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ABSTRACT

The electron propagator theory is presented with somewhat of a historical perspective and
the working equations are developed with the aim to take advantage of molecular point group
symmetry. A new electron propagator code, the vectorized electron propagator program (VEP),
is introduced without full details about its structure and capabilities (such details are being
published elsewhere). Applications to the (UV) photoelectron spectra of some donor-acceptor
complexes of borane with carbon monoxide and water are presented at the level of second-order
theory as an illustration of the theory and the VEP code.
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1. Introduction

Propagators gained early prominence in formal many-body theory of fermion systems (see
e.g. [1] and references therein). Concerns about the elimination of unlinked terms in perturbation
expansions and the associated correct scaling with system size naturally led to the propagator
concept. Treatment of double-time Green’s functions [2] or, equivalently, propagators established
that they provide a useful link between quantum mechanical treatments of pure state systems at
the absolute zero and that of ensembles at finite temperature. Condensed matter theory employed
the propagator concept to great advantage (see e.g. the review by Hedin and Lundqvist [3]) and
propagator theory for finite systems [4, 5, 6] led to new ideas for the treatment of molecular
systems. A detailed treatment by Linderberg and Ohrn [7] of a variety of spectroscopies for
molecular systems further developed and applied propagators. This paper focuses on the electron
propagator theory and its application to molecular systems.

The electron propagator is naturally described in Fock space in terms of field operators.
Depending on only two electron position and spin coordinates and a time or energy parameter
it is in many ways the optimal theoretical quantity with a dynamical equation from which it
can be determined in various approximations. It contains a wealth of information. Not only
vertical electron binding energies (ionization potentials and electron affinities) (8, 9] {10], but
also electron scattering amplitudes [11], photoionization intensities [9, 12], total energies [13,
14], one-electron reduced density matrices [7, 15] and therefore permitting the calculation of
one-electron properties [16]. Derivatives of molecular electron binding energies with respect to
nuclear displacements [17, 18] have also been determined within the electron propagator theory.
Basically all properties of a molecule are contained in the propagator. Thus electronic ard
rovibrational spectra [10] and the particulars of chemical bonding can be treated in terms of the
electron propagator [19, 20].

Given a set of orthonormal spin orbitals {¢y(£)} and the associated set of electron field
operators {ay,a}} satisfying the anticommutation relations (at equal times)

[ap, ag)s = [a;n a:]+ = (ayp, ag]+ =0pg=0 M
the electron propagator matrix is defined with elements

{{ap(t); a4(t'))) = —i8(t - 1') (Ola,(t)a: (¢)i0)

+i0(¢ = 1) (0la} () ap (1)0). @

|
o(t) = / 8(r)dr 3

is the Heaviside step function expressed in terms of the Dirac delta function, and [0) is the
N-electron ground state. Atomic units are used throughout so for instance % = 1 and the

Heisenberg equation of motion for the field operators is
d .
i e(t) = [op(0), H-, @
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where the commutator on the right contains the many-electron Hamiltonian expressed in the
basis electron field operators

H z h"a a, + E (mura)at :a‘af (5)

,l"".

The one-electron integrals involving the electron kinetic energy and the electron-nuclear attraction
terms are

b = [ 60059 - -5 ——-ﬂm(e)de ®
and the antisymmetric two-electron integrals are (pg||rs) = (pq|rs) — (pg|sr) with
Galre) = [ dts [ deatiiendie =gt E)bu(er). @

The electron propagator is most commonly studied via its Fourier transform
((apiad))e = / ((ap(t); o} (¢)) exp[—iE(t - £'))d(t - 1'), @®

which has the spectral representation [21, 7]

e w (Olapim)(m|aq|0)
{{apiad))e = ,,1_1320; [ Ex Eo(N;" E,..(l\; +1)+in
. {0]aflm)(m|a,|0) ]
TE—Eo(N)+ En(N-1)—inl’

showing the typical pole structure, when the energies are discrete as they always are in a finite
basis set. The energy cigenstates are used in this formal expression, i.e.

H|0) = Eo(N)|0),
Hlm) = En(N £ 1)|m)
and only the N+1 and N-1 electron states are involved as intermediates in the spectral repre-
sentation.
- It is obvious from the spectral representation that the electron propagator has a special
significance for photoelectron spectroscopy and other processes where electron binding energies
are measured. The numerator contains the so called Feynman-Dyson amplitudes

fp(m) = (OIG,IM),
gp(m) = (m|a,|0),

which are obtained as residues at the particular poles of interest. These amplitudes are important
in the theoretical determination of transition probabilities for electron attachment or detachment
processes. For instance, the intensity of a particular structure corresponding to the final positive

®

(10
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2 . March 22, 1994




ion state m in a photoelectron spectrum of a neutral species is proportional to the pole strength
(8, 9] I'm = ;va(m)l’-

The propagator in equation (9) satisfies the equation of motion

E({ay; a})) £ = (0l[ap, a}]+10) + (([ap, H]-;a})) £
= (0[ap, a})+10) + {{ap; [H,a})-))E

which can be readily shown by using the identity
E(E-z)'=142z(E-2) (13)

with z = E,,(N +1) — Eo(N) or 2 = Eo(N) — Em(N —~ 1) in the spectral representation and
utilizing the properties (10) of the energy eigenstates. The two equivalent forms of the equation
of motion (12) are useful in manipulating the chain of equations that obviously results when the
corresponding equation of motion is written for the propagator on the right, which involves the
commutator with the Hamiltonian, yielding an even more involved propagator on the right with,
say, a double commutator {{a,, H]-, H]-, and so on. Approximate treatments of the propagator
equations include the termination of this chain of equations at some suitable level or assumptions
that permit the summation of the expansions. This so called decoupling problem was addressed
in its generality by Linderberg and Ohm [6] by linearizing the equation of motion. There has
also appeared discussions of truncation schemes expressed in terms of diagrammatic expansions
by Cederbaum and Domcke [10]), the moment conserving decoupling using Padé approximants
as well as various renormalization schemes discussed by Ohm and Born [22], and decoupling
procedures expressed in terms of superoperators [23].

