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Abstract

The method of Coherent Gradient Sensing (CGS) is used to record the deforma-

tion field around an adiabatic shear band emanating from a pre-crack tip in C-300 steel

loaded dynamically in mode-il. At early times after impact, the resulting fringe pattern

surrounding the shear band seems to exhibit the deformation characteristics of a mode-fl

Dugdale plastic zone evolving under small scale yielding conditions, and, as a result, the

experimental fringe patterns are fitted to the theoretical Dugdale crack deformation field

by using a least squares fitting scheme. This results in values for the shear band length

and the average shear stress acting on the shear band as functions of time. The shear band

is observed to initiate when Kid (t)= 140 MPa-V,/"i and subsequently propagate with an

average speed of 320 m/s. The average shear stress on the shear band decreases from 1.6

GPA at initiation to 1.3 GPa during the later stages of propagation.

1 Currently with the Department of Aerospace and Mechanical Engineering, University of

Notre Dame, Notre Dame, IN, 46556
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1. Introduction

The formation of adiabatic shear bands has recently received renewed attention fol-

lowing the experimental measurements of the temperature rise in such bands by Duffy

(1984). In the past ten years these measurements have helped motivate a considerable

amount of modeling of adiabatic shear band growth which has recently appeared in the

open literature. Without presenting an extensive review, it is helpful to recall some of the

salient and common features of the many models that have been made available.

Commonly, the formation or growth of an adiabatic shear band is modeled as the

competition between thermal softening and strain and/or strain-rate hardening of a material

under shear loading. Usually an approximate model of thermal softening is added to the

constitutive equation for a material, the temperature is treated as an additional unknown

and the heat conduction equation is added to the field equations. Invariably, the heat

conduction equation contains a term that links plastic deformation of the material to the

production of heat (see Mason et al., 1992b), and a temperature rise in the material is

predicted as a result of the deformation. The net effect of the assumptions of the model is

the introduction of a mathematical mechanism by which instabilities in the deformation can

be formed. When thermal softening is dominant over strain and/or strain-rate hardening,

the material deforms, heats and becomes softer resulting in more deformation and the

generation of more heat which further softens the material producing a "self-feeding"

mechanism by which an instability is formed. The purpose of this work is to examine the

deformation field around an adiabatic shear band as it forms and, hopefully, extract more

information about the shear band formation process itself.

Kalthoff (1987) and Kalthoff and Winkler (1987) have observed the formation of adi-

abatic shear bands at the tip of dynamically loaded, stationary, pre-manufactured notches

in plates made of high strength maraging steel. The pre-manufactured notches were

loaded dynamically in nearly pure mode-Il loading conditions by an asymmetric impact
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in the area between the two pre-notches on the edge of the plate. See Figure 1 (a). When

sufficient impact velocity was used, an adiabatic shear band was formed directly ahead

of the pre-notch as shown schematically in the figure. In the work described here, a sim-

ilar configuration is used. This configuration involves the dynamic asymmetric loading

of only one pre-notch and is schematically shown in Figure l(b). The use of only one

pre-notch provides a simple loading geometry by which one may observe the formation

of adiabatic shear bands.

The method of Coherent Gradient Sensing (CGS) [Tippur et al. (1989a) and (1989b)

and Rosakis (1993a)] is used here in reflection on pre-notched steel plates loaded dynam-

ically in mode-il as described above. It is important to note that CGS has never before

been used in a reflection arrangement to study deformations such as these. However, it

has been used successfully in transmission for the study of mode-I dynamic crack growth

[Tippur et al. (1989a) and (1989b)] and for the study of asymetric impact induced crack

initiation in prenotched PMMA plates. [Mason et al., (1992a)J.

