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Abstract:

In this paper we introduce a new definition of superconvergence — the 7%-
superconvergence, which generalizes the classical idea of superconvergence to gen-
eral meshes. We show that this new definition can be employed to determine
the regions of least-error in any element in the interior of any grid by using a
computer-based approach. We present numerical results for the standard displace-
ment finite element method for the scalar equation of orthotropic heat-conduction,
for meshes of conforming triangles of degree p, 1 < p < 5, and elements in the
interior of the mesh. The results demonstrate that, unlike classical superconver-
gence, n%-superconvergence is applicable to the complex grids which are employed
in practical engineering computations.




1 Introduction.

Let {u,} be a one parameter sequence of finite element solutions of a problem
which are computed using a sequence of meshes 7 = {7, } and let u denote the
exact solution. Let us assume that we are interested in the values of the solution or
its derivatives or linear combinations of these quantities i.e. in the linear functional
F(u)(=). Let us assume that for every element 7 of the mesh T, a special point &,
which depends on the geometry (but not the size) of the element, is given. Then

denoting
(11) ¥(u - ) = max|F(s - w)(e)]

we are interested in the values of relative error in F(u) at &,

[N O
(12)  O(®&; Fjuuph,r)= { ¥(u-w) ' f¥(u—1u,)#0;

0 y, H¥(u—1u,)=0.

If the point & is such that

(1.3) ' O(2; F;u,uy,h,7) < -1270 a8 h—0

then & will be called a u-n%- superconvergence point relative to the exact solution
u and the family of meshes 7. Consider now a family & of solutions; the point &
will be a U-n%-superconvergence point relative to the family of meshes 7 if it is
u-n%-superconvergence point for every u € U. Obviously O(&; F;u,u,,h,7) <1
and thus all points in every element T are 100%-superconvergence points. Note
that if there exists a point & in the element 7 for which = 0 in (1.3), i.e.

(1.4) O(&; F;u,u,,h,7) — 0  as h—0

for a particular u (resp. for every u € U) then & is & u-superconvergence (resp.
U-superconvergence) point ¢n the classical sense. The superconvergence of this
type was studied by many investigators; see for example [1-28] and the citations
in these papers. It should be noted that the n%-superconvergence has not been
analyzed in the literature. In this paper we will study the n%-superconvergence,
when F(u) is a linear combination of derivatives of u, for the model-problem of
orthotropic heat-conduction for meshes of triangles of degree p, 1 < p < 5. In
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[29] we will address #%-superconvergence for meshes of quadrilaterals with local
refinements.

In [28] we studied classical superconvergence by a computer-based approach.
We observed that the superconvergence points are very sensitive to the geometry of
the mesh, the solution-type and the coefficients of the differential operator. Hence
the superconvergence points may not exist (in the classical sense) for the complex
grids employed in practical computations. In contrast, the n%-superconvergence
points will always exist for a sufficiently high 7 and can be defined for entire classes
of grid geometries, solution-types and coefficients of the differential operator. Thus
the n%- superconvergence points are robust and can be used to sample the solution
in practical engineering computations.

Following this Introduction we outline the model problem of orthotropic heat-
conduction and we define various quantities associated with the geometry of the
error. We outline the theoretical setting of this study and give a computer-based
approach to obtain the n%-superconvergence points. We then give various exam-
ples of the n%-superconvergence points for various grid geometries, solution-types
and coeflicients of orthotropy and demonstrate how to obtain robust sampling
points for the practical grids.

2 Preliminaries.

2.1 The model problem

Let us consider the model problem of heat-conduction in orthotropic medium
with mixed boundary conditions. Let  C R? be a bounded polygonal domain and
let its boundary 8Q be split into two parts I'p and 'y (T'p has positive length).
Let u be the solution of the problem

2. 8 Ou .
(2.10) [,(u) = —hél-a—z—h-(xu-a:l) = f , 1n ﬂ,
(2.1d) v=0, onlp,
2
(21¢) Y a(u)n, =3, onTx.
k=1

Here Ky, k, £ = 1, 2 are the entries of the thermal-conductivity matrix which
satisfy the conditions




(2.20) Ku = Ka , kt=1,2,

2
(2.28) 0 < Kumin(§ + &) < .2 Kubub < Kna(§1 +86) V€= (,6) eR?,
1

where Kapin, Kmax are the principal thermal conductivities;

(23) a(v) := ixﬂg:" y k=12,
=1 L

are the components of the flux (heat-fluz); ny, k = 1, 2 are the components of the
unit outer normal of 8Q; f € L*(), § € L*(T'w) are given data.

Let B} () := {u e H'(Q)| u=00n I‘p}. Then the above problem may be
put in the variational form: Find u € H} () such that

(2.4) Ba(u,v)=Lo(v) V ve HL(Q)
where

. 3 8u Bv _
(25)  Bglu,v):= /n 1.§_-:1K“8—3¢ o Lal)= /n Fot [ av.

Let T := {T)} be a regular-family of meshes of triangles with straight edges.
(It is assumed that for any triangles 7;, 7; € Tj, the intersection 7; N 7; is either
empty, a vertex or a common edge, and that the minimal angle of all the triangles
is bounded below by a positive constant, the same for all meshes.) The meshes Tj,
are not assumed to be quasiuniform. We introduce the conforming finite-element

spaces

26) S={veC@)| wnePn), k=1...MD)},
where P,(7) denotes the space of polynomials of degree p over the triangle 7;

M(T,) is the number of elements in 7). The finite element solution u, of the
model problem satisfies: Find ), € S} p := S} N Hp () such that

(2.7) Bq(up,vy) = Lg(vy) Vv, €S,

We let ¢, := u — u, denote the error in the finite element solution.
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2.2 Definition of n%-superconvergence quantities

Let T, € T be a finite element grid, 7 € T, be any element and K be the
thermal-conductivity matrix expressed in a given fixed coordinate system. Let

F(u) be the solution-quantity of interest, for example we may have F(u) = 381

T
Ou Ou Ou du Ou
o 523 q(v)=K,, Ba, + K,y — oz, or g,(u) = Ky, — Bz, + Kyy — 3z, , etc. We now

define several geometncal quantities ‘associated with the error in the finite element
solution in the element 7.

Given 7, 0 < < 100 we define the following:

1. n%-contour of F(u) in the element v € T, for the ezact solution u and for
material-orthoiropy K:

28)  C(wK;nT) = {a €T | O(e; FiKiu,uyb,7) = }

Here O(@; F; K;u,u,,h,7) is the relative error as defined in (1.2); note that K
was added to the list of arguments to indicate the dependence of the relative error
on the orthotropy.

2. n%-band of F(u) in the element r € T, for the ezact solution u and for material-
orthotropy K :
(2.9) B'}-’(“)(u;K;r,T;.): {c €T | O(®; F; K;u,uy,h,7) < — 106 }
3. Superconvergence points of F(u) in the element 7 € T), for the class of ezact
solutions U and for material-orthotropy K:
(2.10) Xt U K7, Th) = (G]uc;’,’(‘,,,(u; K;r,T,)
4. n%-superconvergence regions of F(u) in the element T € T}, for the class of
ezact solutions U and for material-orthotropy K:
(2.11) Rt K37, T,) = ﬂu Bytey(u; K7, )

u€

5. Common n%-superconvergence region of F(u) in the element v € T, for the
class of ezact solutions U, the class of materials M and the class of meshes T:
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(2.12) Ry Min,T)= | (| Ry K;r,T,)
T, €T KeM

Here M is a class of thermal conductivity matrices referred to a given fixed co-
ordinate system and r is understood to be an element of fized geometry (but not
fixed size) embedded in all the meshes in the family 7.

Remark 2.1. In some cases the sets defined above may be empty.

Remark 2.2. The function u is a solution (resp. U is a class of solutions) of (2.1)
for a given set of data (resp. for given classes of data). When f = 0 we say
that exact solution u is “harmonic” (resp. U is the class of “harmonic” solutions).
(When u satisfies Laplace’s equation, —Au = 0 (i.e. when K = I), the solution
is harmonic in the classical sense.) The majority of steady-state computations in
engineering are done to approximate “harmonic” solutions; thus it is important to
study superconvergence for this class of solutions.

One is interested to know a-priori the n%-superconvergence regions for the
smallest possible values of 7%, for which they exist, for classes of solutions of
interest (In practical computations in plane elasticity and heat-conduction the
class of solutions of interest is the subclass of “harmonic” solutions with a finite
number of algebraic point singularities of the type ). In general, if T} is any
grid, it is impossible to predict the locations of the 5%-superconvergence regions.
Here we will make additional assumptions about the approximation which will
enable us to determine a-priori the %-superconvergence regions for the meshes
which occur in engineering computations. We will consider that the problem was
solved using a sequence of meshes {7),} (not necessarily uniform meshes) which
are constructed by a mesh-generator or an adaptive process. We will address the
superconvergence as h — 0i.e. we are interested in the asymptotic locations of the
n%-superconvergence regions in the limit as the mesh-parameter h tends to zero.

In this paper we will determine the asymptotic n%-superconvergence regions
for elements in the interior of the mesh and smooth solutions. (The solutions can
have isolated point-singularities at the boundaries but they are analytic in the
interior of the domain.) The theoretical results will be given for a special class of
locally periodic meshes. However through numerical examples we will demonstrate
that the conclusions of the theoretical study hold, for all practical purposes, for
the complex grids which are used in the practical engineering computations (for
example the grid shown in Fig. 1).

2.3 The class of locally periodic meshes

We now present the definition of a special class of locally periodic meshes. Let
us consider a locally periodic meshes (or grid) defined as follows. Let 0 < H < H?,
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o® = (21,23) € Q,

(2.13) S(w®, H) := {. = (&1,0)| e -2l < H, i= 1,2}

and assume H° is sufficiently small such that 5(e°, H°) C Q1. Further, let v be a
set of multi-indices (3, 5) , 269 = (z{,2{"") € Q and

(2.14) c(29),h) = 5(=®),h) C S(2", H),  (ij) €7
be the set of the A-cells (or cells) which cover exactly S(=°, H) i.e.

(2.15a) U &(=®,h) = 5(=°, H)
((0) 2]
(2.155) (@), R) (@ #) h) = @ for (i1,41) # (52, 52)

We will refer to S(2°, H) as the subdomain of periodicity of the mesh centered at
#°. Denoting by

(2.16) &= 5(0,1):= {(51,5,)| 8] <1, 83| < 1}

the unit- (master-) cell G, the h-cell is an A-scaled and translated master-cell.

Let T be a triangular mesh on the master-cell (the master-mesh) and 7 be
the mesh on c(@(9), k) which is the scaled and translated image of 7. We will
consider the family 7 of locally periodic meshes. Let 7}, € T and 7),(2°, H) be the
restriction of T, on S(®, H) and T the restriction of T, (2°, H) on c(20+), k).
We assume that T = T | (i,5) € v ie. T, (=% H) is made by the periodic
repetition of the h-scaled master mesh.

