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Abstract
In this work we study the pollution-error in the h-version of the finite element

method and its effect on the local quality of a-posteriori error estimators. We
show that the pollution-effect in an interior subdomain depends on the relationship
between the mesh inside and outside the subdomain and the smoothness of the
exact solution. We also demonstrate that it is possible to guarantee the quality of
local error-estimators in the interior of a finite-element mesh-patch of interest by
employing meshes which are sufficiently refined outside the patch.
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1 Introduction
The design and certification procedures for aerospace structures require an

accurate stress analysis capability. Detailed stress analyses of complex aircraft
structures and their subcomponents are required, especially during the certifica-
tion phase of the analysis. The finite element method has become the method of
choice for the analysis of complex structures such as aircraft, nuclear power plant
components and automobiles. Before manufacturing a component, the designer
must be able to predict its behavior. This prediction is based on a formulation of a
mathematical model, its computational analysis, experiments, and experience with
existing constructions and their failures. Because of various uncertainties which
necessarily occur, the goals of advanced design analyses (in aircraft, nuclear indus-
tries, etc.) are often stipulated in the design codes (which are changing over time).
The question of the principles of safety is directly related to these codes. For ex-
ample, in the design code USAF-MIL-A-83444, used in military aircraft design, it
is required that components based on the principles of "non-inspectable slow crack
growth" must be designed under the assumption that,

a) the as-fabricated structure contains flaws of a size just smaller than the non-
destructive maximum undetectable flaw-size;

b) the flaws are assumed to exist in the form of crack-like defects with most
unfavorable location and orientation.

The design code requires that the mathematical formulation and its computational
analysis must reliably and conservatively predict both the sizes of the growing
cracks and the residual strength of the component.

As a result of the requirements of the design code many times it becomes neces-
sary to analyze a small portion of the structure, such as a stress critical component,
in greater detail, e.g. the fuselage of an aircraft may be subjected to accurate anal-
ysis in the neighborhood of structural details like openings, cracks, etc. A standard
procedure is to analyze the entire structure using a global discretization which is
often referred to as global analysis and to further analyze the structure near crit-
ical regions, identified by the global analysis, by performing local analyses. Such
procedures, which are known as global/local analysis, are becoming quite popular
in engineering practice.

1.1 Generalities about global/local analysis

We would like to discuss further some of the ideas involved in the technologies of
global/local analysis. In the literature of global/local analysis one often encounters
the terms global model and local model. We would now like to comment on the
meaning of the word model which is often used with different meanings in the
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engineering community. There are two interpretations of the finite element method
(use also [1]). The first one considers the method as an extension of the standard
method of structural analysis in which the original (physical) problem is replaced by
another (physical) problem which is finite dimensional and can be computationally
analyzed. For example, in the late 50's it was common practice to "model" the two-
dimensional elastic continuum by a system of trusses connected by shear-panels.
This physical "modelling" method was called finite element modelling. The second
interpretation is to understand the finite element method as an approzimation
method for solving mathematical problems. The second interpretation is the main
interpretation today, although the (misleading) term "finite element modelling" is
still used, especially in engineering. A model is a continuous mathematical problem
and is approzimated by a finite element method which employs meshes.

It follows from the above discussion that, if the same mathematical model is
solved during the global and the local analysis, the terms "global model" and "local
model" are misleading; instead the terms global mesh and local mesh must be used.
The objective of global/local analyses of this type is to obtain accurate approxima-
tions of the solution quantities of engineering importance (stresses, thermal fluxes)
in local regions of interest, or, in other words, to obtain an appra.-imate solution
of the mathematical model with error less than a specified tolerance in the region
of interest (for a measure of error which is dictated by the goals of the analysis).

It is also possible to attach another meaning to the term global/local analysis.
For example a 3-D (three-dimensional) elastic continuum in a thin domain may be
analyzed using different plate models in different regions in order to meet desired
levels of accuracy with respect to the exact solution of the problem of 3-D elasticity.
In this case the terms "global model" and "local model" may be appropriate. This
methodology is known as hierarchical modelling [1, 2, 3, 4, 5] and its objectives
are to approximate the solution of an exact mathematical model (for example the
problem of 3-D elasticity) by employing solutions of approximate mathematical
models (e.g. plate or shell theories) in order to meet specified error tolerances with
respect to the solution of the exact mathematical model, in the regions of interest.
The approximate models are continuous mathematical problems which are derived
from the exact mathematical model using certain simplifying assumptions.

As discussed above, the term global/local analysis has been employed in two
different contexts in practical engineering computations.

(1) In one context, the global and local analyses are refined or enriched mesh-
techniques often employed in order to approximate the solution of a single
mathematical model throughout the domain. An example of this type of
analysis is given in [6]: In that work a methodology is outlined in which a
relatively coarse global mesh is used to analyze a complex structure. The
critical regions requiring a more detailed analysis are subsequently identified
and interpolation regions are then defined around these regions and an inter-
polation procedure is employed to determine the boundary conditions for the
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local meshes. The local meshes which lie within the interpolation region are
independent of the global mesh and are more refined than the global mesh.
In some analyses of this type the discrete problems in the local meshes may
be also fully coupled with the discrete problem in the global mesh.

(2) In another context, the global and local analyses are performed by solving
different mathematical problems in different parts of the domain. In [7]
such an approach was employed in order to resolve crack-tip fields in fibrous
composites. This technique which in [7] is called the mesh-superposition
method may be described as follows: A composite plate, which may include
cracks, is first analyzed as a homogeneous orthotropic continuum using a
finite element mesh which is called the macro-mesh. The local behavior on
the scale of the heterogeneous constituents is then analyzed using a separate
finite-element mesh called the micro-mesh which employs elements which
are small enough to reflect the micro variations in material behavior and
is superimposed on the macro-mesh in the neighborhoods of the crack-tips
where the critical behavior is expected.

From a study of the literature it is clear that the emphasis of the research in
global/local analysis has been on:

(i). Postprocessing the results of the global analysis in order to determine the

subregions requiring detailed analysis;

(ii). Generating refined and/or enriched meshes in the local areas of interest;

(iii). Imposing interface-conditions at the interface between the global and local
meshes (or global and local mathematical models);

(iv). Developing solutions strategies for the linear algebra problems which result
in this type of analyses.

Very little attention has been paid on ensuring good quality (i.e. accuracy) of the
finite element solution in the region of interest.

In this paper we will demonstrate that the accuracy of the approximate solution
in a subdomain of interest depends on the relationship between the mesh used inside
and outside the subdomain where the detailed analysis is required or in other words
accuracy of the local analyses depends on the accuracy of the global analysis.

To illustrate this point we give the following example: Let us consider Laplace's
equation in the L-shaped domain shown in Figs. la-ld with boundary conditions
consistent with the singular solution u(r, 0) = rI sin(!) in the infinite wedge (see
also Section 2). We assumed that we are interested only in the solution in the
hollow square subdomain, which is shown with thick perigram in the upper right
corner of the domain in Figs. la-ld. We computed finite-element solutions of the
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Laplacian using the standard displacement method and we employed four meshes of
linear elements, as shown in Figs. la-ld. In these meshes the grid in the subdomain
was kept fixed while the mesh employed outside the subdomain was coarsened in
order to illustrate the effect of the outside grid on the accuracy of the finite-element
solution in the subdomain. In Fig. i.ia we show an adaptive finite-element mesh of
linear elements which was generated using a remeshing algorithm, over the domain.
For this mesh an accuracy of 1.09% for the relative error in the energy-norm over
the subdomain was achieved in the hollow square subdomain. In Figs. 1.1b, 1.1c,
1.1d we show grids in which the mesh outside the subdomain was progressively
coarsened while the mesh inside the subdomain was kept fixed as in Fig. la. Using
the grids shown in Figs. i.1b, 1.1c and 1.1d we computed approximate solutions
for Laplace's equation and we found that the exact relative error in the energy
norm over the subdomain is 4.67%, 12.24% and 23.9%, respectively.

From this example, it is clear that the accuracy of the finite-element solution
in any subdomain depends on the mesh outside the subdomain and that in order
to increase the accuracy of the finite-element solution in a subdomain of interest
one has to employ meshes which are sufficiently refined inside and outside the
subdomain. Hence, in general we cannot say that a refined mesh in a subdomain
can guarantee a better solution in the interior of the subdomain. The situation is
very similar, but more complex, in the case of hierarchical modelling and will not
be addressed here.

Based on these initial observations it is clear that if a detailed analysis is carried
out by employing a refined or enriched mesh in a local region of interest with no
regard to the mesh outside that region, no gain in the local accuracy may be
obtained. Hence the idea of global/local analysis makes sense only if it is based on
algorithms which achieve the desired accuracy in regions of interest by controlling
the relationship between the inside and outside meshes in order to employ nearly
minimal total number of degrees of freedom. The objective of this work is to make
initial progress towards this goal.

1.2 Introductory remarks about error estimation

A-posteriori error estimation is the only rational means for checking the local
quality of approximate solutions. Therefore it is important to know under what
conditions the error estimators are reliable and how to design the meshes in order
to guarantee the reliability of local error-estimation.

The design and verification of error estimators for approximate solutions of
elliptic boundary-value problems has been the focus of intensive research; see for
example [8-43] and the citations in these papers. Studies of the factors which affect
the local quality of error estimators are given in [41-45]. These factors are:

1. The geometry of the grid: By geometry we mean the topology of the grid
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(a)

Figure 1.1. Effect of the outside grid on the accuracy of the finite-element solution in a

region of interest. The hollow subdomain is shown with black perigram in

the upper right corner of the L-shaped domain. The subdomain was meshed

with a quasi-uniform mesh which was kept fixed while various meshes were

employed in the rest of domain. (a) A mesh for which an accuracy of 1.09%

was achieved in the subdomain. (b) A mesh for which an accuracy of

4.67% was achieved in the subdomain. (c) A mesh for which an accuracy of

12.24% was achieved in the subdomain. (d) A mesh for which an accuracy

of 23.97% was achieved in the subdomain. It is clear that the accuracy of

the finite-clement solution in the subdomain depends strongly on the mesh

outside the subdomain.
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(b)

Figure 1.1 (continued)
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(c)

Figure 1.1 (continued)
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(d)

Figure 1.1 (continued)
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and the distortion of the elements; the geometry has to be understood in
connection with the differential operator (e.g. [41]).

2. The smoothness of the solution: The smoothness is characterized by the
regularity of the solution (see [46]-[56]) which depends on the differential
operator, the loads, the geometry of the boundary of the domain and the
geometry of the material interfaces. For further details about the smoothness
of solutions of linear elliptic boundary-value problems in polygonal domains
see [49]-[56].

3. The pollution error: By pollution error we characterize the errors in the
approximation which emanate from singular points, boundary-conditions,
mesh- and material-interfaces and which may affect the order of convergence
of the approximation throughout the domain (see [57]-[66]).

In [44] and [45] we presented a theoretical framework and a computer-based
approach for checking the local quality of estimators. The methodology in [44], [45]
enables one to obtain a quantitative measure of the quality for any error estimator
for interior mesh-cells wo' in the interior of the grid (an example of an interior
mesh-cell is given in Fig. 1.2; the mesh-cells are patches from the mesh which may
consist of a few elements, possibly one). In [45] we studied the robustness of several
error estimators (which are used in practice) for interior mesh-cells for the complex
grids which are employed in practical engineering computations and we identified
several robust estimators.

The theoretical framework of the methodology for checking the local quality
of estimators (which was employed in the study of estimators in [44] and [45])
assumes that the pollution-error in the mesh-cell wok is negligible with respect to
the error in the best-approximation defined over a slightly bigger mesh-cell Co"
which includes wo" and a few mesh-layers around it. This assumption implies a
proper relationship (which depends on the exact solution and hence on the data of
the problem) between the mesh-size inside and outside the mesh-cell wo". In this
work we show that this assumption is necessary (is not a technicality in the proofs
given in [44]) i.e. if the pollution-effect in wu0 is large (with respect to the error in
the local best-approximation), nothing can be said about the reliability of any error
estimator which is based on local computations in wo". Moreover we demonstrate
that it is possible to control the pollution-error in any interior mesh-cell by proper
design of the mesh and hence it is possible to ensure the reliability of the error
estimators in any region of interest.

In this work we will study the effect of the pollution error, due to singularities
introduced by rough domains (domains with corner-points) or abrupt changes in
the boundary-conditions, on the quality of error estimators for interior mesh-cells.
Singularities of this type occur in typical two-dimensional geometrical idealiza-
tions of problems in solid mechanics and heat-transfer. Moreover it is well known
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(a)

(b)

Figure 1.2. (a) A finite-element grid with an interior mesh-cell wo' (shown shaded

gray) surrounded by the mesh-cell CA and three mesh-layers around it; (b)

Close-up view of the mesh-cells.
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(e.g. [641, [651) that singularities of this type pollute the approximation throughout
the domain while singularities introduced by rough right-hand sides (concentrated
loads) affect the approximation only in the neighborhood of the singular points.
Therefore the pollution error caused by such singularities (due to rough domains
or rough boundary-conditions) is of great importance in practical computations.

In this work we will analyze the pollution error due to rough domains and
rough boundary-data in the h-version of the finite element method, its effect on
local error-estimation for interior mesh-cells and how the pollution-error can be
controlled to guarantee the reliability of local error estimation. We considered
only interior mesh-cells for simplicity; the conclusions of this study are also true
for mesh-cells which abutt to the boundary of the domain and for mesh-cells near
or at singular points.

The main points of the work are:

1. For quasi-uniform meshes (often used in practical computations) the pollu-
tion error could be significant throughout the domain depending on the data
of the problem and the polynomial degree of the elements employed in the
mesh.

2. When the mesh is refined locally (in a region of interest only) the pollution-
effect may dominate the computation and there may be no gain in the accu-
racy in the region of interest.

3. All practical error estimators are based on local computations and therefore
cannot detect the pollution error.

4. When the mesh is nearly equilibrated in the energy-norm the pollution-effect
in the derivatives is negligible.

5. The pollution-effect in an interior subdomain can be controlled by employ-
ing meshes which are coarser (outside the subdomain of interest) than the
globally nearly equilibrated grids.

Following this Introduction, in Section 2 we describe the model elliptic problem
and two error estimators which were employed in the numerical examples. In
Section 3 we give numerical examples and the analysis of the pollution-effect for
uniform meshes and introduce the notions of near-field and far-field pollution.
In Section 4 we give examples that demonstrate that when the grid is nearly
equilibrated in the energy-norm the pollution-effect is negligible. In Section 5 we
demonstrate that, when the mesh is refined locally in a subdomain of interest, there
may be no gain in the accuracy in the interior of the subdomain and in Section 6 we
give numerical examples which indicate that it is possible to control the pollution-
error in a subdomain of interest by employing grids which are less refined (outside
the subdomain) than the nearly-equilibrated grids (i.e. the globally-adaptive grids).
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2 Preliminaries

2.1 The model problem

Let A C R denote a polygonal domain with boundary 8fln = - ,
,iý

where Fi, i = 1,..., M are the open straight edges connecting the endpoints A.
and A,+, (A, 4- A+i) (see Fig. 2.1). We will denote the internal angles at the
vertices by i,... ,pu (0 < jo, K 2r; if jo, = 2w we have a ait-domain). Let
further r = rD u' N, rDnrN = 0 where D is the Didhlet- and rN is the
Neumann-boundary.

By H M (fl), m is positive integer, we denote the Sobolev space of functions with
square integrable derivatives up to order m with the norm, seminorm

(V',,)(E) - ID ,I() , Dou :- 8z'"U

where a:= ( 1,9a02 ), 9 _0, integers, --1,2, 1al:=-a+a 2.Herell10o
denotes the L2-norm over fl.

Let T := {T&} be a meular family of triangulations of (I (the minimal angle of
all the triangles is bounded below by a positive constant, the same for all meshes).
The meshes are not assumed to be quasi-uniform. We let E (resp. Et) denote the
set of edges (resp. interior-edges) in the triangulation. We will consider the mixed
boundary-value problem for the Laplacian:

L(u) := -V - Vu = -Au = 0 in fl (2.1a)

u= 0 on rD (2.1b)

Ou
S:= V u -n = g on rN (2.1c)

Here u is the solution; n denotes the exterior unit-normal on rN ; g E L2(rN) and
is analytic in each Fi , j = M.

