphically, these tokens are passed to gradient direction. Users who wish to display their
other modules just as image data is passed from own user-defined token types need to develop
module to module in Cantata - by connecting the modules for rasterizing them according to their
output of one module to the input of another. The unique semantics. Another module is provided for
interface knows enough about ISR3 to check that overlaying rasterized data, so that, for example,
the token types match, and if they do allows the lines can easily be displayed over the image they
connection to be made. were extracted from. The overlay module is

actually capable of any logical combination of two
The ISR3 also solves Cantata's third problem of rasterized data images, but simple overlay is by far
passing data through files. In MoPLSE, data is the most commonly used. Finally, a display
passed as pointers to tokens in shared memory, module invokes XV to display the rasterized, and
eliminating the time delay related to files 4. The possibly overlaid, data.
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