
1 77 RE AD-A279 864)N PAGE f M M 0vd

_____ t~f. 11" ANv "tn .WDV. m1 n W Nov. m 7ýAg

m221. AGEC rdWee3 RFRTP NWr

4. TrrLE AND -4 UDN

)40325SI.11350, AVF: .94ddc500_3B, Compiler: DACS Sun SPARC/Sun0S
to Pentium PM Bare Ada Cross Compiler system, version 4.6.4

8. itnors:'

National Institute of Standards and Technology
Gaithersburg, Maryland

7.PEFRMN ORGANIZATIO NAME(S) AND a. PERFORMING
ORGANMATION

ng~R o ti R1 g6 tandards and Technology
Gaithersburg, Maryland 20899
USA

9. SpONSoRit 3OIORN AGENCY NAME(S) ANS 10. SPNOING IN
Ada Joint "rgrm Offjc L AGENCY

12&. D5hW-OTIONAVAILABILflY 121. DISTRIBUTICIN

Approved for Public Release; .. distribution unlimited

Host: Sun SPARCstation IPX (under SunOS, Release 4.1.2)
Target: Intel Xpress Desktop (product"-number XBASE6E4F-B, with Pentium cpu), operating
as a bare machine (bare machine)

14. hLeIECT IS UBR OF

Ada progranmming linguage, Ada Compler Validation Summnary Report, A
~ A - pb Val. Testing, Ada Val. Office, Ada Val. ci y

CLMWCAQM e. CATION OF
UNLNSID 4CLAWSFIED UINCLASSIFIED NCLASSFIED

Prmwa dbV am. SW.

AVF Control Number: NIST94DDCS00_3Bl.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/SunOS to Pentium PH Bare
Ada Cross Compiler System, Version 4.6.4

Host Computer System: Sun SPARCstation IPX running under SunOS,
Release 4.1.2

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASE6E4F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11350 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

DDr.aidl. fosp Mr. L. Arnold Joh on
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validat t on Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

Ada on onPrn Organization
Director, ter & Software David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information System Agency,

Center for Information Management
Washington DC 20301

U.S.A.

94-16083

94 5 27 049

AVF Control Number: NIST94DDC500_3B_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11350
DDC-I

DACS Sun SPARC/SunOS to Pentium PM Bare Ada
Cross Compiler System, Version 4.6.4

Sun SPARCstation IPX => Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product number: XBASE6E4F-B)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A. Accesion For
NTIS CRA&;
DTIC TAB Q
Una.;iouvced 0
Justification

..

Diz tribution I
Availability Codes

D ist I Avail aindorSpecial

AVF Control Number: NIST94DDC500 3Bl1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/SunOS to Pentium PM Bare
Ada Cross Compiler System, Version 4.6.4

Host Computer System: Sun SPARCstation IPX running under SunOS,
Release 4.1.2

Target Computer System: Intel Pentium (operated as Bare Machine)
based in Xpress Desktop (Intel product
number: XBASE624F-B)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11350 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

a to X c Ada Valation-Fa ty
Dr. David K. eMr. L. Arnold Joh on
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer System Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

Ada V qn Organization Ada Joint Program Office
Director,, ter & Software David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

Vaimo M]wI u.A~tW f =Ag was inW~iad by the utmr

wo-I

om %-= -ate (CSL
W 1&u 25 MA266

Mikk3z~zq, ftyiand 20699

0=0 im 1. vlm:MftlMS fi mA

cc= oml 1Ja *Nbw vamia 4.6.4

kline 4.1.2

MOtO SNOMA hfa1 lualz (qua~d u m Mk&Adm) baud
in -%W Dat ftds p~zoit I

Uff8Of-B2

frm~ inpp ~ 3SIC4-135&I~8~-1S7 n
- Utb ~ e

-- 2

coa he t
dw 0

TABLE OF CONTENTS

CHAP ER 1 1-1
INTRODUCTION. * . . * * * .. .1-1

1.. USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.: ACVC TEST CIASSES o 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 o e..... o.... . .*......... 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS *.... *...... 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 • *........... 3-1
PROCESSING INFORMATION 3-1

3 .1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION 3-2

APPENDIX A *.... A-1
MACRO PARAMETERS * A-1

APPENDIX B *.....*..............*....... B-1
COMPILATION SYSTEM OPTIONS e B-i
LINKER OPTIONS*... B-2

APPENDIX C * C-1
APPENDIX F OF THE Ada STANDARD C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming LanQuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG89] Ada Combiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRTl3, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures require3 to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55BO6A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
AD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAXMANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MA.CHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether: a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAMEERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83AO7C B83EOlC
B83EO1D B83E01E B85001D B85008D B91001A B91002A B91002B
B91002C B9l002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1I01B BC1109A BC1109C
BC1109D BC1202A BCl202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the host machine and is used for downloading
the executable images to the target machine. The DDC-I Debug
Monitor runs on the target machine and provides communication
interface between the host dovnloader and the executing target
machine. The two processes communicate via ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAXIN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 126 -- Value of V

$BIGID1 (l..V-1 => 'A', V => '1')

SBIG ID2 (1..V-1 => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (1..V-l-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (I..V-3 => '0') & "298"

$BIGREALLIT (I..V-5 => '0') & "690.0"

$BIGSTRINGI 1""' & (i..V/2 => 'A') & '""'

$BIGSTRING2 O""' & (1..V-l-V/2 => 'A') & '1' &'""

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:-" & (l..V-5 => '0') & "11:"

SMAXLENREAL BASED-LITERAL
- -1 6:11 & (l..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL ' ""'& (l..V-2 => 'A') & ""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
--

ACC SIZE :48
ALIGNMENT :2
COUNT LAST 2 147 483 647
DEFAULTHEN SIZE : 16#1_000-0000#
DEFAULT STOR UNIT . 16
DEFAULTSYS NAME : IAPX586 PM
DELTA DOC : 2#1.0#E-31
ENTRY ADDRESS : (140,0)
ENTRY ADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELD LAST : 35
FILE TERMINATOR : ASCII.SUB
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORM STRING : ""
FORM-STRING2

"CANNOT RESTRICTFILECAPACITY"
GREATER THAN DURATION : 757000.0
GREATERTHAN-DURATION BASE LAST : 131_073.0
GREATER_-THAN-FLOATBASELAST : 16#1.0#E+32
GREATER THAN FLOAT SAFELARGE : 16#5.FFFF_FO#E+31
GREATERTHAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAME1 : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILE NAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGELENGTH : -1
INCLUDEPRAGMAI

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006E1.ADA")
INTEGER FIRST : -2147483648
INTEGER-LAST 2147483647
INTEGER LAST PLUS 1 2 147 483 648
INTERFACE LANGUAGE ASM86
LESS THAN DURATION : -75 000.0
LESS -THAN-DURATIONBASEFIRST : -131_073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY :0
MACHINECODESTATEMENT

MACHINEINSTRUCTION' (NONE, m_NOP);
MACHINE CODE TYPE : REGISTERTYPE
MANTISSADOC : 31

A-2

MAXDIGITS : 15
MAXINT : 9223372036854775807
MAXF INT PLUS_1 : 9223372036854775808
MIN INT7 : -9223372036854775808
NAME : SHORTSHORTINTEGER
NAME -LIST : IAPX586_PM
NAMESPECIFICATION1

DISK$AWC-2: [CROCKETTL. ACVC11 .DEVELO0PMENT] X2120A
NAMESPECIFICATION2

DISK$AWC -2: (CROCI(ETTL.ACVC11 .DEVELO0PMENT] X2120B
NAMESPECIFICATION3

DISK$AWC-2: (CROCKETTL.ACVC11. DEVELOPMENT] X3119A
NEG BASED INT : 16#FFFF FFFF FYFF_ FFFF#
NEW MEN SIZE : 1611_0050-0_0000
NEW ST7R' UNIT :16
NEWSYSNAME I APX586 PM
PAGE TERRMINATOR :ASCII.kFF
RECORDý_DEFINITION :RECORD NULL;END RECORD;
RECORD -NAME :NO_-SUCHMACHINECODETYPE
TASK SIZE :32
TASKSTORAGESIZE :1024
TICK : 0.000 000 062_5
VARIABLEADDRESS :(16#0T,16i44i1)
VARIABLE-ADDRESS1 (16#4#,16#44#)
VARIABLE-ADDRESS2 :(16#8#,16#44#)
YOURPRAGMA :EXPORT-OBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source rile and inserts the
genermed objects into the current program library. Compiler options are provided to allow the
user control of optimization, nm-time checks, and compiler input and output options such as list
files, configuration files, the program library used. etc.

The input to the compiler consists of the source file, the cnfiguraion file (which controls the
format of the list file), and the compler options. Section 5.1 provides a i•s of all compiler
optionm and Section 5.2 describes the source and configuration files.

If any diagnostic messages am produced during the compilation, they am output on the diagnostic
le and on the aurent output fe. The diagnostic file and the diagnostic messages we described

in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the pmrgram library, and an internal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shelL

$ ada {<.option>n) <source-flie-nameza

where the options and parameters are:

35

DACS-80x86 User's Guide
Ada Compiler

OPTION DESCRIPTION REFERENCE

-[no.autofinlne Specifies whether local subprograms should be 5.1.1
inline expanded.

-check Controls run-time checks. 5.1.2
gSpecifies the configuration file used by the 5.1.3compile.

-[noldebug Includes symbolic debugging Information in 5.1.4
progrmun Library. Does not include symbolic
infonmaion.

*(.[flxpoint_rounding Generates fixed poim rounding code. Avoids fixed 5.1.5
point rounding code.

[nojfloat allowed Flags generation of float instructions as 5.1.6
error if selected.

-[nollibrary Specifies program library used. 5.1.7
.[noilist Wrtes a source listing on the list file. 5.1.8
-(noloptim1M Specifies compiler optimization. 5.1.9
-(no~progmss Displays compiler progms. 5.1.10
.[nowjxef Cmates a coss refermce lisng. 5.1.11
.[nojsMvebsource Copies source to program library. 5.1.12
-(noltargetdebug Includes Intel debug information. Does not include 5.1.13

Intel debug information.
-unit Assigns a specific unit number to the compilation 5.1.14

(must be free and in a sublibrary).
.recompile Interpret the file name as a compilation unit boly

that must be recompiled from library. 5.1.15
-specdfkcation With -recomple interpret file name as a

compilation unit specification rather than body. 5.1.16

Exanmples:

$ ads -list testpzog

This example compiles the source file testprogada and generates a list file with the name

$ ad& -libra-y y._ bzayZ test

This example compiles the source file test.ada into the library myjibrary.

Default values exist for most options as indicated in the following sections. Option names may
be abbreviated (character omitted from the right) as long as no ambiguity arises.

36

DACS-80x86 User's Guide
Ada Compiler

,aoou.,-ffle-namne

The Ara compiler has one mandatwry parameter that should specify the Ada source file.
This parameter specifies the text file containing te source text to be compiled. If the file type
is omitted in ite source file specificauion. the file type w.ara" is assumed by default-

The allowed format of the source text is described in Section 52.1.

Below follows a descripton of each of the available optiom to the invocation of the Ada
compiler.

5.1.1 -[nolauto inlipe

-autofhiline local I global
.noauto.nine (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfils the requirements defined for pragma INLINE (see Section C1..3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

5.1.2 -check

-check [<keyword& = ON I OFF (,ckeyword> a ON I OFF)]
-check ALL--ON (default)

-check specifies which run-time checks should be performed. Setting a nm-time check to ON
enables the check, while setting it to OFF disables the check. All run-time checks ame enabled by
defaulL The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check.
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-80x86 User's Guide

Ada Compiler

5.1.3 -configurationaflle

conflpurtion.file <flle-spec:
-conflgraion-flile config (default)

This option specifies the configuration file to be used by dhe compiler in the current compilation.
The configuration file allows the user to format compiler listings, set error limits. etc. If the
option is omitted the configuration rile config located in the same directory as the Ada compiler
is used by default. Section 5.2.2 contains a description of the configurtion file.

S.1.4 -1noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note thai the program must also be linked with the -debug option. if the program is to be
debugged with the DDC.I Ada Symbolic Cross Debugger. See Section 6.5.11.

5.1.- -[nojflxpoint rounding

-flxpointrounding (default)
-nofixpoint rounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded. but this
may be avoided with -noflxpoint rounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types, when the target is 80386PM or 80486PM.

5.1.6 [nolfloat.allowed

-float allowed (default)
-not at kalowed

Float instnuction generation may be flagged as errors, if -nofloat is selected. This is for use in
systems, where no floating point processor (nor emulator) is available. Notice ha TEXTIO uses
floats in connection with FLOAT-1O and FIXEDIO.

38

DACS-$0x6 User's Guide
Ada Compiler

5.1.7 -Aibrary

-library 4file-specz
-library $adalibrary 'default)

This opton specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary. the current
pmoram library (current sublibrary and ancestors up to moot) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable adasJlbrary is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[nollist

-list
-nolist (default)

-list specifies that a source listing will be produced. The source listing is written to the list file.
which has the name of the source file with the extension Jis. Section 5.3. 1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced. regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize (ckeywordb = on I off (,ckeyword> = on I off)
-optimize ill=off

This option specifies which optimizations will be performed during code generation. The possible
keywords are: (casing is irrelevant)

all All possible optimizations ae invoked.
check Eliminates superfluous checks.
ese Performs common subexpression elimination including common

address expressions.
tct2proc Change function calls returning objects of constrained array types

or objects of record types to procedure cabs.
reordering Transforms named aggregates wo positional aggregates and named

parametr associations to posiiomal aociations.
stack..belght Performs stack height redw ions (also called Aho Ullman

reorderng.
block Optimize block ad call frames.

Setting an optimization to on enables the optimization. while setting an optimization to off disables
the optimization. All optimizations are disabled by defaulL In addition to the optional
optimizations, the compiler always performs the following optimizations: constant fbiding. dead
code elimination, and selection of optimal jumps.

39

DACS-80x86 User's Guide
Ada Compiler

5.1.10 -[nolprogress

-noprogreM (default)

When this option is given, the compiler will output data about which pass the compiler is
curenty nmnig.

$.1.11 -[nojxref

-xref
.noxrf (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref
option is given ad no severe or fatal errors are found during the compilation, the cross-reference
listing is written to the list file. The cross-reference listing is described in Section?.

5.1.12 .[nolsavewsource

-save source (default)
-nosave.source

When -save.source is specified, a copy of dwe compiled source code is placed in the program
library. If -nosave source is used, source code will not be retained in the program library.

Using -nouve.source, while helping to keep library sizes smaller, does affect the operation of
the recompiler, see Chapter 7 for morm details. Also, it w•il not be possible to do symbolic
debugging at the Ada source code level with the DACS-80x86 Symbolic Ada Debugger. if the
source code is not saved in the library.

S.1.13 -[noltarptgdebug

-targetdebU
-not-aretdebug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currently the linker does no support the OMF debug information.

This option may be used when debugging with standard OMW tools (i.e., PICE).

40

DACS-80x86 User's Guide
Ada Compiler

&.1.14 -unit

-unit = cunit.number>

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile

-recompile

The file name (source) is interpreted as a compilation unit name which has its source saved from
a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

S.1.16 -specification

-specification

Works only together with -recompile. see Section 5.1.15.

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
configuration file.

5..1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCIL This format requires that the
source text is a sequence of ISO characters (ISO standard 646). where each line is terminated by
:ither one of the following termination sequences (CR means carnage retum, VT means vertical
tabulation, LF means line feed, and FF means form feed):

" A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the chaacters VT, LF, or FF.

" Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero
or more CRs.

In general. ISO control characters are not permitted in the source text with the following
exceptions:

41

DACS-8•x86 User's Guide
Ada Compiler

* The horizonrAl tabulotion (H1T) character may be used as a separator between lexical units.

