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ABSTRACT

This paper discusses the estimation of the Doppler frequency of an incoming RF

signal that is corrupted by additive white Gaussian noise. The estimation is performed

using the sampled in-phase and quadrature components of the demodulated signal. The

Cramer-Rao lower bounds for the minimum variance estimators as well as the maximum-

likelihood (ML) estimator are derived. The mean-square error of the ML estimator is

then studied.

RtSUME

Cet article discute de l'estimation de la fr~quence Doppler d'un signal RF cor-

rompu par du bruit blanc Gaussien et additif. L'estimation s'est faite en utilisant les

composantes en phase et en quadrature du signal d6modul6. Les bornes inf6rieures de

Cramir-Rao (C-R) pour les estimateurs ' variance minimale ainsi que l'estimateur •i prob-

abiliti maximale sont d~rivis. L'erreur quadratique moyenne de l'estimateur -proLi bilit6

maximale est ensuite 6tudi6e.
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EXECUTIVE SUMMARY

The problem of estimating the Doppler frequency of a received RF signal is
° basically the problem of estimating the shift in frequency of the signal in the presence of

noise generated in the propagation medium and in the measuring systems. This paper
establishes bounds for the best possible frequency estimate that can be achieved from a
finite number of I and Q samples. The latter are obtained by demodulating the received

signal in its in-phase (I) and quadrature (Q) components which are then discrete-time

sampled.

The equations describing the Cram&r-Rao (C-R) lower bounds for the minimum
variance of the unbiased estimates of the frequency, amplitude, and phase of the signal

are derived. It is found that the C-R bound for the frequency estimate is inversely

proportional to the signal-to-noise ratio SNR, the square of the sampling time-interval

T., and the cube of the number of samples N obtained. The minimum variances for the
coefficients of a general polynomial phase signal, i.e, chirp signals, are also derived. The
maximum-likelihood (ML) estimation of these parameters are then considered since the

ML estimator is the minimum variance estimator. The analysis of the ML frequency
estimator, however, reveals that at low SNR, the mean-square error (MSE) of the ML

estimate increases much more rapidly than the expected C-R boind due to the higher
probability of the occurrence of an outlier. The SNR depcndent deviation of the MSE

from the C-R bound is the threshold effect. The relationship between the ML estimation

and the discrete Fourier transform (DFT) of the sampled complex I/Q components is also

shown.

An algorithm for the implementation of the ML frequency estimator is then

considered. It consists of two parts; a coarse search and a fine search. The coarse and
the fine search are performed using the fast Fourier transform (FFT) and a numerical
procedure such as the bisection method or the secant method, respectively. Errors due
to the direct estimation of the frequency parameter by the FFT algorithm are also anal-

ysed. For moderate to high SNR (above the threshold effect), the dominant error in

the frequency estimation is found to be the approximation of the ML estimate by the
maximum magnitude DFT point. This approximation can be made more accurate by

increasing the number of DFT points, but once this number is chosen, the MSE of the

DFT approximation is constant and is independent of the input SNR.

Some numerical examples about the best possible frequency estimates that can

v



be achieved for coherent and noncoherent pulse radars are finally given. The typical
values chosen for the pulse duration, sampling rate, and SNR are 1 ,s, 108 Hz, and 20dB,
respectively. It is seen that in the case of coherent pulses, for the frequency estimate to
have an accuracy of 10 Hz or less, the number of pulses required is around 50. On the
other hand, in the noncoherent case, for the same accuracy, the required number of pulses
is in the order of a 100,000.
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1.0 INTRODUCTION

The measurement of the doppler frequency is basically the measurement of the

shift in frequency of the received signal. In the case of a radar signal, the doppler frequency

shift is related to the radial component of the relative velocity of the target by [9]

2 2.f 2uf ~- -y (1)

where R is the range rate, A = f/c is the transmitted wavelength of the radar signal and

fd is the doppler shift which is positive for decreasing range R. For a passive intercept
receiver such as the Electronic Intelligence (ELINT) or the Electronic Support Measure

(ESM) system, the doppler shift is given by [121

A fd -• -- '-•(2)

where R is the relative radial velocity between the emitter and the receiver.

There are many reasons why one would use a passive system such as the ESM

receiver instead of an active radar to measure the doppler frequency. Among them, one

obvious reason is the unavailability of a radar at the time due for example to its use in
tracking other targets. More importantly, however, the ESM system has the advantage

that it can detect an emitting target much earlier than a radar because of the one way wave

propagation instead of two. Thus, information about a change in the target's movement or

trajectory can be made available much sooner using an ESM system. Since the intercept

* (ESM) receiver has no knowledge of the transmitted frequency and can only measure
the received signal, it cannot calculate the shift in frequency due to the relative motion

between the emitter and the receiver. It can, however, determine the doppler shift due to

the change in the radial velocity of the emitter. This can be useful in detecting the radial

acceleration or the change in trajectory of an active emitter. As an example, suppose

that the velocity of a target emitter (missile) is Vi rn/s and is travelling directly towards

the receiver (ship A) as shown in Figure 1. At some point along the route it changes
trajectory and turns 0 degrees away from the ship. The change in radial velocity due to

the change of 0 degrees from the original trajectory is V, - Vi cos = Vi(1 - cos 0) rn/s.

Hence, the shift in frequency of the signal at the receiver is

fd A (3)
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For 0 = 50, A = 0.03 m and Vi = 300 rn/s, the doppler frequency shift fd is then equal to

38.05 Hz. In terms of the angle change in trajectory, 0, we can rewrite equation (3) as

=cos-1 (1 _ - (4)

where fd is the shift in frequency and fd >- 0. Assuming that we are able to estimate fd

down to say around 10 Hz. With the same values of Vi and A, it means that we will be

able to detect a change in trajectory of at least 2.56'.

Now, we will discuss the advantage of using an ESM system with the capability

of measuring the doppler frequency with an accuracy of about 10 Hz or less compared to a
monopulse radar system that has an angular resolution of 0.3 degrees. Referring to Figure

1, consider the first scenario where the missile has locked onto the ship A and the latter is

trying to transfer the lock from itself onto the nearby chaff cloud through the use of some

electronic countermeasures. The chaff was released by the ship in an attempt to seduce

the missile and as such, it is not very far from the ship. In this scenario, it is assumed that

the distance (d) between the chaff cloud and ship A is around 300 metres. To simplify
the example the ship and chaff cloud are in a line perpenticular to the initial missile

trajectory. It is shown that for a receiver which can measure a shift in frequency down to

10 Hz, it can detect a change in trajectory of at least 2.56 degrees for Vi = 300 m/s and
A = 0.03m. Hence, this implies that the receiver will be able to detect any deviation of

the missile onto the chaff within the range Rm = d/ tan 0 = 0.3/ tan(2.56°) = 6.703 Km.

