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Abstract

In this work we study the pollution-error in the A-version of the finite element
method and its effect on the local quality of a-posteriori error estimators. We
show that the pollution-effect in an interior subdomain depends on the relationship
between the mesh inside and outside the subdomain and the smoothness of the
exact solution. We also demonstrate that it is possible to guarantee the quality of
local error-estimators in the interior of a finite-element mesh-patch of interest by
employing meshes which are sufficiently refined outside the patch.
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1 Introduction

The design and certification procedures for aerospace structures require an
accurate stress analysis capability. Detailed stress analyses of complex aircraft
structures and their subcomponents are required, especially during the certifica-
tion phase of the analysis. The finite element method has become the method of
choice for the analysis of complex structures such as aircraft, nuclear power plant
components and automobiles. Before manufacturing a component, the designer
must be able to predict its behavior. This prediction is based on a formulation of a
mathematical model, its computational analysis, experiments, and experience with
existing constructions and their failures. Because of various uncertainties which
necessarily occur, the goals of advanced design analyses (in aircraft, nuclear indus-
tries, etc.) are often stipulated in the design codes (which are changing over time).
The question of the principles of safety is directly related to these codes. For ex-
ample, in the design code USAF-MIL-A-83444, used in military aircraft design, it
is required that components based on the principles of “non-inspectable slow crack
growth” must be designed under the assumption that,

a) the as-fabricated structure contains flaws of a size just smaller than the non-
destructive maximum undetectable flaw-size;

b) the flaws are assumed to exist in the form of crack-like defects with most
unfavorable location and orientation.

The design code requires that the mathematical formulation and its computational
analysis must reliably and conservatively predict both the sizes of the growing
cracks and the residual strength of the component.

As a result of the requirements of the design code many times it becomes neces-
sary to analyze a small portion of the structure, such as a stress critical component,
in greater detail, e.g. the fuselage of an aircraft may be subjected to accurate anal-
ysis in the neighborhood of structural details like openings, cracks, etc. A standard
procedure is to analyze the entire structure using a global discretization which is
often referred to as global analysis and to further analyze the structure near crit-
ical regions, identified by the global analysis, by performing local analyses. Such
procedures, which are known as global/local analysis, are becoming quite popular
in engineering practice.

1.1 Generalities about global/local analysis

We would like to discuss further some of the ideas involved in the technologies of
global/local analysis. In the literature of global/local analysis one often encounters
the terms global model and local model. We would now like to comment on the
meaning of the word model which is often used with different meanings in the
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engineering community. There are two interpretations of the finite element method
(see also [1]). The first one considers the method as an extension of the standard
method of structural analysis in which the original (physical) problem is replaced by
another (physical) problem which is finite dimensional and can be computationally
analyzed. For example, in the late 50’s it was common practice to “model” the two-
dimensional elastic continuum by a system of trusses connected by shear-panels.
This physical “modelling” method was called finite element modelling. The second
interpretation is to understand the finite element method as an approzimation
method for solving mathematical problems. The second interpretation is the main
interpretation today, although the (misleading) term “finite element modelling” is
still used, especially in engineering. A model is a continuous mathematical problem
and is approzimated by a finite element method which employs meshes.

It follows from the above discussion that, if the same mathematical model is
solved during the global and the local analysis, the terms “global model” and “local
model” are misleading; instead the terms global mesh and locel mesh must be used.
The objective of global/local analyses of this type is to obtain accurate approxima-
tions of the solution quantities of engineering importance (stresses, thermal fluxes)
in local regions of interest, or, in other words, to obtain an apprc-imate solution
of the mathematical model with error less than a specified tolerance in the region
of interest (for a measure of error which is dictated by the goals of the analysis).

It is also possible to attach another meaning to the term global/local analysis.
For example a 3-D (three-dimensional) elastic continuum in a thin domain may be
analyzed using different plate models in different regions in order to meet desired
levels of accuracy with respect to the exact solution of the problem of 3-D elasticity.
In this case the terms “global model” and “local model” may be appropriate. This
methodology is known as hierarchical modelling [1, 2, 3, 4, 5] and its objectives
are to approximate the solution of an exact mathematical model (for example the
problem of 3-D elasticity) by employing solutions of approximate mathematical
models (e.g. plate or shell theories) in order to meet specified error tolerances with
respect to the solution of the exact mathematical model, in the regions of interest.
The approximate models are continuous mathematical problems which are derived
from the exact mathematical model using certain simplifying assumptions.

As discussed above, the term global/local analysis has been employed in two
different contexts in practical engineering computations.

(1) In one context, the global and local analyses are refined or enriched mesh-
techniques often employed in order to approximate the solution of a single
mathematical model throughout the domain. An example of this type of
analysis is given in [6): In that work a methodology is outlined in which a
relatively coarse global mesh is used to analyze a complex structure. The
critical regions requiring a more detailed analysis are subsequently identified
and interpolation regions are then defined around these regions and an inter-
polation procedure is employed to determine the boundary conditions for the
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local meshes. The local meshes which lie within the interpolation region are
independent of the global mesh and are more refined than the global mesh.
In some analyses of this type the discrete problems in the local meshes may
be also fully coupled with the discrete problem in the global mesh.

(2) In another context, the global and local analyses are performed by solving
different mathematical problems in different parts of the domain. In [7)
such an approach was employed in order to resolve crack-tip fields in fibrous
composites. This technique which in [7] is called the mesh-superposition
method may be described as follows: A composite plate, which may include
cracks, is first analyzed as a homogeneous orthotropic continuum using a
finite element mesh which is called the macro-mesh. The local behavior on
the scale of the heterogeneous constituents is then analyzed using a separate
finite-element mesh called the micro-mesh which employs elements which
are small enough to reflect the micro variations in material behavior and
is superimposed on the macro-mesh in the neighborhoods of the crack-tips
where the critical behavior is expected.

From a study of the literature it is clear that the emphasis of the research in
global/local analysis has been on:

(i). Postprocessing the results of the global analysis in order to determine the
subregions requiring detailed analysis;

(ii). Generating refined and/or enriched meshes in the local areas of interest;

(iii). Imposing interface-conditions at the interface between the global and local
meshes (or global and local mathematical models);

(iv). Developing solutions strategies for the linear algebra problems which result
in this type of analyses.

Very little attention has been paid on ensuring good quality (i.e. accuracy) of the
finite element solution in the region of interest.

In this paper we will demonstrate that the accuracy of the approximate solution
in a subdomain of interest depends on the relationship between the mesh used inside
and outside the subdomain where the detailed analysis is required or in other words
accuracy of the local analyses depends on the accuracy of the global analysis.

To illustrate this point we give the following example: Let us consider Laplace’s
equation in the L-shaped domain shown in Figs. l1a-1d with boundary conditions
consistent with the singular solution u(r,0) = ri sin(%) in the infinite wedge (see
also Section 2). We assumed that we are interested only in the solution in the
hollow square subdomain, which is shown with thick perigram in the upper right
corner of the domain in Figs. 1a-1d. We computed finite-element solutions of the
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Laplacian using the standard displacement method and we employed four meshes of
linear elements, as shown in Figs. 1a-1d. In these meshes the grid in the subdomain
was kept fixed while the mesh employed outside the subdomain was coarsened in
order to illustrate the effect of the outside grid on the accuracy of the finite-element
solution in the subdomain. In Fig. 1.1a we show an adaptive finite-element mesh of
linear elements which was generated using a remeshing algorithm, over the domain.
For this mesh an accuracy of 1.09% for the relative error in the energy-norm over
the subdomain was achieved in the hollow square subdomain. In Figs. 1.1b, 1.1¢,
1.1d we show grids in which the mesh outside the subdomain was progressively
coarsened while the mesh inside the subdomain was kept fixed as in Fig. 1a. Using
the grids shown in Figs. 1.1b, 1.1c and 1.1d we computed approximate solutions
for Laplace’s equation and we found that the exact relative error in the energy
norm over the subdomain is 4.67%, 12.24% and 23.9%, respectively.

From this example, it is clear that the accuracy of the finite-element solution
in any subdomain depends on the mesh outside the subdomain and that in order
to increase the accuracy of the finite-element solution in a subdomain of interest
one has to employ meshes which are sufficiently refined inside and outside the
subdomain. Hence, in general we cannot say that a refined mesh in a subdomain
can guarantee a better solution in the interior of the subdomain. The situation is
very similar, but more complex, in the case of hierarchical modelling and will not
be addressed here.

Based on these initial observations it is clear that if a detailed analysis is carried
out by employing a refined or enriched mesh in a local region of interest with no
regard to the mesh outside that region, no gain in the local accuracy may be
obtained. Hence the idea of global/local analysis makes sense only if it is based on
algorithms which achieve the desired accuracy in regions of interest by controlling
the relationship between the inside and outside meshes in order to employ nearly
minimal total number of degrees of freedom. The objective of this work is to make
initial progress towards this goal.

1.2 Introductory remarks about error estimation

A-posteriori error estimation is the only rational means for checking the local
quality of approximate solutions. Therefore it is important to know under what
conditions the error estimators are reliable and how to design the meshes in order
to guarantee the reliability of local error-estimation.

The design and verification of error estimators for approximate solutions of
elliptic boundary-value problems has been the focus of intensive research; see for
example [8-43] and the citations in these papers. Studies of the factors which affect
the local quality of error estimators are given in [41-45]. These factors are:

1. The geometry of the grid: By geometry we mean the topology of the grid




(a)

Figure 1.1. Effect of the outside grid on the accuracy of the finite-element solution in a
region of interest. The hollow subdomain is shown with black perigram in
the upper right corner of the L-shaped dﬁma.in. The subdomain was meshed
with a quasi-uniform mesh which was kept fixed while various meshes were
employed in the rest of domain. (a) A mesh for which an accuracy of 1.09%
was achieved in the subdomain. (b) A mesh for which an accuracy of
4.67% was achieved in the subdomain. (c) A mesh for which an accuracy of
12.24% was achieved in the subdomain. (d) A mesh for which an accuracy
of 23.97% was achieved in the subdomain. It is clear that the accuracy of
the finite-element solution in the subdomain depends strongly on the mesh

outside the subdomain.




Figure 1.1 (continued)

(b)




Figure 1.1 (continued)
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Figure 1.1 (continued)

(d)
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and the distortion of the elements; the geometry has to be understood in
connection with the differential operator (e.g. [41]).

2. The smoothness of the solution: The smoothness is characterized by the
regularity of the solution (see [46])-[56]) which depends on the differential
operator, the loads, the geometry of the boundary of the domain and the
geometry of the material interfaces. For further details about the smoothness
of solutions of linear elliptic boundary-value problems in polygonal domains

see [49)-{56].

3. The pollution error: By pollution error we characterize the errors in the
approximation which emanate from singuiar points, boundary-conditions,
mesh- and material-interfaces and which may affect the order of convergence
of the approximation throughout the domain (see [57]-[66]).

In [44] and [45] we presented a theoretical framework and a computer-based
approach for checking the local quality of estimators. The methodology in [44], [45)
enables one to obtain a quantitative measure of the quality for any error estimator
for interior mesh-cells wg in the interior of the grid (an example of an interior
mesh-cell is given in Fig. 1.2; the mesh-cells are patches from the mesh which may
consist of a few elements, possibly one). In [45) we studied the robustness of several
error estimators (which are used in practice) for interior mesh-cells for the complex
grids which are employed in practical engineering computations and we identified
several robust estimators.

The theoretical framework of the methodology for checking the local quality
of estimators (which was employed in the study of estimators in [44] and [45])
assumes that the pollution-error in the mesh-cell w} is negligible with respect to
the error in the best-approximation defined over a slightly bigger mesh-cell &*
which includes w} and a few mesh-layers around it. This assumption implies a
proper relationship (which depends on the exact solution and hence on the data of
the problem) between the mesh-size inside and outside the mesh-cell wf. In this
work we show that this assumption is necessary (is not a technicality in the proofs
given in [44]) i.e. if the pollution-effect in w is large (with respect to the error in
the local best-approximation), nothing can be said about the reliability of any error
estimator which is based on local computations in w}. Moreover we demonstrate
that it is possible to control the pollution-error in any interior mesh-cell by proper
design of the mesh and hence it is possible to ensure the reliability of the error
estimators in any region of interest.

In this work we will study the effect of the pollution error, due to singularities
introduced by rough domains (domains with corner-points) or abrupt changes in
the boundary-conditions, on the quality of error estimators for interior mesh-cells.
Singularities of this type occur in typical two-dimensional geometrical idealiza-
tions of problems in solid mechanics and heat-transfer. Moreover it is well known
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(b)

Figure 1.2. (a) A finite-element grid with an interior mesh-cell w} (shown shaded
gray) surrounded by the mesh-cell & and three mesh-layers around it; (b)
Close-up view of the mesh-cells.
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(e.g. [64], [65]) that singularities of this type pollute the approximation throughout
the domain while singularities introduced by rough right-hand sides (concentrated
loads) affect the approximation only in the neighborhood of the singular points.
Therefore the pollution error caused by such singularities (due to rough domains
or rough boundary-conditions) is of great importance in practical computations.

In this work we will analyze the pollution error due to rough domains and
rough boundary-data in the h-version of the finite element method, its effect on
local error-estimation for interior mesh-cells and how the pollution-error can be
controlled to guarantee the reliability of local error estimation. We considered
only interior mesh-cells for simplicity; the conclusions of this study are also true
for mesh-cells which abutt to the boundary of the domain and for mesh-cells near
or at singular points.

The main points of the work are:

1. For quasi-uniform meshes (often used in practical computations) the pollu-
tion error could be significant throughout the domain depending on the data
of the problem and the polynomial degree of the elements employed in the
mesh.

2. When the mesh is refined locally (in a region of interest only) the pollution-
effect may dominate the computation and there may be no gain in the accu-
racy in the region of interest.

3. All practical error estimators are based on local computations and therefore
cannot detect the pollution error.

4. When the mesh is nearly equilibrated in the energy-norm the pollution-effect
in the derivatives is negligible.

5. The pollution-effect in an interior subdomain can be controlled by employ-
ing meshes which are coarser (outside the subdomain of interest) than the
globally nearly equilibrated grids.

Following this Introduction, in Section 2 we describe the model elliptic problem
and two error estimators which were employed in the numerical examples. In
Section 3 we give numerical examples and the analysis of the pollution-effect for
uniform meshes and introduce the notions of near-field and far-field pollution.
In Section 4 we give examples that demonstrate that when the grid is nearly
equilibrated in the energy-norm the pollution-effect is negligible. In Section 5 we
demonstrate that, when the mesh is refined locally in a subdomain of interest, there
may be no gain in the accuracy in the interior of the subdomain and in Section 6 we
give numerical examples which indicate that it is possible to control the pollution-
error in a subdomain of interest by employing grids which are less refined (outside
the subdomain) than the nearly-equilibrated grids (i.e. the globally-adaptive grids).

13




2 Preliminaries

2.1 The model problem

Let @ C R? denote a polygonal domain with boundary Q2 = T = U L,

where T, i = 1,..., M are the open straight edges connecting the endpomta A
and Ay (4; = Au.,.l) (see Fig. 2.1). We will denote the internal angles at the
vertices by ¢1,...,9m (0 < ¢; < 27; if p; = 27 we have a slit-domain). Let
furthee ' = TpUTN, IpNTy = O where T'p is the Dirichlet- and Ty is the
Neumann-boundary.

By H™ (1), m is positive integer, we denote the Sobolev space of functions with
square integrable derivatives up to order m with the norm, seminorm

||"|ﬂt-(n) = o<§ ||Db“"?z ’ |"|?7-(u) = ||D™ullp
$ u
(D™u)(x) :.= [(Hz’:m |D°'u|’)(z)] , Dtu:= -a??:a—zg;

where & := (an,a3), @; >0, integers, i=1,2, |a]:=a;+az. Here||-|ln
denotes the L3-norm over .

Let T := {T)} be a regular family of triangulations of ) (the minimal angle of
all the triangles is bounded below by a positive constant, the same for all meshes).
The meshes are not assumed to be quasi-uniform. We iet E (resp. E;q¢) denote the
set of edges (resp. interior-edges) in the triangulation. We will consider the mixed
boundary-value problem for the Laplacian:

L(u):= -V.-Vu= -Au= 0 in (2.1a)
u=0 on I'p (2.1b)

Ou
s Vu-n=g on Iy (2.1¢)

Here u is the solution; n denotes the exterior unit-normalon I'y ; g € L*(T'y) and
is analyticineach I';, 5 =1,..., M.