In the neighborhood O(ze; ro) = n {n I= - t Ia. < ro } of the vertex A,
(z, is the position-vector of A,), the exact solution can be written in the form (for
homogeneous boundary-conditions in the neighborhood of the vertex At)

14



A17  r16 A16 A13 r, 2 A12

Ar17 Ar A 4 r, Ar AI r' A

Figure 2.1. An example of a polygonal domain 0l with boundary aegments r. and

vertices A, =1,...,20.
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QQ
u(rte, e) = j ,(O,) rt' + UO(r, 0e) , (2.2)

iml

with us(r,, 9 1 ) smoother than the fint term, where (rt, Se) are the polar coordinates
with respect to the vertex At. The functions ,j and the exponents aj are

rin(a(Oe)), for the Diuichlet or mixed problem,

( cos(aGt), for the Neumann problem, (2.2)

J . for the Dirichlet or Neumann boundary conditions,

afi (2j- 1)w 2•
• ( - , for mixed boundary-conditions,

(The mixed problem here means homogeneos Dirichiet conditions for Se = 0 and
homogeneous Neumann conditions for Dt = ipt).

Remark S.1. In the numerical examples we considered specially unsmooth solutions
of the type given by (2.2a)-(2.2c) because such solutions occur typically as solutions
of practical boundary-value problems.

We let Hr := fuE Hl(fl) I u =0 on rD}. The variational formulation of

the model problem (2.1) is: Find u E Hr!• such that

B(u,v) = jNV VvEHD (2.3a)

where

BD(u,v):= inVu-Vv, u, EHrD (2.3b)

If I'D =0 then the usual restrictions on the data are imposed and the solution u
is determined up to an arbitrary constant. We let

llvllls := (Bs(,,v))I = UJ l~lI) (2.4)

denote the energy-norm over S.
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LettewiE -Skde := {vEiite I vappE oPi(at) V r ET&, vs=ou on 7D}) be the
piecewise p-degree fiieeeetapproximation of the solution of (2.1) and (2.2)
which satisfies:

Find u% E SkrD such that

Bo(u,,v%) = Jf , V vi E S,.r (2.5)

The error is e& := u - u, and satisfies the ruidual-equation:

Find e, E HrD such that

Bo(e&, v) = • F,(v) V v E Hr. (2.6)
IETA

where FP : HrIJ --+ R is the residual functional given by

Fr(v):= vrI + 1. JvJ,, v E Hr,, (2.7)

Here r, := AuA denotes the interior-residual in element T and J, is the inter-
element-jump in the normal derivative

[V(u I'%) - V(uh 1,..)1 • n, e E Eit

J:= 2(g - •-), c rN (2.8)

0, EC rD

where n is the unit-normal assigned to the edge e (in an arbitrary but unique way)
and r..,, ri, are defined as in Fig. 2.2.

2.2 The error estimators

We summarize the definitions of the error estimators employed in the numerical
examples below (see also [441 and [451).

2.2.1 Implicit element-residual estimator

Let us define the equilibrated residual functional

F:I(v) := F,(v) + Jt vO,, V E H'(,r) (2.9)

17



"tin

Tout

Figure 2.2. An. edge e with its normal n and the elements r.t, ri. connected to it.
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Here 0, E (L2(8r))2 is the correction of the edge-residuals which is determined

such that

F(v) = 0 V vEP,(T) (2.10)

Definitions of 9, which satisfy (2.10) for linear elements are given in [14], [15],
[24], [25), [281; in the numerical implementations for linear elements we employ the
definition given in [14]. We define the element error-indicator function e, as the
solution (which is unique up to a constant) of the local problem:

Find i, E H, such that

B,(i,v,) = F,m(v,) V v, E H, (2.11)

Here H, = H("(r). We then define the element error-indicators 17, for the energy-
norm of the error by

11' -r •/.(e, -e,) (2.12)

In the computations below we approximated the solutions of the local problems
by using a finite dimensional space of polynomials of degree (p + 1) in the element,
namely

wEP,()I I~w = 0} (2.13)

where IIP : •P+,(") ---4 P,(r) is an interpolation-operator defined (see [19], [20])
over the element r. The space B'+' is often referred to as the bubble-space (see
[19]). In the sequel, we will call ER-utimators (element-residual-estimators) the
estimators determined from (2.12) by computing approximate solutions of (2.11)
from the bubble-space.

We now describe how the corrections for the edge-residuals 9, are constructed.
We let

$.Iit -"+0.2 02c) C Or (2.14)

where

+1, if r =-r,.,
C = f1(2.15)

-1, ifr 1"..,,

Here it is assumed that an edge-normal n has been assigned to the edge e in an
arbitrary but unique way and r. and r.., are defined as shown in Fig. 2.2. Here

19



2 2
Ole (2 (2:- -2A',)(2.16)

where A4L, k = 1, 2 are the linear shape-functions defined over the edge e, and

4:=u[J#vI,•A , k=1,2 , C Or (2.17)
c

The integrals 9*' in (2.17) are obtained from the linear system (see Ladevese
and Leguillon [14] and Bank and Weiser [15] for the details)

J GOx = -F,(4'x) , k = 1,...,(ne)x (2.18)

where Ox denotes the elementwise aflne basis function, which corresponds to the
vertex X, shown in Fig. 2.3b; Tjx denotes the k-th element connected to the vertex
X; (ne)x is the total number of elements connected to the vertex X.

The procedure outlined above has been developed by Ladeveze [14]. The linear
"system (2.18) has a one parameter family of solutions. Specific choices of solutions
are suggested in [14] and [15]. In the numerical implementations we employed the
choice given in [14]. Below we give the definition of the edgewise-linear corrections
9, which result by using the equilibration procedures of [14].

Let us consider the vertex X and let Nx denote the total number of the edges
(or the elements) connected to the vertex as shown in Fig. 2.3a. Let us also denote
by r, and ej, i = 1,...,Nx the elements and the edges connected to X. We
determined the coefficients 07(ý-x) which are associated with the edge e and the
vertex X and are employed in (2.14); here the index-function v(e, X) identifies the
node X in the local enumeration used in (2.14) for the unknowns associated with
the edge. The values of the coefficients are (see also [14]):

'MNOX) = (N- i+1) j(x 22a

-c"X 9a(E _ j (Ox + A)F, 
4 x)N.=1 I

e,4 lx) = e , X) - F,, (Ox) , i - 2,3,...,(N - 1) (2.20b)

The edge-coefficients e (,,X) are computed based on the edge-normals which
rotate counterclockwise around the vertex X as shown in Fig. 2.3a.

Remark L.t. It is also possible to define the equilibration for polynomial spaces up
to degree p (where p denotes the polynomial degree of the elements).
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2.2.2 Error estimator based on patch-averaging

Here we outline an error-estimator based on local averaging which was in-
troduced by Zienkiewic. and Zhu [36, 37]. This estimator will be called the ZZ-
estimator in the examples below.

Let wx := U 7' denote the patch of elements connected to vertex X. For
xsJr(ro)

each patch "'x we recover the patch-projections orl, by solving the following least-
squares problem:

J(4,•- VuJ) = inI J.(a - Vu,), J(W) := (oi,())2 (2.21)

Here V., m = I,.., nap denotes a set of sampling-points in the patch wx.

The element error indicators for the ZZ-estimator are given by

1r := I1fzz- Vuhll, (2.22)

Here 4rzz denotes the recovered gradient which is obtained by averaging the patch-
projections orl. For the grids of triangular elements employed in this study a
continuous recovered flux rZZ is obtained by taking appropriate averages of the
flux recovered from the three patches associated with the element. In this work we
implemented the ZZ-estimator for elements of degree p = 1, 2, and 3 as follows:

a. Linear elements (p = 1).

The nodal values of o~z are recovered from the patches corresponding to each
node. The recovered C°-continuous piecewise-linear flux-field fZZ over the domain
is constructed as

uzz(z-) = Ox (a) (2.23)
X

Here ffl is the recovered flux field over the patch wX and frý [X is the value of the
recovered flux-field at the vertex X and Ox is the piecewise-linear basis function
associated with the vertex X.

b. Quadratic edements (p = 2).

A piecewise quadratic Langrangian representation of ozz is constructed from

ffoZZ() = O()+E +'% 1') ,t(Z) (2.24)

where Y is used to denote the midside nodes for the edges; Ox, ty are the Lan-
grangian quadratic basis functions associated with the nodes X, Y respectively;

22



XI, X2 are the vertices at the endpoints of the side which includes the midside
node Y.

c. Cu•bic elements (p = 3).

A piecewise cubic Langrangian representation of wzz is constructed from

W" +X Ox (go) +
o...,- .I......,Y

(2.25)
1 .i

3 al I?+ 12 'YT + 0' 3 I 7y) V,(W)

where Y 1,.., Y6 are used to denote the nodes for the Lagrangian cubic element
on the edges and Y7 denotes the interior node at the centroid of the element; Ox
and fy are the cubic Langrangian basis functions associated with the nodes X
and Y respectively; X1, X2, X3 are the vertices of the triangular element.

Zienldewicz and Zhu [36, 37] proposed two types of least-square problems for the
recovery of .f namely a discrete and a continuous least-squares patch-projection.
Here we used the discrete least-squares patch projection and we employed the
sampling points shown in Fig. 2.4a, Fig. 2.4b and Fig. 2.4c for linear, quadratic
and cubic triangles, respectively.

2.3 Definition of the effectivity index

The quality of an error estimator in a mesh-cell 4 is measured by the effectivity
indez

(2.26)

Here Th denotes the finite-element mesh which includes the mesh-cell 40 in its
interior, as shown in Fig. 1.2, IleAIL, is the norm (of interest) of the error e% over
Wo Oh is an error estimator for this norm which is computed in terms of element

error-indicators 'rh associated to every element r of the mesh TA,.
In [441, [451 it was demonstrated that, when the pollution error is negligible, the

value of the effectivity index x in the mesh-cell w04 is influenced (for all practical
purposes) by the geometry of the mesh in a mesh-patch V' which includes w04 and
a few mesh-layers around it. The asymptotic range of the effectivity index in the
cell
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(a)

Figure 2.4. Location of the sampling points employed by the discrete ZZ-estimator in

the interior mesh-patches. (a) Sampling points for linear elements; these

points are located at the centroids of the elements; (b) Sampling points for

quadratic elements; the points are ocated at the midpoints of the sides of

the elements; (c) Sampling points for cubic elements; the points are located

at the vertices, at the midpoints of the sides and at the centroid of the

elements.
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(b)

Figure 2.4. (continued)
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(C)

Figure 2.4. (continued)
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o0 .• < (2.27)

is dened in term of the constant C4, , , which can be determined by a
collnpel.-sed apprm h (see (44], (451). Inequality (2.27) can also be written
in the form

:5 (2.28)

which expresses the eqivalence between the norm of the error and the estimator
in the mesh-cell 4.

For example, for linear elements (p = 1) and for the Regular mesh-pattern
shown in Fig. 2.5sa, the values of the constants are (see [44]) C4 = e = 1.00 for
both the ER and the ZZ estimator while for the Criss-Cross mesh-pattern shown
in Fig. 2.5b, the values are, C4 =j 1.00, = = 1.414 for the ER estimator without
equilibration, C? _- U = 1.00 for the ZZ estimator and the ER estimator with
equilibration. Further results about the above &,,d other estimators for various
mesh-patterns are given in [44, 45]. From the, ý results it is clear that the ER
estimator with equilibrated data and the ZZ es :'axor are robust estimators (C1 f
Sf 1) for typical meshes used in engineering computations. As it was pointed
out earlier the constants C14, Ct can be determined under the assumption that
the pollution error is negligible in a neighborhood of the mesh-cell of interest (see
[44] for the mathematical analysis). In this work we demonstrate that:

1. The assumption on the pollution error is necessary (i.e. when the pollution
error is significant in the mesh-cell w0 (with respect to the error in the best-
approximation in Coh), (2.28) does not hold).

2. Robust a-posteriori error estimation in a mesh-cell wo" (and hence the validity
of (2.28)) is possible by controlling the pollution error in wes through proper
design of the mesh outside wo4.
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(a)

(b)

Figure 2.5. (a) Basic mesh-cell of the Regular mesh-pattern (b) Basic mesh-cell from

the Criss-Cross mesh-pattern.
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3 The pollution-effect for uniform meshes
Practical computations in elasticity and heat-transfer are often performed

using meshes which are nearly uniform (quasi-uniform). It is therefore important to
understand the pollution-effect for such meshes. Below we give numerical examples
which demonstrate the pollution-effect for uniform-meshes of linear, quadratic and
cubic triangles.

3.1 Numerical examples of the pollution-effect for uni-
form meshes

Here we present numerical examples which demonstrate that for the class
of uniform meshes and the class of specially unsmooth solutions (with algebraic
singularities of the type given in (2.2a)-(2.2c)) the pollution-effect depends on the
relationship between the values of the exponents of the algebraic singularities and
the polynomial degree of the elements.

3.1.1 Uniform meshes of linear elements

We considered the mixed boundary-value problems for the Laplace equation
in the L-shaped domain (,i = )shown in Fig. 3.1a. We applied boundary-

) 1
conditions consistent with the exact solution u(r, 0) = rT sin(a9), for a =

ir 2fo 1
and a = -- = a= homogeneous mixed boundary-conditions (resp. for

2
a = 3 homogeneous Dirichlet boundary-conditions) were applied on the edges

A1A2 , AIA6 which emanate from the singular-point while Neumann boundary-
conditions were applied on the rest of the boundary; see also Section 2), and we
computed finite element solutions using uniform meshes of linear triangles. In
Table 3.1 (resp. Table 3.2) we give the effectivity indices for the mesh layers w.,

I1
n= 1,..., (a typica mesh-layer is shown in Fig. 3.1a) for a = (rep. a,

3 ( 31)
We note that the effectivity indices x"R for the ER-estimator and rzz for the
ZZ-estimator are practically the same in the interior-layers. We also note that for

a = 2 (resp. a = -) the effectivity indices in the layers at a fixed distance from
the singularity converge to one (resp. zero) as the mesh-size h tends to zero.
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A 4  A3

A1 AA

A5  A6

(a)

Figure 3.1. (a) The L-shaped domain with boundary A1 A ... A 1A,, meshed with a

uniform grid of triangular elements in which the eighth mesh-layer is shaded

gray; (b) The convex domain with boundary AIA, ... A 4A1, meshed with a

uniform grid of triangular elements in which the eighth mesh-layer is shaded

gray; (c) The triangular domain with boundary AA ... A21A1 meshed with

a a uniform grid of triangular elements in which the sixth mesh-layer is

shaded pay.
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Figure 3.1. (continued)
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Figure 3.1. (continued)
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Table 3.1. (continued)

Effectivity index for each mesh-layer

Exact solution u(r,9) = rJ sin(Y); linear elements
3

Ills IN.f.Lf- - 0

1 0.667 0.686 61.64
2 1.185 1.064 37.99
3 1.007 0.996 23.32
4 0.976 0.977 17.25
5 0.967 0.971 13.87
6 0.964 0.967 11.69
7 0.962 0.965 10.15
8 0.960 0.964 9.00
9 0.959 0.962 8.11
10 0.957 0.960 7.40
11 0.956 0.959 6.81
12 0.954 0.957 6.32
13 0.953 0.955 5.90
14 0.951 0.954 5.54
15 0.950 0.952 5.23
16 0.948 0.950 4.95
17 0.946 0.948 4.71
18 0.945 0.947 4.49
19 0.943 0.944 4.29
20 0.941 0.943 4.12
21 0.939 0.941 3.96
22 0.937 0.939 3.81
23 0.935 0.937 3.68
24 0.933 0.935 3.55
25 0.932 0.933 3.44
26 0.930 0.931 3.33
27 0.927 0.929 3.23
2'% 0.926 0.927 3.14
29 0.923 0.925 3.06
30 0.921 0.922 2.97
31 0.918 0.919 2.90
32 0.917 0.956 2.83
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Table 3.2. (continued)

Effectivity index for each mesh-layer

Exact solution u(r, 9) = ri sin(f); linear elements
3

LWW h=--

number
,a S! .100

1 0.796 0.678 86.52
2 0.830 0.853 34.26
3 0.661 0.666 19.92
4 0.567 0.572 14.37
5 0.515 0.519 11.42
6 0.478 0.482 9.57
7 0.450 0.453 8.30
8 0.427 0.429 7.37
9 0.407 0.409 6.65
10 0.390 0392 6.09
11 0.375 0.375 5.63
12 0.361 0.362 5.25
13 0.348 0.349 4.93
14 0.337 0.337 4.66
15 0.326 0.327 4.42
16 0.316 0.317 4.21
17 0.308 0.308 4.02
18 0.299 0.300 3.86
19 0.292 0.292 3.71
20 0.285 0.285 3.58
21 0.278 0.278 3.45
22 0.272 0.272 3.35
23 0.266 0.266 3.24
24 0.260 0.261 3.15
25 0.255 0.255 3.07
26 0.250 0.250 2.98
27 0.244 0.244 2.92
28 0.239 0.239 2.86
29 0.233 0.234 2.81
30 0.228 0.228 2.76
31 0.221 0.222 2.74
32 0.215 0.226 2.72
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3.1.2 Uniform meshes of quadratic elements

We considered the mixed boundary-value problem for the Laplace equation in

the convex domain (Wi shown in Fig. 3.1b and applied boundary-conditions

consistent with the exact solution u(r, 0) = r smn(ao) for a - = - and a =
7_ 4/ 2 ."'
n = 3 (for a = homogeneous mixed boundary conditions (resp. for a =

4i homogeneous Dirichlet boundary-conditions) were applied on the edges AIA 21,
A A4 which emanate from the singular point, while Neumann boundary conditions
consistent with the exact solution were applied on the rest of the boundary) and
we computed finite element solutions using uniform meshes of quadratic triangles.
In Table 3.3 (reap. Table 3.4) we give the effectivity indices r,, for both estimators

in the mesh-layers w., n = 1,...,- fora = ! resp. a = . We note that
412' 3 3

for a = 3 (resp. a = the effectivity indices in the layers at a fixed distance
from the singularity for both estimators converge to one (resp. zero) as the mesh
is refined.