L LF, VT. FF. and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR, VT, LF, and FF are not
considered a pan of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2 Conflguraton File

Certain processing characteistics of the compiler. such as format of input and output. and error
limit. may be modified by the user. These characteristics ame passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, written on one line. of the type
CONFIGURATJONRECORD, which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

"* The syntax does not conform with the syntax for positional Ada aggregates.
"* A value is outside the ranges specified.
"* A value is no specified as a literal.
"* LINES_PERPAGE is not greater than TOPMARGIN + BOTT(. t_MARGIN.
"• The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATION-RECORD is
record

INFORMAT: INFORMATTING;
OUT FORMAT: OUTFORMATTING;
ERROR LIMIT : INTEGER;

end record;

type INPUT FORMATS is (ASCII);

type INFORMATTING is
record

INPUT FORMAT: INPUTFORMATS;
INPUT LINELENGTH: INTEGER range 70..250;

end record:

type OUTFORMATTING is
record

LINESPERPAGE : INTEGER range 30..100;
TOP-MARGIN : INTEGER range 4.. 90;
BOTTOM MARGIN : INTEGER range 0.. 90;
OUTLINELENGTH : INTEGER range 80..132;
SUPPRESS.ERRORNO : BOOLEAN;

end record;

The outformianing parameters have the following meaning:

1) LINES_..PERPAGE: specifies the maximum number of lines written on each page
(including top and bottom margin).

2) TOPMARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTOaMMARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PERPAGE - TOP-MARGIN - BOTTOM-MARGIN.

4) OUTLrNELENGTH: specifies the maximum number of characters written on each line.

Lines longer than OUTLINELENGTH am separated into two lines.

5) SUPPRESSERRORNO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed to the compiler through the
configuration-file option. DDC-I supplies a default configuration file (config) with the following
content:

43

DACS-80x86 User's Guide
Ada Compiler

((ASCII. 126). (48.5.3, 100,FALSE). 200)

Taop

per

Io:•o I

Out~Iinejlength

Figure 5-1. Page Layout

5.3 Compiler Output

The compiler may produce output in the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The ,dating of the program library is
described in Section 5.4.

The compiler may produce the following text output:

I) A listing of the source text with embedded diagnostic messages is wriuen on the list file.
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reterence listing is wrinen on the list file, if -xret is active and no severe or fatal
errors have been detected iudng the compilation.

4) If there are any diagnosdc messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warngngs are written on die current output file.

44

DACS-8Ox86 User's Guide
Ada Compiler

5.3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
"Jis". The file is located in the current (default) directory. If any such tMle exists prior to the
compilation, the newest version of the file is deleted. if the user requests any listings by
specifying the options -list or -iref, a new list file is created.

The list file may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilanon summary.

The parts of the list file are separated by page ejects. The coments of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

S.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Pars of the listing can be suppressed by the use of the LIST pragna.

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the

option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not

2) The number of diagnosc messages produced for each class of severity (see Section

5.3.2.1).

3) Which options were acive.

4) The full name of the source fe.

5) The full name of the current sublibray.

6) The number of source text lines.

45

DACS-8Ox86 User's Guide
Ada Compiler

7) The sze of the code produced (specified in bytes).

8) Elamed real time and eapsd CPU tim.

9) A *Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilatimn of next unit initiated" otherwise.

53.1•3 Cros.-Refrenm 1stfg

A cos-er listing is an alphabetically sorted list of the identifiers. operators, and character
literals of a compilation unit. The list has an entry for each entity declared andor used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declarations of the generc unit are included in the
cross-reference listing as declared immediately after the instannation. The visible declarations are
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaraton for a generic packge.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
liuterals.

The following ae not included in the cross referen listing:

"* Pragma identifiers and pragma argument identifers.

"* Numeric literals.

"* Record component identifiers and discriminant identifiers. For a selected name whose selector
denotes a record component or a discriminant only the prefix generates cross-reference
information.

"* A parent unit name (following the keyword SEPARATE).

Each entry in the css-reference listing contains:

"* The identifier with, at most. 15 characters. If the identifier exceeds 15 characters, a bar ("I")
is writnen in the 16th position and the rest of the characters awe not prited.

"• The place of the definition, Le., a line number if the entity is declared in the cunent
compilation unit. otherwise the name of the compilation unit in which the entity is declared
and the line number of the declamrion

"* The numbers of the lines in which the entity is used. An astriusk (") after a line number
indicates an assignmen to a variable, initialization of a consant, assigmnents to functions, or
user-defined operators by meams of RETURN statements. Please refer to Appendix B.3 for
examples.

46

DACS-80x86 User's Guide
Ada Compiler

s.3.2 The Dnpotk File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type *.eWr. It is located in the current (default) directory. If any such file exists prior to the
compilation. the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is crea•ed.

The diagnostic file is a = file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. There
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erneous source txt.

SA.3..1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required. the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing. a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line an placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are ordered by increasmg source line numbers. Line number 0 is
assigned to messages not related to any paricular line. On the current output file the messages
appear in the order in which they are generated by the compiler.

The diagnostic messages am classifed according to their severity and the compiler action taken:

Warning: Reports a questionable consmtct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A waning will be issued for cohnsucts for which the compiler detects will
raise CONSTRAWJ_.ERROR at nn time.

Error Reports an illegal =onarnct in dai source program. Compilation continues, but no object
code will be generated.

Examples: most syntax enors most statf semantic errora.

Severe Reports an err which causes tde compilation to be terminated immediately.
error No object code is gnmme L.

Example: A severe error message will be issued if a library unit mentioned by a
WITH clause is not present in the current propg library.

47

DACS4-0x6 User's Guide
Ada Compiler

Fatal Reports an error in the compiler system itself. Compilation is terminated immediately
error, and no object code is produced. The user may be able to circumvent a fatal error by

correcting the program or by replacing propram constructs with alternatives. Please
inform DDC-l about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the ERROR.L1MIT
paramneter of the configuration file (see section 5.2.2) is considered a severe error.

$.3.2 Format and Content of Diagnostic Mesmges

For certain syntactically incore consaucts. the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (a carat symbol A) to the offending symbol or to an illegal

character.

The text line contains the following information:

"* the diagnostic message identification "*"

"* the message code XY-Z where

X is the message number

Y is the severity code, a letter showing the severity of the error.

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X, uniquely identifies the compiler
location that generated the diagnostc message; Z is of importance mainly to the compiler
maintenance team - it does not contain information of interest to the compiler user.

The message code (with the exception of the severity code) will be suppressed if the
parameter SUPPRESSERRORNO in the configuration file has the value TRUE (see
section 52.2).

* the mesage text; the text may include one context dependent field that contains the name of
the offending symbol. if the name of the offending symbol is longer than 16 characters only
the first 16 chaacters ae shown.

Examples of diagnostic messages:

"1-81-3: warning: Exception CONSTRAINT•. RROR will be raised here

3209-2: Name 03 does not denote a type

535E-0: Expression in return statement missing

48

DACS-80x46 User's Guide
Ada Compiler

"' 1508S-0: Specification for this package body not present in the library

5.4 The Program Libra"

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the pmpgam library, the user is mferred to Chapter 3.

The compiler is allowed to read from all sublibranes constiting the currne program library, but
only the curment sublibrary may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units ame cornectly compiled. i.e.. that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the curret sublibrary. it is deleted togete with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which Is a subprogram body

A subpr•gram body in a compilation uniz is teated as a secondary unit if the curem sublibrary
contains a subplogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be nested as a library unit. i.e.:

"* when them is no library unit of that name

"* when there is an invalid declaration unit of that name

"• when there is a package declaration, generic package declaration, an instantiated package, cr
subprogram of that name

Compilation of a library unit which is an instantiaion

A possible existing declaration unit of that name in the curnmt sublibrary is deleted together with
its body unit and possible subunim. A new declaration unit is inserd.

Compilation of a secondary unit which Is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. A new
submit is inserted.

5.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the progrun library will not be updated for any of the compilation units.

5.5 Instantiation of Generic Units

This section descuibes the rules after which generic instaniation is performed.

5.5.1 Order of Compilation

When instantiating a generic unit. ii is ,equired that the entire unit. including body and possible
subunits, be compiled before the first imstaniation. This is in accordance with the ARM Chapter
10.3 (1).

$.S.2 Generk Formal Private Types

The present section describes the treannent of a generic unit with a generic formal private type,
where there is some construct in the generic unit that requiWrs that the conesponding actual type
must be constrained if it is an array type or a type with discriminantS, and there exists
instannations with such an unconstrained type (see ARMK Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when the instantiation is compiled, in
other caes when a constraint-mquiring construct of the generic unit is compiled:

1) If the instaniation appears in a later compilation unit than the first constraint-requiring
construct of the generic unit. the error is associated wit the instantiation which is rejected
by the compiler.

2) If the instantiation appears in fthe same compilation unit as the firs constraint-requiring
construction of the genetic unit, there are two possibilities:

a) If ther is a constraint-requiring construction of the genetic unit after the instantiation.
an error message appears with the instantiation.

b) If the instmtiation appears after all constraint requiting constructs of the genetic unit
in that compilation unit. an error message appears with the constraint-requiting
construct, but will refer to the illegal insantiation.

50

DACS-80x86 User's Guide
Ada Compiler

3) The immstiation appears in an earlier compilation unit than the first consraint-requirzig
construction of the generic unit. which in that case will appear in the generic body or a
subunit. If the instaniation has been accepted. the instantiation will correspond to the
genetic declaration only. and not include the body. Nevertheless, if the generic unit and
the instaniaion are located in the same sublibrary. then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantiation. The unit containing the instantiation is not changed. however,
and will not be marked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

S.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

The Ada compiler supports a "modified large" memory model for data references. The
"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight in=ase in code size results from
referencing package data compiled into a different hierarchical level. Inel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the mot
sublibrary.

* The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K wonrs, the total size of the code portion of a
program is not restricted.

* The space available for the static data of a compilation unit is 64K - 20 bytes.

* The space available for the code generated for a compilation unit is limited to 32K words.

* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

"* Each source file cua contain, at most. 32,767 lines of code.

"• The name of compilation units and identifiers may not exceed the number of characters given
in the INPUT..LINELENGTH parameter of the configuration file.

"• An integer literal may not exceed the range of LONGNTEGER. a real literal may not exceed
the range of LONG-FLOAT.

51

DACS-80x86 User's GuideAda Compiler

The number of formal parameters permitted in a pmcedure is limited to 127 per parameter
specificatio There is no limit on the number of procedure specifications. For example, the
declaation:

procedure OVER LIMIT (INTEGERO1,
INTEGERO2.

INTEGER166 : in INTEGER);

exceeds the limit, but the procedure can be accomplished with the fWlowing:

procedure UNDERLIMZIT (IMTGER01 : in INTEGER;
INTEGER02 : in INTEGER;

ItITEGER166 :in INTEGER);

The above limitations ae diagnosed by the compiler. In practice these limitations are seldom
restictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibranes.

5.8 Compiler Code Optimizations

DDC-I's Ada compiler for the iAPX 80x86 mioprocessor family generates compact, efficient
code. This efficiency is achieved, in part. by the compiler's global optimizer. Optimizations
performed include:

"* Common sub-expession elimination
"* Elimination of redundant constraint checks
"* Elimination of redundant elaboration checks
"* Constant folding
"• Dead code elimination
"* Optimal register allocation
"* Selection of optimal jumps
"* Optional mn-time check suppression

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, run-time code, and any
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker.

$ adalink {(.aption>) <cunit-name>

where the optiows and %arameters are:

Ada Linker Options

OPTION DESCRIPTION REFERENCE

-[noldebuag Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-enamble task trace Enables trace when a task terminates in 6.5.28
unhandled exception.

-exceptionspace Defines area for exception handling in task stack. 6.529
-[nojextract Extracts Ada Object modules 6.5.14
-interrupt entrytable Range of interrupt envies. 6.5.27
-library The library used in the link. 6.5.7
-[nojlog Specifies creation of a log file. 6.5.9
-ltsegment.size Library task default segment size. 6.5.23
-it stack Size Library task default stack se 6.5.22
*mp segment size Main program segment size. 6.5.25
-mp stack size Main program stack size. 6.5.24
-[noinpx Use of the 80x87 numeric coprocessor. 6.5.16
-oiptions Specifies target link options. 6.5.6
-priority Default task pliorty. 6.5.18
-reserve stack Size of reserve stack. 6.5.21
.rim Select Rate Monotonic Scheduling Run-Tune 6.5.13

Kernel (optional).
.[no~roote.tract Using non-DDC-I units in the root library. 6.5.10

53

DACS-80x86 User's Guide
The Ads Linker

-(nolrts Includes or excludes the run-time system. 6.5.12
-searchlib Target libraries or object modules to include 6.5.4

in urget link.
-selective-ink Removes uncalled code from final program. 6.5.8
-slgn on Produce sign on and sign off messages. 6.5.30
-stop.before-link Performs Ada link only. 6.5.5
.tasks Maximum number of tasks or non-tasking 6.5.17

application.
-taskstoragesize Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
-timer Timer resolution. 6.5.20
-time-dice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: Several simultaneous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the currem output file and on the optional
log file. The messages am output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A warning reports something which does not prevent a successful linking, but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit. e.g. if the body unit is invalid or if there is no object
code container for the body unit. Warnings am only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of warnings issued,
even if the issued warnings have not been ouqmt.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message. e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies intrduced by the hypothetical recompilations am
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive processes. Both am automatically carried
out when issuing the link command adalink.

54

DACS-80x86 User's Guide
The Ada Linker

The first process constitutes the Ada link process and the second constitutes the target link

proce.

The Ada link process

"* retrieves the required Ada object modules from the program library.

"* determines an elaboration order for all Ada units,

" creates a module containing the User Configurable Data (UCD) from the specified configuration
options to the Linker and

"* creates a shell script that carries out the target link process (i.e., dlnkbldx86). The locat/build
phase is an integral part of the target link.

If the option ,stopWbeforeJink is NOT specified (default), the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop-beforeUnk is specified, all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

The following temporary files are in use during the link phase:

<main.pogram>_link.com The shell script which invokes the target linker.

<main-program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main.program>_ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<main_pmgram>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada uniL

55

DACS-80x86 User's Guide
MW Ad& Linker

AMs Urdw ýf

uCC

I~ssw~ Run-rem. SY'SvI

LPAS

Figure 6.3. The Linking Process

The following components make up the run-time system:

1) User configurable portion of the RTS

a) User configurable data (UCD) and
b) User cofigurable code (UCC)

2) Permanent part of the RTS

a) Non-tasking RTS (r I lib) or
b) Tasking RFS (rI12.ib)
c) RMS Tasking RTS (r13.lib)

The User Configurable Code defined by the envirnmuental variable ada uec fib is included in the
link. If no tasking has been specified. then the RTS non-tasking library (ri flub) will be included.
If tasking has been specified, then support for tasking will be included (rl2Jlib or, when ..nmh.
r13.lib).

56

DACS-80x86 User's Guide
The Ada Linker

The output of the linker step is an absolute executable object file with the extension ".dat" and
a map file with the extension ".mpS".

6-9. Environmental Variables

When a link is executed, a number of frles are referred to and most are accessed through
environmental variables. The locate/build phase uses the control file Sada.ucc-dir/config.bld ddci,
the remaining variables are:

VARIABLE PURPOSE

ada-systemjlibrary Identifies the root library where the system compilation units reside.

ada_library Identifies the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

adaroot-lib Identifies the OMF library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

ada_rl UJib Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

ada_rl2_lib Identifies the OMF library for the Permanent Part of the tasking vernon
of the Run-Time System.

adajrl3lib Identifies the OMF library for the Permanent Parn of the optional Rate
Monotonic scheduling Run-Tune System.

ada&tcc-lib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada-template Identifies the template file for the Linker.

ada.ucc-dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, ada186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
adalS6 root 11b, and the RTS UCC library environmental variables for the 8086 version would
be adacc lb.