In the neighborhood O(=z,;ry) = 2N {z | 2 —2,]p < ro} of the vertex A,
(=, is the position-vector of A4,), the exact solution can be written in the form (for
homogeneous boundary-conditions in the neighborhood of the vertex A,)

14




Ay Iy Ay,
Pu ru
A14 ) All
4 Ty
10 r9
A
4 Iy
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Al r 1 Az A4 I‘{ A5 A7 F7 As

Figure 2.1. An example of a polygonal domain 2 with boundary segments I'; and
vertices A;,¢ =1,...,20.
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Qe
u(re,0) = 3 ¢; ¥; (0e) e’ + ug(re, ) (2.20)
=l

with ugy(r,, ;) smoother than the first term, where (r¢, 8;) are the polar coordinates
with respect to the vertex A,. The functions ¥; and the exponents a; are

sin(a;f,) , for the Dirichlet or mixed problem ,

¥i(0c) = { (2.2b)
cos(a;f;) , for the Neumann problem ,

‘;_' . for the Dirichlet or Neumann boundary conditions ,

/]

a; = (2.2¢)
(2 -1~ . .
~————02?-_, for mixed boundary-conditions ,

20

(The mixed problem here means homogeneous Dirichlet conditions for 6, = 0 and
homogeneous Neumann conditions for 6, = ).

Remark 2.1. In the numerical examples we considered specially unsmooth solutions
of the type given by (2.2a)-(2.2c) because such solutions occur typically as solutions
of practical boundary-value problems.

We let H} := {u eHY@)| u=0 on r,,}. The variational formulation of
the model problem (2.1) is: Find u € H} ) such that

—-— 1
B(u,v) = /r v VoveH:, (2.3a)
where ‘

By (u,v) := /o Vu-Vy, v, veH}, (2.35)

K ') =0 then the usual restrictions on the data are imposed and the solution u
is determined up to an arbitrary constant. We let

ol = (Bsto, o)t = ([, 19P)’ (24)

denote the energy-norm over S.
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Letu,ES’u-D:={v€Hr‘-nlvI,G'P,(f) VreT, v=0 onI‘D}bethe

piecewise p-degree finite element approximation of the solution of (2.1) and (2.2)
which satisfies:
Find u, € S}y, such that

Bo(wwo) = [ gu ¥ otesiy, (28)

The error is ¢, := u — u, and satisfies the residual-equation:
Find ¢, € H} such that

Ba(ey,v) = Y Fi(v) VveHp, (2.6)
€T,

where F, : H} — R is the residual functional given by
1
F.(v) := / ore+ 3 gzh [vic, vem, (2.7)

Here r, := Au, denotes the interior-residual in element r and J, is the inter-
element-jump in the normal derivative

( [v(uh Iﬂ-) - v(uh Ifoll)] ‘n, € € Ein
J¢:=J 2( —Q;:" R eCTy (2.8)
\ 0 ’ € g PD

where n is the unit-normal assigned to the edge ¢ (in an arbitrary but unique way)
and 7,,,, 7, are defined as in Fig. 2.2.

2.2 The error estimators

We summarize the definitions of the error estimators employed in the numerical
examples below (see also [44] and [45)).

2.2.1 Implicit element-residual estimator
Let us define the equilibrated residual functional

F™(v) := F,(v) + /hvﬂ, . ve H\(r) (2.9)

17




Figure 2.2. An edge ¢ with its normal n and the elements 7., ia connected to it.
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Here 0, € (L?(81))? is the correction of the edge-residuals which is determined
such that

FRv)=0 V v € P,(r) (2.10)

Definitions of #, which satisfy (2.10) for linear elements are given in [14], (15,
[24], [25), [28]; in the numerical implementations for linear elements we employ the
definition given in [14]. We define the element error-indicator function e, as the
solution (which is unique up to a constant) of the local problem:

Find é, € H, such that
Bf(éf' v,) = Fr'q(vf) Vv, €H, (2°11)

Here H, = H*(r). We then define the element error-indicators 7, for the energy-
norm of the error by

e = \/B,(er,er) (212)

In the computations below we approximated the solutions of the local problems
by using a finite dimensional space of polynomials of degree (p+ 1) in the element,
namely

B+ .= {w € Pppa(r)| 2w = o} (2.13)

where II? : P,,,(7) — P,(7) is an interpolation-operator defined (see [19], {20])
over the element 7. Tbhe space B?*! is often referred to as the bubble-space (see
[19]). In the sequel, we will call ER-estimators (element-residual-estimators) the
estimators determined from (2.12) by computing approximate solutions of (2.11)
from the bubble-space.

We now describe how the corrections for the edge-residuals 0, are constructed.
We let

0.l =G (01w +0245) , eCor (2.14)

where

+l, iff = fh,

¢ = { (2.15)

=1, ifr=r"1.,

Here it is assumed that an edge-normal n has been assigned to the edge ¢ in an
arbitrary but unique way and 7, and 7,,, are defined as shown in Fig. 2.2. Here
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€ l € __ )¢ € e _?_ € __ )¢
*l - 'cl (2Al Aﬂ) ’ ¢2 = |¢| (2'\1 '\l) (2°16)

where )f, k = 1,2 are the linear shape-functions defined over the edge ¢, and

o::=/o,|.,\;,, k=12 , eCor (2.17)

The integrals 6* in (2.17) are obtained from the linear system (see Ladeveze
and Leguilion [14] and Bank and Weiser [15] for the details)

/ 0,x8x =—F.(8x) , k=1,...,(ne)x (2.18)
o

where ®x denotes the elementwise affine basis function, which corresponds to the
vertex X, shown in Fig. 2.3b; 7¥ denotes the k-th element connected to the vertex
X; (ne)x is the total number of elements connected to the vertex X.

The procedure outlined above has been developed by Ladeveze [14]. The linear
system (2.18) has a one parameter family of solutions. Specific choices of solutions
are suggested in [14] and [15]. In the numerical implementations we employed the
choice given in [14]. Below we give the definition of the edgewise-linear corrections
0, which result by using the equilibration procedures of [14].

Let us consider the vertex X and let Nx denote the total number of the edges
(or the elements) connected to the vertex as shown in Fig. 2.3a. Let us also denote
by 7; and ¢, ¢ = 1,...,Nx the elements and the edges connected to X. We
determined the coefficients 82{X) which are associated with the edge ¢ and the
vertex X and are employed in (2.14); here the index-function v(¢, X) identifies the
node X in the local enumeration used in (2.14) for the unknowns associated with
the edge. The values of the coefficients are (see also [14]):

0:‘(41.X) = er(;uox) - F, (®x) , 0:'(;”“) = -j_lv-i(N —i+1)F, (®x) (2.20a)

=1

greX) = grla ) _F (Bx) ,  i=23,...,(N-1) (2.20b)

The edge-coefficients 6:(“X) are computed based on the edge-normals which
rotate counterclockwise around the vertex X as shown in Fig. 2.3a.

Remark 2.2. 1t is also possible to define the equilibration for polynomial spaces up
to degree p (where p denotes the polynomial degree of the elements).
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3.2.2 Error estimator based on patch-averaging

Here we outline an error-estimator based on local averaging which was in-
troduced by Zienkiewicz and Zhu [36, 37]. This estimator will be called the Z2Z-
estimator in the examples below.

Let wx := |J 7' denote the patch of elements connected to vertex X . For
XEN(+")
each patch wx we recover the patch-projections %, by solving the following least-
squares problem:

nep ¢ 2
Hox-Vuw)= jaf Je-Vu), Jo)=3[L@w)]| @)
05(’,)’ mal Sixl
Here y,., m = 1,...,nsp denotes a set of sampling-points in the patch wy.
The element error indicators for the ZZ-estimator are given by

0. = |lo%% — Yy, (2.22)

Here 0?2 denotes the recovered gradient which is obtained by averaging the patch-
projections o%. For the grids of triangular elements employed in this study a
continuous recovered flux 22 is obtained by taking appropriate averages of the
flux recovered from the three patches associated with the element. In this work we
implemented the ZZ-estimator for elements of degree p = 1, 2, and 3 as follows:

a. Linear elements (p = 1).

The nodal values of %2 are recovered from the patches corresponding to each
node. The recovered C°-continuous piecewise-linear flux-field @2 over the domain
is constructed as

o¥(=) = L ox|, ¥x(e) (2.23)

Here o is the recovered flux field over the patch wy and o) I 18 the value of the
recovered flux-field at the vertex X and &, is the piecewise-linear basis function
associated with the vertex X.

b. Quadratic elements (p = 2).
A piecewise quadratic Langrangian representation of %2 is constructed from

o7(2) = Lok, 2x(=) + T 3ok, +o%),) #4(e) (2.24)

where Y is used to denote the midside nodes for the edges; ®x, &, are the Lan-
grangian quadratic basis functions associated with the nodes X, Y respectively;

22




X,, X, are the vertices at the endpoints of the side which includes the midside
node Y.

c. Cubic elements (p = 3).
A piecewise cubic Langrangian representation of 0?2 is constructed from

- 1 * L]
o"*(e) =2 ok, #x(e) +3 e, }("x. ly +%ly) @r(@)

(2.25)
+ %(a}, Iy, + ox,ly, + o%, ly,) &y, ()

where Y, ,...,Y, are used to denote the nodes for the Lagrangian cubic element
on the edges and Y; denotes the interior node at the centroid of the element; &
and @, are the cubic Langrangian basis functions associated with the nodes X
and Y respectively; X,, X;, X, are the vertices of the triangular element.

Zienkiewicz and Zhu [36, 37] proposed two types of least-square problems for the
recovery of o'y namely a discrete and a continuous least-squares patch-projection.
Here we used the discrete least-squares patch projection and we employed the
sampling points shown in Fig. 2.4a, Fig. 2.4b and Fig. 2.4c for linear, quadratic
and cubic triangles, respectively.

2.3 Definition of the effectivity index

The quality of an error estimator in a mesh-cell w is measured by the effectivity
indez

_ b
lealls {g "'} (2.26)
g

Here T, denotes the finite-element mesh which includes the mesh-cell wf in its
interior, as shown in Fig. 1.2, ||ch||w. is the norm (of interest) of the error e, over
wd, 8“. is an error estimator for thls norm which is computed in terms of element
error-indicators 1, associated to every element 7 of the mesh T,.

In [44), [45] it was demonstrated that, when the pollutlon error is negligible, the
value of the effectivity index «,» in the mesh-cell wp is influenced (for all practxcal

purposes) by the geometry of the mesh in a mesh-patch &* which includes wf and
a few mesh-layers around it. The asymptotic range of the effectivity index in the
cell




(a)

Figure 2.4. Location of the sampling points employed by the discrete ZZ-estimator in
the interior mesh-patches. (a) Sampling points for linear elements; these
points are located at the centroids of the elements; (b) Sampling points for
quadratic elements; the points are ocated at the midpoints of the sides of
the elements; (c) Sampling points for cubic elements; the points are located
at the vertices, at the midpoints of the sides and at the centroid of the

elements.




Figure 2.4. (continued)

(b)




Figure 2.4. (continued)
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OSC;::SN..;S v (2.27)

ildeﬁnedintermaoftheoonstmtczc,c;f, which can be determined by a
computer-based approach (see (44], (45]). Inequality (2.27) can also be written
in the form

1 1
—&a <lle <—=é 2.28
p wt < lleallep = wd (2.28)

which expresses the equivalence between the norm of the error and the estimator
in the mesh-cell .

For example, for linear elements (p = 1) and for the Regular mesh-pattern
shown in Fig. 2.5a, the values of the constants are (see [44]) Cf = C{f = 1.00 for
both the ER and the ZZ estimator while for the Criss-Cross mesh-pattern shown
in Fig. 2.5b, the values are, Co* = 1.00, C2# = 1.414 for the ER estimator without
equilibration, CE': = C,“,': = 1.00 for the ZZ estimator and the ER estimator with
equilibration. Further results about the above #nd other estimators for various
mesh-patterns are given in (44, 45]. From the- results it is clear that the ER
estimator with equilibrated data and the ZZ es_i/»aior are robust estimators (C;"s &
C',‘,': s 1) for typical meshes used in engineering computations. As it was pointed
out earlier the constants Cf ) Cl",* can be determined under the assumption that
the pollution error is negligible in a neighborhood of the mesh-cell of interest (see
(44] for the mathematical analysis). In this work we demonstrate that:

1. The assumption on the pollution error is necessary (i.e. when the pollution
error is significant in the mesh-cell w} (with respect to the error in the best-
approximation in &*), (2.28) does not hold).

2. Robust a-posteriori error estimation in a mesh-cell wf (and hence the validity
of (2.28)) is possible by controlling the pollution error in wf through proper
design of the mesh outside w}.
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(b)

Figure 2.5. (a) Basic mesh-cell of the Regular mesh-pattern (b) Basic mesh-cell from
the Criss-Cross mesh-pattern.




3 The pollution-effect for uniform meshes

Practical computations in elasticity and heat-transfer are often performed
using meshes which are nearly uniform (quasi-uniform). It is therefore important to
understand the pollution-effect for such meshes. Below we give numerical examples
which demonstrate the pollution-effect for uniform-meshes of linear, quadratic and

cubic triangles.

3.1 Numerical examples of the pollution-effect for uni-
form meshes

Here we present numerical examples which demonstrate that for the class

of uniform meshes and the class of specially unsmooth solutions (with algebraic

singularities of the type given in (2.2a)-(2.2c)) the pollution-effect depends on the

relationship between the values of the exponents of the algebraic singularities and
the polynomial degree of the elements.

3.1.1 Uniform meshes of linear elements

We considered the mixed bounda.ry-v:;lue problems for the Laplace equation
in the L-shaped domain (tp, = —) shown in Fig. 3.1a. We applied bounda.ry-

conditions consistent with the exact solution u(r,8) = r® sin(af), fora = — = 1

2% 3

and a = ‘% =3 (for a= 5 homogeneous mixed boundary-conditions (resp. for
1

a = - homogeneous Dirichlet boundary-conditions) were applied on the edges

A,A;, A;Ag which emanate from the singular-point while Neumann boundary-
conditions were applied on the rest of the boundary; see also Section 2) , and we

computed finite element solutions using uniform meshes of linear triangles. In

Table 3.1 (resp. Table 3.2) we give the effectivity indices for the mesh layers w,

n=1,..., n (a typical mesh-layer is shown in Fig. 3.1a) for a = g (resp a= :-li)
We note that the effectivity indices ,‘ER for the ER-estimator and xzz for the

ZZ-estimator are practically the same in 1 the interior-layers. We also note that for

-:1;) the effectivity indices in the layers at a fized distance from

the singularity converge to one (resp. zero) as the mesh-size h tends to zero.

a—s(resp.a—




As Ag

(a)

Figure 3.1. (2) The L-shaped domain with boundary A, 4, ... A¢A,, meshed with a
uniform grid of triangular elementsin which the eighth mesh-layer is shaded
gray; (b) The convex domain with boundary A4, A, ... A A,, meshed with a
uniform grid of triangular elementsin which the cighth mesh-layer is shaded
gray; (c) The triangular domain with boundary A, 4, ... 4, A, meshed with
a a uniform grid of triangular elements in which the sixth mesh-layer is
shaded gray.
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Figure 3.1. (continued)
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Table 3.1

. (continued)

Effectivity index for each mesh-layer

Exact solution u(r,0) = risin(%); linear elements

Layer &
mumber s n Teaille
n Ly ! T - 100
1 0.667 0.688 81.64
2 1.185 1.064 37.99
3 1.007 0.998 23.32
4 0.976 0.977 17.25
5 0.967 0.971 13.87
6 0.964 0.967 11.69
7 0.962 0.965 10.15
8 0.960 0.964 9.00
9 0.950 0.962 8.11
10 0.957 0.960 7.40
11 0.956 0.959 6.81
12 0.954 0.957 6.32
13 0.953 0.955 5.90
14 0.951 0.954 5.54
15 0.950 0.952 5.23
16 0.948 0.950 4.95
17 0.946 0.948 4T
18 0.945 0.947 449
19 0.943 0.944 429
20 0.941 0.943 412
21 0.939 0.941 3.96
22 0.937 0.939 3.81
23 0.935 0.937 3.68
24 0.933 0.935 3.55
25 0.932 0.933 3.44
26 0.930 0.931 3.33
27 0.927 0.929 3.23
2, 0.926 0.927 3.14
29 0.923 0.925 3.06
30 0.921 0.922 2.97
31 0.918 0.919 2.90
32 0.917 0.956 2.83
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Table 8.2. (continued)

Effectivity index for each mesh-layer
Exact solution u(r,0) = risin($); linear elements
Layer h= o
number 32 —_—
T = | EEw
1 0.796 0.678 86.52
2 0.830 0.853 M.20
3 0.661 0.688 19.92
4 0.567 0.572 14.37
5 0.515 0.519 11.42
6 0.478 0.482 9.57
7 0.450 0.453 8.30
8 0.427 0.429 7.37
9 0.407 0.409 6.65
10 0.390 0.392 6.09
11 0.375 0.375 5.63
12 0.361 -0.362 5.2
13 0.348 0.349 4.93
14 0.337 0.337 4.66
16 0.326 0.327 4.42
16 0.316 0.317 4.21
17 0.308 0.308 4.02
18 0299 0.300 3.86
19 0.292 0.292 3.7
20 0.285 0.285 3.58
21 0.278 0.278 3.45
22 0.272 0.272 3.35
23 0.266 0.266 324
24 0.260 0.261 3.15
25 0.255 0.255 3.07
26 0.250 0.250 2.98
7 0.244 0.244 2.92
28 0.239 0.239 2.86
29 0.233 0.234 2.81
30 0.228 0.228 2.76
31 0.221 0.222 2.74
32 0.215 0.226 2.72
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3.1.2 Uniform meshes of quadratic elements

We considered the mix;d boundary-value problem for the Laplace equation in
the convex domain (gp, = T‘) shown in Fig. 3.1b and applied boundary-conditions

consistent with the exact solution u(r,8) = r*sin(ad) for a = -2-3- = § and a =
1
-51- =-;- (for a= -:— homogeneous mixed boundary conditions (resp. for a =

% homogeneous Dirichlet boundary-conditions) were applied on the edges A, A,,
A, A, which emanate from the singular point, while Neumann boundary conditions
consistent with the exact solution were applied on the rest of the bonndary) and

we computed finite element solutions using uniform meshes of quadratic triangles.
In Table 3.3 (resp. Table 3.4) we give the effectivity indices ., for both estimators

1 4 2
TR for a = 3 (resp. a= 5) We note that

for a = ; (resp a= g—) the effectivity indices in the layers at a fixed distance

from the singularity for both estimators converge to one (resp. zero) as the mesh
is refined.

in the mesh-layers w,, n = 1,.

