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A

The host of the Eleventh Conference on Applied Mathematics and
Computing was the Center for Nonlinear Analysis at the Carnegie-
Mellon University, Pittsburgh, P.A. It was held on June 8-10,
1993. Professor Morton E. Gurtin, the Principal Investigator of
this Center, served as Chairperson on local arrangements. He was
assisted in this task by Ms. Francine Johnson. We would like to
take this opportunity to thank these individuals for all the time
and work preparing for and conducting this extremely well managed
scientific meeting.

The 1993 conference was attended by more than 70 scientists and
engineers representing various Army agencies and academe. The
meeting featured five plenary talks and four special sessions on
topics of current interest, such as Mathematics of Materials,
topics in stochastic Analysis, Computational issues in
Geosciences, and Virtual Factory. In addition there were 37
contributed papers presented. The names of the invited speakers
and the titles of their addresses are listed below.

SPEAKER AND AFFILIATION TITLE OF ADDRESS

Professor John N. Tistsiklis Complexity Theoretic Aspects
Massachusetts Institute of of Problems in Control
Technology Theory

Professor Roy A. Nicolaides Numerical Solutions in
Carnegie Mellon University Microstructure and the

Calculus of Variations

Professor P. S. Krisnaprasad Rational Wavelets in
University of Maryland Controls

Professor David Yuen The Role of Hard Thermal
University of Minnesota Convection in Geosciences

Professor Richard Durrett Stocastic Spatial Models of
Cornell University Epidemics and Excitable Media

Many of the papers given at this conference provided the
attendees a chance to see scientific techniques developments
taking place in the Army laboratories. Through these meetings
techniques developed at one installation are brought to the
attention of scientists at other places, thereby reducing
duplication of effort. Another important phase of these meetings
is presenting the members of the audience an opportunity to hear
nationally known scientists discuss recent developments in their
own field.
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COMPLEXITY THEORETIC ASPECTS
OF PROBLEMS IN CONTROL THEORYt

John N. Tsitsiklis
Center for Intelligent Control Systems

and
Laboratory for Information and Decision Systems

M.I.T.
Cambridge, MA 02139

ABSTRACT. We introduce some of the concepts of computational complexity theory. We
then survey available complexity-theoretic results for some of the main problems of control theory.

INTRODUCTION. Our subject is motivated by asking what it means "to have a solution to a
problem." The answer to this question has been changing with time: for example, ancient Greeks
required a constructive procedure using ruler and compass, classical mathematicians required dosed
form formulas (maybe involving special functions), etc. The theory of computation, as developed
during the last fifty years considers a problem to be solved if an algorithm is provided that can
compute its solution. There do exist problems that are provably unsolvable, such as the halting
problem or Diophantine equations. Even problems that are solvable in principle, as most problems
in control theory are, can be of varying difficulty if one considers the required computational
resources, such as running time. Complexity theory is the branch of computer science that deals
with the classification of problems in terms of their computational difficulty. In this paper, we define
some concepts from complexity theory and provide an overview of existing complexity results for
several problems in control theory.

COMPLEXITY THEORY. Mainstream complexity theory deals with discrete problems; that
is, problems whose instances can be encoded in a finite binary string and are therefore suitable
input to a digital computer. Problem. (such as matrix inversion) have instances (any particular
square matrix defines an instance of matrix inversion). Different instances of the same problem
are, in general, of different sizes, where "size" means the number of bits used in a natural encoding
of that instance. We say that a problem is polynomial time sovable, or for short, belongs to P,
if there exists an algorithm and some integer k such that the time it takes this algorithm to solve
any instance of size n has order of magnitude 0(n"). Some classical problems in P are linear
programming, matrix inversion, the shortest path problem in graphs, etc. It is often considered
that problems in P are the "well-solved" ones.

There is another class of problems, called NP (for nondeterministic polynomial time), that
contains all problems that can be "transformed" or reformulated as integer programming problems.
While P is a subset of NP, there is no known polynomial time algorithm for integer programming
and it is generally conjectured that P $ NP. If this conjecture is true, then integer programming
is not solvable in polynomial time and the same is true for those problems in NP which are the
"hardest"; such problems are called NP-complete. More generally, we will say that a problem is
NP-hard if it is at least as hard as integer programming.

Proving that a problem is NP-hard is viewed as evidence that the problem is difficult. As-
suming the validity of the conjecture P 0 NP, NP-hard problems do not have polynomial time
algorithms. More gnerally, NP-hardness often reflects a certain absence of structure which limits
the nature of theoretical results that can be established. In practical terms, NP-hardness usually

t Research supported by the ARO under grant DAAL03-92-G0309.



means that a problem should be approached differently: instead of trying to develop an algorithm
which can be proved to work efficiently all of the time, effort should be concentrated on easier
special cases or on heuristics that work acceptably well most of the time; usually, this is to be
determined by extensive experimentation rather than by theoretical means.

DECENTRALIZED DECISION MAKING. Witsenhausen's problem [W68] is the simplest
conceivable generalization of linear quadratic Gaussian control (LQG) to a nonclassical informa-
tion pattern (decentralized control). The solution to this problem has remained unknown despite
persistent efforts. An explanation is provided by the fact that this problem, suitably discretized,
is NP-hard [PT86]. The point here is not that we might wish to solve Witsenhausen's problem
computationally; NP-hardness is an indication that the problem is fundamentally more difficult

-and less structured - than its centralized analog (LQG).
The above result is not fully satisfactory because it does not rule out the possibility that

NP-hardness is only a consequence of the problem discretization, not of the inherent difficulty
of the original problem. While it seems difficult to establish a complexity result for the original
(continuous) version of the problem, results similar to NP-hardness have been established for a
related problem which we discuss below.

In the team decision problem [MR72], we are given two random variables yl, y2, with known
joint probability distribution, and a cost function c : 4 " R. Agent i (i = 1, 2) observes the value
of yi and makes a decision ui according to a rule u, = -7i(y1). A cost of c(yI, Y2 ,u1,u 2 ) is then
incurred. The problem is to find rules -/I and 72, so as to minimize the expectation of the cost.
This problem is NP-hard for the case where the yis have finite range [PT82,TA85]. It remains
NP-hard even for a special case that arises in decentralized detection [TA85].

In the continuous version of the problem, we take the random variables y, and Y2 to be
uniformly distributed on [0,1]. The function c is assumed to be Lipschitz continuous with known
Lipschitz constant. Such a function cannot be represented by a binary string, as required by digital
computers, and for this reason, we need a suitably adapted model of computation: we assume that
a digital computer obtains information on the function c by submitting queries to an "oracle"; a
typical query consists of a rational (hence finitely describable) vector in the domain of c, together
with an integer k; the oracle returns the k most significant bits of the value of c at that point.
Finally, there is an accuracy parameter e: instead of looking for an optimal solution, we only desire
a solution whose expected cost comes within c of the optimal. The "cost" or running time under
this model of computation can be viewed as consisting of two parts: a) the number of queries
(information cost) and b) the time spent on actual computations (combinatorial cost).

For the continuous version of the team decision problem, the cost of information is only O(1/c 4);
it suffices to learn the value of the function c at points on a grid with spacing e and any smaller
number of queries is insufficient. On the other hand, assuming that P # NP, there exists no
algorithm that solves the problem with accuracy c in time polynomial in 1/c [PT86].

Two remarks are in order:
a) For many problems whose complexity has been studied within this framework, the information

cost and the combinatorial cost are comparable. Examples can be found in numerical integra-
tion, numerical integration of PDEs, nonlinear programming, etc. In contrast, we have here
an exponential gap between the two types of costs.

b) Problems with closed form solutions often have complexity which is polynomial in the logarithm
of 1/c. Even problems like PDEs have complexity of the order of 1/e', where the exponent k
depends on the dimension of the problem and the smoothness of the data. In this respect, the
team decision problem is significantly harder than most PDE problems.

MARKOV DECISION THEORY.
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Consider a controlled Markov chain z(t) that takes values in the finite set {1,..., n. We are
given its transition probabilities p(z(t + 1) I z(t), u(t)), where u(t) is the control applied at time
t. The cost per stage is of the form c(z(t), u(t)) and there is a discount factor a E (0,1). The
objective is to minimize the infinite horizon expected cost

V(i) = E[, at ((t), u(t)) I Z(0) = i]

t=O

over all causal control policies. The key to solving this problem is Bellman's equation:

V(i) = min[c(i, u) + a p(j I i, u)V(j)J

While there are several algorithms for solving Bellman's equation (e.g., policy iteration, suc-
cessive approximation, etc.), none of the algorithms of this type is known to run in polynomial
time. On the other hand, this problem is polynomially solvable because it can be transformed to
linear programming [B87].

The problem becomes more difficult if the control is to be chosen on the basis of imperfect
information. Suppose that at each time t, we observe y(t) = h(z(t)), where h is a known function.
We restrict to policies in which the current decision u(t) is determined by a rule of the form
u(t) = F(y(O),y(1),.. .,y(t),t). If we let p(i,t) = Pr(z(t) = i I past history), the problem can
be reformulated as a perfect information problem with state vector p(t) = (p(1,t),...,p(n,t)).
The cost-to-go function V(p(t)) is known to be piecewise linear in p and this leads to a finite
algorithm [SS73], at least for the case of finite-horizon problems. Unfortunately, the number of
linear "faces" can increase exponentially with the time horizon, and so does the required algorithm.
Are more efficient algorithms likely to exist? The answer is probably negative because the problem
is NP-hard [PT87].

There are analogs of these results that apply to the problem of supervisory control of discrete-
event systems, as formulated by Ramadge and Wonham [RW87]. These problems are similar
to the problems of Markov decision theory except that the transition probabilities are not given
(or may not exist) and the problem consists of finding feedback laws that are guaranteed to avoid
certain undesirbale states. While the perfect information problem was known to be polynomial, the
corresponding imperfect information problem, as well as the corresponding problem of decentralized
control, are NP-hard [T88].

The Markov decision problem has also been extensively studied for the case of continuous state
spaces. In a simple version of the problem, we may assume that the state and the control take
values in [0,1]. Bellman's equation becomes

V(z) = nin[c(z,u) + a p(ylz, u)V(y)dy]

Let us assume that the functions c and p have bounded first derivatives. If we wish to solve Bellman's
equation with accuracy e, it is not hard to show that 0(1/0e) "oracle queries" suffice; it turns out
that this many queries are also necessary [CT89]. The natural iterative method for this problem
(successive approximation) has computational complexity O((1e/e) log(1/e)): the cost per iteration
is 0(1/c') and log(1/c) iterations are needed to get within c of the solution. In fact, the logarithmic
gap between the lower bound of 0(1/c3) and the performance of successive approximation can be
closed. It turns out that a "one-way multigrid" method solves the problem with a total of 0(1/e3)
arithmetic operations and is therefore an optimal algorithm [CT91]. The key idea is that most
iterations are performed on coarse grids and are therefore relatively inexpensive.
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OTHER RESULTS, We mention briefly some more problems in control theory for which com-
plexity theoretic results are available.

Nonlinear controllability: The question here is whether it is possible to generalize Kalman's
controllability conditions to nonlinear systems. Consider a bilinear system of the form

dc MS=(A + t4uG,)z + Bu, r E M,

where M is a manifold defined as the zero set of a given set of polynomials. It turns out that deciding
whether such a system is controllable (i.e., whether every state can be reached from any other state)
is NP-hard [S88]. As a result, whatever necessary and sufficient conditions for controllability are
found will be computationally very difficult to test (unless P = NP).

Robust control: Consider the I'near system dz/dt = A. and assume that A = A4 + a, A, +
+.- + a,, At,, where each a. is an unknown parameter that lies in [0,1]. We are interested in prop-

erties of the plant that are valid for all choices of a,,..., a,. It turns out that many interesting
problems within this framework are unlikely to have computationally efficient solutions. For ex-
ample, deciding whether A is guaranteed to be no-singular or stable is NP-hard [PR92,N92]. As
a corollary of this result, computing the structured singular value p of a linear system is also an
NP-hard problem [BYDM92].

Simultaneous stabilization: Let there be given matrices A,,..., A,, and B. The problem
is whether there exists a matrix K such that A, - BK is stable for all i. This problem can be also
shown to be NP-hard.

Control of queueing systems: Consider the standard problem of controlling a closed queue-
ing network with several servers and several customer classes. (Control involves routing decisions
for customers that complete service and sequencing decisions; the latter deal with choosing which
customer to serve next at any given server with several customers in queue.) The objective is to
find a control policy that minimizes the expected we'3hted sum of queue lengths. This problem
is NP-hard even in the special case %,.ere the service time distributions are exponential [PT93].
In addition, its computational complexity is exponential for the case of deterministic service times
[PT93]. Note that the latter result is stronger than any of the results mentioned earlier in this
paper in that it does not rely on the validity of the conjecture P $ NP.

CLOSING COMMENTS. Complexity theory can provide new insights to control problems.
However, any results obtained have to be interpreted with caution. Proving that a problem is
NP-hard does not mean that the problem is intractable and that work on it should be abandoned.
Rather, a different line of attack may be called for.
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ABSTRACT

Incoherent phase transitions are more difficult to treat than their
coherent counterparts. The interface, which appears as a single surface in
the deformed configuration, is represented in its undeformed state by a

separate surface in each phase. This leads to a rich but detailed kinematics,
one in which defects such as vacancies and dislocations are generated by
the moving interface. In this paper we discuss incoherent phase transitions

in the presence of deformation and mass transport, neglecti, g inertia. The
phase interface is presumed sharp and structured by energy and stress.
The final results are a complete set of interface conditions for an evolving
incoherent interface.

KINEMATICS

In a coherent phase transition the body B occupies a fixed region of
space in a uniform reference configuration, the individual phases, which we
label i=1,2, occupy complementary subregions Bi(t) of B, and motions are
continuous across the undeformed phase interface S(t) = B1(t) nB 2(t). As is
clear from the statical treatments of Cahn and Larche [1982], Larche and
Cahn [1985], and Leo and Sekerka [1989), incoherent phase transitions are

far more complicated. The interface, which appears as a single surface in
the deformed body, is represented in its undeformed state by a separate

surface Si(t) for each phase i, even though we choose uniform reference
ISupported by the U. S. Army Research Office. This paper presents a synopsis of
Cermelli and Gurtin [1994a,1994b]
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configurations for the two phases with corresponding reference lattices coin-

cident. Such complications lead to a rich but detailed kinematics, one in

which defects such as dislocations, vacancies, and interstitials may be gen-

erated by the moving interface.2

A two-phase motion is a pair y-(y 1 ,y 2): at each time t, y, maps

material points X in the undeformed region B, for phase i into points

x = y1 (X,t) in the deformed body. F is then the deformation gradient:

F=Vy, in phase 1, F=Vy 2 in phase 2; in addition, we denote by Fi the

limit of F as the interface is approached from phase i. Associated with

each two-phase motion are three basic kinematical quantities:

(1) The incoherency tensor H, which measures the stretching and twisting

of one phase relative to the other at the interface. H is the tangential

part of the relative deformation gradient

H = F 2 -'F 1. (1)

For any point x of the deformed interface, H is a linear transform-

ation dX 2 = H dX 1 between infinitesimal line segments dXi on S, that

coincide at x when deformed. If, for all such line segments, dX 2 = dX 1

(or dX 2 = QdX 1 with Q a symmetry rotation of the lattice), then the

deformed lattices fit together and the interface is infinitesimally

coherent at x.

(2) The production-rate of iattice points, as measured by the jump [W] in

the interfacial volume flows Wi = Vi/ i, where, for each i, V, is the
normal velocity of Si, while a, is the surface Jacobian for y,
considered as a deformation of Si.

(3) The slip, as measured by the difference (y 2)0 - (yO)°, where (yl)° is

the time derivative of y, following the normal trajectories of Sit).

The incoherency tensor, the lattice-point production, and the slip

completely characterize incoherency: an initially coherent motion is

coherent for all time if and only if, at each time, the interface is

infinitesimally coherent and the slip and lattice-point production vanish

identically.
2 Dislocations are discussed by Brooks [1952]. Nye [19531, Frank (19551, Bilby
[19551, Bilby. Bullough. and De Grinberg [19641, Christian [1965,19851, Bollrnan [19671.
Christian and Crocker [19801. Pond [1985,1989). Christian and Crocker (1980], p. 181
and Larchd and Cahn [19851. p. 1587 note the possibility of vacancies and dislocations.
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THEORY WITHOUT INTERFACIAL STRUCTURE

The basic physical principles upon which the theory is based are

balance of forces, balance of mass, and a version of the second law of

thermodynamics appropriate to a mechanical theory.3 The standard

forces associated with continua arise as a response to the motion of material

points. The mechanical description of a phase transition requires additional

forces 4 that act in response to microstructural changes at the phase

interface. We refer to the former as deformational forces, to the latter as

configurational forces.5 What is most important is that, in addition to

the usual force and moment balances for deformational forces, we

postulate an additional balance for configurational forces.

We assume that there are 21 species, a = 1,2 ... ,2(, of mobile atoms

with molar densities pa and corresponding diffusive mass fluxes ha.6

Bulk fields that strongly influence the motion of the interface are the

grand canonical potential w and the Eshelby tensor P defined by

W = T - E pai 0 , P = cwI- FT S, (2)
a-1

with T the bulk energy, ki(a the chemical potential of species a, S the

bulk stress, measured per unit undeformed area (Piola-Kirchhoff stress),

and :1 the unit tensor.

The final bulk relations are the balance laws

Div S = 0, (pa). = -Divh 0 , (3)

supplemented by constitutive equations

T= i(F,p), S = C)F i(F,p), ýj = )P i(F,p), (4)
S( )D=- Di(F,p)V L,

3 Cf. Gurtin [19911.
4 Cf. the discussion given in the Introduction of Gurtin 119901.
5 We depart from terminology introduced in Gurtin and Struthers [19901 and

Gurtin [19931, where the term accretive forces was used.
6Cf. Gurtin and Voorhees [19931, Gurtin [19931.
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for each phase i, with

p - (pi ..... p•) a=(~ .. •, D=(I...h)

We next consider appropriate interface conditions. To best illustrate

the basic ideas, we begin with a theory that neglects interfacial energy and

stress, but includes interface kinetics. The resulting interface conditions

consist of an equation

(YI =i -[JW] (5)

expressing kinematical compatibility at the interface, a jump condition

[('Sn] = 0 (6)

balancing forces across the interface, equations

Sini.Pini = (P1iWI. + 1i2 W,) (7)

(i=1,2) balancing normal configurational forces on each phase at the inter-

face, equations

(FlVSifln)tanSi = 0 (8)

(i=1,2) characterizing the vanishing of the tangential traction in each phase

at the interface, a relation

[pQW] = [a-'hQ.n] (9)

expressing mass balance for each species a, ard a condition of local

equilibrium

= 0 (10)

for each species a. Here R is the unit normal to the deformed interface 8,

ni is the unit normal to the undeformed phase i interface Si, [f] denotes
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the jump in a bulk field f across the interface, fi denotes the interfacial

limit of f from phase i, and pij are kinetic coefficients.

In the derivation of these interface conditions the slip was not

included among the independent constitutive variables, a direct consequence

of this assumption is (8). The local equilibrium condition (10) is an

assumption made from the outset.7

The balances (6)-(8) can be expressed more succintly as a normal

force balance

[ 1-Sn].? = 0 (11)

and a partial balance

BiPin, = (Pi 1W 1 + Pi 2 W 2 )ni (12)

for each phase i.

THEORY WITH INTERFACIAL STRUCTURE

We turn next to a theory that includes interfacial energy and stress,

but neglects mass flow within the interface. Following Cahn and LarchM

[1982], we choose one of the phases, phase 1, as a reference for the

interface, and measure interfacial fields relative to Sý, Here it is con-

venient to refer to phase I as the parent phase and to phase 2 as the

product phase, and to use the abbreviations

S = Si, n = n1.

We consider a single interfacial energy q), but endow the interface

with three stress fields:

"* a deformational stress 9 that represents the (Piola-Kirchhoff) stress in

the surface and acts in response to the stretwning of the parent interface;

"* a configurational stress C that represents microstructural forces in the

parent interface;

"* a configurational stress K that acts in response to the stretching and

rotation of the product-phase lattice relative to the parent-phase lattice.

7Cf. Gurtin and Voorhees (19941, who develop a theory in which this assumption is

dropped. Their theory neglects deformation.
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A consequence of thermodynamics is that the tangential part of the total

surface stress

A = C +Fl'8+ HT K, (13)

which represents the net configurational contribution of the stresses to the

rate of working, is a surface tension whose value is the interfacial energy *.

Among the constitutive equations considered for the interface are

relations giving the interfacial energy t, the surface stresses 8 and K,

and the normal part I=AT n of the total surface stress as functions of the

limiting value F=F, of the deformation gradient, the limiting values p1

and P 2 of the list of densities, the normal n to S=Sj, and the volume

flows W, and W 2 . Consequence of the second law are that @, 9, K, and

a are independent of P1, P2 , W1 , and W2 ; and that the energy

S= j(F,H,n) (14)

generates the stresses through the relations

9 = r)F4(F,H,n), K = r)H^(F,H,n), a = -abn (F,H,n). (15)

We show further that tp, 9, and K depend on F and H through the

tangential deformation gradient F and the incoherency tensor H, that

9 = )Ft(F,H,n), K = &)#•(F,H,n), (16)

and that C=C Tn is given by

C = -Dnt(F,H,n), (17)

with Dn the derivative following n.

The final results - which form a complete set of conditions for an

incoherent interface - consist of the compatibility condition (5), the mass

balance (9), the local equilibrium condition (10), an equation
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tK - (FTg + H'K).L + DivsC - n.Pln = I11W, + P12W2 (18)

that represents a normal configurational balance for phase 1, an equation

DivsK + XP 2 n 2 = X(A 2 1W1 + P2 2W 2)n 2  (19)

that represents a configurational balance for phase 2, a deformational force

balance

DivsS + XS2n2 - Sin 1 = 0, (20)

and the constitutive relations (16) and (17). Here X = 11 / 12, while
L = Li =-VSn and K = K, = trL, respectively, are the curvature tensor and

the total (twice the mean) curvature for S.
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Abstract
A system of equations modeling antiplane shear in a granular material is considered. The

model includes the possibility of localization of strain, and the subsequent development of shear

bands. This behavior is captured in our analysis of the Riemann initial value problem, in which

an initial discontinuity propagates as a combination of moving waves and a stationary shear

band. The analytic solution is used to test numerical simulations based on Godunov's method

with front tracking and adaptive mesh refinement.

1. Introduction
We consider a model [4] for dynamic deformations of granular materials which allows for

the localization of flow and the consequent development of shear bands. We focus on Riemann

initial value problems in one space dimension that include a shear band. An unusual feature

of the solutions is that they a,:e not scale invariant. The structure of the solution (shown in

Figure 1) includes the feature that the material unloads elastically between the shear band

and a free boundary that propagates into a region of plastic deformation. Mathematically, the

Riemann problem reduces to solving a free boundary problem for the (linear) wave equation. We

summarize short time existence results and long time behavior, the details of which are given

in a series of papers [2, 5]. Then we outline the governing principles in designing an efficient
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DAAL03-91-G-0122.
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numerical simulation code, and present numerical results. The numerical results are in excellent

agreement with the predictions of the analysis. The simulation code is designed so that it can

generalize to higher dimensions; it is currently being extended to two dimensions.

The following system of equations describes antiplane shear deformations that depend on one

space variable x and time t [4].

.9tV = a~a (a)

[I + .-1 (R T)TT]0T = ( (if loading) (b)
h(-y) 0(1)

AT = c2 ( 0 V) (otherwise). (c)

The dependent variables v and T = (a, r)T represent velocity and stress respectively, all other

entries of the full stress tensc- being constant. TT is the transpose of T. The constant c is the

elastic wave speed, I is the 2 x 2 identity matrix and R is the rotation matrix

R=(cos sin#s) (1.2)R= -sin#l cospj

with parameter 0 E (0, 1) measuring the degree of nonassociativity in the model (specifically in

the flow rule). The given function h = h(y) is the hardening modulus, depending on the yield

stress -y. The function h is nonnegative and monotonically decreasing on [0,1], with h(1) = 0.

Equation (1.1a) is conservation of momentum, while equations (1.1b,c) specify constitutive

behavior. This behavior is described as loading (or plastic) when IT! is at its maximum over

previous time and is increasing. That is, the material is loading when it is at plastic yield:

IT(x,t)I = -y(x,t) =_ max IT(x, s)1, (1.3)o<s<t

and the right hand side of (1.3) is increasing:

atI > O. (1.4)

When IT(x,t)I < y(x, t), the behavior is described as elastic. When (1.3) holds and Ot/ = 0, we

use the terminology neutral loading.

We have a differential equation for -y :

' dtiT[ if loading

Ory = 0 otherwise (1.5)

The Riemann problem for system (1.1) is the initial value problem with initial data of the

form
_ (VL, TL, YL) if x <0

(v,T,y)(x, 0) = (VR, TR, IR) if x > 0, (1.6)
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subject to IT(x, 0) < -f(z, 0). In solving Riemann problems for a simplified version of system

(1.1), Garaizar [1] found initial data (1.6) for which there is no scale invariant solution. The

reason is that equations (1.1) lose hyperbolicity as -y approaches a critical value -f "y, and the

classical construction of scale invariant solutions breaks down.

When the equations lose hyperbolicity, they also lose linear well-posedness, and we suppose

that a shear band forms. As in [4], we treat the shear band as a stationary discontinuity, with

nonstandard jump conditions. Specifically, the velocity gradient is approximated by a divided

difference:

V [i,]6, (1.7)

where [v] is the jump in velocity across the shear band and 6 is a small parameter to the grain size.

From the conservation of momentum equation (1.1a), we see that a is continuous across a shear

band. The variable r experiences a jump on each side of the shear band. The approximation (1.7)

leads to the following system of ordinary differential equations, with a constraint, for evolution

of the variables T = (a, r)T, -y within the shear band.

[i + 1- (R T)TT]OtT = , (vl/6 - = ITI. (1.8)

Note that these equations are coupled to the external variables through the jump [v] in v,

and through the continuity of o. This system of equations may be regarded as a jump condition

for stationary shocks, analogous to the usual Rankine-Hugoniot condition for shocks. However,

the Rankine-Hugoniot condition is a system of algebraic equations, in contrast to (1.8), which is

a system of differential equations. The jump condition (1.8) effectively widens the class of weak

solutions of equations (1.1) beyond the class of solutions whose jump discontinuities satisfy the

usual Rankine-Hugoniot conditions. It is within this wider class that we shall seek solutions of

Riemann problems. Note that system (1.8) is not scale invariant, because of the right hand side.

Correspondingly, solutions of Riemann problems also fail to be scale invariant.

In Section 2, we extend results of Garaizar [1] concerning the Riemann problem, to the case

in which a shear band forms. In Section 3, we describe numerical results in a test case that shows

how the computations agree with the theoretical predictions.

2. Analytic Solution of the Riemann Problem.

In this section, we review and extend results of Garaizar [1] concerning Riemann problems

for system (1.1). In Subsection 2.1, we summarize short time existence and asymptotics, which

are used in Subsection 2.2 to extend the solution globally in time. The analysis applies to

a simplified version of systems (1.1,1.8), in which we linearize the yield condition (1.3), and

work with perturbations of the original variables about the point at which system (1.1) loses

hyperbolicity. The simplified version of equation (1.1) is
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Ov = Oo (a)

O + -(7-y = c 28.v (b)

=0 - a )O,• (c) (2.1)

h(-I)

{ t(or + ar) if loading
at - = (d)

1 0 otherwise,

Here, a - tan 2; h(y) is a positive strictly decreasing function on an interval containing the point

-0, and
h(O) =a2 (2.2)

Note that in the simplified equations, we use the same symbols a, r and -7 to denote perturbations

of the original stresses a*, 7- and yield stress -f.

2.1 Short time behavior.

Let U = (v, o,, r)T, and write system (2.la,b,c) in the loading case (in which - = o + ar) in

the form
Ut + BU, = 0, (2.3)

where

h~O2 l~c 0 h-a 2 +1 '1(24B1 + c2(h a2) 0 0 (2.4)

=C2 0 0

Characteristic speeds of (2.3) are eigenvalues of B, given by

A* = ±cV/j, Ao = 0, (2.5)

where 77 = (h - a 2)/(h - a 2 + 1). The associated eigenvectors axe (respectively)

r± = (c-1 ,/fjT? ,':Ca(1 -_7))T, ro = (0,0,1)T. (2.6)

We conclude that system (2.3) is hyperbolic if and only if 7 Ž 0. Therefore, (2.3) is hyperbolic

if and only if -y < 0.

Next we describe the values of the variables within a rarefaction wave near y = 0. Let

v0, a0, TO = -a-Iao, -o = 0 be the values of the variables at x = 0 in a right moving rarefaction

wave whose trailing edge has speed zero. Then (cf. [5]) we have the following expressions for the

variables near x = 0, in which = x/t :
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c 2-= -C• = -•h--j+• () (a)

v = 6(t) = o + Vg3 + f2(t 2 ) (b) (2.7)
" -() = &W -aO- " 4 +-•f3(), (c)

T = ) = TO h-'g2• + ý4f4(t2), (d)

where
2 1

= 3a 2h c4 ' 04 = 2a 2hlc 4 , hi = h'(0) < 0, (2.8)

and the functions fi, : = 1, .. , 4 are real analytic near the origin if h is real analytic.

The other ingredient we require is an integrated form of the follwing simplified form of equa-

tions (1.8):

a +-a-f = i (a)
hR-7) 6

a- = 0 (b) (2.9)a h(•y),- 0(b

S="+az. (c)

Lemma 2.1 Suppose h(y) is real analytic in a neighborhood of -Y = 0, h(O) = a 2 # 0, and

h'(O) = -hi < 0. Let (a,z, - [v])(t) satisfy equations (1.8), and (0,z,y)(0) = (ao, -o 0 /a,0) for

some o,. Then there is a function b = b(-y) that is real analytic in a neighborhood of -y = 0 such

that

b(O) Y o", b'(O) = 0, b"(O) - -a 2/hi, (2.10)

and with the property that

u(t) = b("'- 'j[v](O)dO). (2.11)

Now we are ready to consider the central problem. Consider the Riemann problem with

initial data
UL ifx<O

U(X,0) = (2.12)

1 UJR if x>0

for which there is no centered solution of system (2.1) involving only shocks and rarefactions.

Specifically, consider a combination of left moving shocks and rarefactions such that the value

of U to the left of this combination is UL and the trailing edge of the rarefaction has zero speed
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(i.e., y = 0.). Similarly, consider a combination of right-moving waves, with UR on the right,

and zero speed on the left. Let (ao, vo), (ao, v') denote the values of (o, v) on the right and left

(respectively) of the left and right moving wave groups (see Figure 2). In the so-called symmetric

case, in which al = oa, there is no classical solution of the Riemann problem if v0 > v0. (That is.

there is no solution involving only shocks and rarefactions.) This is the situation that we treat.

Since there is no classical solution, we explore the possibility of solving the initial value

problem by including a shear band. In such a solution, v (in addition to r and -y) can experience

a jump across the t-axis. In contrast with the classical solution, the solution with a shear band

is non-constant on the t axis because of equations (1.8), and the overall solution does not enjoy

the property of scale invariance. To start with, consider the equation (1.8) on the shear band,

which is located on the t-axis. To understand the short-time behavior, we rýýscale time t by a

small constant: t' = t/c. Then Ot = 10t,, so that the equations (1.8) are unchanged apart from

an c multiplying the right hand side. Then if c is small compared with 6, we effectively have

scale invariant equations; viz.,

o,,,a + I9 =0

(2.13)

O,,r h- r) 'J =0, -Y = a + ar.

It follows that or, r and - are constant in time to leading order in f. Thus for small time,

specifically, for times that are small compared to 6, the solution is approximately scale invariant.

In this solution, there is a rarefaction wave on the left and right extending up to the t-axis. The

blown-up solution is shown in Figure 2.

We modify this picture for larger times as follows. The solution is no longer scale invariant,

and the material unloads away from the shear band. We therefore postulate an unloading or

relief wave propagating away from the shear band and interacting with the rarefaction. The

conjectured structure is shown in Figure 1.

In Figure 1, the solution is scale invariant outside the region bounded by the relief waves,

and agrees with the blown-up solution there. We therefore have a pair of coupled quarter-plane

problems to solve in the regions Et, E, of Figure 5, with the boundaries in the (x, t) plane being

the two relief waves and the t-axis. Note that regions E1, E, have t < T, where T is chosen so

that the relief wave has not completely penetrated the rarefaction by time T.

Finding the solution in regions Et, E, reduces to solving a Goursat-type free boundary prob-

lem for the wave equation
atv = aa (a)

ata = c2av (b) (2.14)
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Figure 1. Solution of the Riemann Problem in the Symmetric Case.

At

r

x

Figure 2. Blown-up Solution of the Riemann Problem.

in the planar domain

{(x,t): t > 0, 0 < x < s(t)}. (2.15)

At the free boundary, (2.14) is subject to two boundary conditions of Dirichlet type, correspond-

ing to the rarefaction wave:

v(s(t),t) =Ob(s(t)/t) (a) (2.16)
U(s(t),t) = &(s(t)/t). (b)

At {x = 0}, system (2.14) is subject to the nonlinear, integral condition

a(o,t) = b ( I v(0,t')dt' , (2.17)

21



derived from Lemma 2.1. (Note that by adding a constant to v, we may take [v] = 2v without

loss of generality.) Substituting d'Alembert's solution, written in the form

v )(xt) F~t +x) ' G~t -x) 7 0 < x< s(t) (2.18)

into the boundary conditions, we obtain the following three equations for the three unknown

functions F, G, s:

F(ct + s(t)) + G(ct - s(t)) = O(s(t)/t) (a)
F(ct + s(t)) - G(ct - s(t)) = c-1 &(s(t)/t) (b) (2.19)

F(dt) -G(dt) = c-16(2"hl j(F(cO) +G(cO))dO) Wc

We can derive short time asymptotic solutions of these equations, with the following result,

in terms of the physical variables ([5]):

Proposition 2.1 For 0 < x < s(t), and near t = 0, the functions have the following expansions,
uniform in x.

v(x,t) = vo +2cAt3 /2 + 0(t) a(x,t) = ao +3c1 /2 Axt'12 + Bt2 + 2(d)

n 2/3 +(2.20)

(X,2/3 + (t 2 ) (x,t) = -12 + 0(t 2 ),h1  hi

where
1(4)•3/4 /12C1/2 V0•3/2 (•2

A (3 / 2c"o 2(k--/2 > 0 B = -s+(a 4 + •v3 ) = -2a 2 hjc4 ()< 0. (2.21)

In reference [6], we prove that there is a solution for short time that agrees with the asymptotic

form we have found. The proof is based on a form of the implicit function theorem that requires

the functions to be real analytic.

2.2 Long time behavior.

Once the local existence (for t < to) of solutions has been established, we can extend these

solutions to all values of t using an iterative method. That is, we can show that if solutions exist

for 0 < t < t' then these solutions can be extended to a larger interval 0 < t < t' + f where f

depends only on to.

Let us define a new function r(t) to replace the unknown s(t). This function is defined

implicitly by
r t + s(t))= (0. (2.22.)

t
Then equations (2.19) become:

(a) F+Go4 = 6(r(t))
(b) F-Go O = c-1 (r(t), (2.23)

(c) F-G = c-'b(2 ch f~l(F+G)dt'),
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where #(t) = (c - r(t))t/(c + r(t)). We rearrange equations (2.23) as follows:

(a) 2F(t) = (6 + c'&)(r(t))
(b) 2G(7-tt) = (6 - c-'&)(r(t)) (2.24)

(c) G(t) = F(t) - c--(2chl .91c(F + G)dt)•

Since r(t) Ž 0, we notice that c-r(t' the argument of G on the LHS of (2.24b), is strictly less

than to for all t in [0, to]. Therefore we can solve (2.24b) for r(t), for values of t slightly larger
than to. That is, we can extend r(t) to the interval [0, to + e], where f is determined from the2,r(t)
inequality t - to < C_--t0, if r(t) < c. Now we can use equations (2.24a) and (2.24c) to extend

F and G to the same interval.

This process can be repeated indefinitely to obtain a solution to (2.23) for all t > 0, provided

that the value of e does not decrease; in particular, if e depends only on the value of to given

by the local existence results. This will be true if, for all values of t, (i) r(t) < c and (ii) r(t) is

monotone increasing. The following Proposition, proved in [2] provides these properties.

Proposition 2.2 If equations (2.23) admit a solution (F, G, r) on some interval [0, T], then each

of these functions is monotone increasing on this interval, and r(t) < c.

Combining this analysis with the local existence results of [51 we have established the existence

of solutions for all t > 0.

3. Numerical Results.
In this section we will explain the numerical approach to solving system (1.1). A similar

(but simplified) approach will apply to system (2.1) with a linear yield condition. Instead of
describing the numerical algorithm in detail we will address some of the numerical difficulties

which arise from the properties of the system.

3.1 Elasto-plastic transition.

The first difficulty in designing a numerical code is that the equations in system (1.1) change

depending on whether the material deforms elastically (1.1c) or plastically (1.1b). In the nu-

merical algorithm, we add an internal variable to the set of variables U = (v, o,, r, y)T describing

the material states. This variable indicates if a given material point is undergoing an elastic

or plastic deformation. The internal variable is allowed to change during the course of a time

update, thus avoiding the calculation of unphysical values of stress which are beyond the yield

surface (a.2 + T 2 > t2).

3.2 Stress evolution.

When the material is deforming plastically, system (1.1), (1.5) is not in conservation form.

Although the momentum equation (1.1a) is a conservation law, the equation (1.1b) describing
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the stress evolution during plastic deformation is not in conservation form. In order to perform a

time update at a given point, we use a numerical scheme (following the ideas of Trangenstein and

Colella [7]) which combines two different algorithms: (i) a second order (Godunov) hyperbolic

scheme for the momentum equation and (ii) a second order implicit ordinary differential equations

integrator, for the stress equation along a particle path.

The Godunov scheme for the momentum equation is:

V,ýl =Vn C2Atn+j _n+ L
1 = 4 +c ( a- oi_. (3.25)

Here a +2 is approximated by writing the equations of motion in quasi-linear form and tracing

information along characteristics. The algorithm used on the stress equations is described as

follows:

Let S be . Then ri+ 1  = S"+1 is the solution at t = t,+l after the numerical

integration of
n+1 n+ I

+1

§ AX -G(S), (3.26)

with initial data S(tn) = rn . Equation (3.26) and in particular G(S) is derived from (1.1b,c)

and (1.5), replacing O.,v with '+' - . In both algorithms, a " and v 1 are the values of a

and v at the cell boundaries evaluated at the intermediate time t = tn, + At/2. These quantities

are computed using a characteristic tracing algorithm to achieve second order accuracy.

3.3 Loss of hyperbolicity.

As was noted earlier, there is a critical value of yield stress y, beyond which the system is

unstable. This instability relates to the loss of hyperbolicity in the full two dimensional system

for signals traveling in certain directions. Ph, sically, this loss of hyperbolicity is associated with

the formation of shear bands.

In our numerical algorithm, after the time update, each cell is tested to see if the state on

the cell is inside or outside the region of hyperbolicity. If the state is outside this region, a shear

band is then created in the cell. From this instant, the band is treated as an internal boundary

with its own equations (1.8) governing the evolution of the stress in the interior of the band.

The numerical algorithm first performs the update of the states on all the cells as if shear

bands are not present. This includes the computation of stress and velocity at the cell boundaries.

Next it corrects the states on cells where shear bands are present. This is done by first integrating
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an nrd- nary differential equation similar to that of (3.26)

'b = G(,9 b), with initial data S" = vbI = .S(i) (3.27)

dt 6 b-")

where b is the physical width of the band, Sb is the stress vector inside the shear band, and vb

and vb are the velocities on the right and left sides of the band at time t = t,,.

shear
..band
_ _ _:_:::::::::::__ ::::::::::_::::2lt=t +A t

S.................

;. -.y..y-.-.:.:.:... -..

d, inside:a:cell ( r

•::::.. : :-.:..... :.....

U n n V-.1-:4:-:1" .:..".:. U
UJb-1 UL LT~::• ::~i! ER UJe+1 t~n

X jb -1/2 XfX b X Jbtl/2

Figure 3: Cell with a shear band.

As a final step, we update the states UL and UR near the band; this is, on the subcells created

by the formation of a shear band inside a cell (see fig 3).

The states at the band are used to compute the fluxes ( ) at the fictitious boundary (i.e.,

shear band). The states UL and UR are assigned to cells of smaller size (d, and d,) than a regular

cell. The possible violation of the CFL condition is solved by redistributing the "numerical mass"

into the nearby cells. The result of this mass redistribution is stored as a modification on the

fluxes at the cell boundaries next to the shear band.

3.4 Numerical example

-ii our numerical example, we use a modification of the adaptive mesh refinement algorithm

as in [8]. The computations for the following example are performed with three levels of mesh

refinement, each a factor of three finer than the previous. This algorithm uses the flux informa-

tion in order to assure that, during the mesh refinement process, the quantities that should be

conserved are actually conserved. Thus the emphasis on expressing the mass redistribution in

terms of the fluxes.

In figures 4-5 we show the profiles of the solution for a numerical example. We study an

initial value problem in the interval 0 < x < 1, with data
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v =-70, a = .6, r = 0, -=0.75 for x < 0.5

v 70, a = 0.6, r = 0, y = 0.75 for x > 0.5

and with material parameters:

a = r/6, c = 102 and h(-) = 1.7(1 -7).

This problem does not admit a selfsimilar solution and a shear band is expected to form at

x = 0.5 as a result of the strong loading from both sides of the initial discontinuity.
Figure 4 shows the solution at a time soon after the formation of the shear band and Figure

5 shows the solution at a later time. The plots correspond to the stress functions a and -f (a < -y
always). We observe the expected behavior of the stress at the shear band, as predicted by
the analysis above (also see [5] and [2]). A precursor elastic wave travels ahead of a loading
rarefaction wave which is followed by an unloading relief front. Note the coarsening of the grid in
regions of neutral loading (behind the elastic precursor wave) and in regions of elastic unloading

(behind the relief front).

The location of the shear band is readily identified by the dip in the values of a. The
nonlinearity of the yield condition ensures that the stress at the shear band will converge to a
rest point under continuous loading.

$ V

11 11 , II 1111 I l II I I .............

I I I I I I I I I ~ii i i ....... ................ iii

Figure 4: a and -y at small time.

4. Conclusions. In this paper, we have summarized results concerning solutions of the Riemann
problem for model equations describing the deformation of granular materials. The model allows
for deformations with shear bands. The analytic results on existence of a solution depend upon a

simplification of the equations, specifically a linearization of the yield condition about the value
of stress at which a shear band forms. We outline the main features of a numerical method that
is based on a higher order Godunov method, and which includes front tracking and adaptive
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a

Figure 5: o and -1 at large time.

mesh refinement. This combination of techniques gives sharp resolution of the shear band, and

accommodates large elastic wave speeds. The way adaptive mesh refinement coarsens and refines

the grid in various regions of the material can be observed in Figures 4 and 5. The numerical

algorithm performs well in capturing the features of the solution predicted by the theory.

Many of the features of the algorithm can be extended to two space dimensions, although

this is somewhat complicated. The main difficulty in designing a code in two dimensions is that

of capturing the growth of the shear band as the tip of the shear band propagates across the

material. The algorithm in two dimensions is at an advanced stage of development.
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ABSTRACT. Where the usual Euclidean algorithm finds a greatest common
divisor, we describe a compositional Euclidean algorithm which would give a largest
functional composition factor. And where the usual Euclidean algorithm is based on
repeated division with remainder, the compositional Euclidean algorithm is based upon
repeated compositional division with remainder. The challenge is that while we propose
an apparently reasonable notion of compositional division with remainder, we do not
know if it exists. However, it is easy to give a number of consequences, assuming that it
does exist.

INTRODUCTION. The Euclidean Algorithm is a fundamental algorithm for
manipulating integers and polynomials in one variable. For both integers and
polynomials, the Euclidean algorithm comes down to suitably repeated division with
remainder. In both settings the Euclidean algorithm produces a greatest common divisor
(GCD) of two initial elements. In ideal theoretic terms, the Euclidean algorithm produces
an element which generates the same ideal as the ideal generated by the two initial
elements. For an ideal with a given finite number of generators, apply the Euclidean
algorithm repeatedly to produce a single element which generates the same ideal.

The rational function field in one variable - denoted k(X) - consists of quotients
of polynomials in the variable X with the usual arithmetic identities among fractions.
The polynomials have coefficients in a field k which we refer to as the basefield. k(X)
has many proper subfields containing k, for example, consider all fractions where the
numerator and denominator are polynomials with only even degree terms. This subfield
is generated as a subfield, not as an ideal, by X2 and is naturally denoted k(X 2 ).
Luroth's theorem 11l, p.5221 says that if B is a subfield of k(X) containing k then B is
generated over k by a single element; i.e. B = k(b) for some suitable element b. This is
the starting point of the present paper. It is natural to consider the possibility of an
algorithm A in the spirit of the Euclidean algorithm which does the following: given two
rational functions b and c, the algorithm produces d where k(b,c) = k(d). We wish to
emphasize that we are not trying to produce the first algorithmic solution to this problem,
rather we are trying to stimulate new ways of working with rational functions. For A to
be in the spirit of the Euclidean algorithm it must be based on an algorithm B which plays
the role that division with remainder plays in the Euclidean algorithm.

Before presenting greater detail about the possible form of A and B, here is
another view of the problem. In this view functional composition is the analog to product
of integers or polynomials. Of course product is commutative and composition is not.
That is why in a composite such as f(g(X)) we refer to f as the outer compositional
element and g as the inner compositional element (ICE). The reason to switch from

* Supported by the U.S. Army Research Office.
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product to composite results from the difference between ideal generation and subfield
generation. The subfield generated by d consists of rational functions which can be
expressed f(d)/g(d) where f and g are polynomials in one variable, f/g is a rational
function r in one variable. Hence the subfield consists of all rational functions which
have d as ICE in some rational function decomposition. This is the analog to an ideal
generated by a single element. The subfield generated by b and c consists of rational
functions which can be expressed F(bc)/G(b,c) where F and G are polynomials in two
variables. F/G is a rational function R in two variables. If k(b,c) = k(d) it follows that
there are rational functions r1 and r2 of one variable and a rational function R of two
variables where:
1 b = rl(d) c = r2(d) d = R(b,c)
The frust two equations show that d ICE's both b and c, meaning both b and c have d as
an ICE. The third equation implies that any ICE of b and c also ICE's d. I.e. if:
2 b = s1(e) and c = s2 (e) then d = R(s 1(e),s2(e)) = R(slS 2)(e)
Thus d is a largest ICE (LICE) of b and c where LICE has roughly the defining property
with respect to composition as GCD has with respect to product. In fact, (1) consists of
the main three equations for GCD with composition replacing product.

SECTION ONE. Now let us work toward the possible form of B, the
replacement for division with remainder. In both integer and polynomial division the
remainder is smaller than the divisor. With integers smaller is with respect to magnitude.
With polynomials smaller is with respect to degree. In order to give a compositional
analogue to division with remainder, we require a suitable notion of smaller. Suppose a
is a non-zero integer. The magnitude of a equals the cardinality of the set: the integers
modulo the ideal generated by a. If ox(X) is a non-zero polynomial, the degree of ot equals
the dimension as a vector space over k of k[X] modulo the ideal generated by Oa(X). In
both cases the size of a is determined by a relative measure of the ideal generated by cc to
the entire ring. We use such a measure for rational functions. If a(X) is a non-constant
rational function, the size of a is defined to be the dimension of k(X) as a vector space
over the subfield k(ot(X)); i.e. [k(X):k(a(X))]. This integer is called the ice degree of
oa(X). By [1, p.520, thm 8.38] if ox(X) is written in the form f(X)/g(X) with f and g
relatively prime polynomials, the maximum of the usual polynomial degrees of f and g
equals [k(X):k(ox(X))]. Hence, the ice degree is also determined directly from oc(X) and
is not only a relative concept.

If ac is zero the cardinality of the integers modulo the ideal generated by oa is
infinity. Same for dimension over k of k[X] modulo the ideal generated by a(X) when
a(X) is the zero polynomial. The magnitude or degree is in some sense opposite to the
size of the quotient in these exceptional cases. Ice degree exhibits the same anomaly.
When ox(X) is a constant rational function, k(a(X)) = k so that [k(X):k(ot(X))] is infinity.
The ice degree of a constant rational function is zero by convention, which accords with
the maximum of the usual polynomial degrees of the numerator and denominator.

The defining formula for division with remainder, dividing a by P3, is: a -
r * J3 + p , where r is the quotient and p the remainder. A naive compositional analog to
division with remainder is given by: ax = Q(P3) + p. We have replaced the product "" by
composition, but the sum "+" and general shape of the equation is unchanged. Let us
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take a slightly more sophisticated approach. Division with remainder is effective in the
realm of ideal theory. The reason is because an equation of the form: ca = r * f + p is
universally, arithmetically reversible to give p = a - F * a. Consequently the ideal
generated by ca and 03 equals the ideal generated by 03 and p. This is the key property upon
which the Euclidean algorithm is based and which we must preserve. In other words, if
compositional division of a by 03 is to produce an ice remainder p, the process ought to be
universally, compositionally reversible so that k(a,13) = k(13,p). Once we achieve this, the
compositional Euclidean algorithm follows. Let us play with this condition: k(ap,[) =
k(3,p). Collecting a common k(13) we are asking: k(13)(a) = k(J3)(p). Fractional linear
transformations are automorphisms of function fields. It is natural to seek ab,cd in k(f3)
where:

3 ad - bc is non-zero and the ice degree of ( aa + b ) / ( ca + d)
is less than the ice degree of 3. Let p denote ( aa + b ) / ( cc+ d).

The non-zero (determinant) condition on ad - bc insures that

4 ( ep + f) / ( gp + h) = ax for suitable e,fg,h in k(3) ; hence k(p3)(cx) = k(fp)(p)

DEFINITION Given rational functions ax and 13 where 03 has ice degree at least one, the
compositional division of a by 03 consists of a,b,c,d in k(p3) satisfying (3). For such a
compositional division, p is the ice remainder. The fractional linear transformation and
rational function: (aX + b)/(cX + d) is the outer compositional quotient of a by 15.

Here are three questions concerning compositional division, the first of which is:
is compositional division always possible? For example, suppose 1P has ice degree at
least one and ct does not lie i.1 k(J3). In this case k(p3)(at) properly contains k(f3). By
Luroth's theorem, k(13)(a) is generated by a single element p. Since k(p) = k(p3)(ca) which
properly contains k(p3), it follows that p has lower ice degree than 03. It is clear that p can
be written as a polynomial in ct with coefficients from k(13) but can p, or some other
element of k(p3)(at) with lower ice degree than 03, be written as a fractional linear
transformation of a with coefficients from k(p3)? The next two questions assume that
compositional division is possible. In this case: a. give a beautiful algorithm for
compositional division, or at least for finding p; b. give an efficient algorithm for
compositional division, or at least for finding p.

We conclude by deriving consequences of compositional division, including the
compositional Euclidean algorithm.

LENIMA Given rational functions ax and 13 where 13 has ice degree at least one, the
compositional division of ax by 13 exists and has ice remainder in k if and only if ca lies in
k(p3). In this case any element of k can be achieved as an ice remainder.

PROOF Say ax lies in k(p3) and s is any element of k. In (3) let a = 1, b = a(s - 1), c = 0
and d = a. Then (3) is satisfied and p = s. Conversely suppose the compositional
division exists with ice remainder p in k. From (4) and that p lies in k it follows that ct
lies in k(f3). qed

Let us now assume that compositional division does in fact exist and show how to utilize
it in the manner that ordinary division is utilized.
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PROPOSITION Let K be a subfield of k(X) which properly contains k. Then K
contains elements of non-zero ice degree. If 03 is an element of K with smallest non-zero
ice degree then K = k(W3).

PROOF Any element of K lying outside of k has non-zero ice degree. Let 0 be any such
element with minimal ice degree. Let a be any element of K. p the ice remainder from
compositional division of a by 0 has smaller ice degree than 13. By the minimality
property of 13, it follows that p has ice degree zero and hence lies in k. By the previous
lemma it follows that a lies in k(13). qed

COMPOSITIONAL EUCLIDEAN ALGORITHM Starting with rational functions a 0
and a, construct the sequence a0,cl,.x,. ..,an where 04+I is the ice remainder of
compositional division of 04. 1 by ai. Ihe process continues until reaching an of ice
degree zero. We allow the possibility that n = I and no division is performed. Then an.I
is the ICE of a 0 and a,.

PROOF At each stage k(a 0 ,c1) = k(aI ,a 2 ) = ... = k(cn.1 pan) = k(%n. 1) where the last
iuality follows since an lies in k. qed
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Abstract
In this paper, we define Hyperbolic Cascaded Reed-Solomon (HCRS) codes, study their al-

gebraic properties, and describe an algorithm for decoding them up to their full error-correcting
capability. The codewords of HCRS codes are represented either as arrays or as bivariate poly-
nomials. Our decoding algorithm is an extension of an algorithm of Salata, and the decoding
is performed by calculating a Grfbner basis for an ideal related to the error locations.

Section 1. Linear Block Codes

We begin with a brief introduction to the theory of error-correcting codes, and in
particular, linear block codes [1, 61.

Error-Correcting Codes. Error-correcting codes are used to protect digital in-
formation during transmission across a noisy channel. Applications include modem com-
munications over a phone line, radio communications with satellites or spacecraft, and
computer storage devices. In each case, noise is introduced to the data transmitted so that
the bits received may not be the same as the bits transmitted. An error-correcting code
adds redundancy to the information to create codewords which may be reconstructed by
the receiver even if some of the bits are in error.

Linear Block Codes. Let q be a power of a prime number. We use the elements
of Fq, the finite field with q elements, as the symbols of an alphabet used to compose
codewords. Usually, q is a power of 2 so that symbols can be expressed as strings of bits.
The encoder takes a word of length k and encodes it as a codeword of length n > k. The
encoder thus is a one-to-one map F k --+ F". The code C is the set of all codewords; that

is, the image of F under the encoding map. We require the encoder to be a linear map of
vector spaces over Fq, so that C is a linear block code. In this case, C is a k-dimensional
subspace of F.

Hamming Distance. The Hamming weight UWItoH of a word w E Fn is the number
of nonzero entries of w. The Hamming distance dH(v, to) between two elements v, to E Fq
is defined to be 1iv - wtlH; that is, the number of entries in which they disagree. The
minimum distance of a code C is the minimum Hamming distance between any two distinct
codewords of C.

Correction of Errors. Suppose C is a linear block code with minimum distance
at least 2t + 1. A codeword c E C is sent through the channel and some of its entries
are altered. Thus the receiver receives a word to E Fn which is the sum c + e of the
codeword and an error word e E Fn. The number of places in which c has been corrupted

This work was supported by the U.S. Army Research Office through the Army Center of Excellence

for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell
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is expressed as the Hamming distance dH(w,c) = IlellH. Assuming that no more than t
errors occurred, we have dH(w, c) •_ t, and c is the unique codeword with this property
since by the triangle inequality, dH(w, c) > t + I for all other codewords c'.

Thus a code C with minimum distance 2t + 1 is a t-error correcting code, that is,
any pattern of up to t errors may be corrected. The task of the decoder is to produce
the codeword nearest in Hamming distance to the received word. However, the number
of codewords is exponential in the blocklength, as well as the number of correctable error
patterns, so finding an efficient decoding algorithm is problematic.

Parameters of a Linear Block Code. An (n, k, d) linear block code C is a k-
dimensional subspace of F" with minimum distance d. The parameter n is called the
blockiength of the code. The parameter k is called the dimension of the code. The rate
of the code is the ratio k/n, since each word of k symbols is encoded as a word of n
symbols. The parameter d is the minimum distance of the code. We have seen that a
code with minimum distance d can correct up to t - [d2 J errors. In choosing a code
for transmission of data across a given channel, there must be some tradeoff between the
conflicting goals of high rate and high error-correcting capability. We must also keep in
mind that the code ought to have an efficient decoding algorithm.

Section 2. Hyperbolic Cascaded Reed-Solomon Codes

Hyperbolic Cascaded Reed-Solomon (HCRS) codes have been studied in [4, 5, 7, 10].
We give an algebraic description of HCRS codes here, but they were originally introduced
in [10] using the cascade code construction of Blokh and Zyablov [2]. HCRS codes are
in many ways a geneLalization of the widely-used Reed-Solomon (RS) codes [1, 6]. One
motivation for using HCRS codes is their long blocklengthi: whereas RS codes over the
alphabet Fq are limited to blocklengths ; q, HCRS codes have blocklengths - q2 .

Notation. The set of nonzero elements of Fq forms a cyclic group under multipli-
cation. Let n q - 1 be the order of the cyclic group F; = Fq \ {0}, and choose a E Fq
to be a generator of this group. Thus F - {1,a, a 2 , ... ,a'-}. Let F×" be the set
of n x n arrays with entries from the the field Fq, and let F"x×[x, y denote the set of
bivariate polynomials f E Fq[x, yj with deg. f < n and deg, f < n. We identify Fn x

-q

with F Xn[X, y] by identifying a polynomial a(x, y) with the array a of its coefficients:

( aoo ... ao,n-1

a io( an-l,0 .. an-l,n_1

n--1 n--1

a(x, y) = EZEaij X 'y
i=O j=O

The Fourier Transform. The Fourier transform is a one-to-one linear map from
Fn'"[, yJ (the time domain) to Fxn[X, Y] (the frequency domain). (Of course, these
two spaces are isomorphic, but we express the polynomials in different sets of variables in
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order to distinguish them.) The Fourier transform, a i-4 A, and its inverse are given by
the formulas:

A(X, Y)= Z a(a', aj) X'Y',
i=O j=0

n-I 0-I

a(z, y) = -E E A(a-', -,) XY.
i=O j=0

Note that Aij = a(ai, a'), so A is a table of the values of a(x, y). The properties of the
Fourier transform are studied in detail in [I].

2-D Cyclic Codes [7, 9]. Let P C Z2 be a set of "frequencies". A 2-D cyclic code
is defined by taking as codewords those words a E F_ whose Fourier transform has zero
entries in the positions specified by P.

Cp = {a E F_ :A =0 foreach(ij)EPP}.

The blocklength of this code is N = n , since it is a subspace of FaR.

Hyperbolic Cascaded Reed-Solomon Codes. For arbitrary choices of the con-
straint set P, the minimum distance of the 2-D cyclic code Cp may not be very good (and
difficult to determine). We define Hyperbolic Cascaded Reed-Solomon codes which can
be shown to have good distance properties. Given a parameter d, the desired minimum
distance, we define the frequency set

Pd (={(ij) E • (i + 1) (j + 1) < d, i < n, j<n}.

Then we define the Hyperbolic Cascaded Reed-Solomon code

HCRSd =Cp, = {aE n : Aij=Owhenever(i+1)(j+1)<d}.

The parameters of the code HCRSd are (N = n2 k = n2 - IPdI, d). The dimension
is n2 - IPdI since each constraint imposed by an element of Pd is independent, and the
minimum distance can be shown to be at least d, the designed minimum distance [7].

Examples of HCRS codes. These ideas are best understood by looking at an
example. Consider the (49, 35, 7) code HCRS7 over F8 . The frequency set is given by

P7 = (i~j) E Z2 : (i+1)(j+1)<7}

= {(0,0), (0,1), (0, 2),(0,3),(0,4),(0,5),(1,0), (1,1),(1,2),(2,0),(2,1),(3,0), (4,0), (5, 0)}

3E



A 7 x 7 array (ai1 ) is a codeword if and only if its trrformn A,, has the form:

a0 0 a0 1 a02 a0 3 a0 4 a0 5 a0 6  0 0 0 0 0 0 AN.

al0  all a12  a13 a 14  a15  a66 0 0 0 A13  A14  A15  A16

a20 a2 1  a22 a 2 3 a 2 4  a25 a 2 6  0 0 A 22  A 23  A 2 4  A2 5 A 26

a3o a31 a32 a33 a 34  a 35 a 36  0 A3 1 A32 A33  A3 4  A35  A36

a 40  a 41 a 4 2 a 4 3 a 4 4  a 4 5 a 46  0 A 4 1 A 4 2 A 4 3  A 4 4  A 4 5  A 4 6

a5o as1 a52 a53 a 54  a55  a56  0 A51  A5 2 As3 A5 4  A55  As6

a 6 0 a61 a62 a 6 3 a6 4  a 6 5 a 66  A 6 0  A 6 1 A 6 2 A 63  A 6 4  A6 5 A6

codeword a (time domain) its transform A (frequency domain)

This diagram also suggests a method of encoding: a message consisting of 35 symbols
could be entered as the 35 free entries of the transform array A, and the inverse transform
could then be applied to obtain a codeword. Thus we have a linear map F35 --+ F49 whose
image is HCRS7 .

HCRS codes in m dimensions. Consider m-dimensional n x n x... x n arrays over
Fq. Use the m-dimensional Fourier transform to define codes with blocklength N = n'.
The one-dimensional version of a HCRS code is the well-known Reed-Solomon code. For
example:

Reed-Solomon: RSd = {aEF : Ai=0, (i+1)<d}
2-DHCRS: HCRSd = {aEF n: Aj=0, (i+1)(j+1)<d}
3-DHCRS: HCRSd = {aEFnXn: Aijk=O, (i+1)(j+1)(k+1)<d}

Section 3. Decoding HCRS Codes

We have developed an algorithm for correcting HCRS codes up to their full error-
correcting capacity. That is, our algorithm corrects any pattern of t errors for the code
HCRS2t+l. The algorithm is given in [7]. We sketch here some of the underlying ideas.

The Syndrome Array. From now on, we will be considering the code HCRS2t+l.
A codeword c E HCRS2t+I is sent through the channel. An error e E F"'K may be
introduced, resulting in a received word which is the sum w = c + e. Recall that the task
of the decoder is to determine the unique codeword c which differs from w in at most t
entries. Apply the Fourier transform: Wij = Cj + Ej, for all (ij). The transform E of
e is the syndrome array. Note that for each (i,j) E P 2t+i, an entry Ej of the syndrome
array is known to the decoder, since Cij = 0 and therefore Wij = Eij. Thus the syndrome
array is partially known, and the decoding problem may be reformulated: the decoder
must find the unique completion of the partially-known syndrome array to a full n x n
array which is the transform of an error pattern with weight t or less.
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2-D Linear Recursion Relations. Extend the syndrome array E to an infinite
array:

Ei = e(aIa'), for all (i,j) E Z2.+

Since a' = 1, this array is doubly periodic:

Ej+,j = Eij, Eij+, = Ej

This is an example of a two-dimensional linear recursion (2-D LR) relation [8]. In general,
if

Sfr, ,+r, = 0, forall(ij)EZ2

r a

we say that E satisfies a 2-D LR relation with coefficients f,. The characteristic polyno-
mial of this relation is:

r 8

As mentioned above, the periodicity conditions Ei+.,j = Ej and Eij+n =Eij are
examples of 2-D LR relations which are satisfied by every syndrome array. These relations
have x" - 1 and y' - 1 as their characteristic polynomials.

The Error Locator Ideal. Consider the error polynomial e(x, y) = , •j~ eii xi yj.
For an error pattern which is correctable, there are at most t coefficients e13 which are
nonzero. For each nonzero eii,

(i, j) is an error location
eij is an error value.

The following theorem connects the error !ocations with the set of 2-D LR relations valid
on the syndrome array.

Error Location Theorem (Sakata [9J).
F(X, Y) is a 2-D LR relation valid on E

F(a',a-) = 0 for each error location (i, j).

This motivates us to define the error locator ideal:

L = {FE Fq[X,Y] : Fisavalid 2-D LR relation on E}
= {F E Fq[X,Y] : F vanishes at each (a&,aJ)}

To identify the error locations, we seek a Gr6bner basis [3] which generates L:

L = (F 1(X,Y),F 2(X,Y),... ,FI(X,Y)).

(In the case of Reed-Solomon codes, we are considering an ideal in the ring of polynomials
in one variable. In this case, the ideal will always be principal: L = (A(X)), and here
A(X) is the error-locator polynomial as studied in the theory of Reed-Solomon codes [1,
6].)
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Overview of Decoding Algorithm [7].

1. Find 2-D LR relations satisfied by the syadrome array. (Form a
Gr6bner basis for the error locator ideal L.) There are two basic op-
erations:

a. Testing a 2-D LR relation to see if it correctly predicts the value
of a known syndrome.

b. Predicting the value of an unknown syndrome using a 2-D LR
relation.

2. Find the common zeros of the polynomials in L. These are the com-
mon zeros of the polynomials in the Gr6bner basis. Each zero (ai, aj )

identifies an erroi location (i, j).
3. Interpolate to find the error values. Subtract the error from the re-

ceived word to obtain the codeword.

Example. We again consider the (49, 35, 7) code over Fg. This code is capable of
correcting any pattern of three errors or less. Choose a (the primitive 7 th root of unity) to
be a solution of the equation a3 + a + 1 =0. We receive the following word, and calculate
the corresponding syndrome array (the symbol ',' denotes an unknown entry):

a 3 a 5 a 2 a3 a 2 a5 0 o 4 a 3 a 3 a 6 0 a 4  *

a 3 a 6 a a5  a4 a6  a 4  a 3 a5  3  * * * *3

0 1 a3 a5  a 2  1 0 a 3  1 * * * * *

a4 0 a 5  a 4 a 3  1 a 2  as a5  * * * * * *

a 5  1 a 3 a 6 0 2 a 4  a 0 * * * * * *

(Y2 a 6  0 1 a 4 a 6  a 0 * * * * * *

a5 a a a 5 1 a 2 a 3  * • * * * * *

Received Word Syndrome

The error locator ideal is found to be

L = (f,,f2,f3),

where
fi = Y+ a 2Y + a5

= XY + aX + a Y +a 6

.f3 X 2 +X+a 6 Y+a 5

The corresponing relations which are satisfied by the syndrome array E are:

Ejj+2 + a2 E ,,+i + a 5Ei,, = 0
Ei+1 ,j+l + aEj+Ij + a 5 Eij+l + a 6 Eij = 0

Ei+ 2 ,j + Ei+l,j + a 6 Ei,j+l + a 5 Eij = 0

We solve for the three common roots of the polynomials fl, f2, f3:

3)(a 3 ,), (a5, a4).
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This indicates that the error locations are (1,1), (3,1) and (5,4). Thus e(x,y) = elIxy +
e31 z 3 y + e54X 5 y4 . We recalculate the syndromes in terms of this expression to solve for
the error values:

4
ell , e=3 1-l, e 54 =1.

These three values are subtracted from the corresponding entries of the received word to
obtain the codeword:

a3 a5 a 2  a 3  a 2  a 5  0
0 3  F21 a a5 a 4  a 6  a 4

0 1 a3  a5  a 2  1 0

c= a 4  r- a 5  a 4  a 3  1 a 2

a 5  1 a 3  a6 a 2  a 4  a
a2 a6 0 1 a5  a6  a
a5 a2 a a 5  1 Q2 a 3
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Abstract

This paper presents a method for extracting programs from classical sequent proofs in propositional
logic. The term language is typed lambda calculus augmented by a nonlocal control operator. The
control operator used in this paper is Scheme's call/cc (call-with-current-continuation). An advantage of
using call/cc is that a subject reduction theorem can be proved very easily for this language.

One new feature of this work is the choice of the classical sequent calculus for propositional logic
as the proof system. Terms are extracted directly from propositional sequent proofs, rather than via a
translation to natural deduction proofs. A technique for representing continuations as partial proofs is
developed, and reduction is described as an operation am ploo&

1 Introduction

In recent years, there has been a great deal of interest in the computational content of classical proofs.
Since the discovery of a classical typing for the control operator C by Griffin [51, a great deal of work has
been done in expressing the computations in classical proofs as programs in a lambda calculus extended by
nonlocal control operators. Using the principle of the Curry-Howard isomorphism, if we augment the typed
lambda calculus with an operator having the type of a classical axiom (in particular, an axiom strong enough
to prove all of classical logic when added to intuitionistic logic), we will be able to extract programs from
classical proofs. The question is then whether these programs actually represent a sensible computation.

Murthy answered this question in part in his thesis [6], where he showed that a classical proof of a I12
sentence 0 can be interpreted as a program in an extended lambda calculus which meets the specification
0. This work was done considering various fixed, normalizing evaluation strategies, however; the question
of strong normalization for languages with control operators remains open. Barbanera and Berardi proved
a strong normalization result for one such language in [1], with some substantial restrictions on the types
allowed in the language. Specifically, their language forbids types with strict subtypes of the form -r-,P, and
forbids I from appearing on the left hand side of an implication.

This paper presents a method for extracting programs from classical sequent proofs in propositional logic.
The term language is typed lambda calculus augmented by a nonlocal control operator. The control operator
used in this paper is Scheme's call/cc (call-with-current-continuation). An advantage of using call/cc is that
a subject reduction theorem can be proved very easily for this language.

One unusual aspect of this work is the choice of the classical sequent calculus for propositional logic as the
proof system. Terms are extracted directly from propositional sequent proofs, rather than via a translation
to natural deduction proofs. A technique for representing continuations as partial proofs is developed, and
reduction is described as an operation on proofs. Using this proof structure leads to a greater understanding
of reduction, which may in turn lead to a strong normalization proof for these terms.

"Supported in part by the United States Army Research Office through the Army Center of Excellence for Symbolic Methods
in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University. Contract DAAL 03-91-C-0027,
and in part by a National Science Foundation Graduate Fellowship.
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The work began as an attempt by the author to understand exactly how cut elimination as reduction
corresponds to normalization of natural deduction proofs, which was inspired in part by Girard's work [4]
on constructive interpretations of classical logic, and in part by considering an extension of the author's
previous work on the tableau algorithm for intuitionistic propositional calculus ([7]).

The rest of the paper describes the details required for the proof. First, we define term language we use
to express the computations involved. Then, an outline of the method of extraction of a term from a sequent
proof is given. Next, we extend the computation system by the addition of typed constants, and we define
the reduction rules for program terms built from terms extracted from proofs and these constants. (These
rules are actually described in the form of a term rewriting machine.) The remainder of the paper describes
the correspondence between reduction and cut elimination.

2 Term Language for Classical Logic

Each rule of the classical sequent calculus will correspond to the construction of a term in a term language
based on typed lambda calculus plus call/cc, a nonlocal control operator. Classical typings for control
operators were discovered by Griffin and developed by Murthy ([5, 6]). In particular, call/cc can be given
the type (-'P--,P)--,P, a classical tautology which is a form of Peirce's law. The results given here could
also be expressed in a term language which uses the control operator C and the abort operator A with their
operational semantics as described in [3], at the expense of increased complexity of the proofs. (To make
this translation use the definition

call/cc(M) = (Ck.k(Mk))

as in ([3]); this definition also justifies the typing of call/cc if we consider the usual typing of C as "•(-,P)---P.)
The basic term language, with the exception of call/cc, is a subset of the Nuprl term language ([2]). We

use logical notation for types, and for each type, we describe how to build terms which inhabitant that type
from inhabitants of its constituent types. Such terms are called canonical because they are not themselves
reducible (though their subterms may be).

The types, and some of the terms, are defined as follows:

"* Propositional letters (p, q, r...) are types, and their canonical inhabitants are variables (x, y, z,.
of the appropriate type.

"* If P1 and P2 are types, then P1 A P2 is a type. If f1 and f2 are terms of type P1 and P2 respectively,
then pair (fi ,f2) is a canonical inhabitant of P/ A P2 ..

"* If P/ and P2 are types, then P1 V P2 is a type. If fI and f2 are terms of type P1 and P 2 respectively,
then in (f I) and inr(f2 ) are canonical inhabitants of P1 V P 2.

"* If P1 and P2 are types, then P1 -- P2 is a type, and ax. f2 is a canonical inhabitant of it if x is a variable
of type PI.

" -L is a type, and it has no canonical inhabitants.

The type P-a..L will be abbreviated -,P.

Also in the language are the following term constructors:

"* If t is a term of type (-'P)--P, then call/cc(t) is a term of type P.

"• If t is a term of type 1, then anyP(t) is a term of type P. The superscript will be omitted when it is
deducible from context.

" If t is a term of type P1 V P2 , and t, is a term of type P with free variable u of type Pi, and t 2 is a
term of type P with free variable v of type P2 , then decides(t; u.t, ; v.t 2 ) is a term of type P.

" If t is a term of type P1 A P 2, and t 1 is a term of type P with free variables u of type Pi and v of type
P2 , then spread(t;u,v.t 1 ) is a term of type P.
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I ff is a term of type P, -'P 2 , and t is a term of type P1 , then apply(f;t) is a term of Lype P2 . This
term will often be abbreviated f(t).

Some abbreviations will be helpful in discussing multiple disjunctions, as A1 V ... V A,. We shall parse
this as A 1 v (A2 V (... (A.-, V A.))), and we shall use ini (x) as an abbreviation for the appropriate sequence
of ini and ir applications such that if x : A,, then ini(x) : A1 V ... V A,,. To generalize the decide term
constructor to handle multiple disjunctio'is, assume we have terms t, ... t,, of type P such that each ti has
free variable uj of type Ai, and we have t of type A1 V ... V A,,. Then the term decide. (t;ul .t 1 ; ... ;
u .t,,) has type P, and is considered to be an abbreviation of the appropriate sequence of ordinary decide
constructions.

3 Classical Sequent Proof Terms

For each rule of the classical sequent calculus, we describe how the computational content of the hy-
pothesis of the sequent is transformed to computational content of the conclusion. In general, a sequent
A,,..., Am ý-Bi,... ,B, will represent the type A 1.-+(A2 4-... (A,--+Bl V... V B,)), and so its computa-
tional content will be a term of that type. Thus, we will assign a variable to each formula on the left of
the turnstile, and the inhabitant of the (implicit) disjunction on the right will be constructed from these
variables and the term constructors. The computational content of the sequent, then, is the closed A-term
for the function involved.

For all sequent rules but one, we shall see that if if we have a constructive proof of each hypothesis
sequent, we will also have a constructive proof of the conclusion of the rule. This is true despite the fact that
we may have more than one formula on the right side of the turnstile. For, if a sequent r t- A is constructively
provable, given proofs of the formulas in r we will be able to determine which formula in A is proved. This
is usually enough to allow us to determine which formula on the left of the conclusion sequent is proved.
The exception is the rule of arrow introduction on the left:

r,AI-B,A

rI-A--B,A

Since we may have satisfied the hypothesis sequent by proving something in A, and we may have used the
assumption A, we cannot be certain that we can still prove anything in A. Nor can we prove A-#B, since
we may not have proved B in the hypothesis sequent. It is only in the computational content of this sequent
that the call/cc operator appears.

Extracting terms from proofs

The rest of this section describes how to construct a term representing the computational content of a sequent
proof.

The computational content of an axiom
x: M-x: A

is the term Ax. x, the identity function. A more general form of this axiom is

t, : A,,-., t, : A, ý-ti : A,

and its computational content is the term Ax 1... Ax" ..xi.
Now assume that we are given functions representing the computational content of the sequents which

are the premises of each sequent rule. We use these functions to construct the computational content of the
conclusion. The notation is extended so that f : r i- A means that if r = A&,..., A, and A = B1 ,..., B,, f
is a function with type (A,--(A 2 ... (A,,-(B 1 V... V B,,)))). No ambiguity will arise, since the term is read
this way only if there is no term explicitly shown for the formula on the right side of the turnstile.

Since sequent rules may involve lists of formulas r = A1,..., A,, which are carried from hypothesis to
conclusion without modification, we will often abbreviate the list gx : A1 ,... ,g,, : A,, as simply g : r.
Thus, in the terms below, Ag.t is to be considered an abbreviation for Ag.... g,, .t. We also abbreviate
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((((f(gi))ga)... )g,) as f(g), and we may write repeated applications (f(x))y as f(x,y) to avoid
proliferation of parentheses.

The simplest cases are when there really is only one formula on the right of the turnstile. The com-
putational content corresponds exactly with the standard interpretation. The rules in this case are the
following: : ri-A f 2 :rFB

Ag.pair(:f(g), f2(g)) r I- A A B

f : n-A f: n-B

Xg.nin(f(g)) : r FA V B Ag.inr(f(g)) : rFA V B

f : ri-A f2 : r,BFC f: r,AIB

Ag.Axi~2(g,X(:fi(g))):r1,A--4Bi-C Ag.(Ax.f(g,x)):rF7-A-.,B

There are also cases in which the rule is not dependent on the number of formulas in A.

S: I',AI-A

Ag.Ax.spread(x; u, v.f(g, u)) :r7, A A B -A

f : r,Bi-A

Ag.Ax.spread(x; u, v.f(g, v)) : r, A A B F- A

f, :I,AF-A f 2 : F,BiA
Ag.Ax.decide(x;u.fl(g,u);v.f 2 (g,v)): r, A V BF -A

Finally, there are the cases in which the fact that there are multiple formulas on the right of some
sequent is important. The terms extracted from these cases are more complicated because the conclusion
has a disjunction type.

f, :Fi-A,A f 2 : r-B,A
Ag.decide(f1 (g); u.decide(f 2 (g); v.inl(pair(u, w)); x.inr(x)); v.inr(v)) : r i- A A B, A

f : Fi-A,A

Ag.decide(f(g); u.inl(inl(u)); v.inr(v)) : r A V B, A

f : 1FB,A

Ag.decide(f(g);u .in•(inr(u)); v.inr(v)) •r F A V B,A

f : rF-A,A f 2 : r,Bi-A

Ag.Ax.decide(f1 (g); u.f12(g, x(u)); v.v) : 1, A--+B i-A

The case of arrow introduction on the right where there is more than one formula on the right is the only
one where assuming the hypothesis is constructive does not imply the conclusion is constructive. It is here
we must introduce call/cc.

f : 1,,Ai-B,A

Ag.call/cc(Ah.inl(Ax.decide((f(g))x; u.u; v.any(h(inr(v)))))): r7 i- A-.B, A

To see the intuition behind this term, we consider how it will be used in computation. Suppose r is empty,
so that we have call/cc(Oh.inl(Ax.decide(f(x);u.u;v.any(h(inr(v)))))) as a closed term of type
(A-B) v r. If we use this term in a computation of a value, we must perform a case split, since it is
in a disjunction type. When the term is evaluated, h is bound to the current continuation and we have
inl(Ax.decide(f(x) ;u.u;v.any(h(inr(v))))) as the term of type (A-+B) V r. So, we take the branch
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for A-eB with the function Xx.decide(f() ;u.u;v.any(h(inr(v)))) as our purported inhabitant of the
type A-+B. Now suppose this function is applied to a term a of type A. Applying the function f from the
hypothesis of the sequent to a, we have an element of B V A. Should this actually be of type B, then we
return that value. If not, we have an inhabitant of A. We then return the computation to the stage at which
we took the case split for (A-eB) V A by applying the continuation h to our new evidence for (A-*B) V A,
namely the inhabitant of A produced by f (a). Thus, the continuation operator allows the computation to
switch paths when it comes upon further evidence for which of the disjuncts is proved. This description will
be made more concrete in the next section when the computation rules are defined.

The structural rules also have term extractions, though their computational content is uninteresting.

f:r1 A f:r -A
g.inr((g)) : r A,A Ag.Ax.f(g): r, A A

f : rI-A,A,A f : r,A, AI- A

Ag.decide((g); u.inl(u);v.v) : r F-A,A g.Ax.f(g,x,x): r,A FA

The exchanva ruiles also require treatment, though their computational content is trivial.

t : rF- A,,... , AiAi+,,... , A.

Ag.decide,(:f(g); ul.in, (ul);... ; ui.ini+i (ui); ui+l.in/(ui+i);... ; u..in,.(u.)) :r F- A,... , A+1 I, A,,... , An

:f : A,,... , AiAi+,,... ,An F'A

Ax, ... ,Axi,+Ax,... ,Axn.f (x x i, ,xx+,. ,x.) : Ax, ... , A,+I, As,.... ,, A "

4 Reduction of terms

In this section we describe a more general term language and present machine rewrite rules for computation
in this language. These rewrite rules will define the operational semantics of the language, and it is with
respect to this semantics that we will prove that reduction preserves type.

We wish to be able to use these classical proof terms in a general context; for example, we may want
to use a classical proof term to represent the propositional logic content of a proof about the integers. To
do this, we allow typed nonlogical constants in the term language. We cannot give reduction rules for
these constants, since they may represent information about some external theory. We instead require that
reductions involving these constants are terminating and type correct, so that constants obey the standard
constructive mathematical semantics. For example, if we have a function constant f of type A-eB, if we
apply f to a of type A, we are guaranteed that the result b is of type B. Furthermore we must be able to
treat b as we would any ordinary member of type B, so that if B = B0 V B 1, we must be able to reduce the
term decide(b;u.t 1 ;V.t 2 ). So we actually require that all constants which may appear during reduction
(not just the constants present at the beginning) have the property that reductions involving them are
terminating and type correct.

Given these assumptions on the behavior of the constants under reduction, we define the program term
language to be type-correct terms built from constants and proof terms by any of the term constructors
described above, except for call/cc. Thus, we know that all instances of call/cc in the program are from
proof terms, and so we know the con, A in which they occur.

Since we may be using these proof terms to represent the logical content of a proof in a larger theory, we
shall call the result an applied proof term. Formally, we define an applied proof term as follows:

"* Proof terms are applied proof terms. The type of a proof term is the type corresponding to the formula
which was proved.

"* Typed constants are applied proof terms.

"* Typed variables are applied proof terms.

45



"* If t% and t2 are applied proof terms of type P, and PA respectively, then pair(t,, tO) is an applied
proof term of type A A P3, and inl(t,) and inr(tO) are applied proof terms of type P V P2.

"* If : is a variable of type A and t is an applied proof term of type P1 , then Ax. t is an applied proof

term of type P1--#A.

"* If t is an applied proof term of type 1., then anyp(t) is an applied proof term of type P. (The
superscript will be omitted when it is deducible from context.)

"* If t is an applied proof term of type P, VP 2 , and tiis an applied proof term of type P with free variable
u of type PA, and t 2 is an applied proof term of type P with free variable v of type P2 , then d~cidO(t;
u.t 1 ; v.t 2 ) is an applied proof term of type P.

"* If t is an applied proof term of type P, A P2 , and t 1 is an applied proof term of type P with free
variables u of type P1 and v of type P2, then spread(t;u,v.tI) is an applied proof term of type P.

"* Iff is an applied proof term of type P--iP2 , and t is an applied proof term of type P1 , then apply(f ;t)
is an applied proof term of type P2 . This term will often be abbreviated f(t).

An applied proof term is called a program term if it has no free variables.
Following the example of [3], we present the operational semantics as a set of rules representing the

transition function of a term rewriting machine. We use their notion of a continuation point to represent the
continuation object; however, since we do not fix an evaluation order, we shall use a more general notion of
evaluation context (the analogous "applicative contexts" defined in [3] are defined for a particular evaluation
order ). An evaluation context is a term with a hole in it, such that the hole is not within the scope of any
binding operators (including those in the body of spread and decide terms). A program not in normal form
can be split into an evaluation context and a redex. We use the notation E[R] for such a program, where
E[ is the evaluation and R is the redex. A continuation point is an evaluation context tagged with p. If
E[R] is a program of type V and R is of type a, then (p, ED) is a continuation point which may be applied
to any term of type a to produce a program of type W'.

So, the reduction rules for terms are:

E[(Ax.t)a] E[t[x:= al]
E[spread(pair(a,b);u,v.t)] '-, Eft[u := a,v:= b]]

E[decido(inl(a);u.ti;v.t2)] .- E[tl[u:= all

E[decid.(inzr(b);U.t1;V.t2)] - E[t 2 [v := b]]
E[call/cc(.,k.t)] -,Eltfk:--(p, Ea)]]

E[((pEo0))a] Bo[a]

(plus the assumptions described above about reductions involving constants.)
The rule for call/cc described above, though not fully general, is sufficient since all of the terms extracted

from proofs will have the property that the call/cc operator will only be applied to terms of the form Ak.t.
Note that from these rules alone we can conclude that reduction of type correct programs preserves the

type of the whole program.

Theorem 1 If t is a well-typed program term of type W, and t reduces to t', then t' has type ip.

Proof: The only cases to verify are the rules for reductions of call/cc terms, and the application of
continuation points. For the case of call/cc, if we have E[call/cc(Ak.t)] is of type v and call/cc(Ak.t)
has type a, we have that Ak.t has type -'a-+a, since the program is well-typed. Internally, then, the
continuation point (p, Ef) which is substituted for k will have type a-.L, but in fact ED represents a
program of type V with a hole in it for a term of type a. (If we had A-translated the whole program, this
difference between the apparent type of the continuation within the program and the actual type of the
continuation in computation would not appear.) So, the term t [k : = (p, ED)] has type a, so the reduction
of call/cc(Ak.t) preserves the type of the whole term.
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For the case of the application of continuation points, we showed above that if call/cc(Xk.t) has type
a, then RO represents & program of type i with a hole in it for a term of type a. Since its internal type is
o--t, though, we know that if it is applied, it must be applied to a term a of type a, since the program
is type correct. This reduction results in E[a], which is a program of type ip because Ejcali/cc(%)] was of
type p. 0

5 Proof-theoretic interpretation of reduction

5.1 Expanded sequent calculus

Since terms in the term language correspond more closely to natural deduction proofs than to sequent proofs,
in order to reason about properties of terms as properties of proofs we shall extend the notion of proof with
additional rules. The result is a hybrid between natural deduction and sequent systems, with the natural
deduction steps appearing as intermediate steps in the sequent proof. Reductions will generally correspond
to some preliminary rearranging of the proof, followed by a sequence of cut eliminations. The procedure of
substitution corresponds to a sequence of cut elimination steps.

We add to the normal collection of sequent rules (including cut) the rules corresponding to elimination
of connectives in natural deduction. We shall then have that every redex corresponds to a natural deduction
rule or a cut, although not every cut will correspond to a redex.

A decide redex corresponds to a rule of the form:

F-c:AVB u:AI-1f :P v:BI-12 :P

I- decide(c; u.f;v.f2 ) : P

This may also appear as
I-c:A,B u:AI-fI :P v:BI-f2 :P

F-decide(c;u.f ;v.f 2 ) : P

because of the implicit disjunction on the right of the turnstile. I
Similarly, a spread which may be reduced corresponds to a rule of the form:

F-c:AAB u:A,v:BI-f:P

- spread(c; u, v.f) : P

Finally, the -4-elimination rule corresponds to application:

I-a: A F-f : A-B

t-i(a): B

If f(a) is actually a redex, this will reduce to an ordinary cut rule.

5.2 The map from terms to proofs

Since we wish to reason about properties of terms by reasoning about the proofs from which they are
derived, we need to associate a proof tree with each program term. Furthermore, it is helpful if the proof
tree structure reflects the term structure, so we need to augment the sequent proof with some redundant
information corresponding to the syntax of the term associated with each sequent rule.

First, we describe the modifications needed to make the original sequent proof correspond to the term
structure. The abbreviation f (g), used above for repeated applications, requires additional explanation here
if each application redex is to correspond to a single cut. In what follows we shall use a notation

g: rF-g:r f: r-A

g: r F-(g) : A
In the rest of this paper, all of the implicit disjunctions occurring on the right side of the turnstile are now considered to

be explicit. This allows us to treat the proof as a pseudo-constructive proof with only one conclusion of each sequent.

47



for repeated application, where g : r is a list Xi A:,... ,x. : A., and tie above cut is an abbreviation for

the sequence of cuts

Al : 1,... ,z. : Azj-l: Al f : A,,.-..,A, -

xz: All... x 6: An,f(xi) : A2..... ,A. I-A

xi & Ax..., xn : A. F-x. A. xj: Al,...,x,: An~f(xj,...,x.-j):A.F'A
z, A,,-,,x. : A.-.. ,x,.) : A

where after the first rule, the term f(xi) has type A2 -(A3--(... -(A.-4A))), etc. This simply describes
the repeated application of f to each of the new variables x, ... x, where each cut corresponds to one
application.

We give a few examples of the remaining cases. In general, the structure of the term associated with the
conclusion of the rule governs the structure of the proof into which the rule expands. The effect of these
transformations is mainly to make function applications and other operations which are implicit in the term
explicit in the proof.

For example, the sequent

f: r, A I-A

Ag.Ax.sproad(x; u, v.f(g, u)) : r, A A B I- A
becomes g: r,u:A,v:Bi'g:Fr,u:A 

f:IF,AIA

x:AABI-x: AAB g: F,u: A,v: Bi-(f(g))u: A

Ag.Ax.spread(x; u, v.(i(g))u)) : r, A A B F- A

As another example, the sequent

f : rF-A,A

Ag.decide(f (g); u.inl(ira(u)); v.inr(v)) : riF-A V B, A

becomes

u:Aý-u:A

g:PI-g:Fr f : P-A,A u:AI'inl(u):AVB v: A-v: A

g : rF-f(g) : A, A u:AI--inl(inl(u)):AVB, A v : AF- inr(v) : AV B, A

Ag.decide(f(g); u.inl(inl(u)); v.inr(v)) : r-F A V B, A

There is one case where the expansion is not obvious.

f : r, A F- B, A

.\g.ca../cc().h.inl(Ax.decide((f(g))x; u.u; v.any(h(inr(v)))))) : r F- A-.B, A

The expansion must mirror the structure of the term, but it is not clear how the call/cc and the associated
variable h should be treated. Since the evaluation of a call/cc binds the variable to the current continuation,
we shall make this binding explicit by adding an extra cut with a placeholder representing the eventual
continuation. We shall call this placeholder h as well, and represent it as a constant. The last step in the
derivation is then:

i-h: ((A-iB) V A)--I g : r,,h: ((A--B) V A)-..L F- inl(Ax.decide((f(g))x;u.u;v.any(h(inr(v)))))
: A-.B, A

Xg.call/cc(Ah.inl(Ax.decide((f(g))x; u.u; v.any(h(inr(v)))))) : r -A-..B, A
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In the derivation of the body of the call/cc, the variable h remains an asmumption along the branch of

the proof corresponding to the second branch in the decide:

,v: A-v: A

h: ((A-.B) Vt}-- h : ((A-+B)V A)--.+ v: AF inr(): (A-.B) V A

h: ((A-+B) V A)-*iL,v : A F h(inr(v)) : .1

h: ((A-iB) V A)-4.,v : At- any(h(inr(v))) : B

The remainder of the derivation of the body of the call/cc is:

g: r,x: AI-g: ,x:A t:T,AI-B,A

g: r,,x: Al-(f(g))x: B,A u: BF-u: B (see above)

g: T,x: A,h: ((A--B) V A)-.l•"decide((f(g))x;u.u;v.any(h(inr(v)))): B
g: r,h: ((A-#B) V A)--_L •-Ax.decid*((f (g))x; u.!t; v.any(h(inr(v)))): A-B

g: T,h: ((A-i.B) V A)-I i- inl(Ax.docide((f(g))x;u.u;v.any(h(inr(v))))): A-#B,A

We have described how to augment the sequent proof with the information needed to model computation
with it. We must now associate sequent trees with the rest of the term in a similar manner. As previously
described, the program term is constructed from terms extracted from sequent proofs, variables, and typed
constants, using the usual term constructors. The sequent tree corresponding to the program term is con-
structed using the type information and the structure of the part of the program term not described by
the sequent proof. In essence, we construct a proof of the formula corresponding to the type of the whole
program, from assumptions corresponding to the types of the constants.

To describe computation with constants, we associate with each constant a sequent tree of the following
form, according to its type. For a constant c of type P, the sequent tree is defined inductively as follows.
We shall define a map [*] from sequents to sequent trees, and the tree associated with c: P will be the tree

IF P1.
[rFI-P = rFi-P if P is atomic

[TI-AAB] = [r-A] [r -B]
r AAB

[r F A--#B1 = [r,A -]B)
r-A-A--BB

Ti- ,A-, ArF,A-.

Finally, we define

[Tr-AVB] - [iA] or [ri-B]

TF-AVB rF-AVB
though we cannot know which until the a cut with TI - A V B is actually eliminated. For example, this case
arises when we have a constant c of type A-,(B V C). We cannot know the type of the result until c has
been applied; since we assume that the evaluation of constant functions terminates and is constructively
type correct, we will be able to decide what type the result of a particular application of c actually has.

The above definitions correspond to a tableau proof development except that formulas on the left of the
turnstile are not broken down. This is because formulas on the left are arguments to the constant function,
and the function must be applied to arguments of the appropriate type.

We now have sequent trees associated with constant terms and with the term extracted from the original
sequent proof. We now define a map from terms built from these terms to sequent trees. The map will be
denoted {f)D, where D is a list of the typed bound variables at any point in the term.
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{(t}D - the augmented sequent proof described above

{e: P}D [F-PJ

{pa{(z,:y) : A Y:BID

D -- pair(x, y) : A A B

inl(x) : AV Bv D =x: A}D
D F- in•(x): A V B

r(x) : A V B) D =:BID
D I-nr(x): AVB

{Ax.t: A--*B}D =It B}L.AD
D F Ax.t : A--B

{d : A V B)D {tl : PJu:A,D N : P{ v:2 ,D{decid.(d;u.ti;v.ts): P}D =

D I- decid(d; Utl; v.t 2 ): P

{p : A A BID (t: P})UA,V:B,D{upread(p;uv.t): P}D =
DI- sproad(p; u, v.t) : P

{x: A)D (f: A-+B)D
D - apply(f; x): B

fany(x): A}ID = -ny)
D F" any(x) : A

5.3 Reduction as proof transformation

In this section, we describe the correspondence between reduction steps in the program term and cut elimi-
nation steps in the proof.

Most reduction steps in the program will correspond to an initial step which creates a cut, followed by
a sequence of cut elimination steps. This is because substitution of a term for a variable involves passing
through the proof tree until the place where the variable is introduced (as part of an axiom sequent) is
found, and substituting a proof for that axiom. Note that this corresponds more closely with the actual
complexity of substitution, since the proof tree corresponds closely to the syntactical structure of the term.
Most reduction steps follow a pattern of setting up a simple cut and eliminating it, in a sequence of cut
elimination steps.

In the remainder of this section, I will describe, for each kind of reduction, how reduction transforms the
proof.

Note that the first premise sequent of a redex must be a sequent with no hypotheses, since we do not
allow reductions within the scope of a binding operator.

5.3.1 Simple cuts.

Simple cuts arise from the reduction of any of the more complex rules. The elimination of a cut

I-a:A x:AI-f:B
F (x.f)a: B
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corresponds to #-reduction, so we must describe how the argument a:A comes to be substituted for z in
f. Since the structure of the term corresponds so closely with the structure of the proof tree, in order for
the substitution of the argument for the bound variable to take place, the argument must be propagated
towards the leaves of the tree to the place where the variable is introduced in an axiom sequent. Observe
that this is almost immediate in the terms which come directly from the sequent proof, because these terms
are constructed via application from the term(s) representing the hypothesis. For general terms, however,
this is not true, and it may take several cut elimination steps for the argument to reach the places where
the variable was introduced. So we must pass the cut with a:A towards the leaves of the sequent tree until
it reaches the point where the variable x was introduced as an axiom.

The procedure is described by induction on the structure of the proof of x: A I- f: B. To eliminate a cut
with an axiom sequent, as

i-a:A x: A,g:ri-z: A

ri-A
(r may of course be empty), replace this cut with

ri-a: A.

To eliminate a cut with a sequent not an axiom, suppose that ro i- Ao and r1 I- A1 are the hypotheses
of the sequent rule resulting in x : A, g : r F d : A. First, replace the conclusion of the cut rule with with
g : r I- d : A. If x: A is not in either list r0 or ri, then we are done. Otherwise, continue the process
recursively with the cuts

-a: A roý- Ao an -Fa: A r, F- A,and

ro-x: A -Ao Fi - x: Ai-A,

(assuming both are applicable, i.e. x: A is in both ro and r 1 ).
In other words, we replace the cut

ro - Ao '1 I-FA

F-a:A x: A,g: Ir-d: A
fl-A

with F- a: A rFo-A, -a:A ri F- A,

ro-x: Ai-Ao r 1 -x : AI-A 1

g : rl-d: A
and continue the cut elimination process with these new cuts until an axiom is reached.

Note that although we seem to be introducing new sequents ro - x : At-Ao and ri - x : A i-A1 , in
fact these are eliminated at the next stage in the process. In general, the elimination of a cut removes its
conclusion sequent and replaces it with another sequent proving the same formula.

5.3.2 Reduction of decide

There are two cases, which reduce in essentially the same way.

1. decide(inl(a);u.tj;v.t 2 )

The redex decide((in(a) ;u.t 1 ;v.t 2 ) corresponds to a proof segment of the form

i-a:A

i-inl(a) : A V B u:Ai-tj :P v:Bi-t 2 :P

i-decide(inl(a);u.tl;v.t 2 ) : P

This first reduces to
i-a:A u: Ai-t 1 :P

i-P
and then the process described above for simple cuts is performed.
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2. decide(inr(b) ;u.t 1 ;v.t2)

The redex decid*(inr(b) ;u.tI ;v.t 2 ) reduces similarly to the previous case.

ý-b: B

I-inr(b) : A V B u:AI-tj :P v:BI-t2 :P

I-decide(inr(b);u.tj;v.t 2 ): P

This first reduces to
-b : B v : B-t 2 : P

ý- P

Then, this cut is eliminated according to the rules for simple cuts.

5.3.3 Reduction of spread

The redex spread(pair(a,b) ;u,v. t) corresponds to the proof fragment

I-a:A I-b:B

I-pair(a, b) : A A B u: A,v: B -t: P

I- apread(pair(a,b); u, v.t) : P

After reduction, the proof becomes

I-a:A u:A,v:BI-t:P

I-b:B v:BI-P
ý- p

Then, these simple cuts are eliminated. Note that a sequent (B I- P) has been created, but that it disappears

after the cut of B is eliminated, so that after the reduction we have a proof of

-t[u:= a,v := b] P.

5.3.4 Reduction of applications

An application has the following form:

F- a : A F-Ax.f :A--B

I (Ax.f)a: B

Since we have Ax. f as the inhabitant of type A--B, the previous rule must have been an arrow intro-
duction on the right. Hence we must have

x: At-f: B

F- a: A F-Ax.f : A---B

"(Ax.f)a: B

This reduces to
I-a:A x:AF-f:B

I- (Ax.f)a: B

without any change in the term itself, and then this cut is eliminated according to the rules for simple cuts
above.
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5.3.5 Continuation proofs

To model the capture and application of continuations in the language, we shall define the notion of a
continuation proof. Informally, this will be a partial proof which requires another proof to be complete; in
essence, it will be a function from proofs to proofs. For any given proof of a formula 0, we will have that
any continuation proof arising in the reduction of that proof will, when the continuation proof is applied
according to the rules described here, result in a different proof of 4.

Under the ordinary intuitionistic interpretation of the logical connectives, a term representing a proof of
an implication A--.B can be considered a function from proofs of A to proofs of B. A continuation proof
term is also a function from proofs to proofs; however, it behaves differently when applied within the context
of another proof. Suppose we have a proof of a formula V. A continuation (sub)proof within that proof will
appear to be a proof of some formula A-1.., and the corresponding continuation proof term will appear to
have the type A-1.. Should that term actually be applied, however (in order to produce an inhabitant of .1.),
what results is not a term of type I within a term of type ýp, but rather a new term of type V, corresponding
to a new proof of V'. (Under A-translation, the _ in the proof would have been translated to a V already.)

The notation we shall use for the continuation proof terms is intended to hint at their role as functions
from proofs to proofs. However, we do not wish to consider the internal structure of the continuation proof
corresponding to the term. Accordingly, we denote a continuation proof term of type A--.I. as

Ax.0

This represents a proof of V with a "hole" of type A in it, so that if Ax.0 is applied to an argument of type
A, the result is a new proof of V, i.e. a new program of type V. Describing a continuation proof itself is
trickier. Associated with every continuation proof term Ax.0 is a proof which determines the result when the
continuation term is applied. To describe this incomplete proof, we ust an ordinary sequent proof, except
that at one leaf, instead of an identity axiom, we have the sequent

F-x: A

as an axiom. When the continuation proof is applied, this sequent is replaced with a real proof of F- A, and
the term associated with this proof is substituted for x. (In a language using C and A this would be an
ordinary application followed by an abort; since we are using call/cc, however, the application and the
abort are performed in one step.)

Continuation proofs arise from the reduction of a term call/cc (t). In this system, the only way such a
term arises is as the result of an -+ introduction rule on the right, when there was more than one formula
on the right. Thus we know that the form of the proof leading to the term call/cc(t) is as described in
the previous section. The redex itself appears as the sequent

I-h: ((A-.B) V A)--+,.L h: ((A---B) V A)-*-.L- ini(Ax.decide(f(x); u.u; v.any(h(inr(v))))) : A-+B, A

F- call/cc(Xh.inl(Ax.decide(f(x); u.u; v.any(h(inr(v)))))): A-"B, A a

16

where a represents the proof of the other hypotheses (if any) of the rule at this point, 6 represents the rest
of the proof below this rule, and the proof above the call/cc is as previously described.

Reduction of this term creates the continuation proof

I-d: A--+BV A

where d is a new variable. The continuation proof term associated with this proof is just Ad.J, and it
has type ((A--B) V A)--d. This continuation proof term is then passed as an argument to the term
(\h. inl(Ax. decide (f (x) ;u.u;v.any(h(inz(v)))))), where it is substituted for h. When the dust clears
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and the reduction of the original call/cc is complete, the proof structure is

-(Ad.fl): ((A-eB) V A)-L v : A l inr(v) : (A-eB) V A

x:Al'x:A f:AI-B,& v : A I- (Ad.0)(inr(v)) : 1

x: A l-f(x): B,A u: BE u: B v : A F any((Ad.0)(inr(v))) : B

x: Al"decid.(f(x);u.u;v.any((Ad.-)(inr(v)))) : B

F" Ax.decide(f(x); u.u; v.any((Ad.0)(inr(v)))) : A--*B

F inl(Ax.decide(f(x); u.u; v.any((Ad.fl)(inr(v))))) : A-eB, A

We now describe how reduction behaves with continuation proof terms. Since continuation terms arise
only in the context shown above, if the term is in a redex, it must be that we have taken the right branch
of the decide with f (a) of type A substituteW for v. So, the proof structure must be

F (Ad.0) : ((A--.B) V A)-e..L l- inr(f(a)): (A-B) V A

F- (Ad.D)(inr(t(a))): 1

Since this is a continuation term, the reduction of (Ad. [3 ) (iUnr(U (a))) transforms the whole proof to

- inx(f(a)) : A-eB V A

where the context of this sequent is the context described above, so that the proof reverts to the stage at
which the call/cc term was reduced, with the additional information from the proof of I- f(a) : A.

6 Conclusion

We have presented a method for extracting programs from classical sequent proofs, which uses the control
operator call/cc to represent the classical axiom (-,P--.P)--+P. As a result, we have a simple proof that
reduction of such terms is type preserving, and a proof theoretic framework in which to treat problems of
reduction. It is hoped that this will allow the use of tools from proof theory to help solve questions about
reduction, such as normalization properties.
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Abstract

Given a polynomial f E (fz], it defines a vector field N,(z)
-f(z)/f'(z) on C Certain degenerate curves of flow in N! give the
edges of the Newtonian graph, vs defined by 16). These give a relation
between the roots of f and f', much similar to the linear order, when
f has real roots only.

We give an algorithm to compute the Newtonian graph and the
basins of attraction in the Newtonian field. The resulting structure
can be used to query whether two points in C are within the same
basin of attraction in N1 . This gives us an interesting approach to
use Newton's method to find all roots of f, guaranteeing that we con-
verge to a root. This method extends to rational functions and more
generally to any fimctions on C whose flow satisfies certain algebraif:
conditions.

1 Introduction

We follow the definitions of Smale [6] and define the Newtonian vector field
of a polynomial f E C[z] by Nj(z) = -f-' The name is derived from the
fact that Xk+l +'- Zk + Nf(Xk) is Newton's method.

*Computer Science Department, Cornell University, Ithaca, NY 14853
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The vector field N1 defines a flow on C where the flow comes (almost
everywhere) from infinity and converges (almost everywhere) to a root of
f. There are degenerate curves of flow connecting roots of f and f, and
the basins of flow split C into finitely many regions. These connecting curves
will be the edges of our Newtonian graph (to be defined more formally later).
This graph has been studied and the types of graphs that arise have been
classified [7].

We will give a symbolic algorithm to compute the graph, given a polyno-
mial. Furthermore our algorithm will find the basin boundaries. The output
of the algorithm is a structure which can act as an oracle to answer simple
questions such as

1. Given a, b E C, are a and b in the same basin?

2. Given a, b E C, are a and b on the same curve of flow?

3. Given a E C is a on a basin boundary?

4. Given a E C is a on a graph edge?

So not only do we get the topology of the graph, we get a method for mem-
bership testing for the interesting regions in the field. Such a structure can
for instance be used in a "guaranteed" Newton's method, modifying the step
size at every point to ensure that we stay within a basin.

We then sketch how to extend the definition of a Newtonian graph for
rational functions. We also observe that the resulting fields on C satisfy
certain algebraic conditions. Given such conditions we can define the graph
and compute it.

2 The Newtonian Graph

We have defined the Newtonian field of a polynomial. A vector field such as
Nf on C defines a flow on C. Given z E C the flow through z is a function

I -+ C, where I C R is an interval containing zero, 0, differentiable wil h

d¢b•(t.)
= Nf(0.(t))

dt
S( = z.
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That is, 4 parameterizes the flow starting at z and at every point the speed
and direction agrees with the field. An example of flow of f of degree 4 is
given in figure 1.

Figure 1: Flow in the Newtonian field of a degree 4 polynomial. Every curve
of flow is directed to a root, except the basin boundaries (dotted lines). There
is a root of f' on every basin boundary, and a curve of flow from there to
"adjacent" roots (also dotted lines).

The flow exists on all of C\Vp, (where Vr = {z E C : f'(z) = 0}). The
existence and uniqueness follows from the theory of differential equations and
the fact that N1 is a C1 function on C\Vf, (see e.g. [3], §8.2 and §8.5).

The following lemma [7] gives us a very important property of the flow:

Lemma 1 Let f E C[z], and q', be flow through z in the Newtonian field
N1 . Then f maps the curve {¢,(t) : t E I} to a straight line pointing to
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the origin. More specifically,

f(o,(t)) = e-*f(z).

Proof. Computing # ) using the chain rule gives:Proof Compting dt

df(0, (t)) = f'*(t)d, (t)

dt dt
- f'(O.(t))N1 (4%(t))

which is a differential equation in t for the function p(t) = f(0,(t)). Given
the initial condition, p(O) = f(z), it has the unique solution p(t) = e-t f(z),
i.e. f(0.3(t)) = e-'f(z). 0

Using the properties of 0 one can show the following

Lemma 2 For every z E C\(Vf U V1 ,), 40, is defined on a maximum interval
containing 0, which is of the following type, for some a, b E R:

1. (-oo, +oo), and the flow comes in from infinity and goes to a root of
f;

2. (-co, a) and the flow comes in from infinity and goes to a root of f':

3. (a, b) and the flow comes in from a root of f' and goes to another toot
of f';

4. (a, +oo) and the flow comes in from a root of f' and goes to a root of

f.

Proof. N1 is a C' function W --+ C where W = C\(Vf U VS,), and by
theorem in §8.5 in [3], all flow must leave any compact set of W. By Lemma
1, the (maximum) interval of 0,, is unbounded upwards iff the flow goes to
a root of f. The same argument shows that the interval is not downward
bounded iff the flow comes in from oo. Since the flow leaves any compact set
of W the only other limit points are in V1 ,. 0

Definition 3 The Newtonian Graph of f E C[z] is the plane graph G =

(V, E) with vertices V = Vf U V!, and directed edges being the curves of flow
between vertices, where these exist. 03
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Figure 2: The graph of the field in figure 1. The solid dots are the roots of
the polynomial, the hollow ones are the roots of the derivative.

We note that the graph is not just a combinatorial structure, as the edges
come with an embedding defined by 0.

Figure 2 shows the Newtonian graph of the field shown in figure 1. An-
other example in figure 3 shows that there can be connections between two
roots of f'.

We observe that under f, every edge maps onto a straight line segment
pointing to 0 in C, with at least one endpoint in If(c) : f(c) = 0}. This is an
immediate consequence of Lemma 1 and the fact that edges are curves of flow.
We can conversely look at the pre-images (under f) of such line segments, and
we get finitely ,-; any curves (at most n(n - 1), since f is an n to 1 mapping,
and f' has at most n - 1 roots). We will use this observation later, that the
graph is contained in the pre-image f- 1({mf(c) : f'(c) = 0, 0 < ?n < 1)).
Thus the graph has finitely many e~dges. Furthermore [7] show that the graph
is connected and go on to classify the possible types of graphs that can arise.

A basin of attraction is a connected region where the flow comes in from
infinity and goes to onie particular root of f. A basin boundary is the bound-
ary of two basins. It is not hard to show that there must be a root of f' on
every basin boundary, because it requires a discontinuity of Nf for the flow
to "split" into two directions, and these are only at the roots of f'. Also the
basin boundaries must be curves of flow themselves, so we conclude that every
basin boundary is flow into a root of f'. In particular this means that basin
boundaries are contained in the pre-image f -({mf(c) : f'(c) = 0,1 < m}).
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Figure 3: The field and the graph of a degree 3 (real) polynomial where the
two derivative roots are linked.

3 Computing Basins and Graph Edges
We will give an algorithm to compute the basin boundaries and the edges
of the Newtonian graph. Bit first we need a few preliminaries on cylindric
algebraic decomposition.

3.1 Cell Decomposition

We describe cylindric algebraic cell decomposition briefly. For more detailed
description, see [21 or [1].

Definition 4 A decomposition of Rk is a finite partition {C,}•bE such that
each C, is connected, C'. n C., = 0 if i $ j and UtEI Ci = Rk. For k = 1 such a
decomposition is cylindric if the each C, is either a point or an interval. For
k > 1, the decomposition is cylindric if for all r, 1 < r < k, {ir,..,,(C1 ) : i E
I} is a cylindric decomposition of IWE. El

Definition 5 Given polynomial equations, f,(xj, ...,x, ) = 0, i = 1, ... ,,n,
with f E IR[xl, ... , xZ], a Cylindric Algebraic Decomposition (CAD) of Rt m is
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a data structure D with the following properties.

"* D contains a graph, where the nodes correspond to subsets (cells) of
R', each cell being homeomorphic to Rd for some d, and the cells are
a decomposition of Rm .

"* For all i = 1, .. , n, sign(fi) is constant on every cell. Each cell is labelled
with the signs that the f, take on that cell.

"• Every node contains an oracle such that given any c E Rj,'•the oracle
can answer if c is in the subset corresponding to the node.

"* Every node contains dimension information, corresponding to the di-
mension of the cell.

" The edges of the graph correspond to adjacency of the cells in R'", i.e.

there is an edge (u, v) if the subsets that u and v represent are adjacent.

" The decomposition is cylindric.

0

Algorithms have been developed to compute (parts of) such a cell decom-
position dating back to Tarski in 1948 [8]. Collins [2] has a double exponential
algorithm, although it lacks some of the adjacency information. Ben-Or et
al. [1] developed a parallel algorithm giving the same kind of decomposition
(the BKR algorithm), and Kozen and Yap [4] extended that algorithm to ob-
tain the adjacency information as well (here after named the extended BKR
algorithm).

We note that due to the cylindric condition and adjacency information,
an algorithm computing such a decomposition can be used on a set of poly-
nomials with quantifiers, projecting down the result. If the input is a system
of polynomials of the form

3y i,,...yk : / (x 1, ..., z,,,y l, ..,yk) = 0

M i..., .., y11-- ) = 0

then using CAD on R'4k we can project the solution down to Rtm, by treating

the partitions according to Yl, ..., Yk as insignificant. The resulting structure
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can be used for answering questions of the form: Given c E R"', does there
ex3ist yh .. , -,y, E Rh such that yl, ... , yk, c is a solution to the system?

We note that the order of variables is important with respect to the
cylindric condition.

3.2 The Algorithm

Recall that every basin boundary and every edge is mapped by f onto a
straight line. Also, the basin boundaries and edges have a root of f' as a
limit. Thus, all these "interesting" curves of flow satisfy, for every z on the
curve,

3cEC ~mER : f(z) = mf(c) (1)
f'(c) = 0

Any point z on a basin boundary or an edge must satisfy these two conditions.
We note that the converse is not true; z E C can be a solution to (1) without
being on an edge or a basin boundary.

We proceed in two steps. First we find a decomposition of C describing
where we have solutions z to (1). Then we prune that output, because we
may get solution curves which do not correspond to basin boundaries or
edges.

To find the solutions to (1), we can feed the equations

f(z) M mf(c) (2)
f'(c) = 0

into our favorite cylindric algebraic decomposition algorithm. The resulting
structure would be a decomposition of R x C x C describing regions where
such m, c, z exist, along with the dimension of each region and adjacency
information. Projecting m and c, we get curves in C for which there exists a
solution to (1).

First let us note that algorithms such as Collins' and the extended BKR do
decomposition over the reals. But we can split the equations into a real and
imaginary parts, and get a decomposition of R5 • R x C x C, corresponding
to the equations

fR(X,y) = mfR(cl,c2)
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fj(x,y) = mfI(c1 ,c 2)

f•(CI, C2 ) = 0

fr(CI, C2) = 0

where f(x +iy) = fR(x,y) +ifj(x,y) with fR, fI E R[x,y]. We get a decom-
position on R5 which corresponds to a decomposition on R x C x C.

We then project the dimensions corresponding to c = C1 + ic2 and again
project m, obtaining a decomposition of C corresponding to z for which there
exist m and c satisfying equation (2).

This decomposition will contain the basin boundaries and graph edges.
These may be partitioned into segments (bounded 1-cells) and 0-cells between
such segments. There may be other 1-cells present which are not solutions
to the system (introduced by the CAD algorithm to get a finer partition).
However, we can always identify the segments which are a solution to this
system, because all of them are labelled with the signs of the input polyno-
mials. The curves which are actual solutions to the system (2) will all show
f(z) = mf(c). Hence a solution curve to the system can be reconstructed
by linking such adjacent cells.

But not all solution curves are edges or basin boundaries. The following
lemma classifies the types:

Lemma 6 The output from the process above contains at most 0(n 2 ) 1-cells
which are solutions curves for the input system. They are of the following
types:

1. Adjacent to two O-cells, one of which describes a root of f' and one
which describes a root of either f or f';

2. Adjacent only to one O-cell which describes a root of f';

3. Adjacent only to one O-cell which describes a root of f .

Cells of type 1 are edges of the Newtonian graph, a cell of type 2 is a basin
boundary and cells of type 3 are extraneous solutions to the system.

Proof. The only 1-dimensional cells that can be solutions to the system
correspond to curves of flow. Then the classification is obvious from the
definition of edges and the properties of basin boundaries.
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There are at most 0(n 2) solution curves for f(z) = mf(c) with c a root
of f'(c) and m E R, because there are at most n - 1 roots of f' and f is an
n to 1 mapping. 0

The cells of type 1 and 2 are the ones we are interested in and we must
tell these apart from the extraneous cells of type 3.

Since f is a part of the input, the signs of f are given on every cell. In
particular this allows us to verify if a curve ends at a root of f.

Depending on which algorithm we use, we may or may not have all the
information needed. The extended BKR guarantees that if f is a part of the
input, then the signs of f' will be provided on each cell. If we don't have this
guarantee, we can always add f'(z) = 0 to our input equations and get the
same information that way.

At this point we can determine the types of the solution curves. Now
it is easy to implement the promised "pruning" step. We simply eliminate
all cells of type 3. More precisely, we mark them as parts of the adjacent
2-dimensional cells (which are the basin that this cell lies in).

Now the structure can be used in answering queries. Two points are in
the same basin if they are in the same 2-cell or if they are separated only by
"fake" 1-cells (of type 3).

4 Improvements

Recall we did cylindric decomposition on 1R5 - R x C2 of the equations

f(z) = mf(c)

f'(c) = 0

and projected the solution onto C. This can be simplified by defining

g(m,z) = Resc(f(z) - mf(c),f'(c)),

where Resc denotes the univariate resultant of two inputs, considered as poly-
nomials in c. (Here we view f(z) - mf(c) and f'(c) as univariate polynomials
in C[z, ml[c)).

Then g has the property that g(m, z) = 0 iff 3c E C : f(z) - mf(c) =
0 = f'(c). Hence, a decomposition of IR x C with respect to g is the same as
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the projection of the decomposition of R x C x C with respect to the original
two equations.

The only thing we must be aware of is how to obtain the necessary signs
of f and f' on cells, in order to identify and link up solution curves and prune
off the redundant ones. One way would be to add the equation f(z) = 0 (and
f'(z) = 0, if we are not using the extended BKR), and do a decomposition
with respect to f (f') and g. This is already an improvement in terms of
dimensions, since we are only working with 3 real variables (x = Re(z),y =
Im(z) and m) instead of 5 before.

The asymptotic complexity remains the same, but the constants are
clearly much better. The extended BKR gives an NC circuit of depth
20(10) logo(d) n where d is the number of variables and n is the maximum
of either the number of polynomials or their degrees. In our case the circuit
will be of depth O(logo(1 ) n) where n is the degree of the input polynomial
f.

5 Applications

The Newtonian graph is of its own interest, as it describes the arrangement
of the roots of f and f'. Our computation gives a complete topological
information of both the graph and the basins of the Newtonian field.

The relation to Newton's method gives an interesting method of approx-
imating all the roots of f simultaneously, guaranteeing convergence. If we
start with a point Zo in a basin, we can apply modified Newton's method,
where the iteration zk+1 *- zk + NJ(zk) is replaced by:

a 4-- 1,
repeat

zk+l -- Zk + QNf(z&)

a +_a/2
until (zk+i is in the same basin as zk)

Le. we scale down the step in order to ensure that we stay within the sanme
basin. Here we use our pre-computed structure of basins to determine if two
points are in the same basin. If we furthermore require that a progress is
made at each step, (i.e. that If(zk+1)1 < If(zk)I, then we are guaranteed that
the sequence {zk} will eventually converge to the root in the basin of zo.
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We remark that this does not guarantee quadratic convergence every-
where, it only ensures that the method will converge.

6 More General Newtonian Graphs

In this extended abstract, we will briefly describe how the Newtonian graph
and its computation extend to more general vector fields on C.

The definition of a Newtonian graph (Definition 3) only uses the fact the
the function f : W --- + C is C2 on an open subset W C C, which makes
Nf(z) = -f(z)/f'(z) a C1 vector field on W. Lemma I still holds, but
Lemma 6 now allows curves parameterized (-oo, +oo) coming in from either
infinity or a pole of f and going to either infinity or a root of I.

Figure 4: Flow in the Newtonian field of a rational function with three roots
and four poles. Curves of fixed color indicate curves of flow.
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In particular, most of the same observations hold for rational functions.
The function f maps the curves of flow onto straight line segments pointing
to the origin. The natural definition of a Newtonian graph for the rational
function is the graph whose edges are the directed curves from poles or infinity
to roots of f'; between the roots of f1 and frorr -ots of f' to roots of f or
to infinity. This differs only slightly from Sma efinition [6] in that for
polynomials we now count the basin boundaries as a part of the graph. A
nice property of the graph is that it is symmetric in poles and roots, i.e. the
graphs of Np/q and Nq/p are identical, except the directions of the edges are
reversed.

Write f(z) = p(z)/q(z) with p,q E Cizi w.,n gcd(p,q) = 1. If c is a root
of f'(c) = 0 then f maps any e& t-,,e into c onto a ray {mf(c) : 0 < m < 1}.
Again we can consider a system of equations

3cEC,mER : f(z) = mf(c)

f'(c) = 0

which now is equivalent to the system of polynomials

3c E C, m E IR : p(z)q(c) = mq(z)p(c)
p'(c)q(c) -p(c)q'(c) = 0.

This we can solve with algebraic decomposition as before and determine the
actual solution curves which are edges. As before we can reduce the number
of variables by using resultants. Let

9(m,z) = Resc(p(z)q(c)mq(z)p(c),p'(c)q(c) -p(c)q(c)).

Then the previous system is equivalent to 3m g(m, z) = 0. As before we
have devised an NC algorithm to compute the Newtonian graph.

The key property used in the computation is that the flow satisfies f(0,(t))
e-tf(z). In the case of a rational function f(z) = p(z)/q(z) this translated
into the polynomial equation

p(O,(t))q(z) -- e-t p(z)q(O,(t)) = 0.

This equation also implicitly defines the flow 0, satisfying 0,(0) = z.
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In more generality, consider any flow q, defined on W C C, where W
is almost all of C. Assume for some polynomial g with complex coeffi-
cients and for all z E W, 0) (0) = z and g(4.(t), et, z) = 0. Then we have
Dg(¢.(t),e' ,z) = 0, i.e.

Dig(o.(t),et,z)q5:(t) + D 2g(¢.(t),et,z) = 0

which is equivalent to

¢;.(t) == -D2g(¢z(t), e , z)/Dlg(¢..(t), e', z). (3)

If a basin of attraction is the area where all the flow goes from one pole to
one root then as before there is a discontinuity in the field somewhere along
every basin boundary. In paxticular, 0' will be undefined at such points.
Equation (3) shows that q'4(t) extends continuously to all of C except the
points where Dlg(¢,(t), et, z) = 0 and D2g(¢,(t), et, z) 5 0. These points
can be computed as being the x E C for which there exist m, m' E IR and
z,x' E C with

g(x,m,z) = 0
g(X', m',z) = 0

D,q(x',m',z) = 0.

The first two conditions force x and x' to be on the same curve whereas the
third condition places x' at a discontinuity of the field. It is easy to verify
that for rational functions we get the same equations as before.

Again we can do CAD on RW and project down for the x variable to obtain
the solution curves, which then are the edges of the Newtonian graph.
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IMPLEMENTING MIXED CHAINING IN A CLASSIFICATION

TYPE EXPERT SYSTEM.

Andrew W. Harrell

U.S. Army Engineer Waterways Experiment Station,

Vicksburg, MS 39180

A. Because of the general to specific nature of the
backward ordered reasoning (from goals to input data) in some
expert systems, it is hard to organize sets of rules that lead to
multiple goals. In classification type expert systems, in
particular, it is often difficult to organize the rules. Normally
it is desired that under all circumstances they ask for all the
information required. They should then conclude with a report
which contains all the conclusions the system should reach in
this situation. In this project, an auxiliary computer program
was written to topologically sort the 120 rules in the knowledge
base of an expert system. The conclusions of the rules were used
as the means by which to define a partial order of the logic flow
in the knowledge base.

Key words - Expert System, mixed chaining, knowledge base,
topological sort.

INTRODUCTION. Generic categories of expert systems
applications include decision management, diagnosis
/troubleshooting (determining malfunctions from symptoms and
pther observable facts), classification and interpretation of
situations (concluding situation descriptions from the data and
facts encountered), planning and scheduling analysis,
manufacturing design, configuring objects under constraints,
instruction and intelligent documentation, configuration design,
and process control (programs to govern the overall behavior of
systems).

In 1989 the US Army Engineer Waterways Experiment Station
(WES) established a research and development work unit within the
Civil Works Research and Development Program's Flood Control
Channels Budget Package entitled "Gravel and Boulder Rivers"
(#32553). This effort has two major goals: the first being to
develop an understanding of the physical sedimentary processes in
rivers and streams, the second being to develop a conceptual
model of these processes. An initial stream reach inventory form
was developed and validated during 1989-1991. Based on the data
gained by a nationwide inventory conducted by MCI Consulting
Engineers, INC. for WES, a lack of understanding of and data for
boulder/gravel systems became apparent. Work was done to:

a. Establish a systemic procedure for collecting and
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analyzing geomorphological, geometric, hydraulic, and sedimentary
data using a stream reach inventory process.

b. Identify sediment sources and deposition zones.
c. Identify channel bed and bank forms which are hydraulic

influencers.
d. Relate channel processes to channel features and link the

sedimentation patterns to river engineering factors.
Efforts were conducted to develop technical guidance documents
for use by District personnel. The end product was envisioned to
be the basis for uniform data collection methods for
boulder/gravel river systems. As a result of work conducted on
this project in 1992 an existing set of separate stream bed
channel flow rules was organized into a classification type
computer expert system by the author using the methodology
explained in this report.

This paper describes a knowledge based expert system
entitled CHANNEL-FIX. The program is intended to serve the
hydraulic engineer as a Boulder/Gravel River sedimentation
analysis tool. CHANNEL-FIX provides guidance in the fluvial
geomorphic processes occurring in a Boulder/Gravel river reach
linked to 5 of the 6 stream channel design variables.

In terms of the description of how the rules are
implemented, the scope of this study is limited to a particular
version of the expert system software shell used (LevelS ver 1.1
for the MacIntosh). The general procedures to be explained in
this report are applicable to this type of software expert system
shell in general but the specific syntax and grammar of the rules
in the knowledge base and system specific functions will be
different for other shells.

Since the stream bed flow expert system program falls
under the type of expert system used for classification and
interpretation of situations some of the specific characteristics
for expert systems in these areas will be briefly described
below.

Classification expert systems help the user to choose
products, procedures, or processes from a large or complex set of
alternative possibilities. These programs identify a hypothesis
based on the pattern of data that the user enters in response to
a series of questions. Since the questions are asked in response
to a set of presupplied hypotheses (that is they are framed and
scheduled from the general to the specific) these systems are
basically backward-chaining. However, as will be explained below,
in some situations the information that accumulates as the data
is entered may influence the order in which the questions should
be asked. To take account of this the knowledge base and
inferencing strategy also need to continue accumulating
information even after each partial conclusion is reached. This
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may require the expert system to start back through the rules
again or iterate repeatedly by forward chaining through the rule
sets several times.

The following short glossary defines some of basic terms
that will be used in explaining the problems that arose in
designing the knowledge base for the expert system shell:

Terminology

A short list of some basic expert system terminology is
listed below I:
Attribute -- Defines the qualities or values contained in a class
and the type of information that make up a class. For example,
the class car can have the attributes "type of engine" and "top
speed".

Attribute value -- An actual number or confidence factor
representing the degree of certainty with which a factor is
known.

Backward-Chaining -- An inferencing strategy that is structured
from the general to the specific. That is, it starts with a
desired goal or objective and proceeds backwards along a series
of deductive reasonings while it attempts to collect the
hypotheses required to be able to conclude the goal. This process
continues until the goal is reached and it then displays its
conclusion. (See following sections for a more complete
explanation and an example.

Class -- Defines the structure (in terms of its attributes) and
behavior(in terms of its associated methods and procedures) of an
object. When it becomes an insJtn, it then holds the actual
data values of a particular realization of this type of object in
the knowledge base. For example: a class called human beings
might have attributes related to the parts that differentiate our
physical beings and categories such as those related to its our
mental and spiritual capacities. Some of the associated methods
and procedures of this class could be thinking, talking, walking.
It can be considered as a subclass of another class such as the
class of living beings. The author and the reader are both
specific inces of a human being obje.

Antecedent -- The IF part of a conditional statement (synonymous
with the term hypothesis in wvhat follows).

Consequent -- The THEN part of a conditional statement
(synonymous with the term conclusion in what follows).

See also, the Level5 object for Windows Users guide, Clips
users manual, and a guide to expert systems by Waterman all of
which are listed in the bibliography at the end of the report.
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Control Rule -- A rule in the knowledge base that controls the
order in which data is assimilated into the knowledge base.

Goal --- A top-level consequent of the rules in the knowledge
base toward which Backward-Chaining may be directed. (It is a
hypothesis that the program will try to determine if some group
of rules can be instantiated together to satisfy)

Inference Mechanism -- The component of the expert system shell
responsible for using the rules in the knowledge base to derive
new facts from known information.

Instance or Instantiation -- Specific occurrence of an object.
An object consists of its class structure, which defines its
attributes and behavior and its instances, which hold the actual
values of the object. An instance of the class human beings
mentioned above would refer to an individual person, such asthe
reader of this report.

Knowledge Tree --- A graph showing the logic and data flow
connections between rules and facts in the knowledge base. A
knowledge tree presents a graphical representation of the
complete structure of the knowledge base.

Method --- A procedure stored in an object's class structure
that can determine an attribute's value when it is needed in the
program , referenced in its class, or required to execute a
series of procedures because another value in the program
changes. "When needed methods" are executed during backward
chaining to determine an attribute's value. "When changed
methods" implement a procedure when a given attribute changes.

Node --- A vertex or point in the knowledge tree connecting the
antecedents and consequents of rules in the knowledge base. In
most conventions the nodes are the rules and the antecedents and
consequents are the edges between the nodes or vertices.

Object -- General term for a programming entity that has a record
type data structure along with attribute values and procedures
that enable it to represent something concrete or abstract. It
can be contrasted with other programming entities such as facts,
rules, procedures, or methods. An object's structure is defined
by its class and attribute definitions. A class declaration is a
data template involved in representing knowledge which defines
the structure of an object. For example, in the class "human
being" mentioned above some of the attribute slots might be size,
weight, hair color, and so forth.

Expert System -- A computer program that represents and uses
expert human knowledge to attain high levels of performance in a
problem area. An expert system has two basic components: a
knowledae base which contains the information (facts, rules, and
methods) found in the subject area of the problem area being
represented, and an inference engine or mechanisms that make use
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of the knowledge base (by scheduling and interpreting the facts,
rules, and methods) to make conclusions and decisions and solve
problems that would normally take a human expert more effort.

Expert System Shell -- The interactive programming environment on
the computer into which the user enters information, rules, and
goals and which compiles the knowledge base, then runs the
resulting expert system program.

Forward-Chaining -- Forward-chaining reasoning is an inferencing
strategy in which the questions are structured from the specific
to the general. That is, it starts with user supplied or known
facts or data and concludes new facts about the situation based
on the information found in the knowledge base. This process will
continue until no further conclusions can be reached from the
user supplied or initial data (using the rules and methods
cQntained in the knowledge base). (See following sections for a
more complete explanation and an example).

