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FOREWORD

Some DARPA U activities for 1992 of interest to the IU community are
given below.

DARPA Organization

In 1992 the program structure of the Software and Intelligent Systems Office
(SISTO) was reorganized. As shown in Figure 1, IU projects are now in the
Autonomous Systems portion of Intelligent Systems. (Demo-II is the Unmanned
Ground Vehicle project.) The goals and missions of IU are unchanged.

tndeeinng |
sogrzoee k| g e |
Dot |

Figure 1. Program Structure of DARPA SISTO

Applied Technology Demonstration Support

At DARPA the model for insertion of research into the "real world” is to set up
applied technology demonstrations (ATDs) such as RADIUS or the Unmanned
Ground Vehicle (UGV) as practical demonstrations of the ultimate uses of research.
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Unfortunately, by the end of a 3 to 5 year ATD the base technology is no longer on
the cutting edge. Rand Waltzman, my predecessor, came up with a solution for
RADIUS. He suggested a Broad Area Announcement (BAA) timed so as to
activate a set of research projects a year after RADIUS was initiated to deal with
perceived IU technology gaps. Proposed research projects are intended to supply
current technology to RADIUS, but not to be on the critical path. Five such research
projects in IU-RADIUS were initiated in 1992 and are reported on in these
proceedings. We have used the same approach for the UGV project in the area of
reconnaisance, surveillance, and target acquisition (RSTA). A BAA in six areas
related to UGV RSTA was announced in December of 1992, and a set of awards
will be made in early 1993. We hope that the results of these studies will transition
into later UGV demonstrations. Some care must be exercised in implementing such
studies:

e someone must coordinate and integrate the various research efforts with the
ATD

* the original contract with the ATD contractor must include tasks for interacting
with the researchers and for integrating the research results

* software environment standards for integrating the results of the research into
the ATD must be part of the requirements of the research contracts

» the research must not be warped into development by the pressures of the ATD
milestones

The major benefits of this approach are that real-world problems and
associated imagery can be made available to the IU community and that advanced

research can be incorporated into an ATD in advanced stages some time after the
ATD has been initiated.

Special IU Workshops

Several special IU workshops were held in 1992. Profs. Ruzena Bajcsy (U Penn)
and Takeo Kanade (CMU) hosted a computational sensors workshop at the U of
Penn in May 1992. Profs. Ryszard Michalski (GMU) and Azriel Rosenfeld (UMd)
hosted a workshop in learning in IU in October 1992. A session on benchmarking
in IU was held at the Principal Investigators workshop in September 1992. Reports
on these workshops appear in these proceedings.
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IU/AI Efforts

Typically, IU researchers do not communicate with researchers in Al and vice
versa. An attempt is being made to bring specialists in Al and IU together. Recent
efforts include IU and learning (UMd/GMU), 1U and reasoning (IS/USC), IU and
natural language (SUNY Buffalo), and IU and neural nets (new BAA; contracts to
be awarded early 1993). Although the current efforts are small, it is hoped that they
will lead to more extensive AI/IU interactions.

Automatic Target Recognition (ATR)

An interoffice DARPA working group on ATR has been set up to develop an
interdisciplinary approach to ATR problems. The participants are Software and
Intelligent Systems Technology Office (SISTO), Microelectronics Technology
Office (MTO), Advanced Systems Technology Office (ASTO), and Defense
Sciences Office (DSO). A joint BAA on ATR focussed on university participation
was issued in late 1992; awards are expected by Spring of 1993.

Oscar Firschein, DARPA SISTO

Program Manager
Image Understanding
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Abstract

Research in the Computer Vision Laboratory
at Maryland is focused on both theoretical and
normative questions related to vision. This re-
port reviews our work on these questions during
the period October 1991-January 1993. The
areas covered include navigation, recognition,
and low-leve] vision.

1 Introduction

Understanding the mechanisms underlying the processes
of visual perception and creating machines with visual
capabilities requires that we answer several questions of
different natures. Among these are theoretical questions,
whose answers will establish the range of possible mech-
anisms that could exist in intelligent visual systems; and
normative questions, whose answers will suggest what
classes of systems (animals or robots) would be desir-
able or optimal for a given set of tasks.

Our theoretical work on navigation is devoted to the
analysis of correspondence and the investigation of the
amount of three-dimensional information contained in
noisy correspondence (or optical flow) fields; as well as
to such issues as the analysi- of localization techniques on
natural terrain and the problem of visibility as it relates
to path planning. Our research on normative questions
related to navigation addresses the amount of informa-
tion contained in normal flow fields that is necessary for
robustly solving various specific problems, as opposed
to problems of general recovery. Both aspects of our
navigation-related research are reviewed in Section 2.

Our theoretical work on recognition has concentrated
on the study of local projective and affine invariants,
while our normative research on recognition has been
devoted to the development of a framework for recognis-
ing an object’s purpose. Section 3 summarizes the main
results of our recognition-related research.

We have also developed a collection of low-level vi-
sion techniques for image segmentation, segmentation of
SAR data, and robust estimation, as well as new rep-
resentations for objects that facilitate recognition tasks.
Finally, we have worked in several specific application
areas such as handwriting, face recognition, aerial im-
age understanding, image enhancement and morphing,
as well as on the parallelization of image understanding

algorithms. Our research on low-level vision, applica-
tions, and computational aspects is summarized in Sec-
tion 4.

Appended to this report is a list of the 52 technical re-
ports on computer vision issued by our Laboratory dur-
ing the period October 1991-January 1993. The num-
bers in brackets in the body of this report refer to these
technical reports.