For a monopulse radar system with an angular resolution of f3 degrees, the
maximum range R for which a change in trajectory of 0 degrees can be detected in a time

4 seconds or less is
R t, Vi sin € t,. Vi sin 0 5

tan - /3 (

where for small values of /3, tan #3 • /3. As can be seen from the above expression,

the range R is proportional to the required response time t, and the velocity Vi of the

target, but inversely proportional to the angular resolution. A plot of range (R) versus
the response time (t,) for different velocities (Vi) is shown in Figure 2 with the trajectory

change of 0 = 5V and an angular resolution of/3 - 0.3°. In the first scenario as described

above, the deviation angle 0 must satisfy the equation tan 0 = d/(R + t, Vi cos 4). Solving
simultaneously this equation with that of (5), we obtain the maximum range Rrdj"

5.12 Km for Vi = 300 m/s, t, = 2s, /3 = 0.30, and d = 300m.

3
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Figure 2: Plot of the range R versus the response time t, for a trajectory deviation of
50 and an angular resolution of 0.30.

In the second scenario, the chaff is used against the acquisition mode. That

is, the chaff is placed in advance before the missile acquires its target and as such, it is
much further away from the ship than in the seduction mode. In this case the distance

d, between the chaff and the ship is taken to be approximately 1 Km as shown in Figure
1. Using this value of d and with the other variables having the same values as before,
the maximum range R.i for which the ESM doppler receiver can detect a change in

trajectory is 22.37 Km. Note that Rem is proportional to the distance d between the
ship and the chaff. For the monopulse radar with the same angular resolution of 0.3

degrees and maximum response time of 2 seconds, by solving the previous equations, the
maximum range R,&tr obtained is 10.39 Km.

Similarly, in the third scenario where the missile deviates to track ship B instead
of ship A, the doppler receiver can detect this change well beyond the horizon. With the

distance d between ship A and B being around 3 Kin, and with all the other variables

remaining the same, we get R,.. = 67.10 Km and Rrd,, = 18.13 Km. The results are
summarized in Table 1 for the three different scenarios.

Ideally, if we were able to determine any shift in frequency at the receiver, we

4



Table 1: Comparison between an ESM Doppler Receiver and a Monopulse Radar Sys-
tem.

ESM Receiver with Doppler Radar System with angular
Scenarios measurement of an accuracy resolution of 0.30 and a required

of 10 Hz maximum response time of 2 s

1. d = 300 m Rem = 6.710 Km Rra,,• =5.118 Km

2. d = 1.0 Km RPm =22.367 Km Rr• = 10.388 Km

3. d = 3.0 Km RPm =67.099 Km Rrd•= 18.130 Km

would be able to calculate any trajectory change of the target. However, this is usually

not the case due to the presence of noise in both the propagation medium and in the

systems. This paper addresses the problem of estimating the frequency of the signal
which is corrupted by additive white Gaussian noise. The signal is assumed to be of the

form x(t) = a(t) cos(wdt + 0), where the amplitude a(t), the phase 0, and the angular

frequency wd are all assumed to be unknown. In addition, the estimation is performed on
a finite number of discrete-time observations.

The minimum variance or mean-square error (MSE) of the unbiased frequency

estimation is derived using the Cram6r-Rao (C-R) bound. This enables us to have an

idea about the best possible accuracy that can be achieved as a function of the number of

samples and input signal-to-noise ratio (SNR). To further generalize this concept, we have

also included signals that are frequency modulated such as the chirp signals. The lower
variance C-R bounds for the estimation of the coefficients of an arbitrary polynomial

phase signal of the form x(t) = a(t) cos(bo + bit + b2t2 + ... 4 itP) are derived. The

maximum-likelihood (ML) parameter estimation of the demodulated signal is considered

in this paper because it is known that for large values of SNR, the ML estimator is

unbiased, and is the minimum-variance estimator whose mean-square error is given by

the C-R bound. As the SNR decreases, however, the increase in the probability of the

outliers of the frequency estimate occuring, will cause the MSE of the ML estimator to

increase much more rapidly than the C-R bound. The tendency of the MSE to start

deviating from the C-R bound as the SNR decreases below a certain value is known as

the threshold effect. Most nonlinear estimators suffer from threshold effects. It will be

also shown that the ML estimation of the frequency parameter is related to the discrete

5
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Figure 3: Block diagram of the in-phase and quadrature (I/Q) demodulator.

Fourier transform (DFT) of the complex envelope of the sampled signal. The overall MSE

in using the DFT as an approximation to the ML frequency estimation is then derived.

2.0 COHERENT RECEIVER

We will first assume that the incoming RF signal from the emitter is coherent.

It can be a continuous wave (CW), a train of coherent pulses, or any transmitted signal

whose carrier is modulated by a waveform a(t). For now, we will further assume that the

initial carrier frequency w. has already been obtained and is known. Suppose that there

is a shift in frequency of the signal due to the doppler effect. The incoming signal z(t) is

then given by
x(t) = a(t) cos[(w, + Wd)t + 0o] + n(t) (6)

where wd = 2 7rfd is the doppler shift, and n(t) is the additive white Gaussian noise with

zero mean and variance or2. The received signal x(t) is then applied to the in-phase and

quadrature (I/Q) demodulator as shown in Figure 3. Note that in practice, the RF signal

is usually down-converted to an intermediate frequency (IF) signal before it is applied to

the I/Q demodulator. This is not shown here for brevity.