3.1.3 Uniform meshes of cubic elements

We also considered the mixed boundary-value problem for the Laplace equa-

tion in the triangular domain shown in Fig. 3.1c I = 5 with exact solution
r 6 Ir 1_2(T 6

u(r,O) = r~sin(aO) for a= = and a= =1 fora= homogeneous
12

mixed boundary conditions (reap. for a = -1 homogeneous boundary-conditions)
5

were applied on the edges AA 2, AIA 3 which emanate from the singular point vhile
Neumann boundary conditions consistent with the exact solution were applied on
A2A3) and we computed finite element solutions using uniform meshes of cubic

triangles. In Table 3.5 presp. Table 3.6) we give the effectivity indices for the172(6.12 
rep

mesh-layers w,, for a - -- (resp. a = 5). We observe that for ar = (

a = !) the effectivity indices in the layers at a fixed distance from the singularity

converge to one (resp. zero) as the mesh is refined.

3.1.4 Summary of numerical results

From the results we make the following observations. For uniform meshes:
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Table 3.3. (continued)

Effectivity index for each mesh-layer

Exact solution u(r, 9) = rf sin(M); quadratic elements
3

Laer h=
number 32

UoICIZ Ed, 100
1 0.647 0.682 81.64
2 0.995 1.064 37.99
3 0.997 0.998 23.32
4 0.976 0.977 17.25
5 0.967 0.971 13.87
6 0.964 0.967 11.69
7 0.962 0.965 10.15
8 0.960 0.964 9.00
9 0.959 0.962 8.11
10 0.957 0.960 7.40
it 0.956 0.959 6.81
12 0.954 0.957 6.32
13 0.953 0.955 5.90
14 0.951 0.954 5.54
15 0.950 0.952 5.23
16 0.948 0.950 4.95
17 0.946 0.948 4.71
18 0.945 0.947 4.49
19 0.943 0.944 4.29
20 0.941 0.943 4.12
21 0.939 0.941 3.96
22 0.937 0.939 3.81
23 0.935 0.937 3.68
24 0.933 0.935 3.55
25 0.932 0.933 3.44
26 0.930 0.931 3.33
27 0.927 0.929 3.23
28 0.926 0.927 3.14
29 0.923 0.925 3.06
30 0.921 0.922 2.97
31 0.918 0.919 2.90
32 0.917 0.956 2.83
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Table 3.4. (continued)

Effectivity index for each mesh-layer

Exact solution u(r, 9) = rf sin(M); quadratic elements
3

L a y e r h = --

number 32
S: 100

1 0.764 0.635 96.94
2 1.186 0.869 15.04
3 0.602 0.548 7.84
4 0.404 0.384 5.91
5 0.291 0.281 5.05
6 0.221 0.215 4.55
7 0.175 0.170 4.21
8 0.142 0.139 3.96
9 0.118 0.116 3.67
10 0.101 0.099 3.61
11 0.087 0.086 3.47
12 0.076 0.075 3.35
13 0.067 0.066 3.25
14 0.060 0.059 3.16
15 0.054 0.053 3.08
16 0.049 0.048 3.01
17 0.045 0.044 2.94
18 0.041 0.040 2.88
19 0.037 0.037 2.83
20 0.035 C.034 2.77
21 0.032 0.032 2.73
22 0.030 0.030 2.68
23 0.028 0.028 2.64
24 0.026 0.026 2.60
25 0.025 0.025 2.56
26 0.023 0.023 2.53
27 0.022 0.022 2.50
28 0.021 0.021 2.48
29 0.019 0.019 2.46
30 0.016 0.016 2.44
31 0.013 0.013 2.43
32 0.011 0.011 2.42
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(i). The pollution-effect depends on a relationship between the exponent a of the
singularity and the polynomial degree p of the elements.

(ii). The pollution-effect for fixed mesh-size h and for fixed exponent a becomes
more significant as the polynomial degree p of the elements is increased.

(iii). For elements of quadratic degree or higher the pollution-effect in finite-
element solutions of the Laplacian exists even for convex domains.

The same conclusions are expected to hold for the class of quasi-uniform meshes
which are often used in practical computations.

3.2 Analysis of the pollution-effect for uniform meshes.

3.2.1 Preliminaries

Let us assume that the mesh is uniform as in the examples. (The analysis holds
for the broader class of quasi-uniform meshes. The majority of the grids employed
in the practical computations are quasiuniform). The error eA, = u - u% is the
solution of the following boundary-value problem

--Ael----F (Eij,+r,) in fl (3.1a)

_-- 0 on rN (3.1b)

57n

A- = 0 on rD (3.1c)

The variational form of this problem was given above in (2.6) (the residual equa-
tion). Here by J, we denote the Dirac function (line-load) on the edge e associated
with the element r i.e.

fJUJ=>EJViJ, (3.2)

where J, was defined in (2.7). By the equilibration procedure described in Section
2.2.1 (which can be extended to elements of any degree p) we can rewrite (the
right-hand side of) (3.1a) in the form

-_eA = ,t (3.3a)
TOETA

where
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+ (3.3b)
tsar

where P awe the Dirac functions analogou as before and such that

and

PV = 0 Y vEP, (3.4b)

as a result of the equilibrations (here we assume p-degree equilibrations of the

residuals). From (3.4) it follows that Tp, = 0 and hence there exists i, E HI(r)

such that

B,(i,,v) : pv V v E H'(T) (3.5)

Further we have

I 4s.,.V(,vIl,,II\
II1e,%111 sp0V = $11P IIP (3.6)

where er denotes the exact solution of the eqi/ibrated element residual prolem
(3.5).

Let us now define W, E Hr. such that

-AW, = p, in 0 (3.7a)

awl,3.b S= 0 on rN (3.74)

W, = 0 on rD (3.7c)

We have by superposition

ek(m) = W W,(*) V a E l (3.8)
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Let to be an element of interest and denote by #(W)(r,) the set of elments in

rn-layea amund rT, including rT

: 4 {Th I .r Co .(.k(rO)} : { T*o): } (3.9a)

where

() U ( U KQ), A(T*)=To, 9,= , x:= U r" (3.9b)
r'E -r.o) XEN(v') XEN(r)

Here N(r) is the set of the three vertices of triangle r. We let

vl(,')(ro) : = E: w, VIM) (ro) = W, (3.1o,,)
,ee(-)(•o ) ¢-(o)

and by superposition

V,(M)(ro + VI'(Mo) = e , (3.10b)

We define the norms

0(m)(,To) := IIIV,(m)('ro)lllo, f(m')(ro) := IIlV2()('ro)lllo, (3.11a,)

tP=o) = IIlI¾')(ro) + V2(f)(ro)IIlo = IIIeJII,,l (3.11b)

It is easy to see that, from the complementary variational principle,

'.:Il,:= lll4,o 111 2:*°)('ro) (3.12)

where 4, denotes the exact solution of the local problem (3.4).

Remark 3.1 Here Vl(') (ro) is the component of the error which is due to the resid-
uals in the element ro and m-layers of elements around it. Analogously, V2(')(7o) is
the component of the error due to the residuals in the elements outside the m-layer
neighborhood #(W)(ro) of %.
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S.2.2 The near-field pollution

In general, the error in an element is influenced by the residuals in the entire
mesh. However, when the solution is smooth, and the mesh is uniform, the error
in an element To is, for all practical purposes, influenced only by the residuals in
To and in a few mesh-layers of elements around ro. The effect of the residuals in
a few mesh-layers of elements around T0 on the error in T0 will be referred to as
the near-field pollution. Analogously the influence of the residuals beyond a few
mesh-layers of elements around ro on the error in ro will be referred to as thefar-
field pollution. Below we show results which indicate that the near-field pollution
is fuhly accounted for by robust local error estimators.

We considered various meshes shown in Fig. 3.2a-3.2d, in which the elementro
is shaded black and a few mesh-layers around ro are shaded gray. We computed the
norms defined in (3.11a) first by considering only the residuals in the element ro and
then, in progression, the residuals in all the elements in OW")(r 0 ) for = 1,2,3....
We computed the values of the pollution factor for the energy:

2,•(m)% :- III 0)(1o)1I
1iiVI()(ro)lll2 + 111V 2('.)(ro)llj2 100 (3.13)

In Table 3.7a we give the values of p4(')% for p = 1, 2, 3 for the Regular
mesh-pattern shown in Fig. 3.2a. In Table 3.7b we give the values of #24(")% for
p = 1, 2, 3 for the Criss-Cross mesh-pattern shown in Fig. 3.2b. In Table 3.7c we
give the results for p = 1, 2, 3 for the mesh-pattern shown in Fig. 3.2c and in Table
3.7d we give the values of U2('u)% for p = 1, 2, 3 for the mesh-pattern shown in
Fig. 3.2d. We also see that VI1o)(to) is significantly smaller than the exact values
of JIIehjjj,. Note that the factor #2,(" 4) converges to 100% when the residuals in
two layers of elements around To are considered. Also note that as the polynomial
degree p of the elements is increased, the ratio P2('u)% is practically equal to 100%
for m > 1.

Hence we have 42)(to) IieiAIII for the mesh-patterns considered and since

e- Illdllo < q,• < ,IIehlll for constants C•°, CQ° close to 1, (see Section

2.3) we have %z • III1 (0)(To).,, for both the ER-estimator with equilibrated

data and the ZZ-estimator. Moreover since Illehllo = IIIV,(m)(To) + V2"'t)( o)Ily
we haven, f Illehlll, only if IIIV2(P)III, < II14m)11,o. Hence IlI1 )II111%o expresses
the far-field pollution, or, in other words %, is an estimate of IIjuh - (u - V2('))III,0
i.e. it estimates how close uh is to u - V2(') (where m = 2 for the mesh-patterns
considered here).

From the numerical results of this Section we can infer that: When the solution
is smooth and the mesh is periodic we have
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(a)

Figure 3.2. Uniform grids of different Patterns with the element 7j, shaded black and a

few mesh-layers around %0 shaded in different shades of gray. (a) Regular

mesh-pattern; (b) Criss-Cross mesh-pattern; (c) Special mesh-pattern 1;

(d) Special-mesh-pattern 2.

48



XXXXXXXXXXV
xx

x I>mxix
><D<X><XM

x xx

x
x

x

><D<X
x ><D< XxIe
x ><xX><D<D0<D<X
XXXXXX><D< X>O<D<M

X xýx -

(b)

Figure 3.2. (continued)
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Figure 3.2. (continued)
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Figure 3.2. (continued)
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Table 3.7a. Effect of the near field pollution: Pollution factor for the energy of the

error in the element r0 due to the residuals in m mesh-layers surrounding ro for the

mesh shown in Fig. 3.2U. Note that the percentage of the energy of the error in rO

approaches 100% when the residuals in the first layer surrounding ro are included.

Pollution factor for the energy of the error in
the element O due to the residuals

in m mesh-layers around To.

Regular mesh-pattern

IIIV(,-)(Lro)lll2
Number of Layers o111( x 100

III V¶('n( 0iIIjj + IJIIV(-) 0Iir'~l

p=I p=2 p p=3

0 66.92 74.87 76.64
1 84.44 97.60 99.99
2 99.98 99.99 99.99
3 99.99 99.99 99.99
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Table 3.7b. Effect of the near field pollution: Pollution factor for the energy of the

error in the element T0 due to the residuals in m mesh-layers surrounding ro for the

mesh shown in Fig. 3.2b. Note that the percentage of the energy of the error in 7o

approaches 100% when the residuals in two layers surrounding o are included.

Pollution factor for the energy of the error in
the element r0 due to the residuals

in m mesh-layers around TO.

Criss-Cross mesh-pattern

I I V 1• " ( , .o1 1 1
Number of Layers I)I112oxI10

,m. II1 ')(.ro)llI2 + IJII,,,)(ro)ll,2 10

p=l p=2 p=3

0 77.07 69.28 78.86
1 94.03 96.03 99.99
2 99.99 99.99 99.99
3 99.99 99.99 99.99
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Table 3.7c. Effect of the near field pollution: Pollution factor for the energy of the

error in the element r0 due to the residuals in m mesh-layers surrounding ro for the

mesh shown in Fig. 3.2c. Note that the percentage of the energy of the error in ro

approaches 100% when the residuals in two layers surrounding ro are included.

Pollution factor for the energy of the error in
the element ro due to the residuals

in m mesh-layers around ro.

Special mesh-pattern shown in Fig. 3.2c

Number of Layers i 1 ,)112 x 1oo
m JIjVI-)(TrO)jII2 + Ill V2(M)(7.O)jjj2

p=l p=2 p=3

0 66.73 78.94 79.43
1 92.00 94.06 98.00
2 99.99 99.99 99.99
3 99.99 99.99 99.99
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Table 3.7d. Effect of the near field pollution: Pollution factor for the energy of the

error in the element ro due to the residuals in m mesh-layers surrounding TO for the

mesh shown in Fig. 3.2d. Note that the percentage of the energy of the error in r0

approaches 100% when the residuals in two layers surrounding To are included.

Pollution factor for the energy of the error in
the element ro due to the residuals

in m mesh-layers around ro.-

Special mesh-pattern shown in Fig. 3.2d

Number of Layers 1 (o )1i1 1 x 100
m IJIVI'4")(To)1112 + IIjV2P')( 70O)j112

p=l p=2 p=3

0 74.56 82.15 83.04
1 93.89 97.97 98.36
2 99.98 99.99 99.99
3 99.99 99.99 99.99
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% F IIIIV'(-rO)IIIf f IlklL, for M > > O

for every interior element TO E TA where mo denotes the numbers of layers of
elements around ro (including To) for which the element-residuals are responsible
(for all practical purposes) for the error in To (for the meshes considered above
it is sufficient to take no = 2). In other words when the solution is smooth and
the mesh is periodic, an error estimator takes into account the residuals in all
mesh-layers around any interior element.

So far we addressed the energy-norm " Ilk, in an element To; of course the
result will hold if we replace To by a patch of elements uA and replace #(')(T0 ) by
*(M)(wh) with the obvious meaning.

3.2.3 Asymptotics of the pollution-effect for uniform meshes

Let us now analyze the asymptotics of the pollution. Given a E (1 we can write

I (o)() = fr G,(), i = 1, 2 (3.14a)

'O,= VJ pN G,(w), i = 1, 2 (3.14b)

where Gi (a) is the Tj -derivative of the Green's function and the integrals have to
be understood in the proper sense. We have for m > 0

lDmG,(x)_<5 C on fl(z;R):= fl-O(a;R) (3.15)
Rm

provided that fl is a rectangle and either rN = 0 or rD = 0. (For general
polygonal domains (3.15) holds for m < fn, where fn depends on the angles and
the type of boundary-conditions.)

Assuming that the exact solution u is smooth we have

ChP_ (< i /)l < C4hP (3.16)

Assume now that U f D O(a, R) and using (3.4) we have

rIEO(,,)(7o)o (G.,(-)I- I
f• v's(= • p•" (Ga )I (.7
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for every x E Srj- Now using (3.15) we see that we can select Xo such that co

To we have

le(G? - Xo) ff= 0 (3.18a)

and

I ,.) -o[ < : C -• (3.18b)

Hence

jpG,( ) w -,•xO)

=B,(iG,(z) - - (1 ,2)-1C -<Ch <C (3.19)

and hence

II±VP"(To1)r -< c - (3.20)
8,Ox RP+'

Because II[e&II 2_ ChPII we see that if we select R >_ hWT the pollution is negligible
asymptotically.

In the above argument we used the assumption that the solution u was smooth
(and hence ( , V,') 1 <Ch'). If the domain is convex and either rN or rD is

empty then (3.16) holds for p = 1. Assume now that the domain is not convex or
that we have mixed boundary-conditions. Then we have

(rol(z) r -- -- , i= 1, 2 (3.21)

and hence

IV 2( 0)(11, _< Ch (3.22)

Because
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IIle&ilk, Ž Ch' (3.23)
1

we see that if a < I then the pollution may be significant.
2p

Remark S.S. In the proof of (3.22) we employed the fact that the Green's function

G(z) and its derivatives G,(z), i = 1, 2, are singular in the neighborhood of the
vertices A, (see Fig. 2.1). Because of this singular behavior the exponent (2a + 1)

in (3.22) is independent of p. We have proven in (3.21) the upper estimate. It is
possible to prove similarly, as in the theorem 13.1 of [65], that the estimate (3.21)
is sharp i.e. that the coefficient 2a cannot be improved, in general.