The type of meshes under consideration is depicted in Fig. 2a, where the subdo-
mains S(2° H) D S(2°, H,) are covered by a periodic array of cells. An example
is shown in Fig. 2b (where the master-mesh in the master-cell is shown in Fig. 2c).
Here we are interested in the superconvergence regions in the elements belonging
to the patch shown in the Figs. 2b, 2c. Outside the square S(#° H) the mesh is
arbitrary; it could have curved elements, etc. The values of H, depend on A i.e.
H, = H,(h). More precisely we will assume that there exist C;, and C, indpendent
of h such that

(2.17) C,H*<h<CH*, a>1
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3 The theoretical setting

We will here for simplicity address only the case of Poisson’s equation (K = I
in (2.1)). Nevertheless, the results could be easily generalized to the general setting
for orthotropic medium.

Given a function u and the multi-index a := (a;,as) we define

Hlely
vi= 8z 9237 °

(3.1a) D~ le| :==a;, + a,

(3.18) (D*u)(e) := [( )3 |D°u|=)(e)]* . k>0, integer

lx|=h

and let us denote

(3.20) |lellsee.ir, ) = llwllza(sqeo,m, )

(3.2) |“|s(.°.n,.) = |I“”L~(S(.°,H.. )

(3.2¢) ||“||s(.o,z,.)== 2 | D% |
|lax|=1

Let Q be a polynomial of degree p + 1 on the master-cell ¢ and let T be the
master-mesh. Then denote
(3:3) pi=Q-Q"

where ._Q’,“'r is the interpolant of degree p of the function Q defined over the master-
mesh T (for which A = 1). Then we have

p(1,2;) = p(-1,2,), 25| < 1
(3.4)
p(£,,1) = p(2,,-1), |2, <1




because ST(¢) includes all polynomials of degree p on & Further let

(3.5) Higg(d) = {u €H(D)| u satisfies (3.4) }
and
(3.6) S? pxnl@) = {u € Bign(®)| uePf) Viel }

Further let 3# € S]pgg(¢) suct

(3'7") Be(ip 1'-’) i(P’ '-’) Vie S{,PER(E)
and
(3.76) J; (p—7)= 0

Note that the function Z* exists and is uniquely determined (we will compute it
numerically in the examples). Let us also define ¥ € H'(¢) by

(38) vi=p-=Q-Q" -#.

Below we outline the main theorem of the paper.

We will make the following assumptions about the exact solution u:
Assumption |

On (=% H)

(3.9) |D*u]| <K <00, 0<|ax|<p+2

Remark 3.1. Assumption I states that the solution is locally smooth in the sub-
domain S(2° H) i.e. the subdomain should be sufficiently far from boundaries,
material-interfaces and points where the data are rough.

Assumption II
Ha, :=(D"u)(2°), oa=(a,a:), |a|<p+1 then

10




(8.10) R= Y a>0
lal=p+1
Further, we assume that the mesh T'(£2, A) is such that:
Assumption III
On S(=° H,), H,<H<H°

(3.11) . llenllsqes. ) < CAP H,

with 8 > (p + 1) — ¢, where ¢ is specified in the theorem below and where C is
independent of T'(Q, k), Hi, but it depends on K and R.

Remark 3.2. We do not assume that u is smooth in  outside of S(«° H). For
example,  can have a boundary with reentrant corners (as in Fig. 2(a)) and
hence u can be unsmooth in the neighborhood of these corners. Nevertheless
assumption III makes an implicit requirement on the (refinement of the) mesh in
the neighborhood of these corners. If u is smooth in a convex { and the mesh is
quasi-uniform then

(3.12) llealla < CAP*{inh[" (D™ ullq, 20

and hence in assumption III we can take 8 < p + 1 arbitrary. Assumption III is
related to the pollution problem which is analyzed in [38].

Remark 3.8. Assumptions II, III imply that the principal part of the error in
S(=°, H,) is related to the non-zero (p + 1)-derivatives of the exact solution at =°.

Let 4, € Hipg(c(209),h)) be the function 9, defined above, scaled and trans-
lated onto the cell c(®(9), k) of the mesh in S(=°, H) i.e.

(813) @)= #9E), Dre)- w2e), -1,

where @ € c(e9),h), &= -Il;(c - a(t9),

It is easy to see that ¢, can be periodically extended over S(®% H,). In [28]
we have proven the following theorem using the theory of interior estimates (see
[31)-[37]):

Theorem 1. Let H, < H, < H < H® and the assumptions I-III and (2.17)-(2.18)
hold with

11




| 6p+1 1
3.14 — eeee— e e— 3 — =

Then for any ® € S(«°, H,)

(3.15) | 8"'( )| =] %‘g_h(c)| + |A|ChP

with |A| < 1 and C independent of A.

Remark 3.4. Note that ¢ (and thus ¢,) depends on the polynomial Q which
approximates well the solution in S(®° H). Theorem 1 states that for small A
(and hence H,) we have on S(=°, H,)

(3.16) g%(c) ~ ‘;_'.i_'_'(c)

or more precisely

(3.17) e"( )| = Ih" (c)l + [A|ChP .

72;

On the other hand it is easy to see that

0
(3-18) (l 8eh lc(.('-l) h)? I h |e('('-’),h)) > Ch?

where C depends on the constant R defined in (3.10). Nevertheless this does not
mean that

(3.19) |8°"| >Ch, i=1,2

The case that

(3.20) Oy l < Ch***, g,>0 foreither i=1 or 2

F
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is very exceptional. Hence we will assume that (3.20) does not happen i.c. we will
assume that there exists a constant > 0 independent of h such that

et >

(3.21) o |, = clel.

This assumption could formally be achieved by imposing additional assumptions
on the a_'s (defined in assumption IT). Note also that assumption (3.21) is always
assumed in the classical superconvergence theories.

Remark 3.9. Under assumption (3.21) Theorem 1 states that: A point @ in the
element 7 is asymptotically n%-superconvergence point for F(u) = % if and only

if

&z P10+ 1 5) <
(3.22q) O(a; F; I;Q,2,1,7) < 100
where

ez 8@ REQwLn = ToLN 4w = 191,

Remark 8.10. The term n%-superconvergence is not precisely descriptive. We
have used it because we wanted that 5%-superconvergence points for = 0 be
superconvergence points in the common terminology.

Theorem 1 shows that the n%-superconvergence can be analyzed by a local
analysis in the neighborhood of the elements under consideration. By this we
mean that the %-superconvergence regions of the finite element solution are very
close to the ones determined from the local analysis provided that the mesh is
sufficiently fine.

4 The methodology for determining the 7%-
superconvergence quantities

In this paper superconvergence is treated as local behavior and is based on
assumptions about the local behavior of the solution in the interior of the domain.
We will consider the class of solutions which are locally smooth in S(#°, H), namely,

(4.1) u°:={uem(n)| | D | gipo iy < K, 0$|a|$p+2}
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where S(2° H) denotes an interior subdomain of interest in which the mesh is
locally periodic as described above (the subdomain must be a finite distance away
from the boundary and points of roughness of the source term; see Fig. 2a). In
many instances we are only interested in the subclass of solutions in &€ which are
“harmonic” (we say that u is “harmonic” if it satisfies the homogeneous differential
equation), namely,

(4.2) U = {uEuG | La)=0 in n}

We may also assume that the functions are “harmonic” in a subdomain which is
slightly bigger than S(=°, H) and which includes S(2° H) in its interior.

In the previous Section we outlined Theorem 1 which states that we can obtain
the asymptotic values of the error ¢, for any smooth solution u in the interior of
a periodic mesh-subdomain by solving the periodic boundary-value problem (3.7),
using the master-mesh T over the master-cell é, with data obtained from the local
(p + 1)-degree Taylor-series expansion of the exact solution (which approximates
well the function u in S(=°, H)). Based on this result we will construct ~ - americal
procedure to determine the n%-superconvergence quantities for a give. class of
smooth solutions by employing the corresponding class of (p+1)-degree monomials.

a. The classes of (p + 1)-degree monomsal solutions.
Let us assume that for a given locally periodic grid with corresponding periodic

master-mesh T', given material orthotropy and given class of smooth solutions &
we consider

nd p+l
(4-3) Q:= {QI Q("’nzz) = Zath(zn ), Qh(”nzz) = ;ﬂz ”i 3’;1—‘}

h=1

the class of (p+ 1)-degree monomials which occur in all (p+ 1)-degree Taylor-series
expansions of functions from U. Here Q,, k = 1,...,nd denotes a set of linearly
independent monomials which span Q. For example let us assume that & is the
class of smooth solutions € given in (4.1); in this case we may choose

(4.4) Qu(zy,2,) ;=28 221 1<k<nd=p+2

and we obtain the class of all (p + 1)-degree monomials Q€.

In many practical applications we are interested only in the class of “harmonic”
solutions U “F" given in (4.2). Then Q is the two-dimensional linear space of “har-
monic” monomials of degree (p + 1) and will be denoted by Q"Z". For example in
the case of Laplace’s equation (K = I) we have

14




(4.5a) Q¥ = {Qﬂ I Q’(”x; z,) = é ay Qf(’n’:)} )

(4.55) Qi (z),2,) = Re(s™), Qi(zy,2,) =Im(s**'), 3=1¢, +iz, .

Note that in this case we do not use the quotes since the functions are harmonic
in the classical sense (i.c. they satisfy Laplace’s equation).

b. Freesing the periodicity for general meshes.

In the previous Section the theoretical results for the asymptotic values of the
error in the interior of periodic mesh-subdomains in locally periodic grids were
outlined. In particular, it was stated that the asymptotic error-function ¢, in
any element 7 in the A-cell in the interior of any periodic mesh-subdomain can be
obtained by solving a periodic boundary-value problem (3.7), using the master-
mesh T over the master-cell  with data obtained from the local (p + 1)-degree
Taylor-series expansion of the exast solution. In order to apply the results of the
theoretical study to the practical meshes, for which the mesh is not locally periodic,
the following technique of freesing the periodicity will be employed:

1. Let X be a vertex of the mesh. We will be interested in the n%-superconver-
gence regions in the elements in the mesh-cell w? (see for example Figs. 3a,
41) in a neighborhood of elements around the vertex X. Define an s-layered
mesh-cell of elements w? surrounding the mesh-cell w (see Figs. 3a and 41
where w? is shown with a thick black perimeter; this cell is enclosed in the
general mesh given in Fig. 1) by

XeN(r) XeN(r)

revd

where N(7’) denotes the set of the three vertices of element v/ and wy is a
mesh-cell of elements connected to vertex X which includes the element 7.