Vertex --- Same as node. (See above)
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EXAMPLE OF HOW THE RULE-BASED SYSTEM CAN CLASSIFY THE PLANIFORM
STABILITY OF A REACH IN AN ACTUAL STREAMBED

The WES CHANNEL-FIX rule based system contains about 80
rules. 101 facts in 950 lines of computer code for a MacIntosh
personal computer. Once the program is started on the computer, a
screen appears which explains the system which is driven by
graphical menus and buttons. The user enters information into the
program by either clicking buttons on the screen with a cursor
directed by a keyboard mouse or by typing text from the keyboard
in order to answer the questions that appear on the screen.
Certain menu choices or questions in the program are preceded by
explanatory pictures on the screen. These pictures give the user
a graphical explanation of some of the menu choices that are
displayed. Also, when the explain button appears above the
question area on the screen window, the program will display
explanatory text when this button is clicked. When the system has
asked all the questions that it needs to determine which rules
and facts may be applicable to the situation the session will
occur a summary of all conclusions and determinations will be
printed out on the screen and saved in a file in the program's
directory work area. At any time during the series of questions
that the program makes a partial conclusion the user may click on
the explain button to see displayed which rules and facts were
used to make that particular conclusion.

As an example of the steps involved in using the program we
will display the questions and determinations for a session in
which the user enters the information for a reach in the North
Fork Licking river. Normally a reach of the river would be
determined from the data from several cross-sections at the site.
After the initial screen appears the next step in the program is
normally initiated by clicking on the continue button that
appears above the question area in the program's screen window.

a. SAMPLE PROGRAM RUN CROSS SECTION #! NORTH FORK LICKING RIVER

(1) The program asks for the name of the river which the
user enters as North Fork Licking in this case.

(2) The program then asks for the type of bar that is
present in this reach of the river survey. In this case the user
responds: Point Bar.

(3) The program then asks for the active channel width2 in
feet. This is entered as 75.

(4) The program then asks for the slope of the river bed and
the water surface slope at this point in the stream. The answers
entered in this case are: .01 and .02.

2 See the reference Harrell[1993] for the definition of the
hydrologic terms used in this example.
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(5) The program'then asks the user whether fines are present
on the bar surface. The answer is YeT in this example.

(6) The program then asks whether large clasts are in direct
contact at this point in the reach. The answer is No in this
example.

(7) The program then asks whether imbricatio is present.
The answer give is Yes.

(8) The program then asks whether you can identify the
evidence of fresh scour on the outside bank. The answer given is
Yes.

(9) The program then asks whether there are fresh deposits
on the bar. The answer given is Yes.

(10) The program then asks what is the average depth of the
active channel. The answer given is 2 ft.

(11) The program then asks whether there is fresh scour on
the bar. The answer given is No.

(12) The program then asks whether there are diffuse gravel
sheets. The answer given is Yes.

(13) The program then asks whether the Main Channel is
increasing, stable, or decreasing. The answer given is
increasing.

The program then concludes the session and prints out a
screen displaying all the conclusions reached. This information
is shown below:

Based on your description of this reach of North Fork Licking
River, the
following conclusions can be drawn:

The sedimentary structure of the bar is Matrix Gravel
Large clast are not typically in direct contact in Matrix
gravels.

The matrix consists of 30% or more sediment finer than fine
gravel. Fluvial action will rapidly entrain the matrix sediment
reducing the stability of the gravel clast.

This erosional process occurs at mean flow or higher. Field
data indicates the even burial of clast to 75% does not increase
stability.

TrE *ve or shear stress produced by mean flow will entrain
the matr finer grain sediment. The lack of clast
interlocki. , chat is present in framework gravel reduces the
stability although there is a high per cent of fine grained
matrix material.

Matrix gravel units appear to be a grouping clusters. This
lack of stability and high erodibility factor leads the
assignment of a stability rating of 4.

The relative stability of the bar (from 1 to 4) is: 4.00
The Active Channel Width is probably increasing
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The slope is:increasing
The meander pattern is:decreasing
The stability of the channel is:decreasing
Conclusion: The channel is migrating to the outside
The bank is providing transported sediment.
The sediment transport is:increasing
The Main Channel Depth is stable
The stability of the planiform is: + 2.00
where +1 - change/increase

0 = neutral
-1 = change/decrease

The bank is eroding: True
The bar is eroding: False
The bar is migrating: False
The bar is growing: True

Report of conclusion for North Fork Licking River complete.
***End of session***

Note, that in this example the program had to ask the question
whether the Main Channel was increasing, stable, or decreasing.
For another set of reach information it is possible that the
rule-based system would have been able to determine this from
information already entered. In general, there are not enough
rules to determine all the conclusions that may be required in
order to proceed completely with any given set of facts. The
program will then request the user to supply the answer to the
missing information. The purpose of sorting the rules as
explained earlier in the report in terms of the information
required in the hypotheses of each rule is that the program will
in all cases be able to proceed in a single program run in a
manner which extracts all the information required to make all
possible determinations that the rule-base will permit.

If we examine the stream bed flow program we see that it is
a rule-based system which collects or makes a report of a series
of conclusions, not just one. Therefore it does not fall in the
area of backward goal searching diagnostic programs in which the
questions are structured from the general to the specific. It is
a forward chaining rule-based system in which the information is
accumulated by asking a series of questions which are structured
from the specific to the general.

The order of the goals in the program was restructured in
order to make it consider all the rules in a single program run.
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An abbreviated forward chaining flow chart for stream bed
flow rule system as it now exists is illustrated below:

step 1

Determine the river name
Determine the type of bar

Determine the active channel width

step 2

Determine bar composition

step 3

Determine bar stability
Determine if the bank and/or bar is eroding or not

Determine channel depth
Determine channel slope

Determine if the bar is migrating or not

step 4

Determine if the active channel width is changing
Determine if the main channel depth is changing

Determine if the bar and/or the bank is providing
transported sediment

Determine if the bar is eroding faster than the bank

step 5

Draw conclusions about the present state of the width, such
as a point bar is forming

Draw conclusions about the effect of the bar on
the active channel width

Draw conclusion if deposition is occurring on the inside of
the bend

Draw conclusions about the affect of increasing channel width on
slope

Draw conclusions about the affect of diffuse gravel sheets on
slope

Draw conclusions about the affect of slope on channel stability

step 6

file a report of all the information entered
and conclusions reached
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The reason for this organization comes from both the way the
software is written and the type of knowledge base that we want
to create. The rest of the report will further elaborate on the
organization and explain how it was arrived at.

The version of LEVEL5 that was used for this study is
a backward chaining (goal driven) PROLOG 3 4type expert system
shell based on predicate calculus. It provides a good graphical
user interface, built-in database search predicates, and some
object- oriented features. For classification problems which are
data- driven and for which you need to record everything that can
be determined about the situation, a forward- chaining LISP5 6

or CLIPS7 type system with more object- oriented features is
better.

3 "A logic programming language based on predicate
calculus", Barker, 1988.

4 The book "PROLOG, Programming for Artificial
Intelligence", by Ivan Bratko, Addison-Wesley Publishing Co,1986
contains a well-written and readable guide to understanding how
Prolog type expert system programs work. See also, "Logic
Programming and Knowledge Engineering" by Tore Amble, Addison
Wesley Publishing Co.,1987.

5 LISP - "A programming language well suited for list
processing and symbolic manipulation. It is currently the most
popular AI language in the United States", Barker, op.cit.

6 LISP 3rd ed., by Patrick Henry Winston and Berthold Horn,

Addison Wesley Publishing Co, 1989.

7 CLIPS User's Guide, by Joseph C. Giarratono, NASA Lyndon
B. Johnson Space Center, Information Systems Directorate,
Software Technology Branch, 1991.
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A Brief Description of the Way Forward and Backward Chaining
Works

In forward chaining, the inference mechanism starts by
evaluating the first rule in the knowledge base. If the
antecedent of that first rule is true, then the consequent of the
rule is used to search for a conditional with an antecedent
identical to the previous consequent. This forward chaining
continues until the system is unable to match a consequent with
an antecedent. Because the system reasons from the information or
data provided, this form of processing is said to be data driven.
The two rules below will ser'e as a demonstration of this
process:

IF A IS true, THEN B IS true
IF B IS true, THEN C IS true

a. The following steps define how forward chaining could be
applied to the rules above:

(1) If "A is true" is known, the inference mechanism will
prove "B is true" by modens ponens8 .

(2) The system then searches forward for a rule that has an
antecedent that matches the consequent "B is true". A match is
found in the second rule.

(3) Again the law for modens ponens is used to prove that "C
is true". Since no further rules can be found with antecedents
that match consequents, the system will offer "C is true" as its
conclusion.

In backward chaining, the inference mechanism starts
with a goal and seeks to find a rule with that goal as its
consequent. It then verifies whether or not that rule can be
derived from another rule by finding another rule whose
consequent matches its antecedent. This process of backward
chaining continues until a rule is found that has an independent
antecedent. Thus, backward chaining is actually goal driven in
its problem solving strategy.

The example below demonstrates the implementation of this
concept:

Goal statement

8 "A rule of inference that states: IF A implies B and A is
known to be true, then B is true.
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D IS true

Production rules

RULE 1
IF A IS true
THEN B IS true

RULE 2
IF B IS true
THEN C IS true

RULE 3
IF C IS true
THEN D IS true

b.rhe first statement in the example above, "D IS true," is
the goal for this knowledge base. The following steps explain
how LEVEL5's inference mechanism backward chains to prove this
goal:

(1) The system begins by searching for a rule with the goal
"D IS true" as its consequent. Since Rule 3 satisfies this
condition, the program backward chains to check if the antecedent
"C IS true"
can be derived from another rule.

(2) It is discovered that Rule 2 does, in fact, have a
consequent that matches the antecedent of Rule 3. The program
will now test to see if the antecedent of Rule 2, "B IS true",
can be derived from another conditional.

(3) Rule 1 has a consequent that matches the hypothesis in
Rule 2.
LEVEL5 searches once more for other supporting rules. Since none
can be found, the program asks the user:

Is it true that:
A IS true

If the user answers yes, the inference mechanism is able to
reach the conclusion that "D IS true" based on the law of
hypothetical syllogism9 .

9 A rule of inference that states: IF A, then B. If B, then
C. Therefore, If A, then C.
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Suppose we try and create a fully backward chaining
problem solving strategy to implement our stream bed flow expert
system rule base. We need one primary goal which all the other
rules work backward toward solving; a series of secondary goals
each of which has information needed by the primary goal; and a
whole series of secondary factors which contribute to the
information required to satisfy the secondary goals.

DETERMINE
primary goal PLANIFORM STABILITY

DETERMINE DETERMINE DETERMINE
secondary goals MAIN CHANNEL CHANNEL WIDTH SLOPE

DEPTH STABILITY STABILITY
STABILITY

secondary factors: channel depth, channel slopes, channel width,
fines present on the bar surface, type of bar, etc. 10

In this simplification of our river channel flow system the
flow chart for the problem solving strategy would be:

examine main channel depth
stability

width factors involved NO

examine width stability DONE

slope factors involved

examine channel slope stability

10 The secondary factors are connected to the secondary
goals by sets of control rules which are explained below.
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In order to implement this problem solving strategy in backward

chaining we would need what is called control rules. For example,

we would write

RULE 1
IF Channel Depth and Slope Stability known
AND Channel Width Stability known
THEN Planiform Stability known {conclusion 1}

RULE 2
IF Channel Depth Stability known
AND Channel Slope Stability known
THEN Channel Depth and Slope Stability known {conclusion 2}

RULE 3
IF Channel Width IS increasing,decreasing,stable
THEN Channel Width Stability known {conclusion 3}

RULE 4
IF Channel Depth IS increasing,decreasing,stable
THEN Channel Depth Stability known {conclusion 4}

RULE 5
IF Channel Slope IS increasing,decreasing,stable
THEN Channel Slope Stability known {conclusion 5}

The goal of the above abbreviated backward chaining system
is to arrive at the conclusion "Planiform Stability is known".
Since Rule 1 has that conclusion as its consequent, the
inferencing mechanism tries to satisfy the two antecedents of
Rule 1: "Channel Depth and slope Stability known" and "Channel
Width Stability known". The consequent of Rule 3 matches the
latter so the inferencing mechanism tries to satisfy the
antecedent of Rule 3: "Width is increasing, decreasing,
stable".We would then have a rule dependency map for the full
rule set as below:

RULE 4 >SRULE 2

RULE 5 > )RULE 1

RULE 3

or a similar graph if we plotted the relationships by
rule conclusions instead of rule numbers.

CONC 4
zýýCONC 2

CONC 5 :7  ' CONC 1

CONC 3

84



The difficulty with this problem solving strategy is that when we
add rules to get the information that is needed to form the
conclusions in the higher level rulesthe hypotheses for those
rules may contain variables which fire other rules that alter
previous conclusions. For example, suppose we have a rule that
says :

RULE 6
If A diagonal bar is present
THEN Channel Width IS increasing

then we cannot determine what RULE 3 (which involves the Channel
Slope in its conclusion) will say until RULE 6 (which involves
Channel Width) is evaluated. If the program happens not to
consider the rules in the correct order (as it doesn't in this
example) then the conclusion reached will not be valid. Thus we
see that in the most general situation conclusions reached upon
considering beginning rules may have to be reevaluated in light
of later conclusions that the rule-based system reaches.
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Now to Create Forward Chaining in a Backward Chaining system

Although PROLOG goal driven systems are not designed
primarily for data driven problems (see Brakto (1986) and Amble
(1987) for an explanation of how these systems work) , it is
possible to simulate forward chaining in a backward chaining
search using global variables1 1 and recalling the goal (cycling)
after each success. Newer versions (2.5 and later) of the LEVEL5
software, written for IBM compatible personal computers, have
significant object oriented features which make forward chaining
in this type of system easier. However, LEVEL5 version 1.1 which
is available for the MacIntosh and used for this report can also
be used for these type of problems.

In cycling the program there must be only one top-level
goal (which is called "for ._ chain" in the manual 1 2 ). A global
variable (called "step") then allows you to consider different
groups of rules on different passes through the rule base. The
programmer must then organize the groups of rules so that
every group is consider in a fixed sequence of different "steps".

The hierarchy of goal levels shown in the manual where they
are listed in outline form such as 1., 1.1, 2., 2.1, only work
when you need to make a single pass through the set of rules.
First goal selection determines which upper level rule you want
the compiler to unify variables 13 on. This works just like when a
PROLOG compiler asks you which goal to solve for in its predicate
rule base. It does not prioritize the goals and search for all
possible solutions. But, the search levels are created by the
developer placing what is sometimes called a "salience factor" 1 4

(or operator precedence factor) on the rule when it is placed on
the goal stack1 5 . When a new hypothesis is placed on the search

11 "A value established for use when no procedure or binding
(a place in memory reserved for a value associated with a symbol)
primitive supplies a value." Winston and Horn, op.cit.

12 LEVEL5 for the Apple Macintosh, User's Guide, by

Information Builder's, Inc. 1250 Broadway, New York,N.Y. 10001.

13 "The process of comparing two pattern expressions to see

if they can be made identical by a consistent set of
substitutions." Winston and Horn, op.cit.

14 " A priority number given to a rule. When multiple rules

are ready to be satisfied or as is sometimes said, for "firing",
they are fired in order of priority. The default salience is
zero. Rules with the same salience are fired according to the
current conflict resolution strategy." NASA op.cit.

15 A list of all the goals that the inference mechanism is

backward chaining in order to satisfy. The goal at the top of the
list is the goal which the compiler is currently searching the
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stack1 6 (also called an agenda) salience numbers are checked to
make the insertion. The search then keeps going until it bottoms
out on a lower level goal. Problems suited for this type of
program organization are for instance, diagnostic rule bases or
classification problems with only one end conclusion. Groups of
definitions of objects fall into this category.

One way to order the rule base is to list which rules have
variables in their hypotheses, define a partial order on the
rules by letting the rules be nodes in a graph and connect two
nodes (rules) with an edge if the conclusion of one is used in
the hypothesis of another 17, and then topologically sort the
rule base according to this partial order:

ALGORITHM TO TOPOLOGICALLY SORT RULES IN AN EXPERT SYSTEM

0) For the whole set of nodes of conclusions in the rules:

1) If every conclusion node has a predecessor, then stop. The
rule based system has a cycle and is infeasible (that is, a
partial order cannot be defined on it).

2) pick a node V which has no predecessor

3) place V on a list of ordered nodes
a) if a terminal conclusion node is reached, print out the list
of rules used on the way to reach that conclusion.

4) delete all edges leading out from V to other nodes in the
network

5) Go to step 0).18

knowledge base of consequents in order to unify variables on.

16 "A list of all rules that are presently ready to be
satisfied. It is sorted by salience values and the conflict
resolution strategy. The rule at the top of the search stack or
agenda is the next rule that will fire.", NASA, op. cit.

17 Recall the definition from mathematics that a partial
order is a relation rel(x,y) between objects in a set that
satisfies the reflexive ( rel(x,x) is always true), and
transitive conditions (rel(x,y) and rel(y,z) true implies that
rel(x,z) true). If the relation also satisfies the symmetric
condition ( rel(x,y) true implies rel(y,x) true) then it is
called an equivalence relation.

is A further discussion of the way this algorithm works in
the case of any partial order and how to write the pseudo code
for a simple version of it is given in the books: Fundamentals of
Data Structures by E. Horowitz and S. Sahni, Computer Science
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Example:

a] initial network: " 2

ib3

4 --'-- 6

b) node visited - 1

remaining network: 2
"Ni

3--• 5

4--- 6

cJ node visited - 4

remaining network: 2

3 ---- 5

6

Press, Rockville, MD, 1982.,and Algorithms + Data Structures =

Programs by Niklaus Wirth, Prentice Hall, 1976. A C source code
implementation of it along with a further discussion is included
in Appendix II.
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di node visited 3

remaining network:

2

5

6

el nodevisited 6

remaining network. 2

at this point a terminal condusion Is reached and the number of levels
of rules needed 131 Is printed out

I node visited 2

remaining network:

gJ node visited 5

An example of how the above algorithm works is illustrated

in figures 1 and 2 above.

First a successor list for each rule conclusion node is created:

successor list for vertex 1 [ 2 3 4]
successor list for vertex 2 5]
successor list for vertex 3 5 6]
successor list for vertex 4[ 6 5]
successor list for vertex 5 (J
successor list for vertex 6 (1

Then the algorithm produces a topological ordering of vertices
as shown in the figures and as listed below:

1 4 3 6
terminal conclusion reached

3 levels of rules required

2 5
terminal conclusion reached
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3 levels of rules required

with the above topological ordering when rule 6 is
considered, the information for either rule 3 and 4 is then
required. And each of these rules will require the information
from rule 1. This path of rules then forms at least two forward
chaining "cycles" or "steps" . We do not know beforehand whether
rule 3 or rule 4 will provide the way to satisfy rule 6, hence a
separate step is required to recycle through the rules to cover
all possible cases (see the next section for the details of how
this is implemented in the code). To better organize things for
future additions to the rule base, it is prudent to add another
step for rulel and thus use three steps for this path of rules.
For step 4 in this example we consider rule 5. This rule then
requires the information fr. rule 2 and rule 1 in that order.
Rule 1 has already been considered in step 1. With this path all
rules have been considered. Therefore two more steps of recycling
through the rules are required to consider the whole rule base.
These two steps will then insure that all the information
necessary to reach any possible conclusion has been entered.

If, in entering the input information, we change the order
in which the nodes coming out of a given vertex are ordered the
program gives a different output. This is a result of the fact
that for a given set of order relations there may be many
different ways of defining a partial order on them. Consider what
happens in the above algorithm if we change the input order:

successor list for vertex 1 [ 4 3 2)
successor list for vertex 2 [ 5]
successor list for vertex 3 [ 6 5]
successor list for vertex 4 [ 6 5]
successor list for vertex 5
successor list for vertex 6

the algorithm will then produce the following topological
ordering of vertices:

1 2 3 4 5
terminal conclusion reached

3 levels of rules required

6
terminal conclusion reached

3 levels of rules required

However, upon examining this output, it can be seen that the
number of paths, "cycles", or "steps", required to enter all the
information into the classification system is the same in the two
cases. Also, the maximum depth or number of levels of backward
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reasoning for all cycles will be the same for both cases. The
next section will explain the coding procedures for implementing
these forward chaining cycles or steps which are determined by
the topological order.
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Procedures to Use in Creating the Knowledge Bass in a
classification Type Expert System

In order to create a knowledge base there is an organized
procedure that one can follow:

a.Establish the facts by:
(1) collecting all the relevant facts and

information

(2) divide the objects in the facts into different
categories

(3) outline or catalog the complete set of facts
according to these categories.

(4) write down all the rules (involving forward
chaining) relating these categories.

(5) write down a decision tree f or what the expert
system is trying to analyze such as that shown in the previous
paragraph.

(6) determine the one goal which the expert system is
trying to satisfy.

(7) write down all the backward chaining rules which
help to satisfy that one goal.

(8) relate the forward chaining and backward chaining
rules in order to have the expert system perform its task in one
program run.

i) write down a complete table of all the variables
and conclusions involved in the knowledge base.

ii) topologically sort the rules based on the
order the conclusion occur in.

iii) plot all the paths in the knowledge base-in
which variables can be instantiated and conclusions reached (this
is done in paragraph 20 in this report).

iv) use global variables to group the
instantiation of the variables and predecessor conclusions
involved in the hypotheses.

For an example that explains the forward chaining procedure

consider the following abbreviated example using the river
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(5)
If we add a rule or topic for obtaining the initial

information we need to start the forward chaining, and a final
rule or topic to generate the report and write it to a file we
can now write down an outline or decision tree for what the
expert system is trying to analyze.

1. Introduction
1.1 River's name entered RULE 1
2. Draw conclusions
2.1 Bar composition determined RULE 2 RULE 3
2.2 Channel depth determined RULE 4
3.
3.1 Report filed RULE 5

(6) In this case the one goal that the expert system is
trying to satisfy is to generate the final report (which by the
way should contain all the conclusions the forward chaining has
generated)

If we call this one goal "forward chain"

We can now write down a flow diagram for the program
to reach all the conclusions we want:

step 1

river's name

step 2

bar composition

step 3

channel depth

step 4

file a report containing all the conclusions
reached

(7) We can write this rule to finish the forward chaining
as:

RULE 5
IF previous steps complete
AND FILE results file footer
THEN stop

The problem at this point is that there hasn't been a condition
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channel flow information19 :

(1). We have various attributes that describe the river
channel flow geometry: among these are bar composition
framework gravel, censored gravel, filled gravel, or matrix
gravel, channel depth(a numerical value). Once we know these
attributes we have a list of rules relating them from which we
can draw inferences.

(2) We define a data structure:

ATTRIBUTE The bar composition
AND channel depth

We will also need a string variable which hold's the
river's name to write on the final report:

STRING The river's name

(3) We can now organize this information in the following
outline

1. River's name entered
2. Bar composition determined
3. Channel depth determined

(4) we can now write down the forward chaining rules
involving these attributes and variables:

RULE 1
IF The river's name <>""
AND FILE the results
THEN River's name entered

RULE 2
IF Fines are present on the bar surface
THEN The bar composition IS matrix gravel
AND Bar composition determine-

RULE 3
IF NOT Fines are present on the bar surface
AND Grains on the bar surface are interlocked with

voids
THEN The bar composition IS Framework Gravel
AND Bar composition determined

RULE 4
IF Channel Depth > 0
THEN Channel Depth determined

19 The steps in the example are ordered according to the
letters in the above procedures.
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determined which in all cases signals that the forward chaining
has ended and tells RULE 5 when to fire.

(8) In a LEVEL5 program it is possible to have series of
nested goals for which we use the goal select feature to choose
which ones the system backward chains to satisfy. But, in the
above example the LEVEL5 compiler will choose either

1. or 2. or 3.
1.1 then 3.1.

2.1 or 2.2.

But, it will not be able to search for all combinations of
solutions to the whole list on the same program run. For once a
bottom level goal is reached and there are no more rules to check
on the rule search stack (agenda) for the satisfaction of this
goal the program stops. That is, suppose the user chooses 1. and
1.1 using goal select and suppose RULE 1 is of the form:

IF .....
THEN Rivers name entered. We have:

goal stack rule search stack

1.1 River's name entered RULE 2
(satisfied) RULE 3

RULE 4
(no further matches

possible)

Then, none of the remaining rules satisfies the goal and the
program stops.

The way 'cycling' works is through the use of a single goal
along with global variable values. In the above example we would
have only one goal:

goals

1. forward chain

In rewriting RULE 1 we substitute 'forward chain' for the
previous goal and add a global variable 'step'.

RULE 1
IF The river's name <>""
and FILE results file header
and step:=1
THEN River's name entered global variable
and step:=2 step
and CYCLE

RULE 2
IF Fines are present on the bar surface
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and step:=2
THEN The bar composition IS matrix gravel
and Bar composition determined
and step:=3
and CYCLE

RULE 3
IF NOT Fines are present on the bar surface
and Grains on the bar surface are interlocked and no voids
and step:=2
THEN The bar composition IS Framework Gravel
and step:=3
anc, Bar composition determined
and CYCLE

RULE 4
IF Channel Depth > 0
and step:-3
THEN Channel depth determined
and forward chain
and step:=4
and CYCLE

RULE 5
if step:=4 built-in function stop
and FILE the results
then stop

In this situation after the goal forward chain has been
reached for the first time the global variable step is changed
from 1 to 2. Then, there are more rules left in the search stack
(agenda) which can satisfy the same goal, so the program
continues to search for solutions:

goal stack search stack

1. forward chain RULE 2
(satisfied RULE 3

RULE 4
global variable (further matches possible)

step

built-in function
stop

The way the program finally stops is by means of using a built-in
function. The phrase 'built-in' means that the program will
execute
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its meaning as soon as it is scanned 20 and before the whole
sentence is parsed 21 .

note: In this example because of the small number of rules it is
not necessary to perform substeps i),ii),and iii in part (8) of
the procedure. The next example shows how using the basic
techniques in parts (1) through (7) along with the substeps in
part (8) it is possible to organize a large scale system.

We now consider the group of all the rules in our river
channel flow expert system in which the variables and conclusions
are to be chained together:

For these purposes a variable is defined to be a statement
which appears in the hypothesis section of a rule and about which
it is to be determined whether it is true or false or
instantiated to some object or attribute22 .

We now consider the group of all the rules in our river
channel flow expert system in which the variables and conclusions
are to be chained together:

20 The scanner is the part of the compiler that analyses
characters of the program's text for identification of known
words, variables, functions, and procedures.

21 The parser is that part of a compiler that analyses
complete sentences of the knowledge base (rules, facts, etc.) and
determines their total meaning.

22 A variable is instantiated when there is some object or
attribute which it is equal to.
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Table 2

variable List

Number Variable

V1 Fines are present in the reach

V2 Fines are present on the bar surface

V3 Large clasts are in direct contact

V4 Vegetation is present on the bar surface

V5 Bar stability is known

V6 The bank is eroding

V7 The bar is growing

V8 Channel Depth is known

V9 Slopes are known

VlO The type of bar has been identified

Vil Active channel width is known

V12 Fresh scour can be seen on the outside bank

V13 Fresh scour can be seen on the bar

V14 The reach is a river bend

V15 Grains on the bar surface are interlocked

V16 Fresh deposits can be seen on the bar

V17 Fines are present in the reach

VI8 The type of bar present

V19 The bar composition

V20 The active channel width

V21 The bar is migrating

V22 Diffuse gravel sheets exist

V23 Imbrication is present

V24 bar deposition will occur
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Table 3

Conclusion List

Number Conclusion

Cl The bar composition IS--- -V2,V3,V15

C2 The type of bar present IS ----

C3 The bar is providing transported C15
sediment.

C4 The bar is eroding faster than V13,C15
the bank.

C5 The active channel width IS --- C1l,C15,C7

C6 The main channel depth IS --- Cll,C15,C7,V23,CI
,C17,V24

C7 The bar is growing C14,C2,V16

C8 Width conclusion IS V12,C2,V14,C4,C17
,C15

C9 The active channel width will be C2,V12

C10 The bar may be migrating V2,C2,V17,C15,V4

Cll The bank is eroding V12

C12 The bank is providing C11
transported sediment

C14 The bar is migrating C2,V2,V17,V4

C15 The bar is eroding C2

C16 Deposition is occurring on the C2,CII,V14
inside of the bend

C17 Sediment transport is C4,C12

C20 Bar deposition will occur V22

C23 The slope IS C5

23 Variables which appear in a rules hypothesis are numbered
Vl,V2, etc. according to the number appearing in the variable
table, conclusion are numbered Cl,C2,etc analogously. The
information for conclusions which do not have variables or other
conclusions listed in this column is entered interactively.
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C24 The channel stability is C23

C26 Meander pattern IS ----------- C23
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Table 4

Rule List 24

Number Rule Name Conclusions

R1 Identify bar C2

R2 Forcing a few more conclusions C7,ClI

R3,R4,R5 Composition C2
,R6
R7 Bank Scour indicates erosion C11

R8 Scour indicates erosion C15

R9 Bar erosion provides sediment C12

R10 Bank erosion provides sediment C12

R11 Bar eroding before bank C14

R12 Stable channel with respect to C5
width

R13 Bar erosion implies increasing C5
width

R14 Wider channel implies less depth C6
and energy

R15 Bank erosion implies increasing C5
width

R16 Growing bar C7

R17 Narrowing channel C5,C6

R18,R19, Eroding bar indicates not C8
R20,R21 interlocked

Relative shear force
Bank scour indicates migration to

outside
No width conclusions can be

reached

24 This is an abbreviated list of the total number of rules
in the knowledge base. In order to simplify the table, some
groups of rules which have no other rule predecessors have been
grouped together as single rules and rules which only perform
functions such as displaying text and pictures or writing the
report have been omitted.
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R22 Deposition forming classical bar C8,C16

R23 Bar scour indicates greater C9
channel width

R24 Eroding bar may be migrating C10

R25 Fines indicate that bar is not C1O,C14
migrating

R26 Absence of fines indicates ClO
migrating bar

R27 Vegetation indicates stable bar C10

R28 Sediment transport increasing C17

R29 Diffuse gravel sheets exist C20,C23

R30 Decreasing channel width C23,C17increases slope

R31 Increasing channel width C23,C17
decreases slope

R32 Increasing slope decreases C26,C21,C22
meander pattern

R33 Decreasing slope increases C21,C22,C26,C17
meander pattern

R34 Stable channel with respect to C6
depth

R35 Imbrication indicates bed C6
stability

R36,R37 Framework or matrix gravel C6
affects depth of main channel

R38,R39 Affect of sediment transport on C6
depth

R40 Bar erosion implies less depth C6

R41 Narrowing channel increases depth C6
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A table (or edge adjacency list 2 3) can now be made with the
hypothesis conclusion vertex numbers from the right column of
the conclusion list table above on the left. On the right is put
the conclusion list vertex numbers from the left hand column of
the conclusion list table above. A summary of the information
from the core rules in the expert system that was entered into
the the topological sort program in order to organize its
knowledge base is given below:

C15 => C3 C2 => C9
C15 => C4 C2 => CIO
C11 => C5 C15 > CIO
C15 => C5 CI1 1> C12
C7 => C5 C2 => C14
C1I :-> C6 C2 => C15
C15 => C6 C2 7> C16
C7 => C6 C2 => CII
C1 => C6 C4 => C17
C17 => C6 C12 =>C17
C14 => C7 C5 => C23
C2 .> C7 C23 => C24
C2 => CS C23 .> C26
C4 => C8
C17 => CS
C15=> C8

23 An edge adjacency list is a list containing all the end

nodes from a given start node (or vertex) in the rule bases'
knowledge tree. This is a general term to designate a data
structure used in network search algorithms. For the example
given the context being discussed the first letters (C) from each
node have been removed and a list made of all connections,
indexed by the starting node.
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The topological sort program then orders the rule numbers
according to the priorities in their data dependencies.

After the information from the conclusion list table is entered
the program outputs this edge adjacency list:

successor list for rule hypotheses

vertex 1 [ 6]
vertex 2 [ 7 8 9 10 14 15 6 113
vertex 3 (]
vertex 4 [ 8 173
vertex 5 [ 23 3
vertex 6 []
vertex 7 [ 5 6]
vertex 8 []
vertex 9 (1
vertex 10 [1
vertex 11 ( 5 6 12]
vertex 12 ( 17 ]
vertex 13 (]
vertex 14 ( 7 1
vertex 15 [ 3 4 5 6 8 10]
vertex 16 (]
vertex 17 [ 6 8]
vertex 18 (3
vertex 19 []
vertex 20 (3
vertex 21 (]
vertex 22 (3
vertex 23 [ 24 26 ]
vertex 24 [3
vertex 25 (3
vertex 26 (]

Finally, after the program has established the partial order
of the conclusions by their data dependencies, the rest of the
rule edges in the edge adjacency list at the beginning of the
section can be added to complete the knowledge tree:
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• C3

C15 > C1o

C2 -=>//Cl1.-=> C12

14- C17 => C8

"" C24
"C14 => --> C5 => C23 > C26
Cl => C6
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THEORETICAL ALGORITHMS FOR SOLVING

THE ARMY STATIONING PROBLEM
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Abstract. This research addresses algorithmic approaches for solving the Army stationing problem. The

problem is formulated as an assignment problem with the objective function being a minimization problem.

The specific assignment problem has piece-wise linear additive separable server cost functions, which are

continuous everywhere except at zero, the point of discontinuity for the {0, 1} assignment condition. Con-

tinuous relaxation of the {0, 1} constraints yields a linear programming problem. Solving the dual of the

linear programming problem yields the complementarity conditions for a primal solution, a system of linear

inequalities and equalities. Adding equations to this system to enforce a (0, l} solution in the relaxed solu-

tion set yields an augmented system, not necessarily linear. Methods to solve this system, a system of linear

inequalities and non-linear equations, in a least square sense are developed, extending Han's method for solv-

ing linear systems of inequalities. Generalizations of these methods to solve general systems of inequalities

in a least square sense are developed. A sample problem is shown.

Key words: Assignment problem, least square problem, stability, global convergence, local convergence,

almost everywhere differentiable, Clarke subdifferential.

109



1. Formulating the Stationing Problem.

Presently, the military is transistioning from the Cold War era to the new "Power Projection Platforms"

to meet the global challenges of the 21st century. Major stationing changes, realignments and force structure

reductions are being planned and executed. At the same time, increasing fiscal constraints require attention

to cost efficient operations. It is important to consider the least cost options of basing units among all

possible installations. By formulating an assignment problem, which is based on cost functions of different

unit types at the various installations, one could determine the least cost stationing alternative among all

possible alternatives.

Let i E I = (1, 2,..., m} represent military units to be assigaed to installations j E J = {1,2,3,... , n}.

Let 1m E Rm represent the unit -'mand vector of the m military units. For each j E J, i E I, let y2,j be

the relative amount of demand i, aig to installation j, i.e., y E Rm". The variable y is constrained so

that 0 < yi, for each j E J, i E I. Further, the variable y must meet the demand for each i. That is, for

all i E I,

Z lj= 1.

jEJ

Let positive linear cost coefficients, cj, and positive minimum cost constants, 4j, be associated with each

installation j and military unit i. That is, assume for all i E I and j E J, that c J > 0 and 0, > O. To

simplify notation, interpret the vector y.,j to be the elements of y E R", associated with installation j.

The cost function for each installation j is:

max(tki,(c,,j,yj)) if any yj > 0,
0 if ytj = 0,Vi E I.

This installation cost function represents a fiat minimum charge with linear rates beyond the minimum.

This assignment problem belongs to a family of problems, called the uncapacitated facility location prob-

lem. It is a generalization of the problem described in Conn and Cornu6jols[1990]. See Spoonamoref 1992]

where the relaxation of the problem is expressed and the relaxed dual is formed. Conn and Cornu(jols[1990]

show solving this problem by sclving the relaxed dual where they define gradients for determining search

directions. The relaxed problem, rather than being solved using the usual linear programming methods, can

be solved by expressing the problem as a system of linear equalities and inequalities and solved using the

method developed by Han[1982].

Sample Problem:

In order to illustrate the primal and dual relationship, the following simple problem is shown. Let

m = 4, n = 3; let 4 = (26, 30, 30); let

/= 20 25 25)
140 40 441
30 30 22
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The optimal value is 87-1, achieved at, for example, t = (1,0, 1) and w = (1,0,1) and:20 ( 0o o 0 0o o0 )
40 0 0 0 1a"=~4 404'Y

= s 2 =0, and s3=j•j" Thus, r =r2 = 1, and r3 =•L. We show that this solution satisfies the

optimality conditions (2.3.1).

First, consider j = 2, where Yi,2 = 0 for all i, satisfying I° = {1, 4}, and 1 2- 0. Further, w2 = 0 is

consistent, since J> = {1,2} and

(c., 2 , y.,2) = 0 > w202 = 0 * 30 = 0.

Second, consider j = 3. 10 = {1} and I1' = {2,4}. It must be that r3 = 1E- (0, 1) and J= {3}. It must

be that Y4,3 = 1, which implies that W3 = 1 = Y/2,3. To satisfy,

(C-, 3 , Y-, 3 ) = W3 0J3 30,

then Y3,3 = 4-4

Lastly, consider j = 1, where I° = {2,4} and Ij" = 0. Since 1 E JŽý, then

(c.,iy., i = 573 > wi•i = 26.

Y1. 1 < W1 = 1; Y1,3 = W• I

For i = 3, Fj Yaj = 1. Further, for all i, ' Yj = 1.

The full set of solutions of this problem include: yj = 0, except as follows:

Y1I,1 = W1 Y ,•2, 3 = Y4,3 = W/3 Y ,•3,3 =•

and W2, Y3,2, and y3,1 satisfy:

W2 < 1,

6
Y3,1 T 40'

41
Y3,2 = -4 Y3,1,

4
0 _5 Y3,2 !5 W2 < -Y3,2.
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2. Least Square Formulation for Solving Systems of Inequalities.

By expressing the solution to a linear programming problem as the solution to a system of inequalities and

equalities, one can take advantage of the work of Han[1982], Mangasarian[1981]. For simplicity, we only

consider the system of inequalities. Firstly, consider linear systems.

2.1 Statement of Problem: Consider a linear transformation,

A:R'"R', bea', xE•n.

One wishes to solve for x E Rn, such that

Ax < b. (2.1)

The least square formulation of (2.1) yields

minf(x) : ((Ax - b)+, (Ax - b)+), (2.2)

where (Ax - b)+ denotes the projection of Ax - b onto R.

2.2 Numerical Stability: Robinson[1975,1976] shows the numerical stability properties of solution sets of

systems of inequalities. Let fl := {xl Ax 5 b}. Define fl as stable if for all Xo , there exists/P,6 such that

for any A' : R .-, R n, b' E R, satisfying

IIA - A'1I + llb - b'Wl 5 6

then

dist (xo, f') 5 Pp(xo),

where

I :-{xI A'x S b'}, p(x) := i• Jib' - A'x - kll.
kE+

Define the system Ax <_ b as regular if there is an x E Rn such that Ax < b.

Robinson shows that 0l being stable is equivalent to the system Ax < b being regular. The optimality

conditions for a solution x, z which solves

inf 1

subject to: Ax - b < z

are
ATz = 0,

z>_O

(2.3)
Ax-b - z <0,

(z, Ax - b - z) = 0.

Thus, (0 := {(x, z)I z 0 0, Ax - b - z 5 0} is stable since the system z > 0, Ax - b - z < 0 is regular.
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3. Local Convergence Properties of Taylor Series based on Generalized Differential Constructs.

In this section, we show that, by defining generalized differential constructs for tih Iest sfluare o)je1-:tiVw

function and the projection, one can take alvantage of strong approximating propertie.s in the Taylor .erite

expansion based on these constructs. Most importantly, we first show that these c(nstructs are well defined.

Note that (Ax - b)+ ;nd Vf(x) are both Lipschitz continuous functions throughout all IR". Thus, the Clarke

generalized Jacobian, U(Ax - b)+, and generalized Hessian, ;)Vf(x), both exist and are well-defined. Recall

that J(x) E D(Ax - b)+ means: { aq if (ai, x) - bi > 0,
(J(x))' = Aiaý if (ai, x) - b, = 0, where A, E [0, 1,

0 if (a1,x) - bi < 0.

Similarly, H(x) E OVf(x) is determined by choice of J(x) E O(Ax - b)+ where H(x) = J"r(x).J(x). Sec

Spoonamore[19921 where the following proposition is proven.

Proposition: Existence of an Identification Neighborhood.

Let x. be given and let
l 1°(x.) := {i! (ai, x.) = b,

I+(x.) := {ij (a 1,x.) > b,},

I- (x.) := il (ax)< b,}

Then there exists a neighborhood N(x., r) of x., such that for x E N(x., r):

I0 (x) C 10 (x.),

I+(x ) - l+(x)\I0(x.), (3.1)

I- x.) = I- x)\l°(x4.)

This neighborhood is referred to as the identification neighborhood of the point x. with r(epc.•:t to the

system of inequalities Ax < b. The approximating properties of the generalized Jacobian and the generalized

Hessian are shown in the following propositions which are developed in Spoonamore[19921.

Proposition. Perfect Approximating Property of the Generalized .Jaobian.

Let x. be given and let N(x., r) be a neighborhood which satisfies (3.1) in the proposition, above. Let

x E N(x.,r) and let p := x. - x, then for any J(x) E O(Ax - b)+,

(A(x + p) - b)+ - (Ax - b)+ - .I(x)p = 0.

Proposition. Perfect Approximating Property of the Generalized Hessian.

Let x. be given and let N(x., r) be an identification neighborhood as above. Let f(x) :-- -

(Ax - b)+). Let x E N(x.,r) and let p := x. - x. Then for any J(x) E [(Ax - b)

f(x + p) - f(x) - (p? Vf(x)) - 1(p, J T (x)J(x)p) = 0.
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4. Conclusion'

In Spoonamore[1992J, these properties are used to develop optimization algorithms which parallel the existing

algorithms for the differentiable case. The Army stationing problem can be solved by formulating the problem

as an assignment problem having a piece-wise linear objective cost function. The relaxation of the problem

into a linear programming problem allows solution using several methods including the method based on

solving systems of inequalities.
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Sevrely Constrained Allocation of a Bounded Number of Transceivers

T. Cronin
Intelligence Electronic Warfare Direcwe

Warrenton VA 22U6&5100

One of numerous Army applications for asset management is to move a network of transceivers
belonging to friendly forces into position to monitor the communications of a similar network of
transceivers managed by an opponent. Many previous attempts to solve the bounded resource allocation
problem have been excursions into the realm of unconstrained optimization, whereas other attempts
have framed the problem as one of constraint satisfaction. The two approaches are seemingly at odds
with each other, since it has been a moot point about whether constraints be utilized explicitly, or
incorporated into an objective function. This paper attempts to resolve the conflict by showing that the
two approaches are complementary, albeit at opposite ends of the algorithmic complexity spectrum.
When no constraints are available to control the placement of k transceivers, the challenge of the
problem is to maximize the disjunction of k fields of view, and it is shown that the time complexity is
exponential in the number of transceivers. When the locations of opposing force transceivers are known,
together with the radio frequency (RF) propagation graph, the problem reduces to Knuths stable
marriage theorem, and the'resultant complexity is linear in the number of transceivers. In addition to a
characterization-of the computational complexity of the problem, two other results have emerged from
this research: a novel strategy to allocate relays and transceivers to the fringes of invisible areas; and
a massively parallel architecture to compute a comupidh ve ensemble of field of view bitmaps.

Statement of the problem.

In diverse terrain, when using a network of friendly transmitter/receiver (transceiver) devices
to collect data being communicated by a network of transceivers controlled by an adversary, there is a
dynamic requirement to spatially configure the network in such a way that friendly transceivers collect
maximal information from the adversary without forsaking the ability to communicate among
themselves. The control knowledge to guide the optimization process is in large part a function of what
one can cooperatively see or hear from various vantage points of the terrain, which formulates a
specialized problem in resource allocation. The allocation process may or may not be facilitated by a
variety of constraints, depending upon their availability. If few constraints present themselves, then
the problem is hard; on the other hand, if constraints are readily available, then the problem is made
correspondingly simpler. The flip side of the collection problem, called jamming, is relevant when it is
desired to deny adversarial communication, rather than to collect it. The overall problem of tasking a
bounded number of communications devices to collect and/or jam adversarial communications is called
the Intelligence Electronic Warfare (IEW) asset management problem. In the discussion below, the
word "resource" or "asset" refers to either a transceiver or a jammer, whether it be ground-based or
airborne.

The issues of line of sight and field of view.

Line of sight (LOS) is a concept which distinguishes between what parts of a map are visible
and invisible along a given line to an observer located at a specific vantage point. Field of view (FOV),
also called area coverage (AC), is the union of all lines of sight radiating outward from a specific
vantage point. For either the constrained or unconstrained transceiver placement problem, LOS and
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FOV are fundamental operations. Within the Department of Defense, there has been a proliferation of
line of sight algorithms, which has recently prompted a standardization study U1i. There are two
types of line of sight algorithms: optical and electronic. The optical version renders a field of view
display based on what is visible to a rangeless optical sensor. Vegetation, among other factors, may
cause seasonal variations. The electronic version addresses a harder problem in that it takes into
account radio frequency (RF) propagation and associated power loss. It too, is affected by vegetation
and by other factors, such as the attenuating effects of a rough vs. smooth earth, troposcatter,
diffraction, reflection, soil conductivity, and solar flux. One of the more sophisticated electronic line of
sight algorithms is the Terrain Integrated Rough Earth Model (TIREM) [SI1.

In Figure 1, a simulated terrain and corresponding topographic map are depicted to illustrate
optical line of sight concepts. In the topographic map, light-colored areas are at higher elevation.
The terrain consists of hilltops A and B connected by saddle E, which forms a divide between valleys C
and D. Vantage point C offers vistas of hills A and B, and saddle E, but does not provide views beyond.
The field of view bitmap from point C, denoted Ac, is characterized by the diagonal line running from
the lower left comer of the topographic map to the upper right corner, portrayed at the left of Figure 2.
Visible areas are colored white, whereas invisible areas are gray. From C, one cannot see over into
valley D, nor from D can one see into valley C. Note that vantage point D's line-of-sight bitmap, Xo, is
the complement of Cs. It is important to observe that taken together (the set union AC U XD), the
combined vista offered by C and D is as comprehensive as that offered by points A, , or E separately.

-0.5

-2 0!

2-2

Figure 1. A simulated terain, and corresponding topographic line map.

C

Figure 2. Optical field of view bitmaps from valleys C and D respectively (white is visible).
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All field of view algorithms currently under development by the Department of Defense utilize
Digital Terrain Elevation Data (DTIED) as input to generate field of view bitmaps. DTED, produced by
the Defense Mapping Agency (DMA), is a multi-megabyte gridded database. A gridded database is a
discrete representation of a continuous terrain, where an elevation value is associated with each grid
cell of the map of interest. In Figure 3, the topographic map seen earlier has been overlaid with a ten
by ten cell grid. Some of the grid cells have been labeled with their respective elevation values to
illustrate a gridded database. Two different grid resolutions are currently available from the Defense
Mapping Agency: DTED Level 1, representing one hundred meter horizontal spacing, and DTED Level
2, with thirty meter spacing. DTED Level 2 provides a finer resolution product, but the computer
memory overhead is more prohibitive.

Figure 3. A gridded elevation database.

When constructing a field of view bitmap, any algorithm which accesses each element of the
digital grid is said to be an exact algorithm. With current technology, the time complexity required to
produce an exact optical field of view is 0 [ n3 1, where n is the number of sampled elevation values
along one edge of the DTED database. If some elements of the digital grid are ignored or bypassed
during processing, then the algorithm is said to be approximate. There are a variety of algorithms of
time complexity 0 [ n2 I which produce an approximate field of view; for examples, refer to [BI, R1].
The Broome algorithm, which utilizes a moving horizon technique, was the first to achieve 0 [ n2 I time
complexity. Empirical data indicate that the Ray algorithm produces output matching the exact with
high probability [R21. On a single processor, it is easy to see that the time complexity to produce a set
of exact field of view bitmaps for an n x n gridded database is 0 [ n5 ], while the time complexity to
produce a set of approximate field of view bitmaps is 0 [ n4 1.

Electronic line of sight algorithms combine power loss with terrain to produce a set of power
contours emanating outward from a sensor placement position. Generally, electronic line of sight is more
encompassing than optical line of sight, because electronic signals can be heard in places which cannot
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be seen. For the transceiver allocation problem, it is important that two potential transceiver sites lie
within the same power contour at a specified signal-to-noise-level. If a transmitter lies beyond the
contour, it cannot be heard by another transceiver. Also, if all other transceivers lie outside a power
contour corresponding to a specific transceiver location, then the transceiver will not be able to
communicate at that power level with neighboring transceivers.

Global visibility and the unconstrained problem.

For asset mautgement applications, it is useful to quantize field of view by devising a metric
which indicates global visibility of the bitmap. If there are w visible grid cells on an n x n bitmap X,
then the visibility ratio of the bitmap, denoted vr(A.), is defined to be:

vrQ() = w/n 2  [1

The visibility ratio is a metric useful for transceiver allocation during regimes of unconstrained
optimization, when fields of view from several vantage points must be cooperatively combined to
achieve maximal global visibility. When the allocation process cannot avail itself of the search
reduction afforded by constraint satisfaction, then it must resort to an unconstraied optimization
scheme. In the unconstrained transceiver pacemnent problem, the following objective function must be
maximized, where X is the field of view bitmap corresponding to the ith grid cell (where i is
incremented from left to right, then down), and k is the number of transceivers allocated:

k

Vr [U • 1 , whorm i = X.i, 1 < j :5 n2  [21
i-i

Theorem. For the unconstrained transceiver allocation problem, the time complexity required to
optimally place k transceivers is 0 [ na 1, where n is the number of grid cells along one edge of the
gridded elevation database.

Proof. On a gridded database with dimensions n-x n, the number of ways to place k transceivers is the
combination of n2 objects grouped k at a time.

n 2) =6n2 -l)...(n 2 -k+l) = [1 n2kl[3
(k) n( k(k-l- .l (3

This result is discouraging, since it indicates that as the number of transceivers to be allocated
increases, the time required to maximize the objective function increases exponentially in the number of
transceivers. An exact solution to the unconstrained problem is therefore intractable. To illustrate,
consider the case of placing three transceivers on a DTED level 2 grid. For the Killeen, Texas map, the
DTED grid dimensions are 901 x 901. Appealing to the theorem, the time complexity required to place
three transceivers on the grid isO [ 9016 J _ [11018 ]. For each of the 10i1 configurations of transceivers,
the objective function at [21 must be computed and compared.

To be practical, one must resort to heuristic techniques to obtain an approximate solution. One
such technique is simulated annealing [K1. Simulated annealing is a computer optimization technique
which models the annealing process of metallurgy, in which a physically stressed metal is first
heated, and then cooled at a certain rate to produce a stronger metal. The strongest such metal
obtainable by the annealing process corresponds to the global maximum of the objective function
formulated for a specific optimization problem.
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The Sensor Placement Analyzer.

Simulated annealing has recently been successfully adapted to the bounded resource allocation
problem, in a system called the Sensor Placement Analyzer (SPA) [P1]. The SPA work was sponsored by
the Department of the Army with Small Business Innovative Research (SBIR) funding. The objective
of SPA is to maximize an objective function corresponding to global visibility (with respect to optical
field of view) among cooperative sensor resources. SPA as originally implemented was adapted to a
124,000 scale USGS map, representing a 30km x 30km section of Madison County, Virginia. Because of
the prohibitive number of sensor placement locations required to address the unconstrained problem, the
SPA implementors elected to identify the highest elevation cell within each of nine hundred grid cells
(each one km on a side), and restrict sensor placement to these local maxima. The maxima were
extracted by hand-selecting contour data, while utilizing a digitizing tablet georeferenced with a
scanned map image of Madison County. For each of the nine hundred local maxima, a field of view
bitmap was precomputed, depicting area coverage from the site. To constrain the sensor placement
problem, a user is able to interactively create polygonal regions corresponding to both red (adversarial)
and blue (friendly) areas of interest, which govern respectively where red or blue sensors may be
placed. The user is also able to specify with a pull-down menu which of two optimization regimes to
run - a simulated annealing version, or a faster locally constrained scheme. Another constraint on the
system allows the user to specify whether radio netting constraints are to be obeyed when placing
sensors. Although there are no benchmark ground truth data available to test the quality of the
system's performance, it is readily apparent to an observer that excellent solutions are derived by SPA.

There are some limitations to SPA, as originally implemented. One is confinement of sensor
placement to local maxima, which implies that field of view from local minima (valleys) is not
considered. A new version of SPA, tentatively called the general placement analyzer (GPA), addresses
this limitation [B21. Another limitation suffered by any algorithm utilizing simulated annealing is
the development of an annealing schedule which lends itself to both high performance and an
admissible solution (i.e., an optimal solution). The primary complaint about simulated annealing is
usually directed at its slowness to converge. GPA plans to overcome this limitation by utilizing as many
domain-specific constraints as possible to reduce the search space to a minimal covering set of potential
sensor sites. One constraint which offers good leverage specifies that a collection asset such as a
transceiver must be located probabilistically within a relatively tight spatial bound about a roadway.

Exploiting the fringes of invisible areas to falitate combined field of view.

Transceiver placement algorithms, even when equipped with field of view bitmaps, are
frequently in a quandary regarding where to place a second transceiver after one transceiver has been
placed and its field of view displayed. The author suggests the following technique - place the second
transceiver upon the edge of an invisible, rea. The edges of invisible areas are often ridges or lips of
depressions, offering excellent vistas of regions not visible from the first transceiver location. The order
of placement is an open problem. If one adopts a greedy technique, which is not guaranteed to produce
an optimal solution, one can select the field of view bitmap with greatest visibility ratio as a good site
for the first transceiver. To facilitate cooperative line of sight, one then moves another transceiver to
the fringe of the largest invisible region. An alternative is to move a relay to the near fringe and a
transceiver to the far fringe. This logic is iterated until the supply of transceivers is exhausted, until
the summed visibility ratio approaches one, or until it is observed that no improvement is forthcoming.
In Figure 4, if one transceiver is placed at site T, then other transceivers and relays may be placed as
shown to enhance combined field of view. The fringe exploitation technique does have limitations,
which include: an invisible area may be within hostile territory, there may not be easy transport to
the fringe area, or the fringe area may reside beyond electronic line of sight of the first location.
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Figure 4. Assigning relays and transceivers to fringes of invisible areas.

Constraints on IEW asset management.

The constraint set for IEW asset management consists of a variety of databases, some static and
some dynamic. Static databases include: a table of the performance characteristics of the tmanmitters
and the receivers under consideration; a set of feasible collection sites based on Digital Terrain
Elevation Data (DTED); and a database comprised of the Defense Mapping Agency's thematic vector
overlay Tactical Terrain Data (TTD) MI]. The latter database is projected to contain a set of
topographic contours, with contour intervals specified by the map resolution (e.g., a 1:50,000 scale map
uses a 10 meter contour interval). Also important .re the optical and electronic line of sight databases,
which encode fields of view from arbitrary locations. These databases are normally computed in a
preprocessing step, which consumes quintic proc.ssing time and quartic memory to produce n2 exact fields
of view. Dynamic databases include (but are not limited to): a user-provided representation of the
forward edge of battlefield activity (FEBA) and forward line of troops (FLOT); phase fines
corresponding to the division area of interest (DA) and named areas of interest (NAI); no-go or slow-go
areas represented by a modified combined obstacles overlay (MCOO).

Transceiver placement confined to local elevation extrema.

Because of the large number of potential transceiver locations on a map n grid cells on a side,
many approaches to generation of field of view, including the original version of the Sensor Placement
Analyzer described above, espouse selecting potential sensor sites based on local elevation maxima.
Therefore, the local maxima of the DTED database are suitable candidate locations for transceiver
placement. Relatively high elevations generally provide high visibility vistas, making this a
powerful technique. However, low spots of the terrain are not accommodated, so it is not possible to
develop a field of view from a river valley. It has been observed that certain river valleys, such as the
Chosin reservoir valley in Korea, offer relatively wide fields of view [R1]. It is also true that in
mountainous terrain, there are many more roads in the valleys and passes than on the peaks
themselves, and transceivers are frequently deployed within a relatively tight spatial neighborhood
about a road. As a final note, there are many sites on a map which are not local maxima or minima, yet
still provide good directional vistas. Shelves or ledges on mountain sides frequently offer excellent one
hundred eighty degree vistas of a terrain, but are overlooked during the automated site selection
process. When looking for adversarial transmitters, one needs good field of view in the direction of the
FEBA. One research effort has devised a color-coding scheme to signify the relative visibility of
terrain to a user, based on the user's requirements [R1].
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Filtering out sites which are too near map features.

To minimize interference and to avoid detection, Army doctrine specifies that communications
equipment be stood off specified distances from map features such as roads, streams, and power lines. If
a candidate transceiver location is too near a map feature, then it may be removed from the candidate
list of transceiver locations, at the discretion of the analyst. An alternative is to perturb the location
slightly, until a new site is generated to meet the requirement. This latter action, however, often
relocates the site to a lower elevation, where it may not be appropriate to place a transceiver because
of poor field of view.

Previous research at the Intelligence Electronic Warfare Directorate resulted in a set of high-
performance algorithms designed to compute the distance from a query point to a set of map features
[C1]. These or similar algorithms may be utilized in a preprocessing step to remove those candidate
sites deemed too near map features. Alternatively, if one desires to keep the sites, the failed
proximity constraints notwithstanding, then each site may be tagged to indicate noncompliance with
doctrinal proximity specifications.

The division area of interest and forward edge of battlefield activity constraints.

During planning operations, an Army division is assigned a division area of interest (DAI).
Doctrinally, a DAI is a rectangular region of about 20km X 30m, although the shape and dimensions are
dependent upon map context. For the asset management problem, the DAI frontage boundary may be
used to filter potential transceiver placement locations. The DAI frontage boundary may be viewed as
a line segment which segregates potential red transceiver locations from blue.

During conflict, there is sometimes an implicit hypothetical boundary visualized or drawn by
an analyst between the frontages of friendly and opposing forces. This boundary, called the forward
edge of battlefield activity (FEBA), imposes yet another constraint on friendly transceiver placement.
The FEBA may be perceived as a context-sensitive perturbation of the front edge of the DAI.
Generally, it is ill-advised to place a transceiver on the side of the FEBA occupied by an opponent, so
that only those candidate sites in friendly territory need be considered. Once again, an analyst may
override the DAI ot FEBA restrictions in the same way he may overiide a proximity constraint, but in
most cases he will find it prudent to allow the constraint to stand. If he does relax the constraint and
allows the sites to persist in the database, then the asset management system may tag the sites as
having failed the DAI or FEBA constraints.

Computing the hearability graph.

Once the proximity, division area of interest, and forward edge of battlefield activity
constraints (given they are available) have been exploited, the list of candidate transceiver placement
sites may be subjected to constraints imposed by radio frequency (RF) power propagation modeling. RF
line of sight combines power loss with optical line of sight. Using RF propagation models, one may
determine if a candidate site is within a specified power contour radially produced from another
location. A power contour is derived by performing an RF line of sight computation from one location to
another, and the contour is labeled with the signal to noise ratio, expressed in decibels (dB), of a
hypothetical communication. Running the RF propagation model over all sites in the candidate list
produces a graph. The nodes in the graph are candidate site selections, and an edge represents certitude
that a node can hear another node at a specified power level. Observe that a node may represent an
entire region of RF reception, and is not necessarily just one point on the map. If two nodes are connected
by an edge, then they can communicate with each other at a specific power level, which means that one
can hear the communications of the other. Conversely, the lack of an edge between nodes indicates that
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there is no network capability between them. For descriptive purposes, we call the resultant connected
graph a transceiver hearability graph. In one such graph at Figure 5, potential site locations are
linked to other hearable locations, at various power levels.

QS~dB - B

30dB 50dB 0040B 0 d~

r / 0dB

Figure 5. A transceiver bearability graph.

Uninformed surveillance.

If there is no information available concerning the locations of red transceivers, then blue forces
can adopt one of a variety of strategies to become informed. One strategy is to place k transceivers on
the bearability graph at roughly equal distances across the frontage of the DAI, while utilizing
transceivers in receiver mode. This is somewhat analogous to a zone defense employed by professional
football teams. Another strategy is to use an unconstrained optimization technique such as simulated
annealing to find the best optical field of view locations for blue transceivers, place transceivers at
those locations, and trust that red transceivers do not deploy in invisible areas. Yet another strategy is
to go into survetillance mode with the transceiver capable of acquiring the best field of view, usually an
airborne platform, and scan the DAI until activity is detected. Once activity is detected, blue forces
may begin to deploy transceivers to populate the hearability graph, motivated by the requirement to
monitor red activity.

Hypothesizing a communications network of opposing forces.

With the DAt, FEBA, hearability graph, and other exploitable constraints in hand, one may
proceed to hypothesize the deployment of a communications network managed by opposing forces. If an
opponent is responsible for managing k transceivers, then the k devices must populate the besarability
graph in such a way as to define a network on the hostile side of the FEBA. No single red transceiver is
permitted to be outside the communications range of every other red transceiver. Another way of
expressing this is that at least one other transceiver must be netted to a given transceiver.

The suspected locations, if they are available, of opposing force transceivers, are plotted on the
hearability graph. If a suspected location does not correspond to a node of the hearability graph, then
it may be installed into the graph at this time, its RF power propagation contours computed, and its
power links connected to bearable red transceivers. In Figure 6, locations of three red transceivers have
been hypothesized, indicated by the shaded nodes. The transceivers have been labeled RL, RC, and
eRe which represent red's left, center, and right respectively. Note that RL is netted to RC, which is in

turn netted to RR.

122



R33 Ret

Figure 6. A simulated red communications network deployment.

Informed surveillance and parity matching.

If and when suspected or hypothetical locations of red transceivers become available, due to
information gathered during the intelligence cycle, it becomes worthwhile to attempt to identify
optimal collection sites for blue transceiver placement. These sites must obey the RF propagation power
constraints imposed by the hearability graph.

Parity matching is used to implement a one-on-one assignment of blue to red transceivers, with
an accompanying abandonment of the zone defense occasioned by uninformed surveillance. Parity
matching is a technique to counter every located adversarial transceiver with a friendly one. The
surveillance regime transfers from uninformed to informed. The underlying assumption is that for every
red transceiver deployed, there is a corresponding blue transceiver available to counter it. In Figure 7,
it has been determined that to cover red's center transceiver effectively, there are two possible
locations, BCO and BC2, for blue's center transceiver. It is computationally more efficient to begin the
allocation process with blue's center rather than the extremes of the network.

RL

Figure 7. Parity matching: lining up blue's center with red's center.

It is now feasible to develop the topology (graph-theoretic deployment) of blue's network. If
location BCO is selected to be the location of blue's center, then there are two possible locations
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(connected to red's left) for blue's left, but only one for blue's right. Thus there are two feasible
transceiver network deployments using site BCM as blue's center (Fig. 8). For blue's left, one might select
one of the two available locations BL1 or BL2 based on stronger signal-to-noise ratio, better logistics
support, or a variety of other operational constraints. Note that with this topology, blue's left
provides redundant coverage, since blue's center alone is capable of monitoring both red's left and center.

BLI RL RR

Figure 8. Possible locations for blue's flanks, given BC1 center selection.

If site BC2 is selected as biue'- ccnter location, then there is a unique allocation strategy, which
puts blue's left at BL and blue's right at BR (Fi- 9). In this instance, blue's right may be detached from
the network since blue's center transceiver covers both red's center and right. When this allocation is
added ti the two found previously, it is seen that there are three feasible transceiver allocation
strategies for this small example. In practice, for large scale problems, there are likely to be many
allocation solutions which satisfy a commander's transceiver allocation requirement.

RRRL

Figure 9. Possible locations for blue's flanks, given BC2 center selection.

Totally constrained transceiver allocation and the stable marriage problem.

In this section, the algorithmic complexity of the totally constrained transceiver allocation
problem is discussed. The allocation problem is totally constrained when both the hearability graph is
available and the locations of adversarial transceivers are known. It will be -n that these
constraints make the allocation problem much simpler than unconstrained optut-dzation. However, it
should be emphasized that locational constraints are available only infrequently, during regimes of
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informed surveillance.

Theorem. The totally constrained transceiver allocation problem is equivalent to the stable marriage

problem.

Proof. In the stable marriage problem [W2], it is required to match k bachelors with k maidens in such a
way that the resulting marriages are stable. By "stable", it is meant that there do not exist "more
suitable" marriages between spouses which might cause the given set of marriages to dissolve. To
illustrate, two couples who prefer their own spouses to those of another couple have stable marriages.
Turning to the transceiver allocation problem, it may be construed that blue receivers correspond to
bachelors, red transmitters to maidens, and signal-to-noise-ratio between blue and red to the marriage
"bond". It is possible to stabilize an unstable transceiver allocation by requesting two blue transceivers
to swap surveillances. The allocation of Figure 10 (matching is bold) is unstable, since it is possible to
find another matching with greater signal-to-noise ratio (the 50 and 40 dB links). To stabilize the
allocation, one simply needs to detach the crossing 20 dB links and enable the 50 and 40 dB links.

4- Red
2W .Blue

Figure 10. An "unstable" transceiver allocation.

Theorem. The totally constrained bounded resource problem is solvable in linear time.

Proof- This follows immediately, since the stable marriage problem is solvable in linear time [S21.

Unconstrained vs. constrained optimization: computing the savings.

It was shown above that in an unconstrained application the time complexity to place k
transceivers on a gridded map of dimension n is O [ n2k 1. It was also shown that for a totally constrained
application, the time complexity is O [ k 1. The savings in performance is the difference between these
two functions. As the number of transceivers grows, the total savings is the integral of the difference of
the functions. The savings itself is exponential in complexity, as represented at equation [7] below.

t = a~n 2k + b•[4]

t = a2k +b2  [51

A=f(ain2k + b, -a 2k-- b2 )dk [6]a1 d [6]2

=-1 n2k_a2 k2 +b 3k+c [7]
In n 2
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Specificity of constraints and algorithmic complexity.

It has been demonstrated that in an unconstrained transceiver placement application, the time
complexity to solve the allocation problem is exponential in the number of transceivers, while in a
strongly constrained regime, the complexity is linear in the number of transceivers. Although open
problems remain for sets of weaker constraints which lie somewhere between these extrema (see
tabulation below), it is surmised that the time complexity for the weakly-constrained problem is
bounded between exponential and linear. For example, when only the hearability graph is available,
but the locations of adversarial transmitters are unknown, the domain is similar to the quadratic
matching problem, which has time complexity 0 [ n2 1.

UNCONSTRAINED OPTIMIZATION 0 [ n2 k I

1. Transceiver sites permitted anywhere on map

2. Transceiver sites confined to local maxima
Filter sites based on local maxima

3. Proximity to interfering map features is known
Filter sites based on proximitylinclusion

4. Division area of interest (DAI) known
Filter sites based on DAI frontage

5. Forward edge battlefield activity (FEBA) known
Filter sites based on FEBA frontage

6. Optical line of sight bitmaps available for some locations
7. Electronic line of sight bitmaps available for some locations

Compute partial hearability graph

8. Optical line of sight bitmaps available for all locations
9. Electronic line of sight bitmaps available for all locations

Compute complete hearability graph

10. Location of some red transceivers suspected
Find possible blue assignments

11. Network topology of two or more red transceivers suspected
Partial one-on-one blue/red matchings

12. Location of all red transceivers suspected
13. Network topology of all red transceivers suspected

One-on-one parity matching of blue on red
Unstable matching (weak S/N ratios permitted)
Stable matching (optimal SIN ratio matching plotted)

SEVERELY CONSTRAINED OPTIMIZATION 0 [ k I
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Massive parallelism. the proposed tByte-LoSight machine.

When developing an ensemble of field of view bitmaps corresponding to specific sites within a
gridded database, it is possible to gain algorithmic performance by utilizing concurrency wherever
possible. The proposed tbyte-LoSight machine is a massively parallel architecture concept designed to
perform field of view bitmap constructions and cooperative transceiver placement. The machine as
envisioned is dimensioned as a 1000 x 1000 array of processors, with each processor having access to one
megabyte of local RAM. The million processors have a combined access to a million bytes of local RAM
- hence the tByte notation.

Field of view calculations. A processor's location in the tByte-LoSight array is analogous to
the corresponding location in Digital Terrain Elevation Data, Digital Elevation Matrix, or similar
gridded array. Each processors RAM is preloaded with the values from the gridded database. Then, in
parallel, the field of view bitmap )'•i for each location (i,j) is produced for each element of the array,
and is used to overwrite the grid data in local RAM. With this architecture, tByte-LoSight is capable
of storing up to a million bitmaps, each one megabyte in size. Using an approximate field of view
algorithm, to produce an ensemble of n2 bitmaps, the performance of the architecture is 0 [ n2 ]. An
alternative, more finely-grained architecture replaces each processor with an n x n array of processors,
which speeds up the bitmap generation process to 0 [ n ]. The performance improvement is due to each
low level processor computing a single LOS radius rather than n2 radii.

Transceiver placement. When during asset management processing a transceiver is tentatively
placed at cell (ij), the tByte-LoSight machine fetches bitmap Xk and inverts it to produce the
complement of Xk-j , denoted -k-i. Concurrently, tByte-LoSight then computes the set difference between
each of its elements and k-,j, followed by the set difference between -Xtj and the result, while
progressively updating local RAM. Finally, a logical operation is performed to find the processor
whose RAM most closely resembles the null bitmap, for this location is deemed to be the best site for a
second transceiver. From the second site's location, this logic may be iterated until the summed
visibility ratio approaches one, until the supply of transceivers is exhausted, or until it is judged that
no further improvement is possible. The tByte-LoSight architecture is currently just a concept. The cost
and reliability of such a massive architecture are issues, as are data transfer rates, power requirements,
and communications polling costs.

Conclusions.

It has been shown that the Inteftence Ekexronfc Warfare transceiver allocation problem
exhibits a wide spectrum of algorithmic complexity, depending upon the availability of constraints to
bound the problem. At one extreme, when no constraints are available, the time complexity required for
an optimal field of view solution is exponential in the number of transceivers allocated. On the other
hand, for the tightly constrained problem, when the radio frequency propagation graph is known, along
with suspected locations of the transmitters of interest, the time complexity is linear in the number of
allocated transceivers, since the problem reduces to Knuth's stable marriage theorem. It is speculated,
but has not yet been proven, that when only weaker constraints are available, the complexity falls
somewhere in between. Another result to emerge from this research is a new technique to place
transceivers on the fringes of areas invisible to an already placed transceiver. Finally, a massively
parallel architecture has been conceptualized to support both field of view and transceiver placement,
although infeasible power requirements preclude implementation in the short term.
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ABSTRACT

The Concepts Evaluation Model VII (CEM VII) is the latest version in the progres-

sion of US Army theater force model development. It has been developed under the auspices of the

US Army Concepts Analysis Agency (CAA).The model is used by the Army to assess and opti-

mize combat force capability. Typically, the model involves battle simulations of many months

duration, encompassing multiple armies and diverse terrain.

CEMPLOT is a visualization tool used to portray the results of battle simulations

performed in CEM VII. It fulfils the need for a user-friendly, interactive graphics tool with different

display options. The interface is developed to run in the X Windows and OpenWindows environ-

ments. The program is written in C and it utilizes Xlib and XGL libraries. The user selects various

frames of information from a menu, developed using the XView toolkit.

Some of the options offered to the user are: 1) display of the battle terrain, 2) display

of the location of the Forward Edge of the Battle Area (FEBA) of the two conflicting forces at dif-

ferent time steps, 3) display of resources such as number of artillery pieces and close air support

units for the assembled army units, 4) display of the names of army units in combat and 5) infor-

mation regarding the personnel and ammunition losses incurred by the two opposing forces at dif-

ferent time intervals.
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1. INTRODUCTION

1.1 Historical Perspective

The Concepts Evaluation Model VII (CEM VII) is the discrete event battle simulation

model, which exists under the auspices of the US Army Concepts Analysis Agency (CAA), located

in Bethesda, Maryland. CEM VII is used by the Army to assess and optimize combat force capa-

bility. The kernel of CEM VII capability is the ATCAL (Attrition Model Using Calibrated Param-

eters) algorithm [Johnsrud, 1980] which is used to perform engagements. CEMPLOT is the

visualization tool developed at the Department of Mechanical Engineering, Colorado State Uni-

versity, to display and interpret information produced by CEM VIL ypica Ily, CEM VII involves

simulations of many months duration, encompassing multiple armies and diverse terrain. The util-

ity of the simulation lies in the degree to which the information produced by one or more runs of

the model can be interpreted. A PC plotting program [Stoll, 1992] exists, which visualizes CEM

VII output data. CEMPLOT, besides duplicating the functionality of the PC program in a Sun X

environment, presents the user with additional features to help visualize CEM output.

1.2 CEMPLOT Program Overview

CEMPLOT runs in the X Windows and OpenWimdows environments and uses the XGL

graphics library extensively (XGL 2.0). It uses a graphics toolkit XVIew to provide user-interface

objects such as menu buttons. The program has the capability to display CEM output data in color

and accepts information and commands from the user, interactively. The user-interface consists of

a base frame or window which contains the graphics canvas (e.g., where the terrain and FEBA are

plotted) and the input panel (control buttons). The button items include panel buttons which per-

form a function when clicked on, and menu buttons which allow the user to select a particular

option from a menu.

The position of CEMPLOT in the CEM hierarchy is displayed in the flow-chart of Figure
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1, showing the data files which form the input to the visualization tooL The program exists as a

collection ,if C routines which implement the various options of CEMPLOT. The pmgamn has the

capability to:

(i) Display the battle terrain.

(ii) Display the Forward Edge of Battle Area (FEBA), overlaid on the terrain, for every

theater cycle.

(iii) Display tactical report data, such as number of personnel, artillery, close air support

units, etc., for each unit assembled along the FEBA over different theater cycles.

SPlot theater cycle number versus logistics data, such as amount of ammunition avail-

able, versus time step.

(v) Present a roll-call of all units assembled on the opposing sides at a particular theater

cycle (time step).

(vi) Perform geometrical transomations (scaling and rotation) on the FEBA/terrain plot.

(vii) Animate the sequence of FEBA movement.

2. CEMPLOT: INPUT FILES

CEMPLOT uses many input files, one of which is mandatory. The mandatory input file to

the visualization program is a battle terrain data file. This file is one of the input files for the pre-

processor which is input to CEM VII (refer Figure 1). The other input files include FEBA, tactical

report, and logistics data files, which are output from the CEM VII post-processor [Allison et al.,

1985]. The following sections discuss the data contained in these files in greater detail
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( EBA Me e Tactical report

"•1CEMIPLOT l

Figure 1 Position of CEMPLOT in the CEM hierarchy

2.1 Battle Terrain Data

The CEM uses a simplified representation of the battlefield [Johnson, 1985]. The distances

in the direction of troop movement (vertical) are in kilometers with a minimum distance of one-

tenth of a kilometer. Distances along the front (horizontal) are measured in minisectors (see Figure

2). The battle terrain is diverse in nrmre and is categorized as types A, B, C and D. The four terrain

types denote the general nature of the terrain and have some bearing on the mobility of ground

combat units.

(i) Type A: This terrain is mainly flat and is excellent tank country.
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(ii) Type B: Rolling lands and is marginally suited for tanks and wheeled vehicles.

(iii) Type C: Mountainous territory. On this terrain, tanks and wheeled vehicles must

remain on the roads because of step slopes.

(iv) Type D: It represents some major obstacle that would normally require extra or spe-

cial effort for the forces to negotiate or pass through. It may be a river, lake, marsh,

canyon or some man-made barrier, such as a minefield.

The terrain data file contains information regarding number of engagements, number of

minisectors and the terrain extents for sets of minisectors. The depth of a barrier of D terrain is set

to the minimum distance of movement of one-tenth of a kilometer. For example, a particular terrain

band, say, 10 minisectors wide, may be comprised of 3.7 km of Type B, followed by 9 km of Type

A, followed by 0. 1 km of Type D, etc.

Subsector minisector

Division

FEBA
"B r/ d(Forward Edge

SBlue of Battle Area)

Figure 2 Unit Deployments (Schematic)
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Figure 3 Terrain/FEBA Map From CEMPLOT

2.2 Unit Deployment Data

The deployed forces are resolved to brigade for the Blue side and division for Red. Figures

2 and 3 illustrate the deployment of a Blue force opposing a Red force. A Blue brigade front (such

as the distance AB in Figure 2) or a Red division front (e.g. EF) is defined as a sector. The forward

line of assembled troops (Blue and Red) is termed the FEBA (Forward Edge of Battle Area). The

engagements between the two forces results in the forward and backward movement of the FEBA,

with time. The data regarding the position of each minisector along the FEBA, for every theater

cycle is contained in a data file, which is output from the CEM VII post-processor. CEMPLOT

reads and displays information from the FEBA data file.

2.3 Tactical Report Data

The tactical report contains information, for every nth division cycle, regarding the loca-
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tion, mission, status, authorized troop strength, supplies and number of major weapons assigned to

the units in combat. The units, for which the information is provided, include Blue brigades and

Red divisions. The unit tactical report generated by the CEM post-processor is passed through a

file conversion program to maintain file format compatibility with the existing PC CEM plotting

package. The converted file is then passed as input to CEMPLOT.

2.4 Logistics Data

The logistics report presents data concerning the consumption and replacement of

resources by the combat units. It includes the total amount of resource lost, both temporarily and

permanently, due to both combat and noncombat causes since the start of engagements. The

resources, include the number of participating personnel and the amount of ammunition expended.

CEMPLOT reads the logistics data and displays it in the form of Cartesian plots.

3. CEMPLOT: PROGRAM OPERATION

The program, CEMPLOT, is run in the UNIX operating system, either in the X Windows

or OpenWindows environment. The program, to start with, brings up an application window or

base frame as depicted in Figure 5. The base frame has an input panel which consists of command,

text and menu buttons, examples of which are shown below (Figure 4).

(ITH ) T file name.dat

(a) Panel command button (b) Panel text button

SCALEAXIS: E All axes

(c) Menu button

Figure 4 Examples of Panel Buttons

135



Input Panel

M.•

Graphics Canvas

Figure 5 CEMPLOT base frame
The user types the names of the CEMPLOT input data files in the text space provided to the

right of the corresponding panel text buttons. This action is followed by clicking the particular text

button using the left mouse button [Shivaswamy and Burns, 1993]. The terrain and FEBA maps

are brought up in the graphics area or the canvas of the base frame.

The four different terrain types are represented in CEMPLOT by different colors. The ter-

rain is displayed laterally as bands, each of which is a pre-specified number of minisectors wide.

The forward line of the assembled troops or the FEBA is displayed as a combination of a blue and

a red band, each of fixed height (refer to Figures 3 and 5). The individual units or sectors on each

side fall on minisector boundaries and are delimited in CEMPLOT using vertical yellow lines

along the FEBA.
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4. CEMPLOT: USER OPTIONS

These commands are activated by clicking the left mouse button over the required option

button. The options available under CEMPLOT are discussed below.

4.1 Print Unit Data

"Unit Data" is the default option under the CEMPLOT main menu. This option prints the

data regarding number of personnel, supplies and major weapons for the "picked" combat unit. The

option brings up the terrain map with the FEBA overlaid on it. The user "picks" a unit by driving

the cursor onto that particular unit (between two adjacent yellow lines) and clicking on it using the

left mouse button. The unit thus picked is highlighted with an asterisk. The tactical report data per-

taining to that unit is displayed in an output window (see Figure 6) which may be moved around

or iconified just as any other window. This option retains its capability even after the terrain and

FEBA plot is scaled and translated.

all=meow of %MFG tr e owa-Is Oimh ta fur, MWe

:A-

BU.

------- --------

Trd. -i Torrmiu $:M Turel. C:M Terreie OM

Figure 6 CEMPLOT: Unit Data Display
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4.2 Print Rol CAll

Under this option, the names of all the units present at the end of the current theater cycle

are displayed. The data are output, in a manner similar to the previous option, in a new window, as

shown in Figure 7. The data displayed include the theater cycle number (time step), the names of

all Blue brigades and Red divisions in combat. The output window can be moved around or icon-

ified as in the previous option. The terrain map with the FEBA information overlaid on it will

remain displayed in the main graphics window while running this option.

Figure 7 CEMPLOT: "Roil Call" Output Window

4.3 Show Logistics vs. Theater Cycle Graph

The total unit losses of personnel and ammunition, at each theater cycle, are plotted versus

the theater cycle number in Cartesian form. This includes data for each Blue brigade and Red divi-

sion. The screen output of this option of CEMPLOT is shown in Figure 8.

4.4 Scaling and Translation

These options allow the user to scale or translate the plot on the screen in X, Y, Z, or uni-

formly in all the three coordinate directions. The user selects the axis of transformation from a

menu and the scaling or translation value from a slider bar. The scaling and translation values are

a percentage of the screen plot and are cumulative in nature. Thus, scaling first by 200% and then
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Figure 8 CEMPLOT: logistics vs. cycle number graph

by 50% results in a cumulative scaling of 100% (unchanged). These options are particularly useful

when many combat units are assembled across a few minisectors, in which case the plot could be

scaled to yield more detailed information.

4.5 'Start', 'Step +' and 'Step -1 Options

The battle engagements between the opposing forces take place over a specified number of

time steps or theater cycles. The above options allow the user to view data present in the FEBA and

tactical reports for any theater cycle. The 'Start' button sets the theater cycle number to zero,

enabling the user to view information pertaining to start of battle engagements. The options 'Step

+' and 'Step -' increment and decrement the FEBA plot by one theater cycle number, correspond-

ingly.
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4.6 Animation: 'Animate +' and 'Animate -'

These options animate the sequence of FEBA movement for theater cycles zero to maxi-

mum. 'Animate +' and 'Animate -' move the FEBA from zero to maximum, and from maximum

to zero, respectively. These options are helpful as they provide the user with an overview of the

progression of the entire battle.

5. CEMPLOT: Examples of Use

5.1 Interpreting Terrain Features and FEBA Movement

The terrain and FEBA map displayed by CEMPLOT can be studied for the distribution and

extents of each terrain type and their influence on the movement of forces. This can be done very

easily by stepping through the different theater cycles and studying the displacement of the FEBA.

This study can be repeated for different terrain data sets and their corresponding FEBA location

files. Figures 9, 10, and 11, display terrain and FEBA data sets for the Campaign I, Europe, and

Ardennes data sets, respectively. Eac& figure displays the position of the FEBA at the beginning

and end of the simulation (in other words, at the end of theater cycle number zero and maximum,

respectively).

5.2 Parametric Studies

CEMPLOT can be used to visualize any CEM VII simulation model across force varia-

tions. It provides a user-friendly and robust tool for the visualization of data generated by different

runs of CEM VII. CEMPLOT can display several measures whereby one force variation can be

compared to another. These include the displacement of the FEBA, the total resources expended

by each side, and the time taken to arrive at a particular state or condition of the battle. The user

can achieve this very easily by running multiple copies of CEMPLOT (invocation in the back-
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ground mode), providing each with data files output from varying input parameters. The separate

CEMPLOT windows thus generated can be scaled and set adjacent to one another for convenience

in comparison.

m NOW d twess a a S•mnft "k nw" es .-I uslu tbe1 a"" rpm- N

SR.
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(a) Theater cycle number 0 (b) Theater cycle number 15

Figure 9 Campaign I data set

5.3 Evaluation of CEM VII Algorithms

CEM VII, including its pre- and post-processors occupy nearly 200 MegaBytes of disk

space. The post-processor outputs up to 18 different data files, some of which are in binary format.

The data files are very large in size and are daunting to interpret textually. The massive amounts of

data generated mandate that a special means of display be developed in order to interpret and dis-

play them. CEMPLOT seeks to fulfill this need, in a user-friendly fashion, in real time, in a UNIX

workstation environment.

Efforts at Colorado State University [Brewer and Burns, 1991] have been directed towards

the vectorization of the ATCAL algorithm and its insertion into CEM VII. CEMPLOT has proved
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to be very useful in interpreting the results of vectorizaton and in comparing them to those

obtained from unvectorized algorithms. The evaluation is done by exploring the convergence of

the unvectorized and vectorized codes. The global variation of FEBA with time is adopted as a met-

ric of convergence, which is then studied from the display generated by CEMPLOT.

6. Future Work

6.1 Incorporating Posture Information

Each combat unit, _- Aved to Blue brigade and Red division, is associated with a particular

posture for the engagement [Allison et al., 1985]. This may be one of the following eight types: (1)

Blue attack; Red delay, (2) Blue attack; Red prepared defense, (3) Blue attack; Red hasty defense,

(4) Blue attack; Red attack, (5) Red attack; Blue hasty defense, (6) Red attack; Blue prepared

defense, (7) Red attack; Blue delay, and (8) Static. Efforts are presently underway to display this

information for all the assembled units at the end of each theater cycle.

6.2 3-Dimensional Fractal Display of Terrain

A realistic interpretation of the battle terrain data has been attempted making use of the

technique of fractals. This effort involves modeling the terrain data using a fractal generating algo-

rithm in a 3-dimensional format. The generation and display of such a model has been achieved

and efforts are underway to incorporate it as an option under CEMPLOT.
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ABSTRA,.CT A nonlinear dynamic systems approach to mathematical analysis of the
integrate-and-fire (I & F) model neuron, a monoionic simplification of the Hodgkin-Huxley model
for action potential generation in the excitable biological membrane, is presented. It is shown that
under periodic activation (driving signal), as would arise in a synchronized network of such
neurons when dendritic-tree processing is assumed, the firing behavior is described by an iterative
map of the interval [0, 2n] onto itself which we call phase-transition map (PTM). Like other maps
of the interval onto itself, the PTM can be studied employing the tools of nonlinear dynamics. This
furnishes a novel way of viewing the microneurodynamics of neural networks and shows, that
despite the simplifications made in the I & F model neuron, it exhibits, in its spiking behavior, a
high degree of functional complexity approaching that of the living neuron. This is manifested by
a variety of firing modalities depending on parameters of the periodic activation, which include
regular firing phase-locked to the periodic activation or a subharmonic of it, quasi-periodic firing,
erratic firing, and bursting and can bifurcate (rapidly switch) between these firing modalities as the
parameters of the periodic activation are altered, hence the name bifurcating neuron. Illustrative
examples of this complex behavior are given in the form of bifurcation diagram, Arnold Tongues
diagram and the Devil's Staircase diagram. These show the bifurcating neuron is able to detect
coherent episodes in its incident spike wavefront, the aggregate of spike trains incident on its
synaptic inputs, and encodes such coherent activity whenever it occurs, in a complex manner
depending on the parameters of the periodic activation potential produced by dendritic-tree
processing of the incident spike wavefront. When the activation potential is not periodic, the
bifurcating neuron reverts to the usual sigmoidal response and shows an upper limit on firing
frequency which serves the useful function of containing the maximum firing activity in a network
of such neurons in a manner analogous, but not exactly equivalent, to a similar limit imposed by
refractoriness in the living neuron.

The bifurcating neuron model combines functional complexity with structural simplicity
and low power consumption (because of its spiking nature). Accordingly, it is ideal for use in
modeling, simulation, or hardware implementation of a new generation of neurocomputers in
which synchronicity, bifurcation, and chaos, which are believed to underlie higher-level cortical
functions, can be studied.

INTRODUCTION. Most neural net models assume sigmoidal neurons and therefore
cannot account for the relative timing of action potentials (spike patterns) impinging on the
dendritic-tree of a neuron from its presynaptic neurons, The bifurcating neuron concept and model
[1] is an outcome of using the tools of nonlinear dynamics to characterize the behavior of the
neuron's excitable (axonal) membrane in a manner that accounts naturally for temporal effects. It

* Supported in part by the U.S. Army Research Office
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combines functional complexity paralleling that of the living neuron with swtc2: mral simplicity and
low power consumption which makes it an attractive building-block for a new generation of neural
networks specially suited for modeling higher-level cortical functions such as feature-binding,
cognition, inferencing, attention, reasoning, etc.

There is increasing evidence in the literature encouraging speculation that such higher-level
functions may involve synchronicity, phase-locking, bifurcations, erratic (chaotic firing for
possible adaptive annealing), and dynamic signal dependent (adaptive) partitioning through which
populations of cortical neurons may fleetingly divide into sub-populations or assemblies, each with
a prescribed relative-phase pattern between its spiking neurons, that act in parallel in solving
complex tasks with each sub-population acting collectively. Thus dynamic adaptive partitioning is
the means by which cortical networks may carry out collective computations in several sub-
populations of neurons in parallel. The significance of collective/parallel processing was recently
discussed by Zak [2] in the context of Nonlipschitzian neural networks with unpredictable
dynamics.

The relative timing and synchronicity in firing of neurons as a mechanism for feature-
binding was predicted by Marlsburg [3] and Abeles [4] on theoretical grounds. Recently,
synchronization effects in the firing of neurons at different recording locations in the cat's visual
cortex upon suitable visual stimulus have been observed [5]-[l 1], raising thereby intriguing
speculation about the nature of cortical processing, and stimulating wide spread interest. Temporal
effects in the olfactory bulb have also been studied extensively by Freeman [12] and claims
regarding the implications of rythmic firing activity in consciousness have been covered by the
media [13]. Further discussion of synchronization effects in temporal neural networks is given in
[14]-[16]. It is now conjectured that synchronized firing of neurons in the visual cortex, for
example, might: (a) label spatially coherent or common features in the visual data such as motion,
contrast, texture, or color, (b) play a role in feature-binding, cognition, and other higher-level
cortical functions, (c) could play a role in information absorption (learning) optimization in
biological systems. Obviously, judging the validity of this conjecture requires thorough
understanding of the mechanisms that can cause neurons at separate locations to synchronize their
firings including, computer simulations aimed at studying and understanding the collective
dynamics of spiking neural networks whose neurons are not simple processing element but
possess functional complexity, like that of the bifurcating neuron model, that would reflect itself
ultimately in the computing power of the network as a whole.

In this paper we present the results of a formulation of a bifurcating neuron theory which
enables applying the power and the tools of nonlinear dynamics to characterizing its behavior in a
manner that permits greater insight in neurodynamics and to possible utilization of synchronization,
bifurcation and chaos in the design of a new generation of powerful neurocomputers.

The goal is to develop a bifurcating neuron theory that is dn lixj., =dictixe and
qlaulalixf. Descriptive in the sense that it should give true physical insight into the complicatedprocesses involved. In the words of P.M. Koch [17], "a useful theory describes the essential
physics of a process simply, preferably with figures and simple equations whose behavior with
variation of parameters can be explored. The theory must be predictive because unless it can raise
new questions and predict answers, it will likely be a dead end". Experimenters warm-up to
theories that say "if you do such-and-such, then you will observe thus-and-so". The theory needs
to be also quantitative because something is missing if it cannot be reduced to calculations that "get
the numbers right".

All these goals ame achieved in the theory presented here. To them we need to add, from
the outset, the essential features we seek in a neuron model evolving from any developed theory.
These features are:
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"* Production of an action potential or spike

"* Existence of a refractory period to limit the maximum firing frequency to conserve
energy and eliminate reverberations and reflections in a network

"• Ability to integrate incoming synaptic inputs and to account for passive and/or active
spatio-temporal processing carried out by the neuron's dendritic-tree

"* Ability to respond to external signals in a manner that resembles that of the living
(biological) neuron, i.e., production of spiking activity similar to that observed in the
biological neuron under different forms of stimulus.

* Be structurally simple and possess low power consumption in order to facilitate
hardware implementation of neurocomputering structures.

The starting point is the Hodgkin and Huxley model of the biological membrane [ 181 which
describes membrane dynamics and spiking, the production of action potentials, in terms of three
ionic currents. The shape of the action potential (spike) produced by this model resembles
faithfully that observed in the living (biological) neuron and exhibits refractoriness. The distinct
shape of the action potential is determined by the interplay between the dynamics of the three ionic
currents in the model. Because the shape of all action potentials in biological networks is more or
less the same, one can argue that the shape does not convey information and that only the
interspike interval (the interval between action potentials) and/or the relative timing between action
potentials in a network) are important in neuroprocessing of information. This argument has
prompted us to simplify the H-H model to a monoionic current model in order to facilitate its
analysis as a dynamical system. This is done in Section 2 for two types of activation: nonperiodic,
which is shown to lead to the usual sigmoidal response and periodic, which is assumed to arise
when the dendritic-tree receives correlated spike trains, i.e., coherent spike wavefronts and is
shown to lead to complex functional modalities far exceeding that of the sigmoidal neuron model.
In Section 2 we also present examples of applying the bifurcating neuron theory, specifically the
PTM, to characterizing the behavior of two bifurcating neuron embodiments that illustrate the
complex behavior of the model. Concluding remarks and implications of such functional
complexity and other properties of the bifurcating neuron are discussed in Section 4.

2. ANALYSI. Figure I (a) shows an equivalent circuit of the monoionic model. In it
I is the monoionic membrane currently representing an energy source for restoring the membrane
potential after firing, R and C are the membrane resistance and capacitance respectively, v is the
capacitor voltage, i = 0 (v') represents the membrane nonlinearity, assumed to be S-shaped and
u(t) is the activation potential of the membrane. u(t) represents the effect produced at the biological
neurons hillock by synaptic inputs to the neuron. A piece-wise linear approximation of the S-
shaped nonlinearity is shown in Fig. 2 after inclusion of the effect of the activation potential u(t)
which represents the modulation in membrane potential produced by integration of action potentials
(input spike trains) arriving at the neuron's dendritic-tree from its presynaptic neurons. The circuit
in Fig. 1 (b) is equivalent to that in Fig. I (a) when the voltage source E is set equal to E = IR. It
represents the circuit diagram of an integrate-and-fire neuron or relaxation oscillator neuron whose
dynamics we will study here in detail. Despite its simplicity, this circuit will be shown to exhibit
complex behavior, specially when u(t) is periodic. In Fig. 2, vth and vext are related respectively
to the breakdown or threshold voltage vI and the extinction voltage v2 of the S-shaped nonlinearity

O(v). Notice that in the absence of activation potential or (driving signal) u(t), v' coincides with v
and vth reduces to vi while vext reduces to v2.
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Fig. 1. Equivalent circuit of monoionic model Fig. 2. Piece-wise linear approximation
of the excitable membrane. of the S-shaped nonlinearity of the neurons

membrane.

In the absence of the driving signal u(t) and when E > v1, the circuit of Fig. l(b) behaves as a
nonlinear relaxation oscillator. The S-shaped i-v (current-voltage) characteristic i = 0(v') shown in
Fig. 2 reduces to that shown in Fig. 3, i.e., i = ý(v) curve with a negative resistance region, a
breakdown or threshold voltage v1 and extinction voltage v2. This i-v characteristic i = ý(v) is
seen to consist of three distinct regions I, II and III. Regions I and III are positive resistance
regions corresponding to the resistance of nonlinear element i = 0(v) in the off and on states
respectively, while region II is a negative resistance region. The distance -c in this plot is
exaggerated in comparison to that in actual i-v characteristics in order to delineate the negative
resistance region of the plot. The behavior of the circuit in Fig. 1(b) is governed by the nonlinear
differential equation,

(1 CL- + 0M(v) - v

dt R
dv

The steady state, -v = 0, of eq. (1) is defined by

E-v

(2) O(v) = R

in which i = (E-v)/R defines a load-line in the i-v plane as shown in Fig. 3 and the intersection
point between the load-line and Vv) defines the operating point A.
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When E > vI and the load-line i(v) = (E-v)/R intersects the i-v characteristics in the
negative resistance region i.e., the operating point A falls in region II as shown in Fig. 3, the
circuit of Fig. I (b) exhibits the ilmit-cycle oscillations indicated by the closed dotted line trajectory
AM The portion OM of the trajectory corresponds to the conduction of a current spike through
the nonlinear element when the capacitor voltage v(t) reaches the breakdown value v 1, while the
portion da corresponds to the interspike interval during which the charge in capacitor C is being
restored and the nonlinear element is in off state. Changes in the values of E, v, and/or R, cause
the load-line and operating point A to shift. Shifting the location of A within the negative
resistance regions alters the speed of motion along the limit-cycle trajectory and this alters the firing
frequency. Limit-cycle oscillations cease to exist when the operating point A enters either of
regions I or III. When A is in region III, the nonlinear element remains on while for an A falling in
region I, the nonlinear element remains off. The simple circuit dynamics described qualitatively
above become considerably more complicated in the presence of a time varying or periodic driving
signal u(t). Then we need to modify eq. (1) by replacing O(v) with O(v - u(t)) which means that the
limit-cycle dynamics are complicated by time dependent displacement of the 0 curve in the
horizontal direction vis-a-vis the stationary load line. This and the interplay between u(t) and the
capacitor voltage v(t) is the underlying cause of the complex dynamics of the bifurcating neuron
circuit and the observation of complex firing sequences for certain values of parameters of the
periodic driving signal u(t) as will be shown later.

The limit-cycle trajectory can be readily displayed on a CRO by driving the x-axis of the
CRO with the voltage drop proportional to i(t) in Fig. 3 and the Y-axis with the voltage v = v(t)
appearing across the nonlinear element An example of such a display is given in the photograph
of Fig. 4 which represents the limit-cycle trajectory in the i-v phase-space of the circuit of Fig.
I(b) and is seen to be similar to the idealized limit-cycle trajectory marked in Fig. 3. The apparent
uneven brightness of the trajectory in the photograph, reflects the uneven speed with which the
electron beam traces the trajectory on the CRO's phosphor screen as dictated by the time variation
of i(t) and v(t)..

The current waveform i(t) corresponding to limit-cycle oscillations consists of a train of
narrow fixed-shape impulses, or spikes, of fixed peak amplitude io and duration T1 corresponding

to the a --+ b, b-+ c -+ d portions of the trajectory. The interspike interval T2 corresponds to the

d-+ a interval of the trajectory. The spikes in i(t) represent action potentials so to speak, of the
bifurcating neuron. Expressions for T1 and T2 can be readily derived when the nonlinear element
in Fig. 1 is assumed to have the idealized S-shaped characteristic of Fig. 3. The results are given
by [19],

(3) T1 = RC Zný E -. v2•

(4) T2-pC n( (v1-v 2)R-(E-vl)Ri

(2 A - v0 )R - (E - v2)Ri

where p = RRi/(R + Ri), with Ri being the nonlinear element's resistance in segment HI of the i-v
characteristics, and vo is the voltage value at the point of intersection of the extension of segment
MI of the characteristic with the v axis as shown in Fig. 3. All other quantities in eqs. (3) and (4)
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Fig. 3. Piece-wise linear approximation of the i-v (current-voltage) characteristic of the glow-lamp (glow-discharge
tube) consistng of three segments: 1, I and Ell and showing the limit-cycle trajectry abcd (dotted line) referred to in
the text.

iT

V

Fig. 4. Limit cycle trajectory in the i-vc phase-space of the circuit of Fig. I associated with the natural oscillations
of the bifurcating neuron (E = 160 [V], R = 100 [K(M], C = .1[pf], Rs = 10 ([]. Vertical scale: 10 [mA/div.],
horizontal scale: 10 [V/div.]). A.C. coupled CRO display is shown.

150



are as defined earlier. Note that eqs. (3) and (4) are meaningful only when E > vI. When this

condition is not satisfied the arguments of the &n ( .... ) term in eq. (3) becomes negative precluding
thereby physically meaningful solutions and disruption of limit-cycle oscillations. In accordance to
eqs. (3) and (4) the interspike-interval or period of the bifurcating neuron's oscillation is T = T1 +
T2 and the instantaneous firing frequency is f = l/T = l/(T1 + T2). Because, in normal operation,
Ri << R, we find that the spike width T2 is much less than the interspike interval T1 and therefore

T = TI becomes a good approximation.

It is convenient to consider two regimes of operation when u(t) * 0. One is the none self-
oscillatory regime, and the other is the self-oscillatory regime. We consider next the regime when
the supply voltage E is slightly less than the breakdown voltage v 1, so that the nonlinear element is
normally in extinguished state and the limit-cycle oscillations are not triggered spontaneously. The
subthreshold value of E in this case is such that the addition of the driving signal is sufficient to
trigger the limit-cycle oscillation whenever the voltage across the nonlinear element exceeds
threshold. Thus, in the presence of u(t) and specially when u(t) is sufficiently slowly varying, that
is the scale of its time-variations is large compared to the natural oscillation period T of the circuit
we discussed earlier, the effect of u(t) on the circuit can be shown to be reproduced by suitably
changing the supply voltage E. In this regime, our bifurcating neuron exhibits nearly sigmoidal
dependence of firing frequency on activation i.e, on the effective voltage across the nonlinear
element.

To show this we proceed as follows: Because the spike width T 2 is very narrow, we
approximate the spike portion abcd of the limit-cycle oscillation of the S-shaped nonlinearity in
Fig. 3 or Fig. 2 by,

(5) i=O (v)=4 (v') =

i0o(t) v > v1

Since,

V' 'V- u

we have,

vl=vth-u - Vth=Vl+U

(6)

v2=vex-u Vex=V2+u.

The spike amplitude io in eq. (5) is determined by considering the change AQ in the charge stored
in the capacitor C because of a single firing of the neuron, i.e., the discharge of the capacitor
during the a portion of a limit-cycle oscillation. This is,
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AQ = C AV

or,

Jidt = C(vth - Vex) = C(v1 - v2)

or by using eq. (5)

1io8(t) dt = C(v I "v2)

(7) io = C(vI v2).

which is seen to be determined by the capacitance C and the parameters vI and v2 of the nonlinear
S-shaped nonlinearity.

Now when v < vth , O(v - u) = 0 , eq. (1) reduces to,

dv E - vCdt -R

whose solution is,

t

(8) v(t) =E -(E- v2 - v(o)) e RC

which represents the capacitor voltage build-up in the d--* a region of the limit-cycle trajectory in

Fig. 2.
The interspike interval T is found from eq. (8) by letting t = T and v(T) = Vth(T) = vI +

u(T). This yields,

(9) T = RCn E-v2 -u(o) R E -vex(o)
E - v1- u(T) = En - vth(T)
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This analytical model is known as the integrate andfire model of the spiking neuron.

We see from comparing eqs. (9) and (6) that the effect of the activation potential (the
neuron's driving signal) u is to horizontally shift the curve O(v - u) in Fig. 2 to the left or to the
right by an amount that depends on the magnitude and sign of u. Because the load line is
stationary, this horizontal shifting causes a migration of the operating point A on the 0 curve.

When u is positive and is increasing, O(v - u) would be shifted to the right until vth a E at
which instant the operating point A enters segment I of the 0 curve and limit-cycle oscillations are
halted or extinguished in agreement with the prediction of eq. (9) when Vth > E. This is
analogous to complete inhibition of the firing of a biological neuron when a sufficient inhibitory
activation potential u is present. Thus a positive u in our neuron model corresponds to
inhibitory signal.

When u is negative and is gradually decreased, O(v - u) shifts gradually to the left. This
has the effect of increasing the firing frequency. A negative u in our netuon circuit (Fig. I(b)) is
therefore equivalent to an exitatory input. As the value of u is made r re negative (increased
excitation) the shift of O(v') to the left continues until the operating point A leaves the negative
resistance segment II and enters the positive resistance segment III of the 0 curve. When this
happens, the nonlinear element 0 remains on (conducting state) and limit-cycle oscillations are
again extinguished. Limit-cycle oscillations can not be triggered then no matter how strong an
exitatory signal is received. This has the effect of limiting the maximum possible firing frequency
and is analogous to the limiting of the maximum firing frequency in the biological neuron by the
presence of an absolute refractory period.

We examine next two cases of u(t). In one case u(t) = Vm where Vm is a positive real
constant whose value is changed gradually to determine how T and hence the firing frequency f =
1
T changes. This case leads to conventional sigmoidal response with an upper limit on the firing
frequency. In the second case u(t) is assumed to be periodic. It leads to complex firing modalities
of the neuron and includes bifurcation between them depending on parameters of the periodic
activation.

CaselI

Let u(t) = - Vm, then eq. (9) becomes,

E - v) _ + Vm
,0) T = RCen ifE-v I+Vm

and O(v - u) = O(v + Vm). Thus a positive increasing Vm corresponds to increased inhibition and

a lowering of the firing frequency f =, while a negative decreasing Vm corresponds to increased

153



excitation. The value of the maximum firing frequency fmax and the value of Vm at which the

maximum firing frequency occurs are deternined from Fig. 2 in the following manner:

When 40 shifts to the left so that the load line passes through point C we have,

__ E/R
E -Vex- E

or,

E-v2-Vm R

which yields the maximum value of Vm for which firing stops,

(11) Vm = E- v2 -ElR
max

by combining eqs. (8) and (7) one obtains an expression for the maximum firing frequency of our
neuron.

1

(12) fmax T

where

2E - 2v 2 - --aR
(13) Tmin=RCA 2E - (v 1 + v2 ) - cZR

Thus the circuit in Fig. 1 (b) is seen to have, when u(t) = - Vm, an upper limit on the firing
frequency determined by the value of Vm. The upper bound on firing frequency is imposed by the
nonlinear element remaining in the on state which stops limit-cycle oscillations. In contrast the
maximum firing frequency of a biological neuron is imposed by the absolute refractory period
immediately following each action potential (spike firing) during which the neuron is incapable of
firing again no matter how strong an exitary stimulus it receives. In limiting the maximum firing
frequency, refractoriness in the living neuron helps conserve energy and eliminate reverbrations.

The dependence of firing frequency f = on Vm where T is given by eq. (10) is shown in
Fig. 5 (solid line curve marked Tr = 0) together with the measured firing frequency (dotted line
curve). The two curves are for the case when the S-shaped nonlinearity 0 is that of a glow-lamp.
The circuit parameters and glow-lamp pararm ers are given in the figure caption. Verification of
eq. (12) for an example of glow-lamp S-shap .. nonlinearity with following parameters:
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E = 160 [V , vI 141 [V] , v2 = 125 [V]

R = 105 [1 , C = 0-7 [F] , Zd = 4 10-4 [A]

yields,

Tmin = 7.6 10-3 [secI

and therefore

fmax 131 [Hz]

which is in agreement with the experimental cutoff frequency observed in the preceding figure.
Figure 5 also shows the effect of arbitrarily adding an absolute refractory interval Tr [msecl to the
right-hand side of eq. (10). Such ad hoc inclusion of Tr is seen to accelerate saturation of the
funing frequency.

Cawe 11

The preceding analysis shows basically the bifurcating model neuron can exhibit usual
sigmoidal response. We show next however, that when the activation potential u(t) is periodic,
the neuron alters its behavior and is able to phase-lock its firing to the frequency of the periodic
activation or a sub-harmonic of it, or can fire quasiperiodically, erratically, or in bursts, all
depending on the amplitude and frequency of the activation potential. Periodic activation at the
neuron's hillock is assumed to arise whenever the spike trains (action potentials) incident on the
neuron's dendritic-tree are correlated. If we refer to the aggregate of all spike trains incident, at
any time, on the dendritric-tree as the incident spike wavefront, then a coherent incident spike
wavefront produces a periodic activation potential, i.e., a periodic driving signal for the neuron.
Thus we examine now the behavior of the circuit of Fig. I (b) when the activation potential u(t) is
periodic. The main result of the analysis is a Phase-Transition Map (PTM) which relates the phase
0 n+1 of the n+1 spike produced by the neuron to On, the phase of the n-th (preceding) spike. In
our formulation, the phase of a spike is always measured relative to the immediately preceding
peak (or some other selected feature) of the periodic activation potential. The PTM is a nonlinear
iterative map on the (0 - 21t) interval, and as such, it lends itself to further analysis and treatment as
is usually done in nonlinear dynamics with other maps of the interval onto itself like the logistic
and the circle map for example.

For simplicity we assume the periodic activation or driving signal of the neuron (essentially
the membrane potential at the hillock) is cosinusoidal of amplitude a, radian frequency ws and fixed

phase 0 0, i.e.,

u(t) = a cos(0 5st + 00)

155



co m p. ......... . .......... .

IQ -' ... .. . . . .. .... ........... . . ... . ....

o0 ..... .... . . . . Tr i OA

v-W 14 .12 -10 -8 -6 .4 -2 0VMm (Vdftl

Fig. 5. Dependence of Firing frquency on activation potential Vm. Example of glow-lamp S-hutped nolinearity
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Then starting from the expression for the capacitor voltage in Fig. l(b) we derived earlier (eq. 8),

-t(14t) = E-(- -s(E -v2 u(o)) e-R-C

and by referring to Fig. 6 we see that

(15) v(t) = Vth(t) at t= T

where

(16) vth(t) = v, + a cos(o s t + 0o0)

Therefore from eqs. (14) and (15),

T
(17) E - v1 a cos (cosT + 00) =(E - v 2- a cos0) e" -C
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(18) onsT + On = ofn+1

or,

(19) cOsT= O'n+ 1 - On

(20) T D -
(o

s

and letting

(21) 0'n+I =On+1 m+ 2x m=integer

we have,

(22) On+1 = 0'n+1 - m2[ [0'n+1 mod.2n

Therefore from eqs. (14) and (17),
09 0',,I -on

(23) E-v 1 - a cos0'n+1 = (E -v 2 - n) e

or, in terms of normalized variables,

-On
(24) (1 - V'1 - a' cosO'n+1) e x (1 v'2 - a' OSn)e x

where,

"v'1 =V I/E , v'2 = v2/E , a'= a/E , x = aOsRC
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Therefore finally from (24) and (22).

1 -1 nI V a' cosO n(25) 0'n~ -eO + xln( " v'2)

and

(26) 0n+l =1 n+l~mod.2x

Equations (25) and (26) are the main results of this analysis. Taken together they form the
relationship or mapping between On, the phase of the n-th spike and On+1' the phase of the
(n+1)th spike in the firing activity of the neuron under cosinusoidal activation. Note the phase of a
spike is always measured from the immediately preceding peak of the cosinusoidal drive signal
(see Fig. 6). Equations (25) and (26) can be expressed symbolically in the form

(27) 0 n+i-1 = (n)

where the function g(.) is defined by the mapping in eqs. (25) and (26). Note that eq. (25) is a
transcendental equation in 0n+1 that must be solved first given On, the system parameters, and
those of the periodic driving signal. Having obtained 0 'n+1 its modulus 2n is computed to obtain
On+. IWe call the mapping in eq. (27) Phase-Transition Map (PTM). The PTM is a nonlinear
iterative map of the interval [0, 21] onto itself. Like other iterative maps of interval onto itself,
such as the Logistic Map and the Circle Map, the PTM can be studied using the tools of nonlinear
dynamical systems.

For example, Fig. 7 shows the steps involved in obtaining a plot for the PTM of the

bifurcating neuron using eq. (25) assuming a glow-lamp S-shaped nonlinearity and a periodic

cosinusoidal driving signal actiVation of amplitude a = I [I] and frequency fs M =2s = 190 [Hz].

The PTM for this case, shown in Fig. 7 (c), can be iterated graphically as illustrated in Fig. 8(a).
Entering the abscissa of this figure from an initial value 0 one draws a vertical line that intersects
the plot giving the value of 01 which can be re-entered on the abscissa and the process repeated to
find 02 and so forth. This procedure is greatly simplified by using the 450 line 0 n+1 = On in
performing the iterations. From 00 one moves vertically to intersect the PTM plot, then moves
horizontally to intersect the 450 line, at a point whose abscissa gives the value of 01, then move
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vertically to intersect the plot again and move from there horizontally to meet the 450 line and

obtain 02 and so forth. Starting from any initial value 0o the resulting sequence of phase values

On n=1,2,3... eventually settles into a regular pattern (orbit) or seemingly an erratic one depending

on the parameters of the plot. The values of 6 n vs. n where n is the iteration number is shown in
Fig. 7(b) for 1000 iterations. This plot clearly shows the firing pattern of the neuron for this case
is quite complex but regular. Figure 8(c) shows the Lyapunov exponent [20],

1 N
(28) X = tum [- Z I g'(On)I IN-'• Nnl

N-* n=1

where g'(0.) is the derivitive or slope of the PTM at the iteration points, the values of 0 n produced
by the map, and the periodically driven bifurcating neuron it represents. The Lyapunov exponent
is a measure of regularity, or lack of it, in iterative maps. A value of X. > 0 is usually taken as an
indication of irregularity or chaos. Because the 0 n pattern in Fig. 8(b) is regular, the
corresponding Lyapunov exponent is seen to stabilize to zero after few hundred iterations when
transients die out. The shape of the PTM changes markedly when the parameters (a, fs) of the
cosinusoidal driving signal are altered. This is demonstrated in the PTM plots and associated On
orbits which show period three (left) and period six (right) firing modalities shown in Fig. 9.
Again because the 0 n patterns are ordered the Lyaponov exponents of the two plots are negative.
It is worth noting that period-N firing modality covers the case when the neuron is bursting.

Qualitatively, similar results are obtained for bifurcating neurons employing solid-state
nonlinear elements with S-shaped nonlinearity such as the unijunction transistor (UJT) and the
programmable unijunction transistor (PUT) which are solid-state equivalents of the glow lamp.

A more encompassing view of bifurcating neuron dynamics, is provided by the bifurcation
diagram. This is an intensity plot of the resulting phase orbit or sequence 0 n' after transients are
allowed to die down. The values of 0 n are entered as points along the vertical above each
frequency point as shown in the example of the measured bifurcation* diagram for a programmable
unijunction transistor neuron (PUTON) embodiment of the bifurcating neuron shown in Fig. 10
for a fixed driving signal amplitude a = 0.175 [VI. Note the values of 0n in the figure are shown

normalized to 27c. The figure demonstrates clearly, and at one glance, the rich variety of firing
modalities the PUTON goes through as the frequency of periodic activation (driving signal) is
altered.

*Circuit diagram of the PUTON and the 0 measurement system are not given here but will be included in a future

publication.
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Phase Bifurcation Diagram of PUTON

0.9 ,

0.6-. /
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Fig. 10. Measured bifurcation diagram for a PUTON embodiment of the bifurcating neuron for a
= .175 [VI. Note the variety of phase-locked regular firing modalities for which only
one value of 0n is produced at each driving frequency, separated by more complicated
and perhaps erratic 0n sequences occurring at other driving frequency values.
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The information in the bifurcation diagram can also be presented in a somewhat different format,
that of a Sawtooth Phase-lock diagram or its equivalent the Devil's Staircase diagram. Since On is
the relative phase between the n-th spike fired by the neuron and the immediately preceding peak of
its cosinusoidal activation potential or driving signal, the timing of the spikes can be determined
and therefore also the interspike interval or its inverse: the instantaneous firing frequency f. Plots

of the firing frequency f vs. driving frequency fs or of the phase-lock ratio p = -S vs. fs also
f

called the rotation ratio computed from the On sequences are shown in Fig. 11 for a bifurcating
neuron assuming a glow-lamp nonlinearity. Note both phase lock diagrams show presence of
driving signal frequency windows over which perfect phase-locking with negligible standard
deviation in firing frequency occur. These regions are separated by regimes of more complex
firing modalities including quasi-periodic perhaps erratic firing for which the standard deviation of
the firing frequency is finite. The Devil's Staircase diagram measured for a bifurcating neuron
embodiment employing a PUT nonlinearity is shown in Fig. 12(a) with a high resolution
(expanded) plot of one of the segments lying between two phase-lock regions given in Fig. 12(b).
This latter plot shows clearly the self-similar or fractal nature of the diagram where a staircase
structure is easily discerned in the mean and t'ýe mean plus and mean minus standard deviation
branches of the diagram. Note however that tne finer rungs of the staircase appear to be blurred
by noise in the PUTON circuit used in making the measurement. The transistion from a phase-
lock region where the standard deviation of tiring frequency (or rotation number) is negligible, to a
region where the standard deviation is finite is seen to be quite abrupt attesting to the rapid
switching of behavior of the bifurcating neuron as the value of the bifurcation parameter, fs in this
case, is altered. Again the plots of Figs. 11 and 12 are for a fixed value of driving signal
amplitude. These plots can be regarded as the phase-lock frequency response of the bifurcating
neuron at fixed driving signal amplitude. Phase-lock frequency response plots at different discrete
values of driving signal amplitude can be obtained in a similar fashion. The data contained in such
a series of plots can be presented compactly in the form of the Arnold Tongues' diagram shown in
Fig. 13. This diagram can be interpreted as the frequency response of an active nonlinear device,
like the bifurcating neuron, that is capable of phase-locking its firing to the driving signal. The
horizontal lines in this plot give the width of the periodic phase-lock firing regions at each driving
signal amplitude as the frequency is swept. Outside these regions, which are shaped like wedges
or tongues pointed downward, the firing can be period-N, quasi-periodic or even erratic. The

tongues represent phase-lock regions with, starting from the left, integer phase-lock ratio p =
1,2,3 ....,. It is noted the width of these integer phase-lock regions decreases as the amplitude of
the driving signal is made smaller.

In deriving the PTM, we assumed cosinusoidal periodic activation or driving signal of the
neuron to make the analysis tractable. We believe the complex behavior of the bifurcating model
neuron observed for cosinusoidal activation does persist for arbitrary periodic activation.
Replacing the cosinusoidal driving signal in Fig. 6 by an arbitrary periodic signal hints that this
should be so and preliminary simulation results for an I & F neuron driven by a periodic signal
composed of several sinusoidal components shows interspike sequences with similar complexity
as when it is driven by a pure cosinusoidal signal. An interesting question in this regard is
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Fig. 11

Computed phase-lock frequency response of bifurcating neuron employing glow-lamp S.
shaped nonlinearity. Driving cosinusoidal signal is u(t) = acos (2 ffst). Plots shown are for
a = 1o[Vj and operating conditions: supply voltage E = 160 [VI, glow-lamp breakdown and
extinction voltages V1 = 140(V], and V2 = 100[Vj respectively, a) Sawtootb pbase-lock
diagram and b) corresponding staircase phase-lock diagram. In both diagrams the upper
branches are the mean plus standard deviation of the firing frequency and the lower branches
are the mean minus the standard dtviation of the firing frequency In the phase-lock regions
the standard deviation is zero. The mean and standard deviation ai each driving frequency fs
are calculated from a 200 msec record of the firing activity. Note in both plots the integer
phas•-lock regions (where the phase-lock ratio p = fs/f = 1,2,3 .... ) are separated by regions
of irregular firing where the standard deviation in firing frequency is finite. These regions of
erratic firing furnish adaptive "noise" that could play a role in "annealing" bifurcating neuron
networks i.e., drive them into entrained (phase-locked) states.
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Devil's Suwrcase Diagram or PLTON
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Devil's Staircase Diagram of PUTON
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Fig. 12. Measured Devil's Staircase diagram of the periodically driven PUTON, a bifu-cating
neuron embodiment employing a programmable unijunction transistor (PUT) furnishing the S-
shaped membrane nonlinearity (a), and expanded region of the diagram illustrating the self-similar
or fractal nature of the Devil's Staircase diagram (b).
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Arnold's Tonp'Je Diaggram of PUTON
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Fig. 13. The Arnold Tongue's diagram of the PUTON representing the phase-lock regions of the
periodically driven PUTON (horizontal bars) for selected driving signal amplitude. If standard
deviation of the interspike interval is below .04 [ms] a horizontal bar is plotted. In the regions
between the horizontal bars. which form the tongues, the firing is quasi-periodic or erratic.
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whether the bifurcating neuron phase-locks its firing to the strongest spectral component of the
arbitrary periodic signal or not. This question is under investigation.

3. IMPLICATIONS AND SIGNIFICANCE OF THE BIFURCATING
NEURON CONCEPT.

The results presented so far show that the model neuron we consider has much more
complex behavior than simple sigmoidal response employed widely in neural modeling today,
where the state of the neuron is represented by its firing frequency, and the firing frequency is a
nonlinear (sigmoidal shaped) function of the activation potential. In this mode of operation, and
when the activation potential is above threshold, the neuron can be viewed as a VCO (voltage
controlled oscillator) with a highly nonlinear (spike) output waveform. We have seen, however,
when the activation potential becomes periodic, the neuron can alter its behavior (bifurcate) to fire
in a variety of phase-locked regular or erratic firing modalities depending on the parameters
(amplitude and frequency) of the activation potential. Hence our use of the term bifurcating neuron.
Thus the bifurcating neuron can act not only as a sigmoidal neuron, as when its activation potential
is slowly varying and is not periodic, but also can act as a detector/encoder of episodes of coherent
incident spike wavefronts at its dendritic-tree that give rise to periodic activation.

The PTM, which is derived in the form given here for the first time, provides a powerful
tool for studying the dynamics of realistic neurons and neural networks using the customary tools
of nonlinear dynamics such as: bifurcation diagram, Lyapanov exponent, entropy of the firing
patterns or phase orbits, Devil's staircase diagram, and Arnold Tongues' diagram, all tools that
provide a novel and useful approach to modeling, characterizing, and better understanding of
cortical networks, higher-level cortical functions, and of how to ultimately incorporate feature-
binding and cognition and other higher-level cortical functions in man-made systems.

In the above analysis a clear relation between a spike or action potential fired by a neuron
and the limit-cycle trajectory in the i-v plane of the S-shaped nonlinearity used to represent the
neuron's excitable membrane was established. It is interesting to speculate as to why use of limit-
cycle oscillations and spiking neurons has evolved in biological systems. We offer the following
reasons for such use:

(a) Stability of the limit-cycle oscillation, and hence its robustness and immunity while it
persists to noise: The shape of spikes fired by the neuron is invariant.

(b) Rapid entrainment and synchronization of systems possessing limit-cycle oscillations such
as the bifurcating neuron which would allow coherent states to evolve rapidly within a
coupled population of bifurcating neurons (bifurcating neural network). A coherent or
synchronized state is manifested by fixed relative-phase pattern (vector) between the firings
of neurons in the network and by coherent incident spike wavefronts received by each
neuron from other neurons in the network.

(c) The relative-phase vector of a synchronized network of N neurons is defined by an N-
vector • with elements Oi i=l,2,...N where 0 < zi < 2n is the phase between a spike
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fired by the i-th neuron and the immediately preceding spike of an arbitrarily selected
2t.

reference neuron. If the i-th neuron fires •i [sec] after the reference neuron, then i = T2

where T is the interspike interval of the reference neuron. By this definition, the reference

neuron's in phase would be zero. If, because of measuring accuracy, the phase of each
neuron can be distinguished over L levels then the total number of possible distinguishable
permutations or states the network can assume is (NL)!. In contrast, a network of N

binary neurons has a total of 2N possible states while a network of N sigmoidal neurons
whose outputs are distinguishable over L levels has a total of LN possible states. If we
take for the sake of illustration, N=3 and L=3, then the bifurcating neuron network can
have a total of (3x3)! = 362,880 possible states. This exceeds by far the 23=8 states
possible had the network been of binary neurons or the 33=27 states had it used sigmoidal
neurons. These simple considerations serve to illustrate that in their making use of phase
information, temporal networks, possess far denser state-space available for accessing by
network dynamics than conventional sigmoidal or binary neuron networks. Accordingly
one can intuitively expect that bifurcating neural networks would exhibit richer state-space
behavior than sigmoidal networks or their binary cousins and to be capable, in general, of
carrying out more complex signal processing operations and computations.

It is interesting to note, in connection with the above remarks that a possible advantage of
multilevel sigmoidal neuron networks demonstrated in handling a gray-level image
processing application is that the number of neurons and number of interconnections are
reduced compared to binary neuron networks [211 which is an important concern in VLSI
implementations of neural network. In the referenced work each neuron's response was
represented by a multilevel sigmoidal function of L=16 levels. The results suggest that the
smaller the slope of the staircase nonlinearity for each neuron, i.e., the larger is the value of
L, the larger is the domain of attraction of each desired equilibrium point. The complexity
of VLSI realization of multilevel threshold elements can neutralize however the advantage
of reduced number of neurons and interconnections in such networks. Since the number of
possible state levels (relative phase values) that can be naturally and automatically assumed
by a neuron in a synchronized bifurcating or spiking neural network can be quite large,
such networks could possess a distinct advantage, over multilevel threshold neural
networks, in reducing the number of neurons and interconnections needed to handle
information processing tasks. This is an interesting subject for further study of the
practical advantages of bifurcating neural networks.

(d) If we adopt the relative-phase vector, as the state variable for temporal networks, it would
be tempting to speculate that relative-phase patterns in cortical networks serve as substrates
for cognition and other higher-level cortical fnctions. A relative-phase vector can be
represented as a point in a "relative-phase" state-space of the population or network.
Periodic changes in the relative-phase pattern or vector in such networks can then be
represented by a closed trajectory or limit-cycle in relative-phase state-space of the network.
Similarly a chaotic or erratic sequence of relative-phase vectors can be associated with a
chaotic trajectory in the relative-phase state-space of the network. The relative-phase state-
space of bifurcating neural networks could thus exhibit point, periodic, and chaotic
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attractors. In this picture, chaos and the possibility of rapid bifurcation between such
attractors, as induced by external signals, is of interest as means for rapidly searching the
state-space of the network for coherent states that are meaningful for cognition, feature-
binding, and other kinds of higher-level processing operations believed to be carried out by
the cortex.

Defining the relative-phase pattern of a synchronized network of bifurcating or spiking
neurons in the above manner is ambiguous because of the arbitriness of choosing the
reference neuron. To remove this ambiguity we recall that in the analysis of Section 2, the
relative-phase of the spikes fired by the individual neuron in a synchronized network was
defined relative to the peak, or some other feature, e.g., zero-crossing, of the periodic
activation signal driving it. Thus the periodic activation signals produced at the hillock of
each neuron in a synchronized network can furnish a natural self-reference for determining
the relative phase of spikes produced by each neuron and hence the relative-phase
distribution of the network at any time without ambiguity. Of course, the self-reference
signals exist only when the network is in synchronized state. Accordingly the relative
phase vector is U(t) whose components 0 < 0i(t) < 2n, i=1,2,...,N with N being the
number of neurons of the network, are the relative-phase vs. iteration number, i.e., the

orbits, produced by the neurons. The relative-phase vector 0(t) represents now the state of

the network unambiguously. At any instant of time, ;(t) describes the position vector of a
point in an N-dimensional relative-phase state-space of the network whose coordinates

span the [0, 2n] range.

Thus when the orbit or sequence 8 n n= 1,2,3,.. for each neuron is fixed i.e., n =const for

each neuron, the relative-phase pattern of the synchronized network will be fixed i.e., 0(t)
is constant and the behavior of the network is represented by a fixed point in state-space.

In this case the network is both phase-locked and frequency locked. When 0(t) = 0(t + T)
i.e., the state vector evolution in time is periodic, the behavior is represented by closed
state-space trajectory. The network assumes the same value of the relative-phase vector
every T seconds. In this condition, every neuron can be in a period-m firing modality with
the ratios of the values of m for the various neurons being related by integer numbers. The
network are then phase-locked but not frequency locked.

A network of bifurcating neurons in which the neurons can exhibit quasi-periodic or erratic
firing for certain parameters of their periodic activation signals, could exhibit more
complicated state-space trajectories. Such a network would contain neurons with erratic
firing whose number and identity can change in time producing therefore quasi-periodic
and chaotic state-space trajectories that could visit large regions of the state space. This
suggests that such chaotic states or trajectories could serve as means for searching the
relative-phase state-space of the network for point or periodic attractors that could represent
meaningful cognitive states or could, as proposed by Zak [221, represent higher-level
cognitive processes such as formation of new logical forms based upon generalization and
abstraction.
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(e) Dynamic Partitioning: There is mounting evidence at present that the signal processing
function of the dendritic-tree of a living neuron is not confined to merely integrating the
post synaptic potentials produced by its synaptic inputs (incident spike wavefront) in order
to form the activation potential at the neuron's hillock, but could also include more complex
nonlinear signal processing operations [23,24]. These operations are believed to stem from
the action of excitable membranes at some spines on the dendritic-tree which makes for an
active rather than passive dendritic-tree. This could give rise, in a coupled population of
such dendritic-neurons, to stimulus driven synchronization and feature linking capabilities
[25], and stimulus driven dynamic partitioning of a network into weakly interacting
subpopulations I 5],[261-[281 that can perform collective computations in parallel which is
significant for forming Non Lipschitzian networks with unpredictable dynamics. It is
suggested [21 that Non Lipschitzian networks represent cortical networks better than
convennonal neural networks whose dynamics obey the Lipschitz condition. Dendritic-tree
processing is meaningful in spiking neuron networks and therefore it is not an issue in
sigmoidal neuron networks. Therefore consideration of spatiotemporal processing
operations in dendritic-trees does not arise in sigmoidal networks.

(f) The spiking nature of the bifurcating neuron and the complexity of phase orbits (On values
associated with the spike trains) it produces under changing input conditions enables
viewing the bifurcating neuron as an information source. It also enables defining the

entropy and mutual informa<,'i of the 0n sequences or firing patterns produced.
Specifically, we can view the bifurcating neuron as an information source with sequential
output of symbols or events from the set S = [SI, S2 .... S with each symbol occurring
with fixed probability P(Si) i=1,2,....q. If the probability of a symbol occurring is
independent of previous symbols we say the neuron is a zero-memory source. The
information gained or received when the i-th symbol or event occurs is then by definition
[291,

(29) I(S) I ' 2  (.1(29) I(i) = 1-o92 P(Si)

The average amount of information received per symbol is

q
(30) <I> = Y P(Si) I(S

i=l

q
(31) 1 - Y P(Si) tOg2 P(Si) H

i=l

where H is the entropy.
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We need to be more specific about what is meant by symbol when we view the bifurcating

neuron as an information source. Consider the plot 0 n vs. n shown in Fig. 14 where
nfl,2 ,..., N.

Theta n versus iteration number
2 p i ... .. ....... .. .: . . . ' . - b

* . . . .. .. .
5n0 0100•

nn

. ... . .. .. . b in s
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There are N points in the plot and we assume N is sufficiently large. The 0 n axis, spanning the 0-

2n interval, is divided into Nb bins. Then, by counting how many points fall in the i-th bin and

dividing the outcome by N, we obtain the probability Pi of en falling in bin i. This is also the

frequency histogram of en.

The entropy, which is a measure of disorder, is in accordance to eq. (31),

Nb

HE-= Pti Zog Pi
i=l1

The maximum entropy or disorder occurs when the probability of en falling in the i-th bin

(i=1, 2 , 3,...,N b) isconstant. The number of events per bin in this case is -- b and P N) x
Nb Nb

1 1
N~ = b"' Thus

Nb
1 1

Hm = " P i og(Pi} ) 1=(- I) Iog -L x Nb = XogNb
SN=1 b
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Therefore the normalized Entropy

Nb

(32) H = H 1 P. log Pin Hmax logNb I=1

provides a normalized measure of the degree of disorder in the orbits 0n and therefore in spike
trains produced by the bifurcating neuron. An Hn = I indicates chaotic firing. The computed

normalized entropy of the On sequence in Fig. 14 for example, assuming Nb = 100 bins is Hn
.922.

