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Abstract:
In this paper we introduce a new definition of superconvergence - the 17%-

superconlergence, which generalises the classical idea of superconvergence to gen-
eral meshes. We show that this new definition can be employed to determine
the regions of least-error in any element in the interior of any grid by using a
computer-baaed approach. We present numerical results for the standard displace-
ment finite element method for the scalar equation of orthotropic heat-conduction,
for meshes of conforming triangles of degree p, 1 < p _< 5, and elements in the
interior of the mesh. The results demonstrate that, unlike classical superconver-
gence, il%-superconvergence is applicable to the complex grids which are employed
in practical engineering computations.
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I Introduction.

Let {uhj be a one parameter sequence of finite element solutions of a problem
which are computed using a sequence of meshes T = {Th} and let u denote the
exact solution. Let us assume that we are interested in the values of the solution or
its derivatives or linear combinations of these quantities i.e. in the linear functional
F(u)(u). Let us assume that for every element •r of the mesh TI a special point r,
which depends on the geometry (but not the size) of the element, is given. Then
denoting

(1.1)(u - uh) := max IF(u -h)(-)lnEr

we are interested in the values of relative error in F(u) at r,

IF(u-uh)(i)I
(1.2) e(r;F;u,u,,h,-):= { .(.:) , if-,(,-u,)#O0

10 ,if f,(u - Uh) = 0.

If the point r is such that

(1.3) e(i;F;u, uh, ,) __ • as h-+ 0
100

then r will be called a u-q%-superconvergence point relative to the exact solution
u and the family of meshes T. Consider now a family U of solutions; the point e
will be a U-V%-superconvergence point relative to the family of meshes T if it is
u-9%-superconvergence point for every u E U. Obviously e(i;F; u, %h, r) :_ 1
and thus all points in every element r are 100%-superconvergence points. Note
that if there exists a point r in the element r for which V = 0 in (1.3), i.e.

(1.4) e(); F;u, uh,,T) --- 0 as h --- 0

for a particular u (resp. for every u E U) then I is a u-superconvergence (resp.
U-superconvergence) point in the classical sense. The superconvergence of this
type was studied by many investigators; see for example [1-28] and the citations
in these papers. It should be noted that the ti%-superconvergence has not been
analyzed in the literature. In this paper we will study the V%-superconvergence,
when F(u) is a linear combination of derivatives of u, for the model-problem of
orthotropic heat-conduction for meshes of triangles of degree p, 1 < p : 5. In
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[29] we will address tp%-superconvergence for meshes of quadrilaterals with local
refinements.

In [28] we studied classical superconvergence by a computer-based approach.
We observed that the .uperconverpence points are very sensitie to the geometry of
the mesh, the solution-type and the coefficients of the differential operator. Hence
the superconvergence points may not exist (in the classical sense) for the complex
grids employed in practical computations. In contrast, the v/%-superconvergence
points will always exist for a sufficiently high il and can be defined for entire classes
of grid geometries, solution-types and coefficients of the differential operator. Thus
the i%-Wuperconvergence points are robust and can be wed to sample the solution
in practical engineering computations.

Following this Introduction we outline the model problem of orthotropic heat-
conduction and we define various quantities associated with the geometry of the
error. We outline the theoretical setting of this study and give a computer-based
approach to obtain the V%-superconvergence points. We then give various exam-
ples of the il%-superconvergence points for various grid geometries, solution-types
and coefficients of orthotropy and demonstrate how to obtain robust sampling
points for the practical grids.

2 Preliminaries.

2.1 The model problem

Let us consider the model problem of heat-conduction in orthotropic medium
with mixed boundary conditions. Let fl C R2 be a bounded polygonal domain and
let its boundary Ofn be split into two parts rD and rN (rD has positive length).
Let u be the solution of the problem

(2.1a) C(u):= 2 ,-(K.~)i in n,

(2.1b) u=o, onr'D,

2
(2.1c) % qk(u)n'. =, on rN.

k=1

Here Kg, k, I = 1, 2 are the entries of the thermal-conductivity matrix which
satisfy the conditions
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7 a

(2.2.) Ku, =Km, ,kt =1,2,

(2.U) 0 < K•(f,3 + f32)5E _<e fh ý,t& _< ý(f, + f23) V f (6,& 1 E R2,
kA=1

where K.., K. are the principal thermal conductivities;

(2.3) q Ku= -, k = 1,2,

are the components of the flux (heat-fiuz); %.,, = 1, 2 are the components of the
unit outer normal of 80; 1 E L2(11), P E L2(rN) are given data.

Let HEjI(0) := {u E He(0) ' u = 0 on rDI}. Then the above problem may be
put in the variational form: Find u E HrD(fl) such that

(2.4) Bo(u&,,,) = LO(w) V ,, E HD(f1)

where

(2.5) Bn(uv):= Ku , 9n(u) IV + f .

Let T := {T&} be a reguv-/-famil of meshes of triangles with straight edges.
(It is assumed that for any triangles n, r-, C T7', the intersection n I : is either
empty, a vertex or a common edge, and that the minimal angle of all the triangles
is bounded below by a positive constant, the same for all meshes.) The meshes Th
are not assumed to be quasiuniform. We introduce the conforming finite-element
Spaces

(2.6) Sh : u E C!(11)1 uIn E 7',(m), Is =I

where P'(r) denotes the space of polynomials of degree p over the triangle r;
M(TQ) is the number of elements in TI. The finite element solution ul, of the
model problem satisfies: Find u•h SIr. := SI n" HrD(0) such that

(2.7) Bn(u,,v,) = LO(",) V w. E Sip.,rD

We let uh := v - uj% denote the error in the finite element solution.
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2.2 Definition of q%-superconvergence quantities

Let TI E T be a finite element grid, " E T% be any element and K be the
thermal-conductivity matrix expressed in a given fixed coordinate system. Let

Ou
F(u) be the solution-quantity of interest, for example we may have F(u) -

or-2!or %1(u) = &u1  ' Orq(u) =K. O-Oo 2 8o=K , +KR - oq, + K. i-, etc. We now

define several geometrical quantities associated with the error in the finite element
solution in the element r.

Given ij, 0 _< q •_ 100 we define the following:

1. V%-contour of F(u) in the element r E TI, for the ezact solution u and for
matenal-orthotropp K:

(2.8) CVA)(u; K;,r,T&) :={ E 'r 1 9(c; F;K;u, u,%,h, r) = 3-,-(. 1-" 0

Here e(w;F;K; ,uh, h,•) is the relative error as defined in (1.2); note that K
was added to the list of arguments to indicate the dependence of the relative error
on the orthotropy.

2. 1%-band of F(u) in the element T E TI for the exact solution u and for material-
orthotropy K:

(2.9) B" )(u;K;,Th) := { E r e(I;F;K;u, uhh,) <

S. Superconivsgence points of F(u) in the element " E Th for the clan of exact
solutions U and for material-orthotropy K:

(2.10) X;4('.)(U; K;"r, Th) := fl C,)(u; K; ",2,T,)
MuE

4. ,i%-sperconverpence regions of F(u) in the element r E TI for the class of
exact solutions U and for material-orthotropy K:

(2.11) R.)(U; K;'r, T h) := fl ,, (u; K; r, T h)
P(M)

W~EU

5. Common tj%-superconvergence region of F(u) in the element 7r E T2 for the
class of exact solutions U, the clas of materials M and the class of meshes T:
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F M.) n -97-n

Here M is a class of thermal conductivity matrices referred to a given fixed co-
ordinate system and r is understood to be an element of fied geometry (but not
fixed sise) embedded in all the meshes in the family T.

Remark .1. In some cases the sets defined above may be empty.

Remark I.t. The function u is a solution (reap. U is a class of solutions) of (2.1)
for a given set of data (reap. for given classes of data). When I - 0 we say
that exact solution u is "harmonic" (resp. U is the class of "harmonic" solutions).
(When u satisfies Laplace's equation, -Au = 0 (i.e. when K = I), the solution
is harmonic in the classical sense.) The majority of steady-state computations in
engineering are done to approximate "harmonic" solutions; thus it is important to
study superconvergence for this class of solutions.

One is interested to know a-priori the il%-superconvergence regions for the
smallest possible values of i1%, for which they exist, for classes of solutions of
interest (In practical computations in plane elasticity and heat-conduction the
class of solutions of interest is the subclass of "harmonic" solutions with a finite
number of algebraic point singularities of the type rO). In general, if T1, is any
grid, it is impossible to predict the locations of the t)%-superconvergence regions.
Here we will make additional assumptions about the approximation which will
enable us to determine a-priori the V%-superconvergence regions for the meshes
which occur in engineering computations. We will consider that the problem was
solved using a sequence of meshes {TA} (not necessarily uniform meshes) which
are constructed by a mesh-generator or an adaptive process. We will address the
superconvergenceas h - 0 i.e. we are interested in the asymptotic locations of the
wp%-superconwvergence regions in the limit as the mesh-parameter h4 tends to zero.

