
I

DTIC
AD-A279 761 ELECTE

S7 7MAY3 1199411

F

Electron Propagator Theory and Application

Ricardo Longo, Benoit Champagne, and Yngve Ohm

Quantum Theory Project

University of Florida

Gainesville, Florida 32611

ths ouzefthc-s b..n 09prn~ T.F. 000
j ot public :e1ecse i.A uoh 113

Idistibutiol Is u~imi ASMCABSTRACT

The electron propasato them. is presented with somewhat of a historical perspective and
the wording equations are developed with the aim to take advantage of molecular point group
symmetry. A new electron propagator code, the vectoized electron pagator program (VEP),
is introduced without full details about its stucu and capabilities (such details are being
published elsewhere). Applications to the (UV) photelectron spectra of some donor-acceptor
complexes of barane with carbon monoxide and water are presented at the level of second-order
theory as an illustration of the theory and the VIEP code.

94-15930&
I~hIIfiII�' 94 5 26 1044

"&Ww Rww& ANWW of do Nwiml Pmi o mi Uamu (%hiW



REO TD C M NAINPAGE J 0"s N 0704-01

W. . .~.~ 9C" -10ý0440.4 !G 6o .u %aq. Vqde ri#t , 'Aw q4 t~ ,. -m e for- *' aaree' . - P.~1 %I; ..

.6 V"a.6it'e t".en IAsis Rome" #ft tZIP10916"I~ ~ "am"qte I*sawc.ww O~f~tI@ e m"afm..r ~*

1. AGENCY USK ONLY (Ledvo Diana) 2. REPORT DATE 3. REPORT TYPE ANO GATES COVERED

INay 16, 1994 Technical Re ort
4. TintE AND SUBTITLE S. FUNDING NUMBERS

Electron Propagator Theory and Application N00014-93-1-0122

________________________________________________ RT4131072

6.A&UTNOR(S)

Rt. Longo, B. Champagne, and Y. Ohrm

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS4ES) S. PERFORMiNG ORGANIZATION
REPORT NUMBER

University of Florida
Quantum Theory Project, WM 362
Gainesville, FL 32611-8435 Tech. Rep. No. 2

* 9. SPONSORING, MONITORINTG AGNCY NAME(S) AND AGOOASS(E3 W0. SPONSORING I MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Chemistry Program
800 North Quincy St.

Arlington, VA 22217-5000

* 11. SUPPLEMENTARY NOTES

Submitted to Theor. Chin. Acts (1994)

t~a. OISTPA&UTION JAVAILABILITY STATEMENT1 12b. DISTRIBUTION CooE

This document has been approved for public release and
sale; Its distribution is unlimited Unlimited

-1 . ABSTRACT (Maximum 200 woErhj

The electron propagaow theor y is presented with somewhat of a hIstouical perspective and
the workig equations awe developed with the aim 1o take advantage of molecular point grop
symmetry. A new elect=o ptqmpagtr code, doe vectouized elect= propagaor progra (VEF),
is introduced without ful details abot its swuct and capabilfities (such details are being
published elsewhere). Applications to the (,VM photoelectron spectra of some donor-accptM
complexes of borane with carbon monoxide and vmwatrae presnted at the level of second-celder
fthory as an liustration of the theoXY and the VHF Code-

14. SUIJECT TERMS IS. NUýMBER OF PAGES

16. PRICE CooE

17. SECURITY CLASSIFICATION 1B. SECURITY CLASSIFICATION 1S. SCRITY CLASSIFICATION :20. LIMITATOOFATR
OF REPORT Of TH4IS PAGE Of ABSTRACT
Unclassified Unclassified Unclassified

NSN 754"i41.JSe4OO standasr form 29S 'Qev 2-



1. Introduction
Praator gained early prominence in formal many-body theory of fermion systems (see

e.g. [1] and references therin). Concerns about the elimination of unlinked terms, in perturbation
expansions and the associated comrct scaling with system size natually led to the prpagtor
concept. reaunent of double-time Green's functions [2] or, equivalently, propagatos established
that they provide a useful link between quantum mechanical treatments of pure state systems at
the absolute zero and that of ensembles at finite temperature. Condensed mat theory employed
the propagator concept to great advantage (see eg. the review by Hedin and Lundqvist [3]) and
propagator theory for finite systems [4, 5, 6] led to new ideas for the treatment of molecular
systems. A detailed treatment by Linderberg and hrn [7] of a variety of spectroscopies for
molecular systems further developed and applied propagators. This paper focuses on the electron
propagator theory and its application to molecular systems.

The electron propagator is naturally described in Fock space in terms of field operators.
Depending on only two electron position and spin coordinates and a time or energy parameter
it is in many ways the optimal theoretical quantity with a dynamical equation from which it
can be determined in various approximations. It contains a wealth of information. Not only
vertical electron binding energies (ionization potentials and electron affinities) [8, 9] [10], but
also electron scattering amplitudes (11], photoionization intensities (9, 12], total energies (13,
14], onw-electron reduced density matrices [7, 15] and therefore permitting the calculation of
one-electron properties [161. Derivatives of molecular electron binding energies with respect to
nuclear displacements [17, 18] have also been determined within the electron propagator theory.
Basically all properties of a molecule art contained in the propagator. Thus electronic ard
rovibrational spectra [10] and the particulars of chemical bonding can be treated in terms of the
electron propagator [19, 20].