It is proposed here that the shear band formation at a dynamically loaded mode-il

pre-notch may be modeled by the Dugdale strip yield model. In such a model the shear

band is assumed to be a one-dimensional line of yielded material evolving directly ahead

of the stationary pre-notch or pre-crack with a uniform shear stress acting upon it. Implicit

in this approach to modeling are a number of assumptions about the mechanisms of the

nucleation and growth of adiabatic shear bands. For example, the following assumptions

are made; the width of the shear band is assumed negligible, the shear band is assumed to

grow straight ahead of the pre-iiotch or pre-crack, the shear stress is not allowed to vary

over the length of the shear band, the effects of inertia are neglected in the interpretation

of optical patterns, and the length of the shear band is determined by the far field Kdj (t)

that is acting on the pre-notch (small scale yielding is implied and the magnitude of the

shear stress on the yielded zone is chosen to nullify the highest order stress singularity at
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the shear band tip).

The last of these assumptions is perhaps the most restrictive, however it is useful

because it gives a relation between the stress intensity factor, the shear stress on the yield

zone and the length of the yield zone. In addition it is also motivated by numerical

investigations of dynamic shear band growth [Lee (1990)] where no singularity is found

to exist at the growing shear band tip. For a pure Kdi(t) field with a Dugdale zone having

a spatially uniform shear stress, 7ro(t), acting on it, the length of the yield zone, R(t), is

given by Rice (1968)

R(t) = j k 'rot ] (1)
0(t))

Although the assumptions and approximations of the model are somewhat limiting,

the model is used here as a first attempt at analyzing the results, and it should be emphasized

that the quantitative conclusions are reported asfirst estimates.

2. Experimental Procedure

2.1 The Method of CGS

A schematic of the CGS set-up is shown in Figure 3. A coherent, collimated laser

beam, 50 mm in diameter, is reflected from a highly polished and initially flat surface

of a prenotched opaque specimen. After the specimen is deformed, the non-uniform

contraction at the vicinity of the pre-notch (or better the resulting shear band) causes

the initially parallel bundle of light to deviate from parallelism after reflection. This is

equivalent to acquiring an optical path difference due to the additional distance traveled by

the initially planar wavefront in regions of the specimen where out of plane displacements

occur. After reflecting from the deformed specimen, the beam impinges on the first of

two identical diffraction gratings (40 lines/mm). The primary grating splits the beam

into a direct beam and numerous diffraction orders. For the sake of brevity, only the first
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diffraction orders (± 1) and the direct beam are considered. The second diffraction grating

diffracts both the direct beam and the first diffraction orders into three beams each, giving

a total of nine beams behind the second grating. Of these nine beams the (0,±1) and the

(-1,0) orders are parallel-as can be seen in Figure 2.

An on-line spatial filter is used to isolate one of the two pairs of parallel beams. A

lens is placed a distance equal to its focal length behind the secondary grating as in Figure

3. The Fourier Transform of the intensity distribution at the second grating is observed

in the back-focal plane of the lens where an aperture is placed on either the +I or -I

diffraction order spot. The aperture filters all but the two desired parallel beams from

the wavefront. Another lens is placed at a distance equal to its focal length behind the

aperture to invert the Fourier transformation.

It is assumed that the wave front before the first grating is approximately planar with

some phase difference, S(Xl, X2). This phase difference is introduced because of the out

of plane deformations on the specimen surface. Deviations of the propagation direction

from the optical axis are neglected. Thus, the two gratings shift one beam with respect to

the other by a distance

S= AtanO ý1 AO (2)

where A is the separation between the gratings, see Figure 3, and 0 is the angle of

diffraction (assumed small), given here by

0 = sin -, -. (3)
p p

A is the wavelength of the illumination, and p is the pitch of gratings.

The two parallel, sheared wavefronts constructively interfere at a point if their dif-

ference in phase is an integer multiple of the wavelength, i.e., if

S(zI + e, X 2) - S(XI, z 2 ) = MA, (4a)
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where m is called "the fringe order." Dividing this equation by C gives

S(XI + C, X2) - S(X1, X2) mA(= m ,(4b)

which, for sufficiently small e, may be approximated by

8(S(X1,x2 )) P_ .5)
axE A*

In equation (5), the approximations in equations (2) and (3) have been used, and the result

has been generalized to include shearing in either the x1 or X2 direction, a = 1, 2.