In this paper we will determine the asymptotic V%-superconvergence regions
for elements in the interior of the mesh and smooth solutions. (The solutions can
have isolated point-singularities at the boundaries but they are analytic in the
interior of the domain.) The theoretical results will be given for a special class of
locally periodic meshes. However through numerical examples we will demonstrate
that the conclusions of the theoretical study hold, for all practical purposes, for
the complex grids which are used in the practical engineering computations (for
example the grid shown in Fig. 1).

2.3 The class of locally periodic meshes

We now present the definition of a special class of locally periodic meshes. Let
us consider a locally periodic meshes (or grid) defined as follows. Let 0 < H < HO,
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O (mot02) Ef(I

(2.13) S(1802H) : ={u=(W1,32)jjI.j- wI <H, i =112}

and assume HO is sufficiently small such that 9(.°, HO) C fn. Further, let -y be a
set of multi-indices (i,j), u("d) -= ()(•)) E 0 and

(2.14) c(.(0J),h) := S(€('j),h) C S(.°,H), (i,j) E 7

be the set of the h-cells (or cells) which cover exactly S(u°, H) i.e.

(2.15a) U =(w('j),h)=S(.",H)
('J)e,

(2.15b) c(0(' d),h)fnc(s(oa-i),h) = 0 for (i,,j 1 ) 9 (i2,j2 )

We will refer to S(0", H) as the .ubdomain of periodicity of the mesh centered at
00. Denoting by

(2.16)~~ . $:(0, 1) :-- f((','i2)1 ji,, < 1 , li,, < 1I

the unit- (mwter-) cell 2, the h-cell is an h-scaled and translated master-cell.
Let T be a triangular mesh on the master-cell (the master-mesh) and th(j) be

the mesh on c(u(%'), h) which is the scaled and translated image of T. We will
consider the family T of locally periodic meshes. Let Th E T and Th (0, H) be the
restriction of Th on ,(w, H) and Ti1"') the restriction of Th(w°, H) on c(o(j), h).
We assume that TI"j) = tj 'j), (ij) E 7 i.e. T h(w°, H) is made by the periodic
repetition of the h-scaled master mesh.

The type of meshes under consideration is depicted in Fig. 2a, where the subdo-
mains S(0°, H) D S(.°, H1) are covered by a periodic array of cells. An example
is shown in Fig. 2b (where the master-mesh in the master-cell is shown in Fig. 2c).
Here we are interested in the superconvergence regions in the elements belonging
to the patch shown in the Figs. 2b, 2c. Outside the square S(u°, H) the mesh is
arbitrary; it could have curved elements, etc. The values of H1 depend on h i.e.
H2 = H1 (h). More precisely we will assume that there exist C, and C. indpendent
of h such that

(2.17) C, HI* :_ h <_ C2H• , > 1
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3 The theoretical setting

We will here for simplicity address only the case of Poisson's equation (K = I
in (2.1)). Nevertheless, the results could be easily generalized to the general setting
for orthotropic medium.

Given a function u and the multi-index a := (al, a 2) we define

(3.1.) 0, = Ca 1 2 + a2

(3.1b) (D )() := [( 12)(w)]' , > 0, integer
Ia=h

and let us denote

(3.2a) II,,lIS(. ,,) IIjUlL.(S(.og,))

(3.2b) I I s(.o.,H,) I IUI IL-(S(.•,H))

(3.2c) u= is E I Du I
101=2

Let Q be a polynomial of degree p + 1 on the master-cell Z and let T be the
master-mesh. Then denote

(3.3) P:= - ,Q'

where QIIT is the interpolant of degree p of the function Q defined over the master-
mesh 7t (for which h = 1). Then we have

l p(i,2) = p(-1,,2), I2I1 < 1
(3.4)

Ail x1) = Ail1,-1), IP1l < 1



because S1(Ec) includes all polynomials of degree p on & Further let

(3.5) HpZ~):= {u E H'(Z) Iu satisfies (3.4)}

and

(3.6) {isRM:=l E Hp'Z(E) Iu E Pp(f~ V f E T

Further let P' E Sjpz3 ) sucl

(3.7a) B8(i',i) (ps Z) V 6 E 'PR

and

(3.7b) (P-')-= 0

Note that the function P• exists and is uniquely determined (we will compute it
numerically in the examples). Let us also define 0 E H1 (E) by

(3.8) #:= p-_'= Q-_Qr-i '.

Below we outline the main theorem of the paper.
We will make the following assumptions about the exact solution u:

Aaumption I

On .(. 0 ,H)

(3.9) II _K_<oo, o0_lal___,+ 2

Remar* 3.1. Assumption I states that the solution is locally smooth in the sub-
domain 9(nua, H) i.e. the subdomain should be sufficiently far from boundaries,
material-interfaces and points where the data are rough.

Assmption IH

I a.:= (Da)( 0 ), a = (a,, a2 ), jai _< p+ 1 then

10



(3.10) R2 = a. > 0
l,,,l--p+1

Further, we assume that the mesh T(fl, h) is such that:

Assumption III

On S ( 0 , HI), H, < H < HO

(3.11) Iljejhlls(.,o•) <_ Ch"HfI

with P ?_ (p + 1) -e, where e is specified in the theorem below and where C is
independent of T(fl, A), Hi, but it depends on K and R.

Remark 3.2. We do not assume that u is smooth in fl outside of S(u0 , H). For
example, fl can have a boundary with reentrant corners (as in Fig. 2(a)) and
hence u can be unsmooth in the neighborhood of these corners. Nevertheless
assumption Ill makes an implicit requirement on the (refinement of the) mesh in
the neighborhood of these corners. If u is smooth in a convex 0 and the mesh is
quasi-uniform then

(3.12) Ilehln <5 C.+' i~nhi IV'+'U1,in, r _> 0

and hence in assumption mI we can take P < p + 1 arbitrary. Assumption III is
related to the pollution problem which is analyzed in [38].

Remark 3.3. Assumptions IH, MI imply that the principal part of the error in
S(w°, H2) is related to the non-zero (p + 1)-derivatives of the exact solution at w0.

Let OA, E HpuZR(c(w('j), h)) be the function 0, defined above, scaled and trans-
lated onto the cell c(0(4i), h) of the mesh in S( 0 , H) i.e.

(3.13) ,h(): 008)(&0, (s) = hP0(i) , i= 1, 2,

where a E c((e),h), g= (a - •

It is easy to see that ib, can be periodically extended over S(m0 , H,). In [28]
we have proven the following theorem using the theory of interior estimates (see
[31]-[37]):

Theorem 1. Let H 2 < H1 < H < HO and the assumptions I-III and (2.17)-(2.18)
hold with

11



(3.14) 6p+ 6p--1 =p--e, e1+

TP- V 6 (6p +1)'

Then for any m E S(° 0 , H 2)

(3.15) Iehw()=1 I h~ j~ +IAICh+"

with JAI -< 1 and C independent of h.

Remark 3-4. Note that -b (and thus 04) depends on the polynomial Q which
approximates well the solution in S(.°, H). Theorem 1 states that for small h
(and hence H1) we have on S(u°,H2 )

(3.16) BeJ (.) - t(.)

or more precisely

(3.17) ji,(n)l = Ih 2'()l+ IAI Ch'P

On the other hand it is easy to see that

(3.18) max ehL I• C,•

where C depends on the constant R defined in (3.10). Nevertheless this does not
mean that

(3.19) , ChP', i = 1,2

The case that

(3.20) [h!,I _C-ho, qo>0 for either i=1 or 2

12
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is very exceptional. Hence we will assume that (3.20) does not happen i.e. we will
assume that there exists a constant a > 0 independent of h such that

(3.21) Ž > h IT.

This assumption could formally be achieved by imposing additional assumptions
on the a&'s (defined in assumption II). Note also that assumption (3.21) is always
assumed in the classical muperconvergence theories.

Remark 3.9. Under assumption (3.21) Theorem 1 states that: A point A in the

element f is asanptoticdlly i%-superconvergence point for F(u) = 2ti

if

(3.22a) 6(w; F; I; Q, x",,1, f) <5 10

where

(3.22b) •(;;;,,,' =IPM( D)(•I •)=I1

Remark 3.10. The term V%-auperconveoence is not precisely descriptive. We
have used it because we wanted that i/%-superconvergence points for 9 = 0 be
superconvergence points in the common terminology.

Theorem I shows that the v%-superconvergence can be analyzed by a local
analysis in the neighborhood of the elements under consideration. By this we
mean that the q%-superconvergence regions of the finite element solution are very
close to the ones determined from the local analysis provided that the mesh is
sufficiently fine.