Given a set of orthonormal spin orbitals {4(•)} and the associated set of electron field
ope s{a,,t} satisfying the anticommutation relations (at equal times)

[a,, al+ = [aat+ = a, at+ - 6 = 0 (1)

the electron propagator matrix is defined with elements

((a,(t); a. (t'))) = -i(t - t') (oa,(t)a(t')) jo)

+ is(to- t)(Olt(t')a,(tOI). (2)

Hene

O(W) = / 6(r)d-r (3)

is the Heaviside step function expressed in terms of the Dirac delta function, and 10) is the
N-eectron ground stae. Atomic units are used throughout so for instance A 1 and the U
Hei-enberg equation of motion for the field opemm isatos

•d (4)_
Si ap(t) = (a,(t), -,(4)

:-des
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where the commumta on the right contains the many-electron Hamiltonian expressed in the
basis electron field operators

H = 1a.4a, + o(pqrs) taar. (5)
p4g p4,7,8~

The one-electron integrals involving the electron kinetic energy and the electron-nuclear attraction
terms are

=Jq tip)(' 02Z (6)

and the antisymmetric two-electron integrals are (pql Ir.) =(pNI?.) - (p~qlsr) with•-1

(pqlrs) = j df1 f df2O#(tj)O;(t2) 16 (7)0,6O~t)

The electron propagator is most commonly studied via its Fourier transform
00

ap; = ((ap(t); at('))) exp[-iE(t - t')Id(t - t'),(8)
(0s

which has the spectral representation [21, 7)

(ola, m)(,mlaIO)((. at 'j)[
M q-moZ E +4 Eo(N) - Em('N +11)"+ iT/(9

SE- Eo(N) + -E(N - 1) - iql'

showing the typical pole structue, when the energies are discrete as they always are in a finite
basis set. The energy eigenstates are used in this formal expression, i.e.

HIO) = Eo(N)JO), (10)

Him) = E,.(N ± 1)1m)

and only the N+I and N-I electron states are involved as intemediteMs in the spectral repre-
entation.

It is obvious from the spectral representation that the electron propagator has a special
significance for photoelectron spectroscopy and other processes where electron binding energies
are measured. The numerator contains the so called Feynman-Dyson amplitudes

f,(m) = (Olopm),
g,(m) = (mla•,0),

which are obtained as residues at the particular poles of interest. T7ese amplitudes are important
in the dteetical d mnin of transition probabilities for electron attachment or detachment
processes. For instance, the intensity of a particular structure corresponding to the final positive
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ion sue m in a photoelectron spectrum of a neutral species is proportional to the pole strength
[8. 91 r. = 1Og,(m)I 2 .

The propagator in equation (9) satisfies the equation of motion
E((a,; =))v- (01[a., at+ l0) + (([a,, Hb_; a))z (12)

= (0I[o,.at]+I0) + ((a,; [H, at]]-))E

which can be readily shown by using the identity
SE(E - X)-I = I + X(E - X)-I (13)

with z = Em(N + 1) - Eo(N) or z = Eo(N) - Em (N- 1 ) in the spectral resetatio nd
utilizing the properties (10) of the energy eigenstates. The two equivalent forms of the equation
of motion (12) are useful in manipulating the chain of equations that obviously results when the
corresponding equation of motion is written for the propagator on the right, which involves the
commutator with the Hamiltonian, yielding an even more involved propagator on the right with,
say, a double commutator [[ap, HN_, HM_, and so on. Approximate treatments of the propagatar
equations include the termination of this chain of equations at some suitable level or assumptions
that permit the summation of the expansions. This so called decoupling problem was addressed
in its generality by Undeberg and 6hrn [6] by linearizing the equation of motion. There has
also appeared discussions of truncation schemes expressed in terms of diagrammatic expansions
by Cederbaum and Domcke [10], the moment conserving deoupling using Pad& approximants
as well as various renormaliraton schemes discussed by Ohm and Born [221, and decoupling
pmcedures expressed in terms of supeeropmrt [23].

Although equivalent to other procedures the superoperator formulation provides a particularly
attractive shorthand notation. It proceeds by introducing a linear space L of fermion-like field
operators a ~a,-.

L = {4,4, a(, < q),a ata ag(p < q <r;t <s),..-., (14)

which supports a scalar product

(XIY) = (OI[X t Y]+l0), X,Y E L. (15)

The Uperopertor identity I and s 0uper a mm Hamiltonian H are defined on L such that

Ix = x (16)
AX = [H, Xj..

Iterating the second form of the equation (12) yields

41 + E2  + E (17)

- (a4(E --

I.e. a matrix element of the s op resolvent. The full matrix can be expressed as

G(E) = (at(E/ - k)-lat) (18)

with the field operators aranged in a suitable row array on the right and column array on the left
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Using an inner projection (24] manifold h E L the sup tor inverse can be transformed
to a matrix invere

G(E) = (atlh)(hi(El - fI)h)-i(hlat). (19)

Ts expression is the starting point for the approximate usanments of the ectron propagator.

2. Approximations to the Electron Propagator

Partitioning of inner projection manifold
The simplest decoupling of equation (12) is to consider the so called moment expansion in

equation (17) and make the assumption that higher moments ame powers of the first moment

F - (atIlat). (20)

This is often refenrd to as the geometric approximation. Denoting (atiat) = S the moment
expansion (17) becomes

G(E) P E-IS[1 + E-IS-IF + E-2 S- 1 FS-'F+ - - (21)

= S(ES - F)-1 S = (atl(El - h')at)-1 = Go(E)

The antommutation relations (1) yielding

Sp, = (,1,a•) = (01[a,,a•1+10) = 6,,, (22)
and

Fp,,-= (¢,11kt,,) = (0o[a,,[H at-1+o0)
= hA + E(PrlqS)(ol4a.a 0) (23)

have been employed, where in the last expression F,, is a matrix element of the Fock operator
in the spin orbital basis. The single-particle reduced density matrix has the elements

-far = (olata.o0) (24)

and can be diagoalized simultaneously with F to give occupation numbers (n,), ie. -f, =
(n,)6.1 r and xtFx = c for some suitable unitary transformaion x. Comparing equation (21) with
the formal spectral sepresentation (9) it is possible to write

=+ 1 (n.)I; (25)

For tde case that the occupation numbers are 0 or I the reference state 10) must be a single
detminatm in terms of the self-consistent field (SCF) spin orbitals

X, = , Oxpr (26)

4 Mach 22, 1994



or equivalently expressed in terms of the field operators and the vacuum state as

N

1o) = rllaivac) M 'Ii t lvac)" (27)
/p=1 i

In the following the electron field operators {ar - r) refer to the SCF spin orbitals {X,}. It
then follows through (25) that at this level of appro iation, the occupied spin orbital energies
must be identified with ionization potentials and the unoccupied ones with electron affinities as
is done through Koopmans theorem.