6



The noise n(t) can be represented as a band noise signal in terms of its in-phase

and quadrature components n,(t) and n.(t), respectively, where n,(t) and n,(t) are also

Gaussian with zero mean and variance a'2 [4], that is,

n(t) = n,(t) cos(wet) - no(t) sin(wct). (7)

The demodulated in-phase and quadrature baseband signals I(t) and Q(t) are then given

by

I(t) = a(t) cos(wdt + 00) + n,(t) (8)

Q(t) = a(t) sin(wdt + 0o) + n.(t). (9)

The baseband signals I(t) and Q(t) are sampled at a rate of f8 -- per second. The

sampled signals obtained are then equal to

Ik = akcOs(Wdtk + 0o) + n, (10)

Qk = aksin(wdtk + 0,) + n., (11)

where tk = to + kT., for k = 0, 1, 2, ... and Ik, Qk, ak, n, and n0 are defined as I(tk),

Q(tk), a(tk), n.(tk) and no(tk), respectively. The noise samples n, and n. are statistically
independent Gaussian random variables with mean zero and variance a 2 . For CW radar

signals the amplitude a(t) is usually a constant and for pulsed radar signals the value of
a(t) is either a constant or zero, neglecting the rise and fall time of the pulses. In the

latter case, we can always sample the signals I(t) and Q(t) such that the value of ak is

the constant but not equal to zero. Thus, we can replace ak simply by the parameter a,.

3.0 VARIANCE BOUNDS ON PARAMETER ESTIMATION

Before the estimations of the parameters such as the frequency wd and the phase
0. are made, it is usually very useful to have numbers or values that will indicate the

best possible estimates that can be achieved with the available data. Suppose that we
have N sample values of Ik and Qk, i.e., k = 0, 1, --. , N - 1. From these values of Ik

and Q&, we can form the N sampled complex envelope Zk = Ik + jQk, where j = Vf-_1.
Since the noise samples are independent Gaussian random variables with mean zero and

variance ar2, the joint probability density function (PDF) of the random variables Zk,
k = 0, 1, ... , N - 1, or of the random vector Z = fZo Z1 Z2 ... ZN-1], is the product

of the two N-variate Gaussian distribution of the random vectors I = [Io 1, 12 ... IN-l1

7



and Q = [Qo Qi Q2 ... QN-11. The PDF of vector Z is, therefore, given by [71

( 1\ )Ne r N-1 _V)
p(z;- exp a, 0(Ik-.uk + ( -ik) (12)

k=O

where the means pi and vk are as follows:

j1k = a cos(wtk + 0) (13)

v1k = a sin(wtk +0). (14)

As can be seen from the above equation (12), the PDF of the random vector Z is a

function of the unknown parameters w, a, and 0.

3.1 Cram6r-Rao Bounds for Frequency and Phase Estimates

Due to the fact that the received signal is corrupted by noise and is, therefore,

random in nature, we can only obtain estimations of the signal parameters. Furthermore,

since the values of the estimates are dependent on the observat- data, they are also

random variables and as such have a mean and a variance. An unbiased estimator is one

whose mean value is equal to the true value of the parameter and a minimum-variance

estimator is one whose variance is less than or equal to the variance of any other estimator.

The minimum-variance unbiased estimator is unique, but it may not always exist. Under

certain conditions, it can be shown that the variance of any unbiased estimator cannot

be less than a particular lower bound known as the Cramenr-Rao (C-R) bound [11, 101.

From [11], the Cramer-Rao bound for an unbiased estimator of a single unknown

parameter a is derived and is shown to be

Var(&) = a521-21= - (15)
E ( [ lohnjgzx] 2 ný~)

where & is the estimate of the true value of a. For the variance of the simultaneous

estimates of two or more unknown parameters ee, a2, -.. , a,,, the unbiased C-R bounds

are obtained from the inverse of the (n x n) Fisher information matrix r whose elements

-ti. are given by

= E{i InkP(Z; ai,, alnp(Z; al, a,,-',n)

8



E _ 02 lnp(Z; al,a 2," an)(

If we denote the inverse of the matrix 1 by lI, i.e., P = F- 1, then the C-R bound for the
variance of the individual unbiased estimate is obtained from the diagonal elements of T.

That is,

Var(&1 ) = > 4. (17)

where 'i, is the ith diagonal element of the matrix T.

Now, returning to the case where the PDF of the random variable vector Z is
as given in (12) and the unknown parameters a,, a 2 , and a3 are w, a, and 8, resp,- !y,

we have a (3 x 3) matrix r whose elements are

N1 (O('k\ (0Pk\ (0/k) \211k) (18)
k=O aI 0 J k a)1a)(8

where pk and vAk are as shown in (13) and (14), respectively. Solving for the previous
expression (18), and substituting tk = to + kTo, the symmetric matrix F is reduced to

a 2 (Nt2 + N(N - 1)t0 T. + -N(N - 1)(2N - 1)T,) 0 a2 (Nto + !N(N - 1)T.)

S0 N 0 1.a2 (Nto + !N(N - 1)T.) 0 a2 N
(19)

Taking the inverse of r, the Cramir-Rao bounds for the unknown parameters w, a and 0

are as follows:

= .7,2 12o,2
Var(D)=; > a2T1N(N2_I) (20)

Var(>&) . 7 (21)

Var(0) = Corj 202 (6t2 + 6(N - 1)toT, + (N - 1)(2N - 1)T)2)-~~ ~ a2TN(g2 - 1) (2

Note that unlike the frequency w and the amplitude a, the variance bound on the phase

0 is dependent on the time at which the first sample is taken, i.e., to. These results
were similarly obtained by Rife [8]. By differentiating equatior (22) with respect to to

and setting the result to zero, it is found that the minimum bound is achieved when
to = -. (N - 1)T. and is equal to a 2 /(aON). In terms of the signal-to-noise ratio which

9



is defined as SNR = a2/(2a 2 ), the Cram&r-Rao bound for the variance of the frequency

estimate is o; >_ 6f./[(SNR)N(N 2 - 1)], where f. = 1/T, is the sampling rate.

3.2 Cram6r-Rao Bounds for Polynomial Phase Modeled Estimates

We can further generalize the incoming signal x(t) as an arbitrary polynomial

chirp signal given by

x(t) = acos (bo+(w + bi)t + b2 t2 + +bt) + n(t) (23)

where a, be, b, ... , bp are the unknown parameters to be estimated. That is, there is now

a modulation on the frequency or phase of the signal. Note that for p = 1, the signal

is basically the same as that in the previous case where the sinusoidal has a constant

frequency equal to bi. For p = 2, we have a linear chirp or linear frequency modulation

(FM) signal, i.e., its frequency varies linearly as a function of time and the slope is given

by b2. Higher order chirp signals can be obtained with p >_ 3. As before using the same
coherent receiver as that described in section 2, we have

I(t) = acos(bo + bit + b2t2 + + bptP) + no(t) (24)

Q(t) = asin(bo + bit + b2t2 + + bptP) + n,(t). (25)