4 The methodology for determining the 17%-
superconvergence quantities

In this paper superconvergence is treated as local behavior and is based on
assumptions about the local behavior of the solution in the interior of the domain.
We will consider the class of solutions which are locally smooth in S(u°, H), namely,

(4.1) UG:= {uEHI(CI)I ID Is(.O@)<K, 0___jai :p+2}

13



where S(u°, H) denotes an interior subdomain of interest in which the mesh is
locally periodic as described above (the subdomain must be a finite distance away
from the boundary and points of roughness of the source term; see Fig. 2a). In
many instances we are only interested in the subclass of solutions in UG which are
"harmonic" (we say that u is "harmonic" if it satisfies the homogeneous differential
equation), namely,

(4.2) WHO:={fuE UG I C(u)=O0 in fl}

We may also assume that the functions are "harmonic" in a subdomain which is
slightly bigger than S(w°, H) and which includes S(&°, H) in its interior.

In the previous Section we outlined Theorem 1 which states that we can obtain
the asymptotic values of the error 0k% for any smooth solution u in the interior of
a periodic mesh-subdomain by solving the periodic boundary-value problem (3.7),
using the master-mesh T over the master-cell 2, with data obtained from the local
(p + 1)-degree Taylor-series expansion of the exact solution (which approximates
well the function u in S(z°, H)). Based on this result we will construc t , umerical
procedure to determine the 'i%-superconvergence quantities for a giv.. class of
smooth solutions by employing the corresponding class of (p+ 1)-degree monomials.

a. The classes of (p + 1)-degree monomial solutions.

Let us assume that for a given locally periodic grid with corresponding periodic
master-mesh T, given material orthotropy and given class of smooth solutions U
we consider

(4.3) Q:={Q Q(Z19W2) = XaQAk(Z1,2), Qk(:1,:2) =E ~ +14 1}
h=1 L1=0

the class of (p+ 1)-degree monomials which occur in all (p+ 1)-degree Taylor-series
expansions of functions from U. Here Qi, k = 1,... ,nd denotes a set of linearly
independent monomials which span Q. For example let us assume that U is the
class of smooth solutions UG given in (4.1); in this case we may choose

(4.4) Qh( 1I,z 2):=1 -2- , l<k<nd=p+2 2

and we obtain the class of all (p + 1)-degree monomials Q42.
In many practical applications we are interested only in the class of "harmonic"

solutions U"W given in (4.2). Then Q is the two-dimensional linear space of "har-
monic" monomials of degree (p + 1) and will be denoted by QH". For example in
the case of Laplace's equation (K = I) we have

14



(4.5am) 0 := {Q'I QA(z1 u2) E 1.=I(2,X)
h=I

(4.5b) Q'U!(gh1 102 ) = 'Re(Xp+1 ) I QT2(. 101 2) = ), X= 3+5

Note that in this case we do not use the quotes since the functions are harmonic
in the classical sense (i.e. they satisfy Laplace's equation).

b. Aimg the perodctu for general meshes.

In the previous Section the theoretical results for the asymptotic values of the
error in the interior of periodic mesh-subdomains in locally periodic grids were
outlined. In particular, it was stated that the asymptotic error-function 0, in
any element r in the h-cell in the interior of any periodic mesh-subdomain can be
obtained by solving a periodic boundary-value problem (3.7), using the master-
mesh T over the master-cell B, with data obtained from the local (p + 1)-degree
Taylor-series expansion of the exast solution. In order to apply the results of the
theoretical study to the practical meshes, for which the mesh is not locally periodic,
the following technique of freexuvg the periodicity will be employed:

1. Let X be a vertex of the mesh. We will be interested in the 9%-superconver-
gence regions in the elements in the mesh-cell w0 (see for example Figs. 3a,
41) in a neighborhood of elements around the vertex X. Define an &-layered
mesh-ceH of elements w4 surrounding the mesh-cell wo (see Figs. 3a and 41
where 4 is shown with a thick black perimeter; this cell is enclosed in the
general mesh given in Fig. 1) by

(4.6) w.:= U "'X I w, (AP:=X DT; wX: U r';
XeN(w') XEN(Tj

where N(') denotes the set of the three vertices of element r' and Xr is a
mesh-cell of elements connected to vertex X which includes the element r.

2. Complete the mesh-ceH w4 (shown in Fig. 3b) to a periodic-grid over a
slightly larger square periodic-cell which encloses 4p., as shown in Fig. 3c.
The periodic-cell is then scaled and translated to the unit master-cell &
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3. Assume that the mesh in the neighborhood of element r is made from the pe-
riodic repetition of h-cells obtained from the master-cell, as shown in Fig. 2b
(where the master-cell is given in Fig. 2c), and let A tend to zero. Then
the theoretical-setting of the previous Section applies and the asymptotic
error-function 'kh in the element T can be obtained from the interpolation-
error and the solution of the periodic boundary-value problem (3.7) over the
master-cell &

In the numerical examples it will be demonstrated that the results of il%-

superconvergence obtained from the above methodology hold, for all practical pur-
poses, for the complex grids used in engineering computations (provided that the
pollution-error is controlled, the approximation is in the asymptotic range and that
sufficient number of mesh-layers are included in the mesh-cell w•').

c. Determination of the tj%-superconvergence quantities.

Based on the results of the theoretical study, outlined in Section 3, the asymp-
totic locations of the q%-superconvergence quantities in the element T for a solution
u (resp. class of solutions U) can be obtained from the corresponding quantities,
defined on the master-cell Z, for the local (p + 1)-degree Taylor expansion Q of u
(resp. the class Q of the local (p + 1)-degree Taylor series expansions of functions
u E U), namely:

(4.7a) lim C~(us;K;T,rT.) = C 1 )(Q; K; f~ I

(4.7b) lim m% 96 (Q; K; fT)• .x(u K;,( ,IJ ,jr,?)

(4.7c) lim X(.) (U; K;,T)= r,"TQ; K; ." ,

(4.7d) Urn 'X (K , 1)- ' (Q; K; f , )F(.)(U;K;•,rTh) R"" ""
h-..O F") Fu

where the superconvergence quantities over f E T are defined as the correspond-
ing quantities in (2.2) by employing the relative error function given by (3.22b).
The above equalities are understood through the transformation which maps the
master-cell into the h-cefls.

Renark 4.1. The above limits hold for the locally periodic meshes under the
assumptions of the theoretical analysis of Section 3. Hence for the general grids
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the limit should be understood for the mesh which is constructed by freeing the
peiodicity (ee also Figs. 2 and 3).

The asymptotic i%-contounrs for a given solution u can be obtained by con-
touring the function 0, defined in (3.8), corresponding to the local Taylor-series
expansion Q of u. The superconvergence points A for a given class of solutions U
should satisfy

(4.8) F(•,)(i) = 0 for I _< i _< ,•

Here 0 := p, -4, where 4 is the solution of (3.7) for pi = , - (Qi,, where Q,
is the i-th basis monomial of the nd-dimensional monomial space Q corresponding
to the class U, as discussed in (4.3), (4.4). When (4.8) holds, the zero-contours of
F(i#,) intersect at I for 1 < i <nd.

Revar 4-.. For the class of general solutions U,, Gd = p + 2, and as p increases
(for p 2 3) the likelihood of zero-contours for each one of the #• 's crossing simul-
taneously at one point is very small. Thus a few or no superconvergence points
exist for the class UG and p > 3. On the other hand for the class of "harmonic"
solutions U"a', •ud = 2 independent of p, and many superconvergence exist and
their number increases with p. For details see [28].

The asymptotic i%-superconvergence bands for a solution u can be determined
from the function F(#) by using piecewise linear interpolation of F(#) on a suffi-
ciently fine uniform mesh obtained by subdividing the triangle r.

The asymptotic q%-superconvergence regions for a class of solutions U can be
determined by using numerical optimization. In particular, consider the uniform
subdivision of the element r into subtriangles with vertices at the set of points

S:= {,} " Define the relative-error function at the point C,

(4.9) ej(,)(4,; F; K; Q, {4}:,, 1,id) := ma-x "-,,.100,
ma x G aipc~ (#4 )(01)

Then the function 6j.)(A; F; K; Q, {4}I , 1,f) can be defined for any point
r E f by using linear interpolation in the subtriangles. The asymptotic q%-
superconvergence regions in the element T can be approximated using the level-sets
of the functions (.)(I; F; K; Q, {4}f , 1,f) i.e.

(4.10) Qre; P; K; Q, < V
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We will call this approach the drect approac. It is also possible to use a simpfified
appoac which avoids the use of numerical optimisation at every point. First
observe that

(4.11)

ad6

i E ,A(A,)0(E( 4l I E A,(,)IlMAX mx i -i -a•• )

' • -- ,,(.)) -(,€)' _

Hence we can define the function

(4.12) )(i;F;•;• {(} 1 ,)(f) ,

a- 1W1

where

max 9)) 2)

aip

(4.13) .z :=rij=1,...,qa

The quantity Z 1 can be computed using numerical optimisation. Let

(4.14) 'Rr..j)(Q;K';T,T) {i E 'I i,)(;F;K';Q,{4},•.,1,f')' " jq

M= ,.< d

denote the apprneimnte regions of q%-superconvergence for the class of solutions

Q obtained by the imnplified approach.
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The cm-e- ilsonver agence region in an element r for a given class of
meshes and materials can be determined by using either the direct or the simplified
approach.