3.1.8 Uniform meshes of cubic elements
We also considered the mixed boundary-value problem for the Laplace equa-

tion in the triangular domain shown in Fig. 3.1c (cp, = —i;) with exact solution
x 6 r 12
—4 rn 1 o e— T - T e T e— Y
u(r,0) sin(af) for a o = 5 and a il (for a=g homogeneous

mixed boundary conditions (resp. for a = ?2 homogeneous boundary-conditions)

were applied on the edges A, A4,, A, A; which emanate from the singular point vhile
Neumann boundary conditions consistent with the exact solution were applied on

A A, ) and we computed finite element solutions using uniform meshes of cubic
triangles. In Table 3.5 Sresp. Table 3.63 we give the effectivity indices for the
mesh-layers w, for a = -53 (resp. a= E) We observe that for a = % (resp.

a= -:—) the effectivity indices in the layers at a fixed distance from the singularity

converge to one (resp. zero) as the mesh is refined.

3.1.4 Summary of numerical results

From the results we make the following observations. For uniform meshes:
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Table 3.3. (continued)

Effectivity index for each mesh-layer
Exact solution u(r,0) = r} sin(¥); quadratic elements
Layer h= —
number 32
n 22 R el - 100
1 0.647 0.682 81.64
2 0.995 1.064 37.99
3 0.997 0.998 23.32
4 0.976 0.977 17.26
5 0.967 0.971 13.87
8 0.964 0.967 11.69
7 0.962 0.965 10.15
8 0.960 0.964 9.00
9 0.959 0.962 8.11
10 0.957 0.960 740
11 0.956 0.959 6.81
12 0.954 0.957 6.32
13 0.953 0.955 5.90
14 0.951 0.954 5.54
15 0.950 0.952 5.23
16 0.948 0.950 4.95
17 0.946 0.948 4.71
18 0.945 0.947 4.49
19 0.943 0.944 4.29
20 0.941 0.943 4.12
21 0.939 0.941 3.96
22 0.937 0.939 3.81
23 0.935 0.937 3.68
24 0.933 0.935 3.55
25 0.932 0.933 3.44
26 0.930 0.931 3.33
27 0.927 0.929 3.23
28 0.926 0.927 3.14
29 0.923 0.925 3.06
30 0.921 0.922 2.97
a1 0.918 0.919 2.90
32 0.917 0.956 2.83
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Table 3.4. (continued)

Effectivity index for each mesh-layer

Exact solution u(r,0) = rsin(%); quadratic elements

Layer h= %
number p= " Tieallle

n Lk ! Meelia: - 100
1 0.764 0.635 96.94
2 1.186 0.869 15.04
3 0.602 0.548 7.84
4 0.404 0.384 5.91
5 0.291 0.281 5.05
6 0.221 0.215 4.55
7 0.175 0.170 421
8 0.142 0.139 3.96
9 0.118 0.116 3.67
10 0.101 0.099 3.61
11 0.087 0.086 3.47
12 0.076 0.075 3.35
13 0.067 0.066 3.25
14 0.060 0.059 3.16
15 0.054 0.053 3.08
16 0.049 0.048 3.01
17 0.045 0.044 2.94
18 0.041 0.040 2.88
19 0.037 0.037 2.83
20 0.035 0.034 2.77
21 0.032 0.032 2.73
22 0.030 0.030 2.68
23 0.028 0.028 2.64
24 0.026 0.026 2.60
25 0.025 0.025 2.56
26 0.023 0.023 2.53
27 0.022 0.022 2.50
28 0.021 0.021 2.48
29 0.019 0.019 2.46
30 0.016 0.016 2.44
31 0.013 0.013 2.43
32 0.011 0.011 2.42

41




90'S 8160 | 6£6°0 o1
1 Y 1¥6°0 | 6£6°0 St
14'2 S¥6'0 | £¥6°0 14
009 8¥6°0 | S¥6°0 £l
(A 196°0 | 8¥6°0 (A4
16 £96°0 | 0560 44
0s'L 956'0 | T96°0 o1
ws 896°0 | ¥S6°0 6
e 096°0 | 9960 6¢'6 ¥86°0 | 8¥6'0 8
Lot £96°0 | 696'0 £9°01 6¥6°0 | S¥6°0 L
£8°11 $96°0 | 296°0 1} 4 €96°0 | 156°0 9
£0'¥1 696°0 | 9960 gevt 296'0 | 6S6°0 S
11 A LL6°0 | 9L6°0 LL'LT CL6°0 | 12670 6¥'81 166°0 | 0L6°0 1 4
99°¢T 886°0 | L86°0 86°€C 986°0 | $86°0 PLve £€86°0 | ¥86°0 ¢
8t°8¢t £86°0 | $86°0 10°6¢ 266°0 | €660 oy 966°0 | 966°0 (4
05°c8 18L°0 | 29L°0 88'¢8 98L°0 | 992°0 £T'98 ¥8L°0 | €9L°0 | ¢
Y . “m Yy ., " Yy “y e
001 v | wa¥ | zz¥ | 001wy | wa¥ | zz¥ | 001wy | ua™ | zz¥ §.n==.
o1 _ 8 _ Y _
= =1 - =1 T = sakeT

SIUBWIR JIqND (77 )uls 54

= (9 ‘4)n uornjos jouxy

JoAR|-ysawl Youa J0j Xapul ANAIRIYT

ﬂ"&.l

S
a1

‘U0 0} 390[2 IV SI2AV[-YsoUWI JOLIANUI 3Y) Ul $3IPUI A}AIPIYS ) 10}

ON *“m JaLvl-ysetn YOUS JOJ RI0IVIYSS JOII3 ZZ PUR [eNPISAI-JUIWI[S 3Y) 10§ xapul £31a1dayg “(d < 0Z)

= 0 ‘o1°¢ ‘811 Ul umoys urewop renBuelly, ‘spud uLojUN IO} JOIId WON|0d °G°S IIqEL

42




s $00'0 | 900°0 91
e 000 | 9000 91
61'c 9000 | 900°0 4
8¢ 900°0 | L00°0 .81
8e'e L00°0 | L00°0 (A4
09'¢ 800°0 | 800'0 1
e 600°0 | 6000 01
eL'e 9100 | 8100 ]
és’c 680°0 | THO0 80y 6%0°0 | 980'0 8
wy 0L0°0 | ¥L0°0 (434 8000 | TLO'O L
12" 4 YIT°0 ) O21°0 o'y SIT0 | 811°0 9
60's 181°0 | 061°0 e1'e 8L1°0 | 881°0 S
g6's ¥82°0 | €020 09 28%0 | 10€°0 S9 o800 | L2T°0 1 4
88'L 8¥¥'0 | 10¥ g96°'L 9%¥'0 | 66%°0 £9'8 %0 | 180 £
£1°91 80L°0 | 988°0 eT'el 1900 | €88°0 L8'%1 192°0 | £98°0 4
Lr'lé $€8°0 | ¥99°0 06°L6 ge9'0 | ¥99°0 L0°66 $€5°0 | €99°0 1
. LTI l’t Y. . LTI o, 032 . TR “m, c.’g

001 L=IE..._=.._= ugy | zz¥ | 001 ...__EF..EHE ug¥ | z2¥ | 001 ALl o ug” | zz2 u

Rquinu
.euh = m =y m =q Jake]

SIUIWIIR d1qNd (5 )uis §¢ = (p'4)n uonnjos Jouxy

JAR]-ysauwl Youwd 10j Xapui LAY

‘019Z 0} 350]D aIv sIake[-ysouI JOLIAWUI Y3 UI SAOIPUI AYAIDIYS Y} o)

ON “m Jakel-ysowl [OUS JOJ I0JVWIISI JOIID ZZ PUR [eNPISAI-JURWI[R Y3 0] xapul £yAandayq (d > og)
g=d .m = o ‘o1'¢ ‘814 ul umoys urewop JemSuew], ‘spus uuojUN o} Joiid uONN|[od °‘9°S IqGRL

43




(i). The pollution-effect depends on a relationship between the exponent a of the
singularity and the polynomial degree p of the elemeants.

(ii). The pollution-effect for fixed mesh-size h and for fixed exponent a becomes
more significant as the polynomial degree p of the elements is increased.

(iii). For elements of quadratic degree or higher the pollution-effect in finite-
element solutions of the Laplacian exists even for convex domains.

The same conclusions are expected to hold for the class of quasi-uniform meshes
which are often used in practical computations.

3.2 Analysis of the pollution-effect for uniform meshes.
3.2.1 Preliminaries

Let us assume that the mesh is uniform as in the examples. (The analysis holds
for the broader class of quasi-uniform meshes. The majority of the grids employed
in the practical computations are quasiuniform). The error ¢, = u — u, is the
solution of the following boundary-value problem

ey = Y (E JI +r,) in Q (3.1a)
7€T, COr
Oe
'5;& =0 on Ty (3.18)
€y = 0 on FD (3.1C)

The variational form of this problem was given above in (2.6) (the residual equa-
tion). Here by J] we denote the Dirac function (line-load) on the edge ¢ associated
with the element 7 i.e.

‘/'vj,’:E/v-;-J, (3.2)

«Core

where J, was defined in (2.7). By the equilibration procedure described in Section
2.2.1 (which can be extended to elements of any degree p) we can rewrite (the
right-hand side of) (3.1a) in the form

~Bey= X o, (3.3)
7€T,

where




pe=r,+ 3 I (3.36)

where J7 are the Dirac functions analogous as before and such that

[ oT = ‘g’ [ v(%l,-l—’,) (3.40)
and
/' pv=0 VveP, (3.46)

as a result of the equilibrations (here we assume p-degree equilibrations of the
residuals). From (3.4) it follows that / p- = 0 and hence there exists é, € H*(7)
such that i

B,(é,,v) = / pv VoveH\(7) (3.5)
Further we have

|5 &l |, 5 Beo)

}
= T8N < e I3 3.6
el = sp o= = e e — < (&) @9

where &, denotes the exact solution of the equilibrated element residual problem
(3.5).

Let us now define W, € H}  such that

-AW, = p, in Q2 (3.7a)
8_;_’1 =0 on Ty (3.70)
W,=0 on Tp (3.7¢)
We have by superposition
@)=Y W (2) Vezef (3.8)
: €




Let 7, be an element of interest and denote by #(™)(r,) the set of elements in

m-layers around 7,, including 7,

#9 )= {ren | T}, #9m)={r }

where

(3.9a)

Mm)= U (U M) Mmw)=mn, Ne= U (39

r'€®¥™=1)(r,) XEN(r') XEeN(+™)
Here N(7) is the set of the three vertices of triangle 7. We let

V)= ¥ W,, Vm)= Y W,

r€¥™) (1) rg®(™)(r,)
and by superposition
V(%) + V™(%0) = e

We define the norms

¥™(n) = MV, » ¥ (70) = VE™ (o)L, »

¥(1) = IV™(7) + V™ (m)llls, = lllealll,,
It is easy to see that, from the complementary variational principle,
Ny = méf, l“r° 2 "?)(TO)

where é, denotes the ezact solution of the local problem (3.4).

(3.10a)

(3.108)

(3.11a)

(3.11b)

(3.12)

Remark 3.1. Here V™(1,) is the component of the error which is due to the resid-

uals in the element 7, and m-layers of elements around it. Analogously, V,("')(ro) is
the component of the error due to the residuals in the elements outside the m-layer

neighborhood ®(™)(7y) of 7,.




3.2.2 The near-field pollution

In general, the error in an element is influenced by the residuals in the entire
mesh, However, when the solution is smooth, and the mesh is uniform, the error
in an element 7, is, for all practical purposes, influenced only by the residuals in
To and in a few mesh-layers of elements around 7,. The effect of the residuals in
a few mesh-layers of elements around 7, on the error in 7, will be referred to as
the near-field pollution. Analogously the influence of the residuals beyond a few
mesh-layers of elements around 7, on the error in 7, will be referred to as the far-
field poliution. Below we show results which indicate that the near-field pollution
is fully accounted for by robust local error estimators.

We considered various meshes shown in Fig. 3.2a-3.2d, in which the element 7,
is shaded black and a few mesh-layers around 7, are shaded gray. We computed the
norms defined in (3.11a) first by considering only the residuals in the element 7, and
then, in progression, the residuals in all the elements in #(™)(7,) form = 1,2,3,....
We computed the values of the pollution factor for the energy:

2,(m) V™ ()l
U™ = — — -100 (3.13)
™ VI (7)1 + V™ (5)1112

In Table 3.7a we give the values of p%(™% for p = 1, 2, 3 for the Regular
mesh-pa.ttem shown in Fig. 3.2a. In Table 3.7b we give the values of u3:(™% for
= 1, 2, 3 for the Criss-Cross mesh-pattern shown in Fig. 3.2b. In Ta.ble 3.7c we
give the results for p = 1, 2, 3 for the mesh-pattern shown in Fig. 3.2c and in Table
3.7d we give the values of u%(™% for p = 1, 2, 3 for the mesh-pattern shown in
Fig. 3.2d. We also see that ¥{”(r,) is significantly smaller than the exact values
of ||lelll,,- Note that the factor [y 3(m)% converges to 100% when the residuals in
two layers of elements around 7, are considered. Also note that as the polynomial
degree p of the elements is increased, the ratio u2: 3.(m)% is practically equal to 100%
form > 1. '
Hence we have ¥\V(7,) = |llealll,, for the mesh-patterns considered and since

1 1 .
v Neallln < 7 < o lllexlll,, for constants Cp°, C? close to 1, (see Section

2.3) we have 5, = |||V;?N(o)|ll,,, for both the ER-estimator with equilibrated
data and the ZZ-estimator. Moreover since |{je,lll., = V™ (7)) + Vg("')(ro)lll,.
we have n,, == |||e|ll,, only if IVy™]ll,, < IIY™|ll,, - Hence [|[V;™)]||,, expresses
the far-field pollution, or, in other words 7,, i8 an estimate of Iy = (u— V,('"))|||,°

i.e. it estimates how close u, is to u — V,"") (where m = 2 for the mesh-patterns
considered here).