We have seen in the above that the bifurcating neuron can be viewed as an information
source producing symbols 0 n n=1,2,... with symbol probability P(On). Because the orbit en
depends on the neuron's input (activation potential), the symbol probability changes as the input to
the neuron, or the incident spike wavefront giving rise to it, changes. Different inputs produce
therefore different symbols and corresponding symbol probabilities. The bifurcating neuron can
therefore also be viewed as a complex encoder of incident spike wavefronts.

The above observations may enable speculating on possible learning in bifurcating neural
network in terms of reducing the Cross-Entropy,

N P'(O

(33) G = Z P(e d og a
n=1 P(On)

where P(On) is the symbol probability produced by the neuron for certain input (incident spike

wavefront) and P'(en) is a target symbol probability we wish the neuron to produce for that input.
The learning task then is how to modify the synaptic responses (synaptic weights and possibly

time constants or synaptic delays) of the neuron so that G is minimized. Note that G --ý o when
P'(On) - P(On). The goal then is to determine the synaptic responses of neurons in a population
or pool of interconnected bifurcating neurons in which a portion of the neurons receive external
inputs such that given input patterns which can be spatial or spatio-temporal, end up producing
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desired distinct relative phase patterns when the network gets synchronized. The learning
algorithm developed must obey the usual minimal perturbation principle, i.e., reoccurrence of input
patterns that have already been learned would not alter the synaptic weights and only novel inputs
would produce synaptic response changes that minimally perturb the information already stored.

(g) Although in preceding sections we refer to erratic firing of our bifurcating model neurons
under certain conditions of periodic activation, the Lyapunov exponents associated with values of
a and fs in the Arnold Tongues' diagram falling between the phase-lock regions have never been
found to be positive which preclues explicit chaotic firing. The seemingly erratic firing regions in
the bifurcation diagram would therefore be representing period-m firing with long periods, i.e.,

large m or equivalently firing modalities where a long sequence of non-repeating values of 0n

occurs before the value of 0n is repeated. This observation is supported by the Poincare6-
Bendixon theorem [301 which says that a system whose nonlinear dynamics are governed by two
autonomous first-order ordinary differential equations containing nonlinear coupling terms cannot
exhibit chaotic behavior (see also pages 2-5 of reference 20). The behavior of the cosinusoidally
driven bifurcating neuron model analyzed in Section 2 is governed by two differential equations:

(34) dv E -- v - 0(v - u)
dt R

and

d~p
(35) dt W

where u = a cos(p and (P = wt + 00, 00 being a constant and action potentials are produced
whenever v reaches threshold (see eq. 5). According to the Poincare Bendixon theorem this

system of equations cannot exhibit chaotic solutions i.e., chaotic sequences of firing phases en. It
is capable of producing as we stated long sequences of period-N that appear erratic to an observer
if N is very large but are not strictly chaotic. Therefore in order to exhibit chaos, our bifurcating
neuron model must be modified in such a way as to make its dynamics governed by at least three
autonomous first-order differential equations with nonlinear coupling terms. This could occur

when, for example, the threshold level v 1 of the S-shaped nonlinearity i = O(v) is not constant, as

assumed in the analysis of Section 2, but obeys a differential equation of its own like,

(36) d_ . a v + f(v)
dt

where a is a constant and f(v) is a nonlinear function of v. Equation (36) adds adaptive
thresholding or accommodation to our bifurcating neuron model making it resemble more
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biological neurons which are known to exhibit accommodation. It is worth noting that the
Hodgkin-Huxley model of the biological membrane [18] and the MacGregor and Oliver version of
it (3 1] consist of N> 3 autonomous first-order differential equations with nonlinear coupling
terms. They are expected therefore to exhibit chaotic solutions for certain regions of their
parameter spaces. It would seem therefore that under suitable conditions of periodic activation,
biological neurons in the cortex would exhibit chaotic firing. Indeed chaotic firing regimes have
been observed experimentally in the periodically driven biological membrane (the squid's giant
axon) and the Molluscan neuron [331-[361.

Inclusion of adaptive thresholding or accommodation in the analysis of the bifurcating
model neuron described in this paper, although analytically challenging, is very well likely to lead
to complex firing modalities under periodic activation that include full blown chaotic firing. One
may well ask at this point why is chaotic firing important? The following is an attempt to answer
this question.

Chaos describes a strange intermediate state lying between rigid organization, i.e., order,
and complete disorganization, i.e., disorder or randomness. It also connotes something between
predictability and chance, between a deterministic signal and noise.

Chaos in neurodynamics could have beneficial consequences because decision making
processes that show chaos mix consistency with unpredictibility and could overcome the
limitations of both.

Understanding chaos and learning to use it in the design of in man-made systems in general
and in neurodynamics in particular could be the key for increasing the power of neurocomputing
by extending their capabilities to higher-level processing like cognition, feature and concept
binding, inferencing, reasoning, attention focusing, and possibly improved learning and
optimization.

Possible roles for chaos are:

* Efficient search of state-space of a network that is neither systematic or random, but is
driven by the dynamics of the network itself.

As inherent (self-generated) adaptive (signal dependent) source of "noise" in a network,
chaos could possibly furnish a mechanism for "self-annealing" the network into phase-
locked states of "energy" minima that are cognitively meaningful.

4. CONCLUSIONS. The study of bifurcating and spiking neural networks and the
roles of synchronicity. bifurcation and chaos in such networks is still in its infancy. It is however
rapidly growing because of its promises to provide better understanding of higher-level cortical
functions and of how to incorporate them in artificial neural networks to enhance the power of
neurocomputing. Recent developments [251,[371 are examples of this trend. The study of the
dynamics of the bifurcating model neuron presented here is a step towards understanding how the
functional complexity of the individual processing element governs the dynamics of bifurcating
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neural networks specially when they enter synchronized states and towards learning how to use
synchronicity bifurcation and chaos in the design of a new generation of computing structures.
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SHOCK INDUCED SURFACE INSTABILITIES AND NONLINEAR WAVE
INTERACTIONS
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ABSTRACT. We discuss the application of front tracking to the simulation of shock reflec-
tions and shock accelerated interfaces. Some key features of the front tracking method are
the elimination of numerical diffusion and the reduction of wall heating. In computations of
the regular Mach reflection of a shock at an oblique ramp, we see enhanced resolution of the
primary waves in the interaction. In addition, tracking allows very precise measurements to
be made of the states and location of the Mach triple point. Our computations of the growth
rate of a Richtmyer-Meshkov unstable interface are the first numerical results that are in
quantitative agreement with experimental results of a shocked air-SF6 interface. Previous
attempts to model the growth rate of the instability have produced values that are almost
twice that of the experimental measurements. Moreover, the failure of the impulsive model,,
and the linear theory from which it is derived, to model experiments correctly is understood'
in terms of time limits on the validity of the linear model.

Keywords: Front tracking, Mach refection, Richtmyer-Meshkov

1. INTRODUCTION

In this article we present results of simulations using front tracking combined with a
second order Godunov finite difference method. Two classes of problems are discussed, the
oblique reflection of shock waves at ramps, and the computation of the instability growth
rate of a perturbed, shock-accelerated interface. Our code achieves excellent resolution
of the simulated flows, even on the relatively coarse grids used here. In both cases our
computed results are shown to be in excellent agreement with experiments. Indeed, we
present computations of the Richtmyer-Meshkov instability that for the first time agree with
experimentally measured growth rates of interface perturbations.

The ramp reflection simulations model the interaction of a planar shock wave with an
oblique wall. We are interested in determining the structure of the reflection process for ramp
angles that are very close to the mechanical equilibrium condition for bifurcation to regular
reflection, as defined by the coincidence of regular and Mach reflection. The use of front
tracking allows us to conduct numerical experiments that are extremely close to this point.

'Supported in part by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell
University under subcontract to SUNY Stony Brook, ARO contract number DAAL03-91-C-0027.2Supported in part by the National Science Foundation Grant no. DMS-9201581
3 Supported in part by the U. S. Army Research Office, grant no. DAAL03-92-G-0185.
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7Supported by U. S. Department of Energy

181



BOSTON, GROVE, HOLMES, HENDERSON, SHARP, YANG, AND ZHANG

Ordinary shock capturing methods are unable to resolve the Mach triple point configuration
in this regime, due to the extreme closeness of this point to the wall. We measure several
quantities for the reflection process, including the trajectory of the triple point, and the
Mach number of the flow behind the foot of the Mach stem. Comparison of these quaptities
to experiment shows a good agreement between our values and the experimentally measured
quantities.

The Richtmyer-Meshkov instability concerns the growth of interface perturbations on a
shock accelerated material interface. When a shock wave collides with the interface between
two different materials, small perturbations of this interface grow into nonlinear structures
having the form of "bubbles" and "spikes". The occurrence of this shock-induced instabil-
ity was predicted by Richtmyer [15] and confirmed experimentally by Meshkov [12]. The
Richtmyer-Meshkov instability is similar to the more familiar Rayleigh-Taylor instability
and is important in both natural phenomena (supernovae) and technological applications
(inertial confinement fusion).

Theory and computation have so far failed to provide an understanding of the Richtmyer-
Meshkov instability that is in quantitative agreement with existing experiments [3, 4, 6,
14, 16]. Computations of the Richtmyer-Meshkov instability for singly shocked, sinusoidally
perturbed interfaces have over-predicted growth rates by factors from 40% to 100% [6] as
compared to experiments. The main theoretical model used in this area, Richtmyer's impul-
sive model [15], also consistently predicts a growth rate that is too large.

Our computations of the Richtmyer-Meshkov instability are further validated by a compar-
ison of small amplitude perturbation, early time simulations with solutions to a linearization
of the equations of motion. An analysis of the time inte-val of validity for the linearized
model explains the failure of the linearized and impulsive models to agree with experiment.

2. THE FRONT TRACKING METHOD

Front tracking is a computational method for the sharp resolution of a set of distinguished
waves in a flow. It combines a standard, rectangular grid based finite difference method with
a set of lower dimensional, dynamically moving grids that follow the tracked wave fronts.
A general description of this method, including an outline of the structure of our computer
program, is given in [10].

The numerical solution for flows in two space dimensions is represented on the union of
a rectangular grid and a set of piecewise linear curves. The state at each point on the
rectangular grid represents the cell average over the corresponding cell of the dual grid
centered at that point. The solution at a point on a tracked front is multivalued, with
values corresponding to the limits of the solution on either side of the wave. The numerical
representation of the flow explicitly includes the jump discontinuities across the tracked
waves and thus eliminates numerical diffusion.

Points of intersection between tracked waves, called nodes, correspond to two-dimensional
interactions between wave fronts. An important example of such a node in these computa-
tions is the Mach triple point.

A global solution operator for the evaluation of the state of the flow at arbitrary locations
is constructed from a front-limited triangulation of the computational grid and the tracked
fronts. This triangulation is constrained so that no triangle crosses a tracked front. A side of
an individual triangle in this construction is either a rectangular lattice cell boundary, or an
edge on a tracked front. A corner of such a triangle is thus either a grid cell corner or a point
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on a tracked front or an intersection of a tracked front with a lattice cell boundary. The
states at these points serve as data for a linear interpolant of the solution into the interior
of the triangle.

The representation of the solution in our front tracking code differs from the more standard
triangular representations of a flow in that the tracked waves are dynamic and move with
time so that the triangulation must be regenerated at each time step in the computation. The
method also differs from the unstructured finite volume techniques in that the main solution
is computed using a regular, rectangular grid. Subsequently the states at grid points that
lie within the domain of influence of the tracked waves over the time step must be corrected
to account for the presence of these waves. It is important to note that the front tracking
code combines both front tracking with shock capturing, so that secondary waves (such as
breaking shocks or induced slip lines) are resolved within the ability of the underlying mesh
spacing and the finite difference scheme.

The propagation operator that updates the numerical solution over a single time step
consists of three basic parts: propagation of the tracked wave fronts (point propagation),
propagation of points of interaction between tracked waves (node propagation), and update
of the states on the rectangular grid (interior solver). For the latter operation, the fronts at
the beginning and end of the time step serve as internal boundaries for the regions adjoining
those waves.

The first propagation phase consists of the propagation of the non-nodal points on the
tracked waves. At each tracked point a local rotation of coordinates is performed that aligns
the coordinate axes with the normal and tangential directions of the curve at that point.
The tangent to a piecewise linear curve at a point is defined as the line through that point
which is parallel to the secant through the neighboring points. Operator splitting is used to
divide the front propagation into two one-dimensional units: a normal propagation step and
a tangential propagation step. The normal propagation of the tracked waves is computed
using a second order Riemann problem-type method as described in [5]. This operator solves
a piecewise linear Cauchy problem and is similar to the van Leer [17] flux computation as used
in the second order Godunov method. The tangential operator uses a one-dimensional finite
difference method, which in our code is precisely the same as the interior finite difference
scheme. The tangential stencil at a given point on the partially propagated wave is formed
by projecting the adjacent curve states onto the tangent at that point. The interested reader
is referred to references [5, 10] for a more detailed description of these operations.

An interaction between tracked waves is locally approximated by a two dimensional Rie-
mann problem, which is defined as the Cauchy problem for initial data that is scale invariant
with respect to the node position at the start of the time step, i.e. constant along rays from
the node position. The numerical solution is computed using shock polar analysis. Refer-
ences [8, 9] contain a description of the node propagation algorithm. The primary nodes of
interest in the present calculations are the Mach triple point and the diffraction node formed
during the Richtmyer-Meshkov calculation by the intersection of a tracked shock wave with
the material interface.

The interior finite difference scheme that computes the solution on the rectangular grid is
an operator split, second order MUSCL scheme [2, 7]. Our implementation uses a five point
stencil with linear reconstruction.

The rectangular grid update consists of two passes: a regular and an irregular grid update.
First, the finite difference equations are solved for the the rectangular grid alone, ignoring
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Regular Reflection Mach Reflection

FIGURE 1. A schematic of regular and Mach reflection. Here, X is the Mach node tra-
jectory angle, and 0. is the ramp angle. The incident shock is moving from the left to the
right.

the tracked fronts. The second pass then updates the states at the rectangular grid points
near the tracked fronts. If a tracked front crosses the finite difference stencil of a rectangular
grid point during the time step, the states computed at that location by the first interior
sweep must be discarded and recomputed to account for the presence of the tracked wave.
In our implementation we use a locally modified stencil at each such point to compute the
updated solution. We start with copies of the states on a five point stencil centered at the
given location. We then find the tracked fronts, if any, on either side of the stencil center
that are closest to the middle location. We replace any states in the stencil lying on the
opposite side of the nearest front by copies of the state on the correct side of the front at
the stencil crossing, as computed by linear interpolation between the tracked points on the
curve. Thus the final solution never uses finite differencing across tracked waves.

The organization of the interior solver into two passes allows the bulk of the code for this
part of the computation to be vectorized. Note that even though our computations used
a nonvector machine (Sun Spaxcstation2), this organization provides a substantial improve-
ment in performance on vector machines and adds little additional overhead on nonvector
computers.

3. SHOCK WAVE REFLECTION AT RAMPS

The wall reflection problems consisted of a shock wave in air (modeled as a perfect gas
with -f = 1.4) colliding with an oblique ramp. The gas ahead of the shock wave was
at an ambient pressure of 0.3 bars and a temperature of 3000 K, with an incident shock
Mach number of 2.0. Two interactions were modeled with ramp angles 0. of 460 and 490
respectively. A computational grid of 256 x 256 zones was used for both simulations, which
were conducted on a Sun Microsystems Sparcstation2 with 64 megabytes of RAM. The 460
run required approximately 16 CPU hours to complete, while the 490 required about 20
CPU hours. The difference in CPU time is primarily due to the smaller value of At required
in the second run. We note that our investigations have shown that a much coarser grid
would resolve the basic structure, and much of the interior structure of the reflected shock
bubble. We have gotten satisfactory results for the main front locations on grids as coarse
as 100 x 100.

Our computation is initialized just after the shock crosses the ramp corner, when the
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(a) (b)

FIGURE 2. (a) Density contours from the first of the runs, using 0e = 46*, P0 = 0.3 bars,
and To = 3000 K. The Mach triple point trajectory angle X = 2.5570. (b) The tracked wave
fronts from the same computation.

reflected wave bubble is just a few mesh blocks in height. Tracking the complete reflected
shock bubble requires an estimate of the initial geometry of this object to serve as a seed
for the final computed configuration. We use the following technique to install the initial
reflected waves. We assume the Mach stem is initially normal to the ramp. The Mach
trajectory angle X is then determined algebraically by the condition that the turning angle
through the incident and reflected waves in a frame that moves with the Mach triple point is
the same as the turning angle through the Mach stem, i.e. the flow behind the configuration
must be parallel to the slip line on both sides. The data for this system of equations consists
of the ramp angle, and the incident shock data (ahead and behind states). This system is
solved using an iteration on X, which determines the local states and wave angles about the
triple point. The Mach stem and contact are installed as straight line segments from the
triple point to the wall, at the computed angles. The position of the bow of the reflected
shock behind the ramp is found by solving a head-on reflection Riemann problem for the state
behind the incident shock. The shape of the initial reflected wave is composed of two pieces.
The first is a straight piece at the triple point tangent to the computed reflected wave, and
the second an ellipse from the end of this segment to the bow point, with axis on the ramp
and center at the corner. It is important to note that this construction is only performed
once at the beginning of the computation. The subsequent propagation of the Mach triple
point and the bow node uses only local information about those points. In particular there
is no restriction that the Mach stem remain straight, or that the reflected wave have any
particular shape. These properties are determined dynamically by the computation. In fact,
the shapes of the waves at later times appear to be independent of any reasonable initial
configuration. Figure 1 shows a schematic of the basic geometry of the reflection.

Figures 2 and 3 show the results of our computations of the two simulations outlined above.
Figures 2a and 3a show density contours, while figures 2b and 3b show only the tracked wave
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(a) (b)

FIGURE 3. (a) Density contours for the second of the runs. This computation differs from
the first only in that 0G = 49*. Here the Mach triple point trajectory angle x = 1.60. (b)
The tracked wave fronts from the same computation.

fronts. The density difference of adjacent contours is 4% of the density of the unshocked
air. We see very sharp resolution of the tracked waves, and in particular at the t-iple point.
This resolution becomes even more important as we move closer to the bifurcation point
to regular reflection, which we will discuss more fully in the context of the next series of
simulations. Let us just say here that our code supports the von Neumann criterion over the
detachment criterion as the location of this point, and these two runs appear to bear that
out, since ON = 53.36°, and 0e = 50.8980. We are relatively close to 0e in Figure 3, but
still have a distinct Mach reflection structure with a sizeable Mach stem.

There is a considerable amount of activity in the flow at the point where the slip line
induced from the Mach triple point reaches the wall. The slip boundary conditions at the
wall require that the flow there be parallel to it, and hence there is a large gradient in the
velocity as the flow adjusts to the obstacle. Tracking the slip line reduces the amount of
numerical spreading of this wave at the wall, which in turn enhances the resolution of the
flow about the triple point by preventing its contamination by the transient waves produced
at the boundary.

The density contours of figures 2a and 3a show that our computation is doing a good
job of reducing the effect of wall heating at the ramp boundary. Most of the contours are
relatively smooth going into the boundary, which is consistent with the inviscid model used
for these computations. We made no attempt to model the boundary layer effects that are
present in a real experiment.

Another feature of our code is the ability to measure various physical quantities very
precisely with respect to our computations. For example, we know the exact states around
the triple point or at the base of the Mach stem by simply reading them from the curve data
structures in the computation.

In a separate series of runs, we validated our computations of regular Mach reflections
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FIGURE 4. A schematic representation of the experimental apparatus used to produce
Mach reflections. This configuration produces a pair of symmetric reflections as the incoming
shock passes the apex of the wedge.

by comparing them with experiments performed at the University of Sydney by Henderson
and Virgona [11]. Considerable effort was made to simplify the experiments in order to
facilitate comparison with the numerical results. For example, the Mach reflections were
generated in argon (-I = 1.667) so as to eliminate vibrational non-equilibrium, dissociation,
and chemical reactions. The strength of the incident shock i was sufficiently large to ensure
that the flow downstream of the reflected shock r was supersonic, but not so strong as to
ionize the argon. More precisely, the average strength of i used in the experiments, or rather
the average inverse strength i =_ p0/p, was ti = 0.1534, corresponding to an incident Mach
number of 2.327. The ahead state pressure and temperature were P0 = 14.1 ± 3.0 kPa
and To = 293.15 ± 4.00 K. The Mach reflections were generated by diffracting incident
shocks over a series of symmetrical wedges of different apex semi-angles 0',' (Figure 4). This
design eliminated shock-boundary layer interaction at the apex of every wedge. The more
conventional concave corner model (Figure 1) undergoes significant shock-boundary layer
interaction as the reflected shock r sweeps over the lower wall. The newer model eliminates
this effect, and is mathematically equivalent to the model in Figure 1 in the inviscid case.
Considerable development work was done on the design of the boundary layer spill slots on
the side walls of the shock tube. The objective was to minimize, as far as practical, the
shock boundary layer on the side walls of the tube.

A graph of Mach triple point trajectory, X, versus the ramp angle, 0,•,, is shown in Figure 5a.
These figures show the experimentally measured value of X together with the values computed
by our front tracking code, as well as those computed by Colella [11] using a highly resolved
shock capturing scheme. This measurement was attractive because x cannot be computed
from the shock polar analysis used to compute the local configuration at the node. Its value
is entirely a result of the interaction of the numerics in our code, and its experimental value
is particularly robust. We have also found the Mach number behind the base of the Mach
stem to be a very useful measurement, for exactly the same reasons.

As can be seen from the picture, our results agree very well with both the experimental
and the shock capturing results. We note that both sets of computational results are on the
high side of the experimental values. This difference has been attributed to boundary layer
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FIGURE 5. A comparison of the Mach triple point trajectory for experiments, fine grid
shock capturing computations, and front tracking. We note that both numerical methods are
in substantial agreement with each other, and are close to the experimental measurements.
Front tracking provides approximately the same value for X as the shock capturing code,
using only a fraction of the grid resolution.

effects.
An application of important interest is the transition conditions between regular and

Mach reflection at a wall. It is well known that for certain flow regimes there is an overlap
between the regions in phase space where regular and Mach reflections are possible. Both
experimental and computational investigations have shown that the boundary layer at the
wall plays an important role in the )rocess that selects the type of wave produced by the
wall reflection. In order to quantify the effect of the wall boundary layer it is important to
understand the inviscid limit of the solution where this boundary layer is absent. It is in
the computation of this inviscid limit that a major strength of the front tracking method is
revealed. Since we are explicitly tracking the most singular parts of the calculation, we can
make very precise statements about exactly where a given discontinuity is located; there is no
numerical diffusion of the fronts. This allows us to perform computations near the transition
to regular reflection, yielding structure that is not resolvable in either experiment or standard
shock capturing codes. We can resolve the the full Mach triple point configuration for angles
x as small as 0.1° (Figure 5b). In such simulations the Mach stem is less than a grid block
long. By contrast, shock capturing codes generally lose the resolution of the Mach triple point
when the length of Mach stem is less that two or three grid blocks. This loss of resolution is
due to the presence of a numerical boundary layer at the wall. This regime is also difficult
to approach experimentally due to the real viscous boundary layer at wall. Currently, front
tracking appears to be the only method that can conduct numerical simulations of inviscid
wall reflections to within a small fcaction of a degree of the mechanical equilibrium condition.

The resolution for the front tracking runs was achieved on grids which are much coarser
than those used in standard finite difference simulations of this problem. Most of our grids
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FIGURE 6. A schematic representation of the geometry of the Richtmyer-Meshkov insta-
bility modeled in this paper. The interaction consists of the collision of a shock wave with
a material interface. The refraction of the shock by the interface produces reflected and
transmitted waves. The instability consists of the growth of perturbations of the material
interface with time.

were 100 x 100, up to about 150 x 150 close to the transition point. This also gives a
commensurate savings in time - the runs took between one and four hours.

It should also be pointed out that for the region between 0 , and 0 N, our code can simulate
either regular or Mach reflection - both are theoretically possible in this region. However,
based on the shape of the curve outside this region (see Figure 5b), our results definitely
seem to converge to the point 0N, and there is no reason to expect a discontinuity in the
curve at 0.. We feel that this is a very strong statement that in this parameter regime,
the bifurcation from Mach Reflection to regular reflection takes place at the mechanical
equilibrium condition and not at the detachment point.

4. NUMERICAL SIMULATION OF THE RICHTMYER-MESHKOV INSTABILITY

We focus on the simplest case of the shock tube experiments of the Richtmyer-Meshkov
instability where a sine shaped material interface is accelerated by a single shock wave, as
in the experiments of Meshkov [12], Benjamin [3, 41, and others. The general configuration
of the computation and experiments is shown in Fig. 6. A thin membrane was used in the
experiments to separate the two gases at the material interface. Quantitative agreement was
achieved between our computational results and the experimental measurements of Ben-
jamin [4] for the rate of growth of a shocked air-SF 6 interface. The collision results in a
transmitted shock and a reflected wave that can be either a shock or a rarefaction depending
on the values of the fluid parameters. The experiments considered in this paper are of the
reflected shock type. Viscosity and heat conduction are negligible here, so the fluid motion
is described by the Euler equations.

The impulsive model proposed by Richtmyer [15] is commonly used to estimate the growth
rate of a shock accelerated interface. This model is derived by assuming that the shock
acceleration can be treated as being impulsive, and that the flow is nearly incompressible
once the shock wave has passed through the material interface. It is also assumed that the
flow is observed in a frame where the average position of the material interface is at rest, and
the position, y(x, t), of the material interface at time t can be given by y(x, t) = a(t) sin kx,
where k is the wave number of the perturbation. Richtmyer's formula gives the growth rate
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of a(t) as

a(t) - kAu P1 - P2 a(O+), (4.1)
PI +P2

where Au is the difference between the shocked and unshocked mean interface velocities, the
pi are the post-shocked densities on the two sides of the interface (the incident shock moves
from material "2" to material "1"), and a(0+) is the perturbation amplitude immediately
after the collision of the shock with the material interface. This formula implicitly assumes
the initial preshocked amplitude, a(0-), is small compared to the wavelength.

Given that a(0-) is small so that ka(0-) < 1, a more exact calculation of the ampli-
tude growth rate can be made. The Euler equations are linearized around the solution of a
one dimensional Riemann problem defined by the head-on collision of a planar shock with
a zero amplitude (planar) material interface, using the initial amplitude of the sinusoidal
perturbation as a small expansion parameter. The result of the linearization is a system
of partial differential equations in one spatial dimension with associated boundary condi-
tions. This system can be solved numerically for the growth rate of the perturbed interface.
This approach, following Richtmyer [15], has recently been generalized to include reflected
rarefactions as well as reflected shocks [18]. Simple order of magnitude estimates limit the
validity of the linearized equations to the dimensionless time interval

t.md, =_ ka(O-) < t. <« 1/[ka(O-)] - t... (4.2)

Here the dimensionless time t. = kcoMot, where M0 is the incident shock Mach number, and
co is the sound speed of the fluid ahead of the incident shock. The limits t-min and t*m&X
represent respectively the transit time of the incident shock through the perturbed interface
and the time required for the perturbation to grow to unit amplitude. Necessarily, these time
limits apply to the derivation of the impulsive model as well, since it is an approximation
to the linear theory. Recent systematic comparisons of the impulsive model and the linear
theory have revealed both regions of agreement and of disagreement in parameter space [18].

We compared our simulations of a singly shocked air-SF 6 interface to the experiments of
Benjamin [4]. The material interface is accelerated by a shock wave with Mach number 1.2
moving from air into SF 6. The initial amplitude, a(0-), was 0.00637 times the period of the
sinusoidal perturbation. For these experiments, t.ma, - 2.5, while the observa.ional time
interval is 15 < t.observational _< 50. The observational times and the validity of the linear
theory fail to overlap by a factor of about 6. We conclude that the linear theory has no
relationship to this experiment.

Fig. 7 shows plots of the amplitude and amplitude growth rate of the material interface as
obtained from experiment, the front tracking simulation, the linearized theory, and Richt-
myer's impulsive model. The time axis in these figures is shifted so that t = 0 corresponds
to the time at which the shock wave has completed its refraction through the interface.

As can be seen from these figures the front tracking results are in substantial agreement
with the experimental results in the sense that the growth rate derived by a least squares
analysis of the amplitude data, 8.14 m/s, is within the experimental range of 7.9 m/s ±
10%. Note that for late (i.e., experimentally observed) times the linearized theory and the
impulsive model growth rates are a factor of two larger than those found in experiment or
in our simulation. This may be due to the fact that this particular configuration has a
relatively large initial amplitude and quickly leaves the region of validity of the linearized
theory and impulsive model. The displacement of the experimental curve with respect to
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FIGURE 7. Perturbation amplitude, a(t), and amplitude growth rate, a(t), of a shocked
air-SF 6 interface. This graph compares the results of experimental averages, front tracking
simulation, linear theory and Richtmyer's impulsive model. Also shown are results of a least
squares fit to the front tracking amplitude data over the period of experimental observation.
The plus marks (+) show the results of one particular experiment, while the experimental
growth rate represents an average over several experiments.

the front tracking curve is possibly due to membrane effects, i.e. the material strength of
the membrane or the influence of its fragmentation may effect the fluid flow.

The front tracking results indicate a decay in amplitude growth rates while Benjamin [4]
finds a fairly constant growth rate during the measurement period. Other experiments,
however, have shown a decaying growth rate [13, 1]. The figures shown in this paper used a
resolution of 125 zones per wavelength, and mesh refinement studies in the range of 125-208
zones per wavelength showed very little change in the amplitude growth rate. We also tested
our simulation against changes in other numerical parameters and found that the value of
i(t) was insensitive to these changes. We conclude that this decay is a real effect and not
due simply to numerical dissipation as has been suggested [4].

A further validation of the nonlinear simulations can be accomplished by comparison to
the small amplitude theory (Fig. 8). This serves both to determine the range of validity of
the linear theory and to validate the solution of the full Euler equations at small amplitudes.
As can be seen in Fig. 8, the front tracking calculation is converging to the linear result as we
reduce the amplitude. We note that the interval of convergence of the nonlinear simulations
to the linear theory appears to be finite. This is in contrast to formula 4.2 which suggests
that the domain of validity of the linearized equations should increase with decreasing initial
amplitude. This point deserves further study.

Of interest is the question of why our results agree with experiment while results found
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FIGURE 8. The convergence of the nonlinear simulations to the linearized solution for
small amplitudes. A comparison of three separate calculations of the normalize.i pertur-
bation growth rate, a(t)/[kcoMoa(O-)], of a shocked air-SF 6 interface with three different
initial amplitudes where k is the wave number, co is the sound speed ahead of the incident
shock, and M0 is the incident shock Mach number. The horizontal axis is in dimensionless
time units kcoMot.

through other numerical methods do not. Prior disagreement between the growth rates mea-
sured in experiments and those predicted by numerical simulation has led to the suggestion
that mass diffusion and membrane effects may have an important role in the behavior of the
interface instabilities. Our work does not exclude this possibility, but the agreement of our
computations with experiment suggests that a proper numerical resolution of the material
interface is essential to obtain agreement with experiment, and also that if other effects are
important, they may be offsetting one another. It is also clear that there is still much to
learn about the highly nonlinear aspects of the Richtmyer-Meshkov instability. These effects
include the possible coupling between nonlinear modes, and their study will require exper-
iments on singly shocked interfaces as well as computations with random interfaces which
have been run to late times. Similarly, understanding the effects of reshocking remains an
important theoretical challenge. For the single mode case, a systematic study of mass diffu-
sion, membrane effects, and a detailed comparison to earlier calculations of others would be
desirable.
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ABSTRACT. We discuss the applications of high order compact finite difference methods
for shock calculations. Nonlinear stability is achieved through the definition of a local mean
which serves as a reference for introducing a local flux limiting to contro! spurious numerical
oscillations while keeping the formal accuracy of the scheme. For scalar conservation laws, the
resulting schemes can be proven total variation stable in one space dimension and maximum
norm stable in multi space dimensions. Numerical examples are shown to verify accuracy
and stability of such schemes for problems containing shocks.

1 Introduction

Compact schemes are methods where the derivatives are approximated not by polynomial
operators but by rational function operators on the discrete solutions. We are interested in
solving a hyperbolic conservation law

ut + f(u).+g(u), = 0
u(x,y.0) = u°(z,y) (1.1)

using compact schemes. In the semi-discrete form, a compact scheme for solving (1.1) can
be written as

=- -- 1-(A;'Bzf(u))ij - 1 (A ,lByg(u))jj =- L(u),i (1.2)

where A and B are both local, one dimensional operators. The subscript x or y indicates
that the operator is applied in the x or y direction.

As examples, a fourth order central compact scheme is given by (1.2) with

(Av), = ( + 4v, + vi+i)

1Research partly supported by the National Science Foundation grant DSM-9103997 and by the Minnesota

Supercomputer Institute.
2Research supported by ARO grant DAAL03-91-G-0123, NSF grant DMS-9211820, NASA Langley grant

NAG1-1145 and AFOSR grant 93-0090.
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(By) (v+ - vi-,) (1.3)

and two third order upwind compact schemes are given by

1
(Av)i = i(-vi-i + 5vi - vi,+)

(Bv)i = I(3v, - 4v,_- + v,_ 2 ) (1.4)

and

(Av), = I + 5v, - v,+i)

(Bv)i = 1(-vi+2 + 4vi+1 - 3vi) (1.5)

respectively, depending upon the wind direction. Notice that (1.4) and (1.5) have the same
implicit part A which is symmetric. This fact will be used later in Section 2 to define our
local means.

The cost of compact schemes, regardless of the number of space dimensions, involves
only inversion of the narrowly banded (usually tridiagonal) matrix A, hence is comparable
to explicit methods. This is notably different from other implicit methods such as the
continuous Galerkin finite element methods in multi space dimensions, even if they are
similar in one space dimension.

The advantages of compact schemes over traditional finite difference methods include
the relatively high order of accuracy using a compact stencil (for example, the fourth order
scheme (1.3), when discretized in time using Euler forward, uses only a three point stencil
in each time level), a better (linear) stability, a better resolution for high frequency waves
[13], and usually fewer boundary po',ts to handle. In recent years compact schemes have
attracted considerable attention in various fields such as the direct numerical simulations of
turbulence. We refer the readers to [13], [19], [12], [3], [1], and [2] for more details. The
recent paper [131 discusses in detail wave resolution, phase errors and other issues related to
compact schemes and is a good reference.

We are interested in applying compact schemes for shock calculations. Just like any
other linear schemes (schemes which are linear when applied to linear equations), compact
schemes usually demonstrate nonlinear instability when applied to discontinuous data. We
follow the TVD (total variation diminishing) ideas in [9], [14] and try to define a suitable
nonlinear local limiting to avoid spurious oscillations while keeping the formal accuracy of
the scheme. Notice that the compact scheme, just like any implicit scheme, is global. That is,
the approximation to f(u)_ at x = xi involves uk along the whole line due to the tridiagonal
inversion A-1 . Our main idea is to define a local mean, and to use it as a reference for
introducing a local limiting. In Section 2 we introduce the limiting for one space dimension
and obtain total variation stability. In Section 3 we introduce the limiting for multi space
dimensions and obtain maximum norm stability. In Section 4 we present numerical examples.
In most cases we will only state the theoretical results without proof. We refer the readers
to [6] for details.
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In this paper, we use the total variation diminishing (TVD) Runge-Kutta type time dis-
cretization, introduced in [17], [15], to discretize the ODE in the method-of-lines formulation
(1.2). In the third order case, the time discretization is

0O) = u" + AtL(u")

U(2) 3un + 10(,) + ! AtL(u(,,) (1.6)
4 4 4

un+1 = 3un + 3n2) + 3AtL(u(2))

Only third order results will be shown, although schemes with other orders of accuracy are
also tested.

These special Runge-Kutta type time discretizations are labelled TVD because it can be
proven that, under suitable restrictions on the time step At (the CFL condition), the full
discretization (1.6) is TVD, or stable under another norm, for example the L., norm, if the
first order Euler forward tim• discretization for (1.2):

U u" = + AtL(un) (1.7)

is TVD or stable under the other norm. For details, see [17] and [15].
We thus only need to consider the Euler forward scheme (1.7) for 0 - llty analysis in the

subsequent sections.

2 One Space Dimension

In one space dimension, equation (1.1) becomes

U, + f(U)" = 0
u(X,0) = u°(x) (2.1)

the scheme (1.2) is
Sdu (A-,Bf(u))i =- L(u)i (2.2)

and the Euler forward time discretization (1.7) becomes

u!+'-=u0 + AtL(un), (2.3)

Scheme (2.3) can be easily written into a conservation form

n!'+1 = At h n, -- u• - •-•x( i+ -h L_) .4

suitable for shock calculations. However, the numerical flux h is not a local function of
un due to the tridiagonal inversion A- 1 . If we define

S=- (Au)i (2.5)
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then scheme (2.3) can be left-multiplied by A to become

At (2.6)
=i - T-(Bf f(0))i 26

which, when written into a conservation form,

k+l = i- ! t- (2.7)

involves a numerical flux f+, which is a local function of uk. For example,

+.I (f(ui+i) + f(uO)) (2.8)

for the fourth order central scheme (1.3); and

2+ 2 L -(3f(ui) - f(ui-.1)) (2.9)

and

fi+½ = 2 (-f(ui+2) + 3f(u,+i)) (2.10)

for the two third order upwind schemes (1.4) and (1.5), respectively. Notice that scheme
(2.7) resembles a cell-averaged (finite volume) scheme [11]. The iii in (2.5), just like a cell
average, is a local mean of u, defined by Au in (1.3) through (1.5). Since the computation
of the flux fi+½ in (2.7) involves the values of u, a "reconstruction" from fi to u

u, = (A-'fi)i (2.11)

is needed. This reconstruction is global.
It is now rather straightforward to define the limiting. We first write

f(M) = f+(u) + f-(u) (2.12)

with the requirement that
Of+(u) > 0, Of-(U) < 0 (2.13)

The purpose of this flux splitting is for easier upwinding at later stages. The simplest such
splitting is due to Lax-Friedrichs

f (u) = 1 (f(u) ± au), a = max If'(u)l (2.14)
2

where the maximum is taken over the range of uo(x). We then write the flux j,.+½ in (2.7)
also as

f +½ =I+ + A;½ (2.15)

where Piq are obtained by putting superscripts ± in (2.8) through (2.10).
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Next we define

d+f+ = - f+(.); df 4; = f-(fii+ )- fI; (2.16)

Here dfhi+I are the differences between the numerical fluxes J] +i and the first order, upwind

fluxes f+(fii) and f-(fi•+1 ). These differences are subject to limiting for nonlinear stability.
We define the limiting by

d =+() d +, A+f+(fii), &+f+(fii.1)

+(M) = m d"+ (2.17)

where A+vi =- vi+l - vi is the usual forward difference operator, and the (now standard)
minmod function m is defined by

( sminl<i<k Jail, if sign(a1 ) =... = sign(ak) = s
me(ai,...,1ak) = O, otherwise (2.18)

See, e.g., [9]. Notice that the limiting defined in (2.17) is upwind biased.
The limited numerical fluxes are then defined by

j+(n) = fpi) + d+(-) +() = f-(fii+i) - dF{(m) (2.19)

and
"f"() + I f (2.20)

If we define the total variation of the mean ii by

TV(fi) 1 5Iiii+1 - fiI (2.21)

we have the following
Proposition 2.1: Scheme (2.7) with the flux (2.20) is TVDM (total variation diminish-

ing in the means):
TV(fi"+') •_ TV(tii) (2.22)

under the CFL condition

max (f+'(u- f-'(u)) At 1 (2.23)min fi<u<max l f, (U f Ax -2

The limiting defined in (2.17) is just one of many possibilities. See [18] for a comprehen-
sive discussion of limiters.

The total variation stability for u itself is based upon the previous proposition and the
following lemma:
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LmaI 2.2: If there are two numbers 0 _< b < 1 and a > 0, which are independent of
N, such that the N x N matrix A = (a11 ) satisfies:

1 Nmax -<a, and

1<j<N Ia,, - ia,,I•61a, (2,24)

isi

(strongly diagonally dominance for the transpose of A), then the L1 norm of A-' is bounded
independent of N:

1A-'11Lj < 1-a (2.25)

For most compact methods, the matrix A satisfies the condition (2.24) for Lemma 2.2.
For example, in the schemes defined by (1.3), (1.4) and (1.5), A satisfies the condition (2.24)
with 6 = , a = 6; 6 = 2, a = 3 and 6 = 2, a = 3, respectively. For such compact schemes,
we have the total variation stability for u:

Proposition 2.3: If a compact scheme (2.7) satisfies the conditions in Proposition 2.1
and Lemma 2.2, then it is TVB (total variation bounded). That is,

TV(u") = ul t+- ut'I < C (2.26)

for all n > 0 and At > 0. Here C is a constant independent of n and At.

0

This Proposition guarantees convergence of at least a subsequence of the numerical so-
lution.

We now discuss whether the limiting defined in (2.17) maintains the formal accuracy of
the compact schemes in smooth regions of the solution. For this we need the following

Assumption 2.4:
fii = (Au)i = u, + O(AX2) (2.27)

for all u E C 2.

0

This Assumption is satisfied by any compact scheme with a symmetric A, for example
all those listed in (1.3) through (1.5).

Under Assumption 2.4, it is easy to verify, by simple Taylor expansions, that

A+/'(fik) = f'(ii,).AX + O(Ax 2) k = i - l,i,i + 1

df, 4 I = f*(iQ'AX + O(Ax2 ) (2.28)

Hence in smooth regions away from critical points (critical points are defined here as
points for which f+(ii), = 0 or f-(fi)• = 0), the second and third arguments of the minmod
functions in (2.17) are asymptotically of the same sign as the first argument and half in
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magnitude. Hence the first argument will be picked by the minmod function (2.18) for
sufficiently small Ax, yielding

dj.*() - d= + (2.29)

This guarantees the original high order accuracy of the scheme in such smooth, monotone
reeicas, due to the exponential decay of the off-diagonal entries in A` for the type of A we
use [7]. At critical points, the accuracy will degenerate to first order as a generic restriction of
all TVD schemes (see, for example, [14]). To overcome this difficulty, we use a modification
of the minmod function

i l -,k) = a,, if lal < MAX2  (2.30)
m(al,...,ak), otherwise

where M is a constant independent of Ax. This modification is discussed in detail in [16]
and [4].

With this modification we can obtain schemes which are formally of uniform high order
accuracy, equalling the original unlimited scheme, in smooth regions including local extrema.
Moreover, we can prove the following

Proposition 2.5: The conclusions of Proposition 2.1 and 2.3 are still valid, for any n
and At such that 0 < nAt < T, with TVDM in (2.22) replaced by TVBM (total variation
bounded in the means):

TV(fi") 5< C (2.31)

where C is independent of At, if the minmod function m in (2.17) is replaced by the modified
minmod function rh defined in (2.30).

0

The choice of the constant M in (2.30) is related to the second derivative of the solution
near smooth extrema. For details, see [16] and [4]. The numerical result is usually not
sensitive to the variation of M in a large range.

3 Multi Space Dimensions

For notational simplicity we only consider the two dimensional case (1.1)-(1.2). Three space
dimensions do not pose additional conceptional difficulties. As before, we only need to
consider the Euler forward time discretization

O.' = u' + AtL(u'),j (3.1)

We again define
iiii =- (AyAxu )ji (3.2)

so that scheme (3.1) can be left-multiplied by A.A. to become

i'+.= - At(AvB~f(u'))ii - At (At Bv(u))ii (3.3)
"AX Ax
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Here and in what follows we will use the commutativity of As, Ap, B, and B, so that a
product can be written in any order. Scheme (3.3) can be written into a conservation form

At At ,
i+ = fi-'+•d -- --- §i-) (3.4)"1 Axz~fw-fil zI+I~j+ Iy

which involves numerical fluxes and §i",+L as local functions of uOk. For example,

=2f]i+ V Y 1A (fui+,j) +1 fAuO))

1
,j+•= -Ax (g(uij+,) + g(ui,)) (3.5)

22

for the fourth order central scheme (1.3), etc.. Again, scheme (3.4) resembles a cell-averaged
(finite volume) scheme [101. The uiij defined by (3.2) is a local mean of u, and a "reconstruc-
tion" from ii to u

uii = (A;-1A;•'i)ij (3.6)

is needed to compute the fluxes fi+lj and §ij+i in (3.4).

We remark that the additional costs of implementing scheme (3.4), comparing with the
original scheme (3.1), are the two local operators A., and Ay. The major part of the cost still
consists of the two tridiagonal inversions.

The limiting to obtain nonlinear stability can now be defined in a dimension by dimension
fashion: we can use the one-dimeisional flux splitting (2.12), for f(u), to write the flux A+,i
as

fi+Lj = f,++j + fi+½d (3.7)

where 4*+1. are again obtained by putting superscripts ± in, e.g., (3.5). The remaining

definition of the limiting parallels that in Section 2, with a dummy index j added for the
reference y value: We still start with the differences between the high order numerical fluxes
and the first order upwind fluxes

d fi -L'i 2 f+,.i); df ; -j .f- (fi+,j) - f.; (3.8)

limit them by

d+ =) m (dfi++, Af• +- (i), A +- (iii+i))

where Axvij =_ vi+lj - vii is the forward difference operator in the x direction, and the
minmod function m is defined by (2.18). We then obtain the limited numerical fluxes byf +(M) +,I +(n). ^() M

.+(m f+(Iii) + dj+(m) ji+'( = f-(fii+•j) - djjm) (3.10)

and
;+,n) _+(m) ;-(in) (3.11)
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The flux in the y-direction is defined analogously.
In light of [8] this scheme cannot be TVD in two space dimensions. However we can

obtain maximum norm stability through the following
Proposition 3.1: Scheme (3.4) with the flux (3.11) satisfies a maximum principle in the

means:
max < max i (3.12)id I J I- j

under the CFL condition

[max (+'(u)) + max (-f'(u))]ŽA+ [max (g+'(u)) + max (-g-'(u))] At <1 (3.13)AX Ay -2

where the maximum is taken in miniji fil < u < maxj, fW.

0

In order to obtain maximum norm stability for u, we need a lemma similar to Lemma
2.2:

Lemma 3.:
If there are two numbers 0 _< 6 < 1 and a > 0, which are independent of N, such that

the N x N matrix A = (aij) satisfies:

1 N

max < a, and N laijk<laid,
1<i<N jai - i= 1,''",N (3.14)

j=1j#i

(strongly diagonally dominance for A), then the Lo norm of A-' is bounded independent
of N: IIA- 1IIL b 

(3.15)

For the compact methods we consider, the matrix A is symmetric. Hence the requirements
(2.24) and (3.14) are the same.

We can now use Lemma 3.2 to obtain the maximum norm stability for u:
Proposition 3.3: If a compact scheme (3.4) satisfies the conditions in Proposition 3.1

and Lemma 3.2 for both A. and AV, then it is stable in the maximum norm. That is,

maxlIulI< C (3.16)m.,xij -
I,J

for all n > 0 and At > 0. Here C is a constant independent of n and At.

0

This Proposition does not guarantee convergence, but it at least guarantees that the
numerical solution will not blow up due to instability.

Under the Assumption 2.4 for both A., and AV, we can again easily verify that the
limiting (3.9) maintains formally the original high order accuracy of the scheme in smooth,
monotone regions. The degeneracy of accuracy at critical points can once again be overcome
by adopting the modified minmod function (2.30) in the limiting (3.9).
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4 Numerical Examples

To test the behavior of the schemes discussed in Sections 2 and 3, we use the one and two
dimensional Burgers equation with smooth initial conditions:

U 2() =0

u(X - 0.3+0.7sin(x) (4.1)

and

Ut+ ( )+ (U2) = 0

u(x, y, 0) = 0.3 + 0.7 sin(x + y) (4.2)

both with 2ir-periodic boundary conditions. The solutions will stay smooth initially, then
develop shocks which move with time. The exact solution to (4.1) can be obtained by follow-
ing the characteristics and solving the resulting nonlinear equation using Newton iteration.
The exact solution to (4.2) is that of (4.1) with x replaced by x + y and t replaced by 2t.
These are standard test problems for scalar nonlinear conservation laws containing shocks.
For comparison with finite difference ENO schemes and with finite element discontinuous
Galerkin methods, see [17], [4] and [5].

The schemes we test are based on the third order upwind schemes (1.4)-(1.5) coupled
with the third order TVD Runge-Kutta time discretization (1.6) (henceforth referred to as
the upwind scheme). For the flux splitting (2.12) we use the Lax-F-iedrichs splitting (2.14).
The time step At" is taken to satisfy a CFL condition

At"
max i'I- < 0.5 (4.3)

in one dimension and
nIAtn Atn

maxi .I AXI - +- ) < 0.5 (4.4)

in two dimensions. When the modified minmod limiter (2.30) is used, the constant M is
taken as 1.

We first test the effect of limiters when the solution is smooth but not monotone. In
Figure 1 we plot the L1 error versus number of grid points, in a log-log scale, at t = 0.6 for
the one dimensional case and at t = 0.3 for the two dimensional case. In such scales, the
error should be a straight line with slope -k for a k-th order method. We can see that the
original compact schemes and the schemes with modified minmod limiter (2.30) (henceforth
referred to as the TVB limiter) give the expected third order accuracy, while the schemes
with the minmod limiter (2.18) (henceforth referred to as the TVD limiter) give only second
order accuracy due to the degeneracy at the critical points.

We then test the effect of limiters when the solution becomes discontinuous. In Figure
2 we show the results of the original compact schemes at t = 2 for the one dimensional
case, as well as the result obtained with the TVB limiter (the result obtained with the TVD
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limiter is graphically similar to that obtained with the TVB limiter, hence is not shown).
We can see over- and under-shoots for the original compact scheme, and monotone shock
transition for the result obtained with TVB limiter. In Figures 3, we show the pointwise
errois, in a logarithm scale, for the numbers of grid points N = 10, 20,40,80 and 160. We
can see that the error behaves as expected, with bigger errors for the TVD limiter near the
smooth extremum which is close to the shock. The errors for the two dimensional case are
similar and are not displayed. In the last picture, Figure 4, we show the surface of the two
dimensional solution at t = 1 with 40 x 40 points using the third order upwind method with
TVB limiting.
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Figure 1: L, error versus number of grid points in log-log scale for smooth solutions. Stars:
compact schemes without limiter; squares: with TVD limiter; diamonds: with TVB limiter.
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Figure 2: Compact schemes for shocks. Plus signs: computed solution; solid line: exact
solution.
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Figure 3: Pointwise error for N = 10, 20,40,80 and 160 grid points, in a logarithm scale.
Third order upwind scheme with limiters for shocks.
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Figure 4: Surface of third order upwind compact scheme with TVB limiter for shocks. 40 x 40
points.

210



NUMERICAL WIND TUNNEL TESTING
OF

PRESSURIZED TENTS"

Neal E. Blackwell
Environmental Control and Systems Support Division

U.S. Army Belvoir Research, Development and Engineering Center
Fort Belvoir, Virginia 22060-5606

ABSTRACT

Wind tunnel testing of Army temper tents, used in the Chemically Protected
Deployable Medical System (CP DEPMEDS), is simulated using a two-dimensional,
staggered grid, finite difference approach. This numerical wind tunnel approach is used to
predict pressure data to determine lift and drag characteristics of the tents. Wind tunnel
blockage due to the tents is less than 10% and wind speeds range from 5 to 70 mph
(4.6 X 105 > Re < 6.4 X 106). Length to height ratios for the tents are 6.4 and 9.6, for
19.51 m (64 ft) and 29.26 m (96 ft) length tents, respectively. Values for all the forces are
reported for the 19.51 m (64 ft) length tent. Although not reported, the values for the 29.26
m (96 ft) tent length are larger by a factor of 1.5. Drag and lift coefficient values are area
specific, therefore, these values are valid for all tent lengths where the two dimensional
assumption is valid.

INTRODUCTION

U. S. Army Belvoir RD&E Center (BELVOIR) is continuing to support U. S. Army
Natick RD&E Center (NATICK) in the C-100 Air Conditioner program for the Chemically
Protected Deployable Medical System (CP DEPMEDS). As a part of that work, BELVOIR
is conducting a study of the airflow and drag characteristics of the tents to aid NATICK in
the development of an improved tent anchorage system. The magnitude of the forces needed
to design the anchorage system are calculated by multiplying the pressure differences across
the tent by the surface area. Values for all the forces reported in this study are for 19.51 m
(64 ft) length tents. Corresponding values for 29.26 m (96 ft) length tents are larger by a
factor of 1.5. Drag and lift coefficients are area specific and hence, are valid for all tent
lengths where the two dimensional assumption is valid. This study includes the flow
characteristics of a single tent. Future work will include multiple tents positioned downwind.
The tents are much longer in length than in width or height and for CP DEPMEDS the tents
are positioned parallel to one another and connected at one end by a narrow passageway.

"Supported by U.S. Army Natick Research Development and Engineering Center.
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BACKGROUND

A study of wind loads on the Chemically Protected Deployable Medical System (CP
DEPMEDS) tents is needed by U.S. Army Natick Research Development and Engineering
Center (NATICK) to assure the correct development of improved tent anchorage systems.
Conventional wind tunnel testing is an expensive and time consuming method to obtain wind
load data. An alternative and cost-cutting approach is the use of a numerical wind tunnel,
where the wind tunnel is simulated on a computer. This inexpensive and time-saving
approach is swiftly gaining popularity due to the increasing affordability of computers and
improved computational fluid dynamics codes.

In this study, a numerical wind tunnel is used to obtain predictions of velocities and
pressures acting on CP DEPMEDS tents (Army temper tents) when wind speeds of 5, 20,
50, and 70 mph strike the upwind side of the tents at a 90 degree angle of attack (broadside).

PROCEDURE

The DEPMEDS tent is modeled as a rigid wall building with a peaked roof. In
reality, wind will deform the tent wall into varying shapes. Also, pressures inside and
outside of the tent will be transient when the tent materials flap and vibrate due to the wind.
Predicting these complex mechanisms is beyond the scope of this study. The following
procedures were used to obtain values for engineering calculations leading to the design of a
tent anchorage system and are not meant to be a transient simulation of the complex
mechanisms involved. The geometrical model of the peaked roof tent is built on a one to
one scale, using small, stair step blocks to build the inclined roof. As it turns out, the stair
step shape of the roof does not have a major effect on the lift and drag forces on the tent
because most the flow over the upwind and downwind roof section is separated from the roof
surface. Hence the core flow makes little contact with the roof surface. The height of the
vertical tent walls is 1.98 m and the height of the peaked roof is 1.22 m making the total tent
height from ground to peak 3.2 m. Wind tunnel height is 55 m and the wind tunnel blockage
is 6%, within the recommended value of 10% or less (ASHRAE, 1989). Upwind of the tent
is 29.3 m of level ground. Downwind of the tent is 39 m of level ground.

Tent width is assumed a constant value of 6.1 m. This constant value will produce
errors at low wind speeds due to the slightly rounded, upwind wall of the pressurized tents.
The largest error will he produced by the sharp edge of the upwind wall eves in the model
geometry. However, at high wind speeds, the wind wil! diminish the roundness of the actual
wall because the outside pressure is equal to or exceeds the inside pressure. Roundness of
the walls is shown in Figures 1 and 77 of the photograph section of the final report of the
Customer Engineering Design Test (Phase II) at Fort Indiantown Gap (Cho and Bryant,
1993). At wind speeds above 16 m/s (36 mph), the upwind wall is expected to form a
concave shape that increases with windspeed. The effect of this concavity on drag and lift
will be included in future work.
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Uniform velocity profiles of magnitudes of 2.24 m/s (5 mph), 8.94 m/s (20 mph),
22.4 m/s (50 mph), and 31.3 m/s (70 mph) are prescribed at the wind tunnel inlet. The flow
is assumed to be incompressible because the largest Mach number is 0.09, which is much
smaller than Ma-=0.3 when compressibility becomes significant. Also, laminar flow
simplifications are used to include some viscous effects without the penalty of large
computational times associated with turbulent solutions. Turbulent solutions may be used for
more detailed, future studies if NATICK desires these results. Turbulent solutions typically
double computational time. The inclusion of viscous forces allows the recirculation region,
located at the bottom, upwind side of the upwind tent, to be modeled (Figure 1). Viscous
forces reduce the approaching wind speed near the ground, produce the recirculation region,
and determine the height of the stagnation line. Figure 2 shows the inviscid solution, with
the absence of the recirculation region, as compared to the viscous solution in Figure 1.
Two dimensional, steady state, conservation equations in Cartesian coordinates are presented
below. The conservation of mass is expressed as

a(pu) + ((pv) =0 [1]
ax Oy

where terms are defined in the Nomenclature section. The constant density terms are treated
as variables due to the general nature of the code CFD2000 1.0, a version of PHOENICS
1.5, which is chosen for this study (Phoenics, 1988). The following equations for the
conservation of momentum in the x and y directions are linearized and solved.

a(puu) + a(pvu) =_ap+ a u) + a 2u
ax ay Ox -x lax [2]

a(puv) =(pv-) =_ +a(1 1 Oa _v) 2 av) [3]
ax + ay ay ax ax a( ay

To link pressure and flow, CFD2000 uses Semi-_Implicit-.Method for Pressure-Linked-
Equations (SIMPLE), developed by Patankar (1980), in conjunction with the staggered grid
method. The staggered grid method is used to prevent oscillations of the pressure field. As
a result, pressures are calculated at cell nodes and velocities are calculated at cell faces.

Horizontal grid resolution is 1.63 m/cell in region 1, 0.24 m/cell in region 2, and
1.63 m/cell in region 3 (Figure 3). Vertical grid resolution is 0.25 m/cell in region A, 0.17
m/cell in region B, and 2.5 m/cell in region C (Figure 3). The discretized forms of
equations 1, 2, and 3 are solved at 4,234 cell nodes, totalling 12,702 simultaneous equations.
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Solutions converge within 2500 to 3000 iterations and graphical examples of the
results are in Figures 4 and 5. Approximately three hours of computer run time is required
for convergence using a 486 personal computer operating at 33 MHZ. The 32 bit Lahey
F77L-EM/32 FORTRAN Compiler version 4.02 with the Lahey Ergo OS/386 DOS Extender
is used.

Numerical wind tunnel results are interpreted using graphs that show velocity vectors
and pressure contours. The direction of the velocity vectors is indicated by the angle of the
arrows and the magnitude of the vector, in m/s, is indicated by the length of the arrow.
Pressure magnitudes, in pascals, are indicated as varying shades of black where the pressure
increases as the shade lightens. Values assigned to the shaded contours are printed in the
legend located on the right side of the pressure contour plot. An example of how to interpret
the pressure contour predictions is to note the light shade of the contour on the lower upwind
side of the tent and then note the darker shade contour on the lower downwind side. Noting
the pressure shaded legend on the right side of the page, the pressure values may be found;
and the difference between the two values is the maximum pressure drop across the tent.
The individual pressures are relative, not absolute, due to the aP/8x and aP/8y terms in the x
and y momentum equations. Hence, the difference between two relative pressures yields the
correct pressure difference.

Figures 4 and 5 are representative of the flow patterns and pressure contours over the
computational domain. Three main flow regimes exist and these include separated flow,
recirculation, and reattachment (Figures 4, 5, 6 and 7). Flow separates near the peak of the
roof and recirculates on the downwind side of the roof and tent wall. The separated flow
reattaches to the ground downwind, and these distances and ratios (reattachment length/tent
height)(L/H) are given in Table 1. Objects located in the separation region are shielded from
wind loads and are less likely to be blown around or damaged during high wind gusts.
Height of the separation region decreases downwind; therefore, the tallest objects to be
shielded should be positioned closest to the downwind wall.

Drag and lift forces and the corresponding coefficients are given in Table I and are
important for tent ancborage. The drag and lift coefficients versus wind speed and Reynolds
Number are a constant value (Table 1) and are defined as

CD = Drag [4]
1 / 2p V2A

CL _ Lift [5]
1/2pV2 A
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Hence, drag and lift may be calculated for any wind speed between 5 and 70 mph. As
equations 4 and 5 and Figure 8 show, drag and lift increase quadratically with respect to
wind speed. Drag is calculated by summing the products of the pressure differences, across
the tent width by the cell areas of the upwind wall and the vertical projection nf the roof.
Drag is the horizontal force that the tent anchorage system must support.

Table 1. Drag, Lift and Reattachment Parameters as a function of Wind Speed and
Reynolds Number (based on tent height).

Wind Speed 8.0 (5) 32.2 (20) 80.5 (50) 112.6 (70)
km/h (mph) I
Reynolds No. 4.56x10 5  1.82x106 4.56x10 6  6.39x10 6

Drag Coeff 0.78 0.77 0.77 0.77

Lift Coeff 0.45 0.45 0.44 0.44

Drag N (Ibf) 140 (30) 2260 (510) 14140 (3180) 27580 (6200)

Lift N (lbf) 160 (35) 2500 (560) 15470 (3480) 30110 (6770)

Reattachment ';6.2 (119) 36.5 (120) 37.1 (122) 37.4 (123)
Distance m (ft)

Ratio L/H 11.3 11.4 11.6 11.7

Lift is calculated by summing the products of the pressure differences across the
height of the tent by the cell areas of the horizontal projection of the roof. The pressure at
the bottom of the tent is assumed to be at atmospheric pressure. Flow separation at the
leading edge of the roof (upwind eves) produces a low pressure region that tends to lift the
upwind portion of the tent (Figure 7). However, the prominent flow separation region exists
over the downwind roof section, and it produces a low pressure region that tends to lift the
downwind portion of the tent. Lift is the vertical force that the anchorage system must
support.

Forces Tending to Cause Roof and WaOl Blowout

During the Customer Engineering Design Test (Phase II) that was conducted during
the summer of 1992, the U.S Army Combat Systems Test Activity (CSTA) reported several
occurrences of wall blowout during pressurization (Cho, 1992). Wall blowouts were
prevented by insuring that the overpressure value did not exceed 0.6 inches of water (IW).
In a no wind condition, the CP DEPMEDS recommended overpressure of 0.6 IW produces a
5770 N (1300 lbf) force acting perpendicular to each 1.98m x 19.51m upwind and downwind
wall. The pressure difference across all the walls and the roof are equal. However, under
wind load conditions, the pressure difference across .e tent walls and roof varies
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around the tent, with the minimum value existing on the upwind wall and the maximum
value existing on the downwind wall. The maximum pressure difference occurs on the
downwind side because a relatively high pressure exists in the tent and a relatively low
pressure exists outside the tent. The difference between the two pressures is relatively large.
Resultant forces on the downwind wall due to tent pressurization and wind loads are given in
Table 2 and Figure 8. The downwind wall is the section most vulnerable to blowout.

The downwind roof section is the next most vulnerable section to blowout. In a no
wind condition, the overpressure produces a 9575 N (2150 lbt) force acting perpendicular to
each roof section. Under wind load conditions, the projection of the lift forces perpendicular
to the roof plus the overpressure force of 9575 N combine to form a larger force that tends
to blowout the downwind roof section (Table 1 and Figure 8). Resultant forces on the
downwind roof section are given in Table 2 and Figure 8.

Table 2. Forces Normal to the Downwind Roof and Wall Sections.

Wind Speed (mph) Force Normal to Downwind Force Normal to
Roof Section N (lbf) Downwind Wall N (lbf)

0 9575 (2150) 5770 (1300)
10100 (2270) 5830 (1310)

11460 (2580) 6490 (1460)

50 19024 (4280) 10150 (2280)

70 27550 (6190) 14280 (3210)

CONCLUSIONS

Drag and lift forces are predicted for 5, 20, 50 and 70 mph wind speeds. The
constant values for the drag and lift coefficients allow drag and lift to be calculated for any
wind speed between 5 and 70 mph and for any length tent where the two dimensional
assumption is valid. Also, Figure 8 may be used to predict the forces tending to blow out
the downwind roof and wall sections. These forces will aid in the development of stronger
seams for the NBC tent liner. Forces are recorded to provide data for development of
improved tent anchorage systems.

FUTURE WORK

BELVOIR is presently predicting air flow and drag characteristics of multiple CP
DEPMEDS tents positioned downwind (Figures 9 and 10). Introduction of a second tent
doubles computational time, hence, Euler equations for inviscid flow are used to reduce
computational time.
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Preliminary results indicate that the outer two tents of the CP DEPMEDS complex
block the air from the inner tents. The requirement for expensive, heavy duty, anchorage
equipment may be limited to the outer tents. The inner tents can be fitted with less
expensive, lighter, anchorage equipment. This helps to reduce cost and weight of the
anchorage system.

Also, the slower air flowing between tents may function like a pneumatic separator in
sandy, desert regions where dust and sand storms are common. The particles being
transported in the separated regime could settle between tents as they contact the slower
recirculation regimes between tents (Figure 9). This could produce sand, dust, or snow
drifts.

Finally, we expect the high pressure that exists on the upwind wall of the upwind tent
and the low pressure that exists between tents to combine and defeat the overpressure system
for wind speeds above 16 m/s (36 mph). This will cause contaminants to enter the upwind
tent and quickly flow, by convective transport, into each of the downwind tents. This will
happen because the downwind tents are engulfed in the low pressure region shown in the
shaded area in Figure 10. Convective transport is expected to spread the contaminants from
the upwind tent to the downwind tents so quickly that medical personnel will not have time
to isolate the downwind tents.
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NOAMNCLATURE

p - air density

V f air velocity

x, y, z = cartesian coordinates

u, v, w = velocity components

a = differential operator

P = pressure

Pu•= laminar viscosity

A = projected area
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Nort hwesten University
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ABSRACT New multiple-quadratuw-poimt underintegrated finite elements with
g conol are deelope 1helements are m e gated to avoid volumetric and sbear

locking and save computatioal time. An a c for ho ss contro is proposed such tha t
stabilizntion erator ar obtained simply by taking the partial derivatives of the geer-alized strain
rate vector wt respect to the natural coordinates so tha he elements require no stabilization
parameter. To improve accuracy over the traditional one-point-quadrature elements, several
quadrature points are used to integrate the internal forces, especially for tracing the plastic fronts
in the mesh during loading and unloading in elastic-plastic analysis. Four-point quadrature are
proposed for use in the two and three dimensional elements. Other multiple quadrature points can
also be employed. Several numerical examples such as thin beam, plate and shell problems are
presented to demonstrate the applicability of the proposed elements.

INITRODUTIO. In large scale finite element analyses, thousands of elements and lr
computer memory demands are required to obtain the detailed information for en"ginei deig
or process controL In these analyses, computational costs are mostly determined
of the elements, especially for nonlinear problems. Perhaps, the most efficient -elements are the
one-point-quadrature elements with hourls control developed by Flngnand Belytochko [11,
Belytsck [21 and Belytschko et [31. e mesh instability associated wth the under- g d
elements is controlled by adding a stabilization to the one-point quadrature elemeol The
stabilization terms ae obtained by ensuring the consistency of the finite element equations and its
magnitude is controlled by a user controlled stabilization parameter. Liu and Belytschko [41 also
develop a one-point-quadratume element for heat conduction problems. In this work, the
tabilization parameter as determined by solving an eigenvalue problem. The relationship between

the stabilization parameter and finite difference formulae and full integration finite elements are
discussed in the same paper. In Belytschko et aL [(5, the Hu-Washizu variational principle is used
to examine the mamnitude of the stabilization parameters. More recently, an assumed strain
stbizto of the four-node quadrilateral element and the eight-node hexahedral element with
one-point-quadratme, where the stabilization parameters are not required, was proposed by
Belytschko and Bindemw [6,71.

An a ve approach for hourglass control is proposed by Liu et al. [8], in which the
resulting stabilization matrix requires no stabilization parameter. It is shown that the stabilization
vector y can be obtained simply by taking the partial derivatives of the generalized strain vector
with respect to the natural coordinates. The strain vector is therefore approximated by the
combination of a constant part and other parts involving strain derivatives. However, shear-
related lockin# phenomena are not taken into consideration and no three dimensional result is
reported in their study. Another technique is the so-called directional reduced integration proposed
by Koh and Kikuchi [91 based on the procedure given in Liu et al. [8). In contrast to selective
reduced integration, where certain parts of internal virtual work are underintegrated uniformly in
all directions, the directional reduced integration underintegrates in certain directions. Numerical

* This wrsearch is sponsored by an ARO Grant number DAAL03-9 1-G-0016 and National
Center for Supercomputing Applications at Urbana-Champaign.
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empl w tha this te is effe tive for two dimeanona problems. Th authors also
e---d ham - Oecniqe m d dima ionl plahe elesmnts however, hourglss,
modes am f•m a thorn elemea.

In ith paper, two amd three dimensional underinta elements based on procedures
similar to t proposed by Liu et a. [81 ae ev l The emphasis is placed on the avoiding
of locking aid the removal of spurious singular modes These elementsare applicable to beam,
pim and sm:l beading problems, and more importantly they are suitable to analyze metal forming
procesU

-' Let us consider an eight-node hexahedral
element as shown in Figure 1. The spatial coordinates xi and the velocity components vj in the
element are a proimaMed by linear combinations of nodal values xj5 and vi., and shape functions
N.(4, -q.) au follows:

f = ,,NEN=8
&=I (1)

a-I (2)

N,(t, TI, Q) - 8<l+ja)(l+111)(l+a)8 (3)

where the subscripts "i" and "a" denote coordinate component ranging from one to three and the
element node number, ranging from one to eight, respectively. The referential coordinates

TI and ý, of node a are denoted by t, a, and Co. respectively.
For the purpose of identifying the deformation modes of the element, let us define the

gradient submatrices L&(Q) and other column vectors as:

Na~(Q) bia1
%l(Q) {NayE][ b2ajLN,.z(.Q) b3, (4)

A! = (1. 1, 1, 1, 1. 1,1, (5)

A! = [XI, X2, X3, X4, X5, X6, X7, X8] (6)

Yt = [Ye, Y2, Y3, Y4, YS, Y6. Y7, YaJ (7)

7,'= [z,, z2, Z3- Z4, ZS, Z6, P, Z1 (8)

W =-[I,-I, I.-I, I.-I, I,2-1] (9)

W2 =- P1, -- 11-11,-1] (lO)
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qt= -I,1, , 1,1.-, 1 1](14)

where 16 z and z are the nodal coordinates and hi is the trl-hourglass vector, h2 the •-

hourglass vector, h3 the Tit-hourglass vector and h4 the ltq1-bourglass vector.
The Jacobian matrix evaluated at the center of an element can be shown to be,:

C a t ;C A
(16)

The determinant of the Jacobian matrix is denoted by Jo and the invere matrix of L(.) is given by

0 = (MIj = "(9Q) (17)

The gradient vectors hi, h2 and h3 (which am evaluated at(Q)in equation (4), can be shown
tohe

III (bia) = 3.IDIu+D12VI+DI 3Q(9 - - - (18)

jb (b2a) = 4D2Al+D 2211+D23QI(99 - - - (19)

8ba = .D +D32ii+D33Q)
S- 9. - ZD,+._D, (20)

The strain rate i is approximated by expanding it in a Taylor series about the element
center up to bilinear terms:

(21)
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or

,-t (22)

where

(23)

The first term of the right hand side of Equation (21) is the constant strain rates evaluated at the
quadrature point, Q, and the remaining terms are linear and b'linear strain rate terms, After some
tedious algebra, it can be shown that the first and second derivatives of (.Q) with respect to
natural coodinates are given by:

= {N, = (24)

= {Na~yt} = -. D22YI+D 233ZJ (2-)

8= {- =S (26)

jj= (Na., ) =8{DIIy1 +D1 3yJ (27)

2, = {(Na.yq) = 4.D2ly_+D 23Y]] (2S)

•.• = {N- -- D3  +D 3 3!] (29)

=3.,q (Na}q) = s{Di1y 2 +D3n_) (30)

I2. =Na~y•}I = 81{D2I!2+D22Y3J (31)

h,;= (Na,) = s-D3 y2+D 2y3J (32)

]L = {Ng,x) = 1.D 13 ,-( •0z.-••J.](33)

8 (30

b2. 4 N,y;) = Iy+DW3

h2.4y ( Na.y4.} 4 8D23y4"(Pt•Ji•(,0.](4

8 - ija,4-("~)hi,i11 (34)

23?



S(35)
bi.ý= (NsxA) =4.DD33y4)k,-(q ~ ~ LI(5

8 1 = (36)

h2.Aý = { Nyq•;) = 4-.D2ty4-(q~jk•Jq.(EJkl)JL;]
8 - (37)

4q;• = (Na.q; = 4[3,1'Y4(_%W ,,-(PW4;]
8 (38)

h8= (N,,) = D (39)

4k;. = ({Na.yk;} = R-LD2214-(q~ht.•h.-(eW2Ji.4;] (0
= N~~ 8 -(40)

8 (41)

where

pi = Djihj+Dj3.3 (42)

q = Dit.2+Di2k3 (43)

S= Di 2h,+Dj12 (44)

The !fa in equations (24)-(41) are the stabilization vectors which span the improper null-
space of ](Q). They are given by

S= ha - (h"m)I (45)

where i is the summation index form I to 3. Ya are orthogonal to the linear displacement field and
provide the proper stabilization for the element. It is also noted that the !-stabilization element
always meets the patch test while the hl-stabilization element does not. Belytschko and coworkers
[1-3] derive these vectors from consistency requirement.

To alleviate volumetric locking, we employ the ideas underlying selective/reduced
integration (Hughes [10]). M, TI, 0) is decomposed into two parts: the dilatational part and the
deviatoric part. The dilatational part of gradient matrices are underintegrated and evaluated only at
one quadrature point, Q, to avoid volumetric locking:

,(M,, o = Wile + Vv(t, ,, o (46)

Expanding C." about the element center, equation (46) can be written as:
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(47)

where f.(•) are the one-point-quadrature gradient submatrices contributed from both the
dilatational and deviatoic parts. The remaining terms on the right hand side of the above equation
are the gradient submatrices corresponding to non-constant deviatoric strain rates. It is noted that
the element using the gradient matrices as in equation (46) or (47) is properly underintegrated and
exhibits no hourglass mode if the element internal energy is evaluated by using the multiple-point
quadrature.

The element developed so far is not suitable to plate/shell analysis owing to the shear and
membrane locking in thin structures. To remove shear locking, the gradient submatrices,
corresponding to the assumed shear strain rates is written in an orthogonal corotational coordinate
system rotating with the element (see Figure 2) as:

2pd" d) =dov (QQtt

(48)

jY (4,. B) (Q)+ adv (Q)+Udev U~l

dev dev &eV

24Q9yy,1 +2U 1C(yK( +2]AdYYC(Q4) (49)

2P. dev ,+2' W,+Z dev dv

]•zz'n(')r zz'q Z(0 •2•zz'a(c (50)

+dev

iYz(l ill 0 = P-YZ(+DTQ de52)
l y A (52)

fzj(4, Q = )- ,(Q)+Mdev(,0i (53)

where lxg, ,yy, jzz, fxy, lyz and 1. are the gradient submatrices corresponding to strain rates
z, i-yy, Cu, Cxy, f-yz and gzx, respectively. Here, only one non-constant term is used for each

shear strain rate component such that the modes causing shear locking are removed. The normal
strain rates keep all non-constant terms given in equation (47). In W"'(Q), only those terms
corresponding to a parallelpiped element are used for stabilization.

To detect plastic fronts in the mesh during loading and unloading more accurately for
elastic-plastic large deformation problems, we propose to use a four-point-quadrature scheme
instead of the one-point-quadrature. The element internal force vector is evaluated at the four
integration points located as follows:

234



1' 13 1 1 1 1

Pon:( +-I- +I,+--I-); Point 2: (--1 1

1 1 1 1 1 1

Point3: 1 +,, L); Point4: (+- 1 (54)

This element exhibits no hourglass mode and is rank suffcient.
By assuming that the Jacobian is a constant. one quarter of the element volume, the element

internal force vector can be integrated as follows:

k=l - (55)

where 4 denotes the natural coordinates of the integration point k and V is the element volume.
The element internal force vector can be rearranged in the form:

fint = &t + t.•b (56)

where e t and et. t are the internal force vectors resulting front the one-point quadrature and the

stabilization pro=ur, respectively. They are given by:

'It (EA)lh+TI2(4k)h2+xt9(k)b3
jla (t~ Y, 1

and

1404 `)t&l1 ••)+g4(k)Tg12RA)+gs5&ft31 (Wk

4
etatb :W - g 2(tk22v(•k)+g6(tk)TI 2(tk)+gT(tk23(tk)

g3(tk) d3•3 (tk)+gS(tk)T23(•)k)+99(4ft31 (4k).. (58)

where the superscript, dev, denotes the deviatoric part of the stress. (t*iitjj----kk8ij) and the other

quantities are given by 3

gj(.) = Di(1ijy+(y2+2ijy 4) - - -(59)

g2(t) = D 2 2(•¥ 1 •fy3+2Cy4 ) - - -(60)

9A) = D33(Ay2+wjy3+2k1l 4) (61)
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14) = D2 2 Y3  (62)

14) = D33nY3 (63)

16(t) = DI ,2 (64)

g9(A) = D334Y2 (65)

=s(t) = D224t (66)

19(4) = Di (67)

It is noted that the elements developed above can not pass the patch test because with one-
point quadrature the element internal forces are not properly evaluated if the elements are skewed
(Belytschko and Bindeman [7]). To remedy this drawback, la.(Q) are replaced by the uniform
gradient matrices, ]a, defined by Belytschko et al. [1,2]:

=-L , n, ) dV
VC fa.(68)

where V. is the element volume. Similarly, equation (4) is modified as[ bia 1
10(Q = b 2a

- b 3a (69)

and the stabilization vectors are redefined as:

im = W- Zh • (70)

which span the proper null-space. Since, the element internal force vector can be evaluated exactly
when the element is subjected to a constant strain rate field, the use of the uniform gradient
matrices ia leads a new four-quadrature-point element, the NUHEXIN-4 element, which passes
the patch test

The three dimensional ASQBI (assumed strain quintessential bending incompressible)
element is developed by Belytschko and Bindeman [7]. The gradient matrix, p*, is given by
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2 +

hj ,?j~+h2,1j2+h,4j4 --Vh,,71j-vh4.,2 4 -Vh 2.z?-Vh4.,zj4

.Vh1,.2?I-Vhl,274 hl,1hA h. -vh3A-Vh4,j?4

-vh,,,2-v4.174 -vh3.x?3-Vh 4,1j?4  h2.z?2+h 3,z?3+h4,2j?4

h3.y73h2.zi

Q h 2. hI.y?

(71)

where
h, 1 1 h2 =4C h3 =Tj N4 i (72)

v is the Poisson's ratio; Iv v-
To compare the NUHEXIN-4 and ASQBI elements, let us write out the gradient matrixcorresponding to the NUHEXIN-4 element can be shown to be:

FXA. I, QQ Q
jyu(4, 1, ;) F2t

l Z A- TI 
Q S +

Fyza.n, o F3 F
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8 D22Gj 21

Q D33 2 D2241

D33TI7 0 Di 1q7!- - - ( 7 3 )

It can be seen from Equations (71) and (73) that both gradient matrices have the same
number and locations of zero and non-zero components. Both matrices including all the
stabilization vectors to suppress the hourglass modes and the resulting stiffness matrices are rank
sufficient. It is interesting to point out that those components corresponding to the assumed shear
strain rates have the same forms but with different coefficients. It is believed that the Belytschko-
Bindeman element is computationally more involved since the gradient matrix is written in terms of
the spatial derivatives of 4%1, Tlt, t and 4Il•; however, the gradient matrix of NUHEXIN-4
element is written in terms of 4, il and ; explicitly so that the stiffness matrix can be easily obtained
through numerical integration.

E.XMPLES In this section, a variety of problems including beams, plates and shells are
studied to investigate the performance of the proposed NUHEXIN-4 element. Besides this
element, runs are also made by using another element called NUHEX-4, in which the virtual work
corresponding to the dilatation part is evaluated by using a four-point-at scheme instead of
the one-point-quadrature used in the NUHEXIN-4 element. Since the NUHEXIN-4 element is
mainly proposed to be used in sheet metal forming analysis, the applicability of NUHEXIN-4
element to problems of thin structures is also studied by solving the standard test problems
including the twisted beam, pinched cylinder, Scordelis-Lo roof and hemispherical shell, which are
proposed by MacNeal-Harder [1 and Belytschko et al [12).

Clamped Twisted Beam. In this example, a cantilever twisted beam subjected to a uniform
shear force (F= 1.0) at the free end is analyzed. The problem statement is shown in Figure 3. The
computed displacement the free end w is compared to the analytical solution in Table 1. Unlike the
curved beam problem, the NUHEX-4 element performs better.

Simply Supported Plate. In this example, a simply supported plate subjected to a
concentrated load at the center is analyzed. The problem statement is shown in Figure 4. Due to
symmetry, only one quarter of the plate is modelled. Two cases are studied in this example: regular
mesh and irregular mesh. The computed central displacement w is compared to the analytical
solution in Table 2 and 3. Both elements compare well with the analytical solution for the uniform
mesh; whereas the NUHEXIN-4 performs much better for the irregular mesh.

Pinched Cylinder. Figure 5. shows the pinched cylinder subjected to concentrated loads.
Two cases are studied in this example. In the first case, it is assumed that the both ends of the
cylinder are free. In the second case, it is assumed that the both end of the cylinder are covered
with rigid diaphragms so that only the displacement in the axial direction is allowed at the ends.
Due to symmetry, only one quarter of the cylinder is modelled. The computed central
displacements are compared to the analytical solution in Table 4 and 5. The NUHEXIN-4 element
performs much better than the NUHEX-4 element for the pinched cylinder with diaphragms and
both elements perform approximately the same for that without diaphragm.
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Scordelis-Lo Roof Figure 6. shows the Scordelis-Lo roof subjected to its own weight.
Due to symmetry, only one quarter of the roof is modelled. It is assumed that the both ends of the
roof are covered with rigid diaphragms so that only the displacement in the axial direction is
allowed at the ends. The computed central edge displacement w is compared to the analytical
solution in Table 6. As can be seen, the NUHEX-4 performs better.

14emLh S he1l Figure 7 shows the hemisphere shell subjected to antisymmetrical
concentrated loads at its bottom ends. Due to symmetry, only one quarter of the hemispherical
shell is modelled. The computed radial deflection w is compared to the analytical solution in Table
7. Due to the double curvature of the shell, 48 x 48 elements are required to model the geometry
correctly with NUHEXIN.4 element.

ONCLUSIONS In this paper, the multiple-quadrature-point eight-node hexahedral
elements are developed. The emphasis has been placed on the removal of shear and volumetric
locking and the suppression of spurious singular modes. The stabilization operations are obtained
simply by taking the partial derivatives of the generalized strain rate vector with respect to the
natural coordinates. The resulting element stiffness matrices can be explicitly expressed in terms of
natural coordinates so that they are easier to compute than those involving spatial derivatives. The
performances of the proposed elements are studied by solving beam, plate and shell problems. It is
demonstrated that the solutions are satisfactory.

Finally, it should be pointed out that the performances of the NUHEX-4 and NUHEXIN-
4 elements are approximately the same in the compressible problems; however NUHEXIN-4
should be used in the elastic-plastic and incompressible problems since the NUHEX-4 element
suffers from volumetric locking.
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Figure 1. An eight-node hexahedral element in referential and physical coordinate systems.
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Figure 2. Corotational coordinate systems in three dimensions
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t

4 L

E = 2.9 x 107  v= 0.22
L = 12 H =l.l
t = 0.32 F= 1.O
Twist = 900

Figure 3. Problem statement of the clamped twisted beam

Analytical solution w = 0.005424
M 6xlxl 12x2x2 24x4x4

NU-EX-4 3.278 1.081 1.003

NUHEXIN-4 11.299 1.157 1.026

Table. I Normalized displacement of the twisted beam
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F, w

T L L -

Regular Mesh Irregular Mesh

E=3 x 107  v=0.3
L = 20 t= 0.2
F = 100.0

Figure 4. Problem statement of the simply supported plate

Anal ical solution w = 0.021138

R 4x4x2 8x8x4 16x16x4

NUHEX-4 0.943 0.985 0.987

NLUHEXIN-4 1.151 1.034 1.036

Table, 2 Normalized displacement of the simply supported plate with regular meshes

Analyicat solution w = 0.021138

R t q 4x4x2 8x8x4 16x16x4

NUHEX-4 0.611 0.848 0.939

NUBEXN-4 0.704 0.867 0.984

Table. 3 Normalized displacement of the simple supported plate with irregular meshes
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F, w

First Case (with diaphragms) Second Case (without diaphragm)

E-=1.05x106  v=0.3125 E=3x106  v=0.3
L = 10.35 t = 0.094 L = 600.0 t = 3.0
F = 100.0 R = 4.953 F = 1.0 R = 300.0

Figure 5. Problem statement of the pinched cylinder

Ana "Miel olti w = -1 l137

S1Oxl0x2 15x15x4 20x20x4

NUHEX-4 0.927 0.998 1.005

NUHEXIN-4 1.145 1.050 1.055

Table. 4 Normalized diplacement of the pinched cylinder without diaphragm

Anav ir-4l 3 ti w :U4
es 10IxI~x2 15x15x4I 20x 20 x4

NUHEX-4 0.633 0.870 0.936

NUHEXIN-44 0.811 0.934 0.980

Table. 5 Normalized displacement of the pinched cylinder with diaphragms
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E = 4.32 x 108  v 0.0

L = 50.0 R 25.0

t = 0.25 Gravity = 360.0/per volume

0=-800

Figure 6. Problem statement of the Scordelis-Lo roof

Analytical solution w = 0.3024
Mesh 8xx 16x16x 32x32x

Elementearý 8 _ x_ _ 8_xI________ 32x

NUHEX-4 1.016 1.011 1.010

NUHEXIN-4 1.162 1.144 1.140

Table. 6 Normalized displacement of the Scordelis-Lo roof
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F

E 6.825 x 107  v 0.3
Radius = 10.0 thickness = 0.4
F= 1.0

Figure 7. Problem statement of the hemispherical shell

Analytical solution w = 0.0924

16xl 32x1 48xI

NUHX-4 0.615 0.862 0.954

NUHEXIN-4 0.638 0.891 0.984

(*elements /side x elements/thickness)

Table. 7 Normalized displacement of the hemispherical sheil
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THREE-DIMENSIONAL FINITE ELEMENT MODEL GENERATION
AND RESPONSE SIMULATION OF AN ARMORED VEHICLE

Aaron D. Gupta
Joseph M. Santiago
Henry L. Wisniewski

U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland

ABSTRACT

Light combat vehicles are playing an important support role for both troops and other
heavily armored combat vehicles. As such, they have a much greater risk than in previous
roles of being subjected to transient loads such as impact and overpressure loads. Propa-
gation of ballistic shock from an impacted region to the critical locations and attachment
points for secondary systems can cause damage and misalignment to sensitive equipments
contributing to malfunction and reduction of vehicle performance. Accuracy of determina-
tion of dynamic response of these vehicles is directly dependent on the degree of refinement of
the generated model and bow well the model incorporates the essential features of the vehicle
and correlates to its important characteristics without being overburdened by non-essential
details. Additionally, response of nonlinear components of the vehicle in high frequency
regime may influence the overall global response of the vehicle. As a result, hatch openings
and access door cutouts with unsymmetric locations may have to be incorporated in the fi-
nite element model to allow fair comparison with first order experiments involving a stripped
vehicle hull. The current study is an attempt to assess the influence of multiple rectangular
cutouts on the overall transient response of a vehicle hull subjected to a side-on impact load.

1. INTRODUCTION

The analysis of the dynamic response of complex systems involving structural assem-
blies and components has become a subject of considerable research because of its practical
significance in the evaluation of structural integrity when subjected to transient loads [1-4].
The behavior of combat vehicles subjected to dynamic loads is of particular interest to the
Army because of the need to ensure survivabilty and minimize degradation of performance
in both primary and secondary systems. An area of critical concern in a complex system
such as a combat vehicle or a personnel carrier is the propagation of shock from an impact
point on the vehicle hull to the location of the driver and the other personnel in the crew
compartment and the attachment points for the optical equipments, such as the gunsights
and periscopes, as well as electronically sensitive command and control devices. The fail-
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ure of equipments and structures in such a system resulting from shock propagation and
vibrations can render the system ineffective and vulnerable to enemy attack, leading to life
threatening situations. Detailed dynamic response analysis of such systems are essential in
order to develop nondestructive evaluation methods to ensure survivability of critical Army
equipments and hardware.

Armored vehicles must survive the shock resulting from non-penetrating projectile im-
pact and be able to retain fighting capability after this impact. Non-standard shock mea-
surement techniques were employed by W. Scott Walton [5,6] to determine ballistic shock
protection requirements for armored combat vehicles. Target loading histories of thin plates
were developed using the EPIC-2 Lagrangian code by E.F. Quigley [7,8] who used the data
as input to the ADINA nonlinear finite element analysis code to predict the ballistic shock
environments for normal impacted, axisymmetric targets.

The response of structures at critical locations is directly dependent on ballistic shock
propagation from the point of load application to the point of attachment of secondary
sensitive equipments when subjected to high frequency loads, such as projectile impact and
close-in blast overpressure. To evaluate the post-impact response and performance of the
system, both frequency domain and time domain response of the system should be conducted.
However, in the current investigation a finite element approach was employed to obtain
responses at specific locations of the model. The time domain responses were converted to
frequency domain responses using a conversion code based on [9].

2. PROBLEM CONFIGURATION

The particular vehicle selected for this simulation is the Armoured Personnel Carrier
(APC) designated as APC M113. Overall specifications are available in Jane's World Ar-
moured Fighting Vehicles [101. Detailed dimensions and geometry description of the vehicle
was obtained from field measurements and from [11]. Overall length, width and height of
the APC are 4.863m, 2.686m and 2.5m respectively while the height of the hull top is only
1.828m. Unloaded weight of the vehicle is 9702 kg while the fully loaded vehicle weighs
11156 kg. Ground clearance for the loaded vehicle is 0.406m. Details of the track assembly
were completely left out since the hull was modeled without tracks to avoid complexities for
the 3D model generation. However, subsequent study of dynamic response due to transient
loads included artificial boundary conditions imposed on the corner nodes of the bottom
floor to avoid large scale sliding, rotation and overturning. A pictorial view of the entire
vehicle assembly is shown in Figure 1.

The critical locations for the driver's and the commander's seats as well as the attach-
ment points for shock sensitive control panels and periscopes were measured from an actual
vehicle at the Combat Support and Test Activity (CSTA) at the Aberdeen Proving Ground
and the corresponding nodal locations on the vehicle hull were determined for the purpose
of response prediction since the simplified model did not include any internal components.
Additionally, the driver's hatch, cargo hatch as well as the hatch opening for the comman-
der's cupola were included as simulated rectangular cutouts in the generic model on the top
hull surface in Figure 2 to assess the influence of multiple cutouts on the overall response of
the model as a first step towards simulation of a basic vehicle hull without any tight fitting
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Fiqure 1. US Army Ari'iored Personnel Carrier, M113A]
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Figure 2. Generic APC M113 hull model with cutouts.
(All dimensions given in inches)
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components prior to analysis of a full-up vehicle. Although the actual openings in the vehicle
hull were circular shaped except the cargo hatch and the rear door, it was decided to use
approximate rectangular cutouts for all openings because these could be quickly generated
through elimination of a cluster of rectangular elements in appropriate locations.

3. LOAD ESTIMATION

The modeshapes and eigenfrequencies analyses of the hull structure in ADINA [121
do not require transient loading of the vehicle. However, simulation of forced response of
the vehicle require imposition of impact and pressure loads on one side of the vehicle at a
specific location which will likely result in shock propagation and damage to primary as well
as critical secondary systems inside the vehicle.

Impact load due to side-on impact of a projectile approximately 1.83 m long weighing
approximately 6.8 kg and travelling at .914 km/s is calculated assuming that the rod con-
tinues to erode at a constant rate determined by the initial velocity of the rod until it is
fully consumed and the total momentum of the rod is imparted as impulse to the side of the
vehide. The impact load is imposed as a concentrated load on a specific location at the side
of the vehicle and it is given as a step function with a constant force of 3382 KN (760,000
lb) for a total duration of .002 s.

4. FINITE ELEMENT MODEL DESCRIPTION

Prior to finite element model generation of the vehicle, a three-dimensional model of
the hull was developed using PATRAN [13, 14]. The first step in model generation using
PATRAN is the development of an initial level 1 model of the APC which includes grids,
lines and patches. Grids describe points on the model and lines represent edges while patches
describe model surfaces. Hyperpatches were used to represent solid portions of the three-
dimensional model. Thus a simple geometric model of the entire hull of the M113A with
access openings was generated upon which the finite element model would be based. A
geometric description of the vehicle hull is given in Figure 2.

Surface normals were checked for each group of elements to ensure conformity and some
rearranging of elements was found to be necessary. Since the transverse bending response was
considered to dominate the overall response problem at short stand-off, shell elements rather
than 3-D continuum elements were used to represent the model. Four-noded shell elements
were selected to model the entire hull assembly. Each rectangle denotes one element in this
figure. Plots of nodes and element numbers generated by PATRAN are omitted here because
of overcrowding. However, location of impact load on the side wall as well as some critical
node locations at the top and bottom surfaces corresponding to secondary systems inside
the vehicle extrapolated to the hull model are indicated on this figure by circles as shown.

To assess the influence of large multiple cutouts on the overall response of the hull model,
it was decided to incorporate simplified cutout shapes only on the top hull surface in the
vicinity of the critical locations for the secondary equipment attachment points. The large
ramp door at the rear end was largely ignored for the first order model. The cutouts were
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approximated as square or rectangular shaped for both driver's and commander's hatch as
well as crew access openings to allow ease of modelling and inclusion into the existing basic
Ml13 hull model. Future refined models could be generated from scratch to accomodate
exact shapes and location of openings through a complicated mapping procedure which was
avoided during this study.

The finite element model generated by PATRAN consisted of an assembly of 311 ele-
ments with 322 nodes. Thickness of each shell element was specified to be equal to the wall
thickness of the APC hull which remained constant. For stress computation each element
was allowed to have a 2x2x2 integration scheme. Isometric views of the finite clement model
of the vehicle from a fixed vantage point are shown in Figure 3a and 3b. Figure 3a depicts
the top, the front and the left hand side wall surfaces while in Figure 3b these surfaces were
removed as indicated by the addition of intermittent lines to enable the viewer to have a
clear view of the bottom, rear and far side walls of the simulated model.

Initially the vehicle was not constrained from rigid body motions for displacement re-
sponse predictions. However, this condition caused large rigid body displacements and ro-
tations which dominated the dynamic response and exaggerated the distortional response.
Similar problems were encountered during acceleration response computation. Large sliding
motion of the vehicle for the unrestrained model would require correction by subtracting the
rigid body displacement and rotation of the center of mass of the vehicle from the overall
response. For subsequent studies a restrained model with 5 constrained degrees of freu-om at
three corner nodes on the bottom surface was used for computation of the transient response
at critical locations of the vehicle since rigid body acceleration response could not be eas;ly
ascertained and eliminated from the overall response.

Due to a lack of ground dynamic friction coefficient data, the restraining effect of the
ground friction upon the vehicle track and wheels at the contact zone could not be accurately
modeled. However, the problem could be bracketed between two limiting conditions of
unrestrained sliding and rotation corresponding to zero ground friction and fixed restraint
corresponding to a peak ground friction allowing almost no sliding which could be achieved
by fixing appropriate degrees of freeom at the bottom surface corner nodes of the vehicle.
The limiting condition of fixed restraint has been represented in this current study.

5. MATERIAL MODEL

During the process of model generation material property identification numbers are
assigned to the element groups as they are created. In the current investigation only one
material identification was used to designate all groups of elements in the entire hull con-
structed from 5083 aluminum. Thickness of each shell element equalled the hull thickness of
3.175 cm which remained uniform throughout the structure.

For the transient response analysis, a linear elastic isotropic material model for the shell
elements in the ADINA code was used. The finite element analysis employed the following
values for 5083 aluminum: Young's modulus = 68,950 MPa. Poisson's ratio = 0.33, and
mass density = 2.7 g/cm3.
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Node 134 - Center of Loading.

Node 141 - Instrument Panel Attachment Point. Node 283 - Driver's Seat Location.

Nodes 49,62,72 - Periscope Attachment Points. Node 306 - Commander's Seat Location.

Figure 3a. Top and side wall node locations. Figure 3b. Node locations at the bottom floor.

Figure 3. Critical node locations for the finite element model.
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Figure 4. Side wall deformation at .0022 s from impact.
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6. DYNAMIC RESPONSE ANALYSIS

Prior to undertaking a dynamic response analysis of the structure subjected to transient
loads, a free vibration analysis was conducted and the first 20 mode shapes and eigenfre-
quencies were determined using the lumped mass as well as the consistent mass formulations
in the ADINA code. This study was useful for verification of the finite element model of the
APC and indicated the type of deformation and the length of time it takes to respond to
an unit impulse from an analysis of the mode shapes and time periods of oscillation of the
structure.

The dynamic analysis focused on predicting structural deformation of the hull due
to a side-on impact load. Additionally, location, magnitude and time of occurrence of
peak displacements and accelerations at critical locations near sensitive equipments and
crew positions are of interest due to ballistic shock propagation and lethal damage to
coupled secondary systems. A nondestructive methodology for the assessment of vulner-
abilty/survivability of armored vehicles and personnel carriers subjected to ballistic shock
damage to the primary structure and propagation to the attachment points of coupled sec-
ondary sensitive systems due to nonpenetrating impact and close-in blast loads needs to be
developed as a useful predictive tool from systematic reduction of time domain response to
shock spectra at critical locations.

6.1 Results and discussions

The time domain response analysis was conducted using the Newmark implicit integra-.
tion scheme and the lumped mass as well as the mode superposition method using the first
100 modes with the ADINA code in which we used a constant time step of .0001 s for the
first 2000 cycles corresponding to a total response time of 0.2 s. Figure 4 shows the deforma-
tion response at .002 s corresponding to the occurrence of peak displacement at the impact
point. The scale chosen for the hull configuration is 1/30 and the magnification factor used
for deformation plot is 1.0. Considerable deformation of the vehicle hull can be observed
at the sidewall in the vicinity of the impact point at node 134 where a concentrated time
dependent step load of 3382 KN was applied initially and maintained at a constant level for
a total duration time of .002 s.

For the model with lumped mass formulation, the maximum displacement at node
134 was computed to be 9.738 cm (3.834 in) which occurred at .0022 s. This compares
favorably with the predicted peak resultant displacement of 9.726 cm (3.829 in) occurring
at .002 s at the same location of the basic vehicle hull with no cutouts using the lumped
mass formulation. The code predicted displacement and acceleration responses at specified
node points in all three directions. However, the responses along the lateral X-direction
were consistently at least an order of magnitude higher than those along the longitudinal
and vertical directions of the vehicle. This is caused by the side-on impact load which
is predominantly in the transverse thickness direction acting normally upon the sidewall.
The displacement and acceleration responses of the left sidewall at node 134 along the X-
coordinate direction obtained using the lumped mass formulation are shown in Figure 5.
Peak displacement and a. -eleration responses occur at early times followed by lateral elastic

253



X COMIPONENT RT NVOOE 131
2.5"

0.0-

T~me 5ec.

S0 .0

S-2. 5"

U'
U'

-5..i
0.000 0.0= 0.050 O.07' 0.100 0.ix2 0.150 0.175 0. x0

TLoe See.

•,is.o- IX ZClLtic~c oL ep~nq
.,57, Crt,•cot, OOmpLng ----

o 50

U'I
U'

0 500 loco 150 2000 20.00 3 .M 3; 0.10 7fSO5 SO00

Freqluency ! Hz)

F'igure 5. Displacement and acceleration responses at node 134 along theX-coordinate using the lumped mass formulation only.
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oscillations.

The acceleration time domain data was analyzed and converted to a frequency domain
shock response spectrum using a recursive filtering procedure [9]. A time step of 0.0001 s was
selected for this computation. The dashed curve corresponds to a critical damping factor of
0.05 while the continuous curve employs a critical damping factor of 0.01. The influence of
damping on the response spectra is clearly demonstrated in this figure. The shock spectrum
analysis from the modal superposition method using first 100 modes indicates that the peak
acceleration response is contained within the initial frequency range from 0-500 Hz followed
by an uniformly spaced sequence of harmonics continuing at higher frequency levels. Results
of similar computation using modal superposition and the first hundred vibratory modes
exhibit similar trends as shown in Figure 6. Displacement and acceleration responses as well
as an analysis of the shock spectra along the X-coordinate at node location 141 which is the
site of the attachment point for the driver instrumentation panel to the left sidewall obtained
using the mode superposition method in ADINA are shown in Figure 7. In this case the
peak acceleration response appears to be concentrated in the low frequency range of 0-500
Hz. Computations using both mode superposition and lumped mass formulations at several
other critical locations remote from the impact point have been completed. However, the
predictions could not be included here due to a lack of space and will be presented later.

Comparison of shock spectra at critical locations remote from the cutout regions be-
tween the hull model with access openings and the basic hull without cutouts show very little
change in shock response characteristics since shock propagation from the impact point to
these remote locations such as the driver's and the commander's seat locations projected to
the bottom floor remains relatively unaffected. However, significant change in peak accelera-
tion magnitudes and shock response characteristics could be observed in all three coordinate
directions at the three periscope locations in the vicinity of the simulated cutout for the
driver's hatch opening and also to some extent at the instrument control panel attachment
point at the front left hand side wall. These are caused possibly by the alteration of shock
propagation path to the critical locations due to the presence of cutouts in the immediate
neighborhood contributing to reduction in mass and stiffness which also affect the transient
response of the vehicle at these locations.

6.2 Conclusions

Modern combat vehicles are increasingly carrying a variety of sensitive components
which are susceptible to shock damage. The transmission of shock through the structure
to critical components considerably remote from the impacted zone can result in the loss of
combat capability inspite of crew survivability and retention of structural integrity of the
vehicle.

As a first step towards the development of a vulnerability assessment methodology
to predict damage to critical components from transient loads, a simplified model (1738
degrees-of-freedom) was generated for use in the ADINA code to compute the response
of the U.S. Army M113 personnel carrier. A shock response analysis was applied to the
acceleration histories to obtain shock spectra at these locations. The spectra at critical
locations indicated that the simplified model contained no structural frequencies above 5
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KHz. Additionally, the spectrum at the impact point exhibited an uniformly spaced sequence
of harmonics continuing beyond the cut-off frequency of 5 KHz and having periods equal to
multiples of the load duration. Calculations were repeated using modal superposition based
on the first 100 vibratory modes with a cut-off frequency of approximately 500 Hz. Again no
structural frequencies higher than the 500 Hz cut-off were detected, but the same sequence
of harmonics were observed at the impact point. These harmonics are an expected artifact of
the load duration and has time periods which are multiples of the the impact load duration
time of 0.002 s. The modal superposition calculation demonstrated that while the deflection
histories can be accurately reproduced with the first 100 modes, the acceleration histories
and shock spectra may require considerably higher number of modes. Some problems with
aliasing resulting from discrete sampling of time signals were encountered but could be
avoided by increasing the sampling rate. The study indicates that the time integration and
superposition methods in combination with the shock spectral techniques can be useful in
predicting damage due to shock propagation in structures.

Comparison of response of the model with access openings with that of the basic vehicle
hull with no cutouts indicates a small shift of the eigenfrequencies to somewhat higher
natural frequencies with very minor alteration in corresponding modeshapes for the cutout
model possibly due to the mass loss in the cutout regions. Both frequency domain and
time domain response at critical locations remote from the cutout regions for the vehicle
model with access holes compare favourably with the response of the basic vehicle since
propagation of shock to these regions remain unaffected. However, in the vicinity of the
cutouts, shock propagation to critical regions are significantly affected due to alteration of
the shock propagation path and reflection of energy from the interface of the cutout back
to the source resulting in corresponding influence on the shock spectral response and visible
alteration in peak frequency magnitudes when compared to those from the basic vehicle hull
without any access openings.
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ABSTRACT

We have developed a quantitative theory for the mixing of fluids

induced by a random velocity field. The theory provides a quantitative

prediction for the growth of the mixing region. There are three distinct

regimes for the asymptotic scaling behavior of the mixing layer, depend-

ing on the asymptotic behavior of the random velocity field. The asymp-

totic diffusion is Fickian when the correlation function of the random field

decays rapidly at large length scales. Otherwise the asymptotic diffusion is

non-Fickian. The scaling behavior of the mixing layer driven by a general

random velocity field is determined over all length scales. Our results

show that, in general, the scaling exponent of the mixing layer is non-

Fickian on all finite length scales. In the Lagrangian picture, due to the

non-linearity of the effective dynamical equation derived from the Taylor

diffusion theory, the mixing layer is not a fractal even if the random velo-

city field is a fractal.

Introduction

The study of the mixing induced by random fields becomes increasingly important

in the study of fully developed turbulence, enhanced oil recovery processes and ground

water ecology. For a tracer flow through a random velocity field, a mixing layer is

developed between the tagged and the untagged region. The mixing region expands as

time evolves. In the case of ground water ecology, the random velocity field is caused by

the random permeability field through the Darcy's law. The purposes of our study is to

predict the statistical properties of the fluids, such as the size of the mixing regime, or the
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effective macroscopic diffusion coefficient, from the statistical Properties of the random

field. Let (t) be the size of the mixing at the time t. How does I grow as a function of

time t? At what rate will I grow at very large time? In general, I can take a quite general

functional form. Let us first define the scaling exponent of a general function. For any

positive differentiable function f (t), we express f (t) in a multi-length-scale-fractal form

f (t) =a (t)tb() (1)

where

b(t)= dinf(t) (2)
dint

is the multi-length-scale fractal exponent at scale t and a (t), determined by

In a (t) = Inf (t) - In(t) dinf (t) (3)dln(t) '

is the multi-fractal coefficient of f (t). In general, the exponent of a function may vary

with the scale. If b (t) is constant, then it follows that a (t) is also a constant. The result is

a pure power law. In this case, f (t) is a fractal in the sense that results obtained from dif-

ferent scales are related by a simple scaling. Knowing the value of f at a given length

scale and its scaling exponent b, the value of f over al length scales can be determined

by a simple scaling. However, the fractal treatment of the mixing layer is for simplicity,

rather than necessity. Even if we take the permeability field as a fractal random field, the

velocity field obtained from Darcy's may not be a fractal field, except for a weak hetero-

geneity where the linear (in terms of the fluctuation of the permeability field) solution of

Darcy's law can be used. In general, the statistical properties of a random field can vary

as the length scale changes. Therefore a multi-fractal theory is more suitable for studies

involving a wide range of length scales, such as data including both laboratory experi-

ments and field tests [21]. The length scale in the laboratory is on the order of a fraction

of a meter and the length scale of the interwell spacing in an oil field may be on the order

of a kilometer.

By applying the renormalization group perturbation theory, we have developed a

multi-length-scale-fractal theory for the mixing of the fluids induced by random fields

[14,24,25,28]. The theory provides an explicit analytic prediction for the growth of the

mixing regime of the fluids and an effective macroscopic diffusion coefficient induced by

random velocity fields, or the heterogeneous permeability fields, over all time scales.
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The results of the exact numerical computation using the front tracking method agree

with the prediction of the theory very well over all time scales without any fitting para-

menters [7-11].

The study of diffusion induced by random field has a long history. Many methods

have been developed. See [1-6,12,13,15-20,22,23] for further references.

Asymptotic Scaling Relation

The relationships among the asymptotic exponents of the fluid, diffusion coefficient

and random field have been by several different methods [14,24,25,28]. These methods

gave the same results. The results are

11=max , 1+ 1 + (4)
2 2 2

and

iV. = max 1O, 1 +6P, 1+ c6.}. (5)

Here y7., w. and P. are the asymptotic scaling exponents of the mixing regime, of the

effective macroscopic diffusion coefficient, and of the correlation function of the velocity

(or permeability) field respectively, a is a parameter that characterizes the rate of remo-

val of the infrared cut-off. Equations (4) and (5) show that there are three regimes with

distinct scaling behavior. These three regimes are connected by two critical points:

N = -1 and P. = 0. For an asymptotically rapidly decaying velocity correlation func-

tion, 0.. <-1, the asymptotic diffusion is Fickian. This regime is characterized by the

properties that the correlation function is integrable over one spatial dimension and that a

finite asymptotic limit exists for the diffusion coefficient. For asymptotically slowly

decaying velocity correlation function, - 1< 6.. < 0, the asymptotic scaling is non-

Fickian and the diffusion coefficient diverges at large time. The analysis of the field data

shows that this regime is important for ground water ecology. The third regime is

specified by 0 < P. In this regime, the scaling is non-Fickian. A striking new result has

been obtained in this regime: the asymptotic scaling is non-unique before specifying how

the infra-red cutoff is removed from the system. [25,28]. In other words the scaling rela-

tion contains a family of solutions which depends on the rate of removal of infrared cut-

off. Such non-uniqueness is intrinsically due to the fact that infrared cutoff of the corre-

lation function of the random velocity field is not removable for 0 < P.,. As a tends to
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infinity, which corresponds to the fastest removal of the infrared cutoff, the scaling

exponent tends to infinity as well.

For a laminar shear flow model with a fractal Gaussian random velocity field, the

problem can be treated exactly [3,28]. It has been shown that the solution given in [3]

corresponds to a particular solution with a specific infrared cutoff among the family of

solutions given in [28]. In the case of an infrared non-removable system, any specific

choice for the infrared cutoff may give spurious phase boundaries in the asymptotic scal-

ing laws.

Transient Scaling Behavior

The scaling laws given by (4) and (5) are valid for very large scales only. We now

consider the scaling laws on finite length scales. In the Eulerian picture, the motion of

the tracer flow can be modeled by a stochastic linear transport equation

st +I-Vs = d1V2s, (6)

where s is the saturation value of the fluid, so that s = 1 for tagged fluid and s = 0 for

untagged fluid. V is the spatial gradient operation. dl is the local molecular diffusion

coefficient. Vis the velocity of the fluid. We assume the velocity field is random and sta-

tionary. Therefore it is a function of the spatial variables only. For tracer flow, the velo-

city field-Vis determined from Darcy's law and the condition of incompressibility. Each

individual solution s (t, 1, 7) for a given realization of the random variable I does not

play a significant role. The statistical behavior of the tracer is determined from the

ensemble mean saturation value <s(ti)>. Although (6) is a linear equation with respect

to the independent variables t and it it is a non-linear equation respect to the random

fields Tand s. The effective equation for <s> will not be obtained from (5) in a trivial

way. It has been shown that the effective equation for <s > can be written as [14, 24, 25]

•<zs (t,'> +'o'V<s(t,)-'> = V-• <5" ot)•"(ot')>dt'V<s((,t)>
at

+ dIV 2<s(,t)> + o(04). (7)

Herel0 = <-v> is a constant vector and is determined by the steady pressure drop applied

to the fluid field. <.> denotes ensemble average. 0"=1-10 is the fluctuation of the
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random velocity field due to the rock heroneity and is a function of the spatial vari-

ables only for a stationary velocity field. The shape of the tracer interface at t =0 is

given by s(0,). For simplicity we assume that the initial interface between tagged and

untagged fluid is a plane with its normal direction pointing along the direction of V0.
Then the effective equation in the longitudinal direction is given by [14, 24, 271

a<s (t,x)> +IOa<s(t,x)> =c 2 <S(tA> + o0 -). (8)at .2<

Here

a(t) = '0>vj (vot)8v j(vot)> +dt = 'q(vo(t - t') + dl (9)

is the effective longitudinal diffusion coefficient. 6v I is the longitudinal component of

the fluctuation of the randoma velocity field. q is the longitudinal velocity correlation

function. In (19) we hav-k' assumed that the statistical properties of the random velocity

are translational invariant. Therefore the correlation function of the velocity field

depends only on the relative separation between the two points. In the limit of weak

fluctuations, the term proportional to Bv4 is negligible. Then for the planar initial data,

the solution to (8) is given by

1 ,.x-vot,
<s(x,t)> = -erfc(X ). (10)

2 1 (t)

where erfco the complimentary error function and
l(t) = 2[f~ta(t')dt'1+ 1= 2[ (t -_')a(tr)dt' + dlt]1/ 2 . (11)

Equation (10) shows that the solution <s (x,t)> scales as I(t). It follows that the mixing

zone scales as 1 (t) as well. We define 1 (t) as the mixing length, the size of the mixing

zone. From definition (2), scaling exponent of the mixing regime is given by

't =d(ln(l(t))) _1 [1- _~ i•d ]-1,1 (12)

d(ln(t)) 2 ttoq(t)dt + d~t

and the scaling exponent of the effective diffusion coefficient is given by

= d(ln(a(t))) _ 1 [1 _ -q( I)d (13)
d(ln(t)) 2 totq(t)dý + d~t
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The first two regimes of the asymptotic scaling relations shown in (4) and (5), i. e.

max(- 1+-} and max•O, 1 +13. ) can be determined from (12) and (13)[14,24]. It
2' 2

can be shown that, at the critical point 13,--1, the system has the slowest rate for

approaching its asymptotic exponent [24]. Equations (12) and (13) are only valid for the

systems in which the infrared cutoff is removable. In the case where the infrared cutoff

can not be completely removed, one must consider the velocity correlation function in

Fourier space with an infrared cutoff. Then the asymptotic scaling exponents depend on

the rate of the removal of the infrared cutoff and a family of solutions exist. See [28,25]

for the analysis of asymptotic scaling exponent of the infrared non-removable system.

Equations (12) and (13) show that the exponent of the mixing length and that of the

diffusion coefficient at length scale vot depend on all length scales less than vot. This

explains the dependence of the mixing length exponent on the flow history. In general,

the ratio

tot q(ý)d4 + dt

is non-zero for finite t unless q is proportional to a delta function. It follows from (12)

and (13) that, in general, the scaling of the mixing zone is non-Fickian or finite length

scales unless the random velocity is a white noise.

Equations (4) and (5) show that molecular diffusion does not play a role in the

asymptotic scaling exponents of the mixing length and diffusion coefficient. The molec-

ular diffusion is important on small length scales only. Assuming q is non-singular on

small length scales, then from (12) we have (KO) = 1/2 when dt *0, and 1(0) = 1 when

dt = 0. For small length scales, (15) gives
q(O)t + dl
q(0)t + 2d"

Therefore at the length scale vot 3- vodt/q (0) the molecular diffusion is negligible and

t)0 1. The data set given in [21) shows that scale explntent y is about 1 at the smallest

length scale in the given data. This implies that the local molecular diffusion is negligi-

ble at all length scales for the given data set, including the short length scale data

obtained from laboratory experiments. Equation (12) also shows that for a given
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correlation function and length scale v0t, y is a decreasing function of the strength of the

molecular diffusion. In other words, for fixed t, the larger di is, the smaller y is. This is

due to the fact that the constant local molecular diffusion has Fickian scaling while the

diffusion induced by a random velocity has non-Fickian scaling (except when the random

velocity is a white noise).

The properties discussed here are in good agreement with the general features of the

laboratory and field data [21]. This data set shows that the exponent of the mixing layer

is about 1 at short length scales, and is less than I at large length scales. It also confirms

that the exponent of the mixing region is larger than 1/2, i.e. non-Fickian over all length

scales supplied by the data set.

The main features of the multi-fractal theories relative to the fractal theories, are

the allowance of a length scale dependence of physical quantities and the inclusion of the

transient effect between different length scales. Equations (12) and (13) show that, at

any given length scale v 0t, the scaling exponent of the mixing layer and that of the diffu-

sion coefficient depend on the behavior of the correlation function of the random velocity

on all length scales which are smaller than I. This is a transient effect. Our analysis has

shown that two factors contribute to the variation of the scaling exponent of the fluid at

different length scales. One is the variation of the scaling exponent of the random velo-

city field at current length scale. The other is the variation of the scaling exponent of the

random velocity field at all length scales smaller than the current length scale (a transient

effect). If the exponent of the velocity correlation function f varies slowly over a

sufficient large range of length scales, then the exponent of the mixing layer, 7(t),

I NOt) ,approaches an instantaneous fractal exponent yfr(t) = max{ 2 , 1+-- ), where

P(t) = dlnq (t)/dlnt. In the asymptotic regime, the scaling exponent of the velocity corre-

lation function approaches its asymptotic limit, and the transient effect from finite length

scales is damped. The asymptotic scaling exponent of the fluid is determined by the

asymptotic scaling exponent of the random velocity field only. Therefore fractal random

velocity field models can be used for the study of the asymptotic scaling relationship

between the fluid and the random velocity field [14,25]. For a random velocity field with

an asymptotic scaling exponent less than -1, the asymptotic scaling behavior of the fluid

is Fickian. In this case, a pure fractal random velocity field leads to an ultraviolet diver-

gence. Any cutoff, which removes such divergence, changes the random velocity field
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from a fractal field to a multi-fractal field. Since the introduction of the ultraviolet cutoff

only affects the scaling behavior of the random velocity field at short length scales, it

does not affect the asymptotic scaling relation between the fluid and the random velocity

field. The situation is quite different for a random velocity field with an asymptotic scal-

ing exponent larger than zero. In this case a pure fractal leads to an infrared divergence.

Since the infrared cutoff changes scaling behavior of the random velocity field at large

length scale, it intrinsically affects the asymptotic scaling relationship between the fluid

and velocity field. Therefore, for infrared divergent systems, the asymptotic scaling rela-

tionship between the fluid and the random velocity field depends on the rate at which the

infrared cutoff tends to zero as shown in (4) and (5) [28,25].

The multi-length-scale-fractal theory presented here has been validated by the

"exact numerical computations using the front tracking method [7-10]. The comparisons

between the exact numerical results and the results predicted by the multi-length-scale-

fractal theory have been made for a system with asymptotic non-Fickian diffusion

(N = -0.5) and a system with asymptotic Fickian diffusion (P. = -oo). Different

strengths of heterogeneity are studied for each system. The studies show that the predic-

tions of multi-length-scale-fractal theory agree very well with the numerical results over

the full range of the length scales computed which is up to the length scale 100 times

larger than the length scale of the basic heterogeneity. We comment that in these studies,

no fitting parameter is involved for the results of the multi-length-scale-fractal theory.

According to (4), the asymptotic scaling exponent of the mixing layer is 0.75 for

= -0.5. The scaling exponent y(t, obtained from the numerical computations

decreases monotonically from its initial value close to 1.0 to its final value 0.85 at the

end of the computation. In other words at the length which is 100 times larger than the

length scale of the basic heterogeneity, the scaling exponent still has not reached its

asymptotic limit. For P. = -- o, y. = 0.5. That limit is approached within 10% at a

length scale larger than 50 units of the basic heterogeneity length scale. Both these two

cases show that the transient effects are very important for determination of the scaling

on finite length scales. See [7-10] for the details of these numerical studies.

The study of the diffusion induced by random velocity field has also been carried

out in the Lagrangian picture by applying Taylor diffusion theory [5, 6, 22, 25, 26].

Under Corrsin's hypothesis, the effective equation for the variance tensor of fluctuations
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of the tracer particle displacement is a complicated non-linear ordinary differential equa-

tion. Recently, it has been shown that due to the nonlinearity of the effective equation,

the mixing regime induced by a random field is not a fractal, even if the random field

itself is a fractal [25,26]. In addition to the asymptotic scaling exponents, the asymptotic

coefficients in front of the asymptotic power law in front of the asymptotic power law for

the size of mixing layer and effective diffusion coefficient have also been determined for

a fractal random velocity field. See [25] and [26] for details.
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Stability Analysis of Stochastic PDE's via Lyapunov Functionals'

Pao-Liu Chow
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ABSTRAC The paper is concerned with the stability of stochastic partial differential equa-

tion of parabolic 1t6 type. By the method of Lyapunov functionals, we examine three kinds

of stochastic stability: the stability in probability, the asymptotic moment stability and the

almost sure asymptotic stability. Sufficient stability conditions are given and some illustra-

tive examples are provided.

I. INIRODUCTION

To illustrate some basic ideas in stochastic stability, we will first consider a simple example

in stochastic ordinary differential equations (ODE's). The example is given by the following

It6 equation in one dimension:

dx, = -axtdt + azgdbt, (1)

where a, or are positive parameters and b, is the standard Brownian motion in one dimension.

Clearly x, - 0 is a solution. The question is whether the null solution is stable. To find it

out, let

Wt(x) = X2p , p >O.

1This work was supported by the NSF grant DMS-91-01360.
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By the Ito formula [11, we have

j,(z=) = jp(zo) + 2p[2(2p - l)o0 -a] jpop,(z.)ds

+ 2pr foo •,(z.)db.,

so that

E(p,(x) = p,(x0 ) + 2p[1(2p - 1)a2 - aI] j EWp,(x)ds

or

E~p(zt) = jpp(zo)exp{2p[l(2p - 1)o2 - a]t).

Thus, as t - oc, we get

{ 0, if a > (2p-_ 1) 2,

oo, if a < -(2p- 1)0,2,

which shows that the (asymptotic) moment stability depends on the order 2p. For instance,

for p = 1, the null solution is mean-square stable if a = •u 2 but is not 4th-moment (p = 2)

stable. In fact, for any given a and a, there exists a m > 0 such that the null solution is

mth-moment unstable. On the other hand, the equation (1) has the exact solution:

'2
Xt = zo exp{obg - (a + -u )t}.

By the strong law of large numbers, we have (bt/t) -- 0 almost surely (a.s.) so that

Xt--+ 0 a.s. as t-- oo,

for a > -.La2. Hence the null solution is a.s. asymptotically stable for any a > 0, a > 0.

In contract with a deterministic equation, this simple example illustrates many faces of

a stochastic stability problem. For instance, the asymptotic stability can be discussed in
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the sense of probability, in the pth-moment or in the almost sure sense. Which mode of

convergence we choose depends on the nature of the problem under consideration.

Now consider a general It6 equation in one dimensi(

dxt = a(xt)dt + o(xt)dbt, (2)

where the functions a and a are sufficiently smooth with a(0) = or(0) = 0. Again xt - 0 is a

solution of Eq. (2). Since the equation is no longer solvable in a closed form, to determine

the stability of the null solution, other approach is needed. As in the deterministic case, a

qualitative method based on the Lyapunov function has been employed by many workers to

study the stochastic stability. For a systemetic exposition of this subject, one is referred to

the excellent book by Khasminskii [2]. Since the emergence of stochastic partial differential

equations (PDE's) in 1970's, the corresponding stability questions have arisen naturally.

In 1982 the author introduced the method of Lyapunov functionals to study the stability

of stochastic PDE's [3]. About the same time Ichikawa adopted a similar apporach to

analyze the stability and related questions [4]. Recently Khasminskii and Mandrekar [5] have

examined the linearized stability problems of stochatic PDE's by the Lyapunov method.

In this paper we shall first introduce stochastic PDE's. Then we review some basic results

in stochastic PDE's and define the Lyapunov functional. Subsequently, via the Lyapunov

functional approach, we present some stability results in the sense of probability, the asymp-

totic stability in pth-moment and the almost sure asymptotic stability of some nonlinear

stochastic PDE's. Some examples will also be given for the purpose of illustration.

II. STOCHASTIC PDE'S

Let D = (0, 1) be a unit interval and let K = L2(D) be the Hilbert space of square-
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integrable functions on D. For w E K, define the integral operator Q by

( = I q(z, y) jp(y)dy, (3)

where the kernel q(x, y) is symmetric and positive so that

Tr.Q = JDq(z,x)dx < oo. (4)

Let {e,,} be the set of orthonormal eigenfunctions of Q with eigenvalues A,, n = 1,2....

By (4), we have A, > 0 and

Eff1 A, < 00.

Denote by W(t, x) the Q-Wiener process in K if

W= = W(t,., ) = E b'•e1 (5)

where {bt} is a sequence of independent, identically distributed (i.i.d.) Brownian motions

in one dimension. Then we have

EW(t,z) = 0 (6)

and

E(W,,o)(W.,p) = E J W(t,x)O(x)ds J w(t,y)W(y)dy

= >2 1 An(e•.,O)(en,,W)(t A^s)

= (t A s)(Qo, W), (7)

where use was made of the fact Eb'mb•' = (t A S),,,, and (t A s) = min{t, s}. The Gaussian

process Wt satisfying the properties (6) and (7) is called a Q-Wiener process in K.
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As an example of stochastic PDE, consider the reaction - diffusion equation with a random

drift:

aU(tX) = 2U -+f(u au--W (t,z), t > 0, xz ED,
aX2 ax ax

• u(oX) = W(X) (8)

u(t,0) = u(t,1) = 0,

where Wt = W(t,.) is a Q-Wiener process defined as above and W = is formally a

K-valued white noise. Introduce H = L 2(D)(= K in this case), with inner product (-,.) and

norm 11-11. Let V = HI(D) = E{ H: z E H and W(O) = W(1) = 01 with norm I11 11 and

let V' be the dual space of V. For v E V and v* E V, the linear functional v* evaluated at

v is written as

V*(V) =< V*, v >.

Now we define the operator A and B as follows:

•9v Dv
A(v) = -f'2 + f(x,- T),

B(v) =
Ox

If f(x, y) is bounded and smooth, we have A: V - V' and B : V _. C2(K, H), which denotes

the space of Hilbert-Schmidt operators from K into H. By using the above notations and

setting u, = u(t, .), Eq. (8) can be regarded as an It6 equation in V':

du, = A(u,)dt + B(ut)dWt,

UO -= W7

or as an integral equation

Ut = 'P + A(u,)ds + j B(u.)dW,,
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where w E H and the last integral is a H-valued It6 integral. The above is a special case of

a large class of quasilinear parabolic-1t6 equations in a domain D C R, which have been

studied by many authors. For references, see Pardoux [6], Krylov and Rozovskii (7], DaPrato

and Zabczyk [8].

II. LYAPUNOV FUNCTIONALS

In general let V and H be real separable Hilbert spaces such that V C H C V' and

the inclusions are dense and compact. By using the same notations as in §II, consider the

following 1t6 equation in V':

dut = A(u.)dt + B(ut)dW.,

uo = (, (9)

where A(O) = B(Q) = 0. Under suitable conditions, the above equation has a unique strong

solution u' satisfying [6]:

E sup IIul0' + E IluflI dt < oo, for any T > 0 and p > 2. (10)0<t_<T

As in finite-dimension, the It6 formula plays an important role in stochastic analysis. For

a smooth functional D on H, let D$(v) and D 2 O(v) denote the first and the second Fr6chet

derivatives, respectively. Then the It6 formula associated with Eq. (9) reads

' (u') = 0( p) + CO £C(u,')ds + Ij(D(u '), B(uO.)dW.), (11)

where

(v) = 1Tr.[D2,4(v)B(v)QB*(v)]+ < A(v), DV(v) >. (12)
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Let us give two examples:

Ex.1) $(v) = IIV1l 2, v E H.

Then

D0(v) = 2v,

D 2 (v) = 21,

where I is the identity operator on H.

We get

£,C(v) = Tr.[B(v)QB*(v)] + 2 < A(v),v >.

Ex.2) O(v) = enllvil, v $ 0.

We have

D$(v) = V/11V112,

D 2 (v) = (I/lvll2) - (v ® v)/llvll',

where ® denotes the tensor product.

Hence

,CD(v) =j{Tr.[B(v)QB*(v)]+ < A(v), v >}
ýIlvl 2

-IIQl/ 2B*(V)VI 2/11vI,1.

Let 0 be a regular functional on a neighborhood U of the origin of H. It is said to be a

Lyaptnov functional for Eq. (9) if

(i) £(v) <50 forany vE VnU with vO0, (13)
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(ii) 0 is uniformly positive-definite so that t(O) = 0 and

inf t(v) = @, > 0 Vr > 0. (14)
1II,1>r

IV. STOCHASTIC STABILITY

There are three types of stochastic stability: stability in probability, the p-th moment

stability and the almost sure (a.s.) stability. In what follows, we will consider the first type

of stability and the latter two in the asymptotic sense as t --- oo.

We say that the null solution of Eq. (9) is stable in probability if its solution u' satisfies

lim P{sup ,ll1 > c} = 0 for any c > 0. (15)
IvIl--.o t>0

The null solution is asymptotically stable in p-th moment if for any W E U, we have

lim Ellu•lt-II- 0, p > 0, (16)
t--.oo

and it is a.s. asymptotically stable if, for any p E U,

P{1iim Il01l = 0o} = 1. (17)

The three types of stability as defined by (15)-(17) can be discussed with the aid of

a Lyapunov functional. First of all let us assume the existence of such a functional 0 in

U E H. We shall summarize the facts about the stability criteria as three theorems.

Thggem 1_L The existence of a Lyapunov functional 4I in U C H implies that the null solution

is stable in probability. #

The proof is a simple consequence of the following Chebyshev inequality:

P{ sup 11u,'11 > r} < ,(,)/t,.
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In the next theorem, we give some sufficient conditions for the p-moment stability.

•Thom.2. Suppose that there exists a Lyapunov functional in H such that

(i) ClhJlJ _< $(h) _< C211hIIP, for h E H, (18)

(ii) £4-(v) •_ -c 3I1vII1, for v E V, v 0 0, (19)

where c1, c2, c3 are positive constants.

Then the null solution is asymptotically stable in p-th-moment. #

The proof, based on the It6 formula and the Gronwall inequality, is rather straightforward.

For the finite-dimensional case, such a theorem is given by Khasminskii (p.186, [21). Actually,

in this case, the null solution is exponentially stable in p-th-moment. The last theorem in

concerned with a.s. asymptotic stability. For this to be true, intuitively, two things must

happen: Starting from any point in H, the trajectory u'' will be trapped in a ball B, of

radius r after some finite time, and, once inside B, the path will eventually find its way to

the origin with probability one. The sufficient conditions are given in the following.

Theorem 3. Let there exist a Lyapunov functional 0• in H such that

(i) £(D(v) < -cqp(v), (20)

for some c>0 and vEV, with v60.

(ii) sup{ItQ'/ 2B*(v)DO(v)II/,b(v)} g M, (21)
vEV

where M > 0 is a contant.

Then the null solutionis a.s. asymptotically stable. #
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The proof of this theorem is more complicated technically, and it can be carried out as

in Thm.4.1 of our paper [3] with a minor modification. The conditions (i) and (ii) ensure

that the two things mentioned above would indeed happen and the theorem follows.

V. SOME EXAMPLES,

For the purpose of illustration, let us consider a few examples.

