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ABSTRACT

This paper discusses the estimation of the Doppler frequency of an incoming RF
signal that is corrupted by additive white Gaussian noise. The estimation is performed
using the sampled in-phase and quadrature components of the demodulated signal. The
Cramér-Rao lower bounds for the minimum variance estimators as well as the maximum-

likelihood (ML) estimator are derived. The mean-square error of the ML estimator is
then studied.

RESUME

Cet article discute de I’estimation de la fréquence Doppler d’un signal RF cor-
rompu par du bruit blanc Gaussien et additif. L’estimation s’est faite en utilisant les
composantes en phase et en quadrature du signal démodulé. Les bornes inférieures de
Cramér-Rao (C-R) pour les estimateurs a variance minimale ainsi que I’estimateur & prob-

abilité maximale sont dérivés. L’erreur quadratique moyenne de l'estimateur a prot abilité
maximale est ensuite étudiée.
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EXECUTIVE SUMMARY

The problem of estimating the Doppler frequency of a received RF signal is
basically the problem of estimating the shift in frequency of the signal in the presence of
noise generated in the propagation medium and in the measuring systems. This paper
establishes bounds for the best possible frequency estimate that can be achieved from a
finite number of I and Q samples. The latter are obtained by demodulating the received
signal in its in-phase (I) and quadrature (Q) components which are then discrete-time
sampled.

The equations describing the Cramér-Rao (C-R) lower bounds for the minimum
variance of the unbiased estimates of the frequency, amplitude, and phase of the signal
are derived. It is found that the C-R bound for the frequency estimate is inversely
proportional to the signal-to-noise ratio SNR, the square of the sampling time-interval
T,, and the cube of the number of samples N obtained. The minimum variances for the
coefficients of a general polynomial phase signal, i.e, chirp signals, are also derived. The
maximum-likelihood (ML) estimation of these parameters are then considered since the
ML estimator is the minimum variance estimator. The analysis of the ML frequency
estimator, however, reveals that at low SNR, the mean-square error (MSE) of the ML
estimate increases much more rapidly than the expected C-R biound due to the higher
probability of the occurrence of an outlier. The SNR depcudent deviation of the MSE
from the C-R bound is the threshold effect. The relationship between the ML estimation
and the discrete Fourier transform (DFT) of the sampled complex I/Q components is also
shown.

An algorithm for the implementation of the ML frequency estimator is then
considered. It consists of two parts; a coarse search and a fine search. The coarse and
the fine search are performed using the fast Fourier transform (FFT) and a numerical
procedure such as the bisection method or the secant method, respectively. Errors due
to the direct estimation of the frequency parameter by the FFT algorithm are also anal-
ysed. For moderate to high SNR (above the threshold effect), the dominant error in
the frequency estimation is found to be the approximation of the ML estimate by the
maximum magnitude DFT point. This approximation can be made more accurate by
increasing the number of DFT points, but once this number is chosen, the MSE of the
DFT approximation is constant and is independent of the input SNR.

Some numerical examples about the best possible frequency estimates that can




be achieved for coherent and noncoherent pulse radars are finally given. The typical
values chosen for the pulse duration, sampling rate, and SNR are 1 s, 10® Hz, and 20 dB,
respectively. It is seen that in the case of coherent pulses, for the frequency estimate to
have an accuracy of 10 Hz or less, the number of pulses required is around 50. On the
other hand, in the noncoherent case, for the same accuracy, the required number of pulses
is in the order of a 100,000.
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1.0 INTRODUCTION

The measurement of the doppler frequency is basically the measurement of the
shift in frequency of the received signal. In the case of a radar signal, the doppler frequency
shift is related to the radial component of the relative velocity of the target by [9]

fa= -t =20 (1

where R is the range rate, A = f/c is the transmitted wavelength of the radar signal and

fa is the doppler shift which is positive for decreasing range R. For a passive intercept

receiver such as the Electronic Intelligence (ELINT) or the Electronic Support Measure
(ESM) system, the doppler shift is given by [12]
R

fam 2 2

where R is the relative radial velocity between the emitter and the receiver.

There are many reasons why one would use a passive system such as the ESM
receiver instead of an active radar to measure the doppler frequency. Among them, one
obvious reason is the unavailability of a radar at the time due for example to its use in
tracking other targets. More importantly, however, the ESM system has the advantage
that it can detect an emitting target much earlier than a radar because of the one way wave
propagation instead of two. Thus, information about a change in the target’s movement or
trajectory can be made available much sooner using an ESM system. Since the intercept
(ESM) receiver has no knowiedge of the transmitted frequency and can only measure
the received signal, it cannot calculate the shift in frequency due to the relative motion
between the emitter and the receiver. It can, however, determine the doppler shift due to
the change in the radial velocity of the emitter. This can be useful in detecting the radial
acceleration or the change in trajectory of an aciive emitter. As an example, suppose
that the velocity of a target emitter (missile) is V; m/s and is travelling directly towards
the receiver (ship A) as shown in Figure 1. At some point along the route it changes
trajectory and turns ¢ degrees away from the ship. The change in radial velocity due to
the change of ¢ degrees from the original trajectory is V; — Vi cos ¢ = V(1 — cos ¢) m/s.
Hence, the shift in frequency of the signal at the receiver is

Vi(1 — cos ¢)

fa= B e— (3)
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Figure 1: Change in trajectory of the target emitter.




For ¢ = 5°, A = 0.03 m and V; = 300 m/s, the doppler frequency shift f; is then equal to
38.05 Hz. In terms of the angle change in trajectory, ¢, we can rewrite equation (3) as

é = cos™! (1 - %:\) (4)

where fy is the shift in frequency and f; > 0. Assuming that we are able to estimate fy
down to say around 10 Hz. With the same values of V; and A, it means that we will be
able to detect a change in trajectory of at least 2.56°.

Now, we will discuss the advantage of using an ESM system with the capability

of measuring the doppler frequency with an accuracy of about 10 Hz or less compared to a
monopulse radar system that has an angular resolution of 0.3 degrees. Referring to Figure
1, consider the first scenario where the missile has locked onto the ship A and the latter is
trying to transfer the lock from itself onto the nearby chaff cloud through the use of some
electronic countermeasures. The chaff was released by the ship in an attempt to seduce
the missile and as such, it is not very far from the ship. In this scenario, it is assumed that
the distance (d) between the chaff cloud and ship A is around 300 metres. To simplify
the example the ship and chaff cloud are in a line perpenticular to the initial missile
trajectory. It is shown that for a receiver which can measure a shift in frequency down to
10 Hz, it can detect a change in trajectory of at least 2.56 degrees for V; = 300m/s and
= 0.03m. Hence, this implies that the receiver will be able to detect any deviation of
the missile onto the chaff within the range Resm = d/ tan ¢ = 0.3/tan(2.56°) = 6.703 Km.