2. Complete the mesh-cell w? (shown in Fig. 3b) to a periodic-grid over a
slightly larger square periodic-cell which encloses w?, as shown in Fig. 3c.
The periodic-cell is then scaled and translated to the unit master-cell ¢.

15




3. Assume that the mesh in the neighborhood of element 7 is made from the pe-
riodic repetition of h-cells obtained from the master-cell, as shown in Fig. 2b
(where the master-cell is given in Fig. 2c), and let A tend to zero. Then
the theoretical-setting of the previous Section applies and the asymptotic
error-function ¢, in the element 7 can be obtained from the interpolation-
error and the solution of the periodic boundary-value problem (3.7) over the
master-cell ¢.

In the numerical examples it will be demonstrated that the results of n%-
superconvergence obtained from the above methodology hold, for all practical pur-
poses, for the complex grids used in engineering computations (provided that the
pollution-error is controlled, the approximation is in the asymptotic range and that
sufficient number of mesh-layers are included in the mesh-cell wP).

c. Determination of the n%-superconvergence quantities.

Based on the results of the theoretical study, outlined in Section 3, the asymp-
totic locations of the #%-superconvergence quantities in the element 7 for a solution
u (resp. class of solutions /) can be obtained from the corresponding quantities,
defined on the master-cell ¢, for the local (p + 1)-degree Taylor expansion @ of u
(resp. the class Q of the local (p + 1)-degree Taylor series expansions of functions
u € U), namely:

(4.7a) lim Cpte)(u; K57, T,) = Citay(Q; K7, T)
(4.75) lim By,(u; K;7,T,) = BR,(@ K;7,T)
(4.7¢) lim Xp@\(U; K7, T,) = Xpoy(Q; K;7,T)
(4.7d) lim Rt U K37, T,) = Ry, (Q; K37, T)

where the superconvergence quantities over 7 € T are defined as the correspond-
ing quantities in (2.2) by employing the relative error function given by (3.22b).
The above equalities are understood through the transformation which maps the
master-cell into the h-cells.

Remark 4.1. The above limits hold for the locally periodic meshes under the
assumptions of the theoretical analysis of Section 3. Hence for the general grids
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the limit should be understood for the mesh which is constructed by freesing the
periodicity (see also Figs. 2 and 3).

The asymptotic §%-contours for a given solution u can be obtained by con-
touring the function ¢, defined in (3.8), corresponding to the local Taylor-series
expansion Q of u. The superconvergence points z for a given class of solutions &
should satisfy

(4.8) F@,)&=0 for 1<i<nd

Here ¢; := p; — 2!, where 27 is the solution of (3.7) for p; = Q; —(Q,)™T where Q;
is the i-th basis monomial of the nd-dimensional monomial space @ corresponding
to the class U, as discussed in (4.3), (4.4). When (4.8) holds, the zero-contours of
F(¢;) intersect at # for 1 < ¢ < nd.

Remark 4.8. For the class of general solutions #¢, nd = p + 2, and as p increases
(for p > 3) the likelihood of zero-contours for each one of the ¢;’s crossing simul-
taneously at one point is very small. Thus a few or no superconvergence points
exist for the class € and p > 3. On the other hand for the class of “harmonic”
solutions "7, nd = 2 independent of p, and many superconvergence exist and
their number increases with p. For details see [28).

The asymptotic 9%-superconvergence bands for a solution u can be determined
from the function F(¢) by using piecewise linear interpolation of F(¢) on a suffi-
ciently fine uniform mesh obtained by subdividing the triangle .

The asymptotic n%-superconvergence regions for a class of solutions &/ can be
determined by using numerical optimization. In particular, consider the uniform
subdivision of the element 7 into subtriangles with vertices at the set of points
E:= {£,}ir,. Define the relative-error function at the point £,

|5 aFw)(E)
(4.9) I‘(u)(ebsF K;Q,{zf }i_ul 7):= -100,
max._| £ o, F:)E,)

1=1 U d

Then the function ’(.)(.,F K;Q,{z{}2,,1,7) can be defined for any point
® € 7 by using linear interpolation in the subtriangles. The asymptotxc n%-

superconvergence regions in the element 7 can be approximated using the level-sets
of the functions 95(,)(0,1" K;Q,{£}24,,1,7) i.e.

(410) RENQ K7 T)~ {8 € 7 | OF(8:Fi K Q, (o}, 1,7) < n%}
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We will call this approach the direct approach. It is also possible to use a simplified
approach which avoids the use of numerical optimisation at every point. First
observe that

(4.11) y y y
LR O] (% | Z & F(9,)(#)
Cn - ™ =
x| € o P )(E) x| EaF@)E) (et
nd
(5 et s A}
< F(%:)®) ) <
R l"z' 2P E) (rwe)
| e B arwoe])” i )(-)),);
< jmmn i @
K (& ot =
Hence we can define the function

: nd
(412)  8F(& F; K;Q, {s)2%,1,7) = zig J;(F(w.-)(a))’.

where

max | )3 o, F(%,)(€;)l

(4.13) Zg := min it
(E ot

«;

The quantity Zg can be eomputed using numerical optimisation. Let

(1) RE(@KnT) = {ser| 8@ FiK;Q, ()%, 1.7) < 1 }

denote the approximate regions of n%-superconvergence for the class of solutions
Q obtained by the simplified approach.
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The common §%-superconvergence region in an element 7 for a given class of
meshes and materials can be determined by using either the direct or the simplified

approach.
Remark 4.3. Note that we have

(4.15) REN(Q K7, T) € RT(Q; K7, T)

and we get a conservative estimate for the n%-superconvergence regions when the
simplified approach is used. For the class of harmonic functions U "¥" we observed
that the regions obtained by the two approaches are very close. However for the
class of general solutions &€ the simplified approach is too pessimistic and the
more expensive direct approach must be employed.

Remark 4.4. The functions defined in (4.9), (4.12) depend on the set of points =.
To ensure good accuracy in the approximation of the n%-superconvergence regions
a sufficient number of points must be empioyed.

5 Numerical studies of superconvergence

We will now present a model study of the n%-superconvergence properties of
finite element solutions in the interior of any grid, for any smooth solution and
material-orthotropy. We will address the following questions:

1. Given an element 7 in the interior of a periodic subdomain of a locally pe-
riodic mesh T),, where are the points of superconvergence and what is their
sensitivity with respect to:

(i) The class of solutions (harmonic or general);
(ii) The material orthotropy;

(iii) The geometry of the mesh and the number of mesh-layer in the mesh-
cells w}?

2. Given 9% (between 0%-100%) where are the regions in which the derivatives
of the error, or the components of the flux are within % of the maximum
error in the respective quantities in the element 7?7 In particular:

a. For the periodic meshes shown in Fig. 4 where are the 5%-superconver-
gence regions for the z,-derivative and how do these regions vary with
the degree p of the elements:

(i) For the class of harmonic solutions UZ;
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(ii) For the class of general solutions U¢?

b. For periodic meshes what is the effect of the mesh-distortion, the material-
orthotropy and the surrounding mesh on the location of the %-supercon-
vergence regions in a typical element?

c. For a general mesh, like the ones used in practical engineering compu-
tations, how different are the regions which are determined by freezing
the periodicity from the regions determined from the actual mesh?

We will answer the above mentioned questions by employing the computer-
based approach outlined in Section 4.

5.1 Robustness of the superconvergence points with re-
spect to the class of solutions and distortions of the
mesh for the Laplace equation (K = I)

We considered the four periodic patterns shown in Fig. 4. In [28] we determined
the points of superconvergence for the periodic meshes shown in Fig. 4 for the
classes UH and UC. The points are listed in Tables 1 for 1 < p < 5 for the class
of harmonic solutions. Table 2 indicates which points in each pattern are also
superconvergence points for the class of general solutions. In order to investigate
the robustness of these points with respect to the class of solutions we computed
(Table 3) the maximum %-error in the z,-derivative of the solution for the class of
general solutions A€ at the superconvergence points for the class ¥ for quadratic
elements i.e. the value
(51)  7%6)= max O(8; o2 1,0, #,1,7), & € X(QT; I;7,T)

* * QG ca ] 821’ ] Y i Ant ] y ﬁ‘_ At B

From the numerical results we observe that the relative error at the supercon-
vergence points for the class of harmonic solutions the may be large for solutions
which are not harmonic.

5.2 Determination of the n%-superconvergence regions for
the periodic meshes (K =1I)

From the previous example it is clear that the superconvergence points are
very sensitive to class of solutions and the geometry of the mesh. Moreover, the
points may not exist at all; for example there are no superconvergence points for
the 2,-derivative of the solution in the Union-Jack pattern for the class of general
solutions. We will now report the 5%-superconvergence regions for the periodic
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meshes shown in Fig. 4. We will show that, unlike the superconvergence points,
these regions always exist (in any element in any pattern) for sufficiently high n%.

We determined the n%-superconvergence regions for the classes of harmonic
and general solutions, for the elements 7 in the periodic-cell which consists of: two
elements for the Regular pattern; four elements for the Chevron and Criss-Cross
patterns; eight elements for the Union-Jack pattern. The levels of % in the Figures
were chosen to be 10%, 20%, 30%. In Figs. 5-8 the regions R"% (QH I;#T) and

the contours of zero-error in the z,-derivative of the solution for tile basis harmonic-
monomials are given for p = 1, 2, 3, 4, 5. It should be noted that for the class of
harmonic solutions the results were obtained using the “simplified approach” (these
results are very close to correspondmg results obtained using the direct approach).

The regions R (QG,I #,T) for p=1, 2, 3, are given in Figs. 9-12. It should be

noted that for the class of general solutions the direct approach must be used in
the determination of the n%-superconvergence regions, as the simplified approach
is too pessimistic (it results in regions which are much smaller than the actual
ones).

We observe that:

1. For the class of harmonic solutions, the 7%-superconvergence regions for the
error in the z,-derivative grow with the degree p of the elements.

2. For the class of general solutions, the 7%-superconvergence regions for the
z,-derivative are small (except for the Regular pattern for p = 1, 2) and they
diminish in size as p grows, i.e. for higher p’s (p > 3) the regions may not
exist at all for small 5’s, for example for < 30.

5.3 Robustness of n%-superconvergence regmns. Effect of
mesh-distortion (K =I)

To study the robustness of the superconvergence points with respect to dis-
tortions of the mesh we considered the Regular pattern with the central node
displaced (see Fig. 13) and computed the maximum 5%-error in the z,-derivative
of the solution at the points with the same master-element coordinates as the
superconvegence points in the undistorted mesh (given in Table 1a) i.e.