2 Navigation

Visual navigation constitutes a problem which is of con-
siderable practical as well as scientific interest. Naviga-
tion, in general, refers to the performance of sensory-
mediated movement, and visual navigation is defined as
the process of motion control based on an analysis of im-
ages. A system with navigational capabilities interacts
adaptively with its environment. The movement of the
system is governed by sensory feedback which allows it to
adapt to variations in the environment; it does not have
to be limited to a small set of predefined motions, as is
the case for instance, with cam-activated machinery.

Visual navigation encompasses a wide range of percep-
tual capabilities that can be classified hierarchically. At
the bottom of the hierarchy are low-level tasks, such as
obstacle avoidance; the top is represented by high-level
abilities like homing or target pursuit. As a basic capa-
bility, however, every visual navigation system must have
an understanding of visual motion. It should be able to
estimate the three-dimensional motions of objects in its
environment; even more important, it should be able to
determine its own motion. Naturally, a large part of our
research is devoted to problems of visual motion analy-
sis.

One way to deal with the problem of visual navigation
is to consider it as a subproblem of the general structure
from motion prollem (a theoretical question). By mak-
ing various assumptions we can develop solutions to the
problem of token correspondence. In general, such solu-
tions will involve errors, but we can study ways of identi-
fying special instances of the problem in which a robust
solution for structure and motion is possible. Our work
along these lines is described in detail in Section 2.1.
Section 2.2 is devoted to a normative study of the visual
motion analysis problem, where we do not attempt to es-
timate feature correspondences; rather, as input to our
motion algorithms we use the spatiotemporal derivatives




of the image intensity function (the so-called “normal
flow”).

2.1 Motion and structure estimation

2.1.1 Monocular and binocular recovery of
motion and structure parameters

A central problem in vision-based navigation is to use
2-D information from a sequence of images to infer 3-D
motion and structure information. By its very nature
this problem is ill-posed and most of the algorithms dis-
cussed in the literature have proven to be very sensitive
to even moderate levels of noise in the images and in the
calibration of the camera(s).

Over the last few years, we have advocated the use of
feature-based algorithms and long sequences of images
for estimating the motion of the observer, the motions
of objects, and the spatial structure of feature points.
These efforts have resulted in several robust algorithms
which have been successfully used for both monocular
and binocular real image sequences.

In [41], the problem of estimating the kinematics of the
moving camera and the spatial structure of the objects
in a stationary environment is considered. Two estima-
tion techniques, batch and recursive, have been used.
The batch technique applies a non-linear least squares
method to the stack of images, while the recursive tech-
nique uses an iterative extended Kalman filter and an-
alyzes one frame at a time. The approach is based on
modeling the motion of the camera using nine parame-
ters, the 3-D coordinates of the rotation center and the
linear and angular velocity components. A perspective
camera model is used. The structure parameters are the
3-D coordinates of the feature points in the inertial co-
ordinate system. These choices of parameters give rise
to linear plant models, leading to closed form solutions
for the state and covariance transition differential equa-
tions. Time consuming numerical integration steps are
not needed.

The inputs to the algorithm are feature point corre-
spondences over the image sequence. The task of au-
tomatically detecting and tracking features over a long
sequence of consecutive frames is a challenging problem
when the camera motion is significant. In general, fea-
ture displacement over consecutive frames can approxi-
mately be decomposed into two components: (i) the dis-
placement due to camera motion, which can be compen-
sated by image rotation, scaling, and translation; (ii) the
displacement due to object motion and/or perspective
projection. The displacement due to camera motion is
usually much larger and more irregular than the displace-
ment caused by object motion and perspective deforma-
tion. We have developed a two step approach: First, the
motion of the camera is compensated using a recently de-
veloped image registration algorithm. Then consecutive
frames are transformed to the same coordinate system
and the feature correspondence problem is solved as one
of tracking moving objects using a still camera. Methods
of subpixel accuracy feature matching and tracking are
introduced. The approach results in a robust and effi-
cient algorithm. Results on several real image sequences
are presented in two papers that appear elsewhere in

these Proceedings (parts of which have already been re-
ported in [31, 41, 45])). The monocular algorithm has also
been extended to the case of a binocular moving camera.
For binocular imagery, the traditional stereo triangula-
tion method fails when the images are not taken by the
two cameras at the same time. But for our algorithm,
since asynchronism is allowed, the two cameras can func-
tion independently (see [45]).

The methods summarized above have attempted to
automate the problem of motion and structure recovery
under relatively general conditions. In practical applica-
tions, such as the navigation of an autonomous vehicle
or a low-flying aircraft, several simplifications are pos-
sible; for example, the 3-D structure of a (small) set
of landmark points may be available from laser radar
range measurements, or approximate vehicle kinematics
may be known from inertial sensors. Batch and recursive
estimation procedures for including such additional in-
formation from the sensors and the scene are described
in [16]. For the situation where the structure of a set
of landmark points is known, the absolute pose and ve-
locity of the vehicle and the locations of the unknown
feature points can be estimated. When the approximate
vehicle kinematics are known, the ranges of the feature
points and improved estimates of the vehicle kinematics
can be obtained, a8 described in [16).

2.1.2 MAP estimation techniques [38, 47)

We have developed a Maximum A Posteriori (MAP)
estimation algorithm for calculating the camera motion
and the structure of a (rigid) scene. Our algorithm as-
sumes the motion to be along a smooth trajectory and
the sequence of images to be dense, so that the displace-
ment between successive frames obtained by each camera
is at most n pixels, where typically n = 2. We calculate
instantaneous estimates of the focus of expansion (FOE)
and of the scene depth map, and keep updating these es-
timates through the sequence. Our algorithm begins by
calculating a MAP estimate of the subpixel displacement
at each point and a confidence measure in that estimate.
Using points for which the confidence is high we calcu-
late MAP estimates for the FOE and the magnitudes of
the displacements at these points, hence their relative
depths. After determining the FOE we know the direc-
tion of displacement at every point in the image and we
can again apply the MAP estimation method to get the
displacement magnitude at each point and the associated
confidence measure. This information is propagated over
a long sequence of images by using the a posteriori dis-
tribution calculated from a set of images as a prior for
the next set of images.