This is considered the lowest level of a and used as a starting point for all
higher level treatments of the electron propagator. The SCF spin orbitals and then also the
corresponding electron field operato naturally separate into an occupied set labeled by ij ...
and an unoccupied set labeled by ahc, .... The labels pq,r, ... refer to either set.

The inner projection manifold h used in the expression (19) need only contain fermionlike
operaors 25] ie.

{h = {hf u {h) u {hs}U **. (28)
- fat, it} U {atbti, itJta} U {atbtctij, itjtktab) U...

and truncations of this manifold corresponds to various approximation schemes. It is convenient
to use an orthonormal set of inner projection basis elements [251 so that (hilh,) = 1, and
(hilhb) = 0 for i 6 .j.

A first step in seeking adequate approximation schemes for the electron propagator is
a partitioning of the inner projection manifold. When the aim is to obtain a theoretical
photoelectron spectrum it is convenient to choose the partitioning

h={hi,f} (29)
f = {ha U {hU } U ...

such that equation (19) becomes

G(E)=[1 0] rEl -(at jfat) -(atl/tf) 1-1
r -(foka t) El - (fiJf)J [u(3

T partitioned form of the inverse matrix yields

G-'(E) = El - (atlat) - (atlt/f)[E1 - (f Iff)]-i(fjf/at) (31)

= GW1(E) - E(E),

where the unparted propagator and the self-energy term have been defined to show the relation
to the so called Dysn-like equation for the propagator [1). An untruncated manifold f means no
appo ton only a reformulation of the propagator equations. In order to arrive at a defnite

miand provide algorithms for the calculation of the matrix elements defining the
prpaator, a reference state and a truncation of the inner projection field operator manifold
must be chosen.
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Choice of reference state
The Havet-Fock or SCF single determinantal state 10) = IHF) provides the natural starting

point for the choice of reference state at various levels of approximation. Although the electron
propagator theory can be fully developed within a perturbation theory framework with only
the SCF single detmninantal refrence state and choice of inner projection manifold [22] it is
desirable to keep a balance between the level of description of the refeence am 10) and that of
the inner projection manifold f. Such a balance kept through various orders of perturbation theory
guarantees hermiticity of the superoperator Hamiltonian matrix and the elimination of spurious
terms [25]. Starting from a partitioning of the Hamiltonian and thus also of the utor
Hmiltonian H = Ho+8H

Ho = jIPt
(32)

6H1 = (P(r s)[!ptqter - ,

the reference state can be expressed in terms of Rayleigh-Schrodinger perturbation theory (RSPT)
[26, 27], or coupled-custer (CC) theory. Also multiconfigurational SCF (MCSCF) theory has
been implemented [28] for the electron propagator reference state. This treatise employs reference
states based on RSPT and CC theory.

The bermiticity problem consists of the equation

(xlftY) = (Yl-x)* (33)

not being satisfied for an approximate reference state or moem generally for a density operator

p= po+6p+62 p+...'+ p (34)

correct through order n in perurbation theory. The average defining the propagator matrices
is then a trace, i.e.

Trip.. ""(35)

since ([Xt, [H Yl-]+) - ([Y', [H, X]_]+)" = ([H, [Xt, Y]+]-. (3)

= T{p[H,[Xt, YI+I- = Tr{[p, H]-[Xt, Yl+]-}(
and since

[po, Hol- = 0 (37)

and
[61p, Ho]- + [6h1,1, 6H]- = 0 (38)

are assumed to hold for k = 1,2,...,n, the =rr term is of order n l, ie.

(XIlAY) - (YltX) = r1{[60p, 6B_[Xt, ]+}. (39)

6 Uxtdb 22 1994



K a

K2  ke katibtj, (42)0
i>j

K3 = (+ k+Kati .i F), (43)
i>j>k 6>b>c

with, in particular
i ,•j_= (iJllab)

---i j , (44)

and

Dig 1 [ - E kik (45)

The eoi ator r defined as

Cri - e,, (46)

and
U,• = i+, -jto- 4. (47)

The concept of order in the perturbation expansion of the electron propagator ultimately means
order in terms of the electron-electron interaction or equivalently two-electron integrals. The
inclusion of electo correlation through first oder in the reference state is achieved with the
double excitation terms XT2 whereas also the K, terms ae needed for second-order corrections.

Coupled-chwer renornaifation of the reference state

The coupled-cluster (CC) expression [29] for the reference state

1O)cc = eTIHF), (48)

is defined by

T- = T + T2•+ T3 +...+ TN, (49)

with N being the number of electrons of the sysem, and

T= - t2 fati, (50)
i •

7 Mwch 22, 1994
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T2= tatibtjt, (51)
i>j a,>b

i>j>k G>b>c

and so on.
The T amplitudes contain infinite order contributions to each excitation level fwom the HF

stat Thus, replacing the RSPT K amplitudes with the CC T amplitudes may be considered a
ren mnaliZadon procedure since catain claes of perturbation erms or diagrms are summed
to infinite order [30, 31]. This idea has already been employed in work on the polarizaion
prn;agaor [32, 33].