(5.2)

- = Ou - =y = -
=Rzl . =l 2.1, P 1 2 =/ _ =y = suprYH, 1. 2

(@)= &ge(aiazlvlvgaz ’117)’ 2 =F(=), @ GX,.._,.;(Q s I; 7, T)

where ¥/ = F(7)and F : T — T denotes the transformation from the undistorted
master-mesh T to the distorted master-mesh 7 and X ""’(QH I;+, T) denotes the
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set of superconvergence points in the undistorted pattern. The value of 7% was
computed for both the class of harmonic and class of general solutions (Table 4),
for quadratic elements.

In order to study the robustness of the n%-superconvergence regions with re-
spect to distortions of the mesh, the regions RN (Q‘r I;7,T) were determined as

a function of the mesh-distortion for periodic gnds of quadratic elements in the
Regular and Union-Jack patterns. In both patterns the central node was moved to
(0.4, 0.4), (0.6, 0.6), (0.8, 0.9) from its position (0.5, 0.5) in the undistorted pat-
tern, as shown in Fig. 13. The regions R (Q ; I;#,T) (g = 10, 20, 30) are given

in Figs. 14, 15 (Fig. 14 for the Regular pattern, and Fig. 15 for the Union-Jack
pattern).

We make the following observations:

1. For both the classes of harmonic and general solutions, the n%-error at the
points with master-coordinates corresponding to the superconvergence points
in the undistorted pattern can vary from 2.5% to 100% when the pattern is
distorted.

2. For small distortions of the pattern, i.c. when the central node is located at
(0.4, 0.4) or at (0.6, 0.6) the regions for n%-error (y = 10, 20, 30) do not differ
much from the regions in the undistorted pattern and there are big common
regions for all the distorted meshes and the values of % considered.

3. For large distortions of the pattern, i.c., when the central node is located at
(0.8, 0.9) the common regions for all the distorted meshes exist only for large
values of 7% (n > 30).

5.4 Robustness of n%-superconvergence regions: Effect of
grid-material orientation (K # I)

Given a mesh and an orthotropic material, we would like to find the 5%-
superconvergence region ‘R,,(u)(Q'H' M;#,T) for F(u) = -:‘s- or g,(u) which is
common to a given class of orthotropic materials M. We consxdered the Union-Jack
pattern and quadratic elements and let % = 25%. We assumed that Komas

K,
4 and we let angle 8 of orientation of the principal plane of orthotropy m?ﬁ' respect

to the mesh vary from 0° to 90°. We use the notation

=2or

Kinax
Kpin

(5.3) M, = {K = K(6)| —r and f€ [o,9o°]}
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We determined the common regions R M(Q"" M,;#,T) (shown in Fig. 16) and
'k"“(Q"' ; My; #,T) (shown in Fig. 17). The common 25%-superconvergence re-
gom were approximated by finding the intersections of the 25%-superconvergence

regions for § = 0°, 15°, 30°, 45°, 60°, 75° 90° as shown in Figs. 16, 17, 18. In
Fig. 18 we give the common region ﬁg(Q’r ;M4 7,T). It can be seen that
1

Knax
Kmin
components of the flux for all 8 € [0,90°), are of significant size with respect to the

for

= 2 the common regions of 25% error, for the z,-derivative or the z,-

Koin
z,-derivative for all € [0,90°], are small. It is clear that the 25%-common region

will dissapear for higher values of the ratio f(w .

sige of element. However, for = 4 the common regions of 25% error, for the

5.5 Robustness of the n%-superconvergence regions:
Effect of the surrounding mesh

Here we shall demonstrate that the n%-superconvergence regions and contours
in an element 7 are affected only by one or two surrounding layers of elements.
We considered five 3 x 3-cell periodic meshes T, — T;, as shown in Fig. 19. We
detmnedtheregxonsk (QHIT,T)I—I .»5, where 7 = 10, 20, 30 and

for the elements of degree p = 2, 3, 4. The n%-superconvergence regions and
the 0% contours are shown in Figs. 20-22. Fig. 23 displays the common region

R2%(QH; I;7,T), where T = T;}5_,, (shaded gray) for the five 3 x 3-cell meshes
&

for p = 2,3. Next, we added one layer of elements around the five 3 x 3-cell meshes,
to get the five 5 x 5-cell meshes T}, ¢« = 1,...,5, as shown in Fig. 24. Figs. 25-27
display the regions R (QB°I-1'-,T-'), 1 =1,...,5 for p = 2, 3, 4. In Fig. 28

we show the common reglon ‘R,”"(Q” I;#,T), where T' = {T!}L,, for the five
5 x 5-cell meshes for p = 2, 3.
From the results we observe that:

1. The regions R"® (Qa I;#,T,), are essentially identical with the correspond-
ing regions R %(Q” I;#,T!). However, the zero-contours for the z,-derivative

of the error for the harmonic monomials are different for the corresponding
grids T;, T}, i =1,...,5.

2. The common regions R”"(Q”,I #,T) and 'R.’”‘(Q” I;#,T"') are, for all
practical purposes, Identxcal
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To see whether the mesh beyond two mesh-layers of clements affects the com-
mon 5%-superconvergenc. region in element 7 and the zero-contours for the z,-
derivative of the error for the basis monomials, we surrounded the 5 x 5-cell mesh of
Fig. 24e by 5 more layers of uniform elements to get the mesh Ty’ shown in Fig. 29.

From Fig. 30 we can see that the 7%-superconvergence regions R (Q” I;#TY)

for the element 7 are identical to the corresponding contours and n%-superconvetgence
regions for the 5 x 5-cell mesh T;. We also surrounded the 5 x 5-cell mesh of Fig. 24e
by 5 layers of distorted elements to obtain the mesh T;", as shown in Fig. 31. From
Fig. 32 we can observe that the regions R (Q‘ir I;#,T}") for the element 7 are

practically identical to those for the 5 x 5-mesh T:.

From the above examples we can conclude tha.t The n%-superconvergence re-
gions in element 7 are not affected, for all practical purposes, by the mesh outside
the immediate 2 layers of elements surrounding the element.

5.6 n%-superconvergence for general meshes

In order to demonstrate that the method of freezing the periodicity gives
accurate prediction of the n%-superconvergence for general meshes we considered
the following examples:

1. An example which shows how the conclusions from the periodic grid translate to
grids in finite domains.

We considered a 5 x 5 mesh of Union-Jack cells surrounded by an arbitrary
quasiuniform mesh generated by a remeshing algorithm. For the mesh and the
mesh-cells shown in Figs. 33a-33c, we determined the 5%-superconvergence re-
gions for the z,-derivative of the error for cubic elements and the class of quartic
harmonic polynomial solutions. In Figs. 34a-34c we give the 7%-superconvergence
regions for the z,-derivative for the mesh-cells shown (shaded gray) in Figs. 33a-
33c, respectively. These regions were determined from the approximate solutions
of Dirichlet boundary-value problems over the finite-domain using data cbtained
from the basis harmonic-monomials. Comparing Figs. 34a-34c (for the Union-Jack
cells in the mesh which covers the finite-domain) with Fig. 7c which gives the 7%-
superconvergence regions for the periodic Union-Jack cell, we can observe only a
slight-difference between the corresponding regions shown in Fig. 7c and Fig. 34c.
This example indicates that the results on the 7%-superconvergence regions ob-
tained from the periodic cell hold, for all practical purposes, even for cells very
close to the boundary of the periodic submesh.

2. An ezample which demonstrates that the results obtained using the method
of freezing the periodicity hold _for arbitrary meshes and solutions which are not

polynomsials.
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We considered the mesh shown in Fig. 1 in the square domain = (0,1)? and
identified several elements in small mesh-cells enclosed in the interior of the mesh.
The mesh-cells w? are shown in Figs. 35a-35c; in these Figures the mesh-cells are
shaded gray. For each mesh-cell we isolated a corresponding submesh w? of the
original grid which includes the mesh-cell w? and three mesh-layers around it; the
submeshes w} are shown within the thick-line perigram in Figs. 35a-35¢c. Each one
of the submeshes was scaled and completed to a square periodic-cell ¢, as shown
in Figs. 36a-36c. We considered the class of the following four harmonic solutions:

(5'44) us'(ri,ai) = sin(a.-o‘-), i=1,...,4,
(5.4b) r? = (2, — z8)? + (23 — 23)?, 6; = tan™! (:: : :::) .

The solutions are specified by the following parameters:

(,21) =(2,,0.) , a,=§, (2,22) = (1.5,0.5) , a,=§,
(5.5)

w

(32’33) =(0.5,2.), ay= %’ (”:sz;) =(-3,0.), a,=

o

We determined the common region 1?.:2,:,’_‘(24' ; I;7,T,) from the actual mesh and
- - _l
ﬁ?g(u ;I;7,T) from the periodic meshes T obtained by freezing the periodicity lo-

cally, & = {w;}L, for linear and quadratic elements. The regions 'R,’”‘(u I;#7T)

were obtained by solving Neumann boundary-value problems, usmg data from
the exact solutions, over the entire domain Q and using the mesh T} of Fig. 1.

The regions R "‘(u I;#,T) were obtained by solving periodic boundary-value

problems, using data obtained from the local Taylor-series expansion, over the
periodic-cell and the periodic meshes of Fig. 36a-36c. In Figs. 37a-37c we give
the region 12""(11- I;7,T,) for linear elements while Figs. 38a-38c we show the

corresponding regxons n”"(u I;#,T) obtained from the solutions of the periodic

boundary-value problems In Figs. 39a-39c (resp. Figs. 40a-40b) we give the region
'R.’”‘(u 1 I;7,T,,) (resp. 'n""(u s I;#,T)) for quadratic elments.
l 1
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We observe that the regions n’”‘(u I;7,T,) obtained by using the solutions

of the Neumann boundary-value prof;lems over the entire grid practically coincide
with the regions ‘R“"(u I;#,T) determined from the periodic boundary-value

problems over the penodlc meshes. Hence the method of freezing the periodicity
gives results which hold for the practical grids.

8.7 Robustness of the %-superconvergence points in prac-
tical computations.

Here we give an example which shows that 5%-superconvergence points are
robust and can be used to sample the solution in the interior of any grid used in
practical computf.tions. For the mesh-cell w?, shown shaded gray in Fig. 41, we
determined the n';;(eﬂ;r;i,r,,) for n = 10,20,30, for p = 1, 2, 3. The 7%-

regions are shown in Fig. 42a, 42b, 42c for p = 1, 2, 3, respectively. We extracted
some random sampling points within the 10%-regions for the z,-derivative of the
solution for the class of harmonic solutions (as shown in Fig. 43) and we solved a
Neumann boundary value problem over the mesh shown in Fig. 1, with the exact
solution u; and domain Q' given as:

1 1 1 1
+

(5.6a) uy(z,,%,) = 157 — (z + z,)? + 157+ (z+2,)?7 15°—1.0 157 +1.0

where z, = 0.5(1 +1), Q! = (-0.5,0.5)?, and

(5.65) Uy(2y,2,) = 'R.e((z - zo)%)

where z, = 0.5 + 2.0s, Q2 = (0,1)2.