Ex.1). Consider the linear SPDE:

Ot) = -2± (t x)u(t,x), t>O, 0<x<1, (22)
at OX2 ~'XUt ~

subject to the initial-boundary conditions:

{ (0,x) = V(X),

u(t,0) = u(t,1) =0, (23)

where v is a positive constant. In this case, we let H = K = L 2 (0, 1) and let Hl be the

Sobolev space as in §IIIt was shown by Khasminskii and Mandrekar [5] that the functional

4(v) = FEIollu' dt (24)

is a Lyapunov functional, where

I1JW,11 = IIpW112 + IJ1112 = fo {Iso'()1 2 + Ip(x)12}dX.

Therefore, by Thm.1, the null solution is stable in probability. In fact the Lyapunov func-

tional (24) satisfies the conditions (18) and (19) of Thm.2 for p = 2. Thus the null solution is

asymptotically stable in second moment or in mean-square. Moreover, if the covariance func-

tion q(x, y) of the Q-Wiener process W(t, x) is bounded and continuous, then the conditons

(20) and (21) for Thm.3 are met. Hence, in this case the null solution is a.s. asymptotically
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stable.

Ex.2). Instead of Eq. (22), we consider the following nonlinear equation:

u(_,t)= t 8 2 u + (tz) t > O, O < x <, (25)
&9 - x - ;1 (1+ Jul)

with the same initial-boundary conditions (23).

Let

CZ(O) =-Iv12. (26)

Referring to Eq. (9), we have A = va--- and B(v) = -. Then it is easy to get

,C~)= 2 < Av,v > +Tr.[B(v)QB*(v)I1. v 2(x)

= 2vo Iv.(x) 2dX + j' q(x,x) V_•-)] dx
1 11

< -2t jI lvz(Z)12dX + jo q(z, x)v 2(x)dx. (27)

Therefore, if

J q(x, x)v2 (x)dx < 2v I' Iv.j 2dx,

we have

£$(v) < 0 for v E Hol,

so that 4 given by (26) is a Lyapunov functional and the null solution is stable in probability.

Suppose that q is bounded and continuous with

qo = mnax q(X,X),o<.x<_l

and

Ao = inf{11•l1 2/11•11 2 } > 0.
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Then (27) yields

Df(v) _• (-2Ao + qo)(,(v).

If the following condition holds,

qo < 2Ao,

then it is not difficult to verify tht the conditons for both Thm.2 and Thm.3 are fulfilled.

We can conclude that the null solution is asymptotically stable in mean-square as well as

with probability one.

Ex.3). Let D C R3 be a bounded domain with a smooth boundary OD. We consider the

the reaction-diffusion equation with a random perturbation:

Ou(t,x) Au + f(u) + W(t,x)IVuI, t > 0, x E D,

u(OX) = V(V), (28)

U 8Do = 0,

where f is a locally Lipschitz continuous function with at most a polynomial growth and

f(O) = 0. Consider the scalar ordinary differential equation:

drtd"- = f(rt),

which is assumed to possess a Lyapunov function Wo(r) so that Wo"(r) < 0, V'(r)f(r) > 0 and

() --+ oo as I1 -- oo.

Let us introduce H = K = L2(D), Ho1 = {v E H : IVvl E H and VID = 0} and

V = LP(D) fl Ho for some p Ž 2. We define

t(v) = IL p[v(x)]dx. (29)
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The following calculations are straightforward:

V4(v) V - P v (v)IVV( 2dl + I '(v)f(V)dX

-< -j •"(v)q(z, z)JVvl2dx

If q is bounded and continuous with

q= sup q(X, X) < 2v,
zED

then

£O(v)<O for vEV

so that 4 defined by (29) is a Lyapunov functional and, by Thm.1, the null solution is stable

in probability. But, for this example, the asymptotic stability results are difficd1t to get with

making further assumptions.
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Analysis and Computation of Approximate Solutions to a Simple
Model of Shear Band Formation in One and Two Dimensions

Donald A. French*
Department of Mathematical Sciences

University of Cincinnati
Cincinnati, Ohio 45221-0025

June 29, 1993

Abstract

Preliminary results on the analysis and computation of approximate solutions to a simple
mathematical model for high strain rate shear deformations of a thermo-plastic material in one
and two dimensions are discussed. This problem involves a system of time-dependent partial
differential equations. Open questions on the qualitative behavior of the solutions are given
and the results of numerical calculations that address these issues are presented. Several time
discretization procedures that retain certain fundamental properties of the system of partial
differential equations are described. Finally, an optimal order error estimate for a semidiscrete
finite element method is furnished.

Presented at the Eleventh Army Conference on Applied Mathematics and Computing, Carnegie
Mellon University, Pittsburgh, PA, 8-10 June 1993.
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Donald Estep (Georgia Tech) provided useful ideas on the computation of "blowup".
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analysis.

1 The Shear Band Model:

Consider high strain rate shear deformations of a thermo-plastic material occupying a region fl x
(-oo, oo) where SI = (0, 1) for the one-dimensional problem and is a bounded domain in the zy

*Partially funded by the Army Research Office through grant 28535-MA
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plane for the two-dimensional problem. We assume the deformations are of antiplane shear type in
the two-dimensional case and the applied forces and boundary conditions depend only on x E f0.
Thus, the quantities we seek will also depend only on x E P and time, t. The model we describe is
based on the assumption that thermal softening is due to the heat energy generated by the plastic
work. We neglect strain hardening and focus on the strain rate effects.

The mathematical problem consists of an equation for balance of mGmentum

(1) vJ-Voa=0 on Q, t>O

and balance of heat energy
(2) O-AAZ9=Ka-.Vv on f1, t>O

where i denotes the time derivative of z, for simplicity we set density p = 1,

a -e0 _r 4F= or V= + ,

A is the thermal conductivity, x gives the conversion of mechanical energy to heat, v = v(X, t) is
the displacement velocity, a = a(x, t) is the stress, and 0 = O(x, t) is the temperature. For the
constitutive law we take
(3) a = •(0)VV

where we consider A(O) = e-*9 for constant a > 0 and A(O) = 0" for constant v < 0. To complete
the specification of the initial/boundary value problem we have conditions

(4) o-n=a 1 n on IF, and v=v1 on r,

where Ol = r. u r, as well as

00
(5) 0 = 0 on rD and F = Oon FN

where Of1 = ID U rN. Here n is the outward pointing unit normal to 0, or and v, are given
functions. We also need initial conditions

(6) v=vo and 0 = 0 on Q at t=0.

Our goal in this work is to understand the mathematical mechanisms that lead to shear bands.
We will study the qualitative aspects of this time dependent model through scientific computations.
An important part of this research is to justify the numerical algorithms as much as is possible.

The literature on these problems is extensive. We note [B] for scientific computations on an
elastic plastic multi-dimensional model, [DF] for computations with a moving spatial mesh with
variable time steps in one dimension, [MM] for a characterization of steady state solutions, [T]
for analysis of "blowup", and [W] for scientific computations on a one-dimensional elastic-plastic
model.

288



2 Qualitative Behavior of Solutions:

We describe briefly several analytic results for the partial differential equation in this section.
Maddocks and Malek-Madani [MM] give a functional which would be Lyapunov if it was known

that the problem (1)-(6) had a unique global solution. We present the short derivation of this
property in the one-dimensional case with p(8) = x, = A = 1, and Dirichlet boundary
conditions
(7) O(O,t) = O(1, t) = v(Ot) =v(1,t) = O, t > O.

Let

Z(O6,V.) = -2 V.2
2

and note d
(8) at DO, V.) = -ovj + a+ ,

Multiplying equation (1) by 6 and (2) by i, adding the resulting equations, integrating with respect
to x, and using integration by parts we have

(i,2 + 62 )d. 102, - avt2  dx + a;10.*

From (8) and the boundary conditions we obtain

(9) d I(o, v.) - 1 - j(i2 + )d

where

1(6, V.) =11(16.2 + 1E(0, v.)) dx.

Tzavaras [T] proves there will be no global solution in the adiabatic (A = 0) case. We now give
the short "blowup" argument from (T]. We take u(O) = 0-2, a(1,t) = 1 for t > 0, and 6(x,O) = 1
for x E fl. Let U(O) = -_-1 and note U' = p. From (2) with r = 1 we have

0 = av.

Multiplying by p(G) we have
d u(o) = A•()B = ,2.dt

Integrating from 0 to T, setting x = 1, and using the boundary conditions on a yields

U(0(1,T)) = U(0(1,0)) + T.
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From the initial condition and definition of U we have
1

0(1,T)= 1-T

Thus the temperature will "blowup" as T -+ 1. A natural question is: What happens when A > 0,
the non-adiabatic case?

3 Numerical Methods:

In this section we describe several numerical methods which have a finite element spatial discretiza-
tion combined with a finite difference time-step scheme.

Let Mh be a space of continuous piecewise polynomials of degree < q - 1 defined on a "trian-
gulation" of Rl. These elements have diameter • h.

For simplicity we assume we are approximating problem (1)-(6) with homogeneous Dirichlet
boundary conditions on v and 0. A spatially discrete continuous in time finite element method is:
find (vh(., t), Oh(-, t)) E Mh X Mh such that

(i'h, X) + (A(Oh)VVh, VX) = 0 VX E Mh,

(Oh, V) + A(V9A, V(P) = ,(,&(9h)1VVhl 2, ý) VW E Mh

for 0 < t < T where vh(., O) • vo and Oh(., O) 0 9o. In this method

(w, z) = Jwz dA.

In [FG] it is shown under the assumption problem (1)-(6) has a unique smooth solution on an
interval [0, T] that

max IIv(, t) - vh(, t)II < Chq
O<t<T

and
max II1(., t) - Oh(-, t) 11 Ch

O<t<T

where C is a constant depending on derivatives of 9 and v but not on h. Here Iz1Z2 = f I z2dA. These
rates are "optimal" in the sense that they are the best one could expect from the approximation
space used.

We now turn to the time discretization. Define divh : (L2(!l))d _Mh where d = 1 on 2 by

(divh ,X) = -(7, VX) VX E Mh,

Ah : h- -- Mh by
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(A"h, X) = -(V•, VX) VX E Mh,

and let Wrh be the P-projection. With this notation the backward Euler method on the nth time
step is

(10) (V- - ) - divh(/( h)Vvn+l) = 0

(11) - + -o) - AZ.iho•+ 1 h h h (,( 1)2)

Here k > 0 is the time step.
The scheme is fully implicit if I = m = n + 1. We used this scheme in two dimensions with

a fixed point iteration to solve the nonlinear systems and preconditioned conjugate gradients to
solve the linear systems. The scheme is called semi implicit if t = m = n. We used this scheme in
one-dimension with a tridiagonal solver for the linear systems.

Many researchers have investigated time discretization schemes that preserve a discrete energy
or Lyapunov functional (see, for instance, [DN], [El, [G], [SS] or [FS]). In one dimension with the list
of assumptions used to derive inequality (9) the backward Euler scheme with I = n + 1 and m = n
retains a discrete version of this inequality. To see this multiply the first equation by vI+1 - vn
and integrate with respect to x. After integration-by-parts noting vh(0, -) = vh(1,-) = 0 we have

11V n+I _ n1 2 + k -20e 1.n+ l n+ n+ 1 -- h ) = 0

IIv~''+ - x.. ... I. , Vh.' -. V = 0
or

(12) 2 [(e _h+ V,+1 ,,X+1 (e-h+lv )

+ 2 (e+• 2o 1  (Vhx - hx) I (V , , - h,x) .

Labeling the term inside the [-] as J we have

J (e-e h'Vht, ,vh~1) - (e- h vh,Z I,vxz) - ee)

Applying Taylor's Theorem we have
29n~ ~ 2e ~ 20n+l oO+ 2n 9 +)

e- h =- h + (-2e h)(o_ + I (4e ) ( _

so

J = [(etv1) -X I h, (h+ ( h~ - ) V9

-~224nl (Oh- ~

291



Substituting this back in (12) yields
(13) lv;+1- vn12 + [((e-+' (Vn+1)21)(+ (,n) 2, 1)]

+k (h2 h+" ( -h, ,1 h h,
+k ( h2 (e+1 - )n (Vn .) 2 '1

-2V(o+1 on (n.2 1 )

k -2n~ (

Multiplying (11) by (0"+' - 0) we obtain

+-lOll + ,,". - (,, h k (e h2(+1 on.,

Adding this to (13) gives a discrete Lyapunov functional equation for the backward Euler method,
nlvt+1 - nri1 2 + IIW1 - Olij2 + kEn+' + P - kE"

where
+ (el (R,1) 2 h

and

[eh,. ' ) + IIoh,= -_ 0 j +1 k (e2] (e -2t(+j - .) 2 (V) )
The following scheme also retains a discrete version of (9):

1 1(qn+1, Vn+l) _ (Gn+ I n,,\
(V - v) - divh n+- ' h1 n0

h, h
k k- -O- /•

1 1+ _____ndth _ecnb_____' on gvs h

Multiplying the first equation by k-'(v+ 1 - v•) and the second by k h(0•+1 - 0•) gives the
following after adding the two equations and integrating with respect to x:

1 (Ilieni 11- Ileg, 112) + j 1 (E (on+i, Vn+) - (on,v) dx

n -k (Ilk- Vn+ ' _V) 112 + Ilk- ' (n+1 -on 112)

Finally, we note that higher order accurate schemes can be created using the finite element in time
techniques described in [FS].
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4 Numerical Experiments:

In this section we show the results of some of our preliminary computations. More experiments are
planned and we intend to use more sophisticated adaptive methods.

Figure 1 shows the results of a computation in the adiabatic case (A = 0). As discussed earlier
[T] has shown that the temperature, 0, will "blowup" at the x = 1 boundary as t - 1. We take

1 2
Y(0) -- 0- al =1, vO(x)= X , and Po(x) = 1

A refined mesh and variable time step strategy were used. The top graph has a snapshot of Oh

at T = 0.9. The bottom graph has the evolution of Oh at x = 1 plotted against its known values
(l-t)- 1 .

Figure 2 has the results from nearly the same calculation except we took A = 0.1, added
Neumann boundary conditions for 0, and stopped at T = 1.25. In this case it can be shown that

0(1,t) = (1- Itjp(O)O.dr).

So, to estimate the behavior of Oh(l, t) we used a centered difference approximation of "0,z". These
are the values on the dashed line in the bottom graph. Certainly from this numerical evidence it
appears that the solution will "blowup".

Finally, in figure 3 we explore "blowup" in two dimensions. We have the adiabatic case (A = 0),
p(O) = 0-2, vo(x, y) = 1(1 - x2)y2, and Oo(x,y) = 1. The domain is Q = (-1, 1) x (0,1). We took

v = 0 and 0 = 1 on all boundaries except the segment of the fine y - 1. On that boundary we had
I' = 0 and ao. n = (1 - X2). We used a 40 x 40 refined mesh and a variable time step with 400
Nn
steps. Again we see a possible blowup point starting to form.
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5 Specialized Finite Difference Method:

We finish this report by describing a finite difference scheme for the adiabatic problem that has the
same "blowup" as described earlier from [T]. The scheme will give approximations to

(14) q on (0,1), t > 0,

(15) on (0,1), t > 0,

with boundary conditions
00(0,t)=0, 0'(1,t)=l, t >0

where a = p(O)v= and initial conditions are provided for 0 and v.
Let

O7= ~ O(eh, nk)
"t•+ 1 / 2 v�-((t + 1/2)h, nk),

-•(�, U(W) - U(O) =
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and
_n+1/2 •n÷1/2and1/2 11+1en) 1+1/2 1-1/2

h

where
n+1/2 - / n+1 + l

V1+1/2 2 - VI+1/2 +1/2)

The scheme for (14-15) is then

-1 ( + ( r+12 n+/ Ia~ = 0, 1, .,L 1,
i - V1+1/2) - -1 +1 or-l/2) = ,

and
n+1i2 = 0, n+1/2

We now show that the approximation, on, will "blowup". Take n(•) = -2 so U(p) =

and set • = 1 fore = 0, 1,.. .,L. Multiplying the second equation by f(t+ 1 , G) we have

At I = L we have "1 so this becomes

UCOn+') - U(rh) = k.

Iterating this formula we have
(h•)-1 = (6h)-l - Nk

or

•=1-Nk

which proves the "blowup".
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A System for Materials of Korteweg Type
in Two Space Variables

Harumi Hattori*and Dening Lit
Department of Mathematics

West Virginia University

1 Viscous Isothermal Motion of Korteweg Type Materials.

We consider a simplified isothermal motion of the Korteweg type materials where the
viscous effect is included. The general model for the Korteweg type materials was pro-
posed by Dunn and Serrin [1] with the interstitial working term and they modified the
system of compressible fluids based on the Korteweg theory of capillarity. We will restrict
ourselves to the special isothermal case.

With the Helmholtz free energy chosen as
P

= F(p) + _((p' + p•), (1.1)

where F is a smooth function of p and v is a positive constant, we obtain the following
system for

Pt + (Pu): + (pO), = 0,

(pu)- + (pU2): + (puv), = -_p vp/Ap3 + pAu + Pe(ua- + v.a), (1.2)

(pv)t + (•uv)z + (pv,)_ = -p, + 3p1Žp, + p,, + ( + ,

with the initial data

(p, u, v)(z, y, 0) = (po, uo, vo)(x, y). (1.3)

*The work was supported in part by Army Grant DAAL 03-89-G-0088
tThe work was supported in part by ONR under Grant N00014-91-J-1291.
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Where > O, p">0:

H'(p) = h(p)= lof - dp, (1.4)

H(po) = 0, po = const > 0. (1.5)

H(p) _> 6(p - po)2. (1.6)

2 Local Solution

First we discuss the local existence of solutions for the initial value problem of (1.2)(1.3).
Denote by 11. = 11. Ilo the L2 norm and by 11. fIlk the k-th order Sobolev norm. Set

IWIOS. p u•t W (I)lt2 + IIVP(t)112) +f•T (IIVU,)1Ir + IIVV(t)112) dt (2.1)

and
kwl: = b l I, (2.2)

liI<k
where w (p, u, v). Then the main result of the local existence is the following theorem

Theorem 1 Assume the initial data (1.3) satisfy

(Po - Ao, uo, vo) E H (R 2), bo _ 6 > 0, (2.3)

where k > 4 and ,Go > 0 is a positive constant.
Then, 3T > 0 such that Cauchy problem (1.2)(1.3) has a unique solution to

(p- po, u, v) in [0, 71 such that

1. p - 1fo E L'([0,TJ; HU+l(R1)),
2. (u, v) E LOO ([O, T]; Hk (R2))?

3.
IJWI < Ck (IIWooll + iipoll2+1)

Where
IJW1• =sup (llW(t)112 + IlVp(t)l2)

o<t<_T

" 0T (llVU,(t)ll2 + IlVV~t)ll2) dt, (2.4)

IwIl• = X l'3,,wIlo.
l0<k
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The theorem is proved by establishing the energy estimate for the linearized problem
and linear iteration.

Since the linearized problem of (1.2) is not of any classical type, the existence of so-
lutions is not known even for the linearized problem. We prove the existence of solutions
for the linearized problem by establishing an energy estimate for the dual problem and
then using the dual argument.

The linearization of the problem (1.2)(1.3) is the following

(Ot + u1. + ,)00 + p(,z+i,) =+,,
p(a, + UZ,, + 006,), + A(M)j.

-,pAL. - PAi, - P(,-.. + 6.v) =/,, (2.5)

p(0, + u0. + V,0)b, + p(p)A
-VPA#,- -i&' - V•v(i + 6,,) = f3.

(Ai,i,i)(x,y,0) = (00o, io,t0)(Z,'y). (2.6)

For the linear problem (2.5)(2.6), we have the estimate
at(IltIJ2l• + IIA12llij112 II,, + 111&112

k C• (k+I)'' + ..kIlI+, + I/I + 1IIf+,)

IkI, < Ck(T) (IIkII, + ll~ill+,) - (2.7)T "

+Ck(T)j (l 12lk + Ili, lifI+,)dt.

The estimate (2.7) is derived by integrating by parts the inner products of the last two
components of (2.5) with (4, t6), and using repeatedly the conservation of mass equation
to treat the term p(iA,, + t,,b) coming from the non-symmetry of the system.

For the existence of solutions for linear problem (2.5)(2.6), we need to consider the
dual problem

L'• = -atý - B•a.ý - B2O +(l * ( + T*)ý = •,(2.8)

ý(xy,T) = 0. (2.9)

System (2.8) is non-symmetric with the principal part:

Otr - LA(&4ý2 + Ovk 41
OA04' + O04'i + A2+ Ový3 = §2, (2.10)

a,•3 + a,2 + A3 + a = §3.
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For the system (2.8)(2.9), we have the dual estimate:
.ll•(t)ll + II2,3(tll2 -< C (114(t)112 + 114I~(,r)ll2r) (2.11)

and the negative order estimate:

IIA&ý(t)ll1 + IIA s+2, 3(t)ll12 < C (IIA'§(t)ll1 + fT IIA'§(T)ll2d) . (2.12)

where 3 E R and A is the operator with symbol

0(•,,i) = V/1 + IC12 + 1I172 . (2.13)

The estimate (2.1.2) is obtained by integrating by parts the inner product of 2nd and 3rd
equations with (02,03) and (AL 2, LA ). The negative norm estimate (2.13) is derived
similarly by applying the operator A" to the system. Once we have the dual estimate, the
existence of solutions for (2.5)(2.6) can be established by the standard dual argument.

From the existence of solutions for the linearized problem (2.5)(2.6) and their estimate
(2.7), the solution for the nonlinear problem (1.2)(1.3) is obtained by linear iteration.
First, we construct approximate solution tb(z, y, t) such that:

Ottb - At = 0, t(z,(y, 0) = wo(x,y) (2.14)

so that the Cauchy problem (1.2)(1.3) is transformed into a problem with homogeneous
initial data:

ittb= -,~t ,t (2.15){tb•(z,y,0) = 0.

Take tb0 = 0 to' begin the iteration scheme. The successive tbj+l (j = 0,1,---) is
decided by solving the following problems

{ L(tb.)t.+ 1 =, (2.16)

tb+,i(z, Y,0) =0.

The existence of the iteration sequence in a common interval is derived from the
fact that the norm [,j|2 is uniformly bounded. And the convergence of the iteration
sequence is guaranteed by choosing T < 1 such that

It,1l2 < 1, (2.17)

1
Itbi - <,..Ik-2 < Ibj-, - tj..21k.2. (2.18)

Consequently, the limit of the iteration sequence is the desired solution. The uniqueness
of the solution is derived readily from the energy estimate.

302



3 Classical Global Solution

The existence of global solution for (1.2)(1.3) can be obtained from the local existence
theorem in section 2 by using the Matsumura-Nishida technique in [3]. We have the
following

Theorem 2 Assume that

(po - A, Vpo, uo, vo) E H4 (R2), 00o > 6 > 0. (3.1)

I1Wo112 + I1po - A112 < Co. (3.2)

Then, for eo < 1, there exists a unique solution (p, u, v) in [0, oo) such that

p - fo E L'([0, oo); H5 (R 2 )), (u, v) E L' ([0, oo); H 4(R2 )), (3.3)

and satisfying
IJWl < C (ltooll1 + Ilpo 0112 (3.4)

with w =_ (p - po, u, v).

The theorem is proved by applying the following lemma similar to the one in [3].

Lemma 1 Let w be a solution such that

sup (IIW(t)114 + lip(t) - A0l5) _ :. (3.5)
O<t<T

If c is small, then

sup (llW(t)ll2 + lip(t) - 0112) 5 C'(1lWl,2 + Ilpo - u112). (3.6)
0<t<T

Here C, is independent of T.

The inequality (3.6) can be derived by looking carefully the derivation of the in-
equality (2.7). We will need the assumption that pý > 0, p" > 0 and (1.4)(1.6), as
well as the fact that the "error" terms in the linearization are of quadratic order. Once
(3.6) is established, the existence of the global solution follows readily from the standard
continuation argument.
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Abstract

The addition of a few parts per million (by weight) of certain long-chained polymer molecules
dramatically reduces the drag of a turbulent flow, often by a factor of about 3 or 4. This
phenomenon is known as Toms effect. It has been tested and exploited in applications ranging
from oil pipelines to noise reduction of submarines, yet little is understood about the physics of
this phenomenon. It is generally surmised that turbulent flows 'somehow" stretch the polymers,
thereby increasing the viscosity locally, thickening the viscous sublayer, and thus reducing the
velocity gradient at the boundary. What is lacking is the mechanism by which large scale
turbulent structures can stretch individual polymer molecules, a problem spanning several orders
of magnitude.

In this paper, we adopt a hybrid ellipsoid-dumbbell model to model the dynamics of a
polymer molecule. We embed these model molecules within a numerical simulation of a single
streamwise vortex in a shear flow. The effect of the vortex is to rotate the flow gradient within
the vortex core, thereby establishing inflectional velocity profiles; we also find that it establishes
regions of positive streamwise strain rate on the dowaflow side of the vortex. These regions are
observed to be of sufficient strength to stretch the polymer molecule to experimentally observed
elongations. Regions of negative strain rate on the upflow side of the vortex are observed to
allow the molecules to relax, and admit the possibility of entanglement. We estimate the local
increase in viscosity due to polymer deformation, and use this to infer the local decrease in
strength of the associated vortex, the reduced inflectional velocity profiles within the vortex
core, and the increased stability of the flow locally.
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1 Introduction

It is widely suspected that turbulence suppression and turbulent drag reduction by dilute polymer
additives occur because the polymers dissipate energy via stretching. However, previous investiga-
tions of the dynamics of polymers in uniform shear flow have shown that the embedded polymers
undergo too little deformation to dissipate any significant amount of energy. In this paper, we iden-
tify a physical mechanism in a single streamwise vortex flow that is capable of substantially deforming
polymers, thereby dissipating enough energy to help stabilize the flow and reduce drag. We identify
this mechanism by modeling the dynamics of a polymer molecule which has been embedded in a
streamwise dependent vortical flow. We investigate how the flow establishes regions with positive
and negative stream wise strain rates of sufficient strength to stretch the polymer to experimentally
observed deformations, and then to permit relaxation, possibly with subsequent entanglement. We
also discuss the resulting predictions of the single vortex model: the increase in viscosity obtained
from energy dissipation about the stretched polymer decreases the vortex strength R, locally near
those vortices which have activated polymers, thus reducing the inflectional profiles at the vortex
cores, and so preventing those vortices from undergoing transition to turbulence.

2 Modeling the Dynamics of a Single Polymer Molecule

We first present a model for the dynamics of a single polymer molecule in a 3-D flow field. In
a previous work, Keyes and Abernathy (1987) successfully employed a hybrid ellipsoid-dumbbell
polymer model in uniform shear flow to exl.ain observed "early turbulence" in dilute polymer
shear flows as being polymer-induced velocity fluctuations, with decreased frequency in regions of
increased shear. In this model, the polymer is viewed as simultaneously having a dual nature. When
considering deformational effects, the polymer is viewed as a bead-and-spring dumbbell; specifically,
as two spheres of equal radius connected by a nonbendable spring that does not interact with the
surrounding flow. When considering rotational effects, the polymer is viewed as a rigid prolate
ellipsoid whose interior consists nf the polymer and the accompanying entrained fluid (Figure 1).
This dual-natured model derives from the following observations. Self-avoiding random walk studies
show that the 3-D conformation of a random coil polymer is contained within an envelope with a
shape similar to 1that of a rounded bar of soap. The characteristic lengths of this envelope occur
roughly in the ratio 3: 1.5: 1 (Rubin and Mazur, 1975). In a uniform shear flow, polymers exhibit a
single response time. In low strain rate flows, the polymers appear to undergo motions as though they
were rigid objects. Frequency measurements indicate that this motion is similar to the convection
and flipping of solid ellipsoids. In higher strain rate flows, the flipping frequency changes in auch a
way as to indicate that the polymers have deformed. The simplest single time constant model that
will capture this deformational behavior is that of two massless dumbbell ends connected by a spring.
Spring deformation is determined by the balance between the spring force and the surface drag force
on the two dumbbell ends. The rotational modeling remains that oe a rigid ellipsoid. No attempt
is made to capture the internal flow within the polymer envelope. Rather, the model is designed
to model the motions of the polymer molecule both at low strain rates and at strain rates which
are high enough to cause some deformation. We employ the Keyes-Abernathy polymer model here,
generalizing it to 3-D flows with streamwise velocity gradients. In the following, all quantities have
been nondimensionalized with respect to the usual characteristic values, unless stated otherwise.

Consider a polymer molecule embedded in a local flow field ii a <u, v, w>. We begin by defining
a local Cartesian coordinate system within the frame of the polymer. Let the origin be the instanta-
neous location of the center of the polymer at the beginning of the computational time step. Choose
one axis in the flow direction, U-. Choose another axis i to be the component of the shear vector
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perpendicular to i: i =_ Viu6 - 6 - V161 u. The third axis is then f a t x i. Normalize each to
obtain the flow axis fi, the shear axis i, and the flipping axis f. By construction, these three vectors
are orthogonal. In this coordinate system, the dimensionless local shear oc V=_ • - will cause
the polymer to flip about the j axis. Local flow velocities work against the stresses internal to the
polymer to translate the polymer ends, usually at different rates. Deformations of the polymer due
to shear stress and strain occur in the direction of the ellipsoid's semi-major axis; we neglect bending
of the polymer molecule. We assume the two effects of rotation and deformation to be separable; we
calculate them independently at each step, and then superpose them to find the resultant motion of
the molecule.

We first consider the flipping motion of the polymer. Toward this purpose, we envision the
polymer as a rigid prolate ellipsoid whose semi-major and semi-minor axes have lengths A and B
respectively, where A and B are both measured in units of *t. Let e be the dimensional position
vector from the polymer center to a point on the semi-major axis which is a distance BMi short
of the i'th tip of the polymer, where i = 1 or 2 for the two ends of the polymer. (This point
serves as the bead center and spring end in the bead-and-spring dumbbell formulation below.) We
nondimensionalize the polymer's physical dimensions with respect to the dimensional length of the

semi-minor axis, Bit. The dimensionless position vector is e , . Let "denote the &.
with positive i component. Note that eis parallel to the polyrner's semi-major axis. A convenient
dimensionless measure of polymer shape is t i1 =A - 1. Denote the projection of 4 into the u-s
plane by c, with magnitude tp = It I. Let 4) denote the angle in the fi-i plane from the shear axis
i to 4p. The local shear K causes the polymer to flip about the i axis in the local fi, coordinate
system at the polymer center. Jeffery (1922) has calculated the angular velocity of this flipping
motion by setting the net torque on the ellipsoid equal to zero, thereby obtaining:

d4) (tP + 1)2 cos 2 •0 + sin 24)

( +=) + 1 2 (1)

Note from this equation that a sphere (4p = 0) rotates at constant angular velocity as it is convected
along. As the aspect ratio 4p increases, the angular velocity is slowest when the semi-major axis is
aligned with the flow (0 = -) and is fastest when the ellipsoid is broadside to the flow d~iction2
(0 = 0), that is, when the semi-minor axis is aligned with the shear axi• i. Greater elongation
(higher 4p) in a given shear decreases the flipping frequency, which is found by integration of the

angular velocity equation 1 to be At a given elongation 4p, higher shear also causesanguar elocty quaion tobe (tp'+2tp+2).

the polymer to rotate f, ster. To calculate the flipping motion of the polymer at each time step, we
first project the polymer into the fi-i plane, calculate 4) and 4p from the projection, and then use
the angular velocity equation 1 to calculate the rotation about the f axis.

We now consider polymer deformations. During each computational time step, we assume the
following:

1. The external streamwise strain rate • is constant over the iength of the polymer during the
step.

2. The external flow velocity is parallel to the flow axis u over the length of the polymer during
the step. Note that this assumption is necessarily true at the beginning of each step at the
polymer center by construction of f, and will remain approximately true for sufficiently small
steps.

3. The polymer retains an equivalent elliptical shape, with no bending.
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Forces acting on the polymer are the Stokes drag acting over the body of the polymer and the strain

internal to the polymer. For simplicity, we now use a bead-and-spring dumbbell model of the polymer

to calculate these forces. We model the polymer by two equivalent spheres of dimensional radius

BIH joined by a spring of dimensional equilibrium length 2B7Mt which has no direct interaction with

the flow. We adopt a variant of the Fraenkel-Warner spring (Bird, 1987) with dimensional restoring

force Y - -9BG(t)4, where 9 is a dimensional spring constant, and:

G(t) = (C -ee)X (-+ 4-eq) - ift> }G
-wqx WT 2 if--< . (2)+ >(t )2 W ,- -f ) i !t t

Keyes and Abernathy (1987) have previously determined most of the parameter values for the above

spring function by fitting the model to experiments. The equilibrium length of the polymer is set

to 4 eq = 2 in order to match the observed frequency of polymer-induced fluctuations. The softening
constant is set to p = 4 to allow significant stretching to begin in the observed regime. The Warner
constant is set to 4w = 100 as representative of the maximum observed (or inferred) polymer
elongation. We add the last term in the spring function equation 2, which activates at fT = 0.9
of the maximum extension with hardening constant q = 0.1, to model the eventual tightening
of the polymer near its maximum extension. We choose this form so as to eliminate the sharp
jerk which Keyes and Abernathy's (1987) polymer underwent when the polymer reached maximum
extension. This function is graphed in Figure 2. While it possesses the qualitative behavior we
seek in a relatively simple form, there are many other equally good alternatives. To account for
hydrodynamic shielding of the two spheres at small separations, we multiply the Stokes drag by a
factor 0 which is unity at infinite separation and approaches infinity as the spheres touch. This
prevents interpenetration of the spheres. Brenner (1961) has calculated this /# for Stokes flow,
yielding:

4 )O m(yn+ 1) 4cosh2 (m + -•)a + (2m + 1)2 sinh 2 a(]
i( = Fsinhat Z (2m - 1)(2m + 3) 2sinh(2m + 1)a - (2m + 1)sinh 2a- (3)

where a =_ cosh- 1 . This function is plotted in Figure 3. Setting the sum of the Stokes and spring
forces to zero yields a differential equation for the position of each of the spheres fi in terms of
dimensional variables:

d(4)
dT =-/(4) 6•--•-_)_4

where Aai is the dimensional velocity difference between the ambient fluid at the i'th sphere and
at the polymer center. Since we are dealing with a flow that has nonzero strain rate in essentially
only the streamwise direction, the dimensionless velocity difference is

A,= [u{ + (a, - xo)u•], + [v{}, - vi0jo + [wv{ 1} - w{o}], (5)

where the subscripts i denote ambient quantities at the 0th sphere, and where the subscripts zero
denote quantities at the polymer center. When nondimensionalizing the position vector equation 4
with respect to the usual characteristic variables, we define C E- Aas a dimensionless measure

of the spring force versus the average viscous drag force on the sphieres. This dimensionless spring
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constant C is related to the analogous constant used in Keyes and Abernathy (1987) by C = CKOFCe X,
where ic is the dimensionless local shear.

Another issue to be addressed is whether the polymer should maintain constant volume during
deformations, or whether it should maintain constant semi-minor axis, or whether it should possibly
exhibit some intermediate behavior. This will be an important issue later when investigating how
much deformation polymers undergo when embedded in a vortical flow. In the next section we
will argue that the actual polymer behavior is probably approximately constant semi-minor axis
at small deformations when polymer coils are still relatively tightly wound, and is approximately
constant volume at large deformations when all coils have been effectively opened and the polymer
has saturated with entrained fluid. For now, we will simply outline the calculation of the two
extreme cases. In the constant semi-minor axis case, we just take the difference between the current
positions of the two sphere centers to find the separation L, then calculate the current aspect
ratio ý = L In the constant volume case, the semi-minor axis length B is variable. We then
combine the equation for the polymer volume V = ir(ý + I)B 3 with the dimensionless deformation

L - " -" = to eliminate B. This yields a cubic equation for the current deformition

•. Therefore at the end of each computational step we use the known constant volume V and the
new elongation L to solve for t, and then we solve for the new semi-minor axis B L . Since B is
variable, the Stokes drag over the sphere decreases as its radius B decreases - followe3 to its logical
conclusion, we would therefore decrease the dimensionless drag consta* .' as polymer extension f
increases. Yet we expect the Stokes drag over the entire surface of the ptc'mer to remain constant or
perhaps even increase at larger polymer extensions. We model this e! ,cted behavior by retaining
a constant dimensionless drag C at all polymer extensions. This drag cc,-stant C is taken to be that

of the polymer at equilibrium (• 4 eq). Therefore, C -- _ , where V is the given
constant volume.

In summary, our computation for the motion of a polymer embedded in an external flow is:

* Construct local coordinate system:

= (6)

= IVlu1-'-•.vi• r (7)

f = x. (8)

* Project polymer into fi-i plane. Determine 0 and 4p from the projection.

* Calculate rotation about i axis:

dO = (4p + 1) 2 cosI 0 + sin 2 0

-i -p ( + 1)2 + 1 (9)

* Calculate L =< zi, yi, zi > for both polymer ends (i = 1, 2) due to deformation:

dzi _ u{ 0} + (zi z0)ux R C G(")B R (10a)

di - C()B

dt f(•) NO(R) RW

di 
(10c)

dt NO( O3)
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"* Superpoe rotation and deformation to calculate new polymer position.

"* If constant volume: calculate ý, and then B, from:

aL -- I= 0, (II)
;_L3

B L. (12)

"• If constant semi-minor axis: calculate L

We embed the above polymer in the external flow of a streamwise vortex in a shear flow by specifying
initial values for the position of the two spherical ends and for ý (which in turn determines the initial
semi-minor axis), and then running the flow model. After each computational flow step, we use the
local flow velocities to calculate an updated shape, position. and orientation for the polymer.

a .

' S S

t\- .. -5:"/

Figure 1: The hybrid polymer model, regarded as an ellipsoid for calculating rotation. and as a bead-and-
spring dumbbell for calculating deformation. The first view shows dimensional lengths, the second view
shows dimensionless lengths, and the third view shows dimensionless lengths projected into the ,i-i plane.
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Figure 2: The dimensionless spring force G as a function of polymer extension f, as given by Equation 2.
Note the repulsive force when compressed from equilibrium, and the smooth tightening as the spring ap-
proaches its maximum extension.
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Figure 3: The Brenner correction factor 0 as a function of polymer extension •, as given by Equation 3.
Multiplying the Stokes drag by this factor represents shielding of the radial fluid force on one sphere due to
the presence of the other, and prevents interpenetration of the two spheres at small separations.
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3 Benchmark: Comparison to Previous Results

In this section, we validate the above methodology for polymer dynamics by comparison with

previous results. Since our model is a generalization of the model of Abernathy et al (1980) and

Keyes and Abernathy (1987), we first replicate their results with our model, then perturb the flow

slightly so as to still obtain essentially the same results, but by using some of the other logical

branches in our numerical implementation.
We first consider a polymer molecule with the original spring constant 1 from Abernathy et al

(1980) and Keyes and Abernathy (1987):

G•eq x 1 if •5 }" (13)G() •- L)2 (1 (+ t- tq)-p if t> Gq

Fixed parameters of the polym-r are a maximum extension of tw = 10, softening constant p = 0,

and shielding function 03(t) - 1. We model the polymer as having constant semi-minor axis B;

in other words, as having variable volume. We embed this polymer in a uniform shear flow which

can be described dimensionally as 1/ =<KIY, 0, 0>. This is the situation investigated by Abernathy
et al (1980). For nondeformable (C --* oo) polymers whose equilibrium shapes are ellipsoids of

various extensions teq, we generate rotation angles 0 versus time as shown in Figure 4. These curves

correspond to Figure 6 of Abernathy et al (1980). Note that the flipping frequency decreases with
increasing equilibrium extension teq. For polymers of various equilibrium shapes teq and of various
stiffnesses C, we generate the flipping periods shown in Table 1. These correspond to selected points
from Figure 8 of Abernathy et al (1980). In additional trials, we note the relative insensitivity
of polymer extension to the maximum allowable extension tw, as long as the allowable maximum
remains large compared to the actual maximum deformation which the polymer undergoes. For
polymers of equilibrium shape ,eq = 2, maximum extension Tw = 10, and of various stiffnesses
C, we generate deformations ý versus rotation angle 0 as shown in Figure 5. These correspond to
Figure 9 of Abernathy et al (1980). In all cases, agreement is excellent.

Next, we again consider a polymer molecule with constant semi-minor axis and with spring
constant given by Equation 13. Now we fix the polymer's parameters at an equilibrium extension
of •qe = 2, maximum extension ýw = 100, softening constant p = 4, and shielding function j/() as
given by Equation 3. For polymers of various stiffnesses C, we find the limit cycles of deformation
versus rotation angle as shown in Figure 6. This figure corresponds to Figure 8 of Keyes and
Abernathy (1987). Again, agreement is good. Early discrepancies in the analysis of this case
revealed a typographical error in Equation 10b of Keyes and Abernathy (1987).2

In order to test other branches of our logic, we again consider a polymer with the same fixed
parameters as above, and with stiffness C = 5, in flows slightly perturbed from that used above.
The flows we test are listed in Table 2. In all cases, the results are practically the same as obtained
above. This provides some degree of assurance that our various logical branches, used for dealing
with different flow situations, are working as intended.

Finally, we test our logic for dealing with the streamwise strain rate component of a flow by
embedding a nonresisting (C = 0) polymer in a pure streamwise rate of strain flow i; =<0.01(z +
0.005), 0, 0>. Although compressible, this flow is a simple test of our handling of the streamwise

1 This original spring constant imparts a very sharp change in tension to the polymer as it nears its maximum

extension ý = 4w, much like a rope that has been snapped to its greatest extension. This was understandably of
little concern to Keyes and Abernathy, given their modest polymer extensions in pure shear flow. Since we shall soon
see that our flow will deform polymers to a much greater degree, we have replaced this original form with the more
smoothly tightening form of Equation 2.

2 The corrected equation reads: s = • sincos4/0(i) - Cg(0)10().
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Spring Stiffness Equilibrium Exteution Maximum Extension Period
(C) (V..) (C71 .) (to flip 1800)

0.01 0 0.00001 6.2819

0.01 1 1.87 9.7366

0.01 2 4.07 14.9224

0.1 2 3.97 14.7952

1 2 2.89 11.1434

10 2 2.10 10.4803

100 0 0.000005 6.2819

100 1 1.005 7.8541

100 2 2.01 10.4721

Table 1: Maximum extensions and flipping periods for polymers of various equilibrium shapes and stiffnesses
in uniform shear flow. Other parameters are the same as for the polymers of Figure 4. Replication of selected
points from Figure 8, Abernathy et al (1980).

Flow Type Vortex Strength Local Velocity Streamwise Strain Rate

R. u

z independent 0 0.5 0

z independent 0.1 0.5 0

t independent 0.1 0.5 0 (held constant)

t independent 0.1 0.5 10-7 (held constant)

t independent 0 0.75 0

Table 2: Slightly perturbed flow conditions for the polymer (C = 5) of Figure 6. We duplicate that figure
in each of these flows, testing other branches of our logic for different flow situations. Local shear is ' = 1
in all cases.
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strain rate component of a 3-D flow. Results are in exact agreement with the analytic solution - the

length of the polymer grows exponentially in time. and linearly with the streamwise position of the

polymer center.
Although Keyes experimented with constant volume polymers, he does not report on the change

in limit cycle obtained when changing from constant semi-minor axis to constant volume. For spring

constant C = 5 in uniform shear flow, we observe the maximum polymer deformation increase

from = - 4.2 to = - 18.1. This seems an unreasonably large extension in pure shear flow.

We suspect that the actual polymer behavior is approximately constant semi-minor axis at small

deformations when polymer coils are still relatively tightly wound, and is approximately constant

volume at large deformations when all coils have been effectively opened and the polymer has

saturated with entrained fluid. It therefore seems reasonable to treat polymers which undergo only

modest deformations (•,az < 10) under the constant semi-minor axis assumption as being well-

described by that assumption, and to treat polymers which would undergo significant stretching

( > 10) under the same assumption as actually being better modeled by the constant volume

assumption. We implement this idea in our polymer simulations of the following section.

Now that we have tested and validated the polymer model, we are ready to check its predictions

in a more interesting flow.

C-0 1 3 7

Un

I .. n

_.

2

.SIT

0I

0 10 20 30 40 50 60

huE t

Figure 4: Rotation angle 6 versus time for nondeformable (C - oc) polymers of equilibrium extension

q- 1, 2, 4, 8 in uniform shear flow. Equation 13 describes the spring force, shielding function is O(C) 1,

maximum extension is Cw -= 10, and softening constant is p = 0. Replication of Figure 6, Abernathy et al

(193o).
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Figure 5: Polymer deformation • versus rotation angle 0 foa polymers of stiffness C = 0.01, 0.1, 1, 10, 100
in uniform shear flow. Equilibrium shape is C.q = 2. and other parameters are the same as for the polymers
of Figure 4. Replication of Figure 9, Abernathy et al (1980).
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Figure 6: Limit cycle of polymer deformation f versus rotation angle 4' for polymers of stiffness C 0.5,
5. 50. Equation 13 describes the spring force, shielding function 0(t) is given by Equation 3, equilibrium
shape is fq = 2, maximum extension is fw = 100, and softening constant is p = 4. Replication of Figure 8,
Keyes and Abernathy (1987).
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4 Dynamics of the Embedded Polymer
We now investigate the dynamics of the polymer of Section 2 embedded in a streamwise indepen-

dent vortical flow of a transient, streamwise independent flow and in a streamwise dependent flow,
both of which are comprised of a diffusing streamwise vortex aligned in the flow direction of a shear
flow. Our aim here is to determine whether such flow fields are capable of deforming embedded
polymers significantly more than uniform shear flows.

We first show that significant polymer deformations do not occur in vortical flows which lack
streamwise velocity gradients. We consider both streamwise independent vortical flows and stream-
wise dependent flows in which, within the numerical code, the local streamnwise strain rate " in the
vicinity of the polymer has been artificially set to zero. In both of these flows, a polymer of variable
volume (constant semi-minor axis) flips and deforms in the same manner found by Keyes (and as ver-
ified in our benchmarks, Section 3) in uniform shear, as determined by the local shear in the vicinity
of the polymer. This occurs regardless of initial location and initial orientation of the polymer, and
regardless of vortex strength. This is due to the large difference between the characteristic length
scales of the polymer and the vortex; on the length scale of the polymer, the local flow field due to
the vortex is indistinguishable from a uniform shear flow. The only effect of the vortex is to rotate
the local coordinate system within which the polymer executes its flipping motion. Peterlin (1970)
anticipated this failure of the vortex crossflow to act as anything other than a new shear on the
polymer's length scale, and tried to resolve the problem by proposing the polymers to be activated
by the crossflow shear of "microvortices", whose crossflow length scale is comparable to that of the
polymer. These microvortices would have to be nearly potential, and the polymer would have to be
very close to the vortex center, for significant polymer deformation to occur. However, the number
density of both polymers and of microvortices of the requisite size, strength, and concentration are
low enough to make the required vortex-polymer pairing too rare an event to enable this to be a
viable mechanism. We therefore conclude that significant deformations of a constant semi-minor
axis polymer do not occur in vortical flows which lack streamwise velocity gradients, regardless of
initial polymer location and orientation and regardless of the vortex strength.

We now consider a st reamwise dependent vortical flow with streamwise velocity gradients. Since
we find that. a polymer embedded :n such a flow experiences large deformations under the constant
semi-minor axis assumption, we conclude that the polymer is probably better described as being of
constant volume, as discussed at the end of the previous section. Figure 7 shows the deformation of
a constant volume polymer near an initially-potential vortex of strength R, = 6.5 as the polymer
is convected in the streamwise direction. Note that during the few flips before the streamwise
gradient. induces supercritical stretching (at streamwise positions x < 12), the maximum polymer
deformation is about. a factor of fc .r smaller than that expected in the same flow without a vortex.
This is because the edge of the vortex core quickly diffuses past the polymer, thereby flattening
the local shear near the polymer. At streamwise position x ; 12, we see that the streamwise
velocity gradient has grabbed the polymer and induced supercritical stretching. Figure 8 shows the
deformation of a constant volumne polymer near the core edge of a fully-diffused vortex (meaning near
the flow boundary) of strength R, = 6.5. Again, we see that the streamwise velocity gradient grabs
the polymer during each flip cycle and induces significant stretching, with maximum deformation
similar to that found near an initially-potential vortex. Experimentation shows that the threshold
vortex strength required to induce these large extensions is R, _ 3 near a potential vortex, or R, - 5
near the edge of a diffuse vortex. The streamwise velocity gradient grabs the polymer when it is at
favorable ý-¢o orientations; the onset of large deformations can be relatively sensitive to this initial
orientation, but polymers whose semi-major axis 4 is initially within about 250 of the 6i - i plane
achieve the required orientation within about one to three flips (Figure 9). Polymers that begin at
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orientations outside of this range perform "log rolls" about the flipping axis j, and do not experience
significant stretching (Figure 10). So for a dilute concentration of polymers with initially random
orientation located near such vortices, we can expect about 28% to be activated by the vortex. This
yields an 0(1) correction to the effective polymer concentration.

A positive streamwise velocity gradient is necessary to overcome the initial spring resistance.
Thereafter, the streamwise gradient is relatively unimportant to further stretching, and a positive
streamnwise velocity difference between the two polymer ends is sufficient for continued stretching.
This is demonstrated by the fact that once significant stretching has begun, a positive streamwise
velocity difference can continue the stretching, even if the polymer passes through a region of negative
streamwise velocity gradient. Polymers usually pass several times from regions with one sign of
streamwise gradient to regions with the other sign of streamwise gradient. This is because there
are either two or four such regions of alternating sign in the neighborhood of the vortex, and since
polymers remain on roughly a cylindrical surface as they are convected around by the croesflow and
downstream by the mean flow, therefore the crossflow naturally convects polymers around between
the regions of streamwise velocity gradient with alternating sign.

Since the rate of spring softening at larger extensions (reflected in the softening constant p of
the polymer model) was not as sharply determined as the other model constants in the original
formulation by Keyes and Abernathy, it is appropriate to determine the sensitivity of our observed
supercritical polymer stretching behavior to changes in spring softening. We find that qualitatively
similar stretching occurs for springs with softening constant p > 2.7 (Figure 11). This threshold
corresponds to a maximum spring cons# tn' of Gin,: = 0.17, occurring at extension f = 2.6. Larger
softening constants (such as Keyes and Abernathy's best fit of p = 4, which yields a maximum
spring constant of Gma. = 0.10 at 4 = 2.3) allow the positive streamwise velocity gradient to stretch
the polymer more quickly, but to approximately the same extensions. Smaller softening constants
p < 2.7 correspond to greater maximum spring constants Gm.. > 0.17, which are strong enough to
inhibit large stretching of the polymer at the streamwise strain rates typically found in our vortical
flows.

Figures 7 and 8 illustrate how large deformations (on the order of f - 50 to 60) can occur for
vortices with different initial distributions of vorticity. This is one order of magnitude larger than
the deformation obtained in laminar shear flow. Since the streamwise strain rate ' is the physical
mechanism responsible for initiating supercritical stretching of the polymers, we infer that large
polymer deformations begin most often at the edge of the vortex core, where the streamwise strain
rate 2 is a maximum. This statement holds on average, but not alwaye in individual cases, since
the onset of large polymer deformations is dependent to some degree on the initial orientation of
the polymer.

Figure 12 shows how polymers at several different initial locations in the flow can all be subject
to a large amount of deformation. Even a polymer that begins on the side of the vortex with negative
streamwise strain rate is greatly elongated as it is convected around the vortex and into a region
with positive strain rate.

Figure 13 shows how the maximum deformation of a polymer varies as a function of the vortex
Reynolds number R,. At each R, the maximum deformation shown is taken from over a variety of
initial locations and orientations of the polymer. It appears that stronger vortices generally deform
the polymers to a greater degree. Note that the polymer is inextensible past the Warner limit
tw = 100.

Constants in our adopted polymer model were fit by Keyes and Abernathy in accordance with
data that for the most part involved polymers at small deformations. A degree of uncertainty in these
parameters enters when we begin to deal with highly-deformed polymers. In fact, small changes in
the polymer model at large deformations can significantly change the maximum polymer extension.
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For example, Figure 14 shows the deformation of the polymers of Figures 7 and 8 under the change
that the flipping rate 1 is reduced by half after a polymer extension of t > 10. In both cases,
the polymer deforms to its maximum extensional limit. Thus, at these large polymer deformations,
there is a degree of model uncertainty. Indeed, as large as our current polymer deformations are,
they may be even larger with, for example, decreased flipping rate, increased spring softening, or
increased Stokes drag with polymer extension.

The large polymer extensions demonstrated above raise the issue of polymer entanglement. Our
non-bending polymer assumption seems quite reasonable for polymers undergoing stretching, but
seems improbable during contraction, especially for highly elongated polymers. Memory and bend-
ing of highly elongated polymers during contraction make it seem likely that polymers take longer
to collapse than to stretch, and that the polymer would undergo significant bending and buckling
during this time. The flipping of these bent polymers suggests the possibility of polymer entangle-
nients above some threshold concentration. In order to make a crude estimate as to this required
concentration, assume a cubic lattice of polymers aligned in the flow direction with uniform sepa-
ration S. The distances between polymer centers in the two crossflow directions are both 2B + S,
and the distance between polymer centers in the flow direction is 2 (te, + 1)B + S. Therefore the
number density of polymers is B and the volume concentration of polymers is

(2B+S)2[2(ýeq+1)B+s](• +1)B 3

(2B+S)1[2(Geq+1)B+S]. At an equilibrium extension of Geq = 2 and assuming that the polymer bends

approximately in half as it flips (S -4- -, 30B), we anticipate significant polymer entangle-
ments at volume concentrations greater than - 8 x 10-5. This agrees well with observed volume
concentrations of polymer additives required for the onset of turbulence suppression and turbulent
drag reduction. This equispaced cubic arrangement is a rather crude assumption; a more closely
packed arrangement (such as hexagonal or face-centered cubic) seems more likely. Bertschy (1979)
discusses how these other arrangements would change the above threshold volume concentration by
a factor of at most L3, an increase of only 13%. It should be noted that with the onset of polymer
entanglements at large extensions, the validity of our polymer model in this regime is again suspect.

In this section, we have presented evidence of a heretofore unnoticed mechanism for the activation
of polymers in a turbulent flow. This mechanism is the generation in vortical flows of streamwise
strain rates of sufficient strength to stretch nearby polymers to large elongations. With the resump-
tion of flipping by these highly deformed polymers, we have also demonstrated a viable mechanism
for intermolecular entanglements in dilute polymer solutions. In the next section, we infer how these
elongated polymers affect the evolving flow field.
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Figure 7: Extension of a polymer located near an initially-potential streamwise vortex with streamwise

velocity gradients. The streamwise gradient soon overcomes the maximum spring force and begins super-

critical stretching of the polymer. Relaxation of the polymer is eventually caused by rotation of the polymer

axis ý past the flow axis i. C = 5, a = 2, R1, = 6.5. R = 3000, polymer is initially located at z = -0.1,

Y = 0.5, z = 0 and oriented with its semi-major axis parallel to the f axis.

319



401

z 30.

La 020-

10-

0 . I I I I I

0 20 40 60 so 100 120
% POSMON

Figure 8: Extension of a polymer located near the core edge (flow boundary) of a fully diffused stream-

wise vortex with streamrwise gradients. The streamwise velocity gradient again induces significant polymer

stretching, with maximum deformations similar to those fouA.d near an initially-potential vortex. C = 5,

a = 2, R& = 6.5. R = 3000, polymer is initially located at z = -0.9, y = 0.5, x = 0, and is initially oriented

with its semi-major axis parallel to the # axis.
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Figure 9: Maximum deformation of the polymer of Figure 7 when started with semi-major axis in the i - i
plane and at various angles from the i axis. Large deformations occur when the polymer is within about

250 of the 1 axis.
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Figure 10: Extension of a polymer lob- -.d near an initially-potential streamwise vortex with streamwise
velocity gradients. The polymer i'q inioiaily located in the i-i plane with a 350 angle between its semi-major
axis and i. The polymer's semi-major axis becomes generally aligned with the flipping axis f and performs
"log rollsV. C = 5, a = 2, R, = 6.5, R = 3000, polymer is initially located at z = -0.1. y = 0.5, z = 0.
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Figure 11: Maximum deformation of the polymer of Figure 7 for various values of the spring softening
constant p. Large deformations occur for values greater than about 2.7.
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Figure 12: Maximum deformation of the polymer of Figure 7 for various initial spanwise locations. Large
deformations can occur for a wide range of initial spanwise locations. Even polymers that begin on the
side of the vortex with negative streamwise strain rate are expanded as they are convected into the positive
strain rate region.
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Figure 13: Maximum deformation of a polymer near vortices of various vortex Reynolds numbers. Stronger
vortices seem to induce larger maximum deformations, until the Warner limit (Cw = 100) is reached. C = 5,
a = 2. R = 3000. The maximum deformation is taken over all polymers whose initial orientations are as in
Figure 9 and whose initial locations are as in Figure 12.
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Figure 14: Deformation of the polymers of Figures - and 8 under the change that the flipping rate is halved
after the polymer is significantly stretched. Deformation ceases after the polymer is almost fully extended.
This demonstrates how small changes in the polymer model can cause significant changes in the dynamics
of highly deformed polymers.
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5 Implications for Flow Stability

The development of highly elongated polymers in a streamwise dependent vortical flow implies

an increase in the local viscosity due to increased energy dissipation in the form of a secondary flow

around the polymers. We now address several related questions in a relatively nonrigorous way.

Where does an increase in the flow viscosity occur? The development of elongated polymers

begins in regions with positive streamwise strain rate, but then stretching can continue into other

flow regions with positive streamwise velocity difference between the polymer ends, even if the

streamwise strain rate is negative.3 Therefore polymer extension is very memory-dependent, and
cannot be readily predicted from local flow quantities. We do not do so here, but since polymers
maintain a relatively constant distance from the vortex center and since stretched polymers persist
over some time, it may be reasonable to predict a maximum polymer extension at all points in the
flow from some local flow quantity, then take the maximum extension over all angles at a given
radius from the vortex center and attribute that extension to all points at the given radius. Polymer

stretching is more easily initiated when the streamwise strain rate F- is high, so it appears that
supercritical stretching of the polymers begins most readily at the edge of the vortex core, where
the streamwise strain rate is highest. Therefore it seems likely that the local increase in viscosity
occurs mainly at the edge of and within the vortex core, as the moving core edge will have swept
over and activated polymers in that region as it diffuses outward.

What is the local increase in flow viscosity due to the extended polymer? Rheological investiga-
tions on this general topic seem to fall into two classes: those in pure shear flow, and those in pure
elongational flow. In pure shear flow, Einstein (1906) and Jeffery (1922) investigated the secondary
flow around a dilute solution of rigid spheres and rigid ellipsoids, respectively, to determine the local
increase in flow viscosity. Eirich (1956) discusses the extension of these results to a concentrated
solution of rigid spheres as a function of their volume fraction. Keyes (1987) approximates the
viscosity increase due to a dilute suspension of deforming ellipsoids as the sum of rotational and de-
formational energy dissipation components. Graessley (1965) investigates a deforming entanglement
network and demonstrates shear-thinning, but makes no connection between solvent viscosity and
the zero-shear viscosity of his entangled network solution. In pure elongational flow, Peterlin (1966)
has studied dilute dumbbell and necklace models with their more numerous degrees of freedom,
and King and James (1983) have investigated similar models which are "frozen" after partial elon-
gation due to intramnolecular entanglements. Takserman-Krozer and Ziabicki (1963) have studied
the energy dissipation of dilute rigid ellipsoids. Leal and Hinch (1973) have been concerned with
dilute particles under the influence of Brownian couples in both shearing and strain rate flows. In
a much-quoted work, Batchelor (1971) investigated the additional stress generated by both a dilute
solution and by a hydrodynamically concentrated solution4 of rigid rods. Ryskin (1987) incorporated
Batchelor's results into his view of an uncoiling ("yo-yo") polymer which always has a taut central
section of some effective length. This notion appears useful in that it explains the experimental
observation that stressed polymers nearly always break in the middle. Also, Batchelor's treatment
of a hydrodynamically concentrated rigid rod solution seems in rough agreement with the more
recent tube model of De Gennes (1971) and of Doi and Edwards (1986), which views hydrodynam-
ically , oncentrated polymers as each confined to a tube with streamwise orientation. The enclosed
polymer moves (reptates) along the length of the tube on a long time scale and and moves along

3 Recall from Section 4.3 that the vortex creates a region of positive strearnwise strain rate on one side and a region
of negative streamwise strain rate on the other side. Therefore the vortex crossflow naturally convects an embedded
polymer from one region to the other.

4 A hydrodynamically concentrated solution is one in which there are significant dynamical interactions between
adjacent particles, even though the net volume concentration of solute may remain quite low.
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the short diameter of the tube, making contact with neighboring tubes, on a much shorter time
scale. The Ryskin/Batchelor viewpoint appears sufficiently consistent with this current thought on
near-neighbor interactions in a hydrodynamically concentrated solution and seems applicable to our
situation, therefore we follow their argument for the local increase in flow viscosity. As in Ryskin
(1987), we begin with an equivalent form of Batchelor's (1971) expression for the viscosity increase
due to a suspension of hydrodynamically concentrated rigid rods in a strain rate flow:

.=I + r N(B), (14)
V0 9 In

where v0 is the kinematic viscosity of the solvent, v1 is the kinematic viscosity of the solution, N is
the number density of polymers per volume, and 4 is the hydrodynamically effective volume concen-
tration based on a cycle-averaged polymer deformation. Ryskin neglects the dependence of volume
concentration $ on extension t (as we do for highly deformed polymers in our constant-polymer-
volume assumption), and argues that increases in viscosity are significant only when adjacent poly-
mers are hydrodynamically interactive. The hydrodynamically effective volume concentration of
polymers can be expressed as:

4. ,.Bf&3
0 =4Ný N, (15)

where tc, is the maximum stable elongation of the polymer before coil-stretch transition of the
polymer begins, marking the onset of supercritical stretching. The length 3. is the hydrodynami-
cally effective radius of the unstretched polymer, an expression derived by Rabin et al (1985). This
effective concentration can also be approximated using Einstein's result:

S= 2C (16)

where C is the concentration of polymers by weight and [q] is the intrinsic viscosity.5 Substituting
the effective concentration equations 15 and 16 into the viscosity equation 14 yields an expression
for the increase in viscosity:

MI 1.555C[,1 ] (nmaceffecstie 3 (I' l~ + 2.5.z \ •, (17)
vO In CF

where •maz effectve is the effective maximum elongation (in a cycle-averaged sense) of the polymer in
the flow. From our polymer model, the maximum stable elongation of a polymer of spring constant
C = 5 in a streamwise strain rate flow is roughly &, - 4. We assume that the effective maximum
elongation in a strain rate flow is half the maximum extension when flipping and entangling; this is
roughly M.-, or 60 (from Figures 7 and 8). Typical polymer concentration and intrinsic viscosity4 4values, such as in the sink flow experiment of James and Saringer (1980), yield:

C [771 ;. (0.00002 -L-) 2500 c- ) (18a)

0.05 (18b)
Vl 1.555.0.05 (§_-_)3

I+ A- .5.0 (18c)

1.8. (18d)
5 Intrinsic viscosity is defined as [7) =_- limc.. "•'2o o where 77 denotes the shear viscosity of the solvent and 771

denotes the shear viscosity of the solution.
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Thus it seems that for the deformations 4ma 60 that we observe for polymers embeddcd in a

typical strearnwise dependent vortical flow field, the local viscosity may be almost doubled.

What effect does the increase in local viscosity have on the velocity profiles? The rigorous way
to address this question would be to adapt our fluid equations of motion to account for variable

viscosity during the flow-evolution calculations. We do not pursue this because it is impractical to
fill our computational domain with polymer molecules, and because the significant memory effects
of the polymer seem to thwart attempts to characterize the local deformation of polymers (and thus
the local increase in viscosity) by using local flow quantities. Therefore our first order answer as to
the effect on the velocity profiles is to say that, since the prominent energy dissipation mechanisms
of polymers are likely to be active both as they are being significantly stretched and as they are
interacting when collapsing and buckling during the flipping cycle, therefore the viscosity will be
approximately doubled, per our above calculation, over the core of the vortex (since polymers seem
to be activated principally at the edge of the vortex core, and remain active for some period there-
after in regions over which the core edge has already swept). However, we must be a little cautious
here. If the local viscosity is doubled, then the local vortex Reynolds number R,, is halved, decreas-
ing the streamwise strain rate, thereby decreasing the deformation of embedded polymers, thereby
decreasing the local viscosity, etc. Obviously, a rigorous treatment would account for this feedback
mechanism; omitting the feedback from calculations means that our observed polymer deformations
and inferred viscosity increase can only be considered an upper bound to the true rheological effect.
As an extreme case, one could even guess that the tiniest increase in viscosity decreases the stream-
wise strain rate enough so that supercritical stretching of polymers is completely halted, meaning
that the polymer additives have practically no effect on the flow. However, this extreme suggestion
is ruled out by our earlier sensitivity analysis. Recall from Section 4 that for our typical initially-
potential vortices, nearby polymers undergo about the same magnitude of supercritical stretching
for vortices of strength from R, > 3 up to at least 6.5. Therefore concentrated vortices of strength
R= = 6.5 (among the most destabilizing vortices found in a boundary layer flow) can double the
viscosity due to polymer activation with effects that are generally undiminished by this feedback
mechanism. However, similar vortices which begin at weaker strengths, or more diffuse vortices
whose threshold strength seems to be on the order of R, - 5 (both of which are less destabilizing in
a boundary layer flow), may induce effects that are limited - to some extent not determined here -
by feedback. Therefore, it appears that in streamwise vortical flows, polymer additives can reduce
the vortex Reynolds number of at least the most destabilizing vortices by half. This significantly
reduces the inflectional profiles within the vortex core.

We now have a fairly complete chain of evidence for turbulence suppression and turbulent drag
reduction by dilute polymer additives. We are led to surmise that, in accordance with the stability
calculations of Pearson (1985) and in analogy to inviscid stability theory, the inflectional velocity
profiles at the vortex center associated with vortices of strength R,,, 6.5 are unstable. The flow
in the vicinity of a vortex experiences a local increase in viscosity due to polymer deformation.
We infer from this the local decrease in strength of the associated vortex (to R, - 3) via polymer
deformation, and thus the local decrease in strength of the associated vortex, the reduced inflectional
velocity profiles within the vortex core, and the increased stability of the flow within the region of
the vortex.

The author gratefully acknowledges the support provided by the Academic Research Directorate,
US Military Academy, and by the Army Research Laboratory for providing computing resources for
this work.
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A MASSIVELY PARALLEL ITERATIVE NUMERICAL

ALGORITHM FOR IMMISCIBLE FLOW IN

NATURALLY FRACTURED RESERVOIRS
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Abstract. We propose a new iterative numerical scheme designed for massively par-
allel processing for an immiscible displacement in a naturally fractured reservoir. The
procedure is based on a domain decomposition technique applied to a mixed finite ele-
ment approximation of the problem; the domain is decomposed into individual elements.
Numerical experiments are presented to illustrate its performance on a CM-5 system.

1 INTRODUCTION

High quality numerical simulations of fluid flow in petroleum reservoirs require the
use of increasingly finer grids in the numerical discretization of the governing system
of partial differential equations so that a large number of length scales relevant to
the problem can be incorporated into the simulations. This problem is critical when
inhomogeneities are present and their influence need to be adequately resolved.

Detailed two-dimensional studies of the effect of the inhomogeneities of a single
porosity medium have reached the limits of existing serial computers [22], [23]. For
dual porosity models, meaningful studies are infeasible on serial machines.

In this paper, a parallel iterative procedure, specially designed for massively parallel
processing, is proposed for the numerical solution of dual-porosity models for immiscible
flow in a naturally fractured reservoir. Two implementations were performed, one
completely portable, adequate for MIMD systems, and the other using a data-parallel
programing language particular to a Connection Machine Model CM-5 using SIMD
control. For fluid flow simulations with grid sizes relevant for applications we find a
good scalability of our algorithm, with a consistent slightly better performance of the
MIMD version. However, through the use of vector processing units, the SIMD code
runs faster.

The model problem treated in this paper corresponds physically to a waterflooding
of a naturally fractured petroleum reservoir where the average spacing between frac-
tures is relatively small compared to the reservoir size. With the terminology adopted
in previous works the particular model treated herein is known as the "medium block
model" [16]. The system of partial differential equations governing fluid flow in this
double porosity formulation treats the flow in each matrix block in a completely par-
allelizable fashion. The part of the system describing the flow in the fractures is then
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numerically approximated by a hybridized mixed finite element method. A domain de-
composition technique in which the domain is decomposed into individual elements is
then applied. This allows us to adapt the solution of the problem to massively parallel
processing. Domain decomposition techniques distinct from the one used here can be
found in [7], [24], [25], [19], and [18]. As our first step towards full three-dimensional
fluid flow simulations, we consider in the numerical studies described in this work two-
dimensional fractured media to which are attached three-dimensional matrix blocks.

We define a nonlinear iterative procedure and use it to solve numerically the part of
the system describing flow in the fractures which is coupled to the system of equations
for the matrix blocks through source terms. This method is motivated by the linear
problem analyzed in [17], which is closely related to the one introduced in [9] for a
Helmholz problem and extended to another Helmholz-like problem related to Maxwell's
equations [81, [10]. As in the above references, we shall make use of the hybridization of
mixed finite element methods introduced in [21] and [20] more than twenty-five years
ago and which has been carefully analyzed in [1]; see also [4], [2], and [3]. For the
numerical solution of the local problems associated with the matrix blocks, a simple
finite difference scheme [16] will be used. A rigorous proof of convergence of the iterative
procedure is currently being investigated by the authors. For the simpler problem of
two-phase flow through a single porosity medium, convergence of the iteration has been
established.

This paper is organized in the following way. In §2 a brief description of the model
considered here, along with a time discretization for it, is given. A domain decom-
position technique and the new iterative procedure defined for a mixed finite element
approximation of the system of equations in the fractures appear in §3. A detailed de-
scription of the time-dependent algorithm developed to solve the full governing system
appears in §4. Distinct parallel implementations of our numerical method in a CM-5
system are analyzed in §5. Finally, §6 is devoted to our conclusions and interesting
open problems related to this work.

2 THE MODEL PROBLEM

2.1 Governing Equations

We consider saturated, two-phase, incompressible, immiscible flow, the phases being o
(oil or nonwetting phase) and w (water or wetting phase), with densities and viscosities
p, and t,,, a = o, w, respectively. See [15] in this volume for a description of the
system of equations governing fluid flow in a single porosity model under the above
assumptions.

The governing system for the medium block model is derived through the mathe-
matical theory of homogenization [12]. It produces a two-phase, single-porosity model
for the flow in the matrix system and a second, slightly modified single-porosity system
in the fractures. To reduce the number of subscripts in the notation, we use capital
letters to indicate quantities in the fractures and small letters to indicate those in the
matrix blocks.

Let 11. denote the block attached to the point x E Q; the w-saturation in Q, will
be indicated by s(x, y, t), X E fl, y E fl,, t > 0, etc.

The capillary pressure and relative permeability functions are somewhat different
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in the fractures than in the matrix blocks. Generally, one assumes that the fractures
are essentially like spaces between two parallel planes and that Smin = 0 and Smax = 1.
The singularity in the capillary pressure curve as S decreases to Smin = 0 is weaker
than that for the capillary pressure function in the blocks, and the relative permeability
functions can be taken to be linear or nearly linear. The absolute permeability tensor
on the fracture sheet reflects the geometry of the blocks [11].

The source terms in the saturation and pressure equations in the fractures contain
two terms, one defining the external flow (wells in practice). In addition, there are
matrix source terms q%, a, a = o, w, for each of the phases. The system governing flow
in the fracture system can be written as

P as-+ .Qw = qext,w+qm,w forxEQf, t>0, (2.1a)

Qw = -Akw(S)VIw for x E Q, t > 0, (2.1b)

-t as-+ Q.o = q.xt,o+qm,o forXE Q, t>0, (2.1c)

Q, = -Ao(S)VIo for x E 0, t > 0, (2.1d)

S = P (I,@ + (po - pw)gz), (2.1e)

Incompressibility requires that qm,0 + qm,w = 0.
It is convenient to write the equations on the block Q, as

Vs -. [iw(s)V~kw] = 0 for yE Q, t> 0, (2.2a)

-V- [.(s)V¢w + Ao(S)V~c] = 0 for y E Q,, t > 0, (2.2b)

s = pC-I(OC + (po - p.)gz); (2.2c)

we have assumed that the external sources affect the fracture system only. The bound-
ary conditions for the matrix problems are given by requiring continuity of the poten-
tials:

4w (x,y,t) = 1P. (x,t) for yE 0 , x E Q, t> 0, (2.3a)

and
,0,(x,y,t) = 'c(x,t) for y E 0l, x E Q, t > 0. (2.3b)

The matrix source terms are defined as follows. The volume of the w-fluid leaving the
block Qx is

J , vw.nda(y)-= V V.vwdy=-j 4-$dy;

consequently, let

qm,w(x, t) f -as -dy forxE Q, t>0. (2.4)

We complete the model by specifying the external boundary conditions and the
initial conditions for the system. For the case of no flow across the external boundary,

AQ,(s) V 'nn=0 forxE aQ, t>0, a=o,w. (2.5)
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Initial saturations (i.e., capillary potentials) must be specified:

VI'(x, 0) = 'PinitJx) for x E 0,
0, (X,Y, 0) = Oinit,c (x, y) for y E Q.•,x E 0/

To be consistent, (2.3) and (2.5) should hold when t = 0.

2.2 Time-Discretization

Discretize the time variable by choosing t0, t1, t2,..., tN such that 0 = to < t' < t2 <
... < tN, and set At" = tn - t"-1 . An approximation to a function E related to the
fracture system at a point x E Q at time tn will be denoted by

o n ;:: O (x, t").

Approximate (2.1) implicitly by backwards Euler approximations in time to obtain
the system

S S- +V.Qn q.t,w + qm,w for x E f2, t > 0, (2.6a)
Atn

Q = -Aw(Sn)V'I'• for x E S1, t > 0, (2.6b)

_Y-_ + V. Q = qto +qm, forxEQ, t>O, (2.6c)

Qo = -Ao(Sn)V'In for x E Q, t > 0, (2.6d)

s =P- p' (,k + (Po - pw)gz), (2.6e)
The time-discretization of the equations describing the flow in the matrix blocks

will be discussed in the context of a finite difference discretization of the matrix system
in §4.

3 DOMAIN DECOMPOSITION FOR THE FRACTURE SYSTEM

Parallelization of the solution of the global fracture system problem is achieved through
a spatial decomposition, which we now describe.

Let Q C Rd, d = 2 or 3, be a bounded domain with a Lipschitz boundary t9Q. Let
{1Ij, j = 1,..., M} be a partition of Q:

fi= U#=•fQj, Q n Q,= 0, j :Ak.

Assume that a9j, j = 1,... , M, is also Lipschitz and that Qj is star-shaped. In
practice, with the exception of perhaps a few f~j's along of2, each f~j would be convex
with a piecewise-smooth boundary. Let

r= ff, rF=rFn fl , rjk =rkj= ,fnO ,k.

Let us consider decomposing (2.6) over the partition {fj~}. In addition to requiring
{Sj7}, {Qn, }, {'I,,}, a = w,o, j = 1,.. .,M, to be a solution of (2.6) for x E Q*,
j = 1,.. . , M it is necessary to impose the consistency conditions

%F1,3 = %F,•, x E r,, a = w,o, (3.1a)

Q -Vj + Qa,,,- Vk = 0, x E Ijk, a = W, o, (3.1b)

where vj is the unit outer normal to %.
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3.1 Weak Formulation

Let V1 = H(div, 11j) and WI = L2(f1j) for j = 1,...,M. The weak formulation of
(2.6) with the domain decomposed according to the discussion above is given by seeking
{S, Q~J, Qoj 0j#, E, W x V xVj x Wj x Wj=1,..., M, such that

(qDl, WI)aj - (4-5'', wi)o,
A(n L1t" + (V' QW,, W)n, (3.2a)

(q;.,,, wl)n, + (qmw, wl)n,

( nv1) l, - ('I', divvl)n, + (%,,, V, v)anj = 0, (3.2b)

(4sj7. W2)O, - (4 -1 , w2)n. .
At" + (V 0Qj,, W2)n, (3.2c)

(q.t,o, W2)ni + (q.,.,, U2)l,,

" , 'V2 - ., div V2)n, + ( -, v2" V)On, = 0, (3.2d)(Ao(Sjl) 0j , 7

(Po(S7), w 3)n, = ('Ic,j w3)O, + ((Po - pw)gzw 3 )n,, (3.2e)

where v1, V2 E Vj and w1, W2, w3 E W,. There is a technical difficulty with (3.2b) and
(3.2d); the meaning of the restriction of an L2-function on Q2k to "jk is not clear.
Thus, (3.2) is properly viewed as motivation for the treatment of the discrete case to
be discussed below.

3.2 Mixed Finite Element Approximation

We shall treat the case in which {10j} is a partition of 11 into individual elements
(simplices, rectangles, prisms), though an inspection of the procedure would indicate
that larger subdomains are permissible. Let Wh x Vh be a mixed finite element space
over {11j}; any of the usual choices is acceptable: [4], [2], [3], [6], [26], [28], [29]. Each
of these spaces is defined through local spaces Vj'h x Wjh = V(flj) x W(Slj), and setting

Vh = {v E H(div, 0):vin, E V0h},

Wh = {w: w•n, E Wý}.

In each space Wh in the various families of mixed elements referenced above, the
functions w E Wh are allowed to be discontinuous across each Fjk. As a consequence,
attempting to impose the consistency conditions (3.1) would force a flux conservation
error; i.e., (3.1b) would not be satisfied unless the approximate solution %ph E Wh, a -

w, o, to the discrete analogue of (3.1b) is constant, a totally uninteresting case. So, let us
introduce Lagrange multipliers [21], [20], [1] on the edges {r'jk}. In the discussion below
we consider the parameter a to be either o or w. Assume that, when Q',, = Qj,, Ini,
Q,.# E Vh, its normal component Q,,j- vj on rjk, is a polynomial of some fixed degree
T-r, where for simplicity we shall assume Tr independent of rjk (see [5] if not). Set

Ah = {A, : A.Irjk E Pro(rjk) AG,- , k #A.

note that there are two copies of P7 , assigned to the set Fjk: Aa,jk and A,,kj.
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The hybridized mixed finite element method is given by dropping the superscript h
and seeking

{S7"E Wj,Q~jE V,,'I',, E Wj,,~ Ank

where j = 1,...,M;k 1,...,M;a =w,o, such that

(4S 7, w l),, - ($S 7'w , )n3  +3V3a)

Atn + (V. QW,, w0in (3.3a)

= (q,,, w, W)n+ (q,,,wi)n,,

A ,,,S ), - (op , div vi)n. + E-(A, ,k, VI V)rj1 0, (3.3b)
~ n, Wfl k

Atn ' (V'JQo, 2)Oj (3.3c)

= (qnt,o, W2)nl + (q 0n,o, w2)nb,,

(Ao(s '2 - (%Yon , divv 2)n, + E (An V2 ')rk = 0, (30d)

(Pc(S7•), W3)ni = (CJ',, w3)n, + ((Po - Pw)gZ, w3)nj, (3.3e)

where v1, v2 E Vj and w1, w 2, w 3 E Wj.

3.3 The Iterative Method

In order to definp an iterative method for solving the above system [9], [8] it is conve-
nient to replace (3.3b) and (3.3d) by the Robin transmission boundary condition

- ,Q,,. v3 + ,, = )6Q,,k" vk + *a,k, x E rjk C ot9Q, a = w, o, (3.4a)

-Ql,, k ± + 4.c,k = i),,i P + ý,a,j, x E Fkj C i19k, a = w, o, (3.4b)

where 83 is a positive (normally chosen to be a constant) function on UL'jk.
Now we formulate an iterative version of the finite element approximation of (3.3)

with consistency conditions given by (3.4). Consider the Lagrange multiplier to be
Aa,jk, a = w, o as seen from Qj and Aa,kj, a = w, o as seen from Qk. Then, modify
(3.4) to read

-43 Q,,L vj + Aa,,k = /3Q,,k " k + A.,k3, x E Fjk C fftj, a = w, o,
-#3Q.,k vk + A,,kj = I3Qaj " j + Aa,,k, x E Fkj C 10tk, a = w, o,

so that

(AJ,,k, v.- vj)r,, = ( 3(Q.,j • V + Q.,k - k) + An,kj, v V)rik, Ia = w, 0.

The objective of a domain decomposition iterative method is to localize the cal-
culations to problems over smaller domains than Q. Here, it is feasible to localize to
each %j by evaluating the quantities in (3.3) related to £Zj at the new iterate level and
those in (3.3) related to neighboring subdomains Ilk such that rik # 0 at the previous
iteration level. Specifically, the algorithm would be as follows: let, for all j and k,

s-E W,Qn-1 E V, *n- El w, An-' EAjk, An-' E Akja = W,0,
34 ak a,kj
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(A0 - A= seems natural) be the solution of the discretized system of equations at
some discrete time (we introduce in the notation the superscript i which is an iteration
counter).

Then the solution propagated by one time step is given as the limit as i -+ 00 of
recursive solutions of the equations

((bsn, I w,)n, _ (psn-1, W,)n,, .,
Atn + (V • Q•,,, w00)f (3.5a)

=e(,qw, w jl)i + (qn,,, w 1)n,

{ j V1 ,v_- " div v')n, + E(0Q',i Vj, V )rk (3.5b)
u,= - / .-n,i-I) )nn j -I

\-'w.k • k + ,,w,k ,t, v rjk,
k

n,i

(¢s;, w)n,- (4s5'-, L,•)fz,
-(VQoJ, w2)n, (3.5c)

=(q;•t0 , w2)n +qm,o, w2)nj,

_Q03- (.I',", divv2 )n, + E_,3QnL. Vj, v2 .j)rjk (3.5d)Ao(•" V2 v• - , o,j ,

=- Z. ,Q,k'1 • vk + Aoo,, v" 1/j)r,&.
k

The Lagrange multipliers are updated according to

=,k = ,(Q,j vi + Q,' .Vk) + A"Z,kj (3.5e)
n.! = j3(Qn.o",% + . -,,- (3.51)

and finally the equation for the capillary pressure is linearized:

a p S J- 1) (. jn, 2 . n 'l-. W )( acS ( - S-'• ),w3) (3.5g)

= - 4i',j , W3)n, + ((Po- pw)gZ, W3)n 3 - (Pc(S.'z-),W3 )n,.

We still have to explain how the matrix source terms are incorporated into the
iterative procedure. We will postpone this discussion to §4.

We have been able to prove the following theorem concerning the convergence of
the iterative procedure defined above in the simplified context where matrix blocks are
suppressed from the model.

Theorem 3.1 (Convergence of the Iterative Procedure) Suppose that a smooth
solution of the system (2.1) exists. Then. there exists a constant t* such that, when
.At < t*,

1) the iterative scheme (3.5) converges; i.e.. there exzsts
{S7 E 1' .Q •. E IJ e. E I'A.J .e An,}
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such that

11571 -j a71lnj. + IIQ[- QfI + In,i n , 3 Il + IIAY, - Ankjjt0

as i -- o; moreover, A"k = a,,, c = w, o; and

2) the above limit converges to the smooth solution in the sense there is a constant c
such that

IIS(tn) - Snll + IIQ (tn) - Q" II + I1p (tn) _ *n11 < c(At + h),

where En(x) = On(x), for x E Qj and h represents the partition of Q.

A rigorous proof of the above statement will appear elsewhere.

4 THE COMPUTATIONAL ALGORITHM

Our numerical procedure will combine a computationally inexpensive finite difference
procedure to solve the local problems associated with each matrix block with a hy-
bridized mixed finite element method applied to the global fracture system problem.
The fracture and matrix systems cannot be handled sequentially, since a small change
in 0,Pe boundary values on each matrix block can cause flow of a volume of fluid that
IS largre in comparison to the volume of the fractures. The matrix-fracture interaction
for the medium block model can be handled implicitly by a linearization of the matrix
problims to be made precise below. The final procedure requires solution of many
small linear systems, each corresponding to an element of the discretized fracture sys-
teni and its associated matrix block. The solution of these small and uncoupled linear
systems can be handled easily bv a parallel machine.

Discretize the space variables by defining grids over Q and over each matrix block Qf.
We consider Q and Q,, x E Q, to be rectangular parallelepipeds; more general domains
can be treated by either finite difference or finite element techniques quite analogous
to the methods to be described herein. Suppose that Q = [0, D1] x [0, D 2] x [0, D 3J.
Then, divide each Dj into Nj intervals, which for simplicity we take to be of equal size
H, = D,/Nj, j = 1, 2, 3. Thus, the set

9f = {XL = (L 1H,+H 1/2, L2H 2+H 2/2, L3H3 +H 3/2) : L, = 0, 1,...,N3-1;j1= 1,2,3},

consists of the centers of the elements of the mixed method.
Again for notational convenience assume that the matrix blocks are all of the same

size and consider a grid defined on the matrix block Q,, which will be used in a finite
difference discretization of the matrix equations to be discussed below. Let h, and nj
be analogous to Hj and Nj and set

G= {y= (efhi,e2h2,f 3 h3 ): = 0, 1,2,...,nj, j=1,2,3}.

Also, let

1. ={yt =(fh,e 2h2,t hs3 )) :ji 1,2,.. .,nj - 1, j=1,2,3}
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indicate the interior nodes and o8,, = 9, \Z, the boundary nodes. (Advantage should
be taken of any symmetry of the solution on a matrix block to allow the solution to be
computed only at necessary nodes.)

An approximation to a function E related to the the fracture system at a point
XL E g9 will be denoted by 8 0- E(X,, t").

and for a function 0 associated with the block at the point XL E G1, denote the
approximation to 0 at yj E g, by

8L't 'A: 0(XL,b, t'),

where XL,t = XL - Y1 (this places a top corner of the block at XL).
The matrix equations will be completely linearized, but not the fracture equations.

The discrete matrix system is directly solvable. The four parts of the algorithm be-
low uncouple the calculations related to the matrix blocks from those of the fracture
calculation:

i) Initialization. For each L and e, set
0,= 'init,c(XL), -I = p[ (toL + (Po - P,)g Z(XL)),

41,L,1 = Oinitc(XL,), SL,e = p (' Oc,L, + (Po -- P1 )g Z(XLI)).

ii) Matrix system. For each L, t, and for n > 1, find {¢4L,t, •,uL,1} by solving

( L t )PC, n,]s-)V t = 0 if yV E 2,(4.1a)O(XL4) f €($n-I)Atn -- hhLLl"

-VhL,t" [A(sn-1)VhLe .. n + ýo(sn-l)Vh,L,.l] = 0 if yt E Ir, (4.1b)
) =nL , n- 1 and nI.L,1 = n-lP if ye E 8Cm, (4.1c)

and determine {2k4L,t, 'wn,L,t} and {1ý,L,e, k',L,t} by solving

•(XL,) �'(n-1)tn -- Vh,Ln-1 [nw(sn-)VhL,1•] = 0 if Yt E Im,(4.2a)

-Vh,L,• [•(Sn1)vh,L,tl) + Ao(sn1)Vh,L,e4)t] = 0 if Yt E I., (4.2b)

Li =-1 and PWL, = 0 if ytE e 0m, (4.2c)

and

,on

O(XL,t) p(_ n, - Vh.L, c tSn'VhL,,j = 0 if 1/i E Im

-VhLe' [A(8s)Vh.L.e44V, + Ao(S"1)Vh,L1 eItn] = 0 if Ye E Im,

C,L.t = 0 and t'UL,f = 1 if yo E 0Cm, (4.3a)
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where

V&,L,t" [),("-)Vh~t,,1] = .=I {~ ( ei2 )+ (,t+-en,

(n-1 + )n-1 - }
2 ) •/L,t --VL,t-ej ) "

These equations are linear, since the mobilities and p• are evaluated at the previous
time level. The matrix potentials ,L,t and gW,L,t are defined below in (4.7) and
(4.8); they satisfy the expected equations, namely (4.10). Equations (4.1 define a
particular solution to the linear equations, while (4) and (4.3) give solutions to the
homogeneous problems which describe unit changes in the boundary conditions.

iii) The Iterative Procedure.

a) The matrix source term. For each L and n > 1, compute

V ,, t n'I ,L,t _} %pL n-1) (jy,0 *~ - n-1) ý,n

, L,1= -P4L,+ -+ c,) c1/',L,t + -w,L w,L ) 4 L,t,

8L,t -- Pc L + (pN - P.)gZ(XL,)
~ nt n-1

0,L L St -- SL V, (4.4)qm,w,L O •l••(XL'I) Atn(4)

IQXI I

where 14 is the volume element associated with the grid point e. The quantity
qr,w,L is given implicitly in terms of the fracture potentials at the nth time level;
however, in view of (4.7) and (4.9) below, (4.4) is clearly a discretization of (2.4).

b) Fracture System. For each L and n > 1, solve the nonlinear system of equations
(3.5) using the iterative method described in §3 for Sn, QL, %FL' )n , a =W,0

n,i

by computing q.,,, employing iii) above (for simplicity, we denote the set of four
Lagrange multipliers associated to each element by A,,). The no-flow bounda y
conditions of (3.2b) and (3.2d) are imposed by considering virtual elements outside
the computational region such that

aL:F=., a = w, o, (4.5)
Qn,L~ej - O, a = WO, (4.6)

if XL±e3 is outside the reservoir.

Since physically meaningful capillary pressures are nonnegative, the capillary func-
tions should be extended vertically downward at Sma,, or Sm,,.

iv) Matrix update. For each L, t, and n > 1, let

n L ,t - +(P - c,L) ]kcL + ('WL ,-l ,) (7¢•tt q• n _ I, n n',t +p nt @- i w,• (4.8)

'/4,L4 = 'w,L,t + (*CL -- -) ,L + (" L w,L - ?,L,t,
n= pC-I (OtnE, + (p. - pw)gz(XL,t)). (4.9)
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This completes the time step.
The above algorithm can be implemented sequentially. The following discrete matrix

problem has been solved:

•(:rLt) •,~tnn-

(XL) I -p VhL, [ s-)vh,L,,I] 0 if yt E "m, (4.10a)pc(8n-l)A tn -- h, t "-

-Vh,L,t" [(s n1 )Vh,L,t1)n + Ao(sn-l)Vh,L,tec] = 0 if yit E 1,n, (4.1Ob)

=Lt =CL and 'Pw,L,t = ýw,L if Yt E O•9m. (4.1Oc)

Assuming that the wetting fluid is the denser, it should be noted that the block asso-
ciated with the fracture point XL is interpreted to lie below XL for imbibition, the case
we have treated. For drainage it should be placed above XL; otherwise, fluid is trapped
by the numerical simulation as P, tends to zero.

The numerical convergence of the iterative method just described is measured in
terms of a relative error defined in terms of the t 2 norm of variables describing the flow
as the number of iterations is successively doubled.

5 PARALLEL IMPLEMENTATIONS

We developed a serial code based on the algorithm described in the previous section
and validated it against another code developed independently (which uses finite dif-
ferences) in 116]. In order to minimize execution time we use two techniques to reduce
the number of iterations required for convergence. Different procedures are required
depending on the time step number. After two time steps have been solved, a quadratic
extrapolation in time [14], [13] reduces drastically the number of iterations required for
convergence. A different procedure has to be adopted for the two initial time steps.
We used a variant of the above method. Instead of extrapolating in time, we consider
a spatial hierarchical extrapolation. We solve the problem in a family of nested grids,
interpolate the solution according to the finite element method in use on eLzh grid, and
then we use a quadratic extrapolation as a function of the grid size. Figure 1 illustrates
this procedure. Using the hierarchical extrapolation we typically reduce by a factor of
two the execution time for the initial time steps.

We consider speedup studies through simulations of waterflooding calculations in a
"five-spot" geometry with gravity effects neglected.

For computational simplicity, the fracture calculations are two-dimensional over Q,
though the matrix calculations would remain three-dimensional over each Q.. if gravity
were not ignored. Initially, the reservoir contains 75% oil and 25% water. Water is
injected uniformly into the reservoir along one corner at a rate of one pore-volume
every five years.
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The following data are held fixed for the computational results exhibited below:

Fluid properties
Viscosity it, = .5 cP Aý = 2 cP
Density P, = 1 g/cm3 Po = .7 g/cm3

Absolute Permeabilities K = 1 darcy k = 0.05 darcy
Porosities 4ý = .01 = .1
Residual Saturations (matrix) sro = .15 srw = .2
Residual Saturations (fractures) S,0 = 0 S = 0

The capillary pressure functions were assumed in the form

PC(S) (I - S){7 (S-' - 1) + e},
pc(s) = a((s - s'.)-2 - 3(1 _ 8)-2),

So = 1 - Sro, 2 = So(So - 2,

y = 2.0 x 104 dynes/cm 2, E = 100dynes/cm 2,

= 3.0 x 103 dynes /cm 2.

The relative permeability functions in the fractures were chosen to be linear, with
the residual saturations taken to be zero:

K,.(S) = 1 - S, Kr,,,,(S) = S.

In the matrix blocks the relative permeabilities functions were taken to be

kro(S) = {1- (1 - STo)s},
kr.(s) = (1 -

2 (S -

5.1 MIMD Implementation

The MIMD version of the serial code described in the previous sections is implemented
through CMMD, a library of the CM-5 and uses SPARC microprocessors. See [27]
for additional information about a CM-5 system. A hostless programming model is
used, in which each node receives the same copy of a code. The computer code is
written in the C language and the driver of the program is written in terms of function
pointers. This allows us to assign diff,-ent functions to distinct subdomains, such
that subdomain dependent procedures (like injection of fluid in specified positions and
imposition of boundary conditions) can be handled.

The computational domain is decomposed into rectangular regions. Each of the
subdomains (which in general will contain several elements of the discretized fracture
system of equations) is assigned to a different processor. Each processor allocates mem-
ory for the elements contained in its subdomain and for a buffer zone consisting of one
layer of elements outside the subdomain. The elements contained in each rectangular
region are processed sequentially, using the algorithm described in §3 with a modifica-
tion which allows exchange of information between nearest neighbor subdomains. Once
one step of the iterative procedure is performed on each element within a rectangular
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- "

A 7

0 ,b 2h 3b A b 61u 8'h

Grid Size
Figure 1: The hierarchical extrapolation. A guess for the iterative method
is computed using an extrapolation of solutions of a given problem in coarser
grids as a function of the mesh size. Given a problem on a grid with mesh
size h the guess is computed using approximate solutions for the the same
problem on grids with sizes 2h, 4h, and 8h.
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Figure 2: The ratio of the time spent by a SUN SPARC station to finish a
simulation divided by the time spent by a partition of the CM-5 (running
the MIMD version of our code) with variable number of processors is plotted
against n, the number of elements in one direction of the grid. The physical
size of the reservoir is increased with n, keeping the mesh size fixed. For
the largest problem considered the speedup obtained is about half of the
number of processors used.

region then, through a sequence of grid shifts (right, left, up and down), data on the
boundary of subdomains is sent (received) to (from) neighboring subdomains. The
boundary conditions (4.5) and (4.6) are also set at this stage of the computation.

We addressed the problem of the speedup obtained with the CM-5 in two studies.
First, we compared execution times for simulations performed in the CM-5 with the
same simulations performed in a SUN SPARC station. In Figure 2 we plot the ratio
of the time spent by a SUN SPARC station to the time spent by different partitions of
the CM-5 as a function of the problem size (represented in the plot by the number n
of points in one direction of the grid), with mesh size kept fixed. Note in Figure 2 that
for the largest grid considered (256 x 256) the speedup obtained is about half of the
number of processors used. Next, we considered the speedup curve for simulations with
large grids. We considered the ratio of the time spent by partitions of the CM-5 with
256 and 512 processors (to perform a family of simulations with increasing physical
size) to the time spent by 128 processors as a function of the number of processors
used. The result of this study is reported in Figure 4. Note in Figure 4 that, as
the problem size is increased, the closer the speedup curve gets to the perfect (linear)
speedup.

5.2 SIMD Implementation

SIMD control in a CM-5 system is achieved through the notion of virtual processors
and implemented with data-parallel programing languages. Our code was developed
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Figure 3: The ratio of the time spent by a SUN SPARC station to finish a
simulation divided by the time spent by a partition of the CM-5 (running
the SIMD version of our code) with variable number of processors is plotted
against n, the number of elements in one direction of the grid. Fbr problems
with small grids increasing the number of processors has little effect on
execution time. For the largest problem considered the speedup obtained
is more than the number of processors used.

using the language C*. Vector processors were used to run the SIMD version of our
code.

The C* program is quite similar to serial code. We used grid communication within
C* to perform the necesssary exchange of information and the "where" statement to
set boundary conditions.

Again, we considered the problem of the speedup obtained with the CM-5 in two
studies. An study analogous to the one described in Figure 2 for the MIMD version
of our code is the content of Figure 3. Note in Figure 3 that as n is increased the
performance of the CM-5 increases. The speedup obtained for the largest problem size
considered (256 x 256) in this study is more than the number of vector processors
used. Next, we considered the speedup curve for simulations with large grids. This
study appears in Figure 4. As explained above, the ratio of the time spent by partitions
of the CM-5 with 256 and 512 processors to the time spent by 128 processors is plotted

against the number of processors used. As we noted above for the MIMD version of our
code, as the problem size is increased the closer the speedup curve gets to the perfect
(linear) speedup.

Figure 4 also allows us to compare the speedup obtained with the two parallel
implementations reported here. Although the execution times of the SIMD version are
about half of the MIMD version (due to the use of vector processing units) Figure 4
shows a better scalability of the MIMD version.

343



JIM DOUGLAS, JR., P. J. PAES LEME, FELIPE PEREIRA, Li-MING YEH

5.0-

4.0- Size: 128 x 128

3.0 - r •n imd
S -- - linear

... sirmd2.0-

.1.0-...... .................

0.0

0 I 2 3 4 5

N/128
5.0-

4.0- Size: 256 x 256

3.0- Fmmd
•,• ,,s -- linear

2.0- 
%imd

o.0

0.0- I I

0 I 2 3 4 5

N/128
5.0-

4.0- Size: 512x512

3.0- t" .°•mired
• • .°linear

e4 --- sired10-

10-

0.0 I I i
0 I 2 3 4 5

N/128

Figure 4: Speedup curves obtained with the MIMD and SIMD versions of
the new numerical scheme. As the problem size is increased both versions
display a better performance.
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6 CONCLUSIONS AND OPEN PROBLEMS

We proposed a new numerical method to solve the system of equations governing
immiscible flow in naturally fractured reservoirs in massively parallel computers. The
numerical method uses spatial decomposition in the context of an iterative procedure to
solve the global problem associated with the part of the system governing fracture flow.
By decomposing the domain into the elements of the mixed finite element method used
in the discretization of fracture equations the numerical scheme can be easily translated
into a computer code written in data-parallel languages.

The new numerical procedure was implemented first in a serial machine, and nu-
merical simulations were performed to validate the code. Then, the serial code was
restructured and implemented in a CM-5 system, both in MIMD and SIMD modes.
We found a good scalability of the two versions of the parallel code for problems with
grid sizes relevant in applications.

We established the convergence of the new numerical procedure for a simplified
version of the model discussed here, and the proof of convergence for the full system
constitutes an interesting open problem. From the numerical point of view, the new
numerical method will allow us to study multi-length scale, stochastic, double porosity
models, due to the high resolution provided by the CM-5 through the use of fine
computational grids. Obviously, full three-dimensional fluid flow simulations remain
as one of the most interesting challenges of our research area; such simulations are
currently being pursued by the authors.
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SUMMARY
The model for fluid flow in partially saturated porous media involves a nonlinear parabolic

partial differential equation for the hydraulic head pressure, i.e. Richards' equation. We focus
on problems with large derivatives of the moisture content and hydraulic conductivity functions.
Here similarities with the Stefan problem yield the successful application of the nonlinear SOR
method to Richards' equation. Implementation issues for vector and mutiprocessor computers are
also discussed.

U formulation of the Richards' equation. Then we focus on the

solution of problem (1) using a nonlinear SOR set-valued al.

Richards(1931) developed a nonlinear parabolic equation that gorithm (Cryer,1971). We will also discuss high performance
models fluid flow in porous media. Richards' equation relies computing issues.
on empirical nonlinear functions such as the moisture content,
0(h), and the hydraulic conductivity, K(h): MOISTURE FORMULATION OF RICHARDS' EQUATION

The empirical functions of e(h) and K(h) are given by van
0(h)4 - V . K(h)Vh - K(h). = 0 (in) Genuchten and Nielen(1985) in the form

where A is the hydraulic pressure head, and z is the vertical e, + (eo - 0,)Xl+ bah I")-' , A < ho (2a)

direci 49(h)= e= + (e. -e,Xl+ I n)-
The boundary and initial conditions usually have the form +s.(" - ho) , h > h (2b)

[K(k)V (h + z)].n = given for the boundary (1b) K(h) = KS(h) 1 - (I1 - S(h))-J)' , 4 < . (3.)
( K. , h > ho (3b)

h = given for t = 0 (lc)
. = --(1+ 1 c -) - , h < h (4a)h$(4)4a

S(h) 1.0aI hŽ&o (4b)

where n is a unit outward normal to the space domain.
Richards' equation coupled to a parabolic system for the con-

taminants becomes the basic model for the analysis of transport where the parter pru media, a i Chown so at
of contaminants in groundwater (Freeze and Cherry,1979;Feng, function of the particular porous media, and Ao is chosen so that

1993p).is continuous at A. Often e(h) have l are derivatives,
Traditional methods (Paniconi et al,1991) of solution of prob- and i appears to be discontinuoun in numerical calculations.

lem (1) such as Newton, Picard and Lees implicit factored Also large uncertainties are associated with functions in (2) to

schemes, seem to work well for problems without large deriva- (4) because of the unknown nature of the subsurface coil.

tives in 0(h) and K(h). But, some oscillations can develop for When the hydraulic conductivity, K, is a function of h only,

the large derivative cases. a Kirchhoff transformation

Here we will approximate the empirical functions 0(h) and
K(h) by piecewise linear functions. This approach is justified = F(h)
by the often significant uncertainties related to the computa- Jo K(h)d5
tion of 0(h) and K(h). The computation times are reduced by
avoiding the calculation of exponential terms (van Genuchten
and Nielsen,1985), and one can still use the monotonicity of is used and Richards' equation becomes

0(h) and K(h) to analyse convergence and obtain bounds for
the solutions (i.e. comparison results).

In this work we show the similarities between the enthalpy 0(F-'(v))t - V~t - K(F-Nra)), = 0 (6)
formulation of the Stefan problem and the analogous moisture

lPermasent address: Promon Engenharia, Av. Pr". Juscelino Ku- When e is viewed as the primary unknown, Eq.(6) is called

bitachek 1630. Sio Paulo, SP, 04543-900, Bruil the moisture formu~tion of Richards' equation.

")n~'~ o



This is analogous to the enthalpy formulation of the Stefan r v
problem whee e is replaced by the enthalpy and h by the tem- dl - c V
perature. In the Stefan problem the K. term would be equiva-
lent to a heat source at the phase change interface.

For the remainder of this paper we assume two space dimen-
sions, with I replacing z on the vertical direction. d2 - c v
THE FINITE DIFFERENCE METHOD

As in the Stefan problem for long time durations, the implicit d3 - c v
time discretisation is used in Eq.(6),

em+l - V - + - K(v'+'), = 0 (7)
At

V3 V2 V1  V

The FDM for the interior grid points is

-(F-I(vi,)) K(F-1 (vt,)) Figure 1. Set-valued Equation.
at + Ay(8)

where

Nonlinear SOR Algorithm.
-Ay AZ2L(vi-lI + v,+l,) for k = 1, mazit

for i=1, n.

1 forj =1, n,
+--L(Vi-1 + Vj+) + I kij (9) compute dj from Eqs.(8) or (12)

Ay 2 At solve d, - c vij E T(,,j) as in Fig.1

2 2 if v vi > 0, then
C = j + ý- (10) Vi = (1- +UV

else

,vi = (1 - V +
e+ K(- ___ )) ) (11) end if= + at (' - Ay cUi' end loop j

end loop i

awd Vi = vii from the previous time step. check for convergence

Similar equations are written for the cells at the boundaries. end SOR loop k

If there are jump discontinuities in either O(h) or K(h), In our calculations the stopping criterion consisted of requir-
Eq.(8) is a set-valued equation in the form ing the difference for calculated v between successive iterations

to be less than eh2, where h = max(Az, AV) and e ranged from

d-cv E r(v) (12) 10-3 to 10-'. Convergence was usually obtained in 10 to 30

iterations.

Here we are trying to find v so that d - c v is an element of the HIGH PERFORMANCE COMPUTING
set r(v). As depicted in Fig.1, there are three cases to consider.
For each case there is a solution, and it is unique. As in the We tried vectorization of the CRAY Y-MP computer, vector-
enthalpy formulation of the Stefan problem, this will accurately ization and multiprocessing on a two processor ALLIANT FX-
track the moisture in regions where large derivatives or jump 40, and multiprocessing on the Kendall Square Research KSR1
discontinuities are located. computer.

In general the vectorization did not work well. Here we used
NONLINEAR SOR FOR SET-VALUED SYSTEMS Red-Black ordering (White,1987), but the computations in the

inner most loops were too complicated to vectorize effectively.
The following algorithm is applied to Eq.(8) or to the set- This was observed on both the CRAY Y-MP and the ALLIANT

valued system (12), where mazri = maximum allowable SOR FX-40.
iterations, n., n. = number of cells in the z and y directions In order to use multiprocessor, a domain-decomposition tech-
respectively, 1.0 <_ Z < 2.0 is the SOR parameter which is to nique (White,1987) is applied, as illustrated in Fig.2. We or-
be applied to either the unsaturated or the saturated cells, and dered the even blocks first and then the odd blocks. The non-
0.8 < w < 0.9 is used to dampen numerical oscillations, linear SOR algrithm is then executed in parallel as follows.



Noalin. SOR Algorithm: Domain.Decompomtion. RESULTS AND DISCUSSION

for h M 1, ,s To validate the numerical model we present the results for

concurrently do nonlinear SOR over the even blocks three numetical experiments. For the first two, analytical so.

update lutions are available, and for the third one a comparison with

concurrently do nonlinear SOR over the odd blocks expermeantal data is done.

update For all computations presented here we used piecewise la-

check for convergence ear approximations of the empirical functions (2).(4) for the
end SOR loop k moisture content, e(h), and hydraulic conductivity, K(h), as

shown in Fig.3. These approximations allow the test of the

The KSRI computer has three parallel constructs that can method under most strict conditions due to the discontinuity

be used in FORTRAN code: tide., parallel sections and parallel of the derivatives with respect to the pressure head. In fact it

regions. Tiles are used to partition loops and are very effective will also represent savings on CPU time by avoiding the quite

for simple cases such as matrix multiplications. Parallel sections involved calculations required in Eqs.(2) to (4).

can be used to concurrently execute different code segments. We The nrst and second examples are in one space dimension

used parallel regions, in which code segments are duplicated to and have the boundary and initial conditions in the form

allow concurrent computations. In our implementation we used
tean. of processors that are assigned in the initial part of the h(y,t) = e, - 1 at 1 = 0, (13a)
program due to the high overhead.

Table I shows a comparison of the CPU time on the KSR1 (e- ` at 1, (13b)
computer of the North Carolina Supercomputing Center for the h(pt) = a ( ) =
computation of the first time step of Example 3 presented in the
next section. Here N = n. = n, is the number of grid cells in h(y,t) = a (e-v - I) for t = 0. (13c)
each direction, L is the number of large blocks (L=4 in Fig.2),SL v ,%,jMt4 o'- is the speedup, and EL, •' is the

SL = CPU"maL bloc-s i The analytical solutiors for particular choices of a and the
efficiency. parameters in Fig.3, ha- he form

Table I. Speedup for Domain-Decomposition SOR on KSR1

N L time (s) SL EL a(et-9- 1) , t<_ (14b)

80 1 8.74 1.00 1.00
80 2 5.57 1.57 0.79
80 4 3.02 2.89 0.72 Example 1. This example correspond to a situation ia whi
to 8 2.22 3.94 0.49 there is no water supply from the top of the domain and there is
160 1 49.49 1.00 1.00 an infiltration from the bottom, as from a groundwater smrce.
160 2 27.75 1.78 0.89 The parameters used in the piecewise linear approximation
160 4 14.41 3.43 0.86 of 1(h) and K(h), as shown in Fig.3, were a, = 1, 01 = 0,
160 8 8.73 5.67 0.71 a 2 = 2, 02 = 1, cl = 0, kh = 1, c2 = 0 and k3 = 2. It is

considered also a = 0 in Eqs.(13).

We observed a declining efficiency, EL, with an increasing In the numerical experiments we used 20 and 40 grid cells,

number of large blocks, L. This is consistent with Amdahl's law and At = Ay. Convergence was uniformly rapid and the inter-

(Ortega,1988). A second important observation is the increase face was always located to within one grid cell (i.e. in all runs we

in efficiency with the increase on the number of grid cells, N. were able to keep track of the saturated/unsaturated interface

This fact is explained by the relatively smaller ratio of amount very accurately).

of parallel overhead to the amount of concurrent computations. Some oscillations were noted near the interface, which is Sim-

These results were also observed for other computations and ilar to what happens with the enthalpy method for the Stefan

indicates that the KSRI computer can be used efficiently for problem. In fact the problem at hand can be viewed as a one

larger problems. phase Stefan problem with a source at the interface.

8(h) K(h)

P1 P3 P5 P 7  a 2 h
C2 h

02 k

42 P 6  G0h cl h

-_ - I I h h

Figure 2. Domain-Decomposition. Figure 3. Piecewise Linear Approximation of 0(h) and K(h).
"2



Example 2. This example cocreponds to a situation in which
there is a water supply from both the top and the bottom of the

domain. III
The parameters used in the piecewise linear approximation

of 0(k) and K(h) were a, = 1, C = 0, a2 = 1, 03 = 1, ce =0,
1= , c. and k= 2. It is consideredalso a in 0.4

Eqs.(13). ,
Similar performance to Example I was observed. 1

Example 3. The repacked Brindabella silty loam has data 0 0

corresponding to Eqs.(2) to (4) as given by Feng(1993): K. 0

0.118 m/h, 0, = 0.110, 0. = 0.485, a = 2.857, n = 1.8, is = 0, 7 A
and ho = 0.

The flux at the top boundary was taken as 0.0165 m/h, while • 0.2
the other boundary segments had zero flux. The initial condition
was -8.0 m, and the region was 0.3 m x 0.3 m. We attempted 0
to reproduce the data given by White and Broadbridge(1988); t experimental
therefore, we focused on the portion of 19(h) and K(h) such

that 0 < 0.425. Here we used a coarse approximation of the 0 1 hour
empirical functions 0(h) and K(h) adopting a, = 0.021, 01 = A 2.25 hours
0.275, a2 = 0.1,, 02 = 0.425, k2 = 0.0165, c, = 0.0, C2 = 0.0, and 0 0 5 hours
k, = 0,00001. The results are given in Fig.4. I

The nonlinear SOR algorithm converged with no difficulties

until saturation was reached. The differences in the data and 0 1 00 200 300
the computed values are attributed to the crude approximation
of the hydraulic conductivity function. Depth (mm)

For more complicated hydraulic conductivity functions, one

should not use the Kirchhoff transformation, Eq.(5). There are
two reasons for this; First, the solution of the SOR step in Eq.(8) Figure 4. Moisture Content of a Silty Loam.

or (12) becomes more complicated. Second, in most porous me-

dia the hvi. ialic conductivity is also space dependent, in which
case the Kir,-,hoff transformation does not simplify the diffusion

part of Richards' equation.

CONCLUSIONS

The nonlinear SOR algorithm was coupled with the mois- Feng,J.,Modeing of Chemical Transporfrom Agricultu,.! Wast

ture formulation to approximate the solution of R'-hards' equa- Lagoons,Ph.D. Dissertation,North Carolina State University,

tion. Here special attention was given to problenm with large USA,1993.

derivatives of the moisture content and hydraulic coi.uctivity • Freeze,R.A. and Cherry,J.A.,Groundwater, Prentice Hall Inc,

functions. The nonlinear SOR algorithm converged rapid]y for Englewood Cliffs,N.J.,1979.
partially saturated regions. Moreover. it did adapt very well to
multiprocessing, but not so Aei' to vect,:.zatiof. . Ortega,J.M.,lntroduction to Parallel and VectorSolution ofLin-

Although the calculations in this paper were for one and ear SystemsPlenum Press,New York,1988.

two space variables and for homogeneous poroms media. there Paniconi,C., Aldama,A.A. and Wood,E.F., "Numerical Evalua-

should be little problem in generalizing the method to three tion of Iterative and Noniterative Methods for the Solution of the

space variables and to inhomogeneous media with an assortment Nonlinear Richards Equation", Water Resources Research,Vol.27

of nonlinear terms. No6,pp.1147-1163,1991.
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ABSTRACT

This paper describes an SOR algorithm for solving the nonlinear algebraic system which

evolves from Richards' equation that models fluid flow in a porous media. The moisture

content and hydraulic conductivity functions are approximated by piecewise linear

functions obtained from field data. The resulting algebraic system is solved by a variation

of the nonlinear SOR algorithm. The advantage of this approach is that it avoids some of

the numerical oscillations associated with large derivatives in the data. Numerical

calculations are presented and illustrate the following: (i) agreement of the numerical

model with observed data, (ii) dependence and comparison results as a function of

uncertain data, and (iii) suitability of these algorithms for multiprocessing computations

via domain decomposition methods. Extension of these algorithms to heterogeneous

porous media fluid flow are discussed.

SThc calculations were done at the North Carolina Supercomputing Center.
2Supported b,.% CNPq and Promon Engenharia from Brazil.
1Supported by U. S. ARO contract number DAAL03-90-G-0 126.
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I. INTRODUCTION

The study of fluid flow in porous media has several important applications in

engineering (Kaviany 1991 and Nield and Bejan 1992). Specific examples are: filters for

industrial use, or separators in aerospace fuels (Kaviany 1991), use of geothermal energy

(Rae et al. 1983 and Kimura 1989, 1989a), oil recovery (Bear 1972); groundwater

(Mark 1992, 1993 and Clothier et al. 1981) and agriculture (Feng 1993).

Industrial chemical or radioactive effluents are sometimes deposited at the surface

or in drums that are buried underground. In both normal operations and in accidental

conditions, it is required to give an analysis of the transport of the contaminants through

the soil (Muralidhar 1990, 1993). The first step in this analysis is the mathematical

simulation of fluid flow through the soil.

Richards (1931) developed an equation that is a combination of the continuity

equation and Darcy's law (Philip 1969), and it models fluid flow in a porous medium. It is

a nonlinear parabolic partial differential equation which contains the empirical functions

for moisture content 0(h) and hydraulc conductivity K(h).

O(h), - V. K(h)Vh - K(h), = 0 in fx(0,T) (1a)

where h is the hydraulic pressure head, z is the vertical direction and 0 is the space

domain The boundary condition of the third kind has the form

IK(h)V(h - z)I-n = given inSx(O,T) (Ib)

where n is the unit outward normal to Q and S is the boundary of f. The initial condition

is

h = given fort = 0 in f2. (Ic)
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In general the equations (la-Ic) are coupled with a parabolic system of equations for the

transport of a number of contaminants through the soil (Freeze and Cherry 1979 and Feng

1993). This is done by using the fluid velocity v = K(h)V(h + z) which is computed from

the above system.

In practice the empirical functions for moisture content and hydraulic conductivity

have several troublesome properties. First, they can have large derivatives, and this is

often the case for hydraulic conductivity. Second, they are not precisely known. Third,

they can have strong space dependence with jump discontinuities resulting from

heterogeneous porous media. The objective of this paper is to give an approach to these

problems which is based on methods used for the Stefan problem (Silva Neto and White

1993). Particular attention will be given to the first problem where there is no space

dependence. In the case of space dependent empirical functions, one can use additional

nodes and the continuity condition on the fluid velocity (White et al. 1993) to generalize

the methods of this paper.

Traditional methods for the solution of (la-ic) use an approximation of the

empirical data by expone,'ial functions (van Genuchten and Nielsen 1985). Then

numerical methods such as Newton, Picard, or Lees implicit factored method can be used

for problems without large derivatives (Paniconi et al. 1991). In addition to addressing

the above problems, the approach of this paper does not involve expensive function

evaluations and does eliminate the numerical oscillations associated with large derivatives

of the empirical functions.

In section two we present the general approach to the problem which is adapted

from the Stefan problem. Here the empirical functions are approximated by piecewise

linear functions which reflect the field data (White and Broadbridge 1988). The partial

differential equation is discretized by the finite difference method, and the resulting

nonlinear system is solved by a nonlinear SOR algorithm (Cryer 1971) whk scribed

in section three.
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Numerical experiments are presented in sections four, five and six, and these

experiments were chosen to demonstrate the feasibility of realistic two dimensional

simulation of porous flows. Later, we indicate how one can extend these methods to three

dimensional and heterogeneous porous flows. We show agreement of the numerical

model with the field data from Brindabella silty loam soil. Also, we show how one can

develop comparison results which deal with the uncertain empirical data. High

performance computing issues are described. Here we demonstrate that the algorithm in

section three does not vectorize well, but it does work well for multiprocessors when

domain decomposition methods are used. Finally, we state our conclusions and related

work.

2. DISCRETE VERSION OF RICHARDS' EQUATION

In this section we state the finite difference discretization of Richards' equation and

make some comparisons with the Stefan problem. If in equation (1a) the last term is

eliminated, and h were to represent temperature with K now denoting the thermal

conductivity and 0 the enthalpy, then this would be the enthalpy formulation of the Stefan

problem (White 1985) In the Stei'- problem the K and 0 have jump discontinuities at the

phase change temperature. SOR methods cL effectively used provided the

overrelaxation is not applied during a cell's phase change

In Richards' equation we will approximate K and 0 by piecewise linear functions

which could be viewed as a number of "linear phases" associated with the nonlinear flow.

As in the Stefan problem we will apply the SOR method provided the cell is not changing

"linear phase." Table I gives some data for Brindabella loam which was extrapolated

from the graphs in White and Broadbridge (1988). Note, both 0(h) and K(h) are

monotone, and K(h) has large derivatives.
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Table 1: Brindabella Data

h O(h) K(h)
Iml lfractiofl Imfrl
-8.0 0.11 0.0
-1.2 0.27 0.000 118
-0.8 0.30 0.000 327
-0.7 0.31 0.000457
-0.6 0.32 0.000 664
-0.5 0.33 0.001 138
-0.4 0.34 0.001 693
-0.3 0.36 0.002 326
-0.2 0.38 0.004 568
-0.1 0.42 0.011 117
-0.0 0.485 0.118000

In Silva Neto and White (1993) two "linear phases" were used and were coupled

with the Kirchhoff change of dependent variable. Although this was a crude

approximation of the data, it did track the wet-dry interface where a rapid transition from

unsaturated to saturated regions occurs. In cases where either the transition is not rapid

or there is space dependence of the data, the Kirchhoff transformation is not applicable.

In the following we use an implicit time discretization of Richards' equation.

-(h) - O(h) (K(h)h,)., - (K(h)h,), - K(h), = 0 (2)
At

where h is known from the previous time step. Here we are in two space dimensions, and

y is the vertical direction.

Next we discretize the space variable by the finite difference method. In the

calculations that we later discuss, we consider a two dimension flow with zero flow

through the sides and bottom, and nonzero flow through the top. The finite difference

grid is illustrated in Figure 1 where the nine types of boundary cells are indicated. Here

there are N = 3 cells in each direction and N2 = 9 unknowns.
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(K(h)Iiy + K(h)) =R

- K(h)h x= 0 interior K(h)h x= 0
cell

-(K(h)h y+ K(h))=O

Figure 1: Finite Difference Grid

Let (ij) denote the location in the finite difference grid. Then the general form of

the finite difference equation at this location is

d ~j - ch,., = F(h,., ) 1 _ i 5 n. and I < jn,. (3)

If(ij) is an interior node, then

( K,+, _K 11.j I + (K,. -1 2 + h, .2)
A y2

+ (Ki, 112. j K,,. ,-K 112 1 , ,,_
A . y

Ay

358



In the above equation we used the convention that K,.,2,.,, is the average of the

hydraulic conductivity at the appropriate surrounding nodes. We also will assume that the

surrounding nodes are evaluated at a "previous iteration" value. Thus equation (3) is a

piecewise linear system as illustrated in Figure 2. Both the piecewise linear approximation

of the moisture content and hydraulic conductivity functions are monotone, and so, F

must also be monotone nondecreasing. Since the term on the left side of equation (3) has

negative slope, equation (3) has a solution, and it is unique. In Figure 2 the data is

depicted as being continuous, but this need not be the case. Even if F(h) has a jump and

remains nondecreasing, one can still solve for a unique h (Silva Neto and White 1993).

r. (h)

d - ch

solution h

Figure 2: Solution of Equation (3)

3. NONLINEAR SOR ALGORITHM

The following algorithm has evolved from the work by Cryer (1971) for set valued

systems of equations that may come from models of the Stefan problem. We apply a

variation to the system given in (3). The following variables are used:

maxit = number of allowable SOR iterations per time step,

n,, n, = number of cells in the x and y direction,

(t, o- overrelaxation (larger than 1.0) and underrelaxation (less than 1.0).
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Nonlinear SOR Algorithm

for k lmaxit

for i = l,n ,

forj = l,n,

compute c,., and d,., as given in (3)

solve for h in (3) as given in Figure 2

if h and h,., are in the same linear phase, then

h,, =0( - -@)hij + jih

else

h,.2 = (1 - w)hj + w h

endif

end loop j

end loop i

test for convergence

end loop k.

In the computation of the c and d values one must consider the nine types of cells

as indicated in Figure 1 For more complicated geometric configurations and for

heterogeneous porous media, this will be more complicated. If adjacent cells have

different moisture content and hydraulic conductivity data, then one must insert additional

nodes between the cells and demand continuity of the flow velocity at the interface (White

et al. 1993).

In the solve step one must determine which linear phase the solution is in, and this

is done by partitioning the vertical axis as indicated in Figure 2 by the dotted lines that are

parallel to the line given by d - ch. Hence, the solve step has a loop in it which was not

indicated above. This hidden loop contains the nonlinear nature of the solve step.
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Moreover, if there is a large number of linear phases, then the solve step will become more

expensive to compute.

The overrelaxation is used to reduce the number of outer iterations, and the

optimal choice will vary with the number of unknowns. The underrelaxation is used to

avoid numerical oscillations, and this works well for choices between 0.8 and 0.9. The

numerical oscillations are a result of passing from one linear phase to the next linear phase.

This deals with the large derivatives of the data by breaking the changes in slopes into a

number of smaller changes in slope. We found this to be much more effective than the

traditional method of reducing the time step.

We experimented with a number of convergence tests. Finally, we imposed two

conditions:

(i) maxi new h - old h l:e -, and

(ii) JJ I new o- old 01-s

The first condition is aimed at possible convergence of the pressure at each node. The

second condition reflects possible convergence of the total moisture, and it is more of a

global test than the first condition.

4. COMPUTATIONS FOR BRINDABELLA LOAM

The purpose of these computations is to see if our model of Richards' equation will

accurately track the movement of moisture through Brindabella loam. We compare our

calculations with the observations in White and Broadbridge (1988). In our numerical

model we considered a 0.3[m] x 0.3[m] region with boundary conditions as indicated in

Figure 1. In the top boundary we used R = 0.0165[mn/hr], and the initial pressure was set

as h = -8.0[m]. The moisture content function was a linear interpolation of the data in

Table 1. The hydraulic conductivity data indicates a very increasing and concave up

function, consequently, linear interpolation of the data would generate large errors. In the
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calculations presented in Figure 3a we used a linear interpolation of the modified data for

hydraulic conductivity in Table I; we reduced the interior values by 50 percent and kept

the two end values at 0.0 and 0.118.

In our computations we set the following parameters at

At = 0. 125[hr] Ax = 0.015[m]

N = 20[cells in each dir.] R = 0.0165[m/hr]

0) 0.9 w = 1.4

61 10-4 62 = 10-8

Convergence was usually attaineu in 20-40 iterations. If no underrelaxation was used,

then numerical oscillations would occur about once every 20 time steps.

During the initial times, the hydraulic conductivity is small, and Richards' equation

is dominated by wave like properties. As time progresses the hydraulic conductivity

increases so that Richards' equation is dominated by diffusion. At time 6.0[hr] the steady

state solution has essentially been reached. At the bottom (y = 300[mm]) the porous

media is at saturation (0 =0.485). At the top (y=0[mm]) the porous media has pressure

such that K(h) = R (0(h) =0.426). At this time the diffusion force is equal to the

gravitational force; hence, no more moisture can enter the porous media.
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Figure 3a: Computed Moisture for Variable Times

The observed moistures are indicated by discrete points in Figure 3b. These were

for the times of 1.0 (diamonds), 2.25 (triangles) and 5.0 hours (squares). The computed

values give good agreement with the observed values. The computed moisture content

curves are somewhat more smoothed than the observed moisture content data. This may

be attributed to large hydraulic conductivity data; if one reduces the hydraulic

conductivity for smaller pressures, then a sharp front can be calculated to match the

observed moisture content data.
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Figure 3b: Observed Moisture Data for Variable Times

5. COMPUTATIONS WITH UNCERTAIN DATA

This section contains an analysis of the moisture as a function of the empirical

data of the moisture content and hydraulic conductivity functions. In practice much of this

data is not precisely known, and therefore, the effects upon the computations from any

model will have some uncertain aspects. In -ur numerical experiments we decreased K

and the computed moisture at the LOP increased. We also increased 0 and the computed

moisture at the top increased. In the computations indicated in Figure 4, for time equal to

1.25[hr], we decreased K and increased 0, and the largest computed moisture content at

the top was the result. Here we kept the data at the end points o Table I fixed and varied

the interior data by increments of 20 percent. In all computations the computed moisture

c'¢-tent at the top increased while the computed moisture content at the bottom

decreased. This happens because the sides and bottom do not permit flow through them,

and the total moisture must remain constant.
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Figure 4: Moisture and Variable Data

In order to gain some insi on this, it is instructive to eaumine the finite

difference equation at the top region. In the case of the top center nodes, d has the form

d= 2 R = K(hY, ) + T where d has form similar to that given in (3).

Ay Ay

Figure 5 shows that if r increases, then the solution of (3) will decrease. Also, if d

decreases, then the solution of (3) will decrease. Therefore, if both r increases and d

decreases, then the solution of(3) will decrease. If K decreases, then d will increase and

r will decrease. However, if both K decreases, and 0 increases enough, then r will

increase. For our choices of At and Ay this is the case. Of course, this is just an analysis

at one grid point, and the argument requires much more careful discussion.
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6. COMPUTATIONS USING MULTIPROCESSORS

In the computations reported in this section we tried to implement the above

algorithm on a single CPU with vectorization on a Cray Y-MP, the Alliant FX-40 with

two vectorized CPUs, and the Kendall Square Research KSRI with up to 16 CPUs and no

vectorization. In the calculations in Silva Neto and White (1993) the vectorization

methods did not seem to work well. These attempts involved reordering the nodes by the

red-black order (checker board order). This method also did not work well for our

current problem. The reason for this is that the inner most loop has computations which

are too complicated to effectively be done on a vector pipeiine.

The multiprocessing approach with domain decomposition reordering (White

1987, or Ortega 1988) was much more promising. This reordering is depicted in Figure 5

where L = 4 (the number of larger blocks of nodes) and the classical order of the blocks of

grid points is

The domain decomposition order lists all the smaller interior boundarý blocks first (even

number blocks in Figure 6) and is
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The idea behind this reordering is to take advantage of the 5-point finite difference pattern.

Once the calculations in the even blocks have been done, then the calculations in the large

odd blocks are independent of one another.

P12 P4  "6

P1  P3  P 5  P7

Figure 6: Domain Decomposition Order

Nonlinear SOR Agonrithm: Domain Decomosition

for k= ,maxit

concurrently do SOR over the even blocks

update

concurrently do SOR over the odd blocks

test for convergence

end loop k.

In our calculations we used the Kendall Square Research multiprocessing

computer, KSRI, which is operated by the North Carolina Supercomputing Center. The

KSRI multiprocessing computer has three parallel constructs that can be used in

FORTRAN code: tile, parallel section and parallel region. Tile is used to partition loops

and is very effective for simple computations such as matrix multiplications. Parallel

section can be used to concurrently execute different code segments. We used parallel

region which duplicates a code segment and uses different data streams. In our
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computations we controlled the number of processors by using a team oqfprocessors that

are assigned at the beginning of the code and are used to reduce parallel overhead

Table 2 shows the speedup and efficiency for a variety of L (the number of large

blocks) and N (the number of cells in each direction). These quantities are defined as

follows*

SL = (CPU time using one block)/(CPU time using L large blocks) and

EL = SL/L.

In the first four rows N varies and L is fixed. We see increased speedup and efficiency as

N increases. This is a result of decreased parallel overhead. In the last four rows N is

fixed, and L is increased. Here the speedup increases, but the efficiency decreases. Of

course, if there are many larger blocks (L) and the number of cells in each direction (N)

remains the same, then the relative size of the larger block to the smaller block decreases.

This partially accounts for the decreased efficiency. These calculations did not attempt to

make the most efficient use of the FORTRAN language, or the most efficient use of the

KSRI computer's architecture.

Table 2: Speedup and Efficiency

N L SI, El,

20 2 1.56 0.78

40 2 1.68 0.84

80 2 1.75 0.88

160 2 1.7h 0.89

160 4 3.10 0.79

160 8 5.09 O.64

160 16 7.29 0.46
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7. CONCLUSIONS

Richards' equation was approximated by the finite difference method, and the

empirical data for the moisture content and the hydraulic conductivity were approximated

by piecewise linear functions. The resulting nonlinear algebraic system was solved by a

variation of the nonlinear SOR iterative method. Good convergence properties were

observed for three types of calculations which were chosen to demonstrate the feasibility

of realistic numerical simulations using this method. These included an accurate

simulation of fluid flow in Brindabella loam, a sensitivity analysis of the computed solution

upon the empirical data, and the use of multiprocesing computers via domain

decomposition methods.

In the above calculations the empirical data did not have a space dependence.