For a monopulse radar system with an angular resolution of 3 degrees, the
maximum range R for which a change in trajectory of ¢ degrees can be detected in a time

t, seconds or less is
t,V;sin ¢ N t,V;sin ¢

tand - B (5)

where for small values of 3, tan# ~ 3. As can be seen from the above expression,

R=

the range R is proportional to the required response time ¢, and the velocity V; of the
target, but inversely proportional to the angular resolution. A plot of range (R) versus
the response time (¢,) for different velocities (V;) is shown in Figure 2 with the trajectory
change of ¢ = 5° and an angular resolution of 3 = 0.3°. In the first scenario as described
above, the deviation angle ¢ must satisfy the equation tan ¢ = d/(R +t,V; cos ¢). Solving
simultaneously this equation with that of (5), we obtain the maximum range Rragar =
5.12 Km for V; =300m/s, t, = 23, f = 0.3%, and d = 300 m.
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Figure 2: Plot of the range R versus the response time ¢, for a trajectory deviation of
¢ = 5° and an angular resolution of 0.3°.

In the second scenario, the chaff is used against the acquisition mode. That
is, the chaff is placed in advance before the missile acquires its target and as such, it is
much further away from the ship than in the seduction mode. In this case the distance
d, between the chaff and the ship is taken to be approximately 1 Km as shown in Figure
1. Using this value of d and with the other variables having the same values as before,
the maximum range R for which the ESM doppler receiver can detect a change in
trajectory is 22.37 Km. Note that Res, is proportional to the distance d between the
ship and the chaff. For the monopulse radar with the same angular resolution of 0.3
degrees and maximum response time of 2 seconds, by solving the previous equations, the
maximum range Ry,q4ar obtained is 10.39 Km.

Similarly, in the third scenario where the missile deviates to track ship B instead
of ship A, the doppler receiver can detect this change well beyond the horizon. With the
distance d between ship A and B being around 3 Km, and with all the other variables
remaining the same, we get Ry, = 67.10 Km and Ryag.r = 18.13 Km. The results are
summarized in Table 1 for the three different scenarios.

Ideally, if we were able to determine any shift in frequency at the receiver, we




Table 1: Comparison between an ESM Doppler Receiver and a Monopulse Radar Sys-

tem.
ESM Receiver with Doppler Radar System with angular
Scenarios measurement of an accuracy | resolution of 0.3° and a required
of 10 Hz maximum response time of 2 s
1. d=300m Regn = 6.710 Km Riadar = 5.118 Km
2. d=1.0 Kkm Reom = 22.367 Km Riadar = 10.388 Km
3. d=3.0 Km Reern = 67.099 Km Riadar = 18.130 Km

would be able to calculate any trajectory change of the target. However, this is usually
not the case due to the presence of noise in both the propagation medium and in the
systems. This paper addresses the problem of estimating the frequency of the signal
which is corrupted by additive white Gaussian noise. The signal is assumed to be of the
form z(t) = a(t) cos(wat + 0), where the amplitude a(t), the phase 8, and the angular
frequency w;y are all assumed to be unknown. In addition, the estimation is performed on
a finite number of discrete-time observations.

The minimum variance or mean-square error (MSE) of the unbiased frequency
estimation is derived using the Cramér-Rao (C-R) bound. This enables us to have an
idea about the best possible accuracy that can be achieved as a function of the number of
samples and input signal-to-noise ratio (SNR). To further generalize this concept, we have
also included signals that are frequency modulated such as the chirp signals. The lower
variance C-R bounds for the estimation of the coefficients of an arbitrary polynomial
phase signal of the form z(t) = a(t) cos(bo + b1t + bt? + --- + {,tP) are derived. The
maximum-likelihood (ML) parameter estimation of the deniodulated signal is considered
in this paper because it is known that for large values of SNR, the ML estimator is
unbiased, and is the minimum-variance estimator whose mean-square error is given by
the C-R bound. As the SNR decreases, however, the increase in the probability of the
outliers of the frequency estimate occuring, will cause the MSE of the ML estimator to
increase much more rapidly than the C-R bound. The tendency of the MSE to start
deviating from the C-R bound as the SNR decreases below a certain value is known as
the threshold effect. Most nonlinear estimators suffer from threshold effects. It will be
also shown that the ML estimation of the frequency parameter is related to the discrete
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Figure 3: Block diagram of the in-phase and quadrature (I/Q) demodulator.

Fourier transform (DFT) of the complex envelope of the sampled signal. The overall MSE
in using the DFT as an approximation to the ML frequency estimation is then derived.

2.0 COHERENT RECEIVER

We will first assume that the incoming RF signal from the emitter is coherent.

It can be a continuous wave (CW), a train of coherent pulses, or any transmitted signal

whose carrier is modulated by a waveform a(t). For now, we will further assume that the

initial carrier frequency w, has already been obtained and is known. Suppose that there

is a shift in frequency of the signal due to the doppler effect. The incoming signal z(t) is
then given by

z(t) = a(t) cos|(w. + wa)t + 6,) + n(t) (6)

where wy = 2r f; is the doppler shift, and n(t) is the additive waite Gaussian noise with
zero mean and variance 2. The received signal z(t) is then applied to the in-phase and
quadrature (I/Q) demodulator as shown in Figure 3. Note that in practice, the RF signal
is usually down-converted to an intermediate frequency (IF) signal before it is applied to
the I/Q demodulator. This is not shown here for brevity.




