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Preface

A request to reactivate and conduct additional testing on the existing
Noyo River and Harbor model was initiated by the U.S. Army Engineer
District, San Francisco (SPN). Authorization for the U.S. Army Engineer
Waterways Experiment Station’s (WES) Coastal Engineering Research
Center (CERC) to perform the study was subsequently granted, and funds
were authorized by SPN on 8 June 1992, 11 January 1993, and 15 Decem-
ber 1993.

Model testing was conducted at WES intermittently during the period
from December 1992 through January 1994 by CERC personnel under
the direction of Dr. James R. Houston and Mr. Charles C. Calhoun, Jr.,
Director and Assistant Director, CERC, respectively; and under the direct
supervision of Messrs. C. E. Chatham, Jr., Chief, Wave Dynamics Divi-
sion, and Dennis G. Markle, Chief, Wave Processes Branch (WPB). The
tests were conducted by Messrs. Hugh F. Acuff and Larry R. Tolliver and
Ms. Bettye E. Stephens, Civil Engineering Technicians, and Mr. Joe
Trahan, contract student, under the supervision of Mr. Robert R.

Bottin, Jr., Research Physical Scientist. This report was prepared by
Mr. Bottin.

During the course of the investigation, liaison was maintained by
means of conferences, telephone conversations, and monthly progress
reports. Messrs. Jeff Cole and Joe Hooks, SPN, visited WES to observe
model operation during the course of the study, and Mr. Bottin visited the
SPN office and the city of Fort Bragg, California, prior to the initial
investigation.

Initial test resuits for the model were reported in WES Technical Re-
port CERC-88-15, “Noyo River and Harbor, California, Design for Wave
and Surge Protection; Coastal Model Investigation,” dated September
1988. Results for additional tests were reported in WES Technical Report
CERC-89-18, “Noyo River and Harbor, California, Design for Wave Pro-
tection, Supplemental Tests; Coastal Model Investigation,” dated Decem-
ber 1989.

Dr. Robert W. Whalin was Director of WES during model testing and
the preparation and publication of this report. COL Bruce K. Howard,
EN, was Commander.




Conversion Factors, Non-Sl to Si
Units of Measurement

Non-SI units of measurement used in this report can be converted to SI
units as follows:

Multiply By To Obtain

cubic feet 0.02831685 cubic meters
degrees (angie) 0.01745329 radians

feet 0.3048 meters

miles (U.S. statute) 1.609347 kilometers
square feet 0.09290304 square maters
square mites (U.S. statute) | 2.589998 square kilometers




1 Introduction

The Prototype

Noyo River and Harbor are located on the California coast in
Mendocino County, approximately 135 miles! north of San Francisco and
87 miles south or Eureka (Figure 1). The shoreline in the locality consists
of broken, irregular cliffs about 40 to 80 ft high with numerous rocks ex-
tending several hundred yards offshore. Small pocket beaches are found
at the heads of coves in the immediate vicinity. The Noyo River empties
into Noyo Cove, which is approximately 1,800 ft wide, north.to south, and
2,000 ft long, east to west.

The existing Noyo River and Harbor project was authorized by the
River and Harbor Act of 1930 (U.S. Army Engineer District (USAED),
San Francisco 1979), and construction was completed in 1961. It consists
of a jettied entrance at the river mouth; a 10-ft-deep, 100-ft-wide entrance
channel; and a 10-ft-deep, 150-ft-wide river channel extending upstream
about 0.6 mile. Noyo Mooring Basin is located on the south bank of the
river at the upstream limit of the dredged river channel. Further upstream,
approximately 1.1. miles from the river mouth, a privately owned harbor
(Dolphin Marina) is located on the south bank. An aerial photograph of
the area is shown in Figure 2.

The Problem

Noyo Cove is open to the Pacific Ocean and is exposed to large waves
generated by local coastal storms accompanied by strong winds (sea) and
distant ocean storms with and without local winds (swell). Waves in ex-
cess of 20 ft in height approach the cove from the southwest clockwise
through northwest directions. Heavy seas sweep across the cove and

1 A table of factors for converting non-SI units of measurements to SI units is presented
on page v.
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Figure 1.  Project location

through the jettied river entrance, making them impassable for entry or de-
parture during these periods. In addition to these adverse wave conditions,
the harbor has experienced strong surging problems due to long-period
wave energy resulting in damages to small craft moored there. Shoaling
in the river channel also occurs due to the deposition of material brought
down the river during the winter rainy season. This causes navigational
difficulties in the shallow river channel, particularly upstream of Noyo
Harbor. Vessels are subject to damage by grounding and are forced to
wait for favorable tide conditions to provide adequate depths.

Improvements at Noyo River and Harbor would result in the reduction
of boat and harbor damages, a harbor of refuge for vessels during storm
activity, increased commercial fish catch, and increases in recreational
boating. The project construction would employ local (currently unem-
ployed) labor and enhance area redevelopment. The improvements should
also improve the overall commercial fishing operation, thereby contribut-
ing to the local economic base.

Chapter 1 Introduction




Figure 2. Aerial view of prototype site
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Proposed Improvements

Authorization for improvements at Noyo River and Harbor was granted
by the River and Harbor Act of 1962. Under this authorization, however,
breakwaters were proposed to protect the outer cove for development.

The massive breakwaters required were not economically feasible (due to
the high cost of construction and maintenance), resulting in the project’s
being transferred to an inactive category. The Water Resources Develop-
ment Act (WRDA) of 1976 modified the 1962 project to provide for con-
struction of up to two breakwaters without a specific location to protect
the harbor entrance (USAED, San Francisco 1979). The location of break-
waters in more shallow water would reduce construction cost signifi-
cantly. The 1976 WRDA also included additional channel improvements
(deepening, widening, and extending) as deemed necessary, subject to ap-
plicable economic and environmental criteria.

Previously Reported Model Tests and
Conclusions

The Noyo River and Harbor model was constructed initially to investi-
gate both short- and long-period wave and river-flow conditions in the
river and harbor for comprehensive test conditions. Qualitative informa-
tion on the effects of the proposed breakwaters on sediment moving down
the river also was provided. Details of the investigation were published in
Bottin, Acuff, and Markle (1988). Conclusions derived from results of
these tests are mentioned below. Plan numbers in the following subpara-
graphs refer to the previous investigation.

a. Existing conditions are characterized by very rough and turbulent
wave conditions in the Noyo River entrance during periods of storm
wave attack.

b. Deepening of the entrance channel will not improve wave conditions
in the existing river entrance, considering all test conditions.

c. The originally proposed breakwater location (Plan 3) resulted in
excessive wave heights (up to 8.8 ft) in the river entrance.

d. Of the 40 expedient rubble-mound breakwater plans (Plans 5
through 42) tested, the alignment of the 637-ft-long breakwater of
Plan 39 appeared to be optimum with regard to wave protection,
navigation, and economics.

e. The 637-ft-long dolosse breakwater of Plan 43 (same alignment as

Plan 39) was selected as the optimum improvement plan for
protection of the Noyo River entrance.

Chapter 1 Introduction




f. The breakwater configuration of Plan 43 will result in improved surge
conditions due to long-period wave energy in Noyo River and Harbor.

8. The breakwater configuration of Plan 43 will not interfere with the
movement of riverine sediment seaward into Noyo Cove; however,
the structure will direct sediment to the northern portion of the cove.

The Noyo River and Harbor model was reactivated to deiermine the op-
timum breakwater plan that would provide the fishing fleet protection
from hazardous wave conditions while traveling through the jettied en-
trance. The breakwater plan was developed for 14-ft design waves, as op-
posed to waves up to 32 ft in the initial study. During storm conditions
above a certain threshold (approximately 14-ft waves) fishermen presum-
ably do not go out to fish; therefore, there are fewer benefits for protect-
ing the entrance under these extreme conditions. Most benefits would be
derived for wave conditions with heights of 14 ft or less. Details of the
supplement tests were published in Bottin and Mize (1989). Conclusions
based on results of these tests are listed below. Plan numbers refer to the
supplemental investigation.

a. Existing conditions are characterized by very rough and turbulent
wave conditions in the Noyo River jettied entrance for 15-sec, 14-ft
incident design wave conditions. Waves with maximum heights
ranging from 9.3 to 11.7 ft will occur in the entrance, depending on
direction of wave approach.

b. Of the test plans involving a shore-connected outer north breakwater
and a detached inner breakwater (Plans 1 through 14), Plan 14
(300-ft-long outer and 250-ft-long inner breakwaters) will meet the
established 6.0-ft wave-height criterion in the existing entrance for
design wave conditions from all directions. Wave heights in the
entrance for waves from the predominant west-northwest direction will
be 3.5 ft or less.

c. Incremental removal of the Plan 14 outer breakwater (Plans 27
through 31) indicated that the 250-ft-long inner breakwater alone
(Plan 31) would meet the established criterion for design wave
conditions from all directions. Wave heights up to 5.8 ft will exist
in the entrance for waves from the predominant west-northwest
direction.

d. Neither the outer shore-connected north breakwater and outer
detached south breakwater (Plan 15) nor the outer detached south
breakwater plans (Plans 16 through 18) will meet the established
wave-height criterion for design wave conditions. Maximum wave
heights will range from 7.4 to 11.2 ft in the existing entrance for
these plans.

e. Of the improvement plans involving a curved breakwater seaward of
the existing entrance (Plans 19 through 22), the 450-ft-long

Chapter 1 Introduction




structure of Plan 22 will meet the established wave-height criterion
for design wave conditions from all directions. Maximum wave
heights of 6.0 ft will exist in the entrance for waves from the
predominant west-northwest direction.

f. Of the improvement plans involving two inner detached breakwaters
(Plans 23 through 26), the 375-ft-long north structure and
250-ft-long south breakwater (Plan 26) will meet the established
wave-height criterion in the entrance for design wave conditions
from all directions. Wave heights in the existing entrance will be
up to 5.8 ft for waves from the predominant west-northwest
direction.

Subsequent to testing of the supplemental tests, a conference was held
at the U.S. Army Engineer Waterways Experiment Station (WES) Coastal
Engineering Research Center (CERC) with representatives in attendance
from Noyo Harbor, the U.S. Army Engineer Division, South Pacific
(CESPD), and the U.S. Army Engineer District, San Francisco (CESPN).
Wave height tests were conducted for an outer offshore breakwater config-
uration provided by CESPN. Breakwaters were constructed expeditiously
with mixed stone, and wave height tests were conducted for 11 test plan
configurations (Bottin 1989). A plan which included a 400-ft-long struc-
ture located in the cove approximately 2,000 ft from the river entrance
looked promising; however, test results indicated there would be periods
when 14-ft-high incident waves would exceed the 6.0-ft criterion and
break in the entrance.