However, in White et al. (1993) we illustrated for a steady state and one space dimension

version of Richards' equation that the compact volume method, in place of the finite

difference method, could be effectively used for such heterogeneous problems. The

compact volume method can be viewed as an enhanced finite difference method where

additional nodes are inserted at the cell interface and additional equations are generated by

requiring continuity of the fluid velocity at these interfaces. This may be done for all cell

interfaces or for just those cells where the empirical functions change with respect to the

space variable. We expect the methods of this paper to generalize via the compact volume

method to the more complicated heterogeneous case.
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Abstract
It is well known that Kolmogorov equation is a fundamental equation in Applied

Science, especially in Electrical Engineering. Our original motivation is to solve the
Duncan-Mortensen-Zakai equation in nonlinear filtering theory. If the observation h(z)
is a constant in Duncan-Mortensen-Zakai (DMZ) equation, then it becomes the famous
Kolmogorov equation. If we treat h(x) as a function again, then the resulting equation is
called generalized Kolmogorov equation. In this paper, we write down the formal solution
of this generalized Kolmogorov equation in a closed form. We shall report the convergent
solution in the subsequent paper.

§ 1. Introduction
In the sixties and early seventies, the basic approach to non-linear filtering theory

was via "innmations methods", originally proposed by Kailath in 1967 and subsequently
rigorously developed by Fujisaki, Kallianpur and Kumita ([F-K-KI 1972) in their seminal
paper. As pointed out by Mitter, the difficulty with this approach is that the innovations
process is not, in general, explicitly computable (except in the well-known Kalman-Bucy
case). The idea of using estimation algebras to construct finite dimensional nonlinear
filters was first proposed in the early eighties by Brockett and Clark [Br - Cl], Brockett
[Br] and Mitter [Mil. The motivation came from the Wei-Norman approach [We - No] of
using Lie algebraic ideas to solve time variant linear differential equations. The extension
of Wei-Norman's approach to the non-linear filtering problem is much more complicated.
Instead of an ordinary differential equation, we have to solve the Duncan-Mortensen-Zakai
(DMZ) equation, which is a stochastic partial differential equation. By working on the
robust form of the DMZ equation we can reduce the complexity of the problem to that
of solving a time variant partial differential equation. Wong in [Wol] constructed some

new finite dimensional estimation algebras and the Wei-Norman approach to synthesize
finite dimensional filters. However, the systems considered in [Wol] are very specific and
the question whether the Wei-Norman approach works for a general system with finite
dimensional estimation algebra remains open.

• Research supported by Army Grant DAAH-04-93G-0006

373



Recently, Tum, Woag and the second author [T-W-YJ have examined the properties
Of finite dimemianal estimation algebras and the Weo-Norman approach in detail. There a
clas Of filterig systems having the property that the drift term, f,.f the state evolutio
equation is a gradient vector field was considered. In [Wo2], the concept of fl is introduced,
which is defined as the n x n matrix whose (ij)-entry is J.- '. In view of Poincare
lemma, f is a gradient vector field if and only if fl = 0. More recently, the second named
author [YaJ considered a more general class of filtering systems having the property that

S- are constant for all ij i.e. f is a skew constant matrix. These include Kalman-
Bucy filtering systems and Bene's filtering systems as special cases and finite dimensional
filters were constructed explicitly. From Lie algebraic point of view, Chen, Chiou, Leung
and the second named author [Ch - Ya] [C - L - Y] have shown that these are most
general finite dimensional filters at least for dimension of state space less than four. In
many senses, the Lie algebraic viewpoint has been remarkably successful and the recent
work has given us a deeper understanding of the DMZ equation which was essentail for
progress in non-linear filtering, as well as in stochastic control.

However, we should notice that the Wei-Norman approach only reduces the DMZ
equation to a finite system of ordinary differential equations and the following generalized
Kolmogorov equation

(1.0) 2!1(t, X) = I!j 1 - jx) - K() + Zfi(x) + h ( Ju(t, Z)

u(0,Z) = O0

It is the purpose of this paper to give a closed form formal solution of the above equation.

§ 2. Basic concepts
The filtering problem considered here is based on the following signal observation

model:

(2.0) f dx(t) = f(x(t))dt + g(x(t))dv(t) x(O) = xo,
I dy(t) = h(x(t))dt + dw(t) Y(O) = 0,

in which x, v, y, and w, are respectively, R", RP, R' and R' valued processes, and v and
w have components which are independent, standard Brownian processes. We further
assume that n = p; f, h are C' smooth, and that g is an orthogonal matrix. We will refer
to X(t) as the state of the system at time t and to y(t) as the observation at time t.

Let p(t, x) denotes the conditional probability density of the state given the observa-
tion y(s) :0 < s < t. It is well known (see [Da - Ma] for example) that p(t, x) is given
by normalizing a function, a(t, x), which satisfies the following Duncan-Mortensen-Zakai
equation:

m

(2.1) da(t,z) = Loa(t,z)dt + ZLia(t,x)dyi(t), a(0,z) = 00,
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En 83 n b__En2fwhere Lo0 = , - E , - - -1 E',= h? and for: = 1,...,m, L,is
the zero degree differential operator of multiplication by hi. Co is the probability density
of the initial point, zo.

Equation (2.1) is a stochastic partial differential equation. In real applications, we are
interested in constructing robust state estimators from observed sample paths with some
property of robustness. Davis in [Da] studied this problem and proposed some robust
algorithms. In our case, his basic idea reduces to defining a new unnormalized density

m

u(t, r) = ex( Eh 3(s)yj(t))c(t, x)
i=1

It is easy to show that u(t, x) satisfies the following time varying partial differential equation
(2.2)

1um 1m
- (t, x) = Lou(t, X) + E y,(t)[Lo, L,]u(t, X) + - E y,(t)yj(t)[[Lo, Li], Lj]u(t, x),

i=1 2,j='

u(O,. ) = o,0

where [., .] is the Lie bracket defined as:

Definition : If X and Y are differential operators, the Lie bracket of X and Y, [X, Y],
is defined by

[X, Y] = X(YO)- Y(X0)

for any C' function •.

In §3, we shall write down the formal solution of (2.2) explicitly in closed form.

§ 3. Formal solution to generalized Kolmogorov equation

The purpose of this section is to write down a formal solution of the time varying
differential equation (2.2).

Lemma I Equation (2.2) is equivalent to the following equation.

(3.0)

Ou (t 1X) n am Ohj 2

-- x, -E
j=1 Ox

1n m
-(x).=+Ef ) Ef2()+ E h?(x)]}u(t'X)

2= i==1x

u(0, X) =o (X)
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Proof

[LO, hi(-)] 2 2(X)~ +f(x) E M~~'x+Zx+ (x)), hi(x)]
xjl 2=1 j=1 ~

= -fi(X)) 
2 , ha(x)]

jj=1

"O h, a 1 n 0 2 h, n Oh
=E Z -(x)- __ O 2 (x)-Zf,(x)-(W

[Ii~o~h3],h,] = [LL(x)] [,Ih2 (x)]
k=1

Lo +E Z!/t)[Lo, LJ + E __y~~j~)[o L] i
i=1 ~ ~
n i"0 09 n 4f I m n Ah 49

2~~~ __W ,x)- .x _h(x) + I Z ,t~(x)7
__l i=1 ~ i=1 = x
m= n1 a

2 h m n Ox,
2 3=1j~ j=1 x

2~ _=_ k=1ai I(~

En O7.1 m Oh a 0 Of, X
XZ -+ZE[-fi(x) + ~3yi(t)0 (x)] E -J(x) - E hl(x

i1j=1 a=1i=

+ E y,(t)zAh,(x) - Ohi~~j~)-" X

+ E Zy,(t)y,(t)E Oh, (\1r hj)]

1 n a _ [fi (x) j Ox),I (x)]j+~ I [O n

1F (-Xr 1j f,1!Z(t)Ihi (X)]
- lx E E~'~ - ,j2-() _ ~x

Oh 1m nj~h ir h
-- Efi~)-Ei~t jx)]-Eý(x)Eh(x)+i -F

2= 3=1x j 2i 2= 2xl ,L Oxt) h
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"- --- [= - "[f ("z----Is ( ) .,

(x ahi l2~i h
-_E E (x )E E a, yi(t)_oL_() h 12 (z)
,i=_ =- i=, 1-=13 I =1

E EZY (Ohf()OhE() + (t)yj(t) E[Oh "i(] [Oh3 (z)]
"=1 i= 8 --- k=1" axk -I k

- - x)] - [Z.-Gr)Z 2(X) +
3x = x j=1 a =1 =

Q.E.D.

We observe that if hi(x), 1 < i < m are constants in the robust DMZ equation (3.0),
then (3.0) becomes the Kolmogorov eqýation

au 1t X) = 1 - fii(x) h_ - ( )2 u(t, x)
--•(t,x) = {/(-fdx)) - + f + )

__ i=1

u(0, x) = GTo

In generalized Kolmogorov equation (1.0) is the above equation which we let hi depend on
x again.

Theorem 2 The equation (1.0) has a formal asymptotic solution on R". In fact, the
solution is of the following form

tO 00 1

(3.1) u(t,x) =] ... f V 1 ) t-n"2 eXp(- Z_.,X_ -C) 2 /2t)b(t,x,)t)ao(ý)d1 ... dý,
f 00(ý'f7r~nj=1

where b(t,x,•) = F=o ak(x,•)tk"
Here ak (x, ý) are described explicitly as follows. Let

(3.2) a(x, ý) = j 1(x, - ý,)f, [k + t(x -)]dt

i=0

Then

(3.3) ao(x, ý) --ea(z 'f)

Suppose that ak-I(x,) is given. Let

1 E-Ox E =a Ofxi

-, = (h?)a•1(X,0)-l (x)'-- (X
3=1 i--1
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Then, for k Ž: 1,

ak(z, )-e~(,)jte(t(CCgk(C + t(rZ -- 0), ý)dt

Proof We shall prove that (3.1) is a formal solution of (1.0). Putting (3.1) into (1.0)
we have

L.H.S. of (1.0) tj t( Z( Ex- )/2)

j=1 2

On the other hand,

(~~X ___ A ___

00 ... ] 27n j=1 2

-(i- ýj b(t, x, ý) + t '5b(t, x, ~)-tfQr)b(t, x, C)] ao( d~j .. n

[ -fa(X)] u(t, X)

=~C L.+ LE(~t (i x( [-(xi - ý~~,x

+ t ab(t. x, ~)-tf,(x)b(t, x, 0)j o(ý)d& ... d.

+ *0..(.I *~ t 2 eXp(- E [-b(t, x,)- (xi j,
00b jf, 2t xi(,x

t2xb (t xxfia

exP(x) )~t [x, t ff(xbt (x, ý

-tfi(x)-'(t, x, ý) + tfi2(x)b(t , x, ao(ý)d~j.. dOx,

378



00 0 1 nt - e x p ( _ E ~ 4 ) [ (X , _ f )2 b ( t 7 x ?

aOxi

Ob Ob
-tf,(x)-5x(t, X, 0 + (xi - C,)fj(x)b(t, x, C) - tf,(x)-(txL~

+ tfi2(x)b(t, x, ý)] 0'0(ý)d4 1 ... d

c c L 0 V : f t - 1 e x P & X, _ ý j) b(x i X ?
')b

-2(x, - ýi)-((t, x, ý) + 2(xi - ýj)f,(x)b(t, x, ~
O9xi

a2 b Of b

R.H.S. of (1.0)

00 0i L_ i2exP( n (X, _ ýj .i n(~
-0 t Obt x )+,

n a~b n~ n

~ f~xib(t, x, ý) + E ~j~(x) + Ci f,(x)bt +, C) -- ) b(t, x, C
i=1 i=1 i =

tt folow tha (31 is a soltio oft (1.0 if

t-(~x,) + - ~(,-~)(t,x, C) + ZEx -i (X)fx(t, x,
2t i=1 ax, E9i i=1x

tnt nf nOb

+ E ~fi(x) b(t, x,) E .~(~ (x) + E fi(x) +Eh? tx
2 =1 i=1 a3 =1 =

0'0(04 .. 379



i.e. if

n lob
t-Ex~ ("i - Cj)-5-(t, x, C) + Z(x, - C~ixbt ,C

Oti=1 i=1

n n

ax1 i=1

Put b(t, x,) E' Z~ak(X, C)tk in (3.5). We have

R.H.S. of (3.5)

E-(- - 6) ZOak ~(X, )t k + E E(x, - Ci)f,(x)ak;(x, C)tk

i k Ox, i=l k=0
+ 10 2a k &k l _ n o O a k ~

i~ kOi=l k=o Ox

1Ox '.T h?(x))ak(X,

- = -ZZ~x -i--(, )t + ==

+ o n lO 9k.. (x ~ k - o nX %.(Oa~lx,)

E - 1 x, ix -coa)f(X,(x E (xx,- Ci)fxak
00x n 1 Oa2 k0 ( ,C t o a -I( ,C

+ Ej [- __(X, a -t2f(xa_,~

k~l i~ 2 E Oix) ,

kili1
00 n f . 1 

C00
-.S of (3.5'() = -3 Eka(x, )t&-lX

k~l i~lax 
2k = 1 1
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Therefore (3.1) is a solution of (1.0) if the following (3.6) and (3.7) are satisfied

(3.6) Z(xi - W )(x,)=Zx i- fi)f, (x)ao (x, C)

(3.7) For k > 1

(k - Ej(x j - ýj)fa (x)) ak(X, C) + E S. - a X
2=1 i=1 x

11F -T7,- Z

Differentiate (3.2) with respect to xi

Oaxj(X 0 1 f. + +t~z -ý)))+ dt
10 j~l xi

=jf, ( + t(x - C))dt + j E(x, - w E (ý + t(x -

Ox,

1 i (ý + t(X _ ~))dt +]f~, n n, Of,~" ~

= j 4 ~ ))dt + jI tZE(x, - + t915-

(3.8) (i-ý)O

- Z~x, - (f + t(x _ ý))dt +]t(x f, _, ý(x , f (C o, + t(x-
i=1 1 ~ i=1

- ~, ,)jfi( + t(x - ))dt +]1 tZE(x, - ý,)df, (C + t(x -

- (xi -

j=1
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Let ao(x, ea) = f as in (3.3). Then

Oao OLa x ea,
K-i Oxi

n O a O 
- 8a a zE~x -Wi-i X,0 (xi , ;(,O

-~x - ýi)fi(x)ao(x, ~) in view of (3.8)
j= 1

So equation (3.6) is satisfied. Let

1kx~ n lO 2 ak- n akl,(,ý

9kOf (X 0x~ -: i=1- X o-Efix Eh~x)a X

j=1 il4x

as in (3.4) and for k > 1

ak(X ,) ea) tkleGd(f+t(x-f)'f)gk( + t(x - ,ýd

Then

Oak

= 8a (X 1~xf tklIea-( 4 +t(z-c),)OgkI + t(x - d
Oxi 1

+ aezXf j -tk1 F(ý + t(x - ý,Cd

where F (C + t(x - ~))=e 9k (ý + t(x - ~,~

= O.a ( ,ý e ( 1, . k-i ,-a(t+ t( -- f) ,f) 9k ' + t(x - d

+ ~ ~ ýx ea(,4 jt1F + t(x C ) "- (C, + t(x, - ý)d

8a
OXiX, j~azf tk9 ( t(x - d

+ ea(z,f) jtk-(+~ M
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Oak

j=1

+ az) j a jk ZF. + t(x T --Cd

a=1,

n #n

= Z(xi - ý&)f(x)ak (X,. + lez~)] tkdF( + t(x -C)

i=1 f

n

= E~i- ý)f(x)ak(X, ~)+ e (IEF(x, ~
i=1

- kea~(z'f) 0 t k- F(ý + t(x - )C)dt

= E~i- .,)f 3(x)ak(X,) + 4zCPa(fgkx kA(,

i=1

n ~Oakn

==.(k - Z(x, - ýi)f t (x)) ak(x, ý) + Z(xi - 0= gk(x,)

i=1* 1i

So equation (3.7) is also satisfied.

Q.E.D.

Lemma 3 Let iio(x,ý) = 1 and aklI(X,C) = e-a(",()aL....(x,ý). Let §k(x,C)=
,ea(z~t) gk(X, ). Then

4 (X, ~ =jO tklg4(ý+t(x -ý),ý)dt

where

§k X, (X, )+ nL aa(X, 0 - fA())Ak- (X, 0)
na 2 n(a ~ 2  n 9

+ [ E x,ý IF( 9_= 8 OX,

2 (ah ? 2 .OAx)]aki~)ý
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Proof: ak-1(X,.ý) =- c~')a-~,

Ox , Ox3~f [.a-(T Okl X a- X ,

_L Ox Oý X, Oak I (, -

+ ea(z,f) [ýt-~(z, 04-1.~x#~ + _ý 1k +

_L a +)) ')a 2\k- OX
- Oz~f) + . (~-X, a)) ) Ik(X, ý)+ 2 c (X, ~~~

+ Olx? X

ega(Xx,9) =,

=~ 4 9 2ak-..I n fi(X) Oa"_ (X f)

- (h?(x))a&...I(x,C) - -.JA(x)a& .- 1(x,o~]

raxi

+ X2 akX.1 ý)] +f 19a(X, C)) 24 1 (X, +) +_a(, a

+-ax (Z fix)a..(x) [ aX 41(X ~i - I (fC

2 i~l i=l i

1 n 2 4-1 n aya( Oaik -I

+2 2 nx (x( +a (x,~ C) fi\/ (x), a(, I

"- 0-+f,(x)-(?x(x)

2x 2=

49=1 O x, l (X,o

On the other hand

ak(x, C) = a--t 1j t k- ea( 4+4-(zf 9k )(C + t(x - d

=~ak(X,0~ = j0 tk-1 #k(C + t(X - ý), ýOdt

Q.E.D.
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Theorem 4 The equation (1.0) has a formal solution on R". In fact the solution is of
the following form

(3.9) (t, X) =

L. ... L.tCXP( ( , - 2 + j Z(X,_- v)f 1(y'+ t(x -))ooj=l i=l

[1 + a1 (x, y)t + a2(x, Y)t2 +... + a,,(X, Y)tk + .-]oo(y)dyi ... ,

where &i(x, Y) = fo' t"-'§k(Y + t(x - Y), y)dt and

g•( Y) j•,,a, •• +_X_ z.,,•(,, ,) - A,()}--( , Y

n2 Y)-- I-- n"9n 9

-~ ~(Z x))-1: Z 1i()a i(X, Y)
i=1 x
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NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF INTEREST
IN NONLINEAR OPTICS*

M. J. POTASEK
Department of Applied Physics

Columbia University
New York, NY 10027

ABSTRACT. The analysis of nonlinear optical phenomena is
important because of the wide range of potential applications in
various fields of science and engineering. Photonics is becoming
increasingly significant and research in this area is of vital
importance for applications ranging from optical computing to
novel light sources. It has been recognized that solitons may
be natural bits of information for gating and switching. While
considerable effort has focussed on the picosecond time domain,
research is now evolving in the femtosecond time domain. We
have calculated the performance of the first femtosecond soliton
all-optical switch.

INTRODUCTION. Because of their rapid response time, non-
linear optical materials are gathering considerable interest.
Much of this research has involved picosecond or greater duration
pulses. However, the recent development of femtosecond light
sources in the visible and near infrared spectral regions makes
possible the exploration of new phenomena on ultrashort time
scales. Research into the fundamental aspects of ultrashort pulses
is of interest for possible femtosecond soliton lasers, amplifiers,
and optical computers. Femtosecond pulses are now available from
a number of optical lasers, such as the NaCl color center laser,
mode-locked Er fiber laser and the colliding pulse mode-locked semi-
conductor laser. HOwever, mathematical analysis is now just evolving
for this rapidly developing field and has not kept pace with experi-
ments. The emphasis on shorter pulses requires extention beyond
traditional techniques. Light propagating in a dielectric medium
is given by

V 2E l__ (v. = 0

*Supported in part by the U.S. Army Research Office.
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where E is the electromagnetic field and D is the displacement vector
which is expanded in a power series in E,

t

D - ; f dt -1 ) (m)E0z1)
-00 (2)

t t t

+ ; f dt, f dc2 f dt, X$ (t-4, t-t..tr-ct) E (t1) E %) E (t,)S (-

For femtosecond pulses, one obtains

i% +q.÷ lql2q + ie ÷+ijqj2q I "

q,~ +q~ + %iq qt -e41 qj qt 3

where q is the dimensionless slowly varying envelope of the electro-
maagnetic field, the subscripts z and t refer to differentiation with
respect to space and time, respectively, and the coefficients depends
upon various dispersive and nonlinear constants. For certain physical
conditions, Eq. (3) reduces to

iqz+ q.+ Iq 1q + ia(q.+61q I2q) -0

(4)

The figure below shows the propagation of the soliton.

1.81

.1 "4Uo..
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FEMTOSECOND ALL-OPTICAL SWITCHES. An important area for optical

comoutinq and communications is intensity dependent optical switchina.
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Optical switching is dependent on the nonlinear index of refraction of
optical materials. Device configuration consists of nonlinear directional
couplers or birefringent couplers. Experimentally all-optical logic
devices including an inverter, exclusive-OR and AND logic gates were
demonstrated in the picosecond time domain. This presentation describes
the mathematical results for novel famtosecond optical switches.

The coupled equations are given by

2 2

(5)

+ is [qIM+3 ( ~I q 12 q212 )q,+3*l+q;2t) qj]-0

iq~z +q2 (Iq, I'+,I q2I q2j+

+ieq2M43(1q + + 3q (q q2) ] 0 (6)

The equations can be solved by the inverse scattering transform
method. For the N=1 soliton one obtains

1 (7)
q- " _L (sins ai(kf- ,) - cosa e 4 + 46)) q(zt)

2 = (sine aikz - #)+ €cosO -i(kz + 4)) q(zt)

(8)

where

q(=) 211 sech [21(t + (4•.2 3) ÷+ 2,) zj up H(24 - .4e-31) + 4(.e- zI.

p -m•+ii1,

The angles describe the relative intensity and phase of the input
waves.

A figure of the optical switching behavior is shown below. Part (a)
shows the output switching fraction as a function of input power,
part (b) shows the ontical switchina behavior at low input intensity

PQ



and part (c) shows the optical switching behavior at high input

(a)

U'a
U

L U Le 8 L W

ILI La P LSI

(I-

CONCLUSIONS. These results have been correlated with experimental
parameters. Experiments are planned to verify the concepts. This
would be the first demonstration of femtosecond soliton all-optical
switching which could advance the frontier of optical devices by
several orders of magnitude and constitute a breakthrough of the physical
understanding of high data rate systems..

Acknowledgement
thank J. M. Fang for numerical programs and R. Tascal for

inverse scattering results.
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Scattering Algorithms for Beltrami Fields

Balasubramaniam Shanker and Akhlesh Lakhtakia

Department of Engineering Science and Mechanics

227, Hammond Building

Pennsylvania State University

University Park, PA 16802-1401

Abstract:

Beltrami fields yield a convenient representation of the electromagnetic fields in a

chiral medium, and the scattering of electromagnetic waves by a scatterer immersed in a

chiral host medium, is easily tackled using Beltramifields. In this work, volume integral

equations are set up using equivalent Beltrami current sources to represent a chiral

scatterer in a chiral medium. These equations are then converted into algebraic equations

and the scattering algorithms obtained, using both the method of moments (MOM) and

the coupled dipole method (CDM). The singular behavior of the dyadic Green's function

for Beltrami fields in the neighborhood of the source point is estimated with care, and the

strong and the weak forms of both the MOM and the CDM algorithms are derived.

1. Introduction:

A Beltrami field is defined as one that is proportional to its curl in a source-

free region. Nature provides us with typical examples; hurricanes, water spouts

and vortex flows can be very well approximated by a Beltrami field. In

electromagnetic theory, Beltrami fields are found as toroidal and poloidal fields

and circularly polarized plane waves. Beltrami fields came to prominence in

electromagnetics in 1974 due to Bohren [1], although they had been used as early

as 1907 [2]. The usefulness and application of Beltrami fields cannot be doubted,

as is evident from [3-5].
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In the sequel we consider scattering by a chiral inclusion embedded in a chiral

host medium. The electromagnetic fields that are incident on the inclusion are

expressed in terms of Beltrami fields, and we derive expressions for the scattered

Beltrami fields. But before we formulate the problem, the mathematical concept

of Beltrami fields is introduced in the next section. In section 3, the electric and

magnetic fields and the volume current densities are expressed in terms of their

Beltrami equivalents. The scatterer is then replaced by equivalent Beltrami

current densities and volume integral equations are obtained for scattering.

Finally, in section 4 these integral equations are reduced to algebraic ones and

two algorithms, the method of moments and the coupled dipole method, are

developed.

2. Beltrami fields

A Beltrami field Q(r) radiated by a Beltrami source density W(r) satisfies the

relation

VxQ(r) + K Q(r) = W(r), (1)

where the real and imaginary part of Kc are of the same sign for physical validity.

The solution to such an equatio-',. for any r, is

Q(r) = Qh(r) + Jfjfv G(r,r').W(r') d 3r', (2)

where Qh(r) is the solution to VxQ(r) + K Q(r) = 0 everywhere. The Green's

dyadic G(rr') for the Beltrami field satisfies the equation

VxG(r,r') + K G(r,r') = I S(R), R = r - r', (3)

where 8(R) is the Dirac delta and I is the identity dyadic. The Green's function

has been obtained by a number of approaches [6-81 and turns out to be

G(r,r') = - (v + VV/K - VxI) g(rr'), (4)

where

g(r,r') = exp(±iKIRI)/4xrIRI, (5)
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is the scalar Green's function commonly used in electromagnetics and acoustics.

In (5), the upper sign is to be used for Refi{ > 0 and the lower for Refic < 0.

Due to the presence of the VV term in (4) the integrand in (2) is singular at R

= r - r'. But for an electrically small region V, whose cross-sectional dimensions

are much smaller than the wavelength 2x/ji4, the field at the source point can be

approximated as [9]

Q(r') = Qh(r') - ticM - L/icI.W(r'), re V, (6a)

where

L = (1/4x) Jfv [n'R/1R131 d2r', (6b)

M = (1/4x) JJJv ([I- V4 /lc]feixIRI/IRI}

+ VV{(ei1lRI - 1)/k3IRI}) d3r', (6c)

with n' being the unit outward normal to the surface aV of V at r' E aV.

3. Field representation

3.1 Chiral host medium

With these preliminaries, we now look at fields in a chiral medium. In the

Drude-Born-Federov representation, the frequency domain constitutive relations

for a chiral medium are

D = aE + eafaVxE, B = gtH + gfti3VxH, (7ab)

where ea and gta are the permittivity and the permeability scalars, respectively,

and 0. is chirality parameter of the host medium. An exp[-iwot] time is implicitly

assumed throughout this analysis. On transforming the E and H fields into

Beltrami fields [10], the Maxwell curl postulates can be written as

VxQ1 - 71Q1 = W1, VxQ2 + 72 Q2 = W2, (8ab)

with the Beltrami fields given by

Q, = [I /2][E + ina H), (9a)

Q2= [1/2][H+ iE/1a], (9b)
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and the Beltrami source current densities by

WI = [y,/2kJ [ib. J - K], (9c)

W2 = [y2/2ka] [-i(l/Tla) K + J1. (9d)

The two wavenumbers in the host medium are found to be

y= = ka/(l-kapa)' (10a)

'2 = kal(l+kal•a), (10b)

where ka = (0W().rt.) is used for convenience in notation; and 11a = *(a/ea) is the

impedance of the chiral medium. It is assumed here that Re{ty,y 2} > 0, Im(y{,y 2} >

0 and Refila) > 0; and it is also noted that Q, is a left-handed field and Q2 is a

right-handed field [1, 11].

Thus, to solve for the Beltrami fields Q,(r) and Q2(r), suitable modifications

of (2) yield

WQ(r) = Qlh(r) + (y1-+ y 2) ffIv =G(r,r')*W,(r') d3r', (Ila)

Q2(r) = Q 2h(r) - (Y1+ TO2) fv G2(rr')eW2(r') d 3r', (Ilb)

where V now is a region not necessarily small in electrical size, while the dyadics

G1(r,r') = (y'y+ y2)-1 G(r,r')l_.

= (r4 + VV/y1 + VxI) {exp(iy1IRl)/4nlRlI/(Cy1 +Y2), (12a)

G2(r,r') = - (y1+ y2)- G(rr')lI

- (y21 + VV/y 2 - V>I) {exp(iy2IRI)/47iiRI}/(y,+y2). (12b)

3.2 Equivalent current densities

Equations (11a,b) are volume integral equations which can be used to solve

for radiation from a given source distribution. If, however, we consider

scattering, Qh(r) and Q 2h(r) are interpreted as the fields that exist in the

absence of the scatterer and are, therefore, the incident fields. Our task now is to

replace the scatterer by current densities which are equivalent to it.
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Let all space be divided into two mutually exclusive regions V*1 t and Vit,

which represent the host and the inclusion media, respectively. The region V 1t is

filled with chiral matter obeying the constitutive relations

D(r) = eb E(r) + cbNVXE(r), r e Vit, (13a)

B(r) =Ab H(r) + pbtVxH(r), r e Vin, (13b)

where eb and 4b are the permittivity and the permeability, respectively, and P3, is

the chirality parameter of the inclusion material.

The source-free Maxwell postulates can be written everywhere as

VxE(r) - [k.210. E(r) + lWIa H(r)]/(1-ka2 pa2)
= [-Kq(r) + imuaBa Jeq(r)] /(1-ka22), r e Vxt+ Vit, (14a)

VxH(r) - [1a 2Pa H(r) - icoa E(r)]/(1-ka2Pa2)

= [Jq(r) + iwoeaIaKeq(r)]/(1-ka2%a2), r e Vext + Vint. (14b)

Here,

Jeq(r) = 0, r e Vext, (15a)
Keq(r) -- 0, r e V.xt, (15b0)

Je(r) = io[aE(r) + a~hH(r)], r e Vin, (15c)

K•(r) = io[ah.E(r) + ahhH(r)], r e Vin, (15d)

and the quantities

a.= , aka2a2 + FL - 1k2 , (16a)

aFl~~~__apa__ k~ b_ 1. r kb2I3 ka2R 1_=aLa[1kb2 -1Llk 2pa 2 J -kb2+a2 1_k 2b 2 2(16)

"Rb - _ka (16b)

S= i(ocLaba 1k2 b k 1-kb2p] 1-ka2p3a2

abh = aa lk2r 2 l ka2]pa A (16d)
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Knowing the electric and magnetic current densities, and using (9cd) we can

set down
VxQ,(r) - y•Ql(r) =wlq(r), r e vex,+ Vint, (17a)

VxQ 2(r) + 2 Q2(r)= W2(r), r e Vext+ Vin, (17b)

where the equivalent Beltrami source current densities are specified by

W,.(r) = 0, r e vxt, (18a)

W2,(r) = 0, r E Vext, (18b)

Wleq(r) = [y1/2kJ [a11Ql(r) + al 2Q2(r)], re Vit, (18C)

W2,(r) = [Y2/2kJ [a21Q1(r) + a22Q2 (r)], r e Via, (18d)

with

a1H = ic{(ah - abe) + i(q.l8 ahh + q. aj)}. (19a)

a,2 = io){( l.2aej- ahh ) + illa(aeh + ae)}, (191b)

a21 = iico(ae- ah /i/. 2) - (i/n.) (a, + ab1 )}, (19c)

a22 = ico {(aeh - abe) - i(q.-' abh + q1a ae)}. (19d)

Thus, through (18a-d) the Beltrami field scattering problem has been altered to an

equivalent Beltrami field radiation problem. As the equivalent current densities

are identically null in V.xt, the volume integral equations for Beltrami fields take

the form

QI(r) = Qimc(r) + JJ'vit [A11(rr')*Qj(r')] d 3r'

+ Jfvmint[Ai 2(rr')hQ2(r')] d 3r', r c Vext+ Vint, (20a)

Q 2(r) = Q 2in(r) + JJJVint [NA2 (rr')*Qj(r')] d3r'

+ JJJvittA 22(r,r')*Q2(r')] d3r', r E Vext+ Vint, (20b)

with the dyadic kernels

_A-(r,r') = -2 a, G1(r,r'), (21a)
a12

A12(rr') = ka2  (21b)

2 a2 1 Gk(r,r'), (21c)A62 a2
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-(re) IV, a2 ,2(rr'). (21d)

For prescribed incident fields, Q 1t. and Q2j., (20ab) have to be solved for the

Beltrami fields. The results have to then be put back to find the scattered fields.

To solve these volume integral equations, we use the longwavelength

approximation to rewrite these equations in algebraic form and develop two

scattering algorithms - the method of moments and the coupled dipole method

4.1 Method of Moments (MOM)

In 1968 Harrington [12] introduced into electromagnetic engineering

community the term "method of moments" to denote an approach by which a

linear operator equation is transformed into a set of algebraic equations. Since

then more sophisticated versions have been developed [13,14], but the original

and the simplest version suffices for our purposes.

In order to convert the volume integral equations into algebraic ones, the

region Vint is partitioned into simply connected, non-overlapping subregions Vm

(m = 1,2 ....., M), each bounded by a surface WVm on which a unique unit outward

normal can be unambiguously prescribed, and is, therefore, at least once-

differentiable. The surface of the subregion is assumed to be convex, and the

maximum chord of the subregion Vm is assumed small compared to the

wavelength in both Vm and V,,t such that longwavelength approximations hold.

As a consequence of the longwavelength approximation, we can assume Q,(r)

Qi(rm) and Q 2(r) Q 2(rm) for all r e Vm, where rm is a distinguished point,

generally the centroid of Vm. Next, the approximate evaluations

"liVy [Gl(rm,r') e0(r')] d 3r' -=- §n G(rmrn)e *4(rn), n * m, (22a)

'ffvm [GI(rm,r,)(D(r,)] d 3r' E ka [_Lm+y 1
2%j o4,(rm), (22b)
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jkv, [G2(r,'r') (r')J d 3r' =u Gý2(r.,r.)o(rd), n *m , (22c)

'JfVm [G2(rm, )r')o0(e')] d3 = 2 72k [Lm + 12 21Vm2M] )(rm)' (22d)

follow, with u. being the volume of V., and 0) representing either Q,, or Q2 in the

subregion of integration and the dyadics
_Lm = (I/4x) ifaVm [n'Rm/I1tml3] d2r', (23a)

MIM = (1/4x) f 11Vm ([ + VxI/yj](eiY'lIRmI/IRmj}

+ VVI(eiY•lIR• - 1)/y,21RmII) d3r', (23b)

2M= (1/4X) J'j~m ([I - VxI/y 2]fe1T2IRuj/jkj1 j

+ VVI(eWRJ - 1)/¥lRI1) d3r', (23c)

with R. = rm - r' and n' being the unit outward normal to the surface WVm at r e

VaVm. We observe that the union of Vm is only approximately congruent with Vmt

in practical situations. Also to be noted is that the use of only the L dyadic

constitutes the "weak" form of MOM [9], while the use of both the L and the M

dyadics is the "strong" form thereof.

With these approximations, the volume integral equations can be converted

into 6M algebraic equations in terms of the cartesian components of the fields

Q1 (rn) and Q 2(r). Thus,

Qlinc(rm) = 71 n=I.2,...,M [gtl1 n°oQl(rn) + B12mn.Q2(rn)], 1 _ m < M, (24a)

Q 2inc(rm) =.. .n=,2,...,M [B2 ,1 n*Q1 (rn) + B22,mnnQ 2(rn)], 1 ! m < M, (24b)

where

Bqsn= -1)n Aqs(rmrn); q = 1,2; s = 1,2; men, (25a)
•l~m -1I- [l/2k,] [-Lm + ¥I12 M mIIIt (25b3)

Bl2.mm [I -[/2ka] [-Lm + y12 M1mla12, (25c)

B21,[m I [1/2kj [-Lm + y 2
2 M21 , a21 , (25d)

B22,zA I + [1/2k] [-Lm + y2
2 M~ma 2 2 . (25e)
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The matrix equations (24a,b) can be solved using standard matrix methods

provided they are not algorithmically singular. The scattered Beltrami fields can

be computed through (20ab) as

Ql. (r) = Q1(r) - Ql,(r)
= i':,2,...,Mon [Ajj(rrn)*Qj(rn) + A12(r,rd)*Q 2(rn)], r e V~ e (26a)

QO (r) = Q2(r) - Q~i.(r)

7-n=1,.2....M •L [=A21(r,rn)OQ1 (r.) + A22(r,rd)*Q 2(rn)], r e V..t. (26b)

4.2 Rotability dyadics

In the MOM the unknowns are the fields that are actually present at the

subregion. For the development of the coupled dipole method, we need the

fields that excite the mth subregion. The field exciting Vm is the sum of the field

that is incident on the subregion and the fields that are scattered by the other

subregions. In other words, the field exciting Vm is the actual field in the

subregion if it were to be occupied by the host medium. Thus, by definition

Qlexc(rm) = Qlinc(rm) - T-nff1,2,...,AM m [-BtmnQi(rn)

+ Bi2 m-Q 2(rn)], 1 < m < M, (27a)

Qexc(rm) = Q2in(rm) - Z-n=-1,2,....Mme~m 1B21,.*nQi(r.)

+ B22,mnQ 2(rn)J, 1 < m 5 M, (27b)

so that (24ab) simplify to

B 'mQI(rm) + B12,nm*Q2(rm) = Qtexc(rm), (28a)

B21mm-Qi(rm) + B22,meQ 2(rm) = Q2exc(rm). (28b)

Hence,

CIizQIexc(rm) + C'Im*Q2xc(rm) = Ql0m), (28c)

C21izQIexc(rm) + S22,m*Q2exc(rm) = Q2(rm(28d)

with

CII'm -[B ,mmB22,mm" 1 .,mAM - B,m 1 ]" (29a)

399



'912,m [82t.in 22,anmj12 ,mm1 llmmnJ' (29b)

521.m = [B12.nim- 1jnm !1mOB -'-*El J (29c)

C22.m = - [B2I, .1IBjm' *_B 12,mm B22r]-n . (29d)

In keeping with Varadan et al. [15], rotpole moments may be defined as

tim = (i/O)UmWiq(r.), (30a)

t2m = (i/o)rUmW 2eq(rm), (30b)

these rotpole moments serving as the Beltrami analogs of the electric dipole

moment Pm and the magnetic dipole moment mm. It follows from (18cd) that

tim = (i/o)) um [y1/2ka] [all Ql(rm) + a1 2 Q2(rm)], (31a)

t2m = (i/o)) om [12/2kj [a21 Q(rm) + a22 Q2(rm)J, (31b)

whence, using (28c,d),

tim= illm*Qlexc(rm) + •2,m*Q2exc(rm), (32a)

t2m = !21im*Qlexc(rm) + ;22jn*Q2exc(rm), (32b)

with the rotability dyadics given as
Xjj' = (i/(o)) um [yl/2kj][a,,l Cjn+ a2Cj] (32c)

!12, = (i/o)) '0m [yj/2ka] [a,, C12=n+ a121C_22•], (32d)

2C1,m= (i/(o))rm [y2/2ka] [a2, CS,,,+ a22 C2i•], (32e)

!22,m = (i/() )rm [y2/2ka] [a 21 C912=n + a22 22nm]. (32f)

4.3 The coupled dipole method (CDM)

The expressions for the rotpole moments derived in the preceding section can

be used for another numerical approach; namely the coupled dipole method.

This method has been variously known as the discrete dipole method and the

Purcell-Pennypacker approach and, as the third name suggests, was heuristically

derived by Purcell and Pennypacker in 1973 [16]. It has gained ground for the

study of scattering in recent years [17-19]. The basis of this method lies in

assuming that each subregion can be thought of in dipolar terms. The total
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scattering can then be calculated by summing the radiation due to the dipoles or,

as in this case, rotpoles.

In a slightly different form, expressions for the exciting Beltrami fields (27ab),

can be written as

Qiewxc(rm) = Qliuc(rm) + (71 +72) n-•f,2..;n~ m{OWeq(rn)}, (33a)

Q 2*xc(rm) = Q2in(rm) - (Y1+Y2) Z-hI..2,....M;n,in b(). ,*W 2,q(rn)}. (33b)

Substitution for the equivalent Beltrami source densities by the rotpoles leads to

Qiexc(rm) = Qlinc(rm)- iwO(y1+y2) "n=l12,...,M:nm {(Gmn"nti, (34a)

Q 2exc(rm) = Q 2inc(rm) + io(y'+y 2) T"n=1,2,....M;nm {2mn*t 2n}" (34b)

Finally, the use of (32ab) yields the CDM equations

Qlinc(rm) = 1...M [DM j,'Qjexc(r)

+ 2,=eQ2•x•(r.)], 1:< m 5 M, (35a)

Q2i(rm) = Y£n=1.z,...,M [D j'n*Qjexjr)

+ s2jm*Q2xc(r.)], 1 < m : M, (35b)

where the 6M unknowns are the components of Q1.xc(rm) and Q2exc(rm), and the

dyadics involved are given as
D =Imn = + io(1 - 8mn)(y+y72) G1mnu'j, (36a)

D12,mn = ima(1 - 8)(7,+I'2) G9,-'C1zn, (36b)

D21,nm = -io)(1 - 8m)(y1-+y2) G2mn121., (36c)

!?== = I8mn - iwo(1 - 8m)(Y1+i G 2mn*22,n" (36d)

The scattered fields in the CDM can be computed after the calculated excitation

fields have been used to determine the dipole and the rotpole moments. Thus,

Qlsa(r) = - iwtY1+72) £n=l,2,...,M GtI(r, r)'tGj, r e Ve, (34a)

Q 2 sca(r) = io((7 1 "+2) -n=1 ,2,..M {G 2 (r,rn)*t2n, r r= Vext. (34b)
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& Concluding Remarks

To summarize, we have considered scattering of Beltrami fields from a chiral

inclusion embedded in a chiral host. In our treatment, we replaced the scatterer

by equivalent current densities and then volume integral equations were

obtained for the scattered fields. These equations were then reduced to algebraic

equations and two algorithms - method of moments and the coupled dipole

method - were developed. These equations can be easily solved using standard

matrix manipulations provided they are not algorithmically singular. The

expressions derived here are much more simpler in form than the corresponding

ones for the electric and magnetic fields. It is also important to note that the

scattering problem is solved for an arbitrary shape of the inclusion. Finally, the

the problem solved in this paper forms a part of Ref. 20 and 21.
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Forced Lattice Vibrations
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1 Latroduction.

We study shock waves in dispersive semi-infinite particle chains generated by

an imposed motion on the first particle. We assume the imposed velocity of

the first particle to be a periodic function of time with positive mean value.

The first particle moves toward the others compressing the chain. For a chain

with nearest neighbor interactions the motion is described by:

(1.1a) =I

n=- 1,2,3,.. -1

The initial positions and velocities are given by:

(1.1b) zn(0) = 0, i,,(0) = 0 n = 1,2,....,

and the forcing velocity is given by

(1.1c) io(t)-=2a+f(t) t _ O, a > O,
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where x.(t) is the deviation of the nth particle from an initial rest position and

f(t) is a zero-mean periodic function of time.

We first outline the case of constant forcing (f(t) S 0). Holian and Straub

[4] took various force laws F(.) associated with the names Lennard-Jones,

Morse, and Toda, and investigated the limit t --* oo. Through numerical

experimentation, they not only confirmed an earlier finding of von-Neumann

[8] that the shock wave is reflected from the origin with large oscillations be-

hind the shock, but discovered a striking new phenomenon, the existence of a

critical shock strength ait with the following property:

(i) For a < at the solution of the shock problem is oscillatory in the region

s2t < n < s1it while it tends to zero in the region 0 < n < s2t, as t tends

to infinity. Here s, is the shock speed and 82 a second kind of speed;

both s, and s2 are functions of a.

(ii) For a > ait the solution is oscillatory everywhere behind the shock, i.e.

for 0 < n < s1t. Yet, the quality of the oscillations is different in the inner

region: it is periodic in time and binary in space i.e. neighboring particles

are moving with opposite velocities relative to the forcing particle except

in the region of the zeroth particle itself where motion is somewhat more

complicated. This is precisely explained in [7].

The existence of a critical forcing velocity is not yet generally understood.

In the special case of the Toda chain (also referred to as the Toda lattice) which

has exponential force law F(r) = -e-, Holian, Flaschka and McLaughlin [3]

utilized complete integrability to analyze the von-Neumann problem and de-

rived the critical speed a = 1 and the shock speed si(a). Indeed, by translating

the coordinates so that the particle xO remains fixed and reflecting the chain

about this particle, one imbeds the von-Neumann problem, which is nonau-

tonomous,into an autonomous initial value problem for a doubly infinite chain

(-cc < n < oo). The particles in this chain still satisfy equations (1.1a).

They have zero initial deviations and have initial velocities given by -2a sgn
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where n is the particle index. In the case of the Toda chain the new problem

is completely integrable.

In the integrable problem, criticality arises from the fact that the continuous

spectrum of the Lax operator, given by the set [-a --1, -a + 1] U [a - 1,a + 11

consists of a single interval in the subcritical case 0 < a < I and of two disjoint

intervals in the supercritical case a > 1.

Venakides, Deift and Oba [71 studied the supercritical von-Neumann prob-

lem for the Toda chain by analyzing the long time behavior of the r-function of

the imbedding integrable problem on -oo < n < oo. They showed the emer-

gence of oscillations whose structure they obtained in detail and derived the

speeds s, and 2. (They denote these speeds by N,,. and N,,i, respectively.)

Using the same technique, Kamvissis [5] derived the oscillatory structure in

the critical and subcritical case.

The striking result in [7] and [5] is thz: •he residual state of the chain i.e. the

state of motion in the region InI < s2•o which each particle eventually enters,

is described by an algebraic/geometric type solution whose Lax operator has

exactly the same spectrum as the Lax operator of the original integrable shock

problem. In other words, (a) the problem remains isospectral even after a

spatially non-uniform limiting process (t --+ oo) eliminates the region s2t < Inj

by pushing it to infinity and (b) in the residual state, there are no more degrees

of freedom except those dictated by the spectrum: the number of degrees of

freedom equals the number of spectral gaps which in this case is effectively

equal to one.

When the forcing velocity f(t) is no longer constant, numerical experiments

(see below) indicate that the residual state is again described, in the region

n < const.t, by an algebraic/geometric type solution, but now the number of

gaps, and hence the number of degrees of freedom, may be greater than one.

Unfortunately, the process of imbedding the semi-infinite chain into an

integrable chain does not work when the forcing velocity is time dependent.

Although the problem may still be integrable, as one might be led to suspect
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by the recent work of Fokas and Its [FI] on initial-boundary value integrable

problems, no linearizing transformation has yet been found. Faced with the

inability to reflect the problem we ask ourselves: How does the spectrum of the

residual state manifest itself in the original forced semi-infinite Toda chain?

The evolution of the Lax operator of the semi-infinite chain is not isospec-

tral; the Lax-pair equation has a rank-one perturbing term which contains the

forcing. The initial (t = 0) continuous spectrum of the Lax-operator for the

semi-infinite chain consists of the single interval [a-1, a+1]. The spectral evolu-

tion, studied numerically, is as follows. When the forcing velocity is constant,

eigenvalues are emitted from the lowest point of the continuous spectrum at a

constant rate and move to the left filling the band [-a- 1, -a+ 1] (actually the

band [-a - 1, a - 1] when a < 1) in the limit t --* oo, which we also consider as

continuous spectrum. The limiting"continuous" spectrum of the Lax operator

is identical to the continuous spectrum of the residual state. The emission

of eigenvalues from the continuous spectrum was first observed by Kaup and

Neuberger [61, who make an approximate calculation of the eigenvalue birth

rate.When the forcing velocity contains a periodic component (f 0 0), the

emitted eigenvalues may fill more than one band corresponding to a residual

state that is a multiphase wave.

In our analysis of the periodically forced problem we achieve the following:

(a) We derive a closed system for the evolution of the scattering data, includ-

ing the evolution of eigenvalues.

(b) We make the Ansatz that the eigenvalues asymptotically cluster onto a

finite set of bands. (This is confirmed by numerical experiment in the

subcritical case.) We then take the continuum limit of the eigenvalue

evolution equations to derive an integral equation for the asymptotic

(t --* oc) spectral density of these bands. We cannot yet determine the

number, and the endpoints of the bands (if 2g numbers are needed we

only have g relations). However if we assume the endpoints given, then
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we can correctly calculate the corresponding spectral densities.

(c) In the subcritical case of the Toda chain, and when the periodic com-

ponent of the forcing is small, we rigorously construct, under minimal

assumptions, solutions to the chain equations that are valid for n > 0

and -0o < t < oo and in which the velocity of the zeroth particle is a

given time-periodic function. The solutions are multiphase waves away

from the boundary and they connect to the forcing function through a

boundary layer. When the frequency exceeds a threshold value, there is

no wave penetration into the chain, there is only a boundary layer that

decays exponentially with the particle index. As the frequency decreases,

more phases are generated according to a precise formula. If the number

of the wave-phases is g, the location of the midpoints of the g spectral

gaps is determined by the frequency of the driver. Their widths as well as

the corresponding phase shifts (2 g pieces of information) are determined

by the first g Fourier coefficients of the driver (2g pieces of information,

since these coefficients are in general complex). The remaining part of

the information, i.e. the remaining Fourier coefficients of the driver deter-

mine the boundary layer The calculation involves a Liapunov Schmidt

decomposition, the definition of an appropriate family of norms and the

use of the implicit function theorem. We can carry through the above

calculation for a general nonintegrable chain, if we restrict ourselves to

single phase waves. This is equivalent to requiring that the frequency of

the driver be sufficiently large. We have not yet been able to construct

gt: Aeral nonintegrable chain multiphase waves due to problems with small

divisors.

In this presentation, we focus on the case in which the periodic component

of the driver is not small, i.e. as described in points (a) and (b) above.
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2 The Evolution Equations

We use the Flaschka variables

(2.1) a, =, - , b2 = 2,n = 0,1,2,...

and we note that the function ao(t) is the given time-periodic forcing function.

Equations (1.1a) for the semi-infinite chain with F(r) = e-' (Toda) are easily

reduced to the perturbed Lax pair equation:

(2.2) - + MB- BM = -p(t)P

where M is the tridiagonal matrix
.a, b,

M [ b, a2 b2  0
b2 a3s

0

B is the antisymmetric tridiagonal matrix given by

0 b]
B = bl 0 b2

0 -bl 0 b2

P is the rank-one matrix given by:

I1 if i=j=l
Pij 0 otherwise

and p(t) is the function:

p(t) = 2b2(t) = 2b21(t) - 41(t), = d

di*

Strictly speaking, the matrices M and B are semi-infinite. However, trun-

cating the chain at some particle of very large index N makes the matrices M

and B finite. The disturbance in the chain caused by the truncation, travels
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essentially with finite velocity. Only exponentially small effects display infinite

speed. Thus, a large part of the chain, say the left half, does not essentially

feel the truncation until a time t = O(N). Our analysis is in the regime

1 << t << N and n << N of a finite chain.

Our strategy is to derive evolution equations for:

(a) the eigenvalues Aj of the truncated matrix M.

(b) The first entry fj of the j1A eigenvector of M(j = 1,..., N) when it is

normalized to have Euclidean length equal to one.

Given the N eigenvalues h, and the first eigenvector entries fi, we can

reconstruct the matrix M [71.

Theorem 2.3. The evolution of the Ah's and fj's is given by:
1Aln•(-ýj)= Aj- a(t)+ E 'f,.-ý- j l,..,N.

f,2

where p = 2b•(t) = - 1 A,, and a dot indicates a derivative with respect to

time.

The initial values Aj(O) are the eigenvalues of M at t = 0 while the initial

values k.(0) are given by

A,(0) = -2bP(0)f,2(0).

Proof: Let A be the diagonal matrix of the eigenvalues AI of M and let 'k be

the matrix whose jt' column is the normalized eigenvector of M corresponding

to the eigenvalue Al. We have:

(2.4a) MT = *A,

Let

(2.4b) P='P-B* where d'
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Utilizing equations (2.4a) and (2.4b), we easily calculate:

(2.4c) M4 - -A = 4A + pPP.

We now define the matrix A = (anj) by the relation:

(2.4d) f = 'PA.

We calculate (AT is the transpose of A):
A = 9Tj+.q = =%T(-- )T- T),@ = *Tj+iTi = = O.

The last equality is true because the matrix pT* is orthogonal. Thus

(2.5) AT + A = 0;

i.e. A is antisymmetric. Using (2.4c) we obtain

(2.6) Mt - IA = M A - *AA = 'P(AA - AA).

Comparing (2.4c) with (2.6) we obtain easily:

(2.7) A = [A,A]- p*Tp*

Let fT = (fl, f2, ... ,fN) be the first row of IF. Then

%pTp,@ = f fT

where the righthand side is a matrix product.We insert this in (2.7).

(2.8) A = [A,A) - pff T .

Equating the diagonal elements on both sides we obtain:
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(2.9) ,j = -p0,2,

This proves the second relation in Theorem 2.3.

Off the diagonal in (2.8) we have for i 6 j: Alaij - ajAj = p1,1,, hence:

(2.10) when i j;

aii= 0 by (2.5). We now calculate the evolution of /j. By (2.4b):

S= §+B P -- %PA+B*i.

Specializing this to the first row we obtain: FT = f)A + BR, V where BR, is

the first row of B.

fT =TA+(M-alT)R, = fT A+(MO)R ,-afT = f A+(*A)R,-alfT = TA+fT A-fT a,

Taking transposes and factoring we obtain:

(2.11) j = (A - a1 1 - A)f.

We write the antisymmetric matrix A obtained in (2.10) as

(2.12) A = pFLF

where F is the diagonal matrix with entries f1,..., IN and L is the matrix

(Ai). We obtain j -(A - aj - pFLF)F.

(2.13) F-'f = F-1 Af - aF-f - pLFf.

We then remark that:

(i) pFf= ( ==- ( 2 by (2.9),
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(1 \
(ii) F-If= 1 F-A = AF-.

Substituting in (2.13) we obtain

(2.14) A +En A.

The evolution of the W's in (2.3) is finally obtained by eliminating fj be-

tween (2.14) and (2.9) and using the expression for p given in (2.2).

3 Numerical Results

In Figures la and lb respectively, we show the position and velocity profile of

the chain when a constant subcritical velocity i(t) = io(t) = 1 is imposed on

the leading particle. In Figures 2a and 2b, we display the same information

but now for a supercritical driver i(t) = io(t) = 4. In this case one observes

residual binary oscillations in a neighborhood of the forcing particle. The

length (=number of particles) of the chain over which oscillations occur is

given asymptotically by sIt while the length of the chain that displays binary

oscillations equals 82t. Both speeds s, and 82 are calculated in [7].

In Figures 3 through 8 we present the asymptotic (large t) position profile

and the spectral profile of the lattice when a zero-mean, time-periodic pertur-

bation is added to a subcritical forcing velocity. We vary the frequency and the

amplitude. We have chosen three frequencies and two amplitudes. We label

the latter as "large amplitude" and "small amplitude".

We observe that when the frequency is large enough, the oscillations do not

penetrate the chain (see Figures 3a and 4a). The continuous spectrum emits

eigenvalues that fill up the interval (-1.5,-4.5) as is seen in Figures 3b and

4b. Asymptotically the spectrum changes from the interval (-0.5,1.5) to the

interval (-1.5,1.5). The new spectrum corresponds to the residual compressed

state of the chain that results from the constant part of the forcing.
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The phenomenon of non-penetration of the chain by high-frequencies is

easily understood in the case of a linear chain where the threshold frequency

can be directly calculated. The phenomenon persists in the nonlinear case.

When the amplitude of the driver is small, there is again a threshold frequency

which we can calculate. For larger amplitudes and for forcing velocities of the

form io(t) = 2a + f(wt), where f is 2w-periodic and w > 0, it is not yet possible

to compute the threshold frequency w = wo below which penetration occurs.

In this large amplitude situation, w0 will depend on the shape of f.

When the forcing frequency and waveshape are such that oscillations begin

to arise in the chain, a dramatic change occurs in the spectrum. The emitted

eigenvalues cluster in bands as is seen in Figures 5b, 6b, 7b, and 8b. If the driver

is of the form i0(t) = 2a + ef(t), 0 < a < I, e small, we can verify numerically

that the residual state of the chain at t = oo is described precisely by solutions

of the type constructed in section 1(c), which, therefore, constitute the set of

attractors for the forced chain (1.1). We believe, consistent with the numerical

evidence, that the same situation occurs when e is large. However, we have not

yet been able to construct solutions analogous to the ones of section 1(c) in this

case. The technical difficulty lies in connecting the boundary forcing at n = 0,

through a boundary layer, to the g-gap algebraic/geometric solution at large n.

We note again that as the frequency of the driver decreases, more wave-phases

are activated and correspondingly more gaps appear in the spectrum.

In Figures 5c, and 7c, we plot the (integrated) spectral density, i.e. the

number of eigenvalues below A (=spectral parameter), divided by time. In

Figures 5d, and 7d, we plot the same densities as predicted by our theory that

is based on taking the continuum limit of the eigenvalue evolution equations of

Theorem 2.3. Our theory is not yet complete. We cannot predict the endpoints

of the band/gap spectral structure. To derive the predicted densities we had

to use the numerically obtained values for the endpoints.
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4 The Continuum Limit

We o•,ttine our main result in taking the continuum limit of the eigenvalue

evolution equations of Theorem 2.3. It is clear numerically that eigenvalues are

emitted from the continuous spectrum at a rate that is constant if averaged over

a large period of time. It therefore is assumed that the number of eigenvalues in

an interval grows linearly with time. The density function ik(A) is defined as the

difference between the asymptotic density of eignvalues at time t and at time

zero normalized by dividing by the time t. In other words, the asymptotic

(large t) number of eigenvalues in an interval (A1, A2) minus the number of

eigenvalues in the same interval at time t = 0 is given to leading order by

the integral of ip over the interval, multiplied by t. We derive the following

continuum limit of the eigenvalue dynamics:

(4.1) A- < a0 > -_I ffologI•A - pj(1)dp = 0 when A is in B,

lk(A) = 0 when A is not in B.

(4.2) ff2I i(A)dA = 0 (conservation of eigenvalues).
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In these formulae < ao > is the mean value of the given velocity ao(t) and

the set B is the support of the density function 10. The set B is one of the

principal unknowns of the problem. The density function ,p is required to be

nonnegative in regions in which the original (t = 0) density of eigenvalues is

zero.

We utilize the fact that the derivative of the integral kernel in (4.1) with

respect to A is the integral kernel of the Hilbert transform, to reduce these

equations to a Riemann-Hilbert problem, which we can solve if we have some

additional information on the set B. This additional information could be

gained if we could keep a higher order term as we pass to the continuum

limit in our derivation of equations (4.1) and (4.2), which we have not yet

succeeded indoing. However, once B is known from the numerical experiments,

we can solve the system (4.1)-(4.2) for ib. Integrating 0, we obtain the spectral

densities of Figures 5d and 7d, which compare favorably with the spectral

densities computed numerically directly from the data and displayed in Figures

5c and 7c.
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Asymptotic Model for Deflagration-to-Detonation
Transition in Reactive Two-Phase Flow

Pedro F. Embid*

Abstract

The Deflagration-to-Detonation Transition (DDT) in energetic granular materials
is a complex multiphase phenomena involving many thermal and mechanical effects
among the solid and gas phases. Baer and Nunziato introduced a continuum system
of equations in their study of DDT in reactive two-phase flows. This system becomes
resonant when the compaction wave speed of the solid equals one of the gas-acoustic
wave speeds. Combining high-energy activation energy asymptotics with nonlinear
geometrical optics, we develop an asymptotic model for the resonant wave interaction
of a fast moving burning front and one of the gas-acoustic waves. This model is
capable of predicting in qualitative fashion several of the scenarios documented for
DDT through large scale computations. In addition, the va.rios scenarios occur for
different choices of parameters in the asymptotic model, which have direct physical
interpretation in terms of the asymptotic procedure.

1 Introduction

Understanding the process of Deflagration-to-Detonation Transition (DDT) is a key safety
issue for the industry and the military [4]. The problem is particularly complex in reactive
multi-phase media. However, there are several identifiable stages in DDT [1, 4]. In the
initial conductive stage the flame is propagated mainly by heat diffusion. Next there is the
convective stage where the flame rapidly grows and accelerates through heat and momentum
transfer between the solid reactant and the hot product gases. This is followed by a com-
pressive stage characterized by further acceleration and the development of a shock in the
solid phase. Finally, the wave continues to grow to a fully developed detonation wave. This
description indicates that heat and momentum transfer between the solid and gas phases are
important mechanisms in DDT. Among these transfer effects one has the preheating of the
solid explosive by the generated hot gases, the formation of zones of high compaction in the
solid and choking of the gas flow in the convective stage, and load transfer leading to shock
formation in the solid in the compressive stage.

Recently, Baer, Nunziato, and their collaborators [1, 2, 3] developed a complex system
of equations for describing transition to detonation in reactive granular materials. Their

*Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, partially
supported by ARO DAALO3-91-G-0186, NSF DMS-9103551 and Sandia Nat. Labs. contract no. AG-8346
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approach involves the rational continuum theory of mixtures and a systematic use of the
second law of thermodynamics. The resulting system of nonlinear equations involves fluid
mechanics for the gaseous phase and solid mechanics for the grains coupled together through
an equation for the volume fraction of the solid as well as source terms involving the bulk
effects of surface chemistry and compaction.

Numerical integration of this system of equations yields excellent qualitative and quan-
titative agreement with the available experimental data for various types of secondary ex-
plosives, such as CP and HMX. This data involves the trajectory of the flame front, run
distance to detonation and the time to detonation for various inital values of the precom-
pacted granular bed [1, 2, 31.

However, an important theoretical problem consists in identifying key physical mecha-
nisms that are responsible for the formation of hot spots and the transition to detonation in
multi-phase flows. Rather than attempt a direct study of the formidable system for reactive
multi-phase flow, we develop and analyze a simplified asymptotic system, valid near special
resonant flow states to be described below. We then show that this asymptotic model can
reproduce in qualitative fashion many of the scenarios of DDT documented for the multi-
phase flow system through the use of large scale computing [1, 2, 3]. This paper reviews some
of the results I obtained in collaboration with A. Majda, M. Baer, and J. Hunter [6, 7, 8],
and it is organized as follows. In Section 2 we present briefly the characteristics analysis
for the reactive multi-phase flow equations of Baer and Nunziato and exhibit the singular
resonant points. In Section 3 we discuss the asymptotic model for hot spot formation valid
near resonant points. Finally, in Section 4 we analyze within the context of the asymptotic
model, the nonlinear mechanisms for the development of hot spots.

2 Characteristics analysis of the multi-phase system
and resonant points

The reactive multi-plhase flow equations formulated by Baer and Nunziato are based on the
continuum theory of mixtures, where both the solid and gas phases are assumed compressible
and in thermodynamic non-equilibrium. An important. difference between their formulation
from previous systems for two-phase flows is in how the closure of the system is obtained.
In addition to the usual saturation constraint and equations of state for evJ11 phase, the
solid volume fraction is recognized as an independent degree of freedom, and its evolution is
described by an equation consistent with the second law of thermodynamics [1].

More specifically, let the subscript a denote either the solid(a=s) or the gas(a=g); the
Baer-Nunziato system consists of the following 7 evolution equations [1, 2]

Conservation of mass:

it-(0 P) + ( , (1)

Conservation of momentum:

a a 2 M =
-(•kapnl') + .(0'"(P"?17a + Pa)) - P 9-,• a (2)
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Conservation of energy:

0 0 E (0p.oo. •
(.p .) + ((p.E + p.)v.) - p, 0-v. = e(3)

Compaction equation for the solid volume fraction:

(90 00. c!t

81 + . Ox -- +fc (4)
Ps

Saturation constraint:

k. + ¢ = 1 (5)
Equations of state for each phase:

fa = ea(pa,Pa). (6)

Associated to the a-phase is tile velocity v., material density Pa, pressure pa, temperature
T., internal energy ca and volume fraction 0.. The total energy is given by Ea =_ + va/2.

For simplicity we assume that both phases are described by equations of state of ideal
gas type

Paea -
Pa [a (7)

Ta =e

with c', Fa constants. [a is the Grfineisen coefficient and it is related to the -y-gas constant

7a by Fa = If. - 1. Representative values for the gas and the solid are Fg = 0.2 and r. = 3.

Next we discuss the phase interaction terms Ca, ma and a First of al, since mass,

momentum and energy for the mixture have to be conserved, the phase interaction terms
must satisfy the constraints

ct -ct

rn M! (8)

The reaction term c5 gives the rate of depletion of the solid due to surface burning and for
simplicity we assume a one-step forward reaction with Arrhenius kinetics

ct = -Kp~exp (A (~- ,(9)

here A is the activation energy, Ti is a reference temperature, and K is the pre-exponential
factor. All are assumed to be constants. T is the mixture temperature and it is given by
T = 4oT. + 0. T9.

425



The second term f, in the compaction equation represents changes in volume fraction
due to pressure differences, and it is given by

ýo = ° (P. - p, - , (10)
PAC

where pc is a compaction viscosity coefficient and /o.(k.) represents intergranular stress due
to grain contact.

The phase interaction terms m! and e! for the exchange of momentum and energy are
given by

t! = ... 6 +4)! (v, - v's) + 4'tvS

2 ) (11)

e! = - (6 + ) (v. - v,)v. - (p. - P.)fc - h(T. - T) + E.c.(

The terms in Eq. 11 involving c' and f, represent exchange in momentum and energy due to
chemical reaction and compaction respectively. 6(v. - v.) represents changes in momentum
due to drag, and h(T. - T.) represents changes in energy due to convective heat transfer
between the gas and the solid.

Next we discuss the characteristics for the reactive multi-phase system. All the algebraic
details can be found in [6, 7]. With u = (p.,VSPSI P9, pV 9, P•)T, Eqns. 1-4 can be written
in matrix form as

Ao(u)- + Al(u)- =S(u), (12)
at ax

where Ao(u) and Al(u) have the block structure

,Vfo(u.,) fo(u.) 0
Ao(u) =u0 1 0

0 -- oug) 09W (Vfo(u9 )
(OIV.f,(u 3 ) f1 (u0)+e(u) 0 (13)

A1(u) = 0 v, 0
0 - )- e(u) OgVf(U)

with fo(u.), f1 (ui) and e(iu) given by (a =s,g):

fo(ua) = (pa,pal'a,paEa)T ,a = s,g
fM(u.) = a, + 1p,(p2 + P)'a)T, a = s,g (14)

e(u) = (0O-pg, -pyvs)T.
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The characteristic analysis of the system is determined by the study of the eigenvalues Aj(u)

and their associated right eigenvectors rj(u), j = 1,..., 7, of the matrix equation

A-i (u)Ao(u) + Ai(u))r (u) = 0, (15)

and they are given by:
Eigenvalues

A, = tg+Cg, A2  = lys, A3  = V., A4  V- o, (16)
AS = V9, A6 = Va + Ca, A7 = Vs-C'

Right Eigenvectors

rl = 0, 0,0, 0,1, Ef , 2

r2= 0,, •pc

=2 (o01 0 - , (-. Ig [(Va - V,) 2 _ C'2] _~I[(ta -vO)
2 

-C12,

(v. - v,) 2 va - V, (v. - )2

C'2 9 Pg

r3 = (1,0,0,0,0"00)T (17)
/T

r4 = 0, 0, 0,0, 1, _p9, C'2

r5 = (0, 0,0, 0, 1,0,0O)TCs Cg 21

r6 -- 1, -- C'2 ,o , 0, 0
PS

rr = 1,_ C_. 2, ,• 0, 0,0
r7 = PS 3 )8 .

Clearly the system is hyperbolic, with the wave speeds corresponding to the standard acoustic ..
and particle speeds for each one of the phases. This fact is important both from the physical
and computational grounds. In fact, several of the older models proposed for multi-phase
flows exhibited complex characteristics and elliptic regions at low speed regimes [5, 131. This
triggers catastrophic instabilities of ltadamard type at the initial deflagration stage and
invalidates the results of numerical calculations. The right eigenvectors of the system are also
the standard acoustic and entropy modes for each phase, with the exception of the eigenvector
r2 does not have an analog in one-phase flow and corresponds to compaction waves. Although
the system is hyperbolic it is not strictly hyperbolic because ty, is a double eigenvalue, and
also because the wave speeds associated with each phase change independently of each other,
so that the eigenvalues of the solid phase can coincide with any of those for the gas phase.
However, the system is totally hyperbolic: it has a complete family of associated right
eigenvectors, except at special singular points. These singular resonant points are realized
when one of the acoustic signals for the gas equals the solid particle speed: v, = v. ±- cg. In
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this case the compaction mode degenerates "nto one of the gas-acoustic modes:

lim r2 (u) = r1(u)
A 

(18)
lim r2 (u) = r4(u)

Va I'gC#

The singular resonant points v. ± c = v are also known as choked flow points [6, 7] because
at the pore level they can be interpreted as choking of the gas flow through the pore space
between grains. For definiteness consider the first case where r, and r2 are aligned. The
other case is analogous. In this case v. is a triple eigenvalue with only two eigenvectors r,
and r3. In fact, there is now a 2 x 2 Jordan block structure coupling the acoustic eigenvector
r, with a generalized compaction eigenvector which we still denote by r2:

(-AAo(u) + Ai(u))rl = 0

(-AAo(u) + Al(u))r 2 = -Ao(u)rl (19)

(-AAo(u) + Al(u))r 3 = 0,

where r2 is given explicitly by

=2 0, 0, 20g p, -Pg _ 29 0, , (20)
Pgc' 0s pg -g "P

The algebraic structure displayed in Eq. 19 already puts in evidence the resonant character
of the choked flow points through the coupling of the gas-acoustic and the compaction eigen-
vectors. However, the solid entropy mode remains decoupled from the other two. Therefore
near choked flow conditions there is strong nonlinear interaction due to the coupling the
gas-acoustics and compaction modes: it is near these resonant points that the simplified
asymptotic model will be formulated iM the next section.

3 The asymptotic model near a resonant state

The full derivation of the asymptotic model near resonant. points is given in [7]. The in-
terested reader can study the details of the length%, derivation there. Here we just want
to comment, on the physical and mathematical basis of the derivation and connections of
the asymptotic model and the continuum reactiv-e multi-phase system. The purpose of the
asymptotic model is to describe the nonlinear resonant interaction of the gas-acoustics and
compaction modes at the convective stage of DDT, with a fast. moving wave satisfying near
choked flow and ignition temperature conditions. The physical mechanisms singled out are
the resonance of the gas-acoustic and compaction modes, the burning of the solid explosive,
and the convective heat transfer from the hot gas products to the solid combustible. The
mathematical derivation of the model is asymptotic in nature and combines the methods of
nonlinear geometrical optics with large activation energy asymlptotics [9, 10, 11, 12]. There-
fore we assume: I. a resonant background state u0 with v.*L = .iO + c. 2. near ignition
temperature conditions for the background state. 3. Large activation energy for the reac-
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tion, and 4. weak chemistry for the reaction. This last requirement is due to the small
amplitude nature of the asymptotic approximation. The reactive multi-phase equations can
be cast in nondimensional form as follows (see [7] for the details of the scaling procedure):

Ao(u) 5F + A,(u)- = ,S(u, uo, e). (21)

The relevant nondimensional parameter e is proportional to the inverse of the activation
energy, so that e << 1. The nondimensional matrices AO(u) and Al(u) have the same form
as in Eqs. 12-13. In the nondimensional source term S(u, uo, £) the dominant effect is due
by heat convection, followed by chemical reaction and drag:

CS(U, Uo, f) = fS'(u) + fR[W(u, uo,' )S 2 (u) + S2 (u)] + f3S3(u), (22)

where
S1(11) - h(T - T).(,,1, 0, 0, 0, 1)T

S (v1_ v=v 11 + o_+v_, _ _V 82 +2 p 2 2

W(u, uo, f) = krexp (! (T- T)) ,To = 1 (23)

S 2 (u) = -(v, _ V9).(0, 1, -vt, 0, 0, 1,v)

S 3(u) = .:.(0, 0, -p. + 3', 1,0,0,p. - T/)T

M(,,) = kco+,-09(p. - p. - A.)

In the nonlinear geometrical optics approximation we assume small amplitude high frequency
waves around the background resonant point u0 with resonant speed A -= vO + c,. With
the fast variable 0 = (x - At)/c the ansatz of nonlinear geometrical optics becomes

U'(0, t) = uo + i(-iT(t) + a, (0, t)ri) + e2 (u2(0, t)r 2 + .. ) + O(dZ). (24)

Here Wit(t) represents the mean-field effects due to convective heat transfer, o,(0, 1) is the
gas-acoustic perturbation amplitude, and 0 2 (0, t) is the compaction perturbation amplitude.
The resonant character of the approximation is already evident at the formal asymptotic
level, where the order c2 compaction term resonates with the order f gas-acoustic term. We
also omitted for simplicity the contributions of the solid entropy mode in the asymptotic
approximation because from the algebraic structure of the system at resonant points given
in Eq. 19, it is apparent that the coupling of the solid entropy mode with the other two is
going to weak, and only through the source term. Nevertheless, the solid entropy mode is
considered in the derivation given in [7].

The initial data is a perturbation around the resonant background state u0

it'(X, 0) = uo0 + C (IT1 + ao (X) ri) + f 20, (X) r2 . (25)

where the initial. mean field perturbation ITP at order c is given by (,
r, is given by Eq. 17 and v2 by Eq. 20. Without going into the lengthy details of the
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derivation given in [7], the resulting asymptotic system for the resonant interaction of the
gas-acoustic and compaction mode is given by:

o + co + f,.( + o(+2)
p;pPo +f (p., + tr r.•( - r.)/IoP) + o(C2)

00= Co+ ' _ f2 2,•aO(O, t)/pc• + 0(0,) (26)

9 pO + f(; + al (0, t)) + o(C2)

0vo + f (Ul + C0,,(0,t)) /po + 0(c 2 )

0, o ( _rh(7 - I)/Io + (co) 2 G,,(0, t)) + o(f2)
,g / pgo + e p,-tr.r

where the gas-acoustic amplitude oa,(0, t) and the compaction amplitude o2(0, t) satisfy the
simplified asymptotic equations:

Gas-acoustic mode:

0a 80` +2 0 J020(+ (a, -2bt)a, + c00! - (27)
00 +07 -bt2)i +0 002

Compaction mode:

002 - Rexp(ala, + #I + /32t), (28)

900
Eqs. 27-28 have been written in a coordinate system that makes a2 stationary. The coeffi-
cients in Eqs. 27-28 are given explicitely by

Wave speed coefficients

cl = F[ + 2 > 0

9 0-2 po

2k P9

a3o



Source term coefficients

,(pO)2

p. po P P O ( 3 0 )

/32 = (7-9r(.~

R = 200 > 0.

From Eq. 26 it follows that an increase of the gas-acoustic amplitude a, corresponds to
the increase of the physical variables p9 and p.. Similarly, an increase of the compaction
amplitude a2 corresponds to a decrease of the volume fraction 0.b of the solid, i.e. to burning
of the solid. These will be relevant when studying the numerical solutions of the asymptotic
system in the next section.

Of all the parameters in Eqs. 29-30 the most relevants in our analysis are b1 and /2.

Both parameters include convective heat transfer effects from the background state uo. b,
controls the linear recesion speed from the burning front in Eq. 27. If b, > 0 then the there
is drift away from the burning front and the opposite occurs if b, < 0. It is clear from Eq.
29 that

b, >0 iff T>7T•, (31)

that is, if at the background state the product gases preheat the solid by heat convection. b,
also is relevant in studying the resonant behavior that the asymptotic system inherits from
the multi-phase equations. The measure of how near the flow is from resonance is given
by the relative Mach number" M defined by M = (v. - v9)/lc. In terms of the asymptotic
approximation in Eq. 26 is given by

M = 1 + c(blt - cl a, - al)/cg + 0(d 2 ). (32)

Hence, if a burning front initially has M < 1 but b, > 0 we expect that it will accelerate
and go through the resonant state Al = 1 in finite time. In the next section we will specify
the initial data so that M < 1.

The other relevant parameter is /32. From Eq. 28 it follows that the chemicla reaction
is accelerated if 32 > 0 and inhibited otherwise. Therefore /2 is an important parameter to
consider in the creation of hot spots. From Eq. 30 it follows that

T,0  rs

/22>0 iff 1< o< g •(33)

that is, in order to enhance the reaction the gas needs to be hotter than the solid but the
temperatures cannot be too disparate, with a bound of their ratio in Eq. 33 given by the
Griineisen coefficients. With F,, ; 3.0 and Fr ; 0.2 we have an upper bound in Eq. 33 of
the order of 60.
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4 Hot spot development in the asymptotic model

In this section we discuss the qualitative predictions that can be made with the asymptotic
model. The discussion is based on the paper by Embid and Majda [8J where the interested
reader is referred for a more complete discussion of the cases presented here as well as
additional cases of interest. The reader can find also in [8] a discussion of the numerical
method used to solve the asymptotic system as well as interesting analytical solutions of the
equations for the non-reactive case. For the experimental set-up we consider the situation
were a fast moving burning front is initially near resonance. More specifically, we assume
at the start a fairly stiff situation were there is no gas-acoustic disturbances produced, so
that a(O, 0) = 0, and the compaction mode is a monotonic decreasing profile as depicted in
Fig. 1, so that there is more compaction on the right. The initial data is chosen so that the
wave is subsonic (M < 1) but near resonance. From Eqs. 29 and 32 it is clear that this can
be achieved with ito a resonant state and by adjusting the initial mean field correction Ul so
that a, > 0. With this prescription of the initial data we consider three cases of interest. In
case I there is no chemical reaction. Case 2 has chemical reaction enhanced with a choice
of 6)2 > 0. Finally case 3 has inhibited reaction with #12 < 0. The numerical solution of the
Eqs. 27-28 was clone with operator splitting and a higher order Godunov scheme for the
nonlinear wave equation. For the details the reader is referred to [8].

Case 1: R = 0, b, = 5 (no reaction). In this case it is clear from Eq. 28 that the
compaction amplitude a2 does not change in time and it remains the monotonic decreasing
profile in Fig. 1. On the other hand, the inhomogeneities in 0'2 act as a source term for
the gas-acoustic amplitude in Eq. 26. Overlays of the gas-acoustic amplitude in time are
depicted in Fig. 2. From an initial uniform zero state merges a wave that grows initially in
amplitude. Because b, > 0 the wave moves to the left of the burning front. From Eq. 32 the
wave also becomes resonant in finite time and develops a shock wave. Afterwards the wave
amplitude decays in time.

Case 2: R = 1, bh = 5, p32 = 2 (enhanced reaction). Overlays in time of the solution
for the amplitudes a1 and ( 2 are depi. ted in Figs. 3(a) and 3(b). At the initial stages from
t = 0.0 to I = 2.0 the biehavior of a, is similar to case I with a shock wave moving to the left
of the burning front. A this stage (- 2 shows essentially uniform burning throughout but with
the presence of small (listurnbances produced by the left. moving gas-acoustic shock wave.
However, by time I = 2.5 the feedback mechanism built in the asymptotic system produces
amplification of the gas-acolstic mode and the formation of a, region of relative compaction
in ao2. The resonant feedback mechanism enhances the growth of this gas-acoustic hot-spot
and at. the same time creates a zone of enhanced burning of the solid ahead of the region of
relative compaction, represented by the spike in 0a2 at times I = 2.8 and 2.81. At this stage
the resonant feedback between both modes is very strong and induces the very rapid growth
of the hot spot.. Shortly after, by time / = 2.816 and at location x = -14.9, the maximum
measured( amplitude for or, ia. about :3.3 x 10' while the amplitude for ar2 yields values of
(machine) infinity. Clearly, at this point we are beyond of the regime of validity of the
asymptotic approximation and possibly other physical effects not incorporated in the model,
such as compression of the solid may be relevant. We point, out that the behavior described
in this case is qualitatively similar to the situation documented in [1] for the combustion of a
column of IIMX with 95 % initial density. The numerical solution of the reactive-multiphase
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equations shows the birdth and growth of a hot spot during the convective stage of DDT
(from 10-20 psec. and this hot spot moves away from the compaction front at a linear speed,
in accordance with the predictions of the asymptotic model. We also remark that in [81
we discuss other parameter choices were the hot spot grows within the compaction burning
front. This situation has also been observed in the multi-phase flow equations [1, 2, 3].

Case 3: R = 1, b, = 5,/32 = -0.1 (inhibited reaction). Overlays in time of the solution
for the amplitudes a, and a2 are depicted in Figs. 4(a) and 4(b). In this case we notice the
strong inhibiting effect that a negative value of /32 has on the resonance mechanism and the
creation of hot spots. In this case we notice that the gas-acoustic solution depicted in Fig.
4(a) does not develop a hot spot. In fact, the solution is almost identical to the nonreactive
case depicted in Fig. 2. Also revealing is to observe the behavior of the compaction amplitude
in Fig. 4(b). Here the compaction wave goes through essentially a very slow and uniform
burning (compare with Fig. 3(b)), with the development at the initial stages of small small
disturbances tha-i cannot amplify and rapidly die out. Situations qualitatively similar to
the one described here are observed in stable fast deflagration waves that do not transit to
detonation [31.

5 Conclusions

We have studied a state of the art continuum mixture theory system of equations for reactive
multi-phase flow utilized in the study of DDT. We identified interesting singular states for
the flow and using the methods of nonlinear geometrical optics and high activation energy
asymptotics, derived a simplified asymptotic model to study the formation and growth of hot
spcts. We showed how by chosing different values of selected parameters one can reproduce
in qualitative fashion different scenarios for DDT documented in the literature. By design
the model applies only on the small amplitude regime and provides no insight on the later
stages of DDT process. On the other hand, the model provides interesting parameter regimes
with physical significance that indicate whether or not hot spots will develop and the relevant
physical mechanisms responsible for it.
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Figure Captions

Fig. I Initial burning wave profile for the compaction mode 02

Fig. 2 Overlays of the gas acoustic amplitude 0, for the nonreactive wave with heat con-
vection. Case b, = 5. Snapshots recorded from t = 0.0 to t = 10.0 at time intervals
At = 1.0.

Fig. 3 Overlays for a reactive wave. Case b, = 5,32 = 2. (a) Amplitude ar. (b) Amplitude

a2. Snapshots recorded at times t = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 2.6, 2.7, 2.8, and 2.81.

Fig. 4 Overlays for a reactive wave. Case b, = 5, 02 = -0.1. (a) Amplitude or. (b)
Amplitude a2. Snapshots recorded from t = 0.0 to t = 10.0 at time intervals At = 1.0.

435



02

am

E
0

Ux

bO L

:2-

CL

Eu
0.u

03



* I I I I I I I I I S

0

0so
I -

0
0

I
c�4

XbO
Lr

0so
wOI

0
0

0
a I I a I I I a a e I i

0 C'2
I I I

Ta

437



J I I I 5 5 I I I I I *

0

LO

-f-o

LL.

It

I I

438

43'S



I T,

LL.

t I * I I~

0\ 0 0 0 00

0Z



U~~~~ 9

0~

0e
0 CQ I

T.0 440



oil
CQ

CQI

ZbO
Pill



THERMIONIC EMISSION FROM HIGH-Tc SUPERCONDUCTORS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The superconducting state of a high-T, material with T < T. is
described by a coherent spacetime state in which the electrons of a Cooper pair
rotate coherently or incoherently in the azimuthal angle space and time
variables, and move coherently in the radial space and time variables. In this
sense the electrons of a Cooper pair are localized in the radial space and time
coordinates. The normal state of a high-Tc material with T > T. occurs when the
electrons in a Cooper pair are in a partially coherent radial spacetime state.
The equilibrium equations for a pair of Cooper electrons are formulated for tne
coherent radial spacetime conditions of the superconducting state, and it is
found that for a weak attractive Coulomb pairing force the rotation is non-
Keplerian in the sense that the angular frequency of rotation is independent of
the separation distance of the two electrons of the pair. Applications to the
theory of thermionic emission from high-Ta materials are considered, and the
thermionic emission current is calculated for the normal and superconducting
states. The thermionic emission current for the normal state of a high-Tc
material is found to be given by a modified Richardson-Dushman equation with T2

still as the leading temperature dependent term, while the thermoemission from
the superconducting state is given by a totally different expression which does
not have the leading quadratic temperature term but instead can have leading
temperature dependent terms of the form TO, T1/2 , T or T31 2 .

1. INTRODUCTION. The discovery of high-T. superconductors brings the
promise of the development of a new technology in communications, power
generation and transmission, and mass transportation.1- 5 High-T, superconductors
for instance will lead to stronger electromagnets for research and industry. The
prospective uses are limitless if the high-T. materials can be found that have
important material properties such as ductility, malleability, strength and the
ability to maintain the superconducting state in the presence of the magnetic
field generated by the current flowing in the high-T, superconductor. The
materials have to be designed to exhibit these useful engineering properties in
addition to having the property of high-T. superconductivity. Trial and error
design of such substances is of value, but considering the magnitude of the
number of inorganic and organic compounds that need to be investigated it is
clear that the trial and error approach should be supported by an analytical
method for the design of high-T. compounds having engineering value.

New material design requires an understanding of the chemical and physical
processes that occur in a material to produce a high-T. superconducting state.
Unfortunately the underlying mechanism of high-Tc superconductivity is not
completely understood for the layered oxide, organic, or heavy fermion type of
superconductors. This paper develops a theory of the thermionic emission from
high-T. materials which can possibly lead to the development of an analytical
understanding of the properties/structure relationship for these materials.
Specifically, the paper investigates the motion of electrons in Cooper pairs that
form in high-T. superconductors, and calculates the various forms of the therm-
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ionic emission current from high-T. materials. The motion of electrons in
high-T, materials are subject to the broken symmetry nature of spacetime in these
materials, and the electrical properties of a high-T. material will depend on the
type of broken spacetine symmetry that occurs in the Cooper electron pairs. The
outline of this paper is as follows: Section 2 considers the non-Keplerian mo-
tion of the electrons in a Cooper pair in the superconducting state of a high-T,
material, and Section 3 develops a theory of the thermionic emission from the
normal and superconducting states of high-Tc materials.

As in conventional BCS theory, high-T. superconductivity is generally in-
terpreted as being due to a broken gauge symmetry associated with the formation
of Cooper electron pairs in the ground state. 6 "g The electron-phonon interaction
probably is responsible for the attractive force between two electrons that are
located in the vicinity of lattice atoms. 6 -9 However, these concepts have not
been able to explain the large values of the measured normalized superconductivi-

energy gaps in high-Tc materials which have the following range of values-1 5 ' 9 -

3 < 2A/(kT,) < 8 (1)

The large values of the measured normalized superconducivity energy gaps for
high-Tc materials has been interpreted as being due to a strong binding of the
electrons in a Cooper pair.1-5  In fact the BCS theory of weakly interacting
electrons in a Cooper pair predicts that the normalized superconductivity energy
gap is given by

2A/(kTc) - 3.52 (2)

where in this case the half-width gap A refers to absolute zero temperature.

Recently a broken spacetime symmetry theory of high-Tc materials was
developed that assumes that for the superconducting state the space and time
coordinates of the electrons in a Cooper pair change by a coherent rotation in
an internal space, i.e. space a. d time are localized for the electrons in Cooper
pairs. 13 . 14 This concept predicts that if the two electrons in a Cooper pair are
weakly interacting the normalized superconductivity energy gap is nevertheless
not given by the BCS value but instead has the value13 .14

2A/(kTc) - 6/x(3.52)(1 - 4/7 e.)- 1  (3)

where 8. - internal phase angle of the relative acceleration of the two electrons
in a Cooper pair. The factor 6/r arises from the condition of superconductivity
in a broken spacetime symmetry theory of Ohm's law and the assumption of free
electrons (weak interaction) which require that the internal phase angle of co-
herent time has the value et - r/6.13 The normal state of a high-Tc material is
interpreted to be a partially coherent spacetime state. 13 . 14 Laboratory me "sure-
ments using a variety of experimental techniques on various types of h2 h-Tc
materials has yielded values of the normalized superconductivity energy g~p that
are larger than the BCS value of 3.52 as indicated by equations (1) and (2).1-5.
9-12,15,16 This is true for the common oxide high-Tc materials and for the alkali
metal doped C6 0 fullerines. These large values of the superconductivity energy
gap are due to the factor 6/w that is associated with the coherent radial motion
of the electrons in the Cooper pairs of a weakly interacting high-Tc materi-
al. 13,14
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Within the weakly coupled electron gas of a high-Tc material the space and
time coordinates are complex numbers in an internal space and can be written as
17,18,20

- t exp(JOv) (4)
V V t

- v exp(J V) (5)

where v - x , y, z for cartesian coordinates, v - r, * , z for cylindrical polar
coordinates, and v - p , , • for spherical polar coordinates. Strictly speaking
a time coodinate is associated with each space coordinate as in equations (4) and
(5), but for homogeneous spacetime it follows that

t V = et (6)t=t 8t t

for all v . Essentially the broken symmetry of spacetime can be deduced from a
relativistic trace equation for matter and energy. 17-1 The differentials of
the time and space coordinates can be obtained from equations (4) and (5) to be
17,18,20

dtV =sec 8tt dt exp(jt ) csc 0tt t de' exp(ji) (7)
Vtt V t tt V t t

dU = sec 8VV dv exp(j4 ) = csc aVV vdeV exp(j$ ) (8)

where

tan 8Vt = t ae l/t (9)
tt V t V

tan 6VV = ve V /v (10)

V = V + 8y (11)
t t tt

4 = e +8 (12)
V V VV

Then the magnitudes of the differentials of space and time are given by 1 7 ' 18 ' 2 0

Idit I sec dt csc t dOv (13)
v tt tv tt t

161I = sec 6 dv = csc $V. vd6V (14)

and the measured values of the time and space coordinates are given by17,18,20

t =t Cos 0 (15)
vm V t

V = v cos 0 (16)
m V

where v = x,y , z ; r ,,z or p, ,i
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The velocity and momentum components of a particle moving in broken sym-
metry spacetime must also be written as complex numbers as follows 1 7 ,1'• 2 0

v vv exp(J vv) = d//dtV (17)

Pv PV exp(JOp ) - m9 (18)

where v = x , y , z . The momentum magnitudes can in general be written in four
equivalent ways that can be used to pass to the four possible limiting symmetry
states of spacetime namely, incoherent space and incoherent time, coherent space
and incoherent time, incoherent space and coherent time, and coherent space and
coherent timex7,18,20

pv = mvV = m sec 8 cos 8 t dvidt (19)

M m csc 8 cos att v de /dt (20)

-msec8 sin8V t-1 dv/dO (21)
m Vv si tt V

mcsc 8 sin 6 V v/t dO /dO' (22)vv tt V V t

where v = x y z . The internal phase angles of the velocity and momentum com-
ponents are written as 1 7 ,

1 8' 2 0

v f = + 0 -& 8V (23)vV pv V VV - t -tt

The differentials of the complex number components of the single particle momen-
tum can be written in two equivalent ways17,18,20

d~v = sec pVpV dp exp[j(Opv + apvpv)] (24)

= csc pVpV pV dOpv exp[j(Opv + pvpv)] (25)

where

tan 8pVpV = pvO ap V (26)

tan B v Vae vl/aV (27)

and where

8 = 8 (28)
pVpv vvvv

For high-Tc materials the physically interesting spacetime states are the par-
tial spacetime coherence case of nearly incoherent space and nearly incoherent
time which described the normal state, and the case of coherent space and coher-
ent time which describes the superconducting state. Ordinary metallic conduc-
tors correspond to incoherent space and incoherent time.
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The angular speed of a body moving in the xy plane in spacetiae with
broken internal symmetries is written as a complex number in internal space as
17,18920

S- w exp(JO ) = dj/dt* (29)

where

w sec B.. cos a t do/dt, (30)

M csc 0  cos Of f dO /dt 0  (31)

t -1 f
= sec a., sin Of t;1 dO/dOt (32)

M csc 80 sin 0 */t de /dOd (33)

0 = 0 + a -0 t (34)W f *0 t tt

where

tan 800 f=f 0/3f (35)

0 =tO•t0
tan t =ta/at (36)

tt f t

and where ti is the time associated with the azimuthal angle 0

The linear acceleration of a particle in broken symmetry spacetime is
written as17,18,20

i a exp(JO dvv/dt = d 2/dt (37)
V V av v V v

where v = xy, z , r or p . The case v = r corresponds to the linear radial
acceleration in the x,y plane, so that

r a exp(JO ar /d = d 2 W/dt2 (38)ar ff r ep ar) rf drtr r

The magnitude and internal phase angle of the linear radial acceleration can be
written in a number of different ways that are appropriate for the various
states of zoherence and incoherence of the space and time variations. 20  For
the case of nearly incoherent space (Orr \ 0) and nearly incoherent time

(art % 0) the magnitude of the linear radial acceleration is written as20

a Cos r sec d/dt(cos r sec 8 dr/dt) (39)
r tt vrvr tt rr

0 =0 + + - 2(0, + r (40)
ar r rr vrvr t tt
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r
where 8Ot and 8vrvr are given by equations (9) and (27) as

tan $ 6/dt (41)
vrrt r y r

tan 8 vrvr ý v r36 vr /3Vr (42)

where tr is the time associated with the radial coordinate motion.

The magnitude of the linear radial acceleration term that is appropriate
to describe nearly coherent space (arr nu w/2) and nearly coherent time

(,rt - n/2) is given by the following expressions 2 0

Sr 2 2 1/2/t
a - sin 8tt (C + D ) It (43)
r tt rt rt r

= sin t csc0 C /t
tt vrvr rt r

where

Ct sin 8rcsc a n/t den/dert[d6 /do r 1 + d/det rr - (44)rr r r

D =d/dO (sin Or csc B r/t d6r/der) (45)
rt t tt nr r r t

tan 8vrvr =Crt/Drt (46)

csc 0 (C2 +D 2 ) 1/2 / (47)
vrvr rt rt rt

and where the internal phase angle of the radial acceleration is

e = + B + 6 - 2'r + r (48)
ar r rr vrvr t tt

For an attractive force and a negative value of the linear radial acceleration
it is convenient to write 2 0

a = a' exp(jOa ) (49)
n r ar

where

a' = - a (49)
r r

e I = a + 7T (50)
ar ar

=0 + +8 -2(0r +r +'I (51)
r rr vrvr t tt

For a positive acceleration
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+
ar a (52)

6+ M e' = e + + + ,2 (,r + (53)
ar ar r rr vrvr t tt
B+
vrvr + vrvr + i (54)

where Bvrvr is given by equation (47).

The general conditions for nearly incoherent spacetime are 20

a8 "SO 80 0 (55)tt vv

Oti n constant 6i • constant (56)t V

where v and t. are variables. The differentials of the spacetime coordinates
for this special case are obtained from equations (7) and (8) as

dt i= dt exp(jOt ) (57)
V V t

&U = dv exp(jO V) (58)

For this special case of nearly incoherent spacetime the momentum equations
(19) and (23) give

i i = mdv/dt (59)Pi i v V

0i = 0i - evi = constant 8 =0 (60)
pv V t pVpV

and equation (24) becomes

dp-i = dpi exp[j (oi - oVi (61)
V V V -et(1

where v = x, y , z , r or p for the linear momenta. For rotational motion in near-
ly incoherent spacetime v = * and equations (55) and (56) give

8 t ý 0 B 0 (62)tt B

"eti .constant i X constant (63)

t 4

and equations (30) and (34) give

Wi = do/dt4  (64)

S= 6 - = constant (65)
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For nearly incoherent spacetime in the radial direction v - r , rr -- 0
ort '1 0 and Ovvr A' 0 so that equations (39) and (40) give

a - d 2rldt 2(66)
r r

e - e - 2e -i constant (67)ar r t

For exactly incoherent spacetime all intern~al phase angles of the space and
time coordinates have zero values, i.e., Oe=0 n '2

For coherent spacetime 
2 0

8Vt= 1T/2 a = Tr/2 (68)

t= t c Mconstant V = VC = constant (69)
V V

where 0Vand 0. are now variables. The differentials of the time and space
coordinates are obtained from equations (7) and (8) as

dic = jcdO v (70)
V V t

d;U j;Ude V(71)

F~or coherent spacetime equations (22) and (23) give

vc = vc /t c dO /de V (72)
V V t

ec=06 - 6 (73)
vV V t

For the radial coordinate these equations become

Brt = w/2 7r~i/2 (74)
tt rr

t= t c =constant r =r c= constant (75)
r r

.fc=jt cder dC c jcdO (76)

vc = rc/tc d6 /de r (77)
r r r t

6 c = 0 - er (78)
yr r t

The case of rotational motion in coherent spacetime is described by

ýt=7/ = If/2 (79)
tt0
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t = t =M constant - * M constant (80)

dt, - j* de# dic "jcdo (81)

and equations (33) and (34) give

W c *c/tc dO /deO (82)
* *t

ec = e - (83)

where eý and 6¢ are now variables.

The complex number linear radial acceleration for a particle moving in
coherent space and coherent time under the influence of an attractive force is
obtained from equations (38) and (43) through (48) to be 2 0

-c -c/-c2.Ec c
ac exp(j0 r) = r -t (84)

r r ar r rt Frt) (8

a = r c/tc2 [(Ec ) 2 + (FC ) 2 1/2 (85)
rr rt rt

Oc = e + ac - 20r -Ir/2 (86)
ar r vrvr t

C t= r c/t cE cD t= r / t cF (7
rt r *rt rt r rt (87)

Ect = der/der(dOr/der 1) Ec < 0 (88)
rt r t r t rt

Frt = d28r/der2 F I 0 (89)
rt r t rt

tan c fEc /F (90)
vrvr rt rt

8c w/2 + (91)
vrvr rt

tan rt = F t/ IEt1 (92)

Combining equations (86) and (91) gives the internal phase angle of the accel-
eration of a particle in coherent space and coherent time under the influence
of an attractive force as

6c = r + 6 - 20 - T (93)
ar r rt t

which has values in the neighborhood of - iT For an attractive force it is
convenient to write the acceleration as2 0

ac a expJOa ) (94)
r r ar
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where

ac' _ac r C/tc 2 (Ec ) 2 +(FC )2]1/2 (95)r rt
0 C c + (96)

ear ar

0+ c - 20 r +n /2r vrvr t

=0 + 6 -2
r rt t

C,
where ear is a small number.

For repulsive forces the acceleration of a particle in coherent spacetime
is given by

.c+ . c2 c+ar = (E - jF) (97)

aC+ = rc/tc2 [(Ec+) 2 + (Fc+ )2] 1/2 (98)r r rt rt

8C+ = e + sc+ - 20r - 7/2 (99)
ar r vrvr t

with

Ec+ cEC+> (100)rt rt rt

Fc+ =-Fc Fc+<O (101)rt rt rt

tan + =a E C EC+ = FC+/C+ (102)vrvr rt rt rt rt (102)

8C+ = ac + -f (103)vrvr vrvr
= 71/2 + 6

rt

and

c+ c' e + - 20r (104)
ar ar r rt t

so that ar is a small angle. Finally if Ac describes a negative acceleration
_c+ _c
a a (105)r r

Note the different values of Bvrvr in equations (91) and (103) for

attractive and repulsive forces.

For the special case of a solution of the form2 0
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r aer + 8 (106)

r r t r

it follows that for coherent motion in the radial coordinate

FCt 0 -= 0 (107)

so that equations (91), (92), (102), (103) and (104) give for this case

vrvr -vrvr = r12 6 rt -0 (108)

c c+ r(109)
ar ar r t

and therefore for this special case equations (24) and (25) give

dp =jýdOpr d;c yjdvr (110)

-c+ c+d °+ .c
d~r = JPcdOr dr = jv dOe (111)
r r pr r r yr

where for coherent spacetime

-Cr = Prc exp(jO pr) (112)

with Prc= constant. In the general case of

e a 0V + 0 (113)
V V t V

where v = x , y , z , r or p , it follows that for coherent spacetime and equations
(24) and (25)

dpc = jpcde dvc =j JrdO (114)
V V pV V V vV

c+ d d+ d (115)
dpV = JP dOpv V = jv dwV

where

p = P p exp(jO (116)
V VC pV

These expressions are used in Section 3 to evaluate the momentum space integrals
that describe thermionic emission from the superconducting state of high-Tc ma-
terials.

2. NON-KEPLERIAN MOTION OF ELECTRONS IN COOPER PAIRS OF HIGH-Tc SUPER-

CONDUCTORS. This section describes the dynamical behavior of electrons in Cooper

pairs which occur in the superconducting state of a high-Tc material. A Cooper pair

is a weakly bound system of two electrons which are held together by a weak at-

tractive force which is mediated by the vibrations (phonons) of the crystalline
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lattice of the high-Tc superconductor. 6- 9 The classical description of this
bound system is given by the equation of motion of two electrons orbiting their
center of mass 2 1

'e(ar - rM2) Fi (117)

where Pe = me/2 - reduced mass of the electron, me = mass of the electron,
r = 2a = relative distance between the two electrons, a = distance from center
as mass to either electron, and where the linear radial acceleration term ar is
given by

a = d 2 r/dt 2  
(118)r

and the angular frequency is given by

S= dý/dt (119)

where * = azimuthal angle of an electron in it's orbit. Equation (117) simpli-
fies for the case of a circular orbit with r = 2a = constant so that equation
(117) becomes

[2
2 F Fi/(re) = - F i/(am e) (120)

where F. < 0 for an attractive force, and a = radius of orbit. Equation (120)
shows tiat the orbital frequency varies inversely with the orbital radius even
if the attractive interaction force Fi were independent of the relative dis-
tance between the electrons. In fact the pairing force between the two elec-
trons of a Cooper pair is an attractive inverse square law given by 1 -9

F = - b/r 2  
(121)

i

where b > 0 , so that equation (120) becomes

S2 = b/()er b/r3  e a 3 (122)

which is essentially Kepler's law of central field motion. 2 1 This section con-
siders only attractive forces.

In the normal and superconducting states of a high-Tc material the space
and time coordinates of the electrons in Cooper pairs exhibit broken internal
symmetries and must be written in the form of equations (4) and (5). Therefore
for a high-Tc material the equation of motion of the electrons in a Cooper pair
are written as

1e(r _ . 2) = F. (123)
Pe r 1

where Hr complex number linear radial acceleration given by equations (38)
through (48), @ = complex number angular speed given by equations (29) through
(34), and where I = complex number relative distance between the two electrons
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and * - complex number azimuthal angle of the electrons which are written as

r- r exp(JOr) j - # exp(JOe) (124)

The associated complex number time coordinates are given by

r = tr exp(je ) to t. exp(j8 ) (125)

The complex number electron-electron interaction force is written as

F, M Fi exP(JOFi (126)

For an attractive inverse square force

F. = 2

Fi = - b/r 2  0 - 2er + 6b (128)

where b is taken to be

b = e 2/(411) (129)

where j - complex number electron-phonon interaction constant, and e electron
charge. These complex number parameters are written as

b = b exp(jib) = = g exp(je ) (130)

so that equation (129) can be written as

b = ge2/(41t) b = g 9,131)

where b > 0 and g > 0 .

The total angular momentum of the two electrons in a Cooper pair is a complex
number in internal space for spacetime with broken internal symmetries and is
written as

L=L L exp(jOL) = Pe2i (132)

where r i complex number relative radial distance between the two electrons, and
W = complex number angular speed which is given by equations (29) through (36).
The law of the conservation of angular momentum for this case is written as21

S 2e w = constant (133)
Z e

L per 2w = constant (134)

a = 20r + 0W = constant (135)
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where w is given by equations (30) through (33) and 6W is given by equation
(34). Combining conditions (34) and (135) gives

0 - 28 + e + 8 - 00 - 8tt - constant (136)

Lz r 0 0

where 00 is given by equation (36).

A full solution to equation (123) requires that the real and imaginary
parts of this equation be obtained and solved jointly. This procedure leads to
complicated equations which are not easily solved. A simpler, but approximate,
procedure is to assume that the internal phase angles of each term in equation
(123) are equal. This gives the following two equations fnr the case where the
linear radial acceleration term is positive

1e(a w2r) Fi (137)

ar r w i6 ar M e r + 28 W - 0Fi (138)

where
+ 8

a = a 8+= 8 +1 (139)rr ar ar

and the following two equations for the case when the linear radial acceleration
term is negative

Pe(a' - w2r) = F. (140)

0' = 0 + 20 = eF (141)
ar r W F

where for this case

a= -a 0' =0 +ii (142)
r r ar ar

In both cases ear = 6ar = small numbers, and ar is given by equation (43) while
Sis given by equation (30) for the conditions of interest in this paper. Com-
bining equations (53) and (138) gives for a positive linear acceleration term

oi = e + • + B - 2(0• +S )r13
Fi r rr vrvr t tt( (143)

= 0 + 20r

where

+ + T(144)

vrvr vrvr

For a negative linear acceleration term equations (51) and (141) give

F =0 +a + - 2(0r +r )+r (145)
Fi r rr vrvr t tt

= 0 + 20r w
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Equations (143) through (145) are valid for the case of nearly coherent space
and time in the radial direction. Combining equations (135) and (138) or (141)
gives

6Fi = 2eLz - 3 r (146)

- 1/2(0LZ + 36) (147)

- 1/2[e + 3( +a - e# (148)I/[Lz +3 +8$ t - t

The quantity ear 0ar 6 Fi enters into the calculation of the normalized super-
conductivity energy gap for high-Tc superconductors. 1 4

For an attractive inverse square law described by equation (127) it fol-
lows from equations (51), (128) and (141) or equivalently from equations (53),
(54), (128) and (138) that

rr

3e +8 + 8 - 2(,r + 8 t) + =b (149)

30r + 2e e b (150)

Equation (149) can also be written as

+ + 8+ - 2(0 (151)
r rr vrvr t tt O

Equations (135), (146) and (150) yield

Or = 26Lz _ Ob 0Fi 3 b - 4OLz (152)

o = 20b - 36 (153)

where OW is given by equation (34). Therefore within the approximations given
in equations (138) and (141) it follows that 8 r , e. and 8Fi are constants.
Equations (34), (151) and (153) show that

2(6 + 80 -- 60- 0t) =rr +v - 2 (,r t) + (153A)

+ + r (,r + r
rr vrvr 2 6 tt

= 2 (2 6 b - 30Lz)

= constant

which is an approximate equation relating the radial and azimuthal internal

phase angles of space and time.

The case where the radial acceleration is totally coherent in space and

time is described by the conditions
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rr ' w/2 rt W/2 (154)

r tt

For this case equations (143) and (145) become

o -e +8 c - 2er + w/2 (155)
Fi r vrvr t

- e + 28r

where grvr is given by equation (91) so that

Fi = e - 26r + 6 (156)
Fi r t rt

- 6 + 26
r W

or

28 - 6 - 26T (157)
W rt t

W 2 (2eb - 3eLz) constant

where O M= constant given by equation (153). Equation (156) is seen to agree
with equations (96) and (104). Combining equations (146) and (156) gives

O ' 20 + 6a/2 _ r (158)
Lz r rt t

which is valid for the special case of coherent space and time in the radial
direction. For a central force equations (128) and (156), or equivalently equa-
tion (149) gives

O = 3r + 6 - 2 6r (159)
b r rt t

where in these equations er = constant given by equation (152). Equations (158)
and (159) can be used to determine er as

rr

= 26 r - 6 Lz + 6 rt/2

= 1/2(36r - 6b + 6 r)

where 6 rt is given by (88), (89) and (92), so that rf is also a constant.

The following conditions are valid when the space and time coordinates
are coherent in the radial direction but the angular space and time coordinates
are nearly incoherent

r

a fi/2 B = 7/2 (161)
rr tt

6 nu 0 B 0 (162)tt

o i "' Oi (163)

4) 4, t t
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i ,
where 0 and 0t are constants which would have zero values for the case of
exact incoherence of the azimuthal space and time coordinates. Combining equa-
tions (30), (34) and (162) gives

w - d4/dt (164)

e - i - e4i
0W t (165)

Combining equations (7), (8), (11), (12), (161) and (162) gives

df = jd6dr (166)

dt r= it rdO t (167)

dj = d$ exp(j) (168)

dto = dt, exp(je ) (169)

Then combining equations (157) and (165) gives

6 - 20r = 2(0' - 0i' 10

rt t 2 t (170)

Introducing equation (160) into equation (170) gives

6 - 2(3z - 2b + 6 rt/2) = 2 ( 0 ± - i) (171)
rt rt t * t

which can be rewritten as

20i -3 O i (172)b Lz t t

Equations (152), (156), (160) and (172) give

Fi - 2e r + 6 (173)
Fi r

= r + 2(26b - 30Lz)

= r+ 2(ei - e~i)

r * t

= 3 0 b - 4 0 Lz

where 6r is given by equation (152). If the constants b and Lz are related in
the following manner

b2 = fL3 (174)
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or equivalently as

b2 . fL 3  2 6b 3 eL (175)
z b L

where f is a real number constant, then it follows from equations (153), (165),
(172) and (175) that

8€i a ýi 0 = 0 (176)
, t W

while equations (160) and (173) give for this special case

6 20r (177)rt t
0Fi =r = 0 b / 3 = OLz/2 (178)

which is valid for the general case 6 rt 0 0

Consider now the possibility of the case where the space and time coordi-
nates are coherent in both the radial and the azimuthal directions which is de-
scribed by

rr/2 ff Tr/2 = -n/2 8 = n/2 (179)

r ttwhere now Or e0t 6o and 0 t are variables. For this case equations (143) and
(144) become

6 r- 20 r + w/2= 2(6 60) (180)vrvr t 4) t

and then using equation (91) gives

6 - 20r = 2(0 - o6) (181)
rt t 4) t

which is similar in form to equation (170) except that the right hand side of
equation (170) is a constant while the right hand side of equation (181) is a
variable because for this case equations (33) and (34) give

c =c,/tc d6 /deO (182)

0 - et (183)

which are variables. But within the approximation used in equations (157) and
(160) it follows that for incoherent spacetime in the azimuthal direction

6 - 20 = 2(20b - 3 Lz) (184)6rt tb L

which is a constant.
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For the case where space and tiueare coherent in the radial direction it
is often expedient to assume a linear relationship between 6r and er of the
form0 

t

e = 0 r + rr (185)
r r t r r

where the coefficient ar is determined by the nature of the pairing force which
is related to the atomic structure of the crystal lattice of the high-Tc materi-
al. Combining equations (88), (89) and (185) gives

Ec (Fc = 0 (186)
Ert M ar(ar - 1) r t 0(16
rt r r rt

while equations (90) and (91) give

8 c =-ir/2 6 =0 (187)
vrvr rt

and equations (96) and (104) become

0c+ 0 c' =0 - 2Or (188)
ar ar r t

Combining equations (157) and (187) gives for this special case of coherence
of space and time in the radial direction

0 =- r (189)
W t

while equation (156) becomes

Fi - 2r (190)
Fi r t

= 0 + 20
r W

= 26Lz - 30r

where equation (158) gives

0Lz = _2 80 r (191)
Lz r t

For an inverse square electron-electron pairing force equations (159) and (187)
give

S= 30r - 20r (192)

b r t

Equations (185) and (192) give for an inverse square pairing force

a = dO /detr = 2/3 (193)
r r t

so that equation (186) gives for this case
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Ec 1) 2/9 FC = 0 (194)
rt r r

Combining equations (152), (153), (160), (186) and (187) gives the following
results for an inverse square type of pairing force and the assumption of the
validity of equation (185) which has 6 rt - 0

8t = 36Lz - 2b fi Lz (195)

r - 26 Lz - 8 b (196)

6 = 2eb - 30Lz (197)

Within the approximations made in this section all internal phase angles are
constants. A further example of this is obtained from equations (188) and
(190) which give

C =38 - 46 (198)
ar b Lz

8Fi -36b - 46Lz (199)

In the special case when equation (175) is valid it follows from equations (195)
through (199) that

6r = aLz/2 = 8b/ 3  (200)

ar = 0 O = 0 6rt = 0 (201)

6Ca =F = b/3 = 0L/2 = 6 (202)
ar Fi I; Lz r

The intrinsic signs of 6Lz and Ob are negative because the intrinsic sign of er
is negative.17,18

For the case of coherent spacetime in the radial direction of the orbiting
electrons of a Cooper pair, equation (85) gives the magnitude of the relative
radial acceleration of the two electrons as

ac c/tc2 [(Ec ) 2 + (Fc )2]1/2 (203)
r r "rt rt

where rc = constant magnitude of the relative separation of the two electrons,
C. = constant magnitude of the time for the radial direction and where Ect and Frt

are given by equations (88) and (89). The acceleration of an electron relative
to the center of mass of the electron pair is given by ar/2 . The value of tc
can be taken to be a characteristic time of the electron pair system - the Bohr
time tB of the electron pair orbiting a lattice charge of Z = 2

t = tB = h3 /(mee 4) = h/(21EBl) (204)
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where h = h/(2n) , h = Planck's constant, EB = - e 2 /(2ao) = energy of an elec-
tron in the ground state Bohr orbit, ao = Bohr radius, and me = mass of the
electron. The factor of 2 in equation (204) results from the product of a fac-
tor of 4 which results from Z2 = 4 and a factor of 1/2 which results from the
reduced mass of the electron pair Ue = me/ 2 . Then the equation of motion for
the electron pair with coherent spacetime coordinates in the radial direction
and incoherent spacetime coordinates in the azimuthal direction is obtained from
equation (137) to be

[(Et) 2 + (Fc) 2 I/2 t - W2 = F/(e c) (205)

where Pe = me/2 = reduced mass of the electron, and where w = do/dt = incoherent
angular speed of the electrons. For the case of a weak electron-electron inter-
action force Fi % 0 , and equation (205) becomes

-1 (rtc 2 c 21i/4
S= t [(E ) + (Frt) ] (206)

B rt' rt

The incoherent angular speed of the electron pair required for equilibrium is
therefore independent of the relative distance rc between the two electrons,
and represents non-Keplerian motion. For comparison equation (122) represents
Keplerian motion. Equation (206) is only valid for a weak pairing force.

The equilibrium radius ac of the orbit of the electrons in a Cooper pair
is obtained from equations (134), (204) and (206) as

2
a z e W)

tBm e[(Er ) + (F ) 21-/4 (207)
ZBe rt rt

where z fLz/2 = angular momentum of an electron, where Lz = total angular mo-
mentum of the two electrons given by equation (134), and where ac = rc/2 where
rc = equilibrium distance between the two electrons in radial coherent spacetime.
Equations (206) and (207) show that both w and ac are independent of the nature
of the weak pairing force Fi . The angular momentum of an electron is quantized
in the usual manner 2 2

Z = mh (208)z

where m = magnetic quantum number which can take the values m = 0 , ±1 , ±2 , ±3 ,-

Combining equations (207) and (208) gives the quantized circular orbits of the
electron in a Cooper pair of a high-Tc superconductor as

a = mhtimeI [(Ec ) + (F ) F 1 (209)
cm e rt rt

where acm = orbit radius corresponding to the magnetic quantum number m.

For high-Tc superconductors Ert and Frt can be obtained from equation
(186) so that equations (206) and (209) become respectively
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t -1 [a r( - a (210)
B r r2 -1-1/2

a2 mlit m- ar(I - ar) (211)
cm Be r r

Combining equations (193), (210) and (211) gives

w ff v2S/3tB1 = /-/3mee 4 / 3  (212)
Be

a = 3//r2mht m-1 = 3//€mh 4/(m e2)2 (213)cm B e e

Equation (213) gives the radius of the m'th orbit as

a = (3//-2) 1/ 2 m1/2a (214)cm o

= 1.456m /2a
0

where the Bohr radius ao is given by 2 2

a = Fh2 /(mee 2 ) (215)

The energy of a bound electron in the pair can be obtained from equation (214) as

Em - e 2 /(2aCM) (216)

0.343m- 1/2e 2/a = 0.687m- 1/2EB

where m = magnetic quantum number and EB = - e /(2ao) is the energy of an elec-
tron in a Bohr orbit. For compaiison, the standard expressions for the radius
and energy of a Bohr atom with Z = 1 is given by

an 2 a (217)

E = - e 2 /(2a) = - e2 /(2n 2 a ) (218)
EE
= n- 2E B

where n = 1 , 2 , 3 , .-- is the principal quantum number.

3. THERMIONIC EMISSION FROM HIGH-Tc MATERIALS. Thermionic emission re-
fers to electrons emitted from the surface of solids that are heated to some
specified temperature. This phenomenon is essentially a tunneling process be-
cause there is an energy barrier of a few eV that prevents most of the electron
gas in a solid from escaping. 23-25 At a finite temperature however some elec-
trons in the solid have sufficient energy to penetrate the barrier and escape
from the solid surface. The thermionic emission from high-Tc superconductors
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is relatively small but it contains significant information about the electrons
that occur in weakly bound Cooper pairs. Therefore it is important to develop
a theory of the thermionic emission from the normal and superconducting states
of high-Tc materials and to compare the predicted thermionic emission current
with measured values. In this way the values of the internal phase angles of
the electron momenta and the internal phase angles of the space and time coor-
dinates of the electrons can be determined, and therefore the degree of coher-
ence of spacetime can be determined for high-Tc materials.

A. Richardson-Dushman Thermionic Emission Equation.

Before considering the thermionic emission from high-Tc materials a brief
review is given of the standard theory of thermionic emission from ordinary met-
als. 2 3 2 5  The conventional picture of electrons in a metal is that they form a
Fermi gas whose distribution function is given by 2 3 2 5

f - {exp[(c - p)/(kT)I + 1}-1 (219)

where c - kinetic energy of an electron, p - chemical potential, k - Boltzmann
constant and T - absolute temperature. The electron kinetic energy is writtenas

2 2 2
E (pX + py + pz)/(2me) (220)

where Px Py and Pz = components of electron momentum, and where me - electron
mass. The x direction is taken as the coordinate axis that is normal to the
surface of the metal. For the electrons involved in thermionic emission, the
kinetic energy per electron must be greater than a critical value given by

k 2 P/(2m) 1/2mV 2 v + eO (221)
ck Pk e e xk (21

where Ck , Pxk and vxk = critical value of the electron kinetic energy, critical
electron momentum normal to the surface, and critical electron velocity normal
to the surface of a metal, e = electron charge, and 0 = work function such that
e- - energy required to remove an electron which is at the top of the Fermi sea
of electrons. Therefore the critical value of the electron momentum normal to
the metal surface that is needed to just eject an electron from the metal sur-
face with zero velocity is given by

Pxk = [2me (v + eo)]1/ 2  (222)

For metals the work function is of the order of 4 > I volt, so that in general
for thermionic emission equations (220) through (222) give

E > »k >> 1 (223)

and therefore as far as the thermionic electrons are concerned the distribution

function given in equation (219) can be written as

f % exp[- (c - p)/(kT)] (224)

exp[- (p 2 + py2 + Pz 2- 2mel•)/(2mekT)]

Sy z e e
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The electron number density of a Fermi gas is written as 2 3 -2 5

dn - f dnp- 2/h3 f dpxdpydpz (225)

where ne- electron number density and n p . number density of momentum states.

The thermionic emission current can be written as 2 3
-25

x - efvxdn e e/me fpxdne (226)

= 2e/(meh 3 ) f f f PXf dpxdpydpz
00 -G pxk

= 2e/(me h 3)Jx J yJz

where

J - f exp[- (p2 - 2mei)/(2mekT)Ipxdpx (227)

Pxk

J = f exp[- p /( 2m kT)Jdp (228)
y e0 y

CO

J= f exp[- p2/(2mekT)]dp (229)

The integrals can be evaluated from tables with the result that 2 6

J = m kT exp[- eO/(kT)] (230)

J = J = (2rm ekT) 1 / 2  (231)y ze

where the term - e4/(kT) in equation (230) comes from the lower limit of inte-
gration Pxk in equation (222) and (227). Combining equations (226), (230) and
(231) gives the well known Richardson-Dushman thermionic emission equation 2 3 -2 5

I = A T2 exp[- eo/(kT)] (232)x o

where

A = 4nm ek 2/h3 (233)o e

is the Richardson-Dushman constant.

B. Thermionic Emission from High-Tc Materials.

Because the factor 6/w , which arises from the assumption of coherent time,
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is responsible for the relatively high values of the normalized superconducting
energy gap given by equation (3), it is reasonable to assume that the electrons
in the Cooper pairs are weakly bound. 1 3 ,1 4  Therefore as a first approximation
to calculating the thermionic emission current for high-Tc materials it will be
assumed that the electrons form a noninteracting Fermi gas and that the basic
ideas of the Richardson-Dushman calculation can be utilized. For the normal
state of a high-Tc material the electrons are assumed to move in a partially
coherent spacetime. Then the complex number generalization of equations (219)
through (225) are1 4

S= {exp[(i - i)/(kT)] + 1}-1 (234)

Sexp[- (E: - i)/(kT)]

exp[- ( +2 + +2 2 - 2m j)/(2m kT)]
x y z e e

= .2~ _..2 _2( + py + 2 )/(2me) (235)
x y z e

= -2 /(2me) = 1/2meV2 = 2 + e4 (236)E xk k e e xk

Pxk = [2m (e + e)] 1/2 (237)

dii = !dR = 2/h 3 f d -dp d- (238)de fdp dxdydz

where 5y and pz are represented as in equation (18) and where -Pk P I and
4 are written as

Pxk = Pxk exp(jO pxk) (239)

S= )i exp(jO ) (240)

S= * exp(j0¢) (241)

The values of Pxk and Opxk are obtained from equation (237) by writing
2

x 2exp(j2px) = 2m [P exp(jO ) + eo exp(jS)] (242)APxk

whose real and imaginary parts are

2 cos(20pk = 2m (p cos 6 + eO cos 8 ) (243)
Pxk pxk e P 0

2 in(20pk) = 2 me (G sin e + eo sin 04) (244)

Equations (243) and (244) give
-1

tan(20pxk) = (p sin 60 + eo sine0)(I cos 80 + eo cos ) (245)

2 = 2m [ 2 + e2 2 + 2peo cos(6 - 1)]/2 (246)
Pxk e
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The momentum constant Pxk appears as a lower integration limit in the complex

integral that describes thermionic emission.

The complex number thermionic emission current is given by

Ix - ef;VXdi e e/m efPxde (247)

" 2e/(m h 3 ) f f Pxfd~xdpydp
-- Pxk

-2e/(me h )J y z

where

c f exp[- (2- 2m e)/(2m kT)]p dpx (248)
x -x e e xx

Pxk

Jy - exp[- P /(2m ekT)]dpy (249)

z = f exp[- p2/(2m kT)]dz (250)
z -Wz e z

The complex number thermionic current in equation (247) can be written as

Yx - I exp(JOIx) (251)

and the integrals in equations (248) through (250) can be written as

x = Jx exp(jOJx) (252)

Jy = Jy exp(j0jy) (253)

Jz = Jz exp(j Jz) (254)

Comparing equationý (247) and (251) through (254) gives the thermionic emission
current as

I = 2e/(me h 3)J X yz (255)eIxy

6e = jx +e jy + 6Jz (256)

The measured thermionic emission current is given by the real part of equation
(251) as

I =xMff I cos Olx (257)

= 2e/(meh3)JxJyJz cosidjx + 0jy +0 jz)
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Therefore the problem at hand is to calculate Jx , Jy , Jz and ejx , 6jy , 6Jz . In
order to do this the real and imaginary parts of the integrals in equations
(248) through (250) must be calculated.

The integrals in equations (248) through (250) can be rewritten using
equations (24) aad (25) as

3= f - d- (258)x - Pxpxd x

Pxk

= P x px sec 8pxpx exp[j(6jpx + 26PX + apxpx)]dpx (259)

"/xk

/p2PJpx csc B exp[J(Ojx + 2p + apxpx)]d6px (260)
pxk

y = f•pdy (261)
y 'M p y

=f Jpy sec 8pypy exp[j( jpy + Spy + pypy)Idpy (262)
-00

7/6
fPJ csc exp[J(6 +8 +a )]dB (263)
o Y PYP Y jpy PY pypy PY

Iz f Jpzdpz (264)

=f Jpz sec 0pzpz exp[J(Ojpz + 6pz + 8pzpz)]dpz (265)

7r/6
f Pz pzpz c apzpz exp[J(SJpz + epz + apzpz )]dpz (266)

where

J = J exp(jjpx ) = exp[- (-Px 2me 5)/(2m ekT)] (267)px px Jp' AjI 'x e e

= f J exp(jO6p) = exp[- P2 /(2m kT)] (268)
py py j y e

= J ext• Jpz) - exp[- P2/( 2 mekT)] (269)
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2
- exp{- [Px cos(28p) - 2aeP cos e ]/(2mekT)1 (270)

J - exp{- (p2 cos(20y)]/(2mekT)} (271)

py yp

J - exp{- (p cos(20 )]/(2mekT)} (272)

j - (p 2 sin(2e0 ) - 2meV sin e ]/(2mekT) (273)
Jpx x px e u e

e - (p2 sin(20p)]/(2mekT) (274)

ejpz - [p 2 sin(26p)]/(2mekT) (275)

The lower limits of integration Pxk, Pxk and e k in the integrals of equations
(258) through (260) are given by equations (237), (245) and (246). The upper
limits of the integrals over the phase angles of the momenta in equations (260),
(263) and (266) are obtained from the assumption of spacetime coherence which
gives 1 3 ,14 ,20

ec =ic - 6c = -/3 - n/6 =- /6 (276)

px x t

with similar expressions for the y and z directions.

The quantities ix , eJx, Jy 0jy, Jz and Ojz that are required for the de-
termination of the measured thermionic emission current given in equation (257)
can be obtained by first calculating the real and imaginary parts of the inte-
grals given in equations (259), (260), (262), (263), (265) and (266) as follows

i0
Cos f i sec 8 cos(OJPx + 2e + a )dp (277)x j x~px pxpx Jx px pxpxdx

Pxk
IT/6
f J csc 8 cos(Ojpx + 26 + pxpx)dO (278)

pxk

Jx sin Ox = f sec B sin(ejpx + 20 + 8 )dpx (279)Sx~px pxpx px px pxpx x

Pxk
'r/6

- f px csc a pxpx sin(Ojpx + 26px + B pxpx)dO px (280)
pxk

J cos 8 = f J sec 8 cos(Ojpy + 0 + 8 )dp (281)Jy 8jy -,PY PYPY Jy PY pypy dy

w/6
= f pyJ csc B cos(j + 0 + py)dO (282)
0 y4py pypy jpy py pypy py
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-Jy +e n 3~~~~ (283)
J y sin ojy fJ py sec Bpypy sin(8jy + apy +pypy)dpy

w/6
fPJ csc 0 sin(ey + e + py)de (284)
oy ppy pypy y py pypy py

Jz cos Ojz f=fJ pz sec apzpz cos(j Jpz +6z + pzpz)dpz (285)

w/6
zf pz pz csc apzpz COW(Jpz + Opz + apzpz )dpz (286)

Jz sin Ej 6i f Jpz sec 8pzpz sin(Ojpz + 0pz + 0pzpz)dpz (287)

7/6
fzJpz csca sin(JPz + +a )d (288)o zpz pzPzpz PZ •pzpz dpz

These integrals will be evaluated for special cases in the follmulg sec•ios.

C. Thermionic Emission from the Normal State of a High-Tc Material.

Consider the case of the normal state of a high-Tc material with T > Tc
for which the electrons are in a nearly incoherent spacetime state which is
described by

8xx n 0 8yy -. 8 zz 0 (289A)

x y z8tt • 8t 8tt •0(8B

a % 0 8 . 0 8 " 0 (290)pxpx pypy pzpz

which corresponds to

i = constant i f = constant i = constant (291)
x y z

Oxi = constant 0yi = constant zi = constant (292)
t t t

From equations (23), (289), (291) and (292) it follows that

i i xi
6 =6 - e = constant (293)

e'i i - e i = constant (294)
py y t

pz z - 8zi = constant (295)
pz z t
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Then the integrals in equations (277), (279), (281) and (283) become
Jii ie

S Jx Co W~x cos(2e x + W sin(2 x) (296)
ji si £6 (2ix i

xsin e ixW sin(2e )-W cos(26 ) (297)
x x x px 2x px

it i 8i i(98
J cosO U cosO +u sin (298)

y Jy ly py 2y py

ji sin 0 U sin -U Cosi (299)y jy ly py 2y py

i i i 8i

ji cos ( u cose +U sine (300)z Jz lz pz 2z pz
ji si i i 8i
J sin e -zMU sine6 -u Cos e 1(301)z Jz lz pz 2z pz

where

w lx f PJ iCose dp (302)lx Px px OS Jpx x
Pxk

W ' - f P J sin e i dp (3031W2x =-fPxkpx PX Jpx dx

Pxk

U = Ji Cos ei dp (304)
y PY jpy y

U = _f ji sin e8 dp (305)
2y py Jpy y

= ei

Ulz _f j cos J dp (306)z -00 pz Jpz dz

U f ji sine dp (307)
2z -O pz Jpz z

where

i = exp(g - 2 (308)
px x x

ji exp(-cp 2 ) (309)
py y y

i exp(-c p2 (310)
pz = p z
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ei . 2

Jpx xPx (311)
ei =-bp2jpy- ypy (312)

ei b2
Jpz -bzP (313)

and where

Cx M cos(26x )/(2mekT) (314)

cy M cos(20i )/(2m kT) (315)
ypy e(35

cz = cos(26z )/(2m kT) (316)
pz e(36

b - sin(2e i)/(2mekT) (317)x px e(37

by = sin(2E y)/(2m ekT) (318)

b = sin(20 i)/(2m kT) (319)z pz e(39

g - (p cos a )/(kT) (320)

a - (p sin 6 )/(kT) (321)

The integrals in equations (302) through (307) will now be evaluated.

Combining equations (302) through (321) allows the integrals in equations
(302) through (307) to be written as

Wlx f exp(g - c P )cos(a -kbxP 2)PdP (322)

Pxk

W2  = - f exp(g - c 2)sin(a - bP)PdP (323)2xxx xpx xdpx
Pxk

U = f f exp(- c 2 )sin(b p)dp (325)

Ul = f exp(- c p2 )cos(b p2)dp (326)

U2z = f exp(- c p 2)sin(b p2 )dp (327)
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The integrals in equations (322) and (323) can be written as

Wlx -B (U lx cos a + U2x sin a) (328)

W - B(U2x cos a - U lx sin a) (329)

where

Uix exp(- c p2)cos(b p2)pxdp (330)

Pxk

U = f exp(- cxp)2 sin(bxp2)pxdpx (331)
2x x x x xPxk

where

B - eg (332)

where g is given by equation (320).