The noise n(t) can be represented as a band noise signal in terms of its in-phase
and quadrature components n.(t) and n,(t), respectively, where n (¢) and n,(t) are also
Gaussian with zero mean and variance o? [4], that is,

n(t) = n.(1) cos(wt) — n,(t) sin(w,t). (D

The demodulated in-phase and quadrature baseband signals I(t) and Q(t) are then given
by

I(t) a(t) cos(wqt + 0,) + n.(t) (8)
Q(t) = a(t)sin(wqt + 6,) + ny(2). 9)

The baseband signals I(t) and Q(t) are sampled at a rate of f, = 717' per second. The
sampled signals obtained are then equal to

I. = agcos(wgty +6,)+ n, (10)
Qi = arsin(waty +0,) + n,, (11)

where tx = to + kT,, for k =0, 1, 2, ... and I}, Qk, ak, n. and n, are defined as I(t;),
Q(tx), a(ts), n.(tx) and n,(ti), respectively. The noise samples n. and n, are statistically
independent Gaussian random variables with mean zero and variance o2. For CW radar
signals the amplitude a(t) is usually a constant and for pulsed radar signals the value of
a(t) is either a constant or zero, neglecting the rise and fall time of the pulses. In the
latter case, we can always sample the signals I(t) and Q(t) such that the value of a; is
the constant but not equal to zero. Thus, we can replace a; simply by the parameter a,.

3.0 VARIANCE BOUNDS ON PARAMETER ESTIMATION

Before the estimations of the parameters such as the frequency wy and the phase
0, are made, it is usually very useful to have numbers or values that will indicate the
best possible estimates that can be achieved with the available data. Suppose that we
have N sample values of I} and Q4, i.e., k =0,1,---, N — 1. From these values of I,
and Qi, we can form the N sampled complex envelope Z; = Iy + jQx, where j = /—1.
Since the noise samples are independent Gaussian random variables with mean zero and
variance o2, the joint probability density function (PDF) of the randum variables Zj,
k=0,1,---, N —1, or of the random vector Z = {Zy Z; Z; --- Zn-1], is the product
of the two N-variate Gaussian distribution of the random vectors [ = [Io [y I -+ IN_4]

7




and Q = [Qo @1 Q2 -+ @n-1]. The PDF of vector Z is, therefore, given by (7]

1 N 1 N-1
AZ; w,a,0)= (2M,) exp ["'2';5 YTk — )+ (Qr — i)’ (12)

k=0

where the means u; and v, are as follows:

pr = acos(wty+0) (13)
v = asin{witx +0). (14)

As can be seen from the above equation (12), the PDF of the random vector Z is a
function of the unknown parameters w, a, and 6.

3.1 Cramér-Rao Bounds for Frequency and Phase Estimates

Due to the fact that the received signal is corrupted by noise and is, therefore,
random in nature, we can only obtain estimations of the signal parameters. Furthermore,
since the values of the estimates are dependent on the observatic - data, they are also
random variables and as such have a mean and a variance. An unbiased estimator is one
whose mean value is equal to the true value of the parameter and a minimum-variance
estimator is one whose variance is less than or equal to the variance of any other estimator.
The minimum-variance unbiased estimator is unique, but it may not always exist. Under
certain conditions, it can be shown that the variance of any unbiased estimator cannot
be less than a particular lower bound known as the Cramér-Rao (C-R) bound [11, 10].

From [11], the Cramér-Rao bound for an unbiased estimator of a single unknown
parameter a is derived and is shown to be
Var(a) = 02 > 1 = —1 (15)

B ([=ga]) B (C)

where & is the estimate of the true value of a. For the variance of the simultaneous
estimates of two or more unknown parameters a;, az, - -, @, the unbiased C-R bounds
are obtained from the inverse of the (n x n) Fisher information matrix I' whose elements
7;; are given by

%ii

alnp(za al’a%""aﬂ) alnp(z7 a11a21"'7an)
E .
da; da;




_ 0 Inp(Z; en,az, -, 0)
- —E{ c’)a;é?a,- } (16)

If we denote the inverse of the matrix I' by ¥, i.e., ¥ = I'"!, then the C-R bound for the
variance of the individual unbiased estimate is obtained from the diagonal elements of V.
That is,

Var(&;) = 03, > ¥ii (17)

where ;; is the ith diagonal element of the matrix W.

Now, returning to the case where the PDF of the random variable vector Z is

as given in (12) and the unknown parameters a;, as, and aj are w, a, and 8, respe y,
we have a (3 x 3) matrix I' whose elements are

1 N2 (0pe\ [ Oux v\ [ Ovy
w2 (am) (5en) + (52) (5 0o
where u; and v, are as shown in (13) and (14), respectively. Solving for the previous
expression (18), and substituting ¢, = to + kT, the symmetric matrix ' is reduced to

a® (N3 + N(N = 1)toT, + IN(N = 1)2N = 1)T?) 0 a?(Nto+ IN(N - 1)T.)
=— 0 N 0
p .
a® (Nto + IN(N - )T, 0 a*N
(19)
Taking the inverse of I', the Cramér-Rao bounds for the unknown parameters w, a and 6
are as follows:

1202

Var(@) = o3 @TIN(N? — 1) (20)
Var(@) =o? > %2 (21)
Va.r(é) — o‘g Z 202 (Gt(z) + 6(N - l)tOTs + (N - 1)(2N - I)Tsz) (22)

aT2N(N? — 1)

Note that unlike the frequency w and the amplitude a, the variance bound on the phase
0 is dependent on the time at which the first sample is taken, i.e., ;. These results
were similarly obtained by Rife [8]. By differentiating equatior (22) with respect to to
and setting the result to zero, it is found that the minimum bound is achieved when
to = —3(N — 1)T, and is equal to 0?/(a?N). In terms of the signal-to-noise ratio which

9




is defined as SNR = a?/(20?), the Cramér-Rao bound for the variance of the frequency
estimate is 02 > 6f2/[(SNR)N(N? — 1)], where f, = 1/T, is the sampling rate.