From the numerical results of this Section we can infer that: When the solution
is smooth and the mesh is periodic we have

47




(2)

Figure 3.2. Uniform grids of different patterns with the element 7, shaded black and a
few mesh-layers around 7, shaded in different shades of gray. (a) Regular
mesh-pattern; (b) Criss-Cross mesh-pattern; (c) Special mesh-pattern 1;
(d) Special-mesh-pattern 2.
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Figure 3.2. (continued)
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Figure 3.2. (continued)
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Table 3.7a. Effect of the near field pollution: Pollution factor for the energy of the
error in the element 7, due to the residuals in m mesh-layers surrounding 7, for the
mesh shown in Fig. 3.2a. Note that the percentage of the energy of the error in 7,
approaches 100% when the residuals in the first layer surrounding 7, are included. .

Pollution factor for the energy of the error in
the element 7, due to the residuals
in m mesh-layers arcund 7,.

Regular mesh-pattern

m) 2
Number of Layers - A (T°)”!m) x 100

m NVE™ (xo)I112 + 1TV ()12

p=1 p=2 p=3
0 66.92 T4.87 76.64
1 84.44 97.60 99.99
2 99.98 99.99 99.99
3 99.99 99.99 99.99
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Table 3.7b. Effect of the near field pollution: Pollution factor for the energy of the
error in the element 7, due to the residuals in m mesh-layers surrounding 7, for the
mesh shown in Fig. 3.2b. Note that the percentage of the energy of the error in 7,
approaches 100% when the residuals in two layers surrounding 7, are included.

Pollution factor for the energy of the error in
the element 7, due to the residuals
in m mesh-layers around 7,.

Criss-Cross mesh-pattern

m) 2
Number of Layers ~ [ (To)”!m) x 100
m IVE )12 + NIV ()12
p=1 p=2 p=3 !

0 77.07 69.28 78.86
1 94.03 96.03 99.99
2 99.99 99.99 99.99
3 99.99 99.99 99.99
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Table 8.7c. Effect of the near field pollution: Pollution factor for the energy of the
error in the element 7, due to the residuals in m mesh-layers surrounding 7, for the
mesh shown in Fig. 3.2c. Note that the percentage of the energy of the error in 7,
approaches 100% when the residuals in two layers surrounding 7, are included.

Pollution factor for the energy of the error in
the element 7, due to the residuals
in m mesh-layers around 7,.

Special mesh-pattern shown in Fig. 3.2¢c

: m) 2
Number of Layers - A (1'0)"!"') x 100
m NVE™ @) + V™ ()P
p=1 p=2 p=3
0 66.73 78.94 79.43
1 92.00 94.06 98.00
2 99.99 99.99 99.99
3 99.99 99.99 99.99




Table 8.7d. Effect of the near field pollution: Pollution factor for the energy of the
error in the element 7, due to the residuals in m mesh-layers surrounding 7, for the
mesh shown in Fig. 3.2d. Note that the percentage of the energy of the error in 7,
approaches 100% when the residuals in two layers surrounding 7, are included. '

Pollution factor for the energy of the error in
the element 1, due to the residuals
in m mesh-layers around 7,.

Special mesh-pattern shown in Fig. 3.2d

m) 2
Number of Layers - 1™ (%) ”L) x 100

m VI (o)l + 1IVE™ (r)II12

p=1 p=2 p=3
0 74.56 82.15 83.04
1 93.89 97.97 98.36
2 99.98 99.99 99.99
3 99.99 99.99 99.99
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N & |||Vl(")("'o)|||m & |lleslll,» for m2>my

for every interior element 7, € T, where m, denotes the numbers of layers of
elements around 7, (including 7,) for which the element-residuals are responsible
(for all practical purposes) for the error in 7, (for the meshes considered above
it is sufficient to take my, = 2). In other words when the solution is smooth and
the mesh is periodic, an error estimator takes into account the residuals in all
mesh-layers around any interior element.

So far we addressed the energy-norm ||| - |||,, in an element 7,; of course the
result will hold if we replace 7, by a patch of elements w* and replace (™)(,) by
®(™)(w*) with the obvious meaning.

3.2.3 Asymptotics of the pollution-effect for uniform meshes
Let us now analyze the asymptotics of the pollution. Given z € {2 we can write

V""’

—(m)e)= X [mG), i=12  (314)

red™)(1,)

av(m)

—(n)=)= ¥ frG@, =12 (3.145)

TEH™) (1)

where G, () is the z;-derivative of the Green’s function and the integrals have to
be understood in the proper sense. We have for m > 0

|D™G, ()| < -;:7“- on Qz;R):= Q- O0(z;R) (3.15)

provided that § is a rectangle and either Iy = @ or I'p = @. (For general .
polygonal domains (3.15) holds for m < m, where 7 depends on the angles and
the type of boundary-conditions.)

Assuming that the exact solution u is smooth we have

ew < (T ) cow (3.16)

T€T,

Assume now that .(U) 7 D O(=, R) and using (3.4) we have
T7EM™ (‘ro)

|‘W2 (n)@)|=| X2 / p.Gi@)|=| T alGi=)-x| (17)

r€¥™)(1,) r€¥™)(1,)
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for every x € S{r,- Now using (3.15) we see that we can select x, such that on
7o we have

[ G -x)=0 (3.180)
and °
| 92.5:(®) - Xo| <€ R’:“ (3.188)
Hence
IV( W@ =| ¥ [ s(Gil=)-x)|=
estotns
-| T BEG@-ws<( X > legrcar (319)
evioos estoog
and hence
"a —V™(x, 7)), <c——l (3.20)

Because |||e,|i| > Ch**! we see that if we select R > A5 the pollution is negligible
asymptotically.
In the above argument we used the assumption that the solution u was smooth
(a.nd hence ( )_ ) < Ch’). If the domain is convex and either 'y or I'p is -
€T,
empty then (3.1(;) holds for p = 1. Assume now that the domain is not convex or
that we have mixed boundary-conditions. Then we have

(r)e)|< S, i=12 (3.21)

|av('“’

and hence

20041
IV, < < (3.22)
° R?
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lfealll,, 2 CA"! (3.23)

we see that if a < 51’7 then the pollution may be significant.
Remark 3.2. In the proof of (3.22) we employed the fact that the Green’s function
G(z) and its derivatives G;(z), ¢ = 1, 2, are singular in the neighborhood of the
vertices A; (see Fig. 2.1). Because of this singular behavior the exponent (2a +1)
in (3.22) is independent of p. We have proven in (3.21) the upper estimate. It is
possible to prove similarly, as in the theorem 13.1 of [65], that the estimate (3.21)
is sharp i.e. that the coefficient 2a cannot be improved, in general.

Remark 3.3. The estimation of V, in a non-asymptotic way can be made only
usirg _n a-posteriori method. This will be addressed in a forthcoming paper.

3.2.4 Discussion of the numerical results in the context of the asymp-
totic analysis.

In Section 3.1 we gave numerical results which indicate the effect of the pollution
error on the local quality of the error estimators. We now discuss the results of
Section 3.1 based on the asymptotic analysis given above.

We define the pollution factors for 2 mesh-cell w*

55 =~ A 100% 324
IV EAIE + IV A

and
(m)gp — |||Vz(")(w")|||,¢ 100% 3.95
STV SRR &2

Obviously if £7 is small then p) = €7, We see now that the pollution in w* is
negligible if p&"." and 5.(,': ) are small (more precisely if d:.") —+0as h —0).

According to the asymptotic analysis the effect of the pollution is negligible
asymptotically only when 2a > p. On the other hand when 2a < p the pollution
error is the significant part of the total error (asymptotically) in the interior of the
mesh; in that case the -.fectivity index for any estimator (which is based on local
computations), for elements in the interior of the mesh, converges to zero.

For the example problems given in Section 3.1 we considered interior mesh-cells
wh and we computed the components V™ (w}) and V{™)(wh) of the error ¢, and

their energies |||V,(""(w{,‘)lllf,3, IIIV-,.("')(w.',')|||:g. Let 0, denote a fixed subdomain
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which includes wj} in its interior; we may assume that the mesh 7T, is such that R,
is always exactly covered by the elements which intersect it. We let

Vi)e) =X [sGe), V@)@=Y [o.Ge) (329
o -

Below, for simplicity, we will omit £}, from most appearances of V; , V,. We note
that V; and V, satisfy the following variational problems:

(a) Find V; € H}_(9), and

Bq(V;,v) = ';z‘;. F,(v) Vve Hll-p (3.27a)

TeT,
(b) Find V; € Ht () such that
Bo(Va,v)= Y. F,(v) VveHt (3.270)
rc0-0,

We note that for mesh-cells w} C 9, which are separated by two (or more)
mesh-layers from the boundary of 2, we have

A CHE AN PR A LA A G N (3.28)

Thus, the functions ¥V, and V, are practically the same as V{?(ud), VP (ud),
for all mesh-cells w{ which are separated by two or more mesh-layers from the
boundary of the subdomain €,. Based on the analysis given above we say that
the pollution is significant if the ratio p:.,. is close to 100%. (The pollution-factor

is defined as in (3.24) where V] (Q)| ,> V;(%)|,, may be employed instead of
] (]

V™ (wh), Vi™(uh).) We will refer to "33 as the percentage of pollution in the

mesh-cell w.

We considered a shrinking eight element mesh-cell w} C Q, which consists of
the eight elements in the A-neighborhood of the center z° of the subdomain £,

$a%,h) = {o = (21,2,)| maxlzy = o}l, Iy = a3) <} (329)

(Note that in all the examples below we consider square subdomains ;). We
computed V; and V; in two different ways:
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a. Least-squares fit (smoothing)

Welet V; = u—wand V; = ¢, —V,, where w is the limit function to which
u, converges in the neighborhood of #° as h tends to zero. The function w is
approximated by letting

wie) ™ o+ S(elQlle - o)+l Qie-27),  (3300)

where

Qi(e) = Re(z"), Q(=)=Im(z"), z= =z +iz,, 8 =(z,,2;) (3.300)

and by employing a least-squares fit of the above expression to the values of u, in
§ly to determine the coefficients.
b. Approzimation of V; , V, using a global higher-order approzimation

We can approximate V; , V, by solving directly the residual equations (3.28a)
(resp. (3.28Db)) satisfied by V; (resp. V;) using a finite-element approximation of
degree ¢ > p on the same mesh used to approximate u, (we call this g-degree
approximation an overkill).

In the results below we report the vilues of the pollution factors u %, EZ,‘:, the

effectivity index « 2 and the effectivity index x:%. = for the shrinking

b
Vi li;
eight-element mesh-cell located at the center of the subdomain .

3.2.4.1. Uniform meshes of linear elements.

In Tables 3.8a, 3.8b we give the values of |||V} "l:%" 1V, "I:{,‘ and [ VV; - VY,
the values of the pollution factors ;43: and {:,’., and the effectivity indices K and

n:,g for the two estimators for linear elements (p = 1) and a = § (2a > p). Note

that the pollution factors p:g and E:,,, converge to zero and the effectivity indices
K and x:‘g (for both estimators) converge to one as the mesh-size tends to zero.

Hence for a = ;— there is no pollution for linear elements, asymptotically. In Fig. 3.3

(resp. Fig. 3.4) we show the directional derivatives of the V, - and V; -components
of the error along the s-axis shown in Fig. 3.1a, for A = 0.125 (resp. A = 0.03125).
In this example (and all other examples involving the L-shaped domain) we let
Q = (-1,1) - [0,1] x [-1,0]. Here we let 2, = (0.25,0.75)2. The points of the
graph whick: lie in the interior of the subdomain {2, are between the dotted vertical
lines. Note that the V, -component of the error is practically zero in the interior of
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Table 3.8b. Pollution factors p»% and {.»% and effectivity indices in the shrinking
mesb-cell wA. L-shaped domain shown in Fig. 3.1a, a = § p=1(2a > p). Note that
the pollution factors converges to zero and the effectivity indices L and “’4 converge
to one, asymptotically.

Pollution factors and effectivity indices in wg

Exact solution u(r,0) = r¥ sin( %); linear elements

Shrinking mesh-cell u;} centered at (0.5, 0.5)

.. = C.; < = 8..
w = Melis = MV
h | #a% | &2% | Bffectivity Index | Effectivity Index
2.

I I S R

0.125 | 40.51 | 44.31 | 0.888 0.889 1.04 1.04
0.0625 | 30.96 | 32.56 | 0.931 0.932 1.01 1.01
0.03125 | 23.19 | 23.84 | 0.959 0.959 1.00 1.00
0.015625 | 16.28 | 16.50 | 0.981 0.981 1.00 1.00

62




St\;dy of the Pollution Error @/3)
Singular Solution: ug(r,0)= r Sin(20/3)

0100 3 Iinear Elements, Uniform Mesh (h = 0.125)
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Directional Derivative of the Error
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Figure 3.3. Pollution effect for uniform meshes. Linear clements (p = 1), a = ;,

. . 1
Uniform mesh size A = 3 Directional derivatives of the V,- and V4 -

components of the error along the line 4,4, (shown in Fig. 3.1a). Note
v, Vi |. s
that < '—8;— l in the interior of the subdomain.
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Study of the Pollution Error @
Singular Solution: ug(r,®) = r Sin(20/3)
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Figure 3.4. Pollution effect for uniform meshes. Linear elements (p = 1), a =

components of the error and the ZZ estimators along the s-axis (shown
in Fig. 3.1a). (The extent of the subdomain is indicated by the dotted
vertical lines.) (b) Detail of the graph in Fig. 3.4a for the points lying in

the subdomain. Note that l-?aVT’l < |-881:-| and (0%% - Vu,) s ~ 8—8‘-:-‘-,

asymptotically, in the interior of the subdomain.
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Study of the Pollution Error @)
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the subdomain. In Fig. 3.4b we show the detail of the graph in Fig. 3.4a for the
elements in the interior of the subdomain. Note that the error estimator coincides
with the V] -component of the error in the interior (one layer of elements away
from the boundary) of the subdomain .

In Tables 3.9a, 3.9b, we give the values of |||V, |||U‘., v, |||w.. and [, VV, -VV,,

the values of the pollution factors pwg and ¢% oy and the eﬂ'ectnnty indices « 2 and

U: for the two estimators for linear elements (p = 1) and a = - (2& < p). Note

that the pollution factor u* w converges to 100%, the pollution factor E:‘.' diverges to
infinity and the effectivity index « 4 converges to zero; however the effectivity index
«!, converges to one as the mesh-size tends to zero. In Fig. 3.5 (resp. Fig. 3.6) we

show the directional derivatives of the components of the error along that part of
A;A; which lies over the subdomain, for k = 0.125 (resp. A= 0.03125). Note that
the V; -component of the error converges to zero slower than the V] -component as
the mesh is refined. In Fig. 3.6b we show the detail of the graph in Fig. 3.6a for
elements in the interior of the subdomain. Note that the error estimator coincides
with the V] -component of the error in the interior of the subdomain.

3.2.4.2. Uniform meshes of quadratic elements.

Similarly as in the example 3.1.2 we let  be the trapezoid shown in Fig. 3.1b
with A, = (0, 0), A, = (1, 0), A; = (1, 1), A, = (-1, 1). For the _finition of V; and
V, and the shrinking mesh-cell w} we selected the subdomain ), = (0.375,0.625)2.
In Tables 3.10a, 3.10b we report the values of the components of the error, the
pollution factors and the effectivity indices for quadratic elements (p = 2) and
a= 4 (2a > p). Note that the pollution factors p:? and f:‘g converge to zero
and the effectivity indices ” and x;g for both estimators converge to one as the
mesh-size tends to zero. In Tables 3.11a, 3.11b we give the values of |||V} |I|:g,

V21l and [, VV; - VV,, the values of the pollution factors y:g 2a,nd 533, and
the eﬂ'ectivity indices « ” and x:,,. for quadratic elements and a = 3 Note that

fora = - (2a < p), the pollution factor u* s converges to 100%, the pollution
factor { dxvergw to infinity, the effectivity index « . converges to zero; however
the eﬁ'ectwnty index «’ w converges to one as the mesh-size tends to zero.

In Fig. 3.7a (resp. Flg 3.7b) we show the directional derivatives of the Vj-
and V, - components of the error along that part of the s-axis which lies over the
subdomain 0, of the uniform mesh of quadratic elements for a = 2 and h = 0.0625

(resp. h = 0.03125) as shown in Fig. 3.1b. Note that the V; -component of the error
in the interior of the subdomain converges to zero slower than the V; -component of
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Table 3.9b. Pollution factors p‘?‘., E:,’. and effectivity indices « Y ::L: in the shrinking
mesh-cell w. L-shaped domain shown in Fig. 3.1a, a = %, p =1 (2a < p). Note that
the pollution factor p::,,, converges to 100%, the pollution factor E:‘* diverges to infinity
and effectivity index « .4 converges to zero asymptotically. However the effectivity

index x,"‘. converges to one.