The above in-phase and quadrature signals are sampled into the discrete samples Ik,

and Qk, k = 0, 1, ... , N - 1, respectively. Defining the complex samples Zk = Ik +

jQ,, the joint probability density function of vector Z, given the parameter vector a- =
[a bo b1 ... bp], i.e., p(Z; 5), is the same as that expressed in (12), except that the means

iPk and vk are now given by

pk = acos(bo+.bltk +b 2 t+ + bptP) (26)

Vk = asin(bO + bltk + b2tk + ... + bptk) (27)

It is to be noted that pk and vs are now functions of the (p + 2) unknown parameters

a, bo, bi, ... , bp. Similar to the previous example, the Cramir-Rao bounds for the various

parameters can be obtained from the inverse of the ((p + 2) x (p + 2)) Fisher informa-

tion matrix I whose elements yij are given by equation (18), and where the unknown

parameters ac,i = 1, 2, ... , p + 2 , are a, b0, b1, ... , bp, respectively. Solving for -fij,

10



1, 2, ... , p+2, we have

S 0  0 ... 0

0 So S . SP* a 2

r ;72 0 S, S2 ... .+ (28)

0 Sp Sp+I ... S2p

where the elements Si are

N-i N-i
Si • (tk)' = _,(to + kTo)i. (29)

k=O k-0O

The matrix r can now be inverted and the diagonal elements of r-, yield the C-R lower

bounds for the variance of the unbiased estimates of each of the parameters a, b0 , b1 , .-- , bp.
Note that the inverse of the matrix F can be computed by reducing it to the (p+ 1) x (p+ 1)
matrix r', where

. So S1 S2 ." Sp

a2  SI S2 S3 ... Sp+I

a- S2 S3 S4 Sp+1 (30)
. . . .. . •

Sp Sp+I S,+2 ... S2p

Once the inverse of r' is obtained, then r-1 is simply the augmented matrix of (r')-1 as

shown below.
S 02_ 0 ... 0

0 (,- (31)

0

What is required now is to calculate (F')- 1 . The matrix r' has a Hankel type structure
and hence, can be efficiently computed using such recursive procedure as the Levinson-
Durbin algorithm [3]. We will now consider a (4 x 4) matrix IF' which implies a third
order polynomial phase modeled of the signal, i.e., x(t) = a cos(bo + bit + b2t2 + b3t3 ). The

inverse matrix ( P11 'P12 'P13 'P14
0r2 1 WP21 'P22 '23 '24 (32)

T2 T 'P31 'P32 O33 W4 32

V41 'P42 V43 944

I• : , i i j. 11



where the determinant D is given by

D = s3 - 3S 2S32S 4 + S2S4 + 2S 1 S3S2 - SOS` + 2S2S 3S5 - 2SIS2S5 - 2SS 2 S4 Ss

+2SoS 3 S4Ss + S2S2 - SoS 2 S2 - S2S6 + 2SIS 2S3S6 - SOS32S6- S2S 4 S6

+SoS 2S4S6 (33)

and the elements 'p,,, i, j = 1, 2, 3, 4, are

•, = S2S4 S6 - S43 + 2S 3S4 Ss- s2s' - s5s 6

(P12 = W21 = S3S42 - S32s - SA5SS + slS1 5 + s 2S 3s6 - s514s6

(P13 = W31 = S 2 S42 - S2S4 + SAS3S5 - SASS4 - S2S6 + s5s3s6

P14 = P41 = S3 - 2S2S3S4 + SIS4 + S2Ss - S S3S

P22 = SoS 4Ss - S3S4 + 2S2S35 - SoS2 - S2S6  (34)
P23 = '32 = S3 - S2S3S4 - SAs3SS + SoS4SS + S1 S2 S6 - S0S 3S 6

P24 = W42 = s2 - S2S3 + SIS 3S. - SOS4 - SAS2 S5 + SAS3S
3 = SoS2 S6 - S2S3 + 2s5s3s4 - SoS4 - Ses6

W34 = W43 = S2S 3 - SIS3 - s512s4 +So053 S4 + S3Ss - SoS 2 S5

P44 = SoSS4 - S2 + 2s512s3 - SoS2 - S1s4

For simplicity it is assumed that the first sample is taken at to = 0, which means that
tk = kT,. In this case, the elements Si of the Fisher matrix r becomes S = •N.(kTo)' -

E=N- k'. For the (4 x 4) matrix F', the elements So to S6 are as follows:(refer to [1])

So= N

S, N(N8-1)To
2

S2 N(8 - 1)(2N8- 1)T2

S3= N 4(N- )2 T3 (35)4

N(N - 1)(2N- 1)(3N2 - 3N - 1)S4 30

Ss= NN2 (N- 1) 2 (2N 2 - 2N- 1)T
12 T

S6 N(N - 1)(2N - 1)(3N 4 - 6N 3 + 3N + 1) T

42

Note that we are only interested in the diagonal elements of (,')-•. The Cram&r-Rao
lower bounds on the parameter estimates a, b, ,, b3 (the superscript denotes the
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estimator of the given parameter) are then given by

(2

Var(bo) &2 2 s 4(2N - 1)(N2 -N + 3) (37)
V0 a2 D (SNR)N(N + 1)(N + 2)(N + 3)

a 2 W22 100(6N 4 - 27N 3 + 42N2 - 30N + 11)Var(I) or; a2 D (SNR) N(N 2 - 1)(N 2 - 4)(N 2 - 9) T2 (38)

Var(b) 4 > 2 P33 = 180(9N - 13)(2N - 1) (39)V2 - a2 D (SNR) N(N 2 - 1)(N 2 - 1)(N 2 - 9) T4

Var(b)a > 2 P44= 1400 (40)

V( - a2 D (SNR) N(N 2 - 1)(N 2 - 4)(N 2 - 9) T(

where we have defined the signal-to-noise ratio SNR = a2/2a 2 . These expressions can be
simplified if we assume that the number of samples N is large, i.e., N > 1. In this case,

the value of Si reduces to
N-1 NI+l

Si = TiZ k' t T/- (41)
k=O

Substituting the above equation in (33) and (34), we have the approximate values of the
variance lower bounds of the parameters' estimates k, to k as

Var(bo) = a2 >_ (42)

= 0,121 600
Var(k)=a1  , (SNR) N(NT.)2  (43)

Var(1) = C62 >3240 (4
Var(2) -_ (SNR) N(NT.4 (44)

Var(63) = a > 1400(45)
' - (SNR) N(NTT) 6  (

From the expression of the lower variance bounds for the estimation of the polynomial
phase coefficients, it is seen that all the variances are inversely proportional to the signal-
to-noise ratio as expected. In addition, it can be observed that the variance bound of the
polynomial coefficient is inversely proportional to twice its polynomial power of the time

duration r = NT, of the signal, where N is the number of samples and T. is the sampling

13



interval. For example, the estimation of the coefficient 62, the second order polynomial, has

a variance which is inversely proportional to r4 = (NT,)4. This means that the higher the

order of the polynomial coefficient, the more number of sarnples or a longer time duration

of the signal is required to achieve a certain accuracy in the estimation of that coefficient.