3.2 Cramér-Rao Bounds for Polynomial Phase Modeled Estimates

We can further generalize the incoming signal z(t) as an arbitrary polynomial
chirp signal given by

2(t) = acos (bo + (we + bi)t + bat? + -+« + bt") + n(t) (23)

where a, by, b; ..., b, are the unknown parameters to be estimated. That is, there is now
a modulation on the frequency or phase of the signal. Note that for p = 1, the signal
is basically the same as that in the previous case where the sinusoidal has a constant
frequency equal to ;. For p = 2, we have a linear chirp or linear frequency modulation
(FM) signal, i.e., its frequency varies linearly as a function of time and the slope is given
by b;. Higher order chirp signals can be obtained with p > 3. As before using the same
coherent receiver as that described in section 2, we have

I(t) = acos(bo+ bt +bat* + -+ + byt?) + n.(t) (24)
Q(t) = asin(by + byt + byt® + -+ + bpt?) + n,(t). (25)

The above in-phase and quadrature signals are sampled into the discrete samples I,
and @i, k = 0,1,..., N — 1, respectively. Defining the complex samples Z, = I; +
Q% the joint probability density function of vector Z, given the parameter vector & =
[abob ... b, ie,p(Z; &), is the same as that expressed in (12), except that the means
p and v, are now given by

pre = acos(by+ bty + byty + -+ + byth) (26)
ve = asin(by+ bty + bt} + -« + bth) (27)

It is to be noted that y; and vy are now functions of the (p + 2) unknown parameters
a, by, by, ..., by. Similar to the previous example, the Cramér-Rao bounds for the various
parameters can be obtained from the inverse of the ((p +2) x (p + 2)) Fisher informa-
tion matrix I' whose elements +;; are given by equation (18), and where the unknown
parameters a;, t = 1,2, ...,p + 2, are a, by, by, ..., by, respectively. Solving for «;;,

10




$,3=1,2,---, p+2, we have

(% 0o 0 0 )
, 0 S S Sp
I'= a—z 0 S] Sz oo Sp+l (28)
o . . . .. .
L 0 S S o Sw
where the elements S; are
N-1 . N-1 ‘
Si=Y () ' = (Lo +kT,). (29)
k=0 k=0

The matrix I' can now be inverted and the diagonal elements of I'"? yield the C-R lower

bounds for the variance of the unbiased estimates of each of the parameters a, by, by, - - -, b,.

Note that the inverse of the matrix I' can be computed by reducing it to the (p+1) x (p+1)
matrix [V, where

( So S S - S )
a2 S$1 S Sz - Spm
M= - Sz S35 S o Spez |. (30)
\ Sy Spar Spez 0 Sz /

Once the inverse of I" is obtained, then I'"! is simply the augmented matrix of (I')~! as

shown below. ,
< 0 .. 0
0

[ (1-\/)-.-1 ] . (31)

What is required now is to calculate (I')~!. The matrix I has a Hankel type structure
and hence, can be efficiently computed using such recursive procedure as the Levinson-
Durbin algorithm [3]. We will now consider a (4 x 4) matrix I which implies a third
order polynomial phase modeled of the signal, i.e., z(t) = a cos(by + byt + byt% + b3t®). The
inverse matrix

F—l

0

Y11 P12 Y13 P14

W’:(F’)":z; 11 on v2 vz e (32)
a? D} oa w32 91 P
P41 P42 P43 Paq |

11




where the determinant D is given by

D= S5%—35,535 + 5352 + 25,552 — SoS3 + 2525355 — 25,5255 — 251525455
+2505354Ss + S22 — 505252 — 5386 + 251525355 — 505256 — S254Ss

+S50525456 (33)

and the elements ¢;;, ¢, 7 =1, 2, 3, 4, are

=

Y12 = Yn
$13 = Pan
P14 = P
Y=

P23 =32 =
P24 = P42
Pz =

P34 = P43
Pu=

525456 - Sg + 2535455 - SgS§ - SgSs

53542 - 3355 — 525455 + 51552 + 525356 — 515456
S253 — 5354 + 525355 — 515455 — 5256 + 515356
S3 = 25,555, + $1.52 + 525 — 515555

505456 = 5354 + 25,5355 — SoS? — 52

Sg ~ 525354 — 515385 + 505455 + 515256 — 505356
5354 - 52532 + 515354 — SQSZ — 5185555 + Sp53Ss
S0525¢ — stg + 2515354 — SoS} - 51236

5353 - 5'15§ — 5185254 + S053S4 + 51235 — 505255
S05:54 — Sg + 25:5,53 — SOS§ - 51254

(34)

For simplicity it is assumed that the first sample is taken at ¢, = 0, which means that
ty = kT,. In this case, the elements S; of the Fisher matrix ' becomes S; = YN -!(kT,)' =
T: TN k. For the (4 x 4) matrix I", the elements S to Ss are as follows:(refer to [1])

So
S1

Ss
Ss
Sa
Ss

Se

N
NN-1)
2 ]
N(N-1)(2N -1) T?
6 8
2N —1)2
.I.Y__(N_‘i_in (35)
N(N —-1)(2N ~1)(3N?~3N -1) _,
30 L
N3(N - 1)*(2N? - 2N — 1) TS
12 ?
N(N —1)(2N —=1)(3N*~6N3 + 3N +1) -
42 ’

Note that we are only interested in the diagonal elements of (I’)~}. The Cramér-Rao
lower bounds on the parameter estimates a, 50, by, by, bs (the superscript ~ denotes the
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estimator of the given parameter) are then given by

Var(a) = o2 > fj\; (36)
Var(bo) = f, 2 0—2 5= (SN;()%L; i)iﬁjv—g;z& 3) (37)
v =dl, 2 5 - G e O
Var(ba) = of, 2 Zz %3 ~ (SNR) 1;?12/(29 Ij 1—)(11\311(31\1)&\}2) —9)T4 (39)
Var(bs) = of, 2 g': 5= (SNR) N(N? = 1;(4127(z —gviogs @0

where we have defined the signal-to-noise ratio SNR = a?/20%. These expressions can be
simplified if we assume that the number of samples N is large, i.e., N > 1. In this case,
the value of S; reduces to

i+1
S=T S b mi

k=0 it 1 (4

Substituting the above equation in (33) and (34), we have the approximate values of the
variance lower bounds of the parameters’ estimates by, to b; as

Var(by) = 0f > (?j%—ﬁ (42)
Var(b) = of, 2 (SNR)BI?/?NT,Y (43)
Varlby) = o}, 2 repmee (44)
Var(bs) = of, 2 (SNR)I‘II\(I)?NT,)“ (45)

From the expression of the lower variance bounds for the estimation of the polynomial
phase coefficients, it is seen that all the variances are inversely proportional to the signal-
to-noise ratio as expected. In addition, it can be observed that the variance bound of the
polynomial coefficient is inversely proportional to twice its polynomial power of the time
duration 7 = NT, of the signal, where N is the number of samples and T, is the sampling
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interval. For example, the estimation of the coefficient 4,, the second order polynomial, has
a variance which is inversely proportional to 74 = (NT,)!. This means that the higher the
order of the polynomial coefficient, the more number of samples or a longer time duration
of the signal is required to achieve a certain accuracy in the estimation of that coefficient.
It is to be noted that the exact expressions in (37)-(39) depend on the initial sampling
time tg. Their minimum bounds are usually achieved when ty = —U—v;—ll T..