Although equivalent to other procedures the superoperator formulation provides a particularly
attractive shorthand notation. It proceeds by introducing a linear space L of fermion-like field
operators

(12)

L= {a;,a;a:a,(p <9), a,',a:ala,ag(p <g<rit<s),---}, (14)
which supports a scalar product
(XIY) = (0[X*,Y]4l0), X,Y € L. (15)
The supero;:eramridentityiandsupempaatorﬂamilmnianl? are defined on L such that
Ix=x
16
AX = [H, X)-. 16)

Iterating the second form of the equation (12) yields
({apiaf))e = ﬂf%ﬂ;l + —l—-’—(a'gat) + (apliT"ay) |§:af) +-e
= (a}|(BI - A)~'a}),
{.e. a matrix element of the superoperator resolvent. The full matrix can be expressed as
G(E) = (a'|(E] - H)a%) (s) .
with the field operators arranged in a suitable row array on the right and column array on the left.

an
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Using an inner projection [24] manifold h € L the superoperator inverse can be transformed

to a matrix inverse
G(E) = (a'|h)(b|(Ef ~ H)h)™(hla'). (19)
This expression is the starting point for the approximate treatments of the electron propagator.

2. Approximations to the Electron Propagator

Partitioning of inner projection manifold

The simplest decoupling of equation (12) is to consider the so called moment expansion in
equation (17) and make the assumption that higher moments are powers of the first moment

F = (at|Aa%). (20)

This is often referred t0 as the geometric approximation. Denoting (at|a’) = S the moment
expansion (17) becomes

G(E)~ E7'S[1 4+ E-!SIF + E-3S-'FS~1F 4 .- ]
= S(ES - F)7'S = (at|(E] - H)ah)™! = Go(E)

The anticommutation relations (1) yielding
Spy = (a}la}) = (Ollap, all+10) = bpq, @)

@n

Fyy'= (a}|Aa}) = (0l[ay, [H, a}]-]+10)
= hpy + Y_(prilgs){0lala,[0) @3)

have been employed, where in the last expression Fp, is a matrix element of the Fock operator
in the spin orbital basis. The single-particle reduced density matrix has the elements

Yor = (0}a}a,|0) 24

and can be diagonalized simultaneously with F to give occupation numbers (n.), i.e. vr =
(nr)6,r and xtFx = ¢ for some suitable unitary transformation x. Comparing equation (21) with
the formal spectral representation (9) it is possible to write

Gopy(E) = lim Zz,, [E (::)- in E1 -ef':)m] o 25

For the case that the occupation numbers are 0 or 1 the reference state |0) must be a single
determinant in terms of the self-consistent field (SCF) spin orbitals

Xr = bpTpr (26)
»
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or equivalently expressed in terms of the field operators and the vacuum state as

N
|0) = Haﬂvac) = Hi'lvac). @n
=] i

In the following the electron field operators {a, = r} refer to the SCF spin orbitals {x,}. It
then follows through (25) that at this level of approximation, the occupied spin orbital energies
must be ideatified with ionization potentials and the unoccupied ones with electron affinities as
is done through Koopmans theorem.

This is considered the lowest level of approximation and used as a starting point for all
higher level treatments of the electron propagator. The SCF spin orbitals and then also the
corresponding electron field operators naturally separate into an occupied set labeled by ijik ...
and an unoccupied set labeled by a,b.c, .... The labels p,g,7, ... refer to either set.

The inner projection manifold h used in the expression (19) need only contain fermionlike
operators [25] i.e.

{h} = {h1} U {hs} U {hs} U

= {a},it} U {a';,itjta} U {atbtctij, itittab} U - - 28)

and truncations of this manifold corresponds to various approximation schemes. It is convenient

to use an orthonormal set of inner projection basis elements [25] so that (h;|h;) = 1, and

(hilh;) = O for ¢ # j.

A first step in secking adequate approximation schemes for the electron propagator is

a partitioning of the inner projection manifold. When the aim is to obtain a theoretical

photoelectron spectrum it is convenient to choose the partitioning
b = {h;,f}
£={hs}U{hs}U---

such that equation (19) becomes

_ E1-(atffat)y —@@hif) 17 [a
am=n o [P GE S]] ¢0

The partitioned form of the inverse matrix yields

G~Y(E) = E1 - (af|Hat) - (2t A1)[E1 - (£ 1))~ (f|Ha)
= G;'(E) - X(E),

where the unperturbed propagator and the self-energy term have been defined to show the relation
to the 30 called Dyson-like equation for the propagator [1]. An untruncated manifold f means no
approximation only a reformulation of the propagator equations. In order to arrive at a definite
spproximation and provide algorithms for the calculation of the matrix elements defining the
propagator, a reference state and a truncation of the inner projection field operator manifold
must be chosen.