We have also developed a MAP algorithm for fusing
monocular and stereo cues from two image sequences
to get robust estimates of both motion and structure,
under the same assumptions. The algorithm starts by
calculating the instantaneous FOE, a MAP estimate of
the displacement at each pixel, an associated confidence
measure, and a relative depth map, as described above,
from one of the two frame sequences. By calculating
the disparities at some feature points and using infor-
mation about their relative depths we compute the in-




stantaneous component of velocity in the direction per-
pendicular to the image plane. Using this information
a depth map is calculated; this depth map is then used
to derive a prior probability distribution for disparity
that is used in matching the two frames of the stereo
pairs. We use this method to estimate the disparity at
each pixel independently; no assumptions about surface
smoothness are used. Both the monocular and binocular
algorithms have been successfully tested on real image
sequences.

2.1.3 Frenet-Serret motion [36]

We have formulated a new model, Frenet-Serret mo-
tion, for the motion of an observer in a stationary em-
vironment. This model relates the motion parameters
of the observer to the curvature and torsion of the path
along which the observer moves. We derive screw-motion
equations for Frenet-Serret motion and use them for ge-
ometrical analysis of the motion as well as analysis of
the resulting velociiy patterns in 3-D and motion field
patterns on the surface of the velocity egosphere. We
use normal flow to derive constraints on the rotational
and translational velocity of the observer and compute
egomotion by intersecting these constraints. We analyze
the accuracy of egomotion estimation for different com-
binations of observer motion and feature distance. We
suggest that depth of field should be controlled in or-
der to make the analysis of egomotion on the basis of
normal flow possible, and we derive the constraints on
depth which make either rotation or translation domi-
nant. These ideas have been validated by experiments
on real image sequences.

2.1.4 Feature-based and flow-based motion
estimation: a unified view [23]

State-of-the-art algorithms for computing 3-D motion
from images can make use of either feature correspon-
dences or optical flow. In particular, noise-robust algo-
rithms can be formulated for the feature-based two-view
problem—computing the depths of the feature points
and the camera motion from correspondences of feature
points between two images. For such algorithms, condi-
tions for decomposability and for uniqueness of the solu-
tion, as well as direct optimization solutions and “critical
surface” conditions, can be formulated. Similarly, noise
robust algorithms can be formulated that make use of op-
tical flow; here too, decomposability, uniqueness, direct
optimization, and the “critical surface” can be treated,
and relationships to the algorithms for finite motion can
be analyzed. In both the feature-based and flow-based
cases, a simpler treatment can be given for the case of
motion on a planar surface.

2.2 Direct motion analysis

We have also addressed the problem of estimating 3-D
motion directly without going through the intermedi-
ate stage of optical flow or correspondence estimation.
The inputs that we have utilized are the spatiotemporal
derivatives of the image intensity function (the normal
flow).

From measurements on the image we can only com-
pute the relative motion between the observer and any

point in the 3-D scene. The model that has usually been
employed in previous research to relate 2-D image mea-
surements to 3-D motion and structure is that of rigid
motion. Consequently, egomotion recovery for an ob-
server moving in a static world has been treated in the
same way as the estimation of an object’s 3-D motion
relative to an observer. The rigid motion model is ap-
propriate if only the observer is moving, but it holds only
for a restricted subset of moving objects, mainly man-
made ones. Indeed, virtually all objects in the natural
world move non-rigidly. However, if we consider only
a small patch in the image of a moving object, a rigid
motion approximation is legitimate. For the case of ego-
motion, data from all parts of the image plane can be
used, whereas for object motion only local information
can be employed. We have therefore developed concep-
tually different techniques for explaining the mechanisms
underlying the perceptual processes of egomotion recov-
ery and 3-D object motion recovery.

We have developed solutions to the following prob-
lems: (a) Given an active observer viewing an object
moving in @ rigid manner (translation + rotation), re-
cover the direction of the 3-D translation and the time
to collision by using only the spatiotemporal derivatives
of the image intensity function. Although this problem
is not equivalent to “structure from motion” because it
does not fully recover the 3-D motion, it is of importance
in a variety of situations. If an object is rotating around
itself and also translating in some direction, we are usu-
ally interested in its translation-—for example, in prob-
lems related to tracking, prey catching, interception [27],
obstacle avoidance, etc. The basic idea of this motion
parameter estimation strategy lies in the employment of
fixation and tracking [24, 46]. Fixation simplifies much
of the computation by placing the object at the center
of the visual field, and the main advantage of tracking
is the accumulation of information over time. We have
shown how tracking is accomplished using normal flow
measurements, and have used it for two different tasks in
the solution process: First, as a tool to compensate for
the lack of existence of an optical flow field, and to esti-
mate the translation parallel to the image plane; and sec-
ond, to gather information about the motion component
perpendicular to the image plane. (b) Given an active
observer moving rigidly in a static environment, recover
the direction of its translation and its rotation. This is
the task of passive navigation, a term used to describe
the set of processes by which a system can estimate its
motion with respect to the environment. Our approach
to egomotion estimation [32] is based on a geometric
analysis of the properties of the normal flow field. The
fact that the motion is rigid defines geometric relations
between certain values of the spatiotemporal derivatives
of the image intensity function. We have proved that
the normal flow gives rise to global patterns in the im-
age plane. The geometry of these patterns is related to
the three dimensional motion parameters. By locating
some of these patterns, which depend only on subsets
of the motion parameters, using a simple search tech-
nique, the 3-D motion parameters can be found. The
algorithmic procedure that we have developed (which is




described in a separate paper in these Proceedings) is
provably robust, since it is not affected by small per-
turbations in the local image motion measurements. In
fact, since only the signs of the normal flow measure-
ments are employed, the direction of translation and the
axis of rotation can be estimated in the presence of up
to 100% error in the image measurements.