Remark 3.3. The estimation of V2 in a non-asymptotic way can be made only
i .in a-posteriori method. This will be addressed in a forthcoming paper.

3.2.4 Discusson of the numerical results in the context of the asymp-
totic analysis.

In Section 3.1 we gave numerical results which indicate the effect of the pollution
error on the local quality of the error estimators. We now discuss the results of

Section 3.1 based on the asymptotic analysis given above.

We define the pollution factors for a mesh-cell wh

- III 2)(WA)lll 100% (3.24)
+I("A) I 1 +11 O )

and

=IIlI00% (3.25)

Obviously if 4) is small then 4 K f C). We see now that the pollution in wh is

negligible if p4m) and C) are small (more precisely if 4) - 0 as h --- 0).

According to the asymptotic analysis the effect of the pollution is negligible
asymptotically only when 2a > p. On the other hand when 2a < p the pollution
error is the significant part of the total error (asymptotically) in the interior of the
mesh; in that case the -Iectivity index for any estimator (which is based on local
computations), for elements in the interior of the mesh, converges to zero.

For the example problems given in Section 3.1 we considered interior mesh-cells

w&o and we computed the components Vi(m)(wo0) and V2(')(w4) of the error ek and

their energies II2 ")( )II , _ Let no denote a fixed subdomain
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which includes m in its interior; we may assume that the mesh T# is such that fl
is always exactly covered by the elements which intersect it. We let

VIA (AO)(-) - j p, G(.), V2 (Q0 )(w): L j,. G(w) (3.26)

Below, for simplicity, we will omit no from most appearances of V,', V2 . We note
that IV, and V2 satisfy the following variational problems:

(a) Find V, E HrD(fl), and

BO(V , v) = ( F(v) V v E HrD (3.27.)
wTC%

(b) Find V2 E Hr" (fl) such that

BG(V2 ,V) = F, F,(v) V v E HrD (3.27b)

We note that for mesh-cells wok C 00 which are separated by two (or more)
mesh-layers from the boundary o flo we have

V1(fl0)[4, V2
2~(4 V2 (14) (3-2)

Thus, the functions V1 and V2 are practically the same as V1('4), 0 42)('4),

for all mesh-cells wo' which are separated by two or more mesh-layers from the
boundary of the subdomain flo. Based on the analysis given above we say that
the pollution is significant if the ratio is is close to 100%. (The pollution-factor

is defined as in (3.24) where V, (lo)0 1), V2 (flo)J.. may be employed instead of

V1(`)('4), 2"')(woh).) We will refer to #% as the percentage of pollution in the

mesh-cell w'4.

We considered a shrinking eight element mesh-cell Wo C fl0 which consists of
the eight elements in the h-neighborhood of the center go of the subdomain flo

S(z°,h) := {z = (zIX 2)I max(Iz, - 411, 1I2 - X*°) < h} (3.29)

(Note that in all the examples below we consider square subdomains flo). We
computed V, and V2 in two different ways:
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a. Least-.qu-ro fit (smo thing)

We let V2 = u - w and V, =e el - V2 , where w is the limit function to which
ul converges in the neighborhood of s° as h tends to zero. The function w is
approximaUd by letting

t,(W) f % + t(avQ.(a -o) +a2Q(a .0)) (3.30a)

where

Q1(*) = Re(zk), Q2(X) = ZM(zk) Z = X1 + 'Z2 , = = (zIZ2) (3.30b)

and by employing a least-squares fit of the above expression to the values of u', in
flo to determine the coefficients.

b. Approzimation of V, , V2 using a global h4ger-order approzimation

We can approximate V1 , V2 by solving directly the residual equations (3.28a)
(resp. (3.28b)) satisfied by V, (resp. V2 ) using a finite-element approximation of
degree q > p on the same mesh used to approximate us (we call this q-degree
approximation an overkill).

In the results below we report the values of the pollution factors 0 , the

effectivity index #%4 and the effectivity index < = -- for the shinking

eight-element mesh-cell located at the center of the subdomain -no.

3.2.4.1. Uniform meshes of linear elements.

In Tables 3.8., 3.8b we give the values of II 1 II1•, III1V 211 and f.4 VVI -VV2 ,
the values of the pollution factors p% and and the effectivity indices ' and

0 2
PC' for the two estimators for linear elements (p = 1) and a = (2a > p). Note

that the pollution factors % and e. converge to zero and the effectivity indices
x,. and x:', (for both estimators) converge to one as the mesh-size tends to zero.

Hence for a Z- there is no pollution for linear elements, asymptotically. In Fig. 3.3
(resp. Fig. 3.4) we show the directional derivatives of the V1 - and V2 -components
of the error along the s-axis shown in Fig. 3.1a, for h = 0.125 (resp. h = 0.03125).
In this example (and all other examples involving the L-shaped domain) we let
fO = (-1,1)2 - [0,1] x [-1,0]. Here we let flo = (0.25,0.75)2. The points of the
graph whicL lie in the interior of the subdomain flo are between the dotted vertical
lines. Note that the V2 -component of the error is practically zero in the interior of
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Table 3.Sb. Pollution factors/zt% and &4 % and effectivity indices in the shrinking
2

mesh-cell t. L-shaped domain shown in Fig. 3.1a, a = p =• 1(2a > p). Note that

the pollution factors converges to zero and the effectivity indices •,t and W't converge

to one, asymptotically.

Pollution factors and effectivity indices in uO

Exact solution u(r,G) = ri sin(A); linear elements

Shrinking mesh-cell w0 centered at (O.S, 0.5)

h I' % % fWfeivity Index Effectivity index

0.125 40.51 44.31 0.888 0.889 1.04 1.04
0.0625 30.96 32.56 0.931 0.932 1.01 1.01

0.03125 23.19 23.84 0.959 0.959 1.00 1.00
0.015625 16.28 16.50 0.981 0.981 1.00 1.00
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Study of the Pollution Error
0.100 Singular Solution: un(r,O)= r(") Sin(2e/3)

Linear Elements, Uniform Mesh (h = 0.125)
Li

4 0.05Q ',

S•, I ""

0 AV,

>

o 00.000.

0-0.050- ot V, Error Frfom Overkill (p = 3)
1V Error Frpm Overkill (p = 3)

U oe •.V Error Fr vtm Smoothing (p = 6)
omoesoteer on Error From Smoothing (p = 6)

-0.100 - i I U S

0.18 0.58 0.98 1.38
Arc Length Coordinates Along S-Axis

Figure 3.3. Pollution effect for uniform meshes. Linear elements (p =),a=2

1pUniform mesh size h = i. Directional derivatives of the Vs and Va -

components of the error along the line A1A3 (shown in Fig. 3.1a). Note
that j•I 'V -1I in the interior of the subdomain.
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Study of the Pollution Error
Singular Solution: unx(r,e) = r'"' Sin(2e/3)
Lipear Elements, Uniform Mesh (li = 0.03125)

o U-
LO

0.030

S0.010

- S

>.,..-.* V1 Error From SnYoothing (p = 6)

.1 0-.-030 ZZ Error Estimatjr

-0.050 11,111111r

0.14 0.54 0.94
Arc Length Coordinates Along S-Axis

(a)

2
Figure 3.4. Pollution effect for uniform meshes. Linear elements (p = 1), a =

1
Uniform mesh size h = -. - (a) Directional dezivatives of the V1 - and V2 -

components of the error and the ZZ estimators along the a-axis (shown

in Fig. 3.1.). (The extent of the subdomain is indicated by the dotted

vertical lines.) (b) Detail of the graph in Fig. 3.4& for the points lying iniOVi l IV i a'
the subdomain. Note that I-E I -n IE"= and (oaz - V,&). -a;!-

asymptotically, in the interior of the sunbon.
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Study of the Pollution Error
0.010 Singular Solution: ugx(re) = r(13) Sin(2e/3)

0
Linear Elements, Uniform Mesh (h = 0.03125)

ILi

.q 0.005

C 0.000 " -- -- :

S-0.005 e V1 Error From Overkill (p = 3)

---• 2 V Error From Overkill (p = 3)

*-• --. V, Error From Smoothing (p = 6)
Vg Error From Smoothing (p = 6)
ZZ Error Estimator

- 0.010 . . . . . . .. .o . . I I I I I . . . . . . . .. . . . .
0.53 0.63 0.73 08

Arc Length Coordinates Along S-Axis

(b)

Figure 3.4. (continued)
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the subdomain. In Fig. 3.4b we show the detail of the graph in Fig. 3.4a for the
elements in the interior of the subdomain. Note that the error estimator coincides
with the Vi -component of the error in the interior (one layer of elements away
from the boundary) of the subdomain nlo.

In Tables 3.9a, 3.9b, we give the values of ]lI IIV,111, IIIV2 III• and f4• VI' -VV2 ,

the values of the pollution factors ju and and the effectivity indices oc.& and

O for the two estimators for linear elements (p = 1) and a I (2& < p). Note
t % 3

that the pollution factor #4 converges to 100%, the pollution factor • diverges to
infinity and the effectivity index xc, converges to zero; however the effectivity index
<: converges to one as the mesh-size tends to zero. In Fig. 3.5 (resp. Fig. 3.6) we
show the directional derivatives of the components of the error along that part of
AI A3 which lies over the subdomain, for h = 0.125 (resp. h= 0.03125). Note that
the V2 -component of the error converges to zero slower than the V1 -component as
the mesh is refined. In Fig. 3.6b we show the detail of the graph in Fig. 3.6a for
elements in the interior of the subdomain. Note that the error estimator coincides
with the V1 -component of the error in the interior of the subdomain.

3.2.4.2. Uniform meshes of quadratic elements.

Similarly as in the example 3.1.2 we let fl be the trapezoid shown in Fig. 3.1b
with A, = (0, 0), A2 = (1, 0), A3 = (1, 1), A4 = (-1, 1). For the .efinition of V4 and
"V2 and the shrinking mesh-cell wo" we selected the subdomain fl, = (0.375,0.625)2.
In Tables 3.10a, 3.10b we report the values of the components of the error, the
pollution factors and the effectivity indices for quadratic elements (p = 2) and

4 (2a > p). Note that the pollution factors pg and f1 converge to zero

and the effectivity indices 'y• and ic' for both estimators converge to one as the
mesh-size tends to zero. In Tables 3 .11a, 3.11b we give the values ofW

IIIV 2 1 112 and f. VV1 • VV2 , the values of the pollution factors p1 and f o, and

the effectivity indices x,, and r' for quadratic elements and a = •. Note that

for a = 2 (2a < p), the pollution factor p% converges to 100%, the pollution-3
factor • diverges to infinity, the effectivity index %& converges to zero; however
the effectivity index oc: converges to one as the mesh-size tends to zero.

In Fig. 3.7a (resp. Fig. 3.7b) we show the directional derivatives of the V1 -
and V2- components of the error along that part of the s-axis which lies over the2
subdomain no of the uniform mesh of quadratic elements for a = 2 and h = 0.0625

3
(resp. h = 0.03125) as shown in Fig. 3.1b. Note that the V2 -component of the error
in the interior of the subdomain converges to zero slower than the V1 -component of
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Table 3.9b. Pollution factorsp,, 1 f and effectivity indices 1C,' W in the shrinking

mesh-cell wo. L-shaped domain shown in Fig. 3.1a, a = p = 1 (2a < p). Note that

the pollution fator p. converges to 100%, the pollution factor f,1 diverges to infinity
0 0

and effectivity index i, converges to zero asymptotically. However the effectivity

index . converges to one.

Pollution factors and effectivity indices

Exact solution u(r, 0) = ri sin(!); linear elements

Shrinking mesh-cell w0h centered at (0.5, 0.5)

r* e = wh

h 490% f47% Effectivity Index Effectivity Index

O•zz E;R o ZZ Oe ER

0.125 97.12 408.0 0.235 0.237 1.04 1.03
0.0625 97.81 470.7 0.203 0.204 1.01 1.01

0.03125 98.45 561.7 0.172 0.172 1.00 1.00

68



Study of the Pollution Error
0.025 Singular Solution: uu(r,e)= rI"J' Sin(0/3)

Linear Elements, Uniform Mesh (h = 0.125)

SS..

0

0.01

000

4) -0.005

0 .0...V, Error From Overkill (p = 3)
*60 -0.015 m--~.Va Error From Overkill (p = 3)

a)o-a-.V, Error From Smoothing (p = 6)
5-~V. Error From Smoothing (p = 6)

-h-4ZZ Error Estimator

Arc Length Coordinates Along S-Axis

Figure 3.5. Pollution effect for uniform meshes. Linear elements (p = 1), a

Uniform mesh usie h = .Directional derivatives of the V, - and V. -

components of the error and the ZZ estimator in the mubdomain along the

a-azm shown in Fig. 3.1a. Note that J'Iad (ozz -Vul.).-a

5;$ asymptotically, in the interior of the subdomain.
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Study of the Pollution Error
0.030 Singular Solution: unc(rO) = r"* Sin(0/3)

Linear Elements, Uniform Mesh (h =0.03125)
0

-'0.0100

0--..-V, Error From Overkill (p = 3)

*-.-. V, Error From Smoothing (p = 6)
*.- V2 Error From Smoothing (p = 6)

ZZ Error Estimator

0.55 0.75 0.95
Arc Length Coordinates Along S-Axis

(a)

Figure 3.6. Pollution effect for uniform meshes. Linear elements (p = 1), a=

Uniform mesh-size h& = j2. (a) Directional derivatives of the V,~ - and V2 -

components and the ZZ estimator in the subdomain along the a-axis in

Fig. 3.1a. (b) Detail of the graph in Fig. 3.6a, for elements in the interior

of the subdomain. Note that I~- I Iand (az -Vl') -a -. O4

I 19V-8,18'
asymptotically, in the interior of the subdomain.
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Study of the Pollution Error
0.010 Singular Solution: unx(r,G) = r(1/3 Sin(0/3)

Linear Elements, Uniform Mesh (h = 0.03125)
L.
0

.. 0.005

0

I.•

-0.005 . V, Error From Overkill (p = 3)

S- Va Error From Overkill (p = 3)
a) • .--- V, Error From Smoothing (p = 6)

Va Error From Smoothing (p = 6)
S-4---- ZZ Error Estimator

•0 01 - .. . 1 1 16.71l i I I I I I I I 1 I 1

0 0.63 0.73 .83
Arc Length Coordinates Along S-Axis

(b)

Figure 3.6. (continued)
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Table 3.10b. Pollution factors %4,% and effectivity indices .,h, x4 in the shrinking

mesh-cell 4. Convex domain shown in Fig. 3.1b, a - p = 2 (2a > p). Note that

the pollution factors decreases and the effectivity indices i,. and xc. converge to one

asymptotically.

Pollution factors and effectivity indices

Uniform mesh; Shrinking mesh-cell centered at (0.5, 0.5)

Exact solution u(r, 9) = ri sin(M); quadratic elements

Shrinking mesh-cell wh centered at (0.5, 0.5)

h E Effectivity Index Effectivity Index

0.125 5.35 5.36 1.014 0.999 1.013 0.998
0.0625 7.49 7.50 1.010 0.999 1.007 0.997

0.03125 14.61 14.69 1.009 1.00 0.988 0.997
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Study of the Pollution Error
Singular Solution: usx(r,e) = r"'1• Sin(2e/3)

0.0005 Quadratic Elements, Uniform Mesh (h 0.03125)

0
S"

0.0003

0

) 0.0001

°A
V -0.0001

o . V, Error From verkill (p = 4)
Z -0.0003 . . V2 Error From 0 rkill (p = 4)

4) "-'.. V, Error From S othing (p = 6)

S. Va Error From Sm thing (p = 6)
- ZZ Error Estimator

0.53 0.63 0.73 0.83
Arc Length Coordinates Along S-Axis

(a)

2
Figure 3.7. Pollution effect for uniform meshes. Quadratic elements p = 2, a = 2

(a) Uniform meh-si h = j2. (b) Uniform mesh-size h = . Directional

derivatives of the V, - and V.-components of the error and the ZZ error

estimator in the subdomain along the s-axis shown in Fig. 3.lb. Note that

I-s-V I I -IL I and (cZZ - Vuh). se -E--, asymptotically, in the interior

of the subdommln.
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Study of the Pollution Error
Singular Solution: uuz(r.0) = r""3 1 Sin(20/3)

0.0005 Quadratic Elements. Uniform Mesh (h =0.015625)

0

0.0003

0

S0.0001

>..