Equations (4a) and (4b) are the standard equations for lateral shearing interferometry

found in Murty (1978). Note that as e goes to zero the approximation in equation (5) grows

more exact, but at the same time the number of fringes and, therefore, the sensitivity of

the system, is decreased. It is important that the grating separation, A, and, consequently,

the value of c, appropriately balances the competition between maximizing sensitivity and

approximating the derivative.

For an opaque material reflecting the incident laser light, the phase difference,

S(Xl, X2), in equation (5), is given by the difference in optical path length. This change

is wholly attributed to changes in specimen thickness due to lateral contraction, and, thus,

the optical path difference is given by [Tippur et al. (1989a) and (1989b) and Rosakis

(1993a)]

S(x1,z 2) = 2h 1 33d h (6)

= 2hj {(c I + 0'22) a3 ________

where h is the thickness and the factor of 2 accounts for the light traveling the surface

displacement twice, once on the way in and once on the way out. The integral represents

the optical path difference due to changes in the plate thickness caused by the strain

component, C33.
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Assuming the material is isotropic and linearly elastic and using the plane stress

assumption, a33/V(07ii + 0(22) < 1, Eq (6) may be integrated giving the following

result;

U3 = -±-("1l 0+22) (7)

where the term in brackets in Eq (6) has been neglected for plane stress conditions and

0"11 and a 2 2 are plane stress thickness averages of stress components in the material while

&33 = 0. Hence, inserting Eq (7) into Eq (6) gives

vh
S(xI,x 2 ) ;, 2U3 = - (al + a22). (8)

Finally, substituting (8) into (5) gives the result,

20u _ vh (_ + _ 22);t$ mp

Tx: = E ax,, •--.(9)

All interference images produced by the CGS apparatus in this work are interpreted using

equation (9). Notice that a rigid body rotation does not effect the results since the derivative

of u3 of such a motion results in a constant that has no effect upon fringe pattern formation.

The method of using an incident beam at a small angle to the undeformed-surface normal

is made possible by this result. Angling the incident illumination is identical to a rigid

body rotation. This fact precludes the need for a beam splitter in the set-up of CGS for, se

in reflection on opaque materials. In the experiments reported here the specimens were

illuminated at a small angle to the undeformed-surface normal.

For the case of a semi-infinite Mode-il Dugdale crack with a yield zone of length

R(t) the solution for the elastic stresses around the yield zone may be found [Rice (1968)],

al (tI) + 22 (t) W= 4r(t)Im[tan-( R(t) (10)
7r It -R(t)
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where ro(t) is the shear stress on the yield zone and z = x1 + iX2 is a complex number.

Taking the derivative of this function gives

1& { 11(t) + &22 (t)} 2 'ro(t) IM [1 R (t) 1
Oxi [z z- R(t) '

09 &11W + &22W }2 ro (t) R e 1 R (t) 1
19X 2  irL Z _R(t)J

Inserting this result in the governing equation for the CGS apparatus, Eq (9), results in an

equation for the formation of fringes around a semi-infinite Mode-il Dugdale crack. This

equation has been solved here numerically for partial differentiation in both directions, x,

or X2, and the results may be seen in Figure 4. For very large distances (when compared to

the Dugdale zone size) away from the pre-crack tip the fringe pattern resembles the pattern

for a pure mode-Il K dominant field. (See the fringe patterns in Mason et al., 1992a.)

Also, when partial differentiation with respect to x, is performed the fringe pattern gives a

clear indication of the location of both the original pre-crack tip and the tip of the Dugdale

zone. For this reason all experiments reported here are performed with differentiation

parallel to the pre-crack tip, i.e., differentiation with respect to x1 . And quick estimates

of the Dugdale zone size are made by measuring the distance between the point where the

rear lobe converges to the x, axis and the point where the front lobes converge to the x,

axis.