(29)

@n
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Choice of reference state

The Hartree-Fock or SCF single determinantal state |0) = |H F') provides the natural starting
point for the choice of reference state at various levels of approximation. Although the electron
propagator theory can be fully developed within a perturbation theory framework with only
the SCF single determinantal reference state and choice of inner projection manifold [22] it is
desirable to keep a balance between the level of description of the reference state |0) and that of
the inner projection manifold f. Such a balance kept through various orders of perturbation theory
guarantees hermiticity of the superoperator Hamiltonian matrix and the elimination of spurious
terms [25]. Starting from a partitioning of the Hamiltonian and thus also of the superoperator
Hamiltonian

H=Hy+6H

Hy=) ep'p
} 4

éH = Z {pqlirs) [i-p’q*sr - 6,,(n,)p'r]
pAT
the reference state can be expressed in terms of Rayleigh-Schrdinger perturbation theory (RSPT)
[26, 27), or coupled-cluster (CC) theory. Also multiconfigurational SCF (MCSCF) theory has
been implemented [28] for the electron propagator reference state. This treatise employs reference
states based on RSPT and CC theory.

The bermiticity problem consists of the equation
(X|AY) = (Y|AX)* (33)

(32

not being satisfied for an approximate reference state or more generally for a density operator
p=po+8p+8p+---+8% (34

correct through onder n in perturbation theory. The average defining the propagator matrices
is then a trace, ie.

(--)=Tr{p---}. (35)
(XY (Y1) = (@ 15, X)-)) = (X Y4)) 6)
= “{p[H’ [X', Y]+]—} = “{[Pv H]-[X'a },]+]—}
and since
[P0, Ho)- =0 (37
and
[akp, Ho)- + [6k-lp’ 6Hl- =0 (38)
are assumed to hold for k = 1,2,...,n, the error term is of order n+1, i.e.
(X|AY) - (YIAX)* = Tx{[p, 6H]-[X*, Y], }. (9)
6 March 22, 1994




The Rayleigh-Schridinger perturbation expansion for the reference state,
[0)rspr = (1 + K1 + K2 + K3 +--)|HF),

is defined by
Ky=Y) ) kati,
T )
Ka=Y Y kfativt;,
>3 a>bd
and
Ks= Y Y kkatittjctk,
i>5>k a>b>c

with , in particular
k"‘ = ('J “ab)
3] ’

)

and
1 (bellag) , pe (ibl15k) , o
k== A WL R Y Y 4 N
] 2 ,Zk D: 3] § D‘a jk
The denominators are defined as
Dg? =¢—6C,

and
Df=citej—ca—ep.

(40)

@1

2;

(43)

449

(45)

(46)

47)

The concept of order in the perturbation expansion of the electron propagator ultimately means
order in terms of the electron-clectron interaction or equivalently two-electron integrals. The
inclusion of electron correlation through first order in the reference state is achieved with the
double excitation terms K, whereas also the K; terms are needed for second-order corrections.

Coupled-cluster renormalization of the reference state
The coupled-cluster (CC) expression [29] for the reference state
I0)cc = eT|HF) ,
is defined by
T=T+N+T+...4+ Ty,
with N being the number of clectrons of the system, and

T = Z ;tfa*i .

(48)

49)

(50)
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T; = Z Z sbatint; | 51

5 a>b

;= E Z ) a'sb';c'lc (52)

i>5>k a>bh>c
and 30 on.

The T amplitudes contain infinite order contributions to each excitation level from the HF
state. Thus, replacing the RSPT K amplitudes with the CC T amplitudes may be considered a
renormalization procedure since certain classes of perturbation terms or diagrams are summed
to infinite order [30, 31]. mmeahualnadybeenemployedmwod:onthcpolanzanon
propagator (32, 33].

Details of the coupled-cluster approach
Expansion of the exponential in the CC method gives,
O)ce =1+ Ts + Ty + 5T3) +.. | HF)

=1 +ZZt‘ z+2}:t"‘ totij )

i>5 a>b
+ -2-(2 Y '3 D aeti) +.. )IHF),
i e i b
where the last term can be rewritten as

-(2 Zt'a*s)(zzt'b*a) YIQ ta 'z)(Zt‘b*:)]

i>j e . . (54)
=y z[(t:t,-af:bfy) + (thegdhials)]
>) a>b
and since for the orthonormal basis of SCF spin orbitals,
btiatj = —atidtj, (53)

the CC reference .staw becomes,
O)e = [1+T; + (T + 5T9) + .. ]IEF)

[1 + E Zt‘a*: + Z Z TS Sativt; +.. )|HF), ‘ (56)
5 a>b
where,
8 =1 + 10t} —th? . (57
Restricting the coupled-cluster expansion to single and double (CCSD) excitations, i.e.
10)cc = [0)cesp = B+BHF) (58)

the equations for the T' amplitudes become [34],

8 March 22, 19%4




T equation:

D,’t. E t.F.; 2 t'F)l + Z tu F,b+

(59)
- Zt'oautb) 3 2‘ o loe) = 5 3~ t5hekslib)
,H
T3 equation:
Dehs? = (ijllab) + P(ab) ) téf (F.c - E t.F.c)
- P(U)Zt:: (ng + %2 t;-Fgc) + 3 ET:, Wi+ )
+ ;z Waea + PT)P(ab) T (5 Wi ~ 581 (0c) +
+P(ij)2t:<abuc1) P(ab)Zn(kbnzj),
c k
where,
Fg= Et;(kallcb) -3 Zf:f(klllbc) , (61)
klc
Fji= g:t 1(ikllia) + 5 2:; ik (7kllab) , (62)
Fjy =Y t8(ijliba) , (63)
fa
. . oy 1
Wi = (ll}ij) + P(u)Zt;(klnm) + -Zr.-'}(klllab) , (64)
Wased = (ablled) - P(ab)zt*<m||od> +1 Z w3 islled) (65)
and, ]
Wise; = (kbllcj) + Zt;(kblloa) - Zt.- (killei)+
' (66)
- Z( St 4 t;t:) (killca) .
The effective two-particle excitation operators 7 and 7 are
78 =t +101) — the} 67
and, .
=1y (t‘t' ), (68)
9 March 22, 1994




respectively. In the above equations, P(ij) and P(ab) denote the permutational interchange
operations.

The k coefficients in the RSPT expansion can be obtained from the couple-cluster ansatz
through iteration of the T equanons For instance, the first iteration of the T2 equation gives

Kz. that “v
ket = aob) = lleh) (69)
j = b 521_._,_
which, when applied in the T equation yields
=t8(1) = Z (aJ”bc)tbc(l) Z (Jk”'b)tcb(l) . (70)
jbe b kb D

Consequently, it is possible to write reference states for the electron propagator approach as
expansion coefficients of the perturbation theory or as converged T amplitudes from the solution
of the couple-cluster equations.

Also, in comparing the RSPT and CC wave functions, it is clear that
I0)rspr = (1+ K1+ Kz +...)|HF)

3
O)ccsp = (1 + Ty + (T2 + T}/2) + .. )|HF)
y
CC — EP e  RSPT—EP D
_ fi
td - K
r"}’ - k:-'}’ .

From the definition of the spectral representation (9) it follows that the elements of the
electron propagator matrix G(£) become infinite when E equals an electron binding energy.
Then, the elements of the inverse G'!(E) vanish at such an energy. This result can be used to
device iterative methods to find the electron propagator poles and residues at a given level of

perturbation expansion.

Order analysis

Truncation of the inner projection operator manifold f and the use of RSPT for the reference
state based on the so called Mpller-Plesset partitioning of the Hamiltonian as expressed in
equation (32) facilitates an order analysis of the electron propagator. In particular, the self-

energy (see [26)) and consequently properties as e.g. electron binding energies and the one-
electron reduced density matrix can be calculated to a given desired order of electron correlation

or electron interaction. Starting from the inverse propagator matrix as given in equation (31)
and using a shorthand notation the following expression is obtained

GY(E) = Ras(E) — RygR7}(E)Ry,, (72)

10 March 22, 1994




where . s
Reo(E) = (at|(Ef -~ H)at) = E1 -H,,

R.; = (a'(E - B)f) = -H,;

Ry, = (fI(E] - )at) = ~Hy, = -H!, @
Ry (E) = (fI(El - A)f) = E1-Hy;
The RSPT expression for the reference state then permits the expansion
R.s=- H{} 74)

=1

where the fact that H(o) = 0 has been used. Together with corresponding expansions for the other
matrices this gives an expressxon for the inverse electron propagator matrix through order n as

G:'(E)=RY+ Y RE - [(f: Hﬂ‘}) (g R‘,‘}) (f: HI(;'))] ® o

=] i=1 s=1
The first-order propagator vanishes and the lowest order expressions are obtained by calculating
the various matrices to specific orders and by choosing the operator manifold f as follows
n=2=n; =1,n2 =0;f = h;,
n=3=>n;=2,np=1f=h;, (76)
n=4=>n;=3n=2;f=h3;Uh;,

which will be further elaborated in the following sections.

Obviously the inversion of the very large matrix R ;(E) is one of the difficult problems that
has to be addressed. An inversion could be performed by employing a reduced linear equation
(RLE) scheme [35] but rapidly becomes impractical with increasing basis sets. A number of
approximate treatments have been proposed [8, 36, 37] with varying success. The order concept
can be preserved with the identity

R;}(E) = (RY) +ER"’)~l
= (R - (RS REY -+ SR
s=]

which can be iterated and truncated [38, 39, 8].

an

Method of solution
The general expression for the element

Gpy(E) = (ap|(ET -~ H)ay) . (78)

of the electron propagator matrix G(E) is symmetry blocked, where each block is formed by
the spin orbital indices p and ¢ belonging to the same irreducible representation of the orbitals.

11 March 22, 1994
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In addition, the electron propagator matrix G(E) is spin blocked. Therefore, it is sufficient to
solve separately the electron propagator equations for each symmetry and spin block pq.
For 8 given block and energy E it is possible to construct the matrix,
W(E) = E1 - G™1(E) = E1 — (Rul(E) - Hy/R;}(E)H! )
= E1 - ((a"|(E1 - #)la") - HyyR7}(E)H,,)

' a9
= E1 - ((E1 - H, — H/R7}H(E)H,,)
= Hoo + HoyR;}(E)HL,,
which allows the expression
(1E - W(E))G(E) =1. (80)
This shows that the diagonalization
"A(E) cee 0
UW(E)U=A(E)=| ! Ap(E) an
! 0 cee A'( E) )