The evaluation of the integrals Ujv and U2v for v = x, y, z can be ob-
tained from integral tables. 2 6  The results are as follows

2 1 2

U , mekT exp(- Cxpk )cos(2t3 + bP2k) (333)
ix xxkpx x~xk~

p2 b)sin(20i 2)

2x= mkT exp(- x xPxk (334)

Wlx mekT exp(g - cx2k)COS(2e p + b p2- a) (335)

W2x mekT exp(g - c 2)sin(2epx + b p - a) (336)
2x e xx Apx xxA

U = (2 mkT) 1/2 Cos ei (337)

ly ecos PY

U2  = ( 2 nmekT)1/2 sin 0i (338)

Ul=i(21rm kT) 1/2 Cos 0ip (339)
1z e pz

U2z (2irm kT)1/2 sin 8i (340)
2ze pz

If all internal phase angles are set equal to zero these integrals become

Ux 0 = mkT exp[- p 2 /(2mekT)] (341)

O° = 0 (342)
2x
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W 0 - mekT exp{[( - p2 /(2m )]/(kT)l (343)

t2o W 0 (344)
W2x

y (2i mkT) 1 / 2  (345)

U° 2y 0 (346)

I z M(fmM12(347)

U0  = 0 (348)2z

The quantities Ulv , U2 , Wlx and W2x enter directly into the calculation of
the thermionic emispion current.

i
The calculation of the factors Jv and their associated internal phase

angles 8jv for v = x , y , z that appear in equations (255) through (257) for the
thermionic emission current from the normal state follows from equations (296)
through (301) using the results presented in equations (333) through (340) as

j iCos 0 = kT exp(g - c22 )COS(a 2
x Jx e bxPk) (340)

i i sin 6 1 mkT exp(g - cxP )sin(a-bp ) (341)x Jx e xxk xxk

3i cos i = (2nmkT)1/2
y Jyi

i sin 0i = 0 (352)
y Jy

ji Oi 12mk~/2
3 cos 0 = (2nm kT) (353)

z e

i sin Jz = 0 (354)z Jz

Equations (349) through (354) give

ji = m kT exp(g - cxp) (355)
x e x XK

=i a-bp 2  (356)
Jx x xk

ji = (2nm kT) 1/2 (357)
y e

e0 f =0 (358)
Jy
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ji (2wmekT)l (359)

-= 0 (360)Jz

Then the thermionic emission current for the normal state of a high-Tc material
is obtained from equations (257) and (355) through (360) to be

Ii . A T2  ( 2 2 (361)
xm 0 xk)cos(a bPxk)

where A0 is given by equation (233), and g , a , cx , bx and Pxk are given by equa-
tions (320), (321), (314), (317) and (246) respectively. When all internal
phase angles are set equal to zero equation (361) reduces to the Richardson-
Dushman equation '232) because for this case

gO W ij/(kT) (362)

c°- (2mekT) (363)

o 12
0xk M [ 2 me (p + ef)] (364)

0
a -0 (365)

b= i 0 (366)
x

o oo02g -CxPxk ffi- e#/(kT) (367)

which corresponds to incoherent spacetime.

The predicted measured v. ue of the thermionic emission current for the
normal state of a high-Tc material is given by equation (361) within the ap-
proximation of constant 4:.cernal phase angles for the single particle momenta,
i.e., = i 6 = 61 and - = .iz • The predicted measured value of thel~.,8p @x pp - .p an pz pz
thermionic emission current is seen to have a leading temperature term of T2

that is augmented by a temperature dependent exponential and trigonometrical
term. For the case of an ordinary metal where all internal phase angles are
set equal to zero equation (361) reduces to the standard Richardson-Dushman
equation (232).

D. Thermionic Emission from the Superconducting State of a
High-T -rial.

The followinL conditions are valid for the coherent spacetime of the su-
perconducting state of a high-Tc material

8c •/ c 1c
2= = 7r/2 = ir/2 (368A)xx yy zz

xc = ,r12 y zc
8tt 8yc . r/2 t = T,/ 2  (368B)

tt tt tt
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It is further assumed that equations (106) and (107) are valid for the super-
conducting state of a high-Tc material. Then according to equation (108) the
following coherence conditions are valid for incipient unbound electron pairs
from which come the electrons of thermionic emission from the superconducting
state

Sc+ M w/2 8C+ Wi/2 0c+ M w/2 (369)pxpx pypy pzpz

so that equation (115) gives with epx , 6py and epz as variables

C Cdpx = jp dOpx M JpxcdOp exp(JO p) (370)
-C+ -C fiepJOy

dpy = jpydejpy p de ;xp(jO ) (371)

C Cd_+= jpd = jpd exp(Je pz) (372)d z pz Pzcdpp

and where
2

px2 = 2mekTx (373)

2
p =2mkT (374)yc e cy

2
p 2f= 2mekT (375)

where

Tcx = superconducting transition temperature for ac plane

T = superconducting transition temperature for bc planecy

T ff= superconducting transition temperature for ab planecz

For a bulk superconductor the .superconducting transition temperature is given by
2 2 2 (376)
xc = Pyc 2= Pc = 2mekT(

T = T =f T = T (377)
cx c c z c

where Tc is the common value of the superconductivity transition temperature.

The complex number thermionic emission current is given by equations
(247), (260), (263) and (266) for the superconducting state of a high-Tc mate-
rial, where for this case

jC 2 I/6•c .2 r/ pi +2 )]O(378)

x =Pxc f J px exp[j(x Jpx + 20px )]dpx
8 pxk
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3c a w/6
y JPyc f Jpy exp[jJ jpy + epy)]depy (379)

:/6
=C j w/6 exp[J(e +0 e)]de (380)

z Jzc0 fpz Jpz pz pz

where J , JPY e p , ,jpy and ejpz are given by equations (270)
through (275). The real and lmaginary parts of equations (378) through (380)
are given by

2 /6
J cos Jx-- Pxc 2 f Jpx sin(eJpx + 20 px)de (381)

pxk

J c =,2 /6
Jx sin 0 ff 2 f J cos(0 + 20 px)dO (382)x x Px pxk (Jpx px 2

8pxk

1/6
y cos y -- p J sin(e + 0 )de (383)

y Jy Pyc .py Jpy py py

1/6
iysin e~y Pyc f Jpy cos(O JPY + e py )dO py (384)

jc 00

zos fi - J sin(Jpz + (385)

7r/6
jc sin Jz = P J cos(p + 6p)dz (386)

The problem is to determine jc J , , 0 , Oc and Oc

x y z Jx Jy Jz

Combining equations (270) through (275) with equations (381) through
(386) gives

Jx cos Jx = p e(KI cos a - K2 sin a) (387)
jc sin 8c 1 2e

sin ec =P 2 e(K 1 sin a + K2 cos a) (388)

jc cos 06c = K (389)

y Jy ycK3

jc sin 6c =fi K (390)

y Jy ycK4

jc Cos =P K (391)
z Jz zc5

sin z =pzK6  (392)
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where g and a are given by equations (320) and (321), and where

w/6

6I= f exp[- oxc cos(2epx)]sin[axc sin(2epx) - 2px]d8 px (393)

pxk

w/6
K2 - f exp[- axc cos(2 px)]cos[axc sin(2 px) - 20px Idex (394)

pxk

7F/6
K3 - f exp[- ayc cos(20 py)]sin[ayc sin(20 py) - e pyIde (395)o pyyyPY p

7r/6

K4 = f exp[- ayc cos(2e py)]cos[ayc sin(26 py) - 0 py]depy (396)

w/6
K5 = f exp[- ac cos(20pz)]sin[azc sin(20pz) - pz]depz (397)

0

7r/6K6 = f exp[- a cos(2 pz)]cos[azc sin(2 pz) - epz]depz (398)

where
2

a P/(2mekT) = T /T (399)
xc =PC e cx

fi 2 c/( 2mekT) = Tcy/T (400)

a =p /(2mkT)=T iT (401)
azc e cz

Equations (387) through (391) give

=c f2 ceg(K2 +21/2 (401)x Pc 1 K 2

jc p 2  2 1/2
y Pyc (K3 + K4 ) (402)

z Pz(K 2 + K ) (403)
z 8c f 6

Jx 1(K sin a + K2 cos a)/(K1 cos a - K2 sin a) (405)

tan 0c = K4/K (406)

tan 0c = K6 /K5  (407)
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Equations (402) through (407) can be used to calculate the thermoemission from
the superconducting state of a high-Tc compound.

The measured thermionic emission current for a high-Tc superconductor is
given by equation (257). Several cases can be considered according to whether
the spacetime coordinates are coherent or incoherent. In all cases considered
the thermionic emission is along the x axis.

Case a. Spacetime Coherence Along All Axis.

Equations (257), (373) through (375) and (402) through (407) give the mea-
sured thermionic emission current as

Iccc = 2e/(m h 3 )Jcjcjc cos(ec +c c + ec (408)
xm e x y z Jx Jy jz

or equivalently

Iccc M 2/wA T (T T ) 1/2 eg cos ccc (409)
xm o cx cy cz 123456 xyz

where Ao is the Richardson-Dushman constant given by equation (233); Tcx , Tcy
and Tcz are the superconductivity transition temperatures, g is given by equa-
tion (320), and where

G123456 [(K 1 + K2 )(K2 + K2)(K2 + K2)]1/2 (410)

•ccc = ec + ec + ec (411)
xyz Jx Jy Jz

C
where K1 through K6 are given by equations (393) through (398), and where 0•x

and 6c are given by equations (405) through (407). Equation (409) gives
the measured thermionic emission current for the superconducting state and is
valid for

T < T T < T T < T (412)cx cy cz

For the case of a bulk superconductor (bs) equation (377) is valid and equation
(409) becomes

Ibs =2/nA T2 eg G2bs cos bs (413)
xm o c 123456 xyz

where now

K= K K = K 8c =c (414)
Jy Jz

(K2 + 21/2 2 K2 (415)bs ffi K 2 )/ (K3 +K 4
G123456 1(215)

bs =ec + 2 0c (416)
xyz Jx Jy
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which is valid for T < Tc . The leading temperature terms in equations (409) or
(413) are functions of the superconducting transition temperatures and are not
related to the T2 term that appears in the Richardson-Dushman equation that de-
scribes thermionic emission from ordinary metals. The temperature dependence
of the thermionic emission current comes essentially through the functions eg
and K1 through K6 . Equations (320), (393) through (398), (409) and (410) show
that

e G1 2 3 4 5 6 - 0 T - 0 (417)

so that there is no thermionic emission at T = 0

Iccc (T = 0) = 0 (418)
xm

The functions Kn(T) increase slowly with temperature from their values of
Kn(O) = 0 at T = 0 .

Case b. Spacetime Coherence Along the Emission Axis, and Spacetime
Coherence and Incoherence Along the Two Perpendicular Axes.

For this case equation (257) is written as

Icci =2e/(m h3)jJcjci cos( c +6 + 6 (419)
xm = e x y z Jx Jy Jz

c c c
where JC ! Jy and Jz are given by equations (402), (403) and (353) while cJxc 

6 3

6Jy and 01 are given by equations (405), (406) and (360). Equation (419) canJy . Z
be rewritten as

cci 1/2 1/2 g cci
I cc 2/vr A T T e G cos (420)xmi o cx cy G1234 •xyz

where

G1234 2f +K 2)(K3 + K42)]1/2 (421)

12 (K1  K2 )( 3  14)

cci = 6c + 0c + ai (422)
xyz Jx Jy Jz

= ec + 0 c

Jx Jy

For the case when Tcx = Tcy = Tc equation (420) becomes
C 1./ / cci

ICci 2/'r•AT 3/ 2 T1 / 2 eg cos9 (423)
xm= o c G1234 C xyz

If the incoherent spacetime axis is taken to be the y axis the thermionic

emission current is given analogously to equations (419) and (420) as

481



cic a 2e/(uh3)ij J cos(eO +e + 6 (424)IM e x y z Jx Jy Jz

- 2//-AoT T1 / 2 T1 / 2 eg C ic (425)

0cx cz 1256 COS xyz

where

G +2)(K 2 +K)]1/2 (426)
1256 1 )5 +6

*cic ec +i +0 c (427)
xyz Jx Jy Jz

= ec + 0c
Jx Jz

Again, for the case Tcx = Tcz = Tc equation (425) becomes

1cic 2/ wA TA3/ 2 T1/2 eg cos cic (428)
xm 0o c 1256 xyz

which is essentially equivalent to equation (423). Note the leading TI/2 be-
havior of the thermionic emission current in equations (420), (423), (425) and
(428) which is different from the T2 behavior associated with the Richardson-
Dushman equation for ordinary metals. The T' 1 2 behavior may possibly be ex-
perimentally verified in the high-Tc compounds. Equations (420) and (425) are
valid for T < Tcx , T < Tcy and T < Tcz , while equations (423) and (428) are
valid for T < Tc

Case c. Spacetime Coherence Along the Emission Axis, and Spacetime
Incoherence Along Both Perpendicular Axes.

In this case equation (257) becomes

Icii 2e=(m h 3 )JcJiJi cos( c + 81 + (1:29)
xm e x y z JX jy 'jz(

c c

where Jx , 3 and Jz are given by equations (402), (357) and (359), and where 8 xc• _ . • Jx
8)y and el are given by equations (405), (358) and (360). Equation (429) can
be rewritten as

Icii 2A T T eg Coscii (430)
xm oc 12 xyz

where Tcx Tc and where

G (K2 + K2)1/2 (431)

cii 8c + ei +i (432)
xyz Jx Jy Jz

= c
Jx
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For this case the leading temperature dependent term is T which possibly could
be experimentally verified in special classes of high-Tc materials. Equation
(430) is valid for T < Tc .

Case d. Incoherent Spacetime Along the Emission Axis, and
Spacetime Coherence Along Both Perpendicular Axes.

For this case equation (257) is written as

Iicc 3 2e/(m h3)jicc cos( i + 6c + 6c (433)
xm e x y z Jx Jy Jz

where Ji , J and Jc are given by equations (355), (403) and (404) and 8 , e•y
d I' ae ( (Jx

and 0ez are given by equations (356), (406) and (407). Then equation (433) can
be rewritten as

Iicc = A /iT/2T 1/2T egI G exp .icc
xm o- cy cz 3456 xyz

where

= g - cPxc (435)

2 2 2 2 1/2
G3456= [(K 3 + K4 )(K 5 + K 6 )] (436)

icc = i + ec +c (437)
xyz Jx Jy Jz

If Tcy Tcz fTc then equation (434) simplifies to

icc = icc
ixm c 3456 xyz (438)

Equation (434) is valid for T < Tcy and T < Tcz , while equation (438) is valid
for T < Tc . Note the linear dependence of the leading temperature dependent
terms in equations (434) and (438).

Case e. Incoherent Spacetime Along Emission Axis, and Spacetime
Coherence ard Incoherence Along the Two Perpendicular Axes.

In this case equation (257) is written as

I iiC = 2e/(meh3)J1JiJ y z cos(e x + i + ) C(439)
Xme x yz Jx Jy Jz
i i c

where Jx, , J and J are given by equations (355), (357) and (404), while 0'
0•y and 0• are given by equations (356), (358) and (407). Equation (439) can
be rewritten as

iic r-ic/2 3/2 (4iic
xm Af 0o l 7cz T G56 Cos 0xyz (440)

where g' is given by equation (435) and where
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G 6 "(K2 +K2 1 / 2  (441)

iic e + ei ec (442)
xyz Jx Jy Jz

Jx +Jz

For this case the leading temperature term of the thermionic emission current
is T3/2 . If the coherent spacetime axis is selected to be the y axis the
thermionic emission current is given by

Iici 2e3(m h I3 )ic i + 8c + i
xm = e x y z o(0x Jy jz) (443)

A //¥T 2T3 / 2 g' ici
0 cy e 3 4  xyz

where

G3 4  (K2 + K2) /2 (445)

ici i c i
xyz Jx Jy Jz

=i + 0c
Jx Jy

For this case the leading temperature dependent term is T3/2

From equations (409), (413), (420), (425), (430), (434), (438), (440),
and (444) it is clear that, depending on whether spacetime is coherent or inco-
herent along the emission axis and along the two perpendicular axes, the lead-
ing temperature terms of the thermionic emission current for the superconducting
state of a high-Tc material can be either TO , T1 / 2 , T or T3/2 .

4. CONCLUSION. The superconducting state (T < Tc) of a high-Tc material
is associated with coherent spacetime while the normal state (T > Tc) is relat-
ed to partially coherent spacetime. For the superconducting state the Cooper
electrons rotate incoherently or coherently but their radial motion in space
and time is in a coherent state. The motion of the electrons under a weak at-
tractive inverse square force is non-Keplerian because the rotational period is
independent of the separation distance of the two electrons in a Cooper pair.
The thermionic emission currents for the normal and superconducting states of a
high-Tc compound have been calculated. For the normal state of a high-Tc mater-
ial the thermionic emission current has a Richardson-Dushman form that is mod-
ified by an exponential and cosine term, but for the superconducting state the
thermionic emission current has a completely different form and does not have
the leading quadratic temperature depe dence of the Richardson-Dushman equation
but rather goes as TO , TI/2 , T or T3Y2 depending on whether spacetime is co-
herent or incoherent along the thermionic emission axis and along the two per-
pendicular axes.
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SLOW AND ULTRAFAST DYNAMICAL SYSTEMS

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. Newton's law of dynamics is written in a complex number form
that is valid for space and time coordinates that exhibit broken internal
symmetries. The space and time coordinates and therefore also the potential
function are written as complex numbers in an internal space. This allows the
possibility of motion in space and time where the magnitudes of the complex
number space and time coordinates change while the phase angles remain constqnt,
and the possibility of internal space motions where the phase angles of the space
and time coordinates vary while the magnitudes of the space and time coordinates
are constants which corresponds to the case of internal rotations in spacetime.
Similarly the magnitude of a complex number potential can change while the
internal phase angle of the potential remains fixed as in the case a a slow
mechanical process, or the internal phase angle of the complex number potential
can change for a fixed magnitude of the potential which is the case of an
ultrafast mechanical process. This leads to eight possible forms for Newton's
dynamical law of motion corresponding to slow and ultrafast mechanical processes
in coherent or incoherent space and for coherent and incoherent time.

1. INTRODUCTION. Classical mechanics is formulated against a background
of space and time which is represented as an inert continuous medium. Bodies in
motion are represented as trajectories in the space and time background. In this
context space and time is a mathematical construct that itself has no reality
other than geometry because space and time coordinates can be chosen in an
arbitrary manner. However, the development of quantum field theory has suggested
that the vacuum is a real physical medium having well defined properties. 1- 3 The
vacuum state influences the matter within the vacuum through such effects a
vacuum polarization and the self energy of fundamental particles. 1 3

The reality of the vacuum state suggests that space and time coordinates
may be more than just mathematical constructs, and it has been suggested that
space and time coordinates are complex numbers in an internal space. 4 The nature
of the complex number coordinates has its origin in the relativistic trace
equation which implies that pressure is a complex number in an internal space. 4 ' 5

The internal phase angles of the space and time coordinates are affected by the
presence of external fields such as gravity and electromagnetism. 4 The concept
of complex number spacetime allows the possibility of coherent motion in
spacetime wherein the complex number coordinates rotate in an internal space with
fixed magnitudes of the space and time coordinates and where the internal phase
angles of the space and time coordinates are now the dynamical variables of
motion. Expressions for the velocity and acceleration of particles undergoing
internal spacetime motions have already appeared in the literature.)' This
paper introduces the concepts of slow and ultrafast mechanical processes. A slow
mechanical process occurs when the magnitude of the complex number potential
function varies while the phase angle of the potential remains constant. The
case of an ultrafast mechanical process exists when the complex number potential
function rotates in an internal space with the magnitude of the potential held
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fixed while the phase angle of the potential changes.

The space and time coordinates must be written as complex numbers in in-
ternal space as follows4 ' 6

U - v exp(jO ) (1)

- t exp(j6t) (2)
t

where v = x ,y , z for cartesian coordinates; r , 0 , z for cylindrical polar co-
ordinates; and p ,$ ,4 for spherical polar coordinates. Strictly speaking the
internal phase angle of time e0 is associated with each space coordinate so that
for the three elementary coordinate systems the internal phase angles of time
are:

0 x Y or e z e (3)
t t t t t t" t t '

The following quantities often appear in the calculations involving partially
coherent broken symmetry space and time4 '4 6

tan 8VV va l9V (4)v t

tan Btt= tae ~/at (5)

as for example in the following differentials 4 ' 6

dU = sec 8VV dv exp[j(0V + aVV)] (6)

= csc 8aV vd6 exp[j(OV +8 VV)]

dt = sec 8tt dt exp[j(O +8 )] (7)
tt t tt

V V V

= csc 8tt tdOv exp[j(0 + v)]
tt t t tt

For incoherent spacetime 8 vv = 0 and 86t = 0 while for coherent spacetime
avv = w/2 and Bvt = /2 . The measured coordinates of space and time are
given by•4 ' 6

V= V os t tcoseO (8)
m V m t

The complex number coordinate speed is obtained from equations (6) and (7) as

vV = vV exp(JOvV= &d/dt (9)

where
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- Cos vse dv/dt (10)vv co tt se VV

M cos 0tV csc 0 v de /dt (11)
tt VV

-1 dvde
-sin V see0 t dv/dev (12)tt V

- sin Bt csc0 Wtd6/dev (13)
tt VVV t

where

8 + _ V (14)
vV BV V t tt

and where v x, y, z ;r , z ; or p . The particle velocity, momentum
and energy are written as complex numbers in internal space as follows"4,

vV = vV exp(JO ,,V) TV = PV exp(J pv) E - E exp(jOE) (15)

and the corresponding measured quantities are

Vm =vv Cos 0vV Pvm PV cos 6 p Em E cosOE (16)

which are the real values of the complex number quantities.

The basic interest in the realization of compiex number spacetime by the
application of external fields is the possibility of internal motions in space-
time which may perhaps eventually be used for developing power sources such as
rocket engines. The essential outline of this paper is as follows: Section 2
outlines the subject of kinematics in spacetime with broken internal symmetries,
and Section 3 considers Newton's law of motion for slow and ultrafast mechanical
processes in asymmetric spacetime.

2. KINEMATICS IN SPACE AND TIME WITH BROKEN INTERNAL SYMMETRIES. This
section develops the basic expressions for particle speed and acceleration in
spacetime with broken internal symmetries. The concept of motion in totally
coherent spacetime is introduced. The connections are made between the mea-
sured kinematical quantities of partially coherent spacetime and the conven-
tionally calculated kinematical quantities of incoherent spacetime.

A. Particle Speed.

The speed of a particle in broken symmetry spacetime is obtained from
equations (9) through (14) as 4 ,6

V vx exp(jO)vx di/dt (17)•x x

where
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vx " cos Btt secBx dx/dt (18)

W cos 0 x csc Bxx x dex/dt (19)
tt x

-sin x sec t dx/de20)t xx

- sin Btt csc xx x/t d/dex (21)

and

8 - +a - ex 8x (22)
vx x xx t tt

where Oxx and e't are given by equations (4) and (5) respectively. The mea-
sured particle speed is given by equations (16) and (18) through (21) as6

v n v cos O (23)

The single particle momentum is then given by

"px - Px exp(jO)- P =v xp vX (24)

Equations similar to (17) through (22) can be developed for the y and z coor-
dinates.

The special forms of the particle speed for the four possible spacetime
states will now be presented.

Case a. Incoherent Space and Incoherent Time.

O ffi0 ff 0 8 =0 x=0f

X =xx = ett 0 (25)

Combining equations (18) and (25) gives
ii 8ii

v =i dx/dt e = 0 (26)
X vx

which is the conventional description.

Case b. Coherent Space and Inconerent Time.

M= /2 6x = 0 0 (27)
t tt

Combining equations (19) and (27) gives

ci xdx/dt 8ci O +ir/2
VX = vx = x

which describe internal space motion in external time.
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Case c. Incoherent Space and Coherent Time.

ex -xo - O w/2 (29)

Combining equations (20) and (29) gives

ic . t-1dx/dOt eic = x
-x vx/- et -ir/2 (30)

which describes an internal time motion in external space.

Case d. Coherent Space and Coherent Time.

x = w2at= =1/2 (31)

Combining equations (21) and (31) gives

vc = x/t dOx/d8r 6c = 0 - 8x (32)
xx vx K t

which describes internal motion in both space and time.

B. Particle Acceleration.

For a broken symmetry spacetime the particle acceleration is given by
equations (17) through (22) as"'6

x = a exp(jO ax) di dx/dt = d x/dt2  (33)

where
6

a= =sec8 CosX dvx/dt (34)
x vxvx tt t

=csc 0vxvx cos att vx dO vx/dt (35)

=secax ti-1 dvxMdex (36)= e vxvx sin xtt

= csc a sin Bax v/t d0v /dO (37)

vxvx tt K vx

and6

S 0 +8 8 x 8  (38)
ax vx vxvx t tt

where
6

tan 0 .=vx xevx/aVx (39)

From Newton's law of motion written as
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Fx - Fx exp((j8) 6 - ma x (40)

it follows that

F -ma e We (41)x x Fax ax

The measured acceleration is given by

a - a cos e (42)mnx x ax

The measured force is given by equations (40) and (41) as

F - F cose (43)

Combining equations (41) through (43) gives

F - ma (44)
mx mx

and therefore the measured acceleration is determined from the measured force
by Newton's law of motion. The values of the acceleration magnitude ax an,! ac-
celeration internal phase angle eax will now be calculated for several cas- of
the broken symmetry of space and time.

Case a. Incoherent Space and Incoherent Time.

A general expression for the acceleration is developed that can be used
to deduce the limiting case of incoherent space and incoherent time which is
described by

x =0 a 0 X• = 0 ax =0 (45)
x xx t tt

The appropriate expressions for the acceleration magnitude and internal phase
angle are deduced from equations (34) and (38) to be6

a =sec Cosax dvx/dt (46)
x vxvx tt x

0 =e + 0x ax (47)
ax vx %vxvx t tt

where

tan 8vxvx = vx 6vx/OVx (48)

Combining equations (18) and (46) gives6

ax = Cos a x sec 8 d/dt(cos 8x sec 8 dx/dt) (49)
x tt vxvx tt xx

An alternative expression for the acceleration 4 obtained from equations (18)
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and (35) as
x

ax - csc Ovxvx coo t v dO /dt (50)
K XX tt x v

- csc v cos 1xt (cos 0tt sec Bxx dx/dt)dOvx/dt

2x
W cscv cos 2tt sec dx/dt 0v/dt

Combining equations (22) and (47) gives the phase angle of the acceleration as

0 - + 6. + vx - 2 (,x +Ox ) (51)ax t tt

When the conditions in equation (45) are valid the epxression in equation (49)
reduces to the standard case of incoherent space and incoherent time.

Case b. Coherent Space and Incoherent Time.

General expressions for the acceleration are now deduced which can be used
to make the transition to the case of coherent space and incoherent time which
is descirbed by

- w/2 exM0 a-O 8'M 0 (52)xx t tt

An appropriate general expression for the acceleration magnitude and internal
phase angle for this case is obtained from equations (19) and (34) to be6

ax sec B cos a xdv/dt (53)x ddtK o

= sec a Cos a d/dt(cos B csc B x dO /dt)vxvx tt tt xx x

An alternative form of the acceleration is obtained from equation (35) as

a - csc, 0 cos et vx dO /dt (54)
x vxvx tt x vx

where vx is given by equation (19). Combining equations (19) and (54) gives
2x

ax = csc a cos 2 csc 8 x dex/dt d8 /dt (55)xvxvx tt xx x vx

where from equation (22)

dO /dt = d/dt(0 + 8 - 0t - at) (56)
vx X x t tt

The acceleration phase angle is obtained from equation (51) as

= 6 +0 + - 2 (0 x + x (57)ax x xx vxvx t tt
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For the case at hand it is convenient to write the acceleration in equation
(33) for negative acceleration (attractive forces) as

a - a exp(jeax) = ax exp(jtax) (58)
x xax xx

- d0x /d - d x/dt 2

where

ta -- a (59)x x

0e a e -a (60)
ax a

so that

at - cscv cosB v dO /dt (61)x vxvx tt x vx

- csc 0 cos 2 tx csc B x dex/dt dO /dt (62)

0t =60  +0 +0 2 (x + Ox ) (63)ax x x vxvx t tt

which is an equivalent description of the acceleration.

For the special case of coherent space and incoherent time, equations
(52), (56), (62) and (63) give

acit = - aci x(de /dt) 2  (64)X vxvx

0cit = x +0 Ci - 7/2 (65)
ax x vxvx

where from equations (19), (22), (48) and (52) it follows that

civ =x d0/dt (66)
x x

0ci = e + w/2 (67)
vx x

tan 0ci Eci /Fci (68)
vxvx xt xt

where

Eci . (dex/dt)2 Eci >1 0 (69)
xt xxt

Fxci . d2 e/dt2 Fxcit < 0 (70)
xt -d/d xt

Equation (68) then gives
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ci _c.i-1 (Ecti.2 ci 2 1/2
m tvx (t [.Et) +(Ft)J] (71)

Because F¥ci 0 it follows from equation (68) that

SIci -W/2 + K (72)

where Kxt > 0 is a small number which is also given by

tan Kxt IFi I/E ex (73)

Combining equations (64), (65), (71) and (72) gives

a =it . - x[(Et)2 + (Fci) 211 2 (74)

eci- .x +K (75)
ax x xt

The angle ect is generally a small number. Clearly the acceleration in this
case is directed opposite to the displacement x. Finally, from equations (58)
and (64) through (75) it follows that for a negative acceleration (attractive
forces)

-ci - ci cia -- x(Et - jFX) (76)
x xt x

The positive acceleration of a particle moving under the influence of a
repulsive force in coherent space and coherent time is given by

-ci+ - ci+ ci+a Xxt - jFxt (77)
x xt xt

ci+ = x(Eci+ 2 + (Fci+) 2 1/2 (78)
x It it

ci+ ci+e a -e x+~ 0" w/2 (79)

with

ci+ ci ci+
Ext E xtE 0 (80)

ci+ ci ci+
F xtFxt 0 (81)

tan aci+ ci+- ci+
vxtx =Ext IFxt (82)

aci+ =ci = •/2 + (83)vxvx vxvx KXt

so that
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Ci+ cit Ci+ cit8 iax x K-xt a - ax (84)

-ci+ -ci _ ci ci
a =--a M xe ~' (85)x x xt - xt

Case c. Incoherent Space and Coherent Time.

An expression for the acceleration is now derived from which the limiting
case of incoherent space and coherent time can be obtained. This limiting case
is described by

e x =0 0 -xx B=tt w/2 (86)

The required general expression for the acceleration magnitude and acceleration
phase angle is obtained from equations (36) and (51) as6

a - sec sin Bx t-1 dVy/doX (87)x vxvx tt x t

e -x + 0vx + 8 - 2 (0x + o) (88)
ax tt

Combining equations (20) and (87) gives

a -=sec sin x t d/dOt(sin xsec t- dx/dO) (89)x vxvx ttt t tt s xx

From equations (20) and (37) it follows that

a = csc 0 sin 8Ox v/t do /dex (90)
x vxvx Ct K vx t

=csca2 x -2 dx/deX do /dOx (91)
vxvt xx tt vx

For this case it is convenient to rewrite the acceleration equation (33) in the
following form

x exP(JGax) = a' exp(jOax) = d/d- = d2 /d2 (92)

where

a' - a (93)X x

e' =e + 1 (94)
ax ax

so that an equivalent representation of the acceleration that is useful for at-
tractive forces and negative accelerations is obtained from equations (93) and
(94) and (87) through (89) as

a' f-sec sin8 x t d/do (95)
x vxvx tt x (

xsin8 t-I d/d8x(sinO sex t-1 dx/dOt) (96)
vxvx tt t tt set t
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0' - +8 + -2(.x + +)W (97)
axax xx vxx t tt

where x and ex are variables.

In the case of incoherent space and coherent time, equations (86), (96)
and (97) give

aic' sec ic t-2 d2 x2a -- sc v t d/d (98)
x VI" t

ic' ic x
o0ax 0" - 28t (99)

where eic' is a small number, and where from equations (20), (22), (48) and
(86) ttfollows that

vic = t-1 dx/dOt (100)

eic x -e /2 (101)
vx t

ic ic- ic
tan 0 ic -E ic/F (102)

v;xvI xt xt

where

Etic W - dx/dex Eic ;ý 0 (103)
It t xt

Fic 2 d2x/d0 2 Fic > 0 (104)
xt t xt

ic ic -1 ic 2 ic 2 1/2
sec (F x t) [(Ext) +(Ft) (105)

xtBecause • 0 and F~iC ) 0 it follows that ___ is a small positive number

for this case. Equations (98) and (105) give
=c -2 i2 ic2,1/2

aic - t-2[((it)2 + (Fxt )] (106)
x xt

Finally from equations (92) and (98) through (106) it follows that for an at-
tractive force with a negative acceleration

-ic -/2 Ic ic
a _-1/t(F +JE (107)
x xt

For the case of a positive acceleration due to a repulsive force acting
in incoherent space and coherent time the acceleration is given by

-ic+ -2 ic+ ic
"ax /t(F t + JE t) (108)

ic+ -2 ic+-2 ic+ 2-1/2"x = t [(Ext ) + (F xt)] (109)

ic+ ic+ x
8ax vxvx 2 (110)
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with

1ic+ E 1c Eic+ > 0 (111)
xt xt xt

ic+ ic ic+
xt xt xt (112)

t ic+ E ic+ /ic+ (113)
a vxvx xt xt

0 ic+ ic
vxv2=X vxvx (114)

so that for positive accelerations

eic+ eic' ic x2e aic+ ic' (115)-0 -8 -20 a -- a5
ax ax vXVX tx X

aiC+ .Xnaj 1/i2(Flc + JElt) (116)

Case d. Coherent Space and Coherent Time.

In this section an equation for the acceleration of a particle is obtain-
ed which can be used to attain the limit of coherent space and coherent time
which is defined by

Xk

Oxx -i/2 Ott = W/2 (117)

The general expression for the magnitude and internal phase angle of the accel-
eration is obtained from equations (37) and (51) as6

a =csca sin Ox v/t de /dOx (118)x vxvx tt x vx t

0 -Ox + a + - 2 (0x + a) (119)

ax x vxvx xx t tt

Combining equations (21) and (118) gives the acceleration magnitude as

ax =csc sin 28x csc X/t 2 d6 /dOx d6 /dOx (120)
x vxvx tt xx x t vx t

where from equation (22) it follows that

dO /dOx dO /dO8x - 1 + d/dON( x a (121)
vx t x t t xx tt

Another expression for the acceleration magnitude can be obtained from equations
(21) and (36) which gives

a -sec. sin ttx t d/dO (sin x csc 0 x/t dOx/deO) (122)
x vxvX tt t tt xs x t
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In the present case it is convenient to write the acceleration in equation (33) as

Ix - %x exp(J~ax) - a' exp(je' ) - d I/di - d2x/l2 (123)

where

a' M - a (124)
x x

e' - e + W (125)
ax ax

and an alternative representation of the acceleration that is suitable for at-
tractive forces is

a' - csc x sin 2 csc 0 x/t2 dex/dOt dO /dex (126)
x vxvx tt xx x t vx t

xx
- e i x t_-I d/det(sin Ox c xtdOx/dOt) (127)

= e vxvx si tt t it csc xx x/

o' =e + -O -B +.it (128)
ax vx vxvx t tt

=e + Ovxvx + xx - 2 (,x +•tx) +rx t tt

For the case of coherent space and coherent time equations (126) through
(128) become with the help of equation (117)

at - csc 0 c x/t 2 de /d6 X (dOx/deX - 1) (129)x vxvx ý

sec " x/t 2 d2x/ddx 2  (130)

ea -e + 0Cx - 2e8 + w/2 (131)
ax x vv

From equations (21) and (22) it follows that

vC = x/t dex/det (132)

ec - e - ex (133)
vx x t

Equations (48), (132) and (133) give

tan W =E /F (134)
vxvx xt xt

where for coherent spacetime

Ec = dex/dO (dox/dox - 1) Ec < 0 (135)
xt x t x t xt

Fc - d2 exMOx2 Fc >ý 0 (136)
xt x t xt
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cc c (Ec )-[ (Ec )2 + c 2]1/2 (137)vxvx " x t xt

sec Fc -1 (Ec )2 +(Fc 2]1/2 (138)se vxvX t [(xt) + 38

where dIx/dex < 1 . In a gravitational field, for example, the following rela-
tionship hol~s4

20 x% 3e dOx/dex % 2/3 (139)t Xx t

Therefore in general E•t < 0 and Fx)t > 0 , and it is convenient to introduce a
new angle by writing

BC - -w/2 + 6xt (140)

or equivalently

tan 6 t = Fc /xt/I 1 (141)

so that in general 6xt > 0 . Combining equations (129) through (131) and (135)
through (138) gives for coherent space and time

ac = - It 2 [(Ec) 2 + (Fct) 2 11 2  (142)

0cl f 0c + 8 c - x + ir/2 (143)

ax v2 -XVX t

=0vx t 6xt

= 6 + Oc - 2e x + 7r/2

X vxvX t

=0 - 2 0x +6
x t xt

Therefore 8ax is a small number. Coherent space and time represents an inter-
nal motion in space and time that can be written in complex number form as

&=jid6 di = jtdOx (144)
x t

which is equivalent to equation (117). The magnitude and phase angle equations
(132) and (133) are equivalent to the following complex number expression for
the particle speed in coherent spacetime

-c = -c(45v (di/dt)c = R/t dO (145)

The magnitude and phase angle of the acceleration that are given in equations
(142) and (143) correspond to a complex number acceleration that is obtained
from equation (123) and is given by
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c 2-t2)c -/2 x2 x
1 (d X/lt )d -V/d~de x(deIdex - 1) - jd e /dx (146)

-/12(- Ec + JFC)
xt xt

as it must be becuase of the definition of 6xt given in equations (140) and (141).

For a repulsive force acting on a particle in coherent space and coherent
time the positive acceleration is given by

"ax /(- Ext + iF +) (147)

" C+ .Xt2 UEc+ )2 + Fc+ 2 11/2(18
- x/t [(Ect) + (Ft)J (148)

C+ c+xo+ -e + c+ - 2,x + w/2 (149)
ax x vv

with

Ec+ Ec Ec+ 0(
xt xt xt (150)

C+ c CF = Fc F >0 (151)xt xt Xt

tan cc+c+
tan E I+/F C (152)

xt xt

0+ cS/ =- / + 6xt (153)

and

8C+ =8' - -20• + aC+ c'
ax = ax x t 6xt x a x (154)

-+ -C -2 c c
ax M -a = /t (-_ E t + JFXt) (155)

which agrees with equation (146).

3. SLOW AND ULTRAFAST FORMS OF NEWTON'S LAW OF MOTION IN BROKEN SYMMETRY
SPACETIME. Newton's law of motion for a particle in a potential field can be
written for spacetime with broken internal symmetries as follows 7 -1 0

2- 2 -2/D
m•a md2ldt =x-/ x/=F (156)x K

where m = particle mass and W = complex number potential which can be written as

W = W exp(jBW) (157)

The derivatives of the potential function can be written in four ways. Repre-
senting the complex number force in the following way
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F - FX exp(JeO) = - aJ/ a (158)

gives
6

F = - -cos 8xx sec 0. 3W/3x (159)

= - cos 8XX csc 0 W W 36w/ax (160)

-1
- - sin 8xx sec . x aw/ae x (161)

- - sin BXX csc aw W/x a0,W/a0x (162)

and

eft M eN + ow- ex - •xx (163)

where OFx is a small angle, and where

tan BWW - WOw/law (164)

For repulp.ive forces with Fx > 0 the phase angle and magnitude equations equi-
valent to equation (156) are 0ax = eFx and max = Fx . For attractive forces
the phase angle and magnitude equations that are equivalent to Newton's law in
equation (156) for nearly incoherent space and nearly incoLerent time are ob-
tained from equations (51) and (163) fox Fx < 0 and ax < 0 as

ax = ma f = F (165)

For nearly coherent space and nearly incoherent time, equations (59), (60) and
(163) give for Fx < 0 and ax > 0

ax Fx - max = F (166)

For nearly incoherent space and nearly coherent time, equations (93), (94) and
(163) give for Fx < 0 and ax > 0

0' =0 - ma = F (167)ax Fx x x

For the case of nearly coherent space and nearly cohere.it time it follows from
equations (124), (125) and (163) that for Fx < 0 and ax > 0

0' = a - ma = F (168)
ax Fx x x

Newton's law of motion given by equation (156) will now be considered for the
four kinematic spacetime conditions that were considered in Section 2 and for
slow and ultrafast mechanical processes, which produces eight possible cases
for Newton's law of motion.
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Case 1. Slow Process, Incoherent Space and Incoherent Time.

This section develops the Newtonian law of dynamics for broken symmetry
spacetime in a form that is suitable to make the transition to the case of a
slow mechanical process in incoherent space and incoherent time which is de-
scribed by

eW = 0 - o 0 (169)

o =0 0xx So = 0 at-=M0 (170)
x x t tt

where x and t are variables. Combini,'g equations (40), (46), (47), (156) (159)
and (163) gives Newton's law as

m cos xsec dv /dt = - cos B sec a 3W/3x (171)m osBt se vxvx W

e = + a - x ax (172)ax vx vxvx 1- tt

= -W + OWW - ex - 6xx

where Bvxvx and OW are given by equations (48) and (164) respectively. Com-
bining equations (18) and (171) gives Newton's law of motion as

M cos 8 x sec 8 d/dt(cos Ox sec 8 dx/dt) (173)
tt vxvx tt xx

C -csxx sec 8WW 3W/Dx

Combining equations (50) and (159) gives an alternative form of Newton's law
2x

Mcsc a cos 2it sec x dx/dt 0 /dt (174)
vxvx t xxvx

C a co xx sec 0,wW 3W/3x

Combining equations (51) and (172) gives

o =e + + _ 2 (0 x + a ) (175)
ax x xx vxvx t tt

= W + aWW - 8x - Oxx

If the potential function is given by a power law W nu x 0 then equation (164)
gives

a8 xx (176)

Therefore a reasonable approximation to equation (175) for many potential func-
tions is given by
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26 + 0. + - 2 (0e + )n' (177)x Bvxvx t tt) N(1)

The limiting case of a slow mechanical process in incoherent space and incoherent
time is obtained by setting all phase angles equal to zero and the exact equation
(173) becomes

m d 2x/dt = - NW/3x (178)

which is the standard form of Newton's law of motion.

Case 2. Slow Process, Coherent Space and Incoherent Time.

This section gives a form of Newton's law of motion that can be used to
regain the special case of a slow dynamical process in coherent space and inco-
herent time which is described by

OW -0 W = 0 (179)

2 612 t=0 a 0 (180)

where 6x and t are variables. Combining equations (19), (53), (59) and (161)
gives Newton's law of motion for attractive forces as

- m sec cos 8tx dvx/dt =-sin x sec W x- 1W/ae (181)
vxvx tt x xx WW

or
x d/t xo

m sec 8 Cos 0 d/dt(cos 8O csc 8 x dO /dt) (182)vxvX tt tt xx x
-1

f sin 8xx sec 8WW x 1W/o x

with DW/38x ; 0 . Combining equations (62) and (161) gives for attractive
forces Newton's law as

2x
m csc 8 cos 8 csc 8 x dO /dt dO /dt (183)vxvX tt xx x vx

= sin 8xx sec 8WW x- 1W/38x

where the general expression for avxvx is given by equation (48) and dOvx/dt
is given by equation (56). The phase angle equation for this general case is
given by equations (63) and (163) as

O +a + _ 2 (,x + x ) 1n=Ow+ O e (184)x xx vxvx t tt W xx

which is valid for attractive forces.

The limiting case of a slow dynamical process in coherent space and in-
coherent time is obtained from equations (180), (182) and (183) which give for
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attractive forces

UK sec 8 sci d 2 e /dt 2 = sec 8 x-1 aW/a6 (185A)vxv xW x

sci 2 -1mx csc 8vxvx (dOx/dt) a sec OW x aw/aex (185B)

Combining equations (68) through (71) with equation (185) gives Newton's law
for attractive forces as

tai(sci.2 _sci.2 1/2 -1
m -[(E ) + (Ft ) 2 - sec aW x aw/ae (186)

sci sciwhere for attractive forces aW/aex > 0 , and where Eit and Fit have the same
forms as in equations (69) and (70) but with the sign of Fsci reversed

xt
Esci . (dex/dt)2 Esci > 0 (187)
xt xt

Fsci 2 d2ex/dt2 Fsci > 0 (188)xt d xt

The case of a slow process in coherent space and incoherent time is obtained
by combining equaticus (179) and (186) which gives for attractive forces the
following form of Newton's law

-- sci 2 ( )sci 2 1/2 -1uuc(Et ) +( ) I -x-iw/aex (189)
Xtxt x

with aW/aex > 0 . The phase angle equation for Newton's law of motion in co-
herent space and incoherent time is obtaiited from equations (63), (163) and
(166) to be for slow attractive forces with eW - O

0 cit 0 + 0sci - n/2 (190)
ax x

where for this case is given by equation (68)
_sci _sci._sci

tan8 =si.E si/F si(191)vxvx xt xt
so that 0s is a small positive number. Equation (190) can also be written as

0sci + 22 -=o OW = 0 (192)vxvx x

where for this case Oix >, 0 and Ox < 0 and

OWW 0 Oxx (193)

The equivalent complex number form of Newton's dynamical law for a slow mech-
anical process in coherent space and incoherent time is

"505



sci sci
- mx(E - JFx ) - - i/i aw/aex (194)

For repulsive forces equations (53) and (161) give Newton's law of mo-
tion as

m se 8v + Cos 6tx dvx/dt -sin x sec 0. x-1 aw/ae (195)
vxvx Ct x Iac w x

or equivalently
+ x /rKo x

m sec 8+ cos d/dt(cos t csc 8xx x dex/dt) (196)
-1

sin 8xx sec xWW x aw/aex

Combining equations (55) and (161) gives Newton's law of motion for repulsive
forces as

m csc a cos 2 csc 8 x dO /dt de /dt (197)
vxvx tt xx I vx

-1

sin 8xx sec B x aw/aex

with 3W/aOx 4 0 . For repulsive forces equations (57) and (163) give

ex + 8a + 8+ - 2(0 +80t).e + 8 W ex xx +Ir (198)x x vxvx 8 tt) =W + WW -8 x 1

For the limiting case of a slow mechanical process that occurs in coherent
space and incoherent time equations (196) and (197) for repulsive forces give
the following form of Newton's law of motion

sci+ 2/2 -1mx sec5 dO/vt = - x-1w/aO (199A)

mx csc 8s;vx (dOx/dt) 2  -- 1W/9x (199B)

where

sci+ sci+ sci+tan0 Et /F t (200)

sci+ sci 2 sciE xt =E =(d/dt) E 0 (201)

sci+ sci 2 2 sciFsci+. Fsci = d2Ox/dt Fsci > 0 (202)xt xt xxt

8sci+ 8scisci+ =(203)

and equation (200) gives Newton's law of motion for a repulsive force as
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sci+ 2 sci+ 2 1/2 1
xc(Ext ) + (Ft = - Xawae (204)

with aW/aex 4 0 , and equations (198) and (194) give Newton's law of notion for
repulsive forces in coherent space and incoherent time as

20x + sci• 0 ew M 0 (205)
x vxvx

-. sci+ _sci+.

mi(E - JF ) - - Aw/ai j/iE aw/ae (206)
xt xt x

Equivalently Newton's law of motion in equation (206) for repulsive forces is
written as

-- sci .sci. 27

mi(Est - JFt ) = - = J/i/ / awae(207)
xtxt x

which is valid for repulsive forces acting in coherent space and incoherent
time.

Case 3. Slow Process, Incoherent Space and Coherent Time.

In this section a form of Newton's dynamical law is developed for broken
symmetry spacetime that can be used to attain the case of a slow mechanical
process in incoherent space and coherent time which is described by

ow = 0 aW = 0 (209)

o =0 80 -0 8Mt 0/2 (209)x tt

where x and Oe are variables. Combining equations (95) and (159) gives Newton's
law for an attractive force as

-msec8 sin x t- 1 dv /dOx = - cos 8 sec OW aW/ax (210)
- msscc8vvx sn/Sx

From equations (96) and (159) it follows that equation (210) can be written as
x t-1 d/x ( x t-I dx/ ))

m sec 8vxvx sin tt d/d (sin sec 8 t 1dx/dO (211)
ttt t t t

=cos 8xx sec a W/x

Combining equations (90), (93) and (159) gives Newton's dynamical law for
attractive forces as

- csc 8x sin a vx/t dO vx/dOt = - cos 8 sec 8 W W/ax (212)
- cs vxvx ttn vx it

or equivalently
2 x -2 dx/d•dv/O23

m csc 8 sin 8tt sec 8 t dx/dO dO Id~x (213)
vxx tt xxt Vx t

= cos 8xx sec 8 W W/ax
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Equations (210) through (213) are valid for attractive forces for which
aW/ax ; 0 . The phase angle condition for Newton's law of motion for this
case is obtained from equations (97) and (163) as

e x + + Bvxvx - 2(ex + xt) + f eW + owB - 8x - oxx (214)

which is valid for attractive forces.

For the limiting case of a slowly changing potential in incoherent space
and coherent time Newton's dynamical equations (211) and (213) for attractive
forces become

-2 sic 2 x2
mt sec x d x/de = Wax (215)

vxvx

at- csc 8si (- dxid&2) = W/ax(26

For this case Newton's dynamical laws (211) and (213) can also be written for
attractive forces as

-2 _sic 2 _sic. 2 1/2 =
mt [(xt ) + (Fxt) = aW/ax (217)

with BW/ax > 0 for an attractive force, and where

tan $sic E sic sic (218)
vxvx xt xt

Esic = Eic= dx/dex Esic > 0 (219)
xt xt t xt

Fsic = Ficxt 2 x/dO 2 Fsict 1> 0 (220)
xt xt t x

where Ec and Fic are given by equations (103) and (104). It is clear thatqt xt
sic ic (221)
vxvx vxvx

where Rvx is a small number given by equation (102). The corresponding phase
angle condition obtained from equation (214) is

8sic - 2ex = 0 eW = 0 (222)
vxvx t

The equivalent complex number form of Newton's law of motion is written for
attractive forces as

.- 2._sic _sic. W8 W• 23
-m/t2 (Fs' + JES'c ) AW/aiaW/ax (223)

xt xt

which holds for slow attractive forces in incoherent space and coherent time.
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In the case of repulsive forces Newton's dynamical equations (87) and
(159) give

usec 0+ sin Ox t-I dvx/dO M - cos x sec 0. aw/3x (224)

while equations (89) and (159) give Newton's law for repulsive forces as
. + t-1 d xd . -1

m sec 0 sin 0 t -1d/de (sin O sec 0 t- dx/dex) (225)vxvx tt t tt xx t

=-cos Bxx sec Oww 3W/lx

Combining equations (91) and (159) gives Newton's dynamical law for repulsive
forces as

mcsc B+ sin2 x sec t-2 dx/dex de /dex (226)vxvx tt xx t v2 t

-Cos xx sec.w . W/3x

where for a repulsive force 3W/ax 4 0 . For a repulsive force equations (88)
and (163) give

ax + ax + 0 + - 2 (,x + 0'x+o .- ox-i 27
+ IM Kxx t t+8x8 -x 8  +Brr) = OW÷•M x-ex-• (227)

In the limiting case of a slow mechanical process in Incoherent space and co-
herent time Newton's dynamical equations (225) and (226) become for repulsive
forces

mt-2 sec 8sic+ d2x/d6x - W/x (228)
vxvx t

-2 sic+ dx/d• W
mt-2 csc sic+ (- dx/d8)-3W/ax (229)

t

where

sic+ sic+ sic+
tanvxvx = Ext /Fxt (230)

sic+ sic ic sic+
E t = E t= E xtE xt 0 (231)xt xt xt it

sic+ sic ic sic+
F xt .F t= F xtF xt 1 (232)xt xt xt it

sic+ . asic (233)
8VXVI VXV

and Newton's dynamical law for repulsive forces in equations (228) and (229)
becomes
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t-2[ ostc+. 2 (xt÷ 2 ]1 /2
(xt ) + (Fsic+- - aW/x (234)

Equivalently, equation (234) can be written as
-2 ic-2 ic2 1/2

t-2 [(E ) +(F t) 2 =- aw/ax (235)
xt x

with aW/lx • 0 for a repulsive force. The phase angle equation (227) for
Newton's dynamical law with repulsive forces becomes with OW - 0

0sic 20M 0 x > 0
vxvx tt 26

or

a ic - 2ex -=o e xt 0 (237)

Finally, the complex number form of Newton's law of motion for a slow mechani-
cal process in incoherent space and coherent time and for a repulsive force is
written in an analogous fashion to equation (223) as

-- 2 _sic+ _sic+. -

m/t (Fs +ixt )i - al/3• - aW ax (238)

Equation (238) can be written in the following two equivalent forms of Newton's
dynamical law of motion for this special case

-/2 .sic .sic.
m/t ( + sic ) ffi - aW/ax (239)

xt jxt
-2 ic ic

m/t (F t + JEt) f - 3W/ax (240)

where OW = 0 , and where for a repulsive force DW/a:ý < 0

Case 4. Slow Process, Coherent Space and Coherent Time.

A form of Newton's law is considered that can be reduced to the special
case of a slow mechanical process in coherent space and coherent time which is
described by

ow= = 0 oW 0 (241)

=i= x ff W/2 (242)

where Ox and 6x are variables. A form of Newton's law that can be used for
this case comes from equations (36), (124) and (161) with the result that for
an attractive force

X -1 x-m sec 0vxvx sin 0ttx t' dv/dO= -sin 1xx sec B WW x- aw/aOx (243)

or combining equations (21) and (243) gives Newton's dynamical law for an
attractive force as
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x t-1 d/x(t x d x/d•

maec sec sin tt C d/de(sin xcc x x/t dO /dex) (244)

-sin Oxx sec WW x-1 aw/3ex

where for an attractive force 3W/36x > 0 . Another form of Newton's law that
is suitable for this case is obtained from equations (118), (123), (124) and
(161) which give for an attractive force

mcsc8 sinBX v /t de /dex (245)
-xx stt x vx t

sin 8xx sec 80W x 1 •W/aOx

Equation (245) can be rewritten using equation (126) to give the following
form of Newton's dynamical law for attractive forces

xt-2 csc 8vxvx sin 28a csc 8 de /dOx dO /dex (246)
vxvx tt x t vx t

- sin 8xx sec 8 x-I aw/aex

where devx/d0x is given by equation (121). For an attractive force aW/36, > 0.
The corresponding phase angle equations (128), (163) and (168) give the phase
angle relation

6 + 0. + Ovxvx - 2(,x + xt) + 7 - 9 + OW - 0x - 1xx (247)

which is valid for a slow mechanical process in nearly coherent space and near-
ly coherent time.

The case of a slow mechanical process that occurs in coherent space and
coherent time follows from equations (121), (241), (242), (244) and (246) which
give Newton's dynamical law as

Ext-2 sec 8scc d26M/de =X .x w/Iae (248)
vxvx x t x

mxt-2 csc 8scc dO /dOX(dOx/dox - 1) = x-1awa (249)
vxvx K tx t x

Equations (248) and (249) can be written as

mxtx2 [Escc) 2 + (F scc) 2 1/ 2 = x-I aw/ae (250)
xt xt K

where for an attractive force W30, > 0 , and where
ta scc 8 cc- scc

tan8 = cC E Ic F s (251)
vxvx xt xt
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-a dOx/do (doe/doe - i) Ect 4 0 (252)
Xt x t X t

F seeC 2 x d62 F CC 23xt - t d(

It follows that

8 ce M - W + CL (254)

where the small positive number axt is given by

tan IEscc /IFSCC (255)ta t 'xt '/Ixt

For this case the phase angle equation (247) becomes with eW - 0

0 - 20 + + ir/2 -0 - •/2 (256)
x t vxvx x

Equation (256) can be rewritten with the help of equation (254) as

2( 0 x)+ca -0x > 6 (257)
x t xt t x

The complex number form of Newton;s dynamical law that is equivalent to equa-
tions (248) through (257) is written as for attractive forces as

m-l•2(_ zSCC + .scc. (258)xt jFx ) = - aw/a = jlx awle(5

where OW = 0 for a slow mechanical process, and Wax >) 0 for an attractive
force.

For a repulsive force equations (122) and (161) give the form of Newton's
dynamical law as

+ 1 x x xtd x/dt 29

m sec v sin 8x t- d/det(sin Ox csc 8 x/t dO /dxx) (259)vxv ttt t xxx t

-sin 8xx sec $WW x-I aW/36x

while equations (120) and (161) give for a repulsive force
mx-2 +s 2xvx

t-+ csc xsin 2 cs dO x /dOt dOvx/dex (260)
sin tt cst V t

-1

sin 8xx sec 80 x 1w/3ex

with 3W/360x 0 for repulsive forces. For a repulsive force equations (119)
and (163) give

+ - (0 x
x + 0x + -v2(,x +t )= 0 + OWW - ex - Oxx - 7 (261)
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In the limiting case of a slowly varying repulsive potential in coherent space
and coherent time equations (259) and (260) become

-2 scc+ 2 x2 x-1
Et se 8" d/d -- x 3W (262A)

-2 scc+ x/x -1
Ext csc B" dO/dOt(de det -1)- x aw-ae (262B)

where

scc scc+ Fscc+tan IF;:: - Ext xt (263)

E scc+ ss 0 (264)
xt xt xt

Fscs+ = Fscc Fscc+ 1 0 (265)xt xt xt

scc+ . scc + s(266)
6vxvx vXXx

Equation (262) for repulsive forces can be rewritten as

cxt2 [(Es"C)2 + (Face ) 211/2 x-la- I (267)xt ct 2w/aex

with 8W/aox 4 0 , while equation (261) becomes with eW f 0

e - 26x8 + axt --0 (268)x t x

or equivalently

2(e - ex) + a =t 0 x>e (269)
x t xt t X

For a repulsive force the complex number form of Newton's dynamical law that
is equivalent to equations (259) through (269) is written as

m./t2(- ESt + itxs ) = - 4/3i = j/i aw/aex (270)

where 3W/3x <( 0 for a repulsive force.

Case 5. Ultrafast Process, Incoherent Space and Incoherent Time.

Consider now the form of Newton's law of motion that can be used to re-
gain the case of an ultrafast process in incoherent space and incoherent time
that is described by

= fi w/2 (271)

x x8 = 0 xx = 0 x 0 x =0 (272)
513 tf
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with x and t as variables. Combining equations (40), (46), (47), (51), (156),
(160), (163) and (165) gives Newton's dynamical law as

xcoo0x see8 dv /dt- cos Bxx csc 0. ae•/•ax (273)
tt vxvx x

e~ -8 e + (274)
att

eax evx + vxvx - t -tt(24

X x

=x + Oxx + Bvxvx - 2(et + tt

= 8 W + OWW - ex - OXX

with Ovxvx and OW given by equations (48) and (164) respectively. Combining
equations (18) and (273) gives Newton's dynamical law as

m Cos 8x sec d/dt(cos 0-t sec B dx/dt) (275)m o tt seOvxvx t x

= COS Bxx csc a w aew/ax

Combining equations (50) and (160) gives an alternative form of Newton's law of
motion as

m csc Pvxvx cos8 x v dO /dt -cos Oxx csc aww W 36w/DX (276)
vxvx tt x vx

or equivalently
2x

mcsc B cos 2tt sec 8 dx/dt dM /dt (277)
vxvx tt xx vx

= Cos axx csc BW W W ew/x

with WaeW/ax >, 0 for an attractive force, and W36W/ax < 0 forarepulsiveforce.

The limiting case of motion in incoherent space and incoherent time is
obtained by combining equations (272) and (275) with the result that Newton's
dynamical law becomes

m d2x/dt2 = _ csc 8WW W 36w/ax (278)

The further limiting case of an ultrafast dynamical system in incoherent space
and incoherent time is derived by combining equations (271) and (278) which
gives Newton's law of motion as

m d2x/dt2 . _-wa W/ax (279)

The phase angle equation for Newton's law of motion in this case is obtained
by combining equations (271), (272) and (274) w'th the result
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O0 v "e + 412 (280)

where equations (279) and (280) are valid for attractive and repulsive forces.

For an attractive force W380/ax ; 0 while for a repulsive force Wa6w/ax 4 0

Case 6. Ultrafast Process, Coherent Space and Incoherent 1ime.

This section develops a form of Newton's dynamical law that is suitable
for making the transition to the case of an ultrafast dynamical system in co-
herent space and incoherent time which is described by

S- w,/2 (281)

xx - /2 et x Wit - 0 (282)t tt

Combining equations (53), (59) and (162) gives for an attractive force the fol-
lowing form of Newton's law of motion

- mxsec 0 cosax dv /dt -sin 8, csc 0. Wix ae /ae (283)
ttvxvx osx V t

Combining equations (19) and (283) gives Newton's law as

m sec 0 Cos 0 d/dt(cos Ox csc x dO /dt) (284)m e vxvx co tt 6tt cs xx xdx

- sin Bxx csc OW W/x aew/aox

where for an attractive force WaeW/iax > 0 . The combination of equations (61)
and (162) gives an alternative form of Newton's law of motion for an attractive
force as follows

x

- cscM cc cos it v1 dev/dt - - sin 8,x csc a. W/x aew/aex (285)

Combining equations (62) and (162) or combining equations (19) and (285) gives
Newton's dynamical law for attractive forces as

2x
vx cos t csc 8xx x /dt d0vx/dt (286)

sin 8xx csc a W/x D aW/36x

where d6vx/dt is given by equation (56). The phase angle equation for the
acceleration can be obtained from equations (63) and (163) as

ox a + - x -2 (,x t) - n = 6W + -WW Ox - Oxx (287)
x xx vxvx t tt W W ~ x

which is valid for a fast process in nearly coherent space and nearly incoher-
ent time.
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For the limiting case of an attractive ultrafast mechanical force in co-
herent space and incoherent time, equations (281), (282), (284) and (286) give
Newton's dynamical law as

mx sec B d2lx/dt - W/x ae /3x (288)
a" x w x

mx csc BUCi (de /dt) - W/x a /lax (289)vxx x w x

Equations (288) and (289) can be rewritten as the following form of Newton's

law of motion

[(Euci)2 + (Fuci)2.1/2 - W/x ae lao (290)
xt xt w x

where for an attractive force WaeW/a6exo 0 , and where

tan 0uci E uci uci
vxvx xt xt

uci ci 2uci
Eut - Et = (dOx/dt) 2  Euxt > 0 (292)

Fuci Fci 2 26x/dt2 Fuci < 0 (293)
xt xt x xt

a uci ff ci =/2 +K (294)

where avx is given by equation (68) and Kxt is given by equation (73). The
internal phase angle equation for Newton's law of motion for this case follows
from equations (281), (282), (287) and (294) as

6 + uci - i/2 = e - 0 (295)
X vxvx X

or equivalently

Ow = 20x + K xt (296)

The equivalent complex number form of Newton's law of motion for an attractive
force in this special case is given by

- _S Euci _ Fuci.ýi3 3 (297)
- mi(Ext - jFxt) = - XW/ai = - w/i aoW/o(9

with WaOW/aOx > 0 for an attractive force.

For a repulsive force equations (53) and (162) give Newton's law of
motion as
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+ x d/tcsx
m sec 0v+ cos ddt(cos csc xx x de6/dt) (298)

-sin A= csc 8W W/x /38ex

Alternatively, combining equations (55) and (162) gives Newton's dynamical law
for repulsive forces as

m csc 0 + cos 2 tt csc Oxx x dex/dt de ,/dt (299)

-- sin Oxx csc oww/x aewlaex

with WaOw/a6x < 0 . For repulsive forces equations (57) and (163) give the
phase angle condition as

8 + + 8+ - 2(e6 + 0 =6 + 8-e-8 + W (300)X x vxvx t tt W W300

In the case of an ultrafast mechanical process that occurs in coherent space
and incoherent tia,. equations (298) and (299) become for repulsive forces the
following Newtonian laws of motion

mx sec 8 Uci+ d2 6 /dr 2 W/x 36 /36 (301)
vxvx x W x

x csauci+ (dex/dt) = - W/x aeW/36 (302)

where W36W/aex < 0 for a repulsive force, and where

uci+ uci+ uci+
tan = xt /F xt (303)

with

E uci+ = Euci . (dOe/dt)2 Euci+ 1 0 (304)
xt xt x xt

Fuci+ . Fuci = d2 e/dt2 Fuci+ < 0 (305)
xt xt x xt

Then it follows that

8 uci+ =nauci = w/2 + K (306)
vxvx vxvx xt

where Kc is given by equation (73). Then equations (301) and (302) can be
written as

_uci+ 2 _uci+ 2 1/2 -mx[(Ex ) + (Fx ) = -- w/x 3ew/3ox (307)
xt xt x

which is valid for repulsive forces with WDOW/38x < 0 . Equation (300) becomes

ex + Kxt -W ex (308)
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Then the equivalent of equation (297) for repulsive forces is

uci+ uci+(
mi(E - JF xt - - -W/a - - W/i aeW/ae, (309)

with W36W/aex 4 0 .

Case 7. Ultrafast Process, Incoherent Space and Coherent Time.

A formulation of Newton's dynamical law is presented that correctly re-
duces to the limiting case of an ultrafast mechanical process in incoherent
space and coherent time which is described by

-W = w/2 (310)

xx -0 8tt -/2 (311)

ttwhere x and BEare variables. Combining equations (95) and (160) gives Newton's

law of motion for attractive forces as

- m sec x sin Ox t-1 dv /dX -- cos 8 csc 0 W 86w/aX (312)
v 8x tt aeO

Using equations (20) and (96) allows equation (312) to be written as

m sec x sin a x t-I d/dex(sin x sec B t-I dx/dOt) (313)vxvx tt t tt xx t

-cos oxx csc OWW W aew/ax

with Waew/Dx >, 0 . An alternative form of Newton's law of motion for this
situation comes from equations (90), (91) and (160) with the result that for
an attractive force

-m csc v sin 0tx v /t d6 /dx= cos x csc 8 W a6w/ax (314)
vxvx tt x vx t XX W

or equivalently using equations (20) and (314) gives Newton's dynamical law as
2 x -2 dx/dtdv/

mcsc 8 sin 8 sec 8 t dxld8 d6 /d0' (315)
vxvx tt xx t vx t

=cos axx csc aWW W aew/ax

with W6W/Dx >I 0 for an attractive force. Equations (312) through (315) are
completely general. The phase angle equation for this general case can be
written using equations (97) and (163) as

O + + + 8, v - 2 (,x +xt) + T=8 +8 -8x6 +8xx (316)
x x xx t tt W x X

which can be used to attain the limiting case of interest.
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The limiting case of an ultrafast attractive potential acting in inco-
herent space and coherent time is obtained from equations (310), (311), (313)
and (315) as the following forms of Newton's dynamical law

t se uic d2x/de2 W36 /ax (317)
-2 uic x

mt csc Ouxc (-dx/de)-wae/ax (318)
vxXt w

Equations (317) and (318) can also be written for an attractive force to give
Newton's law of motion as

_-2 uic 2 + uic- 2 1/2
ut-((xt ) + (Fxt) I W•Ow/3x (319)

with W3eW/3x ; 0 , and where

t uic uic /uictan vxv t / (320)

Euic = - dx/d6t X Lp_ >o (321)
xt t xt

Fuc = d2x/d8x2 uic > 0 (322)

xt t xt

uic
6" =n/2 - Yx(323)

where
_uic._uic

tan y =F uxt /Eux (324)
xt xt xct

and yxt is a small positive number. For this case the phase angle condition
(316) is written as

BuiC - 20% = E) + f/2 (325)

or equivalently as

e= - Yxt - 26' (326)
xt t

The complex number form of Newton's law of motion for an attractive ultrafast
potential in incoherent space and coherent time is given by

-2 ui _uic.

m/t2(Fuic +•t )=-a W/A =- jWaG /ax (327)
"xt w

with WDOw/Dx > 0 .

In the presence of a repulsive force, equations (89) and (160) give
Newton's equations of motion as
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a sec 0+ sin ctx t-1 d/de8(sin 8tx sec x t-I dx/dex) (328)
vv tt tt xxt

M - Cos Ox. csc o.wW aew/aX

Combining equations (91) and (160) for repulsive forces gives Newton's law as
+ 2x -2 xe/e

m csc 0 +xsin 2t sec 0 t dx/dO dx /dex (329)
vXvX tt xxt vx t

COS~ ~ cs eW 6/ax= cs xx cs WWw •w/

with WaeW//x 1 0 for a repulsive force. For a repulsive force equations (88)
and (163) give the phase angle condition as

e + a + 0+ - 2(6 +8 x) +
SW • - (330)

For the case of an ultrafast mechanical process in incoherent space and coher-
ent time equations (311), (328) and (329) become

mt- 2 sec Ouic+ d2x/d6x 2 = - wae Px (331)vxvx t W

mt cs uc+ (- dx/dex) =-W w/ax (332)

where WaOw/3x < 0 for repulsive forces, and where

tan Buic+ Euic+ uic+
vxvx xt xt

uic+ uic x uicEuxc = Euxc = - dx/dO E C+ 0  (334)xt xt t xt

Fuic+ = Fuic = d2x/deX2 F uic+ 0  (335)xt xt t xt

auic+ =Uic = T12 (336)5XV = TV/ 2 - Xt
vxvx x t

where yxt is given by equation (324). Equations (331) and (332) can be written
for repulsive forces as

mt-2[ uic+ 2 + uic+ 2 1/2
(Ext ) +(Ft ) ] =-w /IX (337)

while the phase angle equation (330) becomes

fW = - Y - 2& (338)

The corresponding complex number form of Newton's law of motion for a repulsive
ultrafast potential acting in incoherent space and coherent time is
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l2.uic +.uic

m/i2 (Fat + iE+ t ) = - •W•Ii - - 1waew/ax (339)

with waew/ax 1 0 and ex - 0 for a repulsive force in incoherent space.

Case 8. Ultrafast Process, Coherent Space and Coherent Time.

This section considers a formulation of Newton's law of dynamics in bro-
ken symmetry space and time that reduces to the limiting case of an ultrafast
mechanical process in totally coherent spacetime which is described by

8WW = w/2 (340)

OM M 7/ 2 tt =/2 (341)

where ex and ex are variables. Equations (36), (124) and (162) give Newton's
law of motion for an attractive force as

-msec sinx t-1 dvx/de -csc OWW sin Bxx W/x 36W/36x (342)
vxvx tt x t

or equivalently combining equations (21) and (342) gives Newton's law for an
attractive force as

at-' sec 0 sin 8tX dideO(sin e_ csc: x/t dO Idex) (343)

=S OWC sin VizW/ 30,V/30

Another form of Newton's law of motion for this case is obtained from equations
(118), (123), (124), (156) and (162) which gives the following result for an
attractive force

mcsca sin B vt do /dex (344)
vxvx tt x vx t

=-csc 8a sin 8xx W/x aeW/DOx

Equation (344) can be rewritten using equations (21) or (126) as follows

mxt-2 csc sin 2 csc 8 do /do8 do /dOx (345)
mx cst vxvx t vx t

= CSC WW sin 8 xx W/x gow/36x

where WOw/aex > 0 for the case of an attractive force. The corresponding

phase angle equations (128), (163) and (168) give

O +8 +x - 2(Ox+ v 8 xt) + = W + WW - xx (346)

which is valid for nearly coherent space and nearly coherent time.
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The case of an ultrafast attractive mechanical potential in coherent
space and coherent time is obtained from equations (340) and (341), and New-
ton's dynamical law for this special case is determined from equations (343)
and (345) to be

xt- 2 sec Bucc d 2  /de x2 - W/x ae /ae (347A)

mxt-2 csc 0Ucc de /dex(dO /dOx - 1) - W/x ae /ae (347B)
vxvx x t x t w X

Newton's law of motion in equation (347) can also be written for this case as

-2 [(ucc) 2 (_ucc. 2 1/2
xt txt + "xt ) = -ix 3OW/3Ox (348)

where Wa6W/a/Oe 0 for an attractive force, and where

tn0ucc Eucc /Fucc(39tan8 "vv E"•t IF'x (349)
vxv x t xt

EUCC = Ect dO /deK(dO /dOx - 1) Ec 0 (350)
xt xt X t X t xt

Fucc =FcFc > 0 (351)
xt = dFxd d2x/d(5 xt

where Et and Fxt are given by equations (135) and (136). Therefore

a ucc Eucc/Fucc 8ucc ic i-/ 2 + (352)tan Bvxvx = Ext /F xt vxvx Bvxvx w xt

where Bxvx is given by equation (140). The phase angle condition for Newton's
law of motion for an ultrafast mechanical process in coherent spacetime is ob-
tained from equations (143), (163) and (168) or directly from equation (346) to be

=c' 0 + ucc + 7/2 - 2,x (353)
ax x vxvX t

= 0 -20x +X t xt

=0W - x

where 6xt is given by equations (140) and (141). Equivalently, equation (353)
can be rewritten as

2(0 - )+xt = W (354)

Equations (348) through (354) are equivalent to the complex number form of
Newton's dynamical law of motion given by equation (156) which for an ultrafast
attractive potential in coherent space and coherent time is written as

- /i2(- Eucc + jtucc) = -ax (355)
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with W3BW/aOx • 0 . For a free particle moving in coherent spacetime

aew/aex 0 (356)

and two possible solutions to equation (355) can be found

ex - c 1  (357)
x

ex M et + c2  (358)

where c and c2 are constants. These solutions can also be deduced from equa-
tion (34 8 ). Equation (357) represents a state of rest for internal motion, and
equation (358) represents a state of uniform motion in internal spacetime.

For a repulsive force, equations (122) and (236) give Newton's law of
motion as

mt-1 sec v+ sin Bt d/d(sin O csc 8 x/t dO /dex) (359)
vxvX tt t tt XXn x t

= - csc 8WW sin Bxx W/x aew/ox

An alternative expression for Kwton's law of motion for repulsive forces is
obtained from equations (120) and (236) as

-2 + 2 x dxd•dv/

mxt-2 csc Bv sin 2 csc B de /dOx de /dOx (360)
vxvX tt xx x t vx t

=-csc a. sin Bxx Wx aew/aex

where waow/aex 4 0 for a repulsive force. For repulsive forces the phase angle
equation for Newton's law of motion is obtained from equations (119) and (163)
to be

+ - 2(0 xx (361)
x+ vxvx +tt)=ow+ 8h• x - -W (6

In the limiting case of an ultrafast repulsive mechanical potential in coherent
space and coherent time equations (359) and (360) become

ax-2 sc0ucc+ d2 6 ex2 WX D 32iin-t secO•xxUC d2o/dot =- Wix aoi/ae (362)
vxvx x t W x

-2 c ucc+ de /dMX (dO /dOx -1) = - w/x H /aO (363)mxct csc Bxx
vxvx X t x t x

where

ucc+ ucc+ ucc+
tanOu EU /F (364)vxvx xt xt
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EuCC+ = E UCCt Etc E uCC+ 4 0 (365)
Xt xt xC Xt

FU CC Fc Fucc+ ; 0 (366)Xt Xt xt xt

uCC+vxvx 8 UCCvxvx - /2 + 6xt (367)

where F "C t , , Ec and Ft are given by equations (350), (351), (135) and
(136) respectively, anS where 6xt is given by equation (141). Equations (362)
and (363) for repulsive forces can be rewritten to give Newton's dynamical law as

mt-2 [(Eucc+) 2 +(Fucc+)2 1/ 2 
- - / e (368)mx [xt • xt ] =-lxaw/x

or equivalently

-2 [(Ec )2 + (Fc )2]1/ 2 
- - /3x (369)(xt) +(t) ] =-lxe/ax(39

where WJOW/aGx < 0 for repulsive forces. The phase angle condition for Newton's
law of motion equation (361) becomes for this special case

= 2(0 - 80 x) + 6 (370)
W x t xt

The equivalent complex number form of Newton's law of motion for repulsive
forces is given by

x/t2 (- Eucc+ + jFucc+) = - al /ae (371)
xt xt W x

or equivalently as

m/-t2 Eucc + Fucc qE3/D(7)
m/t2(- Ext + Fxt_ ) = _ W/ W (373)

m••2_ c +.c /-2 /Fc ) = - W/ 36 W/x (374)

which are valid for a repulsive force with Wa6W/36x 4 0

E. Simple Harmonic Oscillator in Broken Symmetry Spacetime.

An elementary mechanical system that can be used to describe the effects
of broken symmetry spacetime on a dynamical system is the simple harmonic os-
cillator. 7-1 The complex number potential energy for a simple harmonic oscil-
lator in broken symmetry spacetime is given by

4 f= 1/2ki 2  W = 1/2kx2  6W = 6 k + 20x (374)

For the simple harmonic oscillator potential it follows from equations (4),
(164) and (374) that
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OW - Oxx (375)

Because of the validity of equation (375) it follows for the simple harmonic
oscillator that a slow mechanical process with OWW - 0 must necessarily occur
in incoherent space with 0. - 0 , and an ultrafast mechanical process with

S- w/2 must occur in coherent space with 0. - w/2 . The simple harmonic
oscillator is an example of an attractive force system.

The equations of motion for the simple harmonic oscillator are now con-
sidered for four limiting spacetime conditions.

Case a. Incoherent Space and Incoherent Time (Slow Mechanical Process).

Equation (178) gives

d2x/dt2 + kx - 0 (376)

which is the standard equation for the simple harmonic oscillator.

Case b. Coherent Space and Incoherent Time (Ultrafast Mechanical Process).

Equations (76), (290), (296) and (374) give

- m(E - Jc) + jk - 0 (377)
xt ixt)
ci 2 c.12

- m[(E t) + (Fci) 211 2 + k - 0 (378)
xt xt

K xt = 8k (379)

where Eci and F-i are given by equations (69) and (70).
xt xt

Case c. Incoherent Space and Coherent Time (Slow Mechanical Process).

Equations (107), (217), (222) and (223) give with ex - 0

- t-2[ ic 2 ic 2-/- (Ft) + JEt)) + +x - 0 (380)

where E• and F~c are given by equations (103) and (104).

xt x

Case d. Coherent Space and Coherent Time (Ultrafast Mechanical Process).

Equations (146), (348), (353) and (374) give
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-2 c c-mit (- E xt + JFt)x + k - 0 (383)

mt- 2 [(Ec )2 c 21/2 (384)

ictxx

-x 2e t e (385)

where Et and F•t are given by equations (135) and (136). It is clear from
cases b and d that the simple harmonic oscillator can undergo ultrafast inter-
nal spacetime motion in coherent space, and for these two cases the spring
constant itself drives the internal motion.

4. CONCLUSION. Newton's law of dynamics can be developed for slow and
ultrafast varying mechanical potential functions and for four possible varia-
tions of the spacetime coordinates: incoherent space and incoherent time, co-
herent space and incoherent time, incoherent space and coherent time, and co-
herent space and coherent time. This yields eight possible forms for Newton's
law of motion. The ultrafast mechanical processes occur as rotations of the
complex number potential function in an internal space while the magnitude of
the complex number potential function remains fixed. The coherent changes of
space and time coordinates occur as rotations of the complex number coordinates
in an internal space for fixed magnitudes of the coordinates. Internal phase
motions may possibly play an important role in the development of nuclear
rocket engines.
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ULTRAFAST QUANrUK PROCESSES

Richard A. Weiss
U.S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. This paper develops the quantum mechanical theory of slow and
ultrafast processes that occur in space and time with broken internal symmetries.
For a slow quantum process the magnitude of the complex number wave function
changes in space and timewhile for an ultrafast process the complex number wave
function rotates with a constant magnitude in an internal space. For incoherent
space and time the changes in coordinates occur as the stretch or contraction of
the magnitudes of the complex number spacetime coordinates, whereas for cohereat
spacetime the changes of the coordinates occur as rotations in an internal space.
The case of a slow process in incoherent space is Just the standard case of
quantum mechanics. The Schr6dinger and Dirac equations are developed for slow
and ultrafast quantum processes in incoherent and coherent spacetime. For the
case of an ultrafast process in coherent spacetime Schr6dinger's equation
describes the internal phase angle of the wave function in terms of the internal
phase angles of the space and time coordinates. By way of example Schr6dinger's
equation for the ultrafast motion of a simple harmonic oscillator is developed
for coherent spacetime.

1. INTRODUCTION. Ultrafast processes have become important diagnostic
tools for the investigation of atomic and molecular phenomena that occur in gases
and condensed matter, and the use of ultrashort picosecond (O1-2 see) and
femtosecond (10-15 sec) laser light pulses has become the basic technique for
studying ultrafast chemical and physical processes.1- 17 Physics, chemistry and
biology have profited from ultrafast pulse technology because these light pulses
can be used to examine atomic and molecular processes such as molecular
vibrations in liquids, phonon and exciton decay in solids, time variation of
plasma densities in gases and solids, chemical reactions at a molecular level and
temperature fluctuation processes among many others.1-17 In the visible region
of the electromagnetic spectrum the Heisenberg uncertainty principle puts a limit
of a femtosecond on the duration of a laser light pulse, while in the x ray
region the limit of temporal resolution is an attosecond (10-18 sec) so that
processes that occur faster by several orders of magnitude can in principle be
observed as technology improves.1"17

Ultrafast processes require an appropriate thermodynamic description. A
relativistic gauge theory of thermodynamics has been developed that determines
the renormalized pressure and Grdneisen parameter in terms of the corresponding
theoretically predicted unrenormalized values of these two quantities.18 On the
basis of this theory it was suggested that thermodynamic quantities such as
internal energy, entropy and pressure are associated with broken internal
symmetries and must be represented as complex numbers in an internal space.19
Space and time coordinates also have broken internal symmetries and must likewise
be represented by complex numbers in an internal space. 19 This is also true of
kinematical and dynamical quantities such as velocity, momentum, acceleration and
force. 19, 20

A theory of ultrafast processes has been developed that describes the
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ultrafast variation of physical quantities as rotations in an internal space
while the magnitudes of the physical quantities are fixed"19",0 Thermodynamic
' queatties such as .stropy, intertal energy and volume ai" c'A= wai rs 'that
change as rotations in an internal space for ultrafast processes. 1 9 9 2 0  It has
been suggested that thermodynamic engines can be developed whose cycles occur as
changes in the internal phase angles of the entropy, internal energy and volume
while the magnitudes of the quantities remain fixed. 2 ° Quantum mechanics can be
developed with coordinates that have broken internal symmetries and the Schrddin-
ger and Dirac equations have been formulated for partially coherent spacetime.19,20

Applications to the problems of a particle confined to a box and the simple har-
monic oscillator have been considered for the external motion in broken symmetry
spacetime and for internal coordinate motion where the magnitudes of the coordi-
nates are held fixed. 20

For broken symmetry spacetime the space and time coordinates are written
as complex numbers in an internal space in the following way

a= a exp(JO ) t = t exp(jt) (1)

where a = x , y , z for cartesian coordinates. a = r , 4 , z for cylindrical polar
coordinates and a = r , 4 , * for spherical polar coordinates. All physical quan-
tities, with the exception of the light speed in the vacuum, have broken inter-
nal symmetries and must be represented as complex numbers in an internal space. 1 9

This includes, for example, pressure, entropy, energy and magnetic and electric
field strengths. Therefore for the case of quantum mechanics the wave function
must be represented as a complex number in internal space as follows21

S= T exp(je ) (2)

Strictly speaking, the value of the internal phase angle of the time is associ-
ated with the particular physical quantity which is varying with time, so that
for the case at hand21

t t exp(jT ) (3)
t

where et = internal phase angle of time that is associated with the time varia-
tion of the wave function T . Space is taken to be homogeneous so that the in-
ternal phase angle of time OT is independent of the internal phase angles Oa oft
the space coordinates. In other cases, such as particle dynamics and kinematics,
the space and time coordinates are not independent and the internal phase angles
of the space coordinates 8e are each associated with a corresponding internal
phase angle of time e60 for a = x , y, z with 36a/36' # 0 . But for the case of
the wave equations of quantum mechanics the time and space coordinates are taken
to be independent parameters so that OT and 0a are unrelated quantities with
aeaI3OT = 0 . In general

T = T(a,O ,t,Oe T (4)
a t

6W = 6 (a,O t,e6) (5)
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where a - x ty, z . From equations (1) and (2) it follows thatI9 , 2 1

dFt- sec8a da exp[j(eC +8 CQ)J (6)

=csc 8aa ad6a exp[j(8a + a a)] (7)

dt - sec Btt dt exp[j(e t +a (8)

Mcsc8 tdeI exp[j(eO + St)] (9)
tt tt (9)

di - sec 0T dV exp[j(e V + ye)] (10)

- csc OTT TOdV exp[j(O + a V)] (11)

where

tan Maa = aa6 /3a (12)

tan -it M /3t (13)tt t (3

tan 0 TV 0 /,3I3 (14)

The internal phase angle of the time is associated with the time variation of
the wave function .t

The first derivatives of the wave function with respect to space and time
are written as

va - va exp(J6v) = 3'/3 (15)

S- u exp(jeu) u 3'/31 (16)

where a = x , y , z . For the space derivatives in equation (15) the magnitudes
va can be written as

2 1

va = sec TT cos 8aa a/3a (17)

= csc 8a cos 8aa a T /ac (18)
-1

= sec 8TT sin Baa a 1T/aea (19)

= csc aTT sin 8aa '/a D6 /aoa (20)

and the internal phase angles as

va = 0 + V a a - a (21)
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where 0., and Byy are given by equations (12) and (14) respectively. The nag-

u- Sec TPCos ayt (22)

= csc 0 cos Ba I 30 /at (23)tt T
'I t-1 '/1' 24

= sec a sin 8 tt a/aI (24)

- csc Ba, sin BIf/t ae /3e (25)

while the internal phase angle is given by

'V '
Ou = + 0• - 0tW - att (26)

where Btt is given by equation (13) and 86 T internal phase angle of time that
is associated with the time variation of the wave amplitude 'V

Four limiting forms of the first derivative of the wave function with re-
spect to the spatial coordinates will now be considered.21

Case 1. Slow Quantum Process and Incoherent Space.

This is described by

=i = 0 8• = 0 0a = 0 Ba = 0 (27)

Then equations (17) and (21) give

si siv = / = 0 (28)

Case 2. Ultrafast Quantum Process and Incoherent Space.

This case is given by

BO =7 /2 0 = 0 B =0 (29)

Equations (18) and (21) become for this case

v = ae/ = 0 + •/2 (30)
a va T

or equivalently

-ui -
va = j~Va0'V /aa (31)

Case 3. Slow Quantum Process and Coherent Space.
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The following conditions hold for this case

e, = 0 OVr = 0 Ola W W/2 (32)

and equations (19) and (21) become

v sc alae -1 - e - w/2 (33)
o O Vol

or equivalently

-Sc J/a v/aS (34)
a a

Case 4. Ultrafast Quantum Process and Coherenc Space.

This case is described by

8yy - w/2 aaa = i/2 (35)

and equations (20) and (21) give
uc u

v uM/a 3e /38 euc= - e (36)
a 'V a va 'F a

or equivalently

Vuc M/a ae /aa (37)

These are the four limiting cases associated with the first derivative with re-
spect to the spatial coordinates.21

Now the four limiting conditions will be given for the first derivative of

the wave function with respect to time.21

Case 1. Slow Quantum Process and Incoherent Time.

This case is given by

0f 0 8T = 0Bt = 0 (38)

and equations (22) and (26) become

si si
u = W'/at 8 = 0 (39)

Case 2. Ultrafast Quantum Process and Incoherent Time.

This case.is described by
'V '

8 7r/2 t f = 0 att = 0 (40)
'V'V tt
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Equations (23) and (26) then give

u 0 . •/at = •0 + 7r/2 (41)
u

or

_ui
u - JTaeH /at (42)

Case 3. Slow Quantum Process in Coherent Time.

The following conditions are valid for this case

'ff = 0 = 0 =tt fi /2 (43)

while equations (24) and (26) give

sc tl/a esc -

u .... /a u = t r/2 (44)

or
_sc (45
u = - 3/ 3 (45)

Case 4. Ultrafast Quantum Process in Coherent Time.

This case is described by the following conditions

a=11/2 Pt w/2 (46)

and equations (25) and (26) give

uc h' uc = T'
u = /t /6t u t (47)

which can be rewritten as

Uuc ao /3(oy (48)
TI t

The second derivatives of the wave function with respect to the spatial
coordinates will now be represented in four general forms which can be special-
ized to four limiting cases of physical interest corresponding to slow and fast
quantum processes in incoherent and coherent space. The second derivative of
the wave function with respect to space coordinates is written as 2 1

CC Ca exp(jOEa) = 2•a a /a6 (49)

where a = x y , z , and where Ja is defined in equation (15).

Case 1. Slow Quantum Process in Incoherent Space.

A general expression for the second spatial derivative of the wave func-
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tion will be derived which can be used to pass to the limit of a slow quantum
process in incoherent space which is described by

eo, 8MT 0 e0 a -a (50)

for a - x, y and z . Equations (1), (2), (15), (17) and (49) give

&a M see vava cos aa v av/aa (51)

= see 8vav cos 8aa 3/3a(sec Ba, cos 8 as al aa) (52)

while equations (21) and (49) give
oa = e +8 -eo -8 (53)

E~a va+ vava a- a aa (3

= T + 0T + ava - 2(0a + 8as) (54)

where 8vava is given by

tan Bvava = Va Ova /3va (55)

where va is given by equation (17) and Ova by equation (21). For this case 6&a
is a small number. In the limiting case of a slow quantum process in incoherent
space equation (50) is valid and equations (52) and (54) become

si .2 /2 6 = 0 (56)

which is the conventional result.

Case 2. Ultrafast Quantum Process in Incoherent Space.

This section derives a general equation for the second derivatives of the
wave function with respect to the space coordinates which can be utilize4 to
obtain the limiting case of an ultrafast quantum process in incoherent space
which is defined by

8 =ff/2 0a = 0 8aa = 0 (57)

where OT is now a variable. From equations (18) and (49) it follows that

ýa = csc avava cos 8as va 30 va/a (58)

= aa c8 Cos 2aa csc 8a TT 30 /aa M va/aa (59)

where avava is given by equation (55) with va given by equation (18) and where
equation (21) gives

e/va/ac = a/aa(o% + 8a - a - ao) (60)
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The corresponding internal phase angle for the second spatial derivative is

given by

8 m + - - (61)ea Ova OvavQ Q QQ

e If + STI + Bvava - 2(8a + Baa) (62)

For an ultrafast quantum process it is convenient to introduce an alternative
representation of the second derivatives which is given by

t ±
to exp(je a) = exp(J8 ) (63)

=2 T/aa 2 _ D7a/a3

where

t - t (64)

et• to •0 - (65)

Then it follows that

t cSC v Cos v aev /aa (66)a vava caa a va'
=-csc Ovava Cos 2 0aa csc a~ TT ae T/aa a0eva /aa (67)

and
et +=..+ - 2(0 +0 ) - iT (68)
•a O + OTV + a vava 2aa (

for the general case.

In the limiting case of an ultrafast quantum process in incoherent space,
equation (57) is valid and equations (54) and (59) become

ui csc a (3 /3)2 (69)
OL vaVa '

ui ui0 =0 +vul + YT/2 (70)
ýai ' vava

From equations (30) and (55) it follows that
ta ui ui- ui

tan v O E U/F (71)
vava TVa TV

where

E ui = (ae /aa) 2  E ui > 0 (72)

Faui = a2e0/aa2 Faui < 0 (73)
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From equation (71) it follows that

cIc8 u . [(a) + (F i) 2  E a (74)

Equations (69) and (74) give

ui u y(EU.2 ui 2 1/2
a I vL(EO) + (F•) ] (75)

For the signs chosen in equations (72) and (73) it follows fromequation (71) that

ui = 1/2 +K (76)vava Ta

where Kya is a small positive number defined by

tan K~ I IF uiIIE (77)

Equations (70) and (76) give
eui
8 ea + c +ir (78)

and equations (64) and (65) give

Cuit . - F[(Eui)2 + (Fui) 2 ]1/2  (79)
aTa Ta

ua =it + K (80)

uit
so that 8at is a small number. Finally, from equation (49) and (69) through
(80) it follows that

-ui - ui ui
-- -(Ev -jFI) (81)

which is the equivalent complex number representation of equations (79) and (80).

Case 3. Slow Quantum Process in Coherent Space.

An expression is derived for the second derivative of the wave function
with respect to the spatial coordinates, which can be used to pass to the limit
of a slow quantum process in coherent space whose characteristics are

=0 =0 a =n/2 (82)

where ao is variable. From equations (49), (19) and (54) it follows that

a =sec avavo sinO a- 1 val/3e (83)
-1 -

=sec 8vova sin 6 a a 1/6e (sec a sin Ba aa 1'3/3e ) (84)
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8& -ey + avy + 0vava - 2(ea + la) (85)

where Ovova is given by (19), (21) and (55). In this case it is convenient to

introduce another representation of the second spatial derivative, namely

ta = to exp(j8~a) e & E exp(Jeia) (86)

= 32j/3&2 _ 3;ýa /a

where

S- Ca (87)

O' =0o +n (88)

The limiting casp of a slow quantum process in coherent space is obtained
from equation (82) which combined with equations (84) and (85) gives

sc sc a-22 2
sa = sec a-2 a2T/O (89)
a vava a

0sc = asc -28 -2e (90)to vava a

Equations (33) and (55) give

tan sC =E scF sc(91)
vava Ilva (9)

where

ESc T _3T/36a ETaSC ý 0 (92)

Fsc 2 T/a2 Fsc 0 (93)FTa a Ta

sec 8 = [(E'c)2 + (Fsc 21/2 sc (94)
vava (aFTa) /iTa

sc

and therefore 8vava is a small positive angle. Equations (89), (92) and (94)
give

Csc = a-2 [(Esc) + (FSc) 2 (95)
a [TE T)

The alternative description of the se-ond derivative with respect to space is
obtained from equations (87), (88), (oO) and (95) as

S:c' a-2[ sc 2 sc 21/2
i=- [(E'c) + (F1 a) 1 (96)

0S' =SC -8(7sa M 8vav - 2ea (97)
to v5va a
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where 8C. is seen to be a small angle. The complex number that is equivalent
to equations (49), (86), (96) and (97) is

-st -2 sc s
-c 1/- (FT + JE ) (98)

which gives the second order spatial derivatives of the wave function for a
slow quantum process in coherent space.

Case 4. Ultrafast Quantum Process and Coherent Space.

This section develops a representation for the second derivative of the
wave function with respect to the space coordinates which can be utilized to
attain the limit of an ultrafast quantum process in coherent space whose de-
scription is

Oyy M w/2 Sao M w/2 (99)

The magnitude and internal phase angle of the second derivative is obtained
from equations (20), (49) and (54) to be

cc M csc Bvava sin 0 G va/a 38va/3a8 (100)

= csc Ovava sin2Sao csc 0 Y/a2 aeT/aea aeva/.ea (101)

eEa = of + OYT + 1vav8 - 2(0G + 1) (102)

where Ovava is given by equations (20) and (55), and where from equation (31)
it follows that

30va/3a0 - aei/aea - 1 + 3/3a8(8GT - OGG) (103)

A different expression for the second derivative can be obtained from equations
(83) and (20) and is

-1(04
&a W sec Bvava sin 8Go a av/3a (104)

= sec 8vava sin BSG a 1/aO (csc OT sin 8 G V/a 30 /ae ) (105)

A comparison of equations (101) and (105) gives

tan 8vava M C T/D (106)

csc BaV m(C (C2 + (107)

sec m (C 2 + D2 )1/ 2/D (108)
vava f a Va) Ta
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wehere

Cya - sin 8aa csc y VT e/a aev/a a0vaeae.a (109)

Dfa M 3/3Oa(csc B¥V sin aa v/a Bae/aea) (110)

where 3evala is given by equation (103) and where Cy. 4 0 . Therefore,

Ca M Ca 1 csc 0VOW sin Baa (111)

-1
= DIa a sec Bvav. sin 0a (112)

which can be rewritten as

M -(C 2  +D 2 ) 1/2 a-1 sn (113)
( a sin

It is convenient for the case at hand to write the second derivative of the wave
function with respect to space coordinates in equation (49) as

ta = Ca exp(J ) C c., exp(jei.) (114)

- 32j/32 .-ý

where

Cal - Fa (115)

e' =e + r (116)F•a (~a

which gives a useful alternative description of the second derivative with
respect to space.

For an ultrafast quantum process in coherent space described by equation
(99) it follows from equations (101), (105), (113) and (115) that

uc' auc 2 Euc (117)
a vava / a2

=-sec 8uc '/a 2  uc (118)vava Tot(18

-1 (^uc.2 uc2 1/2 (119)
S--a [.f) +(Da)]

= _ qa-2 [(uc. 2 + (Fuc 2 1/ 2  (120)

where

E auc = /a (De•//a 1) E uc < 0 (121)

Fauc 2 2e•32 Fauc 1 0 (122)
Ta oiaeT5
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Cu C- z/l (123)

DU " Ya (124)

From equations (36) and (55) or directly from equation (106) it follows that
tan uc Euc/Fuc

vUC UC •aea(125)

uc c 2 uc 2 1/2 uc

csc u uc - [((Ef. 2 + (Fua) ] Ec (126)

sec Ouc - HEuc) 2 + (Fuc )21/2/Fuc (127)vava V"aeaTa

Because of the choice of signs in equations (121) and (122) it follows that

UC M -- /2 + 6 (128)

where 6y, > 0 , so that

tan 6 - F C/IE aI (129)

The internal phase angle of the second derivative then follows from equations
(99), (102), (116) and (128) as

euc M + uc - 208 -12 (130)F.Q T vav a

-e 2 -2 (131)

euct ucuCa -m +vav - 20a + w/2 (13Z2

= Of - 20a + 6Ia (133)

nUCI

so that eua is a small number. The complex number second derivative with re-
spect to space coordinates that corresponds to equations (120) and (133) is
given by

-uc (a2 a 2)uc _ /162[ae /26e (a e lae 1) ja2 e/a30 1] (134)

= 2 (_ Ea+ jFF ) (135)

for an ultrafast quantum process in coherent spacetime.

In terms of the elementary expressions for the space and time derivatives
of the wave function it is possible to formulate the quantum mechanical theory
of ultrafast processes in spacetime with broken internal symmetries. Briefly
the outline of this paper is as follows: Section 2 examines the time indepen-
dent Schr~dinger equation for slow and ultrafast quantum processes in cartesian
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space with broken internal symmetries, Section 3 investigates the time dependent
Schrtdinger equation, and Section 4 considers the slow and fast forms of the
Dirac equation in asymmetric spacetime.

2. TIME INDEPENDENT SCHRODINGER EQUATION IN BROKEN SYMMETRY CARTESIAN
COORDINATES. This section develops the time independent SchrSdinger equation
for slow (incoherent) and ultrafast (coherent) spatial variations of the quantum
wave function in cartesian space with broken internal symmetries. The space co-
ordinates also can vary incoherently or coherently. The incoherent variation of
the space coordinates corresponds to changes in the magnitudes of the coordi-
nates, while the coherent variation of the space coordinates corresponds to ro-
tations of the complex number coordinates in an internal space. For a slow (in-
coherent) quantum process the wave function is a scalar in internal space and changes
in magnitude, while for an ultrafast (coherent) quantum process the complex number
wave function rotates in an internal space. The standard forms of the equations
of quantum mechanics correspond to an incoherent process in incoherent space. 22-26

Quantum mechanics with complex number wave functions in partially coherent space-
time has already appeared in the literature. 19,20 Various forms of Schradinger's
equation have been written for coherent spacetime where the change in the complex
number coordinates is in the form of a rotation in internal space. 2 0 This section
develops Schrbdinger's time independent equation for slow and ultrafast quantum
processes in incoherent and coherent space, so that four special cases are con-
sidered: slow quantum process in incoherent space, slow quantum process in co-
herent space, ultrafast quantum process in incoherent space, and an ultrafast
quantum process in coherent space. A slow quantum process is assumed to have a
wave function that varies incoherently in space, while an ultrafast process is
assumed to have a wave function that varies coherently in space.

A. Schr~dinger's Equation and Linear Momentum in Spacetime
with Broken Internal Symmetries.

Schrddinger's equation for a slow process in incoherent space is treated
fully in the literature. 2 2- 2 6  -or the general case of an asymmetric wave func-
tion in asymmetric spacetime Schridinger's time dependent equation is written
as

2 7

-h 2/(2)V 2T + V' = ih/ (136)

where h = h/(21), h = Planck's constant, p = mass of particle, V2 = Laplacian
expressed in terms of complex number coordinates, T = complex number wave func-
tion which is represented by equation (2), V = complex number potential which
is written as27

V= V exp(JOV) (137)

and where t = complex number time as described by equation (1) or more carefully
by equation (3).

If the wave function is written in a form that is suitable for a station-
ary state as 2 7
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T - U(s) ezp(- ijt/li) (138)

then equation (136) reduces to the following complex number time independent
Schrodinger equation

- 2/(2U)V2U + - _ - (139)

where the complex number energy E and wave function U are written as

i - E exp(jeE) U - U exp(je U) (140)

Schrtdinger's equation (139) is obtained from the law of the conservation of
energy

27

(1 -2/(2p) + VJU- U (141)
a p

combined with the following momentum operator representation for complex num-
ber cartesian coordinates27

pa M - ila/laa (142)

Pa i - fiau/aa - a (143)

- w exp(jOe) = - 3/ (144)

where wa and e. are given by

Vi -Sec OUCos O= W/O*c (145)

cac 0UU cos * U affU/a (146)

=sec B0 sin Baa a! au/aea (147)

=csc BUU sin Baa U/a aeU /ea (148)

we = U + SU - Ba-aa (149)

For a slow process in incoherent space equations (17) and (143) give

p si = ihaU/aa (150)

si 2 u h 2 2U/B 2  (151)

which is the standard result. For an arbitrary variation of the complex number
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wave function and for coherent space coordinate variations the momentum operator
equations (142) and (143) become

PQ- ijhi/a a/aet Pa - ijhia aui/ae(12•a = ~i•BBa PaU =if/ /a (152)

Applying the momentum operators in equations (142) and (152) twice gives the

following results for coherent space variations 2 7

-2 - 22 2 2 2 2 2
PC,= - 2 a2/a• - h2/F (a0 /e - ja/36a) (153)

_2U __2a2D/aa2 (154)PaU Ii a-ia

M h22/& 2 (a2(/a2D -2 jau/ae) (155)

Equation (155) will subsequently be specialized to the case of an ultrafast

quantum process where U changes coherently.

Schr6dinger's equation (139) can be written as

V2U + k2U = 0 (156)

where

-2 = 2v/h'2 (E - V) (157)

with

k = k exp(j6k) (158)

The components of equation (157) are written as

k2 cos(2)= C (159)

k2 sin(20k) = D (160)

where

C = 2/h2 (E cos OE - V cos V) (161)

D = 2p/i2(E sin 6z - V sin 6V) (162)

so that k and Ok are given by

tan 20k = D/C (163)

k = (C2 + S2)1/4 (164)
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A crude approximation derived from equation (157) is

k 2% k2 = 2u/h2 (E - V) (165)5

2e8k 2k - E = ev (166)

which assumes that the internal phase angles of the component terms in equation
(157) are equal.

For cartesian coordinates Schr5dinger's equation (156) is written as

( 2 2+ a22  2+ a2 /2-) = K2u (167)

where i , and z are complex number cartesian coordinates that are represented
by equation (1). Combining equations (49) and (167) gives Schrddinger's equa-
tion as

-2 -= j2D (168)

where

a = na exp(j =a a 2U/ 2 a /3a (169)

The complex number second derivative nia is homologous to the complex number
second derivative Za of equations (49) through (135). All of the relations that
appear in equations (49) through (135) involving Ca and 6Ea have analogous ex-
pressions with na and 6na and correspond to the replacement T -) U and vaC -. a
Equation (168) can be approximated by assuming that the internal phase angles
of each term in equation (168) are equal. Because the internal phase angles of
the second derivative na can havea zero or a ± w added as shown in Section 1 in
equations (54), (65), (88) and (116), the approximate solution to equation (168)
requires that the four possible states associated with a slow or ultrafastquan-
tum process in incoherent or coherent space be considered separately. Schradin-
ger's equation (168) can be written approximately as 2 7

- (±)n =k2U (170)

o -+ (7,0) f 2 ek + eU (171)

where ek and k are given by equations (163) and (164), and where 8ha is given by
equations (54) and (55) as

o U + 8UU +a - 2( + a) (172)

where in a fashion similar to equations (14) and (55)

tan 8UU = UDOu/DU tan 8 wawcffi = w ae6wa/3w a (173)
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From equation (54) it follows that equation (171) can be written as

aUU + 8 awa- 2( + a ) t (r,O) - 20 k (174)

The minus sign in the parenthesis in equation (170) appears whenever the ± n
appears in the phase angle conditions given by equations (171) or (174). Further
approximations to Schrddinger's equations (170) through (174) can be obtained by
writing

- (±1)t n = k 2 U (175)
. a s

o ± (7r,0) = 2ks + eU (176)

OUU + awawa -2(0 + aa) ± (7T,0) = 2ks (177)

where ks and 6ks are given by equations (165) and (166).

B. Four Possible Cases of Quantum Processes in Space with
Broken Internal Symmetries.

The four possible states associated with the time independent Schr6dinger
equations (170) and (171) that correspond to slow and ultrafast quantum pro-
cesses and to incoherent and coherent spatial coordinate variations will now be
considered.

Case a. Slow Quantum Processes in Incoherent Space.

For this case the momentum equations (143), (145) and (149) become

a U = - ih sec aUU cos B C UI/3a exp(j0 w) (178)

where 0 wa is given by equation (149). For this case the cartesian form of
Schr5dinger's equation (167) combined with equations (51) through (54) gives

sec a cos 0 a/aa(sec a cos 0 aU/aa)exp(j6 ) = k •U (179)
c wwct aU ac

where 8., is given by equation (172). Equation (179) can be written approxi-
mately by assuming that the internal phase angles of the component terms are
equal, which gives Schridinger's equation as

- sec a cos 0 9/aa(sec a cos a MU/fa) = k 2U (180)-ae 8wawcx a 8UU a a

0 = 2ek + eU (181)

where equation (181) is valid for a = x , y and z . Combining equations (172)
and (181) gives
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0UU+ 0 Va - 2(ea + 0aa) - 20k (182)

In a further approximation SchrSdinger's equation (179) can be written analo-
gously to equations (180) and (181) using equations (165) and (166) as

- I sec Owawa cos Ba. a/aa(sec BU cos 8 aU/a•a) - k 2U (183)

ks UU V U Ee., - 2e ks + eU M e. + eU M 0 E + 6 U (184)

Equation (184) is equivalent to

5UU+ Owawa - 2(e + 8aa) = 2eks = 6v = 6 E (185)

When all internal phase angles are set equal to zero equations (178) and (179)
become the following standard equations of quantum mechanics for slow processes
in incoherent space

paiU - - iUU/•a (186)

- a 2U/ia 2 . k2U (187)

as

where ks is given by equation (165).

Case b. Slow Quantum Processes in Coherent Space.

In this case the momentum equations (143), (147) and (149) become

-- -1
SU =-ih sec 0UU sin aaa -a au/ae exp(j6 a) (188)

which can be used to obtain the limiting case of a slow quantum process in co-
herent space. The general form of Schr8dinger's equation (168) combined with
equations (84) and (85) gives for this case

- sec w sin aa a-I a/ae (sec 8 sin B a- 1 aU•le)exp(j6n) (189)
a Wawa aa a UU aa a7a

-2-=k

where 0na is given by equation (172). An approximate representation of equation
(189) is obtained by assuming that the phase angles of the component terms of
this equation are all equal and using the representation in equations (87) and
(88) with the result that Schr~dinger's equation is written as

I sec wawa sin 0aa a- 1/36a (sec 8UU sin 8aa - 1ulMae) = k2U (190)

qa

6 26 +4 (191)
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Equation (191) can be rewritten with the help of equations (85) and (88) as

BUU + aWawa - 2( + a ) )+ w = 2 0k (192)

where ek and k are given by equations (163) and (164). A further approximate
representation of Schrddinger's equation (189) is obtained by using equations
(159) and (160) as

Ssec wawa B sin Ba a-1 3/ (sec B sin 8 a- I U/a0 ) 2 U (193)

UU + 8a - 2(0 a ) )+ n = 2ks = OE = OV (194)

Note the plus sign on the left hand side of equations (190) and (193) which
indicates that the kinetic energy is positive. For this case BUU -%, 0 and
Oaa n / 2 .

For a slow quantum process in coherent spacetime equation (82) is valid
and the momentum equation (188) becomes

sc = ijh/a aU/ae (195)
a a

which agrees with equations (34) and (143). In the case of a slow quantum
process in coherent spacetime equation (82) is valid and Schrddinger's equation
(189) becomes

w a sec sc -2 a2 U/36 exp(jB Sc) = i2U (196)a Wawa S

where from equation (90) with 6U = 0

0 sc = asc -20 -2 (197)
ja Wawa a

The small positive angle sww is given by

tan Bsc = w dO /dw =E /F (198)Wawa a wa a Ua Ua
sec = Fsc -i sc 2 -sc-2l/ 2 (19

secwawa = (Fu)1 [(Eu) + (Fus) 2 (199)

where

Esc = - 3U/Ie Esc > 0 (200)
Ua a Ua

Fsc = a2 U/32 Fsc > 0 (201)
Ua a Ua

Using equations (198) through (201) allows Schrddinger's equation (196) to be
written as
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-2 sc 2 sc2l1/2 sc) -2O_ I N(L ) + (Fua) 2 exp(J na) k2 (202)

Using equations (98) and (168) shows that equation (202) is equivalent to the
following complex number form of Schr~dinger's equation

(F +(F %+ ) M (203)

where in an analogous manner to equation (98) and (169)
-sc 1 62 (sc sc(2 4-aS - I/ (Fua + jEa) (204)

and equation (203) therefore follows from equations (168) and (204).

The alternative description of the second spatial derivative given by
equations (87), (88), (96) and (97) allows Schr6dinger's equation (202) to be
written as

sc) 2 sc 2 1/2 sc') = 2U (205)

a - u) +(Fu) I 2exp(jO )=a

where

sc = sc + r (206)no no

sc - 2e
awawo- a

By assuming that the internal phase angles of all of the component terms of
equation (205) are equal, this equation can be written as two approximate scalar
forms of Schrldinger's equation

Sa-2[(Ec) 2 + (Fsc) 1/2= k 2U (207)
a Ua 'Ua'

8 SCwaw - 28 = 28 (208)

Equation (208) is the appropriate limiting form of equation (192). A further
approximate representation of Schr6dinger's equation (205) is obtained from
equations (165) and (166) as

2 sc2 sc 2 1/2a-2 [(Eua) + (F ] kU(29
aUa(Fua) s(29

0sc' = 20 = 6 = 0 (210)
no ks E V

for a = x , y and z . Combining equations (206) and (210) gives

8sc - 20 = 26ks = E (211)
Wwaw a ks E

which agrees with equation (194) f r the case of a slow quantum process in co-

herent space. Equation (209) can e obtained directly from equation (193) for
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this special case. Equations (207) through (211) give approximate scalar forms
of Schrodinter's equation for a slow process in coherent space.

For the one dimensional case Schrbdinger's equations (203), (205) and (206)
can be written for a slow process in coherent space as

2 sK(F : + jE&) - k 2 U (212)

1/x 2[(Esc) 2 + (F sc 2]l/2exp(jo scl) . K2U (213)

0 scO = asc - 2e (214)
qx wxwx x

where

tan a 0c E u/F (215)
wxwx UX Ux

Schrddinger's equation (213) can be written exactly as

[(Esc)2 + (Fsc) 2 1/2 = k2 x 2 U (216)
Ux Ux

awsc - 26 = 28 (217)
wxwx x k

where 6k and k are given by equations (163) and (164). Approximate forms of
Schr3dinger's equations (216) and (217) are written as

sc 2 (Fsc 211/2 - (218)
[(Ux) +(Ux) = 2 28

Bsc - 20 = 20 (219)
wxwx x ks

where ks and eks are given by equations (165) and (166) and where x = constant.
Equations (216) through (219) are the scalar forms of Schrtdinger's equation in
one dimension for the case of a slow quantum process in coherent space.

Case c. Ultrafast Quantum Processes in Incoherent Space.

The momentum equation for this case is obtained from equations (143),
(146) and (149) to be

aU=- ih csc 6UU cos aaa U •U/3a exp(j wa) (220)

or

Pa= - ih csc U cos aa 3U/•a exp(je' ) (221)

where

' =0w -eU (222)
wa wa U

=8 UU-e -~

UU a -ac 5
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where U has been divided out of equation (221). The proper fornof Schrbdinger's
equation (167) that is suitable for passing to the limiting case of an ultra-
fast quantum process in incoherent spacetime can be obtained from equations
(49), (59) and (62) as

-Xcsc 20 Cos 2 / csc U a / ew3/3a exp(JA) (223)

where the complex number wave function U has been divided out of equation (223)
and where equation (60) gives

D /aa - a/aa(OU + 8aUU- - 8aa) (224)

and where AUa is obtained from equation (62) as

A =e a - aU (225)

= UU + 8 wawa - 2(e + a) a

Schr5dinger's equation (223) can be represented by two approximate scalar equa-
tions by using the representation in equations (64) and (65) and assuming the
equality of the internal phase angles of each term in equation (223) with the
result that Schrddinger's equation becomes

• csc 2 Cos82 csc 0B ae/•am e /3a - k2 (226)

fU Wawa Oaa kUU wOt,.U+ O...wmw - 2 (e a + o aa) - w - 20 k (227)

where ek and k are given by equations (163) and (164). A further approximation
gives Schrbdinger's equation as

Xcsc w cos82aa csc a aeU/aa ae /3a - k2 (228)
a Wawa aa 8uu /3U 3 Iwci

0UU+ Owawa - 2(ea + aa) - w = 28ks = oV = eE (229)

where k. and Oks are given by equations (165) and (166).

For an ultrafast quantum process in incoherent space equation (57) is
valid and the momentum equation (221) becomes

-ui

pa =- ijhaeU/aa (230)

where for this case Buu = n/2 , 6a = 0 , 8 aa = 0 and Owa = n/2 , and where
has been divided out of equation (220), and which agrees with equations (31)
and (143). In the case of an ultrafast process in incoherent spacetime the
combination of equations (57), (223) and (225) give Schr~dinger's equation as

Bui (U/)2 ui -2
- I cscB (ae/am) exp(jXui) = k (231)
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uui ui el (232)
UO no U

M u/2 + lut W + K (233)

uiwhere 0 is obtained from equation (71) as

tan u E I F u(234)Wawa Ua Ua2

csc 8ui = (Eui.-1 - ui-2 + ui,2,1/2wscB Un(E) [(Eu ) + (F~o ) (235)
oa aUa Ua

E ui . (3U/ax) 2  Eui > 0 (236)Ua Ua

Fui a2 0U/a2 Fui (0 (237)Udk UO

Then equation (233) gives

K tan-l(IF I/E u) (238)

= ui - 1
B=;waw - T2

and from equation (78) it follows that

0ui U +K + f (239)
na U Ua

while equation (81) gives

-ui - ui - ui
na = -(EuO -Fu ) (240)

which is a special case of equation (169).

Combining equations (231), (235) and (236) gives the Schrddinger equation
as

- [(Eu) + (Fui2) 2 exp(ju) (241)

a Ua Ua Ua

or equivalently using equations (232) and (233)
-i2 ui 2]/2ex -2

[ H(Eui) + (Fu ) 2 (JKu) = i (242)

Using equations (168) and (240) gives Schr5dinger's equation for this case
also as

a (Eua- j ui) = (243)
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Schr3dinger's equation (242) can be written in an approximate form by assuming
that each of the phase angles in the sum on the left hand side of equation (242)
are equal, with the result that

( Eui12 + (Fui)21/2 . (244)

KUa M 20k (245)

where KUa is given by equation (238). A further approximate form of Schrddin-
ger's equation for this case is obtained from equations (165) and (166) as

X [-ut) 2  u 2]1/2 k2

I (Eua) + (FU 1 1) k (246)

KUa = 26 ks =' v e E (247)

where KUa is a small angle. Equations (244) and (245) agree with equations
(226) and (227), and equations (246) and (247) agree with equations (228) and
(229) in the limiting case of an ultrafast process in coherent space.

For the one dimensional case Schr5dinger's equations (242) and (243) for
an ultrafast process in incoherent space are written as

ui 2 ui 2 1/2=2
[(EI ) + (Fux) I exp(jK Ux (248)

Ei - JF = k (249)

Schrldinger's equations (248) or (249) can also be written as
ut 2 + ui 211/2= k2 (20

[(Eux) + (Fux) = (250)

KUx = 20k (251)

where

tan Kuil/ u
tan KU = IFUx E& (252)

and 6k and k are given by equations (163) and (164). The approximate forms of
Schrtdinger's equations (250) and (251) are written as

ui 2 + ui 211/2 = k2 (253)[(ux +(ux) s

KUx = 20 ks (254)

where ks and eks are given by equations (165) and (166).

Case d. Ultrafast Quantum Processes in Coherent Spacetime.
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The quantum mechanical expression for the momentum of a particle that is
suitable for this case is obtained from equations (143), (148) and (149) as

a U M -ih csc aUU sin 0aa U/0 8 U/88a exp(JO wa) (255)

or equivalently

Pa -ih csc U sin8 a-1 a8 /a exp(JO8') (256)
UU aa U a Wa

where

0' =8 - 8 - -OU (257)
wa wa U UU aa a

and where U has been divided out of equation (255). The form of SchrSdinger's
equation (167) that is required for the passage to the limit of an ultrafast
quantum process in coherent spacetime can be obtained from equations (101),
(102) and (225) as

- csc a sin2 8 csc 0UU a-2 8/38a aOw/a exp(Ju) fi2 (258)
a Wawa aa UUU a wa 0 a ~"~Ua' 28

where the complex number wave function U has been divided out of equation (258),
XUa is given by equation (225), and where equation (149) gives

3 ae /36a = ae U/30 a - 1 + a/36a (a U - a8a) (259)

Schrddinger's equation (258) can be written as two approximate scalar equations
by using equations (115) and (116) and by assuming that the phase angles of each
term in the sum of equation (258) are equal with the result that Schr6dinger's
equation becomes

I csc w sin28 csc UaU-2 ý6 Ua De/0= k2  (260)

8UU + 8Wawa - 2(0a +a) + ) =+ 26k (261)

A further approximation for Schr6dinger's equation follows by using equations
(165) and (166) which gives

I csc sin82 csc ak2
a wawa 2 c8UU - •8U/• a wa/ao = (262)

UU + Bwawa - 2(6a + aa) + 2eks (263)

The kinetic energy term of Schradinger's equation in (260) and (262) appears
with a positive sign as should be the case.

For the case of an ultrafast process in coherent space equation (99) is
valid ar-d the momentum equation (256) becomes
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PU = - i&1 3-leU/36G exp(-Jea) (264)

= - ih/F 3eu/ae6

Equation (264) also follows directly from equation (152) for the special case
of an ultrafast process. For the case of an ultrafast quantum process in co-
herent spacetiae, equations (99), (258) and (259) gives Schr5dinger's equation as

-Icsc 8uc a- 2 36u/30 (aeu/ae - l)exp(j~uc) = j2 (265)

where equations (99), (128), (130), (133) and (225) give

xuc . eUC - (266)

Uca na U

M euc l a (267)
noc U

W 8uc - 2e -w/2 (268)

- 6 a 2ea - (269)

where ena and una are given by equations (130) through (133). Equations (125)
through (129) give

ta uc =uc- uC

tan - FM%/FUO (270)
uc u -1 c 2 uc 2 1/2

c-- L)2 + (271)

waw -a w/2 + 6 (272)

tan6 Fu- /uc (273)

where from equations (121) and (122)

EUC = ae•/a(3OeU/De - 1) EUC < 0 (274)
Ua U a U a Uci

FUC =2 2•36/2 Fauc > 0 (275)

where 6 Ua is a small number. It is also useful to define the following quantity

xuc' = xuc + (276)
Ua Ua

= 0)uc' _ U(277)
na

= 6Ua 26 2a (278)
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where AUa is a small angle.

Combining equations (121), (126) and (265) gives Schr5dinger's equation as

2 uc2 uc 2 1/2 uc -2
a- u(c2) + (F.) exp(JXU) -k (279)

Combining equations (276) and (279) give Schr6dinger's equation as
S-[uc 2 + uc l2 xuc' -2

(Eu) 2+ (F'u) ]I/2exp(J Uc ) (280)

For the case of an ultrafast process in coherent space it is easy to show that
equations (153) throLgh (155) give

2 2 2 uc uc
a = 2 E U+jFu) (281)

so that Schrddinger's equation (280) is equivalent to

Si/a2 (_ E UC + JFuc k 2(2)
a ~Ua( JFu) ffi (282)

which is a result that can also be obtained from equation (168) by noting that
in an analogous fashion to equation (135)

-uc U / 2 (_ Euc + FUC) (283)
a Ua ua

Schr~dinger's equation (282) can be rewritten as

S a-2exp(- 2j0 )[ae /a3 (1 - a /3ae ) + ja22 -/23] 2 2 (284)
a a U a U a U + 0/a]k

An approximate set of scalar Schrtdinger equations that are equivalent to equa-
tions (280) and (282) are written as

S [(Eu) + ]uc2/2 = (285)
a U (Fua)
uc'
X U = 26 (286)

Ua k

Combining equations (278) and (286) gives

6Ua - 20a = 20k (287)

Equations (285) and (287) agree with the limiting forms of Schr6dinger's equa-
tions (260) and (261) for the case of an ultrafast process in coherent space.
A further approximate form of Schr6dinger's equation follows from equations
(165), (166), (285) and (286) as

uc 2 + uc 2l/2 k2

Ia-2[(Eu2 + (= (288)
a U (Fua) s

6Ua - 2 0 = 6 V = 6E (289)

554



For one space dimension Schr5dinger's equation for an ultrafast process
in coherent space is given by any of the following three forms

1/iE 2[deu/dex(I - de /dO + jdU2 u/dO 21 (290)

x2-2)exp(_ 2J)(deu/d6x(1 deu/d6e) + jd2 6 2 • 2 2 (291)

l/i2(_uc uc -2
E2 + JFux) (292)

where x - constant. SchrUdinger's equation (292) can also be written as

[(E•Uc)2 + (Fuc) 2]1/2 = (293)
Ux Ux

6Ux - 2 8x - 2ek (294)

where

uc uC
tan 6Ux = F Ux/IEI (295)

The approximate form of Schrlidinger's equations (293) and (294) are written as

[(Euc) 2+ (F uc )2  2 = k2x2 (296)

Ux ks E6 Ux - 2e x = 26 ks = Ov e OE (297)

In general k - k(x,ex) while ks - ks(x) - constant.

The kinetic energy term for the case of an ultrafast quantum process in
coherent space can be obtained as a special case of the more general situation
of an arbitrary quantum process in coherent space which is represented by equa-
tion (155) of this paper or equation (250) of Reference 26, so that Schfbdinger's
equation for an arbitrary process in coherent space is given by

1/&2(a2U/ae2 _ jau/8) =2U (298)
a a a

Schr~dinger's equation (298) can be specialized to the case of an ultrafast
process in coherent space by noting that for this case

aulae = jueu/aea (299)

a2-/362 U[_ (Dou/-e ) 2 + /ae2 2 (300)

Combining equations (298) through (300) immediately gives the Schrodinger's
equation (282).

C. Examples of Complex Number Potential Functions.

This section considers several complex number potential functions which
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are of interest to the case of ultrafast processes in coherent space. A simple
solution to Schrldinger's equation (290) or (291) can be obtained for the spe-
cial simplifying condition

i2k x2k2 -a2 - real constant (301)

which may be approximately true over a limited range of space. Equation (301)
gives the constant wave number as

k = a/x (302)

where x - constant for coherent space. Equation (157) shows that the conditions
in equations (301) and (302) are exactly valid for a choice of the complex num-
ber potential as

S- t - [a2h2/(2p)]/x2 (303)

Then SchrtSdinger's equation (290) is written as

dOu/dOx(1 - deu/d ) + jd2 u/de2 = a2 (304)

which gives

uc 2deu/dOx(1 - d6u/dO X) ffi = a (305)Uxffa 05

d2 u/d62f = 0 (306)
U x U

Equation (306) suggests a solution of the form

0U = fO + g (307)

where f and g are constants. Combining equations (305) and (307) gives

f(l - f) = a 2 = k 2x 2  (308)

whose solution is

f = 1/2 ± 1/2(1 - 4a 2 ) 1/2 (309)

= 1/2± 1/2(1 - 4k 2 x 2 )1/2

where x = constant

One example of the complex number potential for the case of an internal
phase harmonic oscillator in one space dimension is given by

V = 1/2Rj2  K = K exp(jOK) (310)

- 1/2Kx2 exp[J(OK + 20x)]
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where K = constant and x - constant so that Ox is the dynamical variable. The

scalar equations corresponding to equation (310) are

V - 1I/2Kx . constant (311)

% M e K + 26x (312)

The complex number wave number I for the simple harmonic oscillator is obtained
from equations (157) and (310) to be

j2 - 2u I 2(E- I12k 2) (313)

while equations (159) through (164) determine k(Ox) and ek(ex) . SchrSdinger's
equation (290) becomes for this case

/32[ (du/de (1 - dOu/dOx) + jd2eu/de] 2u /h2(E - 1/2Kj2) (314)

whose solution is not simply obtained.

Another possible type of simple harmonic oscillator potential that may
describe internal space motions is given by

V1  1/2Kix 8 = Vi exp(JiBV) (315)

where

Ktx K Kx exP(jeKix) (316)

so that

Vf 1/2K e =286t (317)
Vix 1/K, Vi Kix

Then equation (157) gives the wave number as

j2 = 2uf/ 2 (k 1 l/2F e2) (318)i x

from which k(ex) and ek(ex) can be calculated by equations (159) through (164).
The Schrbdinger equation (290) for this case is written as

1/R2 [dOu/dx (1 - dOu/dex) + jd 2 u/d6] = 2p/h2 (E. - 1/2K 0 ) (319)

Equation (319) is equivalent to equation (372) of Reference 27 for the special
case of a coherent wave function that is associated with an ultrafast quantum
process.

3. TIME DEPENDENT SCHRODINGER EQUATION IN BROKEN SYMMETRY CARTESIAN
SPACETIME. This section considers the time dependent Schr6dinger equation for
slow and ultrafast quantum processes in spacetime with broken internal symme-
tries. Only cartesian coordinates are considered. The complex number time
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dependent Schradinger equation is written as the following generalization of the
standard equation2Z-26

- R2/(2p)-2 -+ Vf _ ihai/ai (320)

where the wave function and potential are written as

f - T exp(JO ) (321)

S- V exp(jeV) (322)

For cartesian coordinates equation (320) becomes

_ 1 2/(2p)X 2 i/362 + V= iai//3t (323)
a

where Y - i(&,t) . Combining equations (16), (49) and (323) gives

- h 2 /(2 )_ l + V ihii (324)

aa

where 5 and Z. are given by equations (16) and (49). Equation (324) can be
rewritten as

- /(2u)j t exp(JG ) + VT exp[J( e + e ihu exp(jGu) (325)

where a and u are evaluated in Section 1 for various spacetime cases. In one
dimension equation (325) becomes

Sh2/(2u)E)x exp(j Ex) + VT exp[j(%V + 09)] = ihu exp(jOu) (326)

where u and Ex must be evaluated according to the relevant spacetime conditions
as in Section 1.

The exact solution of equation (325) requires that the real and imaginary
parts of each component term be taken, but this leads to very complicated equa-
tions. A simpler but approximate procedure of solving equation (325) assumes
that the internal phase angles of each term in equation (325) are equal. Then
because the internal phase angles of the second derivative can have a (O±ir)
term included as described in Section 1 in equations (54), (65), (88) and (116),
and the internal phase angles of the first derivative with respect to time can
have a term (0,±t/2) added as described by equations (39), (41), (44) and (47),
the solution of equation (325) requires that eight possible cases be considered
individually: slow and fast Jrocesses, coherent and incoherent space, and co-
herent and incoherent time. Therefore equation (325) can be written analo-
gously to equations (170) and (171) as the following approximations that are
obtained by assuming that the internal phase angles of each component term are
equal

21
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- (±l)h 2 /(2p)l) a + VT - ilu (327)
a

e,, + (0,±r) - ev + -v W 0u + (0,±w/2) (328)

From equations (26) and (54) it follows that equation (328) can be written in
analogy to equation (174) as the following approximation

a + 8 - 2(0 + 8a) + (0,±W) = ev Ma8 -T - 8aT + (0,±w/2) (329)
TYT vava a aa T t t

A comparison of equations (174) and (329) shows that the following approxima-
tions are valid for a stationary state

'p b
8aT - et - 8t + (0,±w/ 2 ) = 2k 2k= ev = E (330)TF t tt k k

and

- 2(8 + 8 ) + (0,) -T + (0,±/2) (331)vava a aa t tt

The time dependent Schr~dinger equation given by equations (327) through (331)
will now be delineated for the eight possible states that are associated with a
slow or ultrafast quantum process, coherent or incoherent spatial coordinate
variation, and coherent or incoherent time variation.27 Reference 27 on wave
propagation establishes the basis of development for this section.

Case a. Slow Quantum Process, Incoherent Space and Incoherent Time.

This section develops a general form of the time dependent Schr6dinger
equation that can be used to obtain the- l~mdtiz case of a slow quantum process
that occurs in incoberent space and incohare. time which is &escrfbed, by

0y M= 0 8 = 0 a = 0 By =0a Ot = 0; (3aZ)?i
Vya act t tt

For the case when all internal phase angles are small, equations (327) and (328)
are written as

- /(2p)l + VT = ihu (333)

a a

o a =e V + 8T = 8u (334)

For this case equaticns (22), (52) and (333) give

- h2 /(2p)l sec 8 cos a 3/aa(sec a cos B aT/>a) (335)
a va aa TT Iaa

+ VT = i sec 8 cos a •lW/t
'y'I tt

where 8vava is given by equations (17), (21) and (55). Combining equations
(329) and (334) gives
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8T + 8va - 2(0a + eva - fl V T- t (336)

For the case of a slow quantum process in incoherent space and incoherent time
equation (332) is valid and equation (335) becomes the standard time dependent

Schrddinger equation

2 fi /(2p)l a 2 /aa 2 + v Y -ihiay/at (337)

while equation (336) gives a null result. A stationary state follows from the
choice

T -UWa exp(-iEt/h) (338)

which combined with equation (337) yields the stationary state Schr~dinger
equation (187).