57

DACS-80x86 User's Guide
The Ada Unker

6.3 Run-Time System Overview

The Run-Time System for DACS-80x86 is defined as all code and data, other than the code and
dam produced by the code generator. required to make an embedded system application operate
properly on a specific hardware system.

In general. them am two major components that make up the Run-Tune System.

1) Code and data assumed to exist by the code generator. This is hardware independent and
known as the RTS Permanent Part.

2) Code and data tailoring the application with respect to the characteristics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Part.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed. i.e.. if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Pan does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There ame several versions of the RTS User Configurable Pan available for differem development
targets. Also, the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for complete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the parts of the Run-Time System that must be
configurable for hardware independence. freeing the user from major rewrntes whenever the
Run-Time System is retargeted while, still allowing for almost unlimited adaptability.

Four important features of the run-time system are:

"* It is small

"* It is completely ROMable

"• It is configurable

"• It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

"* Executive. i.e., the start-up mechanism

"* Storage Management

"* Tasking Management

"* Input/Output

"* Exception Handling

58

DACS-80x86 User's Guide
The Ada Linker

"• Run-Time Library Routines

"* Package CALENDAR support routines

The run-time system (RTS) can be configured by the user through Ada Linker command options.
The Ada Linker will generate appropriate data structures to repesent the configuled charactestics
(UCD).

Two versions of the RTS ae supplied, one including tasking and one excluding tasking. The
linker selects the RTS versio including tasking only if the opioon -tasks is proem or -tasks n
is present and n > 0. Otherwise. the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies. but this leaves some freedom
here and there to arbitrarily choose between two or more alternatives. This arbitrary is in the
DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification.
will be attempted elaborated after the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-leveL

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.5 Ada Linker Options

This section describes in detail the Ada linker option and paruneters.

6.5.1 The Parameter <unit-name;

The <unitname> must be a library unit in the current program libray, but not necesarily of the
current subhbray.

Note that a main program must be a procedure without parameters. and that -cnit-name, is the
identifier of the procedure. not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS4OzI6 User's Guide
The Ada Linker

6.S2 The Panlnmeer -.aecowmpilatoui-specD,

The syntax of 4wecompilatla.-spec:, is:

<uuit~ecN-.-odyI..peffcadau.IL.J

This parameter tell the linker to perform a consistency check afthde entire progruin using the
hypothetical Prcomrpilation of all units designated in the 4crecompilation-speo>. The link process
in this instance is not actually performed.

The <unit-spec' is a list of ntm-names (wlldcards ame allowed), separtued by comma Q, or plus
(+). Each unit-name should include an option to indicate if the body or specification is to be
hypothetically compiled (-spe is the default).

53 RequiredRcopiaos

If the consistency check found that recompilations are required. a list of required recompilations
is written to the curvert output file or to a text file if the -log option is specified (the name of
the text file is indicated in the log file, line 8). 113 list will include any inconsistencies detected
in the library uad recompilauions required by the hypothetical recompiastions specified with the
options -declaration and -body.

The entries in the list Contain:

1) The untutname.

2) Indication of what type of unit (declaration unit, body unit, or subunit).

3) If the unit is specified as recomrpiled with the -declartloum or -body option. it is marked
with "-R-".

4) The environmental variable of the sublIftaz Containing the Unit.

In the recompilation list the units are listed in a recommended recompilaton order, consistent with

the dependencies among the units.

6.5.4 -searcbllb

-sA I Alib <flle nauw' ,de..nsi

The -umrchllb option directs the Ada Linker to search the specified 80x86 tare libraies for
object modules in aider to resotfe symbol referPences- The 80x86 target libruaie for object files
wrill be seatched before the DACS Run-Tame System (R=S libraty normaly searches for num-ime
routines; in this way one ca replace zhe stsiddud DACS RIM roitines with custm youtine.

The -smareblib option is alo intended to specify librare of modules referenced from Ada via
pragma DITERFAME

60

DACS-80x6 User's Guide
Tbe Ada Linker

S adLAjk -maurchlb intaface-ib p

Links the subprogram p. msolving refrenced symbols first with the target library •i•eface-lib
and am with the standard RTS target library.

GM -mop.bejreLJlk

.stopbO reUnk

The .mop belirelnk option allows the user to introduce smblers aid linkers from third
paries or to otherwise configure the link to suit the application. The link is halted with tde
WoUwing conditinso

"* The user configurable daa filet. anin>_ucdo. is produced with the default or user specified
linker option values included.

"* The eaoraton code is contained in the <main,>_elmao.o file.

"* Te shell script file that comains tde link command is present ad has not been executed. The
file's name is <mainr-lirkcom.

"* The pWorary Ada object tfle(s) used by the target linker are produced. These objects are
linked and deleted when <man>-iinLcom is executed.

"* WiMh -suleive link the object files comprise all Ada units including those from the root
baruy. At this oint it is possible to disassemble the "cut" object files using -object with the

disasembler.

To complete die link, the <mainr.>lnhLcom script must be executed. To use third party tools, this
file may have to be modified.

6.S.6 -options

-optons <paammeter>

4option allow ft user to pas options onto th target linke.

61

DACS-800IS User's Guide
Run-Time System

6.5.7 .1In"
6.7 library •

-librr Saidkbrar (default)

The -ubrary option specifies the current sublibrary. from which the linking of the main unit will
take place. If this option is not specified, the subl.brau specified by the environmental variable
adalbrary is used

64S -selective-link

-selectivejink

This extracts all required object modules from the Ada library (including the rMot library) and cuts
out exactly those pars dtha ate acually called, in order to make the resulting target program
considerably smaller. If a program uses e.g. PUT.._LINE as the only routine from TEXTO., the
contribution from the TEXTO objec module will only conain PUrLINE (and whatever that
needs). -Note that disassemblies of units used in a selective link normally will not match what is
linked. because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link, by stopping the linking before the target link
phase (-stop_borelink). making disassemblies using -objec and then resuming the link.

Note also that unused constants and permanent variables am not removed.

Only "level I" subprograms may be removed. Nested subprograms (that are not called) are to be
removed during compilation using the -optimize option. Nested subprograms am only removed.
if the routine in which the nesting occurs is removed.

6.53 -(nollog

-wog k4fle-spec0'1
-nolog (default)

The option specifies if a log file will be produced form the front end linker. As default, no log
file is produced. If <f'de-spec> is not entered with -log the default file name for the log file wi
be linklog in the curren directory.

The log file contains extensive infonnation on the results of the link. The file includes:

"* An elaboration order list with an entry for each unit included. showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp, and the dependenes cre
shown. Furthermore. any elaboration incosistencies will be reponred.

"* A linking summary with the following information

"" Parmeters and active option.

"" The full name of the program library (the current sublibrary and its ancestor sublibrauies).

62

DACS-80x86 User's Guide
The Ada Linker

"* The number of each type of diagnostc message.

"* A termination message. stating if the linking was terminated successfully or unsuccessfully or
if a consequence examination was terminated.

"* Diagnostic messages and warnings ate written on the log file.

If recompilations am required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in the log file, line 8.

The log file consists of:

"* Header consisting of the linker name, the linker version number, and the link time.

"• The elaboration order of the compilation units. The units am displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

"• If recompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level

"• The linking summary that includes the main unit name, the program library, any recompilations
that are required. and if any errors or warnings occurred.

6.5.10 .[nolroot-extract

.rooL~extract
-noroot extract (default)

The units contained in the Ada system library supplied by DDC-l have been extracted and inserted
into the Sadaroot.jib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sadajootjib will no longer
match the Ada system library and -root extract must be specified in order to link from the Ada
system library.

6.S.11 -[noldebug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. If -nodebug is specified. the Ada linker will skip the
generation of debug information, thus saving link time, and will not imert the debug information

63

DACS-80x86 User's Guide
The Ada Linker

into the chosen sublibrary, thus saving disk space. Note that any unit which should be
symbolically debugged with the DDC-I Ada Symbolic Cross Debugger must also be compiled with
the -debug option-

6.5.12 -[nolrts

-its (default)
.-- rts

The -rts option directs the Ada Linker to include the appropriate Run-Time System (RTS) in the
link. -wrts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-Time System from the link allows the user t do an additional link
with a private copy of a custom RTS. The Ada Linker may repon unresolved references to RTS
routines, but will still produce a relocatable object file.

6.5.13 -rms

-ruTs

This option selects the Rate Monotonic Scheduling Tasking Kernel (if tasking is selected). The
default is to use the Standard Tasking Kernel. This feature is supplied as an option.

6..14 -[nojetract

-extract (default)
-noextract

This option to the linker allows the user to specify that program unit objects should not be
exuacted from the Ada program library. This option would be used if the user knows that many
objects have not changed since the last link and does not warn the linker t waste time extracting
them.

To use this feature, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the curren directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tooL A new target link
can then be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that share common and rarely modified libraries and when relinking programs
that have had only a few units modified.

64

DACS-80x86 User's Guide
The Ada Linker

63.15 4emph"t

-template <file-name>
-muplate Sadajemplate (default)

The template file is known to the linker via the environmental variable ada template. DDC-l
supplies a default template file as part of the standard release system. Please refer to appendix H
for detailed information.

6.5.16 -npX

.npx (default)
-nonpx

The .npx option specifies that the 80x87 (8087, 80287, or 80387) numeric coprocessor is used
by the Ada program. When -. px is specified, the 80x87 is initialized by the task initialization
routine, the floating point stack is reset during exception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada Linker:

CDMX USED

- 0 - 80xl7 is not used
= 1 -S0x87 is used

6.S.17 -tasks

-tasks In]
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n. n defaults to 10. If -tasks is not
specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include support for tasking.

Ada Interrupt tasks identified with pragma INTERRUVffHANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number
of tasks. Note that the main pmgram, which may implicitly be considered a task, will not run
under control of the tasking kernel when -notasks is specified. See also -ruM option.

Configurable Data

For -tasks, the linker generates the following configurable data:

65

DACS-80x86 User's Guide
The Ada Linker

-co-TMSu N T&SI-i

Control
$locks

If -*sa i*
active, U
num•aric ca-
proceasor

Example:

S adallnk -tasks 3 p

0 Link the program P. which has at most 3 tasks, including the main program.

6.5.18 -priority

-priority n
-priority 15 (default)

The -priority option specifies the default priority for task execution. The main program will run
at this priority. as well as tasks which have had no priority level defined via pragina PIORITY.
TL! range of priorities is from 0 m 31.

Priorities can be set on a per task basis dynamically at run time. See section E.I (Package
RTSEntryPoints) for monm details.

Configurable Data

The Ada Linker generates the following constant dama:

Example:

S adajiuuk -tasks -priority 8 p

Link the subprogram P which has the main program and tasks running at
default priority 8.

66

DACS-80x86 User's Guide
MTw Ada Linker

6.5.19 -tlu...slle

-time slkce (r) (default no time slicing is active)

The .time slice options specifies whether or not time slicing will be used for tasks. If specified,
R is a decimal number of seconds representing the default time slice to be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Durauion'Small
SR S 2.0 and must be greater than or equal to the -timer linker option value. Time slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Tune slicing can be specified on a per task basis dynamically at run-time. See Section E. 1
(Package RTSEntryPoints) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for -time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

_CT?MýSLXCESE= I ~
- 0 - no tlie slicinq
- 1 - fla.e allciaq

I Tl slca

CO~h~LICZabsolute intoor

Srepresenting the number Y that satisfies Y * DURATJON'SMALL a R

Example:

S ada.link -time slice 0.125 -tasks p

* Specifies tasks of equal priority to be time sliced each eighth of a second.

6..20 -timer

-timer R
-timer 0.001 (default)

The -timer option specifies the resolution of calls to the Run-Tune System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER resolution is one millisecond. R must be in the range DURATION'SMALL< R
<2.

67

DA(C-80xW6 User's Guide
Mhe Ada Linker

Configurable Data

The Ada Linker generates the following 16 bit constant:

representing the number Y that satisfies Y * DURATION'SMALL=R

6.5.21 .resrve.stack

-rerve stact [n]

The -reerve stack option designates how many words are reserved on each task stack. This
space is reseived for use by the RTS, which does no checking for stack overflow. This reserved
space also allows the RTS to function in simations such as handling a strage error exception
arsing from stack overflow.

The -reserve stack option also reserves part of the main program stack size, specified by the
linker option .mpstacksize.

Configurable Data

The Ada Linker generates the following integer constant:

Cn3~ZmUsTTZM

Examples:

$ adaflink -reerverstack 200 -tasks p

0 Reserve 200 words from each stack for use by the RTS.

6.5.22 4.stack-size

-It stack si n
-stack-_ s SW(default)

The 4t stack size option designates the library task default size in words. A library task is
formed when task object is decla•d at the outermost level of a package. Library tasks are
created and activated during the initial main program elaboration. (See the Ada Refernce Manual
for more details).

68

DACS=8Ox86 User's Guide
The Ada Linker

For each library task, the representaton spec:

FOR Task-object'STORAGESIZE USE N;

can be used to specify the library task stack size. However, if the representation spec is not used,
the default library task size specified by -It stack size will be used.

For efficiency masons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack. Normally, the segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefore, one must use
the option -It-stack.option or the pragma LTSEGMENTSINE to reserve more space within the
segment that may be used for nested tasks' stacks. (See the implementation dependent pragma
LTSEGMENTSIZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link, and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

-LTmc5TAC2_szz I Z

Example:

$ ada-link -It stack size 2048 -tasks p

Link the subprogram P using a 2K words defaut library stack size.

6.S.23 -Istack.size

-it segment size n
.It_segment size (Itstack-size + 20 + excepton-.sac~kspace) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nestd tasks.

The default value is only large enough to hold one default task stack. If -Itstack.size is used and
specifies a value other than the default value, 4t segment size should also be specified to be the
size of <task-stack-size> +

<toal_of_.nesedtaskssizes> +
<20_wordsoverlead> +
exception.srack.space.

Note that the task stack size specified by the 'STORAGE_sme can be representation spec or by
the option -ItMstactsize.

Dynamically allocated tasks receive their own segment equal in size to the mp-segmentsize.

69

DACS-80x86 User's Guide
The Ads Linker

Tha range of this puraneter is limited by physical memory size, task stack size allocated during
the. build phase, and the maximum segment size (64K for all except the 3W6486 protected mode.
which is 4 GB).

Configurable Data

The Ada Linker generates the following data structure:

~L.P-.%SgQCIT.S:U =o

Example:

S ada..ilnk -ktsegment shze 2048 -tasks p

0Link the program P using a library task segment size of 2K words.

635.24 -mp-Msacksize

.mp stack size n
-mnp..tack..sie 8000 (default)

The -mpstackize option specifies the main program stack size in words.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking Programs only), the maximum segment size (64K for all except the
386/486 protected mode, which is 4 GB), and the size of mp..segmem...size.

Configurable Data

The Ada Linker generates the following data structures for nontasking programs:

_CDJ.WSTAMXJRZZ nZ

_;RWTAOCT z

For tasking programs. the Ada Linker generates the same structures but limits the size to 1024
words. This stack is only used for the execution of the system stanup cde and elaboration.
At main program activation, a segment for the main program equal to the size specified by -
-nap segment szwilbaloated from the dynamic memory pool and a stack for the main
program equal to the size specified by -np stack _size will be allocated from the memory
Pool.

70

DACS-80x86 User's Guide
The Ada Linker

Example:

S adajiink .mp_stack_siz 1000 p

- Link the subprogram P with a stack of 1000 words.