For the two solutions given above we determined the relative error in the z,-
derivative of the solution at the sampling points for p = 1, 2, as shown in Table
5a, 5b. From the results we observe that:

(1) As p increases, the 7% regions for the z,-derivative of the solution increase
in size relative to the elements.

(2) From the results shown in Table 5a, 5b, we can see that the relative error at
the sampling points is less than 15% for the two solutions considered.

Thus, this example shows that from the %-regions obtained from the computer-
based approach of this paper we can extract robust sampling posnts, which can be
used for any solution in the given class.
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1.

Summary of conclusions

The new concept of n%-superconvergence was introduced and the 5%-super-
convergence regions for various flux-quantities and for various classes of so-
lutions and materials were defined.

. The n%-superconvergence regions can be found for any mesh using a com-

puter based-approach.

. The n%-superconvergence regions for the z,-derivative were determined for

four periodic patterns and it was observed that:

a. The regions always exist for sufficiently high 1.
b. For fixed value of 5 the regions

(i) always exist for the class of harmonic solutions and grow in size
relative to the element as the degree p of the elements is increased;

(ii) may not exist for the class of general solutions and shrink in size as
the degree p of the elements is increased.

These observations can be expected to hold for ~- odic grids made by the
repetition of any periodic pattern.

The n%-superconvergence regions can, for all practical purposes, be deter-
mined for any general finite element grid, like for example, the grids employed
in practical engineering computations by using the technique of freezing the
periodicity. Thus the new concept of n%-superconvergence can be employed
to identify optimal sampling points for the flux-quantities in the interior of
any practical grid.

. We defined the common 7%-superconvergence regions for entire classes of

grids and materials. These regions can be determined numerically and can
be used to identify robust sampling points for the flux-quantities of interest
for entire classes of grids, solutions and materials.
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List of Figures

Fig. 1. Typical example of a general finite-clement grid used in practical engi-
neering computations. This grid was generated using a commercial mesh-generator
for a problem with a material interface.

Fig. 2. (a) An example of a domain with a locally periodic subdomain in its
interior which is covered exactly by a periodic array of h-cells; (b) A detailed
depiction of the mesh T} (2% H) in the interior of the periodic mesh-subdomain
S(s° H). This grid is made by the periodic repetition of the A-scaled master mesh
T; (c) The master mesh T in the master-cell .

Fig. 3. Extraction of a mesh cell w? and completion to & periodic mesh T in the
periodic cell & (a) The grid (of Fig. 1) with the mesh-cell w* (with its perimeter
shown in thick black line) and the mesh-cell w? (shaded gray); (b) The mesh-cell
w? with the mesh-cell w? (shaded gray) in its interior; (c) The scaled mesh-cell w?
embedded in a periodic mesh 7.

Fig. 4. Periodic meshes of triangles with the elements 7 shaded gray: (a) Regular
pattern; (b) Chevron pattern; (c) Union-Jack pattern; (d) Criss-Cross pattern.

Fig. 5. n%-superconvergence regions for periodic meshes: The regions
‘ﬁ'g‘_(Q' ; I;#,T) for the levels g = 10, 20, 30, and the zero-contours
é’é_(Q,-‘;I;v’-, T), § = 1,2, for the Regu’ar pattern. (a) p=1; (b) p=2;(c) p=3;
(d) p = 4; (¢) p = 5. The regions were determined using the simplified approach.
F.‘ig. e. q%-snguconvergmee regions for periodic meshes: The regions
R"s_(Q’ ; I;7,T) for the levels n = 10, 20, 30, and the zero-contours

1
é"é_(Q;’, I;#,T),i = 1,2, for the Chevron pattern. (2) p=1;(b)p=2;(c) p = 3;
(d) p = 4; (e) p = 5. The regions were determined using the simplified approach.

Fig. 7. n%-superconvergence regions for periodic meshes: The regions
-"é(Q" ; I; 7, T) for the levels 5 = 10, 20, 30, and the gero-contours

é‘”‘ (Q‘l ;s I;#,T), i = 1,2, for the Union-Jack pattern. (a) p = 1; (b) p = 2;
(c) p = 3; (d) p = 4; (¢) p = 5. The regions were determined using the simplified
approach

Flg. 8. n%-superconvergence regions for periodic meshes: The regions
ﬁ-(QI ; I;#,T), for the levels 9 = 10, 20, 30, and the gero-contours

31

B |




CE@FLF,T), i = 1,2, for the Criss-Cross pattern. (a) p = 1; (b) p = 2
(c) p=3; (d) p = 4; (¢) p = 5. The regions were determined using the simplified
approach

Fig. 8. n%-superconvergence regions for periodic meshes: The regions
‘ﬁ"é_(Q"; I;#,T), for the levels g = 10, 20, 30, for the Regular pattern. (a) p=1;
(b) p = 2; (c) p = 3. The regions were determined using the direct approach.

Fig. 10. n%-superconvergence regions for periodic meshes: The regions
’f?."é_(Qa  § ;‘F,f‘), for the levels = 10, 20, 30, for the Chevron pattern. (a) p = 1;

(b) p = 3. It should be noted that for p = 2 there is no region for % < 30%. The
regions were determined using the direct approach.

Fig. 11. n%-superconvergence regions for periodic meshes: The regions
‘ﬁ"é(Qo, I;#,T), for the levels n = 10, 20, 30, for the Union-Jack pattern. (a)p=
2; (b) p = 3. Note that for p = 1 there is no region 9% < 30%.

Fig. 12. n%-superconvergence regions for periodic meshes: The regions
ﬁ"é_(QG; I;#,T), for the levels g = 10, 20, 30, for the Criss-Cross pattern. (a)p=
1; (b) p = 2; (c) p = 3. The regions were determined using the direct approach.

Fig. 13. Robustness of %-superconvergence regions: Effect of mesh distortion.
The undistorted patterns are given in the domain (0, 1)x(0, 1) with the central
node located at (0.5, 0.5). (a) Regular pattern with the central node at (0.4, 0.4);
(b) Regular pattern with the central node at (0.5, 0.5); (c) Regular pattern with
the central node at (0.6, 0.6); (d) Regular pattern with the central node at (0.8,
0.9); (¢) Union-Jack pattern with the central node at (0.4, 0.4); (f) Union-Jack
pattern with central node at (0.5, 0.5); (g) Union-Jack pattern with the central
node at (0.6, 0.6); (h) Union-Jack pattern with the central node at (0.8, 0.9).

Fig. 14. Robustness of n%-superconvergence regions: Effect of mesh-distortion.
Distorted Regular p&ttem, quadratic elements and cubic harmonic polynomial so-
lutions. The regions R ﬁ-(QH ; I;7,T) when the central node is at: (a) (0.4, 0.4);

(b) (0.5, 0.5); (c) (0.6, 0.6); (d) (0.8, 0.9). The regions were determined using the
direct approach.

Fig. 15. Robustness of #%-superconvergence regions: Effect of mesh-distortion;
Distorted Union-Jack pattern, quadratic elements and cubic harmonic polynomial
solutions. The regions R"¥ (Q’ I;#,T) when the central node is at: (a) (0.4,

0.4); (b) (0.5, 0.5); (c) (0 6 0. 6); (d) (0.8, 0.9). The regions were determined using
the direct approach.
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Fig. 16. Robustness of 7%-superconvergence regions: Effect of the grid-material
orientation; Union-Jack pattern, quadratic elements and cubic “harmonic” poly-

nomial solutions. The common region R (Ql s My; 7, T) for Konae _
grid-material orientations @ € (0°,90°]. Ko

= 2 and all

Fig. 17. Robustness of n%-superconvergence regions: Effect of the grid-material
orientation; Union-Jack pattern, quadratic elements and cubic “harmonic” poly-

nomial solutions. The common region ‘-ﬁ::z:)(Qx s My; 7, T) for = 2 and all
grid-material orientations 8 € [0°,90°].

INAX
Kein
Fig. 18. Robustness of n%-superconvergence regions: Effect of the grid-material
orientation; Union-Jack pattern, quudratic elements and cubic “harmonic” poly-

nomial solutions. The common region R (Q’ M,;#,T) for f{"‘ = 4 and all
grid-material orientations 8 € [0°, 90°]. -

Fig. 19. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; The five 3 x 3-cell meshes used with the element ¥ subdomain shaded
gray. (a) Mesh T} ; (b) Mesh T;; (c) Mesh T;; (d) Mesh T; (¢) Mesh T;.

Fig. 20. Robustness of the n%-superconvergence regions: Effect of the sur-
ronndmg mesh; Quadratic elements, cubic harmonic polynomial solutions. The
regions R"é_(Q ;I;7,T,) and the sero-contours Cg_(Q, i L#,1), 8 = 1,2, for

k=1,...,5 in the clement 7 for the five 3 x 3-cell meshes of Fig. 19. (a) Mesh
T, ; (b) Mesh T,; (c) Mesh T; (d) Mesh T; (¢) Mesh T;.

Fig. 21. Robustness of the n%-superconvergence regions: Effect of the sur-
ronndmg mesh; Cubic elements, quartic harmonic polynomial solutions. The re-
gions ’IZ'%_(Q‘I I;#,T,) and the zero-contours C‘”‘ (Q",I #T,), i = 1, 2, for

k= <y, in the element 7 for the five 3 x 3—ee]1 meshes of Fig. 19. (a) Mesh
1;; (b) Mah T,; (c) Mesh T,; (d) Mesh T; (¢) Mesh T;.

Fig. 22. Robustness of the n%-superconvergence regions: Effect of the sur-
rounding mesh Quartic elements, quintic harmonic polynomial solutions. The
regions R (QH,I #,T,) and the zero-contours C"" (Q, s #,T,), 8 =1, 2, for

k=1,.. 5 in the element 7 for the five 3 x 3-cell meshes of Fig. 19. (a) Mesh
T,; (b) Mesh T,; (c) Mesh Ty; (d) Mesh T ; (¢) Mesh T;.

Fig. 28. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; Elements of order p, harmonic polynomial solutions of degree (p + 1).

33




The common region 'R.""(Q” I;#{T, }L,) from the various 3 x 3-cell meshes for
clements of degree p; (a.) p=2;(b)p=3.

Fig. 24. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; The five 5 x 5-cell meshes (with the element 7 shaded gray) formed by
surrounding the corresponding 3 x 3-cell meshes of Fig. 19 by one layer of elements.
(a) Mesh T}; (b) Mesh Tj; (c) Mesh T}; (d) Mesh T; (e) Mesh T}.