Purpose of the Current Investigation

The Noyo River and Harbor model was reactivated at the request of
CESPN to refine the design of the 400-ft-long offshore structure tested
during the 1989 conference. A breakwater with the appropriate transmis-
sion characteristics was installed and subjected to a wide range of wave
conditions. The impact of the structure on long-period wave conditions in
the harbor and on wave-induced and riverine bed-load sediment patterns
also was evaluated for the optimized structure.

Wave-Height Criterion

Completely reliable criteria have not yet been developed for ensuring
satisfactory navigation and mooring conditions in small-craft harbors dur-
ing attack by waves. For this study, however, CESPN specified that for an
improvement plan to be acceptable, maximum significant wave heights
were not to exceed 6.0 ft in the existing Noyo River jettied entrance for in-
cident wave heights of 14 ft or less.

Chapter 1 Introduction



2 The Model

Design of Model

The Noyo River and Harbor model (Figure 3) was constructed to an un-
distorted linear scale of 1:75, model to prototype. Scale selection was

based on such factors as:

a. Depth of water required in the model to prevent excessive bottom

friction.

b. Absolute size of model waves.

c. Available shelter dimensions and area required for model construction.

d. Efficiency of model operation.

e. Available wave-generating and wave-measuring equipment.

f- Model construction costs.

A geometrically undistorted model was necessary to ensure accurate re-
production of wave and current patterns. Following selection of the linear
scale, the model was designed and operated in accordance with Froude’s
model law (Stevens et al. 1942). The scale relations used for design and

operation of the model are shown in the following tabulation:

Characteristic Dimension’ Modei-Prototype Scale Relstions
Length L Ly = 1:75

Ares (A) L2 A = L} = 15,628

Volume L ¥y = 1 = 1:421,875

Time T T, =12 = 1:8.68

Velocity uT Ve= L2 » 1:8.66

Roughness (Manning’s cosfficient n) | L'/ ny = 1% = 1:2.054

Discharge (Q) L7 Q = 2 = 148,714

' Dimensions are in terms of length (L) and time (T).

Chapter 2 The Model
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The proposed breakwaters at Noyo included the use of concrete armor
units (Accropodes). Since the porosity of these armor units differs from that
of rock and since the units could not be reproduced to scale (due to cost and
time requirements), two-dimensional wave transmission tests were conducted
at a scale large enough to have negligible scale effects (i.e., 1:43) to deter-
mine the correct transmission through the proposed structures. This transmis-
sion then was duplicated at a scale of 1:75 using a rock cross section, and the
three-dimensional model structures were built accordingly. These tests are
detailed in Smith and Hernington (in publication).

Parts of the existing jetties at Noyo River entrance are rubble-mound
structures. Experience and experimental research have shown that consid-
erable wave energy passes through the interstices of this type structure;
thus, the transmission and absorption of wave energy became a matter of
concern in design of the 1:75 scale model. In small-scale hydraulic models,
rubble-mound structures reflect relatively more and absorb or dissipate rel-
atively less wave energy than geometrically similar prototype structures
(LéMéhauté 1965). Aiso, the transmission of wave energy through a rubble-
mound structure is relatively less for the small-scale model than for the
prototype. Consequently, some adjustment in small-scale model rubble-
mound structures is needed to ensure satisfactory reproduction of wave-
reflection and wave-transmission characteristics. In past investigations
(Dai and Jackson 1966, Brasfeild and Ball 1967) at WES, this a** ‘ment
was made by determining the wave-energy transmission characteri..ics of
the proposed structure in a two-dimensional model using a scale large
enough to ensure negligible scale effects. A section then was developed
for the small-scale, three-dimensional model that would provide essen-
tially the same relative transmission of wave energy. Therefore, from pre-
vious findings for structures and wave conditions similar to those at Noyo,
it was determined that a close approximation of the correct wave-energy
transmission characteristics would be obtained by increasing the size of
the rock used in the 1:75-scale model to approximately 1.5 times that re-
quired for geometric similarity. Accordingly, in constructing the rubble-
mound structures in the Noyo River and Harbor model, the rock sizes
were computed linearly by scale and then multiplied by 1.5 to determine
the actual sizes to be used in the model.

The values of Manning’s roughness coefficient, n, used in the design of
the main river channel were calculated from water-surface profiles of
known discharges in the prototype. From these computations and experi-
ence, an n value of 0.030 was selected for use in the main river channel.
In addition, based on experience, an n value of 0.050 was selected for
overbank roughness. Therefore, based on previous WES investigations
(Miller and Peterson 1953, Cox 1973), the various model areas from the
Noyo Harbor entrance extending upstream were given finishes that would
represent prototype n values of 0.030 and 0.050.

Ideally, a quantitative, three-dimensional, movable-bed model investi-

gation would best determine the effects of the proposed structures with
regard to the deposition of sedim-nt at the river mouth and in Noyo Cove.

Chapter 2 The Model
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However, this type of model investigation is difficult and expensive to
conduct, and each area in which such an investigation is contemplated
must be carefully analyzed. In view of the complexities involved in con-
ducting movable-bed model studies and due to limited funds and time for
the Noyo River and Harbor project, the model was modeled in cement
mortar (fixed-bed) at an undistorted scale of 1:75, and a tracer material
was obtained to qualitatively determine the deposition of riverine sedi-
ment (degree of accretion, etc.) at the river mouth for existing conditions
and the offshore breakwater plan.

Model and Appurtenances

The model reproduced the lower 15,000 ft of Noyo River, both Noyo
Harbor and Dolphin Marina (located on the south bank), Noyo Cove, ap-
proximately 5,500 ft of the California shoreline on each side of the river
mouth, and underwater topography in the Pacific Ocean to an offshore
depth of 60 ft with a sloping transition to the wave generator pit elevation
of -75 ft. The total area reproduced in the model was approximately
12,000 sq ft, representing about 2.4 square miles in the prototype. A gen-
eral view of the model is shown in Figure 4. Vertical control for model
construction was based on mean lower low water.! Horizontal control
was referenced to a local prototype grid system.

Model waves were generated by a 45-ft-long piston-type generator.
The horizontal movement of the piston plate caused a periodic displace-
ment of water incident to this motion. The length of the stroke and the
frequency of the piston plate movement were variable over the range nec-
essary to generate waves with the required characteristics. In addition,
the wave generator was mounted on retractable casters which enabled it to
be positioned to generate waves from the required directions.

A water circulation system (Figure 3) consisting of a 6-in. perforated-
pipe water-intake manifold, a 3-cfs pump, and a magnetic flow tube and
transmitter was used in the model to reproduce steady-state flows through
the river channel that corresponded to selected prototype river discharges.

An Automated Data Acquisition and Control System (ADACS), designed
and constructed at WES (Figure 5), was used to secure wave-height data at
selected locations in the model. Basically, through the use of a minicom-
puter, ADACS recorded onto magnetic media the electrical output of capaci-
tance-type wave gages that measured the change in water-surface elevation
with respect to time. The magnetic media output of ADACS was then ana-
lyzed to obtain the wave-height data.

All elevations (el) cited herein are in feet referred to mean lower low water (mllw) un-
less otherwise cited.

Chapter 2 The Model



Figure 4. General view of model

A 2-ft (horizontal) solid layer of fiber wave absorber was placed
around the inside perimeter of the model to dampen any wave energy that
might otherwise be reflected from the model walls. In addition, guide
vanes were placed along the wave generator sides in the flat pit area to en-
sure proper formation of the wave train incident to the model contours.

As discussed previously, a fixed-bed model was constructed and a
tracer material was selected to qualitatively determine the deposition of
sediment in Noyo Cove and at the river mouth. Using the prototype sand
characteristics (median diameter, D50 = 0.25 mm, specific gravity = 2.69),
the tracer was chosen in accordance with the scaling of Noda (1972),
which indicates a relation or model law among the four basic scale ratios,
i.e., the horizontal scale, 1; the vertical scale, m; the sediment size ratio,

nD; and the relative specific weight ratio, ny. These relations were deter-

mined experimentally using a wide range of conditions and bottom materi-
als. Although several types of movable-bed tracer materials were
available at WES, previous investigations (Giles and Chatham 1974,
Bottin and Chatham 1975) indicated that crushed coal tracer more nearly
represented the movement of prototype sand. Therefore, quantities of
crushed coal (specific gravity = 1.30; median diameter, D50 = 0.76 mm)
were selected for use as a tracer material.

Chapter 2 The Model

11




12

DIOTAL. SOLNPMENT
uw CENTRAL OITAL
7| saoar | mas | |aarolicns| mames
e TE--JT1T
) 8
Tt
CONTROL
UNES
STRIP CHART
A 2= 5 Il a
H CIRCUITRY !
consoLE
MOGRAMS,
TEST PARAMETERS,
AND DATA
WAVE GENERATOR

Figure 5. Automated Data Acquisition and Control System

Chapter 2 The Model




3 Tests Conditions and
Procedures

Selection of Test Conditions

Still-water level

Still-water levels (swl’s) for wave action models are selected so that
the various wave-induced phenomena that are dependent on water depths
are accurately reproduced in the model. These phenomena include the re-
fraction of waves in the project area, the overtopping of structures by the
waves, the reflection of wave energy from various structures, and the
transmission of wave energy through porous structures.

In most cases, it is desirable to select a model swl that closely approxi-
mates the higher water stages which normally occur in the prototype for
the following reasons:

a.. The maximum amount of wave energy reaching a coastal area
normally occurs during the higher water phase of the local tidal
cycle.

b. Most storms moving onshore are characteristically accompanied by
a higher water level due to wind tide and shoreward mass transport.

c. The selection of a high swl helps minimize model scale effects due
to viscous bottom friction.

d. When a high swl is selected, a model investigation tends to yield
more conservative results.

The swi’s of 0.0 and +7.0 ft were selected by CESPN for use during
model tests. The lower value (0.0 ft) represents mllw, and the upper value
(+7.0 ft) represents a monthly occurrence at the site. The 0.0-ft swl was
used during testing of riverine sediment patterns, and the +7.0-ft swl was

Chapter 3 Tests Conditions and Procedures 13
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used while testing long-period wave conditions. Both the 0.0- and the
+7.0-ft swl’s were used for testing short-period storm wave conditions.