Detail of the coupled-diuter approach

Expansio of the exponential in the CC method gives,
IO)cc = [I + T', + (T2 + i.T2) +...I11HF)

=[I+ E tfati + E E t"atbtij
i a i>j >b(

+ !(. ,t,',)(E E,)''l> +...IIHF),

S 0 j b

where the lat term can be rewritten as
1 (E { c )(E E tb'j) = EI(E ,tati)(E t)btj)

i b '>3 a b *(54)
= E E[(.ti4ati(bt) + (thtbtiat .),(T>-j &>t b

and since for the orthonormal basi of SCF spin orbitals,
btiatj = -atibty, (55)

the CC reference state becomes,
Jo)CC = 1 + T,• + (T'2 + IT2) + ...]IHF)

=[I + E tfati + • i•tbj+".IF,(56)
:,ait ,, .. ] H>t

whene,

Ir:.? S = t i ,t - 4t;jj. (57)

Rsricting the coupledcMlItr expansion to single and double (CCSD) excitations, ie.

IO)cc O IO)ccsD = e(T"+Tr)IHF), (58)

the equations for the T amplitudes become (34],

M=uch 22, 1994



T, equation:

Dist'! = t Fb - E tsFij + E O~b

b ib -Zfkb),(59)

- Etibuatlib) - l ~Jt~qjaljbc) - ~"kili
ib ib kb

T2 equation:

=ijt (ijI lab) + P(ab) E t(k~ 24Fk )+

-P(ij) 1:tia (F1k, +2I F, h'~c) + 1 Er"'Wlj

+ ~ . skdfbj + P(ij)P(ab) E(igcWk, - tlti(kbIlcj))+

+ P(ij) E t(abl Icj) - P(ab)ZE4t(kbl lij),

whene,
Fab = , k(katIcb) - 1 Efffe(kilt6c) , (61)

F,, = I~t'(jkttia) + !jŽ~k(jkttab) , (62)

Fi F t!(ij I ba), (63)

Wi = (klIlij) + P(ij) Et;"(kllia) + 1 Er:.O(kljjab) (64)

Wsd= (abI jcd - P(ab) E tO(aiIJcd + 1 vF (jrcd, 65

and,
Wi=c (L&btlcI) + ~t(kbllca) - Z4(killcj)+

-:j =, tq tl - t!(67)

tO (e, =t! thl_ (68)

9 March 22. 1994



respectively. In the above equations, P(ij) and P(ab) denote the permutational interchane
operations.

The k coefficients in the RSPT expansion can be obtained fron the couple-cluster ansatz
through iteration of the T equations. For instance, the first iteration of the T2 equation gives
K2, dta is,

=! t0(j) = (ijllab)61 $, (69)

which, when applied in the T, equation yields

ki =t 0() = j. [ýo70

Consequently, it is possible to write reference states for the electron propagator approach as
expansion coefficients of the perturbation theory or as converged T amplitudes from the solution
of the couple-cluster equations.

Also, in comparing the RSPT and CC wave functions, it is clear that

I0)spT = (1 + KI + K2 +...)IHF)

IO)CCSD = (I + Ti + (T2 + T1/2) + ... )IHF)

4 (1
CC - EP RSPT - EP (71)

kis

From the definition of the spectral representation (9) it follows that the elements of the
electron propagator matrix G(E) become infinite when E equals an electron binding energy.
Then, the elements of the inverse G'(E) vanish at such an energy. This result can be used to
device iterative methods to find the electron propagator poles and residues at a given level of
perurbation expansion.

Order analysis
Truncation of the inner projcon operator manifold f and the use of RSPT for the reference

state based on the so called Moller-Plesset partitioning of the Hamiltonian as expressed in
equation (32) facilitates an onrer analysis of the electron propagator. In particular, the self-
energy (see [26]) and consequently properties as e.g. electron binding energies and the one-
electron reduced density matrix can be calculated to a given desired order of electron correlation
or electron interaction. Starting from the inverse propagator matrix as given in equation (31)
and using a shorthand notation the following expression is obtained

- = R.,(E) - RefRf7(E)Rf., (72)

10 March 22,1994



wo..(E) = (atl(El - A)at) = El - H.R

R = (at' (E] - A)f) = (73)
Rf, = (fl(El - )4 )at) = -Hf, = - atf (73)

Rf,(E) = (fl(El - -)f) = El - Hff
The RSPT expression for the reference state then permits the expansion

R .=o f-,j (7 4 )
i=I

where the fact that H(0) - 0 has been used. Together with corresponding expansions f6r the other
matrices this gives an expression for the inverse electron propagator matrix through order n as

G;'(E) = R!T +:RO) - ) Rfa) E (75)
i,. i- i i

The first-order propagator vanishes and the lowest order expressions are obtained by calculating
the various matrices to specific orders and by choosing the operator manifold f as follows

n = 2 ! nj = 1,n2 = O;f = h3,

n = 3 *z ni = 2,n2 = 1;f = h3, (76)

n= 4 • nl =3,n2 = 2;f = h3 Uhs,

which will be further elaborated in the following sections.

Obviously the inversion of the very large matrix Rff(E) is one of the difficult problems that
has to be addressed. An inversion could be performed by employing a reduced linear equation
(RIE) scheme [35] but rapidly becomes impractical with increasing basis sets. A number of
approximate ireatments have been proposed [8, 36, 37] with varying success. The order concept
can be preserved with the identity

Ry)(E) = E + z.,"m

= (R'fr1 - (R(0")"l ( R If"+J ? + -- -ll
ift i1l

which can be iterated and truncated [38, 39, 8].

Method of solution
The general expression for he element

G•(E) = (ap,I(EI-A)-'ag) . (78)

of the electron propagator matrix G(E) is symmetry blocked, where each block is formed by
the spin orbital indices p and q belonging to the same irreducible represntation of the orbitals.

It Match 22, 1994



In addition, the electron propagator matrix G(E) is spin blocked. Therefore, it is sufficient to
solve separately the electron opagator equations for each symmetry and spin block pq.