4.0 MAXIMUM-LIKELIHOOD ESTIMATION

Having determined the lower bounds for the mean-square errors of the parame-
ters’ estimates, we will now try to obtain these estimates using the maximume-likelihood
(ML) method. The ML estimator maximizes the probability density function p(Z; &)
with respect to the vector a, where the elements of & are the parameters to be estimated
and Z is the observed sample data. It is to be noted that the maximum of p(Z; &) occurs
at the same point as the maximum of Inp(Z; &). Hence, the maximization of the PDF
?(Z; &) is equivalent to the maximization of Inp(Z; &). We will first consider the case
of the simple sinusoid waveform. From (12), we can, therefore, riaximize the expression

N-1
I0p(Z; w,0,6) = C = 5= 3 [T = e +(@u = ) (46)

k=0
where C is a constant, independent of the parameters w, a, and §. By noting that
the summations of I? and Q2 over k are constants once an observation has been made,
and eliminating these and some other constants, we obtain a simplified expression to be
maximized as Ne1
L=2) (Lipe + Qivi) — Na? (47)

k=0
where g, and v are as defined in (13) and (14), respectively, and YN ' (u2 + v¥) =
T N-la? = Na? To find the maximum of L we first observe that we can rewrite (Ipu: +
Qi) in terms of the real part of the complex envelope Ziae™(“*++9), Sybstituting t by
to + kT, and if normalizing the result by the number of points, N, we get

L, = 2aR{A(w)e e ivt} _ g2 (48)
1 N-1 ]
with Alw) = ¥ Y Zy e kT (49)
k=0
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where R[] denotes the real part of [-].

Since the parameters w, a > 0, and @ are all unknown, it can be seen that L, is
maximized over 8 if R{A(w) e7? 77} = | A(w)|. This occurs when 8 = arg{ A(w)e~i“*},
where arg[-] is defined as the argument or phase of [-]. That is,

max L, = 2a|A(w)| — &% (50)
If Wmax is the value of w which maximizes |A(w)|, then
max L, = 2a|A(wmax)| — @?. (51)

In order to find the value of a which maximizes L,, the above equation can be differentiated
with respect to a and the result set to zero. Performing this, we obtain a = |A(wmax)|,
and

max L, = | A(wmax)|*- (52)

8w,a

Hence, the maximum-likelihood estimates for wq, a,, and 8, denoted by @y, a,, and é,,,
respectively, are

@g = max|A(w)| (53)
i, = |A(@q)] (54)
b, = arg{A(g)e %0}, (55)

It is to be noted that the optimization of the function L, can be performed as described
above, because L, is separable in terms of its variables w, a, and 6.

4.1 ML Estimation of the Polynomial Coefficients

For the general case of a sinusoid having a polynomial phase model as described
in (23), the maximization of In p(Z; &), where the parameter vector & = [a by by --- b,),
can be similarly reduced to the expression L in (47), but with u and v, given by (26)
and (27), respectively. In this case, (Ixur + Qi) can be rewritten in terms of the real
part of the complex envelope Z; aexp{—j(bo + biti + bat? + - -- + byth)}. As before, if we
assume to = 0, then ¢; = kT,, and after normalization by N (the number of points), the
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expression to be maximized is

L, =2aR{e™™ B(by, by, ---, b,)} — a? (56)

where the function
Bby, by, -+, by) = ?—:;, Zi exp (—j[bi(T,) + bo(KTL)2 + -+« + by(KTL)?)) . (57)
Similar to the previous case, L, is maximized over by when by = arg{B(by, ba, ---, b,)}.

With this value of by, we have

mb?xLo = 2a|B(by, by, -+, by)| — a®. (58)

If i)l, i)z, R 13, are the values of b, by, ---, b, that maximizes |B(by, by, - - -, b,)| and
which, therefore, also maximizes L,, then

\, Jpax, L = 2a|B(by, by, ---, b,)| — a®. (59)
The maximization of the above expression (59) over the parameter a occurs when a =
|B(by, bs, - - -, b,)| and hence, the maximum of L, over all the parameters (a, by, by, - - - , b,)
is

wpmax Lo =|B(b, ba, -, by)I*. (60)

As can be seen, this result is a simple generalization of the result in (48)-(52). To
solve for the maximum likelihood estimation of the polynomial phase signal, requires the
maximization of the function [B(b, by, - -, b,)| over a p-dimensional space, which is a
quite difficult problem for large values of p. From here on, only the simple case where the
signal is a sinusoid having a fixed frequency, i.e., p = 1, will be considered.

4.2 Relationship with the Discrete Fourier Transform

From the definition of the discrete Fourier transform of the sampled complex
envelope {Z;} [5], and normalized by the number of points N, we have

1 .
'=7V—,§, i for 1=0,1,2,---, N-1. (61)
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Thus, from the expression of A(w) in (49), it can be seen that

A1=A(%)=A(‘j—:/£> for =0,1,2,---,N-1 (62)
where w, = 27 /T, = 2rf,. The values of A, therefore, represent the sampling points
of the continuous spectrum A(w), with the sampling intervals equal to w,/N. Note that
A(w) repeats itself at every w, interval, that is, A(w) is periodic with period w,. Hence, to
find the maximum of |A(w)|, we need to search only in the interval between 0 and w,. In
addition, if we have an a priori knowledge about the range or the maximum value of the
frequency to be estimated (ws), we can reduce the search space by choosing a sampling
rate w, close to the largest possible value of wy.

Figures 4 and 5 show the spectra of |A(f)| (f = 3=), with N = 64, fy = 500 Hz,
f» = 10KHz, and SNR = 0dB in Fig. 5 and N = 32, f; = 500 Hz, f, = 10 KHz,
and SVNR = 20dB in Fig. 6. The crosses along the curves of rhe figures represent the
magnitudes of the N points DFT of A(f), that is, the {|{4;!} points, I =0,1,--- N — 1.
The value of f at which the maximum point of |A(f)| occurs is the ML estimation of f,
i.e., fi, and the value of {A(f)| at that point is the ML estimation of a,, i.e., G, In the
case of Figure 4, the values of fa and @, obtained are fd = 507.23 Hz and a, = 0.961,
whereas those of Figure 5, f; = 499.27 Hz and &, = 0.985. From the N DFT points in
Figure 4, the maximum is |A4| which has a value of 0.86 and which is at 468.75 Hz and
in Figure 5, the maximum is |A3] with a value of 0.75 and at 625 Hz.