Factors influencing selection of test-wave characteristics

In planning the testing program for a model investigation of harbor
wave-action problems, it is necessary to select dimensions and directions
for the test waves that will allow a realistic test of proposed improvement
plans and an accurate evaluation of the elements of the various proposals.
Surface-wind waves are generated primarily by the interactions between
tangential stresses of wind flowing over water, resonance between the
water surface and atmospheric turbulence, and interactions between indi-
vidual wave components. The height and period of the maximum wave
that can be generated by a given storm depend on the wind speed, the
length of time that wind of a given speed continues to blow, and the water
distance (fetch) over which the wind blows. Selection of test wave condi-
tions entails evaluation of such factors as:

a. The fetch and decay distances (the latter being the distance over
which waves travel after leaving the generating area) for various
directions from which waves can attack the problem area.

b. The frequency of occurrence and duration of storm winds from the
different directions.

c. The alignnent, size, and relative geographic position of the
navigation entrance to the harbor.

d. The alignments, lengths, and locations of the various reflecting
surfaces inside the harbor.

e. The refraction of waves caused by differences in depth in the area
seaward of the harbor, which may create either a concentration or a
diffusion of wave energy at the harbor site.

Wave refraction

When wind waves move into water of gradually decreasing depth, trans-
formations take place in all wave characteristics except wave period (to
the first order of approximation). The most important transformations
with respect to selection of test wave characteristics are the changes in
wave height and direction of travel due to the phenomenon referred to as
wave refraction. The change in wave height and direction is determined
by using the numerical Regional Coastal Processes Wave Transformation
Model (RCPWAVE) developed by Ebersole, Cialone, and Prater (1986).
This model predicts the transformation of monochromatic waves over com-
plex bathymetry and includes refractive and diffractive effects. The
model is very efficient for modeling large areas of coastline subjected to
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widely varying wave conditions and, therefore, is an extremely useful tool
in the solution of many types of coastal engineering problems.

When the refraction coefficient K, is determined, it is multiplied by the
shoaling coefficient K to yield a conversion factor for transfer of deepwa-
ter wave heights to shallow-water values. The shoaling coefficient, a func-
tion of wave length and water depth, can be obtained from the Shore
Protection Manual (1984).

Refraction and shoaling coefficients and shallow-water directions were
obtained at Noyo for various wave periods from five deepwater wave di-
rections (northwest counterclockwise through southwest) and are pre-
sented in Table 1. Shallow-water wave directions and refraction
coefficients represent an average of the values in the immediate vicinity
of the Noyo site (approximately the location of the wave generator in the
model). Shoaling coefficients were computed for an 81-ft water depth
(75-ft pit elevation with 6-ft tide conditions superimposed) corresponding
to the simulated depth at the model wave generator. The wave-height ad-
justment factor K, x K, can be applied to any deepwater wave height to ob-
tain the corresponding shallow-water value. Based on the refracted
directions secured at the approximate locations of the wave generator in
the model for each wave period, the following test directions (deepwater
direction and corresponding shallow-water direction) were selected for
use during model testing.

Deepwater Direction Selected Shaliow-Water Test Direction
deg deg
Northwest, 315 300
WQst-normwe'st. 292.5 288
West, 270 270
West-southwest, 247.5 254
Southwest, 225 238

Prototype wave data and selection of test waves

Measured prototype wave data on which a comprehensive statistical
analysis of wave conditions could be based were unavailable for the Noyo
Harbor area. However, statistical deepwater wave hindcast data represen-
tative of this area were obtained from the Sea-State Engineering Analysis
System (SEAS) by Corson (1985). Deepwater SEAS data are summarized
in Table 2. These data were converted to shallow-water values by applica-
tion of refraction and shoaling coefficients and are shown in Table 3.
Characteristics of test waves, wave period and significant wave height,
used in the model (selected from Table 3) are shown in the following
tabulation:
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Selected Test Waves

Deepwater Direction Period, sec Helight, 1t
Northwest 7 8,14, 20
9 6,12, 20
1 6, 14, 24
13 6, 14, 20
15 10, 14, 20
17 8,12, 22
19 12
Waest-northwest 7 8,16
9 6, 10, 18
11 6, 14, 24
13 8, 14, 22
15 10, 14, 20, 30
17 10, 20, 28
19 12, 22
West 7 8,14,20
9 6, 14, 22
11 6, 14, 18, 30
13 6, 14, 20, 30
15 +0, 14, 20, 30
17 10, 20, 28
West-southwest 7 8, 14,20
9 6, 14, 22
11 10, 14, 20, 30
13 10, 14, 20, 32
15 10, 14, 20, 32
17 14, 20, 28
Southwest 7 8, 14, 20
9 10, 14, 22
1 6, 14, 20, 30
13 10, 14, 20, 32
15 10, 14, 20, 32
17 22
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River discharges

The Noyo River drains an area of approximately 106 square miles.
River discharge data obtained from water discharge records during the
period 1952-1981 were available from a water-stage recorder gage located
3.5 miles east of the river mouth. Based on these data, the following river
discharges and recurrence intervals were projected by SPN and simulated

in the model.
gi:cha oe. @ Recurrence interval, years
7,000 2
20,000 10
27,000 25
33,000 50
41,000 100

Analysis of Model Data

Relative merits of the improvement plan were evaluated by:

a. Comparison of wave heights at selected locations in the model.

b. Comparison of sediment tracer movement and subsequent deposits.
c. Visual observations and wave-pattern photographs.

In the wave-height data analysis, the average height of the highest one-
third of the waves, significant wave height, recorded at each gage location
was computed. All wave heights were then adjusted to compensate for ex-
cessive model wave-height attenuation due to viscous bottom friction by
application of Keulegan's equation.! From this equation, reduction of
wave heights in the model (relative to the prototype) can be calculated as
a function of water depth, width of wave front, wave period, water viscos-
ity, and distance of wave travel.

! G. H. Keulegan. (1950). “The gradual damgening of a progressive oscillatory wave
with distance in a prismatic rectangular channel,” unpublished data, National Bureau of
Standards, Washington, DC, prepared at request of Director, WES, Vicksburg, MS, by let-
ter of 2 May 1950.
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4 Tests and Results

Tests

Existing conditions

Prior to testing of the improvement plan, tests were conducted for exist-
ing conditions (Plate 1) to establish a base from which to evaluate the ef-
fectiveness of the improvement plan. Short period wave-height data were
obtained in the cove and harbor entrance and along the center lines of the
proposed breakwaters (for design wave information) for the selected test
wave conditions. Wave-pattern photographs were secured for representa-
tive test waves from the five test directions, and riverine sediment tracer
patterns were obtained for various river discharges as well as wave-induced
sediment tracer movement and subsequent deposits. Long-period wave
test data obtained for existing conditions in previous studies (Bottin,
Acuff, and Markle 1988) were used for comparison of test results with the
proposed plan.

improvement plan

The improvement plan (Plate 2) consisted of a 400-ft-long offshore
breakwater constructed in the cove approximately 2,000 ft from the Noyo
River and Harbor jettied entrance. The breakwater had a crest el of +20 ft
with side slopes of 1V:1.33H along the trunk and 1V:1.67H at the heads.
As stated earlier, the structure was constructed of stone in the model, but
represented an accropode armored structure (based on transmission charac-
teristics obtained during two-dimensional model testing). Short-period
wave-height tests, riverine and wave-induced sediment tracer patterns,
and long-period wave tests, as well as wave-pattern photographs, were
secured for the proposed improvement plan.
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Short-period wave-height tests

Wave-height tests for existing conditions and the improvement plan
were conducted for the selected test waves and directions listed in Chap-
ter 3. Wave gage locations are shown in Plates 1 and 2.

Sediment tracer tests

Riverine sediment tracer tests were conducted for existing conditions
and the offshore breakwater plan using river discharges ranging from
7,000 to 41,000 cfs. Tracer material was introduced into the model in the
lower reaches of the river to represent bed-load sediment. These tests
were also conducted with various wave conditions from west and west-
northwest superimposed for existing conditions and the offshore breakwa-
ter plan. Wave-induced sediment tracer tests were also conducted for
waves from northwest and southwest. Tracer material was introduced
north and south of the cove to represent sediment along those shorelines.

Long-period wave tests

Long-period (60 to 200 sec) wave tests were conducted for the break-
water improvement plan and compared with tests conducted previously
(Bottin, Acuff, and Mar!le 1988) for existing conditions. These tests
were conducted using test waves from the west. Two types of tests in-
volved with investigating long-period waves are as follows:

a. Frequency response tests involved the placement of wave sensors at
strategic locations throughout the harbor to measure the amplitude
of the oscillations. By plotting the ratio of the measured wave
height at each gage to the incident wave height (response factor)
versus the wave periods tested, frequency response curves showing
resonant peaks were obtained.

b. Surface-float tests were conducted using smail white squares of
styrofoam confetti to determine oscillation patterns. The confetti
was spread over the surface of the channel and basins, and
subsequent movement by each wave period was observed. Through
visual observations, the oscillation patterns and location of nodes
and antinodes were determined.

Wave patterns
Wave patterns (black and white photographs and color slides) were ob-

tained for existing conditions and the offshore breakwater plan for repre-
sentative test waves from the five selected test directions.
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Results

In evaluating test results, the merits of the improvement plan were
based on an analysis of measured wave heights in the harbor entrance.
Model wave heights (significant wave heights or H;,;) were tabulated to
show measured values at selected locations. Wave heights in the jettied
entrance also were plotted graphically versus various wave conditions to
show the impact of the offshore breakwater. The impact of the improve-
ment plan on long-period wave conditions was determined through fre-
quency response curves (response factor versus wave period), and the
general movement of riverine sediment tracer material and subsequent de-
posits was shown in photographs. Arrows were superimposed onto these
photographs to depict sediment movement patterns.