W) -0.0001

0 Vo1 Error From Over ill ýp 4)
~ -0.003 m--."..Va Error From OverkI =4

... V, Error From !moo ng 6
Va Error From Smoot ng 6
ZZ Error Estimator

0.52 0.60 0.68 0.76 0.84
Arc Length Coordinates Along S-Axis

(b)

Figure 3.7. (continued)
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Table 3.1Ub. Pollution factors ps , ("I and effectivity indices c,4, x4 in the shrinking* 44
2

mesh-cell &4. Convex domain shown in Fig. 3.1b, a = p = 2 (2a < p). Note that the

pollution factor ps• converges to 100%, the pollution factor (, diverges to infinity, and0
effectivity index o,4 converges to zero asymptotically. However the effectivity index

i converges to one.

Pollution factors and effectivity indices

Uniform mesh; Shrinking mesh-cell centered at (0.5, 0.5)

Exact solution u(r, 0) = rI sin(M); quadratic elements

Shrinking mesh-cell w4A centered at (0.5, 0.5)

h p.% % Effectivity Index Effectivity Index

___ e #ER

0.125 83.86 153.97 0.560 0.538 1.03 0.998
0.0625 92.85 250.16 0.376 0.367 1.01 0.993

0.03125 96.86 390.38 0.245 0.240 0.995 0.993
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the error as the mesh is refined. Also, note that the error estimator closely follows
the V, -component of the error in the interior of the subdomain flo.

3.2.4.9. Uniform meshes of cubic dements.

Similarly as the example 3.1.3 we let fl be the triangular domain of Fig. 3.1c
with A, = (0, 0), A2 = (0, 1), A3 = (cos 75", sin 75") and selected a subdomain
910 as a parallelogram with vertices at (0.33, 0.24), (0.45, 0.24), (0.48, 0.36), (0.36,
0.36). In Fig. 3.8a (resp. Fig. 3.8b) we show the directional derivatives of the
V, - and V2 - components of the error along the s-axis, as shown in Fig. 3.1c. We6
considered a uniform mesh of cubic elements for a - (2a < p) and h = 0.03125

(reap. h = 0.0078125). Note that the V2 -component of the error converges to zero
slower than the V, -component as the mesh size tends to zero. Also note that the
error estimator closely follows the V, -component of the error.

Remarke 3.4. For uniform meshes both norm IIIV 1 II and IIIV 2 111 converge to
zero as the mesh-size tends to zero. When 2a > p (resp. 2a < p) II4V2 11['

IIIV III4.&converges to zero at a faster (resp. slower) rate that 1I1V1 IiI I . When ---2 I[[0

0 (resp. co) we have no pollution (resp. we have pollution), asymptotically.

Remark 3.5. The values of the V' - and V2 -components of the error obtained using
the overkill are more accurate than the values obtained by employing the least-
squares fit over the subdomain. Nevertheless, for mesh-cells near the center of the
subdomain the values of the V2 - and V2 -functions computed by both methodologies
are practically the same.

3.3 Summary of the results for the pollution-effect in uni-
form meshes

In summary we observe that the results agree with the predictions of the
asymptotic analysis, namely:

(i). For 2a > p, the pollution factors in the shrinking mesh-cell converge to zero
and the effectivity indices , ic. for both estimators converge to one as
the mesh-size tends to zero.

(ii). For 2a < p, the percentage of pollution put in the shrinking mesh-cell con-

verges to 100%, the pollution-factor ý9 diverges to infinity and the effectivity
index %A for both estimators converges to zero. On the other hand the ef-
fectivity index Wc0 converges to one.
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Study of the Pollution Erro*)
2.OE-6- Exact Solution: u.(r.e) = r Sin(60/5)

U, Cubic Elements; Uniform Mesh (h = 0.03125)

.O.O E0O ..
0

l-2.0E-6.

SV, Error From Overkill P=.0 V1 Error From Overkill =

"*--o- V, Error From Smooting (p = 6)
W. .-. V, Error From Smoothing (p = 6)

S" ZZ Error Estimator

-4.0E-6

0.42 0.46 0.52
Arc Length Coordinates Along S-Axis

(a)

Figure 3.8. Pollution effect for uniform meshes: Cubic element (p = 3), a =6

Directional derivative, of the V, - and V2 -components of the error along

the a-aids shown in Fig. 3.1c. (a) Uniform mesh si h I- (b) Uniform
1. 1!V 2 I >I8'VI~ I8nd14Z1-14 i8.vi i8.,i 8.' v,mesh size h = 64 Note thatI as . '-sI -a Vu'). - &

asymptotically, in the interior of the subdomain.
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Study of the Pollution Erroz
Exact Solution: ugz(r,e) = r6/5) Sin(60/5)2.0E-6 Cubic Elements; Uniform Mesh (h = 0.015625)
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V2/ V, Error From Overkill (p = 5)

Z.- V, Error From Smoothing (p = 6)
V2 Error From Smoothing (p = 6)

u-.---- ZZ Error Estimator
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- 4.0E - 6 . . . . . .. . .. . .. . . . . . . . . ..
0.42 0.46 0.52

Arc Length Coordinates Along S-Axis

(b)

Figure 3.8. (continued)
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(iii). The pollution-effect in uniform meshes becomes more severe as the degree of
the elements is increased. This can be clearly seen by comparing the graphs
in Figs. 3.8b, 3.9b, 3.10b, where the difference 'etween the derivatives of
the V1 - and V2 -components of the error in the interior of the subdomain fl,
increases with the polynomial degree of the elements.
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4 Control of the pollution-effect uping adaptive
grids

In this Section we will give numerical examples which demonstrate that when
the mesh is globally adaptive (i.e. nearly equilibrated in the energy-norm), the
pollution is controlled.

4.1 The h-adaptive scheme
Here we summarize the h-adaptive scheme (see also [67), [68]) which was

employed to construct the adaptive meshes in the numerical examples below.

Given a tolerance 6 for the relative error in the global energy-norm,

1. Choose an initial discretization of the domain 7T1 ; let Th = 7T,.

2. For the mesh Th, compute the corresponding finite element solution uh and
obtain an estimate rl, of the energy-norm of the error in element r,

3. Check for convergence. If

X,i : 6j1uhjlja (4.1)

stop; otherwise proceed to the next step. Here N denotes the number of
elements in the mesh TI.

4. Compute the target error e,o, 5, for the optimal mesh (using the principle of
equidistribution of error) namely

etarget - biIIutIIlfl (4.2)

5. For each element 7, predict the optimal local mesh-size from the formula

h =pt h (4.3)

etarget

Here h*t is the predicted optimal mesh-size for the subdomain within the el-
ement 'r, r is an exponent which depends on the order p of the approximation
and the regularity of the solution.
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6. Construct a smooth representation of the predicted optimal mesh-size over
the mesh T1 which now becomes the background grid (see [67]) and use it to
define the mesh-size function h : A -+ R+.

7. Use either h-refinement or h-remeshing to construct a new grid TrI with
minimal number of elements N, such that h, _ h(x), a E r, V - E 7T1'.

4.2 Assessment of the pollution-effect for adaptive grids

We considered the mixed boundary value problem for the Laplace equation and

applied boundary conditions consistent with the exact solution u(r, 0) = rt sin(jO)

over the square-slit domain fl = (-1,1)2 - [0,11 x {0) shown with thick black1
perigram in Fig. 4.1a. (Note that in this case a = - and the singularity is very

4
strong.) We constructed nearly equilibrated meshes of linear, quadratic and cubic
elements using adaptive refinement and remeshing and we studied the effect of the
pollution for interior mesh-cells.

4.2.1 Nearly equilibrated grids of linear elements

In Fig. 4.1a and Fig. 4.1c we show the adaptive grids of linear elements (p = 1)
generated using refinement and remeshing, respectively (a tolerance of 0.5% for
the global relative error in the energy-norm was employed). In Fig. 4.2 (resp.
Fig. 4.3) we show the graph of the values of the energy-norms of the error in the
elements for the mesh shown in Fig. 4.1a (resp. 4.1c) (The elements have been
numbered according to their distance from the singular point and two rings of
elements around the singularity have been excluded from the graph). The values
of the effectivity index for the mesh-cells (which are shown shaded gray in the
Figures) are reported in Table 4.1 for fhe mesh shown in Fig. 4.1a and Table 4.2
shown in Fig. 4.1c. These values are ýompared with the pollution-free values of the
effectivity index, k, for the mesh-cells. The pollution-free value of the effectivity
index in each mesh-cell was obtained from a pollution-free finite element solution
of the boundary value problem in the domain fl, using the same mesh, with data
obtained from the (p+ 1) degree Taylor series expansion of the exact solution about
the center X of each mesh-cell. Note that the computed values of the effectivity
index are very close to the corresponding pollution-free values in all the interior
mesh-cells.

For the mesh shown in Fig. 4.1c we also computed the effectivity index for the
mesh-layers, which are shown in Figs. 4.4a, 4.4b. We excluded the last mesh-layer
of elements adjacent to the singular point and numbered the layers inward from
the boundary as shown in Fig. 4.4b. In Table 4.3 we give the computed effectivity
indices and pollution-free value of the effectivity index for each mesh-layer. The

83



, irbwi v V1

(a)

Figure 4.1. (a) A finite-element grid of linear elements constructed over the slit-domain

using adaptive refinement and a tolerance of 0.5% for the global relative

error in the energy-norm; (b) Detail of the finite-element mesh shown in

Fig. 4.la near the singular point with the mesh-cell wo42 shown shaded

gray; (c) A finite-element grid of linear elements constructed over the slit-

domain using adaptive remeshing and a tolerance of 0.5% for the global

relative error in the energy-norm.
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(b)

Figure 4.1. (continued)
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Study of the Pollution Error

Singular Solution: u=(r,e) = r Sin(9/4)*1 Linear Elements; Adaptively Refined Mesh
00 Equidistribution of the Error in the Elements0- 0.4

"- 0.03
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0z
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0 560 1000 1500 2000
Element Number

[ Figure 4.2. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.1a.
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Study of the Pollution Error

Singular Solution: un(r,e) = r( 11' Sin(0/4)1 Linear Elements, Adaptively Refined Mesh
Equidistribution of the Error in the Elements

0.04
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I,'
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Figure 4.3. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.1c.
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Table 4.1. Control of the pollution-effect using adaptive grids. Adaptive grid of

linear elements generated over the slit-domain using refinement (tolerance = 0.5%, HI-

error control). Comparison of the effectivity index, .&, in the H'-norm, computed

with respect to the exact solution with the corresponding values of the pollution-free

effectivity index •,' for the ZZ estimator and the element-residual (ER) estimator in

the mesh-cells w4,, w&X2 and urx4 (which consist of the elements connected to the nodes

X1, X 2 and X 3 shown in Fig. 4.1a).

Adaptive grid using refinement, H'-error control, linear elements

Effectivity index in the HI-norm

Mesh-cell '4II Mesh-cell II2  Mesh-cell eE

0.98 0.99 0.98 0.98 0.98 0.99 0.96 0.98 1.00 1.00 0.99 0.99
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Table 4.2. Control of the pollution-effect using adaptive grids. Adaptive grid of

linear elements generated over the slit-domain using remeshing (tolerance = 0.5%,

HI-error norm equidistribution). Comparison of the effectivity index MA in the HI-

norm, computed with respect to the exact solution with the corresponding value of the

pollution-free effectivity index kiwxk for the ZZ estimator and the element-residual (ER)

estimator in the mesh-cells &X,, 4X, and &x4, (which consist of the elements connected

to the nodes X1, X2 and X3 shown in Fig. 4.1c).

Adaptive grid using remeshing, H'-error control, linear elements

Effectivity index in the HI-norm

Mesh-cell w,, Mesh-cell 42 Mesh-cell hx

Iczz z ERZ iBt [R fczz -ZZ ERl R£lt Xz ZZ ER2 • itER~l

_XI xI _xI _ XI 2  X2  x2  Kh2  X3  r 3  X3 _X3

0.95 0.95 0.93 0.94 0.92 0.94 0.91 0.93 0.94 0.96 0.93 0.95
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(a)

Figure 4.4. (a) The adaptive finite element mesh in Fig. 4.1a in which we indicate

the mesh-layers for which we computed the effectivity index; (b) Detail of

the finite-element mesh showing the mesh layer near the singular point; (c)

Detail of the mesh near the singular point. This is the same mesh, shown

in Fig. 4.4a and 4.4b, with two rings of elements around the singular point

removed. This mesh was used in the computation of a pollution-free finite

element solution.
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(b)

(c)

Figure 4.4 (continued)
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Table 4.3. Control of the pollution-effect using adaptive grids. Adaptive grid of linear

elements shown in Fig. 4.4. Effectivity index for element-residual and ZZ estimators

for each mesh-layer w. in the interior of the mesh. Note that the effectivity index r,,,

computed with respect to the exact solution is very close to the pollution-free values

k. for all the layers in the interior of the mesh.

Adaptive grid using refinement,

H'-error control, linear elements

Effectivity index in each mesh layer

Layer Effectivity Index

number Kzz •ZZ ,ER •ER

1 0.954 0,994 0.974 0.996
2 0.996 0.998 0.992 0.997
3 0.992 0.992 0.979 0.992
4 0.974 0.975 0.971 0.974
5 0.971 0.971 0.968 0.971
6 0.861 0.970 0.858 0.970
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pollution-free values for the mesh-layers were obtained by solving the boundary
value problem over the domain fl, which excludes two rings of elements around
the singular point as shown in Fig. 4.4c. Note that the values of the effectivity
index for the mesh-layers w. are very close to the corresponding pollution-free
values of the effectivity index.

4.2.2 Nearly equilibrated grids of quadratic elements

In Fig. 4.5 we show a grid of quadratic elements (p = 2) which was generated
using adaptive refinement and equidistribution of the energy-norm of the error
for a tolerance of 0.1%. In Fig. 4.6 we show the energy-norm of the error in
the elements for the mesh shown in Fig. 4.5. (The elements have been numbered
according to their distance from the singular point and two rings of elements around
the singularity have been excluded from the graph.) In Table 4.4 (resp. Table 4.5)
we compare the effectivity index of the estimators in the shaded mesh-cells (resp.
mesh-layers) with the pollution-free values of the effectivity index in the mesh-cells
(resp. mesh-layers). Note that the values of the effectivity index for the mesh-cells
and the mesh-layers are very close to the corresponding pollution-free values of the
effectivity index.

4.2.3 Nearly equilibrated grids of cubic elements

In Fig. 4.7a we give a grid of cubic elements (p = 3) which was constructed
using adaptive refinement and equidistribution of the energy-norm of the error for a
tolerance of 0.05%. In Fig. 4.8 we show the energy-norm of the error in the elements
for the mesh shown in Fig. 4.7. (The elements have been numbered according to
their distance from the singularity and the first two rings of elements around the
singular point have been excluded from the graph.) In Table 4.6 (resp. Table 4.7)
we compare the effectivity index of the estimators in the shaded mesh-cells (resp.
mesh-layers) with the pollution-free values. Note that the values of the effectivity
index for the mesh-cells and the mesh-layers are very close to the corresponding
pollution-free values of the effectivity index.

4.3 Summary of the results for the pollution-effect in
adaptive grids

In summary, we observe that when the mesh is nearly equilibrated in the
energy-norm, the pollution in the energy-norm is negligible and the values of the
effectivity index are, for all practical purposes, the same as the pollution-free values
for any estimator.
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Figure 4.5. A finite-element grid of quadratic elements constructed over Lhe slit-domain

using adaptive refinement and a tolerance of 0.1% for the global relative

error in the energy-norm.
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"Study of the Pollution Error
0.008 Singular Solution: uu(r,O) = rI 1'i Sin(e/4)

Quadratic Elements, Adaptively Refined Mesh
Equidistribution of the Error in the Elements
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Figure 4.6. Control of the pollution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.5.
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Table 4.4. Control of the pollution-effect using adaptive grids. Adaptive grid of

quadratic elements generated over the slit-domain using refinement (tolerance = 0.1%,

HI-error norm equidistribution). Comparison of the effectivity index ic,, computed

with respect to the exact solution with the the corresponding values of the pollution-

free effectivity index •,•, for the ZZ estimator and the element-residual (ER) estimator,

in the mesh-cells 4Ol,, w4h and w4% (which consist of the elements connected to the

nodes X1, X 2 and X3 shown in Fig. 4.5).