= Ul(Hu+R, Ry (E)Ra)U,

is important, with n being the dimension of the symmetry pg block, and the eigenvalue
corresponding to the spin orbital of interest (p) should be the p-th pole (E,) of the electron
propagator matrix. This eigenvalue can be used as the next guess for an iterative search of the
p-th pole or used to obtain a guess for a Newton-Raphson procedure. Since the derivatives of
W(E) with respect to E can be evaluated analytically, a Newton-Raphson procedure can be
efficiently employed to calculate the next guess for E, so that usually, after 3 or 4 iterations the
difference between the input E and the cigenvalue is less than 10~° Hartree.
Layzer [40] treated such (in general nonhermitian) eigenvalue problems. When

UT(E) = {U"}, p= 1’ 2$' TR (82)

is the eigenvector of W(E) corresponding to the eigenvalue A, (E) and U7 (E) is the eigenvector
of W' corresponding to eigenvalue A3(E) the expansion

U ]
Gr(E) =3 Rl @)

follows. The types of possible solutions have been discussed by Csanak ef al [11] and details
have been explored by Purvis and Ohm [8]). The pole of interest E, is found when

E, = Av'(E") L)

12 ‘ : March 22, 1994




and within a finite basis the E, are real and discrete. Elementary residue calculus gives

i = [(E — E)Gpy(E)] = T'Upe(E)Upn(Er), (85)
dA (E)
Ie=[i- Bu. (86)
is the pole strength introduced carlier. The xesultmg expression

can then be compared to the spectral representation (9) to find
(Olaplr) = T 2Upe(Eo(N +1) — Eo(N))
(rlapl0) = T3 2U,.(Eo(N) - E,(N ~1)).

The Feynman-Dyson amplitudes directly associated with the various electron binding energies
are then

(88)

X' PAE) = Ex,(e)vnw,)r"’ 89)

in terms of the canonical molecular SCF spin orbitals.
The relationship of these amplitudes to the electron propagator

G(6,€'s E) = {((6): ' (€&

= fr(f)fr. (fl ) gr(f)gr(f')
R Z[E+E0(N)—E,(N+ D+m T E-Eo(N)+E,(N-1)—i1;]
(90)
defined in position and spin coordinate space becomes obvious from the expansion

W6 1) =Y xp(€)ap(t) o1)
b 4

of the fundamental electron field operators (¢, t) and their adjoints in the basis. The Feynman-
Dyson amplitudes then are of two kinds associated with electron attachment processes and with
electron detachment processes, respectively (compare equation (11)

AGE Z Xp(€)(Olaylr) = Z xp(€)Upe T

92
(&) = Zx,(exrla,no) Zx,(c)v,,r"’. )
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Solution scheme
1. choose r
2. get block pg
3. get guess for E,
4. coastruct W(E) = He, + H.,R”(E,)H
5. diagonalize UW(E,) = A\E,)1
6. get the eigenvalue Ay associated with r
7. set E..., = Ay
8. get new guess (Newton-Raphson):
-1
Eiy1 = E; ~ G™Y(E))/ 29'-5;3@-)') 93)
E=E;

v

|E; — B} < 1075 7

a. ?7 yes = Pole = E;
b. 72 no=>gotostep3

Order analysis of the propagator matrices

Second-order electron propagator

In the following the subscript 1 refers to the h; = a' part of the field operator manifold
and the subscript 3 to the h3 part and so on. Through second order the inverse of the electron
propagator matrix then becomes

Ggi(B) =R - HYRY(E) @D, 4

(RE(E))pe = (E - &)bpy
(H)p.obi = (pillab)
HD)psja = {pallis) 95)
(Rg)(E))di,e(i = (E + € — €a — €;)0aclidbis
RD(E))ijern = (E + ¢ — € = €;)bub160.
The second-order self-energy matrix then has the elements

Ete—ea—g 2.”E+c. 6~ ¢’

(ED(E))py = %E (pii, sb)abllg?) | }: {pallij) (isliga) 96)

where the factor of 1/2 comes from the relaxation of the ordered indices.
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Third-order electron propagator
A similar treatment through third order yields [38, 41, 26)
Gy)(E) = Gg)(B)

+ Hg’) (l)(R(o) ( E))-IH(l) (R,(,") ( E))-I(H(l))f 97)
- HYRQEN @) - B ®RQE) @D,

(H)py = Z(paubqw Zunnm:c.,+Z(1+P(w»<pzuqa> ©
ith
" .c..=§:2m:;,
> (99)
Kij = ZZ
a>b

and where P(ia) is the permutational mtemhange operation. The second-order matrices are
HD)asip = 3 (iplimn)ktd, + (1 - P(ab)) 3 (pellma)i,

m>n m,c

(100)
(H)ijep = T _(aplibe)kls + (1 - P(i5)) Y (pmllci)kge,
e m,c
and the first-order diagonal terms are
(BE)ak i = Ss{abled) — clbille) + 6aa(Billci) + ic(alld) = alaflled) 0

(B )ijern = baalisllkD) + Six(sbllla) — Sa(jbllika) — &a{iblla) + Su(iblika),
Fourth order and partial fourth order electron propagator
Without including the operator manifold hs the full fourth-fourth order propagator matrix
can be expressed as
G&%‘ E)= G(a)( E)+ Hﬁ) (2)(R(32)( E))-ln(z)t
H(l) (R%o) ( E))-IH(3)? H(”(Rg)( E))'lﬂg)'
(1) (Rgg) ( E))-IH(I)(Rg) ( E))—ln(z)f
"’(R&%’(E))-‘n“’(ng‘;’w))-‘n“" HYRYE) B ®RE(E)HS!
- HY®QE) YR (E) YR E) By -
It is generally more impartant to include the contributions from the hs manifold before increasing
the order of the expansion [36] and one therefore finds it justifiable to study the electron

propagator through what has been coined the “partial fourth-order” [19, 37), where only the -
terms formed from the matrices already obtained in third order are retained.