Fig. 25. Robustness of the §%-superconvergence regions: Effect of the surround-
ing mesh; Quadratic elements, cubic harmonic solutions. The regions

‘R.:%(Q',I #,T{) and the sero-contours C‘”‘(Q’,I 7T, i =1,2 for k =

1,...,5, in the element 7 for the five 5 x 5-rell meshes of Fig. 24. (a) Mesh
(b) Mesh T}; (c) Mesh T; (d) Mesh T; (e) Mesh Tj.

Fig. 26. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; Cubic elements, quartic harmonic solutions. The regions

‘R’g_(Q’,I #,T!) and the szero-contours C“(Q, i L7TD, i =1,2, for k =

1,...,5, in the element 7 for the five 5 x 5-cell meshes of Fig. 24. (a) Mesh
(b) Mesh T3; (c) Mesh Ty3; (d) Mesh T; (e) Mesh Tj.

Fig. 27. Robustness of the 5%-superconvergence regions: Effect of the surround-
ing mesh; Quartic elements, quintic harmonic solutions. The regions

(Q ; I;#,T,) and the sero-contours C‘”‘ (Q, s 7,T,), ¢ = 1,2, for k =
1,. ,5 in the element 7 for the five § x 5-cell ‘meshes of Fig. 24. (a) Mesh T7; (b)
Meah T}; (c) Mesh T}; (d) Mesh T; (e) Mesh Tj.

Fig. 28. Robustness of the %-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree p, harmonic polynomial solutions of degree (p + 1).
The common region ‘R,""(Q,I #,{T!}L.,) from the various 5 x 5-cell meshes for

elements of degree p: (a.) p=2;(b)p=3.
Flg. 29. Robustness of the n%-superconvergence regions: Effect of the surround-

ing mesh; Mesh 7 formed by surrounding the 5 x 5-cell mesh T¢ of Fig. 24¢ with
5 more layers of umform elements. The element 7 is shown shaded gray.

Fig. 30. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree p, harmonic polynomial solutions of degree (p+1).
The regions 'R,"" (Q ; I;#,T¥) and the zero-contours C'”‘ (Q, s I;#7,T1), i = 1,2,

forthemuhshowanxg 29. (a) p=2;(b)p=3; (c)p 4,
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!‘ig 31. Robustness of the 9%-superconvergence regions: Effect of the surround-
ing mesh; Mesh formed T by surrounding the 5 x 5-cell mesh 7! of Fig. 24¢ with
5 more layers of dutorted elements. The element 7 is shown sha.ded gray.

Fig. 32. Robustness of the n%-superconvergence regions: Effect of the surround-
ing mesh; Elements of degree P, harmonic polynomial solutions of degree (p+1).
The regions ‘R,"” (Q ; I;#,Ti*) and the sero-contours C“" (Q, s I;#,T), i =1,2,

forthemeshlhownml‘:g 3. (a)p=2;(b) p= 3(c)p 4.

Fig. 33. n%-superconvergence for general solutions and meshes: An arbitrary
mesh T, with a 5 x 5-cell mesh of Union-Jack pattern embedded in it.

(a) Union-Jack cell (shaded gray) in the center of the 5 x 5 periodic submesh;

(b) Union-Jack cell (shaded gray) off-center of the 5 x 5 periodic submesh;

(c) Union-Jack cell (shaded gray) at the boundary of the 5 x 5 periodic submesh.

Fig. 34. n%-superconvergence for general solutions and meshes; Cubic elements,
quartic harmonic solution. The regions 1&’.’;;:,_(@H I;7,T,) and the zero-contours

Cg{(Qf' ;I;7,T,), ¢ = 1,2. (a) Union-Jack cell shown in Fig. 33a; (b) Union-Jack
cell shown in Fig. 33b; (¢) Union-Jack cell shown in Fig. 33c.

Fig. 385. n%-superconvergence for gene.al solutions and meshes: The grid of
Fig. 2 with the elements 7 (shaded grav) and the mesh-cell wP. (a) Mesh-cell 1;
(b) Mesh-cell 2; (c) Mesh-cell 3.

Fig. 36. n%-superconvergence for general solutions and meshes: Periodic cells
enclosing the mesh-cells of Fig. 35. (a) Periodic cell enclosing mesh-cell 1; (b) Pe-
riodic cell enclosing mesh-cell 2; (c) Periodic cell enclosing mesh-cell 3.

Fig. 37. n%-superconvergence for general solutions and meshes: Neumann bound-
ary value problem over the domain and the actual mesh of Fig. 1; linear elements,
harmonic solutions with point singularities outside the domain (see Section 5.6).
The region ‘ﬁ.’é’_‘(u ; I;7,T,) for the z,-derivative of the solution for (a) Elements

T in mesh-cell 1 (Fig. 35a); (b) Elements 7 in mesh-cell 2 (Fig. 35b); (c) Elements
T in mesh-cell 3 (Fig. 35c).

Fig. 38. 7%-superconvergence for general solutions and meshes: Periodic bound-
ary value problem over the periodic cells of Fig. 36; linear elements, quadratic
harmoanic polynomial solutions obtained from a local Taylor-series expansion of
the solutions with point singularities outside the domain (see Section 5.6). The
region ‘f!’g‘_‘(Q' ; I;#,T) for: (a) Elements 7 in periodic-cell of Fig. 36a; (b) El-

ements 7 in the periodic-cell of Fig. 36b; (c) Elements 7 in the periodic-cell of
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Fig. 39. n%-superconvergence for general solutions and meshes: Neumann bound-
ary value problem over the actual mesh of Fig. 1; quadratic elements, harmonic
solutions with point singularities outside the domain (see Section 5.6). The regon
‘R.""(ll I;7,T,) for: (a) Elements 7 in mesh cell 1 (Fig. 35a2); (b) Elements 7 in

muh cell 2 (Fig. 35b), (c) Elements T in mesh cell 3 (Fig. 35c).

Fig. 40. n%-superconvergence for general solutions and meshes: Periodic bound-
ary value problem over the periodic cells of Fig. 36; quadratic elements, cubic
harmonic polynomial solutions obtained from a local Taylor-series expansion of
the solutions with point singularities outside the domain (see Section 5.6). The
region ’k:g:’_‘(Q" ; I;7,T) for: (a) Elements r in periodic cell of Fig. 36a; (b) El-
ements T in the periodic cell of Fig. 36b; (c) Elements 7 in the periodic cell of
Fig. 36c.

Fig. 41. Robustness of the n%-superconvergence points in practical computa-
tions: The mesh of Figure 1 with a mesh-cell w? (shown shaded gray) and the
corresponding mesh-cell w} (enclosed by the thick-line perigram).

Fig. 42. Robustness of the n%-superconvergence points in practical computations:
The mesh-cell w? with the regions n’;’é(gﬂ I;T), for the levels 5 = 10, 20, 30,
for elements of degree p. (a) p=1;(b) p=2; (c) p=3.

Fig. 43. Robustness of the n%-superconvergence points in practical computations:

Random sets of 10%-superconvergence points. The mesh-cell wg with the regions
‘R.;g(QH ; I;7T) and the sampling points for elements of degree p. (a) p = 1; (b)
, .

p=2.
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Regular, Chevron, Union-Jack patterns
Superconvergence points for the class of harmonic solutions
The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (1.0, 1.0)
Points p=1 p=2 p=3 p=4 p=5
1 0.5000000000, { 0.2113248654, | 0.0000000000, | 0.0118976218, | 0.0000000000,
0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
2 0.7886751346, | 0.3752181980, | 0.2821230756, | 0.1726731646,
0.0000000000 | 0.0858825088 | 0.0000000000 | 0.0000000000
3 0.7500000000, | 0.5000000000, | 0.7178769244, | 0.5000000000,
0.0458758546 | 0.0000000000 | 0.0000000000 | 0.0000000000
4 0.7500000000, | 0.4715185566, | 0.9881023782, | 0.8273268354,
0.4541241452 | 0.3241733208 | 0.0000000000 |{ 0.0000000000
5 1.0000000000, | 0.1195044522, | 1.0000000000,
0.0000000000 | 0.0224992688 | 0.0000000000
6 0.8638176260, | 0.7053452590, | 0.4640525316,
0.6824066036 | 0.0071869378 | 0.0103019842
7 0.3095295948, | 0.2328766474,
0.2201118672 | 0.15749286240
8 0.6402277154, | 0.4734766188,
0.5196142358 | 0.3874100850
9 0.9063362308, | 0.7356302926,
0.7871241952 | 0.6425966766
10 0.9343659198,
0.7080184052

Table 1la. Classical superconvergence points for periodic meshes: Elements of
degree p, class of harmonic solutions. The superconvergence points for the z,-
derivative of the error and the class of harmonic solutions for p =1, 2, 3, 4, 5
for the element 7 (shaded gray in Fig. 4) for the Regular, Chevron, Union-Jack
patterns.
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Criss-Cross pattern
Superconvergence points for the class of harmonic solutions
The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)

Points p=1 p=2 r=3 p=4 p=>5
1 0.5000000000, | 0.2113248654, | 0.1464466094, | 0.0761088279, | 0.0488705882,
0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
2 0.7886751346, | 0.5000000000, | 0.3397707358, | 0.2355765633,
0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000
3 0.8535533906, | 0.6602292641, | 0.5000000000,
0.0000000000 | 0.0000000000 } 0.0000000000
4 0.5000000000, | 0.9238911721, | 0.7644234366,
| 0.5000000000 [ 0.0000000000 | 0.0000000000
5 0.5000000000, | 0.9511294118,
0.4887686394 | 0.0000000000
6 0.5000000000,
0.0000000000

Table 1b. Classical superconvergence points for periodic meshes: Elements of
degree p, class of harmonic solutions. The superconvergence points for the z,-
derivative of the error and the class of harmonic solutions for p = 1, 2, 3, 4, 5 for
the element 7, for the Criss-Cross pattern.
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Criss-Cross pattern
Superconvergence points for the class of harmonic solutions
The vertices of the triangle are at (0.0,0.0), (1.0,0.0), (0.5, 0.5)
Points p=1 p=2 p=3 p=4 p="5
1 0.5000000000, | 0.7886751346, | 0.8750000000, | 0.7621420044, | 0.8368698019,
0.5000000000 | 0.5000000000 | 0.2834936534 | 0.3163540210 | 0.2268165908
2 0.8750000000, | 0.9145863153, { 0.7540881642,
0.5000000000 | 0.3966634454 | 0.339792606%
3 0.8750000000, | 0.8970792676, | 0.6883014452,
0.7165063710 | 0.5000000000 | 0.3781734456
4 0.5000000000, | 0.9145863153, | 0.7811733816,
0.5000000000 | 0.6033365546 | 0.4582804499
5 0.7621420044, | 0.9334689552,
0.6836459789 | 0.5000000000
6 0.7811733816,
0.5417195501
7 0.6883014452,
0.6218265544
8 0.7540881642,
0.6602073930
9 0.8368698019,
0.7731834092
10 0.5000000000,
0.5000000000
11 0.7760422930,
0.5000000000

Table 1c. Classical superconvergence points for periodic meshes: Elements of

degree p, class of harmonic solutions. The superconvergence points for the z,-

derivative of the error and the class of harmonic solutions for p = 1, 2, 3, 4, 5 for

the element 7, for the Criss-Cross pattern.
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Superconvergence points for the
class of general solutions
Regular pattern
P‘,;f:;:efﬁm p=1 p=2 p=3 p=4| p=b5
1 yes yes no no no
2 yes no no no
3 no yes no no
4 no no no no
L) no no no
6 no no no
7 no no
8 no no
9 no no
10 no

Table 2a. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of
the superconvergence points for the class of harmonic solutions from Table 1a are
also superconvergence points for the class of general solutions in element 7 in the

Regular pattern.
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Table 2b. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 > p > 5, class of general solutions. This Table indicates which of the
superconvergence points for the harmonic solutions from Table 1a are also super-
convergence points for the class of general solutions in element 7 in the Chevron

pattern.