Comparing the two plots, it can be observed that having a larger value of N
causes the width of the peaks (lobes) in the spectrum to become smaller, that is, the width
is inversely proportional to NT,. As the signal-to-noise ratio increases, the sidelobes’ peaks
decrease and the values of f; and &, approach the exact values as expected. It is to be
noted that if no noise is present, |A(w)| will be a sinc function which is symmetric about
the doppler frequency wy and which has a period of w,. The global maximum point will
then occur at exactly wy and will have an exact amplitude of a,. In the presence of noise,
however, the sinc function of |[A(w)| is distorted with the sidelobes’ peak values becoming
larger and the global maximum point being shifted away fromn the true value of wy. The
difference between the maximum DFT point to the true maximum of |A(w)| depends on
M, the number of DFT points used in the computation, but is independent of the SNR.
The larger the value of M, the more accurate is the DFT approximation.
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Figure 4: Spectrum of |A(f)| with N = 64, f, = 500 Hz, f, = 10 KHz, and SNR = 0dB.

18




o9k J

e o
3 o0
LS L
i L

o
=)
T
1

=

H
L
i

Magnitude of A(f)
=)
(7]

e
o
T

-

e

0.1

0 1000 2000 3000 4000 S000 6000 7000 8000 9000 10000
Frequency, f (H»)

Figure 5: Spectrum of |A(f)| with N = 32, f; = 500 Hz, f, = 10 KHz, and SNR =
20dB.




4.3 Threshold Effects Due to the Occurrence of Qutliers

In this section we will consider only the case of the ML estimation of the fre-
quency parameter. As stated previously, for large SNR, the mean-square error of the ML
estimation can be obtained from the Cramér-Rao bound given in (20). However, as the
SNR decreases, the probability of occurrence of an outlying frequency component whose
magnitude is the largest, increases. An outlier is defined as that frequency component
which is not in the main lobe containing the transmitted signal frequency but which has
a magnitude larger than the main lobe. When the maximum peak frequency component
(outlier) occurs far removed from the exact frequency wy, severe errors occur in the ML
frequency estimate. It is the nature of these large errors caused by the presence of outliers
that will be examined below.

For simplicity of the analysis, it will be assumed that an outlier can occur any-
where between zero and w,. That is, its probability density function is approximately
uniform. In this case, the variance or the MSE due to an outlier is w?/12. The MSE of
the ML estimate for any value of SNR is, therefore, given by

MSE = P(outlier) (MSE due to outlier) + P(no outlier) - (MSE due to no outlier)

3(02
2 + =9 SR N D) (63)

~ 03
where ¢ is the probability of an outlier and in the absence of any outlier, the MSE is
taken from the C-R bound. The expression for ¢ was derived in [8] by defining the
random variable X; = |Aj|,for [=0, 1, ---, N = 1. X, has a Rayleigh distribution when
it is any frequency component other than the frequency of the signal, i.e., the outlier, and
has a Rician distribution when it is the signal frequency component. The expression of g,
thus obtained, was shown to be

g = 1-/ [l—exp( )]N_ J—Z-;exp[-ﬁ(—z;;tﬂ}lo(iv:%) dz

Y. Ni(-1 i—1
= '2-; (= z)') 5 €Xp [—N(SNR) ——z—] (64)

where Io(-) is the modified Bessel function of the first kind and the signal-to-noise ratio
(SNR) = a?/(20?) is as defined before. For large values of N, the summation representa-
tion in (64) is not easily computed because of the factorial term which can get extremely
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Figure 6: Probability of outlier, g, versus SNR for various values of N.
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Figure 7: Plot of RMS error of the ML frequency estimates against SNR, with f, =
10 KHz.

large. In these cases, the numerical evaluation of the integral representation is more prac-
tical. The plots of ¢ versus SNR for different values of N are shown in Figure 6. With
these values of ¢, the mean-square error of the maximum-likelihood frequency estimation
given by (63) can be calculated. The root mean square (RMS) error of the ML estimation
is then obtained by taking the square-root of the MSE. The RMS frequency errors are
plotted against the input SNR for different values of N in Figures 7 and 8, where the
sampling rate f, = w,/(27) are 10 KHz and 100 KHz, respectively. As can be seen from
the plots of Figures 7 and 8, depending on the values of N and f,, the threshold effect
takes place somewhere below 0dB. The straight lines in the graphs represent approxi-
mately the C-R bounds. For a given value of N, SNR, and f,, it can be easily determined
if the ML estimation is being operated above or below the threshold effect directly from
the plots in Figures 7 and 8. For example, if N = 128, SNR = 20dB, and f, = 10 KHz,
then from the graph of Figure 7, the ML estimation is above the threshold and the RMS
error of the frequency estimate is approximately equal to the C-R bound which is 1.69
rad/s = 0.26 H-.

22




lo’ Y L T T al - T e

10F

3

RMS frequency error in Hz
3,
]
3

—
Q
vy

' i I i L e L

20 15 10 -5 0 ] 10 15 20 28 30
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5.0 DETERMINATION OF THE ML FREQUENCY ESTIMATE

It is shown in Section 4, that the ML frequency estimation of the signal is the
angular frequency w that maximizes the magnitude of A(w), where A(w) is as given in
(49). To find max |A(w)], we could differentiate the function |A(w)|? = A(w)A*(w) with
respect to w and set the result to zero. This, however, does not usually work, since |A(w)|
or |A(w)|? is not a monotonic function of w but has numerous local maxima and minima.
In order to determine the global maximum of |A(w)|, we first require a rough or coarse
estimate of where it is located. Once this is obtained, a fine search can then be performed
to find the exact location of the global maximum point.