15 , March 22, 1994




Density matrices and many-electron wavefunction
The first-order reduced density matrix or the one-matrix can be calculated from (90) as

7€) = (O (€)WIOI0) = =i lim ((w(€,0)%'(€,¢)))

= 2ni)™ [(wienv (€N, (103)
C

where the contour C consists of the real axis and a semicircle in the upper half of the complex
E-plane (see [7]). Residue calculus yields

1(€1€) =Y 9:(6)sr (), . (104)
which can be compared to the equivalent definition

7€) =N / ®o(é, 61,62, - . En-1)B5(E 61,62 . En—1)d61dE2 . . . dEN (105)

in terms of the ground state N-clectron wavefunction ®o. Introducing the complete set of
(N — 1)-electron states ®,, satisfying

3 8.(X)8;(X') = §(X ~ X') (106)
with the compound coordinate X = (£1,£2,...En-1). Then
A66) = N [ 2oe, X)B:X003(€, X2, (X)aXax' (107)
and we can identify the Feynm;n-Dyson amplitudes with the so-called overlap amplitudes

gr(€) = NV? / Bo(£, X)82(X)dX. (108)

Obviously, if both wavefunctions in (108) are single determinants differing in one spin orbital,
that spin orbital will correspond to the Feynman-Dyson amplitude, while for correlated wavefunc-
tions the amplitudes are more general. In addition to being important for describing intensities
in photoelectron spectra Feynman-Dyson amplitudes are also relevant for (e, 2¢) experiments
(see e.g. [42)).

Photoionization intensities

The electron propagator can be used to calculate total energies, excitation energies, and one-
electron properties in general. However, it is perhaps most useful in the study of photoelectron
spectroscopy. In addition to the electron binding energies it can also be used to obtain estimates
of photoelectron intensities.

The differential photoionization cross section, i.e. the probability that the systems absorbs
one photon causing a transition from the ground state with wavefunction |0) = &, to an excited
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state |r) cousisting of a bound ion state with wavefunction [N —1,r) = &, and an electron
escapinzintoﬂ:elohdangledﬂwhwavevecurk,is

dﬂr

=5 A;;—l(rlEA(r,) - ;102 (109)

=1

The vector potential of the monochromatic radiation field is A(7) = Aoe’*” with polarization
vector i and frequency w. The approximate form of final (antisymmetric) state wavefunction

Ir) = OasN2u(Fy, &n)®u(61, &2, .. €n-1) = OasN Pu(ly, EN)8,(X),  (110)

contains a photoelectron amplitude v, which should be a Feynman-Dyson continuum amplitude,
but for a molecular system one usually has to settle for an assumed form. The antisymmetric
projector is

N-1

Oas=N"'[1- )" Pin] (111)

k=]
with the simple interchange permutations Py of electron labels. This form of final wavefunction
permits us to write

113 A7) 9,0 = [v®.04- Fanterae
a1 (112)

+ [ o Eomene,

with
PO = (V= DN'? [ 8(0AR)- 9180(X, 02X, 1)

'I'hesecondmvam:hcs:fv(k;,f)nsmonglymhogonalto% , which can be accomplished
bymahngv(k;,e)mhogonaltotheboundmbam But even when strong orthogonality
does not exist the second term is small for photoelectron energies far from threshold.

Retaining only the first term on the right of equation (112) and averaging over all incident
photon directions relative the fixed molecular frame and over the polarization directions assuming
a random orientation of the molecules as in a gascous sample and for unpolarized light, equation
(109) becomes

da,

= gl [ o, ATaaT 114

To obtain this result also the dipole approximation was invoked, i.e. ¢ = 1 and multiplication
byafacandonewawoumfathetwopossiblespmmtesoftheepcwdekcm The
chmceofaphnewave,monhogonnhzedphnewave,oracmﬂombwwefav(k;,f)hns
been tried with varying success depending on the system and the photon energy (12, 43). The
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orthogonalized plane wave choice seems to work reasonably well for the detachment of an
electron from a pegative ion leaving a neutral species. A plane wave is convenient, but not
narticularly good under any conditions. It results in [22)

do, Ky 2
40 " Sraw L
B = ik @) Y gl [ ooibity, v,
X
where the Feynman-Dyson amplitude has been expressed as a lincar combination of atomic
orbitals (GTO's) {4y}

(115)

0 = 3 457~ Fylepr- s

»
The total cross section is given by integrating over all photoelectron directions

k .
o = 5&; / |B.[2d0. (117

Sometimes the ratios of pole strengths are used to predict relative intensities of structures in
a photoelectron spectrum and that can work for peaks of not too disparate photoelectron energy.

The Vectorized Electron Propagator (VEP) program

Approximations to various orders in perturbation theory of the electron propagator have
been implemented in the Vectorized Electron Propagator (VEP) program. Poles and associated
pole strengths are computed. This code is designed to be efficient by minimizing the pumber
of floating point operations and by exploiting vector and paralle]l features of modemn hardware.
This is accomplished by avoiding redundant calculations through the definition of appropriate
intermediates and by using symmetry wherever suitable.

The VEP code exploits the spin and point group symmetry to block the matrices from which
the propagator matrix is built. Direct product decomposition (DPD) is used with a scheme that
avoids redundant symmetry checks before each contraction. This procedure makes the code
adapted to take advantage of parallel architectures.