6..25 -mp..segment-size

-mp_segmentsize n
-mp-segmut-size 8100 (Default)

The -mp segment. size option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setng can be calculated from the formula:

mp-segment-size = mp.staclksize +
overhead + (tasks - 1)
(overhead + task.storagesize)

Normally, the main program segment size can be set to the size of the main program stack.
However. when the main program contains nested tasks. the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Tberefore, when the
main program contains nested tasks, the main program stack segment must be extended via the
-mpsegmentsize option-

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 0B).

Note: Dynamically allocated tasks receive their own segment equal in size to mp-segmentmsize.

Conflgurable Data

The Ada Linker allocates the _CDJMPSTACK (see the -mpstack.size option) within a data
segment called _CDMP_STACK-SEGMENT:

-CIW-STAcCSWCQT it ST=C
t T !

mWsThcxls?-XTA s6'SacKSZZZ sWs_ mT-szz

Example:

S ada.Jink -tasks -mp_segment-size 32000 programa

Links the subprogram PROGRAMA, which contains tasks nested in the main program
allocating 32,000 words for the main program stack segmemn

"71

DACS-8046 User's Guide
The Ada Linker

*tasks;torapueA n
-k-stmorage..sin 1024 (default)

This option sets the default storage size in words for stacks of tasks that are not library tasks.
This value can be overridden with a represenaton clause.

The range is limited by the size of the It.segmentmsize (if it is a subtask to a library task), or by
mp-segmem-size (if it is a suhtask to the main program).

Config-rable Data

The Ada Linker generates the following data suricture:

6..27 -interrupt-entry table

.interruptentry table L,H

The -interruptentrytable option specifies the range of interrupt vector numbers used by the
Ada program in interrupt tasks.

The number, L. specifies the lowest numbed interptqx hanller. The number. H. specifies the
highest nunbered interrup handier. The range for low and high imemupts is 0 to 255.

Configurable Data

If Interruptentry table is specified, the Ada Linker will generate the following data sructure:

cDLoUZNTZ ? I os'A I W

_D__vum ? ~(-L÷I} Is

words goeorvd
for znteor-pt
VectorI

If the user ever detects unesolved references to the symbols:

_CDLOWVnT RUFr
_CDHIGHINTERRUPF
_CDVnTERRUPrTVECrOR

72

DACS-80x86 User's Guide
The Ada Linker

the Ada progran contains standard imerrupt tasks for which the RTS requires the above data

structur. You must relink the Ada program specifying the -interruv entry tble option.

Example:

S adajink -tasks -interrupt entry table 5,20 p

Links the subprogram P. which has standard Ada interrupt entries numbered 5
through 20.

6..28 -[no~enablLe-tskrae

-enable task trace
.noenble tatsktrace (default)

This option instructs the exception handler td produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

o_= u~_;RA3;_UB I zz

- 0 - task trace d.•abled
I 1 - task trace enabled

6.S29 -exception-space

-exception-space n
-exception...space OaOh (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may switch stack to this arm to avoid accidental overwrite below the stack
bottom (which may lead to protection exceptions) if die size of the remaining pan of the stack
is smaller than the N value. Specifying a value .0 will never cause sack switching. Otherwise an
N value below the default value is not recommended.

Configurable Data

.;-ZC0E X QUbUIý-XAh-PCK SAzXZZ ZM

Note that this value is added to all requests for task stack space, thus requiring an increase in the
requirements of the appropriate segmem's size

73

DACS-O0a6 User's Guide
The Ada Linker

Uh.N -alpn..

-dp~- [(r~I

W hbw is option is specified the linker wiU generate code to output a sign on message. before
the Ada elaboraion is indtiated and a sip off message when the target pogram has tenrinated
succesfully. If dhe promp teinates with an unca•ght ecepnion. the sign off message is not

The sign on Mna CCm= of:.

START [<unnp] <pmopn mmo,

and the sip off message

STOP [(suinpi <progrmm name>

The <sutin> may contain spaces, eg.

.slpd.on "Test 3" (remember the quotes).

This faciliy is very useful to separate output from several target programs run after each other,
and to verify that a program that produces liale or no output has actually been loaded and run
successfuily.

74

MW mM~

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONGINTEGER is
range -16#8000_0000_00000000# .. 16#7FFFFFFFFFFFFFFF#;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFFF8#E256 .. 16#0.FFFFFFFFFFFFF8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-1

APPENDIX F - IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implemenaion-dependent characteristcs of DACS-8OX86TM as required
i- Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.A Implementation-Dependent Pragmes

This section describes all implementation defined pragmas.

F.I.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragma must be used in conjunction with
pragma INTERFACE, i.e.. pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACE-SPELLING.

The pragma has the format

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTS_GetDataSegment return Integer;

pragma INTERFACE (ASM86, RTSGetDataSegment);
pragma INTERFACE-SPELLING JRTSGetDataSegment, "R1SMGS?GetDataSegment");

The string literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used, when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.I.2 Pragnma LTSEGMENT_.SZE

This pragma sets the size of a library task stack segment.

The pragma has the format:

pragma LTSEGMENTSIZE (T, N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-80z86 User's Guide
Impg',enation-Dependent Characterstics

sack segment in words.

The library task's sutck segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the representation clause (note that T must be a task
type)

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus, pragmna LTSEGMENTSIZE
must be specified to reserve space within the library task stack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LT_SEGMENTSIZE:

1. It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.1.3 Pragnm EXTERNAL-NAME

F.1.3.1 Function

The pragma EXTERNAL-NAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.1.3.2 Foramt

The format of the pragma is:

pragma EXTERNAL_NAME(<adaentity>.<extenal name>)

where cada-entity> should be the name of:

" a permaenm object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only,

"* a constant object. i.e. an object placed in the constant pool of the compilation unit - please
note that scalar constants are embedded in the code, and composite constants are not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

DACS-0xS6 User's Cuide
lznplememation-Dependemt Chauacteristics

a subprogra name, i.e. a name of a subprogram dfinW in this compilation unit - please
notice that separate subprogram specifications cannot be used, the code for the subprogram
mu be present in the compilation unit code, and where the <external name> is a sturing
spcfyn the external name associated the <ada_eMtiy>. The <extnal names> should be

unique. Specifying identical spellings for different <ada entities> will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. E.xxxxx..yyyyy, P-xxxxx,
C.xxxxx and other internal identfications. The target debug type information associated with
such external names is the null type.

F.1.3.3 Restrictions

Objects that are local variables to subpmrgrams or blocks cannot have external names associated.
The entity being made external ("public*) must be defined in the compilation unit itself. Attempts
to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.I.3.4 Example

Consider the following package body fragment

packaqe body example is

subtype stringlO is string(l..10);

type 3 is
record

len : integer;
val : stringlo;

end record;

global s : s;
const s : constant stringlO :- "1234567890";

pragma EXTERNALNAME(globals, "GLOBALSOBJECT");
pragma EXTERNALNAME(onSts, "CONST.S");

procedure handle (...) is

end handle;

pragma EXTERNALNAME (handle, "HANDLE PROC");

end example;

The objects GLOBALS and CONSTS will have associated the names "GLOBALS_OBJECT"
and "CONSTS". The procedure HANDLE is now also known as "HANDLEPROC". It is

195

DACS4-Ox86 User's Guide
Impemeaton-Dependemt Characteristics

allowable to assign more than one external me to an Ada etity.

F.3J3 Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the
address of the first element the array constraint(s) are NOT passed. and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes. whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.13.6 Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects ame always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects arm passed by reference. Records are passed via the address of the first byte
of the record. Constrained arrays are passed via the address of the first byte (plus a biwoffset when
a packed array). Unconstrained arrays am passed as constrained arrays plus a pointer to the
constraints for each index in the array. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only: composite results leave an address in some registers and the rest, if
any, ame placed on the stack top. The stack stiU contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.I.4 Pragma INTERRUPTIHANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPTHANDLER;

The pragma must appear as the first thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restnictions
on specifying address clauses for task entries.

196

DACS-06 User's Guide
IPlementation-Dependent Charcteristics

F.1J Pragma MONITOR-TASK

F.I.5.1 Function

The pragma MONITOR-TASK is used to specify that a task with a certain smracture can be
handled in a special way by the Run-'lime System. enabling a very efficient context switch
operatin-

F.iJ.2 Formut

The format of the pragma is

prgma MON]TORTASK;

The pragma must be given in a task specification before any entry declarations.

F.1.53 Restrictions

The following restrictions apply on tasks containing a pragma MONITORTASK:

"* Only single anonymous tasks can be "monitor tasks".

"* Entries in "monitor tasks" must be single entries (i.e. not family euries).

"* The task and entry attributes anm not allowed for "monitor tasks" and "monitor task" entries.

"* The <declarative part> shou7ld only contain declaration of objects; no types or nested smrctures
must be used.

" The structure of the task body must be one of the following:
I.

task body WO _?TAX Is
-cdeclarative part>

begin
<atatment list>
loop

select
accept DhT lcparameter list> (do
endi ;

or
accept ZUTRIXZpaxametezL1st.> (do

-Ctat&Wtl12st>
end);

or
teinate

end select;
end loop;

end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-80x86 User's Guide
Implemawdon-Dependet Characteristics

2.
task body MOH TASK is

<declarative part>
begin

<statP.ement list>

loop
accept MCO- ZTK<pYratee lJlist> (do

<sta&t.nts112t>
end];

end loop;
end;

where the task only has one enty.

In both cases the declarative pans, the statemem lists and the parameter lists may be empty.
The statement list can be arbitrarily complex, but no nested select or accept statements are
allowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions are propagated out of the accepts.

F.1-5.4 Example

The following tasks can be defined

task L:ST RAMLER Is
pragma MONITORTASK.
entry INSEAT(ELEM:ZELZMTYfl);
entry RCDEOZ(EZLfl:out EN4 -TYP•.);
entry 1S3•RZSZNT (ELD4: EM:L TYT;

RESOLT: out 7 LZWAN);
end LZSESMOLLU;

task body LIST 3ADLE Is
"*deflne l1st.

begin "Initiali2ze list*
select
accept IIISERT (EL4: ELEZ TYPE) do".InIs•t in lit*

end INSERT;
or

accept DI4OVE(ELzI:out LEL4 TYPE)do
"find In list and remove from lst-

end REMOVE
or

accept ZISPRE.SEIT (ELfl: ELZHTYPE
RES: out BOOLZAX)do

scan list
end S_• P•DSNT;

or
terminate,

end select
end MOW-TASK;

The task can be used

task type LZST OS is

end LIST USER;

task body LIST•OUSR Is

198

DACS-8x06 User's Guide
lmplementation-Dependem Characteristics

begin
select

LxST EAamLu. ns•u (rxsTz-LnH)3;
else

raise I•zIusT O;
end select.
loop

LIST AVDLIR. ZUST (NEXTLW) ;
end loop;

end LTST CSZW;

F.1.6 Pragma TASKSTORAGESIZE (T, N)

This pragma may be used as an alternative to the attribute 'TASKSTORAGESIZE to designate
the storage size (N) of a partcular task object) (see section 7.1).

F.2 Implemnentation-Dependent Attributes

No implementation-dependent attibutes amu defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-BOx86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant System-Name vary:

Comoiler Svstem Sytem Name

DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_PM

Below is package system for DACS-8086.

package Sst*em is

type Nord Is new Znteqer;
type DWord Is new Lonqginteger;

type Onsignediord is ranqe 0.. 65535;
for OnsignedWord'sIU use 16;

type byte is range 0..255;
for bytel SZZ use 9;

subtype Segmentad Is Onsignedhord;

type Address is
record

offset Dns ignedMoerd;
segment Segment*d;

end record;

subtype Priority Is Inteqer ranqe 0..31;

199

DACS-80x86 User's Guide
Implementaton-Dependent Characteristics

type Name Is (UPUXUi);

STSTI CNU constant Name :- LAXI6;
STRAGSZ_ : constant : 16;
MD3 Y SZZE constant :- 1 045 576;
mixZr constant :- -1 147 483 447-1;
Hax i rN' constant 2 147 483 i47;
MAX GICTS : constant : 15;
maX-mANTISSA constant :- 31;
rxi DoLTA constant : 2#1.0#E-31;
TCC constant :- 0.0000002.25;

type Interfacejlanguage is
(AXHE, PUM6. c6, ca6 RKVESz.
ksaaAcI. P•U4AcFr, C dA7r, cR bwtxýAcr .ASaIuo~A. PIXuO~AC, CECOACY. Cý_RVE3S1Z3OA.CF);

typo ExcOptionld is record
unit number Onsignedlord;
unique inuber Onsignedllord;

end record;

type TaukValue is now Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is eow Integer;

type Semaphore Is record
counter Integer;
first TaskValue;
last TaakValue;
SQlext SemaphoreValue;

-- only used In EDS.
end record;

InItSemaphore : constant Semaphore :-Semaphore' (1,0,0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System is

type Word is new Short Integer;
type Dkord is now Integer;
type OWord Is new Long Integer;

type UnsLgned~ord Is range 0..65535;
for UnsignedWord'SIZZ use 16;
type OnsignedDuord Is range 0.l.#16TFFFIflfl@;
for OnsignedDuord'SEZZ use 32;
type byte is range 0..255;
for xyte'SIZE use 8;

subtype Segmenatd Is UnsignedWord;

type Address Is
record

offset : UnsignedDword;
segment : Segmentld;

and record;

for Address use
record

offset at 0 ran"e 0..31;
segment at 2 range 0. .15;

end record;

subtype Priority Is Integer range 0..31;

zoW

DACS-80x86 User's Guide
Implementation-Dependem Charactrstcs

type Us is (LUhX3041,N);

SYST7H WM coastant Urns :Nm LX4, E 6PH;
STO UUAWIT :costant :- 16;"403V5IZU eonstant 14#1 0000 00000;
HI MW constanft -1648000 30000 0000 0000#;
Mki ZN Constant - X#?6flFflT FTFTrFlO;
MAX OZGZTS constant :- 15;
Mki MANTISSA constant - 31;

rfz1_orETA constant :- 201.00E-31;
TICK constant :- 0.0000000625;

type Interface. lanquage is

(A •, S. PUN. COG. CS PZVUU.
ANc?, ProjACt, c Acr, C .ZVERSACFr,
AS"MOAcr. KiNOACT, C.HOACT, CRPZVERSJNOAC7J);

type exceptionld is record
unitnnumber ansiqnedDword;
unique.number OnsinedDUord;

end record;

type TaskVlue is new Inteqer;
type AccT•skValue is access TaskVa1uo;
type SemaphoreValue Is new Integer;

type Semaphore Is record
counter Integer:
first, last TaskValuo;
Soy.t SemaphoreValue;

-- only used in UDS.
end record;

ZnaiSemaphore : constant Semaphore :- Seamaphore'(1.O.0.0);

end System;

F.4 Representation Clauses

The DACS-80x86T' fully supports the 'SIZE representaton for derived types. The representaton
clauses that an accepted for non-derived types are described in the folowing subsections.

F.4.l Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

"* When using the SIZE attribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-80386PM/S0486PM the maximum is 32 bits.

"• SIZE is only obeyed for discrete types when the type is a part of a composite object, e.g.
arrays or records, for example:

type byte is range 0..255;
for byte' size use 8;

sixteen bit3sallocated : byte; -- one word allocated

201

DACS-80x86 User's Guide
lmpiemenmaion-Dependet Characteristics

eight bit•pe element : array (0. .7) of byte; -- four words allocated
type 7ec is

record
cl,c2 : byte; -- eight bits per component
end record;

" Using the STORAGESIZE attribute for a collecton will set an upper limit on the total size
of objects allocated in this collection. If further allocation is attempted, the exception
STORAGE_.ERROR is raised.

"* When STORAGESIZE is specified in a length clause for a task type, the process stack area
will be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGESIZE may not be specified for a task object.