Case b. Slow Quantum Process, Coherent Space and Incoherent Time.

A general form of the time dependent Schr~dinger equation is developed
that can be used to deduce the limiting form of this equation for a slow quan-
tum process in coherent space and incoherent time which is characterized by

OT 0 =• 0 = 7t/ ff T806tt = 0 (339)

For the general case equations (22) and (84) can be combined with equation (325)
to give the following time dependent Schr6dinger equation

h2 /(2p)l sec ý a8 sin a aa-I 1 /36 a(sec B8Y sin 8 aO a-1a/M a )exp(j6 &)

-- ih se os6T /at exp(j6 (340)
+ ~T V=i sc8 co tt u

An approximate representation of equations (323) or (340) is given by

h 2/(201 • + VT ihu (341)

O + W = 8v + ey a 8u (342)

or equivalently

h 2/(2p)l• sec avavCE sin 8a• a a-1/a a (sec B T sin ýe aa a-1a/Se)a (343)

+ VY ih sec aT Cos 8t T 3/3t

8•+ vv 2(ea + Be) + fieV B T t-8t (344)

which allows the kinetic energy term to appear as a positive quantity.
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The time dependent Schrodinger equation which is the limiting form of
equation (340) for the case of a slow quantum process in coherent space and in-
coherent time follows from equation (98), (136) and (339) as

2 / I/ (Fsc + jEsc) + VI = ijay/at (345)

For this special case of a slow quantum process in coherent space and incoherent
time equations (339), (343) and (344) give the following approximate time depen-
dent Schrbdinger equations

2 8sc -22

h 2/( 2 01) sec Bsc a '2a/ae2 + VT = iav/t (346)
a vava a

sc - 20 =0O =0 E = 0 (347)
sc

where Bvavais a small positive angle given by equations (91) through (94).
Equation (346) can also be written as

222 c 2[(Esc) + (Fsc2/ 2 + V = ihaw/t (348)

The approximate Schrddinger equations (348) and (347) also follow directly from
equation (345). For a stationary state the wave function has the form

S= U exp(-iEt/h) (349)

and when placed in the time dependent Schrbdinger equation (345) yields the
stationary state equation (203) while equation (348) becomes equation (209).

Case c. Slow Quantum Process, Incoherent Space and Coherent Time.

This section derives, the proper form of the time dependent SchrSdinger
equation for passing to the limit of a slow quantum process occurring in inco-
Ne~vreu space anxt coh~erent t-Eme which is described by

'Y= 0 = 0 0) = 0 a' = 0 Tt = ir/2 (350)
Ya a tt

Equations (24) and (52) are combined with equation (325) to give the following
Schrodinger equation

- h2/(2•• sec avava cos aaa 3/Da(sec 8S cos 8aa 3a/3a)exp(jO E) (351)

a
-- V t-1 '1': x~j

+ V' = ih sec a ain 8 tI a'v/a exp(ju
TT tt t u

An approximate representation of the Schrddinger equation (351) is given by

h 2 /(2p)l Ea + VT = ihu (352)

.a

occ = 0V + =0 u + T/2 (353)
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or equivalently using equations (24), (26), (52) and (54)

- i2/(2p)X sec 8vav cos 8 a 3/3a(sec 8TV cos 8 3'V//a) (354)

aa

+ V i• sec 0 sin tt
Ty tt t

8y + -2(e +8 ) a OV Bsw - -8 If + w/2 (355)

Y7 vva a aa Vt tt(35

where the right hand sides of equations (352) and (354) are real numbers, and
where 8y has been subtracted from both sides of equation (355). The w/2 term
in equations (353) and (355) Is required to pass to the limit of a slow quantum
process in incoherent space and coherent time.

For the special case of a slow quantum process in incoherent space and

coherent time equations (350), (354) and (355) give Schrodinger's equation as

- f 2/(2p)l a2 /aa 2 + vT - i 1t-lay/a38 (356)

a t(36

The phase angle equation (355) becomes in the limit

0 "%•v E =E - e (357)
t

Consider now the wave function for the stationary state for the slow process in
incoherent space and coherent time which is taken to have the following form

T = U exp(-iEte I/V1) (358)

where t - constant. Combining equations (356) and (358) gives the Schrudinger

equation for the stationary state as

- /(2p)X a2U/32 + VU = EU (359)

a

which is the standard time independent Schrbdinger equation.

Case d. Slow Quantum Process, Coherent Space and Coherent Time.

This section obtains the required form of the time dependent Schridinger
equation that is needed to obtain the limiting condition of a slow quantum pro-
cess in coherent space and coherent time which is specified by

64 = 0 = 0 8a 7ir/2 tt = Tr/2 (360)

Equations (24), (84) and (325) gives Schr5dinger's equation as

- h2/(2p)j sec 8 sin 8 a 1 i/ae (sec 8 sin 8 a a'T/aO )exp(jO6)
a vava aa a TT aa a E

+ V A i i sec 8 sin 8t 1 t-Iaet exp(J) (361)

5tt2
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An approximate representation of Schr~dinger's equation (361) is given by

2 /(201 k + V'Y iiu (362)

e,, + v - ev + el 6 u + w/2 (363)

or equivalently, Schrldinger's equation can be written approximately as

S2/(20)1 sec 8 sin B a-I V/eO(sec 8 sin 8 a- I W/0) (364)

+ V= ih sec 8 sin a t I a/T
tt t

+vava 2(a ) +aa + = t + 7/2 (365)

where eT has been subtracted from both sides of equation (365). The right hand
sides of equations (362) and (364) must be real numbers. The n and w/2 terms
in equation (365) are necessary to pass to the limiting case of a slow quantum
process in coherent space and coherent time.

The limiting form of equation (361) for the case of a slow quantum pro-
cess in coherent space and coherent time is the following exact complex number
Schr6dinger equation

S2/(2p); 1/r 2 (F + jE ) + VT = ih/E awaa T (3")

A combination of equations (360), (364) and (365) for the special case of a slow
quantum process in coherent space and coherent time gives the approximate Schrb-
dinger equation as

8sc -22 2(167

h2/(2P)X sec vsa a2 '•2/a + VT = it-l1 a'/3T
a vava a (37

s -c26 - =-O =(
vava a V t E (368)

Combining equations (92) through (94) with equation (367) gives the following
approximate Schr5dinger equation

2 2/(2p) a-2[(E c) 2 + (Fsc) 2/2+ V = iht-/1 ý'V (369)
a (F'V ]a + i

Equation (369) also follows directly froi equation (366). For the choice of the
wave function for coherent time of the form

T = U exp(-iEtO Th) (370)
t

= U exp(-iEt /1h)
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equation (366) becomes the stationary state time independent Schradinger equa-
tion given in equation (203), while the choice of the wave function in equation
(370) brings equation (369) into the form of the time independent Schrtdinger
equation (209).

Case e. Ultrafast Quantum Process, Incoherent Space and Incoherent Time.

This section considers the general form of the time dependent Schr6dinger
equation that is suitable to pass to the limiting case of an ultrafast quantum
process in incoherent space and incoherent time which is described by

a = 7r/2 6 = 0 8 " 0 t =0 8t = 0 (371)
F a aa t tt

Equations (23), (59) and (325) give

- h2 /(2p) csc avavo Cos 2 a csc 0 TI aT/aa aOva/aa exp(jO E) (372)

+ vV ii csc a cos Ot T ae /at exp(J)

Schrtdinger's equation (372) can be represented approximately by the following
two equations

i2 /(2p)l a + VV = iiu (373)
a

O~a - a v + ev =OT - n/2 (374)

where the term exp(jOV) has been factored out of equation (373). Equations (373)
and (374) can be rewritten as the following approximate equations

i /(201j csc a cos 2 csc 8 ae /aa ae /aa + V (375)
a vava MP'i 9'

= icsc8 cos /at
IT tt T'

+8 2 (ea + ) -T =2(e +6 6 6 -0 - a - n/2 (376)

The - 7 and - n/2 terms that appear in equations (374) and (376) are required
to pass to the limiting case of an ultrafast quantum process in incoherent space
and incoherent time.

In the special case of an ultrafast process in incoherent space and inco-
herent time equations (81) and (372) give the following exact complex number
form of Schrtdinger's equation

h2/(20)1 (Eui - F ui) + = ijiae /at (377)
a 'Va 'Va '

where ' has been divided out of equation (372) to obtain equation (377). For
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this special case equations (371), (375) and (376) give an approximate form of
SchrOdinger's equation as

h2/(2u)l csc Bui (36I/30)2 + V - iAn /at (378)
a VOVY

ui - w/2 - K ev 8E o0 (379)
•VeVe T a E

Equations (74) and (378) give the following approximate SchrSdinger equation
•2(2)•[-ui- (ui•211/2

2 /(2,)l [(Eua) +"(F" 2/ + V i i ae /at (380)

Equation (380) also follows directly from equation (377). Equations (375),
(377), (378) and (380) require that the stationary state for incoherent time
is given by

el W U + 0 it = -iEt/i (381)I, U WVt Vt

which makes the right hand sides of equations (378) and (380) real numbers, and
is the stationary state solution which when placed in equations (377) and (380)
gives the time independent equations (243) and (246) respectively.

Case f. Ultrafast Quantr-,, Process, Coherent Space and Incoherent Time.

This section examines the form of the time dependent Schradinger equa-
tion that can be used to pass to the limit of an ultrafast quantum process in
coherent spae and incoherent time whose characteristics are

a ', /2 a = w/2 = 1.0 8 V-.0 (382)t tt

Equations (23), (101) and (325) give the relevant time dependent Schr6dinger
equation as

- I2/(2V)j csc 8 vava sin 2a csc 8a V/a2 •B•O /ae 8a/ea exp(jO )
a vaa Taa T T va ýa(383)

+ = il csc 80 cos Btt T ae T /at exp(jO U)

Equation (383) can be separated into the following two approximate Schrbdinger
equations by using equations (41), (115) and (116)

h2/(2p) a + VT = ihu (384)
a

O•av + e = 4 =u - Tr/2 (385)

which are equivalent to the following approximate Schradinger equations
2in28 -2

2/(2p)l csc Bvava sin c B a /o2 a e va l/3a + V (386)
a

=ii csc8 cos 36t/at
'V tt 'V
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+- 2(6 + + R = - Y- I - -n/2 (387)Ty + vava a( + a 'PT •=OV 8 t - tt

where a factor T has been divided out of equation (386). The right hand sides
of equations (384) and (386) must be real numbers in internal space.

An exact complex number Schrtdinger equation that is deduced from equation
(383) in the limiting case of an ultrafast quantum process in coherent space
and incoherent time is written as

hi2 /(2u)l 1/a2(- Euc + iFuc) + ijha /at (388)

a a ci

where a factor T has been factored out to obtain equation (388). For this lim-
iting case equations (382), (386) and (387) give the following approximate Sch-
ridinger equations

2 /(202 csc Buc -2 ae3,/ae (a3 /3o - 1) + v = ihae /at (389)
ct Va V a a

B -- 2e8 + 7/2 = 8v = E = 0 (390)
vava acE

Equations (389) and (390) can be rewritten using equations (126) and (128) re-
sulting in the approximate Schrddinger equations given by

2 '-2 u2+ ucl/
2 /(2p)l a-[ (Euc )2 (Fuc)211/ + V = hae~ /a (391)

6To - 28a = 6V = 6E = 0 (392)

where Euc and F jo are given by equations (121) and (122), and where the right
hand sides of equations (389) and (391) must be real numbers in internal space.
The approximate Schr6dinger equations (391) and (392) can also be obtained di-
rectly from equation (388). Schrddinger's equation (391) has a stationary
state solution for incoherent time which is of the form

6T = U + 0i (it = -iEt/h (393)

and equations (388) and (391) become the time independent Schr6dinger equations

(282) and (288) respectively.

Case g. Ultrafast Quantum Process, Incoherent Space and Coherent Time.

This section considers the time dependent Schr6dinger equation that can
be used to obtain the limiting form of the equation for the case of an ultra-
fast quantum process in incoherent space and coherent time which is described by

0•==/2 E) = 0 a =0 att = n/2 (394)
aTO caO tt

Equations (25), (59) and (325) give Schr6dinger's equation as
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- f 2/(2u)a csc 8 vva cos 2 Baa csc 8Y I a7 /aa a 0va /am exp(jO a) (395)

+VY- ik csc 0 sin 8t I P/t ae lae8 exp(je

Equation (395) is represented by the following approximate scal- Schradinger
equations by using equations (16), (64) and (65)

h2/(2p)j t + VT = ilu (396)

a

6ca = ev + elf 6u (397)

which are written equivalently as the following approximate Schrbdinger equa-
tions by using equations (25), (26), (59) and (68)

h2/(2P)a csc a cos°2 a csc 8 •30/aa 30 /1a + V (398)

a vava aa TIP T

=i icsc 8a sin 0 tt 0 ae'
TY t7 t

D+ 8 .- 2(e + )-W= = 8 - -8t (399)
TT ~vavct a aa v TIP' t tt(39

where a factor T has been divided out of equation (398) and the angle 07 has
been substracted from equation (397) to obtain equation (399).

For the case of an ultrafast quantum process in incoherent space and co-
herent time the limiting form of equation (395) can be obtained from, equations
(48), (81) and (324) to be the following exact Schrbdinger equation

u2I2) l (Eui - ui /+ = a 0 (400)
a (F) + V t

where,a factor T has been divided out of equation (400). Combining equations
(394), (398) and (399) gives the following approximate Schrbdinger equations for
the special case of an ultrafast quantum process that occurs in incoherent space
and coherent time

2 ui 2 Y-
2 /(201)j csc 8 (30 /aa) + V = it (401)

a vava T T t(41

8 aui - n/ 2 = OV =6 = (402)VaVOL E = t

Using equations (74) and (76) allows equations (401) and (402) to be written as
the following approximate Schrtdinger equations

h212l [(E-uii2 + (F ui-2 11/2 iht-1aDO/aeYt
T2/(22] + V = t e (404)

Ta V E t (404)
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The approximate Schrddinger equations in equations (403) and (404) can be ob-
tained directly from the exact equation (400). Schr~dinger's time dependent
equations (400), (401) and (403) for coherent time have a stationary state so-
lution of the form

e¥ W 6O + Oc (405)
Y t

Oct -EtO _ i/ - -iEtO IfA (406)
It t t

where the following reality condition has been used

Et - Et (407)

which is valid for wave propagation with constant E P It should be added that
for wave propagation with constant wave number ka and frequency w the following
conditions are also valid1 9

ia - kaa Wt (408)

where a = x, y, z . Substituting equations (405) and (406) into (400) and (403)
yields the time independent stationary state equations (243) and (246) respec-
tively.

Case h. Ultrafast Quantum Process, Coherent Space and Coherent Time.

Finally, this section develops the form of the time dependent Schrtdinger
equation that can be used to pass to the limit of an ultrafast quantum process
in coherent space and coherent time which is characterized by

=a /2 = -n /2 = ir/2 (409)

Equations (35), (101) and (325) give the proper form of Schridinger's equation
as

- h2/(2)l) csc $ sin28 csc a T/a2 36 /363 nva/3ae exp(jO a

(4 10)

+ V' = ii csc 8 sin a T //t ae3 /36 exp(jO( )

TT tt M' t U

As before, equation (410) can be separated into two approximate scalar Schrbdin-
ger equations

h2 /(2p) a + VT = ihiu (411)
a C

e + = V + e' =eu (412)

which can be written equivalently as the following approximate Schrldinger equa-
tions
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c(2u) csc BVOW sin2B cac OT a- 2 ae6/ae6 6eva/aea + V (413)

& Y
i cac 0, sin ' T t1 36 ,/ae1,

OTT + 0 vava - 2(e a + 0 aa ) + w -ev = OTT - 8t -Tt (414)
t t

where ea and 07 are variables.
t

The limiting form of equation (410) for the special case of an ultrafast
quantum process in coherent space and coherent time can be obtained using equa-
tions (48), (135) and (324) and yields an exact Schr3dinger equation for this
case

2 2 ic uc) -iit8/0(45fl/(2u)l 1/6 (_ E!a + Ja)+ ih- e/0 45
aI

where Y has been divided out of equation (410) to obtain equation (415). In the
special case of an ultrafast quantum process in coherent space and coherent
time, equations (409), (413) and (414) give the approximate Schrddinger equa-
tions as

h2 /(20)1 csc Ouc a- 2 3• /8a((3 o/ae - 1) + V = iit-1 36 /8If (416)
a VOW IF C

UCu - 2 0o + W12 = 0v M e= E 6 f(4 7S= -+i/20 mO(417)
Vw a V E t

These two equations can be rewritten using equations (126) and (128) as the
following approximate Schr5dinger equations

2-2 uc-2 uc2l1/2 1 }0

h2 /(2p). a-2[ (Ey 1 ) + (F y) ] + V t- 1 0 a/t8 (418)
a 'V a 'V t

6 - 20% -M v M0 = - (419)
'Vaa E t

The total internal phase angle of the wave function is written as in equations
(405) and (406). The approximate equations (418) and (419) can alsobeobtained
directly from the exact Schr6dinger equation (415). Equations (415) and (418)
have stationary state solutions of the form given by equations (405) and (406)
which reduce equations (415) and (418) to their time independent forms given
by equations (282) and (288) respectively.

4. DIRAC EQUATION IN BROKEN SYMMETRY SPACETIME. This section investi-
gates slow and ultrafast relativistic quantum processes in coherent and inco-
herent spacetime. The broken symmetry form of the Dirac equation is written as
the following complex number generalization of the standard Dirac equation26'29

- ihy U3/ai +Pm+ = 0 (420)

where y. = Dirac matrices, Y = complex number four component Uirac spinor which
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is now a set of four complex numbers in an internal space, and where the complex
number space and time coordinates are designated by

I P x exp(jO x) (421)

where P - 0,1,2,3 and xo = ct, xI - x , x2 - y and x 3 - z The Dirac equation
(420) can be rewritten as follows

- iiy v + mn' - 0 (422)

where

q" - vA exp(jOv) = /ai U (423)

where

vi - sec 0 cos 8 x axp /ax (424)

- csc B cos Ox8xV T ae /ax (425)

= sec 8a sin 8 x1 34//ie (426)
TY xiixlj Ii xli

= csc OTT sin 8 ' /x Vxae /ae (427)

where 8OT is given by equation (14) and where

Ov = + a -e -B xuxP (428)

tan 8 =x ae /Ox
xIjX1J I1 x I i

The component parts of the Dirac equation (422) can be written as

- iIiyvi cos evp + mT cos 8e = 0 (430)

- iy v W sin evI + m' sin OT = 0 (431)

where the mass m is taken to be a scalar. An approximate representation of
equation (422) follows from the assumption that the phase angles of each term
in equation (422) are equal, with the result that the Dirac equation is written
as

- ihY vPV + mY = 0 (432)

evp =- ' (433)

Equations (428) and (433) give for this approximation
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a -e x• -8xAxI - 0 (434)

Equation (434) is a differential equation relating 6W and Oxp as can be seen
from equations (14) and (429). For the case of a slow quantum process (inco-
herent wave function) in incoherent spacetime, all internal phase angles are
set to zero and equations (420), (424) and (432) reduce to the standard Dirac
equation

- ifiy 7A/Wx P+ MI - 0 (435)

where T is the standard Dirac four component spinor.

For coherent spacetime coordinate variation and an arbitrary variation of
the wave function, equation (420) becomes the Dirac equation

ij /hi y Ii3/3ix + mY f 0 (436)

For the special case of an ultrafast quantum process in coherent spacetime equa-
tions (420) or (436) give the following Dirac equation

(- ih/i y 4aI/HO + m)T - 0 (437)

Equation (437) is a matrix equation where

Y= 72 ' 2 (438)

"I3 T 3

• J4 'Y4

and where
1 0 0 0

0 6 2 0 0

= 0 0 6 3 0 (439)

0 0 0 0T4

o M o 0

/ 1x =1 0 0 0O 3/aSxU 0 (440)

0 0 0 O4/H 1ox
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where u - 0,1,2,3 . The Dirac equation (437) for an ultrafast quantum process
in coherent spacetime can also be deduced from equations (422), (427) and (428)
by setting Syy - w/2 and OxUxU - w/2 which gives

S=lli ae88 /ex (441)

vu . '/IIx a80 /88 (442)

8v• - 8 -e x• (443)

The real and imaginary parts of equation (437) can be written as the following
matrix equations

[- il/xp y•. ae8/80x cos(OT - Exi) + m cos 86] i' - 0 (444)

[-ih /x H T 80•O/ xe sin(e -o xv) + m sin 8e IT- 0 (445)

where cos(86 - Oxv) , sin(OT - 6xV) , cos 6T and sin OT are 4x4 diagonal
matrices.

Approximate matrix equations that result from the assumption that exp " 0
in equations (444) and (445) are the following

(- th/x P y T 36/e 1 + m)YR %0 (446)

(- ihl/x yP 1 /DO x + m)'Y 1 0 (447)

where the column matrices TR and T, are given by the following matrix equations

Ti cos 1 I

M2 cos 0 2

cR Cos eT T T3 cos a 3 (448)

T4 cos 0 4

W1 sin 0 i

'2 sin 0 2

=I sin 0 T 3 sin 6 3  (449)

T 4 sin 0T4

Choose the following linear solution for the diagonal matrix eT

0P- f bT x (450)
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where b are four constant diagonal matrices given by

b 0 0 0

0 bT2 0 0
bIi 3 (451)

0 O bT3 0

0 0 0 b T4
Uj

where V.a 0,1,2,3 ; so that bU represents sixteen quantities. The component
representation of the matrix equation (450) is written as

8 I b x (452)

where

b P = aeTV/ae x (453)

for u = 0,1,2.3 and v = 0,1,2,3 . Then Dirac's equations (437), (446) and (447)
can be written as

(-ii/ y bi + M)= 0 (454)

(- ih/x y b + m)R 0 (455)

I'iX b• + M) TI 0 (456)

which are valid for ultrafast relativistic quantum processes in coherent space-
time.

Finally it should be pointed out that from equations (422) and (423) it
follows that the Dirac equation for an ultrafast quantum process in incoherent
spacetime is given by

(- ijhy )o laax + m)T = 0 (457)

where a•8N/axP are four diagonal matrices.

a6Tl/ax 0 0 0

0 3eT 2 /ax 0 0

3eaT/xv 0 0 o T3 /ax 0 (458)

0 0 0 ao 4 /;x
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for P - 0,1,2,3 . The real and imaginary parts of equation (457) are given by

(iriy 1O3 /x sin eT + m cos 8I), = 0 (459)

(- iIhy, ae./ax1 cos e + m sin ey)T - 0 (460)

where cos ey and sin ey are diagonal matrices in analogy to equation (439).

5. CONCLUSION. Quantum mechanics can be formulated for the case where
the wave function and the space and time coordinates have broken internal sym-
metries which require that these quantities be written as complex numbers in an
internal space. This allows the possibility of slow and ultrafast quantum pro-
cesses occurring in spacetime with coherent and incoherent variation of coor-
dinates. For an ultrafast quantum process the complex number wave function ro-
tates in an internal space, while for a slow quantum process the wave function
changes in magnitude. Spacetime coordinates can likewise change coherently by
a rotation in an internal space or incoherently by a change in the magnitudes
of the space and time coordinates. The Dirac equation and the Schradinger time
dependent and time independent equations are formulated for slow and ultrafast
quantum processes that can occur in coherent or incoherent space and time.
Ultrafast processes are important to science and engineering and may possibly
be the basis of developing energy sources such as the nuclear rocket engine.
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QUATERNARY FISSION OF - RAY COOLED ACTINIDES

Richard A. Weiss
U. S. Army Engineer Waterways Experiment Station

Vicksburg, Mississippi 39180

ABSTRACT. The basic concepts needed for the design of clean fission
nuclear reactors that use actinide elements such as 2S'U and 'NPu as fuels are
developed in this paper. In the presence of an electromagnetic field all nuclei
exhibit a broken internal symmetry that can be described by requiring the atomic
number and atomic mass number to be complex numbers whose magnitudes are
functions of the internal phase angles of the complex numbers. The form of these
functions depends on the value of the fissility parameter of a nucleus. For
subactinide nuclei with fissility parameters less than unity the measured atomic
number and measured atomic mass number are not exactly integers, while for
actinide nuclei whose fissility parameters are greater than unity the measured
atomic number and atomic mass number must be integers. This basic difference in
the countability of nucleons in subactinide nuclei and actinide nuclei yields two
different representations of the complex number form of the liquid drop type of
nuclear mass formula. For actinide nuclei in an external electromagnetic field
the complex number Bohr-Wheeler fission condition predicts that above a critical
7 ray intensity, that is determined by the value of the fissility parameter, the
thermal neutron induced binary fission mode is suppressed. The alternate mode
of quaternary fission due to the thermal neutron induced binary fission of the
two component subactinide lobes of an actinide nucleus into four fission product
nuclei is catalyzed by the presence of a 7 ray field. A mathematical expression
is derived in terms of the fissility parameter that gives the value of the
critical electromagnetic field strength of the external -Y ray field required to
cool and suppress thermal neutron induced binary fission of the actinides. The
nuclear fission waste products of the 7 ray catalyzed thermal neutron induced
quaternary fission of the actinide elements will be low level radionuclides, and
represents a way of generating clean fission nuclear power. Clean fission
nuclear reactor designs are considered that may be used for submarines and
nuclear rocket engines.

1. INTRODUCTION. Nuclear fission reactors may yet be the power source
that will drive the industrial nations in the future. At present, however,
nuclear reactors are a potentially dangerous way of generating power. This is
due first to the possibility of nuclear accidents which can spread radioactive
fission products such as 90Sr into the environment, and secondly to the growing
problem of the storage of radioactive wastes. 1-7 Power generated from nuclear
fission was immediately recognized as an alternative to the energy generated by
burning fossil fuels.' 9  The use of fossil fuels causes air pollution which
results in acid rain, various human diseases, and may even contribute to global
warming. 10 - 14 Nuclear fission power is used in countries like Japan and France
to generate a significant portion of their energy needs because these countries
have no natural fossil fuel resources and are therefore forced by economic
necessity to utilize nuclear fission reactors for generating electricity. No
major nuclear accident has occurred in these countries, but serious nuclear acci-
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dents have occurred in the United States and Ukraine. Therefore scientists and
engineers are now looking for alternative energy sources which are safe and non-
polluting.

But what are the alternatives to fossil fuels and conventional nuclear
fission power? A glance at history shows that people have always used their
minds to bend nature to their advantage.' -51 And today the search for new en-
ergy sources continues in various directions such as solar power, wind power,
geothermal energy, biomass energy and nuclear fusion power.. These new en-
ergy sources are nowhere near the point of scientific and engineering develop-
ment where they can be used as alternative power sources to fossil fuels or nu-
clear fission power. Nuclear fusion, the power source of the stars, remains
etherial after many years of research and may ultimately be a chimera. In view
of this it may be wise to take a second look at nuclear fission power to see if
new concepts can be developed which will allow nuclear reactors to be designed
for safe and environmentally benign operation. A clean fission nuclear reactor
core design concept has been proposed that uses y ray catalyzed thermal neutron
induced binary fission of subactinide elements. 2 6 In the present paper a y ray
catalyzed thermal neutron induced quaternary fission nuclear reactor is inves-
tigated that uses actinide elements as a source of clean fission power. In this
case the y rays are used to suppress binary fission and catalyze quaternary fis-
sion in the actinides whose reaction product nuclei will be relatively light
weight nuclei having only low level beta decays.

The use of y rays for the suppression of binary fission and the enhance-
ment of quaternary fission in the actinides is possible because atomic nuclei
are systems of matter that can exhibit broken internal symmetries which are dl-

timately related to the broken internal symmetries of spacetime. The broken
symmetries of spacetime are described by representing time and space coordinates

as complex numbers in the following way27

i = t exp(jt) (1)

and for cartesian coordinates

S= x exp(jOx) y = y exp(jO ) z z exp(jO z (2)

while for spherical polar coordinates

r= r exp(j6r) r exp(j6O) = p exp(j%) (3)

Corresponding to the complex number azimuthal angle is the following complex

magnetic quantum number2

M = M exp(jO) = m cos e0 exp(-jO,) (4)

where m = 0 ,±l ,±2, ±3, --. is the standard magnetic quantum number. Therefore27

M = m cos e =-e 0 (5)
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It is often convenient to define the following positive magnetic quantumnumber27

R' - M' exp(j8ý) - Imi cos e6 exp(-je6) (6)

M' - Imi cos 6 6' - - e (7)

For e6 = 0 these quantities reduce to the standard concepts.

It is assumed that the integer quantum numbers Z, N and A are analogous to
the magnetic quantum number ImJ and occur in a solution to an azimuthal portion
of a wave equation in internal space. 2 7 Then by an arqument similar to that for
the complex number magnetic quantum number it follows that the atomic number,
neutron number and atomic mass number are complex numbers in an internal space
and can be written in a form similar to that of the complex magnetic quantum
number R' in equation (6) as follows for subactinide nuclei located in an exter-
nal field

2 6

S= z exp(jOz) = Z cos Oz exp(j6Z) (8)

fi = n exp(j n) = N cos 0n exp(je n) (9)

a = a exp(ja ) = A cos 0 exp(j0 ) (10)a a a

The complex number azimuthal angles corresponding to the quantum numbers i , n
and 5 are written, in analogy to the azimuthal angle of real space given in
equation (3), as follows

z =z exp(je z *n =n exp(jn n *a = a exp(JO a) (11)

where 06z # efn and 0 •a are the internal phase angles of the complex number
azimuthal angles in the internal space of nucleons, so that finally for subac-
tinide nuclei in an external field2P

z Z cos 6 n= N cos e a= A cos 0 (12)z n a

ez =- ecz 8n =- e*n 0a - 6 0 (13)

The real and imaginary parts of equations (8) through (10) are given for sub-
actinide nuclei in an external field by 2 6

ZR = Z cos20 = Z Cos20 z (14)

nR = N cos 0 = N cos (15)

2 2(
aR = A cos 0 = A cos26 (16)
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zI - Z cos 6. sine z - - Z cos e,, sin efz (17)

ni M N cos en sin 6n - - N cos 68n sin e n (18)

a, - A cos ea sin ea - - A cos eOa sin e 0 (19)

The measured atomic number, neutron number and atomic mass number are just the
real values given by equations (14) through (16). Because the measured atomic
number, neutron number and atomic mass number for subactinide nuclei in an ex-
ternal field are given by equations (14) through (16) it follows that these
quantities are nondenumerable (non-integer) for the subactinides. It will be
shown further on in this paper that this is not the case for actinide nuclei in
an external field where now the measured atomic number, neutron number and atom-
ic mass number are denumerable (integers).

The conventional liquid drop model of the nuclear binding energy is well
described in the literature.28-36 In the presence of an electromagnetic field
the complex number binding energy of an atomic nucleus is written as26

v s c sym pair Eshell (20)
-.. .--2/3 - 2 1E/•/3 -2 -

pair shell

where for subactinide nuclei i , n and a are given by equations (8) through (10)
respectively, Ev Es , Ec, Esy• E par and Es =lcomplex number volume,

surface, Coulomb, symmetry, pairing and shell energies respectively, and where
a , y , 6 and 6 = complex number volume, surface, Coulomb and symmetry energy
coefficients respectively. The mass formula coefficients are represented as

= a exp(je ) y= exp(jY ) (21)

6= 6 exp(j8 6 ) = exp(j8B) (22)

Epair = Epair exp(JOEpair shell = Eshell exp(jO shell) (23)

= pp/a
3 / 4

where

S=p exp(je p) p n 34 MeV (24)

1 Z even, A even

P 0 A odd (25)

f- Z odd, A even

and where for subactinide nuclei equation (12) and (23) give
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r PpA-3/4 -3/4e - - 3/48 (26)Epair os a eEpair 6p a (6

and where the shell energy has a more complicated variation. For the subactinide
elements equations (8) through (10) and (20) through (26) give 2 6

B aA cos 0a exp[j(0a + e a)] - yA2/3 cos 2/38a exp[J( + 2/3ea)] (27)

2A1 C2z Cos 1/3a exp[j(06 + 26 - 1/30a)]

K 2A-1 Cos-10a explj(0 + 26 - 0a)]

"+ PpA-3/4 cos-3/4 a exp[j(0p - 3/46 )]

" Eshell exp(JeEshell)

where the complex number neutron excess is given by 2 6

Z = exp(j0E) = a - z (28)

The measured binding energy is given by the real part of equation (27) so that 2 6

B = a A - yA 2 3 
- 6 Z2A 3 - 8'E 2 A- + Em + E (29)

m m m m pair shell (9

where for subactinide nuclei

a = a cos 0 cos(O + 0) (30)m a a a

Ym= Y cos 2/3a cos(Y + 2/30a) (31)
2-1/3e

6 =6cos2 cos 1 cos(e6 + 20 - 1/3ea) (32)m z a 6 za

, = B cos- 1 cos(0 + 20 - 0a) (33)
in a 8 a

Em = PpA-3/4 cos-3/4 6 cos(0 - 3/40 ) (34)
pair a p a

The calculation of the y ray flux that is required to catalyze thermal
neutron induced fission in the subactinide elements using thermal neutrons has

already appeared in the literature. This calculation is based on the deter-
mination of the fission angle OF of the atomic number which proceeds as follows.
The complex number generalization of the Bohr-Wheeler fission instability con-
dition is given by

2 /i = Ký/T (35)

or equivalently the two scalar fission stability boundary conditions are
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z2/a - KY16 (36)

ea - 2e - e + 6 (37)

Combining equation (12) with equations (36) and (37) gives the fission insta-
bility condition for subactinide nuclei located in an external field as 2 6

Z2/A - Ky/6 cos e cos-2 e (38)a z 0~~-

=KY16 cos(26 + 06 - )Cos2 8

F
Equation (38) can be solved to determine the value of 0, required to fission
subactinide nuclei with thermal neutrons and the result is26

tan 6F = tan(e - 06) ± sec(60 M - X cos(e -6'1 (39)
z - 6 - 6)

where the fissility parameter X is given by 2 6

X = (Z 2/A)(Ky/6)- 1  (40)

and is restricted to the range 0 4 x < sec(0y - 06) by equation (39) and de-
scribes most subactinide nuclei except for some exotic proton rich subactinide
nuclei for which X falls outside of this range. The value of the fission angle

F of the atomic mass number that is required for the fission of subactinidea 2
nuclei by thermal neutrons is obtained from equation (37)Yas 26

0F = 20 -F + 06 (40A)
a z y

F F
Figure 1 gives 0z and Figure 2 gives 6a for subactinide nuclei having
0 < X < sec(eY - 06) and using the values of the angles 0y = 0.4r and e6 = O.Ir
whose values are selected for heuristic purposes. On the other hand, the as-
sumption that 6Y = 66 allows equations (39) and (40A) to be written as26

tan 0 " ± ( )- x)/2 0 F 20F 0F , 3 0 F (41)
z a z n z

F F
which are valid for 0 < X < I . Figure 3 gives 6z and Figure 4 gives 0a for
subactinide nuclei under the approximation that 6. = 06 .

The magnetic induction field of the y rays that are required for the ca-
talysis of thermal neutron induced fission of subactinide nuclei is then given
by

26

BF - By tan 0F (42)
y = z z

-KI(1 - X)1/2
Oz

where K~B - dynamic magnetic stiffness modulus. Values of for various sub-
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actinide nuclei have been tabulated in the literature. 26  This review of the
theory of y ray catalyzed fission of subactinide nuclei by thermal neutrons is
sufficient to lead into the problem of quaternary fission of y ray cooled ac-
tinide nuclei which is treated in the following sections.

This paper considers the thermal neutron induced quaternary fission of
y ray cooled actinide nuclei. It will be shown that the atomic number, neutron
number and atomic mass number of the actinide elements in an external field
must be represented by special kinds of complex numbers in internal space such
that the measured atomic number, neutron number and atomic mass number are in-
tegers. These representations suggest that it is possible to suppress binary
fission by thermal neutrons in the actinides by applying a y ray field having
the proper frequency and intensity. The result will be an enhanced quaternary
fission rate in the actinides with fission products that are relatively low
level radionuclides. Therefore clean fission of the actinide elements using
thermal neutrons is possible by utilizing the cooling effects of a properly
chosen y ray bath. An outline of this paper is as follows: Section 2 gives the
special forms of the complex atomic number, neutron number and atomic mass num-
ber for the actinide elements in an external field, Section 3 investigates the
theory of the radioactive decay of actinide nuclei in an external electromag-
netic field, Section 4 develops a liquid drop type of nuclear mass formula for
actinide nuclei in an external field, Section 5 presents a theory of the sup-
pression of thermal neutron induced binary fission of fissile actinide nuclei
by an external field, Section 6 introduces the concept of thermal neutron in-
duced quaternary fission in y ray cooled actinide nuclei and gives the required
y ray photon energy, number density and flux density for binary fission sup-
pression, and finally Section 7 gives the final state energy conditions for the
binary fission of actinide nuclei in a low intensity y ray field.

2. ACTINIDE NUCLEI WITH BROKEN INTERNAL SYMMETRIES. This section con-
siders the broken internal symmetries of the atomic number, neutron number and
atomic mass number of actinide nuclei that are subject to an external electro-
magnetic or gravitational field.

A. Complex Atomic Number, Neutron Number and Atomic Mass
Number for the Actinide Elements in an External Field.

For those actinide nuclei which exhibit spontaneous or thermal neutron
induced binary fission it is assumed that the component nucleons are in a mea-
surably denumerable state so that the measured atomic number, neutron number
and atomic mass number are integers even in the presence of an external field.
This suggests that in the presence of an external field the atomic number,
neutron number and atomic mass number of actinide nuclei are complex numbers of
the form

S= z exp(jO z) = Z sec e exp(jez) (43)

i = n exp(jO n) = N sec 6n exp(jO n) (44)

a= a exp(j a) = A sec 0a exp(jO a) (45)
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and therefore for the actinides

z - Z sec 8 n - N sec e a = A sec e (46)z n a (6

It is convenient to introduce the following terms

z - sec 0 exp(j)Z) (47)Z z

n - sec On exp(j6n) (48)

a - sec 0a exp(JOa) (49)

Then equations (43) through (45) can be written as

z n a (50)

The real and imaginary parts of equations (43) through (45) are written as

zR Z nR N aR A (51)

z= Z tanO z ni N tan 8n a, =A tan 6a (52)

The measured values of the atomic number, neutron number and atomic mass num-
ber are just the corresponding real values so that

z = Z n = N a = A (53)m m m

and therefore the measured values of the atomic number, neutron number and
atomic mass number for the actinides with X > I in an external field are de-
numerable (integers). This is -ot the case for subactinide nuclei with X < I
in an external field as seen in equations (14) through (16).

The law of addition for the complex atomic number, complex neutron number
and complex atomic mass number is given for both subactinide and actinide ele-
ments in an external field as26

W + a = Z + H (54)

subject to the universal law of baryon number conservation

A = Z + N (55)

The known quantities in equation (54) are taken to be Z , ez , N and en . The
value of A is determined from equation (55) while the unknown quantities W
and Oa are obtained by taking the real and imaginary parts of equation (54) and
using equations (51) and (52) with the result that for actinide nuclei
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W+A - Z +N (56)

A tan e a = Z tan e + N tan e (57)
a z n

Therefore for actinide nuclei in an external field

W= 0 (58)

tan 6 = Z/A tan e + N/A tan e (59)a z n

= tan 6 + Z/A(tan 6 - tan n)n z n

Equation (59) can also be written as

tan n = (A tan a - Z tan )/(A - Z) (60)n a z

tanG = (A tan 6 - N tan 0n)/Z (61)

which are valid for actinide nuclei. Combining equations (54) and (58) gives

= + fi (62)

which is valid only for actinide nuclei because in this case the measured nu-

cleon numbers are denumerable as shown in equation (51), so that W = 0 for ac-
tinide nuclei as shown in equation (58). If Oz '- On then equation (59) shows
that the following condition is valid for the act/nides

e a % a (63)a z n

If ea nu 26z for actinide nuclei then the relationship between 6z and On is ob-

tained from equation (59) to be

tan(2ez) - Z/A tan ez = N/A tan e (64)

The expressions for W and ea for subactinide nuclei already appear in the lit-
erature.26 For subactinide nuclei the measured nucleon numbers are nondenumer-
able as shown in equations (14) through (15) and W # 0 .26

B. Time Variation of the Complex Atomic Number, Neutron Number
and Atomic Mass Number for Actinide Nuclei.

This section considers the time variation of z , i and a for actinide
nuclei. Two special cases are considered: the first is associated with changes
in Z , N and A due to nuclear fission and other radioactive decays in a con-

stant external field, and the second is associated with the variations of ez

On and ea that are related to a time varying external field for fixed values
of Z , N and A . The general case of the time variation of z , R and a is ob-

tained from equations (43) through (45) as 2 6
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di/dt - cos Btt (dz/dt + jzde z/dt)exp[J(ez - at - tt)] (65)

din/dI - cos att (dn/dt + jndn /dt)exp[j(0n - et - Btt)] (66)

di/dt - cos Btt (da/dt + Jad a/dt)exp[j(0a - et - Btt) (67)

where 0tt is given by 2 7

tan Btt = taet/at (68)

The internal phase angles ez , 8n and 0 a are functions of the external field,
such as an electromagnetic field, so that

0 z e zH) n - e (NH) a - a (AH) (69)
z zn n a a

where H = amplitude of the magnetic field component of an electromagnetic field.

The time variation of the internal phase angles are written as

d z/dt = De /3Z dZ/dt + ae /aH dH/dt (70)zz z

dO n/dt = e n/aN dN/dt + 0n /3H dH/dt (71)

d a/dt = 9a /3A dA/dt + 6 /9H dH/dt (72)aa a

Combining equations (46) with equations (65) through (72) gives for the actinides

di/dt = cos a (B'dZ/dt + C'dH/dt)exp[j(6 - 0 - 8t)] (73)
tt z z z t rt

dni/dt = cos a (B'dN/dt + C'dH/dt)exp[j(On - t - a A (74)
tt nn n t tt

di/dt = cos 8tt (B'dA/dt + C'dH/dt)exp[j(0a - 0t - att)] (75)

where

B' = sec 0 [I + (tan 0 + j)Z3e /az] (76)
z z z z

B' = sec 6 [1 + (tan e + j)N3e /3N] (77)
n n n n

B' = sec 6 [1 + (tan a + j)Aa/6 /A] (78)a a a a

C' = sec e (tan 0 + j)ZaO /aH (79)
z z z z

E' = sec 0 (tan 0 + J)Na• /3H (80)
n n n n

a sec 0 (tan 6 + J)AaeO/aH (81)

where
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tan 8z + j - sec ez exp[j(w/2 - Z)] (82)

tan 8n + j - sec 6n exp[j(w/2 - e )] (83)

tan ea + j - sec ea exp[j(n/2 - a)] (84)

Two special cases need to be considered.

Case a. Actinide Nuclei in a Constant Magnetic Field.

This case corresponds to nuclear reactions such as the fission of the ac-
tinides in a constant magnetic field and equations (73) through (75) become

(dz/dt)H = cos 8tt BzdZ/dt exp[j(O - 8 - 8t)] (85)
H t zz t t

(dfi/dt) = cos B BPdN/dt exp[j(n - 8 - Ba)] (86)
H tt n n t tt

(dg/dt)H = cos 8 B'dA/dt exp[j(ea - et - 8tt)] (87)

For this case the actual size of the nucleus is changing.

Case b. Actinides with Constant Z, N and A.

This case corresponds to changes in the internal phase angles OZ 9 On and
ea in a time varying electromagnetic field. Then equations (73) through (75) give

(di/dt)Z = cos 8 Cý'dH/dt exp[j(z - 0 - 8tt] (88)ztt z z t tt

(dii/dt)N = cos 8 C'dH/dt exp[j(8n - 8t - tt)] (89)

(dI/dt) = cos a CZdH/dt exp[j(a - 8 - 8ttl (90)
A Ct a (a Ct Ctt)

Case b corresponds to nuclei gaining or losing energy by internal space rota-
tions.

The time derivatives of i , ii and 9 given in equations (73) through (75)
can also be written in a more general form involving only one exponential term
by noting that equations (43) through (45) give

dH/di = cos 8tt sec azz dz/dt exp(j zt) (91)

= cos 8tt csc 8zz zd8 /dt exp(j4zt)

= sin Btt sec 8zz t- dz/dOt exp(j zt)

= sin 8tt csc 8zz z/t d z/d8t exp(j zt)

587



dg/dt - cos 8tt sec 8nn dn/dt exp(JOnt) (92)

- cos att csc nn ndO n/dt exp(J'nt)

- sin 8tt sec 8nn t- dn/det exp(jOnt)

- sin 8tt csc 8nn n/t den/det exp(J$nt)

di/dt = cos 8tt sec a da/dt exp(J at) (93)

- cos Ott csc Baa ade a/dt exp(JOat)

= sin 8tt sec Baa t- da/d8t exp(JO at)

= sin 0tt csc oas a/t dOa/dOt exp(Jiat)

where Btt is given by equation (68), and where

tan 8 zz = Z3z/az tan 8nn = n3En /n tan 8aa aae a/a (94)

Dzt ze + o - et tt(95)

0nt = n + ann - (t - Ott (96)

0at E a aaa - t - tt (97)

The derivatives dz/dt , dn/dt and da/dt are evaluated from equation (46) for
actinide nuclei as

dz/dt = dZ/dt sec 8 + Z sec 8 tan e dO z/dt (98)

= sec ez [dZ/dt(l + tan ez Zez/MZ) + Z tan ez 3ez /H dH/dt]

dn/dt = dN/dt sec 0 + N sec e tan 8 dn /dt (99)n n n n

= sec 8n [dN/dt(1 + tan 8 N3n /WN) + N tan 8 38n /aH dH/dt]nn n n n

da/dt = dA/dt sec 0 + A sec 8 tan 8 d6 /dt (100)a a a a

= sec 8a [dA/dt(l + tan 8a A36a /3A) + A tan 8a 8a /3H dH/dt]

It is assumed that a8z/3t = 0 , a8n/3t = 0 and 9ea/at - 0 . The derivatives
in equations (98) through (100) are used in equations (91) through (93).
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Combining equations (46), (70) through (72), (91) through (93), and
(98) through (100) gives for actinide nuclei

dl/ddt J' cos 8t sec B sec e exp(J$*) (101)

= Iz cos Ott csc Bz sec ez exp(J zt)

M (2 + JV2)1/2 Cos a sec e
z z tt z zt

dii/dt = V' cos 8 sec B sec e exp(J$n) (102)
n tt nnl n nt

= n cos csc 8nn sec 0 exp(jOnt)

(12 + 312)1/2 cos 8 sec 0 exp(Jnt
n ntt

= V cos B sec B sec 0 exp(J ) (103)
a tt aa a at

= Ia Cos Ott CSc Baa sec 8 a exp(jO at)

= (1 2+ j2)1/2 Cos a sec 6 exp(j4a)
a a tt a at

where Ozt " Ont and Oat are given by equations (95) through (97) and where for
actinide nuclei

tan8 I/J' tan ni/n' tan I /J1 (104)
zz z z nnl n/n' aa =a a

I tan aH dZ/dt + Z/H tan a H dH/dt (105)
Hz ta N

I= tan a H dN/dt,+ N/H tan aHH dH/dt (106)

I tan a dA/dt + A/H tan a AdH/dt (107)
a AA HH

V' ( + tan 0 tan a z)dZ/dt + Z/H tan 0 tan a dH/dt (108)
z z z HH

V (1 + tan 0 tan a )dN/dt + N/H tan 0 tan aHN dH/dt (109)
n n NNn HH

J' (1 + tan 0 tan a )dA/dt + A/H tan 0 tan aA dH/dt (110)
a a AA a HH

and where
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tan a - zao /3z tn aH - Ne /3N tan aH . A (111)tan z NZZA

tan a - HaO /iH tan a N . Hae / H tan a -.Hae /H (112)HH z Rn HH a

Equations (104) through (110) are valid for actinide nuclei in an external
electromagnetic field.

Two special cases are of interest for application to nuclear reactions
and transmutations of the actinides.

Case a. External Radioactive Decay in a Constant Electromagnetic Field.

For this case it follows from equations (105) through (110) that for the
actinides

IH tan H dZ/dt (113)z " zz

H HI n tan aN dN/dt (114)

I = tan a dA/dt (115)
a AA

J H (1 + tan e tan a z)dZ/dt (116)

HO'Jn =(1 + tan On tan )dN/dt (117)

jH' H
a = (1 + tan a tan a H)dA/dt (118)
a a AA

tan BH = IH/jH' = tan H H -I
zz zIl aZZ tan aZZ) (119)

tan 8H = I / = tan (1 + tan 6 tan aH)-1 (120)
H 'H H-i

tan BHa = I /J = tan a ( + tan 8 tan a ) (121)
aa a a AAa AA

aHZ = w/2 aHN = 7r/2 a A = r/2 (122)aHH OHH UHH

From equations (85) through (87) and (101) through (122) it follows for
constant H that for the actinides

= jH' co e H H
(dz/dt)H = J Cos a sec z sec 0 exp(Jz ) (123)

H ztt zz z zt

= III Cos cscH seeO exp(JO H
z tt zz z zt

= [M(zH)2 + (jH )2]11/2 cos sec 0z exp(j 4 Ht)
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(dri/d!) - jH con 0 see B0 see 0 uc(j#H) (124)
H n i nn n at

M IH Cos B cscBH secO0 exp(j#Hn
n tt ( nn e n tH

H (I)2 + (c 1)2]1/2 Cos t sec n exp(j•#)

(dl/dt) =- JH' cos 8 sec a sec 0 exp(jf ) (125)H a tt aa a at

= Il cos 8 csc 8H sec exp(jO H
a tt aa a at

- M H + a Cos sec 0 exp(j$ý)

where

=0H = + 1aH - - (126)
zt z zz t tt

0I-H = 6 + B1 -H 0 - (127)
nt n nn t tt

0H = 6 + aH -e -8 (128)
at a aa t tt

H HH
where 8z H Z B.H and Haa are given by equations (119) through (121). It is easyto see that equations (85) through (87) are equivalent to equations (123)

through (125).

Case b. Internal Phase Radioactive Decay of the Actinides
due to a Time Dependent Electromagnetic Field.

The case at hand corresponds to constant values of Z , N and A. Equa-
tions (104) through (112) give for the actinides

tan z = cot 6 az = w/2 - (129)
zz z zz z

tan 8N = cot0 8N = w/2 - (130)
nn n nn n

t A = cot 0 8A = n/2- 0 (131)
aa a aa a

csc8 =sece csc 8 = sec 6 csc = sec 0 (132)
zz z nn n aa a

secB =csc 6 sec 8N = csc 0 sec 8A = csc 0 (133)
zz z nn n aa a

H H H
aZ = w/2 aNNm 1 aAA =12 (134)
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I z = Z/H tan az dH/dt (135)z HH

INn = N/H tan aHN dH/dt (136)
n H

A A
I a -A/H tan a dH/dt (137)

Z
J - Z/H tan 6 tan zH dH/dt (138)

JN' -N/H tan 6 tan aHH dH/dt (139)n n H

a - A/H tan a tan a dH/dt (140)
a a 111

Combining equations (135) through (140) and using equation (112) gives the
following results for constant Z , N and A

[(iU)2 + (j0I)2]1/2 . Z/H tan ' sec 8 dH/dt (141)
z z Hz

- Z ez /3H sec 6z dH/dt

M(N )2 + ( ')211/2 = N/H tan aN 0 dH/dt (142)
n n HH n

- N an /3H sec n dH/dtn n

A2 A'2]1/2= A dH/dt (143)[(I )2 + (j)] = sec tadH/dt (143)
a a HR a

= A Oa /BH sece a dH/dt

Combining equations (101) through (103) with equations (141) through (143)
gives for the actinides with constant Z , N and A

2 Z(di/dt)Z Z cos att sec0z 0 ez /3H dH/dt exp(j t) (144)

(dri/dt) = N cos 8 sec 20 36 /MH dH/dt exp(j• N) (145)
N tt n n nt

(dg/dt) = A cos t seC2 0 36 /3H dH/dt exp(jO A) (146)
A tt a a at

where equations (95) through (97) and equations (129) through (131) give

tz - e + 8Z - 0 -8 (147)
zt z zz t tt

W 7/2 - 6t - 8tt
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.6 N(18
nt en %a - et -Bt(t8

Sw/2 - et- Ott

•A . a+A
* Ate +8 -_e -8 (149)
at a aa t tt

W W/2 - 6t - Ott

Therefore for the internal phase nuclear reactions of the actinides

Z W IN = 0A W w/ 2 - t (150 )
zt nt at -t - tt

which is a result that is different from the analogous case for the subactinide
elements. 2 6 Equations (144) through (146) can also be written as

(-/aH)z M jZ sec2ez 3ez/aH (151)

(an/lH)N = JN sec 2en 3en/aH (152)

(a/DH)A = JA sec2 a a/3H (153)

which actually corresponds to

(dz)z = JZ sec2 6z d6z (154)

(dii) 1 = JN sec 2n den (155)

(di)A = JA sec 2a d6a (156)

which is easily derived from equations (43) through (45) and equations (82)
through (84) for the internal phase rotations of the actinides.

3. RADIOACTIVE DECAY OF THE ACTINIDE NUCLEI IN AN EXTERNAL FIELD. This
section investigates the radioactive decay of a collection of actinide nuclei
in the presence of an external electromagnetic or gravitational field. Internal
phase angles are induced into the number of nuclei, into the total number of
constituent nucleons and into the atomic mass number of each nucleus. An ad-

dition law for actinide nuclei is developed that relates the complex total nu-

cleon number, the complex number of atomic nuclei and the complex atomic mass
number.

A. Addition Law for Actinide Nuclei with Complex Total Nucleon Number,

Complex Number of Atomic Nuclei and Complex Atomic Mass Number.

In the presence of an external field such as gravity or an electromagnetic

593



field the particle number of any system of particles must be represented by
complex numbers in an internal space. 26 Therefore for nuclei in an electromag-
netic field the complex number of total nucleons (protons and neutrond within
the nuclei), the complex number of atomic nuclei and the complex atomic mass
number are written as 2 6

n - Nn exp(JiNn) (157)

K - N exp(jiN) (158)

S- a exp(jBa) (159)

where Nn , Nn and ONn = complex number value, magnitude and internal phaseangle
of the total number of nucleons situated within all of the atomic nuclei; N , N
and ON - complex number value, magnitude and internal phase angle of the number
of atomic nuclei; and as before a , a and ea - complex number value, magnitude
and internal phase angle of the atomic mass number of each nucleus. For actin-
ide nuclei it follows that in analogy to equations (43) through (46) the parti-
cle number magnitudes that appear in equations (157) through (159) are written as

Nn - nn sec eNn (160)

N - n sec 0N (161)

a = A sec a (162)a

where % = integer number of total number of nucleons within the atomic nuclei,
n - integer number of atomic nuclei, and as before A = atomic mass number which
is an integer. The integer numbers satisfy the following fundamental universal-
ly valid law of baryon number conservation

Tn = nA (163)

The measured nucleon number, nuclei number and atomic mass number are given by
the real parts of equations (157) through (159). Using equations (160) through
(162) gives the result

N = nn ) X f = a f =A (164)mn m m

which are integers for actinide nuclei. For actinide nuclei the measured nu-
cleon number, nuclei number and atomic mass number are denumerable. This is
not the case for subactinide nuclei. 2 6

Following the example of the addition law given by equation (54) which is
valid for a single nucleus, the addition law for the complex particle numbers
is written as 2 6

W' + N = ni (165)n

which is subject to the universal validity of equation (163). The component
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equationa of equation (165) for actilide nuclei are written with the help of
equation (164) as

w'+n -nA (166)

nn tan e Nn = nA tan ea (167)

which give the relations

W' - 0Nn - 0a (168)

which are valid for actinide nuclei. Therefore for actinide nuclei

Nn na N a N =8 (169)

and equation (169) is equivalent to the integer relationship given by equation
(163). This situation is much simpler than the case for subactinide nuclei
where W' 0 0 .26

B. Radioactive Decay of Actinide Nuclei in the Presence of
an Electromagnetic Field.

This section considers the radioactive decay of the actinides in a time
varying external field such as electromagnetism or gravitation. The complex
number generalization of the standard radioactive decay law for the heavy el-
ements is written as 2 6

dN/dt = - RN (170)

where N = complex number of atomic nuclei and X = complex number radioactive
decay constant which can be written as 2 6

ý - A exp(jOX) (171)

From equations (158) and (161) it follows that N can be written for actinide
elements as

N exp(JON) N f sec ON (172)

= n sec 6N exp(J0N)

The time derivative of equation (172) is given by 2 6

dN/dt = cos 0tt sec 8NN dN/dt exp(jiNt) (173)

= cos 0tt csc 8 NN N d0N/dt exp(J$Nt) (174)

= sin 0tt sec 8NN t- dN/d0t exp(J$Nt) (175)

= sin tt csc, NN N/t d6N/d6t exp(J4Nt) (176)
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where 
2 6

-tan Mu aONlaI (177)

ont - ON + S - et - tt (178)

Then the law of radioactive decay of elements given in equation (170) can be
written in any of the following forms26

cos att sec 8N dN/dt - - AN (179)

cos att csc NN deN/dt A - A (180)

sin 0tt sec 8NN t-1 dN/dOt - A-N (181)

sin 8tt csc OU t-1 de /det -- A (182)

combined with the following phase angle relationship

#xt M e. + eN (183)

Combining equations (178) and (183) gives 26

8NN -0 t - Btt -M e (184)

The derivative del/dt that appears in equation (174) is written as

dON/dt = 3eN/a/n dn/dt + HON/aH dH/dt (185)

The derivative dN/dt that appears in equation (173) is obtained from equation
(172) to be for actinide nuclei

dN/dt - dr/dt sec 0N + n sec eN tan eN d6N/dt (186)

- sec 6N [dn/dt(1 + tan 8N neON/3n) + n tan eN DoN/3H dH/dt]

Equations (170), (171) and (173) through (185) are valid for the radioactive
decay of all nuclei but equations (172) and (186) refer only to actinidenuclei.

Another form of the law of radioactive decay that applies only to the
actinides can be obtained in analogy to equations (101) through (103) by noting
that the time derivative that appears in the radioactivity law in equation (170)
can be obtained from equations (173), (174), (185) and (186) as

dl/di - cos 8tt sec 0 sec 6N J• exp(JONt) (187)

= cos a t csc 0NK sec eN IN exp(JONt) (188)

= cos t sec e (N + Ni2)1/2 exp(JONt) (189)

596



wbere

Is - tan tH dn/dt + n/H tan n d/t(dt (19)
B n

J - (1 + taneft tan )dn/dt+ n/H tan tan dH/dt (191)

tan 0 N NaeN/ON - IN/Ji (192)

tan a Hn - naeN /n (193)

tan an Hae /H (194)tan N

Combining equations (170), (172) and (189) gives for the actinides

Cos sec (12 + j2)1/2exp (jt) (195)

f - An sec eN exp[j(eA + 6N)]

which gives the radioactive decay law as

Cos 2tt (I + J;2)I2 = - An (196)

along with the phase angle relationship given by equations (183) and (184).
Equation (196) is equivalent to equations (179) and (180). Equation (196) for
the radioactive decay of the actinides is similar to equation (255) of Refer-
ence 26 which describes the radioactive decay of subactinide nuclei. The dif-
ference is the + signs that occur in the expression for Jj in equation (191)
for actinide nuclei, and the corresponding negative signs that occur in the ex-
pression for JN that describes the radioactive decay of subactinide nuclei as
in equations (250) and (255) of Reference 26. The phase angle 0 N may be neg-
ative so that in this case

tan 8N = - tanleNi (197)

The angle ON can be positive or negative.

The case of incoherent radioactive decay of the actinides can be regained
by taking 8 N = constant, 8t 0 0 and Ott = 0 in which case equations (170), (173)
and (186) become

sec eN dn/dt exp(jON) = - An sec 8 N exp[j(ON + Ae)] (198)

which gives the conventional law of radioactive decay of elements as 3 7 ,38

dn/dt -An 8O = 0 (199)
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This case can also be obtained from equations (187) through (196) by recogniz-

ing that the case of incoherent radioactivity corresponds to

-0 an = 0 0 (200)

J - dn/dt I- 0 (201)

for which case equation (196) reduces to equation (199).

The case of radioactive decay of the actinides in a static magnetic field
is obtained from equations (190), (191) and (196) and is described by

H HIN H- tan a dn/dt (202)

(I + tan 0 tan aci )ddt (203)
K nn

Y, cos Btt dn/dt A - nr (204)

where
2 H H )2 1/ 2

Y' - [tan2 aH + (1 + tan 6N tan aH 2 (205)

Equation (204) can be rewritten as

dn/dt - - A"n (206)

where the effective decay constant for the actinides is given by

X= X/Y' sec att (207)

For the actinides the effective radioactive decay constant is a decreasing
function of the strength of the applied magnetic field if aaHnl/aH > 0 , and
vice versa. The phase angle equation for the case of a static magnetic field
is obtained by first realizing that for H - constant equation (192) becomes

H H 1!' H H -1(28
tar. 5NN = INH/N = tan at (1 + tan N tan aH)_ (208)NN N in N n

and equation (184) gives the phase angle condition as

HO=Bm -N t -Btt (209)

Equation (209) gives the internal phase angle of th,- radioactive decay constant

for atomic nuclei in a constant magnetic field.

C. Coherent Radioactive Decay of the Actinides.

This -ection considers the case where n - constant which corresponds to
radioactive decays where the integer number of actinide nuclei remains constant
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and only the internal phase angle 6N changes due to the presence of a time de-
pendent external electromagnetic field. For n = constant, equations (190),
(191) and (194) give for actinide nuclei

I= n/H tan aHn dH/dt (210)

-n doN/dt

,n /H tan 0 tan a n dH/dt (211)
N N HH

- n tan 0N doN/dt

and equation (192) gives

tan 0 n = cot 0  /2 N (212)

Equations (196), (210), (211) and equations (184) and (212) give the internal
phase radioactive decay equations for actinide nuclei as follows

cos 8tt sec e doN/dt X (213)

n - 0 - (214)A• Nll -N t t t

= r/2 - 0 - ot tt

where att is given by equation (68). The internal phase radioactive decay
equation (213) can also be obtained from equations (180) and (212). Equations
(213) and (214) can also be obtained directly from equations (170) and (172)
or from equations (189) through (191) by realizing that for actinide nuclei
with n = constant

(dN/dt) = n cos 0tt sec 2eN doN/dt exp[j(ir/2 - et - Itt)] (215)

=Ncos Btt sec 6N do /dt expfj(ir/2 - eN - t -ttd]

and

(d)n = n sec 26N doN exp(jT/2) (216)

= in sec 2 0N do N

- jN sec e0 doN exp(-jO )

- N sec 6N dON exp[j(6/2 -
0N)]

and where

j(dR)n = n sec2 eN dON (217)
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Equation (216) gives the coherent (n = constant) change of the complex number
of actinide nuclei given by equation (172). Equations (213) and (214) are
coupled simultaneous differential equations that determine ON and et for ac-
tinide nuclei that are undergoing internal phase radioactive decay. For slow-
ly changing values of et equation (214) is written as

0 = ff/2 - 6N - et - tat /at (218)

which is an approximate differential equation for ON and et

It has been shown that a solution to equation (213) is given by 2 6

(sec 0N + tan 6N)/(sec e0 + tan N = exp[- Xg(t)] (219)

where
t

g(t) = f sec 8tt dt (220)
0

where ON = ON for t = 0 , and for t = it follows that 2 6

N = - r/2 (221)

From equation (214) it follows that for t ÷ • and for actinide nuclei

ex 6 = - a tt (222)

et -ta t

which is a differential equation for 8t . Therefore for the internal phase
radioactive decay of actinide nuclei in the limit of t ÷ = equation (222) gives

et = 7 - OX + c/t (223)

where c = constant. For t = = equation (223) gives

e OD = r - 8 (224)
tX

for internal phase decays of actinide nuclei.

4. NUCLEAR MASS FORMULA FOR ACTINIDE NUCLEI IN AN ELECTROMAGNETIC OR
GRAVITATIONAL FIELD. This section develops a broken symmetry form of the liquid
drop type or nuclear mass formula that describes the nuclear binding energy of
actinide nuclei. The nuclear mass formula can be used to study the suppression
of thermal neutron induced binary fission and the enhancement of quaternary
fission in the actinides by the presence of a y ray field as described in Sec-
tions 5 and 6.

A. Complex Number Radius for Actinide Nuclei.
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The simplest scalar expression for the nuclear radius is given by 2 8-36

R - bA1/ 3  b = 1.2 fm (225)

In an external electromagnetic or gravitational field the nuclear radius is
represented by a complex number as follows 2 6

K R exp(jOR) - E1/3 (226)

where the complex number constant b is written as26

S= b exp(jOb) (227)

and 5 complex atomic mass number which for the actinides is given by equation
(45). Combining equations (45) and (226) gives for the actinides

- bA1/3 sec /30a exp[J(l b + 8a/3)] (228)

R = bA1/3 sec1/30a 0R = 0b + 8a/3 (229)

The measured radius of an actinide nucleus is given by the real part of equa-
tion (228)

Rm = R cos 0R = bA1/ 3 sec 1/30 a cos(8b + 0a/3) (230)

which can be rewritten as

R = b'A 1 / 3  (231)m

where for the actinides

b' = b sec 1/3a cos(eb + a /3) (232)

The effective radius constant b' is a slowly increasing function of the applied
external field. Therefore in a weak external field b' % b = 1.2 fm , while in
a strong field b' > b

B. Binding Energy of Actinide Nuclei Located in an
Electromagnetic or Gravitational Field.

The standard scalar expression for the binding energy B of a nucleus
(Z,A) is given by the liquid drop model as 2 8 - 3 5

B = E - E - E - E + E + E (233)v s c sym pair shell

= aA - YA2/3 - 6 2/A1/3 - _(N - Z) 2/A + Pp/A3/4 + Eshell

where E , ,Es ,Ec vEsym, Epair and Eshell = volume, surface, Coulomb, sym-
metry, nuclear pairing and nuclear shell energies respectively, and where a,
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S, 6 and 8 = volume, surface, Coulomb and symmetry energy coefficients respec-
tively, and where from equation (55) it follows that N - Z - A - 2Z . The pair-
ing energy is given by 2 8 -3 5

Epair = PP/A3/ 4  (234)

where p = pairing energy coefficient ^ 34 MeV and where P is given by equation

(25). The average binding energy per nucleon c = B/A is written as

EC=v -Cs -Ec Csym pair +C shell (235)

i a -/A1/3 - 6Z2/A - 8[(N - Z)/A]2 + Pp/A7/4 + Cshell

where ev C Cs , CC P Csym , Epair and Cshell = average volume energy per nu-
cleon, average surface energy per nucleon, average Coulomb energy per nucleon,
average symmetry energy per nucleon, average pairing energy per nucleon and the
average shell energy per nucleon respectively. More complicated forms of the
nuclear symmetry energ have been considered by including the effects of the
nuclear bulk modulus. However, in this paper only the simple Weizsdcker-
Bethe form given in equation (235) is considered.

For an actinide nucleus in the presence of an electromagnetic or gravi-
tational field the complex number nuclear binding energy is written as

v s c sym pair Eshell (236)

= - -Y-2/3 -2 /•1/3 - )2/5 + pý/g3/4 + Eshell

where z , n and a are given by equations (43) through (45) respectively, Ev, Es,
Ec ,Esym, Epair and Eshell = complex number volume, surface, Coulomb, symmetry,
pairing and shell energies respectively, and where & , 7 , 6 and 8 = complex
number volume surface, Coulomb and symmetry energy coefficients respectively.
The mass formula coefficients are represented as

t = a exp(jea) y= exp(jO y) (237)

= 6 exp(jO6 ) = 8 exp(jOB) (238)

Epair = Epair exp(JeEpair) Eshell = Eshell exp(JeEshell) (239)

where the complex number pairing energy is written as

- -3/4=.p5/ 3/a (240)pair

where the complex number pairing energy coefficient is written as

= p exp(je ) (241)

p
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so that

Eipar = PP/a3/ 4  6Epair e - - 3/48a (242)

The average complex number binding energy per nucleon E - B/• is written as

v s - Fc - Fsym + pair + shell (243)

1 1/3 -i2/ 4/3 - [(• _)/T]2 + pý/j7/4

where Ev E Es , Ec , Csym , cpair and Fshell = complex number average volume,
surface, Coulomb, symmetry, pairing and shell energies per nucleon respectively.

The complex number neutron excess that appears in the symmetry energy
terms in equations (236) and (243) is written for actinide nuclei exactly as

S= E exp(jOE) = n - - = i - 2i (244)

where R , - and a are given by equations (43) through (45) and are related by
equation (62). Then for actinide nuclei

2 22
2 = n2 + z - 2zn cos(8n -Z) (245)

= N2 sec,2 + Z2 sec 2 - 2ZN sec. sec 6 cos( - Z)n Z z n n z

tan 6e = (n sin n - z sin e )/(n cos en - z cos Z) (246)

= (N tan 8 - Z tan 8 )/(N - Z)n z

For the approximation Oz ', 6n , which is valid near the valley of beta sta-
bility, it follows from equations (245) and (246) that

" 'ý n - z = N sec 6 - Z sec 6 " (N - Z)sec 6 (247)n z

0 E \z n. n (248)

Combining equations (243) and (244) gives the exact equation

F = a _ /•I/3 - 3i2 /4/3 _ z(F/i)2 + Pp5/7/4 + Tshell (249)

It follows from equation (244) that the following exact equation is valid for
actinide nuclei
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ý/a - F/a exp[J(80 -a)) (250)

= 1 - 2i/i

1 1 - 2(Z sec z)/(A sec a) exp[j(e - 0a)]

Combining equations (249) and (250) gives the following exact expression for
the average energy per nucleon for actinide nuclei

T/51 - /3 /3 -2 /94/3- 2i/9)2 + p-/57/4 + -shell (251)

which is a simple complex number generalization of the standard scalar result.

Equation (236) giving the complex number binding energy of an actinide
nucleus can be written as

aA sec 0a exp[j(a + 0a)] - yA2/3 sec 2/3a exp[j(8Y + 2/38 a)] (252)

- 6Z2A-1/3 sec 2z sec- 1/3a exp[J((6 + 20z - 1/38 a)]

k 82A-I sec- 1a exp[j(8e + 26 - 0a)]

+ PpA-3/4 sec-3/4 a exp[j(0p - 3/40 a)] + Eshell exp(J Eshell)

As an approximation the phase angles of the terms in equation (252) are taken
to be equal

0B % + 0 a 0 + 2/30 (253)B a y a

6 6 + 20 - 1/30 , 0e + 20 - a6 z a b a

% 0 - 3/40 8
p a nEshell

Then the magnitude of the binding energy for actinide nuclei is obtained from
equation (252) to be approximately

B a aA sec e - yA2/3 sec2/3a - 6Z2A-1/3 sec26 sec-1/3a (254)

a a z a

2 -1 -1 -3/4 -3/4-8•2A- sec-10 + PpA-/ sec-304 +E
a a Eshell

Equation (59) gives 0a = Oa(Oz,On,Z,A) so that in all further calculations it
should be understood that ea is not really an independent variable. The approx-
imation Oz "U On allows equation (254) to be written as

B ^ cA sec 0 - yA2/3 sec 2/30 - 6Z2A-1/3 sec 2 sec- 1/3 (255)a a z a

-( Z 2A-I 20 -1 -3/4 -3/4
- 6(N Z) sec 0 sec 0 + PpA sec E shell
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The further approximation e %, ez %, en v ea allows equation (253) and (254) to
be written for actinide nuclei as

6 B 0 a + 0 a1 e + 2/36 (256)B a a y a

e 6 + 5/36 a 8e + 66a B a

n. (p a34e a eEshell

B'aAsec - A2/3 sec 2/38 - 6Z2A-I/3 secS/3e (257)B Ase a a a(27

- 2(N - Z)2A-1 sec 6 + PpA-3/4 sec-3/4E +a a Eshell

which are valid in the valley of beta stability. For actinides at the fission
condition ea ,. 2ez equation (64) gives the approximations en %, 2 . 6 ez and
"en ' 1.3ea .

Each term in the expression for the binding energy and average bJnding
energy per nucleon of actinide nuclei will now be considered separately with
the exception of the nuclear shell effects which are more complicated and are
not considered in this paper.

a. Volume Energy Term for Actinide Nuclei.

The volume energy terms are written for actinide nuclei as

Ev - i - aa exp[J(Oa + 6a)] (258)

= aA sec ea exp[J(Oa + ea)]

Zv - F - a exp(j6a) (259)

The volume energy per nucleon r describes the energy per nucleon of infinite

nuclear matter but evaluated at the central density of a nucleus. 3 6

b. Surface Energy Term for Actinide Nuclei.

The surface energy terms are written as
= 2a = exp[j(2 / + 2/3e )1 (260)

= yA 2 / 3 sec 2/3 a exp[j(0. + 2/30a )]

= 7/ 1/3= ya- 13 exp[j(O - 1/ 30a)] (261)

-13 -1/3e

yA-1/3 sec a exp[j(e Y 1/30 a)]
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The complex number surface energy coefficient can be written in terms of the

central density of an atomic nucleus. 3 6

c. Coulomb Energy Term for Actinide Nuclei.

The complex number Coulomb energy terms are written as

Ec . Z2/I./3 - z2 -/3 z - /3ea)] (262)

m 6Z2A-I/3 sec2ez sec- /3e exp[j8 6 + 28 - 1/38 ) ( )a)]
caz

_ 2c = ,2/F4/3 . 6z 2a-4/ 3 exp[J(e + 2ez - 4/38a)] (263)

- 6Z 2 A-4/ 3 sec2  -sec4'/36a exp[J(8 6 + 2e - 4/38a)]

The complex number Coulomb energy coefficient can be written as a generalization

of the standard scalar result28-?6

6= 3/5(e 2 /b) = 0.863/b MeV (264)

= (0.863/1.523)kc MeV

where b f complex number radius parameter defined in equation (226). Equation
(264) is equivalent to

6 = 0.863/b = (0.863/1.523)kc MeV (265)

06 = - =0b = 8kc (266)

For simplicity it will be assumed that the wave number kc of the central density

of an atomic nucleus is approximately equal to the wave number of infinite nu-
clear matter kF , so that

kc ^ kF = 1.35 fm-i (267)

but in fact k is slightly larger or smaller than kF due to Coulomb and surface
forces. 36

d. Symmetry Energy Term for Actinide Nuclei.

The complex number symmetry energy terms are written as

Esym = 2 E2/• f a- 1 exp[j(O8 + 26• - a)] (268)

= a& 2A-I sec-10a exp[J(0B + 20 -0a)]
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sym " B(/I)2 BE a-2 exp[j(el( + 2e - 26a) (269)

W BE2A- 2 sec- 2 ea exp[j(e88 + 20 & - 20a)]

where E , and 8 are given by equations (244) through (246) respectively.
Equations (268) and (269) can be simplified by assuming the approximation

z %, en , then equations (245) and (246) give

E C (N - Z)sec ez 8 C'6 % e (270)

and equations (268) and (269) become

sym S(N - Z)2A-1 sec-10a sec2ez exp[J(88 + 2ez - 8a)] (271)

sym "(N - Z)2A-2 sec-2ea sec2ez exp[J( + 20 z - 2ea)] (272)

As a further approximation let 0 z %, en %, ea , which follows from equation (59)
for z ', On , then rquations (271) and (272) become

E sym% (N - Z)2A71 sec 8a exp[J(0 + ea)] (273)

r sym• B(N - Z)2A-2 exp(j80) (274)

Equations (273) and (274) are valid in the vicinity of the valley of beta sta-
bility where 8 z , en `O a . The complex number symmetry energy coefficient
can be written in terms of the central density of an atomic nucleus.3 6

e. Pairing Energy Term for Actinide Nuclei.

The complex number pairing terms are

Epair P pi3/4 . pa-3/4 exp[j(0 - 3/48 a)] (275)

= PPA-3/4 -3/4a exp[j(e --PA sec a exIj0 -3/40a) ]

Fpair f P55 7/4 . Ppa-7/4 exp[j(0P - 7/40 a)] (276)

- PpA 7/4sec-7/4 0 a exp[j(e0 - 7/40a )]

The shell energy term is more complicated.

c. Measured Binding Energies of Actinide Nuclei Located in an
External Field.
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The real and imaginary parts of equation (236) are given by

B cos eB = aA sec a cos(0a + 0a) - yA2/3 sec 2/3a cos(ey + 2/30a) (277)

- 6Z2A-1/3 seC2Oz sec-1/3 a cos(06 + 26z - 1/3ea)

- a&2A-1 sec- 16a cos(08 + 20& - 0 a)

+ PpA-3/4 sec-3/40a cos(0P - 3/40 a) + Eshell cos 0Eshell

B sin 0B = aA sec 0a sin(0a + 0a) - yA2/ 3 see2/3 a sin(OY + 2/30a) (278)

- 6Z2A71/3 seOe2z see- /3e sin(06 + 26 - 1/ 3 a)

- B2A- 1 sec-1 6a sin(0 B + 26 - a)

+ p•-3/4 -3/4o
+ PpA 3 /4 sec a sin(0P - 3/46a) + E sin 0Eshell

Equations (277) and (278) immediately determine B and 6B . The measured bind-
ing energy is just the real part of the complex number binding energy, so that

B = a A - Y A2/ 3  6 Z2 A- 1/3 - 8' 2 A-I + Em + Em
m m m m pair shell (279)

where for actinide nuclei

am = a sec 0a cos(a + 0a) (280)

Ym = y sec2/ 3 a cos(0y + 2 /30a) (281)

6m- 6 seC20z sec-1/3 a cos(0 6 + 20z - 1/36a) (282)

8' = 8 sec 1 0 cos(C + 20 - 0a) (283)
m a 8a

Eair PpA-3/4 sec- / 4 0a cos(0 - 3/40a) (284)
a P a

where F= f(Z,N,Oz,On) and is defined by equation (245), and 0& = 6&(Z,N,Oz,On)
is defined by equation (246). The internal phase angle Oa is given by equation
(59) to be 0a = ea(Z,N,ez,0n) .

If the small angle approximation E Oz '\' 0n is assumed, then the approx-
imations in equation (270) and (271) allow equation (279) to be written as

B= a A - ymA2/3 - 6 Z2A-1/3 8(N - Z)2A-1 + Em +E m(285)
m m m m m pair shell
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where now

am = 8 sec 2Oz sec-1Oa cos(e 8 + 20z - 0a) (286)

If the further small angle approximation eý n_ z " ea is made, then equation
(285) is the measured binding energy with

am a sec 0a cos(0a + 0 ) (287)

Ym = y sec 2/3a cos(OY + 2/30a) (288)

6m = 6 sec5 /3ea cos(0 6 + 5/3ea) (289)

8m - 0 sec 0a cos(8a + ea) (290)

which are useful for nuclei near the valley of beta stability. The measured
values of the symmetry energy coefficients are28,29

= = 15.5 Ym 17.2 6 m 0.698 8 = 23.3 MeV (291)

Equations (287) through (290) show that

Qm < a Ym < Y 6 m < 6 am < 8 (292)

The values of the nuclear mass formula parameters Oz , 6n , Oa ,a , a , Y ,
Oy , 6 , e6 , 8 and ea can be obtained by fitting the real part of the complex
number binding energy given by equation (279) to the measured values of the
atomic masses of the actinide elements. A simplified procedure uses the approx-
imation z "'X 

8 n and equation (285) for the fit to atomic masses. Expressions
for the atomic masses of the elements will now be considered.

D. Masses of Actinide Atoms Located in an Electromagnetic or
Gravitational Field.

The conventional relationship between atomic mass and nuclear binding
energy is written as 2 9

M = ZmH + Nm n- B (293)

where M = atomic mass of an element, mH = mass of hydrogen atom and mn = neu-
tron mass. In the presence of an external field the atomic mass is a complex
number in an internal space and is given by 2 6

z= zmH + nmn - B (294)

where the complex number atomic mass is written as
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M- H exp(J 8 M) (295)

Using equations (51) and (52) allows the real and imaginary parts of equation
(294) to be written as

M cos eM W G (296)

M sin eM M F (297)

where for actinide nuclei

G = mHZ + mnN - B cos eB (298)

F - mHZ tan e + m N tan 0 - B sin 8B (299)
g n nB

Equations (296) through (299) can be used to obtain M and eM as

tan 6M = FIG (300)

M2 = FH 2 + G2 (301)

The measured atomic mass for the actinide elements is given by equations (296)
and (298) which can be rewritten as

M = mZ+nN - Bm (302)

where Bm is given by equations (279) or (285). The small angle approximation
6z ^ 6n "- a OB combined with equations (294) through (302) gives for ac-
tinide nuclei

HM 6 z • n " 8a \ eB (303)

M "(mHZ + mnN)sec 0 - B (304)

where 6a is given by equation (63) within this approximation. Note that M ,
Mm and 6M vary with the strength of the applied electromagnetic field because
ez = Oz(H) in equations (300) through (302), but the following intrinsic mass
is a constant independent of the applied electromagnetic (or gravitational)
field

mHZ + m N = constant (305)

and represents the universal law of the conservation of rest mass and baryon
number.

The variation of the measured atomic mass and the magnitude of the atomic
mass with the strength of the external electromagnetic field can be obtained
from equations (301) and (302) by the following formulas
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dM/dH - •aI /3I do /dH + aM/3e dO /dH + am /ae do /dH (306)
In M z z M n n in a a

dM/dH - aM/aez dez/dH + 4M/en don /dH + aM/a a do a/dH (307)

The internal phase angle 8a - ea(ez,en,ZN) is given by equation (59) so that
the derivative dea/dH can be evaluated as

dOa/dH - a /ae zdOz /dH + ae nao do ndH (308)

Therefore quations (306) and (307) can be written as

dM m/dH = (aM /aez + aMm/ae a ga/ez )do zde (309)

+ (aM/ae + am /ae go iae )de IH
M n a a n n

dM/dH - (aM/laz + a•Mae a elao )dO z/dH (310)

+ (aM/aen + am/ae a ga/go )dn /dH

where for example equation (302) gives for actinide nuclei

aMm/ae = - 3B /ao (311)in z mn z

am /n = - B m ao (312)

am /ea = - 3B /9a (313)in m a

where Bm is given by equation (279).

For the approximate case Oz 0 en - ea which follow frn equation (5M)
for small arguments, it follows that

dMm/dH - dM /dO doa/dH (314)
in i a a

dM/dH = dM/dO dO /dH (315)a a

where equations (302) and (304) give for 0z ' On ` ea and for actinide nuclei

dM m/doa = - dB m/doa (316)

dM/dOa = (mHZ + mnN)sec 0 tan 0 - dB/de (317)a i na a a

where the approximate value of Bm given by equations (285) and (287) through
(290) are used in conjunction with equation (316), while the approximate value
of B given by equation (257) is used in conjunction with equation (317). There-
fore from equation (285) and within the approximation 0z '% On ^- 0 a , the deriv-
ative in equation (316) is given by
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dBm/d6a = dam/d0 A - dym/de A2/3 - d6m/dO Z2A-1/3 (318)m a m a m a m a

- dBm/dO (N - Z)2A-I + dE• /dO + dEe/dO
m a pair a shell a

where from equations (287) through (290) for Oz ' On 0a it follows that for
actinide nuclei

dam/dc a - - a sec 6a cos(0a + 0 )[tan(Oa + 0 ) - tan 6 ] (319)m aa a a a a a

dy m/dO = - 2/3y sec 2/3 cos(07 + 2/30 )[tan(b + 2/30 a) - tan 0a 1 (320)m a a ya y

d6m/dta = - 5/36 sec5/ 3Oa cOs(06 + 5/30a)[tan(0 6 + 5/30a) - tan 0a] (321)

dOm/d a = - 0 sec 6 a cs(O + 6a)[tan(e + a) - tan 0 ] (322)

The derivative of the measured pairing energy that appears in equation (318) is
obtained from equation (284) for actinide nuclei to be

d~m /O 3/PpA/ 4  3/4
deai/d = 3/4PA-/4sec- 0 cos( - 3/40 )[tan(e - 3/40a) - tan a 1 (322A)

pair a a P a p a a

For the approximation 6z = 0 = 0 , the derivative of Lhe magnitude of
the binding energy for actinide nuclei that appears in equation (317) is ob-
tained from equation (257) to be

dB/dO = sec 0 tan 0 [aA - 2/3yA2/3 sec-1/3E (323)a a a a(3)

- 5/36Z2A-1/3 sec 2/3 - ý(N - Z) 2A-I
a

- 3/4PpA-3/4 sec- /4 + el a

From equations (316) through (323) it follows that for the actinides

dBm/de a 0 dB/de > 0 (324)

dM /dea > 0 dM/dOa > 0 (325)

For example, within the approximation Oz " 6n " Oa equations (317) and (323)
give for actinide nuclei

2/3 -1/3
dM/dea = sec 0a tan 0 [mHZ + mn N - A + 2/3yA sec -/a (326)

+ 5/36Z2A-1/3 sec 2/3a + a(N - Z) 2A- + 3/4PpA-3/4 sec- /40 ]

- dE shel/d0a
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which is a positive number because of the dominant contribution of the rest

mass terms.

E. Valley of Beta Stability for Nuclei with Broken Internal Syuaetries.

Radioactive beta decays require that the complex atomic number i adjusts
itself so as to minimize the binding energy of a nucleus given by equation
(236) but subject to the constraints represented in equations (55) and (62). 4

Combining equations (62) and (236) gives after neglecting shell and pairing
energy effects

j _ _ ýa2/3 _ 12/i113 - i(a - 2i)21i (k27)

The minimum binding energy condition is

3EB/3il = - 231/01/3 + 4ý(a - 2i)/i - 0 (328)

which gives using equation (62)

-vs /2/3)-1z 9f /2(1 + 15(329)
-vs ( / -R2/3 -1
n a/2(1 + 2Ea)() (330)

where vs = valley of beta stability, and where

E = 3/(48) c=6/(40) c =6 0e6 - (331)

For medium weight atomic nuclei the following approximation to equations (329)
and (330) can be used

'ivs 5 /2(1 - U 2/3} (332)

-v -2/3n =1/2(1 + c 3) (333)

where E is given by equation (331).

vs
For heavy nuclei the exact equation (329) must be used to calculate z

Equation (329) can be written as

ivs = (G + jF)/D (334)

tan evs F/G z VS= (G 2 + F 2 ) 1 / 2 /D (335)

z

where

G = a/2 cos 0a [1 + ca2/3 cos(0c + 2/38 )] + c/2 a5/3 sin ea sin(0c + 2/3 a) (336)

F = a/2 sin a [1 + ca2/3 cos(0c + 2/30 )] - c/2 a5/3 -s 0 sin(0c + 2/3a ) (337)a ca a ca

D = [I + ca2/ 3 cos(0c + 2/ 30a)] 2 + c2a4/3 sin2 (0c + 2 / 3 0a) (338)
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Combining equations (46) and (336) through (338) gives for actinide nuclei

G - A/2 [( + cA2/3 sec2/ 38a cos(Oc + 2/30a)] (339)

+ c/2A5 / 3 sec2 3 ea tan ea sin(ec + 2/3e a)

F - A/2 tan 0a (1 + cA2/3 sec 2/38a cos(8c + 2/3ea)] (340)

- c/2A5/ 3 sec 2 / 3 6a sin(8c + 2/38 a)

D - [1 + cA2/ 3 sec2 / 3Oa c°S(Oc + 2/38 a)]2 (341)

+ c2A4/3 sec4/3ea sin 2(8 + 2/3ea)

If A and ea are taken to be the known quantities, then equation (54) involves
five unknown quantities W , Z , N , 8z and 8n . The complex number equation
(54) and the scalar equation (55) supply three equations for determining the
five unknown quantities. The complex number valley of beta stability equation
(328) supplies two additional equations and so a complete solution is possible.
From equations (335) and (339) through (341) that describe the valley of beta
stability for the general case of nuclei of arbitrary size it follows that in
general for actinide nuclei W = 0 and

zvs =vs (AO ) vs = zvS (A,e ) (342)
z z a a

Combining equations (46) and (355) gives for actinide nuclei
vs 0vs

Zvs = z cos = G/D (343)
z

Nvs . A - Zvs = A -G/D (344)

vs
The value of 8n for the valley stability of actinide nuclei is obtained ex-
actly from equation (62) which is written in the form with W = 0

-vs - -vsn i a- z (345)

from which it follows in accordance with equation (60) that for actinide nuclei

tan 0vs = (A tan 8 - Zvs tan Ovs)/(A - Z) (346)n a z
evs anzvs

where 8z and are given by equations (335) and (343). The measured values
of the atomic number, neutron number and atomic mass number in the valley of
beta stability are given for the actinides by

z vs= nVS=Nvs a = A (347)m m m
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which are integers.

5. SUPPRESSION OF LOW ENERGY BINARY FISSION OF THE FISSILE ACTINIDES BY
AN EXTERNAL FIELD. This section determines the conditions necessary for the
inhibition of spontaneous or thermal neutron induced binary fission in fissile
actinide nuclei that are located in an electromagnetic or gravitational field.
The Bohr-Wheeler fission instability condition is generalized to the case of
actinide nuclei located in an external field. This condition is used to de-
termine the critical internal phase angle of the atomic number which corre-
sponds to the suppression of spontaneous or thermal neutron induced binary
fission by an external field. An expression for the corresponding critical
static magnetic field that is required to suppress binary fission in the fissile
actinides is presented and numerical values are obtained for this critical
static magnetic field in terms of the fissility parameters for several actinide
nuclei.

A. Bohr-Wheeler Fission Condition for Actinide Nuclei in an
Electromagnetic Field.

The standard Bohr-Wheeler analysis for spontaneous or thermal neutron in-
duced nuclear fission utilizes the fissility parameter which is defined by 3 9-4

X = (Z 2 /A)(KY/6)-1 (348)

and the spontaneous and thermal neutron induced fission condition is written
as39-44

X 2 /A > Ky/6

where y and 6 = surface and Coulomb energy coefficients that appear in the liq-
uid drop nuclear mass formula treated in Secc:ion 4, and where theoretically for
spontaneous fission

K = g/h = 2 (350)

where g = 2/5 and h = 1/5 are the second order series expansion coefficients of
the surface and Coulomb energies respectively when these terms are expanded in
terms of an ellipsoidal deformation parameter. 3 9 -4' The values of K , y and 6
along with the other mass formula parameters are determined empirically.39-44

The values of K are different for spontaneous and for thermal neutron induced
fission, and in fact K is dependent on the energy of the incident neutrons. 9-44

For thermal neutron induced fission 39-44

K 'ý- 1.471 (351)

Choosing y = 17.2 MeV and 6 = 0.698 MeV yields the following fission conditions
for a zero value of the externally applied field39-44

Z2 /A > 49.28 spontaneous fission (352)

Z2 /A ) 36.25 thermal neutron induced fission (353)
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These inequalities show that, loosely speaking, only the actinides and trans-
actinides can undergo spontaneous or thermal neutron induced fission, but not
all of these heavy elements undergo fission. Within this group of heavy ele-
ments the more neutron rich isotopes tend to be more stable against fission,
for example 2 3 8 U is stable against thermal neutron induced fission but 235U is

fissile. The empirical value of K that describes thermal neutron induced fis-
sion will depend on the values selected for the mass formula parameters y and
6 . In general K can be taken to be a decreasing function of the kinetic ener-
gy of the incident neutrons. The fission criteria presented above ignore all
shell structure effects and are therefore approximate relations which show only
general behavior and for which counterexamples can always be found in the bor-
der region between fissile and non-fissile nuclei.

The generalization of equation (349) to the case of atomic nuclei located
in an electromagnetic or gravitational field, which breaks the symmetry of the
atomic number, neutron number and atomic mass number, can be written as 2 6

_2 /5 > K /I (354)

where z , a , • and 6 are given by equations (43), (45), (237) and (238) re-
spectively. The fission instability boundary is given by

F21 = KT/I (355)

or equivalently the two scalar fission stability boundary conditions are 2 6

z2/a = Ky16 (356)

e = 26 - O + 0 (357)a z y 6

Therefore in an external field the internal phase angles of the atomic number,
atomic mass number, surface energy coefficient and the Coulomb energy coeffi-
cient enter into the fission insLability condition. Equations (356) and (357)
will be solved to determine the critical value of 0 z that is required to sup-
press spontaneous or thermal neutron induced binary fission in the actinides
by the application of an external electromagnetic field.

B. Critical Value of the Internal Phase Angle of the Atomic
Number that is Required to Suppress Low Energy Binary Fission
of Fissile Actinide Nuclei Located in an Electromagnetic Field.

Combining equation (46) with equations (356) and (357) gives the binary
fission instability boundary for actinide nuclei located in an external field
as

2 -20

Z 2/A = KY/6 sec 0 sec 0 (358)a z

= Ky/6 sec(20 + 6 - 0 Y)sec 0-z yz

Equation (358) must be solved for e This can be done by noting that simple
trigonometry gives26 z
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cos(20z + 0e - 0 )cos-0 - (1 - P2)cos(e - 66) + 2P sin(eY - 6' (359)

where

p - tan 8 (360)z

Equation (358) can then be written as a quadratic equation
2

ap + bo + c - 0 (361)

where

a - cos(0e - 06) (362)

b - 2 sin(e 6 - 0) = - 2 sin(O -0 6) (363)

C - (Ky/6)(A/Z 2 ) - cos(0y - 06) X-1 - cos(0y - 06) (364)

where the fissility parameter X is given by equation (40). Then the critical
angle of the atomic number for binary fission suppression 0O is given by

tan 0Sz tan(O - 06) ± se(0 - a )[1 - ( /6)(AIZ 2)cos(8 - 06)]1/2 (365)

- tan(0 - a8) t sec(t - a6)[1 - X-1 cos(0 - 6)]1/2

and from equation (357) the corresponding critical angle of the atomic mass
number for fission suppression e• is given by

0S = 20S + 6 - 0 (366)a z 6 Y
S S

The angles 0z and 0a are the critical values of the phase angles 0 z and 0a
that are required to suppress thermal neutron induced binary fission in an ac-
tinide nucleus. In other words, 0z > 06 and 0 B ea are required for binary
fission suppression in an actinide nucleus by the presence of an external
field. Figure 1 gives 0O and Figure 2 gives 0O in terms of the fissility pa-
rameter for actinide nuclei with the choice of phase angle values ey = 0.4r
and 86 = 0.1r whose values are selected only for demonstration purposes.

Equation (365) is the equation for the instability boundary for the
suppression of thermal neutron induced fission of an actinide nucleus (Z,A),
and is valid for

KY1 6 cos(0y - 06) < Z2/A 2 (367)

or in terms of the fissility parameter

cos(eY - O6) < X < (368)
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For X - equation (365) becomes

tan 0 S tan(8 - 86) ± sec(e - 86) (369)

Simple trigonometry then gives

e- . v/4 + 1/2(6 - 86) (370)

eS- . -- /4 + 1/24(o - e6) (371)

The common value of 6 and ea that occurs at X cos(ey - 86) , which is the

minimum value allowed for the fissility parameter in equation (365), is given by

8Sc . eSc = e - e (372)
z a Y 6

S S
The ranges of variation of 6z and 8 a over both the positive and negative modes
are given by

OS- 4 eS 4 eS+ (373)
zoo z zC0

- w/2 e8 < iw/2a

as shown in Figures 1 and 2 for X > cos(Oy - ). The ranges of variation of
OS and OS corresponding to the positive angle mode for the actinides are given by

OSc S Os < OS+ (375)

eSc < es < i/2 (376)
a a

while the ranges of variation of ez and ea for the negative angle mode for the
actinides are given by

s < es S 8sc (377)
zoo z z

- n/2 < S <1 Sc (378)

a a

for X r cos(OY - 06) as shown in Figures 1 and 2.

The condition for the suppression of thermal neutron induced binary fis-
sion in the actinides by an external electromagnetic field can also be written
in an alternative form to equation (365) as follows

cos(W - 06) < x < F- 1  (379)

where X = fissility parameter, and where
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F - (I - A 2)sec(e - e 6 (380)

A - [tar: 0z - tan(Oy - 086 ))cos(O6 - e6) (381)

where in general F 4 1 . Equations (365) and (379) are equivalent to the fol-
lowing binary fission suppression condition

e 0s (382)Z z
S

where 6z is given by equation (365) in terms of X . Equation (379) gives the
range of fissility parameters for which thermal neutron induced binary fission
is suppressed by an external field which generates the phase angle ez . It is
clear from equations (379) and (382) that in the presence of an electromagnetic
field thermal neutron induced binary fission can occur only for actinide nuclei
for which

X 0 F- < •S (383)z z

Equation (383) is the Bohr-Wheeler binary fission condition for actinide nuclei
in an external field for which F < 1 . The phase angle OS represents a bound-
ary between the regions of thermal neutron induced binary fission and binary
fission suppression of the actinides in an electromagnetic field. If the ex-
ternal field is shut off all of the internal phase angles have zero values and
A 0 and F - I so that equation (379) reduces to the statement that under zero
field conditions there are no nuclei for which binary fission is suppressed be-
cause the binary fission suppression range given by equation (379) shrinks to
zero length about X = 1 , and equation (383) reduces to the standard Bohr-
Wheeler fission condition given by equation (349).

As a first approximation the condition 0y = 06 can be taken in equation
(366) and the phase angle condition for the suppression of spontaneous or
thermal neutron induced binary fission in an external field is

(S f 20S v 0.766 0S ý- 2.636S S , 5.410S (384)a z n n z t z

Combining equations (358) and (384) gives the approximate binary fission sup-
pression boundary for actinide nuclei in an external field as

Z2/ 2S-I

Z 2 fiA (KY/6)(1 - tan 20 ) (385)
z

X f (1- tan20S)1 (386)
z

or equivalently as

2 2S -
Z /A f (Ky/6)[! - tan (0 /2)]1 (387)

2 S -1
x i [1 - tan (0 /2)] (388)
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For the case of the approximation By - 06 the condition for binary fission sup-
pression in fissile actinide nuclei by an external field which induces a phase
angle ez in the atomic number is given by equations (379) and (382) with
A - tan ez as

1 < (Z 2 /A)(Ky/6)- 1  (I ( - tan2 ez)-I e > eS (389)
zz z

or equivalently

1 X × (1 - tan20z)- 1 e 8S (390)

which follows directly from equations (379) through (381) when By - e6 . Equa-
tion (390) determines the nuclei region of suppressed binary fission within the
approximation 6y - 06 , and corresponds to the exact region of suppressed bi-
nary fission that is specified by equations (379) through (382). Within the
approximation By - e6 the condition for thermal neutron induced binary fission
of the actinides in an electromagnetic field is obtained from equation (390) as

X > (1 - tan 20) 0 1 S (391)z z

which follows from equation (383) for the case 06 = 06 , and which reduces to
the standard Bohr-Wheeler fission condition given by equation (349) for the
case of zero external field. Equations (386) and (388) determine 6S and OS in
terms of X for the approximation O6 = 66 .

Equations (385) and (386) show that within the approximation 8y - 86 the
internal phase angle of the atomic number that is required to suppress thermal
neutron induced binary fission in an actinide nucleus (Z,A) is given by

tan 0 = ± [I - (Ky/6)(A/Z 2)]1/2 (392)z

± (I - )1/2

= ± [(X -1)x1/2

where X > 1 . As shown in Figure 3 equation (392) has positive and negative
modes. Equation (392) can be obtained directly from the exact equation (365)
by making the approximation 0y - 66 . The approximation 0y = 06 is made only
for convenience because this eliminates the values of 6y and 06 from the cal-
culation of 6S . If this approximation is not made the values of Oy and B6
must be obtained from fitting a liquid drop type of nuclear mass formula to
measured atomic masses. Equation (392) can also be written as

cos a = [2 - (Ky/6)(A/Z 2)]-/2 (393)z

(2 X -1 -_1/2
= (2 -X)

[( 2 X - 1)/X]-1/2
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sin es- ± {(1 - (Ky/6)(A/Z 2 )/[2- (2Y/6)(A/Z2)]}i12 (394)

S[(1 - x 1 )/(2 - x- )1/ 2

"[ ± (x - l)/(2x -1)]1/2

Equations (384) and (392) can be written equivalently as

-S ± ± tan- 1 [1 - (Ky/6)(A/Z 2 )]1/ 2  e S - (2 + Z/N)8S (395)
z n z

- ± tan l[(x -)/x

eSa ± 2 tan- 1 - (cY/6)(A/Z 2 )]l/2 e S 2 2e/(1 - Z/N) (396)

- ± 2 tan-l[(x - 1)/x11/ 2  = 8S/(1 - Z/N)

and are plotted in Figures 3 and 4 for OY - e6 for actinide nuclei with X > 1
The approximate equations (392) through (396) are valid for Oy - 06 and the fol-
lowing range of the fissility parameter

1 4 x < - (397)
S

Within the approximation e8 = 86 the range of values of ez for the positive and
negative modes is

- w/4 < S < r/4 (398)
z

as shown in Figure 3 for X 0 1 . The range of values of 6 for the positive
and negative modes is

- 42 eS < v/2 (399)
a

as shown in Figure 4 for X ; 1 . Equations (398) and (399) correspond to the
exact relations given in equations (373) and (374) respectively. For the posi-
tive angle modes the ranges of Oz and OS are within the approximation e0 = 86
given by

o < eS 1 T/4 0 < (S < i/2 (400)
z a

while for the negative angle modes

- 7 / 4 <1 (S < 0 -/2 < S < 0 (401)
z a

which correspond to the general cases in equations (375) through (378). Values
of the angle 6S given by equation (395) for various actinide nuclei appear in
Table 1.

C. Determination of the Static Magnetic Field Required to Suppress
Thermal Neutron Induced Binary Fission in Actinide Nuclei.
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The value of the magnetic field required to suppress binary fission in
the actinides is calculated by assuming a relationship between the magnetic
field and the internal phase angle of the atomic number that is required to
suppress binary fission that is analogous to equation (42), so that

Hs K H tan eS H-K 1 H tan6 (402)
ez z zz z

where K1 z = static nuclear magnetic stiffness coefficient, and where e• is

given for the general case by equation (365). Therefore in general

HS H (K H 0 -H8 , x) (403)
H H(K 6 , y 6

where the fissility parameter X is given by equation (348). If e6 is given by
the approximate equation (392) the critical value of the magnetic field required
to suppress binary fission in the actinides is given by

S H [(X - 1)/X] 2  (404)

with X > I , so that within this approximation

HS 511
H =11 (K0 z , X) (405)

and HS depends on only two parameters. The corresponding value of the static
magnetic induction required to suppress binary fission is written as

BS KB tanS KB tan (406)
ez z 0z z

= K Bz (X - 1)/X]1/ 2  (407)

where

KB H
KOz = iiKz (408)

where v = magnetic permeability of nuclear matter. The static nuclear magnetic
stiffness coefficients have the values2 6

KB 103
K = 2.36 x 10 T (409)
ez

K = 1.88 x 10 coul/(m sec) (410)
1z

where T = tesla. The value of the magnetic permeability is taken to be the
vacuum value 26

S= 1o = 47 x 10-7 kg m/coul2 (411)

H BA complete discussion of the determination of the coefficients Kez and Kez has
appeared in the literature. As shown in equation (390) thermal neutron in-
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duced binars fission in the actinides is suppressed by an electromagnetic field
when ez > 0) or equivalently when B > BS .

It has been shown that fissile actinide nuclei in the presence of an elec-
tromagnetic field may under some conditions be cooled so as to inhibit binary
fission by thermal neutrons. For actinide nuclei in an electromagnetic field
the internal phase angle Oz of the atomic number is an increasing function of
the magnetic induction B which can be represented by equation (406). When the
strength of the static magnetic field exceeds a critical value required for bi-
nary fission suppression, which is given by equation (406) for the general case
or by equation (407) within a simple approximation, the phase angle Oz exceeds
a critical value Oz which is required for binary fission suppression so that

S> 6 S (412)
z z
S

where Oz is given exactly by equation (365) and approximately by equation (395).
The corresponding static magnetic induction field condition for binary fission
suppression in the actinides is given by

B ) BS (413)

where from equation (407) the following approximate result can be used

B = KB1z[(X - 1)/X]1/ 2  1 4 X < (414)

where X fissility parameter of an actinide nucleus. Values of the static
magnetic induction field BS required to suppress thermal neutron induced binary
fission appear in Table 1 for various actinide nuclei. The values of BS are in
the teratesla range which shows that the static magnetic field required for the
inhibition of fission in the actinides is much too large for practical purposes.
However, more reasonable results can be obtained with a properly tuned electro-
magnetic field in the form of y rays.

6. QUATERNARY FISSION OF y RAY COOLED ACTINIDE NUCLEI. This section sug-
gests that y ray induced quaternary fission can occur in fissile actinide nuclei
in which the binary fission mode has been suppressed by the cooling effects of
a y ray field. Numerical values of the static magnetic induction field BS re-
quired to suppress thermal neutron induced binary fission in the actinides were
presented in Section 5, and were found to be too large for practical applica-
tions. This section gives the corresponding values of the dynamic magnetic in-
duction field BS associated with the y rays that are required to suppress binary
fission in the actinide elements. Thermal neutron induced binary fission will
be suppressed in the actinides such as 235U and 239pu when these nuclei are
cooled by a properly tuned bath of ambient y rays. However each of the two sub-
actinide lobes of the distorted actinide nucleus, which is in the -Y ray cooled
binary fission suppressed state, can undergo y ray catalyzed thermal neutron
induced binary fission with the result that the actinide nucleus experiences
quaternary fission. Examples of thermal neutron induced quaternary fission re-
actions in y ray cooled actinides are given. The photonuclear sum rule for
these reactions is evaluated. The resulting clean fission process for actinide
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nuclei such as 23SU and 2 3 9 pu can be used to develop environmentally safe nu-
clear power reactors because the enhanced quaternary fission of these heavy
elements produces relatively light nuclei as fission products. Two design con-
cepts of y ray cooled actinide quaternary fission nuclear reactors are presented.

A. Conditions for the Thermal Neutron Induced Quaternary
Fission of y Ray Cooled Actinides.

First the thermal neutron induced binary fission mode for the fissile ac-
tinides must be suppressed. The suppression of binary fission in the actinides
can be accomplished by a y ray field which is tuned to the giant dipole reson-
ance frequency of the actinide element that is to be used in a clean fission
nuclear reactor. The magnitude of the magnetic induction field of the y rays
is obtained by first noting that at the resonance frequency the dynamic nuclear
magnetic stiffness coefficient is given by26

KBy = ý KB tesla (415)
oz r•rz

= oA-1/6 KB (416)ez

where Kýz = dynamic nuclear magnetic stiffness coefficient and where26

a = 3.054 x 10-9 (417)
By

Values of ýr and Kez appear in Table 2 for various actinide nuclei. For binary
fission suppression in the actinides using y rays the dynamic magnetic induction
field B? of the y rays and the corresponding phase angle ez of the atomic number
must satisfy

B > BS e > 0 (418)
y y z z

where

B = By tan B S = KBy tanQS (419)
y ez z y nz z
S

where ez is given by equation (365) or (395). For the choice of the approximate
values of Oz given by equation (395) the critical dynamic magnetic induction
field of the y rays required for binary fission suppression in the actinides is
given by

BS KBy[(X - 1)/]1/2 1 < X <c (420)
Y ez

where X = fissility parameter for an actinide nucleus. Table 1 gives values of
By for selected actinide nuclei. The calculation of the giant dipole resonance
frequency of atomic nuclei requires an estimation of the spring constant of an
atomic nucleus. 2 6  The values of the nuclear spring constant k , resonance fre-
quency fr and resonance wavelength Xr of the incident y rays are given in Table
2 for selected actinide nuclei. For resonant incident y rays the critical dy-
namic magnetic field strength Hy , dynamic electric field strength Ey , power
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dnnsity Py , photon energy cy , photon flux density #y and photon number density
fl that are required to suppress binary fission in selected actinide nuclei are
given in Table 3. The details of these calculations are given in Reference 26.
The y ray cooling of the binary fission process is a nuclear analog of the cool-
ing of electrons and atoms by laser light.45-40

For a value of the y ray magnetic induction field By that satisfies the
suppression condition for thermal neutron induced binary fission of actinide nu-
clei given by equation (418), an actinide nucleus may be considered to be com-
posed of two lobes of subactinide nuclei a and b into which the actinide nucleus
would fission were it not for the cooling effects of the y ray electromagnetic
field (see Figure 5). However, thermal neutron induced binary fission of the
component subactinide nuclei lobes can occur if the electromagnetic field of the
y rays is sufficiently strong as to make the internal phase angles of the atomic
numbers of the component subactinide nuclei a and b larger than their critical
values required for y ray catalyzed thermal neutron induced fission2 6

eza 9 6F e > 8 F (421)
za zb zb

F F~ r

where 6za and 6Fb are given exactly by equation (39) or approximately by equa-
tion (41) in terms of the fissility parameters Xa and Xb respectively of the
two subactinide nuclei lobes. The net result is y ray catalyzed thermal neutron
induced quaternary fission of fissile actinide nuclei as shown in Figure 5.
Accordingly, the magnetic induction field conditions for quaternary fission of
y ray cooled actinide nuclei using thermal neutrons are given by

eza 6 Fý Fzb 1eF e (422)
za zb zb z z

B > BF B , BF B > BS (423)
y ay y by y y

S
where the critical magnetic field By required for y ray cooling of the actinide
nuclei is given by equation (420), and where equations (41) and (42) give the

following approximate expressions for the critical magnetic induction fields
F FBay and %y required for 2 ray catalyzed thermal neutron induced fission of the

subactinide nuclei lobes

B F KBY(a)(l - x )1/2 0 < X < 1 (424)
ay ez a a

BFY = KzBY(b)(1 - xb1/2 0 < Xb < 1 (425)
by Oz - b Xb

where Xa and Xb = fissility parameters of the subactinide component nuclei lobes

a and b . The two subactinide nuclei lobes of the distorted binary fission

suppressed actinide nucleus will undergo binary fission so that thermal neutron

induced quaternary fission will be the dominant fission decay mode of a fissile

actinide nucleus in a y ray field that satisfies the conditions of equation

(423). The characteristics of the electromagnetic field required for the y ray

catalyzation of thermal neutron induced binary fission in the subactinide ele-

ments has been treated in the literature and will not be repeated here for the

subactinide nuclear lobes a and b 26
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The fission product nuclei of the Y ray catalyzed quaternary fissicii pro-
cess are relatively light nuclei which exhibit low level beta decays and are
not harmful to the environment. Tables 1 through 3 give the relevant charac-
teristics of the electromagnetic field of the y rays that are required for the
suppression of binary fission in the actinides and which are described by equa-
tions (392) and (420). The calculations involved in the preparation of Tables
1 through 3 are analogous to those given in Reference 26 except that now equa-
tions (392) and (420) determine the basic calculation of the electromagnetic
field strength required for binary fission suppression in the actinides.

B. Examples of y Ray Catalyzed Thermal Neutron Induced
Quaternary Fission of the Actinides.

Consider now some typical examples of the quaternary fission of the fis-
sile actinides by y ray suppression of the binary fission of the parent fissile
actinide nucleus and the y ray catalyzation of thermal neutron induced binary
fission of the subactinide nuclei lobes of the parent actinide nucleus. Typical
reactions of this form require one neutron for each subactinide lobe, and there-
fore two incident neutrons are required for the quaternary fission of a fissile
actinide nucleus. Therefore including absorption at least four fission pro-
duct neutrons are required for each quaternary fission reaction in order to
have the sustained fission reactions required for the operation of a nuclear
reactor. In addition, a y ray photon bath is required to suppress the binary
fission process in the fissile actinides and to catalyze the binary fission of
the subactinide lobes of the y ray cooled actinide nuclei.

Typical y ray catalyzed thermal neutron induced quaternary fission reac-
tions for y ray cooled fissile actinide nuclei such as 2 3 3 U, 235U and 239pu

will now be presented

23½U

y +2 in + 2 3 3U 7 A + + 4 1n + y (virtual y ray (426)
0 92 33 59 0 cooled lobes)

9 68 10Be + 144CS + 4 i + y (427)
S4 Be+ 2 9 Cu e+ 5 5  0 n

80 Se + '5 1 Ce + 4 in + y (virtual y ray (428)

34 58 0 cooled lobes)

9 4Be + 3 0Zn + eBe + Xe+4 in + y (429)

81 150 1(virtual y ray

81Se + 15oC + 4 i + y (430)34 5 86e 0 n cooled lobes)

*'lBe + 71 Zn + "Be + 1 4 0Xe + 4 n + y (431)
4 30 4 54 0

83 11+8(virtual y ray
83 Br 14'L + 4 in + y (vrulyry (432)
3 5 Br+ 57 La 0 cooled lobes)

1 +Be + 3 1 Ga + 1°Be + 131, + 4 0n + y (433)
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÷87 1 k
: 7Kr + 1 44Ba +4 on + y (y ray cooled lobes) (434)

36 560

:Be + "7Ge + ':Be + 1 'Te + 4 1n + y (435)
e 32 52 0

4 
8 9Rb + 142Cs + 4 on + y (y ray cooled lobes) (437)
37 5

*l•Be + 7 9As + •e+ 132•

10 +7Be + 1 Sb + 4 1n + y (438)

7B + Ge + 1 0Be+ 1Sb + 4 1n + y (439)Sl•Ba +32 4B 51•_ o

235U

y+ 2 1 n + 2 3 5 U* 7 9 Se+ 1 5 4 Ce+4 n+y(virtual y ray (440)
0 92 34 58 0l+o cooled lobes)

10Be + 6' 9 Zn + 1 0 Be + 1 4 4 X + 4 1 + (441)4 30 4 - 54 A 0

S80Se + 113 Ce+4 n + y (virtual y ray (442)

58 0 cooled lobes)

9 71 ZeZ + 9+Be + Xe+4 n + y (443)

81 S 152 1 (virtual y ray3S se+4 58 cooled lobes)

1 Be + 7 1Zn + 10 Be + 142Xe + 4 1n + y (445)
4 30 4 54 0

1 4 Be + 71Zn + 9Be + 14Xe + 4 1n + y (446)4 30- 45 0

82 15 1n (virtual y ray (447)
3 4 e on + cooled lobes)

41Be + 3 oZn + "Be + 1 4 Xe + 4 on + y (448)

239pu

23 13 154 P 1 (virtual y ray (449)
0n 9 4Pu 35  5 9  0  cooled lobes)

1 lB + 7 2 Zn + 1°B + 144 Xe + 4 on + y (450)
5 30 5 540

11 B + 72zn + 11 B + 13Xe + 4 1n + y (451)
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35Br 15r + 4n+y(virtual y ray (452)
-sBr 

5 r 4n + cooled lobes)

12 B + 72Zn + 12sB + 14 1Xe + 4 on + y (453)
5 30 5 54 0

1B + 7 2 Zn + 1 1B + 1 2Xe+4 1n+y (454)

-7Kr + 15oCe + 4 n + y(virtual y ray (455)

36 so in cooled lobes)

9 78G 12 +138
sBe + 24 + y (456)S•Be + 32e + 5+ 3 o

4. 93Sr + 14 6Ba 0n+ + y (y ray cooled lobes) (457)

no, 9Be + 8 4Se + 'Be + 11 Te + 4 0n + y (458)

4 34 52 0T

97 1l0O

4. 3 9 Y + 5 5 Cs + 4 on + y (y ray cooled lobes) (459)

S88 10 130S 40
:Be + 3 Br + "Be + 1 Sb+4'n+ on(460)

1 iO•Zr + 1 33 Xe + 4 in + y (virtual y ray (461)
40 54 0 cooled lobes)

9 Be + 9Kr + 9 1n
4 Sn+4 +y (462)

90

In this manner the dangerous fibsion products such as 3sSr can be eliminated
from nuclear reactor wastes.

C. y Ray Cooled Actinide Fission Reactors.

The fissile actinide elements can be used to power clean fission nuclear
reactors if a sufficiently high flux of y rays is employed to cool the actin-
ides to the point where thermal neutron induced binary fission is suppressed
and where y ray catalyzed thermal neutron induced binary fission can occur in
the subactinide component lobes of the y ray cooled fissile actinides. The
result is that y ray catalyzed thermal neutron induced quaternary fission is
the dominant fission mode for this type of nuclear reactor. Tables 1 through
3 give the characteristics of the y ray fields required to suppress thermal
neutron induced binary fission in selected actinide nuclei. These are only
approximate results because the Bohr-Wheeler fission condition describes only
the gross features of nuclear fission, and in fact Table I shows that an in-
correct prediction is made for 235U by predicting that this nucleus is not
fissile. Figures 6 and 7 present two y ray cooled actinide quaternary fission
reactor designs that can be used as clean fission nuclear reactors.
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In order to insure clean fission any design of a y ray cooled actinide
quaternary fission reactor must insure that all fissile actinide nuclei, such
as 2 3 5 U, are cooled by y rays when thermal neutrons are present, otherwise
ordinary binary fission will occur and the nuclear reactor will run in an un-
clean mode. The problem here is that neutrons generally penetrate matter eas-
ily except for special materials such as graphite or water, while y rays are
readily absorbed in most materials although quartz is a reasonable transmitter.
For y ray catalyzed thermal neutron induced quaternary fission the y rays and
the thermal neutrons must coexist together in the regions of a fuel element
such as 23SU. The thermal neutrons must be prevented from penetrating into the
235U by themselves after the y rays have been absorbed otherwise ordinary bi-
nary fission will occur. A possible way to acomplish this would be to have
23SU fuel embedded in quartz which is relatively transparent to y rays. The
neutron source and the y ray source should be in close proximity in order to
insure that 235 U is simultaneously under the influence of y rays and thermal
neutrons. Ideally the y rays should originate from the decay of a radioactive

source mixed with the 2 3S5 U fuel, however because the energy of the y rays
needs to be in a range that corresponds to the giant dipole resonance frequency

of actinide nuclei, 12-14 MeV, it is likely that an artificial source of y rays

will be required. 2 6

D. Electric Dipole Sum Rule for y Ray Cooled Actinides.

This section considers the effect of y ray cooling on the form of the
electric dipole sum rule for actinide nuclei whose fissility parameters satisfy

X > 1 . Consider y rays and thermal neutrons incident on actinide nuclei in
which a y ray cooling mode is induced with an associated depressed binary fis-
sion rate. The y ray energies are in the range of 12-14 MeV for the excitation
of the giant dipole resonance in the actinides. 2 8 -3 5 ,4 9

The conventional electric dipole sum rule for photonuclear reactions is
written in the standard incoherent spacetime form as follows 2 8 -3 5 ,4 9

G. = f a de = gZN/A (463)inc

where a = photonuclear reaction cross section for incoherent spacetime, Z , N
and A = atomic number, neutron number and atomic mass number of the target nu-

cleus, and where
4 8

g 27 2 e 2h/(m avc) nu 0.06 MeV b (464)

where the integral is taken over photon energies up to 30 MeV. The concept of

the broken symmetry forms of the atomic number, neutron number and atomic mass

number suggests that a complex number generalization of the photonuclear reac-

tion sum rule should be written as

f= f dH = gH/R (465)

where a = complex number photonuclear reaction cross section, G = complex num-

ber integrated photonuclear cross section, and z , R and d = complex number

atomic number, neutron number and atomic mass number respectively which are
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given by equations (43) through (45). The complex numbers a and G can be rep-
resented as

S- o exp(je ) G = C exp(Ji G) (466)

which are complex numbers in an internal space. Equation (465) can be written
for actinide nuclei using equation (46) as

G - gzn/a - gZN/A sec e sec 8 sec- l (467)z n a

G ae z +e -e a (468)

Equation (465) can also be written as

Sao sec cc exp[j(8 y + 6 + )ccJ) dc (469)
0

416
"" cc csc 0 exp[j(8 0 + e + 80)]d% (470)

where the complex number photon energy is written as

9= - exp(je ) (471)

and where

tan 8 = 0e /ac (472)

The component form of equations (469) and (470) are written as

G cos O fG o a sec 8ac cos(O. + 6c + O£)de (473)
0

n/6
= f ocsc a cos(e + 8 + 0 )dO (474)

00

G sin 0G = a sec 8a sin(6, + 6 + 8£c)dc (475)
0

n/6
=f oc csc 0 sin(6 + 0 + a )dO (476)

0 Cc 0 C CE C(46

which are generally valid equations. From equations (467) and (468) it follows
that for actinide nuclei

-I1
G cos 0G = gZN/A sec 0 sec 8 sec 0 cos(0z + 0 - 0 a) (477)Z n a z n a

G sin OG = gZN/A sec 6z sec On sec- 0a sin(0z + 0n - 0a) (478)
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Generally G cos OG > 0 if Z > 0 , N > 0 and A > 0

The upper integration limit of w/6 in equations (470), (474) and (476)
arises from the conservation of momentum for the photon-nucleon interaction
which can be written as

E/c - hU/c - m• (479)

where the complex number photon frequency U and the complex number nucleon ve-
locity - are written as

S- v exp(jO V) V = v exp (JeV) (480)

Equations (479) and (480) can be written as

e/c - hv/c = mv e f -ev - ev = ex - et (481)

which are valid for the inelastic photonuclear reaction. For coherent space-
time ex M w/3 , et = n/6 and Ov -ffn/6 , so that Oe - wr/6 for inelastic photonu-
clear reactions in coherent spacetime.

For nuclei whose fissility parameters are greater than unity, X ) 1 , and
which have been cooled to the point of the suppression of thermal neutron in-
duced binary fission by an external y ray field, the critical internal phase
angles of the atomic number, neutron number and atomic mass number associated
with binary fission suppression are related by equation (384) as follows

=S 20S " 0.760S S %0 2.63eS (482)
a z n n z

and therefore equations (467), (468) and (482) give approximately

G "gZN/A (1 - tan20S)(4 cos20S - 3)-1 (483)
z z

eG =0 (484)

From equations (475) and (484) it follows that for incipient fission spacetime
is incoherent and

O =0 O =0 = o (485)

so that the photonuclear interaction for the case of fission must be scalar
(6o = 0) with incoherent photon interactions, and equations (473) and (483)
through (485) become

wi de - gZN/A (1 - tan2 S)(4 cos2eS - 3)- (486)

0 z z

However it has been shown in equation (392) that the approximate condition for
y ray induced binary fission suppression is given by
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tan eS W [(X - 1)/X]1/ 2  (487)
z

where X > 1 is the fissility parameter. Combining equations (486) and (487)
gives for incoherent photon interactions with the actinides and for x • 1

gof adc A-gZN/A x 1 (2x-l00 - 2X) -1 (488)
0

and therefore the fissility parameter enters into the electric dipole sum rule
that includes catalyzed thermal neutron induced quaternary fission of the ac-
tinides which are immersed in a y ray field that has suppressed binary fission.
The evaluation of the electric dipole sum for the actinides is done only approx-
imately and is valid only for small internal phase angles or equivalently equa-
tion (488) is valid only for X "' 1 .

7. FINAL STATE ENERGY CONDITIONS FOR THE BINARY FISSION OF THE ACTINIDES
IN AN EXTERNAL FIELD. This section considers the binary fission of actinide
nuclei in an electromagnetic or gravitational field that is not strong enough
to suppress the " inary fission process, so that according to equation (418) the
condition that describes this is Oz < OS or By < B . The fission products are
subactinide nuclei and neutrons. A comparison is made between the initial and
final energy states of an actinide nucleus that has undergone binary fission in
the presence of an external electromagnetic or gravitational field. A fission
reaction in which a nucleus (ZA) has split into two nuclei (ZI,Al) and (Z2,A 2 )
is written in the form3 9 - 4 4

(Z,A) -* (Z 1 , A1 ) + (Z2 , A2 ) (489)

Then the nucleus (Z2 , A2 ) is assumed to eject a neutron

(Z2 , A2 ) - (Z 2 , A2 - 1) + (0,1) (490)

where in this notation (0,1) is a single neutron. In this way the general pro-
cess of nuclear fission can be represented by a nuclear transformation of the
general form given in equation (489). In an external field the nuclei repre-
sented in equation (489) are also associated with complex atomic numbers, neu-
tron numbers and atomic mass numbers that in analogy to equations (43) through
(45) for actinide nuclei and equations (8) through (10) for subactinide nuclei
are given by

z = z exp(jOz) = Z sec 6z exp(J Z) (491)

S= n exp(jO n) = N sec 6n exp(jen) (492)

a = a exp(JOa) = A sec 0a exp(j6a) (493)

z = z1 exp(jOZ1) = ZI cos 6z1 exp(jO z) (494)

n1 = nI exp(jin 1 ) = N1 cos 0n1 exp(jOnl) (495)

a, a 1 exp(jOal) = A1 cos 0al exp(jEad) (496)
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z2 M z2 exp(J e 2 ) z z2 cos z2 ezp(j0z 2 ) (497)

n2 M n2 exp(J6n 2) = N2 Cos n2 exp(J n2) (498)

a 2 = a 2 exp(j a2) = A2 cos ea2 exp(jea 2 ) (499)

The determination of the energy released during the fission reaction given in
equation (489) requires that all of the nine internal phase angles that appear
in equations (497) through (499) be determined, and the procedure for doing
this will now be given.

A. Determination of the Internal Phase Angles of the Atomic Number,
Neutron Number and Atomic Mass Number for the Initial and Final
States of Fission of the Actinides in an Electromagnetic Field.

The nuclei involved in the fission reaction given by equation (489) are
subject to the following scalar baryon number conservation equations 2 6

A = Z + N A = Z1 + NI A = Z2 + N2 (500)

A = A1 + A2 Z = Z1 + Z2 N - N1 + N2 (501)

In an external field the nuclei represented in equation (489) are subject to
the following complex atomic number, neutron number and atomic mass number
conservation equations similar to equation (54)26

i + W = + a 1 + Wl = I + 5 1 i2 + W2 = i2 + i2 (502)

S+ W RI + 2 i + W = I + 2 R + W - 7I + ii (503)
a 1 2 z 1 2 n 1 2

Equations (502) and (503) show that all of the W's are not independent, and
in fact they are subject to the following equation2 6

W - WI - W2 = W - W - W (504)

Equations (502) and (503) can be combined with equations (491) through (499)
to yield the following twelve equations that are valid for the actinide ele-
ments and their subactinide fission product nuclei

A + W = Z + N (505)

A tan e = Z tan 6 + N tan 8 (506)

A1 cos2 1al + W1 = Z1 cos2eZ1 + N1 cos2 nl (507)

AI cos Oal sin 0al = ZI cos Ez sin ezI + NI cos 8n1 sin en1 (508)
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A2 cos26a2 + W2 m z2 coS2ez2 + N2 coS2en2 (509)
A2 cos e0 a 2 " Z2 Cos ez2 sin 2 z2 + N2 Cos 6n2 sin 6n2 (510)

A c I Cos2eal + A- 2 cos 2eca2 (511)

A tan 2 a = AI cos 6al s in eal + A2 cos ea2 sin ea2 (512)

Z + WAz Z1 cos 2eZ1 + z2 cos2ez2 (513)

Z tan Oz - ZI cos eZ1 sin OZ1 + Z2 cos ez2 sine z2 (514)

N + Wn - Na Cos20nl + N 2 a2 2 (515)

N tan 1n = N Cos 8nl sin zni + N2 Cos en2 sin en2  (516)

where Z , N ,A; Z1 , N1 , A1 and Z2 , N2 , A2 are known quantities.

There are fifteen unknown quantities in the problem of the fission of an
atomic nucleus in the presence of an electromagnetic field:

W ,e z , e ,n a (517)

W1 zl , 0nl , al (518)

W2 , z2 0 8n2 , a2 (519)

W , n , W (520)

There are fifteen equations to determine these quantities and they are: the
twelve equations (505) through (516), the two fission stability equations
(356) and (357) which determine Oz and ea in the forms of equations (365) and
(366), and finally equation (504) which relates the various W-functions. The
values of the W's for actinide nuclei and their subactinide nuclei fission
products are obtained from equations (505) through (516) to be

W= 0 (521)

W - A1/2[1 + (1 - 4f 2 )1/2] + z Cos2  + N Cos2
1 1 W1 +1 ° zI 1 o nl (522)

W - A2/2[( + (1 - 4f 2 )1/2] + z Cos20 + N 2
2 2 W2 2 z2 2 coS2en 2  (523)

Wz= - Z + Z1 cos2eZ1 + z 2 cos2ez2 (524)

Wn =- N + N1 cos2enl + N2 cos2en 2  (525)
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Wa A+A co2 l+ A2 coo2 a 2  (526)

where

fW- m All(Z1 sin OZ1 cos ez ÷ N1 sin e 1 cos en) (527)

fW2 A2 1(Z2 sin 6z2 cos ez2 + N2 sin en 2 cos en 2 ) (528)

and where

c0s2al = 1/2[1 + (1 - 4f21)1/2] (529)

Cos2 2 - 1/2[1 + (1 - 4f2 )1/2] (530)
ca2e W2

tan =z ZI/Z Cos e1 sin ezl + Z2/z Cos Oz2 sin ez2 (531)

tan en = N1/N cos en1 s i n OnI + N2 /N cos On2 sin en2 (532)

tan ea = AI/A cos 0al sin eal + A2/A cos 8a2 sin a2 (533)

Equations (521) through (526) can be rewritten as

W- 0 (534)

W1 - Al cos2eal + Z1 Cos2 1 + N1 cos2e (535)
1 1Z(CO 2el Z1- coS2al + Nn(COS2n1 - coS20ad

W2 =- A22 +Sz 22C+ s 2oez2 + N 2c2n2 (536)

= Z2(cos 2ez2 - coS2ea2) + N2(cos 2en2 - cos2ea2)

Wz =- Z 1 sin-2 Z1 - Z2 sinO2z2 (537)

W - - N1 sin2en - N2 sin2e n2 (538)

Wa = - A1 sin2e al - A2 sin2a2 (539)

Therefore for actinide nuclei

2 = 0 W1 > 0 N2 > 0 (540)

Sz < 0 Wn < 0 W < 0 (541)
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For the case of fission of actinide nuclei in an electromagnetic field only

W = 0 while the other W functions have nonzero values.