Another feature of the VEP program is possibility of renormalized treatment of the reference
state of the propagator via the use of CC amplitudes as well as the standard MBPT amplitudes.
This is accomplished by interfacing the VEP code with the ACESII program system.

The DPD scheme

Efficient evaluation of matrix products necessary for the electron propagator calculations
can be exemplified by a contraction

Q=TxW. (118)

The indices of the matrices can be divided into two categories , on the one hand the “target
indices” ¢, 13, - - -, which label the matrix Q and the “common” indices c;, ¢2, - - - over which the

18 March 22, 1994




T

contraction is performed. The target indices may further be divided into those which O shares
wﬁthTandthoaewhichit:hmswithW,mhdm

Qi)MW= Y, Tum),Wesw) (119)

€54C2y>"

Each element of Q, T, and W vanishes unless the direct product of the irreducible representations
of all indices labeling the quantity in question contains the totally symmetric representation. For
abelian (sub)groups this requires only the following conditions to be fulfilled:

F(t(T)) @T(ta(T)) ®--- =T(t1(W)) @ I'(t2(W)) ® - - -
T(t(T) @ T(ts(T)) ®-- =T(c1) ®@T(e2) ® - < (120)
I(a) @ I(c2) ® - = P(ty(W)) @ I(t2(W)) @ - --

The details of the computational strategy as to storage of the data structures, the manipulation in
core memory, the functionality of various subroutines, etc. are reported in a separate publication
[44].

3. Results

The photoelectron spectroscopy (PES) offers techniques to study the electronic structure of
atoms and molecules including transient and unstable species. This makes it a powerful tool to
study reaction mechanisms in gas phase and on surfaces. PES has been used, for instance, to
elucidate the electronic structure of donor-acceptor (DA) complexes.

As an illustration the electron propagator program VEP is used to calculate the main peaks
of borane (BH3) with doncrs such as H20 and CO. These simple applications are limited to a
second-order treatment of the electron propagator (EP2).

Monomeric borane has a very short life time, but is a strong Lewis acid and may be stabilized
by forming complexes with Lewis bases [45]. BH; resembles a transition metal atom in a
low oxidation state, in the sense that it can form complexes with, say, carbon monoxide and
phosphorous trifluoride having negligible basicity. It has been suggested that the complexes
of BH3 with OO or PF; are formed via a x-type delocalization of the BH; e-orbitals into
unoccupied CO and PF; orbitals. The study of systems such as BH3; ¢ CO and BHj3 ¢ H20
may provide experience as to the reliability and suitability of the electron propagator as a tool
for analyzing PES experiments on heterogeneous catalysis, for instance, CO chemisorption and
reactions (methanol synthesis) on Jow oxidation state 4'° transition metal oxide surfaces, such
as Zn0(1010) and also CuCi(111) [46).

Molecular Geometries

"The electron propagator program is implemented in the ACES II program system [47). All
calculation preseated were performed on an IBM RS/6000-580. The basis scts are correlated
consistent pVDZ [48], which consist of (9s4p1d/[322p1d] for first row elements and (4s1p)[2s1p]
for hydrogen. All structures are optimized at the RHF/MBPT]2) level of theory. The results
are listed in Table 1.
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Table 1 Optimized geometries &t the MBPTI2] level with pVDZ bases. The notation
H, means that the proton lies in the symmetry plane of the C, point group.

Complex Point Group °°°‘“P ctical  \/MPTYHVDZ  Experimental
BC 1.565 A 1540 A
(0.0] 1.144 A 1131 A
H,B-CO Cov BH 1217 A 1.194 A
CBH 103.8° 104.2°
BO 2585 A |
e
OBH 90.9°
BO 1.730 A
OH 0963 A
HaB-OH; C, BH&BH, 1214
OBH 100.6°
OBH, 103.7°
HiB Dy BH 1203 A
00 Coov o0 1.147 A 1.128 A
OH 0964 A 0958 A
H0 Cav HOH 102.0° 104.5°
Symmetry

The effects of molecular symmetry on the performance of the code is illus-
trated by calculating the PES of BH; at the EP2 level in the pVTZ basis, ie.
(10s5p2d1f)/14s3p2d11)//(Ss2p1d)}[3s2pld] in the maximal Abelian subgroup Cpy and in
C;. The theoretical factors of reduction (in computing time or total number of floating point
operations) due to symmetry (FRS) have been defined [34] and is found in many cases for total
energy calculations using the CCSD (coupled-cluster singles and doubles) level of theory to be
close to the symmetry group order square. As displayed in Table 2 the present calculation does
not quite reach that efficiency improvement with the symmetry treatment, but still a respectable
reduction in computing time is achieved.
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Table 2 An FRS is a “factor of reduction due (0 symmetry” of cpu time used. The VEP code in the ACES I
program system achieves for this case a factor of more than 10 speed up in the execution of the code.

Molecule Size of basis Point Group Achieved FRS
BH, 72 G 10
Cov 10.3
Donor-Acceptor PES

The photoelectron spectrum with a UV source (UPS) of H3B<OH; calculated at the SCF
(Koopmans' theorem) and the EP2 levels are compared to experimental results [49] in Table 3.

Table 3 Electron propagator poles at the SCF level (Koopmans) and at
the EP2 level are compared with ¢xperiment for the HyB-OH; complex.