The coarse estimate of wmax, Where wyax = max |A(w)|, can be made directly
from the computation of the DFT of the complex data {Z;}, k=0,1, .- N —1 as was
done in [6]. With the value of lw,/M for which |A;| is maximum, as an initial guess, the
bisection or the secant method can be used to determine wp,ay at a desired accuracy. To
do this, we need to evaluate the derivative function

F) = - [AW)A"(W)

= (gt + (ropue) = ={rwtue) ©)

where A*(w) is the complex conjugate of A(w) and R{-} is the real part of {-}. Both
the bisection and the secant methods use an iterative procedure to compute wmq, and at
the maximum point, F(wmax) = 0. The initial interval in which the numerical algorithm
is applied is usually taken to be the distance between two consecutive DFT points, i.e.,
ws/M, where M > N. This will ensure that there exists at most one peak frequency
component in this interval, since the widths of the peaks are inversely proportional to
NT..

For both numerical procedures, we need to evaluate F(wn41) at each iteration.
In the case of the bisection method, wn41 = %(cn +dy,), where ¢, and d, are the end-points
of the interval after n iterations and for the secant method, w,,; is calculated from

Wp — Wp-1

F(w,.) bt F(w,,_;)'

(66)

Wt = wn — F(wy)

The secant method usually has a faster rate of convergence than the bisection method. If
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we assume that after £ number of iterations the numerical procedure is stopped, then the
computational complexity is of the order of 3¢ N complex multiplications and 2¢/N complex
additions due to the evaluation of F'(w,). To determine the initial coarse estimation, we
compute an M-point DFT, where M > N. This can be performed using the fast Fourier
transform (FFT) which requires M log, M complex multiplications and additions when
M is a power of 2. For moderate to high SNR, the coarse search can usually be done
with M = N. The overall computational complexity using this method of coarse and fine
search is, therefore, of the order of N(log, N + £) complex multiplications and additions.

An alternative to the previous search method is to directly find an approximate
value of wmex by having a very fine sampling of the continuous spectrum of |A(w)|. This
can be achieved by computing a large number of DFT points. That is, an M-point FFT
is performed on the complex data {Z;}, k=0, 1, ---, N~1, wheie M is a multipleof N,
i.e., M = mN, where m > 1. In this case the computationai complexity is of the order
of Mlog, M = mN(log, N + log, m) complex multiplications and additions. Note that
for M > N, the N points data {Z;} is padded with trailing zeros to length M before the
DFT or FFT is performed. The approximate value of wnay is then given by lmay - ws/M,
where Im=mlax|A;| and [ =0,1,---, M - 1.

The exact value of wpax can be assumed to be situated anywhere between lyax
and its neighboring DFT point. This implies that wmax is a random variable that is
uniformly distributed in the interval of w,/M. Hence, the MSE associated with the
approximation of wmax by lrax - ws/M is equal to w?/(12M?). The overall mean-square
error €2 in determining the signal or doppler frequency wy is, therefore, equal to the
variance of the ML estimation of w, in the presence of noise as given by (63) plus the
variance of approximating wma, by the maximum magnitude DFT point. That is,

2 wi 3w? wi
e = * - Dmmvmni = t 12

(67)

with M = mN, and m > 1. For moderate to high signal-to-noise ratio, the variance of
the ML estimation can be approximated by the C-R bound and the overall MSE &? can

be determined from , .
2 ~ 3“)' + wg
27} (SNR)N(N? - 1) 12m2N?’

The overall root-mean-square error ¢ is then obtained by taking the square-root of ¢2.

€ (68)

Depending on the values of m and N used, it is seen from the above expression (68) that
the MSE due to the use of the maximum magnitude DFT point as an approximation to
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Figure 9: Overall RMS frequency error as a function of SNR and N with f, = 10 KHz
and m = 8.

the signal’s frequency (second term) can be much larger than the inherent MSE of the ML
frequency estimation (first term). At a low SNR, however, the dominant error component
is due to the occurrence of outliers given by the first term of Equation (67). The overall
RMS error ¢ is shown in Figure 9 as a function of SNR with the sampling rate f, = 10 KHz
and the value of m equals to 8. Comparing Figures 7 and 9, the effect due to the MSE of
the DFT approximation can be easily observed. As stated earlier, this error increasingly
becomes the dominant factor as the SNR increases. This is because the variance of the
ML estimation given by the C-R bound is inversely proportional to the SNR, whereas the
DFT approximation error is independent of SNR. Hence, with increasing values of SNR,
the MSE of the ML estimation becomes negligible compared to the MSE of the DFT
approximation which remains basically constant for a given value of m and N.
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6.0 SUMMARY AND CONCLUSION

In this paper, we have studied the problem of estimating the signal parameters,
more specifically the doppler frequency, from a finite number of noisy I (in-phase) and
Q (qua.di‘a.ture) samples. The received signal is assumed to be coherent and therefore,
samples can be taken at regular intervals. In addition, the signal is also assumed to be
corrupted by additive white Gaussian noise. The equations that describe the Cramér-Rao
bounds which give the minimum variance of an unbiased estimator are derived. In the case
of the frequency estimation, the C-R lower bound is shown to be inversely proportional to
SNR, the square of the sampling time-interval T, and the cube of the number of samples
N observed. As for the phase estimation, it is found that the C-R bound is dependent on
the time ¢y at which the first sample is taken. The lower variance bound is also derived
for a more generalized chirp signal whose phase is modeled as a polynomial of order p,
where p > 1. The example of the C-R bounds for the coefficients’ estimates of a cubic
polynomial (p = 3) was described in detail.

The maximum-likelihood estimation for the unknown parameters of both the
simple sinusoid and the chirp signal are derived. The relationship of the ML frequency
estimate to the discrete Fourier transform is then shown. The ML estimator is the min-
imum variance estimator but, however, its analysis reveals that at low SNR, it is also
plagued by the threshold effect. That is, there is a range of low SNR for which the MSE
starts increasing very rapidly as the SNR decreases. This is because of the large error
committed by the ML estimator in the presence of an outlier. The threshold behaviour
of the ML estimation was discussed in Section 4.3.

The algorithm for the implementation of the ML frequency estimator was then
considered. It consists of two parts; a coarse search and a fine search. The coarse search
yields a rough estimate of where the global maximum of the spectrum is located and this
is performed using the fast Fourier transform algorithm. The fine search uses the coarse
estimate as the initial guess in order to give a more accurate result of the frequency
estimation. It can be performed using numerical procedures such as the bisection and the
secant methods. Errors due to the direct estimation of the frequency parameter by the
FFT algorithm was also analysed. It was found that at moderate to high SNR (above
the threshold effect), the dominant factor in the overall MSE of the frequency estimation
is the DFT approximation to the ML estimate. The accuracy of this approximation can
be increased by increasing the number of DFT points but at the expense of more number
of computations. Once the number of DFT points is chosen, the MSE due to the DFT
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approximation is constant and independent of the input SNR.