For a given block and energy E it is possible to construct the matrix,

W(E) = El - G-'(E) = El - (RP,(E) - HfR•j(E)H,')

= El - ((att(El - A)tat) - H.1R7I(E)H 16) (79)

= El - ((El - Ha. - HafRf-f(E)Ha)

= HO. + H.,Rf7(E)Ht,,

which allows the expression

(1E - W(E))G(E) = 1. (80)

This shows that the diagonalizadion

"AI(E) 0

UtW(E)U = A(E) = A. (E) (81)

0..
- Ut(Haa+RbR- (E)Rab)U,

is important, with n being the dimension of the symmetry pN block, and the eigenvalue
comrsponding to the spin orbital of interest (p) should be the p-th pole (E,) of the electron
propagator matrix. This eigenvaht can be used as the next guess for an iterative Search of the

p-th pole or used to obtain a guess for a Newton-Raphson procedure. Since the derivatives of

W(E) with respect to E can be evaluated analytically' a Newton-Raphson procedure can be

eff•icntly employed to calculate the next guess for E, so that usually, after 3 or 4 iterations the

difference between the input E and the eigenvalue is less than 10- Hartree.

Layzer [40] utated such (m geneal nonhermitian) CigCnvalue problems. When

Uv(E) = {Uw.), p= 1,2,.., n (82)

is the eigenvector of W(E) corresponding to the cisenvalue A,(E) and U*(E) is the eigenvector
of Wt corresponding to eigenvalue X*(E) the expansion

G,(E) = E- )(83)

follows. TI. types of possible solutions have been discussed by Csonak et al [11] and details

have been explored by Purvis and dhm [8]. The pole of interest Er is found when

E fr,=Ar(Ev) (84)

12 Much 22,1994



and within a finite basis the E, am rea and discrete. Elementary residue calculus gives

r.n = [(E - E=)G.(E) r (85)
E-.Ex

wb~e
",r I [- dAr(E) (6-'dE Jf,(6

is the pole strength introduced earlier. The rsulting expression

GM(E) = _ rvUp,(Er)U(Er) (87)
" - Er

can then be compared to the spectral representation (9) to find

(01aplt) = Ir.12U,,(Er(N + 1) - Eo(N)) (88)

(la 10) = ru,/2U(E(N) - E,(N - 1)).

"T1e Feynman-Dyson amplitudes directly associated with the various electron binding energies

are then

xFPDA(f) = x,(t)Uw(Er)rr'/2  (89)

in terms of the canonical molecular SCF spin orbitals.
The relationship of these amplitudes to the electron propagator

G(C,f';E) =((0();,0t(')))E
= Urn +1

E EoCN) - Er(N + I) EI -t Eo(N) + ErC. - 1) @

(90)
defined in position and spin coordinate space becomes obvious from the expansion

CC = ( X,(f•,(t) (91)
P

of dhe fundamental electron field operator ,/(C, t) and their adjoints in the basis. The Feymman-
Dyson amplitudes then ae of two kinds associated with electron attachment processes and with
electron detachment processes, respectively (compare equation (11)

fd() = • xp(,f)(01aIr) =

g.( = 3 x,()(, 10) = A (92)
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Solution scheme

1. choose r
2. get block pq
3. get Suess for E,
4. construct W(E) = H.. + H.fXTf(E,)HIf
5. diagonalize UW(EV) = A(E,)1
6. get the eigenvalue A, associated with r
7. set E$IV -- A,
8. get new guess (Newton-taphson):

Ej~ =Ej- G_(Ei)/ (DG-(E) ) E93)

9. B• - Ei-,l < i0- 5 ?

a. ? yes Pole = Ei
b. ? no go to step 3

Order analysis of the propagator matrices

Second-order electron propagator

In the following the subscript 1 refers to the h, = at part of the field operator manifold
and the subscript 3 to the h3 part and so on. Through second order the inverse of the electron
propagator matrix then becomes

"-I (E) = -1i( (E))) - I) (Hj,))t (94)

wher
°(E)). (E- -,) .

13 (pi~l lb)
(H=)),,,i• (pa-- i) (95)

(IQ (E)).u.4 = (E + t- - - )6.6,•

(R:(E))j6,•,I = (E + 4. - - A)6,&6,u6.b.

Mw aecond-order self-energy matix then has the elements

(3) = 1c, + (pi;-')(-bjqi) + 1 X (p-ij)(ijjqa) (96)

where the factor of i/2 comes fi-on the relaxation of the adored indices.
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Third-order dectron propagtor

A simil tramnent through third order yields [38, 41, 26]
GI(E) G -(.E)

+ H(3) _- (R)(°)1H•)(-lH( ) ( ))t -H~l))t (97)
-1 •3 "3 • 3 33 13 (97

- H1(r 3)(E))1 (f1(23))- H 3 •-R , () ( ),

where
(H3))= g (pajllq)i, - '(pillqj)xq,, + '(a + P(ia))(pillqa)k7, (0'

11j d,

with
kj ~j k'ýk

C i>j (99)

E E katk)4l
I S>b

and where P(ia) is the permutational interchange operation. The second-order matrices are

SH(2))Sk = E (iplmn)ke. + (1 - P(ab)) l(pcIma)kt
(2 E apj~k f, (100)

H= II (aPt~ck + (I - P(ij)) E(pmIjcd)Ak (1001 >c wm,c

and the first-order diagonal terms art

(H()),Bc= 86ij(abllcd) - 4c(biidi) + 6.i(bjic) + 8a(ajiidi) - 6(ailid)33 C (101)

H1No_~ = fisa(iiIlkl) + 6.,dijbtlla) - bil~jblika) - 6,k~bIlla) + 6,,(ibIIka), (1)