Pollution factors and effectivity indices

Exact solution u(r,0) = r!sin({); linear elements

Shrinking mesh-cell w} centered at (0.5, 0.5)

En En
L/ -,
R“'s - "lehmwg "”3 - "l,:

h “w.?% Y Effectivity Index | Effectivity Index

Z2Z ER ' 22 ER
A R || g

0.125 | 97.12 | 408.0 | 0.235 0.237 1.04 1.03
0.0625 | 97.81 | 470.7 | 0.203 0.204 1.01 1.01
0.03125 | 98.45 | 561.7 | 0.172 0.172 1.00 1.00
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Study of the Pollution Error /9
Singular Solution: ug(r.0)= r Sin(0/3)
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Figure 3.5. Pollution effect for uniform meshes. Linear elements (p = 1), a = %,
. . 1 e s
Uniform mesh size A = —. Directional derivatives of the V- and V,-

8
components of the error and the ZZ estimator in the subdomain along the

s-axis shown in Fig. 3.1a. Note that |%Y‘l ~ I%‘-:!- and (032 — Vu,)-s

& —a;!-, asymptotically, in the interior of the subdomain.
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Study of the Pollution Error /)
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Figure 3.6. Pollution effect for uniform meshes. Linear elements (p = 1), a = l,

(2]

Uniform mesh-size h = 3% (a) Directional derivatives of the V, - and V-
components and the ZZ estimator in the subdomain along the s-axis in
Fig. 3.1a. (b) Detail of the graph in Fig. 3.6a for elements in the interior

. AN LA 22 L
of the subdomain. Note that |—8T > IT and (o Vu,) s = e’

asymptotically, in the interior of the subdomain.

70




Directional Derivative of the Error

Study of the Pollution Error
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Figure 3.6. (continued)
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Table 8.10b. Pollution factors X, , ¢%, and effectivity indices «_,, ', in the shrinking
wp’ V3 wp? T

mesh-cell w}. Convex domain shown in Fig. 3.1b, a = %, P = 2 (2a > p). Note that

the pollution factors decreases and the effectivity indices x 2 and ".’.«g converge to one
asymptotically.

Pollution factors and effectivity indices

Uniform mesh; Shrinking mesh-cell centered at (0.5, 0.5)

Exact solution u(r,0) = r} sin(¥); quadratic elements

Shrinking mesh-cell w} centered at (0.5, 0.5)

.= o=
« = Wty « = iy
h Ba% | Ea% . > . 0
"' Effectivity Index Effectivity Index
74 R 2z ER
wA | wd w3
0.125 5.35 | 5.36 1.014 0.999 1.013 0.998
0.0625 | 749 | 7.50 1.010 0.999 1.007 0.997
0.03125 | 14.61 | 14.69 1.009 1.00 0.988 0.997
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Study of the Pollution Error L)
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Figure 3.7. Pollution effect for uniform meshes. Quadratic elements p = 2, a =

(2) Uniform mesh-size h = 31—2 (b) Uniform mesh-size h = R Directional

derivatives of the V| - and V,-components of the error and the ZZ error

estimator in the subdomain along the s-axis shown in Fig. 3.1b. Note that

ivl > |-8-‘i and (022 —Vu,)-s =~ %VT‘, asymptotically, in the interior

of the subdomain.
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Study of the Pollution Error s
Singular Solution: ug(r.0) = r Sin(20/3)
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Figure 3.7. (continued)
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Table 3.11b. Pollution factors ”:3’ E:# and effectivity indices LY ".'4 in the shrinking
mesh-cell w). Convex domain shown in Fig. 3.1b, a = -2-, p =2 (2a < p). Note that the
pollution factor p:,'. converges to 100%, the pollution factor f:,'. diverges to infinity, and

effectivity index « .4 converges to zero asymptotically. However the effectivity index
n'“c converges to one.

Pollution factors and effectivity indices

Uniform mesh; Shrinking mesh-cell centered at (0.5, 0.5)

Exact solution u(r,0) = r! sin(¥); quadratic elements

Shrinking mesh-cell w} centered at (0.5, 0.5)

€ o E

% = Moy o = My

h 1 upa% )| &a% | Effectivity Index Effectivity Index
ZZ R 22 ER

K Kb K3 KL

0.125 | 83.86 | 153.97 | 0.560 0.538 1.03 0.998
0.0625 ) 92.85 | 250.16 0.376 0.367 1.01 0.993
0.03125 | 96.86 | 390.38 | 0.245 0.240 0.995 0.993
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the error as the mesh is refined. Also, note that the error estimator closely follows
the V, -component of the error in the interior of the subdomain .

3.2.4.8. Uniform meshes of cubic elements.

Similarly as the example 3.1.3 we let Q be the triangular domain of Fig. 3.1c
with A, = (0, 0), A, = (0, 1), A; = (cos 75°,sin 75°) and selected a subdomain
§}y as a parallelogram with vertices at (0.33, 0.24), (0.45, 0.24), (0.48, 0.36), (0.36,
0.36). In Fig. 3.8a (resp. Fig. 3.8b) we show the directional derivatives of the
Vi - and V, - components of the error along the s-axis, as shown in Fig. 3.1c. We
considered a uniform mesh of cubic elements for a = g (2a < p) and h = 0.03125

(resp. A = 0.0078125). Note that the V, -component of the error converges to zero
slower than the V; -component as the mesh size tends to zero. Also note that the
error estimator closely follows the V; -component of the error.

Remark 3.4. For uniform meshes both norm |||V} "L,g and [||V, |||w: converge to
zero as the mesh-size tends to zero. When 2a > p (resp. 2a < p) |||V,|||wg

Hva il
converges to zero at a faster (resp. slower) rate that |||V} |||w:. When m-‘;—"T"-’i —_
1 g

0 (resp. oo0) we have no pollution (resp. we have pollution), asymptotically.

Remark 3.5. The values of the V; - and V, -components of the error obtained using
the overkill are more accurate than the values obtained by employing the least-
squares fit over the subdomain. Nevertheless, for mesh-cells near the center of the
subdomain the values of the V] - and V, -functions computed by both methodologies
are practically the same.

3.3 Summary of the results for the pollution-effect in uni-
form meshes

In summary we observe that the results agree with the predictions of the
asymptotic analysis, namely:

(1). For 2a > p, the pollution factors in the shrinking mesh-cell converge to zero
and the effectivity indices x ot x» for both estimators converge to one as
(]

the mesh-size tends to zero.

(ii). For 2a < p, the percentage of pollution p:,,. in the shrinking mesh-cell con-

verges to 100%, the pollution-factor {Z:,). diverges to infinity and the effectivity
index N for both estimators converges to zero. On the other hand the ef-
fectivity index ".'.,g converges to one.
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Figure 3.8. Pollution effect for uniform meshes: Cubic element (p = 3), a = 9-

Directional derivatives of the V; - and V, -components of the error along

(]

the s-axis shown in Fig. 3.1c. (a) Uniform mesh size h = 3— (b) Uniform

meshnzeh=a Note that 8V,|> | and (0%% — Vu,)- c~%,

asymptotically, in the interior of the _lnbdomun
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Figure 3.8. (continued)
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(iii). The pollution-effect in uniform meshes becomes more severe as the degree of
the elements is increased. This can be clearly seen by comparing the graphs
in Figs. 3.8b, 3.9b, 3.10b, where the difference petween the derivatives of
the V; - and V; -components of the error in the interior of the subdomain ,
increases with the polynomial degree of the elements.
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4 Control of the pollution-effect uring adaptive
grids
In this Section we will give numerical examples which demonstrate that when

the mesh is globally adaptive (i.e. nearly equilibrated in the energy-norm), the
pollution is controlled.

4.1 The h-adaptive scheme

Here we summarize the h-adaptive scheme (see also [67], [68]) which was
employed to construct the adaptive meshes in the numerical examples below.

Given a tolerance 6 for the relative error in the global energy-norm,
1. Choose an initial discretization of the domain TP ; let T, = T}.

2. For the mesh T}, compute the corresponding finite element solution u, and
obtain an estimate 1, of the energy-norm of the error in element 7,

| N
X;'# < Slflupllla (4.1)

stop; otherwise proceed to the next step. Here N denotes the number of
elements in the mesh T,.

3. Check for convergence. If

4. Compute the target error e,,,,,, for the optimal mesh (using the principle of
equidistribution of error) namely

§l{|u
etwrget = l"\/;_vl-l In (4.2)

5. For each element 7, predict the optimal local mesh-size from the formula

h
N, \*

etcrget

opt _
AP =

(4.3)

Here A% is the predicted optimal mesh-size for the subdomain within the el-
ement 7, r is an exponent which depends on the order p of the approximation
and the regularity of the solution.
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6. Construct a smooth representation of the predicted optimal mesh-size over
the mesh T, which now becomes the background grid (see [67]) and use it to
define the mesh-size function k :  — R*.

7. Use either h-refinement or h-remeshing to construct a new grid T;*" with
minimal number of elements N, such that k, < h(z), 2z € 7,V r € T*".

4.2 Assessment of the pollution-effect for adaptive grids

We considered the mixed boundary value problem for the Laplace equation and
applied boundary conditions consistent with the exact solution u(r,8) = r4 sin( %0)
over the square-slit domain ) = (—1,1) — [0,1] x {0} shown with thick black
perigram in Fig. 4.1a. (Note that in this case a = 1 and the singularity is very

strong.) We constructed nearly equilibrated meshes of linear, quadratic and cubic
elements using adaptive refinement and remeshing and we studied the effect of the
pollution for interior mesh-cells.

4.2.1 Nearly equilibrated grids of linear elements

In Fig. 4.1a and Fig. 4.1c we show the adaptive grids of linear elements (p = 1)
generated using refinement and remeshing, respectively (a tolerance of 0.5% for
the global relative error in the energy-norm was employed). In Fig. 4.2 (resp.
Fig. 4.3) we show the graph of the values of the energy-norms of the error in the
elements for the mesh shown in Fig. 4.1a (resp. 4.1c) (The elements have been
numbered according to their distance from the singular point and two rings of
elements around the singularity have been excluded from the graph). The values
of the effectivity index for the mesh-cells (which are shown shaded gray in the
Figures) are reported in Table 4.1 for the mesh shown in Fig. 4.1a and Table 4.2
shown in Fig. 4.1c. These values are ~ompared with the pollution-free values of the
' effectivity index, &, for the mesh-celis. The pollution-free value of the effectivity
index in each mesh-cell was obtained from a pollution-free finite element solution
of the boundary value problem in the domain 2, using the same mesh, with data
obtained from the (p+1) degree Taylor series expansion of the exact solution about
the center X of each mesh-cell. Note that the computed values of the effectivity
index are very close to the corresponding pollution-free values in all the interior
mesh-cells.

For the mesh shown in Fig. 4.1c we also computed the effectivity index for the
mesh-layers, which are shown in Figs. 4.4a, 4.4b. We excluded the last mesh-layer
of elements adjacent to the singular point and numbered the layers inward from
the boundary as shown in Fig. 4.4b. In Table 4.3 we give the computed effectivity
indices and pollution-free value of the effectivity index for each mesh-layer. The
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(a)

Figure 4.1. (a) A finite-element grid of linear elements constructed over the slit-domain
using adaptive refinement and a tolerance of 0.5% for the global relative
error in the energy-norm; (b) Detail of the finite-element mesh shown in
Fig. 4.1a near the singular point with the mesh-cell w%, shown shaded
gray; (c) A finite-element grid of linear elements constructed over the slit-
domain using adaptive remeshing and a tolerance of 0.5% for the global

relative error in the energy-norm.
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" Figure 4.1. (continued)

(b)
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Figure 4.2. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.1a.
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Figure 4.3. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.1c.
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Table 4.1. Control of the pollution-effect using adaptive grids. Adaptive grid of
linear elements generated over the slit-domain using refinement (tolerance = 0.5%, H*-
error control). Comparison of the effectivity index, K in the H'-norm, computed
with respect to the exact solution with the corresponding values of the pollution-free
effectivity index Rops for the ZZ estimator and the element-residual (ER) estimator in
the mesh-cells w}, , w, and wk, (which consist of the elements connected to the nodes
Xy, X; and Xs shown in Fig. 4.1a).

Adaptive grid using refinement, H'-error control, linear elements

Effectivity index in the H'-norm

Mesh-cell w}, Mesh-cell wk, Mesh-cell w},

%2Z | xER 2Z | x22 | xER 2Z | g2Z | xER

K
U‘i’ U}l U&j Xy w&, u}z w&z X3 w&; “’i’, w}a X3

0.98 | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 0.96 | 0.98 | 1.00 | 1.00 | 0.99 | 0.99




Table 4.2. Control of the pollution-effect using adaptive grids. Adaptive grid of
linear elements generated over the slit-domain using remeshing (tolerance = 0.5%,
H*-error norm equidistribution). Comparison of the effectivity index x 4 iD the H'-
norm, computed with respect to the exact solution with the corresponding value of the
pollution-free effectivity index T:w; , for the ZZ estimator and the element-residual (ER)
estimator in the mesh-cells w}, , w}, and w}, (which consist of the elements connected
to the nodes X;, X; and X; shown in Fig. 4.1c).

Adaptive grid using remeshing, H'-error control, linear elements

Effectivity index in the H'-norm

Mesh-cell wk Mesh-cell w%

Mesh-cell w},

zZZ =22 ER zZ2Z ER =ER
K K [ K 3 K K K
Ay | o, | Bk, | Rk, | Rk, | Rk, | Rk, | ok, | Sk, | Rk, | oA, | R,

0.95 | 0.95 | 0.93 | 0.94 | 0.92 | 0.94 | 0.91 | 0.93 | 0.94 | 0.96 | 0.93 | 0.95
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()

Figure 4.4. (a) The adaptive finite element mesh in Fig. 4.1a in which we indicate
the mesh-layers for which we computed the effectivity index; (b) Detail of
the finite-element mesh showing the mesh layer near the singular point; (c)
Detail of the mesh near the singular point. This is the same mesh, shown
in Fig. 4.4a and 4.4b, with two rings of elements around the singular point
removed. This mesh was used in the computation of a pollution-free finite

element solution.




(b)

()

Figure 4.4 (continued)
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Table 4.3. Control of the pollution-effect using adaptive grids. Adaptive grid of linear
elements shown in Fig. 4.4. Effectivity index for element-residual and ZZ estimators
for each mesh-layer w, in the interior of the mesh. Note that the effectivity index «,,_
computed with respect to the exact solution is very close to the pollution-free values
K, for all the layers in the interior of the mesh.

Adaptive grid using refinement,
H'-error control, linear elements

Effectivity index in each mesh layer

Effectivity Index

Layer

mmber|agz | REE| eER | RER
1 0.954 0.994 0.974 | 0.996
2 0.996 0.998 0.992 | 0.997
3 0.992 10.992 0.979 | 0.992
4 0.974 0.975 0971 | 0.974
5 0.971 0.971 0.968 | 0.971
6 0.861 0.970 0.858 | 0.970
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pollution-free values for the mesh-layers were obtained by solving the boundary
value problem over the domain €, which excludes two rings of elements around
the singular point as shown in Fig. 4.4c. Note that the values of the effectivity
index for the mesh-layers w, are very close to the corresponding pollution-free
values of the effectivity index.

4.2.2 Nearly equilibrated grids of quadratic elements

In Fig. 4.5 we show a grid of quadratic elements (p = 2) which was generated
using adaptive refinement and equidistribution of the energy-norm of the error
for a tolerance of 0.1%. In Fig. 4.6 we show the energy-norm of the error in
the elements for the mesh shown in Fig. 4.5. (The elements have been numbered
according to their distance from the singular point and two rings of elements around
the singularity have been excluded from the graph.) In Table 4.4 (resp. Table 4.5)
we compare the effectivity index of the estimators in the shaded mesh-cells (resp.
mesh-layers) with the pollution-free values of the effectivity index in the mesh-cells
(resp. mesh-layers). Note that the values of the effectivity index for the mesh-cells
and the mesh-layers are very close to the corresponding pollution-free values of the
effectivity index.