2.2 Apparatus

The exact specimen geometry is shown in Figure 5. Specimens are made of C-300

maraging steel. Impact of the specimens is achieved using an air gun and a 75 mm long, 50

mm diameter projectile made of C-350 maraging steel. Two types of test were performed;

first, round tip pre-notches P .5mm thick machined by wire EDM as per the figure were

impact loaded, and, second, pre-cracks approximately 10 mm in length grown at the tip
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of a 50 mm long, .5 mm thick pre-notch by loading the specimen in dynamic shear were

impact loaded.

Set up of the CGS apparatus follows Figure 3. A high-speed framing camera man-

ufactured by Cordin Co. (Salt Lake City, UT) is used as the imaging system. The CGS

interferograms are generated using an Argon-Ion laser synchronized with the high-speed

camera and pulsed for 50 ns at 1.4 us intervals as the light source. The total length of the

record of the event is z 110 is resulting in approximately 80 CGS interferograms per

test.

The fringe patterns are digitized by hand. A ray of constant angle 40 from the x,

axis is followed; points at the center of fringes are digitized along the way. The effective

crack tip was chosen by estimating the point where the rear lobe converged to the x I axis.

See Figure 4(a). Most of the uncertainty in digitization arises from locating the effective

crack tip and choosing the center of the fringe.

2.3 Data Reduction

Deviation of experimental results from the fringe patterns predicted by a mode-lI

Dugdale crack field are expected for many reasons. These include the existence of a

zone around the pre-notch tip where plane stress assumptions break down (the ..-D zone)

[Rosakis and Ravi-Chandar (1986) and Krishnaswamy et al. (1988)], the interference of

propagating waves from the loading with the crack tip field and violation of the assumptions

used in the derivation of the Mode-II Dugdale model. Consequently, the results are

analyzed by fitting the Dugdale crack solution to the digitized fringes of the experiment

by a least squares fitting scheme. Digitization is carried out only on the points above the

pre-crack line (impact occurs on the side of the specimen below the pre-crack line) in

order to avoid confusion caused by the interaction between the Dugdale zone pattern and

the pattern generated by the propagating waves. The fit is produced by minimizing the
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N

x(ro, R) - Z(mi - f(ri, Oi) )2 (12)

where

f(ri, Oi) A ,h8(6'11 + a22) (12a)
p E ax"

and

Oi =tan- I(X2l). (12b)
r 1 =1

The expression for the partial derivative in Eq (12) is given by Eq (11), and N is the total

number of points. The minimization of equation (12) was performed numerically. First,

the dynamic stress intensity factor was taken from the solution of Lee and Freund (1990).

When the solution of Lee and Freund (1990) is no longer applicable, at longer times, a

fit of the results in Mason et al. (1992a) for long times is used. This is justified by the

agreement between the model and the experimentally measured Kd (t) for PMMA loaded

under the same conditions as demonstrated in Mason et al., (1992a). Then the function X

was minimized numerically with respect to the shear stress "ro (t) while holding the stress

intensity factor constant.

3. Results and Discussion

As a first investigation of the shear band formation, lines were etched on the steel,

and it was impacted at 40 m/s. The resulting deformation can be seen in Figure 6. The

shear band zone width is small, 200-300 im, and the average shear strain in the band is

roughly 100%. Note that the deformation is mostly elastic outside the shear band and that

the etched lines above and below the shear band are still aligned as they were before the

deformation. This fact indicates that during the shear band formation the lower, impacted

plane of material is compressed elastically moving the lower half of the etched lines to the

right while the upper plane of material remains approximately stationary with the shear
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band absorbing the resultant mismatch deformation. After a crack forms along the shear

band elastic unloading occurs allowing the lines to realign. This observation justifies the

use of an elastic constitutive equation in the Dugdale crack model to predict the material

deformation around the forming adiabatic shear band in future experiments.