Short-period wave-height tests

Results of short-period wave-height tests conducted for existing condi-
tiois are presented in Tables 4-13 for test waves from the five directions
with the 0.0- and +7.0-ft swl’s. For the 0.0-ft swl, maximum wave
heights! were 12.2 ft in the entrance (Gage 1) for 17-sec, 28-ft test waves
from west; 27.1 ft at the proposed breakwater location (Gage 9) for 17-sec,
22-ft test waves from northwest; and 28.7 ft at the alternate breakwater lo-
cation (Gage 5) from 17-sec, 20-ft test waves from west. For the +7.0-ft
swl, maximum wave heights were 15.2 ft in the entrance for 13-sec, 22-ft
test waves from west-northwest; 30.9 ft at¢ the proposed breakwater loca-
tion for 17-sec, 28-ft test waves from west-northwest; and 30.3 ft at the
alternate breakwater location for 13-sec, 20-ft test waves from northwest.
For waves of 14 ft or less (operational waves), maximum wave heights in
the jettied entrance were 9.7 ft for 15-sec, 14-ft test waves from west-
northwest and 17-sec, 10-ft test waves from west with the 0.0-ft swl. For
the +7.0-ft swl, maximum wave heights in the entrance were 13.7 ft for
17-sec, 14-ft test waves from west-southwest and 13-sec, 14-ft test waves
from southwest for waves of 14 ft or less. Typical wave patterns obtained
for existing conditions are shown in Photos 1-20.

Short-period wave-height test results conducted with the offshore
breakwater plan installed are shown in Tables 14-23 for test waves from
the five directions with the 0.0- and +7.0-ft swl’s. For the 0.0-ft swl, max-
imum wave heights were 11.3 ft in the entrance for 19-sec, 22-ft test
waves from west-northwest; and with the +7.0-ft swl, 14.6 ft in the en-
trance for 15-sec, 30-ft test waves from west-northwest. For operational
wave conditions (14-ft waves or less) maximum wave heights were 9.0 ft
in the entrance for 15-sec, 14-ft te ~t waves from west-northwest with the
0.0-ft swl; and 9.3 ft in the entrance for 11-sec, 14-ft test waves from west

Refers to maximum significant wave heights throughout report.
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with the +7.0-ft swl. Typical wave patterns for the offshore breakwater
plan are shown in Photos 21-40.

Discussion of short-period wave tests

Results of wave-height tests for existing conditions indicated rough
and turbulent wave conditions in the cove and jettied entrance to Noyo
River. Considering all test conditions, wave heights ranged from 22.0 to
30.9 ft at the proposed breakwater location in the cove and from 12.2 to
15.2 ft in the entrance, depending on incident wave direction. For opera-
tional wave conditions (14-ft waves or less), wave heights ranged from
8.5 to 13.7 ft in the entrance from the various incident wave directions.

Wave-height tests with the offshore breakwater plan installed revealed
8.7- to 14.6-ft waves in the entrance for the various incident wave direc-
tions, considering all test conditions. For operational wave conditions,
maximum wave heights ranged 6.3 to 9.3 ft in the entrance, depending on
incident wave direction.

Comparisons of maximum wave heights in the Noyo River jettied en-
trance for existing conditions and the offshore breakwater plan are shown
in Plates 3-12. Wave-height values for test waves from northwest with the
0.0- and +7.0-ft swl’s (Plates 3 and 4) and from west-northwest with the
0.0-ft swl (Plate 5) were similar for both existing conditions and the break-
water plan. Most operational waves that exceeded the 6-ft wave-height
criterion for existing conditions also exceeded it for the breakwater plan.
Test results for waves from west-northwest with the +7.0-ft swl (Plate 6)
revealed that 12- to 14-ft incident waves were within the established 6.0-ft
criterion for the offshore breakwater plan and exceeded it for existing con-
ditions. Results for test waves from west (Plates 7 and 8) indicated that
the breakwater plan was slightly better than existing conditions; however,
the wave-height criterion was still exceeded for several operational test
wave conditions. In general, test waves from west-southwest (Plates 9
and 10) and southwest (Plates 11 and 12) resulted in significantly reduced
wave heights in the entrance for the offshore breakwater plan versus exist-
ing conditions. The wave-height criterion will be exceeded by some oper-
ational wave conditions from west-southwest with the +7.0-ft swl
(Plate 10).

An analysis of maximum wave heights obtained in the jettied entrance
for existing conditions and the offshore breakwater plan versus the num-
ber of occurrences of 14-ft waves or less from Table 3 is shown in the fol-
lowing tabulation:
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VPV

Occurrences of Operations! Waves from Hindcast Data
Occurrences 6-ft Wave Height Criterion
in Entrance is Exceeded
Total Ottshore Breskwater

Direction Occurrences | Existing Conditions | Plan
Northwest 13,295 1,412 1,807
Wast-northwest 16,416 5,050 2,729
West 4,536 3,001 1,952
Waest-southwest 991 440 72
Southwest 347 230 0
Total 35,585 10,133 6,360

Based on the hindcast data in Table 3, total occurrences with incident
waves of 14 ft or less were 35,585 for all five test directions. Occur-
rences in which the 6.0-ft wave-height criterion ir the jettied entrance is
exceeded were 10,133 for existing conditions and 6,360 for the offshore
breakwater plan (based on wave heights obtained in the model). These
data indicate that for operational waves (14 ft or less) approaching from
northwest counterclockwise to southwest, the criterion is currently ex-
ceeded 28.5 percent of the time, and - :h the breakwater plan installed the
criterion will be exceeded about 18 purcent of the time. The breakwater
plan will result in the entrance critc....n being achieved 37 percent more
of the time for operational wave conditions than it currently is for existing
conditions. This is equivalent to about 23.5 days per year on the average.
In summary, the offshore breakwater plan will increase the amount of time
wave heights in the harbor entrance meet the 6.0-ft criterion; however, the
criterion will not be met for all operational wave conditions.

For all operational wave conditions (14 ft or less) generated in the
model study, the values of the maximum wave heights in the entrance
were averaged for existing conditions and the offshore breakwater plan.
Average values per direction are shown in the following tabulation:

Average Values of Operational Waves
Direction Existing Condlitions Offshore Breakwater Plan
Northwest 4.4 4.6
Waest-northwest 5.1 45
West 6.3 5.0
Waest-southwest 7.7 45
Southwest 7.4 3.7
Average 6.2 4.5
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The average values of wave heights in the entrance for all operational
wave conditions and all five directions are 6.2 ft for existing conditions
and 4.5 ft for the offshore breakwater plan. These data indicate that the
magnitude of the average wave height in the jettied entrance is decreased
by about 27 percent as a result of the offshore breakwater.

Sediment tracer tests

Riverine sediment tracer patterns for existing conditions are shown in
Photos 41-45 for river discharges ranging from 7,000 to 41,000 cfs with
no waves. The 2-year discharge (7,000 cfs) barely moved the tracer mate-
rial, but each successively larger flow resulted in tracer deposits further
seaward in Noyo Cove.

Sediment tracer patterns from the river with the offshore breakwater in-
stalled are shown in Photos 46-50 for river discharges ranging from 7,000
to 41,000 cfs with no waves. Again, the 7,000-cfs discharge hardly
moved the tracer material out of the river mouth, but successively larger
discharges moved the material further seaward in the cove. The offshore
breakwater prevented the maximum (41,000 cfs) discharge from moving
the tracer material as far seaward as it moved under existing conditions.

Riverine sediment tracer patterns for existing conditions are shown in
Photos 51-66 for river discharges ranging from 20,000 to 41,000 cfs with
13-sec, 14-ft and 15-sec, 20-ft waves from west-northwest and west. For
waves from west-northwest (Photos 51-58), sediment tracer migrated sea-
ward from the river entrance. Instead of moving directly down the axis of
the channel, the material moved slightly northerly as it entered the cove.
Successively larger discharges resulted in the material moving further sea-
ward and into a counterclockwise eddy in the cove. For 13-sec, 14-ft test
waves from west (Photos 59-62), riverine sediment patterns were similar
to the west-northwest patterns. After clearing the jetties, material moved
northerly, and larger discharges resulted in seaward migration of the mate-
rial in a counterclockwise eddy. For 15-sec, 20-ft test waves (Photos 63-
66), however, material entering the cove moved slightly south of the
jettied entrance and then into a clockwise eddy. The material did not
move as far seaward in the cove for the larger discharges as it had done in
previous tests.

Sediment tracer patterns from the river with the offshore breakwater
plan installed are presented in Photos 67-82 for 20,000- to 41,000-cfs
river discharges with 13-sec, 14-ft and 15-sec, 20-ft test waves from west-
northwest and west. For test waves from west-northwest (Photos 67-74),
riverine sediment moved into a counterclockwise eddy immediately out-
side the jettied entrance for the 20,000-cfs discharge. Successively larger
discharges resulted in the material moving in a slightly northerly path to-
ward the seaward head of the offshore breakwater. Larger discharges re-
sulted in more seaward deposits. For 13-sec, 14-ft test waves from west
(Photos 75-78), material migrated from the entrance toward the head of
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the offshore structure with the larger discharges moving the sediment fur-
ther seaward. For 15-sec, 14-ft test waves from west (Photos 79-82), mate-
rial moved into a counterclockwise eddy once in the cove, and larger
discharges resulted in sediment movement and subsequent deposits more
northerly in the vicinity of the seaward head of the offshore breakwater.

Wave-induced sediment tracer patterns and subsequent deposits for ex-
isting conditions are shown in Photos 83-86 for test waves from northwest
and southwest. For waves from northwest, material generally moved into
the cove and deposited in a clockwise eddy in the northern portion of the
cove. Test waves from southwest resulted in material migrating into the
cove and generally depositing in a counterclockwise eddy. Northwest
waves moved the material further toward the center of the cove than did
wave conditions from southwest.

Results of wave-induced sediment tracer tests for the offshore breakwa-
ter plan are presented in Photos 87-90 for test waves from northwest and
southwest. For test waves from northwest, tracer material moved into the
cove and deposited in a clockwise eddy in the northern portion similar to
existing conditions. For waves from southwest, some sediment material
migrated into the cove between the breakwater and the shoreline, and
some deposited seaward of the breakwater in a counterclockwise eddy.

Discussion of sediment tracer tests

A comparison of riverine sediment tracer patterns for existing condi-
tions and the offshore breakwater plan with no waves indicates that the
patterns are similar, with the exception of the 100-year (41,000 cfs) dis-
charge. The breakwater prevented the material from moving as far sea-
ward in the cove as it did under existing conditions.