F.4.2 Enumeration Representation Clauses

Enumeration reprsentation clauses may specify repesentations in the range of -32767..+32766 (or
-l6#7FFF..16#7FFE).

F.43 Record Representation Clauses

When representation clauses are applied to records the following restrictions are imposed:

"* if the component is a record or an unpacked array, it must start on a storage unit boundary
(16 bits)

"* a record occupies an integral number of storage units (words) (even though a record may have

fields that only define an odd number of bytes)

"* a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked array components take up
a number of bits divisible by 16 (=word size))

"• if a non-mray component has a size which equals or exceeds one storage unit (16 bits) the

component must start on a storage unit boundary, i.e. the component must be specified as:

component at N range 0..16 M- 1;

where N specifies the relative storage unit number (0,1,....) from the beginning of the record, and
M the required number of storage units (1.,...)

"* the elements in an array component should always be wholly contained in one storage unit

"* if a component has a size which is less than one storage unit, it must be wholly contained
within a single storage unit:

202

DACS-80x86 User's Guide
lnplemenmaio-Dependent Characteristics

component at N range X .. Y;

where N is as in previous paragraph, and 0 <= X <- Y <= 15. Note that for this restriction
a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma pack on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with representation clauses.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics:

"* If the declaration of the record type is done at the outermost level in a library package. any
alignment is accepted.

"* If the record declaration is done at a given static level higher than the outermost library level.
i.e., the permanent area), only word alignments are accepted.

" Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment, an
error message will be issued.

* If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

F.5 Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-8x86 User's Guide
mplementation-Dependem Characteriscs

F.6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.6.2 Task Entries

The implemenanon supports two methods to equate a task enuty to a hardware interrupt through
an address clause:

1) Direct transfer of control to a task accept statement when an interrupt occur. This form
requires the use of pragma [NTERRUPTHANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt
entry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.l1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPT-HANDLER to tell the compiler that the task is
an interrupt handier.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

"* Provide the fastest possible response time to an anterupL

"* Allow entry calls to other tasks during interrupt - g.

"• Allow procedure and function calls during interrupt servicing.

"* Does not require its own stack to be allocated.

"* Can be coded in packages with other declarations so that desired visiblity to appropriate parts
of the progran can be achieved.

"* May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is t be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note
no code outside the accept statements will ever be executed.

204

DACS-80x86 User's Guide
ImpemmascnDeperident Characteristics

F.6.2.3 Limitations

By using the fast interrupt feature, the user is agreeing to place certain restictions on the task in
order to speed up the software response to the inteript. Consequently, use of this method to
capture inptrrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

"* It must be a task object, not a task type.

"* The pragna must appear first in the specification of the task object.

"* All entries of the task object must be single enties (no families) with no parameters.

"* The entries must not be called from any task.

"* The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the aceps), but this is meaningless because no code outside
the accept statements will be executed.

"* The task may make one entry call to another task for every handled interrupt, but the call must
be single and parameterless and must be made to a nornal tasks, not another fast interrupt
task.

". The task may only reference global variables; no data local to the task may be defined.

"* The task must be declared in a library package, i.e.. at the outermost level of some package.

". Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks as long as the entries are single (no
indexes) and parameterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call, the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

T.E.
else

null;
end select

endE;

Normally. this code sequence means make the call and if the task is not waiting to accept it
immediately. cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

DACS-804x6 User's Guide
-mplemeation-Dependem Characteistics

If an unconditminal entry call is made and the called task is not waiting at the corresponding
accept statemem, then the interrupt task will wait at the entry call. Alternatively, if a timed entry
call is made and the called task does not accept the call before the delay expires, then the call
will be dropped. The conditional entry call is the preferred method of making task entry calls
from fast interrupt handlers because it allows the interrupt service routine to complete straight
thrugh and it guarantees queueing of the entry call if the called task is not waiting.

When using this method, make sure that the interrupt is included in the -interruptentry able
specified at link time. See Section 7..15 for more details.

F.6AS Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as ame Ada tasks. Rather, they can be viewed
as procedres that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state. priority, or a task control block associated with them, and are not scheduled
to *run" by the run-time system.

Since a fast interrupt handler is not really a task. to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
cOnstruCt.

F.6.2,6 Flow of Control

When an interrupt occurs, control of the CPU is transfared directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as reatm address.

at the very end:
code that restores registers followed by an IRET imnsuction.

Note that if the interrupt handler makes an entry call to another task. the interupt handler is
completed through the IRET before the rendezvous is actually completed. After the rendezvous
completes. normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally. the interrupting device must be reenabled by eceiving End-Of-Interrupt messages. These
can be sent from machine code inseion statements as demonstrated in Example 7.

206

DACS-8Ox96 User's Guide
Implezenttion-Dependent Charactenrscs

F.6.2.7 SavIm# NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the mnmeric coprocessor, calls to the appropriate save/restore
routines must be made in the statement list of the accept statement. These routines are located
in package RTS-EntryPoints and am called RT$_StoreNPX_Scate and RT$ RestowmNPXStte.
See example 6 for more information.

F.8 Storage Used

This section details the storage requirements of fast interrupt handlers.

F.6.2.9 Stack Space

A fast interrupt handler executes off the stack of the task executing at the time of the interrupt.
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters are permitted. use of stack space is limited to procedure and
function calls from within the interrupt handler.

F.6.2.1O Run-Time System Data

No task control block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CDUnTRUPr_VECTOR
must be made to allocate storage for the queuing mechanism. This table is a nm-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interruptentry table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7), it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x86 User's Guide
Implemenaion-Dependent Characteristics

FA.3.1 Source Code

The pragma UNTERRUF_HANDLER which indicates that the interrupt handler is the fast form
of interrupt handling and not the normal type, must be placed in the task specification as the first
statement.

When specifying an address clause for a fast interrupt handler, the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the interrupt vector into the I4TERRUPTVECIORTABLE segment. For
real address mode programs. the interrupt vector must always be in segment 0 at execution time.
For protected mode programs. the user specifies the interrupt vector location at build time.

Calls to RTSSwreNPXState and RTSResoreNPXState must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTSEntryPoints in the root library. See example 6 for more information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.6.3.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact. if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -it stack size, 4t_segment size, -mp_segment size. and
-task storagesize do not apply to fast interrupt tasks, except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interrupt entry table option at link time. This option builds a table in the run-time system data
segment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link time.

F.6.3.4 Locating/Building the Program

For real-address mode programs, no special actions need be performed at link time; the compiler
creates the appropriate entry in the IfTERRUPTVECTORTABLE segmen. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ads inerrupt handlers and adds them to the IDT.

208

DACS-80x86 User's Guide
Imma -Dependent zarac-enriscs

F.6.4 Examples

These examples illustrate how to write fast interrupt tasks and then how to build the application
using the fast intenupi tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler that does not make any task entry calls,
but simply performs some interrupt handling code in the accept body.

Ada source:

with System;
package P is

<potentially other declarations>

task FastjnterruptHandler is
pragma U4TERRUPT1."HANDLER;
entry E;
for E use at (segment => 0. offset => 10);

end;

<potentially other declarations>

end P,

package body P is

<potentially other declarations>

task body Fast-nterruptHandler is
begin

accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>

end P,

with P;
procedure Example-! is
begin

<main pmgram>
end Example-l;

Compilation and Uinking:

209

DACS-80x86 User's Guide
ImpFml uanDependent Characteistics

s ada Exampie-l
S adsalink Exanple_ ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to write a fast interrupt handler that services mome than one interrupt.

Ada source:

with System.
package P is

task Fast_Interrupt_Handler is
pr&mga INTERRU7PTHANDLER;

entry El;
entry E2;
entry E3;

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0. offset s> 11);

end;

end P.

package body P is

task body Fas_ljnerruptHand•er is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt !1>

end E3;
end;

end P;

Compilation and Linking:

210

DACS-8OxI6 User's Guide
Implemenzaton-Dependen Chual-racenscs

S ada Example_2
S ada-fink -tasks. Example.2 0 assumes application also has normal tasks (not shown)

F.6.4.3 Example 3

This example shows how to access global data and make a procedure cal from within a fast
interrupt handler.

Ada source:

with System;
package P is

A : Ineger.

task FastmenrruptHandler is
pragma DrTERRUPTrF -NDLER:
entry E;
for E use at (segmnat => 0, offset => 16#127#);

end;

end P,

package body P is

B : Integer,

prcedure P (X : in out Integer) is
begin

X := X+ 1;
end:

task body FastInterrupLtHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Linking:

$ ada Example_3
S ada-link Example_3

211

DACS-80x86 User's Guide
Implementaion-Dependent Characteristics

F.6.4.4 Example 4

This example shows how to make a task entry call and force it to be queued if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast interrupt handler is making an entry call to T, the techniques used guarantee that
it will be queued. if necessary. This is accomplished by using the conditional call construct in
the accept body of the fast interrupt handler and by including the interrupt in the -

interrupt entrytable a link time.

Ada source:

with System;
package P is

task Fast_InterruptHandler is
pragma INTERRUPT_.HANIDLER;
entry E;
for E use at (segment => 0, offset => 8);

end;

task T is
enuy E;

end:

endP

package body P is

task body FastInterruptHandler is
begin

accept E do
select

T.E;
else

null;
end select;

end E;
end;
task body T is
begin

loop
select

accept E,
or

delay 3.0;
end select;

end loop;
end;

end P:

212

DACS-80x86 User's Guide
lImplCmnUation-Dependent Characteristics

Compilation and Linking:

S ada Example 4
s ada..Jink -tasks 2 .interrupt entrytable 8,8 Example 4

F.6.4,S Example 5

This example shows how to build an application for 80386180486 protected mode programs using
fast interrupt handlers.

Ada source:

with System:
package P is

task FasInterruptHandler is
pragma DTrERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 17);

end;

end P.

package body P is

task body FastInterruptHandler is
begin

accept E do
null;

end E;
end;

end P;

Compilation and Linking:

$ ada ExampleS
S adaJink -tasks. Examples

213

DACS-O•x86 User's Guide
Implemetation-Dep•enem Characterisics

F.6.4.6 Example 6

This example shows how to save and estore the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks ame using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time
of the interrupt.

Ada source:

with System;
package P is

task FastInterruptHandler is
praugna INMRRUPT_HANDLER;
entry E;
for E use at (segment => 0, offset => 25);

end;

end P;

with RTSEnutyPoints;
package body P is

task body FastInterrupt_Handler is
begin

accept E do
RTSEntryPoin•.Store.NPXState;

<user code>

RTSEntryPoints.RestonNPXState;
end E;

end;

end P;

Compilation and Linking:

$ ada Example.6
$ adazlink -npx -tasks - Example.6

F.6.4.7 Example 7

"This example shows how to send an End-Of-Inte'upi message as the last step in servicing the
interrupt-

Ada source:

214

DACS-80x86 User's Guide
[impementation-Dependent Charactehiscs

with System:
package P is

task FastIjnerrupLHandler is
pragma INTERRUPT HANDLER;
entry E;
for E use at (segment => 0. offset => 5);

end:

end P.

with MachineCode; use MachineCode,
package body P is

procedure Send_EOI is
begin

machine-instruction'
(negister_immediate, mMOV. AL, 1666#);

machine-instruction'
(immediar-_egister, mOUT. 16EWe0#, AL);

end;
pragma inline (SendEOI);

task body FastInterrupt_Handler is
begin

accept E do
<user code>
Send&EOI;

end E;
end;

end P.

Compilation and Linking:

S ada Example.7
S ada.link -tasks - Example.7

F.6,S Normal Interrupt Tasks

"Normal" interrupt tasks arm the standard method of servicing interrupts. In this case the interrupt
causes a conditional enty call to be made to a normal task.

F.6.5.l1 Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

215

DACS-80x86 User's Guide
mplmnadon-Dependent Charactristics

2) May be called by other tasks with no restrictions.

3) Can call other normal tasks with no restricons.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.62.5 Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the

involved entries and tasks:

I) The affected enties must be defined in a task object only, not a task type.

2) The entries must be single and parameterless.

F.6..3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obeying the normal priority rules and any time-slic-e as configured by the user.

F.6.5.4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system, where the appropriate interrupt task and entry are determined from the
information in the _CDNTERRUFTVECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an IRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt. and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt. and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt.
then the interrupt service routine will NOT complete until the imerrupt task has exited the body
of the accept statement. During this period, %ie interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users ae cautioned that if from within
the body of the accept statement corresponding to an interrupt. an unconditional entry call is made.
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

I I I INNW

DACS-80x86 User's Guide
Implemetation-Dependent Characteristics

F.6A.S Saving NPX State

Because normal interrupt tasks are standard tasks, the state of the NPX numeric coprocessor is
saved automatically by the run-time system when the task executes. Therefore, no special actions
are necessary by the user to save the state.

F.6.S. Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.5.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.5.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system _CDLNTERRUPTVECTOR
table to "define" the standard intemrpt This mechanism is used by the rum-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interrupt entry table option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives am required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normal interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segment is not
applicable (although some value must be specified) because it is not used by the compiler for
interrupt addresses. The compiler will place the interrupt vector into the
INTERRUFTVECrORTABLE segment. For real address mode programs, the interrupt vector
must always be in segment 0 at execution time. This placement can be accomplished by specifying

217

DACS-$Ox86 User's Guide
Implementation-Dependent Characteistics

the address to locate the MTERRUPTVECTORTABLE segment with the 1oc86 command, or at
run time. by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTABLE segment to segment 0 and the compiler will put it them
automatically. For protected mode programs, the user specifies the interrupt vector location at
build time.

F.6.6.2 Compiling the Program

No special compilation options are required.

F.&..3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It-stack size. -
It_segment size. -mp_segment size. and -task-storage size apply to normal interrupt tasks and
must be set to appropriate values for your application.

Every interrupt task must be accounted for in the -interruptentrytable option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
enuy call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example 1

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task Normal_Inerrupt_Handler is
enuryE
for E use at (segment -> 0. offset a> 10);

end;

end P.

package body P is

task body NormalInte'iptmjxandler is

218

DACS-80x6 User's Guide
lmplemetation-Depwiente Characteristics

begin
accept E do

<handle interrupt>
end E.

end;

end P:

with P
procedure Example-l is
begin

<main program>
end Example-l;

Compilation and Linking:

S ada Example 1
$ ada-fink -tasks 2 -interrupt..entry table 10,10 Example.1

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that services more than one interrupt
and has other standard task ernies.

Ada source:

with System;
package P is

task Normal_Task is

entry El;
entry E2; - standard entry
entry E3;

for El use at (segment => 0. offset => 7);
for E3 use at (segment => 0. offset => 9);

end;

end P,

package body P is

task body NormalTask is
begin

loop
select

accept El do
<service interrupt 7>

219

DACS-80x86 User's Guide
Imp•ementaon-Depen•m Charactistics

end El;
or

accept E2 do
<standar rendezvous>

end E2;
or

accept E3 do
<service imenrupt 9>

end E3;
end select

end loop;
end NormalTask;

end P

Compilation and Linking:

S ada Example 2
S ada.link -tasks -intmrupt entryrtble 7,9 Example 2

F.6.7.3 Example 3

This example shows how to build an application for 80386 pmtected mode ptogruns using normal
interrupt handlers.