4.2.3 Nearly equilibrated grids of cubic elements

In Fig. 4.7a we give a grid of cubic elements (p = 3) which was constructed
using adaptive refinement and equidistribution of the energy-norm of the error for a
tolerance of 0.05%. In Fig. 4.8 we show the energy-norm of the error in the elements
for the mesh shown in Fig. 4.7. (The elements have been numbered according to
their distance from the singularity and the first two rings of elements around the
singular point have been excluded from the graph.) In Table 4.6 (resp. Table 4.7)
we compare the effectivity index of the estimators in the shaded mesh-cells (resp.
mesh-layers) with the pollution-free values. Note that the values of the effectivity
index for the mesh-cells and the mesh-layers are very close to the corresponding
pollution-free values of the effectivity index.

4.3 Summary of the results for the pollution-effect in
adaptive grids

In summary, we observe that when the mesh is nearly equilibrated in the

energy-norm, the pollution in the energy-norm is negligible and the values of the

effectivity index are, for all practical purposes, the same as the pollution-free values
for any estimator.
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X2

Figure 4.5. A finite-element grid of quadratic elements constructed over the slit-domain
using adaptive refinement and a tolerance of 0.1% for the global relative

error in the energy-norm.
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Figure 4.6. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.5.
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Table 4.4. Control of the pollution-effect using adaptive grids. Adaptive grid of
quadratic elements generated over the slit-domain using refinement (tolerance = 0.1%,

H'-error norm equidistribution). Comparison of the effectivity index x », computed

with respect to the exact solution with the the corresponding values of the pollution-

free effectivity index & a, for the ZZ estimator and the element-residual (ER) estimator,

in the mesh-cells w} , wk, and wk, (which consist of the elements connected to the

nodes X;, X; and X; shown in Fig. 4.5).

Adaptive grid using refinement, H'-error control, quadratic elements

Effectivity index x_ in the H'-norm

Mesh-cell w}, Mesh-cell w}, Mesh-cell w},
ZZ =ZZ ER =ER Z2Z =22 ER =FER z2Z =22 ER =ER
Bk, | By | Mok, | Sk, | Bk, | R, | R | R, | Rk, ] Reh, | R, | R,
1.01 1.00 1 097 | 0.99 | 091 | 0.97 | 0.90 | 0.97 1.00 1.00 | 0.99 | 1.00
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Table 4.5. Control of the pollution-effect using adaptive grids. Adaptive grid of
quadratic elements shown in Fig. 4.5. Effectivity index for element-residual and ZZ
estimators for each mesh-layer in the interior of the mesh. Note that the effectivity

index x,,, computed with respect to the exact solution is very close to the pollution-free
values &, for all the layers in the interior of the mesh.

Adaptive grid using refinement,
H'-error control, quadratic elements

Effectivity index in each mesh layer

Layer Effectivity Index
mmber | k22| REF | WP | R
1 0.954 0.994 0.974 | 0.996
2 0.996 0.998 0.992 | 0.997
3 0.992 0.992 0.979 | 0.992
4 0.974 0.975 0971 | 0.974
5 0.971 0.971 0.968 | 0.971
6 0.861 0.970 0.858 | 0.970
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X1 X

(2)

Figure 4.7. (a) A finite-element grid of cubic elements constructed over the slit-domain
using adaptive refinement and a tolerance of 0.04% for the global relative
error in the energy-norm; (b) Detail of the finite-element mesh shown in
Fig. 4.7a near the singular point with the mesh-cell wk,-
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X2

Figure 4.7. (continued)

(b)
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Figure 4.8. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.7.
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Table 4.6. Control of the pollution-effect using adaptive grids. Adaptive grid of
cubic elements generated over the slit-domain using refinement (tolerance = 0.05%,
H*-error norm equidistribution). Comparison of the effectivity index x s, computed
with respect to the exact solution, with the corresponding values of the pollution-free
effectivity index & ., for the ZZ estimator the element-residual (ER) estimator, in the
mesh-cells w}, , w}, and wk, (which consist of the elements connected to the nodes
X), X3 and Xj; shown in Fig. 4.7a).

Adaptive grid using refinement, H'-error control, cubic elements

Effectivity index x_, in the H'-norm

Mesh-cell W%, Mesh-cell w}, Mesh-cell w},

ZZ ER | #ER zZZ =22 ER | zER 22 =22 ER | =ER
K K K K K K K K K
U}, X3 w&, w}, w&: w&g X3 X3 w}g w&g “")'r, w&a

0.98 | 0.99 | 0.96 | 0.98 | 0.86 | 0.94 | 0.84 | 0.93 | 0.99 | 0.99 | 0.97 | 0.99
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Table 4.7. Control of the pollution-effect using adaptive grids. Adaptive grid of cubic
elements shown in Fig. 4.7a. Effectivity index for element-residual and ZZ estimators
for each mesh-layer in the interior of the mesh. Note that the effectivity index x_,
computed with respect to the exact solution is very close to the pollution-free values
k., for all the layers in the interior of the mesh.

Adaptive grid using refinement,
H!'-error control, cubic elements

Effectivity index in each mesh layer

Layer Effectivity Index
mumber | 2z | #2EF | kER | RER
1 0.952 0.990 0.950 0.986
2 0.991 0.993 0.992 | 0.997
3 0.976 0.982 0.975 0.980
4 0.922 0.925 0.921 0.924
5 0.898 0.901 0.896 | 0.901
6 0.862 0.900 0.858 0.900
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5 Pollution-effect for meshes refined locally in
the interior

As discussed in the Introduction it is a common practice in engineering compu-
tations to refine the mesh locally, only in local regions of interest. In this Section
we give numerical evidence which shows that: Local refinements in a subdomain
of interest in the interior of the mesh (where the solution is smooth) do not lead
to higher local accuracy unless the mesh is also properly refined in the rest of the
domain. In particular we demonstrate that if the singular points are not refined
and the mesh is refined locally in an interior subdomain )

a. The finite element solution in the interior of the subdomain converges to
a function which satisfies the differential equation (i.e. it is harmonic) but
may be very different from the exact solution of the boundary value problem
(i.e. the finite element solution converges to a wrong solution in the interior
of the subdomain).

b. The V, -component of the error converges to zero in the interior of the sub-
domain while the V,-component remains practically constant. The error
estimators estimate only the V] -component of the error in the interior of the
subdomain and if |||V; lllo, > ||V} lllq, severe underestimation of the error
may occur in the interior of the subdomain.

5.1 Convergence of the approximate solution in the inte-
rior of the subdomain

We first present a simple numerical example to demonstrate that when the

mesh is refined locally in an interior subdomain only, as shown for example in

Fig. 5.1, the finite element solution converges to a wrong solution in the interior of
the subdomain.

We considered the mixed boundary-value problem for the Laplacian in the
L-shaped domain with exact solution u(r,8) = r$ sin (g) The boundary-value
problem was solved using the mesh shown in Fig. 5.1 where the domain was meshed
by a coarse uniform grid (with mesh-size ho = Z) and the subdomain is subdivided

uniformly five times (the mesh-size in the subdomain & = % ho), and elements

of degree p (p = 1, 2 and 3). From the finite element solution we approximated
the function w := u — V, in the subdomain and the exact solution u by their local
Taylor-series expansions about the center of the subdomain z = (z3, z9), namely
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= - L0 0 0
w(z,,2;) & ag+ Ezaz' QY (z, — 23,2, — 23)
=1 ¢=1

u(z,,2;) & By + '-2“ z’: ﬁf”Qﬁ"(zx - 32, T3 — 3'3)

=1 {=1

where Q{Y), ¢ = 1,2 denotes the harmonic monomials of degree ¢; g, is the
maximum degree employed in the harmonic Taylor-series expansions (below we let
Omax = 4); 2° = (0.375, 0.375) is the center of the subdomain.

In Table 5.1 we report the S-coefficients of the local Taylor-series expansion of
the exact solution u and the corresponding a-coefficients of the local Taylor-series
expansion of the limit function w for p = 1, 2 and 3. Note that the coefficients of
the limit-function w are very different from the coefficients of the exact solution u.
Hence if the mesh is refined only in an interior subdomain and the mesh outside the
subdomain is kept fixed the finite element solution converges to a wrong solution
in the interior of the subdomain.

5.2 Asymptotics of the error in the interior of a locally
refined subdomain

Here we study the asymptotics of the components V; (£;) and .V, () of the
error in the interior of a subdomain ), as the mesh in the subdomain is successively
refined while the mesh outside the subdomain remains fixed.

5.2.1 Locally refined meshes of linear elements

5.2.1.1. Smooth solutions

We solved the boundary-value problem for the Laplace equation in the domain
Q! = (0,1)* and employed boundary-conditions consistent with the smooth har-
monic solution u(z,,z,) = Asinxz,sinhxz,. In Figure 5.2 we show the domain

) meshed with a coarse uniform grid with mesh-size ky = % and the subdomain

Q, := (0.375,0.625)* meshed with a finer grid with mesh-size h = glz- We con-

sidered linear elements (p = 1) and different mesh-sizes in the subdomain shown
in Fig. 5.2. In Tables 5.2a, 5.2b we give the values of the components |||V} |||:‘.,

LA ||||:3 and / “QVV, -VV, of the energy-norm of the error, the values of the pol-

. % % soel e ’ . ys
lution factors p - and ¢ o and the effectivity indices L and x ” for the shrinking

eight-element mesh-cell w¢ at the center of the subdomain. Note that, as the mesh-
size in the subdomain tends to zero, the pollution factor pt: converges to 100%,
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Figure 5.1. Pollution-effect for meshes refined locally in an interior subdomain. The L-
shaped domain meshed with a coarse uniform grid with mesh-size k, = % h.
The mesh has been divided uniformly four times in an interior subdomain

Q, (the mesh size in subdomain is k = %) .
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Table 5.1. Pollution-effect for meshes refined locally in an interior subdomain. Coeffi-
cients of the local Taylor series expansions of the exact solution u and the limit function
w about the center of the subdomain €, := (0.5,0.75)2. L-shaped domain shown in
Fig. 5.1, exact solution u(r,8) = rd sin -;-, mesh-size in the subdomain A = % Note
that the B-coefficients of the local Taylor series expansion of u are very different from

the a-coefficients of the local Taylor series expansion of the limit function w.

Coefficients of the Taylor series expansion
Exact solution u(r,8) = r¥sin 10
Uniform refinements in the subdomain only
Exact Solution u Limit Function w
Coeff. 8 Coeff. a| p=1 | p=2 | p=3
Bo 0.2306 o, | 0.1304 | 0.1655 | 0.2016
{1) -0.2099 of? | -0.1224 | -0.1798 | -0.1953
s 0.3637 oV | 03103 | 0.3115 | 0.3311
s 0.1912 al® | 0.1160 [ 0.1095 | 0.1458
gY 01025 | o |-0.1729 | -0.1834 | -0.1196
() -0.1347 af® | -0.1324 | -0.2097 | -0.1162
g 0.0777 a® | 0.0056 | 0.0070 | 0.0128
s 0.0379 ol | 0.1422 | 0.1337 | 0.0429
oyl 0.5666 of¥ | 0.2249 | 0.8150 | 0.3909
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the pollution factor f:‘# diverges to infinity, the effectivity index «_s converges to
gero and the effectivity-index xL: converges to one.

In Fig. 5.3a (resp. Fig. 5.3b) we give the graph of the directional derivative

of the V] - and V, -components of the ercor in the subdomain shown in Fig. 5.2

when the mesh-size in the subdomain is k = L (resp. h = —1-—) Note that the

directional derivative of the V; -component of the error is very large relative to the
directional derivative of the V, -component of the error. As the mesh-size in the
subdomain is reduced the V] -component of the error converges to zero while the
V, -component remains practically constant.

5.2.1.2. Singular solutions

Next we solved the mixed boundary problem for the Laplace equation and
considered the singular solution u(r,0) = r# sin( 50) for linear elements (p = 1)
and different mesh-sizes in the subdomain shown in Fig. 5.1. In Tables 5.3a,
5.3b we give the values of |||V} III:‘., A ”If': and /U“VV, - VV,, the values of

the pollution factors p:,. and Ez., and the effectivity indices x_, and x:% for the
. . . o . ° .
shrinking eight-element mesh-cell at the center of the subdomain, as the mesh-size
in the subdomain tends to zero. Note that, as the mesh-size in the subdomain
tends to zero, the pollution factor ”33 converges to 100%, the pollution factor 63:
diverges to infinity for a larger mesh-size in the subdomain than in the case of the
smooth solution, the effectivity index « ” for both estimators converges to zero
and the effectivity index x;g converges to one. )

We also considered the exact solution u(r,8) = r} sin(%ﬂ). In Fig. 5.4 we give
the graphs of the directional derivative of the V] - and V, -components of the error
in the subdomain shown in Fig. 5.1, along the s-axis shown in Fig. 3.1a, obtained
by .employing an overkill with p = 3, when the mesh-size in the subdomain is

h = — hy. In Fig. 5.5 we show the detail in the interior of the subdomain for the

graphs in Fig. 5.4. Note that the directional derivative of the V, -component of
the error is very large relative to the directional derivative of the V, -component
of the error in the subdomain. Also note that the error estimator coincides with
the V] -component of the error in the interior of the subdomain. In Fig. 5.6 we
plot the directional derivative of the V] - and V, -components of the error along
the s-axis shown in Fig. 3.1a when the mesh-size in the subdomain is reduced to

h = EIZ hy. As the mesh-size in the subdomain is reduced the V; -component of

the error converges to zero in the subdomain while the V, -component of the error
remains practically constant.
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Figure 5.2. Pollution-effect for meshes refined locally in an interior subdomain. The
unit-square domain meshed with a coarse uniform grid with mesh size kg =

l. The mesh has been divided uniformly five times in an interior subdomain

. . 1
Q, ( the mesh-size in the subdomain is k = 2_";6) .
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Table 5.2b. Pollution-effect for meshes refined locally in an interior subdomain.
Pollution factors p:,,. and (:, and effectivity indices in the shrinking mesh-cell w.
Square domain shown in Fig. 5.2, smooth solution u(z,,z,) = Asinxz,sinhxz,, A=
103, p = 1. Note that the pollution factor pts ocnverges to 100%, the pollution factor
E:‘. diverges to infinity and the effectivity index K, converges to zero asymptotically;

however the effectivity index KLG converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in w}

Exact solution u(z,,z.) = Asinxz,sinhxz,; linear elements

Shrinking mesh-cell w} centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

E En
— -, ? — o,
"w.? - |“°u|",n "«'3 - "Lh
% | En% . s g .. °
h Ko o Effectivity Index Effectivity Index
R V41 ER
i | oeaE | wf <
0.015625 | 73.28 | 107.69 | 0.412 0.412 1.001 1.001
0.0078125 | 90.76 | 216.22 | 0.343 0.343 1.001 1.001
0.00390625 | 97.43 |} 432.83 | 0.250 0.250 1.000 1.000
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Figure 5.3, Pollution-effect for meshes refined locally in ap interior subdomain. Lipear
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Study of the Pollution Error

2.0E-4 - Smooth Solution: ug(x;.xe) = A Sinnx,Sinhnx;
Linear Elements, Uhiform Refinements in Subdomain Only
Mesh Size in Subdomain = 0.00390625
Mesh Size in Rest of the Domain = 0.125
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Figure 5.3. (continued)
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Table 5.8b. Pollution-effect for meshes refined locally in an interior subdomaiu.
Pollution-factors pwg% and %% and effectivity indices in shrinking mesh-cell wg. L-
shaped domain shown in Fig. 5.1a, a = g, p = 1. Note that the pollution factor
p‘?‘. converges to 100%, the pollution factor (} diverges to infinity, and the effectivity

index x,3 converges to zero. However, the effectivity index ":4‘ converges to one.

Pollution factors and effectivity indices

Shrinking mesh-cell centered at (0.5, 0.5)
Exact solution u(r,0) = risin(2); linear elements

Uniform mesh-refinement in the subdomain only

Mesh-size in the rest of the domain A = 0.125

. = £ o =
we m‘u'“,: w "“lm.g

h #a% | €a% | Effectivity Index | Effectivity Index
Y44 ER ZZ ER
I B S B S

0.0625 61.15 | 82.93 0.722 0.722 | 0.979 | 0.979
0.03125 | 84.62 | 174.29 0.482 0482 | 0.992 | 0.992
0.015625 | 95.79 | 357.14 0.268 0.268 | 1.000 | 1.000
0.0078125 | 98.88 | 714.98 0.138 0.138 | 1.000 | 1.000
0.00390625 | 99.70 | 1441.76 | 0.069 0.069 1.000 | 1.000
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Study of the Pollution Error /9
Singular Solution: uﬂ(r.e) = r Sin(0/3)
Linear Elements, Uniform Refinements in Subdomain Only

0.002 4 Mesh Size in Subdomain = 0.0078125

. § Mesh Size in Rest of the Domain = (125

o : [} :“I
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& 1 it

o 0000 1
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° 1 A
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-2 3 6 '|
) 1.