Remo* 4.3. Note that we have

(4.15) (Q ;FlK

and we get a conservative estimate for the V%-superconvergence regions when the
simplified approach is used. For the class of harmonic functions O" we observed
that the regions obtained by the two approaches are very close. However for the
class of general solutions UG the simplified approach is too pessimistic and the
more expensive direct approach must be employed.

Remawk 4.4- The functions defined in (4.9), (4.12) depend on the set of points --.
To ensure good accuracy in the approximation of the V%-superconvergence regions
a sufficient number of points must be emp'ioyed.

5 Numerical studies of superconvergence

We will now present a model study of the q%-superconvergence properties of
finite element solutions in the interior of any grid, for any smooth solution and
material-orthotropy. We will address the following questions:

1. Given an element r in the interior of a periodic subdomain of a locally pe-
riodic mesh Th, where are the points of superconvergence and what is their
sensitivity with respect to:

(i) The class of solutions (harmonic or general);

(ii) The material orthotropy;

(iii) The geometry of the mesh and the number of mesh-layer in the mesh-
cells

2. Given 9% (between 0-100%) where are the regions in which the derivatives
of the error, or the components of the flux are within V% of the maximum
error in the respective quantities in the element ri? In particular:

a. For the periodic meshes shown in Fig. 4 where are the il%-superconver-
gence regions for the z1-derivative and how do these regions vary with
the degree p of the elements:

(i) For the class of harmonic solutions U4;
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(ii) For the class of general solutions UG?

b. For periodic meshes what is the effect of the mesh-distortion, the material-
orthotropy and the surrounding mesh on the location of the 'q%-supercon-
vergence regions in a typical element?

c. For a general mesh, like the ones used in practical engineering compu-
tations, how different are the regions which are determined by freezing
the periodicity from the regions determined from the actual mesh?

We will answer the above mentioned questions by employing the computer-
based approach outlined in Section 4.

5.1 Robustness of the superconvergence points with re-
spect to the class of solutions and distortions of the
mesh for the Laplace equation (K = I)

We considered the four periodic patterns shown in Fig. 4. In 128J we determined
the points of superconvergence for the periodic meshes shown in Fig. 4 for the
classes U-9 and UG. The points are listed in Tables 1 for 1 < p < 5 for the class
of harmonic solutions. Table 2 indicates which points in each pattern are also
superconvergence points for the class of general solutions. In order to investigate
the robustness of these points with respect to the class of solutions we computed
(Table 3) the maximum i%-error in the a1-derivative of the solution for the class of
general solutions UGO at the superconvergence points for the class UH for quadratic
elements i.e. the value

(5.1) := max e (i;. ;-; I; Qz'9,I ) 1 &E X7(Q; I;f )
QEQP am,1L

From the numerical results we observe that the relative error at the supercon-
vergence points for the class of harmonic solutions the may be large for solutions
which are not harmonic.

5.2 Determination of the 1i79r-superconvergence regions for
the periodic meshes (K = I)

From the previous example it is clear that the superconvergence points are
very sensitive to class of solutions and the geometry of the mesh. Moreover, the
points may not exist at all; for example there are no superconvergence points for
the w1 -derivative of the solution in the Union-Jack pattern for the class of general
solutions. We will now report the ii%-superconvergence regions for the periodic
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malhes shown in Fig. 4. We will show that, unlike the superconvergence points,
these regions always exist (in any element in any pattern) for sufficiently high i1%.

We determined the il%-superconvergence regions for the classes of harmonic
and general solutions, for the elements f in the periodic-cell which consists of: two
elements for the Regular pattern; four elements for the Chevron and Criss-Cross
patterns; eight elements for the Union-Jack pattern. The levels of q% in the Figures
were chosen to be 10%, 20%, 30%. In Figs. 5-8 the regions R..(QH; r; f, T) and

the contours of zero-error in the at-derivative of the solution for tde basis harmonic-
monomials are given for p = 1, 2, 3, 4, 5. It should be noted that for the class of
harmonic solutions the results were obtained using the "simplified approach" (these
results are very dose to corresponding results obtained using the direct approach).

The regions VI(QG;I;f,T) forp = 1, 2, 3, are given in Figs. 9-12. It should be

noted that for the class of general solutions the direct approach must be used in
the determination of the i/%-superconvergence regions, as the simplified approach
is too pessimistic (it results in regions which are much smaller than the actual
ones).

We observe that:

1. For the class of harmonic solutions, the w/%-superconvergence regions for the
error in the z,-derivative grow with the degree p of the elements.

2. For the class of general solutions, the i/%-superconvergence regions for the
Z,-derivative are small (except for the Regular pattern for p = 1, 2) and they
diminish in size as p grows, i.e. for higher p's (p Ž_ 3) the regions may not
exist at all for small V's, for example for i/ __ 30.

5.3 Robustness of ?/%-superconvergence regions: Effect of
mesh-distortion (K = I)

To study the robustness of the superconvergence points with respect to dis-
tortions of the mesh we considered the Regular pattern with the central node
displaced (see Fig. 13) and computed the maximum i/%-error in the z1-derivative
of the solution at the points with the same master-element coordinates as the
superconvegence points in the undistorted mesh (given in Table la) i.e.

(5.2)

mI; QeZ;, 1, f), 1'= (a), IEX?(QH;I;fT)

where V' = Y'i) and Y": t -- t' denotes the transformation from the undistorted
master-mesh T to the distorted master-mesh TP and XT (QH; I; f, T) denotes the
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set of superconvergence points in the undistorted pattern. The value of q% was
computed for both the class of harmonic and class of general solutions (Table 4),
for quadratic elements.

In order to study the robustness of the wV%-superconvergence regions with re-
spect to distortions of the mesh, the regions *,(QH, 1; f , T) were determined as

Aw.

a function of the mesh-distortion for periodic grids of quadratic elements in the
Regular and Union-Jack patterns. In both patterns the central node was moved to
(0.4, 0.4), (0.6, 0.6), (0.8, 0.9) from its position (0.5, 0.5) in the undistorted pat-
tern, as shown in Fig. 13. The regions V"9 (Q';I;ii) (f = 10, 20, 30) are given

in Figs. 14, 1•5 (Fig. 14 for the Regular pattern, and Fig. 15 for the Union-Jack
pattern).

We make the following observations:

1. For both the classes of harmonic and general solutions, the '%-error at the
points with master-coordinates corresponding to the superconvergence points
in the undistorted pattern can vary from 2.5% to 100% when the pattern is
distorted.

2. For small distortions of the pattern, i.e. when the central node is located at
(0.4, 0.4) or at (0.6, 0.6) the regions for vj%-error (,q = 10, 20, 30) do not differ
much from the regions in the undistorted pattern and there are big common
regions for all the distorted meshes and the values of V% considered.

3. For large distortions of the pattern, i.e., when the central node is located at
(0.8, 0.9) the common regions for all the distorted meshes exist only for large
values of 9% (9 > 30).

5.4 Robustness of U/%-superconvergence regions: Effect of
grid-material orientation (K 9 I)

Given a mesh and an orthotropic material, we would like to find the il%-

superconvergence region XPFMg)(Q; M;I M;Tf for FPm OWI- or qi(u) which is

common to a given class of orthotropic materials M. We considered the Union-Jack

pattern and quadratic elements and let 9% = 25%. We assumed that = 2 or

4 and we let angle 0 of orientation of the principal plane of orthotropy wit' respect
to the mesh vary from 0* to 900. We use the notation

(5.3) := K = K(O)I , r and GE [0, 90o°1
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We detemined the common regions I5.(Q.;M 2 ;Mi.) (shown in Fig. 16) and
*.s(Q-jr .,M,,; f I fl (shown in Fig. 17). The common 25%-superconvergence re-

gions were approximated by finding the intersections of the 25%-superconvergence
regions for 0 = 00, 150, 300, 45%, 600, 750, 90 as shown in Figs. 16, 17, 18. In
Fig. 18 we give the common region L(Q"h;.AM4 ;,f I). It can be seen that

for = 2 the common regions of 25% error, for the zj-derivative or the zx-

components of the flux for all 0 E [0,900], are of significant size with respect to the

size of element. However, for !- = 4 the common regions of 25% error, for the

Zu-derivative for all 0 E [0,9001, are small. It is clear that the 25%-common region

will dissapear for higher values of the ratio K-.