It is to be noted that the exact expressions in (37)-(39) depend on the initial sampling

time to. Their minimum bounds are usually achieved when to = 2(')T.

4.0 MAXIMUM-LIKELIHOOD ESTIMATION

Having determined the lower bounds for the mean-square errors of the parame-
ters' estimates, we will now try to obtain these estimates using the maximum-likelihood

(ML) method. The ML estimator maximizes the probability density function p(Z; a)
with respect to the vector c6, where the elements of 6 are the parameters to be estimated

and Z is the observed sample data. It is to be noted that the maximum of p(Z; 5) occurs
at the same point as the maximum of lnp(Z; a). Hence, the maximization of the PDF

p(Z; 5) is equivalent to the maximization of lnp(Z; 5). We will first consider the case
of the simple sinusoid waveform. From (12), we can, therefore, maximize the expression

lnp(Z; w,,a,0) = C - X 1 [(Ik - Ak) 2 + (Qk - Vk)2] (46)
k=O

where C is a constant, independent of the parameters w, a, and 0. By noting that

the summations of Ik and Q2 over k are constants once an observation has been made,

and eliminating these and some other constants, we obtain a simplified expression to be

maximized as
N-i

L = 2 1 (ikPk + Qkvk) - Na 2  (47)
k=O

where uk and Yk are as defined in (13) and (14), respectively, and F?-.1(/- 2+ i4)

k"- a= Na . To find the maximum of L we first observe that we can rewrite (IkPk +
Qkit,) in terms of the real part of the complex envelope Zkae-j(w•t+1). Substituting tk by
to + kT. and if normalizing the result by the number of points, N, we get

Lo = 2a {A(w)e-J e-Jw } - a2  (48)

with A(w) = E ZkN - (49)
k=O

14



where *[.] denotes the real part of [.].

Since the parameters w, a > 0, and 0 are all unknown, it can be seen that L0 is

maximizedover 0 ifR{A(w) e-j e-j'wto} = IA(w)i. This occurs when 0 = arg{A(w)e--to},
where arg[-] is defined as the argument or phase of [.1. That is,

maxLo = 2alA(w)I - a2. (50)

If w is the value of w which maximizes IA(w)I, then

2max L. = 2aIA(w.m.)I a (51)

In order to find the value of a which maximizes Lo, the above equation can be differentiated
with respect to a and the result set to zero. Performing this, we obtain a = IA(W.)I,
and

maxLo = IA(wm.x)1 2. (52)
9,w,ta

Hence, the maximum-likelihood estimates for Wd, ao, and 0, denoted by "sd, a,, and i0,
respectively, are

S= m ax IA (, )l (53)

ii = IA(C.'d)I (54)

S= arg {A(C.d)ejw dtO (55)

It is to be noted that the optimization of the function Lo can be performed as described

above, because L. is separable in terms of its variables w, a, and 0.

4.1 ML Estimation of the Polynomial Coefficients

For the general case of a sinusoid having a polynomial phase model as described

in (23), the maximization of lnp(Z; 5), where the parameter vector 5 = [a b0 bi ... bo],
can be similarly reduced to the expression L in (47), but with jI# and vk given by (26)

and (27), respectively. In this case, (10k + Qkvk) can be rewritten in terms of the real

part of the complex envelope Zk aexp{-j(bo + bltk + b2tk +'" + brtp)}. As before, if we
assume to = 0, then tk = kT,, and after normalization by N (the number of points), the
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expression to be maximized is

Lo = 2a {e-jb" B(bl, b2, ... , bp)} - a2  (56)

where the function

1 N-I
B(b1 , b2, -. , b,) = k : Zk exp (-j[bi(kT.) + b2(kT 2 +. + b,(kT)P]). (57)

Similar to the previous case, Lo is maximized over bo when bo = arg{B(bl, b2, ,P)}.

With this value of bo, we have

maxL. = 2alB(bi, b2, -.. , bp) -a 2. (58)bo

f &1, 62, ..- , b are the values of bi, b2, bp., b that maximizes !B(bl, b2, -- , bj)I and
which, therefore, also maximizes L., then

max L. = 2aIB(bI, ý2, ... , bp)I - a2. (59)

The maximization of the above expression (59) over the parameter a occurs when a =

I B(k, &2, ""*, b,)I and hence, the maximum of Lo over all the parameters (a, bo, bl, -- , bp)
is

max L. = IB(b, 2,..., bp)12. (60)
a, bo ,bi ... , bP

As can be seen, this result is a simple generalization of the result in (48)-(52). To
solve for the maximum likelihood estimation of the polynomial phase signal, requires the
maximization of the function IB(b1 , b2, -.. , bp)j over a p-dimensional space, which is a
quite difficult problem for large values of p. From here on, only the simple case where the
signal is a sinusoid having a fixed frequency, i.e., p = 1, will be considered.

4.2 Relationship with the Discrete Fourier Transform

From the definition of the discrete Fourier transform of the sampled complex
envelope {Zk} [51, and normalized by the number of points N, we have

1 N-I _#hL

At= _Zk e-W for 1=0,1,2,...,N-1. (61)
k=-O
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Thus, from the expression of A(w) in (49), it can be seen that

At =A ( NT) A(-'1) for 1=0, 1,2,...,N-1 (62)

where w. = 27r/T. = 27rf.. The values of A&, therefore, represent the sampling points

of the continuous spectrum A(w), with the sampling intervals equal to w,/N. Note that

A(w) repeats itself at every w. interval, that is, A(w) is periodic with period w.. Hence, to

find the maximum of IA(w)I, we need to search only in the interval between 0 and w.. In

addition, if we have an a priori knowledge about the range or the maximum value of the

frequency to be estimated (wd), we can reduce the search space by choosing a sampling

rate w, close to the largest possible value of wd.