2.3 Localisation, visibility, and path planning
2.3.1 Localization

We have developed an approach to autonomous local-
ization of ground vehicles on natural terrain [4]. The
localization problem is solved using measurements in-
cluding altitude, heading, and distances to specific en-
vironmental points. Qur algorithm utilizes random ac-
quisition of distance measurements to prune the possible
location(s) of the viewer. The approach is also applicable
to airborne localization. The computational complexity
of an implementation on the Connection Machine and
the accuracy of the localization have been analyzed.

A method for localization and positioning in an indoor
environment has also been developed [33]. We define
localization as the act of recognizing the environment,
and positioning as the act of computing the exact coor-
dinates of a robot in the environment. Our method is
based on representing the scene as a set of 2-D views and
predicting the appearances of novel views by linear com-
binations of the model views. The method accurately
approximates the appearance of scenes under weak per-
spective projection. Analysis of this projection as well
as experimental results demonstrate that in many cases
this approximation is sufficient to accurately describe the
scene. When the weak perspective approximation is in-
valid, either a larger number of models can be acquired
or an iterative solution to account for the perspective
distortions can be employed. The method has several
advantages over other approaches. It uses relatively rich
representations; the representations are 2-D rather than
3-D; and localization can be done from only a single 2-
D view. The same general method is applied to both
the localization and positioning problems, and a simple
algorithm for repositioning, the task of returning to a
previously visited position defined by a single view, can
be derived from this method.

2.3.2 Visibility and path planning

We have investigated [29] two classes of parallel al-
gorithms for point-to-region visibility analysis on ter-
rain: ray-structure-based methods and propagation-
based methods. A new propagation-based algorithm
has been developed which avoids problems commonly
occurring with such algorithms. The performance and
characteristics of the two kinds of algorithms have been
compared. The sources of uncertainty in visibility com-
putation and the importance of taking uncertainty into
consideration have been analyzed. Different methods for
representing the uncertainty have been studied, includ-
ing Monte Carlo simulation, analytic estimation, and
some simple heuristic indicators. Our experiments show
that these indicators can be used for efficient coarse clas-
sification of the likelihood of point intervisibility.

Current approaches to robot motion planning are lim-
ited in their ability to deal with an uncertain and dy-
namically changing environment. We have developed [5]
a probabilistic model based on discrete events that ab-
stract the dynamic interaction between the robot and
the unknown part of the environment. The resulting
framework makes it possible to design and evaluate mo-
tion planning strategies that consider both the known
portion of the environment and the portion that is un-
known but satisfies a probability distribution. We have
studied three instances of the general model that have
been useful in designing efficient motion planning algo-
rithms under various assumptions about the robot’s en-
vironment and its behavior with respect to unexpected
events.

3 Recognition

The problem of object recognition has been traditionally
treated as one of matching image features or recovered
surface features with geometric object models. Such ap-
proaches are primarily devoted to the robust detection
or recovery of features and to handling the combinatorial
complexity of the matching process. In this spirit, the
problem of recognition is defined as finding regularity
across views, and the theories of object recognition can
be classified into three main groups: computation of in-
variant properties, object decomposition into parts, and
alignment. In Section 3.2 our recent work on invariants
is presented,with emphasis on local projective and affine
invariants. Section 3.3 is devoted to a novel method
of two-dimensional object segmentation and recognition,
and Section 3.4 deals with our recent work on alignment
(pose estimation). Section 3.1 describes our recent work
on an alternative framework for recognition.

3.1 A framework for object recognition [10]

Vision systems that operate in different environments
and perform different visual tasks do not necessarily rec-
ognige objects using similar algorithms. A vision system
that needs to recognize ten types of objects does not nec-
essarily work in the same way as a system that needs to
recognize one type or a hundred types. A system that
serves a rapidly moving agent is not necessarily built in
the same way as a system for a stationary agent. Object
recognition should be studied by taking into account not
only the objects that have to be recognized but also the
agent that has to perform the recognition. Since different
agents, working with different purposes in different envi-
ronments, do not recognize visually in the same manner,
we should not seek a general, universal theory of object
recognition. Instead, we should concentrate on develop-
ing a methodology that, given an agent in an environ-
ment, will suggest how to perform particular recognition
tasks.

An agent is a robot that has visual (and other) sensing
capabilities and is able to carry out a set of behaviors.
These behaviors are direct results of a set of purposes or
intentions that the agent has. A behavior is identified
as anything that changes the internal state of the agent
and its relationship to the environment. Carrying out a
behavior calls for the performance of various recognition




tasks. By performing partial recovery of attributes of
an object, we can find out if the object is suitable for
the desired purpose. In general an object can be used
for many purposes. The agent must recognize the one
needed to carry out its behavior.

Perception is a causal and intensional transaction be-
tween the mind and the world. The intensional content
of our visual perception is termed “the visual experi-
ence”. When we see a table there are two elements in the
perceptual situation: the visual experience and the ta-
ble. The two are not independent. The visual experience
has the presence and features of the table as conditions
of satisfaction. The content of the visual experience is
self-referential in the sense that it requires that the state
of affairs in the world must cause the visual experience
which is the realization of the intensional content.