5.5 Robustness of the q9o-superconvergence regions:
Effect of the surrounding mesh

Here we shall demonstrate that the il%-superconvergence regions and contours
in an element r are affected only by one or two surrounding layers of elements.
We considered five 3 x 3-cell periodic meshes T, - Ts, as shown in Fig. 19. We

determinedV1 th ein (Q'; I; fi) i = 1,... 15, whereij = 10, 20, 30 and
determined teregions = ,he= O,3
for the elements of degree p = 2, 3, 4. The q%-superconvergence regions and
the 0% contours are shown in Figs. 20-22. Fig. 23 displays the common region
,B=%(Q.;I-;fT), where T = {T1 }•= , (shaded gray) for the five 3 x 3-cell meshes

for p = 2,3. Next, we added one layer of elements around the five 3 x 3-cell meshes,
to get the five 5 x 5-cell meshes T/, i = 1,... ,5, as shown in Fig. 24. Figs. 25-27
display the regions .. (QH; I; f,Tf), i = 1,....,5, for p = 2, 3, 4. In Fig. 28

S-'

we show the common region * 2 %(QH; I; f IT',), where T' = {Ti'}f, for the five

5 x 5-cell meshes for p = 2, 3.

From the results we observe that:

1. The regions,('; % ; 1, f , T ), are essentially identical with the correspond-

ing regions * (QH; I; ÷, T2'). However, the zero-contours for the z,-derivative

of the error for the harmonic monomials are different for the corresponding
grids Ti, Tif, i = 1,... ,5.

2. The common regions a(Q;I;#,T) nd • sQH;I;f,TI) are, for all

practical purposes, identical.

23



To see whether the mesh beyond two mesh-layers of elements affects the com-
mon i?%-superconvergenc.. region in element f and the zero-contours for the zx-
derivative of the error for the basis monomials, we surrounded the 5 x 5-cell mesh of
Fig. 24e by 5 more layers of uniform elements to get the mesh Ts'' shown in Fig. 29.
From Fig. 30 we can see that the g%-superconvergence regions Y(QW; I;f , Ts")

for the element f are identical to the corresponding contours and il%-superconvergence
regions for the 5 x 5-cell mesh T,. We also surrounded the 5 x 5-cell mesh of Fig. 24e
by 5 layers of distorted elements to obtain the mesh T."', as shown in Fig. 31. From
Fig. 32 we can observe that the regions V (QH;I;, T.') for the element f are

practically identical to those for the 5 x 5-mesh T7.
From the above examples we can conclude that: The iV%-superconvergence re-

gions in element f are not affected, for all practical purposes, by the mesh outside
the immediate 2 layers of elements surrounding the element.

5.6 rl•o'-superconvergence for general meshes

In order to demonstrate that the method of freezing the periodicity gives
accurate prediction of the i7%-superconvergence for general meshes we considered
the following examples:

1. An example which shows how the conclusions from the periodic grid translate to
grids in finite domains.

We considered a 5 x 5 mesh of Union-Jack cells surrounded by an arbitrary
quasiuniform mesh generated by a remeshing algorithm. For the mesh and the
mesh-cells shown in Figs. 33a-33c, we determined the q/%-superconvergence re-
gions for the z1-derivative of the error for cubic elements and the class of quartic
harmonic polynomial solutions. In Figs. 34a-34c we give the ij%-superconvergence
regions for the a.,-derivative for the mesh-cells shown (shaded gray) in Figs. 33a-
33c, respectively. These regions were determined from the approximate solutions
of Dirichlet boundary-value problems over the finite-domain using data obtained
from the basis harmonic-monomials. Comparing Figs. 34a-34c (for the Union-Jack
cells in the mesh which covers the finite-domain) with Fig. 7c which gives the iq%-

superconvergence regious for the periodic Union-Jack cell, we can observe only a
slight-difference between the corresponding regions shown in Fig. 7c and Fig. 34c.
This example indicates that the results on the q%-superconvergence regions ob-
tained from the periodic cell hold, for all practical purposes, even for cells very
close to the boundary of the periodic submesh.

2. An example which demonstrates that the results obtained using the method
of freezing the periodicity hold for arbitrary meshes and solutions which are not
polynomials.
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We considered the mesh shown in Fig. 1 in the square domain fl = (0,1)2 and
identified several elements in small mesh-cells enclosed in the interior of the mesh.
The mesh-cells w0h are shown in Figs. 35a-35c; in these Figures the mesh-cells are
shaded gray. For each mesh-cell we isolated a corresponding submesh wh of the
original grid which includes the mesh-cell w0h and three mesh-layers around it; the
submeshes w3 are shown within the thick-line perigram in Figs. 35a-35c. Each one
of the submeshes was scaled and completed to a square periodic-cell 2, as shown
in Figs. 36a-36c. We considered the class of the following four harmonic solutions:

(5.4a) ui(ri,, 6j) = r•i ain(aj•Oj, i = 1,...,4,

(54b) ,= (, -r)2 + (Z2 - :)i, 9, = tan-' - 0 .

The solutions are specified by the following parameters:

S3 (Zx2, It ) = (1.520.5), 1 a2 ,

(fI Z1f)--(2.,O0.), 1=•
1 3

(55) (03a4 =(.0) 1  4 4,(~z) 3 1505),a

(,, Z3) =(0.5,2.), a3 = 1, (W',z•) = (-3.,0.), ,, =

We determined the common region fA 22% (U; I; Tr, Th) from the actual mesh and

.R%(U; I; fT) from the periodic meshes T obtained by freezing the periodicity lo-
01

cally, U = {u _ for linear and quadratic elements. The regions 1 2... (U; I; f, T)
"a,-

were obtained by solving Neumann boundary-value problems, using data from
the exact solutions, over the entire domain fi and using the mesh Th of Fig. 1.

The regions V`%(U; I; fI, T) were obtained by solving periodic boundary-value

problems, using data obtained from the local Taylor-series expansion, over the
periodic-cell and the periodic meshes of Fig. 36a-36c. In Figs. 37a-37c we give
the region V.%(Uj; I;T, Th) for linear elements while Figs. 38a-38c we show the

corresponding regions "%(U; I; , TI) obtained from the solutions of the periodic

boundary-value problems. In Figs. 39a-39c (resp. Figs. 40a-40b) we give the region
-D5.(U;I;.TrO) (resp. 45(U; I;F,)) for quadratic elments.
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We observe that the regions 727(U; I;s r, Th) obtained by using the solutions

of the Neumann boundary-value proilems over the entire grid practically coincide
with the regions *"(NU; I; fT) determined from the periodic boundary-value

problems over the periodic meshes. Hence the method of freezing the periodicity
g*e results which hold for the practical grids.

5.7 Robustness of the q%-superconvergence points in prac-
tical computations.

Here we give an example which shows that V%-superconvergence points are
robust and can be used to sample the solution in the interior of any grid used in
practical computations. For the mesh-cell wOI, shown shaded gray in Fig. 41, we
determined the *R." (QH;I;#,Th) for i = 10,20,30, for p = 1, 2, 3. The '%-

regions are shown in Fig. 42a, 42b, 42c for p = 1, 2, 3, respectively. We extracted
some random sampling points within the 10%-regions for the x1 -derivative of the
solution for the class of harmonic solutions (as shown in Fig. 43) and we solved a
Neumann boundary value problem over the mesh shown in Fig. 1, with the exact
solution u, and domain flW given as:

1 1 1 1
(5.6a) u1(z 1 ,z,) = 1.5' - (z + zo)' 1.5' + (z + zo)' 1.5' - 1.0 + 1.5' + 1.0

where zo = 0.5(1 + i), fl = (-0.5,0.5)2, and

(5.6b) U2(2 11z,2) = Re((Z-ZO)

where z0 = 0.5 + 2.0i, f12 - (0, 1)2.

For the two solutions given above we determined the relative error in the x,-
derivative of the solution at the sampling points for p = 1, 2, as shown in Table
5a, 5b. From the results we observe that:

(1) As p increases, the i1% regions for the z1 -derivative of the solution increase
in size relative to the elements.

(2) From the results shown in Table 5a, 5b, we can see that the relative error at
the sampling points is less than 15% for the two solutions considered.

Thus, this example shows that from the q%-regions obtained from the computer-
based approach of this paper we can extract robust sampling points, which can be
used for any solution in the given class.
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6 Summary of conclusions

1. The new concept of i?%-superconvergence was introduced and the V%-super-
convergence regions for various flux-quantities and for various classes of so-
lutions and materials were defined.

2. The ti%-superconvergence regions can be found for any mesh using a com-
puter based-approach.

3. The V%-superconvergence regions for the z1 -derivative were determined for
four periodic patterns and it was observed that:

a. The regions always exist for sufficiently high 9.

b. For fixed value of 9 the regions

(i) always exist for the class of harmonic solutions and grow in size
relative to the element as the degree p of the elements is increased;

(ii) may not exist for the class of general solutions and shrink in size as
the degree p of the elements is increased.

These observations can be expected to hold for - .Aodic grids made by the
repetition of any periodic pattern.