A comparison of riverine sediment tracer patterns for the offshore
breakwater plan with wave conditions from west-northwest and west indi-
cates that the breakwater slightly changes the paths of migration and sub-
sequent deposits for some river discharges and does not for others. For
13-sec, 14-ft test waves from west-northwest, tracer material moved fur-
ther seaward into the cove without the breakwater in place, in particular
for the 20,000- and 27,000-cfs discharges. The higher discharges (33,000
and 41,000 cfs) resulted in similar patterns for existing conditions and the
breakwater plan for these wave conditions. For 13-sec, 14-ft waves from
west, sediment moved straight out of the river into the cove with the break-
water installed for the various discharges. Without the structure in place,
material migrated more northerly after entering the cove. Successively
larger discharges also resulted in material moving in a slightly more north-
erly path than it did with the structure installed. For 15-sec, 20-ft test
waves from west-northwest, sediment tracer patterns in the cove were sim-
ilar for the various discharges both with and without the offshore struc-
ture. These wave conditions from west resulted in material migrating
slightly further seaward for the 27,000- to 41,000-cfs discharges with the
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breakwater installed. In general, considering all test conditions, riverine
sediment deposited in an area in the cove between the existing Noyo River
jetties and the proposed structure location, whether the breakwater was in-
stalled or not.

A comparison of wave-induced sediment tracer tests for existing condi-
tions and the offshore breakwater plan reveals that the breakwater had lit-
tle effect on tracer patterns and subsequent deposits for test waves from
northwest. For test waves from southwest, however, the breakwater re-
sulted in a slight shift of the tracer path as it entered the cove. The break-
water prevented the material from penetrating as deeply shoreward into
the cove as it did under existing conditions.

Long-period wave tests

Long-period (60 to 200 sec) wave tests were conducted during previous
studies (Bottin, Acuff, and Markle 1988) for existing conditions using
waves from the west direction with a +7.0-ft swl. The gage arrangement
for these tests is shown in Plate 13. To ensure accurate determination of
incident wave height, the first 10 gages were placed in an array at the
river entrance to measure nodes and antinodes of possible standing waves.

The incident wave height was then calculated from the following relationship:

H + H

a n

Hi ==
where

H; = incident wave height
H, = wave height at antinode
H, = wave height at node

Test results obtained with the gage array were used to determine incident
wave heights in the entrance and corresponding wave-machine stroke set-
tings. During the tests, squares of styrofoam confetti were spread over the
water surface and observed over the 60- to 200-sec period range. Areas of
maximum horizontal movement (nodes) and minimum horizontal move-
ment (antinodes) were identified through this series of visual observa-
tions. Wave gages were placed in antinodal areas. Measured wave
heights at a particular gage location were divided by the incident wave
height for that period to obtain the response factor or R = H/H,. Fre-
quency response (response factor versus wave period) curves were subse-
quently plotted for Gages 11-20.

Frequency response curves for existing conditions are shown in
Plates 14-23. These test results indicate that resonant peaks (with amplifi-
cation factors in excess of 1.0) will occur at various stations in Noyo
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River (Gages 11-15 and 19) for wave periods of 60, 90, 95, 110, 115, 130,
150, 155, 165, and 185 sec. Resonant peaks (with amplification factors in
excess of 1.0) will occur in Noyo Harbor (Gages 16-18) for wave periods
of 75, 95, 102.5, 115, and 155 sec. The maximum peak in Dolphin Marina
(Gage 20) occurred for a 110-sec wave period with an amplification factor
of 0.95.

Frequency response curves obtained for the offshore breakwater plan
also are shown in Plates 14-23. Results indicate that resonant peaks
(with amplification factors in excess of 1.0) will occur at various stations
in Noyo River for wave periods of 85, 90, 95, 100, 105, 115, 120, 125,
130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, and
200 sec. Resonant peaks with amplification factors greater than 1.0 will
occur in Noyo Harbor for wave periods of 90, 95, 100, 105, 110, 115, 120,
140, 145, 150, 155, and 160 sec. The maximum peak in Dolphin Marina
occurred for a 140-sec wave period and had an amplification factor of
0.55.

Discussion of long-period wave tests

A comparison of long-period wave test results for existing conditions
and the offshore breakwater plan indicates similar frequency response con-
ditions in Noyo Harbor. Maximum response factors of 1.92 and 1.97 oc-
curred for existing conditions and the breakwater plan, respectively, in the
southern corner of the harbor (Gage 16). In some cases, response factors
were slightly larger for existing conditions for some wave periods, and in
other instances, they were slightly larger for the offshore breakwater plan
for some wave periods. In general, it appears that construction of the off-
shore breakwater will not have any negative impacts on surge conditions
in Noyo Harbor.

Maximum response factors of 0.95 and 0.55 occurred in Dolphin Ma-
rina for existing conditions and the offshore breakwater plan, respectively.
Frequency response over the entire period range was generally slightly
lower for the offshore breakwater plan than for existing conditions.

A comparison of frequency response in Noyo River indicated maxi-
mum values of 2.9 and 2.33, respectively, for existing conditions and the
offshore breakwater plan. In the lower reaches of the river, however, for
some period ranges the offshore breakwater plan resulted in slightly larger
frequency response values with wider peaks than existing conditions did.
Since surging has not been a problem in this area in the prototype, it is not
expected to become a problem with the offshore breakwater installed.

Chapter 4 Tests and Resuits




5 Conclusions

Based on the results of the hydraulic model investigation reported
herein, it is concluded that:

a. Existing conditions are characterized by rough and turbulent wave
conditions in the Noyo River entrance. Maximum wave heights
ranged from 8.5 to 13.7 ft in the entrance for operational conditions
(incident waves with heights of 14 ft or less) and from 12.2 to
15.2 ft for extreme conditions (waves up to 32 ft in height),
depending on incident wave direction.

b. The offshore breakwater plan will result in maximum wave heights
ranging from 6.3 to 9.3 ft in the entrance for operational wave
conditions and 8.7 to 14.6 ft for extreme conditions, depending on
incident wave direction.

c. The offshore breakwater plan will not meet the 6.0-ft wave-height
criterion in the entrance for all incident waves of 14 ft or less
(operational conditions). Based on hindcast data, however, the
breakwater plan will result in the criterion being achieved 37 percent
more of the time than it currently is for existing conditions when
operational waves are present. This is equivalent to an average of
23.5 days per year. The magnitude of the average wave height in
the jettied entrance will be decreased by about 27 percent as a result
of the offshore breakwater for operational waves.

d. With no waves present, the offshore breakwater resulted in riverine
sediment patterns similar to those obtained for existing conditions
except for the 100-year (41,000 cfs) discharge. For this condition,
the breakwater prevented material from moving as far seaward in
the cove as it did under existing conditions.

e. With waves present from west-northwest and west, the offshore
breakwatér slightly changes the paths of migration and subsequent
deposits for some river discharges and does not for others. In
general, considering all test conditions, riverine sediment will
deposit in an area in the cove between the existing jettied entrance
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and the proposed structure location, both with and without the
breakwater installed.

f. The offshore breakwater will not interfere with the migration of
wave-induced sediment into the cove for waves from northwest;
however, for waves from southwest, the breakwater will prevent
some sediment from penetrating as deeply shoreward in the cove as
it did under existing conditions.

8. The offshore breakwater plan will have no adverse impact on surge

conditions due to long-period wave energy in Noyo Harbor, Dolphin
Marina, and the lower reaches of the river.
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Table 1
Summary of Refraction and Shoaling Analysis for Noyo Harbor

Shallow-Water Refraction' Shosling? Wave-Height
Wave Period, sec | Azimuth, deg Coetficlent Coefficient Adjustment Factor
Northwest, 315 deg
312.2 0.981 0.956 0.938
307.3 0.950 0917 0.871
11 302.8 0.926 0917 0.849
13 200.3 0.912 0.938 0.855
15 206.2 0.897 0.971 0.871
17 203.1 0.889 1.000 0.897
19 200.9 0.885 1.044 0.924
West-Northwest, 202.5 deg
2025 0.998 0.956 0.954
9 2013 0.992 0.917 0.910
11 289.8 0.993 0917 0.911
13 288.4 0.996 0.938 0.934
15 287.1 1.006 0.971 0.977
17 285.7 1.003 1.009 1.012
19 284.5 1.010 1.044 1.054
West, 270 deg
7 270.0 1.000 0.956 0.956
) " 2702 0.995 0.917 0.912
1 270.0 0.992 0917 0.910
13 270.1 0.981 0.938 0.920
15 270.4 0.973 0.971 0.945
17 2705 0.972 1.009 0.981
19 270.6 0.975 1.044 1.018
West-Southwest, 247.5 deg
2475 0.999 0.956 0.955
249.4 0.890 0917 0.908
1 251.8 0.988 0917 0.906
13 254.1 0.989 0.938 0.928
15 255.9 0.996 0.971 0.967
17 257.7 1.002 1.009 1.001
19 250.1 1.011 1.044 1.055
(Continued)

; At approximate locations of wave generator in model.
Al 81-ft depth (75-ft pit elevation with 6-ft storm tide conditions superimposed).




Table 1 (Concluded)

Shallow-Water Refraction Shoaling Wave-Height
Wave Perlod, sec | Aximuth, deg Coetficlent Coefticient Adjustment Factor
Southwest, 225 deg

7 225.8 0.988 0.956 0.945

9 2295 0.953 0.917 0.874
11 234.2 0.929 0.917 0.852
13 238.4 0.919 0.938 0.862
15 242.4 0.903 0.971 0.877
17 2457 0.891 1.009 0.899
19 2484 0.882 1.044 0.921
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Table 14
Wave Heights for the Offshore Breakwater Plan for Test Waves
from Northwest, swi = 0.0 ft

Test Wave Wave Height, 1t
Period | Height (Gage |Gage |Gage |Gage |[Gage |Gage |Gage |Gage
20C ft 1 2 S 4 ] 6 7 8
7 8 13 i.8 4.1 4.2 3.7 3.0 0.1 0.1
14 4.1 3.9 5.0 6.0 5.6 1.7 03 0.1
20 5.6 6.9 8.9 8.6 8.0 11.2 0.2 0.1
9 ] 0.6 14 1.9 1.8 1.8 2.4 0.1 0.1
12 4.5 5.1 55 6.9 3.5 6.3 0.3 0.1
20 6.4 8.9 9.2 103 10.6 141 04 0.1
1 6 1.5 1.6 23 24 1.7 1.9 0.2 0.1
14 6.3 7.3 8.5 8.1 7.3 9.9 03 0.1
24 7.0 8.1 115 9.8 9.2 134 0.5 0.1
13 8 1.3 1.6 2.6 3.9 2.6 2.4 0.1 0.1
14 7.4 8.0 8.1 9.1 75 9.3 0.8 0.1
20 8.4 9.7 11.0 11.0 10.4 12.8 05 0.1
15 10 7.3 7.7 83 83 6.8 11.0 0.7 0.1
14 8.3 8.7 8.3 10.7 10.2 125 09 0.1
20 9.0 9.4 124 12.2 8.7 153 0.8 0.1
17 6 2.6 3.9 4.1 4.3 4.6 5.3 0.4 0.1
12 7.5 7.8 9.6 8.6 7.3 10.4 1.0 0.1
2 8.9 9.5 174 13.6 8.2 14.5 09 0.1
19 12 7.1 8.0 84 9.3 7.2 12.1 0.8 0.1