Primary test were performed on pre-notched specimens. In spite of some ofthe

shortcomings of the test, the results have some merit because the initiation and propagation

of a shear band was seen in the photos and a change of failure propagation mode occurs

at later times. A photograph of the specimen after the experiment is shown in Figure 7.

The initial failure growth directly ahead of the pre-notch tip is a shear band dominated

failure growth. No shear lips are observed and the failure surface is relatively smooth and

shiny resembling that reported by Kalthoff (1987) and Kalthoff and Winkler (1987) for

shear failure. This growth is observed in the recorded fringe patterns (not shown) and, in

agreement with the report of Kalthoff (1987) and Kalthoff and Winkler (1987), the growth

proceeds at a small negative angle, ;-, 50, to the x 1 axis. The shear-band growth is found

to arrest at approximately 40 js after impact of the specimen. This time corresponds

roughly to the time required for an unloading wave from the rear of the projectile to reach

the pre-notch or shear band tip. After the shear growth arrested, a different mode of failure

is initiated at an large positive angle to the shear growth as can be seen in Figure 7. This

growth is mode-I dominated as evident from the rough fracture surfaces and the shear

lips visible in Figure 7(b), Initiation and growth of this latter crack occurs long after the

recorded loading, and, unfortunately, the exact details of this very interesting failure mode

transition, observed for the first time, are not yet known.

In Figure 8 a record of fringes may be seen for a dynamically loaded stationary pre-

crack Time t = 0 corresponds to the time of impact of the plate edge. Waves generated

at the time of impact take approximately 12 As to reach the pre-crack and begin loading.

The deformation has a resemblance to the theoretical fringe pattern shown in Figure 4(a).
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The "effective" crack tip and zone tip can be located by the fringe pattern in the upper half

plane quite easily. However, the waves in the lower half plane considerably complicate

the fringe pattern there at various times during the recorded deformation. Consequently,

in order to simplify the digitization procedure, only the fringes on the upper half plane

were digitized. It is felt that the upper fringes closely resemble the small scale yielding,

Dugdale zone pattern throughout the recorded deformation because extensive interaction

of the upper fringes with the incoming stress wave is not observed. Note, however, that

the fringe pattern on the upper half-plane becomes less and less similar to the Dugdale

pattern as time goes on. At 47 jss deviations between the measured fringe pattern and the

theoretical pattern become too large to warrant further fitting of the theoretical Dugdale

deformation field to the experimentally measured deformation field. Furthermore, the

aperture spot (shadow area) forming around the shear zone continues to grow making it

more and more difficult to record the fringe pattern.

In Figure 8 there is an aperture spot around the Dugdale zone and crack tip at

longer times. It can be seen in Figure 8, after some analysis, that the pre-crack faces are

coming into contact. The pre-crack is curved slightly downward, and the curved faced

are being forced together by compressive loads acting in the x, direction. Consequently,

the effective crack tip at early times is where the two faces initially come into contact and

not at the actual initial pre-crack tip.

Because of the existence of the contact zone in this experiment, the shear band length,

Rsb(t) is defined here as the length of the fit Dugdale zone size, R(t), less the contact

zone length, R,-, (t), which can be measured directly from the photographs. Hence,

Rb(t) = R(t) - R,.(t)

where the contact zone length is found by measuring the distance between the zero point

indicated by the fringe pattern and the initial pre-crack tip and R(t) is produced by the fit

indicated in Eq (12). The pre-crack faces are in contact at t=26 ts (cdt/I = 2.3), and the
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Dugdale fringe pattern indicates that the shear zone extends to the initial pre-crack tip at

that time. Consequently, at time t=26 /is, Rtb(t) = 0, and from then on a shear band is

observed.

Fits were performed for photos taken at the times 17-47 #s after impact. Photographs

taken at earlier times either showed no loading or did not show enough loading to warrant

a useful fit. An example of one of the fits (performed at 31.5 /s) can be found in Figure

10. Acceptable agreement between the theoretical Dugdale field and the experimentally

measured field is seen.