Fourth order and partial fourth order electron propaptor

Without including the operator manifold bs the full fourth-fourth order propagator matrix
can be expressed as
G-(E) =G-(E) + H -4) _ ,-,, -,,

-H~l)(14o)(E)H(3)t _-(3

13q- E 13 13RVE)-' (')' '~ 2  R~()~H'

- H(1 ), (R0(E),.-H(l)(t 4)(E))1H(0)(PR- (E))-1 H(i)t (102)

-- al \'3 •) 33 33''& 13,1 0Ml

It is generally mom important to include the contributions from the h5 manifold beforec ag
the order of the expansion [36] and one therefore finds it justifiabl to study the electron
propagator through what has been coined the "partial fourth-orez [19. 37], whem only the
terms formed frm the matrices already obtained in third order are tained.
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Density matrices and many-electron wavefunction
The first-coder reduced density matrix or the one-matrix can be calculated form (90) as

7(ClC) = (010t1(00)b(0Io) = -it,•,+o((0 ( e)t( )

= (21ri)-' J((Ot(f; 0) (e')))zdE, (103)

C

where the conoum C consists of the rad axis and a semicircle in the upper half of the complex
E-plane (see [7]). Residue calculus yields

•(Ale) = F,9,019"*(e), (104)

which can be compared to the equivalent definition

7(f le) = N I *o(UC,,2,. . .N-1)*(e',fit ... _f-)d e2 ... dN-(105)

in terms of the gmund state N-electron wavdfunon t o. Inuoducing the complete set of
(N - 1)-electo states r,, satisfying

fr(X)$ (V) = 6(X - x') (106)

with the compound coordnate X = el2 .N-) Te

=I(Cle) = N •. J 4o(C,X)4@*(X)9*(e,X')O,.(X')dXdX' (107)

and we can identify the Feynman-Dyson amplitudes with the so-called overlap amplitudes

=,(,) = N'12 J 4o(f, X)O (X)dX. (108)

Obviously, if both wavefunctions in (108) are single determinants differing in one spin orbital,
that spin orbital will correspond to the Feynman-Dyson amplitude, while for correlated wavefunc-
tions the amplitudes are more general. In addition to being important for describing intensities
in photoelectrn spectra Feynman-Dyson amplitudes mr also relevant for (e, 2e) experiments
(see e.g. [42]).

Photoionizatlon Intensities
The electron propagator can be used to calculate total energies, excitation energies, and one-

electron properties in genera. However, it is perhaps most useful in the study of photoelectron
spectroscopy. In addition to the electron binding energies it can also be used to obtain estimates
of photoeectron nmsidtes

Th diffeental phoio zaton cors sectio ie. the probability that the system absorbs
one photon causing a uansition fiom the gound state with wavefunction 10) = to to an excited
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stue Jr) consisting of a bound in state with wavefunction IN - 1,r) = 9, and an electron
escaping into the solid angle dfl with wave vector If is

dy = 2rclAoj2 I("1 X AXjy ). ,00)I2. (109)
j--I

The vector potential of the monochromatic radlition field is ,(XQ = Aoneilr with polarization
vector i and frquency w. The appradnate form of finl (antisymmetic) state wavefunction

SIr) = OAsNlI2v(lf I ,N)#r(f•, If2.... ,N_I) =- OAsN'12V(;f I f)tr(X), (110)

contains a phowelocu1,n amplitude v, which should be a Feynman-Dyson continuum amplitude,
but for a molecular system one usually has to settle for an assumed form. The antisymmetric
projector is

N-Io•s =f N-111 - E PN (111)
k=1

with the simple interchange prmutations PN of electron labels. This form of final wavefuncdon
permits us to write

N

3=1 (112)

with
p(0 = (N - 1)NI 12 J O'(X)X(r-1 ) ¢ 0o(X,0)dX. (113)

The second tm vanishes if v(T•,f) is smongly othogonal to fo0, which can be accomplished
by making v(,) orhogonal to the bound state basis. But even when r song ohogonality
does not exist the second term is small for photoelectron enegs far ftcm threshold.

Retaining only the first team on the right of equation (112) and averaging over all incident
photon dfiections relative the fixed molecular frme and over the polarizaton directions assuming
a random orientation of the molecules as in a gaseous sample and for unpolarized light, equation
(109) becomes

d 3 I i*( gQr)dr12. (114)

7b obtain this result also the dipole app imaion was involed, Ie. e' 1 and mupl i
by a factor 2 done to account for the two possible spin states of the ejected electo Tbe
choice of a plane wave, an orthogonalized plane wave, or a Coulomb wave for v(1j, I) has
been tried with varying success depending on the system and the photon energy [12, 43]. The
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cnhogonallzed plane wave choice seems to work reasonably well for the detachment of an
electron fmm a negative ion leaving a neutral species. A plane wave is convenient, but not
pardcularly good under any conditions. It results in [223

dO- 3rw r1

Ar = -i(2r)-12 E•Je-iif e-r',(")df , (115)

where the Feymman-Dyson amplitude has been expressed as a linear combination of atomic
orbitals (OTO's) top)

= g ~,(f- )CjW. (116)
P't

The total cross section is given by integrating over all photoelectron directions

oa,= - f I.;12df. (117)

Sometimes the ramios of pole strengths are used to predict relative intensities of structures in
a photoelectoon spectrum and that can work for peaks of not too disparate photlc o enegy.

The Vectorized Electron Propagator (VEP) program
Appromximations to various orders in perturbation theory of the electron prpagator have

been implemented in the Vectorized Electron Propagator (VEP) program. Poles and associated
pole strengths are computed. This code is designed to be efficient by minimizing the number
of floating point operations and by exploiting vector and parallel features of modem hardware.
This is accomplished by avoiding redundant calculations trough the definition of apropriat
intemedies and by using symmety wherever suitable.