Table 15

Wave Heights for the Offshore Breakwater Plan for Test Waves

from West-Northwest, swi = 0.0 ft
Test Wave Wave Height, ft
Period | Height | Gage |Gege [ Gage |Gage |Gage |Gage |Gage | Gage
28C ft 1 2 3 4 ] 6 7 8
7 8 23 28 48 6.0 24 4.8 0.2 0.1
16 71 128 14.1 14.6 10.6 7.2 0.4 0.1
9 6 15 2.2 25 33 24 25 0.1 0.1
10 4.2 4.2 4.4 5.6 3.6 6.9 0.3 0.1
18 8.4 1.7 12.7 16.3 11.7 6.1 0.6 0.1
1 6 1.6 2.0 2.7 29 1.7 4.1 0.2 0.1
14 5.6 7.3 12.6 1.4 75 6.1 0.7 0.1
24 85 1.7 14.4 16.7 13 1.7 0.6 0.1
13 . 6 2.1 21 42 43 2.0 38 0.3 0.1
14 741 129 159 16.4 13.0 7.9 0.8 0.1
22 9.5 153 18.6 18.6 149 94 0.7 0.1
15 10 8.3 9.4 105 115 129 8.9 0.9 0.1
14 9.0 1.5 135 14.7 8.1 12.2 0.9 0.1
20 9.5 13.2 15.3 15.2 10.8 13.4 1.1 0.2
30 8.3 13.6 16.9 16.3 135 13.9 0.5 0.1
17 10 4.0 5.0 6.8 5.9 52 6.8 0.5 0.1
20 103 105 16.2 151 111 13.8 1.3 0.1
28 10.8 115 17.7 16.7 11.4 16.2 1.9 0.2
19 12 6.5 6.0 8.8 11.2 9.3 8.2 0.9 0.1
22 113 139 143 179 14.4 12.3 1.3 0.2




Table 16

Wave Heights for the Offshore Breakwater Plan for Test Waves

from West, swi = 0.0 ft
Test Wave Wave Height, it
Period (Height | Gage |Gage |Gage |Gage |Gage |Gage |Gage | Gage
sec ft 1 2 3 4 5 6 7 8
7 8 3.6 5.7 6.0 6.9 5.9 22 0.2 0.1
14 6.7 7.6 104 13.6 8.9 3.8 0.4 0.1
20 3.7 5.4 9.3 9.8 8.2 4.2 0.2 0.1
9 6 2.1 3.0 3.7 5.1 3.7 25 0.1 0.1

14 6.5 9.7 125 16.1 121 4.3 0.5 0.1
22 5.4 6.7 125 13.2 9.1 84 04 0.1

11 6 2.2 3.2 4.7 4.6 35 23 0.2 0.1
14 6.8 7.9 1.4 13.6 10.2 6.0 0.6 0.1
18 6.4 7.4 8.4 113 12.2 7.9 0.6 0.1
30 5.4 7.8 10.7 14.1 10.4 94 0.6 0.1

13 6 3.6 4.9 59 8.0 5.7 54 0.6 0.1
14 5.0 7.5 8.1 13.1 10.6 6.5 0.6 0.1
20 4.6 6.7 10.2 15.7 7.2 71 0.6 0.1
30 6.4 8.4 11.0 15.8 1.2 8.7 0.7 0.1

15 10 5.8 7.7 101 12.0 115 10.9 0.7 0.1
14 8.1 8.7 114 145 12.8 6.7 0.8 0.1
20 7.6 9.0 121 153 12.8 8.9 0.9 0.1
30 7.9 9.4 124 129 12.6 1.7 0.6 0.2

17 10 5.6 5.6 8.0 10.0 10.8 83 0.6 0.1
20 7.8 8.5 13.7 16.0 10.7 8.4 1.0 0.1
28 7.3 7.4 118 13.6 103 9.5 1.1 0.2




Table 17
Wave Heights for the Oftshore Breakwater Plan for Test Waves

from West-Southwest, swi = 0.0 ft
Test Wave Wave Height, ft
Period | Height | Gage |Gege |Gage |Gege |Gege |Gege |Gege | Gage
sec ft 1 2 ) 4 5 (] 7 s
7 ) 27 |38 39 |57 |33 |s4 |o2 |oi1
14 24 |as 63 | 84 | 54 |34 |02 |01
20 24 |37 59 (85 |58 [39 [o2 o1
9 6 1.7 |27 38 |38 |27 |29 o1 0.1
14 49 |50 60 |73 |74 |as o3 |01
2 54 |65 89 |123 |67 |44 |03 |01
1" 10 43 |48 78 |72 |52 |34 Jo4 |01
14 50 |63 86 [104 |11.4 |48 |06 |01

20 54 6.4 10.6 14.2 10.6 6.5 0.5 0.1

30 54 6.2 10.4 13.6 10.4 7.6 0.5 0.1
13 10 54 6.0 7.4 10.5 9.5 5.1 0.5 0.2
14 5.8 8.8 8.8 124 10.0 7.0 0.7 0.1
20 4.7 71 9.5 142 10.0 8.1 04 0.1

32 4.9 78 10.9 13.0 9.0 8.2 (1 X ] 03

15 10 2.8 43 6.2 8.8 7.9 5.0 03 0.1
14 4.3 59 7.6 12.0 74 6.1 0.4 0.1
20 §.5 74 9.4 15.1 F8.0 8.1 0.5 0.1
32 5.3 6.0 8.7 14.2 8.3 6.5 04 03
17 14 43 4.7 8.2 9.7 6.8 6.9 0.6 0.1
20 6.9 6.3 9.7 129 134 6.7 0.9 0.1

28 78 7.7 11.6 13.9 125 6.8 13 0.5




Table 18
Wave Heights for the Offshore Breakwater Plan for Test Waves

from Southwest, swi = 0.0 ft

Test “Yave Wave Height, ft
Period | Height [ Gage |Gage |Gage |Gage | Gage |Gage | Gage |Gage
sec ft 1 2 3 4 5 s 7 ]
7 8 1.0 24 34 45 as |32 0.1 0.1
14 24 3.8 5.7 6.7 40 |28 0.1 0.1
20 35 5.4 6.1 8.2 60 |33 0.2 0.1
9 10 2.1 34 5.4 4.1 38 |33 0.1 0.1
14 5.4 5.8 74 7.7 57 |50 0.3 0.1
2 5.2 6.5 84 |117 68 |5.7 0.3 0.1
" 6 1.7 23 2.1 23 15 |29 0.1 0.1
14 35 4.4 6.2 9.3 66 |39 0.3 0.1
20 39 5.7 9.7 |122 84 |50 0.4 0.1
30 5.6 6.3 83 |[109 93 |64 0.3 0.1
13 10 43 6.9 88 |10.8 73 |47 0.5 0.1
14 39 5.8 9.4 |120 79 |61 0.5 0.1
20 6.2 73 125 [17.0 90 |8s 0.8 0.1
32 70 ‘|98 112 [145 [135 |75 0.5 0.1
15 10 37 4.6 54 9.3 49 |53 0.2 0.1
14 6.0 6.9 75 |[134 86 |76 0.4 0.1
20 47 5.6 87 140 80 |70 0.3 0.1
32 6.0 6.6 89 |11.8 98 |72 0.4 0.1
17 22 6.0 6.1 9.7 |[125 98 |72 0.7 0.1




Table 19
Wave Heights for the Otfshore Breakwater Plan for Test Waves

from Northwest, swi = +7.0 ft
Tost Wave Wave Height, ft

el ol ot F ot F ol atl -l Pl

7 8 35 3s 4.8 74 43 38 |04 0.1
14 7.2 78 102 {117 |17 |140 |05 0.1
20 6.9 8.2 8.3 99 |106 |130 |05 0.1

9 6 1.5 24 35 4.4 24 38 |02 0.1
12 25 46 48 6.5 4.2 45 {03 0.1
20 93 |127 134 [11.4 142 |13 {11 0.4

1" 6 1.9 26 38 47 26 22 |o0.2 0.1
14 5.8 9.2 79 {103 8.8 73 |04 0.2
24 102 [11.3 [141 [174 [108 [131 |09 0.4

13 6 33 3.1 4.9 5.3 49 43 |02 0.1
14 8.6 87 |11.2 9.4 70 [100 Jos 0.4
20 126 [13.7 {170 |[138 95 |[124 |12 0.5

15 10 4.0 4.9 5.8 5.0 55 68 |04 0.2
14 5.4 7.2 76 8.5 63 |105 o6 0.2
20 9.2 98 (153 |148 112 J139 |11 0.6

17 6 34 3.2 3.8 6.0 38 59 |02 0.1
12 74 6.5 8.7 8.8 57 9.7 {06 0.2
2 9.7 |114 |162 |154 |[132 |166 |08 0.4

19 12 5.0 6.0 72 {100 45 67 |07 0.4




Table 20
Wave Heights for the Offshore Breakwater Plan for Test Waves

from West-Northwest, swi = +7.0 ft

Teat Wave Wave Height, 1t
Period | Helght { Gage |(Gage |Gage |Gage |Gage |Gage |Gage | Gege
e ®t 1 2 3 4 ] ] 7 8
7 8 4.1 39 4.4 7.3 4.1 39 o1 0.1
16 79 {114 135 |134 127 8.1 0.8 0.1
9 6 1.6 35 33 46 1.8 29 o1 0.1
10 33 4.8 6.2 6.1 31 4% |03 0.1
18 100 |149 |167 160 |158 J102 [09 0.4
1 ] 1.6 1.9 3.1 43 1.8 3.1 0.1 0.1
14 6.0 7.9 83 |10.1 8.3 76 |05 0.2
24 88 [113 (132 [130 [13.0 |[147 |04 0.1
13 6 25 3.3 44 8.0 39 52 |o.2 0.1
14 5.5 83 [129 [134 |[150 88 |04 0.1
22 108 [139 |[157 |140 [129 [152 |07 0.2
15 10 4.7 6.0 6.4 8.0 8.2 59 |05 0.2
14 5.7 75 114 100 |113 99 |09 0.5
20 10.1 1.4 |170 [17.0 [19.2 [120 |1.0 0.4
30 146 [133 |206 |214 [19.1 141 |08 0.4
17 10 75 76 |[11.7 |103 98 |10 (07 0.2
20 128 132 [174 |196 |226 |153 |14 0.7
28 9.8 (123 [17.1 19.1 19.1 141 |08 0.4
19 12 5.3 75 104 |120 8.7 84 |06 0.5
22 1.8 |14 155 178 (174 (118 |13 0.6