Assignment Koopmans (eV) (Pofzs :(::X) gth) Experi (:env)aen t UPS
x(B-H) 74 11.3 10.5 (0.93) 9.7
x(B-H) 73" 11.8 11.1 (0.94) 10.6
o(B-O) 64’ 15.6 13.5 (0.91) 11.8
n(0) 54’ 164 14.2 (0.90) 132
n(0) + o(B-0) 44’ 20.7 18.6 (0.89) 144

Due to the hydrolysis of diborane the experimental investigation of the H3B<OH; complex
is difficult {45] and introduces some uncertainty about whether the observed features in the Hel
spectrum really is due to H3B<OH; or something else. The agreement between the calculated
(EP2) peaks and the UPS spectrum is as expected except for the observed feature at 14.4 eV.
This is not consistent with the theoretical result, but before suggesting that this feature might
not be due to H3B-OH; the electron propagator calculations have to be carried to the third or
partial fourth order and also a larger basis used.

Comparison of the Koopmans® theorem and the EP2 results with experiment for the H3B-CO
complex is presented in Table 4. .
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Table 4 Electron propagator poles at the SCF (Koopmans) level and at
the EP2 level compared with experiment for the HyB-CO compiex.

Assignment Koopmans’ (¢V) Gogrl;zsm) Experiment UPS (eV)
2¢e (B-H) 12.8 11.9 (0.92) 119
6a; (B-C) 15.1 13.9 (0.91) 14.1
1e (C-O) 18.6 17.1 (0.87) 17.0
5a; (CO) 21.6 18.1 (0.85) 18.5*

* Adisbatic ionizati
Similar calculations are carried out for the H3B+OC complex and are reported in Table S.

Table 5 Comparison of the electron propagator poles at the SCF (Koopmans)
level and at the EP2 level with the same UPS spectrum as in Table 4.

Assignment Koopmans (¢V) (POEIZZ sé:;’)m Experimeat UPS (eV)
2% B-H) 132 126 (0.94) 119
68, (B-O) "153 140 (0.92) 141
e (CO) 175 163 (0.89) 170
58, (B-H) 187 175 092)
18.5¢
43, (C-0) 25 190 (0.36)

*Adiabatic ionizati

There is definitely a better agreement between the calculated and the observed PES for
H3B+CO than for H3B+OC indicating the discriminatory power of the electron propagator theory
even at this primitive level. -

In conclusion one can again reaffirm what already has been established by many workers
in the field, namely that the propagator theory is an appropriate and practical approach to the
interpretation and prediction of spectra. The results presented here also show that in order
to contain truly quantitative agreement with experiment it is necessary to counsider electron
propagator theory at the third and partial fourth order and to also be able to accommodate larger
basis sets.
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Tables
Table 1 Optimized geometries at the MBPT[2] level with pVDZ bases. The notation
H, means that the proton lies in the symmetry plane of the C, point group.
. Geometrical .
Complex Point Group P MBPT[2]/pVDZ  Experimental
BC 1.565 A 1.540 2
o 1.144 A 1.131
H,B-CO Cav BH 1217 A 1194 A
CBH 103.8° 104.2°
BO 2585 A
(0.0] 1.147A
H;B-0C Cav BH 1203 A
OBH 90.9°
BO 1730 A
OH 0963 A
H3B-OH, G, BH&BH, 1214
OBH 100.6°
OBH, 103.7°
H3B Da BH 1203 A
o Coov (00) 1.147A 1.128 A
OH 0964 A 0958 A
H,0 Cav HOH 102.0° 104.5°
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Table 2 An FRS is a “factor of reduction due to symmetry” of cpu time used. The VEP code in the ACES II
program system achieves for this case a factor of more than 10 speed up in the execution of the code.

Molecule Size of basis Point Group Achieved FRS
BH; 72 C 1.0
Cav 103
2 March 24, 1994
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Table 3 Electron propagator poles at the SCF level (Koopmans) and at
the EP2 level are compared with experiment for the H3B-OH; compiex.

Assignment Koopmans @) o Soeng) V). e
»(B-H) 74’ 113 10.5 (0.93) 9.7
x(B-H) 74" 118 11.1 (0.94) 10.6
o(B-0) 62’ 15.6 13.5 (0.91) 118
n(O) 54’ 16.4 14.2 (0.90) 132
n(0) + o(B-0) 44’ 20.7 18.6 (0.89) 144
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Table 4 Electron propegator poles at the SCF (Koopmans) level and at
the EP2 level compared with experiment for the HyB«CO compiex.

EP2 (eV)

Assignment Koopmans’ (eV) (Polé Strenth) Experimeat UPS (eV)
2e (B-H) 12.8 119 (0.92) 119
6a; (B-C) 15.1 139 (0.91) 14.1
1e (CO) 18.6 17.1 (0.87) 17.0
5a; (CO) 216 18.1 (0.85) 18.5#
* Adiabatic ionization energy
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Table S Comparison of the electron propagator poles at the SCF (Koopmans)
level and at the EP2 lovel with the same UPS spectrum as in Table 4.

EP2 (eV)

Assignment Koopmans (eV) (Pole strength) Experiment UPS (eV)

2e (B-H) 132 12.6 (0.94) 119
6a; (B-C) 153 14.0 (0.92) 14.1
le (C-0) 17.5 16.3 (0.89) 17.0
Sa; (B-H) 18.7 17.5 (0.92) .

18.5*
4a; (C-O) 225 19.0 (0.86)

*Adisbatic ionizati
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