B. Energy Released from Nuclear Fission in an External Field.

The Q value of a nuclear reaction is a measure of the energy released in
a nuclear fission process.29 In this paper a complex number generalization of
the standard definition of the Q value is given by 2 6

Q/c = M(A,Z) - M(A1 ,Z1 ) - M(A2 ,Z 2 ) (542)

where as in equation (294)26

M(A,Z) =r n + EmH - B(A,Z)/c 2  (543)

n2

M(A1 ,Z1 ) 1 n 1mn + ijmH - B(A2,ZI)/c (544)

M(A2 ,Z 2 ) = m2mn + Z2mH - B(A2,Z2)/c2 (545)

Then the Q value can be written as

[(n - nR - n2)mn + ( -- - z 2 )mH]c 2  (546)

+ B(A1 ,Z 1 ) + B(A2 ,Z 2 ) - B(A,Z)

Using equation (503) allows equation (546) to be written as

Q = Q1 + Q2 (547)

where

QI = - (Wnmn + WzmH)c 2  (548)

Q2 = B(A 1 ,ZI) + B(A 2 ,Z2 ) - B(A,Z) (549)

where Wz and Wn are given by equations (537) and (538) respectively.

Because Wn < 0 and Wz < 0 it follows that for actinide nuclei

Q1 > 0 (550)

The value of Q, arises from the rest mass terms in equations (543) through
(548). The actual rest mass is unchanged in a nuclear fission process because

Nmn + ZmH - (Nlmn + ZlmH) - (N 2 mn + Z2 mH) = 0 (551)

which is always true because of the absolute validity of baryon number conser-
vation which for the present case is written as
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Z a Z1 + Z2  N N1 + N2  (552)

A finite value of Q, results from the special form of the conservation law of
complex baryon numbers, which for the complex atomic number, neutron number
and atomic mass number are given in equations (502) and (503). The expression
for Q, for actinide nuclei can be rewritten using equations (537), (538) and
(548) as

Ql/c2 = mn(NI sin2n1 + N 2 sin28n2) +mH(ZI sin 2 + Z2 sin 28 z2 (553)

In general Q1 > 0 for actinide nuclei. For zero value of the applied external
field Q, = 0 because all internal phase angles have zero values, and therefore
Wn = 0 and Wz = 0 .

The value of Q2 can be calculated by combining equations (236) and (549).
This is easily done for symmetric fission and under the approximation

0z1 " 6z2 "'0z 8nI "'0n2 h 6•n8  (554)

For symmetric fission equation (549) becomes

Q2 = 2B(A/2,Z/2) - B(A,Z) (555)

Under these assumptions the value of Q2 is given by the following complex num-
ber generalization of the standard scalar result

= (1 - 21/ 3 )Tj2/ 3 + (1 - 2-2/3 )2/a/3 (556)

= - 0.26j72 / 3 + 0.3762Y 1/3

The simple form in equation (556) results from the approximation given in equa-
tion (554). The value of Q is then written as

S= Q1 - 0.267 2/3 + 01373 2/a1/3 (557)

The measured value of Q for the actinides is given by the real part of equation
(557)

Qm= Q1- 0.26yA2/3 sec 2/3a cos(0" + 2/3ea) (558)

-2 -1/3 2 -1/3+ 0.376Z A - sece-e sec -• •--C-os-6 + 2e - I/ 3 6a)
z a 6 a

Equation (558) can be compared to the conventionally calculated value of Q

which is given by 2 9

Qc = - 0.26yA2/3 + 0.376Z2A-1/3 (559)

For the case of zero external field equation (558) reduces to equation (559).
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A condition that determines the possibility of the final fission state
to occur can be obtained from the Q value for the nuclear fission process. 2 9

The complex number generalization of this condition is

& o* (560)
c

where Ec = complex number Coulomb potential energy of two spherical nuclei
(Z/2,A/2) in geometrical contact. This Coulomb energy can be written as a
simple complex number generalization of the standard scalar result 29

E* = 1/2e2 (i/2)2/[b(a/2)I/3 (561)
c

f 21/3-(1/8)(5/3) 2/g/3 0.262312/a/3

where as before in equation (264)

6 3/5e2 1b 0.863/b = (0.863/1.523)kc MeV (562)

where b = comlex number radius parameter given by equation (226). For
kc = 1.35 fm- as in equation (267) it follows that

6 = 0.765 MeV = 765 keV (563)

and 06 is given by equation (266).

Combining equations (557), (560) and (561) gives the final state fission
energy condition as

- QI + 0.26792/ 3 = 0.i13 2 /5 1 / 3  (564)

This equation can be used instead of the incipient fission condition given in
equation (355) to determine 6z and ea . However because of the presence of the
functions Wn and Wz the full set of thirteen equations (504) through (516)
must be solved in conjunction with the two components of equation (564) which
are for the actinide elements

Q1 + 0.26yA2/ 3 sec2/3 a cos(Y + 2/38a) (565)

=0.116 2 A- 1/3 sec26 sec-/3a cos(e 6 + 26 3- 1/3a)

0.26yA2/3 sec2/36a sin(2 y + 2/36a) (566)

= 0.116Z2A71/3 sec2 sec- /30 sin(0 + 2e - 1/3 a)

z a 6 za

If Wn and Wz are neglected in equation (564) so that Q1 =f 0 , then the final
state fission condition can be written as

Z2/a = K'z/6 K' = 2.36 (567)
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Equation (567) is the same form as the incipient fission condition given in
equation (355) and the same form of solution for OS and 0S that appears in
equations (365) and (392) can now be used to determine these phase angles for
the final state fission condition. The condition for binary fission in an
external field is then given by equation (383). Then the remaining thirteen
equations (504) through (516) can be used to calculate the remaining thirteen
functions listed in equations (517) through (520).

8. CONCLUSION. A method of obtaining clean fission nuclear power from
actinide elements has been proposed that is based on the idea of using a y ray
field to suppress thermal neutron induced binary fission in the fissile actin-
ides and of using the same y ray field to catalyze thermal neutron induced bi-
nary fission in the two subactinide lobes of the distorted y ray cooled actin-
ide nuclei. In this way a thermal neutron induced quaternary fission process
can occur in y ray cooled actinides. The net result is that the fission pro-
duct nuclei for quaternary fission of y ray cooled actinides are smaller and
less radioactive than the fission product nuclei of conventional nuclear fis-
sion reactions.
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Table 1. Electromagnetic Field Characteristics for the y Ray
Suppression of Binary Fission in the Actinides

Nucleus Z2/A x Os B3 Bs

(degrees) (1012 T) (103 T)

26 2 Unp 42.08 1.1608 20.41 8.77 10.59
2 6 1Unq 41.44 1.1432 19.49 8.34 10.08

260°X 40.80 1.1256 18.47 7.87 9.52

2 5sNo 40.17 1.1081 17.35 7.36 8.91

258Md 39.54 1.0907 16.09 6.80 8.23
257Fm 38.91 1.0734 14.65 6.16 7.46

2 52 Es 38.89 1.0729 14.61 6.14 7.47

251cf 38.26 1.0555 12.92 5.41 6.57

2 47Bk 38.09 1.0508 12.40 5.18 6.32

244Cm 37.77 1.0419 11.35 4.73 5.78

247cm 37.31 1.0293 9.58 3.98 4.85

243Am 37.14 1.0245 8.79 3.65 4.46

228u 37.12 1.0241 8.72 3.62 4.47

239pu 36.97 1.0199 7.95 3.29 4.04

234Np 36.96 1.0196 7.89 3.27 4.02

242pu 36.51 1.0072 4.83 1.99 2.44

237Np 36.49 1.0067 4.66 1.92 2.36

233u 36.33 1.0021 2.62 1.08 1.33
2 2 3Th 36.32 1.0020 2.56 1.05 1.31
2 28 Pa 36.32 1.0019 2.49 1.03 1.27

234u 36.17 0.9978 0 0 0
235U 36.02 0.9936 0 0 0

2 3 1Pa 35.85 0.9889 0 0 0

227Th 35.68 0.9844 0 0 0

238U 35.56 0.9810 0 0 0

228Th 35.53 0.9800 0 0 0

232Th 34.91 0.9631 0 0 0

22 7Ac 34.89 0.9626 0 0 0
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Table 2. Electromagnetic Field Characteristics for the -Y Ray
Suppression of Binary Fission in the Actinides

Nucleus 109r, 47 k f. Ar
(10: T) (1019 N/M) (1021 HZ) (fin)

262Unp 1.207 2.846 2.000 3.022 99.18
261Unq 1.208 2.848 1.998 3.026 99.06

26OLr 1.209 2.850 1.996 3.030 98.93

2 59No 1.210 2.851 1.992 3.034 98.80

258Md 1.211 2.854 1.990 3.038 98.67

237Fm 1.211 2.855 1.988 3.042 98.55
25 2Es 1.215 2.865 1.974 3.062 97.90
2 5 1Cf 1.216 2.866 1.969 3.066 97.77
24 7Bk 1.219 2.874 1.961 3.082 97.25

244Cm 1.222 2.880 1.953 3.095 96.86
2 47 Cm 1.219 2.874 1.961 3.082 97.25

243Am 1.223 2.882 1.951 3.099 96.72

22OU 1.236 2.913 1.910 3.166 94.69

23lp 1.226 2.890 1.940 3.116 96.19

n4Np 1.230 2.900 1.927 3.138 95.51

24 2pU 1.223 2.884 1.948 3.103 96.59

23 7Np 1.228 2.894 1.934 3.125 95.92

Z3 3 U 1.231 2.902 1.923 3.143 95.38

n•2Th 1.240 2.924 1.896 3.189 93.99

228pa 1.236 2.913 1.910 3.166 94.69

234U 1.230 2.900 1.927 3.138 95.51

2 3 5U 1.229 2.898 1.929 3.134 95.65

231Pa 1.233 2.907 1.918 3.152 95.10

227Th 1.237 2.915 1.907 3.170 94.55

23 0U 1.227 2.892 1.937 3.121 96.06

2 2 8Th 1.236 2.913 1.910 3.166 94.69

232 Th 1.232 2.904 1.921 3.147 95.24

22 7Ac 1.237 2.J15 1.907 3.170 94.55
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Table 3. Electromagnetic Field Characteristics for the I Ray
Suppression of Binary Fission in the Actinides

Nucleus 14ES 7S

(10' amp/m) (1012 volts/rn) (1022 W/rZ) (WeV) (1034 r'Zsec 1 ) (1025 m-3)

2
62Unp 8.43 3.18 1.34 12.50 0.61 2.03

261Unq 8.02 3.02 1.21 12.52 0.56 1.86
260Lr 7.58 2.86 1.08 12.53 0.50 1.67
259No 7.09 2.67 0.95 12.55 0.44 1.47

258Md 6.55 2.47 0.81 12.57 0.38 1.27

257Fm 5.94 2.24 0.67 12.58 0.31 1.03

2 5 2 Es 5.94 2.24 0.67 12.67 0.31 1.03

"251 Cf 5.23 1.97 0.52 12.68 0.24 0.80

247Bk 5.03 1.90 0.48 12.75 0.22 0.73
2 44Cm 4.60 1.73 0.40 12.80 0.19 0.63
247Cm 3.86 1.46 0.28 12.75 0.13 0.43

243Am 3.55 1.34 0.24 12.82 0.11 0.37

2 2 8U 3.56 1.34 0.24 13.10 0.11 0.37
2 3 9pu 3.21 1.21 0.19 12.89 0.09 0.30

2 34Np 3.20 1.21 0.19 12.98 0.09 0.30

2 42 Pu 1.94 0.73 0.07 12.84 0.03 0.10
237Np 1.88 0.71 0.07 12.93 0.03 0.10

233u 1.06 0.40 0.02 13.00 0.01 0.03

22 3Th 1.04 0.39 0.02 13.19 0.01 0.03

22 8 Pa 1.01 0.38 0.02 13.10 0.009 0.03

234u 0 0 0 12.98 0 0

235u 0 0 0 12.96 0 0
2 3 1Pa 0 0 0 13.04 0 0

227Th 0 0 0 13.11 0 0

238u 0 0 0 12.91 0 0

228Th 0 0 0 13.10 0 0

232Th 0 0 0 13.02 0 0

22 7Ac 0 0 0 13.11 0 0
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Abstract

This paper proposes a scaling and squaring geometric series method along with the

inverse-geometric series method for finding the discrete-time (continuous-time) structured

uncertain linear model from the continuous-time (discrete-time) structured uncertain linear

systems. Above methods allow the use of well-developed theorems and algorithms in the

discrete-time (continuous-time) domain to indirectly solve the continuous-time (discrete-

time) domain problems. Moreover, these methods enhance the flexibility in modelling

and control of a hybrid composite system. It has shown that the commonly used bilinear

approximate model is a specific class of the proposed geometric series model.

1. Introduction

Most of the practical processes comprise of uncertain plants. The uncertainty about

the plant arises from unmodelled dynamics, parameter variations, sensor noise, input sig-

nal level constraints, etc. Therefore, the real physical processes should be represented by a

continuous-time and/or discrete-time uncertain framework. For digital simulation, param-

eter identification, hybrid control design and digital implementation of an uncertain linear

system, it is essential to convert a continuous-time (discrete-time) uncertain linear sys-

tem to an equivalent discrete-time (continuous-time) uncertain linear model. The model

conversions of a nominal continuons-time (discrete-time) linear system to an equivalent

nominal discrete-time (coitinuous-time) linear model have been reported in the literature

11,2,31. However, the method for model conversions of uncertain linear state-space models

has not yet been fully developed.
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Essine and Johnson [4] used a classical perturbation method [5] to convert a continuous-

time uncertain linear system to an equivalent discrete-time uncertain model but they did

not solve the inverse of the problem. Shieh et al.[6] utilized the bilinear and inverse-bilinear

transform method to carry out the model conversions. In this paper, we use a scaling and

squaring geometric series method to perform the model conversions. We show that the

proposed method significantly improves the accuracy of the existing models obtained by

using the bilinear transform method [6].

2. Problem Formulation

Consider a structured continuous-time uncertain linear system

i,(t) = Azo(t) + Buc(t), xo(0) = Zo (1a)

yet = Cozc(t) (1b)

where

A = Ao + AA = AO + A.jAA (Ic)
i= I

kb

B = Bo + AB = Bo + A j bBi (i d)
i= I

xe(t) E R"" is the state, uc(t) E R"'n is the input, yc(t) E RP"I is the output,

(A 0 , B 0 , Co) are nominal system matrices, (AA, AB) are perturbed uncertain matrices,

(Ai, B1 ) is the pair of known constant matrices, (A~i, Abi) is the pair of uncertain scalar

parameters. Without loss of generality, we can assume that <A.ij :_ 1 for i = 1,2,...) kc,

and jAbiA • 1 for i = 1,2,..,kb.

The associated discrete-time uncertain linear model for (1) is

Zd(kT + T) = Gdd(kT) + ftud(kT), Zd(O) = c (2a)

Yd(kT) = Co0d(kT) (2b)

where

- e(Ao+A&A)T (2c)
= e(Ao+AA)r(Bo + AB)dT" = (4- I,)(Ao + AA)-'(B0 + AB) (2d)

Ud(t) = u,(kT) for kT < t <(k + 1)T (2e)
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T is the sampling period and I, is an n x n identity matrix. It is noted that eAoT and

eAAT are, in general, not commutative and 6 and A contain nonlinear uncertainty terms

in AA and (AA, AB), respectively. In order to find the counterpart of the representation

in (1) from (2), we linearize the respective 6 in (2c) and A in (2d) in the following manner.

GGo +AG G= + A.,Gj (3a)
i=1

kb

ff Ho +AH= Ho + AbiHi (3b)
'=3

where Go = eAOT and H0 = [Go - I,]A-'Bo = -,,.(AoT)'-'BoT" All matrices in

(2) and (3) have compatible terminologies and dimensions as their counterparts in (1).

It is desired to find the pairs (GO, Ho) and (AG, AH) in (3) from the pairs (Ao,Bo)

and (AA, AB) in (1) such that the discretized state zd(kT) in (2a) closely matches the

state zx(t) in (la) at t = UY for a given piecewise-constant input ui(t) = u,(kT) for

kY < t < (k + 1)T.

Ezzine and Johnson[4] have shown that when the perturbation parameter IA.jj in (ic)

is sufficiently small and AB = 0, then

6 = Go + AO• + o(Ws.) 25 Go + 42 (4.)

if = He. + AD + o(A20) a- He + AD (4b)

where T
AC = Go o  e-Ao°AAeAor dr (4c)

a = T (fT eAo(t7-)AAeAor dr) Bo dt. (4d)

Note that O(E) denotes high-order terms in e, which can be ineglected if C is sufficiently

small. The determination of the exact AO in (4c) and AR' in (4d) is not simple [5] because

A,(-A 0 ) + Xi(A 0 ) = 0, where Ai(A 0 ) are the characteristic eigenvalues of A0 .

Shieh et al. [6] have shown that the uncertain system matrices are

AG, = 1 (Go - I,)Ao 1 AA(Go + I,) (5a)

AHb = (Go - I,)Ao'AB + 1(Go - I,)Ao'AAHo (5b)

2
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and the counterparts of AG (= AG6 in (5Sa)) and AH (= AHb in (Sb)), defined as AAM

and AB1, respectively, can be solved from respective (Sa) and (5b) as

AA, = 2A 0(Go - I.)-'AG(Go + I.)-' (5c)

ABb = - )'AH- (Go - I,,)Ao'AAbHo]. (5d)

In their approach [61, the time-domain bilinear transformation with the form

ex -(I,•- XT)-'(I, + 1 XT)

and the inverse-bilinear transformation with the form

(In -2XT)-'(In + 1 XT) t eXT

"where X E R",n , were simultaneously utilized to derive (5).

3. The Geometric and Inverse-geometric Series Approximation Method

In this paper, we use a scaling and squaring geometric series method to linearize the

respective G and A in (2). The geometric series method is described as follows.

The matrix-valued function of eXT with X E Rnxn and a sampling period T can be

approximated by a geometric se-ies [71 as

S: eXT (eXT/m)m [-e-XT/m)-(e-XT/m)

S(Q:1P)r= G. for j=1,2,*.* (6a)

where

Qj= In- [I.+ - (_)i' (XT)Y (66)

P=I + 2 (j )xT] i + y• (-i) (cE=1 (2i)(j)(i!)(m)i(XT)]

T < (2)(j)(m)/llXll. (6d)
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Whenj 1, 2 and 3, we have

[I- -I, (XT)]' [I + (XT)] for T < (7a)

02 = {[.-+(XT) + 1 (XT)2] ~ +~(T 6 2 X)]} (&

03= { [-+(XT) + 72 2 (XT)2 - 1  (XT)3] -1

[4+ I -(XT) + 72 2 (XT) 2 + I (XT)S]}" (7c)

The relationship between the sampling period T (defined as T2) in (7a) and the sampling

period T (defined as T2 ) in (7b) can be determined by solving the following equation:

0{ 1 AT,-1'( + 1 '.TI)

= {[1 - .T2 +1 (-X.•T2)2]- 1+ 'X.T2 + 16-M2 1T)21
2m16 FM1

where A• is the absolute value of the largest eigenvalue of X. Thus,

T1 = + < T.(7

From (7d) we observe that a relatively larger sampling pniod T can be used for the

appuximation of dXT if a mesophisticated app seml-ate ad issat

It might be intresting to see the role of the scaling and squaring factor m in the

approximation of eXT in (6). When m = 1, the matrix G, in (?a) can be represented by

a geometric series as follows:

+1 2
Gi = (I, - XT)-'(In,+ XT) for T< -

2 2 IIXII
= In, + XT + 1-()+ (XT)3 + (XT)4 + (XT) + (8a)

2 ~~22 (1) 3-J)1()

It is well-known [3] that the matrix G1 is the approximate model of eXT obtained by using

the Tustin method or bilinear transform method. When m = 2, (7a) becomes

Gi = IIn - IXT In+ 1 XT for T< 2(-2

2()2(2) jj IXII
-I +{ XT2() T)2 + --- (XT)3 + 1((XT) + 1)(XT)s + ... (8b)

1 24(-L)
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If m = 4, (7a) becomes

G ,= 1 I .• 1((XT Is + j )X T) for T < 2(4)

11 XT+1(XT)2 + (XT)3 + (XT)+ 1 (XT) +... (8c)2 22 ,6 j3 1, 241,(6)

The exact Taylor series expansion of eXT is

= eXT

I i, + XT + 1I(xT)' + (xf) + (T) + 2 4 (7 5 (XT)s +--- (9)

Comparing (8) and (9) we observe that the first three terms in all equations are identical

and each of the weighting factors for the other terms (XT)i in (8) approaches the corre-

sponding terms in (9) as the value of m increases. Therefore, (8c) is a betteriapproximate

model than those in (8a) and (8b).

The inverse-geometric series approximation of eXT can be represented as follows.

From (7a) we have the inverse-geometric series approximations as

I{ -[ 1(XT) I [I- +I± (XT)] Gi • = eXT (10a)

[ (GI/m - I,,)( mT 1 J [= i (C''- I,•)( m)-1] (106)
2m 2miG

In, I (XT) = j(I, - j'(XT)] G1 -In + (T) (10c)

The inverse-geometric series approximations in (10) can be justified by the same reasoning

as the geometric series approximation in (7a). Note that when m = 1 in (10), the inverse-

geometric series approximations become the inverse-bilinear approximations.

When X = A 0 + AA, the sampling period T for the sufficient condition IIXTII/2m < 1

in (7a) can be derived as follows:

Since
IIXiIT _ IlA0 + AAIIT < (IIAoII + IIAAII)T < 1 (1lz)

2m 2mn 2m
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hence,
T2m

IlA01 + II•AII" (11 )

Also, from (7b) we have the inverse-geometric series approximations as

[I, (XT) + )2 [I (XT) +m

G2= G - = eXT (12s)

1 y2= [in - -(XT) + I L-(XT)2 -1 + n(XT) + -1-L(XT)2

- (. - ' (XT)+ +i(XT)2)] (. )-})

[(Gym' - MT -I )XT) (12b)

I2)m) [(6M2r II2W1']

1 ~21.2!I + -L (XT) + 1, 2 (XT)j =1 [4(1x) ~~X~ 2  c

In this paper, we carry out the model cone by concentrating on the high-order

nar pte model in (Ta) with i = 2 which is identical to the s-pr~iate

model in (Tb) with m = 1. Then we compare the obtained model with the ejxiting model

in (5), which was obtained by a low-order bilinear appromtion method.

4. Model Conversions Using a High-Order Bilinear Approximation Method

Substituting X = A0 + AA into (6) and (7a) having m = 2 gives

161/2 G'/

_-1 (A +AAT f 4 (13a)
[i,-4(A 0 +-A)T] [4 + 4A for T< IIAoII + IIAAII

Hence, we obtain

2/2-I, [I.- (Ao +AA)T] +( (A0 + AA)T) (i (Ao + AA)Tj
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(A + A)[ _-I (As-.+,AA) for T< 4

2 .4- 11A@11 + <oAAII
G=12 + = (As + AA)T -' ( + (A +A)T) + (As. (1A.)

In the same manner, we substitute X = A, into (6) and (7a) with m n 2 yields
A4T 4 4 4

Ginl _ T ___• (. )-lAo for T'< l~l--
A4T 4~s (14a)

G=12 +[ 1 2(1,, )-AT for T < 4iA (13b)

4 -I -Tl +T)A-1A

where Go -- eAOT. Also, Substituting X = A0 , m = 2 and G• eAOT -= Go in (l0c) results

in

-I.a5TG -IA=\GI,' 4

[,4 4 4

Inthe saprxmae modli 1 annr besbsiue fur ither6 analzd (as folws. yed

0[f 4A+ A)p (A0 ol (14a)

:{[,AoTAT] 1 Ao A4T}'(AAA)

G AT1 2  1 42

0 2 1 (AoAA + AAAo)I + O(T(AA)- (A + AA)T

•-- (Wo - Vo)- 1 (Ao + AA)T (15.)
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where

Wo •In _ + •(15b)

V= 1AAT - •(AoA.4- AAAo) (15c)
2 16

Note that the nonlinear uncertain term O(T 2AA 2 ) in (15a) has been neglected. Hence,

I- Wo(I, - VoWo)-'(Ao + AA)T

=Wo + VoWo + o((VW )2)] (A. + •)T
- Wo(I., + VoWo)(Ao + AA)T for IIVoWOII < 1. (15d)

Note that the nonlinear uncertain term O ((VoW 0 )2) - O(T 2AA2 ) in (15d) is neglected.

The sampling period T satisfies the convergent condition 11VoW 011 < 1 in (15d) as shown

below:

Since IIVoWoII _ IIVoIIIIWoII, we can use the relationship in (12b) with X = As, m -land

0 = Go to find 11WoII, i.e.,

IIWoll • II(Go - I,)(AoT)-'Il = II j 2 (AoT)'-'II _ • i IIoTII''

= IAoTII + 11A 0Tllo + I1,.TII3 + iIA,,11'+ +1.TI+.
2! 3! 4! (5)(4!) (6)(5)(4!)

< 1+ IIAoTI ! + II4oTI11'+ 11I4TI+ + 1IA.TII + +..
2! 3! 4! 1 4 42

2! + 3!o 4!
I+][on + 4AoTI2

S2IAoT 4 for T< -
1-IALoTII IIA(.4

Also,
T T12 TTT T2

Ilo I • 2 A AI + 1 (2IlAollIIA All) = 2lIA All + .- IIAollIlAAlI.

Therefore

T4 Ilo113I11AAI1 + T 11Aol 2112 AAII + IlIAo0 IIjIAAII + XIIAAII
IIVo111IWo11 < 9296 1- AolI <1
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i.e.

T 4 13 5T 3  12  T 2 T
i9-2IlAoIIIIlAII + -- IIAoI IIAAII + 4 IIAoIIIIAAII + i(IlAoil + 211AA11) - 1 < 0 (15e)

Solving the inequality in (15e) for T results in the sufficient condition for the sampling

period T such that IIVoWoII < 1 and (I. - VoWo)-l = I. + VoWo + O((VoWo) 2 ). When

the sampling period T in (15e) is sufficiently small, (15e) can be reduced to

T (I[AoII + 2IIAA[j) < 1. (15f)

As a result,
T<4 4 < 4 19

IlAoll + 2IIAAII I lAo0 + IIAIIAAI[A< I (15g)

The results in (15e) and (15g) show that when the sampling period T satisfies the inequal-

ities in (15e) and (15g), then

(I. - VoWo)-l = I. + VoWo + O(T 2 AA) • In + V0Wo. (15h)

Now we are ready to find the discrete-time uncertainties (AG, AH) in (3) from the

continuous-time uncertainties (AA, AB) in (1) by neglecting any nonlinear uncertain terms

O(T 2AA 2 ) and O(T 2 AAAB) in the following manner.

From (13a) and (14) we have

G IG I - I (Ao + AA)TJ (I+1Ao) + AAT]}

4 4 4

{I ri 4 AA1l }1'fJY1
- I - I(Ao + AA)T (I,- AoT)G 1/2 + 1 AAT

-{I. - I (Ao + AA)T] [(i- 1 (Ao + AA)T) G 1/2 + ~AAT(G1 /2 +j')]}

= v + T I. - 1(Ao +AA)T AA(G1/2+I,)}

1/2 + T( !IAoT- [I. 1AAT(I, - ¼AoT)] & AA(G' 12 + I..)
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_- {G,. + 3 -- •AoTY-'[I. + AA(I.- A.T-'+ O(T2AA2)"AA(G + ,•,}

-- 1/2 + T(.- 1AoT)AA(G12 + .)

+(T(I,_• 1AoT)_'AA(I - "AoT)-1A(2(12 + I',)}

- G112 + T(,- ~AT1AG112 + 1,) + O( 2)A2}
-- 1 + 0-+- -

4 4

G- G1 + G(I , -A oT )- 'A A (G I o2  + I s)

0 4 40=Go G'o2i, Is AoT)_ AA(Go +I)

+ (- AoT)_1AA(Go/ + i4)Go/ + O(T AA 2 )

- Go + lG/2(cGI/2 - I)A;'AA(G 1/2 + In) + - II,)Ao1AA(Go/ 2 +IG12

Go + AG1  (16a)

where

Go = eA°T (16b)

Go102 = ,AoT/2 (16c)

AG 1 = "•o2(GI2 - I,)A;'A(G' 2 + IV)

+ !(G'1 -I,)A;'A&A(G' 1 + 4)GO'2  (16d)

In order to derive the relationship between the obtained uncertain system matrix AG, in

(16d) and the uncertain system matrix [6] as shown in (Sa), we modify the representation

in (16d) as

AG 1 = !(c4/2 + I,)(G'/2 - I,,)Ao'AA(Go + In - Go + G112 )

-(G -I /2 + +(G12 - In)Ao1AA(G'/ 2 + i,)G1 /21-t•1/2 - I,.)A-o1AA(G'o/ + In,) +-'

2 01 00 120

= -(Go - I4)A-'AA(Go/ - I•)' (17a)

2 00
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where the uncertainty

AG = (Go - I.)A-'AA(G0 + I,) (17b)

is the discrete-time bilinear and inverse-bilinear uncertain system matrix [6] as shown in

(5a). Also,

A= jo e(Ao+"A)tB d= ( I-,,)(Ao + AA)-'(Bo + AB). (18a)

Utilizing the result in (15d) gives

H- Wo((I, + VoW o)(Bo + AB)T for IlVoWoll < 1

= WoBoT + WoVoWoBoT + WoABT + WOVoWOABT

SHo + WoVoWoBoT + WoABT + O(T 2AAAB)

Ho + AH, (18b)

where

GO =- eAoT

W. = - AoT + 1(AoT)2 (Go - In)(AoT)-
1 16

Vo = 1AAoT - -- 2(AoAA + AAAo)
2 16

Ho = (Go - In)Ao'Bo '- WoBoT

AHl = WoVoWoBoT + WoABT

= (Go - In)Ao ' 1 AA - T (AoAA + AAAO)] Ho + (Go - I,,)Ao 'AB
= AHb - T•(Go - In)Ao'(AoAA + AAAO)HO (18c)

16

where the uncertainty
1

AHb = (Go - I,)Ao'AB + 1(Go - In)Ao'AAHo (18d)
2

is the discrete-time bilinear and inverse-bilinear uncertain input matrix [6] as shown in

(5b).
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The counterpart of AG (i.e. AA) can be determined from (16d ) by solving the

following Lyapunov equation [51:

G/2 AA + AAG" 2 = 2Ao(Go' - I,)'AG(Go1 2 + If,)- (19a)

where

A0 = Iln(Go). (19b)

A computation method is available in [2] for computing the matrix logarithm function in

(19b).

The counterpart of AH (i.e. AD) can be directly obtained from (18c) as

AD = Ao(Go - I,)-' {AH -(Go- 4,)Ao' [AA

T (AoAA + AAAo)] Ho 1  (20a)

where

A 1 In(Go) (20b)

B0 = Ao(Ge - I,)- 1 H0 . (20c)

For the comparison of the aforementioned models in (5), (16), and (18) with the

commonly used Taylor-series approximate model, we derive the Taylor-series approximate

model as follows:

e= •(Ao+AA)T "= In + (Ao + AA)T+ -(A 0 + AA) 2T2
2

(I,+ AoT+1 A2T2) +AA(TI, + T 2  T2+ O(T 2 AA 2 )
2 0 + Ao)+(yAo)AA+A

-Go + AGt (21a)

where

Go = eAoT (21b)

AG, = AA(TI,. + -TAo) + (-T-Ao)AA. (21c)
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The corresponding discrete-time input matrix becomes

H =r - I,)(A0 + AA)-1 (B 0 + ,B)

T(I. + 1AoT)Bo + -AABo + (TI,. + -TAo)AB
2 2 2

-Ho + AHt (22a)

where

Ho = (Go - I,,)Ao 'Bo (22b)

AHt = AA( T Bo) + (TI, + - Ao)A B. (22c)
T 2

Also, the counterpart of AGt (i.e. AAt) can be determined from (21c) by solving the

following Lyapunov equation:

AAt(TI,. + - Ao) + (-- Ao)AAt = AG (23a)2 2

where A0 = -•ln(Go). The counterpart of AHt (i.e. ABt) can be directly solved from

(22c) as
ABt = 1 A AAt( 2 Bo) (23b)

T 2~ 2 .

where B 0 = Ao(Go - I,,)-'Ho.

5. Illustrative Example

The unstable dynamics of a helicopter in a vertical plane for an airspeed range of

60 -, 170 knots are given in [8, 9]. The nominal and uncertain system matrices are

"-0.0366 0.0271 0.0188-0.45551 0.4422 0.17611
Ao 0.0482 -1.010 0.0024 -4.0208 Bo 3.0447 -7.5922

0.1002 0.2855 -0.707 1.3229 - 5.52 4.99

AA = _0 0 0 AB =Ai ]0 O'&& 0 AO2 0'0

where IA.11 _ 0.2192, 1A. 21 5 1.2031 and IAIi < 2.0673.
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The above perturbation parameters can be normalized as A., = A. 2 = A&, = As =

±1. Thus AA = AsA, + AsA2 and AB = A&B, + AsB 2 , where B3 = O4x2 and0 0 ° 00- [00 0 0o 0° 0"
A, = 0 0 00A 0 0 0 0 B 2.06730

0 0.2192 0 A0 0 0 0 1.2031j B1 = 0

.0 0 00 0 0 0 0 0 0 .

Let the sampling period
4

T = 0.2 < 4
11 Ae11 + 11AA 11

The exact uncertain system matrix of the discrete-time model for IA&I = 1 -A

' 0.00000 -0.00005 -0.00001 -0.00028'

AG = A eAoT = -0.00000 -0.00103 -0.00028 -0.00571
0.00034 0.03796 0.02114 0.21400
0.00002 0.00397 0.00145 0.02216 i

AH - (e(A+cA1+eA2)T _- 4 )(Ao + eA, + eA 2)-'(Bo + eB,) - (eAT - I4)AG'Bo

*0.00104 0.00001
0.37403 0.00034
0.02285 -0. 86|
.0.0017068

The uncertain matrices (AGI, AH,), obtained by using the high-order bilinear and

inverse-bilinear approximation method with m = 2, can be computed from (16d) and (18c),

respectively, as
0.00000 -0.00005 -0.00001 -0.000276 '0.00104 0.00001

-0.00001 -0.00101 -0.00034 -0.005660 [0.37416 0.00038

AG1 = C 0.00035 0.03774 0.02075 0.212691' AH, = e 0.01365 -0.02166w

0.00003 0.00393 0.00159 0.02201 J .0.00103 -0.001721

The associated errors are IIAG - AGIl/IIAGII = 0.00633, and IIAH - AHII/IIAHII =

0.02484.

Also, the uncertain matrices (AG6, AH6), obtained by using the low-order bilinear

and inverse-bilinear approximation method [6], can be computed from (5a) and (5b), re-

spectively, as

0.00000 -0.00005 -0.00002 -0.00027" '0.00104 0.00002 1
[-0.00001 -0.00099 -0.00052 -0.00556 1 AH& 0.37424 0.00048

A = e 0.00039 0.03801 0.01980 0.21384 , 0.01067 -0.01831

0.00004 0.00387 0.00202 0.02180 10.00073 -0.00187J
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The associated errors are lAG - AGIlllIIAGII = 0.00673, and IIAH - AH61IIIAHII =

0.03477.

Moreover, the uncertain matrices (AGt, AH,), obtained by using the Taylor series

approximation method, can be computed from (21c) and (22c), respectively, as

-0.00000 0.00008 0.00000 0.000451 0.00112 0.00000 1
0.00000 0.00001 0.00000 0.00006 |= 0.37170 0.00000

AG, = c 0.00021 0.03631 0.02407 0.20598 AH, = 0 .02515 -0.03328|

.0.00000 0.00438 0.00000 0.02406. 0.00000 0.00000

The associated errors are IIAG - AGtIlIIAGII = 0.04815, and IIAH - AHII/IIJAHII =

0.02901.

The proposed approximate models are quite satisfactory.

In order to demonstrate the sensitivity of the proposed method to the sampling pe-
2m

riod (T <• 2mA01+II AA) and the uncertain matrices (AA, AB), the comparison of relative

errors of the exact matrices (G, H) and any proposed approximate model (G., H.), i.e.,

(JIG - G.JI)/IIGII and (IIH - H.lI)/IIHII, is presented in Fig.1 and Fig.2 with Ah = 1 and

in Fig.3 and Fig.4 with Aj = 0.1. It is observed that when the uncertainties (AA, AB)

are sufficiently small, the obtained uncertain linear model using a high-order geomet-

ric series approximate model with a relatively large sampling period often gives a bet-

ter result than those of lower-order geometric series approximate models with the same

sampling period. On the other hand, for relatively large uncertainties (AA, AB), the

above observation may be not true due to the fact that the neglected nonlinear terms,
O(T 2AA 2 ) = O[( IIA1+IIrAAI ) 2AA 2] and O(T 2 AAAB)= O[( IA+ ) 2 AAAB], are not

sufficiently small.

6. Conclusion

A geometric series method along with the inverse-geometric series method has been

proposed to find the discrete-time (continuous-time) structured uncertain linear models

from the continuous-time (discrete-time) structured uncertain linear systems. This allows

the use of well-developed theorems and algorithms in the discrete-time (continuous-time)

domain to solve the continuous-time (discrete-time) domain problems indirectly. It has

been shown that uncertain system parameters are propagated into the uncertain input ma-

trix. Moreover, from Fig.3 and Fig.4 it has been shown that for a relatively large sampling
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period and relatively small uncertain parameters (e < 1), the models obtained by using

a high-order geometric series approximation method are much better than those obtained

by using the low-order geometric series approximation method. A numerical example is

presented to illustrate the proposed procedures and to demonstrate the effectiveness of the

proposed method.
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Target Tracking and Recognition Using Jump-Diffusion Processes *

Anuj Srivastava, Robert S. Teichman, Michael I. Miller
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St. Louis, Missouri 63130

1 Introduction these transformations are parameterized by positions in
R and orientations in [0, 2,) 2 x [0, r], they are performed

In this paper a new approach for target tracking and recog- using continuous stochastic gradient search. The second
nition is presented. We take a Bayesian approach and de- kind of variability is associated with the model order, or
fine a prior density on the scenes of targets and combine it parametric dimension. In any scene there may be multiple,
with likelihoods based on the sensor data to give a poste- variable numbers of targets, with tracks of variable lengths
rior measure on the parameter space. The jump-diffusion and the target number unknown apriori and, therefore, to
random sampling algorithm [1, 2, 3] is used to sample from be estimated itself.
the posterior.

In Section 2 the basic approach for solving the problem We take a Bayesian approach by defining a prior density
is described. The global shape model approach is described on the scenes of targets. The prior coupled to the sensor
in section 3 with the Bayesian posterior measure derived data likelihood gives the Bayes posterior. The conforma-
in section 4. Section 5 illustrates the use of jump-diffusion tion is selected to be consistent with the data in the sense
processes for random sampling from the posterior measure that scenes of high probability under the posterior distri-
over the parameter space. The last section describes the bution are selected. Our method for generating candidate
implementation on a parallel processing machine and the conformations is to sample from the posterior. For this

results obtained, a new class of random sampling algorithms is used based
on jump-diffusion dynamics, introduced in Grenander and
Miller [1, 2, 3] which visit candidate solutions according to

2 Recognition Via Deformable the posterior density. The original motivation for introduc-
Templates ing jump-diffusions is to accommodate the very different

continuous and discrete components of the discovery pro-
cess. Given a conformation associated with a target type,A fudamnta tak intherepesetatin o cople dy or group of targets, the problem is to track and identify

namically changing scenes involving rigid targets is the orinao n, translation and s petraco

construction of models that incorporate both the variabil- modating the variability manifest in the viewing of each

ity of orientation, range, and object number, as well as the obett . h the paramet space is oapedcs
precise rigid structure of the objects in a mathematically object type. For this, the parameter space is sampled us-
precise way. The global deformable shape models intro- ing Langevin stochastic differential equations in which the

precse ay.Theglobl dforabl shae mdel inro-state vector continuously winds through the translation-

duced in Grenander's general pattern theory [4] extended rtation cetfollowing gr o f the postior.

to parametric representations of arbitrary unknown model rThe second distinct part of the sampling process supports

order [1, 2) are intended to do this. This becomes the basis The reconitinct wa t c s the target types
for ur pproch.the recognition associated with choosing the target types.

for our approach. The deduction algorithm goes through multiple stages of
There are various kinds of variability and uncertainty hypothesis during which the airplane types are being dis-

inherent to data obtained via remote sensing via high res- covered, and some subset of the scene may be only par-
olution and tracking radars. The first and foremost var- tially "recognized." This is accommodated by defining the
ability is associated with the conformations of the rigid second transformation type which jumps between different
bodies: orientations, scales, and position. To accommo- object types, where a jump may correspond to the hypoth-
date this type of variability we use global templates which esis of a new object in the scene, or a "change of mind"
are made flexible via the introduction of basic transfor- about an object type. The jump intensities are governed
mations involving both rigid motions of translation and by the posterior density, with the process visiting confor-
rotation, as well as non-rigid motions such as scale. As mations of higher probability for longer exponential times,

*This research was supported by ONR N00014-92-J-1418, ARO and the diffusion equation governing the dynamics between
DAA 03-92-6-0141, Rome Laboratory F30602-92-C-004. jumps.

665



with the scale paraineter belonging to +. 'TheLn associ-
\'( ust' tliht global shape models and pattern theoretic ap- ated with each target or generator g E C is a parameter

proach introduced by Grenahder [5, 4]. As the basic build- vector Z E M(3) x R3 x R+ x .4, where JAI = IJC the
itig blocks of the hypotheses define the set of generators G, number of different target types.
the, targets placed at, the origin of the referenice coordinaies A pattern will be constructed from multiple targets with
at a fixed orientation, position, and unit scaie. varying track lengths. In (6] we have described the multi-
The fundamental variability in target spaces is accommo- target scenario. Here we focus on single target scenes. We
dated by applying the transformations T(O), T(p), T(s) to are interested in tracking and recognition in "hostile/non-
the teuuiplates C according to cooperative" environments in which the objects can appear

1 0 0 and disappear on random times T1 , T + Ti E [0, oo) with
S ": [1 0 0os sin x (1)T > 0. The parameter vector associated with track be-.r j2 0 -COSOin s iosI x (1) comes

1 0 0 -sink 3  cosoI3 0 II /
0 1 0 -Si 0 1 C 0 As tracks will be discretized to sample times t1 , t2, . .. , with

S0 CS2 0 0the object entering and leaving at nl, n + n, respectively,
r ~+ P 1the parameter vector i,, associated with an n-length track

T(p") : l' +P2 (2) is an elemer.t of Xn E (M(3) X x R3x+ x A) x Z+.[3 ) + P2 ( Since n is unknown, the full parameter space becomes

X2~~~~o s. 0 0 x(3X U(()XRXR+xA"xZ,. (4)
T(s) : I. -- 0 S 0 X2 , 3 =0

X3 0 0 S X3 The posterior density defined over the full parameter

where ý is the triple of rotation angles associated with the space X is assumed to be of Gibbs form
rotation of the viewing sphere about each object, j7 are e-E(.)
the translation parameters in W, and the s is the scale 7r(Z.) Z (5)
parameter in 1?+. These parameterized transformations
ope'rate on the template targets of G generating the full In the work presented here only rigid transformations are
target space. used with s = 1. Also we assume the enterance time T1 (n ?)

Figure 1 shows one of the 3-I) ideal targets used for all of known apriori.

lIe siiesi'lations below. T'Ie left panel shows a renderinig of
lie,,target a; I he origin. lhie right. Ianel showing the re'sltl. 4 The Bayes Posterior
, ,f ~lyling ',,' of I11e I ram sforniatliois.

The :do,1.. I C I are what can b•e observed by an ideal (willh
1l') ltss 4If inlornm l i on) Thes4,rver. 'l'h,, act inl o•serve'r. hI,''
t1%1 r+ '.. 11ý411, bey I1)1. tl,,), see. 0h1, 1 t+.n.,vits wlith l1,.. -,I*

;l~i,'h tin' i,!,';dI I ;lp ,, 'a s as s. 1, l j,', i :. I C.

<I t'l wIrl ialm in'h l iis;iis. bolli r;aiil'ili :ilid d,' ';r jii ii. .

We take a lBay'-siall approach Io lie generaltioll of can-
(didlate s('enes by defiining a posterior probability of the pa1-
raineter vector Fi,, representing ideal I given the ineasllred

IFigure I: 3-1) target, at the origin (left planel) and after dat.a 11 according to
ap plying transfortn at.ions (right panel) 1 1 -E( .?,) I ,

where L(IVIi.) is the potential associated with data like-
3.1 The Parametric Space lihood and P(;F,) is the potential associated with the prior

density on the parameter space.

Now the parametric space parameterizing the Bayes poste- In the problem stated here the data IV has multiple
rior becomes the set of parameters specifying the similarity components corresponding to the various sensors:
transformations, as well as the airplane type. Define the
space containing orientations ý as M(3) = [0, 2r)2 x [0, 7) = 1
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We only include two sensors, one for tracking and one for 4.2 The Likelihood: Tracking and Imag-
high-resolution imaging. ing Data
4.1 Tracking Priors There are two sensor types in our problem: a tracking

sensor and a high-resolution imaging sensor.

The prior on track formation is based on the dynamics of 4.2.1 Tracking
target motion and follows that described in Srivastava et
al. [7] in which the force equations governing the motion For the tracking we assume a narrowband tracking cross
of targets are utilized to form a prior density on the track array as in [10, 6, 7, 11] using the standard narrowband
parameter space. As an object moves in 3 space it traverses signal model developed in [121. The uniform cross array
a continuous path consisting of a sequeice of translation consists of two uniform linear arrays orthogonal to each
locations #(t) E R3 . For describing their dynamics we shall other, sensitive to the range. ele\ -ion, and azimuth loca-
he interested in expressing the tracks in terms of the body tions of the targets related to the inertial positions pl(t)
frame velocities of the objects, r(t) E 'V• which are related through regular coordinate transformations.

to the inertial positions [8] according to For the data collected at the P-element sensor arra% at
tuin, t the superposition of th, incoming signal anw th,,

[;(t) = (T)i(r)dT + ý(T'l ambibhent. noise becomes

,dt,,rk(t) = d(/7(t))s(t) + n(t), 11)
where $( r) is thle lprod(uct. of three rot at iol mat rices in q

w2). .- s in i7] the rigiod b,( lv analysis with the assu iin tin Whern, nit) is a P x 1, 0-mean complex gaussian randhoii"(2). As 7 het vct(ir with identity covariance, s(t is th" signal vah an
lhat the earth's curvature. motion and wind , f'ects are
negligible implies that the translational ieotion is given by d( j)( 1)) is a regular P x I vandcrinonde direction vew,,,r
h. Newt on ian vector equation wit Ii tlit, angles of signal arrival parameterized by thle iI, r-

ial postiton ;7 (t). The d tIcrmninistc stgnal in od Iis iis,.d
A(0) + A(O( ))M ) ( = f(). (7) as i [10] iI which the measurements y(t) are G;aussian

distributed with mean d(#(t))s(t).
Here 0(t) E M(3) are the Euler's angles representing the
orientation of the target with respect to the ground based 4.2.2 Imaging
inertial frame and

[ 0 -qa(t) q2(0 1 While we are currently incorporating models for high-
resolution radar imaging as described in [13, 14, 15, 16,

A(O(t)) q3 (0 0 -(t)t) ] 17, 18], all of the results shown are based on optical imag-
-q2(t) qi(t) 0 ing systems in which the data is assumed to be on a dis-

with q1t) the rates of change of orientation, which are func- crete square 64 x 64 lattice £. The imaging data at time
tions of the Euler's angles. t is the set of 4096 grey scale pixel values drecog(t) =

This linear differential equation is characterized by the {di(t),i E £}. The deformation of the imaging process
tinie-varying paratmeter matrix A(O(t)) and force vector of the ideal targets is assumed here to be projection with

fit). The covariance is induced following the approach additive noise. For the simulations shown below a Gaus-

of Srivastava et al. [7] and Amit et al. [9] by assuming sian noise model was used, with the measured data having
the forcing function is a white process with mean f(t) and mean the true ideal 3-D image projected onto the 2-D lat-

a fixed -,ectral density a, which then induces a Gaussian tice space.

process 6T(t) with mean ;(t) and covariance operator deter- Shown in Figure 2 are the two kinds of data which the

mined by the differential operator of Eqn. (7) according algorithms are based on. The left column shows the ideal

to projected onto 2-D with additive noise at three different
T0 d 'time instants. This is representative of the optical imag-

•(t) = e- '4 A(¢(r))dri(t 1 )atl + •(T 1 ) (8) ing compGnent of the algorithm. The right column show.-
JT, the spatial power spectrum from the narrowband tracker

K" (t,_s) = or e!)ft- A(¢(r))d,][e- f," A(¢(r))dr]tdt I at three instants of time, plotted in the azimuth-elevation
T, ]plane (bright is low power, dark is high power).

(9) The two treasurements become Ii' {dtrack(t),t E
Using Eqn (6) the prior density on the airplane positions [0,oo)}, I V {decog(t),t E [0,00)).
can be written as

KP(t,s) = T L•, (rl)Kv(rlr 2)4t(r 2 )drldr2 . (10) 5 Jump-Diffusion Random Sam-
T I, pling Algorithm

Notice, this covariance is parameterized by the sequence
of airplane orientations q(t),t E [T1,T 2 ). This connects The most crucial part of the problem still remaining is
the tracking and recognition algorithms, the derivation of the inference algorithm for generating
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5.1 Jump Process

* X.~: The jump process travels through the infinite number of
~ subspaces carrying the inference from subspace to sub-

* space. The two kinds of jump moves allowed here are
addition or deletion of track segments from the track con-
figuration. These jump moves are performed based on the
intensit aamtr derived from relative posterior ener-

'~' \~gies of the configurations. For ;E4 being the current con-
S~. ~. . ~figuration and Y,,m a possible candidate, 4,,!7. E X, define

. ~ ~ .. (. q(;F,, dym,) as the transition intensity, q(iz,) as the intensity
. ~ of jumping out of the space containing 4,, and Q(i4, dýV.)

as the probability of transition. These are related accord-
ing to the relations

q(4) =q(i?,ý,dg.)

'~ ~ '. ~ and
A ~q(;., dg.m)

q((

Wx ~where Tl(;F4) is the set of all configurations reachable in

KO ~one jump move from ;F. As shown in [21 there are at
least two ways of generating these jump intensiisfo

...... .. .. . . .. .the posterior density, these being analogues of Gibb's sam-

\.i pling and Metropolis [19] based acceptance-rjcin h
~ *~' . Iimplementation presented here uses the latter according to

x which the jump intensity is defined as

C(rd7~ "I!)+e~- nd,, (12)
Figure 2: The left coIlumnI shows the target projected onto where [f(-.)]+ stands for the positive part, of the function.
lie '2- D lattice withI additive noise at three different tiune y he backwardl kolmogoroff op~erator A3 for tins jumip pro-

Hinist anjts. The right columin shows the aziniuith-elovat ion cesis given by
Ipower profile at thlree, (Iifft-re t Mit anlts 5of t im e as

gci~wrated from then narr~ iwban milrae king (dat a. 4 (i~)-(i f , (~)(4 f

and f(4)(d,) 0. ilmis miakes 7r( 4) stationary
for thle.1jinp part of thle process.

ii i csof high prol~aihilim. Our ;ippro;ivli i., fto
st ruit a jiinip-diffusion Nlark,- prw-. t f ig the :'p- 5.2 Diffusion Process
prorili outlhued in Gronmand,-r and Nli her Il , . which Iris
lie Ii m1it ing propert v that it conv~erge's in distrib1 ution t(, et ween Junmp transit ions the diffusion process searches

Hit Bave'ý post erior. Ibsiiap- fusl r ark()v prnc,,-s through t li uncountable set of paramieters witlhin each of'

{N( t) , t > 01 sauiiples the pc- Iterior dens~ity F, E) Xn the saabspaces.1X,, . It Is a sauinple p~athI continuious process

le.II(Au over the full parameter space Xr = U' Ox", i~. Which essentially performs a randomized gradient descent

lie t ime saniples of the process %,isit the conformations ac- over thle posterior potential E(iF,,) associated with parame-

confing to the posterior density. This result is presented ter space Xl,, according t~o Langevin's stochastic differential

iii [1. 2, 3] as theorems which follow fromt two fundamenital equation (SDE),
results. First it. is shown that. -r(i,,) is * -)nary niea- dX(t) =VE(X(t))dt + vf2dWV(1) (13)
sure of thle process f{X(i). t > 0), sec(t )roof that
it is the unique stationary mneasure is prest ted. The first where W(t) is the standard vector wiener process of dimen-

p~art is proven by showing that the backward kolmogoroff sion of the parameter space X,~ The backward kolmogoroff
operator A associated with the Markov process satisfies operator A d defining the diffusion generated by above SIDE
the condition fx~ Af(i4)p(di~,,) = 0, for f () E domain(A) is given by
and 1 t(di4) = ir(i4)m(di4), the distribution correspond- A df(i4) = V E(4). vf (:F) + a f2(;F)
ing to r()with m(.) being the lebesgue measure associ- i,j 3(4-),84)j
ated with the parameter space X,. The generator A has
two parts, A - A2 + Ad, corresponding to the jump and and satisfies the condition fx A df(i4)p(dii) = 0. See [1)
diffusion terms, for the proof.
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6 Results the jumps for adjusting the orientation and position esti-
mates following gradients over the posterior energy. The

The tracking and recognition algorithms were jointly im- estimation utilizes the prior measure on target positions
plemented using a Silicon Graphics workstation for data which is parameterized by the rotational motion of the
generation and visualization, and a massively parallel 4096 target. The object recognition is coupled to the target
processor SIMD DECmpp machine for implementing the tracking by use of orientation estimates in the prior mea-
tracking-recognition random sampling algorithm, sure. In Figure 3 the top left panel shows the actual flight

path generated via the flight simulator. The other three
panels display the successive stages of the tracking and es-
timation. The estimated track is superimposed in white
on the actual track.
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1 Introduction

In this paper we outline a rigorous proof of the connection between the optimal
sequencing problem for a two-station, two-customer-class queueing network and the
problem of control of a multi-dimensional diffusion process, obtained as a heavy
traffic limit of the queueing problem. Complete proofs are given in a forthcoming
paper, Martins, Shreve and Soner (1993). We also describe how to use the diffusion

-problem, which is one of "singular control" of a Brownian motion (also called "reg-
ulated Brownian motion" by Harrison (1985)), to develop policies which are shown
to be asymptotically optimal as the traffic intensity approaches one in the queneing
network.

The diffusion we wish to control here has been given the name Brownian net-
work by Harrison (1988), who proposed such models as approximations to multi-class
queueing networks. The control of Brownian networks for the purpose of obtaining
control policies for qaeueing networks was initiated by Wein (1990a, 1990b, 1992)
and Harrison & Wein (1989, 1990). These papers derive rules for sequencing cus-

"*This work was partially supported by the Army Research Office and the National Science
Foundation through the Center for Nonlinear Analysi.

t The work of this author was partially supported by the National Science Foundation under
grant DMS-9200801.
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tomer services and for controlling input to queueing networks. Laws & Louth (1990)
and Laws (1991) use Brownian networks to derive queueing network routing policies
as well.

All these papers are based on a heuristic understanding, amply supported by
simulations, of the connection between the Brownian network control problem and
the original queueing problem. Such a connection has been rigorously established
only in models with a single customer class, by Kushner & Ramachandran (1988,
1989), Kushner & Martins (1990, 1991), and Krichagina, Lou & Sethi (1993). These
papers use weak convergence methods. The exogenous processes (e.g. arrival and
service processes) can be quite general, provided they have finite first and second
moments.

In this paper, we assume that the arrival processes are Poisson and the service
times are exponentially distributed. We base our'analysis on the Hamilton-Jacobi-
Bellman (HJB) equation, which, in turn, is based on the Markov property. In
contrast to other rigorous treatments of convergence, we are able to treat a network
with multiple customer classes. Our analysis uses the theory of viscosity solutions
of HJB equations. Viscosity solutions were first introduced by Crandall & Lions
(1984) and equivalent definitions were given by Crandall, Evans & Lions (1984).
For recent developments we refer the reader to Crandall, Ishii & Lions (1992) and
Fleming & Soner (1993).

The particular example chosen for our study has been examined by Harrison
& Wein (1989) and Chen, Yang & Yao (1991). The former work derives a plausible
asymptotically nearly optimal sequencing policy for the queueing network in one of
the parameter cases we stu'v; we confirm the asymptotic near-optimality of this
policy. The latter work, which does not introduce the Brownian network, solves the
original queueing problem in some parameter cases; we obtain consistent results in
the case where comparison of results is appropriate, and we obtain an asymptotically
nearly optimal policy in a parameter case not solved by Chen, et. al. (1991).

This paper is organized as follows. In Section 2 we describe enough of the
queueing system problem, including the heavy traffic assumptions, to enable us to
summarize our results. We complete the problem formulation in Section 3. In
Section 4 we define the limit of the value functions for a sequence of queueing
systems. Of course, our goal is to represent this limit as the value function for a
diffusion control problem, and to use this representation to construct asymptotically
optimal policies for the queueing systems. In Section 5 we introduce the associated
controlled Brownian network, and in Section 6 we reduce the Brownian network
problem to one of workload control. Section 7 dispatches the easy case I. Section

672



8 provides an overview of the harder case I. Full rigorous technical analysis of
a subcase of case 1I, which we call case H A, is given in our forthcoming paper,
Martins, Shreve & Soner (1993).

We choose only cae II A for full treatment because:

i) it corresponds to the common situation of seeking to minimize the sum of the
queue lengths when the service time at station one is independent of customer class;

ii) a closed-form solution to the queueing system problem in this subcase is unknown;

iii) the convergence result in this subcase requires new methodology; and

iv) the workload control problem in this subcase has a simple solution.

We believe that the techniques developed here can be extended to the other
cases and to other problems.

2 Summary of results

We study a family of two-station queueing networks with Poisson arrivals and ex-
ponential service times. In the nth network, customers of class 1 and 2 arrive at
station 1 with arrival rates X~n) and 4"n), respectively,

CCks4 1

and are served at respective rates #J") and 02 . Class 1 customers then exit the
system, whereas class 2 customers proceed to station 2, where they are redesignated
as class 3 customers and served at rate 11i.

The cost per unit time of holding a class i customer is ci > 0. The objective is
to minimize
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where Q(") is the number of class i customers queued or undergoing service at time
t, and a is a positive constant.

In order to minimize this objective, we may decide at each time t whether to
serve a class 1 or a class 2 customer. Service can be switched away from one class
to the other and subsequently switched back, resuming where it left off. We may
also decide to idle station 1, even though there are customers which could be served.
This may be desirable if there are no class 1 customers and the cost c3 is high relative
to C2, so that we prefer not to serve any class 2 customers until a backlog of class 3
customers has been reduced.

We want these networks to approach heavy traffic conditions as n -- oo. There-
fore, we define numbers b(n b) by the formulas

(2.2) ( + (n) , Fn-
- ~/~i',(n)

so that 1 - n is the traffic intensity at station 1 and I - b(')/Vr is the traffic
intensity at station 2. The heavy traffic assumption is that for i = 1,2, 3 and j = 1,2,
the limits

=j = lirr ,) = m n) = - brn
A1 =b= imb_

n-on-oo n-cc .

are defined, positive, and satisfy

2 ~ 32

(2.3) sup n bul)] - -bJl <().
n j= j-=1--

Our analysis divides naturally into two main cases, and the second case divides
into four subcases. We describe our results in each case.

CASE I: ClpI - c2A2 + c3P2 < 0.

As long as customer class 2 is present, it should be served. If all class 2
customers have been served, then class I customers should be served.

674



This result agrees with Theorem (5.2) of Chen, Yang & Yao (1991). The
expected cost reduction per unit of service effort devoted to a class 2 customer is
(c2 - c3 )P2 , since service turns a class 2 customer into a class 3 customer. In Case
I, (c2 - C3)P2 dominates clpl, the expected cost reduction per unit of service effort
to a class 1 customer. This results in the simple fixed priority rule of serving class
2 customers whenever they are present.

CASE II: cIp 1 - C21A2 + C3P2 > 0.

We further divide Case II into four subcases.

CASE II A: cIlA - c2A2 + c3p 2 > 0, c2p2 - C3•42 Ž_ 0, C2p 2 - CJ.Lt >_ 0.

Now a unit of service applied to class I results in a greater expected cost
reduction than a unit of service to class 2. We prove the near asymptotic optimality
of the policy of serving class 1 unless the number of class 3 customers falls below a
positive threshold, in which case priority is switched to class 2, so that station 2 is
not starved. (The notion of near asymptotic optimality is defined in (4.4) below.)
The nearly optimal policy depends on all the customers present, and it is given by,

I 1 Q.) I (t) , -1 Q(.~ ) ) > o
serve class I if 1(- Q)(t)01 Q2(1 Q3(0) 0

serve class 2 if -1(-- Q1 )(t)01 7 Q2( 1 ) 7t=,< 0,

where Q 1n)(t), i = 1,2, 3, denotes the number of class-i customers present at time t,
7 is any function of the form

"1(z1 , z2 , z3) = a(z1 )a(z3) - b(z)

and a and b are any bounded, nonnegative, concave, increasing functions satisfying,

a(0) = b(O) = 0, b(oo) < a(oo) 2.

In Martins, Shreve & Soner (1993), we show that as b(oo) goes to zero, the above
policy becomes asymptotically optimal. Harrison & Wein's (1989) model with cl =
C2 = C3 = 1,01 = P2 = 2,p3 = 1 falls into this subcase, and their proposed
policy is to serve class 1 if and only if ý,fn_ Q(')(t) exceeds a positive constant which
is independent of n and the other queue lenghts. They showed by simulation that
with a properly chosen constant, this policy outperforms the rules "first-in first-out,"
"longest expected remaining processing time," and "shortest expected remaining
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processing time." They also found that its performance was close (within about 5%)

of a lower bound they obtained for optimal performance.

The heuristic justification of the policy is case II A suggests that the same pol-
icy is asymptotically optimal under only the case II condition cIJUI -c2p 2+-c3pP2 > 0.
Our proof of the result stated in case II A suggests otherwise. Although we have not
worked out a full proof for the other three subcases, the proof for case II A strongly
suggests the following conjectures.

CASE II B: cIpl - c2102 + c0 2 > 0,c 2, P2 - c0p2 < 0, C20 2 - C1p1 2 0.

There is a continuous, increasing function 92 : (0, oo) -- (0, oo) satisfying,

0 :5 9 2 (W2) < P3W2/w1 , V•_2 ?0, and EM *2(W 2 ) = 00.w2-*oO

Class 1 should be given priority, unless either the queue length Q( n) of class
1 customers falls to zero or the queue length Q(nf) of class 3 customers falls be-
low some small threshold. While either of these conditions is satisfied, priority
should be switched to class 2, except that whenever Q(n) = 0 and Q~n) < /

P291((Q 2 n) + Q(n) /Vn P3)), station 1 should be idled. This idleneness can be ex-
plained by the fact that it is cheaper to hold class 2 customers at station 1 than to
send them on to be held as class 3 customers at station 2; note that in this subcase,
C2 < C3.

CASE II C:CIpI - C2112 + c3V1 > 0,c 22P2 - c3/P2 _ 0, c2/P2 - C1P1 < 0.

There exists a continuous, increasing function *I : [0, oo) -. [0, oc) satisfying,

0 < * 1 (w1) < P2Wi/w 2, Vwl ? 0, and lim 91 (wi) = o0.
W1 -*OO

Class 1 should be given priority unless either Q~n) = 0 or Q(") is less than
a small treshold. While either of these conditions is satisfied, priority should be
switched to class 2, except that when Q•") > 0, and

Q n) < ViP3#1((QW/V/iPI) + (Q"nl/vf ))

priority should be given to class 1, even though this may cause station 2 to starve.
Idling station 2 can be explained by the fact that the cost of operating the network
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can be reduced more quickly by serving class 1 than by serving class 2; note that
eIJl > C2/A2.

CASE II D: CIIAl - C2/A2 + C3P2 > O, C2p2 - C31A2 < 0, Ce•2 - CepI < 0.

This case is a combination of case II B and case II C. We conjecture the
existerce of functions %I1 and *2 as described above. Idling can occur at either
station 1 or station 2, as described in case I B and case IH C, respectively.

3 Queueing network problem

For the queueing network of the previous section, for i = 1,2, let {A(n,(t); 0 < t <
oo} be the class i customer arrival process, assumed to be Poisson with intensity
A!\•). For i = 1,2,3, let {S'n)(t); 0 < t < oo} be the class i customer service process,

assumed to be Poisson with intensity it We take all these processes to be left-
continuous, and we denote by {f'(n)(t); 0 : t < oo} the filtration generated by these
five processes.

A control law {Y(t), U(t); 0 < t < aoo is a pair of left-continuous, {J(n)(t); 0 <

t < oo)-adapted, {0, 1i-valued processes. The process Y(t) indicates whether sta-
tion 1 is active (Y(t) = 1), or idle (Y(t) = 0), and U(t) indicates whether station I
is serving customer class 1 (U(t) = 1) or customer class 2 (U(t) = 0). Given non-
negative initial queue lengths 1 and Q(")(0) for the three customer
classes, and given a control law (Y, U), we define the queue length processes

Q•'•(t) = Q•n)(0) + A(n)(t)- f• Y(s)U(s)_ {,•(s)>_)dSln)(s),

Q(n)(t) = Q•n)(O) + A(")(t) - ft Y()(1 -y

Q3")t =Q3")0 foY(s)(1 - U(s))l{Q(")(.)>1)()t)=Qn)0 +tdS (n)(s),

- Q f~o) + fQ (3e)(1> d

We denote the vector of queue length processes by
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(Note: Because the inter-service times are exponentially distributed, the processes

jY(a)U(S)1 (Q)() >dS(')(s) and siR(j'o Y(a)U(S)l{(Qcuk()>* do)

have the same law. This permits us to write Q(%)(t) in terms of the former, although
the latter more nearly reflects the way we interpret the system. If service of a
customer is preempted and later resumed, we assume that service begins where
it was left off. After resumption of service, the time to completion has the same
exponential distribution as the original distribution of the service time. Similar
comments apply to Q(")(t) and Q• (t).)

The vector of scaled queue length processes is

zW)(t) 1 Q(t)(t).

This is a Markov chain with lattice state space V {") k; k 0, 1,...)3 and, for
fixed (y, u) E {0, 1}2, its infinitesimal generator is

n (n) .,( + *e) + n) + + 1e) _

+ (n)u yu[~p(z - 'e)- ýp(z)j1{,,>O}

(3.1)

+7n-[ + re 3 ) - P(z)]J{f 2 >0)

+ n•(n) [p(z - •e 3) - V(z)]1{=3 >o),

where z = (ZI,Z 2 , z 3 ),el = (1,0,0),e 2 = (0,1,0) and e3 = (0,0,1). I particular,
given any control law (Y(.), U(-)), for any real-valued function V on L(n), the process

(3.2) e-'&I(Z(")(t)) + Pt e-°a[,a(Z(n)(s)) -_£"n,•X()),u(p(Z(n)(S))]ds

is a local martingale.

Using the positive holding costs CI, c2 , c3, we define the holding cost function
h(z) = E?=, c1z*. Given an initial condition Z(')(0) = z E L(n) and a control law
(Y(.), U(.)), we define the associated cost function at z by
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(3.3) J3(n)()• Eoe=hZ('n)(t))dt.

In terms of the original queue length process, this cost can be written as (cf.(2.1))

n-1E jo 0 e-(a1)/nh(Q(n)(t))dt.

The value function at z is

(3.4) J!")(z)A inf{JI(2n) (z); (y, U) is a control law}.

For w : L(n) J R, we define the nonlinear operator £n' acting on V by

(3.5) £'n"*(z)ý= min{"n'I'uV(z); (y, u) E {0, 1}2} VzE LE().

The Hamilton-Jacobi-Bellman (HJB) equation for the nth queueing network is

(3.6) aW - 1""2½ - h = 0 on L(n).

The following is a standard verification theorem.

Proposition 3.1 The value function j(!) is the unique, linearly growing solution
of the HJB equation (3.6). If • is a linearly growing subsolution (respectively, su-

persolution) of this equation, then V <_ J(n) (respectively, ýO , J(n)). Furthermore,
any stationary control law (Y*, U*) satisfying

(3.7) £,n,Y*,Uoj(n) = £,-j.(n)

is optimal.

4 The heavy traffic limit of the value function

In order to let n --. oo, we need an upper bound, independent of n, for the non-
negative functions= The following estimate is an easy consequence of the
maximum principle, see Martins, Shreve & Soner (1993), Theorem 6.1.

679



Proposition 4.1 There are constants K, and K2, independent of n, such that

.")(z) < K1 + K2(zi + z2 + z3) Vz E L(").

We wish to consider lim,-.,, A(n), but since each A") is defined on a different
set L(n), the definition of this limit is not straightforward. Borrowing the technique
developed by Barles & Perthamne (1988) (also see Fleming & Soner (1993, Section
7.3)), we define the upper semicontinuous limit J# of {J n=)}•f by

(4.1) J#(z) _ lim lUm sup{j.n); 1lC - z[j < c, C E L(n)} Vz E [0,oo)0,
CIO n-.oo

and the lower semicontinuous limit J# by

(4.2) J#(z) 1= lim lirn inf{JWn); 11 - zll < c,C E L(")} Vz E [0,oo) 3.
CIO n-oo

Then J# is upper semicontinuous, J# is lower semicontinuous, and

(4.3) 0 < J#(z) < J#(z) :_ K1 + K2(zl + z2 + z3) Vz E [0, oo)3.

In (Martins, Shreve & Soner (1993)), we prove that J# = J#, and also we use
a Brownian network probl-m to suggest, for each q/ > 0, a sequence of stationary
policies {(y(n), U(n))},= 1 such that

(4.4) Urn Urn sup{ I7(n) (C) - J#(()I; 1C - zII < f, C E L()} ( n ,
CIO n--oo " nU

for all z E [0, oo)3. We call such a family (parametrized by 77) of sequences of policies
asymptotically nearly optimal.

5 The controlled Brownian network.

We first introduce the controlled Brownian network and then explain by an analysis
of the infinitesimal generator £n","" why it is relevant. Let MI, M 2 and MA3 be
continuous martingales relative to a filtration {.F(t)} satisfying the usual conditions
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that each JY(t) contains all null sets of .F(oo) and that .F(t) = fl.>t,(s) for all t.

Assume that for all t,

(5.1) (MI) (t) = 2A.t, (M2) (t) = (M 3) (t) = 2A2t,

(5.2) (MA, M2 ) (t) = (MA, M3) (t) = 0, (M 2, M3) (t) = -A 2 t.

Given z E [0, oo) 3, we will say that the quadruple (1o, I, t2, £3) of {Yr(t)} -adapted
processes is admissible for initial conditicn z provided:

(i) (to, tI, t 2, t 3) are right-continuous with left-hand limits, with the conven-
tion that tj(0-) = 0, i = 1,2,3;

(ii) to is of finite variation on bounded intervals;

(iii) 4I, t2,t3 are nondecreasing,

(iv) the state process Z(t) = (ZI(t),Z 2 (t),Z 3(t)) is in [0, oC) 3 for all t > 0,

where
(5.3) ZI(t) zi + MI(t) + pito(t) + ti(t),

(5.4) Z2(t) z - blu 2t + M2 (t) - pA£o(t) + t 2 (t),

(5.5) Z 3 (t) = z3 + (b1IA2 - b2/43 )t + M 3 (t) + A210 (t) - t2 (t) + N3(t).

The cost function associated with (40, 41, £2, t3), admissible at z E [0, o0) 3, is

V4, 1,,12,13 (z) = EJ e-th(Z(t))dt.

The value function for the controlled Brownian network is

(5.6) V(z) != inf {Vt&,t 1 ,12 ,13 (z); (4o, l,t12,s) is admissible at z}, z E [0,00)3.

The cross variation formulas (5.1), (5.2) imply that the vector of martingales
(MI, M 2 , M 3) is nothing more than a three-dimensional standard Brownian motion
multiplied by a non-singular matrix, so this vector of martingales is also a Markov
process. If we set the control processes £O, 41,t2, £3 equal to zero, the state process
Z(t) given by (5.3)-(5.5) is Markov with infinitesimal generator

(5.7) 4' = -bjP 2jo2 + (b/42 - t•)f + A1ý11 + AW22 - A2(P23 + A2 o33,
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where W is any real valued, C2 function on [0, oo)r with Wi denoting partial derivative
with respect to the ilk variable.

The controlled Brownian network is an intermediate problem between the
queueing networks studied thus far and the workload control problem of the next
section. Although the value function is well-defined by (5.6), the problem does not
have an optimal solution. One would like to keep the state Z(t) on a face of the
orthant [0,oo)3 , but this is not possible with the bounded variation control processes
to, 11,12,13. Fortunately, when we pass to the workload formulation, we will obtain
a well-posed control problem.

We conclude this section with an asymptotic expansion of the infinitesimal gen-
erator £"-Y," of (3.1) for the controlled queueing network. This expansion explains
the origin of the Brownian network problem introduced in this section.

Suppose p p: [0, oo)3 is thrice continuously differentiable, and all derivatives of
W up to order three are bounded uniformly on [0, 00) 3. Fix (y, u) E {0, 1}2, and
define

(5.8) 0 = V• •,.-- 2 ,,,, Y()1-s),o ,,)1-•)(l _ ,,).

Recalling (2.2), we may write
A7 I "n)b(n ) (n • _. (,) "(n),(n)

(5.9) U --- + , l-u)= 2 + -2 + b I \n )b2V/n- ~ ~ ~ ~ ~ ~ 0 (n,\n () /-2V n

For z E [0, o0)3, we set

(5.10) 311 ,u,,(Z) 5,")4,,yu[vr ýpj(z)- 1

(5.11) Be iI' uc�' p(z) = ,4n)p(1 - u)%tn 8n (z) 1{z 2 _--o}2 ,Z 1

62 v ' -v -j " --- (I,22 + W,-. - 2W,.,),

(5.12) B3 1P" - A /n W3(z)- W pI,(z).{__-o),

so that (3.1) becomes (see Martins, Shreve & Soner (1993) for details),
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(5.13) + o,[v,,(z)- +

+ ELI 87*990P(S) + *6
where CW s given by (5.7) and

(5.14) Ca (~..4)4~

(51)A"jpA PW !g(")j - 2ft + vw)

The expressiorns in (5.14), (5.15) are bounded uniformly in n. Howevw•, oj mad v2
are of order V,, as are the terms 8•"'¶o. The term VW -f(") + * ,;ý-A in (5.13)
agrees with VWp. C up to an error of order •, but this term cannot immediately be

replaced by VW. f because 9 multiplying it is of order vfn-.
Equation (5.13) suggests that the controlled Brownian motion Z(t) given by

(5.3)-(5.5) approximates the scaled queue length process Z(n)(t) = •Q((nt). The
control variable 0 in (5.13), which can be either positive or negative, corresponds

to pushing in approximately the direction • = (pI, -p2, P2) or the direction -f. In
(5.3)-(5.5), this pushing is accomplished by the locally finite-variation process to.
The processes i1, 12 and 13 appearing in (5.3)-(5.5) allow us to enforce the condition
Z(t) E [0, oo)3 for all t > 0. We have set up the controlled Brownian network to
allow 1i to grow even when Zi(t) > 0; this corresponds to idling the serving stations.

6 The workload formulation

Following Harrison & Wein (1989), we introduce the workload transformation
zi z2  _____

(6.1) W =-+_, 9W 2 - ,

P1 P2 P3

which maps the state space [0, 00)3 of the controlled Brownian network onto the state
space [0, oo)2 of the workload control problem formulated in this section. If (zl, z2, z3)
represents the three queue lengths, then (wb, W2 ) is the expected impending service
time for the two stations embodied in customers anywhere in the network. The
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workload formulation reduces the dimensionality of the control problem from three
(the number of customer classes) to two (the number of stations).

Because we can use the control process t in (5.3)-(5.5) to instantaneously

change the state Z(t) in the directions ±f 4 +(p0, -P12 P2) at no cost, the Brownian
network value function V of (5.6) will be constant along the direction f. This means
that V(zl,z 2 , zs can be written *as a function of (w1, w2), because (wl, w2) does
not change along the f-direction. It also means that one would want to keep the
process Z (t) on the locus of points in [0, oo)3 which minimize h along line segments
parallel to C. To find this locus, one considers for each (w1, W2) E [0, oo)2 the linear
program

Minimize cIzI + c2z2 + c3z3

Subject to 1, + - =wl,
AM' +- = 1W2,
5s3 lA3

z1 20, 22 0, Z3 >0.

Denote by h(w1, W2) the value of this linear program. We h-.e two major cases:

CASE I: clpl-cMp2 + C3p12 < 0.

In this case,

(6.2) h(W1 , W2) = cIpIwW + C30 3W2 ,

and the minimizer in the li-ear program is

(6.3) z4 = pIwI, z' = 0, z* = p 3 w 2 .

CASE II: cIP1 - C2 P2 + C3p2 > 0.

Now { (c 2 P2 - c3 P 2 )WI + c3 /A3 w 2  if /P3W2 _ P/2W1,

(6.4) hw, 2 ( c1p 1w1 + a(cOp2 - cIp)w 2 if P3sW2 <5wP21.

The minimizing values are

(6.5) 4 = 0,4= P2W11,Z; P3W2 -P21W if p3sW2 _2 1W1,

z4 = ýý-(p0wI - p3W2), 4 = psw2, 4 = 0 if P3W22 __ 2W11.
02
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The workload onmmW probem has state equaUams

(6.6) W(t) = W, - bi + -,M(+ M2Q)+ usdt),

(6LT) WAO) M ,A, - + ,( I + + --,,)

P3 PS
where the pai (mi, m) of {())-.adapted cmud pomu is datimak for 6

in w = (WI, .,) E ooot2 poroided:

(i) I, m2 are right-comtUUOU with hk-lband EiWts, with the cawemtflo
that

"m(O-) = 0, i = 1,2;

(i) MI, •2 are aom a

(iii) the state process W(t) = (W,(t), W2(t)) is in [0,00)2 for an t > 0.

(We have in mind, of course, that m,(t) = !L-U', m2(t) = !. , where 11,13 are part
of an admissible quadruple (to, 1,,1,, Is) for t&e controlled Brownian network.) The
cost function associated with (mi, m2) at w C [0, 00)2 is

and the wvaue function at w, is

(6.8) ((Z) = inf{V,.,,.,(z); (MI,,M2) is admissible at w).

Although we do not need this fact for our analysis, one can show that V of

(5.6) and V of (6.8) are related by the equation
. zl z 2 +z 3

(6.9) V(zI,z 2,z 3) = V(!A. + 12, - ) V z F [0,oo)3.
Al P2 P3

If one had an optimal (mi, m) for the workload control problem, then as an op-

timal policy for the Brownian network problem, one would want to take r(t) =

/pim;(t), r(t) 0 0, 1(t) = p3m2(t), and choose t o to ensure that Z*(t) is al-

ways given by (6.3) or (6.5) with wo = W,'(t), i = 1, 2, depending on the sign of

cI/I -c21P2 +c 3P2. However, such an to does not exist, and so the Brownian network

control problem is ill-posed.
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7 Solution of Cam I:

This is the caeM CP/ - C2P2 + C3P2 < 0. Since h given by (6.2) is increasi in each
variable separately, the optimal control processes m, and m2 act only when W, = 0
or W2 = 0, respectively. More precisely,

(7.1) m(t) max([-WI -- -+1 MI -()(W)N

(7.2) M2(t) - max [-w2 + b2o - 1 () - 1L 3(a)]+

o<&<t P3 P3

are the minimal nondecreauing processes which ensure that the associated state
processes remain nonnegative almost surely. In particular,

(7.3) mi(t) = j lw,l(.)-o}dmj(s), 0 _ t < oo.

One can actually compute the value function

fl(WI,, 2) = f'I~,,,,,,(WI,W•2)
(7.4)

= A + = " wBlwl + /Y2B2w2 + Ble-'I1 + B2e-'f"2

where -y > 0, 72 > 0 solve the quadratic equations
(A1  +2  - A22o

-1=0, L 2 + b272 -1=0,

and B, = cipI/-y1 , B2 = c3113 /7 2 , A = - 71 b1 Bl - 72b2B2.

The formula z2 = 0 in (6.3) suggests that customer class 2 should always have
priority, a fact already established by Chen, Yang & Yao (1991). Thus, for the
queueing networks, we define the stationary control law ( independent of n in this
case)

Y(z) 4 f 1 if z 1 >0 or z2 >0,

) 0 if z 1 = z2 = 0,

U(z) 2 ' 0 if z2 >O,
1 1 if Z2 = 0.

One can show that (Y, U) is asymptotically optimal in the sense of (4.4) with q = 0.
We omit the proof, focussing instead on the more complicated case IIA below.
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8 Discussion of CASE II:

This is the case clga - cap2 + cWJ5 > 0. In Martins, Shreve & Somr (1993) the
complete analysis is given only for

CASE IIA:c•cip - ca 2 + cWt _< 0, 0• -c€aaO, cpa -cigaŽ 0.

In this case, the function & eiven by (6.4)1 nondecrMasing in each variable
separately. The optimal control processes for the w.,rkload problem are still eiven
by (7.1), (7.2) and satisfy (7.3), but V no longer has the simple closed form (7.4).
Because
(8.1) fu(w) = E f' eati(w(t))dt, VW E [0,00)2,

the Feynman-Kac formula and elliptic regularity imply that V is C 2 on the open

quadrant (0, oo)2, k is C1 on the closed quadraut [0, oo) 2, sad

(8.2) V,(0,w) = V2(W1,0) = 0 V(WI ,W2) 4 [0,oo)2,

(8.3) a - - h =0on (0,00)2,

where A A , A1  0. "2  0 2  2

Z bO- -bM+ V +! + 023 +

for any C 2 function 0 : (0,ca)2 ---- R.

CASE 1IB: cIPs - C2jA2 + c3p2 > 0, c2 A2 - cg, 2 <0, C2p2 - cls >. 0.

Now h is strictly decreasing in wi for wi E [0, 1s9u2/gA2, which suggests that to1
should not be a&lowed to fall too far below p3W2/p 2 . Numerical experimentation sup-
ports the conjecture that there is a continuous, increasing function 92 : [0, oo) -+
[0, oo) such that the optimal control process mi in the workload control problem
acts whenever Wl(t) = 92(W2(t)) to ensure that the inequality W 1 (t) 2: 92(W2(t))

is always satisfied. The rest of the conjecture was set out in Section 2.

CASE IIC, ID: The functions 91 and 92 appearing in the Section 2 conjectures
about these cases are the free boundaries on which reflection should occur in the
optimal control of the workload processes.
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1. Introduction.

Stochastic integro-differential equations arise in reactor dynamics, heat transfer, atomic

scattering, population dynamics, and various other scientific disciplines. The randommns in the

equation can be due to any possible combination of (i) random coefficients, (ii) random initial

conditions, (iii) random forcing functions.

In this paper, utilizing a generalized variation of constants formula we have attempted to

estimate the error between the solution of the stochastic and the solution of the deterministic

version(mean) of a random integro-differential equation. Recently some attempts have been made in

this direction for random differential equations [3,5], for random difference equations (6,7], and It6-

type stochastic differential and integro-differential equations [8,9,10].

We also have obtained some sufficient conditions to guarantee the stability of solutions.

Furthermore, sufficient conditions are given for error estimates of solutions relative to corresponding

smooth systems. The obtained results of the present study would provide a tool that verifies to what

extent incorporating randomness in the system causes the change of behavior of the system relative to

its deterministic version.

2. Preliminaries.

Let us consider the stochastic integro-differential equations(SIDE)

t

yt = f(t,y,w) + J K(tsy(sw))ds , y(t 0 ,w) = YOM (2.1)

to

This research reported herein was supported by the U. S. Army Research Office Grant

No. DAAH04-93-G-0024.
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and the corresponding deterministic initial value problem (DIVP)

t

--= (t,m) + f k(t,sm(s))ds, m(to) = E[yo(w)] (2.2)
to

which is obtained by ignoring the random disturbances in the system described by (2.1). In our

subsequent analysis we will utilize the following random initial value problem(RIVP)

t

= f(tx) + J k(t,s,x(s))ds, x(to,w) = xo(w) (2.3)
to

In (2.1), (2.2) and (2.3), y,m,xE Rn, xo,yoER[[1,Rn]; E stands for the expected value of a random

variable; (CI,F,P) is a complete probability space,fE M[R+ x Rn,R[Q,Rn]], KE M[R+ x R+ x Rn,R~f1,Rn],

and f(t,y,w), K(t,s,y,w) are sample continuous in y for fixed t,sER+, fEC[R+xRn,Rn] and

k EC[R+ x R+ xRn,Rn].

We assume that

(H 1 ) f, K satisfies desired regularity conditions so that the initial value problem (2.1) has a sample

solution process existing for t>to;

(H2 ) fx, kx exist and fx EC[R+xRn,Rnxn], lkxEC[R+xRnxRn,Rnxn].

The above conditions implies that R(t)- x(t,t0 ,z0 ) is unique solution process of (2.2) or (2.3)

depending on the choice of z0 , where z0 is either yo or x0 .

3. Variation of Constants Method.

In this section we present a generalized variation of constants method for stochastic systems of

integro-differential equations with random coefficients. This method gives an integral representation of

a function of a solution process of (2.1) with respect to the solution process of the random initial value

problem (2.3) through (toyo(w)).

Theorem 3.1.[11] Let the hypotheses (H 1 ),(H 2 ) be satisfied, and y(t,w)= y(t,to,y0 (w),w) and x(t,w)

=x(t,toxo(w)) be the sample solution processes of (2.1) and (2.3) existing for t>to with Xo(W) -

yo(w). Further assume that Vx(t,x,w) exists and is sample continuous for (t,x)ER+ xRn. Then,
t

V(ty(t,w),w) = V(toX(tW),w)+ f {Vs(s,x(t,s,y(sw)),w)

to

+Vx(s,x(t,s,y(s,w)6),w)9(2ts,y(s,w))R(s,y(s,w),Ty(s,w),w) 
ds
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+ J fJ[vx(ff~x(tsorY(Urw)),w)O(tiff,y(o',w)) - Vx (s,x(t,s,y(s,w)),w)L(t,.S,y(s,w),W)]
tos3

lk(a,s,y(s,w))daods.

where R(t,y,Ty,w) = f(t,y,w)-.f(t,y) +J [K(t,s,y(s,w),w)-k((t,s,y(s,w))]ds. (3.1)
to

Proof.- From (2.1) and (2.3), system (2.1) can be rewritten as

y i(t,y) + J k(t,s,y(s,w))ds + R(tjyTyqw) (3.2)
to

where R(t,y,'fy,w) is as defined in (3.1).

Let x(t,s,y(s,w)) and x(t,w) = x(t,t0 ,y0 (w)) be the sample solution processes of (2.3) through

(s,y(s,w)) and (t0 ,y0 (w)), respectively, and y(s,w) = y(s,t0 ,y0 (w)) be the sample solution process of

(2.1) through (t0 ,y0 (w)). Now we compute the total sample derivative of V(s~x(t's,y(sW)),W) with

respect to s as

d Vs~xt'sy~sw))w)= Vs(s'x(t's'y(s'w)),w)+Vx (S,X(t,s,y(s,w,)),w)[,.x(t,s,Y(S,W))J

= V5 (s,x(t,s,y(s,w)),w)+ VX(s,X(tAsY(s,w)),W){ - 'Z(t,s,y(s,w))f (s,y(s,w))

t s

f L~~rsysw)Zo,~~~)d,ý~~~~~)((,(,)+ t'Z(s,f,y(ý,w)dý

5 to

+R(s,y(s,w),Ty(s,w),w)) )
=V5 (s,x(t,s,Y(s,W)),W)+VX (s,x(t,s,y(s,W)),W) { - L(t,G,;s,y(s,w))I (u,,s,y(s,w))da

5

+-~tSy('))fk(s,f,y(f,w)d( + R(s,y(s,w),Ty(s,w),w))) w.p.1 (3.3)

to

Integrating in the sample sense both sides of (3.3) from to to t, and noting x(t,t,y(t,t0,y0 (W),W))=

y(t,t0 ,y0 (w),w), we obtain,

V(t'y(t'W),W) = V(t 0,X(t,w),W)+ f {Vs(s'x(t'sty(s'W)),W)
to

- f Vx,'~''~sW)&~ L~~,sy~~)1 (o,s,y(s,w))dods

to 5
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+ f Vx(R~~~~i)~wQtSYS~)Jk(s,f,y(f~w))dfds (3.4)

to to

Using Fubini's Theorem the last term in (3.4) can be written as

tot0

-I Vx ~~(o,sx(ts~yo,w)),w) $(t~s,y(s o'Iksf~,w))d(o's.ysw)os 35

tot 0

Using (3.5), (3.4) can be rearranged as (3.1) and hence the theorem follows.

Corollary 3. 1: Let the assumptions of Theorem 3.1 holds. If V(t,x) = x with n=m, then (3.'

reduces to

t

Y(t'W)=x(tiW)+J $(t,s,y(s,w))R(s,y(s,w),Ty(s,w),w)]ds

to

+ j f sto~ow)L(tis~y(s~w))} 1(tT,s,y(s,w))dods. (3.6)

tos

Remark 3.1: If f(t,y,w~) = A(t,w)y, K(t,s,y,w) = a(t,s,w)y, then (3.6) reduces to

t

$~')Xt')f<(t,s) R(s,y(s,w),Ty(s,w),w))ds (3-7)

to

Corollary T.2: If X,(L,x,W) = 11X11 2 then (3.7) in Theorem 3.1 reduces to

Ily(t,wJ)1I2 = lix(t w)112 +4 2 f x T (,s,y(s,w))4ý(t,s,y(s,wj))R(s,y(s,w),Ty(s,w),w)ds
to

toS -x (t,s,y(s,wj))L(t,u,;s,y(s,wi))}k(o-,s,y(s,w))do'ds. (3.8)

Theorem 3.2: Suppose all the hypotheses of Theorem 3.1 hold. Then,

V(t'y(t1W)-:R(t),W) = V(t0,x(t'W)-ic(t.),W)+ f {VS(S,X(tisly(s,w) -x(t,s,i (s)),w))

to

+jJ{VVuxt x~(s,xw)) ~ ,J)Xts:is,)(~~~~)R~~~~)T~~)wP

tos
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- Vx (s,x(t,s,y(s,w)) - x(t,s,i (s)),w))L(t,s,y(s,w))}IK (a,s,y(s,w))dads. (3.9)

where i(t) = x(t,to,z&, is the solution process of either (2.2) or (2.3) depending on the choice of zO.

Proof: By following the proof of Theorem 3.1, we have the relation,

dsV(S,x(t,s,y(s,w)-x(t,s,i (s)),w)) = Vs(s,x(t,s,y(s,w)-x(t,s,i(s)),W))

+Vx (s,x(t,s,y(s,W))-x(t,s,. (s),w) d!x(t ,sy(s,W))-x(t,s,:k(s)

Using this and following the steps of Theorem 3.1, the theorem can be easily obtained.

Corollary 3.3: If V(t,x,w) = 11xI12 , then (3.9) in Theorem 3.2 reduces to

Ily(t,to,yo(w),w)_-x(t,t 0 ,z0 )112= IIx(t,toyo(w))-x(t,t0 ,z0 )jj 2

+ 2 j (x(t's'y(s'W))-x(t's'xR(s))T$(t,s,y(sw))R(sy(sw),Ty(sw),w)ds

to

t t

+2f f xt°,(rw)-~,, (a')) ) T(t,s,y(s,W))

to s

- (x(t,s,y(s,w)) - x( t,s,• (s)))TL(t,o,;s,y(s,w))]f (o',s,y(s,w))dods. (3.10)

We recall that i(t) = x(t,to,z0 ) is the solution process of either (2.2) or (2.3) depending on the choice

of z0 . In other words i(t) is either m(t) = m(t,t0 ,z0 ) = x(t,t 0 ,m0 ) or x(t,t0 ,xo(w)).

4. Stability Analysis

By employing the preceding results, we give sufficient conditions for the p-th moment stability [4,8,9]

of the trivial solution process of (2.1).

Theorem 4.1: Let the hypotheses (111), (H2 ) be s~tisfied, and y(t,w) = y(t,to,yo(w)) and x(t,w) =

x(t,t0 ,x0 (w),w) be the sample solution processes of (2.1) and (2.3) existing for t>to with xo(w)=

yo(w), Vx(t,x,w) exists and is sainple continuous for (t,x) ER+xRn. Furthermore, V(t,x), x(t,w),

*(t,s,y(s,w)),R(s,y(s,w),Ty(s,w),w),f(s,y(s,w)),k (t,s,y(s,w)) satisfy

m

(i) b(]xIIp)_ < m I Vi(t,x)I 5 a( IJxIIp) for all (t,x) E R+x Rn where p2 1, bE'% and aE C%;
i=I

(ii) f(t,O)_- 0, K(t,s,O) E 0 with probability I for all s<t E R+;
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(iii) I IiV(s, x(L's,y),wJ)Ij : A1(t-s'&d1 IV(s'y(s'W))I 1+J A2(s,.4(((t,r)IIV(v,y(r,wi))I IdT
to

where to <r< 8 < t, and IlyIIl' < p, where p is some positive real number,

SV(S,x(t~sy)) = Vs(s, x(t,s,y)) + Vx(swx(t,s,y),w){4(ts,SY(s,W),W)R(sty(5,w)iTy(siw),wj)

to s

x(t,s,y) is the solution process of (2.3) through (s, y), p>O and AEC[ R+, R+j nl L1[R+, R+J defined

S

by A(s,w) =AI(s,W,) + f %2 (s,w)Ik(s~r,w)dr, A1.nd JA E q( R+, R+] nl L'[R+, R4J and pu is

t to t
defined by f Ht(t,s,wj'ds with H(t~s,w) = A1(s,W~) + Jf k(t',sW)A 2 (rtw)dr such that

to S

at >- on R+ x R+ and A(s,w) satisfies the relation

p' ~st~~d :e ks'd1  (4.2)

(iv) 11 V(to,x(t,w),wj)II : a( 11 yo(w)jIp), whenever E( I1yoIJ"I :5 p for some p > 0,
where a E M3G Then the trivial solution process of (2.1) is stable in the p..th moment.

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 hold except that (iii) and (iv) are

replaced by

+'\2(~w)'2(t-,w)fr 3(s-r,w)II V(r,y(r,w~),w)jj for to < s< L,

to

(iv) lIV(to'x(t,'W),W)II :5 &( 11 yo(W)IIP)P(t-t 0), t> to,

provided E(Ily 0(w)IIpI :5 p where a ECSG; q11,12,# E 11, and satisfies

q2 (t-r)R3 (r-S) :5 Kq1(t.-s)A\(t-s) for some A ELI nC(R+,R+l and

to



s

where A(s,t 0 ,W) = KAI(s,w) + KJ A2 (s,w)A(s-(,w)d(. Then the trivial solution process is

to

asymptotically stable in the p-th mean.

5. Error Estimate Results.

We present a few error estimate results by employing the method of variation of parameters with

regard to systems of integro-differential equations with random coefficients.

Theorem 5.1. Let the assumptions of Theorem 3.2 be satisfied. Further assume that
m(i) b(jjxjjp) -< 1 [Vi(t'x'W)I -5 aulxllP),

i=1

(ii)Z IDVi(sx(tsy)-x(tsz),w)-< 1 •l(t-s)C( ly-zll)+\ 2 (t-s)C(ilzll)
i=1

+1 A3(t's)i(t'r)C(llY(,)'z(,r)llp)dr"

to

where to5r_<s<t, aE% and it is differentiable, bE TS', C E S, and DVi(s, x(t,s,y)-x(t,s,z),w) is

the i-th component of

DV(s, x(t,sy)-x(t,s,z),w)

=Vs(s, x(t'swy)-x(t's,z) ,w) +Vx(sx(t,sy(sW))-x(t,s,(.(s)))1(t,s,y(w))R(s,y,Ty,w)

s t

+ 0(t's'y(sW))f l(s,t,y(ý,w))dt - IJL(t,u;s,y(s,w))k(os,y(s,w))ds} (5.1)

to s

Pý, A 1,A2,A3 E C[R+,R+J n LI[R+,R+]. Let us define H(s), d H =--L, h(s) = C((b'l(s))P)

and assume that H E %.

Then,

E[jjy(t,w).:(t)jjp]< b'f[r(t,w)] (5.2)

for t > t 0 , where y(t,w) and x(t,w) are the solution process of (2.1) and (2.3) through (t0 ,y0 (w)), and

ic(t) = x(t,to,zo) is the solution process of (2.2) or (2.3) depending on the choice of zo: f(s,w) is the

absolute value of the sum of A2 (O,w)CIIi(s)Ojp and the time derivative of a (jjx(t,w)-R(t)(IP); r(tw)

is the maximal solution process of the integro-diferential equation

t

ml(t,w) = P(t,w) + A1 (O) h(m(t,w)) +f 3 (0w) A(t,)h(m(sw))ds. (5.3)

to

Corollary 5.1: Suppose that all the hypotheses of Theorem 5.1 are satisfied except the differentiability

of a and assumption (ii) are replaced by

110(t,s,y)(I _< K for to<_s<t, yERn, (5.4)

and assumption (ii) is valid whenever(5.4) holds, where K is a posive real number. Then (5.2)
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reduces to
E[lly(t,w)-:k(t)llp] <5 b-1[r(t,,•)]

where r(t,w) is the maximal solution process of the integro-differential equation

t

m'(tW)=A2 (O,w)C(1I-t (t)Jl)+A (O)h(m(t,w))+J A3 (O,W)i(t,r)h(m(s,w))ds, t>to (5.5)

to

The details of the proofs of these presented results will appear elsewhere.
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Abstract:-We considered several population models such as exponential growth, logistic growth and

competetion models with random coefficients and random initial conditions as random parameters. If, one or

more of the initial conditions are degenerate constants, then Liouville's theorem, which describes tie

evolution of the Jacobian of the mapping is no longer applicable. Based on a numerical technique developed

by Bellomo and Pistone (21, we obtained joint probability density function for the dependent variables or the

marginal probability density function for the individual dependent variables. Numerical methods are also

explored in these cases.

1. INTRODUCTION

Modern population biology is based on the fundamental models such as exponential growth, logistic

growth, and competition models. Yet, their adequacy is questionable, in part, due to their

deterministic properties. There has been a number of studies based on these models and treated the

coefficients or initial conditions to reflect random environmental fluctuations (5]. Our analysis is based

upon treating one or more, and perhaps all, of the initial data to be deterministic. In this approach,

Liouville's theorem, which describes the evolution of the Jacobian of the mapping is no longer

applicable. A more generalized valid technique, utilizing standard numerical methods for solving

differential equations has been developed by Bellomo and Pistone [2] and utilized by Harlow and Delph

[3] in solving differential equations numerically. This technique yields Liouviile's theorem as a special

case and utilizes the direct mapping between the nondegenerate random variables and the space of

dependent variables. We have utilized this technique, in obtaining the joint density or the marginal

density of the individual populations. The first and second moments are obtained to study the

qualitative properties of populations. Standard numerical techniques are used for various cases.

The research reported herein was supported by the Army Research Office Grant No. DAAH-04-93-G-

0024 and the National Security Agency Grant No. MDA-904-93-H-2002.

this oaper was presented at the Tenth Conference in this series.

600



2. PRELIMINARIES

Consider the random differential equation,

dX = g(t,X,A); X(to) = Xo (2.1)
T Twhere X=(X1,X2,X3 .... Xn) , g=(gl1,g2 ....,gn) , and T denotes transpose. The parameters

X0 = (XI 0 , X20 ..... Xn0)T with joint probability density function fx0 (x0 ) and A= (AI,A 2 ,...Am) with

joint probability density fA(A) are assumed to be random. A and X0 are assumed to be independent.

We would like to consider the broader class of problems in which at least part of X0 is degenerate.

We need the following results in our subsequent analysis.

Lemma 2.1 (3] Assume that (2.1) has a unique solution h(t,t0 ,X0 ) on [ a, b]. Let fX and fA are

continuous on the domain D(t,X,A) of (t,X,A) of dimension(n+m+1). Then the solution is

continuously differentiable on { a<t<b; U1 where U= ( a<t0 <b; IX0 -P(t 0 )I + jA-A 0o < 6).

Furthermore, OX= h Y Yis the solution of the initial value problem

dY-t" = fx(t h(t t0,X0,A),A)Y + .O (th(tt0'X0'A),A); Y(t 0 ) = 0 (2.2)

ahSimilarly, - = Z satisfies
U"iO

d" = fx t'h(t't0,X0'A),A Z; Z(t0) = ei (2.3)

where ei is the vector ei= (0,0,0,...,I,0,0..,0)

Lemma 2.2 [4] Let X00 represent the i<-ndegenarate probability subspace contained in X0 , and the

dim(X 0 0 ) -- L. < n, where n = dim X0 . We consider the following three different cases.

Case(i): We consider the situation, in which O<L<n, 1<.A,€< n, and L+.A•t= n. In this case,

dim[ X0 0 ,A]= dim X. Therefore, the mapping (X0 0 ,A)--X=h(t,t 0,X 0 0,A) is well-defined. If the

mapping is assumed to be continuous, and well-defined. If the mapping is assumed to be continuous,

and one-one, then - l(t,t0 ,X) = (X0 0 ,A) exists, and the Jacobian J(t,t0 ,X) of the inverse mapping,

given by, h-: X--(X 0 ,A) and

J(tt 0,X)= ar.-I = (2.4)

The probability density function for (X0 0 ,A) to that of X is given by,

fx(t,t0,X) = fA,x 00 (t,to, h-'(t,t0,X)).IJ(tt 0,X)I (2.5)
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Case(ii): We consider the situation, in which 0<1<n, l<A<n, and L+.AL>n. Let q= L+,A-n.

In order to obtain an invertible mapping, we carryout a standard augmentation of the probability

space of X. To be specific, let us assume, without loss of generality, that q<cA, and define

Bi = A q+1 B2= AX q+2, B3= B3  q+ ...... .Bq= AA

We now consider the mapping (X00 , A)--,(X, B)= (h(t,t 0 ,X0 ,A), B(A)); which is well-defined.

The Jacobian of the mapping is
K(t,t0,A,X00) 8(h,B) (2.6)

K~t~t 0,AX 0 0)

We assume that the mapping is invertible in the form (X00,A) = (h-l(t,t0 ,X,B), A(B)), and hence,

the Jacobian of the inverse mapping satisfies

JttXB (h= IA),''0''' - O(X,B) K(t,t0 ,(A,X0 0 ))

= (h--(t,t0 ,X,B),A) (2.7)

We can compute the joint probability density function on fX,B from the relation

fX,B(t,toX,b) = fA,X 00 (t,to,h- I (t,tOX.b),A(b))IJ(t,tO,X,b)I (2.8)

and the jpdf for X may be obtained from equation (2.8) by

fX(t'toX) = f.... fXB(t~toXb)dbidb 2db3..dbq (2.9)

we will consider the case L+A<n, the case for which the sum of the dimension of the nondegenerate

initial conditions and the dimension of the random parameters A is strictly less than the dimension of

X. In contrast to the first two cases of consideration the inverse transformation X--(X 00 ,A) is not

well-defined and hence the Jacobian J does not exist. The joint probability density function fx may be

either zero or does not exist. Nevertheless some, and possibly all the marginal pdf's may be

constructed by means of the following procedure.

Case(iii): Let 0 <1<n, l<A<n, and .L+A<n. We will find the prf for the variable

Xi =hi(t,t0,A,X0), _<i<n. We will assume that the solution for Xi is invertible in one of the random

parameters (A, X00). Without loss of generality, assume that this parameter is A1, so that we may

write

AI- hi 1 (ttO,Xi,XOO 1,Xx002 .... ,X00 1, IA 2 ,A3 ,..,AA) (2.10)

We perform the following augmentation, and define

B 1-A2. ......... , B•.6-1 =AA, BA•=X001,..., BAb+L.I= X00 1  (2.11)
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By virtue of equation (2.11) the direct mapping ( A,X00)-.(XiB) exists, and the Jacobian has the

simple form, aX.
K(tt 0 'AX 0 ) - (2.12)

and hence the Jacobian for the inverse mapping satisfied,

J(t,tO,XiB) = K (1
K~(ttOXi... ), A2 =B1 ..... X00-=BA+L-1)

The joint pdf is given by,

fXiB(tt0,Xib) = ]JJfX 00A(t,to,Al=h-',A 2=bl ...... X001=b &+L-1) (2.13)

for which the marginal pdf for Xi is given by

fx (ttO'Xi) = I.... J fxiB(ttoXib)dbldb2 "''dbA+Ll1 (2.14)

Now we are in a position to discuss the main results.

3. MAIN RESULTS

We will discuss the basic biological models such as exponential growth, logistic model and competition

model treating parameters as random.

3.1 EXPONENTIAL GROWTH MODEL:

Consider the exponential growth model of the form,

dN =
dt T rN, N(0) = No (3.1.1)

Here, r and No can be treated as random parameters.

1. RANDOM INTRINSIC GROWTH RATE:

Assume that the initial condition No is deterministic constant and r is a random variable and

independent of time t. Let r- Normal( fr 2 ).

Then, fr(r)= I exp{J-(r-f) 2}, -oo<r<oo

our aim is to study the mean and variance of lnN. That is, EIn o] and VIn oj.

the solution of (3.1) is given by, N(t) = N0 ert (3.1.2).

The space (X0 0 ,A) = r and X= N. Therefore, the Jacobian of the mapping J: ( X0 0 ,A)-.X is

defined and is given by, O(AX 8N - Nt.
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Therefore, fN(N) = fr n <) -oo<N<oo

2.Fex __t)~l~-i2  -oo<11n t~<00 (3-13)
0 0

Let, Z oltaink,--ý N(0,1) and we obtain, In taZ + tF.
t 0 0

Therefore, Ein kl] = ti and In -0- - t2012. (3.1.4)

If we assume that the initial condition No is a deterministic constant, and r is a random variable

follows Unif(1,2) and independent of time. That is r-Unif(1,2).

Then, fN(N) = lef; I<nV - <in 2r (3.1.5)
tR t 0

Noe 2t Noe2t

Now, 4n N].' (In N-) IdN 3t tand IflnL] J (In N ) 2 1 dN 72
11W0 Noet 0 Noet

and hence we obtain,

4 ]I n 1.er2,t2 
(3.1.6)

2. RANDOM INITIAL CONDITION:

Assume that r is a deterministic constant, and No is a random variable and follows exp(A) and

independent of time t.

That is, N0 - exp(A), and hence fN(N) K-- r.A[X-- •rt If N>0.

Therefore, E[ NJ =ert an 1 2rt. (3.1.7)
A2

If r is a deterministic constant and N0 is a random variable follows N(p, o,2) then, we obtain
Te rt 2 2rtE[N]=pe = andeVIN = or e

3. RANDOM INTRINSIC GROWTH RATE AND RANDOM INITIAL CONDITION:

Assume that both r and N0 are random variables and independent of time. In this case the Liouville's

theorem fails and we use case (ii) of Lemma 2.2. Here, X= (N,r), and the Jacobian of the direct

mapping (X 0 ,A)-.X=(Nr) is given by, K- I ON =rt. If No, r are independently Uniforrly(1,2)

Then, 0N-

fN,r(t,N,r) = -rt, I< r< 2, I< N-rt< 2.

Then, 2 ert

E[N]=fJ Ne-r'dN = 3 (e2t-et) Et 2 
- (e4 t~e2 t). (3.1.8)

1 ert
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3.2 LOGISTIC GROWTH MODEL

Consider the Logistic-Growth model,

S= rN (A- ), N(O) = No >0 (3.2.1)

Here r, K and No can be treated as random parameters.

1. RANDOM INTRINSIC GROWTH RATE:

Assume that r is a random variable while K and No are deterministic constants.

Let, r-Normal (f, 22).

Then, (X00,A) = r--X=N is well-defined and hence the Jacobian of the direct mapping - l'j-I.
The solution of (3.2.1) is given by,

KN 0 ert (K-N 0 )KN Art
N = -and Jacobian of the direct mapping -- = t

K-N 0 +N0 ert (K+Noert- N)2
(+ ert-N02

Therefore, fN(N) = fr(r in terms of N, No and K). (+o - N)

(K- N0 )KNoertt

I K exp F !InfN(K-No) _(21

TM9o T(K-N)Nt 202 tL (K-N)

TIinf N (KN ) rr N (KN)
Take, Z= .- t(K N)0 f-- therefore In To -K = t0Z + it, which gives,

Iln f N-(K-NO)}j = ti and V fln (K-No) - t2 2. (3.2.3)[NO (K -N) go- (K "0--• N)(.23

If r is uniform random variable - Unif(1,2) while K and No are deterministic constants.

Then, fN(N) = fr 1 In N K-N0 -] K
K f r N )Nt

K whenever 1< < In N K-N < 2 (3.2.4)

Then,(K-N)Nt'

n •N0 (K-N) j = 2 and [ ( N0 (K-N)• j = 12t2. (3.2.5)

2. RANDOM CARRYING CAPACITY:

Assume that K is a random variable, r and No are deterministic constants.

Let K ý-- Unif(I,2), then N0(ert -)ert NN 0(1-Crt)

fN(t,N)= (N0 ert N)2 ; 1 N-N 0 ert <2

We can obtain the mean and variance as follows:
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E(N(t)] = N 2(ert-l)ertnN 0 (ert1l) I + N)ert
0 N(ert~~1etn _0 e 1)+2 + 2

and V[N(t)] = N0
3 (ert -)e 3 rt 1 (3.2.6)

[N0(ert- 1) +1][ N0(ert-1) +2)

N04 (ert 2)2 e2rt ,n N0(ert-I)+I

N0(ert-1) + 2

3. RANDOM INTRINSIC GROWTH AND CARRYING CAPACITY:

Assume that r and K are random variables and N0 is a deterministic constant. In this case,

(X00,A) = (r,K), X= N. Therefore, the Liouville's theorem fails and we will consider the case (ii) of

our Lemma 2.2 and augment the space X. Consider the mapping (X00,A) = (r,K)-X = (N,r) is well-

defined and the Jacobian of the direct mapping,

K- xT ! (N0ert-N)2K ' N0
2(er_ 1)ert and hence the joint density of N, r are given by

K0(e No 2 l(et -(3.2.an7)nc

fN,r(t,N,r) = fr,K(r,K in terms of r,N,N0)(. Noert - N)e (3.2.7)

Assume that r and K -i.i.d. with Unif(1,2). Then, the joint density of (N,r) given by (3.2.7) reduces

to, N0
2 (ert-l)ert NN 0 ( 1 Art <

fN,r(t,N,r) = No; I < r < 2, 1 < (1_-er) < 2. (3.2.8)

(Noert-N)2 ' (N-N 0Crt )

The marginal density fN(t,N) can be obtained by integrating (3.2.8) with respect to r.

4. RANDOM INTRINSIC GROWTH, CARRYING CAPACITY AND INITIAL CONDITION:

If the parameters r, K, and No are random variables, i.i.d. Unif(1,2). Here Liouville's theorem fails

and we need use :ase (ii) of the Lemma 2.2. We obtain, the joint density function fr,K,N(t,r,K,N) as

follows:

fr,K,N(t,r,K,N) K2 ert 1< r <2, 1< K<2, Kert < N < 2K+ert
[ (K-N)ert+N]2 (K-1)+et (K-2)+2ert(

The marginal density fN(t,N) can be obtained by integrating (3.2.9) with respect to rand K.

3.3 COMPETING SPECIES MODEL

Consider the competing species model 2

xi= xi(ai-E bijxj), i =1,2 (3.3.1)

j=1
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where xi is the population density of the i-th species in the community. Let 01>0, &2>0 be the

equilibrium states.

Then, (3.3.1) becomes,

w= ,-biiwi - bij(a+wi)wj, i=1,2 (3.3.2)
j=l I Ij

The total number of parameters are bll, b12 , b2 1 ,b2 2 , wl(O), w2 (0). Assume that wl(0), w2 (0) are

deterministic constants, 1l,02 are constants, and bill b1 2 , b2 1 ,b2 2 are random. In this case

(X00,A)=(bil, b12 , b2 1 ,b2 2 ), X= (wlw 2 ) therefore, Liouvill's theorem fails and we use case (ii) of

Lemma 2.2 and we extend the space X as X= (wl,w2 , b1 2 ,b2 1).

Therefore, the mapping (X00, A) = (bll,b12 ,b2 1 ,b2 2 )--(w1 ,W2 ,b1 2 ,b2 1 ) is well-defined and the

Jacobian of the mapping

a1 1 a 1 2 a1 3 a 14

K = 9XT = det a21 a22 a23 a24 (3.3.3)
O(X0 0 ,A) a31 a32 a33 a34

L a4 1 a4 2 a4 3 a4 4 j

where a, w1  a12- w2  &b1 2  Ob2 1  Ow1  Ow 2whee ll= , a 12 -la13 = j--ll , '14 = J--•lI , a21= J--•2,I a22 = 5l

Obl 2  -b 2 1  w Ow2  -9b 12  Ob2 1  Ob21
, -2 a31 = ý-- , a 32 = a , a3 3 = - , a34 a4 =

Ow9  Ob1 2  ab21
a 4 2  = a 2 2 a 4 3 = 2 2 a 4 -4 . 2 2 ,

Ow2 Ow1  w1 Ow2

By expanding the determinant, K = 4w al
0b 1 1 Ob2 2  abll ab 22 "

In order to obtain the Jacobian, let's use Lemma 2.1. Let's take w(t) = h(t,t 0 ,X0 ,A) be the solution

process of (3.3.2).

Then, OW = Y is the solution of the I.V.P.,

dY = gw(t,w(t),A)Y + Og(tw(t),A) Y(t) = 0 (3.3.4)

Similarly, J = Z satisfies,

it = gw(t,w(t),A)Z, Z(t 0 ) = e• (3.3.5)

From (3.3.2), (3.3.4) can be obtained as follows:
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=F-b 1 1 (a,+2wI)-bl 2 w2  -bl 2 (01+wl) ]Y+Jg(t,w(t),A), Y(t 0 ) = 0

Lb2 1(ci 2 +w2 ) -b 22 (02 + 2w 2 )-b 21wl i (3.3.6)

where ( t ) F -(+ 1 W)Wl -(&-+wl)w 2  0 0

we tw ~t),j- L 0 0 -(a 2 +w2 )wl -(0 2 +w2 )w2 j

We can solve (3.3.6) to obtain the Jacobian K.

Then, the Joint density of wI, w2 , b 12 , b21 can be obtained by using,

fw ,w2,b 2 1,b22 (wl,w2 ,b2 1,b22 ) = fb1 1 ,b12 ,b2 1b (b1,bI2,b2h,b22) 1 (3.3.7k

Individual or marginal densities can be obtained by integrating (3.3.7).

4. NUMERICAL METHODS

In this section, we will illustrate the analytical results obtained in the previous sections along with

standard numerical methods to obtain the joint probability density functions and the marginal

probability density functions of the solutions of exponential, logistic and competing species models

involving random parameters and random initial conditions.

The numerical technique we have adapted is somewhat similar to [2], for the case in which the

initial conditions are completely random. The method involves numerical computation of the inverse

mapping X--X and using standard numerical quadrature methods in order to obtain marginal

probability density functions.

Example4.1. Consider the exponential growth model,
dN_-= rN, N(0) = N0  (4.1)

Assume that the parameters No, r are random variables Uniformly distributed on the interval (1,2).

The solution of (4.1) can be easily obtained as,

N(t) = N0ert, t>O

and the joint probability probability density function of (N,r) are given by,

fN,r(t,Nr) = e-rt, 1< r< 2, 1< Ne--rt< 2 (4.2)

The marginal probability density function r,' N in (4.2) can be obtained as follows:
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"t-•[ Ne-t-ll, et< N< •2t

fN(t,N) = Ne-t-Ne- 2 t, e2t< N< 2et

t-( 2-Ne-2t1, 2et<N<2e2 t (4.3)

for t< 1n2, and for t > 1n2
"tR--1 [ Ne-t-1], et< N< 2et

fN(t,N) = 2et< N< e2 t

t-1 [ 2-Ne- 2 t], e2 t<N<2e2 t (4.4)

and fN(t,N) -O outside the indicated region.

The Jacobian J of the inverse mapping N--., N0 is governed by,

0 =-r, J(d)=1 (4.5)

In the numerical scheme proposed in [2] a value of r is chosen in the interval (1,2), along with a

value of N. Then, (4.1) is integrated backwards in time from a given value of t to determine the

corresponding value of No. This species the inverse mapping. Then, (4.5) is integrated forwards in

time using the calculated time history N(t) to obtain J. This procedure will leads to the joint pdf

fNr(t,r,N). This joint pdf will be numerically integrated with respect to r to obtain the marginal pdf.

The results are shown in Fig. 1. Again the numerical solution agrees with the exact solution to within

the resolution of the plot.

When No is a deterministic constant, the pdf fN(t,N) can be found to be

fN(t, N) =-L, N0 et < N < N0 e2 t (4.6)

and identically equal to zero outside the indicated region.

Now the inverse mapping is the mapping r---N. For a given value of t, this mapping may be

calculated by a simple numerical shooting procedure which involves choosing a value of N, and then

varying the value of r systematically so as to arrive at the chosen value of N when (4.1) is integrated

forward in time. The Jacobian K of the mapping r-- N is just K = dN y, and from (2.2)

dY=rY+ N, Y(O)=0 (4.7)

In the numerical scheme, given the value of r from the shooting procedure and the time history N(t),

(4.7) can then be numerically integrated to obtain Y. The Jacobian of the inversae mapping N -. r is
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given by J = 1/K=I/Y. An application of Lemma 2.2, equation (2.5) then yields directly the pdf for

the solution fN(t,N).

We now consider an example from logistic growth model which illustrates the second of the three cases

in Lemma 2.2.

Example 4.2. Consider tht logistic growth model,

tNT = rN(K-N), N(0) = NO >0(4.8)

Here r, K are random parameters, and No is a deterministic constant.

In order to get the Jacobian, consider the mapping (X0 0 ,A) = (r,K)--*X = (N,r) is well-defined and

the Jacobian of the direct mapping,

O(N,r)T [ ON ON rt 2
K = , = det Tr R.ON (". (4.9)

O~,)Or Or 3K N2 (et -)ert (49

The joint density of N, r is given by,

fN,r(t,N,r) = frK(r,K in terms of r,N,N 0 ) . N(0ertN)2 (4.10)

Assume that r and K-i.i.d. with Unif(1,2). Then, the joint density of (N,r) given by (4.8) reduces to,

N(tNr) N0 2(ert - 1)ert < r < 2 1 < NN 0(I ert) < 2. (4.11)fN,rtNr = (NetN2 ANNet

(ýNoert -N) 2  1NN

Therefore, the marginal density function of N can be obtained as follows:

-1 n! + _,NI<N <N2N0et - N tN t(N0 e2 t - N)2

= ni N0 e t-N1 N0et(et-1)(N-N 0 )
fN(tN) =-- _ -J + t(N e2t N)(NoetN) 2  3 .

,(Ne2t-N)(2-N)- (2-N) (N--N0 )
'i n -N + N ______SNNn J +-- t(N0 e2tN) 3  N4

NN~et 2e2t Net

where N- N0e2t , N2- Ne 2Ne _

IN0(e2t-1) + 1 2-N0 -1) + I =N 0(e2t-1) + 29N4 N 0(e'-1) + 2
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The numerical scheme is similar to the one described in Example 4.1. The results are shown in Fig. 2

for NO= 5. Again the numerical solution agrees with the exact solution to within the resolution of the

plot.
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1. INTRODUCTION

Singularly perturbed systems with two-time scale and, more generally, multi-time scale systems,

often occur naturally due to the presence of small " parasitic" parameters multiplying derivatives

[3,8,9]. In the last two decades the method of asymptotic expansion which is based on order reduction

and boundary layer corrections has been widely used for such systems (7,9]. Recently, an alternative

approach has been developed, where one develops a suitable non-singular linear transformation which

partially or totally decouples the original system. The transformed system enables one to study the

stability of original system with relative ease. This idea was initiated by Khalil and Kokotovic [23 for a

two-time scale problem and Chang[l] for a general boundary value problem. Later, Ladde and

Siljak[6], Ladde anbd Rajaluksmi [5], Ladde and Kathirkamanayagan[4J have used the idea for

multiple time-scale and multi-parameter problems.

In this paper, a procedure to totally decouple a two-time scale singularly perturbed linear

integro-differential system is developed. The procedure utilizes Chang's transformation [1] in a

systematic and coherent manner. The fast and slow mode decomposition process provides a very

elegant and powerful mechanisism to investigate the stability and approximation analysis of the

original system in terms of an auxiliary system corresponding to the decoupled system. Furthermore,

the validity of the transformation is also discussed. The representation of the transformation in terms

of the given coefficient matrices is given. Stability and the approximation to the solution of thie

original system are also investigated. Finally, an example illustrating the decoupling procedure and

its applicability is presented.

This research reported herein was supported by the U. S. Army Research Office Grant

No. DAAH04-93-G-0024 and the National Security Agency Grant No. MDA904-93-H-2002.

This paper was presested at the Tenth Conference in this series.
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2. PRELIMINARIES

Consider a linear time-varying system of integro-differential equations

p =Ax, x(t0) =x0  (2.1)

A= T1 1 T1 2  A = [ 1 0 ] x=[Xx 2 ]T; xiERni for i=1,2 and n= nh+ n2 ;
T21 T 22 I 1 0

T11 = All + K11, T12 = A12 + K1 2 , T 2 1 = A2 1 + K2 1, T22 = A22 + K22;

Ki's are linear Volterra operators and AU's are matrices; e > 0.

We assume that

HI: The operators T.j's are bounded with respect to t> to;

H2 : Assume that T22 is invertible for all t >_to;

The e-boumdary layer system can be obtained by putting = 0 in (2.1). It is given by,

3e = T11 x, + T 12 x2 - x1(t0 ) = X10

and 0 = T2 1 x1 + T2 2 X2. x2(t0 ) = X2
0 0 X20  (2.2)

Let V and W are two Volterra operators defined as follows:

t

Vx D(t) x + [ a(ts)x(s) ds

to

t

Wy-E(t) y + b(t,s)y(s) ds (2.3)

to

where D, a are mxn continuous matrices, E, b are continuous nxm matrices and xERn, yERm.

The composition of V and W are defined by:

(VW)(y) = V(Wy) = D(t)E(t)y + tLD(t) b(t,s) + a(t,s)E(s) + Ja(tO)b(O,s)d] y(s)d•.
to s

and the derivative of the operator V is defined by,

t

(Vx)(t) = D)(t)x + a(t,to)x0 + fI at(ts) + as(t,s)] x(s) ds.

to

The following two properties of the derivatives of Volterra operators V and W are needed in our

subsequent discussion:

(1) The derivative of the Volterra operator V satisfies

dt[ Vx(t)j = (Vx)(t) + (Vw)(t) where * = x
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(2) The derivative of the composition operator of V and W satisfies

dt[ VWx(t)] = "t(Wx)(t) + V(Wx)(t).

3. DIAGONALIZATION PROCESS

In this section our prime objective is to develop a procedure to totally decouple the original system

(2.1). This can be acheived by applying a transformation which decouples the fastest state variable in

the coupled two-time scale system. The validity of such transformations will be discussed in the

succeeding section. The following procedure briefly explains the method to totally decouple the original

system (2.1).

We consider the following transformation S: C x C2 -,C x C2 defined by

S= [1 1 -cML -cMl] (3.1)
L L 12j

where L and M are unknown linear Volterra operators which are functions of time; Ci=C[R,R i, and

II- mx m identity matrix, 12- n x n identity matrix.

We note that the inverse of S is given by

s-l= -11 I2-ELM] (3.2)

Now, we can apply the transformation to the system (2.1) with re=n1 , n=n 2:

Z =SX

so, - (=S-1 + Sp-IAS-I) Z (3.3)

T ni
Here, Z = (zl,z2 )T, zi E R for i=1,2;

Set, S- 1 + Sp-IAS- 1 = P, where P =P ll P 1 2 1
[P21 P2 2 ]

Choose L and M in (3.1) so that P12 -O and P2 1 =O. These two identities leads to the following:

P 12 _= 0 implies that, cL = T 22 L-cLT1 1 + cLT 12L-T 2 1  (3.4)
P 2 1 -0 implies that, eM =-MT 2 2 + (T1 1 -T 1 2 L)M-tMLT1 2 +T 1 2  (3.5)

Under these conditions (3.4) and (3.5), P11 and P12 can be written as:

P11 = (T 1 1 -T 12 L) and P2 2 = LT 12 + (- 1 T 2 2 " (3.6)

Hence the system (3.3) reduces to:
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[:] TiiTi2 L 01  + T1 ][] Z(t0 ) = Zo(3.7)

4. VALIDITY AND APPROXIMATION OF THE TRANSFORMATIONS

In order to establish the validity of the transformation, we will establish the existence, uniqueness,

boundedness and other fundamental properties of the following abstract Cauchy problem in L and M.

A = T 2 2 L + cL(T 12 L-Tj 1)-T 2 1

eM = -MT 2 2 + 4(T 2 2 -T 1 2 L)M -cMLT 1 2 + T 1 2  (4.1)

with initial conditions,

L(t 0 ) = T 2 2 -1 (t0 ) T2 1 (to)

M(t 0 ) = T 12 (t0 ) T2 2 -'(t 0 ).

From continuity of the matrices and kernels in (2.1) and continuous differentiability of the right hand

side of (2.1) relative to L and M, the existence and uniqueness of the problem (4.1) follows

immediately.

Remark 4.1: The sufficient conditions to establish the inverse of T 2 2 can be given as follows:

t

Define, T 2 2 u - A2 2 (t) u + f K2 2 (ts) u(s)ds

to

00

and, T 2 2 -u = C(t) u + f F(t,s) u(s) ds

Then, 0

(i) C(t) = A2 2 - 1 (t) and F(t,s) satisfies the integral equations

t

(ii) A2 2 (t) F(t,s) + K2 2 (t,s)C(s) + - K2 2 (t,s) F(()F((,s)d( =0 and

s

t

(iii) C(t) K2 2 (t,s) + F(t,s) A2 2 (s) JF(t,() K2 2 ((,s) d( _=, (4.2)
s

We need the following assumptions in order to establish the results.

(H3 ): T 2 2 -1T 2 1 , T 1 2 T 2 2 -1 and their derivatives are bounded on [t0 ,oo).

(H4): v(T 2 2 )_-a, o >0 where v(T 2 2 ) = lim sup I + hT 2 2 1 -1]is the logarithmic norm of

the linear Volterra operator T2 2 .
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Theorem 4.1: Under the assumptions (H 1)-(H 4 ), the abstract Cauchy problem (4.1) has atmost one

solution (L,M) existing on [ t o ,oo).

Moreover,

L(t) = L(t) + 0(e)

M(t) = M(t) + 0(f) (4.3)

where

L = -T 2 2 -T 21 and 1 = T22

Proof: The proof of the theorem can be formulated analogous to the result in [5] with certain

modifications.

5. STABILITY RESULTS

In this section, we establish the main result concerning the approximate solution and the stability of

the original system (2.1). An approximate solution of(2.1) can be obtained as follows:

The totally decoupled system of (2.1) can be written as,

u"1 = (T,,-T 1 2 L)ul+ 0(c), ul(to) = u_0

and d2 = (cLT1 2 +T 2 2 )u2 + 0(c), u2 (to) = u_0 (5.1)

We note that system (5.1) can be considered as a perturbed system [6] of

i = (T 11 -T 12 L) v, + 0(e), vl(t 0 ) =v0

and cv2 = (cLT 1 2 + T 2 2 ) v2 + 0(e), v2 (to) = v20 (5.2)

where v =t 2 x0

This system can be considered as an auxiliary system of (5.1). We need an additional assumption to

establish our results.

(H): ,im sup[ t J v(T 1 -Tl 2 L)(s) dsj -a,< 0.

Lemma 5.1: Let the assumptions H5 , and H4 hold. Then, one can chose r* > 0 such that for all

< *

(i) The trivial solution of (5.1) is exponentially asymptotically stable.

(ii) ul= vl+ 0(c), u2 = v2 + 0(0).
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PmE The proof of the lemma can be formulated analogous to the result in [6) with certain

modines.

Theorem 5-1: Under the assumptions of Theorem 4.1 and Lemma 5.1,

(i) The trivial solution of (2.1) is exponentiallly asymptotically stable.

(ii) The solution of (2.1) can be approximated by S-Iz, where z is the solution of (5.2), that is

x(t) - 1-z + 0(e), where

S-I= -EML I2-LM (5.3)

E12gL. The proof of the lemma can be formulated analogous to the result in [4] with certain

modifications.

Example 5.1: Consider the following system,

1 0 ] TI, T12 I[(54

tt

where T1 1 x = x+ J--9e-7(t-S)x(s) ds, T12x = --5x + J3e--('~~~s

to to
t tr -(t-s) F 2(t-s)

T2 1 x = -x3x + f -2e- x(s) ds, T 22 x = -5x + -2e - x(s) ds.

to to

We obtain the following:

(i) The operator T2 2 is invertible and the inverse operator of T2 2 ,

t - 12 (t-s)
T 2 2 -u = -lu + F2e • u(s) ds,

to

(ii) The Logarithmic Norm of the transformation T2 2 is given by,

p(T 2 2 ) !< -3.

(iii) The solution of the Cauchy problem (4.1) is given by,

L = L + o(c)

M = if + o(c), where L and A are given by,
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Lu = u+ 9e- e(4 AI(t) u(s) s
to

and Au = u + J A ts Ju(s) s
to

(iv) The totally decoupled system can be obtained as,

r 5(t-s) -IIeYts_16711e -7(t-s) usdsoc

+J -- -i-he -+u) d+o()

to t

and e2 = -5u 2 + i -- 2e- 5 ut-S)u2 (s) ds + o(c) (5.5)

to

(v) The system in (iv) can be considered as a perturbed system of,

i -+ I We -- Q.-s) 192 (ts) )]vis) ds

to t

and v'2  = -5v 2  + J -2e- 2(t-S)v 2(s) ds (5.6)

to

0 0with vl(t 0 ) = v, 0 , and v2(t0 ) =v2

(vi) The solution of the original system by applying the main results can be approximated by,

x 1(t) = vI(t) + o(C)

x2 (t) = -Lvl(t) + v2(t) + o(c) (5.7)

where v1(t), v2 (t) are the solutions of (v).

Note that the Logarithmic Norm of ra, v(ra) _< -0.304, where

17ee-5(t-s),192e---•(t-s) 16711e-7(t-s)] u(s) ds

to

implies that the trivial solution of the original system (5.4) is exponentially asymptotically stable.

The details of the proofs of these presented results will appear elsewhere.
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