Superconvergence points for the

class of general solutions

Chevron pattern

Points from

Table 1a p=1 p=2 p=3 p=4 p=3
1 yes no no no no
2 no no no no
3 no yes no no
4 no no no no
5 no no no
6 no no no
7 no no
8 no no
9 no no
10 no
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Superconvergence points for the
class of general solutions
Union-Jack pattern
Poli:;;ef;:m p=1 p=2 p=3 p:4 p=>5
1 no no no no no
2 no no no no
3 no no no no
4 no no no no
5 no no no
6 no no no
7 no no
8 no no
9 no no
10 no

Table 2c. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of the
superconvergence points for the harmonic solutions from Table 1 are also supercon-
vergence points for the class of general solutions in element 7, in the Union-Jack
pattern.
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Superconvergence points for the
class of general solutions

Criss-Cross pattern

Points from
Table 1b

(For the element 1)

p=1 p=2 p=3

1
2

yes yes
no

no

no

no

no

no

no

no

no

no

no

Table 2d. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of
the superconvergence points for the class harmonic solutions from Table 1b are
also superconvergence points for the class of general solutions in element 7, in the

Criss-Cross pattern.
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Superconvergence points for the
class of general solutions
Criss-Cross pattern
Pd,l:;:eﬁi:m p=1 p=2 p=3 p=4 p=5
(For the element 7,) '
1 no no no no no
2 no no no
3 no no no
4 no no no
5 : no no
6 no
7 no
8 no
9 no
10 no
11 no

Table 2e. Classical superconvergence points for periodic meshes: Elements of
degree p, 1 < p < 5, class of general solutions. This Table indicates which of
the superconvergence points for the harmonic solutions from Table 1c are also
superconvergence points for the class of general solutions in element 7, in the
Criss-Cross pattern.




Robustness with respect to the type of solution
7%(®) := max O(%; £21,0,2%,1,7)
. Criss-Cross Criss-Cross
Pattern Regular Chevron Union-Jack (el tr) | (el ¢ 73)
Points from
Tables 1a, 1b, 1¢ % % % % %
1 00 © 100 7 00 18
2 00 100 ¥ 14 00
3 21 . 83 46
4 25 53 100

Table 3. Robustness of the superconvergence points with respect to the type of
solution: Quadratic elemeats, cubic general polynomial solutions. Value of n%-
error in the z,-derivative of the solution, at the various points corresponding to
the superconvergence points for harmonic solutions.
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Robustness with respect to the distortion of the mesh

A%(8) = mag O(8; £ 150, , 1,7,

#=FF), & =F(z)

Mesh 1 (Fig. 14a) Mesh 2 (Fig. 14¢) Mesh 3 (Fig. 14d)
Points Harmonic | General | Harmonic | General | Harmonic | General
from Solution | Solution | Solution | Solution | Solution | Solution

Table 1a

% 7% % % % 7%

1 18.1 28.0 8.7 75.2 10.7 94.1

2 19.2 45.7 16.8 61.7 37.1 56.5

3 14.1 66.8 12.2 50.7 26.8 48.8

4 2.7 17.1 9.6 61.5 229 369

Table 4. Robustness of the superconvergence points with respect to the distortion
of the mesh: Quadratic elements, cubic polynomial solutions. For the meshes of
Fig. 13a, Fig. 13¢, Fig. 13d, obtained by displacing the central node of the Regular
pattern, the value of n%-error for the z,-derivative of the error is given at the
points in the element r which correspond to the superconvergence points for the
undistorted Regular pattern and the class of harmonic solutions, for: (a) Harmonic
solutions; (b) General solutions.
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n%-error at a random set of 10%-superconvergence points
7% = o(z; ﬂ'; u, 4y, h, 7) - 100%

Point Value of 9% for ¥ = «, Value of 4% for u = u,
1 4422 . 3.592
2 2.027 6.461
3 8.512 4917
4 2.463 0.671
5 2.801 3.449
6 5.884 12.513
7 3.369 6.129
8 2.862 '4.335
9 2.594 1.559
10 2527 1.489
11 1.859 1.914
12 2.337 1.433
13 6.109 5.971
14 10.337 11.140
15 6.456 5.545
16 4.648 11.874
17 7.086 2.353
18 9.9356 14.901
19 9.848 7.308
20 2.779 0.875
21 2.882 4.376
22 6.195 5.591

Table 5a. Robustness of the n%-superconvergence points in practical compu-
tations: Relative error at the 10%-superconvergence points for the z,-derivative
for linear elements (p = 1). These points were randomly selected from the 10%-

superconvergence regions, as shown in Fig. 43a.

47




n%-error at a random set of 10%-superconvergence points
n% = O(%; i‘f; u,uy, h,7) - 100%

Point Value of 7% for u =y, Value of n% for u = u,
1 11.936 2.963
2 8.743 0.094
3 4372 6.474
4 0.582 5.564
5 4.585 1.350
6 0.053 6.036
7 2.086 6.719
8 1.944 6.918
9 7.722 0.882
10 5080 6.854
11 5.764 0.962
12 $5.331 0.705
13 4.308 0.852
14 1.447 7.988
15 6.811 2.824
16 6.317 3.555
17 6.956 0.047
18 8.101 . 2.136
19 7.564 4.765
20 6.637 0.570
21 3.569 1.081
22 5.423 1.578
23 8.373 0.432
24 7.065 5.188
25 1.589 5.472
26 4.162 1.309
27 7.696 0.494

Table 5b. Robustness of the n%-superconvergence points in practical compu-
tations: Relative error at the 10%-superconvergence points for the z,-derivative
for quadratic elements (p = 2). These points were randomly selected from the
10%-superconvergence regions, as shown in Fig. 43b.
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SIMPLIFIED L2 APPROACH — Function Q2

Fig. 5a

Harmonic solution P=1 Function Q 1




000000 D L L T L L L T T T e T T P R T R L L R D L L L L R LS L A R R Ll L Ll

Function Q1
Function Q2

P=2
Fig. 5b

jon
SIMPLIFIED L2 APPROACH

Harmonic so.




Harmonic solution P=3 Function Q1
SIMPLIFIED L2 APPROACH e Function Q2

Fig. 5¢




10.0%

- 20.0%

30.0%
Harmonic solution P=4 —  Function Q1
SIMPLIFIED L2 APPROACH e Function Q2

Fig. 5d




Harmonic solution P=35
SIMPLIFIED L2 APPROACH

Fig.Se




———
SN
H ~,
: P !
: SN
; d ' AN i
: 4 ] N,
: VAN :
rd L] N,
L] ' \
' /s ' N
L
L) ' ‘\
: S : N
: -
H /’ [
: P ‘ AN
H rd i ™,
. & : AN
: s’ . N
1 P ' .
H ’ . \‘
H ,/ ] N ]
L]
: 4
. /| : \\ '
¢ /
[] ! \
: . \‘
; \,
H ”~ : .
H N\
' / : « '
1] ‘\
] ~,
: N\
. ‘\
[] \\
1) ! .
.
L] \\
+
1 .
H L] \\ H
: H "
1

Harmonic solution P=1
SIMPLIFIED L2 APPROACH

Fig. 6a




Function Q1
Function Q2

P=2

SIMPLIFIED L2 APPROACH

n

armonic o

H

Fig. 6b




10.0%

20.0%

30.0%
Harmonic solution P=3 _  Function Q1
SIMPLIFIED L2 APPROACH e— Function Q2

Fig. 6c




Harmonic solution P=4
SIMPLIFIED L2 APPROACH

Fig. 6d




10.0%

20.0%

L5 30.0%
Harmonic solution P=5 —_  Function QI
SIMPLIFIED L2 APPROACH —— Function Q2

ig.6e




Function Q1
Function Q2

P=1

SIMPLIFIED L2 APPROACH

Harmonic so.

Fig. 7a




esmesmsansvensccenvassnvenan

Function Q1
Function Q2

P

SIMPLIFIED L2 APPROACH

Harmonic sol,

Fig. 7b




mccsscssveenscssabosrsscccsucncacvsencnvcanvae

L L L T R R I T T R I T LR L R L A LS

eessvenesmnssresansenconsnadecnnvanvacrasne

Ly}
]
R

:
g
5
3
m
-

Harmonic sol

&
e~

of
o
=y




Hmnic solution P=4 Function Q1
SIMPLIFIED L2 APPROACH == Function Q2

Fig. 7d




S

20.0%
30.0%

Function Q1
Function Q2

P=5
SIMPLIFIED L2 APPROACH

Harmonic solution

- Fig.7e




0.0%

gL

20.