The results of the fit for the shear stress on the shear band, 'ro(t), and for the shear

band length, Rsb(t) are plotted in Figure 11. The shear band length increases with time,

and a linear fit of the growth provides an estimate of the shear band growth velocity of

320 m/s. The initiation occurs at approximately 26 jis, cdt/i = 2.3, well within the

domain of the Lee and Freund (1990) solution. At this time the stress intensity is roughly

140 MPaV,'m. The shear stress increases initially with time from 0.6 GPa to 1.6 GPa

before the shear band initiation. It is assumed that this effect is due to increasing load

on the pre-crack faces that are already in contact. After the shear band is initiated, the

shear stress decreases from 1.6 GPa to 1.3 GPa. This type of behavior is expected since

thermal softening is the acting mechanism by which the shear band forms. As the shear

band grows it is expected that the shear stress decreases due to thermal softening. Recent

experiments conducted in the same geometry at Caltech indicate temperatures of up to

600"C above ambient at the tip of the propagating shearband. [Rosakis (1993b)] The value

of the shear band length obtained from the fit described by equation (12) is compared to the

estimated shear band length. This length is estimated from the photographs by comparing

the recorded CGS fringe pattern to the predicted fringe pattern in Figure 4 as describad in

Section 2.1. Acceptable agreement is seen.

For comparison, the constitutive behavior of this material was measured and is shown
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in Figure 12 for various strain rates. The curves were measured in uniaxial compression,

but, for ease of comparison, the equivalent shear stress is plotted using the Von Mises

criterion. In high strain rate tests, the formation of shear bands in the specimen is observed.

The material hardens with strain initially, but at higher strains thermal softening becomes

dominant and the measured stress decreases with strain. This is typical observed behavior

for the formation of instabilities in a uniaxial test. Examination of the specimens after

testing shows unmistakable evidence of shear band failure. Plotted with the Kolsky bar

data is an estimate of the stress-strain behavior of the material within the shear band

observed here. An estimate of the constitutive behavior of the material within the shear

band may be obtained by using the reported stress values in Figure 11 and by estimating

the corresponding average strains on the shear band. We assume that the relative shear

displacements of the upper and lower shear band faces decrease linearly from th )re-crack

tip to zero at the tip of the band (the end of the Dugdale zone). If the shear band also has

a fised thickness, tb, then the average strain is given by

2E7otb

This combined with the known values of the shear stress in Figure 11 gives a stress-strain

relationship for the shear band materials which is displayed in Figure 12 along with the

shear response curves obtained means of Kolsky bar experiments. Good agreement is

found between the measured local stress-strain behavior of the shear band and the results

of the Kolsky bar tests.

4. Conclusions

The formation of a shear band at the tip of a pre-crack loaded dynamically in mode-II

has been recorded using high-speed photography and the method of CGS to examine the

stress field around the pre-crack tip. It is seen that the recorded fringe patterns around the

pre-crack correspond well with the theoretical pattern for a mode-il small scale yielding
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Dugdale plastic zone model. Consequently, a fit of the digitized experimental fringe field

is made to the Dugdale zone solution with the shear stress on the shear band as a parameter

varying with time. The remote stress intensity factor is assumed to follow the model of

Lee and Freund (1990). The results of the fits are used to extract the time evolution of the

shear stress on the shear band and the length of the shear band with the following results:

It is seen that the shear band initiates within the regime of the Lee and Freund (1990)

solution for this problem. However, it does not initiate at the first loading of the pre-notch

tip. There is a time delay of approximately I1 Ijs, after the arrival of the compressive

wave at the crack tip, before shear band growth is observed. The shear band initiates when

Kd = 140MPaVM.

The shear band propagates into the material with a speed of roughly 320 m/s while

at the same time the shear stress on the shear band decreases from 1.6 GPa at initiation to

1.3 Gpa.
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List of Figures

Figure 1 (a) The loading geometry observed by Kalthoff (1987) and Kalthoff
and Winkler (1987) to generate shear bands in C-300 steel at a pre-
notch or pre-crack tip. (b) The modified pre-notched geometry used
in the present investigation.