The VEP code exploits the spin and point group symmetry to block the matrices from which
the propagator matrix is built. Direct product decomposition (DPD) is used with a scheme that
avoids redundant symmeby checks before each contraction. This procedure maims the code
adapted to take advantage of parallel arehitecuns

Another feature of the VEP program is povsibility of renonnalizd treautent of the reference
state of the propagator via the use of CC amplitules as well as the standard MBPT amplitudes.
"This is accomplshe by interfacing the VEP code with dte ACESII program sysm.

The DPD siheme

Effcent evaluation of matrix products necessary for the electro propagator calculations
can be exemplified by a contracdon

Q=TxW. (118)

The indices of the matrices can be divided into two cateries , on the am hand the "targe
indices" ti,t 2, . ., which label the matrix Q and the"common" indices cl, C2,.-- over which the
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tontamtidon is performed. Tw target indices may further be divided into those which Q shares
with T and those which it shares with W, such that

1(T),t(7),...,h(W),t(W)... T E T7'(,cWct(w) (119)

Each element of (, T, and W vanishes unless the direct product of the irreducible representaions
of all indices labeling the quantity in question contains the totally symmetic representation. For
abelian (sub)groups this requires only the following conditions to be fulfilled.

r(t1 (T)) e r(t2(T)) ® ... = r(t1(W)) e r(t 2(W)) 0 ...

r(ti(T)) e r(t2(T)) ® ... = ® o... (120)
(c2) e e... = r(,,(w)) 0 r(Q(w)) @ ...

The details of the compuional tagy as to storage of the data structurs, the manipulation in
core memory, the functionality of various subroutines, etc. are reported in a sepama publication
[44).

3. Results
The photoelectro specUocopy (PMS) offe tchniques to study the electronic structure of

atoms and molecules including transient and unstable species. This makes it a powerful to
study reaction mechanisms in gas phase and on surfaces. PMS has been used, for instance, to
elucidate the electronic structure of donor-acceptor (DA) complexes.

As an illustration the electr propagator program VEP is used to calculate the main peaks
of borane (BH3) with donos such as H20 and CO. Thes simple applications are limited to a
second-ader uaumnent of the electron prqugator (EP2).

Monomeric boame has a very short lif time, but is a strong Lewis acid and may be stabilized
by forming complexes with Lewis bases [453. BH3 resembles a ransition metal atom in a
low oxidation state, in the sense that it can form complexes with, say, carbon monoxide and
phosphous trifluoride having negligible basicity. It has been suggested that the complexes
of BH3 with CO or PF3 are formed via a i-type delo of the BH3 e-orbitals into
unoccupied CO and PMP orbitals. Th study of systems such as BH3 e CO and BR3 * H2 0
may provide experience as to die reliability and suitability of the electron propagator as a tool
for aalyzins PBS expeiments on heteroneous catalysis, for instance, CO chemisop and
ractions (metand syndtsis) an low oxidation state d1o transition metal oxide surfamces, such
as ZaO(1OO) and also Cu(11l) [46].

Molecular Geometries
"The ectron PPA pgm is implemented in the ACES U plogram system [47]. All

caculatim pl•es d were prfomd on an IBM RS6 00-58O. ime basis sets ae correla
consistent pVDZ [48], which consist of (9s4pld/[3s2pld] for first row elements and (4slp)/[2slp]
for hydrogen. All strumm ae optimized at the RHF/MBPT[2j level of theory. The results
amnlsed in Table 1.
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TAW I OpdQuized poueameres a MBPTM] revel wift pVDZ brnm. MWe noadon
IL mm dt the powln int symmetyp pl o di C. point grup.

complex Point Group Geometrical MBPFT2Y/pVDZ Experimental
Parameter

BC 1.565 A 1.40 A
CO 1.144 A 1.131 A

-13B.CO C3  BH 1.217 A 1u194 A
CBH 103.8* 104.2

BO 2.585 A
SCO 1.147 A
H3 B.OC C3  BH 1.203 A

OBH 90.90

DO 1.730 A
OH 0.963 A

H3BOH2 C BH&BH- 1.214
OBH 100.6

OBHl 103.70

H3B BH 1DH03 A
CO COO, CO .147 A 1.128 A
SQV.OH 0.964 A 0.958 A

i0 C1, HOH 102.0 104.5°

Symmetry

The effects of molecular symmetry on the performance of the code is llus-
trated by calculating the PES of BH3 at the EP2 level in the pVTnZ basis, ine.
(lOs5pd•lf)/4s3p2dlf//(Su2pld)/[3s2pld] in the maximal Abelian subgroup Cl, and in
C1. The theortical factors of reducdon (in computing time or total number of floating point
operaoms) due to symmetry (FRS) have been defined [34] and is found in many caes for total
energy calculations using the CCSD (coupled-cluster singles and doubles) level of theory to be
clone to tet symmetry group order square. As displayed in Table 2 the present calculation does
not quite reach that efficincy im vement with the symmetry ueatment, but still a respectable
reduton In c=mptng m is wieved.
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Thhh2 An FRS U a "hew o aredcdoa due to symnieW ofcpu *thuswed. Mwe VEP code In the ACES 11
I npm -- yssmam sblwes fo thWs cawe a f6w of um than 10 speed up In tdo ezecuuon of the code.

molecule Size of basis Point Group Achieved FRS
BH3  72 C1  1.0

.Cv . 10.3

Donor-Acceptor PES

The photoelectron spectrum with a UV source (UPS) of H3B.OH2 calculated at the SCF
(Koopmans' theorem) and the EP2 levels are compared to experimental results [49] in Table 3.

Mible 3 Electon prspaptr poles at the SCF level (Koopamns) and az
Mhe EN2 level are compaeed with cxperireft for the HsB-OH2 complex.