Ada source:

with System;
package P is

task Normalinterrupt_Handler is
entry E;
for E use at (segment => 0. offset s> 20);

end:

end P;

package body P is

task body NormalInternuptHandler is
begin

accept E do
mnl;

endE;
end-

end 22

220

DACS4806 User's Guide

Implementation-Delendm Chmancnszcs

Compilation and Unking:

S ada Example3
S ada-link -tasks -interruptentryTable 20,20 Example_3

F.6.7.4 Example 4

This example shows how an End-Of-Iuermrpt message may be sene to the inmerupting device.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment -> 0, offset -> 7);

end;

end P;

with Machine Code; use Machine Code;
package body P is

procedure SendEOI is
begz.n

machine instruction'
(register i=uOediate, m.MOV, AL, 16#66#);

machine instruction'
(inmediate register, m OUT, 16#OeO#, AL);

end;
pragma inline (SendEOI);

task body NormalInterruptHandler is
begin

accept E do
<user code>
Send KOI;

end E;
end;

end P;

Compilation and Unking:

S ada Example_4
$ ada-link -tasks -interruptentryTtable 7,7 Example_4

221

DACS-80x86 User's Guide
Imnplemeaion-Dependent Characteristics

F.A8 Interrupt Queuing

DDC-l provides a useful feature that allows task entry calls made by interrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the ORET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for free, and queuing an interrupt more than once is considerably
mome expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the servicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
in a-sequential manner as long as there is never a situation where the queuing overlaps in time.

It it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-l recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task. then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally. end-of-interrupt code using Low_LeveljO will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle iL

If the fast interrupt handler does not make an entry call to another task, then placing the

222

DACS-80x86 User's Guide
Iuslem~azonDependent Characteristics

end-of-interrupt code in the accept body of the fast interrupt task wil guarantee that the interrupt
is completely serviced before another interrupt happens.

F.6.9.- Normal Interrupt Handler

Place the code that reenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done, the interrupt will not be eeAhbled before the nendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the interrupt "completes" in the sense that the IET is executed, the interrupt is not
yet reenabied because the rendezvous with the normal task's interrupt ena-y has not been made.

If these techniques are used for either variant of interrupt handlers, caution must be taken that
other tasks do not call the task entry which neenables interrupts if this can cause adverse side
effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented I/O system. This I/O system
consists essentially of TEXT-IO adapted with respect to handling only a terminal and not file I/O
(file I/O will cause a USE error to be raised) and a low level package called
TELMINALDRIVER. A BASIC-1O package has been provided for convenience purposes,
forming an interface between TEXTIO and TERMINALDRIVER as illustred in the following
figure.

asurc to
TENEZISAL DRXY'

(IN/l ineiftace)

The TERMINALDRIVER package is the only package that is target dependent. i.e., it is the only

223

DACS-8Ox86 User's Guide
ImpemmaoDependent Characteristics

package that need be changed when changing communications controUers. The actual body of the
TERMINALDRWVER is written in assembly language and is pan of the UCC modules DIIPUT
and DIIGET. The user can also call the terminal driver routines directly. Le. from an assembly
language routine. TEXTJO and BASICIO are written completely in Ada and need not be
changed.

BASICIO pnovides a mapping between TEXTJO control characters and ASCII as follows:

T1XTJO ASCII Character

LINEJERMINATOR ASCILCR
PAGE-TERMINATOR ASCII.FF
FILEJERMINATOR ASCILSUB (CTRL/Z)
NEWLINE ASCII.LF

The services provided by the terminl driver are:

1) Reading a character from the communications port. GetCharacter.

2) Writing a character to the communications port. Put_Character.

F.&1 Package TEXT-O

The specification of package TEXT-1O:

pragma page;
with UASIC_10;

with TOXCZFXONIS;

package "TEXT10 is

type rzLS3TyPz is limited private;

type Fr•ZLIM0E is (QWTILE. OUT•FILE);

type cOUNT Is range 0 .. lINTGER LAST;
subtype POSi•Tr COURT Is COUNT range I .. COU?' LAST;
UNBOUNDEID: constant COUT:- 0; -- line and page length

-- max. size of an integer output field 20.... 0
subtype FIrED Is IKEZ range 0 .. 35;

subtype UWB1 UDASE is INTZGER range 2 .. 16;

type YPZ•ST Ln (LOVWEt CAS. UP,•P CASE);

pragma PAG;
-- rile 1anamegment

procedure CREATE (rZLE : In out FILETYZK;
"WOOE In FIZZ MOO :-OT FILE;

AME: In STRING
POR : In STRING :M

procedure OPEN (FILE in out FMLE TYPE;
"WODE : In FILE MOOZ;
AME: In STRING;

224

DACS-80x86 User's Guide
mpiemetai•on.Dependent Charcteristics

ram in STRI :N

procedure CLOSE (FILE in out FILE TYPE);
procedure DELETE (FILE In out FLE TYPE);
procedure RESET (FILE in out FILE TYl;

NOOE In FILE NODE);
procedure RZSET (FILE in out FILz TYPE);

function NODE (FILE in FILE TYPE) return FILE NODE;
function NAM (FILE in FrILETYPE) return STRING;
function Foum (FTLE ton FL TYPE) return STRING;

function IS.OVN(FILE ton r'xZTYnP return DOOLEN.

pragma PAGE;
-- control of default Input and output file.

procedure SET INPUT (FILE In FILETYPE);
procedure SET OUTPUT (FILE in FLE "TPE,);

function STAIOA,_ INPUT return FILE TYPE;
function STAN1AR OMUTPT return FrIE TYPE;

function CURRENT INPUT return FILE TYPE;
function CURmiET.OUTPUT return FxLE TYPE;

pra&ma PAGE;
-- specification of line and paqe lengths

procedure SETLINE LENGTI (FILE in FILE TYPE;
TO In COUNT);

procedure SET LINE LEM>B (TO : In COUNT);

p:ocedure SET PAGELENGTE (FILE in FILE TYPE;
TO In COUNT);

procedure SET PAGELENGTH (TO : In COUNT);

function LINE LEIGTH (FILE : in FLE TYPE)
return COUNT;

function LINE LENGT return COUNT;

function PAGE -LEGTZ (FILE : in FILE TYPE)
return COUNT.;

function PAGE LENGT8 return COUNT;

pragna PAGE;
-- Column, Line, and Page Control

procedure NEWLINE (FILE : In FILE_ TYPE;
SACING In POSITIVE COUNT : 1);

procedure NEW LINE (SPACING in POSZTIVE COUNT :, 1);

procedure SKIP LINE (FILE : in FILE TYPE;
SPACING in POSITIVE COUNT 1 1);

prcceduze SKIP LZE (SPACING in POSZTI"•V;CONT 1- 1);

function END OF LINE (FILE in FILE TYPE) return BOOLEAN;
function DDOF-LINE return DOOLEAN;

procedure NEW PAGE (FILE An FILE-TYPE);
procedure NEW PAGZ;

procedure SKIP-PAGE (FILE in FILETYPE);
procedure SKIP•PAGE;

function END OF_ PAGE (FILE Ain FrI•TYPE) return BOOLEAN;
function END1OF..FAGE return BOOLEAN;

function D..OFrFILE (FZLE in FILE TYPE) return WOOLEMN;
function meID OF.FILE return BOOLEAN;

225

DACS-8Ox86 User's Guide
omplefenain-Dependent Charcteristics

procedure SZT COL (FIL : in FxLE_Ty1pt;
TO In POSITIVE COUNT);

procedure SCCOL (TO : in POSITIVECOmT);

procedure SILIE (rILE : Ln FILE TIE;
TO in POSITIVE COUN);

procedure SET-LiNE (TO in POSIUV COONIPi ;

function COL (FILE In FTI_T1tT)
returffn PI0Z1VE_COUT;

function COL return PlI 81TVCWCONTr;

function Lh)M (FI=E in FILE_ 113)
return POSITIW ECOUNT;

function LINE return 1,OSITIVCOONT;

function PAGE (FILE In MILE TYPE)
return P03111W :COUNT;

function PAGE return P038T1VE COONT;

pragum PAGE;
-- Character Input-Output

procedure OCT (FILE In FILE_TYPE; ITEM out CIARAACTE);
procedure GET (ITE4 out CZARACTER);
procedure PUT (FILE in rILE TYPE; ITEM In CEARACTER);
procedure POT (ITM4 in CRARACZAR);

-- String Input-Output

procedure GET (FILE in ILE TYPEz; ITEM out CNARACTER);
procedure GET (T1EM out CHARACTER);
procedure PUT (FILE In FILE TYPE; ITEM in CIAPACTER);
procedure POT (ITEM In CUARACTER);

procedure GETLI (FILEz in FzLE3TyPE;
ITEM out STRING;
LAST out NATURAL);

procedure GE-T Llz (TD134 out STRING;
LAST out NATURAL);

procedure PUT L•N• (FILE In FILZ TYPE;
ITE4 In STRING);

procedure PUT LINE (ITEM in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM in range <1,;

packa& INTZGEZR10 is

DEFAULT._Z NIOH 13W NOMW IMIT;
OIFAm•T-SAS. mmu U.AS - 10;

procedure GET (FILE in FILE TYPE;
ITEM out NUO4
VIM In FIELD , 0);

procedure GET (124: out Van;
"IMDT: in FIELD :-0);

procedure PUT (FILE In IlETYlPE;
ITEM In HOW;
31023 in FIELD :- C"ALT.? 3X1 ;

:SE in WWUMZRI• :- DEFAULT.lAE);
procedure POT (ITEM In MM;

HIDT In FIELD :- U•aALT.WIDTH;
SASE In 0NU R EASE :- DEFAULT EASZ);

procedure GE (FMUM in STRING;
1234 out NUM;

226

DACS-08W6 User's Guide
Inmplememation-Dependent Characteuistics

LAST out POSITIVE);

p::redutr* M~ (To out STUZI1O;
ITCH in MMN;
BASK In NUMinRaa.s :- DEFAULT Dl)

end 11MITRZO;

pragma PAM.,

-- Generic Packages for Input-output of Real Types

generic
type -N Is digits <>;

package FLOAT Lo is

DZrWWL FOE IED 2;
DU~.T IT FIX= NOW DIGITS - 1;

D~r=LTM FIELD 3;

Procedure (MT (FILE In MIE TYPE;
ITEMI out Neir-
WIMT In FIED 0);

procedure GET (1TZ out NWN;
VIDT In rIzLD o);

procedure PUT (FILE in FILETYPE;
ITM Iin NUM;
FOE in FIEL - OEAVL% FRE
ArT in FIELD : rAULTMAT.

XP in r1ED=: D~rhULTEZP);
procedure POT (ITZM in NUN;

FORZ in FIEL=: DEFAULT FOSE;
MrT in FIELD - DFAULT ArT;

UP In FIEW DIFACLT 32)

procedure GET I(FCH in STRIVIG;
1TD(out NUN;
LAST out POSITIVE);

procedure PUT ITO out STRING;
IrI In NUM;
AFT in FIED DicrAmLTSIT
32W In FIED : DEAQLT 32);

end FLOAT 10;

pragma PAGE;

generic
type NUN Is delta -C-

Package FI2mcDIO is

DEFAULT FORE FIEL mm NWFran;
DEFAULT MT FIED - M N AM IT
DEFAULT-E]CP FI=L 0;

procedure GET WFILE In MIE TYPE;
ITfH out NUN;
RIOT In FIED : 0)

procedure GET (I=f Out mmN;
KIOTSf In FIED 01;

procedure PUT (FI= In FME - TYPE
ITEM In MUM:
FORZ Lin FIEL : DEAALT FORE;
ArT In 71=1 DEFAV&LATAt;
UPW in FIELD DEFAULT EDI);

procedure PUT (ITC in NUM;
FORE in FIELD :-DEAULT FUSE;
AFT in FIELD DFACLULTAl;

m7

DACS-80x6 User's Guide
Implumuawation-Deperident Characterstics

zxp in rzV.D :- DEFAULT ClP)

Procedube GET I(FK In STSMID;
ITK out VIMW;

LAST out POSITIVE);

procedure POT ITO out STSIUG;
ITEM In VON;
AFT Ina rZELD : DEFULT AFT
22W to rFZLW DEFAVLTEXW);

end n=_DZ0.

prof"e PAG;
-- feneric Package for Input-Output of Enumeration Types

genetic
type iý Is (<>).

package SM ATICM-10 is

DEFAUZT_ ETNT FUZLO 0;
DEFAULTSlTTZNG TYPESEST OPPERCASE;

procedure GET MITLE In rLLE TYPE. ITCH out U6UW);
procedure GMT I I'mE out 2NW)

procedre PvT (flUz FiLE TYPE;
ITEM In ENUM;
vZUTE in FIEz= DEFAMLT zmT;
SET In TYPE SET :DEFAULT SETTING);

procedure POT (ITEM In DISM;
*I=T In rIELD -DEFAULT VIMT;
SET In TYPE SET -DEFrAULT SETTING);

procedure GMT (rRM In STRING.
ITEM out DIUM.
LAST out POSITMVE[

procedure PUT (TO out STRfIM;
ITEM6 in ENWE;
SET in TYPE-SET :- DEFAULT STTZG);

end DIUMMRTIOW 20;

pragma PAGU.

-- Exceptions

STATUS ERROR exception renames ZOýEXCEPTZOUS. STATUSERROR.
WOEL ERROR exception renames ZOEICEXPTIOSIS . WOOLEROR;

ERRORmm exception renames IOEXCEPzm S . UM ERRR;
USE EDam exception renames 10OEICZPTIOS .USEE&RR.R
DvzvczEDROR exception renames XtzOJ1zPTIS .DEviCE ERRO;

Sm NRS exception renames ZOXCEPUTIOUS . SOD ERROR;
DATAERROS exception renames 0E~xczPTIOWS.DATA- ERROR
LaTout~ERROR exception renames ZOExcPTIOs. zay*_zp=RR;

pragm page;
Private

type rILE-TYPE is
record

FT :INTEGR :- -1;
end record;

end TEXT TO;

228

DACS-0x86 User's Guide
Impiman on-Dqempend Cancwistics

F.82 Package IO.C-EPTIONS

The specification of the package IOEXCEPTIONS:

package ZOqEXCVTZQNS is

STATUS ERROR exception;
"WOE DMNO exception;
Vmamm twi : exception;
SE EGRROR :exception;

DV DC • : exception;
EN ERR exception;
CAThD50R exception;
t.avOvTDa• a exception;

end 1O -XCCZ1TS;

F.83 Package BASICIO

The specification of package BASICJO:

with ZU_EXCtPZTS;

package BASZC_10 Is

type count is range 0 .. integer' last;

subtype positive count is count range 1 .. count'last;

function getinteger return string;

-- Skips any leading blanks, line terminators or page
-- termitors. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal. which may be based. Stores in Item
-- a string containing an optional sign and an integer
-- literal.

-- The exception DATA ERROR Is raised If the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception DCHU.3IOR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- Integer has not been met.

-- Note that the character terminating the operation auntt
-- be available for the next get operation.

function goetreal return string;

-- Corresponds to get Integer except that it reads according
to the syntax of a-real literal, which may be based.

function get enumeration return string;

-- Corresponds to get Integer except that it roads according
-to the syntax of an identifier, where upper and lower

-- case letters axe equivalent to a character literal
-- including the apostrophes.

229

DACS4x86 User's GWde
Ipl, umadon-Degmente Chaacteristic

function get it (length : in lnteger) return string;

-- Reeda a string from the Current ine And stores it In
-- item. 2f the rmining nuer of characters on the

Scurrent lne I lenss than length then only these
-- characters are returned. The Line terminator is not
-0 skipped.

procedure putItem (atem : in string);

00 It the length of the string is greater than the current
maxima line (Unelength), the ebceptlon SATUO-OIAZR

-- La raised.

- It the string does not fit on the current line & line
-- terminator is output. then the item ia output.