Table 21
Wave Heights for the Offshore Breakwater Plan for Test Waves
from west, swi = +7.0 ft

Test Wave Wave Height, it
ol ol ol i il ol el il
7 8 43 8.1 8.1 9.9 8.7 4.5 0.3 0.1

14 8.8 9.6 124 16.1 12.2 5.7 0.6 0.2

20 8.5 85 9.9 1.6 12.7 7.0 0.3 0.1

9 6 21 3.3 3.7 3.5 33 23 0.2 0.1
14 3.7 8.2 8.4 9.1 6.4 3.9 0.3 0.1

22 9.4 1.2 174 18.9 144 8.7 0.8 0.5

11 8 3.8 4.0 5.6 7.2 2.7 39 0.2 0.1
14 9.3 123 125 16.3 13.0 15 0.8 0.5

18 11.2 13.8 15.5 17.5 15.0 9.0 0.9 04

30 7.1 10.2 11.3 16.9 121 10.6 0.4 0.2
13 6 54 54 56 49 53 44 0.3 0.2
14 8.3 8.8 9.4 14.5 9.2 8.2 06 0.4
20 9.6 10.0 11.4 14.1 113 12.0 0.7 0.5
30 73 9.7 10.9 13.8 18.7 11.6 0.9 0.2
15 10 28 4.8 6.3 5.3 7.0 4.1 0.2 0.1
14 35 4.1 X 75 8.0 6.3 0.4 0.1
20 7.7 7.3 10.8 11.6 10.8 10.2 0.8 0.4
30 8.8 9.1 12.8 16.4 10.6 8.1 0.8 04
17 10 3.0 33 6.1 5.1 5.0 4.6 0.2 0.1
20 12.0 123 15.9 17.6 15.8 120 1.2 0.5

28 8.5 9.7 13.1 14.9 1.9 15.3 0.8 0.5




Table 22
Wave Heights for the Offshore Breakwater Plan for Test Waves

from West-Southwest, swi = +7.0 ft

Test Wave Wave Height, ft
Perlod | Height | Gage |Gage |Gage |Gage |Gage |Gage |(Gage | Gage
sec ft 1 2 3 4 L] 6 7 8
7 8 23 29 29 5.1 3.1 3.3 0.2 0.1
14 4.4 5.8 8.2 8.2 8.7 43 0.3 0.1
20 43 5.4 8.6 9.9 79 4.8 0.2 0.1
9 6 ‘ 1.8 2.8 28 3.3 3.5 3.3 0.2 0.1
14 22 4.7 4.6 §5 6.0 54 0.3 0.1
22 5.0 6.8 7.6 9.7 9.3 4.7 0.4 0.2
1 10 39 5.6 5.5 5.1 6.3 4.3 0.3 0.1
14 8.1 9.0 108 12.6 7.2 6.2 0.6 0.3
20 8.2 10.7 9.8 13.9 10.1 9.5 0.5 0.2
30 8.1 10.1 12.0 15.0 11.0 8.4 0.6 0.2
13 10 4.7 4.8 6.1 8.6 5.7 55 0.2 0.1
14 8.9 7.3 10.5 11.2 6.2 8.3 0.5 0.3
20 6.9 74 9.9 131 6.6 10.2 0.4 0.2
32 1.4 1.1 13.8 17.0 1.8 9.6 0.5 0.1
15 10 3.9 4.5 5.4 6.3 7.3 53 0.3 0.2
14 5.6 59 7.3 79 7.2 8.2 0.6 0.2
20 6.6 7.7 9.8 11.9 7.5 9.8 0.4 0.2
32 84 94 1.7 17.9 9.1 9.3 0.7 0.3
17 14 8.5 8.0 10.2 11.6 10.2 10.0 1.2 0.6
20 7.3 10.1 12.6 15.6 13.8 10.0 1.0 0.4
28 79 9.5 134 17.4 145 10.2 0.9 0.5




Table 23
Wave Heights for the Offshore Breakwater Plan for Test Waves
from Southwest, swi = +7.0 ft

Test Wave Wave Height, it
Period | Height | Gage | Gage |Gage |Gage |Gage |Gage |Gage | Gage
sec fit 1 2 3 4 ] 8 7 8
7 8 29 39 39 6.2 3.8 21 0.1 0.1
14 24 37 5.2 38 4.7 34 |01 0.1
20 3.0 53 5.8 6.1 4.7 49 |02 0.1
9 10 23 4.3 4.0 55 34 4.7 0.2 0.1
14 2.6 8.1 53 7.7 5.7 48 0.3 0.2
2 35 5.7 79 104 7.6 6.2 0.3 0.1
11 8 2.6 26 3.9 43 14 2.9 0.2 0.1
14 6.0 74 7.7 8.0 49 5.2 0.4 0.2
20 4.7 59 9.1 9.5 8.0 59 0.4 0.1
30 6.9 9.2 8.3 14.1 12.2 6.0 0.4 0.2
13 10 55 6.0 6.3 1.8 71 6.4 0.5 0.2
14 5.7 55 [103 (137 7.9 74 |06 0.2
20 5.7 8.1 121 12,6 7.5 79 |05 0.2
32 8.7 103 |154 (168 [100 |[106 |08 0.2
15 10 4.3 4.5 5.2 8.0 7.3 6.9 0.4 0.2
14 6.3 6.9 75 9.3 6.8 73 |09 0.3
20 8.1 86 102 [140 8.6 94 |14 0.6
32 7.9 10.2 |107 [17.2 9.2 99 |08 0.3
17 22 6.9 83 |107 (149 |138 92 |07 c.3
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Photo 1.  Typical wave patterns for existing conditions; 9-sec, 20-ft
waves from northwest; swl = 0.0 ft

Photo 2.  Typical wave patterns for existing conditions; 15-sec, 14-ft
waves from northwest; swi = 0.0 ft




Photo 3.  Typical wave patterns for exixting conditions; 13-sec, 14-ft
waves from northwest; swi = +7.0 ft

Photo 4.  Typical wave patterns for existing conditions; 17-sec, 22-ft
waves from northwest; swl = +7.0 ft




Photo 5.  Typical wave patterns for existing conditions; 15-sec, 14-ft
waves from west-northwest; swil = 0.0 ft

e

Photo 6. Typical wave patterns for existing conditions; 17-sec. 20-ft
waves from west-northwest: swl = 0.0 ft




Photo 7.  Typical wave patterns for existing conditions; 13-sec, 14-ft
waves from west-northwest; swl = +7.0 ft

Photo 8.  Typical wave patterns for existing conditions; 15-sec, 20-ft
waves from west-northwest; swl = +7.0 ft




Photo 9.  Typical wave patterns for existing conditions; 13-sec, 20-ft
waves from west; swi = 0.0 ft

Photo 10. Typical wave patterns for existing conditions; 15-sec, 14-ft
waves from west; swi = 0.0 ft




Photo 11. Typical wave patterns for existing conditions; 13-sec, 14-ft
waves from west; swl = +7.0 ft

Photo 12. Typical wave patterns for existing conditions; 15-sec, 20-ft
waves from west; swi = +7.0 ft




Photo 13. Typical wave patterns for existing conditions; 11-sec, 20-ft
waves from west-southwest; swl = 0.0 ft

Photo 14. Typical wave patterns for existing conditions; 13-sec, 14-ft
waves from west-southwest; swl = 0.0 ft




Photo 15. Typical wave patterns for existing conditions; 13-sec, 20-ft
waves from west-southwest; swl = +7.0 ft

Photo 16. Typical wave patterns for existing conditions; 15-sec, 14-ft
waves from west-southwest; swl = +7.0 ft




Photo 17. Typical wave patterns for existing conditions; 11-sec, 20-ft
waves from southwest; swl = 0.0 ft

Photo 18. Typical wave patterns for existing conditions; 15-sec, 14-ft
waves from southwest; swl = 0.0 ft




Photo 19. Typical wave patterns for existing conditions; 13-sec, 14-t
waves from southwest; swl = +7.0 ft

Photo 20. Typical wave patterns for existing conditions; 15-sec, 20-ft
waves from southwest: swl = +7.0 ft




Photo 21. Typical wave patterns for the offshore breakwater plan; 9-sec,
20-ft waves from northwest; swl = 0.0 ft
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Photo 22 Typical wave patterns for the offshore breakwater p.an: 15 sac.
14-ft waves from northwest. swl - 0.0 ft




Photo 23. Typical wave patierns for the offshore breakwater plan; 13-sec,
14-ft waves from northwest; swl = +7.0 ft

Photo 24. Typical wave patterns for the offshore breakwater plan; 17-sec,
22-ft waves from northwest; swi = +7.0 ft



Photo 25. Typical wave patterns for the offshore breakwater plan; 13-sec,
20-ft waves from west; swl = 0.0 ft

Photo 26. Typical wave patterns for the offshore breakwater plan; 15-sec,
14-ft waves from west; swl = 0.0 ft




Photo 27. Typical wave patterns for the offshore breakwater plan; 13-sec,
14-ft waves from west; swl = +7.0 ft

Photo 28. Typical wave patterns for the offshore breakwater plan; 15-sec,
20-ft waves from west; swl = +7.0 ft




Photo 29. Typical wave patterns for the offshore breakwater plan; 11-sec,
20-ft waves from west-southwest; swl = 0.0 ft

Photo 30. Typical wave patterns for the offshore breakwater plan; 13-sec,
14-ft waves from west-southwest; swl = 0.0 ft




Photo 31. Typical wave patterns for the offshore breakwater plan; 13-sec,
20-ft waves from west-southwest; swl = +7.0 ft

“a

Photo 32. Typical wave patterns *nr the offshore breakwater plan; 15-sec,
14-ft waves from west-southwest; swl = +7.0 ft




Photo 33. Typical wave patterns for the offshore breakwater plan; 11-sec,
20-ft waves from southwest; swl = 0.0 ft

Photo 34. Typical wave patterns for the offshore breakwater plan; 15-sec,
14-ft waves from southwest; swl = 0.0 ft




Photo 35. Typical wave patterns for the offshore breakwater plan; 13-sec,
14-ft waves from southwest; swl = +7.0 ft
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Photo 36. Typical wave patterns for the offshore breakwater pian; 15-sec,
20-ft waves from southwest; swl = +7.0 ft




Photo 37. Typical wave patterns for the oftshore breakwater plan; 15-sec,
14-ft waves from west-northwest; swl = 0.0 ft

Photo 38. Typical wave patterns for the oftshore breakwater plan: 17-sec,
20-ft waves from west-northwest; swl = 0.0 ft
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Photo 39. Typical wave patterns for the offshore breakwater plan; 13-sec,
14-ft waves from west-northwest; swl = +7.0 ft

Photo 40. Typical wave patterns for the offshore breakwater plan; 15-sec,
20-ft waves from west-northwest; swl = +7.0 ft




Photo 41.