We have determined the minimum variance frequency estimation using the ML
estimator. From the expression of its C-R bound, it is seen that this estimation can
be improved by increasing the effective time duration, NT,, of the received signal. The
longer the time duration, the more accurate the frequency of the signal can be estimated.
Using the proposed method for estimating the frequency of the signal during a single
pulse of, say, one microsecond, with a sampling rate of 10® Iz, and a SNR = 20dB, the
best RMS error that can be achieved is 3.899 KHz. Since the doppler frequency expected
in practice is of the order of a few hundred hertz or less, it is obvious that this method
cannot measure or even detect any doppler shift from a single received pulse. The large
value of the estimation error is due to the small pulse time duration. It is to be noted
that for a given time duration 7, where r = NT, the accuracy of the minimum variance
estimation can be increased by increasing N, the number of samples, for the same value
of r. This is because, from the expression of the C-R bound in (20), the MSE is inversely
proportional to the cube of N (N3), whereas it is only inversely proportional to the square
of the sampling interval T, (T?). This reduction in MSE for the ML estimation, however,
will be apparent only for high SNR (above the threshold effect) and it will be of almost
no effect on the overall MSE if the DFT approximation is used.

6.1 Pulsed Signals

Finally, some examples will be considered, where the target emitter is trans-
mitting either a burst of coherent or noncoherent pulses at the receiver. The goal is to
determine the best possible estimation that can be achieved with a finite number of pulses.
It is assumed that the received pulses have a moderate to high SNR so that the maximum
likelihood estimator is operating above the threshold value.

In the case of the coherent pulses where basically a continuous wave signal is
being modulated by a square waveform, suppose that P number of pulses, each with
a time duration of 7 seconds, are received. The pulsed signal is sampled at a rate of
fo = 1/T, Hz which implies that the number of samples per pulse is N = /T, = 7f,.
The sampling of the coherent signal can be performed continuously from pulse to pulse
such that the integration over the P pulses is equivalent to the sampling of a CW signal
of time-length Pr seconds. The MSE of the ML angular frequency estimation is then
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obtained from

6 6
SNRYTINP(NPI—1) ~ (SNEeveps  or VM P> L (69)

Comparing the above equation with that of (20), it is seen that by having P number of
coherent pulses, the MSE is improved by a factor of P3. Thus, in terms of the RMS
error, the improvement factor is of the order of P3/2. For the example used earlier, where
T = lyus, f, = 10® Hz, and SNR = 20dB, the increase in accuracy of the frequency
estimation when P = 10 is by a factor of 31.62 that yields an RMS error of 123.28 Hz.
Similarly, if we require the frequency estimate to have an RMS error of less than 10 Hz,
then for the same values of 7, f,, and SNVR, the number of coherent pulses P needed to
achieve this accuracy is P > 54.

For noncoherent pulses, where every received pulse is independent of each other,
we cannot combine the pulses together to form a CW wave as in the coherent case. We
have to treat each pulse separately and, therefore, the best we can do in order to improve
the accuracy of the frequency estimation is to have an average estimate of all the received
pulses. That is,

. 1 B .
f=xYf
P i=1
where f; is the frequency estimate of the ith pulse. The variance of the average estimate
f , is then reduced by a factor of P, the number of pulses, i.e.,

1 6

Var(f) = 5 (SNRYTZN(N? - 1)

(70)

which implies that the RMS error of the frequency estimate is decreased by P'/2. Now, in
order to have an accuracy of 10 Hz or less, with each pulse having the values of 7 = 1 us,
SNR = 20dB, and f, = 10° Hz, we need P > 151,997 pulses which is too large for
practical purposes. Note that an accuracy of the order of 10 Hz is chosen because that is
basically what is required in practice for doppler detection and measurement.

One way of reducing the number of pulses P for the same accuracy is to have
more samples per pulse, i.e., increase the value of N by sampling at a faster rate, as was
explained before. If the number of samples is augmented from N to QN, where Q > 1,
then the MSE is approximately reduced by Q and the RMS error by Q'/2. As for the
number of noncoherent pulses needed, P is decreased to P/Q and that of coherent pulses to
P/Q*/? for the same MSE or RMS error value. In the example of the noncoherent pulses,
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if the sampling rate is increased from 10% to 10° Hz for the same value of 7, (Q = 10),
then for the same accuracy of 10 Hz or less, at least 15,199 pulses are required, which is
still very large. Comparing the noncoherent pulses to the case of the coherent ones, where
the number of pulses required is in the order of hundred thousand instead of only a few
tens, it can be deduced that it is only practically feasible for an ESM system to measure
the change in doppler frequency from the coherent pulses and not from the noncoherent

pulses, since in general, the number of pulses received during a burst is usually a few

hundreds or less.

In the case where the demodulated pulse signal’s frequency, f is less than the
reciprocal of the pulse duration 7 and is less than the pulse repetition frequency (PRF),
i.e.,, f < 1/7r and f < PRF, each pulse can be taken as a discrete sample with the
PRF as the sampling rate. However, this can be done only if the pulse signal is coherent.
For a PRF of 10 KHz and a SNR of 20/,dB, using the expression of the C-R bound
in (20), an accuracy of 10 Hz or less can be achieved with at least 12 pulses. For the
frequency f < 1/ but greater than the PRF (f > PRF), each pulse cannot be sampled
only once, because this will lead to ambiguities in determining the true frequency. More
specifically, there will be a difference of n(PRF) between the true frequency and the
estimated frequency, where n = 1,2, 3 -.-. The three different frequency ranges of the
pulse signal from the output of the demodulator are shown in Figure 10. For f > 1/7,
the signal is readily discerned from the information contained in a single pulse, whereas,
for f < 1/7, the pulses are modulated with the amplitude of the signal waveform.
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Figure 10: (a) pulse train for signal frequency f > >: (b) pulse train for signal frequency

r

f < Y and f < PRF; (c) pulse train for signal frequency fa <
fa > PRF.
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