4. The iV%-superconvergence regions can, for all practical purposes, be deter-
mined for any general finite element grid, like for example, the grids employed
in practical engineering computations by using the technique of freezing the
periodicity. Thus the new concept of q%-superconvergence can be employed
to identify optimal sampling points for the flux-quantities in the interior of
any practical grid.

5. We defined the common qi%-superconvergence regions for entire classes of
grids and materials. These regions can be determined numerically and can
be used to identify robust sampling points for the flux-quantities of interest
for entire classes of grids, solutions and materials.
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List of Figures
J~.1. Typical example of a general finite-eement grid used in practical engi-

nri computations. This grid was generated using a commercial mesh-generator
for a problem with a material interface.

ft. 2. (a) An example of a domain with a locally periodic subdomain in its
interior which is covered exactly by a periodic array of h-cells; (b) A detailed
depiction of the mesh T,% (I0, H) in the interior of the periodic mesh-subdomain
S(80, H). This grid is made by the periodic repetition of the h-scaled master mesh
T; (c) The master mesh T in the master-cell &

Fig. 3. Extraction of a mesh cell sand completion to a periodic mesh T in the
periodic cell Z (a) The grid (of Fig. 1) with the mesh-cell w•. (with its perimeter
shown in thick black line) and the mesh-cell a4 (shaded gray); (b) The mesh-cell
w. with the mesh-cell &4 (shaded gray) in its interior; (c) The scaled mesh-cell w,
embedded in a periodic mesh T.

Fig. 4. Periodic meshes of triangles with the elements r shaded gray: (a) Regular
pattern; (b) Chevron pattern; (c) Union-Jack pattern; (d) Criss-Cross pattern.

Fig. S. 9%-Superconvergence regions for periodic meshes: The regions

f for the levels q = 10, 20,30, and the zero-contours

• (0•• I; ;f,•f, i = 1,2, for the Reg'mr pattern. (a) p = 1; (b) p = 2; (c) p = 3;

(d) p = 4; (e) p = 5. The regions were determined using the simplified approach.

Fig. 6. 9%-superconverge ce regions for periodic meshes: The regions
Rq% (0; 1; ffl for the levelsiq = 10, 20, 30, and the zero-contours

ME (Qy; Zi;f, fl, i = 1,2, for the Chevron pattern. (a) p = 1; (b) p = 2; (c) p = 3;

(d) p = 4; (e) p = 5. The regions were determined using the simplified approach.

Fig. 7. vj%-superconvergence regions for periodic meshes: The regions

q(V; I; F, f) for the levels il = 10, 20, 30, and the zero-contours

&.%(Qf; I-, f , i = 1,2, for the Union-Jack pattern. (a) p = 1; (b) p = 2;

(c) p = 3; (d) p = 4; (e) p = 5. The regions were determined using the simplified

approach.

Fig. 8. ,9%-superconvergence regions for periodic meshes: The regions

', I, ",f), for the levels q = 10, 20, 30, and the zero-contours
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d (Q,;I;iT), - 1,2, for the Criss-Cross pattern. (a) p = 1; (b) p = 2;

(c) p = 3; (d) p = 4; (e) p = 5. The regions were determined using the simplified
approach.

Fig. 9. ii%-superconvergence regions for periodic meshes: The regions
(QG; I; ,), for the levels v = 10, 20, 30, for the Regular pattern. (a) P = 1;

(b) p = 2; (c) p = 3. The regions were determined using the direct approach.

Fig. 10. i%-superconvergence regions for periodic meshes: The regions
4A I; L, TZ), for the levels 'i = 10, 20, 30, for the Chevron pattern. (a) p = 1;

(b) p = 3. It should be noted that for p = 2 there is no region for q% <30%. The
regions were determined using the direct approach.

Fig. 11. wp%-superconvergenoe regions for periodic meshes: The regions

I; f, f'), for the levels 9 = 10, 20, 30, for the Union-Jack pattern. (a) p =

2; (b) p = 3. Note that for p = 1 there is no region V% < 30%.

Fig. 12. V%-superconvergence regions for periodic meshes: The regions

(Q; ZI;f, T), for the levels t = 10, 20, 30, for the Cris-Cross pattern. (a) p =

1; (b) p = 2; (c) p = 3. The regions were determined using the direct approach.

Fig. 13. Robustness of V%-superconvergence regions: Effect of mesh distortion.
The undistorted patterns are given in the domain (0, 1)x(0, 1) with the central
node located at (0.5, 0.5). (a) Regular pattern with the central node at (0.4, 0.4);
(b) Regular pattern with the central node at (0.5, 0.5); (c) Regular pattern with
the central node at (0.6, 0.6); (d) Regular pattern with the central node at (0.8,
0.9); (e) Union-Jack pattern with the central node at (0.4, 0.4); (f) Union-Jack
pattern with central node at (0.5, 0.5); (g) Union-Jack pattern with the central
node at (0.6, 0.6); (h) Union-Jack pattern with the central node at (0.8, 0.9).

Fig. 14. Robustness of q%-superconvergence regions: Effect of mesh-distortion.
Distorted Regular pattern, quadratic elements and cubic harmonic polynomial so-
lutions. The regions XA, (Q0; 1; f,l) when the central node is at: (a) (0.4, 0.4);

(b) (0.5, 0.5); (c) (0.6, 0.6); (d) (0.8, 0.9). The regions were determined using the
direct approach.

Fig. 15. Robustness of wV%-superconvergence regions: Effect of mesh-distortion;
Distorted Union-Jack pattern, quadratic elements and cubic harmonic polynomial
solutions. The regions '."* (0; 1; f, ) when the central node is at: (a) (0.4,

0.4); (b) (0.5, 0.5); (c) (0.6, 0.6); (d) (0.8, 0.9). The regions were determined using
the direct approach.
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F5g. 16. Robustness of •v%-superconvergence regions: Effect of the grid-material
orientation; Union-Jack pattern, quadratic elements and cubic "harmonic" poly-

nomial solutions. The common region M•..•(Q; ,; ,) for E = 2 and 1ll

grid-material orientations 9 E [0",90"].

Fig. 17. Robustneu of 9%-ouperconvergence regions: Effect of the grid-material
orientation; Union-Jack pattern, quadratic elements and cubic "harmonic" poly-

nomial solutions. The common region " (0; M2; fT) for!.`- 2 and all

grid-material orientations 0 E [0, 900].

Fig. 18. Robustness of V%-superconvgce regions: Effect of the grid-material
orientation; Union-Jack pattern, quadratic elements and cubic "harmonic" poly-

nomial solutions. The common region (5 n(',M 4 ;, T) for - = 4 and all
Kmj

grid-material orientations 9 E [00, 90)].

Fig. 19. Robustness of the V%-superconvergence regions: Effect of the surround-
ing mesh; The five 3 x 3-cell meshes used with the element f subdomain shaded
gray. (a) Mesh T,; (b) Mesh T.; (c) Mesh T3 ; (d) Mesh T,; (e) Mesh T,.

Fig. 20. Robustness of the 9%-superconvergence regions: Effect of the sur-
rounding mesh; Quadratic elements, cubic harmonic polynomial solutions. The
regions •.94.(Qx;I;f, T,) and the zero-contours (Qf;I;ft,), i = 1,2, for

k = 1,... ,5, in the element f for the five3 x 3-cell meshes of Fig. 19. (a) Mesh
Tr; (b) Mesh T2; (c) Mesh T7; (d) Mesh T4; (e) Mesh Ts.

Fig. 21. Robustness of the w/%-superconvergence regions: Effect of the sur-
rounding mesh; Cubic elements, quartic harmonic polynomial solutions. The re-
gions *1•(Q0;I; f, T) and the zero-contours C0(Q•;I;fT ), i = 1, 2, for

k = 1,...,5, in the element f for the five 3 x 3-cell meshes of Fig. 19. (a) Mesh
T,; (b) Mesh T2; (c) Mesh T3 ; (d) Mesh T4; (e) Mesh Ts.

Fig. 22. Robustness of the V%-superconvergence regions: Effect of the sur-
rounding mesh; Quartic elements, quintic harmonic polynomial solutions. The
regions '9 (QK; I; f, A) and the zero-contours CI (Qf;I; ,Tk), i = 1, 2, for

k = 1,...,5, in the element f for the five 3 x 3-cell meshes of Fig. 19. (a) Mesh
TI; (b) Mesh T2; (c) Mesh T3; (d) Mesh T4; (e) Mesh Ts-.

Fig. 23. Robustness of the j%-superconvergence regions: Effect of the surround-
ing mesh; Elements of order p, harmonic polynomial solutions of degree (p + 1).
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The common region * ..(Q'; I;f, {f }.r=f) from the various 3 x 3-cell meshes for

elements of degree p; (a) p = 2; (b) p = 3.