When we visually perceive an object we have a visual
experience. This visual experience is an experience of
the object. It may be that the conditions of satisfaction
are not fulfilled. This is the case for illusions, halluci-
nations, etc. The visual experience, and not the world,
is at fault. The visual experience that we have, in this
case, is indistinguishable from the visual experience we
would have if we actually saw the real object. The in-
tensional content of the visual experience determines its
conditions of satisfaction. A visual experience in that
sense is a mental phenomenon which is intrinsically in-
tensional.

An agent is defined as a set of intentions, I, I, ..., I,.
Each intention I; is translated into a set of behav-
iors, By1,Bs3,...,Bam. Each behavior B,; calls for
the completion of recognition tasks Ty, Thia, - . ., Thij.
The agent acts in behavior By; under intention I,. The
behavior calls for the completion of recognition tasks
Tki1,-- -, Thin- The behavior sets parameters for the
recognition tasks. Under one behavior a chair will an-
swer yes to a recognition task that is looking for obsta-
cles, under another behavior it will answer yes to a task
that is looking for a sitting place, and under still another
it will answer yes to a task that is looking for an assault
weapon.

We view the recognition process along the axis (inten-
tion, behavior, recognition task). For a theory of purpo-
sive object recognition we should be able to make two ba-
sic transformations: first, from a desired intention to the
set of behaviors that achieve it; second, from a specific
behavior to some needed recognition task(s). We have
shown [10] that the intention-to-behaviors problem with
a finite number of behaviors is undecidable by reducing it
the halting problem. We believe that the transformation
from behaviors to recognition tasks is also hard.

If we add constraints to our definition of the problem
we can move from undecidability to intractability. For
example, by constraining ourselves to a constant set of
objects we can show a PSPACE-hard lower bound. This
can be shown by reducing our problem, for example, to
that of motion planning for an object in the presence of
movable obstacles, where the final positions of the obsta-
cles are specified as part of the goal of the motion. The
reduction is straightforward. The set of objects contains
the moving objects and the obstacles. The positions of

the objects are part of the relation set. The intention en-
codes the final state. Grasping, pushing and moving are
the behaviors. Solving the intention-to-behaviors prob-
lemn gives a solution to this problem.

We are interested in object utilization; this is not the
same as naming an object. Under our framework an
agent acts in behavior B;; under intention I;. The
behavior calls for the completion of recognition tasks
Tkir,-- -, Thkin. The behavior sets parameters for the
recognition tasks. Each recognition task activates a dif-
ferent collection of basic perceptual modules. Each mod-
ule qualitatively finds a generic object property which is
a result of one or a combination of direct low-level com-
putations on some sensory data (possibly done by other
modules). The result of a module’s operation is given as
a qualitative value. Each module has its own neighbor-
ing open intervals which are parameter-specific. The i*!
module can take one of ¢;3, ..., gin qualitative values.

The state of our recognition system, denoted by Q;,
is a tuple of all the qualitative values of our modules
(g1, . -,9m) under recognition task T}ij. Each recogni-
tion task T};; defines a system state that will constitute
a positive answer to that recognition task. Recognition
is done when we complete our task, which means a sta-
ble answer from our modules. The conditions for this
kind of decision will not be considered here and proba-
bly should take into account utility measures (frequency
of appearance, network complexity, etc.).

Under this framework learning can be defined as the
process of matching the “correct” system state with the
recognition task needed by a certain behavior. This pro-
cess is actually the reverse of recognition. A behavior
creates a need for an object. An object is segmented by
low level modules, and a system state is achieved. The
object is tested and a satisfied result for a needed be-
havior starts the creation or definition of a recognition
task.

When we need to perform a given recognition task
Tiij under behavior B;; and intention I, we may assume
that some parameter setting is done by the intention and
the behavior. These parameters fix the setting for the
task, which includes the required system state (some of
the modules might be in don’t care states) and possibly
some additional “common knowledge” parameters, such
as environmental parameters (outdoor, indoor), preda-
tor, size, etc. From this pont of view the recognition
process makes use of high-level information. For further
discussion of object categories and functional modeling
see [10].

3.2 Invariants (19, 34, 44]

Invariants are useful in solving major problems associ-
ated with object recognition. For instance, different im-
ages of the same object often differ from each other be-
cause of the different viewpoints from which they were
taken. To match the two images, standard methods thus
need to find the correct viewpoint, a difficult problem
that can involve search in a large parameter space of all
possible points of view and/or finding feature correspon-
dences. Geometric invariants are shape descriptors, com-
puted from the geometry of the shape, that remain un-




changed under geometric transformations such as change
of viewpoint. Thus they can be matched without search.
Deformations of objects are another important class of
changes for which invariance is useful.

We have developed a new and more robust method of
obtaining local projective and affine invariants. These
shape descriptors are useful for object recognition be-
cause they eliminate the search for the unknown view-
point. Being local, our invariants are much less sensitive
to occlusion than the global ones used by others. The
basic ideas underlying our method are: i) employing an
implicit curve representation without a curve parameter,
thus increasing robustness; ii) using a canonical coordi-
nate system which is defined by intrinsic properties of
the shape, independently of any given coordinate sys-
tem, and is thus invariant. Several shape configurations
have been treated using this approach: a general curve
without any correspondence, and curves with known cor-
respondences of one or two feature points or lines. The
method is applied by fitting an implicit polynomial in
a neighborhood of each object contour point. It has
been successfully implemented for real images of vari-
ous two-dimensional objects in three-dimensional space.
This work is described in detail in a separate paper in
these Proceedings.