-- Una and page lengths - AM 14.3.3.

procedure setl~nelength (to In count);

procedure sotp&aglength (to in count);

-function line-length return count;

function pagel&_ength return Count;

0- Operations on co•umns, lines and pages - ANN 14,3.4.

procedure noe-line;

procedure sklpline;

function end of line return boolean;

procedure neouage;

procedure skip-page;

function end-ofPage return boolean;

function end of file return boolean;

procedure set aol (to In poaitive count);

procedure set line (to in positive count);

function Col return positivecount;

function line return positlvv count;

function page return positive count;

Character and string procedures.
-- Corresponds to the procedures defined in AM6 14.3.6.

procedure get character (item out Ch&actoer);

procedure getatring (item out string);

procedure getline (item out string;
last out natural);

procedure put character (item n character);

procedure put-string (item : in string);

230

DACS-80x86 User's Guide
mIn eawntaauou-Dependet ChwArcteris~ics

proceduare put-I~ne (item in string);

-- eaceptions:

CUUDROR exception renaamsX ZOECCDTZOUCN 3.03 MR;
0VCZ UAORm exception renames X0O9TZOUS 3DEVTCZ D.FM;

ZOD RROR exception renamesx ~zOxcDzCUx~s RRzjoR;
*&*A..DAR e*cept ion renames ZOZSXCETZNS .DATAjRR0R;
1AYOQDUoa exception renames zOU~1zx Tows. LaTOOTDm

end zuASZCO;

FS.4 Package TERMJNAL-DRIVER

The specification of package TERMINAL-.DRIVER:

packa&e TZM=ZA4DR~nR is

procedure put-character (ch in character);

procedure get-character (ch out character);

private

pragea interface (ASH86, put character):
pragma interface spelling (put character. DlZPU??put character-);

pragma interface (ASNU. get~character);
pragma interface-spelling (get character. DhZGCT?getcharacter*);

end TZMMUA-yRIVE;

F.&5 Packages SEQUENTIAL-10 and DIRECT-10

The specifications of SEQUENTILJO-1 and DIRECTJO are specified in the ARMN:

Since files am not supported the subprograms in thes units reaise USE-ERROR or
STATUS...ERROR.

231

DACS.SOxS6 User's Guide
Impemmaon-Dependent Characteistics

FJ.6 Packap LOW-LEVEL-10

The specification of LOW..LEVELJO (16 bits) is:

with System;

package L0Iý_LEVE?. 0 is

subtype porta&ddross is system.ansignedword;

type 111±oa is new integer range -128.. 127;
type ll~io16 is new Integer;

procedure send-control (device, in port address;
"dta In Sysatmayte);

-- unsigned I bit entity

procedure sendocontrol (device In port,_address;
data in systen.unsignedword);

-- unsigned 16 bit entity

procedure Bond-control(dovice In part -address;
data in lk1i08);

-- signed a bit entity

procedure send-controlidevice in port -address;
data in lioi46);

-- signed 16 bit entity

procedure recoiwe~control (device in port~address:
data out Systemlsyte);

-- unsigned 8 bit entity

procedure recoieve-control (device in port,_ddress;
"dta out Systms.Ontsignedord);

-- unsigned 16 bit entity

procedure recesive control (device in portaddress;
data out l~o)

-- signed 4 bit. entity

procedure reoceive-controJidevics in part-address;
data out ll-ýiol6);

-- signed 16 bit entity

private

pragma inine(seond-control, receive-control);

end LOWJZEVEL 20;

The specification of LCW-LZVZL-10 (32 bits) Is:

With STs"LD4;

package WWIýLZVUZOý1 is

subtype port-address Is Systea. Onsignedord:

type 11-I* a is new short integer range -128. .121;
type 11 io-16 is new ShOrtinteger;
type lioLq32 is new integer;

procedure send-control (device In port~addreas;
data In Systom byte);

-- unsigned I bit entity

procedure Mond-control (device in poct-address;
data :in Systms..Qisigaedfrd);

232

DACS-SOx86 User's Guide
lmpmemionDependent Chaacteuistics

-- unsigned If bit entity

procedure send control (device : in portaddr•c ;
data : in Systes.ftnignedDlord);-- usaignod 32 bit enr tity

procedure send control (devico : In port,_address;
data : in 11_0o0) ;

-- signed S bit entity

procedure send contGrlt(device : in port,_address;
data :n t io,-1op16);

-- signed 16 bit entity

procedure sendocontrol (device : in port adcress;
data : In 11 io 32);

-- signed 32 bit entity

procedure receivecontrol (device In port address;dlrata out. Syten.~lyt~e) ;

-- unsigned I bit entity

procedure receive control(device In port.address;data out. Syst.em.Onsigneduord) ;

-- unsigned 16 bit entity

procedure receive contraol(device In port.address;
-2data out System.Onsignedleord);

-- unsigned 32 bit entity

procedure receive control€(device in port address;data :out 212o U) ;

-- signed 0 bit entity

procedure r•elve control(device in portýaddress;dat~a :out llo J~14);
-- signed 14 bi~t entity

procedlure receive control (device :in portacddress;
data4 out lliAo_32);

-- signed 32 bit entity

private

pragnpa inline(send.control. receive control);

end LOW,_ VZL10;

F. Machine Code Insertions

The reader should be familiar with the code generation strategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the ARM [DoD 831 it is possible to write procedures containing
only code statements using the predefined package MACHINECODE. The package
MACHINECODE defines the type MACHINE_INSTRUCrION which, used as a record aggregate,
defines a machine code insertion. The following sections list the type MACHINE_INSTRUCTION
and types on which it depends. give the restrictions, and show an example of how to use the
package MACHINE•CODE.

233

DACS4O0x86 User's Guide
ImplementationDependent Chaancteristics

F3.1 Predefined Types for Machine Code insertions

The Wolowing types ame defined for use when~ makting machine code insertions (their type
declaratons ame given on the following pages):

type opcode-type
type operuwdtype
type register..type
type segmeru~.rgister
type machinejinstruction

The type REGISTER-TYPE deftne registers. The registers S71i describe registers on the floating
stack. (ST is the top of the floating stack).

The type MACHINJEJNMTUCT70N is a discrimninant record type with which every kind of
instruction can be described. Symbolic names may be used in the form

name 'ADDRESS,

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386/80486 addresses. In case of other
targets. the scale factor should be set to "scale-1'.
type opcode type Is

-_ 8046 instructions:
miAAM. aLAAD. aAAH. aA3. aWC. a_00, aJID, HLALL.

a _CALLN.
an CN, a-CLC. U-CLO. a CLI. amOC. mOW.R a aeS. CDb. V^N
a-0"8. aDEtc. a-DIV, srUL2. amIDIT, U 3301, aIM. oriUc. sL=
a INT, a-ZRS?. .3A, a-JAL. si35. am335. aX.C gkJCXZ. mi.
aria. 0 365, a31.. .31.2. OL33. 33*5. -.333.m .3 1VZ
07=3. .330. sk1S65, ak-n 331.. LZ a kjD 3IV.3 a"3..3W3S. !A
.30j. "3, 313.;z .310". o sa-Z,333. HP .31W.W IS38."a
rLtS, a aLZA. aýLOCK. aLOOws. a-LOOP, a LOOPE,

a-LOOPN3. aLOOP3Z.
aRLOOPI. miNOV, a lOYS.mb. a33 . "01, aOU?.T VOB
a01 POP,3 a-P PUSE 0131U::S6. a-ci. a 3CR. a-R1., a103.,
.351.P 1a3513. I-UE .1ST. I3?? P=TM aRZftTWP 1W
a SAIL. U-SAR. a-SUL. a-SR, .835. a-scI, amSTC, a 530. IV=
a-STON, a -SUB. a fliT, a imAIT, a XCUG, a.X1.? aZOft,

-- 8081/a01a7/80287 rloating Point Processor Instructions:

ajAaS. a 7*00. .7*000. a TAMOP, 5 a 333??. a-BT L.cas.
ikFrCLzx, arcom, a-VWS uIOW ar aw, s 1WD, a-d1W. comp, S??
aFOZYr, aFODIVO. .101WP, a omV. a rDXVR, a FOIM, .33333.
a FIADD, i.FlADO. aFIOIFICCan-IC.lOaicem.- a-Ticao1W .-Frorv,
aFIOIDVD, -FIoZrn. a-FIDIUD. aFTIW. 3111.00. uJIL.01. 31201.,
,31)01.0. a FIUCSTP, a 53131?. a FIST, a-FUTD, a-FIST?. aýFZSTDO.
a 715211.. a7803c. a 31803, a 31503. a r18033, .31., a rLDC.
ar1.oc, arTWmw, ACOWI. -t1.01J32, a 71.01.23. .11.01.2T? a 31.011,
afLrl.2 a rI.OI, a non. aLlom. o.3101.1 ik y", aPWATAX.
a.1334. a.mPx. u, U aaj33T0, S rSAV, 2 r A l~-schu.3 a3rsZ?1.
.7503?. aLiST. EL?? FSTO rscu, aISE? a~m 7821,p 338210
.FrsTSM. aFrST3U*X. alr MOS. a FSUUO, a 38031, a 3803. a 730330,
a 750DM., a FIT.T w-runI, s.mE. skXCU. aF2ITPACT. .711.21.

-- 0S196/80286/03036 Instructions:
-- Notice that sale imedia1te Versions of the 8034
-- Instructions only exist an these targets
-- (shifts, rotates. push, Imu....)

a OOwn,. .C1TS, a ZXT3 aIM1S, AL.13. aIZAVt. aL4T.
=7L=,? 7Lsi.. a CUTS. a 1033. a 0533.m aSQT, a-510?,

234

DACS-80x86 User's Guide
Iznplemeamaon-Deiendem Charsacristics

3mAWL. SkL=-T a-UEs". RLTR-

-- 16 bit always...

aSk-LDT aiUUW, sk5Th. MVE3R. UVRMv.

-- the 60384 specific instructions:

askETA. s5E2A. OLSZEh 8aszm-Z a-STC. UskZT
alok.ZG a-32U. auSIZTL a.5zT72, xU53TMA *SZTNAZ
a-sETU N uSZTMUZ a-SZMC, MusETvZ- aLSETU
S-amIuG. a-sETL. a-SZ!MLK a 3IO. asRW. MUSZTN3,

.aSZTNZ. lmaSETO skSEtI nrSETlE. GUSVMP. a SETS.
... SWzZ, "ST. a*351, "T, a MM, .323~.
M-32,aM . alAS, a-L3 rLBS. aNOYZI. a NOV51
2L~vca. aOkVOM. aNOV23, .53EW, .1330.,

-- the 80367 specific instructions:

"krcarFOCOW arTUCOMP. aF53DhI, aFIZE.v .Frcos,
a-FSZncos,

-- byte/u Ord/dword variants (to be used. when
-- not deductible from Context):

mkADCX, EL0CM, alADCV, .1005.1 .500. SLADDO,
lkAms. MaMoW. .1500, "TV2. .30.BI a-9TCM.

"aTco, a.323W. *310. a325W. a 3250, a CamW
LCMDZ- a-CUW, MooCD, £003. a 00CW. a.00,

a-00Ss. *00WSN. a- 0050, iaDECS, a 03CM, mOEco,
"*ZI". aDor". a M~D. 9*ZDM, Na101W. aZ.DZVD,
skIMUDL. U ZnDw, mNDLO, ffijlcz. aZRICW. a~ZMcaO
aZUIns. aZism. a =30, a L-.Ss, m.UCOS1I uýLooso.
aNOVI, UNOVW, aN"OVD, aNCVSD3. MeNOV3W. OLMOVSO.
UNOVSXB, a_50252W, 0UMOVIS, MCZ, a NOMM *KLB, a-WLW,
ALKULD. umN&GS. aNWI, aEM&W, a N023, a MM:W

316020. asl) a 03W sk030. a 00253, 01 00a5W,
S1JVTSO, a*OPM. a-Pao. a-Pass", a-POSUD, a UCLs.
aRCLW, UacL. aLRM- ImaRca, SAltPD a-RLm,
OaROLM. A,30WL, JRflOas. a 303W, 33030, LSALI,
mUSALV. USALD. 35515.J 2.553%, aSXARD, "WAL,
mULEs , a-SaLow. a-sm. 3533%w, a-S330u, mS35,
ORSSIW. aSUlO, a-SCA, *kSCASW. aLScASO, a82013s,
.520516.I 352050S. O.5033, USUBIW IRsmol. OLM.hf
1RTZSTE. .23320. aLXO"D aOWCR" alOU, a 01±53,
nkIATAN, 305±50A,

-- special 'instructions,: a-label, a reset.

-- 067 tamp real load/store~andjo~p: a PLDT, vk752?);

pragma page;
type operand type is (none, -- no operands

Imediate, -- one imediate operand
register. - one register operand
address, -one address Operand
systea~addreas, ask In address operand

n4"-- CALLL Asrn
register iamediato, - two operands

- destination to
-- register
-source is Imediate

register eiSter, -- two register operands
V*912ter!adZ1*sS. two operands*

-- destination is
-- register
-source Is address

address register, -- two operands

235

DACS-80x86 User's Guide
Implememtahion-Dependern Characeristics

-- destination Is

-source Is register
regiater-systemaddresa, -- two operands:

-- destination is
-- register
-- source Is 'address

syatem Addreaa regIster. - two operands:
-- destination is

I- a4ddea$
s- ource Is register

address-immedlat*, -- two operandsa
-- destination ia
-- address

-- source ia Immediate
systemaddress-Limmediate. - two operands

-- destination is
-- 'address

-- source isLa mediate
Lemediate register. - only allowed fox OUT

-- port is Imediate
s- ource Is register

iAINdi~ate-iinediato. -- only aowdfor

register-register-Lmediate, -- allowed for Dm~imm,
-SUNDLMs. SUWLDM

*register-addresa iiniediatet, -- allowed fax DOLim
regiater-syatemaddreSaiLMediate, -- allowed for DOLim
addresa register-iemediat*, -- allowed for SUN1in,

-SRLDLIS

ayatem address register immedate -- allowed for S=Lmin

type regiater~tye is (AX, CX, OX, SX, 3?, SP, S1, 01. - word regs
AL. CL. OL. BL, Al. CR. 01, 33. , byte regs
ZAX,ZcXZX.ZUX.WS,ZUPESZD.ED,-- dword rags
zs. CS, 35, Ds. r5, w8, - selectors

IRS! 32 ? 15, 1_x.sS S010. 00 *O*/0186/02026 cominations
siT. 521. 522. 52T3. floating registers (stack)
524, 3TS, 826, 327.
nil);

-- the extended registers (MAX =1?) plus F5 and OS are only
-- allowed In 80366 targets

type scale-type is (acalel., scale 2, acale-4, sCale");

Subtype machine string ia string(l..100)L

pragme page;
type uachineiknotruction (operand-kind :operand type) La

record
opcode :opcode type;

case operand kind Is
when Isme~date ->

Lamediatel. :Integer; -- immediate

when register -1P
:regis~ter :registoextype: -- source and/ox deatination

when address -31
aSeguant :register type; - source and/cc destination

a address base :regiIster type;
a~addresisindem register type;
a address scale, scale type;
a~addressoeffaet, integer;

when ayatem-addreaa ->
saaaddresas syatem-address; -destination

236

DACS-SOX80 User's Guide
Implememation-Depaidenz CharActeristics

when -ai M)ý
n string : machine-string; -- CALL destination

when register IMEndiate ->
týi-register-to register-typo; -- destination
rýLimiediLate, integer; -- source

when register register -
r-rjeogister-to : rgister type; -- destination

ZVýregister fromt register-type; -- source

when register addreass
;-a register to :register-type; -- destination
F4 "segment regIster-type; * surce
r:s address base register-type;
r-aadd~ress-index register type;

-a-address scale scale type;
ZAaddress offset L ntieger;

when address rogister -
a~rsegment register type; -- destination
a~r address base register type;
a~r address index :register type;
araý_ddress scale scale -type;
ar a&ddress offset :integer;
at ~register from :register type; -- Source

when register systme address ->
r asoregister -to register type; -- destination
r~sa~addross system address; -- source

when system address register ->
saraddress system~address; -- destination
sar ýreg from register type; -- Source

when address Lisdiate -

5.1 segment :register-type; -- destination
aLi addross base :registetr type;
ajaddrtess-index register type;
aaddress scale scale type;

address offset :integer;
a-i-imdiate :Integer; -- source

when system -address- imediate ->
snLaddress :system.address; -- destination

sa-ii.Loediate integer; -- source

when imediate register ->
i-riinsediLate :Integer; -- destination

i~ýregisterv reg12tor-type; -- source

when Linediate- iemdiat* ->
iiiwedi10Atel :integer; -- iinediat*l
iiiemmdIat*2 :integer; -- iediat*2

when register register immediate ->
rzijrsqistsrl ;register -type; -- destination
r~rIregister2 register type; -- souzrcel
rriiLmediato integer; -- source2

when register address iimediate, ->
:ýIregister register _type; - destination

raiegmat : register type; -- sourcel
r a iaddress base :register type;

r...aaddress Index register type;
.r!aiaddreas scale :scale type;
raia.ýddress offset: integer;

rýa~iiLoediaie .integer; -source2

when register system address imediate ->
r soaIregister register type; -- destination
434ri0 system.Address; -- sourcel
rýsaiiedimuate integer; -- source2

237

DACS-80x86 User's Guide
Implem'imrtion-Dependent Chaacteistics

when address zeqisterimdiate ->
A r..i-sognint :reqistertype; -- destination
a.rJ.i addzess base register-type.
ar- i1addressIndex register type:
a addzess scale :•scale type;
a•r i address offset: integer;
ariregister register type; -- sourcel
arILMdiate integer; -- source2

when system nddress-register.isediate ->
sari iaddress : system.address; -- destination
sa-r iregister reqistertype; -- sourcel
sa-rileismiedlate integer; -- source2

when others *)
null;

e•nd case;
end record;

end Pachine code;

F.9.2 Restrictions

Only procedures, and not functions. may contain machine code inserions.