Fig. 24. Robustness of the tl%-superconvergence regions: Effect of the surround-
ing mesh; The five 5 x 5-cell meshes (with the element f shaded gray) formed by
surrounding the corresponding 3 x 3-cell meshes of Fig. 19 by one layer of elements.
(a) Mesh T1; (b) Mesh T2; (c) Mesh T3; (d) Mesh T4; (e) Mesh 7s.

Fig. 25. Robustness of the q%-superconvergence regions: Effect of the surround-
ing mesh; Quadratic elements, cubic harmonic solutions. The regions

64,(Q';;f,fil) and the zero-contours C%(Qj,;If ), i f 1, 2, for k =

1,...,5, in the element f for the five 5 x 5-rell meshes of Fig. 24. (a) Mesh
Ti; (b) Mesh T.1; (c) Mesh T3; (d) Mesh T4; (e) Mesh 7T.

Fig. 26. Robustness of the q,%superconvergence regions: Effect of the surround-
ing mesh; Cubic elements, quartic harmonic solutions. The regions

1; f , t%) and the zero-contours CT(QF;I; ;t,), i = 1, 2, for k =

1,...,5, in the element f for the five 5 x 5-cell meshes of Fig. 24. (a) Mesh
T•; (b) Mesh T,'; (c) Mesh T3; (d) Mesh T4; (e) Mesh T,'.

Fig. 27. Robustness of the q%-superconvergence regions: Effect of the surround-
ing mesh; Quartic elements, quintic harmonic solutions. The regions

* (Q';I;fiZ) and the zero-contours Ot(Q9;I;f , t), i = 1, 2, for k =

1,... ,5, in the element f for the five 5 x 5-cell meshes of Fig. 24. (a) Mesh TI; (b)
Mesh T.; (c) Mesh T3; (d) Mesh T4; (e) Mesh Ts.

Fig. 28. Robustness of the il%-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree p, harmonic polynomial solutions of degree (p + 1).

The common region *9(Q;I;;,{ I},,) from the various 5 x 5-cell meshes for

elements of degree p- (a) p = 2; (b) p = 3.

Fig. 29. Robustness of the l%-superconvergence regions: Effect of the surround-
ing mesh; Mesh t's formed by surrounding the 5 x 5-cell mesh '' of Fig. 24e with
5 more layers of uniform elements. The element f is shown shaded gray.

Fig. 30. Robustness of the -q%-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree p, harmonic polynomial solutions of degree (p + 1).
The regions67 (0; 1; f., I;fsT') and the zero-contours C (Qf; I; f, Ts'), i = 1, 2,

for the mesh shown in Fig. 29. (a) p = 2; (b) p = 3; (c) p = 4.
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Fig. 31. Robustness of the i%-superconvergence regions: Effect of the surround-
ins mesh; Mesh formed Tl" by surrounding the 5 x 5-cell mesh ts of Fig. 24e with
5 more layers of distorted elements. The element f is shown shaded gray.

Fig. 32. Robustness of the tl%-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree p, harmonic polynomial solutions of degree (p + 1).
The regions * (QH;I; ,f ) and the zero-contours C (Q4; I;,Tr), f i = 1,2,

for the mesh shown in Fig. 31. (a) p = 2; (b) p = 3; (c) p = 4.

Fig. 33. vi%-superconvergence for general solutions and meshes: An arbitrary
mesh TI with a 5 x 5-cell mesh of Union-Jack pattern embedded in it.
(a) Union-Jack cell (shaded gray) in the center of the 5 x 5 periodic submesh;
(b) Union-Jack cell (shaded gray) off-center of the 5 x 5 periodic submesh;
(c) Union-Jack cell (shaded gray) at the boundary of the 5 x 5 periodic submesh.

Fig. 34. 9%-superconvergence for general solutions and meshes; Cubic elements,
quartic harmonic solution. The regions l. (Q0; I; r, Th) and the zero-contours

C*2 (Qif ; ;T, Th), i = 1,2. (a) Union-Jack cell shown in Fig. 33a; (b) Union-Jack

cell shown in Fig. 33b; (c) Union-Jack cell shown in Fig. 33c.

Fig. 35. q%-superconvergence for general solutions and meshes: The grid of
Fig. 2 with the elements r (shaded gray) and the mesh-cell w~h. (a) Mesh-cell 1;
(b) Mesh-cell 2; (c) Mesh-cell 3.

Fig. 36. ,/%-superconvergence for general solutions and meshes: Periodic cells
enclosing the mesh-cells of Fig. 35. (a) Periodic cell enclosing mesh-cell 1; (b) Pe-
riodic cell enclosing mesh-cell 2; (c) Periodic cell enclosing mesh-cell 3.

Fig. 37. V%-superconvergence for general solutions and meshes: Neumann bound-
ary value problem over the domain and the actual mesh of Fig. 1; linear elements,
harmonic solutions with point singularities outside the domain (see Section 5.6).
The region *5(NU;I;r, Th) for the z1 -derivative of the solution for (a) Elements

r in mesh-cell 1 (Fig. 35a); (b) Elements T in mesh-cell 2 (Fig. 35b); (c) Elements
r in mesh-cell 3 (Fig. 35c).

Fig. 38. j%-superconvergence for general solutions and meshes: Periodic bound-
ary value problem over the periodic cells of Fig. 36; linear elements, quadratic

an c polynomial solutions obtained from a local Taylor-series expansion of
the solutions with point singularities outside the domain (see Section 5.6). The
region "6(Q'; I; f•,) for: (a) Elements r in periodic-cell of Fig. 36a; (b) El-

ements r in the periodic-cell of Fig. 36b; (c) Elements r in the periodic-cell of
Fig. 36c.

35



Fig. 39. i%-superconvergence for general solutions and meshes: Neumann bound-
ary value problem over the actual mesh of Fig. 1; quadratic elements, harmonic
solutions with point singularities outside the domain (see Section 5.6). The region
,V%(U ;I; r-TA,) for: (a) Elements r in mesh cell 1 (Fig. 35a); (b) Elements 'r in

mesh cell 2 (Fig. 35b); (c) Elements -r in mesh cell 3 (Fig. 35c).

Fig. 40. ii%-superconvergence for general solutions and meshes: Periodic bound-
ary value problem over the periodic cells of Fig. 36; quadratic elements, cubic
harmonic polynomial solutions obtained from a local Taylor-series expansion of
the solutions with point singularities outside the domain (see Section 5.6). The
region *2(0; 1; f , f) for: (a) Elements, in periodic cell of Fig. 36a; (b) El-

ements r in the periodic cell of Fig. 36b; (c) Elements r in the periodic cell of
Fig. 36c.

Fig. 41. Robustness of the V%-superconvergence points in practical computa-
tions: The mesh of Figure 1 with a mesh-cell wo0 (shown shaded gray) and the
corresponding mesh-cell &As (enclosed by the thick-line perigram).

Fig. 42. Robustness of the V%-superconvergence points in practical computations:
The mesh-cell wo" with the regions I. (Q';I;T), for the levels 1 = 10, 20, 30,

for elements of degree p. (a) p = 1; (b) p = 2; (c) p = 3.

Fig. 43. Robustness of the ii%-superconvergence points in practical computations:
Random sets of 10%-superconvergence points. The mesh-cell w." with the regions

%(QH;I; i"r) and the sampling points for elements of degree p. (a) p = 1; (b)

p=2.
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Regular, Chevron, Union-Jack patterns

Superconvergence points for the class of harmonic solutions

The vertices of the triangle wxe at (0.0,0.0), (1.0,0.0), (1.0, 1.0)

Points p=l p=2 p=3 p=4 p= 5

1 0.5000000000, 0.2113248654, 0.0000000000, 0.0118978218, 0.0000000000,
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

2 0.7886751346, 0.3752181980, 0.2821230756, 0.1726731646,
0.0000000000 0.0858825088 0.0000000000 0.0000000000

3 0.7500000000, 0.5000000000, 0.7178769244, 0.5000000000,
0.0458758546 0.0000000000 0.0000000000 0.0000000000

4 0.7500000000, 0.4715185566, 0.9881023782, 0.8273268354,
0.4541241452 0.3241733208 0.0000000000 0.0000000000

5 1.0000000000, 0.1195044522, 1.0000000000,
0.0000000000 0.0224992688 0.0000000000

6 0.8638176260, 0.7053452590, 0.4640525316,
0.6824066036 0.0071869378 0.0103019842

7 0.3095295948, 0.2328766474,
0.2201118672 0.15749286240

8 0.6402277154, 0.4734766188,
0.5196142358 0.3874100850

9 0.9063362308, 0.7356302926,
0.7871241952 0.6425966766

10 0.9343659198,
0.7080184052

Table la. Classical superconvergence points for periodic meshes: Elements of
degree p, class of harmonic solutions. The superconvergence points for the xj-
derivative of the error and the class of harmonic solutions for p = 1, 2, 3, 4, 5
for the element r (shaded gray in Fig. 4) for the Regular, Chevron, Union-Jack
patterns.