3.3 Target recognition [52]

A multilevel energy environment has been developed
that simultaneously performs delineation, representation
and classification of two-dimensional object shapes in an
image utilizing a global optimization technique. The en-
ergy environment supports a novel multipolar represen-
tation which allows the delineation and representation
tasks to be viewed as a single operation. The delin-
eator acts as a hypothesis generator for the multipolar
representation, which uses description length tests to de-
termine whether to establish new “centers”. Model in-
formation is then utilized at these centers to identify
pieces of objects. In this way occluded objects can be
recognized. This method is more robust than conven-
tional, multistaged approaches because it incorporates
all known information into a single decision process. It
has been applied to the delineation and classification of
vehicles in FLIR images. Further details on this work
can be found in a separate paper in these Proceedings.

3.4 Pose estimation

We have shown that the bounded error recognition prob-
lem for images of non-planar three-dimensional objects
using point features can be decomposed into a set of one-
dimensional search tasks, involving searches along lines
joining the origin of the object coordinate system to the
feature points chosen to model the object. Points are
selected along these lines at locations given by the coor-
dinates of the detected image points; concurrent brack-
eting of these points by segment tree search along each
line provides maximal matchings between feature points
and image points. The depth of search is limited by pixel
resolution. This method is well adapted to the task of
tracking objects in the presence of variable occlusion and
clutter. This work is described in greater detail in a sep-

arate paper in these Proceedings. Some of our earlier
work on object pose estimation is described in [12].

4 Low-level vision

4.1 Estimation and segmentation

4.1.1 Image segmentation

The problems of image estimation and segmentation
can be cast in a joint Maximum A Posteriori (MAP)
framework using Gibbs distributions defined over the im-
age intensities and over line processes representing the
boundaries of image regions. MAP estimation is then
reduced to minimizing an appropriate energy function
defined on the intensity and line processes.

The energy function typically has three components;
(a) a measure of closeness to the data, (b) a weak con-
straint which assumes that the image is mostly smooth
except at the discontinuities, and (c) penalties on broken
contours, multiple edges, etc. In its most general form,
the energy is highly non-convex, causing deterministic
relaxation techniques to converge to shallow, local min-
ima. Stochastic relaxation is not always a viable alterna-
tive due to the computational complexity of the problem.
We are interested in deterministic, continuation methods
to solve the problem.

Alternative energy functions have been suggested
which depend primarily on the intensities and usually ig-
nore the interactions between the line processes. We can
utilize the insights gained by these methods by showing
that each of the alternative energy function sequences
has an equivalent sequence in the domain of the inten-
sity and line processes. Interactions can then be added
once the equivalent energy functions have been obtained.
There are many equivalent energy functions in the do-
main of the intensity and line processes; the concept of
an uncertainty function can help us to choose the proper
equivalent energy function. The uncertainty function is
analogous to the entropy in a statistical mechanical sys-
tem.

The resulting algorithm is a combination of the Con-
Jugate Gradient and the Iterated Conditional Models al-
gorithms and is completely deterministic. It has been
x[l]iplied successfully to the segmentation of aerial images

1].
A segmentation-based image coding technique has also
been developed [17]. Both uniform and textured re-
gion extraction algorithms are used for segmentation.
Textured regions are reconstructed using 2-D noncausal
Gaussian-Markov random field models. Uniform re-
gions are reconstructed using polynomial expansions. An
arithmetic coder is used for coding the boundaries of re-
gions. Reasonable quality images have been obtained at
a compression factor of 82:1.

4.1.2 Segmentation of SAR data (18, 40]

A statistical image model has been developed for seg-
menting polarimetric synthetic aperture radar (SAR)
data into regions of homogeneous and similar polarimet-
ric backscatter characteristics. A model for the condi-
tional distribution of the polarimetric complex data is
combined with a Markov random field representation for




the distribution of the region labels to obtain the pos-
terior distribution. Optimal region labeling of the data
is then defined as maximizing the posterior distribution
of the region labels given the polarimetric SAR compiex
data. This MAP technique has been implemented on a
parallel optimization network. Two procedures can be
used for selecting the characteristics of the regions; one is
supervised and requires training areas, the other is unsu-
pervised and is based on multidimensional clustering of
the logarithms of the parameters composing the polari-
metric covariance matrix of the data. Experiments using
real multilook polarimetric SAR complex data, dual po-
larization SAR data, and fully polarimetric SAR data
indicate that all three types of data yield generally sim-
ilar segmentation results.

For unsupervised segmentation, classes of polarimet-
ric backscatter have been selected based on multidimen-
sional fuzzy clustering. The clustering procedure uses
both polarimetric amplitude and phase information, is
adapted to the presence of image speckle, and does not
require an arbitrary weighting of the different polarimet-
ric channels; it also provides a partitioning of each data
sample used for clustering into multiple clusters. Given
the classes, the entire image can then be classified using
a MAP polarimetric classifier. Successful segmentation
results have been obtained using four-look polarimetric
SAR complex data of lava flows and of sea-ice acquired
by the NASA/JPL airborne polarimetric radar (AIR-
SAR).

4.1.3 Robust estimation [30]

Data processing for scien’ific and industrial tasks of-
ten involves accurate extration of theoretical model pa-
rameters from empirical data, and requires automated
estimation methods that are robust in the presence of
“noisy” (i.e., contaminated) data. Robust estimation is
thus an important statistical tool that is frequently ap-
plied in numerous fields of science and engineering,.