Figures 4 and 5 show the spectra of IA(f)I (f = •), with N = 64, fd = 500 Hz,

f. = 10KHz, and SNR = OdB in Fig. 5 and N = 32, fd = 500Hz, f, = 10KHz,

and SNR = 20dB in Fig. 6. The crosses along the curves of i:he figures represent the

magnitudes of the N points DFT of A(f), that is, the {IAiII points, 1 = 0, 1, ..- N - 1.

The value of f at which the maximum point of IA(f)I occurs is the ML estimation of fd,

i.e., id, and the value of JA(f)I at that point is the ML estimation of a0, i.e., i,. In the

case of Figure 4, the values of fd and ai, obtained are fd = 507.23 Hz and rio = 0.961,

whereas those of Figure 5, id = 499.27 Hz and a,, = 0.985. From the N DFT points in

Figure 4, the maximum is IA41 which has a value of 0.86 and which is at 468.75 Hz and

in Figure 5, the maximum is IA3 1 with a value of 0.75 and at 625 Hz.

Comparing the two plots, it can be observed that having a larger value of N

causes the width of the peaks (lobes) in the spectrum to become smaller, that is, the width

is inversely proportional to NTo. As the signal-to-noise ratio increases, the sidelobes' peaks

decrease and the values of Id and k0 approach the exact values as expected. It is to be

noted that if no noise is present, JA(w)j will be a sinc function which is symmetric about

the doppler frequency wd and- which has a period of w.. The global maximum point will

then occur at exactly wd and will have an exact amplitude of a,. In the presence of noise,

however, the sinc function of IA(w))I is distorted with the sidelobes' peak values becoming

larger and the global maximum point being shifted away froin the true value of Wd. The

difference between the maximum DFT point to the true maximum of IA(w)I depends on

M, the number of DFT points used in the computation, but is independent of the SNR.

The larger the value of M, the more accurate is the DFT approximation.
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Figure 4: Spectrum of IA(f)I with N = 64, fd = 500 Hz, f. = 10KHz, and SNR = 0dB.
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Figure 5: Spectrum of IA(f)I with N = 32, fd = 500 Hz, f. = 10 KHz, and SNR =

20 dB.
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4.3 Threshold Effects Due to the Occurrence of Outliers

In this section we will consider only the case of the ML estimation of the fre-

quency parameter. As stated previously, for large SNR, the mean-square error of the ML
estimation can be obtained from the Cram&r-Rao bound given in (20). However, as the

SNR decreases, the probability of occurrence of an outlying frequency component whose
magnitude is the largest, increases. An outlier is defined as that frequency component
which is not in the main lobe containing the transmitted signal frequency but which has

a magnitude larger than the main lobe. When the maximum peak frequency component

(outlier) occurs far removed from the exact frequency ,d, severe errors occur in the ML

frequency estimate. It is the nature of these large errors caused by the presence of outliers

that will be examined below.

For simplicity of the analysis, it will be assumed that an outlier can occur any-
where between zero and w.. That is, its probability density function is approximately

uniform. In this case, the variance or the MSE due to an outlier is W,/12. The MSE of
the ML estimate for any value of SNR is, therefore, given by

MSE = P(outlier) • (MSE due to outlier) + P(no outlier) . (MSE due to no outlier)

&3w
2

q , +(1+_q). 3. (63)
'2 2(SNR)N(N 2 - 1)

where q is the probability of an outlier and in the absence of any outlier, the MSE is

taken from the C-R bound. The expression for q was derived in [81 by defining the
random variable Xt = lAl, for I = 0, 1, ..- , N - 1. X 1 has a Rayleigh distribution when

it is any frequency component other than the frequency of the signal, i.e., the outlier, and

has a Rician distribution when it is the signal frequency component. The expression of q,

thus obtained, was shown to be

00 fixexpp N(X2 + 2 ) Naxq = 1 i- ep ( Na;2 ) N 7-i Nex, 20,2 J 1 --(72-) dx

= 1 NV N! (-1)' exp, [-N(SNR)~ 1  (64)

where Io(.) is the modified Bessel function of the first kind and the signal-to-noise ratio

(SNR) - a2/(20, 2) is as defined before. For large values of N, the summation representa-
tion in (64) is not easily computed because of the factorial term which can get extremely
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Figure 6: Probability of outlier, q, versus SNR for various values of N.
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Figure 7: Plot of RMS error of the ML frequency estimates against SNR, with f5 =
10 KHz.

large. In these cases, the numerical evaluation of the integral representation is more prac-

tical. The plots of q versus SNR for different values of N are shown in Figure 6. With
these values of q, the mean-square error of the maximum-likelihood frequency estimation
given by (63) can be calculated. The root mean square (RMS) error of the ML estimation

is then obtained by taking the square-root of the MSE. The RMS frequency errors are
plotted against the input SNR for different values of N in Figures 7 and 8, where the
sampling rate f, = w./(21r) are 10 K/-z and 100 KHz, respectively. As can be seen from
the plots of Figures 7 and 8, depending on the values of N and f,, the threshold effect
takes place somewhere below 0dB. The straight lines in the graphs represent approxi-

mately the C-R bounds. For a given value of N, SNR, and f,, it can be easily determined
if the ML estimation is being operated above or below the threshold effect directly from
the plots in Figures 7 and 8. For example, if N = 128, SNR = 20 dB, and f. = 10 KHz,
then from the graph of Figure 7, the ML estimation is above the threshold and the RMS
error of the frequency estimate is approximately equal to the C-R bound which is 1.69

rad/s = 0.26 Hz.
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Figure 8: Plot of RMS error of the ML frequency estimation against SNR, with f
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5.0 DETERMINATION OF THE ML FREQUENCY ESTIMATE

It is shown in Section 4, that the ML frequency estimation of the signal is the

angular frequency w that maximizes the magnitude of A(w), where A(w) is as given in
(49). To find max IA(w)I, we could differentiate the function IA(w)12 = A(w)A*(w) with

respect to wo and set the result to zero. This, however, does not usually work, since IA(W)I
or IA(w)1 2 is not a monotonic function of w but has numerous local maxima and minima.
In order to determine the global maximum of IA(w)I, we first require a rough or coarse
estimate of where it is located. Once this is obtained, a fine search can then be performed
to find the exact location of the global maximum point.