37



Criss-Cross pattern

Superconvergence points for the class of harmonic solutions

The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Points p-=1 p=2 p=3 p=4 p=5

1 0.5000000000, 0.2113248654, 0.1464466094, 0.0761088279, 0.0488705882,
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

2 0.7886751346, 0.5000000000, 0.3397707358, 0.2355765633,
0.0000000000 0.0000000000 0.0000000000 0.0000000000

3 0.8535533906, 0.6602292641, 0.5000000000,
0.0000000000 0.0000000000 0.0000000000

4 0.5000000000, 0.9238911721, 0.7644234366,
0.5000000000 0.0000000000 0.0000000000

5 0.5000000000, 0.9511294118,
0.4887686394 0.0000000000

6 0.5000000000,
0.0000000000

Table lb. Classical superconvergence points for periodic meshes: Elements of
degree p, class of harmonic solutions. The superconvergence points for the zx-
derivative of the error and the class of harmonic solutions for p = 1, 2, 3, 4, 5 for
the element r, for the Criss-Cross pattern.
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Criss-Cross pattern

Superconvergence points for the class of harmonic solutions

The vertice of the triangle are at (0.0,0.0), (1-0,0.0), (0.5, 0.5)

Points p=I p=2 p=3 p=4 p=5

1 0.5000000000, 0.7886751346, 0.8750000000, 0.7621420044, 0.8368698019,
0.5000000000 0.5000000000 0.2834936534 0.3163540210 0.2268165908

2 0.8750000000, 0.9145863153, 0.7540881642,
0.5000000000 0.3966634454 0.3397926069

3 0.8750000000, 0.8970792676, 0.6883014452,
0.7165063710 0.5000000000 0.3781734456

4 0.5000000000, 0.9145863153, 0.7811733816,
0.5000000000 0.6033365546 0.4582804499

5 0.7621420044, 0.9334689552,
0.6836459789 0.5000000000

6 0.7811733816,
0.5417195501

7 0.6883014452,
0.6218265544

8 0.7540881642,
0.6602073930

9 0.8368698019,
0.7731834092

10 0.5000000000,
0.5000000000

11 0.7760422930,
0.5000000000

Table 1c. Classical superconvergence points for periodic meshes: Elements of
degree p, class of harmonic solutions. The superconvergence points for the x 1-

derivative of the error and the class of harmonic solutions for p = 1, 2, 3, 4, 5 for
the element r2 for the Criss-Cross pattern.
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Superconvergence points for the

class of general solutions

Regular pattern

Points from
Table la p--I p=2 p 4  p-5

I yes yes no no no

2 yes no no no

3 no yes no no

4 no no no no

5 no no no

6 no no no

7 no no

8 no no

9 no no

10 no

Table 2a. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p _. 5, class of general solutions. This Table indicates which of
the superconvergence points for the class of harmonic solutions from Table la are
also superconvergence points for the class of general solutions in element T in the
Regular pattern.
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Superconvergence points for the
class of general solutions

Chevron pattern

Points fromtabs ia p=l p=2 p=3 p=4 p=5

1 ye no no no no

2 no no no no

3 no yes no no

4 no no no no

5 no no no

6 no no no

7 no no

8 no no

9 no no

10 no

Table 2b. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 > p 2! 5, class of general solutions. This Table indicates which of the
superconvergence points for the harmonic solutions from Table la are also super-
convergence points for the class of general solutions in element r in the Chevron
pattern.
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Superconvergence points for the

class of general solutions

Union-Jack pattern

Points from
Tablela pI& p=2 p-3 p-4 p

1 no no no no no

2 no no no no

3 no no no no

4 no no no no

5 no no no

6 no no no

7 no no

8 no no

9 no no

10 no

Table 2c. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of the
superconvergence points for the harmonic solutions from Table 1 are also supercon-
vergence points for the class of general solutions in element r, in the Union-Jack
pattern.
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77- -- 7 -7 7

Superconvergence points for the
class of general solutions

Criss-Cross pattern

Pointsfrom p=I p=2 p=3 p=4 p=
Table lb

(For the element r")

I yes yes no no no

2 yes yes no no

3 no no no

4 no no no

5 no no

6 no

Table 2d. Classical superconvergence points for periodic meshes: Elements of
degree p, I < p 5 5, class of general solutions. This Table indicates which of
the superconvergence points for the class harmonic solutions from Table lb are
also superconvergence points f6r the class of general solutions in element r, in the
Criss-Cross pattern.
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Superconvergence points for the

class of general solutions

Criss-Cross pattern

Points from
Tableic p=l p= 3  p4 p=5

(For the element r2)

I no no no no no

2 no no no

3 no no no

4 no no no

5 no no

6 no

7 no

8 no

9 no

10 no

11 no

Table 2e. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of
the superconvergence points for the harmonic solutions from Table Ic are also
superconvergence points for the class of general solutions in element r2 in the
Cris-Cross pattern.
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Robustness with respect to the type of solution

):max e(h; -; I; Q, z', 1, 1)

% (r) QIE 12X-0 ( ; ,Criss-Cro w Cri ss-Cro~s
pattern RegUlar Chevron Union-Jack (element -i) (element T')

Points fom
Tables I&, 1b, Ic

1 00 100 27 00 18

2 00 100 27 00

3 21 83 46

4 25 53 100

Table 3. Robustness of the superconvergence points with respect to the type of
solution: Quadratic elements, cubic general polynomial solutions. Value of qj%-
error in the z1-derivative of the solution, at the various points corresponding to
the superconvergence points for harmonic solutions.
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Robustness with respect to the distortion of the mesh

ij%(i) =maxe(&; L; I; Q, z,,1, ",

÷'= Y'(f), 6' = Y(#)

Mesh 1 (Fig. 14.) Meb 2 (Fig. 14c) Mesh 3 (Fig. l4d)

Harmonic Gener"l Harmonic General Hannonic General

Table I& Solution Solution Solution Solution Solution Solution

1 18.1 28.0 8.7 75.2 10.7 94.1

2 19.2 45.7 16.8 81.7 37.1 55.5

3 14.1 66.8 12.2 50.7 26.8 48.8

4 2.7 17.1 9.6 61.5 22.9 36.9

Table 4. Robustness of the superconvergence points with respect to the distortion
of the mesh: Quadratic elements, cubic polynomial solutions. For the meshes of
Fig. 13a, Fig. 13c, Fig. 13d, obtained by displacing the central node of the Regular
pattern, the value of q%-error for the zj-derivative of the error is given at the
points in the element - which correspond to the superconvergence points for the
undistorted Regular pattern and the class of harmonic solutions, for: (a) Harmonic
solutious; (b) General solutions.
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p%-.error at a random met of 1O%-superconvergence points

17% = O(i; ;usUht i . 100%

Point Value of ,% fm U=U 1  Value of q% for =U ,

1 4.422 3.592
2 2.027 6.461
3 8.512 4.917
4 2.463 0.671
5 2.801 3.449
6 5.884 12.513
7 3.369 6.129
8 2.862 4.335
9 2.594 1.559
10 2.527 1.489
11 1.859 1.914
12 2.337 1.433
13 6.109 5.971
14 10.337 11.140
15 6.456 5.545
16 4.648 11.874
17 7.086 2.353
18 9.935 14.901
19 9.848 7.306
20 2.779 0.875
21 2.882 4.376
22 6.195 5.591

Table 5a. Robustness of the q%-superconvergence points in practical compu-
tations: Relative error at the 10%-superconvergence points for the x1-derivative
for linear elements (p = 1). These points were randomly selected from the 10%-
superconvergence regions, as shown in Fig. 43a.
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9%-error at a random set of 10%-superconvergence points

07% = u, uh,r) - 100%

Point Value of q% for u =u, Value of % for u =u 2

1 11.936 2.963
2 8.743 0.094
3 4.372 6.474
4 0.582 5.564
5 4.585 1.350
6 0.053 6.036
7 2.086 6.719
8 1.944 6.918
9 7.722 0.882
10 5.030 6.854
11 5.764 0.962
12 5.331 0.705
13 4.308 0.852
14 1.447 7.988
15 6.811 2.824
16 6.317 3.555
17 6.956 0.047
18 8.101 2.136
19 7.564 4.765
20 6.637 0.570
21 3.569 1.081
22 5.423 1.578
23 8.373 0.432
24 7.065 5.188
25 1.589 5.472
26 4.162 1.309
27 7.696 0.494

Table 5b. Robustness of the i7%-superconvergence points in practical compu-
tations: Relative error at the 10%-superconvergence points for the x1-derivative
for quadratic elements (p = 2). These points were randomly selected from the
10%-superconvergence regions, as shown in Fig. 43b.
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M1h Laboratory fr Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

"* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

"* To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor 1. BabuikaChairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.
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