Function Q1
Function Q2

P=1

SIMPLIFIED L2 APPROACH

armonic so

H

Fig. 8a




Function Q1
Function Q2

P

jon
SIMPLIFIED L2 APPROACH

Harmonic sol

Fig. 8b




2]
]
Ry

=
3
&
2
o
-
:
m

Harmonic so

2.
o
2
£




cevanvescnan

consconllecsccccsencvoscncansn

eencasarceccncvcosvslencacnvrenscvnnccnas

emsssmrerenenayrene

<
]
(=¥

3
:
{
:

Harmonic so




W
L
R

:
2
m
:
:

Harmonic sol

@
R
)
o pd
7




Ly e e e Y Y Y T P R Y PP P D R L L AP 2L R L DL L DLl d g il dd gt L d it

v
"
B

:
<
m
:

General so

S
=)
20
3




TN TR TR TR TR TR A T T TR T

sevganascssses

Y LITTTYTY Y Y TP

Jrpecascscnencscraccccscccrnsanccsccsssn

il L L L LR Y P Y R Y P LY Y P L Y T L L L T L L LI R L L L DL L e Ll L )

L Y P T e Y Y Y Y Ly e T L L T Y T Y Y Y P Y Y DL DL A LR R P DL S L P DAL L L R T 1)

o
]
R

:
>
m
:
=

General sol

)
(=)
oh
ot
£




0.0%
10.0%
20.0%

~30.0%

General solution P=3
DIRECT OPTIMISATION

Fig. 9c




General solution P=1
DIRECT OPTIMISATION

Fig. 10a




General solution P=1
DIRECT OPTIMISATION

Fig. 10a




General solution P=2
DIRECT OPTIMISATION

Fig. 11a




0.0%
10.0%
20.0%
General solution P=3 30.0%

DIRECT OPTIMISATION

Fig. 11b




0.0%
!10.0%
20.0%
Genvral solution P=1
DIRECT OPTIMISATION

Fig. 12a

30.0%




0.0%

10.0%

20.0%
General solution P=2 30.0%
DIRECT OPTIMISATION

Fig. 12b




General solution P=3
DIRECT OPTIMISATION

Fig. 12¢ Fig. 17¢




Fig. 13a




Fig. 13b




Fig. 13¢




Fig. 13d




Fig. 13e




Fig. 13g




| Fig. 13h




0.0%
10.0%
20.0%

30.0%

Harmonic solution P=2
SIMPLIFIED L2 APPROACH

Fig. 14a




Y YT YT YRS YR LLY YL YL L L2

(o)
il
R

g
:
§ o
:
:

Harmonic so

=)
-
v
o0
© pumf
=




Fig. 14c

0.0%
10.0%
20.0%
Harmonic solution P=2 30.0%

SIMPLIFIED L2 APPROACH




o

g
i3
:
:

P

=
<
_—y
80
=

Harmonic so

-




Harmonic solution P=2
SIMPLIFIED L2 APPROACH

Fig. 15a




AP P NN R NU NN P IR PN LS R E eI RNE NN RSP ERENAsEPORUsGssssOIRaDaRRESE

1

H

.
¥

P= 2

SIMPLIFIED L2 APPROACH

§

Harmo

Fig. 15b




Harmonic solution P=2
SIMPLIFIED L2 APPROACH

Fig. 15¢




0.0%
10.0%

: 20.0%
Harmonic solution P=2 30.0%

SIMPLIFIED L2 APPROACH

Fig. 15d

sasacnsw




Harmonic solution P=2 —  25.0 % contour




25.0 % contour

Fig. 17

Harmonic so




Harmonic solution P=2 —  25.0 % contour




Fig. 19a




Fig. 19b




Fig. 19¢



Fig. 19d




Fig. 19e¢




.
.
.
3
.
[l
1
.
’
]

Harmonic solution P=2 ___ Function Q 1
SIMPLIFIED L2 APPROACH = Function Q2

Fig. 20a




eccscsscrscrtcusannnant

cemceassssen

0.0%
10.0%
: 20.0%
30.0%

SIMPLIFIED L2 APPROACH ' = Function Q02

Fig. 20b

Harmonic solution P=2 , Function Q1




.
+
1]
[
[
.
1]
t
13

looomome

N
"
]

:
-
5

&
—
)

o)
(1|
=

armonic so

H




0.0%

10.0%
' 20.0%
30.0% |
Harmonic solution P=2 —_  Function QI
SIMPLIFIED L2 APPROACH : e Function Q2

Fig. 20d |




P=2

" Harmonic so

SIMPLIFIED L2 APPROACH

Fig. 20e




SIMPLIFIED L2 APPROACH —  Function Q2

Harmonic solution P=3 Function Q1

Fig. 21a '




P L L L L L T Y P YL L LR Y Y

P

SIMPLIFIED L2 APPROACH

armonic so

H

Function Q1
Function Q2

Fig. 21b




7]

P

Harmonic soluti
SIMPLIFIED L2 APPROACH




3

P

n
SIMPLIFIED L2 APPROACH

Harmonic so

Function Q1
Function Q2




L L T L L T R Y Y P TR LR L R Y L

Function Q1
Function Q2

P

SIMPLIFIED L2 APPROACH

Harmonic sol

Fig. 21e




Function Q1
Function Q2

P=4

jon
SIMPLIFIED L2 APPROACH

Harmonic so.

Fig. 22a




4

SIMPLIFIED L2 APPROACH

P=

onic so

Harm

Function Q1
Function Q2

Fig. 22b




Function Q1
Function Q2

P=4

Harmonic soluti,
SIMPLIFIED L2 APPROACH

Fig. 22¢




armonic so.

H

:
:
:
:
:

.




P=4

SIMPLIFIED L2 APPROACH

armonic so

H

Fig. 22¢




Harmonic solution P=2 ——  25.0 % contour

Fig. 23a




Fig. 23b




Fig. 24a




Fig. 24b




Fig. 24c




Fig. 24d




Fig. 24e




P

n
SIMPLIFIED L2 APPROACH

Harmonic sol

Function Q1
Function Q2

Fig. 25a




Harmonic solution

P=2

SIMPLIFIED L2 APPROACH

Fig. 25b

essscanmast

——  Function Q1
=== Function Q2




Lo

P=2

SIMPLIFIED L2 APPROACH

n

Harmonic so

Fig. 25¢




locnacccscavans

Harmonic solution P=2
SIMPLIFIED L.2 APPROACH

Fig. 25d

S Y Y T L LLLEEE T R PR LR RN




seccscsccpannvosnsqEEmaaen O T T L L LT LR R L R L LR L )

0.0%
10.0%
20.0%
30.0%

2

P=

SIMPLIFIED L2 APPROACH

armonic so

H

Function Q1
Function Q2

Fig. 25e




emecamasssesemcsarannne

Harmonic solution P=3 ——  Function 01

SIMPLIFIED L2 APPROACH Function Q2

Fig. 26a




P

armonic so

m
Q
-
m

H

S
g\
o0
ot
€7




Harmonic solution P=3
SIMPLIFIED L2 APPROACH

Fig. 26¢

0.0%
10.0%
20.0%
30.0%

—-  Function Q1
e . Function Q2




0.0%

0.0%
30.0%

1
2

Function Q1
Function 02

P=3

Fig. 26d

SIMPLIFIED L2 APPROACH

Harmonic so




SIMPLIFIED L2 APPROACH — Function Q02

Harmonic solution P=3 Function Q1

Fig. 26e |




P=4

SIMPLIFIED L2 APPROACH

Harmonic so

Fig. 27a




Function Q1
Function Q2

P

SIMPLIFIED L2 APPROACH

Harmonic so

Fig. 27b




Harmonic solution P=4
SIMPLIFIED L2 APPROACH

Fig. 27

C




10.0%

20.0%

30.0%
Harmonic solution P=4 . Function QI .
SIMPLIFIED L2 APPROACH — Function Q2

Fig. 27d |




scsmweestcrsnrecbescsrresuancssnne

Function Q1
Function Q2

P

SIMPLIFIED L2 APPROACH

Harmonic sol,

Fig. 27e




Harmonic solution P=2 —  25.0 % contour




Fig. 28b




Fig. 29




P=2

Harmonic sol

Function Q1
Function Q2

SIMPLIFIED L2 APPROACH

Fig. 30a




SIMPLIFIED L2 APPROACH e Function Q2

Fig. 30b |

Harmonic solution P=3 Function Q1




Function Q1
Function Q2

P

SIMPLIFIED L2 APPROACH

Harmonic so

Fig. 30c




Fig. 31




Harmonic solution P=2
SIMPLIFIED L2 APPROACH

Fig. 32a




0.0%
10.0%

20.0%

30.0%
Harmonic solution P=3 —_  Function Q1
SIMPLIFIED L2 APPROACH = Function 02

Fig. 32b |



Function Q1
Function Q2

P=4

SIMPLIFIED L2 APPROACH

armonic so.

H

Fig. 32c




Fig. 33a




Fig. 33b




JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
A4V \AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV,A
AV AV v TAYAV YAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
VAV Ao YAVAYS %AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
'AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'A

VaAVey, AV‘ﬂAVAVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAVA
2O

/ININVYINA VY
KKK KPP0
SRRRKNIZNZINPIN N INAAANRAA
SRERKENINZNZIN N CISANAAA

Vot NN N OF
AR N ‘V#‘V NPKIA
CRKEPKPKPKDKPRIER
QARIISIINEINGINGZIN "’“E» Q
N PKNNININN ISR
VAN NN NN Vavavavavayy
E¢QEA§""A‘Av‘vAvAVAVAVAVAVAVAVé'AVAVAV#V#V#V
VAT av RS AYAYAVAVAVAV AV AV AV A AV A A A

W WAVAY % \WAVAVAVAY,
DVAYAVAVAVAVAVAVAVAVAVAVAVAY DAVAVASLNVAVAVAY,

NN NNNNANNNNNNNNNNANAANNN
N\OAANNNNANNNINNNNNININININDN




P

Harmonic solu

Function Q1
Function Q2

SIMPLIFIED L2 APPROACH

Fig. 34a




P

n
SIMPLIFIED L2 APPROACH

Harmonic sol

Function Q1
Function Q2

Fig. 34b




P

Harmonic sol

Function Q1

Function Q2

SIMPLIFIED L2 APPROACH

. 3c

i




Fig. 35a




a1y

,\/\/




/V

Fig. 35c¢




Fig. 36a







Fig. 36¢c




Harmonic solution P

n
o

—  25.0 % contour




Harmonic solution P=1 —  25.0 % contour

Fig. 37b




3
m

25.0

P=1

Fig. 37c

Harmonic sol,




]
et

— 25.0 % contour

Harmonic solution P

Fig. 38a




R e oy T e T B

Harmonic solution P=1 —  25.0 % contour

Fig. 38b




25.0 % contour

P=1

Fig. 38c

Harmonic sol




Harmonic solution

25.0 % contour

1




//\“x
7"’
)

\4/

A V

Harmonic solution P=2

Fig. 39b

25.0 % contour




25.0 % contour

P
Fig. 39¢

Harmonic solution




25.0 % contour

P=2

Fig. 40a

Harmonic solution




Harmonic solution

P=2

Fig. 40b

25.0 % contour




Harmonic solution

25.0 % contour




\Z\L

Fig. 41




Harmonic solution P=1
SIMPLIFIED L2APPROACH :

Fig. 42a

LI T LT TP
.

.
.
-

I--co-..-..




.-..--...-.-‘

P

o
]
R

3
g
5
§ o
:
:

=
4
2
e

armonic so

H




Harmonic solution P=3
SIMPLIFIED L2 APPROACH

Fig. 42¢




R ;
»
CH |

10% regions
Harmonic solution P=1
SIMPLIFIED L2 APPROACH

Fig. 43a




e o anma e o
e e e e 2 S e r
. eae e o ,
P A ,
ne .
’

10% regions
Harmonic solution P=2
SIMPLIFIED L2 APPROACH

Fig. 43b




The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babuska,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.