Adaptive grid using refinement, H'-error control, quadratic elements

Effectivity index %,A in the HI-norm

Mesh-cell 4•, Mesh-cell 42 WM3

:ZZ R-ZZ JE .X-1 -z z -El -tR -z I-z iE lt
Ic ' h r FeRIc ICZ IB_'X I, xX2 xX 2  "X2  x xl

1.01 1.00 0.97 0.99 0.91 0.97 0.90 0.97 1.00 1.00 0.99 1.00
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Table 4.5. Control of the pollution-effect using adaptive grids. Adaptive grid of

quadratic elements shown in Fig. 4.5. Effectivity index for element-residual and ZZ

estimators for each mesh-layer in the interior of the mesh. Note that the effectivity

index P.. computed with respect to the exact solution is very close to the pollution-free

values i, for all the layers in the interior of the mesh.

Adaptive grid using refinement,

H'-error control, quadratic elements

Effectivity index in each mesh layer

Layer Effectivity Index
Layer

number J1ZZ pgE.1R jpER

1 0.954 0.994 0.974 0.996
2 0.996 0.998 o.9 0.997
3 0.992 0.992 0.979 0.992
4 0.974 0.975 0.971 0.974
5 0.971 0.971 0.968 0.971
6 0.861 0.970 0.858 0.970
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(a)

Figure 4.7. (a) A finite-element grid of cubic elements constructed over the slit-domain

using adaptive refinement and a tolerance of 0.04% for the global relative

error in the energy-norm; (b) Detail of the finite-element mesh shown in

Fig. 4.7a near the singular point with the mesh-cell W12.
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(b)

Figure 4.7. (continued)
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Study of the Pollution Error
00.0008 Singular Solution: us(r.e) = ru/"• Sin(G/l)

Cubic Elements, Adap tively Refined Mesh
Equidistribution of the Error in the Elements
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Figure 4.8. Control of the poilution-effect using adaptive grids. Distribution of the

energy-norm of the error in the elements of the mesh shown in Fig. 4.7.
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Table 4.6. Control of the pollution-effect using adaptive grids. Adaptive grid of

cubic elements generated over the slit-domain using refinement (tolerance = 0.05%,

HI-error norm equidistribution). Comparison of the effectivity index r.,, computed

with respect to the exact solution, with the corresponding values of the pollution-free

effectivity index F,., for the ZZ estimator the element-residual (ER) estimator, in the

mesh-cells 4,, wa and 4x'4, (which consist of the elements connected to the nodes

X 1 , X 2 and X 3 shown in Fig. 4.7a).

Adaptive grid using refinement, H'-error control, cubic elements

Effectivity index x,. in the HI-norm

Mesh-cell 4, Mesh-cell 4XII, Mesh-cell 4,

•zz izz ER Es IZZ IZZ RR -SR CZZ rjz O ER ZER
X1  , x, x, bX2 xC '"x x , ,

0.98 0.99 0.96 0.98 0.86 0.94 0.84 0.93 0.99 0.99 0.97 0.99
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Table 4.7. Control of the pollution-effect using adaptive grids. Adaptive grid of cubic

elements shown in Fig. 4.7a. Effectivity index for element-residual and ZZ estimators

for each mesh-layer in the interior of the mesh. Note that the effectivity index ic,.

computed with respect to the exact solution is very dose to the pollution-free values

i,,. for all the layers in the interior of the mesh.

Adaptive grid using refinement,

H'-error control, cubic elements

Effectivity index in each mesh layer

Effectivity Index

1 0.952 0.990 0.950 0.986
2 0.991 0.993 0.992 0.997
3 0.976 0.982 0.975 0.980
4 0.922 0.925 0.921 0.924
5 0.898 0.901 0.896 0.901
6 0.862 0.900 0.858 0.900
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5 Pollution-effect for meshes refined locally in
the interior

As discussed in the Introduction it is a common practice in engineering compu-
tations to refine the mesh locally, only in local regions of interest. In this Section
we give numerical evidence which shows that: Local refinements in a subdomain
of interest in the interior of the mesh (where the solution i smooth) do not lead
to higher local accuracy unless the mesh is also properly refined in the rest of the
domain. In particular we demonstrate that if the singular points are not refined
and the mesh is refined locally in an interior subdomain 110 :

a. The finite element solution in the interior of the subdomain converges to
a function which satisfies the differential equation (i.e. it is harmonic) but
may be very different from the exact solution of the boundary value problem
"(i.e. the finite element solution converges to a wrong solution in the interior
of the subdomain).

b. The V1 -component of the error converges to zero in the interior of the sub-
domain while the V2 -component remains practically constant. The error
estimators estimate only the V1 -component of the error in the interior of the
subdomain and if 111V 2 110In > 1I 1V1 1II1 severe underestimation of the error
may occur in the interior of the subdomain.

5.1 Convergence of the approximate solution in the inte-
rior of the subdomain

We first present a simple numerical example to demonstrate that when the
mesh is refined locally in an interior subdomain only, as shown for example in
Fig. 5.1, the finite element solution converges to a wrong solution in the interior of
the subdomain.

We considered the mixed boundary-value problem for the Laplacian in the

L,-shaped domain with exact solution u(r, 0) - ri sin (a). The boundary-value
problem was solved using the mesh shown in Fi'. 5.1 where the domain was meshed

by a coarse uniform grid (with mesh-size ho = and the subdomain is subdivided

uniformly five times (the mesh-size in the subdomain h 1 1 ho), and elements
of degree p (p = 1, 2 and 3). From the finite element solution we approximated
the function w :f u - V2 in the subdomain and the exact solution u by their local
Taylor-series expansions about the center of the subdomain z = (z0 , zO), namely
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W(z'l1,- 2) 14 00 + 11d I 4 Z 4
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U(XI ,2 2 ) $4 AD + F, FAV)1V2 - 'I, '22- X0)

where Q(q}, I = 1,2 denotes the harmonic monomials of degree q; q. is the
maximum degree employed in the harmonic Taylor-series expamions (below we let
q = 4); so = (0.375, 0.375) is the center of the subdomain.

In Table 5.1 we report the 4 -coefficients of the local Taylor-series expansion of
the exact solution u and the corresponding a-coefficients of the local Taylor-series
expansion of the limit function to for p = 1, 2 and 3. Note that the coefficients of
the limit-function to are very different from the coefficients of the exact solution u.
Hence if the mesh is refined only in an interior subdomain and the mesh outside the
subdomain is kept fixed the finite element solution converges to a wrong solution
in the interior of the subdomain.

5.2 Asymptotics of the error in the interior of a locally
refined subdomain

Here we study the asymptotics of the components V, (flo) and V2 (0 0 ) of the
error in the interior of a subdomain f(1 as the mesh in the subdomain is successively
refined while the mesh outside the subdomain remains fixed.

5.2.1 Locally refined meshes of linear elements

5.2.1.1. Smooth eolutiors

We solved the boundary-value problem for the Laplace equation in the domain
I = (0,1)2 and employed boundary-conditions consistent with the smooth har-

monic solution u(z1, z2) = A sin rz1 sinh rz 2. In Figure 5.2 we show the domain1
11 meshed with a coare uniform grid with mesh-size ho - and the subdomain

1
flo := (0.375,0.625)2 meshed with a finer grid with mesh-size h = We con-
sidered linear elements (p = 1) and different mesh-sizes in the subdomain shown
in Fig. 5.2. In Tables 5.2a, 5.2b we give the values of the components 1IIV1 11,

111V2112 Iand J VVi• VV2 of the energy-norm of the error, the values of the pol-

lution factors n.d a f and the effectivity indices i and W for the shrinking
eight-element mesh-cell 0 at the center of the subdomain. Note that, as the mesh-
size in the subdomain tends to zero, the pollution factor pk converges to 100%,
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Table 5.1. Pollution-effect for meshes refined locally in an interior subdomain. Coeffi-

dents of the local Taylor series expansions of the exact solution u and the limit function

w about the center of the subdomain fl :=- (0.5,0.75)2. L-shaped domain shown in1
Fig. 5.1, exact solution u(r, 9) = rI sin 1, mesh-size in the subdomain h = -. Note

that the #-coefflcients of the local Taylor series expansion of u are very different from

the a-coefficients of the local Taylor series expansion of the limit function w.

Coefficients of the Taylor series expansion

Exact solution u(r, 0) = ri sin 10

Uniform refinements in the subdomain only

Exact Solution u Limit Function w

Coeff.,0 Coeff. a p= 1 p= 2 p= 3

,60 0.2306 00 0.1304 0.1655 0.2016

,011) -0.2099 01 -0.1224 -0.1798 -0.1953

0(l) 0.3637 (1) 0.3103 0.3115 0.3311

,0(2)(2)
0.1912 al 0.1160 0.1095 0.1458

(2) (2)
0(2) -0.1025 a2 -0.1729 -0.1834 -0.1196

.843) -0.1347 a 3) -0.1324 -0.2097 -0.1162

S0.0777 o2 0.0056 0.0070 0.0128

0.0379 al4) 0.1422 0.1337 0.0429

(4) 0(4)
102) 0.5666 02 0.2249 0.8150 0.3909
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the pollution factor f* diverges to infinity, the effectivity index it converges to

zero and the effectivity-index e: converges to one.

In Fig. 5.3a (resp. Fig. 5.3b) we give the graph of the directional derivative
of the V' - and V2 -components of the error in the subdomain shown in Fig. 5.21 1
when the mesh-size in the subdomain is h = (reap. h = -). Note that the
directional derivative of the V2 -component of the error is very large relative to the
directional derivative of the V, -component of the error. As the mesh-size in the
subdomain is reduced the V, -component of the error converges to zero while the
V2 -component remains practically constant.

5.2.1.2. Singudar solutions

Next we solved the mixed boundary problem for the Laplace equation and

considered the singular solution u(r, 9) -= ri sin(!0) for linear elements (p = 1)

and different mesh-sizes in the subdomain shown in Fig. 5.1. In Tables 5.3a,

5.3b we give the values of 212III,, Ill 2lt and • the values of

the pollution factors p* and ,and the effectivity indices r. and r.' for the
shrinking eight-element mnesh-cell at the center of the subdomain, as the mesh-size
in the subdomain tends to zero. Note that, as the mesh-size in the subdomain
tends to zero, the pollution factor p• converges to 100%, the pollution factor f,,
diverges to infinity for a larger mesh-size in the subdomain than in the case of the
smooth solution, the effectivity index %c, for both estimators converges to zero
and the effectivity index r.' converges to one.

We also considered the exact solution u(r, 9) = r I sin(30). In Fig. 5.4 we give

the graphs of the directional derivative of the V, - and V2 -components of the error
in the subdomain shown in Fig. 5.1, along the s-axis shown in Fig. 3.1a, obtained
by.employing an overkill with p = 3, when the mesh-size in the subdomain is

h = - ho. In Fig. 5.5 we show the detail in the interior of the subdomain for the

graphs in Fig. 5.4. Note that the directional derivative of the V2 -component of
the error is very large relative to the directional derivative of the V, -component
of the error in the subdomain. Also note that the error estimator coincides with
the V, -component of the error in the interior of the subdomain. In Fig. 5.6 we
plot the directional derivative of the V, - and V2 -components of the error along
the s-axis shown in Fig. 3.1a when the mesh-size in the subdomain is reduced to

h = 1 ho. As the mesh-size in the subdomain is reduced the V1 -component of

the error converges to zero in the subdomain while the V2 -component of the error
remains practically constant.
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Figure 5.2. Pollution-effect for meshes refined locally in an interior subdomain. The

unit-square domain meshed with a coarse uniform grid with mesh size ho =

The mesh has been divided uniformly five times in an interior subdomain

fe (the mesh-size in the subdomain is h = 256
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Table 5.2b. Pollution-effect for meshes refined locally in an interior subdomain.

Pollution factors p% and • and effectivity indices in the shrinking mesh-cell "r.

Square domain shown in Fig. 5.2, smooth solution u(Xl :2) = A sin rws sinh rZ2, A -

103, p = 1. Note that the pollution factor p% ocnverges to 100%, the'pollution fator

4 diverges to infinity and the effectivity index .4 converges to zero asymptotically;

however the effectivity index <,. converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in wo"

Exact solution u(:,, x:) = A sin r:, sinh 'Wr2; linear elements

Shrinking mesh-cell wok centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

h P~% 4Effectivity Index Effectivity Index

0.015625 73.28 107.69 0.412 0.412 1.001 1.001
0.0078125 90.76 216.22 0.343 0.343 1.001 1.001

0.00390625 97.43 432.83 0.250 0.250 1.000 1.000
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Figure 5.3. Pollution-efg, for meshes refinev locally in " ilterior subdomin. Lineaelements, smooth soltio U(X1,,2) =A sinr. iz Sinh rT:2 ,4 A = . Unitsquare 
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Study of the Pollution Error
2.OE-4 Smooth Solution: uix(x,,xg) = A SinnxSinhnx3

Linear Elements, Uhiform Refinements in Subdomain Only
0 Mesh Size in Subdomain = 0.00390625
3 Mesh Size in Rest of the Domain = 0.125'.4

4 1.OE-4

0

U)

S O.OEO

1.41
-V, Error From Overkill (p =3

Se Va Error From Overkill ýp = 3)

-2.0E-4 rv

0.35 0.50 0.65 0.80 0.95
Are Length Coordinates Along S-Axis

(b)

Figure 5.3. (continued)
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Table 5.3b. Pollution-effect for meshes refined locally in an interior subdomai,.

Pollution-factors/st% and (4 % and effectivity indices in shrinking mesh-cell "0- L-
2

shape4 domain shown in Fig. 5.1a, a !, p = 1. Note that the pollution factor

p, converges to 100%, the pollution factor L diverges to infinity, and the effectivity

index ic4 converges to zero. However, the effectivity index W,* converges to one.

Pollution factors and effectivity indices

Shrinking mesh-cell centered at (0.5, 0.5)
Exact solution u(r, 0) = ri sin(V); linear elements

Uniform mesh-refinement in the subdomain only

Mesh-size in the rest of the domain h = 0.125

h1f
h i'0 o% Effectivity Index Effectivity Index

0.0625 61.15 82.93 0.722 0.722 0.979 0.979
0.03125 84.62 174.29 0.482 0.482 0.992 0.992

0.015625 95.79 357.14 0.268 0.268 1.000 1.000
0.0078125 98.88 714.98 0.138 0.138 1.000 1.000
0.00390625 99.70 1441.76 0.069 0.069 1.000 1.000
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Study of the Pollution Error
Singular Solution: u"(r.-) =r-"' Sin(•/3)
Linear Elements. Uniform Refinements in Subdomain Only

0.002 Mesh Size in Subdomain = 0.0078125
Mesh Size in Rest of the Domain = 125

0

0.000

0

o °,

a)-0.002 '

>

W -0.004

0 -V , Error From Overkill (p = 3)
.-6 -0.006 a..... Va Error From Overkill (p = 3)

S S

- 0 .0 0 8 . . . . . . .. . .t .. .. . . . . , . . . . . , . . . . . .. . .I ,

0.35 0.50 0.65 0.80 0.95
Arc Length Coordinates Along S-Axis

Figure 5.4. Pollution-effect for meshes refined locally in an interior subdomain. Linear

elements (p = 1), a = 1, L-shaped domain shown in Fig. 5.1. Uniform
1

mesh size in the subdomain h = j28. Directional derivatives of the V, -

and V42-components of the error obtained from the overkil. Note that

I 'I I Ivand (oz - Vorj - i-8, asymptotically, in the interior

of the subdomain.
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Study of the Pollution Error
Singular Solution: u.x(r,O) = r'('/ Sin(O/3)
Linear Elements, Uniform Refinements in Subdomain Only

0.002 Mesh Size in Subdomain = 0.0078125

Ls Mesh Size in Rest of the Domain = 0.125
0
Li

4 M

0
-0.002

V -0.004

7o
C7 V, Error From Overkill (p =3)
0 e---.Vg Error From Overkill (p = 3): -0.006
0 U V, Error From Smoothing (p = 6)

Vx Error From Smoothing (p 6)
-0-0-8 1ZZ Error Estimator

- 0 .0 0 8 . . . . . . . . y r. , i... . . . . . . , . . . . . . .. I . . . . . . . . . . . . .
0.35 0.50 0.65 0.80 0.95

Arc Length Coordinates Along S-Axis

Figure 5.5. Pollution-effect for meshes refined locally in an interior subdomain. Linear1

elements (p = 1), a = L, L-shaped domain shown in Fig. 5.1. Uniform
1

mesh size in the subdomain h = T-•. Directional derivatives of the V, - and

V1 -components of the error and the ZZ error estimator in the subdomain

1o0. Comparison between the values obtained from smooth•mg and overkil.