Since the computational complexity of an estimator is
one of the most important measures of its practicality,
searching for methods that reduce the time (and space)
complexity of robust estimators is a desirable research
goal. We have developed several computationally ef-
ficient algorithms for the exact computation of robust
statistical estimators. In particular, we have studied the
design and analysis of such algorithms for various prob-
lem domains, including line, curve, and surface fitting.
In this connection, we have developed a general method-
ology for the efficient computation of these classes of
estimators through the application of computational ge-
ometry techniques. In particular, we have developed ran-
domized algorithms for the above tasks that have the fol-
lowing properties: (1) The algorithms always terminate
and return the correct computational results; (2) the im-
proved (expected) running times occur with extremely
high probability; (3) the algorithms are quite easy to im-
plement; (4) the constants of proportionality (hidden by
the asymptotic notation) are small (i.e., the algorithms
are practical); and (5) the algorithms are space optimal
(i.e., they require linear storage).

The problem of fitting a straight line to a set of data

points is an important task in many application areas.
Recently the computation of linear estimators that are
robust has been recognized as important, since these es-
timators are insensitive to outlying data points, which
arise often in practice. We have studied one such robust
estimator [13], Siegel’s repeated median (RM) line es-
timator, which achieves the highest possible breakdown
point of 50%, and have developed: (1) a simple practi-
cal randomized RM algorithm that runs in O(nlog? n)
time with high probability, and (2) a slightly more com-
plex randomized RM algorithm which performs as well
asymptotically, and which is shown by empirical evi-
dence to perform in time O(nlogn) on many realistic
input distributions.

Existing algorithms for affine equivariant regression
estimators with high breakdown point are computation-
ally intensive. Heuristically, this appears to be due
to combinatorial and geometric reasons. Consequently,
non-affine estimators may allow faster computation. We
have developed [43] an RM algorithm which runs in
O(nlog? "2 time, a substantial improvement over the
naive O(n?) method. The new algorithm allows an em-
pirical study of this estimator for n up to 40,000. It turns
out that the finite-sample efficiencies converge extremely
slowly although the estimator is asymptotically normal.

More generally, given a set of n distinct points in
d-dimensional space that are hypothesized to lie on a
hyperplane, robust statistical estimators have been re-
cently proposed for the parameters of the model that
best fits these points. We have developed [48] efficient
algorithms for computing median-based robust estima-
tors (e.g., the RM and Theil-Sen estimators) in high-
dimensional space, by generalizing the computational
geometry techniques that were used to achieve efficient
algorithms in the 2-D case. This yields O(n?~! log n) ex-
pected time algorithms for the d-dimensional Theil-Sen
and RM estimators. Both algorithms are space optimal,
i.e., they require O(n) storage, for fixed d. An extension
of the methodology to nonlinear domain(s) such as circle
fitting has also been demonstrated.

4.1.4 Reliability of geometric computations
[22]

The reliability of 3-D interpretations computed from
images can be analyzed in statistical terms by employ-
ing a realistic model of image noise. First, the reliability
of edge fitting can be evaluated in terms of image noise
characteristics. Then, the reliability of vanishing point
estimation can be deduced from the reliability of edge
fitting. The result can then be applied to focal length
calibration, and an optimal scheme derived in such a way
that the reliability of the computed estimate is maxi-
mized. The confidence interval of the optimal estimate
can also be computed. We can also evaluate the reliabil-
ity of fitting an orthogonal frame to three orientations
obtained by sensing. Finally, we can derive statistical
criteria for testing edge groupings, vanishing points, fo-
cuses of expansion, and vanishing lines.




4.2 Representatioh and geometry
4.2.1 Multipolar representation 3]

We have developed a new method of delineating and
representing lobed objects, i.e., objects containing mul-
tiple compact parts, by using a multi-polar representa-
tion (MPR). The process begins by constructing a single-
center polar representation somewhere inside the object.
This establishes a 1-D, cyclic Markov Random Field
(1IDCMRF) which optimizes edge sharpness and con-
tour smoothness. The optimization is done using simu-
lated annealing. The IDCMREF is segmented into sectors
at significant minima of the radius; these sectors define
lobes. (An alternative is to segment at zero-crossings of
the contour curvature; see [52].) Next, each lobe is as-
signed a candidate polar sector representation centered
at the lobe’s centroid. This new set of representations
is then compared to the previous one using a “radius
entropy test” (RET). This test selects the representa-
tion with the highest degree of roundness, i.e. the rep-
resentation in which the radii are most uniform in their
sizes. When a new representation supersedes an old one,
each new polar center establishes a 1-D Markov Random
Field for its sector and boundary conditions are deter-
mined between neighboring MRFs. This process contin-
ues recursively within each of these MRFs. To deal with
deep lobes and concavities we define two special classes
of MRFs. Tunnel MRFs are used to explore long narrow
lobes; these MRFs extend the original lobe center by di-
viding the lobe’s radii into fore and aft groups. External
MRFs, whose centers lie outside of the object, are used
to delineate concavities. These ate detected when signif-
icant contour gaps appear between neighboring MRFs.
These MRFs must also meet the RET criterion in their
creation. The method can operate on raw image data
without preprocessing; the object representation is con-
structed simultaneously with the delineation process, an
important advantage when using the representation for
object recognition in real images, as described in [52].

4.2.2 Multiresolution curve representation [25]

We have developed a robust method for describing pla-
nar curves at multiple resolution using curvature infor-
mation. The method takes into account the discrete na-
ture of digital images as well as the discrete aspect of
a multi-resolution structure (pyramid). The robustness
of the technique is due to information that is extracted
by observing the behavior of corners in the pyramid.
The algorithm is conceptually simple and easily paral-
lelizable. We have analyzed the curvature of continuous
curves in scale-space, and studied the behavior of cur-
vature extrema under varying scale. These results are
used to eliminate any ambiguities that might arise from
sampling problems due to the discreteness of the repre-
sentation.