« 1
2 i

o 0.004 ]
R
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g ER : V, E F Overkill 3
0 3 : -_— rror From Overki =
£-0.0063 1 ;.1 cesee V; Error From Overkill 2; = 3;
o 14 e
a 1 i

N L I
_.01008-l { l"ll'll'llllllrf'lrtirlll'Tllllllll]
0.35 0.50 0.85 0.80 0.95

Arc Length Coordinates Along S—Axis

Figure 5.4. Pollution-effect for meshes refined locally in an interior subdomain. Linear
elements (p = 1), a = ;—, L-shaped domain shown in Fig. 5.1. Uniform

mesh size in the subdomain A = T;'i‘ Directional derivatives of the V-

and V, -components of the error obtained from the overkill. Note that
v, LA - LA . . < als
Be > I-—a-‘-l and (0%% - Vu,)-s = Ba asymptotically, in the interior
of the subdomain.
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Study of the Pollution Error (

Singular Solution: ug(r.0) = r'"® sin(6/3)

Linear Elements, Uniform Refinements in Subdomain Only
0.002 Mesh Size in Subdomain = 0.0078125

Mesh Size in Rest of the Domain = 0.125

0.000 LAANERAAAARAARAAAAAN \\‘l‘nh\\\\\i\k‘
' ”Y\"‘HHHHH!1\nn» AR,

-0.002

-0.004 3
——— V, Error From Overkill (p = 3)
~0.006 3 eeeeo V, Error From Overkill (p = 3)
e+ V; Error From Smoothing (p = 6)
eeesee V, Error From Smoothing (p = 6)

Direclional Derivalive of the Error

------ ZZ Error Estimator

-0.008
0.35 0.50 0.65 0.80 0.95
Arc Length Coordinates Along S-Axis

Figure 5.5. Pollution-effect for meshes refined locally in an interior subdomain. Linear
elements (p = 1), a = %, L-shaped domain shown in Fig. 5.1. Uniform

mesh size in the subdomain A = 28 Directional derivatives of the V - and
V, -components of the error and the ZZ error estimator in the subdomain
),. Comparison between the values obtained from smoothing and overkill.
Note that the directional derivativesof V; and V, obtained from smoothing
and overkill coincide exactly and (%% — Vu,)-s = % in the interior of
the subdomain.
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Study of the Pollution Error a/m

Singular Solution: ug(r.®) = r Sin(0/3) )
Linear Elements, Uniform Refinements in Subdomain Only
Mesh Size in Subdomain = 0.00390825

Mesh Size in Rest of the Domain = 0.125

—— V, Error From Overkill (p
sesee V, Error From Overkill (p

e++es V; Error From Smoothing ip
eswes V; Error From Smoothing (p
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Figure 5.6. Pollution effect for grids refined locally in an interior subdomain. Linear

1
elements (p = 1), a = 3 L-shaped domain shown in Fig. 5.1, Uniform

mesh size in the subdomain k = -1— Directional derivatives of the V-

AN

and V; -components of the error. Note that s > . asymptotically,
s

in the interior of the subdomain.

117




5.2.2 Locally refined meshes of quadratic elements

5.2.2.1. Smooth solution

We considered the same boundary-value problem as in Section 5.2.1.1 with the
smooth harmonic solution u(z,,z,) = Asinxz, sinh xz, and employed meshes of
quadratic elements (p = 2) with various mesh-sizes in the subdomain shown in
Fig. 5.2. In Table 5.4a, 5.4b we report the values of the pollution factors and the
effectivity indices for dxifuent mesh-sizes in the subdomain. Once again we note
that the pollution-factor pw: converges to 100%, the pollution factor {& diverges

to infinity and the effectivity index K. converges to zero as the mesh-size in the
subdomain tends to zero.
5.2.2.2. Singular solutions

We solved the mixed boundary value problem for the Laplamm with boundary-
conditions consistent with the exact solution u(r,8) = rt am(—0) fand employed

meshes of quadratic elements (p = 2) with various mesh—snzes in the subdomain
shown in Fig. 5.7. In Tables 5.5a, 5.5b we give the values of |||V, lllw., v, Hlu.

and / VV, - VV,, the values of the pollution factors u% o and ¢% Y and effectivity

mdnoes "-'3 and «/, in the shrinking eight-element mesh-cell at the center of the
subdomain, as the mesh-size in the subdomain tends to zero. Again, we note
that the percentage of pollution in the shrinking mesh-cell at the center of the
subdomain converges to 100%, the pollution factor {3: diverges to infinity, the
effectivity index « 2 for both estimators converges to zero and the effectivity index
".» converges to one. Also note that compared with the results in Table 5.2, we
see that the pollution-effect is stronger for larger values of the mesh-size in the
subdomain.

We also considered the exact solution u(r,8) = r# .1n(§e) In Fig. 5.8a (resp.
Fig. 5.8b) we show the graph of the directional derivative of the V,- and V,-
components of the error in the subdomain shown in Fig. 5.7, along the s-axis shown

in Fig. 3.1b, where the mesh-size in the subdomain is h = 2 (resp. h = —

Note that the directional derivative V, -component is significantly greater than t
directional derivative V] -component of the error in the interior of the subdomain.
Further note that as the mesh-size in the subdomain is reduced, the V; -component
of the error converges to zero while the V, -component remains constant. Also note
that the error estimator coincides with the V, -component of the error.
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Table 5.4b. Pollution-effect for meshes refined locally in an interior subdomain.
Pollution factors y:: and (:: and effectivity indices in the shrinking mesh-cell wj.
Square domain shown in Fig. 5.2, smooth solution u(z,,z,) = Asinxz,sinhxz;, A=
103, p = 2. Note that the pollution factor “3@ ocnverges to 100%, the pollution factor
636‘ diverges to infinity and the effectivity index K. converges to zero asymptotically;
however the effectivity index KL: converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in

Exact solution u(z,,z,) = Asinxz, sinh xz,; quadratic elements

Shrinking mesh-cell w! centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

£ N En

““'3 = I"‘um,u KIW? =m; "LA

% | €A% .. ° . . °
h Ko o Effectivity Index Effectivity Index
2Z ER 122 ER

(3 A ng KU: K'U:
0.015625 | 96.46 | 365.79 0.245 0.241 1.013 0.998
0.0078125 | 99.76 | 1463.63 | 0.062 0.061 1.010 1.000
0.00390625 | 99.98 | 5851.72 | 0.016 0.015 1.010 0.999
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Figure 5.7. Pollution-effect for meshes refined locally in an interior subdomain. The
1

convex domain meshed with a coarse uniform grid with mesh-size h, = s

The mesh has been divided uniformly fou' times in an interior subdomain

Q, (the mesh-size in the subdomain is h = 1—;5)
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Table 5.5b. Pollution-effect for meshes refined locally in an interior subdomain.
Pollution factors p&. and {:g and effectivity indices in the shrinking mesh-cell w}.

Convex domain shown in Fig. 5.7, a = %, P = 2 (2a > p). Note that the pollution
factor p:: converges to 100%, the pollution factor E:: diverges to infinity, and the

effectivity index K, converges to zero. However, the effectivity index ""-'6 converges to

one.

Pollution factors and effectivity indices

Shrinking mesh-cell centered at (0.5, 0.5)

Exact solution u(r,0) = r¥sin(¥); quadratic elements

Uniform mesh-refinement in the subdomain only

Mesh-size in the rest of the domain A = 0.125

Cnh En

K"’" = '“‘A'",: t'wg = ""1 "l,,g

h Bp% | &% | Effectivity Index | Effectivity Index
nf:z nfga K wgz ":»?R

00625 |18.22| 1852 | 0991 | 0983 | 1.00 1.00
0.03125 | 47.17 | 5350 | o889 | o882 | 1.00 1.00
0.015625 | 90.26 [ 209.78 | 0.43¢ | 0430 | 1.00 1.00
0.0078125 | 99.29 | 828.65 | 0.118 | 0.118 | 1.00 1.00
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Study of the Pollution Err

Exact Solution: ug(r,®) = :5’” Sin(20/3) )
Quadratic Elements; Uniformm Refinements in Subdomain only
Mesh Size in the Subdomain = 0.03125

Mesh Size in Rest of the Domain = 0.125

0.0001

Direclional Derivalive of Lthe Error

-0.0004
eoeee V, Error From Overkill (p = 3)
eeeee V, Error From Overkill (p = 3)
eeeese V, Error From Smoothing 2p = 6;
eesees V, Error From Smoothing (p = 6

seees Z7 Error Estimator

0.53 0.58 0.83 0.88 0.73 .
Arc Length Coordinates Along S-Axis

(2)

Figure 5.8. Pollution-effect for meshes refined locally in an interior subdomain. Quad-
ratic elements (p = 2), a = g Directional derivatives of the V;- and
V, -components of the error and the ZZ error estimator along the s axis as

shown in Fig. 3.1b. (a) Uniform mesh-size in the subdomain h = —=; (b)

Uniform mesh-size in the subdomain h = ——. Note that |2‘-”-| > |24
128 Os Os

and (0%%2-Vy,)-s = -88%, asymptotically, in the interior of the subdomain.
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Stud{ of the Pollution Erro&m

Exact Solution: ug(r,0) = Sin(20/3) )
Quadratic Elements; Uniform Refinements in Subdomain only
Mesh Size in the Subdomain = 0.0078125
Mesh Size in Rest of the Domain = 0.125

0.000!

-0.0002

-0.0004

seeee V, Error From Overkill

eseee V, Error From Smoothing {P
*eeee V; Error From Smoothing (p

aseee 27 Error Estimator

V; Error From Overkill ip = 3
p =

Directional Derivalive of Lhe Error

-0.0006
0.83 0.58 0.63  0.68 0.73
Arc Length Coordinates Along S-Axis

(b)

Figure 5.8. (continued)
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8.2.3 Locally refined meshes of cubic elements

5.2.3.1. Smooth solution

We considered the same boundary-value problem as in Section 5.2.1.1 with
the smooth solution u(z,,z,) = Asin 7z, sinh vz, and employed meshes of cubic
elements (p = 3) with various mesh-sizes in the subdomain. In Tables 5.6a, 5.6b we

give the values of |||V, [Ii2,, lIlV; IIl2, and / WV, -V, the values of the pollution

factors p% by and £'-'€ and the values of the eifectmty index x,» and "ug We note
that, as the mesh-size in the subdomain tends to zero, the pollution factor p#

converges to 100%, €«¢ diverges to infinity and the effectivity index K, converges
to zero.

5.2.3.2. Singular solution
We also solved the mixed boundary value problem for the chlu:u.n with
boundary conditions consistent with the exact solution u(r,0) = rt sm(-5-0) and

employed meshes of cubic elements (p = 3) with various mesh-sizes in the subdo-
main shown in Fig. 5.9. In Fig. 5.10a (resp. Fig. 5.10b) we show the graph of the
directional derivative of the V; - and V, -components of the error in the subdomain,

along the s-axis shown in Fig. 3.1c, where the mesh-size in the subdomain is b = %

(resp. h = -L-) Once again we note that as the mesh-size in the subdomain tends

to zero the V, -component of the error remains constant while the V] -component
converges to zero. Also note that the error estimator follows the V; -component
of the error and that the V, -component is the dominant part of the error in the
interior of the subdomain.

5.3 Summary of the results for the pollution-effect for
locally refined meshes

In summary we observe that if the mesh is refined locally in an interior
subdomain only

(i). As the mesh size in the subdomain tends to zero the V; -component of the er-
ror converges to zero in the interior of the subdomain while the V; -component
remains practically constant.

V2 lHl,a

A"
effect in the interior of the subdomain for a given grid, depends on the mesh-

size in the subdomain (compared to the mesh-size of the outside mesh), the
smoothness of the solution and the degree p of the elements.

(ii). The value of relative magnitude of which measures the pollution-
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Table 5.6b. Pollution-effect for meshes refined locally in an interior subdomain.
Pollution factors y:g and {:‘. and effectivity indices in the shrinking mesh-cell w}.
Square domain shown in Fig. 5.2, smooth solution u(z,,z,) = Asinxz,sinhxz,;, A =
103, p = 3. Note that the pollution factor y:: converges to 100%, the pollution factor
EZ“. diverges to infinity and the effectivity index x_» converges to zero asymptotically;

however the effectivity index x"“. converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in w{

Exact solution u(z,,z,) = Asinxz, sinh xz,; cubic elements

Shrinking mesh-cell w? centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

E.'. Euu
K"': = m‘uln,,g "’«'3 =m; "I.,:
h Pa%| €4% | Effectivity Index | Effectivity Index
| R | RE | R

0.015625 | 99.63 | 1162.65 | 0.081 0.080 0.993 0.991
0.0078125 | 99.99 | 8644.49 0.037 0.037 0.992 0.992
0.00390625 | 99.99 | 39370.32 | 0.008 0.008 0.994 0.994
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Figure 5.9. Pollution-effect for meshes refined locally in an interior subdomain. The tri-
angular domain meshed with a coarse uniform grid with mesh-sise hy = %.
The mesh has been divided uniformly four times in an interior subdomain
a, (the mesh-sise in the subdomain is h = -1-12-5)
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Study of the Pollution Erro(;m
Exact Solution: r0) = Sin(66/5)

] Cubic Elements; Uniform lcsh Refinements in Subdomain only

' 4 Mesh Size in the Subdomain = 0.03125
e ] Mesh Size in Rest of the Domain = 0.125
] 1.0E-6 ]
v ]
= ]
- ]
. ]
.; -1.0E-6 ]
S ]
a 4
€ -3.06-6
§ ] eeeee V, Error From Overkill 2 = 5;
3] - seoee V; Error From Overkill (p = &
o ] seeee V, Error From Smoothing zp = 6}
= ] eseee V; Error From Smoothing (p = 6
e 1 weeee 27 Error Estimator

-5.0E-6 -

0.45 0.48 0.47 0.48 0.49 0.50

Arc Length Coordinates Along S-—Axis

(a)

Figure 5.10. Pollution-effect for grids refined locally in an interior subdomain. Cubic

elements (p = 3), a = g Directional derivatives of the V- and V,-

components of the error and the ZZ error estimator along the s-axis shown
in Fig. 3.1c. (a) Uniform mesh-sise in the subdomain A = —, (b) Uniform

mesh-size in the subdomain A = '1_12§ Note that |8V’| > |8V, |

(03% -Vu,)- o= aal:, asymptotically, in the interior of the subdomain.
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:Study of the Pollution E""t‘m

Exact Solution: r.8) Sin(60/5)

Cubic Elements; nitorm leah Refinements in Subdomnin only
Mesh Size in the Subdomain = 0.0078125

Mesh Size in Rest of the Domain = 0.125
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(b)

Figure 5.10. (continued)
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6 Control of the pollution-effect in a subdomain

Solutions with multiple singularities occur commonly in typical 2-D geometrical
idealizations of problems in solid-mechanics and heat transfer. Globally adaptive
methods employ nearly-equilibrated grids in order to achieve prescribed uniform
accuracies over the entire domain. In complex engineering problems one is in-
terested to control the error and to compute with high-accuracy only in certain
subdomains of interest (e.g. discussion about global/local analysis in the introduc-
tion). Here we give model computations which demonstrate that it is possible to
guarantee the reliability of error estimation (and to control the error) in any inte-
rior subdomain ), by using meshes which are less refined outside the subdomain
than the globally adaptive grids.