Note that the directional derivatives of V, and V2 obtained from smoothing814
and overkill coincide exactly and (arzz - Via#).e s !-1 in the interior of

the subdomain.
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Study of the Pollution Error
Singular Solution: uux(rO) = r1'~ Sin(0/3)
Linear Elements, Uniform Refinements in Subdomain Only

0.002 Mesh Size in Subdomain = 0.00390625
MehSz i eto teDmin=0 2

0
& I

0
S-0.002

Vw -0.004

-V, Error From Overkill (p = 3)
.2 s*'-..V, Error From Overkill (p = 3)

_-0.006

U- V, Error From Smoothing (p =
V V* a GV2 Error From Smoothing tp = 61J

0.55 0.60 0.65 0.70 0.5 0.80
Arc Length Coordinates Along S-Axis

Figure 5.6. Pollution effect for grids refined locally in an interior subdornain. Linear

elements (P = 1), & = 1, L-shaped domain shown in Fig. 5.1, uniform

mesh size in the subdomain h ~ Directiona] derivatives of the V, -
and V2 -components of the error. Note that I >V 20 V asymptotically,

in the interior of the subdomamn.a' ci
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5.2.2 Locally refined meshes of quadratic elements

5.2..L. Smooth solution

We considered the same boundary-value problem as in Section 5.2.1.1 with the
smooth harmonic solution u(z*, 2) = A sin rz1 sinh Wz2 and employed meshes of
quadratic elements (p = 2) with various mesh-sizes in the subdomain shown in
Fig. 5.2. In Table 5.4a, 5.4b we report the values of the pollution factors and the
effectivity indices for different mesh-sizes in the subdomain. Once again we note
that the pollution-factor g9 converges to 100%, the pollution factor 04 diverges
to infinity and the effectivity index xc.4 converges to zero as the mesh-size in the
subdomain tends to zero.

5.2.,.2. Singular solutions

We solved the mixed boundary value problem for the Laplacian with boundary-
conditions consistent with the exact solution u(r, 9) = rf sin(40) fand employed
meshes of quadratic elements (p = 2) with various mesh-sizes in the subdomain
shown in Fig. 5.7. In Tables 5.5a, 5.5b we give the values of 111VIl 11 , JiiV2 1ll .
and JVV• -VV2 , the values of the pollution factors p and 4, and effectivity

indices x.€ and A. in the shrinking eight-element mesh-cell at the center of the
subdomain, as the mesh-size in the subdomain tends to zero. Again, we note
that the percentage of pollution in the shrinking mesh-cell at the center of the
subdomain converges to 100%, the pollution factor 4 diverges to infinity, the
effectivity index # for both estimators converges to zero and the effectivity index

,. converges to one. Also note that compared with the results in Table 5.2, we
see that the pollution-effect is stronger for larger values of the mesh-size in the
subdomain.

We also considered the exact solution u(r, 0) = ri sin(20). In Fig. 5.8a (reap.
Fig. 5.8b) we show the graph of the directional derivative of the V, - and V2 -
components of the error in the subdomain shown in Fig. 5.7, along the s-axis shown

in Fig. 3.1b, where the mesh-size in the subdomain is h = I (resp. h = -- ).
Note that the directional derivative V2 -component is significantly greater than the
directional derivative V1 -component of the error in the interior of the subdomain.
Further note that as the mesh-size in the subdomain is reduced, the V, -component
of the error converges to zero while the V2 -component remains constant. Also note
that the error estimator coincides with the V, -component of the error.
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Table 5.4b. Pollution-effect for meshes refined locally in an interior subdomain.

Pollution factors , and • and effectivity indices in the shrinking mesh-cell woi.

Square domain shown in Fig. 5.2, smooth solution u(z 1, 12) = A sin rz, sinh WZ 2 , A =

103, p = 2. Note that the pollution factor u% ocnverges to 100%, the pollution factr

• diverges to infinity and the effectivity index ic, converges to zero asymptotically;

however the effectivity index W converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in wo"

Exact solution u(zi, 1 2) = A sin rz, sinh Wrz2; quadratic elements

Shrinking mesh-cell weh centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

h 0,49 96 Effectivity Index Effectivity Index

KZ EER , ZZ

0.015625 96.46 365.79 0.245 0.241 1.013 0.998
0.0078125 99.76 1463.63 0.062 0.061 1.010 1.000
0.00390625 99.98 5851.72 0.016 0.015 1.010 0.999
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Figure 5.7. Pollution-effect for meshes refined locally in an interior subdomain. The

convex domain meshed with a coarse uniform grid with mesh-size h. = 1.

The mesh has been divided uniformly fou times in an interior subdomain

lo (the mesh-size in the subdomain is h = A-• "
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Table 5.5b. Pollution-effect for meshes refined locally in an interior subdomain.

Pollution factors p% and 4 and effectivity indices in the shrinking mesh-cell w~h.
4

Convex domain shown in Fig. 5.7, a -•, p = 2 (2a > p). Note that the pollution

factor sQA converges to 100%, the pollution factor f9 diverges to infinity, and the

effectivity index r,. converges to zero. However, the effectivity index ec converges to

one.

Pollution factors and effectivity indices

Shrinking mesh-cell centered at (0.5, 0.5)
Exact solution u(r, 0) = ri sin(M); quadratic elements

Uniform mesh-refinement in the subdomain only

Mesh-size in the rest of the domain h -_ 0.125

h 0470 &470 Effectivity Index Effectivity Index

ICU •ER fi ZZ I ER

0.0625 18.22 18.52 0.991 0.983 1.00 1.00
0.03125 47.17 53.50 0.889 0.882 1.00 1.00

0.015625 90.26 209.78 0.434 0.430 1.00 1.00
0.0078125 99.29 828.65 0.118 0.118 1.00 1.00
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Study of the Pollution Erroj .. . .
Exact Solution: unz(r.) = r Sin(20/3)
Quadratic Elements; Uniform Refinements in Subdomain only
Mesh Size in the Subdomain = 0.03125
Mesh Size in Rest of the Domain = 0.125

S0.0001

"-0.0002

L.

r -0.0004
.eeee V, Error From Overkill (p = 3)

"V ." e V& Error From Overkill (p = 3)
S•--.V., Error From Smoothing p = 8

J V, Error From Smoothing p = 6)
-- • ZZ Error Estimator

-0-GO006 .. . . . ....... , ......... ,. . ... .. ........

0.53 0.58 0.63 0.88 0.73
Arc Length Coordinates Along S-Axis

(a)

Figure 5.8. Pollution-effect for meshes refined locally in an interior subdomain. Quad-2
ratic elements (p = 2), a = •. Directional derivatives of the V1 - and

V2 -components of the error and the ZZ error estimator along the a axis as

shown in Fig. 3.1b. (a) Uniform mesh-size in the subdomain h = 1 ; (b)
1 av, 2 V

Uniform mesh-size in the subdomain h =J Note that 8141 I~
and (fZZ..Vu~jj- ft ý"--, asymptotically, in the interior of the subdomain.
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Study of the Pollution Erro
Exact Solution: uu(r,e) = rX'If Sin(20/3)
Quadratic Elements; Uniform Refinements in Subdomain only
Mesh Size in the Subdomain = 0.0078125
Mesh Size in Rest of the Domain = 0.125

01-
1..

0.0001
oOg

0

• -0.0002

L.

9 -0.0004o £ )S0 • V, Error From Overkill (p = 4
Va Error From Overkill (p = 4)

.-.... V, Error From Smoothing (p = 6)
1.. a-.... V2 Error From Smoothing (p = 6)

S' -•.o ZZ Error Estimator

-0.0006........ ......... .... .................
0.53 0.58 0.63 0.68 0.73

Arc Length Coordinates Along S-Axis

(b)

Figure 5.8. (continued)
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5.2.3 Locally refined meshes of cubic elements

5..3.1. Smooth solution

We considered the same boundary-value problem as in Section 5.2.1.1 with
the smooth solution u(z, z 2 ) = Asinurz sinh Wz 2 and employed meshes of cubic
elements (p = 3) with various mesh-sizes in the subdomain. In Tables 5.6&, 5.6b we
gvethe valuesof 1 , V t and J VVI V2, the value, of the pollution

factors %and Qand the values of the effectivity index xtand x-We note

that, as the mesh-size in the subdomain tends to zero, the pollution factor

converges to 100%, 4 diverges to infinity and the effectivity index P.4 converges
to zeSo.

5.2.3.2. Singular solution

We also solved the mixed boundary value problem for the Laplacian with
6

boundary conditions consistent with the exact solution u(r, 9) = r, sin(Z9) and
employed meshes of cubic elements (p = 3) with various mesh-sizes in the subdo-
main shown in Fig. 5.9. In Fig. 5.10a (reap. Fig. 5.10b) we show the graph of the
directional derivative of the V1 - and V2 -components of the error in the subdomain,I
along the s-axis shown in Fig. 3.1c, where the mesh-size in the subdomain is h =i

(resp. h = I-). Once again we note that as the mesh-size in the subdomain tends
to zero the V2-component of the error remains constant while the V, -component
converges to zero. Also note that the error estimator follows the V, -component
of the error and that the V2 -component is the dominant part of the error in the
interior of the subdomain.

5.3 Summary of the results for the pollution-effect for
locally refined meshes

In summary we observe that if the mesh is refined locally in an interior
subdomain only

(i). As the mesh size in the subdomain tends to zero the V, -component of the er-
ror converges to zero in the interior of the subdomain while the V2 -component
remains practically constant.

111¾I11L_%(ii). The value of relative magnitude of - ., which measures the pollution-
III V2 tIIL-

effect in the interior of the subdomain for a given grid, depends on the mesh-
size in the subdomain (compared to the mesh-size of the outside mesh), the
smoothness of the solution and the degree p of the elements.
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Table 5.6b. Pollution-effect for meshes refined locally in an interior subdomain.

Pollution factors and f4% and effectivity indices in the shrinking mesh-cell &4.

Square domain shown in Fig. 5.2, smooth solution u(z1 , z2) = A sin wrz sinhirz2 , A =

IOP, p = 3. Note that the pollution factor p'M converges to 100%, the pollution factor

(.4 diverges to infinity and the effectivity index x.4 converges to zero asymptotically;

however the effectivity index <4 converges to one as the mesh-size tends to zero.

Pollution factors and effectivity indices in 4

Exact solution u(zX, 2) = A sin rz3 sinh rz 2 ; cubic elements

Shrinking mesh-cell w0h centered at (0.5, 0.5)

Uniform mesh refinements in subdomain only

Mesh-size in the rest of the domain = 0.125

h I54 % % Effectivity Index Effectivity Index

___ _ R___ zz ___ gIR

0.015625 99.63 1162.65 0.081 0.080 0.993 0.991
0.0078125 99.99 8644.49 0.037 0.037 0.992 0.992
0.00390625 99.99 39370.32 0.008 0.008 0.994 0.994
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Figure 5.9. Pollution-effect for meshes refned locally in an interior subdomain. The tri-

angular domain meshed with a coause uniform grid with mesh-uise ho = 1

The mesh has been divided uniformly four times in an interior subdomain

. (the mesh-sise in the subdomain is Is2
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Study of the Pollution Erro6
Exact Solution: ua(r,e) = r J Sin(SO/5)
Cubic Elements; Uniform Mesh Refinements in Subdomain only

S.Mesh Size in the Subdomain = 0.03125
0 Mesh Size in Rest of the Domain = 0.125

I.OE-6

-1.0E-6

-3.0E-6
0

.. V. , Error From Overkill = -
V2 Error From Smoothing (p = 8)

S---..- V, Error From Smoothing (p 6)
a-----o ZZ Error Estimator

5-0. E-6 1....... ,. . . . .,. . . .. , . . . .. , .......... ,

0.45 0.46 0.47 0.48 0.49 0.50
Arc Length Coordinates Along S-Axis

(a)

Figure 5.10. Pollution-effect for grids refined locally in an interior subdomain. Cubic
6

elements (p = 3), a = !. Directional derivatives of the V, - and V.-

components of the error and the ZZ error estimator along the .- axis shown
1

in Fig. 3.1c. (a) Uniform mesh-size in the subdomain h = 1; (b) Uniform
1 Noet at_1v,I i l d

mesh-uize in the subdomain h -. Note that and128.1 IasaV
(arZZ - V%) . a f -!-"-, asymptoticaly, in the interior of the subdomain.
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:Study of the Pollution Erro*_,
Exact Solution: ua(r.) = r&^) Sin(80/5)
Cubic Elements; Uniform Mesh Refinements in Subdomain only
Mesh Size in the Subdomain = 0.0078125

0 Mesh Size in Rest of the Domain = 0.125

. OE-6

0

L-!.OE-6

3:-.0E-6 .,.,,.-

S. Vt Error From Overkill (p = 5
Q Vt Error From Overkill (p = 5)

4)... V, Error From Smoothing (p = 8)JV 2 Error From Smoothing (p = 6)
' ZZ £rror Estimator

-5.0E -6 .. . . . . . '- III... ......... ,. . . . .'
0.45 0.46 0.47 0.48 0.49 0.50

Arc Length Coordinates Along S-Axis

(b)

Figure 5.10. (continued)
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6 Control of the pollution-effect in a subdomain

Solutions with multiple singularities occur commonly in typical 2-D geometrical
idealizations of problems in solid-mechanics and heat transfer. Globally adaptive
methods employ nearly-equilibrated grids in order to achieve prescribed uniform
accuracies over the entire domain. In complex engineering problems one is in-
terested to control the error and to compute with high-accuracy only in certain
subdomains of interest (e.g. discussion about global/local analysis in the introduc-
tion). Here we give model computations which demonstrate that it is possible to
guarantee the reliability of error estimation (and to control the error) in any inte-
rior subdomain 0o, by using meshes which are less refined outside the subdomain
than the globally adaptive grids.

6.1 Effect of the refinement outside a subdomain on the
effectivity index in the interior of the subdomain

We considered the mixed boundary-value problem for the Laplacian over the
L-shaped domain and we applied boundary-conditions consistent with the exact

solution u(r, 9) =: ri sin(I0) and we considered a subdomain flo in the interior of

the mesh, far from the singular point. We refined the mesh inside the subdomain

uniformly, to a desired mesh-size h, and computed the relative error Co. =- IIjehIuIO

using a pollution-free finite element solution over the subdomain. (The pollution-
free solution was computed by solving a Neumann problem over flo using data
consistent with the exact solution.) The grid outside the subdomain flo was then
generated using the adaptive refinement algorithm given in Section 4.5 with a
tolerance 6 = KC%, where K >_ 1 denotes the weight-factor. In the following we
refer to meshes of this type as weighted equilibrated meshes.

6.1.1 Meshes of linear elements

In Fig. 6.1 we show the L-shaped domain meshed by a grid of linear elements
(p = 1). The grid is uniform in the subdomain (10 := (0.5,0.75)2 with mesh-size

1
h = 52. The grid outside the subdomain was generated using adaptive refinement

for Co = 0.44 and K = 1. In Fig. 6.2 we show the graph of the effectivity index,
o,' in the eight-element mesh-cell w0% at the center of the subdomain f0, plotted

against the weight-factor K for different mesh-sizes in the subdomain. Note that
the curve is practically invariant with respect to the mesh-size in the subdomain.
Also note that the effectivity index r., remains close to one up to a value of K =

2.5. In Fig. 6.3 we show the weighted equilibrated mesh of linear elements where
the grid outside the subdomain is generated using Co = 0.44 and K = 2.5.
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Figure 6.1. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Linear elements, exact solution i&(r, 9) = 4i sin(f); the

mesh-size in the subdomain flo is ha = T2.The mesh outside DO0 is generated

using adaptive refinement for C.= 0.44 and K = 1. The effectivity index

r..Ain the eight-element mesh-cell co4 at the center of the subdomain 0. is

0.92.
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Study of the Pollution Error
Singular Solution: ug(rG) = r"/*'Sin(O/3)
Linear Elements; Adaptively Refined Mesh
Location of Subdomain: (0.5,0.75)x(O.5,0.75)
Effect of Adaptive Refinements Outside the Subdomain
on the Effectivity Index in the Interior of the Subdomain

1.00

0.80

.0.60

400.40

0.20
'Mesh Size in the Subdomain = 0.0625

SMesh Size in the Subdomain = 0.03125
SMesh Size in the Subdomain = 0.015625

0 .0 0 . , , , , , , , I , , . . . . . .. . . .
1.00 5.00 7.0

Weight Factor ( K )

Figure 6.2. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Graph of the effectivity index in the eight-element

mesh-cell Po at the center of the subdomain DO plotted versus the weight

factor K for different mesh-sizes in the subdomain of the mesh shown in

Fig. 6.1a. Note that the curve is invariant with respect to the mesh-size in

no.
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Figure 6.3. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Linear elements, exact solution u(r, 6) = rl sin(!);
1

the mesh-size in the subdomain l0 is h = The mesh outside the

subdomain is generated using adaptive refinement for =n. 0.44 and K =

2.5.
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In Figs. 6.4a, 6.4b and 6.4c we show the directional derivatives of the VI - and
V2 -components of the error along the s-axis shown in Fig. 6.la for K = 1, K =
2.5 and K = 5, respectively. Note that for K = 1, the directional derivative of
the V2 -component of the error is close to zero in the interior of the subdomain.
Further, note that as the value of K is increased i.e. as the amount of refinement
outside the subdomain is reduced, the directional derivative of the V2 -component
of the error becomes larger in the interior of the subdomain and for K = 5 the
directional derivative of the V2 -component is larger than the directional derivative
of the V, -component in the interior of the subdomain. Also note that the error
estimator practically coincides with the V, -component of the error in the interior
of the subdomain.