Figure 2 Schematic describing the working principle of CGS.

Figure 3 Schematic of the experimental set up for transmission CGS.

Figure 4 (a) Numerical predictions of CGS fringes (constant 8(& 1+&22) val-

ues) constructed on the basis of a pure Kji field with a Dugdale shear
zone of length R ahead of the pre-crack tip. (b) Predictions of CGS
fringes for constant 8(o,12+•22) values and the same assumptions asUZ2

(a).

Figure 5 Specimen geometry, loading configuration and material constants.

Figure 6 Example of a shear band formed by asymmetric loading of a pre-
notch. The lines were etched before loading. Shear localization is
observed.

Figure 7 Photograph of the crack path taken after dynamic loading of a pre-
notch. The crack propagates forward parallel to the pre-notch in a
shear dominated mechanism then arrests. At later times the crack
propagates atan angle to the pre-notch in a locally symmetric (mode-
I) mode of failure.

Figure 8 Sequence of CGS interferograms corresponding to the initial stages
of the dynamic asymmetric loading of a pre-cracked specimen im-
pacted at 38 m/s.

Figure 9 The actual initial pre-crack tip, as indicated, and the "effective" initial
crack tip can be seen in this photograph taken at t=31.5 As.

Figure 10 A check of the fitting procedure for t=31.5 psbata points should fall
alternately on light and dark fringes in the figure. It can be seen that
the fit is reasonably good for the forward fringe with less agreement
found for the rear fringe.

Figure 11 A plot of ro(t) and R(t) as found from the fitting procedure in equa-
tion (12). The shear band length is compared to the length as esti-
mated by comparing the fringe patterns in Figure 8 to the theoretical
fringe pattern in Figure 4.

Figure 12 The constitutive behavior of C-300 at various strain rates as measured
in compression. High strain rate data was measured using a Kolsky
bar apparatus as shown in Mason et al. (1992b)
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FIGURE I (a) The loading geometry observed by Kalthoff (1987) and Kalthoff and Win-
kler (1987) to generate shear bands in C-300 steel at a pre-notch or pre-crack
tip. (b) The modified pre-notched geometry used in the present investigation.
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FIGURE 2 Schematic describing the working principle of CGS.
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FIGURE 3 Schematic Of the experimental set up for reflection CGS.
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FIGURE 4 (a) Numerical predictions of CGS fringes (constant '9(&11+22) values) con-
strcte onthebass o a ureK~H field with a Dugdale shear zone of length

R ahead of the pre-crack tip. (b) Predictions of CGS fringes for constant-6 LI7+a2), values and the same assumptions as (a).
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FIGURE 5 Specimen geometry, loading configuration and material constants.



FIGURE 6 Example of a shear band f'rmed by asymmetric loading of a pre-notch.
The lines were etched beft. re loading. Shear localization is observed.
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FIGURE 7 Photograph of the crack path taken after dynamic loading. The crack propa-
gates forward parallel to the pre-notch in a shear dominated mechanism then
arrests. At later times the crack propagates at an angle to the pre-notch in a
locally symmetric (mode-I) mode of failure.
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FIGURE 10 A check of the fitting procedure for t=31.5 AsIata points should fall alter-
nately on light and dark fringes in the figure. It can be seen that the fit is
reasonably good for the forward fringe with less agreement found for the
rear fringe.
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FIGURE 11 A plot of 'ro(t) and R(t) as found from the fitting procedure in equation (12).
The shear band length is compared to the length as estimated by comparing
the fringe patterns in Figure 8 to the theoretical fringe pattern in Figure 4.
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FIGURE 12 The constitutive behavior of C-300 at varous srain rates as measured in com-
pression. High strain rate data was measured using a Koisky bar apparatus
as shown in Mason et al. (1992b)