S(EP2 (eV) Expeiement UPS.Assignmn ent ,,.s (eV). (Pole Strength) (CV)

w(B-H) 7a' 11.3 10.5 (0.93) 9.7

r(B-H) 7a" 11.8 11.1 (0.94) 10.6

o(B-O) 6a' 15.6 13.5 (0.91) 11.8

n(O) 5a' 16.4 14.2 (0.90) 13.2

n(O) + a(B-O) 4a! 20.7 18.6 (0.89) 14.4

Due to the hydrolysis of dibome the experimental investigation of the H3B.OH2 complex
is difficult (45] and inavduces some uncertainty about whether the observed features in the Hel
spectrum really is due to H3D-OH2 or something else. The agrement between the calculated
(EP2) peaks and the UPS spectrum is as expected except for the observed feature at 14.4 eV.
This is not consistent with the theoretical result, but before suggesting that this feature might
not be due to H3B.OH2 the electm ppagator calculations have to be carried to the th&d or
pmial fourth coder and also a large bsis used.

Compasom of the Koopmans' theorem and the EP2 resuts with experiment for the H3B.CO
complex is presented in Table 4.
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t"bh 4 eina pqopapW polm a the SC! (ooqmwAu) Wu and a
dk HP2 lewd Compued with CpTnUDI for die Ht• BCO Omp91.

l~oornanEP (CV)
Assignment Koo(ans' (Snth) Exrimet UPS (eV)

2e (B-H) 12.8 11.9 (0.92) 11.9

6a&10(- 15.1 13.9 (0.91) 14.1

It (C-0) 18.6 17.1 (0.87) 17.0

5ai (CO) 21.6 18.1 (0.85) 18.5"

* Adiabatic ininadon energy

Simila calculations are caried out for the H3B.OC complex and an reported in Table 5.

"nI 5 CMPM e the deoad o POPW pakl ft SC!' (%oop%=f)Slevelmd at Me h2 levl wiUh a mne UPS pecmmm In bl 4.

Assignment KOMA (v) Experime(eV)

(Pole smength) UPS (eV)

2e (B-H) 13.2 12.6 (0.94) 11.9

6al (B-C 15.3 14.0 (0.92) 14.1

It (C-0) 17.5 16.3 (0.89) 17.0

5ai (B-H) 18.7 17.5 (0.92)

18.5"

4a1 (C-0) 22.5 19.0 (0.86)

*Adiabatic ionization energy

There is definitely a better agreement between the calculated and the observed PES for
H3B.CO than for HSB-OC indicating the d ncimntory power of the electron prpagator dthory
even at this primitive level.

In conclusion one can again reaffim what aleady has been established by many wordks
in the el, namedy that the propagator theory is an apprpriate and practical approach to the
inerrton and pedit-i of speca The msults presented bh also show that in ordr
to contain truly quanitative agreement with experiment it is necessary to consider electron
Vropagaoor theory at the third and partial fourth order and to also be able to accommod larer
basis ets.
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Tables

MODI Opdemlzed amearime A the MBPT(2e Ireel with PVDZ be=. tbW nowita
E6 moma thet dteprot neatn the ,ymmr y piuoe the C. point•grup.

Complex Point Group • m MBPT[2]/pVDZ Experimental

BC 1.565 A 1.540 A
CO 1.144 A 1.131 A

H3B'CO C3 v BH 1.217 A 1.194 A
CBH 103.80 104.2
BO 2-595 A
co 1.147 A

H3B.OC C3Y BH 1.203 A
OBH 90.90

BO 1.730 A
OH 0.963 A

H3B.OH2  C, BH&BHs 1.214
OBH 100.60
OBH. 103.70

H3B D3h BH 1.203 A
CO CO,, CO 1.147 A 1.128 A

OH 0.o 4 A 0.958 A
H20 C2v HOH 102.0 104.50
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TbW 2 AnIFRS is a f4 at'r dom due to uymuwW atcpu tm used. "lM VEP code In do ACES 1
opunm system auhieve for this cae a factor of mmm than 10 speed up in df execudon of th code.

Molecule Sime of basis Point Group Achieved FRS

BH3  72 C1  1.0

C2  10.3
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M"ds 3 Meco. wapom pok at di SCF lsoel (WKqu) and t
af EP2 level we computd with cqpodmmK for the HsBOH1 complex.

EP2 (eV) Experemcnt UPS
(Pole smrnb) (ev)

w(B-H) 7a' 11.3 10.5 (0.93) 9.7

r(B-H) 7a" 11.8 11.1 (094) 10.6

o(B-0) 6aU 15.6 13.5 (0.91) 11.8

n(O) So! 16.4 14.2 (0.90) 13.2

n(O) + o,(B-O) 4a! 20.7 18.6 (0.89) 14.4
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iM" 4 Mleet= jcip~ama poles at ft SCP (Koapmnan) Indl ud at
Men En levul compmnd with acpimemt for das HsB-CO cOMWlex

Eý ý*EW2 (cY)

Assigm tKopmans (eV)(JI6 Stmith) Experiment UPS (CV)

2c (BED 12.8 11.9(0.92) 11.9
6al (B-0) 15.1 13.9(0.91) 14.1

ie (C-O) 18.6 17.1 (0.87) 17.0

5ai (00) 21.6 18.1 (0.85) 18.5*

*Adiabatc jioWtion enegy
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Ihbks 5 Campuim oC Mn emon ccrpnpa pole a d SCP (Koopans)
es md at doP2 le e with the mine UPS quecmm a in ibbls 4.

Assignment Koopmans (eV) Po (Cv) Experiment
(Pole st.9gth)

2. (B-H) 13.2 12.6 (0.94) 11.9

6ai (B-) 15.3 14.0 (0.92) 14.1

le (C-O) 17.5 16.3 (0.89) 17.0

5Sa (B-H) 18.7 17.5 (0.92)

18.5"

4a, (C-0) 22.5 19.0 (0.86)

*Adiabat icoization energy
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