The coarse estimate of w., where wm. = max IA(w)J, can be made directly
from the computation of the DFT of the complex data {Zk}, k = 0, 1, ... N - 1 as was
done in [6]. With the value of Iw./M for which lAId is maximum, as an initial guess, the
bisection or the secant method can be used to determine Wm. at a desired accuracy. To
do this, we need to evaluate the derivative function

d
F(w) = [A(w)A*(w)]

= A*(w) d A(w)I) + (A*(w) dfA(w)] )* = A-{A(w) d A(w)I}1 (65)

where A*(w) is the complex conjugate of A(w) and R{.} is the real part of {.}. Both

the bisection and the secant methods use an iterative procedure to compute w,, and at

the maximum point, F(w.S) = 0. The initial interval in which the numerical algorithm
is applied is usually taken to be the distance between two consecutive DFT points, i.e.,
w./M, where M >_ N. This will ensure that there exists at most one peak frequency
component in this interval, since the widths of the peaks are inversely proportional to

NT.

For both numerical procedures, we need to evaluate F(wc,+i) at each iteration.
In the case of the bisection method, w,,+, = .(c, +d,,), where cn and d,, are the end-points

of the interval after n iterations and for the secant method, Ua,+1 is calculated from

wn+l = wn - F(wR,) Wn 7W ) (66)F(w,) - Fc.:"(6

The secant method usually has a faster rate of convergence than the bisection method. If
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we assume that after I number of iterations the numerical procedure is stopped, then the

computational complexity is of the order of 3UN complex multiplications and 21N complex

additions due to the evaluation of F(w,). To determine the initial coarse estimation, we

compute an M-point DFT, where M > N. This can be performed using the fast Fourier
transform (FFT) which requires M log 2 M complex multiplications and additions when

M is a power of 2. For moderate to high SNR, the coarse search can usually be done
with M = N. The overall computational complexity using this method of coarse and fine

search is, therefore, of the order of N(log2 N + 1) complex multiplications and additions.

An alternative to the previous search method is to directly find an approximate
value of w... by having a very fine sampling of the continuous spectrum of IA(W)I. This

can be achieved by computing a large number of DFT points. That is, an M-point FFT

is performed on the complex data {Zk1}, k = 0, 1, .-- , N- 1, where M is a multiple of N,

i.e., M = inN, where m > 1. In this case the computational complexity is of the order

of M log 2 M = mN(log2 N + log 2 m) complex multiplications and additions. Note that

for M > N, the N points data {Zk} is padded with trailing zeros to length M before the

DFT or FFT is performed. The approximate value of wt., is then given by I',,,. w/M,

where l. = max JAi, and I = 0, 1, ... M - 1.

k The exact value of w,. can be assumed to be situated anywhere between 1.
and its neighboring DFT point. This implies that wm,, is a random variable that is

uniformly distributed in the interval of w,/M. Hence, the MSE associated with the

approximation of w. by I. - w./M is equal to w,'/(12M2). The overall mean-square

error e2 in determining the signal or doppler frequency Wd is, therefore, equal to the

variance of the ML estimation of wd in the presence of noise as given by (63) plus the

variance of approximating w. by the maximum magnitude DFT point. That is,

q + (1 - ' 1) + 2 (67)12 • 27r (NR)N(N•_ --I

with M = inN, and m > 1. For moderate to high signal-to-noise ratio, the variance of

the ML estimation can be approximated by the C-R bound and the overall MSE e2 can

be determined from
2 Pt$ ____________ 3W.2 W. (68

2"22(SNR)N(N 2 - 1) 12m 2N2  (68)

The overall root-mean-square error e is then obtained by taking the square-root of e2.

Depending on the values of m and N used, it is seen from the above expression (68) that

the MSE due to the use of the maximum magnitude DFT point as an approximation to
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Figure 9: Overall RMS frequency error as a function of SNR and N with f. = 10 KHz
and m = 8.

the signal's frequency (second term) can be much larger than the inherent MSE of the ML

frequency estimation (first term). At a low SNR, however, the dominant error component

is due to the occurrence of outliers given by the first term of Equation (67). The overall

RMS error c is shown in Figure 9 as a function of SNR with the sampling rate fo = 10 KHz
and the value of m equals to 8. Comparing Figures 7 and 9, the effect due to the MSE of

the DFT approximation can be easily observed. As stated earlier, this error increasingly

becomes the dominant factor as the SNR increases. This is because the variance of the

ML estimation given by the C-R bound is inversely proportional to the SNR, whereas the

DFT approximation error is independent of SNR. Hence, with increasing values of SNR,

the MSE of the ML estimation becomes negligible compared to the MSE of the DFT

approximation which remains basically constant for a given value of m and N.
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6.0 SUMMARY AND CONCLUSION

In this paper, we have studied the problem of estimating the signal parameters,

more specifically the doppler frequency, from a finite number of noisy I (in-phase) and

Q (quadrature) samples. The received signal is assumed to be coherent and therefore,

samples bcan be taken at regular intervals. In addition, the signal is also assumed to be

corrupted by additive white Gaussian noise. The equations that describe the Cram&r-Rao

bounds which give the minimum variance of an unbiased estimator are derived. In the case

of the frequency estimation, the C-R lower bound is shown to be inversely proportional to

SNR, the square of the sampling time-interval T. and the cube of the number of samples
N observed. As for the phase estimation, it is found that the C-R bound is dependent on

the time to at which the first sample is taken. The lower variance bound is also derived

for a more generalized chirp signal whose phase is modeled as a polynomial of order p,
where p > 1. The example of the C-R bounds for the coefficients' estimates of a cubic

polynomial (p = 3) was described in detail.

The maximum-likelihood estimation for the unknown parameters of both the

simple sinusoid and the chirp signal are derived. The relationship of the ML frequency

estimate to the discrete Fourier transform is then shown. The ML estimator is the min-

imum variance estimator but, however, its analysis reveals that at low SNR, it is also

plagued by the threshold effect. That is, there is a range of low SNR for which the MSE

starts increasing very rapidly as the SNR decreases. This is because of the large error

committed by the ML estimator in the presence of an outlier. The threshold behaviour

of the ML estimation was discussed in Section 4.3.