6.1 Effect of the refinement outside a subdomain on the
effectivity index in the interior of the subdomain

We considered the mixed boundary-value problem for the Laplacian over the
L-shaped domain and we applied boundary-conditions consistent with the exact

solution u(r, ) = r! sin(=0) and we considered a subdomain £, in the interior of

the mesh, far from the singular point. We refined the mesh inside the sulﬁt‘iorﬁlam
€a

IIIu:.III
using a pollution-free finite element solution over the subdomain. (The pollutio‘:;-
free solution was computed by solving a Neumann problem over §), using data
consistent with the exact solution.) The grid outside the subdomain {1, was then
generated using the adaptive refinement algorithm given in Section 4.5 with a
tolerance § = K(g , where K > 1 denotes the weight-factor. In the following we
refer to meshes of this type as weighted equilibrated meshes.

uniformly, to a desired mesh-size A, and computed the relative error (o, =

6.1.1 Meshes of linear elements

In Fig. 6.1 we show the L-shaped domain meshed by a grid of linear elements
(p = 1). The grid is uniform in the subdomain Q, := (0.5,0.75)* with mesh-size
h = —. The grid outside the subdomain was generated using adaptive refinement
for Cno = 0.44 and K = 1. In Fig. 6. 2 we show the graph of the effectivity index,
Ko in the eight-element mesh-cell w} at the center of the subdomain Q,, plotted
a.ga.mst the weight-factor K for different mesh-sizes in the subdomain. Note that

the curve is practically invariant with mpect to the mesh-size in the subdomain.
Also note that the effectivity index & " remains close to one up to a value of K =

2.5. In Fig. 6.3 we show the weighted equxhbrated mesh of linear elements where
the grid outside the subdomain is generated using (g, = 0.44 and K = 2.5.
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Figure 6.1. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Linear elements, exact solution u(r,6) = r# sin($); the
mesh-sige in the subdomain ), is kb = -313 The mesh outside £, is generated
using adaptive refinement for {;, = 0.44 and K = 1. The effectivity index
K3 in the cight-clement mesh-cell wp at the center of the subdomain Q, is

0.92.

133




Study of the Pollution Error )

Singular Solution: up(r,®) = r"/7'Sin(0/3)
Linear Elements; Adaptively Refined Mesh
Location of Subdomain: (0.5,0.75)x(0.5,0.75)
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Figure 6.2. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Graph of the effectivity index in the cight-element
mesh-cell wg at the center of the subdomain Q, plotted versus the weight
factor K for different mesh-sizes in the subdomain of the mesh shown in

Fig. 6.1a. Note that the curve is invariant with respect to the mesh-size in
Q,.
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Figure 6.3. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Linear elements, exact solution u(r,6) = r¥sin();

the mesh-size in the subdomain Q, is A = % The mesh outside the
subdomain is generated using adaptive refinement for {, = 0.44 and K =
2.5.

135




In Figs. 6.4a, 6.4b and 6.4c we show the directional derivatives of the V; - and
V, -components of the error along the s-axis shown in Fig. 6.1a for K = 1, K =
2.5 and K = 5, respectively. Note that for K = 1, the directional derivative of
the V, -component of the error is close to zero in the interior of the subdomain.
Further, note that as the value of K is increased i.e. as the amount of refinement
outside the subdomain is reduced, the directional derivative of the V, -component
of the error becomes larger in the interior of the subdomain and for K = § the
directional derivative of the V, -component is larger than the directional derivative
of the V] -component in the interior of the subdomain. Also note that the error
estimator practically coincides with the V] -component of the error in the interior
of the subdomain.

6.1.2 Meshes of quadratic and cubic elements

In Fig. 6.5 we show the L-shaped domain meshed by a grid for quadratic
elements (p = 2). The grid is uniform in the subdomain Q, = (0.5,0.75)? with

mesh-size A = —. The grid outside the subdomain was generated using adaptive

refinement for 43,,, = 0.07 and K = 1. In Fig. 6.6 we show the mesh where the grid
outside the subdomain €, was generated using (, = 0.01 and K = 1.

In Fig. 6.7 we give the graph of the effectivity index, x,», in the mesh-cell
w? at the center of the subdomain Q, := (0.5,0.75)? for p = 1, 2 and 3. Note
that for quadratic elements the effectivity index is close to one up to a value of
K = 3 and for cubic elements the value of the effectivity index is close to one
up to a value of K = 3.5. In Fig. 6.8 we show the weighted-equilibrated mesh
of quadratic elements which is generated using (; = 0.07 and K = 3 outside
the subdomain and in Fig. 6.9 we show the weighted-equilibrated mesh of cubic
elements generated using adaptive refinement for {,, = 0.02 and K = 3.5 outside
the subdomain. Hence we observe that as the polynomial degree p of the elements
is increased, the pollution-effect in the interior of the subdomain is controlled for
a bigger range of values of the weight-factor K.

6.2 Factors affecting the permissible range of the weight-
factor K

Here we examine the factors which affect the range of the weight-factor K for
which the pollution-effect in the interior of the subdomain is controlled. We will
say that the pollution-effect in an interior subdomain is controlled if « > 0.85
(where w! denote interior mesh-cells in the subdomain). We will call the range
of K, K = [1,K_,,], for which & w4 > 0.85, the permissible range of of K. For
example, in the numerical examples given in Section 6.1, K, = 2.5, 3 and 3.5 for
linear, quadratic and cubic elements, respectively.
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Study of the Pollution Erro&m

Exact Solution: ug(r,®) = r sm&ega)
Linear Elements; Adaptively Refine esh
Location of the Subdomain: $0.5.0.75 x(0.5,0.75)

0.008 Weight Factor K = 1; Mesh Size in the Subdomain = 0.03125
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Figure 6.4. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Linear elements, exact solution u(r,8) = = sin($);
the mesh-size in the subdomain Q, is b = 3—12 Directional derivatives of
the V] - and V, -components of the error and the ZZ estimator along the s
axis for adaptive meshes generated using (a) K =1 (b) K =25 (c) K =
5. Note that for K = 1 and K = 2.5, |88V: < |88‘:1 l but for K = §,

rakdrn

, in the interior of the subdomain.
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Study of the Pollution Erroﬁ

Exact Solution: ug(r.8) = r*/® Singeéa)
, Linear Elements; Adaptively Refine esh
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Figure 6.4. (continued)
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Study of the Pollution Errod'm
Exact Solution: ug(r.®) = r smse{‘a)
o Linear Elements; Adaptively Refine esh
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Figure 6.4. (continued)
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Figure 6.5. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Quadratic elements, exact solution u(r,8) = ¥ sin($);
the mesh-size in the subdomain Q, is h = -515 The mesh outside £}, is gen-
erated using adaptive refinement for {,, = 0.07 and K = 1. The effectivity
index &,y in the eight-clement mesh-cell w} at the center of the subdomain

Q, is 0.97.
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Figure 6.6. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Cubic elements, exact solution u(r,8) = r} sin($); the _
mesh-size in the subdomain Qg is A = 312 The mesh outside 2, is generated
using adaptive refinement for {;, = 0.01 and K = 1. The effectivity index
K} in the eight-element mesh-cell ug at the center of the subdomain 0, is
0.97.
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Study of the Pollution Error

Singular Solution: ug(r,0) = r'/¥sin(0/3)
Adaptively Refined Mesh

Location of Subdomain: (0.5,0.75)x(0.5,0.75)
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Figure 6.7. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Exact solution u(r,8) = #¥ sin($); the mesh-size in
the subdomain {1, is A = -31—2 Comparison of the effectivity index vs. K
curves for p = 1, 2, 3. Note that as the polynomial degree p of the elements
is increased, it is possible to control the pollution-effect in the subdomain
for larger values of the weight factor K.
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Figure 6.8. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Quadratic elements, exact solution u(r,8) = r} sin($);
the mesh-size in the subdomain ), is b = 3% The mesh outside 2, is gen-
erated using adaptive refinement for {5, = 0.07 and K = 3. The effectivity
index «, in the eight-element mesh-cell wp at the center of the subdomain

0y is 0.93.
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Figure 6.9. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Cubic elements, exact solution u(r,6) = r} sin($); the
mesh-size in the subdomain 1,is h = % The mesh outside {1, is generated
using adaptive refinement for (g, = 0.01 and K = 3.5. The effectivityindex

x,s in the eight-element mesh-cell wg at the center of the subdomain Q, is
0.93.
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a. Effect of the distance of the subdomain S}, from the singularity

We considered the L-shaped domain with a uniform-mesh subdomain ), :=
(0.25, 0.5)? closer to the singular point than the subdomain in the examples given
in Section 6.1. In Fig. 6.10 we show the mesh for linear elements (p = 1) for which

the mesh-size in the subdomain is A = 1 and the mesh outside the subdomain
was generated using adaptive refinement ?or (g, = 0.25 and K = 1 In Fig. 6.11
we show the graph of the effectivity index, x4, in the mesh-cell w) at the center
of the subdomain, plotted against the weight-factor K. Note that the effectivity
index x_» remains close to one up to a value of K = 2 and then drops to small
values faster when compared with the graph of Fig. 6.7. In Fig. 6.12 we show the
weighted-equilibrated mesh of linear elements where the grid outside the subdomain
is generated using { = 0.25 and K = 2. Hence, we note that as the distance of
the subdomain , from the singular point increases, the permissible range of the
weight-factor K increases in size and the pollution-effect in the subdomain can be
controlled by employing coarser meshes outside the subdomain.

b. Effect of the strength of the singularity: Value of the ezponent, a

We considered singularities with two different exponents (a == and a= )
for quadratic elements and plotied the graph of the effectivity lndex K for ti
mesh-cell w} at the center of the subdomain §, := (0.5,0.75)? vs. the weight-
factor K. In Fig. 6.13 we show the comparison of the effectivity index vs K curves

for a = -:1; and a = -2- From the graph, we note that K, =3fora= %, while

K. = 3.5 for a = -. Hence we note that for a = - the permissible range of the
weight-factor K increases in size and the values of the effectivity index are higher

1 for all values of the weight-factor

than the values of the effectivity index for a = 3

K.
c. Effect of the strength of the singularity: Value of the stress intensity factor, A

We considered the exact solution u(r,0) = Art sin(lO) for A=0.02, A=0.1,
A=05 A=1 A=10and A =50 and lmear elements. We plotted the graph
of the effectivity index « o for the mesh cell w at the center of the subdomain
Q= (0 5, 0.75)%(0,5, 0. 75) vs. the weight-factor K. In Fig. 6.14 we show the
comparison of the graphs for A = 0.02, 0.1, 0.5, 1, 10 and 50. Note that as
the value of stress-intensity factor A is increased, the value of the effectivity index
drops for the same value of K. Hence we observe that for higher values of the stress
intensity factor A, the permissible range of the weight-factor K decreases and more
refinement is needed outside the subdomain in order to control the pollution-effect
in the interior of the subdomain.
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Figure 6.10. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Effect of the distance of the subdomain from the
singularity on the amount of refinement needed outside the subdomain in
order to control the pollution-effect in ,. Linear elements, exact solution
u(r,8) = r} sin($), location of the subdomain Q, : (0.25,0.5)?, mesh-sise in
the subdomain A = —1- The mesh outside £, is generated using adaptive

32
refinement for {,, = 0.25 and K = 1.
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Study of the Pollution Error
Singular Solution: ug(r,0) ('/’)Sm&(“)/!i)
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J Effect of Adaptive Refinements Qutside the Subdomain
1.00 3 the Effectivity Index in the Interior of the Subdomain
3
0.80 1
5
© 3
S 3
0.60 3
2 3
> 3
et ]
O 3
é 0.40 3
S
0.20 -
] eeeee Center of the Subdomain : 0.575.0.375)
i ©oee*e Center of the Subdomain : (0.625,0.625
0-00 IllITlll‘llTllTT‘Tlll]llllllllr]ll'jl

1.00 3.00 5.00 7.00
Weight Factor ( K )

Figure 6.11. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Effect of the distance of the subdomain Q, from the
singularity on the amount of refinement needed outside the subdomain in
order to control the pollution-effect in Q,. Linear elements, exact solution
u(r,0) = r$ sin($), location of the subdomain Q, : (0.25,0.5)?, mesh-sise
in the subdomain A = 31-2- The mesh outside the subdomain is generated
using adaptive refinement for {, = 0.25 and K = 1. Note that as the
distance of the subdomain from the singular point increases, it is possible
to control the pollution-effect in §, for larger values of the weight-factor
K.
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Figure 6.12. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Effect of the distance of the subdomain from the
singularity on the amount of refinement needed outside the subdomain in
order to control the pollution-effect in the interior of the subdomain. Linear
elements, exact solution u(r,8) = r} sin($), location of the subdomain €, :
(0.25,0.5)%, mesh-size in the subdomain A = 1 The mesh outside the

32’
subdomain is generated using adaptive refinement for {, = 0.25 and K =

2.
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Study of the Pollution Error /3

Singular Solution: ug(r,0) = r'*/*'sin(0/3)

Quadratic Elements; Adaptlvely Refined Mesh

Location of Subdomain: (0.5,0.75)x%(0.5,0.75)
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Figure 6.13. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Effect of the exponent a on the amount of refinement
needed outside outside the subdomain in order to control the pollution-

effect in the interior of the subdomain. Quadratic elements, exact solution
1

32
Note that as the value of the exponent increases (i.e. the solution becomes

u(r,0) = risin g, mesh-size in the subdomain Q, = (0.5,0.75), h =

smoother), it is possible to control the pollution-effect in {2, for larger values
of the weight-factor K.
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Study of the Pollution Error

Singular Solution: ug(r,0) = r**sin(0/3)

Linear Elements; Adaptively Refined Mesh

Location of Subdomain: (0.5,0.75)x(0.5,0.75)
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Figure 6.14. Control of the pollution-effect in a subdomain by employing weighted-
equilibrated meshes. Effect of the stress-intensity factor A on the amount of
refinement needed outside the subdomain in order to control the pollution-
effect in the interior of the subdomain. Linear elements, exact solution
u(r,0) = r¥sin g, location of the subdomain Q, := (0.5,0.75)?, mesh-size
in the subdomain A = 515 Note that as A is decreases, it is possible to

control the pollution-effect in Q, for larger values of the weight-factor X.

150




Study of the Pollution Error

Smooth Solution: ug(x,,xs) = Sinnx,Sinhnx,
Adaptively Refined Mesh

Location of Subdomain: (0.375,0.625)x(0.375,0.625)
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Figure 6.15. Control of the pollution-effect in a subdomain by ‘employing weighted-
equilibrated meshes. Smooth solution u(z,,z,) = sinxz, sinhxz,, unit
square domain shown in Fig. 5.2. Comparison of the effectivity index vs. K
curves for p = 1, 2, 3. Note that as p increases, it is possible to control the

pollution-effect in Q, practically for all values of the weight-factor K.
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d. Effect of the smoothness of the solution
We also considered the smooth solution u(z,,z,) = sinxz,sinhxz, in the
square-domain 2 = (0,1)? and plotted the graph of the effectivity index « 2

for the mesh cell wd at the center of the subdomain Q, := (0.375,0.625)* as shown
in Fig. 5.2, vs. the weight factor K. In Fig. 6.15 we show the graphs for p =1, 2
and 3. Note that the values of the effectivity index are greater than 0.8 for the all
values of K.

6.3 Summary of the results for the control of the pollution-
effect in a subdomain

In summary, we observe that

(i). It is possible to control the pollution-effect in an interior subdomain by using
weighted-equilibrated grids which are less refined outside the subdomain than
globally nearly equilibrated grids.

(ii). The amount of refinement outside the subdomain needed to control the
pollution-effect in the subdomain depends on the strength of the singulari-
ties, the distance of the subdomain ), from the singular points, the mesh-size
inside the subdomain and the polynomial degree p of the elements.
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7 Summary

In this work we presented a numerical study of the pollution-error in the A-
version of the finite-element method. We studied the effect of the pollution error
on the local quality of error estimation for various classes of meshes and solutions
used in practical engineering computations. In particular, we considered harmonic
solutions with algebraic singularities of the type r* and studied the pollution-effect
for uniform meshes, globally adaptive (nearly equilibrated) meshes, locally refined
meshes and weighted-equilibrated meshes.

The major conclusions of this study are:

1. When the mesh is globally adaptive (nearly equilibrated in the energy-norm)
the pollution-effect is negligible and, for all practical purposes, we can guar-
antee the reliability of error estimation for all interior mesh-cells.

2. If the mesh is not nearly equilibrated in the energy-norm, the pollution-effect
may be significant.

3. For uniform meshes, the poll\ition-eﬁ'ect is significant asymptotically when
2a < p, the polynomial degree of the elements. However when 2a > p, the
pollution is negligible.

4. The accuracy of the finite element solution in a subdomain depends upon the
relationship between the mesh inside the subdomain and the mesh outside
the subdomain and the smoothness of the exact solution.

5. It is possible to control the pollution effect in a subdomain by employing
weighted-equilibrated grids which are less refined outside the subdomain than
the globally nearly equilibrated grids.

6. The reliability of local error estimation in an interior subdomain can be
guaranteed only when the pollution-effect in the subdomain is negligible. If
there is strong pollution, severe underestimation may occur and in general
nothing can be said about the reliability of the local results of a-posteriori
error estimation.
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