Photo 42.

Riverine sediment patterns for existing conditions; 7,000-cfs
river discharge
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Riverine sediment patterns for existing conditions; 20,000-cfs
river discharge




Photr 42. Riverine sediment patterns for existing conditions; 27,000-cfs
river discharge

Photo 44. Riverine sediment patterns for existing conditions; 33,000-cfs
river discharge




Photo 45.

Photo 46.
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Riverine sediment patterns for existing conditions; 41,000-cfs
river discharge

Riverine sediment patterns for offshore breakwater plan;
7.000-cfs river discharge




Photo 47. Riverine sediment patterns for offshore breakwater plan;
20,000-cfs river discharge

Photo 48. Riverine sediment patterns for offshore breakwater plan;
27.,000-cfs river discharge




EY o

Photo 49. Riverine sediment patterns for offshore breakwater plan;
33,000-cfs river discharge
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Photo 50. Riverine sediment patterns for offshore breakwater plan;
41,000-cfs river discharge
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Photo 51. Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west-northwest; swi = 0.0 ft,
20,000-cfs river discharge

Photo 52.

Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west-northwest; swl = 0.0 ft,
27,000-cfs river discharge
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Photo 53. Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west-northwest; swl = 0.0 ft,
33,000-cfs river discharge
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Photo 54. Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west-northwest; swl = 0.0 ft,
41,000-cfs river discharge




Photo 55. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west-northwest; swi = 0.0 ft,
20,000-cfs river discharge
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Photo 56. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west-northwest; swl = 0.0 ft,
27,000-cfs river discharge




Photo 57. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west-northwest; swi = 0.0 ft,
33,000-cfs river discharge

Photo 58. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west-northwest; swl = 0.0 ft,
41,000-cts river discharge




Photo 59. Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west; swl = 0.0 ft, 20,000-cfs river
discharge
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Photo 60. Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west; swl = 0.0 ft, 27,000-cfs river
discharge




Photo 61.

Photo 62.
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Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west; swil = 0.0 ft, 33,000-cfs river
discharge

Riverine sediment tracer patterns for existing conditions;
13-sec, 14-ft waves from west; swl = 0.0 ft, 41,000-cfs river
discharge
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Photo 63. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west; swi = 0.0 ft, 20,000-cfs river
discharge

Photo 64. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west; swl = 0.0 ft, 27,000-cfs river
discharge




Photo 65. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west; swl = 0.0 ft, 33,000-cfs river
discharge
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Photo 66. Riverine sediment tracer patterns for existing conditions;
15-sec, 20-ft waves from west; swi = 0.0 ft, 41,000-cfs river
discharge




Photo 67. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west-northwest; swi = 0.0 ft,
20,000-cfs river discharge

Photo 68. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west-northwest; swi = 0.0 ft,
27,000-cfs river discharge




Photo 69. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west-northwest; swl = 0.0 ft,
33,000-cts river discharge

Photo 70. Riverine sediment tracer patterns for the offshore breakwater
plan. 13-sec. 14-ft waves frcm west-northwest: swl = 0.0 ft,
41,000 cfs river discharge




Photo 71. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west-northwest; swl = 0.0 ft,
20,000-cfs river discharge

Photo 72. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west-northwest; swi = 0.0 ft,
27,000-cfs river discharge




Photo 73. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west-northwest; swl = 0.0 ft,
33.000-cfs river discharge
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Photo 74. Riverine sediment tracer patterns for the offshore breakwater

plan; 15-sec, 20-ft waves from west-northwest; swil = 0.0 ft,
41,000-cfs river discharge




Photo 75. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swl = 0.0 ft, 20,000-cfs

river discharge

Photo 76. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swi = 0.0 ft, 27,000-cfs

river discharge




Photo 77. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swi = 0.0 ft, 33,000-cfs
river discharge

Photo 78. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swl = 0.0 ft, 41,000-cfs
river discharge




Photo 79. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 20,000-cfs
river discharge

Photo 80. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swi = 0.0 ft, 27,000-cfs
river discharge
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Photo 81. Riverine sediment tracer patterns for the offshore breakwater

plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 33,000-cts
river discharge

Photo 82. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 41,000-cfs
river discharge




Photo 83. General movement of tracer material and subsequent deposits
for existing conditions; 13-sec, 14-ft waves from northwest;
swl =0.0ft

Photo 84. General movement of tracer material and subsequent deposits
for existing conditions; 15-sec, 20-ft waves from northwest;
swl = 0.0 ft




Photo 85. General movement of tracer material and subsequent deposits
for existing conditions; 13-sec, 14-ft waves from southwest;
swl=0.0ft

Photo 86. General movement of tracer material and subsequent deposits
for existing conditions; 15-sec, 20-ft waves from southwest;
swl = 0.0 ft




Photo 87. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 13-sec, 14-ft waves from
northwest; swi = 0.0 ft

! Photo 88. General movement of tracer material and subsequent deposits
! for the offshore breakwater plan; 15-sec, 20-ft waves from
northwest; swi = 0.0 ft




Photo 89. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 13-sec, 14-ft we*: - ‘rom
southwest; swl = 0.0 ft

Photo 90. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 15-sec, 20-ft waves from
southwest; swl = 0.0 ft




Photo 77. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swl = 0.0 ft, 33,000-cfs
river discharge

Photo 78. Riverine sediment tracer patterns for the offshore breakwater
plan; 13-sec, 14-ft waves from west; swl = 0.0 ft, 41,000-cfs
river discharge




Photo 79. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swi = 0.0 ft, 20,000-cfs
river discharge

Photo 80. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 27,000-cfs
river discharge




Photo 81. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 33,000-cfs
river discharge

Photo 82. Riverine sediment tracer patterns for the offshore breakwater
plan; 15-sec, 20-ft waves from west; swl = 0.0 ft, 41,000-cts
river discharge




Photo 83. General movement of tracer material and subsequent deposits
for existing conditions; 13-sec, 14-ft waves from northwest;
swi = 0.0 ft

Photo 84. General movement of tracer material and subsequent deposits
for existing conditions; 15-sec, 20-ft waves from northwest;
swl = 0.0 ft




Photo 85. General movement of tracer material and subsequent deposits
for existing conaitions; 13-sec, 14-ft waves from southwest:
swl = 0.0 ft
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Photo 86. General movement of tracer material and subsequent deposits
for existing conditions; 15-sec, 20-ft waves from southwest;
swl = 0.0 ft




Photo 87. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 13-sec, 14-ft waves from
northwest; swl = 0.0 ft

Photo 88. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 15-sec, 20-ft waves from
northwest; swl = 0.0 ft




Photo 89. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 13-sec, 14-ft waves from
southwest; swl = 0.0 ft

Photo 90. General movement of tracer material and subsequent deposits
for the offshore breakwater plan; 15-sec, 20-ft waves from
southwest; swl = 0.0 ft
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A 1:75-scale undistorted hydraulic model was used to determine wave conditions at the entrance to Noyo
River and Harbor as a result of an offshore breakwater. The impact of the improvements on long-period wave
conditions in the harbor as well as wave-induced and riverine bed-load sediment patterns was evaluated. The
model reproduced the river from its mouth to a point approximately 15,000 ft upstream, both Noyo Harbor and
Dolphin Marina located on the south bank, approximately 3,400 ft of the California shoreline on each side of
the river mouth, Noyo Cove, and sufficient offshore area in the Pacific Ocean to permit generation of the re-
quired test waves. A 45-ft-long wave generator, crushed coal sediment tracer material, and an automated data
acquisition and control system were utilized in model operation. It was concluded from the model investiga-
tion that:

a. Existing conditions are characterized by rough and turbulent wave conditions in the Noyo River en-
trance. Maximum wave heights ranged from 8.5 to 13.7 ft in the entrance for operational conditions (incident
waves with heights of 14 ft or less) and from 12.2 to 15.2 ft for extreme conditions (waves up to 32 ft in
height) depending on incident wave direction.
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13. (Concluded).

b. The offshore breakwater plan will result in maximum wave heights ranging from 6.3 to 9.3 ft in the
entrance for operational wave conditions and 8.7 to 14.6 ft for extreme conditions depending on incident
wave direction.

c. The offshore breakwater plan will not meet the 6.0-ft wave height criterion in the entrance for all inci-
dent waves of 14 ft or less (operational conditions). Based on hindcast data, however, the breakwater plan
will result in the criterion being achieved 37 percent more of the time than it currently is for existing condi-
tions when operational waves are present. The magnitude of wave heights also will be decreased by about
27 percent as a result of the offshore breakwater for operational waves.

d. With no waves present, the offshore breakwater resulted in riverine sediment patterns similar to those
obtained for existing conditions except for the 100-year (41,000-cfs) discharge. For this condition, the break-
water prevented material from moving as far scaward in the cove as it did for existing conditions.

e. With waves present from west-northwest and west, the offshore breakwater slightly changes the paths
of riverine sediment migration and subsequent deposits for some river discharges and does not for others. In
general, considering all test conditions, riverine sediment will deposit in an area in the cove between the ex-
isting jettied entrance and the proposed structure location, both with and without the breakwater installed.

J. The offshore breakwater will not interfere with the migration of wave-induced sediment into the cove
for waves from northwest; however, for waves from southwest, the breakwater will prevent some sediment
from penetrating as deeply shoreward in the cove as it did under existing conditions.

8. The offshore breakwater plan will have no adverse impact on surge conditions due to long-period
wave energy in Noyo Harbor, Dolphin Marina, and the lower reaches of the river.