4.2.3 Growth models for shapes [51]

We have developed discrete models for growth of a
shape from a point on a two-dimensional Cartesian grid.
By growth is meant an accretionary process occurring at
the boundary of the shape. We have studied three types
of growth models: deterministic (periodic), probabilis-
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tic (stochastic), and probabilistic mixing of deterministic
processes. We have found that the probabilistic models
can produce smooth isotropic or elongated shapes, con-
cavities, and protrusions.

4.2.4 Polygonal ribbons [7, 20)

A polygonal ribbon is a finite sequence of polygons
such that each pair of successive polygons intersect ex-
actly in a common side. We have investigated various
geometric properties of such ribbons in two and three
dimensions, including properties such as nonselfintersec-
tion, orientability, and twist. When the polygons are
all of simple types—for example, when they are all tri-
angles or all rectangles—they can be represented com-
pactly in terms of such quantities as vertex coordinates,
side lengths, and dihedral angles. For nonselfintersecting
ribbons, we have established basic connectivity proper-
ties of the ribbon and its border.

4.2.5 Connectedness [6]

In collaboration with Prof. A: Nakamura of Japan,
we have solved the long-outstanding problem of proving
that two-dimensional connected pictures over {0,1} are
not recognizable by finite-state acceptors.

4.3 Applications
4.3.1 Aerial image understanding

The University of Maryland (with TASC a a subeon-
tractor) is one of the group of institutions doing research
on aerial image understanding in support of the RADIUS
program. The emphasis of our research is on knowledge
based change detection using site models and image ana-
lysts’ (IA) domain expertise. Typically, an IA uses a set
of object and background models to build a site model
for an area of interest. Change detection consists of clas-
sifying changes in the imagery into changes due to site
updates, changes due to activity, and irrelevant changes
due to illumination, seasonal variations, etc.

Before change detection can be attempted, the newly
acquired images have to be registered to the site model.
Site models can also be used to mediate registration be-
tween two severely off-nadir images. We are developing
methods of using site models in image registration; this
is especially important in oblique acquisition situations
where 3-D information is critical due to foreshortening,
etc.

Even if the task of image registration can be accom-
plished, the IA’s expertise is crucial in identifying rel-
evant changes. This expertise is dependent on the site
and the specific intelligence agenda. We are studying
how image understanding (IU) techniques can aid the
IA in change detection. This will be accomplished by
designing an interface that allows the IA to specify what
are to be considered as relevant changes, and to select
appropriate IU algorithms for detecting these changes.

Once changes have been identified, updating of the site
models may be necessary. We plan to use non-monotonic
reasoning based techniques such as assumption based
truth maintenance systems (ATMS) and their variants to
efficiently perform the searches required for image regis-
tration; to formulate constraints on IU algorithms (e.g.,




for stereo or building detection); and to provide interac-
tive user guidance in change detection.

A significant part of our research effort will be the
employment of usability analysis teckniques and guid-
ance from experienced IAs to ensure the utility of the
algorithms that we develop. A more detailed paper re-
porting our progress to date can be found elsewhere in
these Proceedings.

4.3.2 Trees [11, 39)]

Plants such as trees can be modeled by three-
dimensional hierarchical branching structures. If these
structures are sufficiently sparse, so that self-occlusion is
relatively minor, we have shown that their geometrical
properties can be recovered from a single image.

The distribution of leaves in a tree crown can be mod-
eled by a random geometric process. Statistical proper-
ties of such distributions can then be derived, including
the probability of seeing through the leaves, and the dis-
tribution of leaf gray levels under various illumination
models.

4.3.3 Faces [15, 42)

Faces represent one of the most common visual pat-
terns in our environment, and humans have a remarkable
ability to recognize them. Face recognition does not fit
into the traditional approaches of model based recogni-
tion in vision. Like most other natural objects, a geo-
metrical interpretation of faces is difficult to achieve. We
have developed a feature based approach to face recog-
nition, where the features are derived from the inten-
sity data without assuming any knowledge of the face
structure. The feature extraction model is biologically
motivated, and the locations of the features often corre-
spond to salient facial features such as the eyes, nose, etc.
Topological graphs are used to represent relations be-
tween features, and a simple deterministic graph match-
ing scheme which exploits the basic structure is used to
recognize familiar faces from a database. Each of the
stages in the system can be fully implemented in paral-
lel to achieve real time recognition.

We have also developed an approach to labeling the
components of faces from range images. The compo-
nents of interest are those which humans usually find
significant for recognition. To cope with the non-rigidity
of faces, an entirely qualitative approach is used. A pre-
processing stage employs a multi-stage diffusion process
to identify convexity and concavity points. These points
are grouped into components and qualitative reasoning
about possible interpretations of the components is per-
formed. Consistency of hypothesized interpretations is
verified using context-based reasoning.

4.3.4 Handwriting (8, 21)

The primary intention of the handwriting process is
to produce a series of perceptually meaningful strokes
which collectively relay a message to the reader. Un-
fortunately, the process may be quite complex, so noise
is easily introduced and correct interpretation may not
be possible in the absence of contextual knowledge (lin-
guistic or graphic) about the domain. We believe that
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a handwritten document should be analyzed within the
context of the process which created it.

The problem of off-line handwritten character recog-
nition has eluded a satisfactory solution for several
decades. Researchers working in the area of on-line
recognition have had greater success, but the poesibil-
ity of extracting on-line information fro