6.1.2 Meshes of quadratic and cubic elements

In Fig. 6.5 we show the L-shaped domain meshed by a grid for quadratic
elements (p = 2). The grid is uniform in the subdomain flo = (0.5,0.75)2 with

1
mesh-size h = -1. The grid outside the subdomain was generated using adaptive

refinement for it.= 0.07 and K = 1. In Fig. 6.6 we show the mesh where the grid
outside the subdomain flo was generated using Co. = 0.01 and K = 1.

In Fig. 6.7 we give the graph of the effectivity index, rc., in the mesh-cell
woh at the center of the subdomain fl0 := (0.5,0.75)2 for p = 1, 2 and 3. Note
that for quadratic elements the effectivity index is close to one up to a value of
K = 3 and for cubic elements the value of the effectivity index is close to one
up to a value of K = 3.5. In Fig. 6.8 we show the weighted-equilibrated mesh
of quadratic elements which is generated using Co = 0.07 and K = 3 outside
the subdomain and in Fig. 6.9 we show the weighted-equilibrated mesh of cubic
elements generated using adaptive refinement for C = 0.02 and K = 3.5 outside
the subdomain. Hence we observe that as the polynomial degree p of the elements
is increased, the pollution-effect in the interior of the subdomain is controlled for
a bigger range of values of the weight-factor K.

6.2 Factors affecting the permissible range of the weight-
factor K

Here we examine the factors which affect the range of the weight-factor K for
which the pollution-effect in the interior of the subdomain is controlled. We will
say that the pollution-effect in an interior subdomain is controlled if %& > 0.85

(where w0h denote interior mesh-cells in the subdomain). We will call the range
of K, I = [1, K,,], for which , > 0.85, the permissible range of of K. For
example, in the numerical examples given in Section 6.1, K. = 2.5, 3 and 3.5 for
linear, quadratic and cubic elements, respectively.
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Study of the Pollution Error /3)
Exact Solution: un(r,e) = r"/') Sin( /3)
Linear Elements; Adaptively Refined Mesh
Location of the Subdomain: (0.5,0.75)x(O.5,0.75)

I. Weight Factor K = 1; Mesh Size in the Subdomain = 0.031250 0.008

.~-0.0020 0.007 i ,,"

.V, Error From Overkill (p = 3)
S.. m• V& Error From Overkill (p = 3)

a-."-" ZZ Error Estimator

-0.012.. . . I.. . . . I.. . . . I.. . . .
0.45 0.75 1.05

Arc Length Coordinates Along S-Axis

(a)

Figure 6.4. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Linear elements, exact solution u(r,9) = ri sin(!);
1

the mesh-size in the subdomain fl0 is h = -. Directional derivatives of

the V, - and V2 -components of the error and the ZZ estimator along thea

axis for adaptive meshes generated using (a) K = 1 (b) K = 2.5 (c) K =

5. Note that for K = 1 and K = 2.5, "J I < 12 V [ but for K = 5,

"18"4 I ::> I"I1, in the interior of the subdomain.
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Study of the Pollution Erryo&,)
Exact Solution: us(r.e) = r Sin(%/3)
Linear Elements; Adaptively Refined Mesh
Location of the Subdomain: (0.5,0.75)x(0.5,0.75)

I- Weight Factor K = 2.5; Mesh Size in the Subdomain = 0.03125
o 0.008I..@

0.003

0 0.002

o0-0.007

,--..- V, Error From Overkill (p = 3)
r---- Vi Error From Overkill (p = 3)

ZZ Error Estimator

. 0.75 1.05
Arc Length Coordinates Along S-Axis

(b)

Figure 6.4. (continued)
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Study of the Pollution Erro!,.,
"Exact Solution: un(r.e) = r Sin(6
Linear Elements; Adaptively Refined Me'sh
Location of the Subdomain: (0.5.0.75)x(0.5.0.75)
Weight Factor K = 5; Mesh Size in the Subdomain 0.03125o 0.008

0.003

0
S-0.002

o2-0.007- :

. -. G-.�V V Error From Overkill (p = 3)
. . Ve Error From Overkill (p = 3)

.- ,--, ZZ Error Estimator

- 0 .0 12 .. . . . ......... I ......... I ......... r ........ -r , ....~r
0.45 0.75 1.05

Arc Length Coordinates Along S-Axis

(c)

Figure 6.4. (continued)
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Figure 6.5. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Quadratic elements, exact solution u(r, 9) = ri sin(!);3

the mesh-size in the subdomain CIO is h =The mesh outside CIO is gen-

erated using adaptive refinement for Cgn* 0.07 and K = 1. The effectivity

indexr ,A, in the eight-element mesh-cell w~h at the center of the subdomain

110 is 0.97.
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Figure 6.6. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Cubic elements, exact solution u(r, 9) = r. sin(!); the
13

mesh-size in the subdomain fl 0 is h = •. The mesh outside fl( is generated

using adaptive refinement for =. = 0.01 and K = 1. The effectivity index

r,. in the eight-element mesh-cell wo at the center of the subdomain f1* is

0.97.
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Study of the Pollution Error
Singular Solution: uu(r.0) = r(/"'Sin(0/3)
Adaptively Refined Mesh
Location of Subdomain: (0.5.0.75)x(0.5,0.75)
Effect of Adaptive Refinements Outside the Subdomain
on the Effectivity Index in the Interior of the Subdomain

1.00

0.80

.0.60

S0.40

0.20 =

**-- p = 2
"-''p = 3

1.00 3.00 5.00 .00
Weight Factor ( K )

Figure 6.7. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Exact solution u(v,O) = ri sin(!); the mesh-sise in1

the subdomain flo is h i •. Comparison of the effectivity index vs. K

curves for p = 1, 2, 3. Note that as the polynomial degree p of the elements

is increased, it is possible to control the pollution-effect in the subdomain

for larger values of the weight factor K.
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Figure 6.8. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Quadratic elements, exact solution u(r, 9) = rf sin(f);
1

the mesh-size in the subdomain fl is h = •. The mesh outside CIO is gen-

crated using adaptive refinement for Cu. = 0.07 and K = 3. The effectivity

index r,,. in the eight-element mesh-cell wok at the center of the subdomain

flo is 0.93.
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Figure 6.9. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Cubic elements, exact solution u(r, 0) = r.I sin(!); the
1

mesh-size in the subdomain flo is h = The mesh outside l1o is generated

using adaptive refinement for 4a = 0.01 and K = 3.5. The effectivity index

.,,% in the eight-element mesh-cell wo at the center of the subdomain f0o is

0.93.
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a. Effect of the distance of the eubdomain no from the singudarity

We considered the L-shaped domain with a uniform-mesh subdomain (1:
(0.25, 0.5)2 closer to the singular point than the subdomain in the examples given
in Section 6.1. In Fig. 6.10 we show the mesh for linear elements (p = 1) for which

1
the mesh-size in the subdomain is h = - and the mesh outside the subdomain

was generated using adaptive refinement3 ior Co. = 0.25 and K = 1. In Fig. 6.11
we show the graph of the effectivity index, o,4, in the mesh-cell woh at the center
of the subdomain, plotted against the weight-factor K. Note that the effectivity
index x,* remains close to one up to a value of K = 2 and then drops to small
values faster when compared with the graph of Fig. 6.7. In Fig. 6.12 we show the
weighted-equilibrated mesh of linear elements where the grid outside the subdomain
is generated using C = 0.25 and K = 2. Hence, we note that as the distance of
the subdomain Ao from the singular point increases, the permissible range of the
weight-factor K increases in size and the pollution-effect in the subdomain can be
controlled by employing coarser meshes outside the subdomain.

b. Effect of the strength of the singularity: Value of the eCponent, a

We considered singularities with two different exponents (a= I and a = )
33

for quadratic elements and plotted the graph of the effectivity index r.4 for the
mesh-cell &4 at the center of the subdomain no := (0.5,0.75)2 vs. the weight-
factor K. In Fig. 6.13 we show the comparison of the effectivity index vs K curves

1 2 1
fora= - anda= -. From the graph, we note that K. = 3 for a -,while

-3 2
K.=3.5 for a j. Hence we note that for a = -the permissible range of the

weight-factor K increases in size and the values of the effectivity index are higher1
than the values of the effectivity index for a = •, for all values of the weight-factor

K.

c. Effect of the strength of the singularity: Value of the stress intensity factor, A

We considered the exact solution u(r,0) = Art sin(10) for A = 0.02, A = 0.1,

A = 0.5, A = 1, A = 10 and A = 50 and linear elements. We plotted the graph
of the effectivity index ry, for the mesh cell wo' at the center of the subdomain

no := (0.5, 0.75)x(0,5, 0.75) vs. the weight-factor K. In Fig. 6.14 we show the
comparison of the graphs for A = 0.02, 0.1, 0.5, 1, 10 and 50. Note that as
the value of stress-intensity factor A is increased, the value of the effectivity index
drops for the same value of K. Hence we observe that for higher values of the stress
intensity factor A, the permissible range of the weight-factor K decreases and more
refinement is needed outside the subdomain in order to control the pollution-effect
in the interior of the subdomain.
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Figure 6.10. Control of the pollution-effect in a subdomsin by employing weighted-

equilibrated meshes. Effect of the distance of the subdomain from the

singularity on the amount of refinement needed outside the subdomain in

order to control the pollution-effect in (L0. Linear elements, exact solution

u(r, 0) = 4i sin(!), location of the subdomain flo : (0.25,0.5)2, mesh-sise in1

the subdomain h = -. The mesh outside fl 0 is generated using adaptive

refinement for Co. 0.25 and K = 1.
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Study of the Pollution Error
Singular Solution: uu(r,G) = r{/3)Sin(O/3)
Linear Elements; Adaptively Refined Mesh
Effect of Adaptive Refinements Outside the Subdomain

1.00 the Effectivity Index in the Interior of the Subdomain

0.80

,0.60

4 0.40

0.20

Center of the Subdomain : 0.375,0.375)
Center of the Subdomain : 0.625,0.625)

0.00
1.00 3.00 5.00 7.00

Weight Factor ( K )

Figure 6.11. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Effect of the distance of the subdomain flo from the

singularity on the amount of refinement needed outside the subdomain in

order to control the pollution-effect in (1o. Linear elements, exact solution

u(,r,0) = ,. sin(!), location of the subdomain fl0 : (0-25,0.5)2, mesh-_ie1
in the subdomain h = The mesh outside the subdomain is generated

using adaptive refinement for = 0.25 and K = 1. Note that as the

distance of the subdomain from the singular point increases, it is possible

to control the pollution-effect in 110 for larger values of the weight-factor'

K.

147



Figure 6.12. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Effect of the distance of the subdomain from the

singularity on the amount of refinement needed outside the subdomain in

order to control the pollution-effect in the interior of the subdomain. Linear

elements, exact solution u(r, 9) =4 u in(f ), location of the subdomain CIO:

(0.25,0.5)2, mesh-size in the subdomain h = .The mesh outside the
32

subdomain is generated using adaptive refilnemenit for Co. = 0.25 and K=

2.
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Study of the Pollution Error (t/3)
Singular Solution: ucx(r,O) = r Sin(O/3)
Quadratic Elements; Adaptively Refined Mesh
Location of Subdomain: (0.5,0.75)x(O.5,0.75)
Effect of Adaptive Refinements Outside the Subdomain
on the Effectivity Index in the Interior of the Subdomain
Effect of the Strength of the Singularity

1.00

x 0.80

>%0.60

0

60.40

0.20
- = 1/3
a 2/3

0.001 O "1..... ' .. ... ..1 .. ... . . ..
1.6. . . 3.00 5.00 . .. 7.6600 .

Weight Factor ( K )

Figure 6.13. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Effect of the exponent a on the amount of refinement

needed outside outside the subdomain in order to control the pollution-

effect in the interior of the subdomain. Quadratic elements, exact solution
1.1

u(r, 8) = rf sin mesh-size in the subdomain fl, := (0.5,0.75)', h - -.
3 32

Note that as the value of the exponent increases (i.e. the solution becomes

smoother), it is possible to control the pollution-effect in fl, for larger values

of the weight-factor K.
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Study of the Pollution Error
Singular Solution: un(r,9) = r(l/)Sin(O/3)
Linear Elements; Adaptively Refined Mesh
Location of Subdomain: (0.5,0.75)x(0.5,0.75)
Effect of Adaptive Refinements Outside the Subdomain
on the Effectivity Index in the Interior of the Subdomain

1.00

0.80
X

•0.60

l 0.40

- A = 0.02
• A = 0.1

0.20 - A = 0.5
" "•A =1I

A 10
='='=' A 50

0.00.. . .
1.00 3.00 5.00 7.00

Weight Factor ( K )

Figure 6.14. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Effect of the stress-intensity factor A on the amount of

refinement needed outside the subdomain in order to control the pollution-

effect in the interior of the subdomain. Linear elements, exact solution9

(r, 0) = r4 sin location of the subdomain (10 := (0.5,0.75)', mesh-size

1
in the subdomain h = T. Note that as A is decreases, it is possible to

control the pollution-effect in f0 for larger values of the weight-factor K.
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Study of the Pollution Error
Smooth Solution: unu(x,xa) = Sinirx,Sinhirxz
Adaptively Refined Mesh
Location of Subdomain: (0.375,0.625)x(O.375,0.625)
"Effect of Adaptive Refinements Outside the Subdomain
on the Effectivity Index in the Interior of the Subdomain

1.00

0.80
X

,0.60

S0.40

0.20 -
S-.-.-.. p -2•-"- p 3
e-.-.".. p -" 3

.0 .. ..30 5.00 7.006
Weight Factor ( K )

Figure 6.15. Control of the pollution-effect in a subdomain by employing weighted-

equilibrated meshes. Smooth solution u(zj1 , 2) " sin irzLsinh r 2 , unit

square domain shown in Fig. 5.2. Comparison of the effectivity index vs. K

curves for p = 1, 2, 3. Note that as p increases, it is possible to control the

pollution-effect in fCI practically for all values of the weight-factor K.
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d. Effect of the amoothness of the solution

We also considered the smooth solution u(z1,Z2) = sinzxlsinhWX2 in the
square-domain fl = (0,1)2 and plotted the graph of the effectivity index K,4,
for the mesh cell uoh at the center of the subdomain (1o := (0.375,0.625)2 as shown
in Fig. 5.2, vs. the weight factor K. In Fig. 6.15 we show the graphs for p = 1, 2
and 3. Note that the values of the effectivity index are greater than 0.8 for the all
values of K.

6.3 Summary of the results for the control of the pollution-
effect in a subdomain

In summary, we observe that

(i). It is possible to control the pollution-effect in an interior subdomain by using
weighted-equilibrated grids which are less refined outside the subdomain than
globally nearly equilibrated grids.

(ii). The amount of refinement outside the subdomain needed to control the
pollution-effect in the subdomain depends on the strength of the singulari-
ties, the distance of the subdomain flo from the singular points, the mesh-size
inside the subdomain and the polynomial degree p of the elements.
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7 Summary

In this work we presented a numerical study of the pollution-error in the h-
version of the finite-element method. We studied the effect of the pollution error
on the local quality of error estimation for various classes of meshes and solutions
used in practical engineering computations. In particular, we considered harmonic
solutions with algebraic singularities of the type ro and studied the pollution-effect
for uniform meshes, globally adaptive (nearly equilibrated) meshes, locally refined
meshes and weighted-equilibrated meshes.

The major conclusions of this study are:

1. When the mesh is globally adaptive (nearly equilibrated in the energy-norm)
the pollution-effect is negligible and, for all practical purposes, we can guar-
antee the reliability of error estimation for all interior mesh-cells.

2. If the mesh is not nearly equilibrated in the energy-norm, the pollution-effect
may be significant.

3. For uniform meshes, the pollution-effect is significant asymptotically when
2a < p, the polynomial degree of the elements. However when 2a > p, the
pollution is negligible.

4. The accuracy of the finite element solution in a subdomain depends upon the
relationship between the mesh inside the subdomain and the mesh outside
the subdomain and the smoothness of the exact solution.

5. It is possible to control the pollution effect in a subdomain by employing
weighted-equilibrated grids which are less refined outside the subdomain than
the globally nearly equilibrated grids.

6. The reliability of local error estimation in an interior sub,4omain can be
guaranteed only when the pollution-effect in the subdomain is negligible. If
there is strong pollution, severe underestimation may occur and in general
nothing can be said about the reliability of the local results of a-posteriori
error estimation.
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