The algorithm for the implementation of the ML frequency estimator was then

considered. It consists of two parts; a coarse search and a fine search. The coarse search

yields a rough estimate of where the global maximum of the spectrum is located and this

is performed using the fast Fourier transform algorithm. The fine search uses the coarse

estimate as the initial guess in order to give a more accurate result of the frequency

estimation. It can be performed using numerical procedures such as the bisection and the
secant methods. Errors due to the direct estimation of the frequency parameter by the

FFT algorithm was also analysed. It was found that at moderate to high SNR (above
the threshold effect), the dominant factor in the overall MSE of the frequency estimation

is the DFT approximation to the ML estimate. The accuracy of this approximation can

be increased by increasing the number of DFT points but at the expense of more number

of computations. Once the number of DFT points is chosen, the MSE due to the DFT
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approximation is constant and independent of the input SNR.

We have determined the minimum variance frequency estimation using the ML

estimator. From the expression of its C-R bound, it is seen that this estimation can

be improved by increasing the effective time duration, NTo, of the received signal. The

longer the time duration, the more accurate the frequency of the signal can be estimated.

Using the proposed method for estimating the frequency of the signal during a single

pulse of, say, one microsecond, with a sampling rate of 108 liz, anUd a SNR = 20 dB, the

best RMS error that can be achieved is 3.899 KHz. Since the doppler frequency expected

in practice is of the order of a few hundred hertz or less, it is obvious that this method

cannot measure or even detect any doppler shift from a single received pulse. The large

value of the estimation error is due to the small pulse time duration. It is to be noted

that for a given time duration r, where r = NT., the accuracy of the minimum variance

estimation can be increased by increasing N, the number of samples, for the same value

of r. This is because, from the expression of the C-R bound in (20), the MSE is inversely

proportional to the cube of N (N 3), whereas it is only inversely proportional to the square

of the sampling interval T. (T.2). This reduction in MSE for the ML estimation, however,

will be apparent only for high SNR (above the threshold effect) and it will be of almost

no effect on the overall MSE if the DFT approximation is used.

6.1 Pulsed Signals

Finally, some examples will be considered, where the target emitter is trans-

mitting either a burst of coherent or noncoherent pulses at the receiver. The goal is to

determine the best possible estimation that can be achieved with a finite number of pulses.

It is assumed that the received pulses have a moderate to high SNR so that the maximum

likelihood estimator is operating above the threshold value.

In t'Ve case of the coherent pulses where basically a continuous wave signal is

being modulated by a square waveform, suppose that P number of pulses, each with

a time duration of r seconds, are received. The pulsed signal is sampled at a rate of

f, = 11T. Hz which implies that the number of samples per pulse is N = r/T. = rf,.

The sampling of the coherent signal can be performed continuously from pulse to pulse

such that the integration over the P pulses is equivalent to the sampling of a CW signal

of time-length PT seconds. The MSE of the ML angular frequency estimation is then
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obtained from

6 66 for N, P >> 1. (69)
(SNR) TNP(N2P2 - 1) (SNR)T,2N 3 P 3

Comparing the above equation with that of (20), it is seen that by having P number of
coherent pulses, the MSE is improved by a factor of P3. Thus, in terms of the RMS

error, the improvement factor is of the order of p3 12. For the example used earlier, where
r = 1 pa, f. = 10s Hz, and SNR = 20 dB, the increase in accuracy of the frequency
estimation when P = 10 is by a factor of 31.62 that yields an RMS error of 123.28 Hz.
Similarly, if we require the frequency estimate to have an RMS error of less than 10 Hz,
then for the same values of r, fo, and SNR, the number of coherent pulses P needed to
achieve this accuracy is P > 54.

For noncoherent pulses, where every received pulse is independent of each other,
we cannot combine the pulses together to form a CW wave as in the coherent case. We
have to treat each pulse separately and, therefore, the best we can do in order to improve
the accuracy of the frequency estimation is to have an average estimate of all the received
pulses. That is,

i=1
where A is the frequency estimate of the ith pulse. The variance of the average estimate

f, is then reduced by a factor of P, the number of pulses, i.e.,
- 1 6

Var(f) = 1 6 (70)
P (SNR) T*2N(N 2 - 1)

which implies that the RMS error of the frequency estimate is decreased by pl/2. Now, in
order to have an accuracy of 10 Hz or less, with each pulse having bhe values of T = 1 Ps,

SNR = 20dB, and f. = lOHz, we need P > 151,997 pulses which is too large for
practical purposes. Note that an accuracy of the order of 10 Hz is chosen because that is

basically what is required in practice for doppler detection and measurement.

One way of reducing the number of pulses P for the same accuracy is to have

more samples per pulse, i.e., increase the value of N by sampling at a faster rate, as was
explained before. If the number of samples is augmented from N to QN, where Q > 1,
then the MSE is approximately reduced by Q and the RMS error by Q1/2. As for the
number of noncoherent pulses needed, P is decreased to P/Q and that of coherent pulses to
P/Q1/3 for the same MSE or RMS error value. In the example of the noncoherent pulses,
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if the sampling rate is increased from 108 to 10i Hz for the same value of r, (Q = 10),

then for the same accuracy of 10 Hz or less, at least 15,199 pulses are required, which is

still very large. Comparing the noncoherent pulses to the case of the coherent ones, where

the number of pulses required is in the order of hundred thousand instead of only a few

tens, it can be deduced that it is only practically feasible for an ESM system to measure

the change in doppler frequency from the coherent pulses and not from the noncoherent

pulses, since in general, the number of pulses received during a burst is usually a few

hundreds or less.

In the case where the demodulated pulse signal's frequency, f is less than the

reciprocal of the pulse duration r and is less than the pulse repetition frequency (PRF),

i.e., f < 1/r and f < PRF, each pulse can be taken as a discrete sample with the

PRF as the sampling rate. However, this can be done only if the pulse signal is coherent.
For a PRF of 10 KHz and a SNR of 20/, dB, using the expression of the C-R bound

in (20), an accuracy of 10 Hz or less can be achieved with at least 12 pulses. For the

frequency f < 11r but greater than the PRF (f > PRF), each pulse cannot be sampled
only once, because this will lead to ambiguities in determining the true frequency. More

specifically, there will be a difference of n(PRF) between the true frequency and the

estimated frequency, where n = 1, 2, 3 .... The three different frequency ranges of the

pulse signal from the output of the demodulator are shown in Figure 10. For f > 1/r,
the signal is readily discerned from the information contained in a single pulse, whereas,

for f < 1/r, the pulses are modulated with the amplitude of the signal waveform.
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Figure 10: (a) pulse train for signal frequency f > -1: (b) pulse train for signal frequency
f < and f < PR;; (c) pulse train for signal frequency fd < .nd
fd > PRP.
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