Symbolic names in the form X'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter, or
by static renaming.

2) x is an array with static constraints declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The rCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

mjabel: defines a label. The label number must be in the range I <= x <= 999 and is put
in the offset field in the first operand of the MACHINEINSTRUCTION.

m-reset: used to enable use of mom than 999 labels. The label number after a mRESET
must be in the range 1<= x <= 999. To avoid errors you must make sure that all
used labels have been defined before a reset, sinc the reset operation dears all used
labels.

All floating insuuctiom have at most one operand which can be any of the following:

"* a memory address
"* a register or an immediate value
" an enty in the floating stack

238

DACS-80x86 User's Guide
Implementation-Dependem Chacteristcs

F33 Examples

The following section contains examples of how to use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code insertions as shown:

W AX. 7

JG 1

33 2
NW CXCAX

1: ADD AX, C
2: NOV SS: [B+3011. AX

packaqe example NC is

procedure test labels;

prague inline (teat-labels);

end example-NC;

with hNXcIuzweOoZ; use aiacnhC OOnE;
package body examlqe NC is

procedure teat labels Is

begin

KhCEZWIM X3TRCTXZOW' (regIster _IedLa t.e, *-NOV, AX, 7);
0CNIfE 1.4STJUCTZ0io (register lnediate, mNOv, CX, 4);

FAC lZ IMUrT•O..oN (register _reqlgste. maOW, AX, cx);
M1C= ZWU231OC.COV' (imedlate, i JG, 1);
NCMczXIiXSTRUt==O (inownate. mi33, 2);
NACSEZxiqSTRUCTZO" (egi:Lsterr*egister, a NOV, e. AX);
.ACXIINi•SROCTZO (lmMdiate, a label, 1);
MAClNiNE ZSTRU=CZOM' (regqsterreqister, a ADO, AX, CX);
MACRNXI IiSIXCTbOTl (imediate. a-label, 2);
VACHTIdN IWSTVV OW' (addressregister, a NOV, SS, W.,

DX, scalel. 0, AX);

end test-labels;

end example NC;

F.9-M Advanced Topis

This section describes some of the mome intricate details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objects are referenced in
the machine code body, and various alternatives are shown.

239

DACS-80x86 User's Guide
Implementauion-Dependent Characteristics

F.9..1 Address Specificalions

Package MACHINE-CODE provides two alternative ways of specifying an address for an
instruction. The first way is referred to as SYSTEMADDRESS and the parameter associated
this one must be specified via OBJECT'ADDRESS in the actual MACHINECODE insertion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NIL for segment. base, and index may be selected (however, if base is NIL, so
should index be). Scale MUST always be specified as scale-l. scale_2. scale_4. or scale_8. For
16 bit targets, scalel is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9..2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEM-ADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified;
whether the procedure is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEMADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this comext will be the user's responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. It
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA, which will only give the offseL If coding requires access to addresses like this. one
cannot INLINE expand the machine insertions. Care should be taken with mferences to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will.
however, be calculated at the entyt w the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to, in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions am summarized below.

240

DACS-80x86 User's Guide
Implementation-Dependent Charactenstics

F3J..3 Parameter Transfer

it may be a problem to figure out the correct number of words which dhe parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least 1 storage uniL 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets. 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs am transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the rccord parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constrainL In this
case. the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the aa.-.don
of an INTEGER bit offset as the highest word(s):

+H: BIT._OFFSET
+L: DATA_ADDRESS
+0: CONSTRAINT-ADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example

A small example is shown below (16 bit target):

procedure unsignedadd

(opl :in integ,
op2 : in integer,
res : out integer);

241

DACS-8Ox86 User's Guide
Implernentuzion-Dependent Characteristics

Notice that machine subprograms cannot be functions.

The pmrameters tke up:

opl : integer : I word
op2 :integer : Iword
rs integer : !word

Total 3 words

The body of the procedure might then be the following assuming that the procedure is
defined at outermost package level:

procedure unsigned add
(opI in inteqer;
op2 in Integer;
res out Inteqer) Is

begin
pra•na abstract. acode nsertions (tr(e);

aarinstre (saaCreato elock.3.,10.0,O); - x - 3, y - 1
aa -. nstr' (Aa End of idecParti , 0,0, 0,0);

pragma abstract acoedlnsertions (false);

machine instrUction' (register system address. a, M,
AiX. Op' adezss); -

machine-instruction' (register systemaddresa, w ADD,
AX. op2'address) --

machLne instruction' (imediate, m JIC, 1);
machine-instruction, (Idia"te. 83W?,f 5);
MaChinelnstruction' (ir iate, a lae. S);
machine inst=ction' (systsemaitdress registe*, maOV,

tes'addross, AX);

Praga abstract acod.insertions (true);
aai1nstr° Caa xt subrg0 O,, 0,00 nlary. nilr) ;-- (2)

aaLnAtr' (aa Set block leVel,0.0,0.,0); -- ,-l - 0
praga abstract acode insertions (false);

end uns1gnedaddct.

A routine of this complexity is a candidate for ININE expansion. In this cae. no changes to the
above 'machinejsuruc aon' statements ar rewuired. Pla notce that then is a difference between
addressing record fields when the rouine is INLI and when it is not:

type rec is
record

low : integer.
high : integer

end record;

procedure add..32 is
(api : in integer.
op2 : in howe
res : out mfc);

The parmneter take up I + I + 2 words a 4 words. The RES parameter will be
addressed diectly when INLINE expanded, i.e. it is possible to write:

242

DACS-OxS6 User's Guide
mplementaon-Dependenm Characteristcs

mahinejimdron'e(syssmeaddgMis r. m-MOV.
res'address, AX);

This would, in the not INLINED version. be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must mad:

machinjmnstnction'(mgisssystem-addmss, m-LES.
SI. res'addzess);

-- LES SI,[BP+...]
machine-insmcnion'(addrmssmgistr, mMOV.

ES, SI, nil, scale-,. 0. AX);
- MOV ES:[SIe0I,AX

As may be seen. great care must be taken to ensure correct machine code insertions. A help
could be to first write the routine in Ada, then disassemble to see the involved addressings, and
finally write the machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the -noaceck option is applied to the compilation. Also not
INLINED procedures using the AAINSTR insertion, which is explained above, will automatically
get a sorage-check call (as do all Ada subprograms). On top of that. 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storage-check call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain that
the return from the routine is made in the proper way (use the RETP instuction (return and pop)
or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructins involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAbW) a full virtual address (offset and selector) of the
symbol MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME) the offset part of the symbol MYNAME (no additional
offset is possible).

(name, mDATAB, "MYNAMEN) the selector value of symbol MYNAME

In inlined machine instructions it may be a problem to obtain the addrs of a parameter (rather
than the value). The LEA inswuction may be used to get the offset part, but now the following
form allows a way t load a selector value as well:

(system_address, LES, param'addrs) ES is loaded with the selector of PARAM. If this
selector was e.g. SS, it would be pushed and popped
into ES. LES may be substitued for LFS and LGS
for 80386.

243

DACS-80x86 User's Guide
IT -momvaion-Dependem Caracteristcs

F.1O Package Taktypas

The TaskTypes packages defines the Ta*kCoIuolBlock type. This data stuctuw could be useful
in debugging a tasking pagram. The following package Tasktypes is for all DACS-8086 except
for DACS-80386PMDACS-80486PM.

with System;

packae ?akOYPeS is

subtype Offset to System.PasAl aeel d;
subtype 31ikc4 is System.Uesiml Nrd

type Tasklatry Ls me Systen.0masigedortd;
type Satrzqadex is m Se. tm.O•hmsigeld,
type Altesatlveld IS new Systm.f.D•-L ett;
type Ticks is n syste.mDbrd;
type "*el is me eeeleam.
for eell sos use 8.
type autg is Sew System.Onsimedlord;

type Taskstate is (zatlal.
-- The task Is created, but activation

has not started yet.

-- The task has called an entry, and the
-- call is now accepted, 1i. the rendezvous
-- is In progress.

munning.
-- Covers all other states.

Delayed.
-- The task awaits a timeout to eWpire.

ZatryCallingTimed,
-- The task has called an entry which
-- is not yet accepted.

zatrycallingunconditional,
-- The task has called an entry unconditio•ally.
-- which is not yet accepted.

SelectingTimed.
-- The task Is waiting in a select statemnt
-- wLth an open delay alternative.

SelectingOncoudLtional.
-- The task waits IA a select statement
-- entirely with accept statments.

Selecting~erminable,
o- The task waits LI a select Statement
-- with an open toerinate alternative.

Accepting,
-- The task waits in an accept statement.

Synabroditing,
-- The task waits La an accept statemeat

Swith no statement list.

Coempleted.
-- The task has calpleted the execution of

- its statement lt, but not all dependent
-- tasks are terminated.

Terminated);
-- The task and all Its descendants
-a are terminated.

244

DACS-80x6 User's Guide
LmpimcmuanDependent Owancterisics

for Taskitate use (Initial 14.0000
Znqaqed -160000
Rtunning -3. 160100
Delayed -> 1402.00
gatryCalllng~iamd .ý 16#200
tntryCa.lliagancoaditional -> 160200
SelectLagllaed -), 160310,
Solectiag~nconditional ->16039#
SeoctlagTorminable -> 160410
Accepting W. is$"# ,
Synchronitzing- 160530
Competed -- 1605C#
Terminated -2 160440);

for ?askState size use 0;

type ?askTypeflescriptor is
record

priority System-Pr~ar~ty;
entry Count Cbntq;
baklo)_d .Slockld;

flvst_,wa_&ddress System-Address;
modulenumbr Obate;
entry ;Umbr COntq;
co"_address Syatsm.Addreas;
Steaokalze Systeo.Ofard;
dulmy Integer;
stack aegmeat 5150: V~ntq;

and record;

type AccTask~jp@escr.-ptor is access Task~yp.0.scriptor;

type Uhlave~roa is array(1. .40) of Uystem.Onslgneduord;

type rlaqs~ype is
record

wirlay 5001;
zftt~rzvpt.Flaq Scal.

end record;
Prague pack (rlagsType).

type States~ype is
record

state : ?akStat*;
Is abnormal Deal0;
Ls activated 3001;
fallare .Sool.

end record;
pragua, pack(Statea~ype);

type AC~rtype, is
record

bp :offset:
add: Systm.Addross;

end record;
pragma pack(ACVýtype);

prague page;
type Tsaskftnzolblock is

record
Sm System. Semapbore;
,=al@tar Inlteger;

-- Delay queue handling

dpAext :System. !aakVaLue ;
dprev: System.Taskftloo
Maelay :Ticks

-- Saved registers

SS System..0.sigue6rd

245

DACS-80z86 User's Guide
ImplemCWKaian-DependM OhwanCeisf=C

SP of fset

-- Ready queue handling

next :systsm.?aakValue

-- semaphore handling

0410next systsm.ThikValue

P- riority fields

priority system.lriolity;
eavedjriority system-PtIonity;

H-~iscelleasous f ieds

time-slice System.0asigned~ord;
flags Fiagatype;
ReadyCount systewnward;

-- Stack specification

stack start Offset;
stack end. offset;

-- state fields

states Statoin..ype;

-- activation handling fields

activator system.Taskalue;
actchint Systsm. Tafkvaluo;
next-chain syatem.?aAkvalue;
no-not-act SysteaM.ard;
actblock aiochzd;

-- Accept queo" fields

partner system.TaskValuo;
next-partner Systsm.?ask¶Values

-- ntry queue fields

nexr caller :Systw.TaskV&lue;

-- Rendezvous fields

calledýtaak :System. Taskftloe;
ishsynch integer;

task entry Taskrntry;
eatzyýindex Entryladex;
entry a3s6C System.Addzuss;
callparams SysteM.Addnews;
alt-id, lternativeld.
exapijd syste..Ecepti@ond;

-- Dependency fields

parent task Systaw. !askVialue;
pairent block slockld;
Child task syste.Taskvalue;
next child System. Taskalve;
firet child Systema.?aNXV4le;
prew child System.!amkalve;
chili act syste.Ueidi
block act System."ord;
teMInated teak: System.?sskwalue;

-Abortion handling fields

busy System. word;

2M6

DACS-80x86 User's Guide
Implementation-Dependenz Charcteristics

-- Auuiliary fields

ttd : ACCTh8kTypeDescriptoc;
rIratc&llegr SystQW.TaakValue;

Run-Tinie System fields

Acr Ac: - type; -- f. User's guide 9.4.2
SWIrMt : Znteger; -- Only used In MS
Smairat Integer; -- Only used In lW5
Talockingfauk System.TukValue; -- Only used in 365
PalockinaqTgk :ystm.TuakValue; -- Only used in M6
collection System.Addroess

partition : Integer;

?askCbkckiait offset; - to assure inline storage check
Lastiaception : SysreinDiord; -0 2 0 16 bits
SavedAdaAddr Offset; -- to leprove rendezvous's

-- I save area

W- hen the application is linked with -qp., a special
-- save area for the M3X Is allocated at the very end
-- of every TC.
-0 ie:

case "FX Present is
-- when TRU" a> NXasav* : Nl.Savearea;
-- when FALSE -> null;
-- end case;

end record;

-- The following Is to assure that the TCS has the expected size:

TCB size : constant ZnTEZ :- TaskControlfllock' size / 8;

subtype Tcokvalue is n=G= range 136 .. 136;
TCDAok : constant TCR ok value :- TaskControlllock'size / 8;

end TaskTypes;

F.11 ILMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of Rate Mononaic Schedulint
(IRMS). RMS capability is purchased optionally, and is thus not included by default PMew cam
DDC-I for more information regarding RMS and your system. RMS allows the Vuui r n o
guarantee properties of a tasking system, Le. that tasks will meet their hard deadlins. Tno RMS
tasking is selected by specifying -rms to the Ada link command.

247

