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EXECUTIVE SUMMARY

The general emphasis for 1994 would be on increased software
development, testing of subelements and design calculations. For these
purposes. the constitutive law coding and development would be
coordinated by Nick Aravas, and implemented in ABAQUS. The initial
implementation would be the elastic/plastic model for MMCs with interface
debonding developed in 1993 (Leckie). This would be extended in 1994 to
include creep and some aspects of thermomechanical cycling. The code
would be used for design calculations concerned with MMC rotors,
actuators and vanes (Leckie). A plan is being formulated to collaborate with
Pratt and Whitney to acquire MMC sub-elements representative of these
components during 1994. Experimental tests on these subelements would
be capable of providing a direct validation of the code capabilities.

Constitutive law and fatigue lifing software would be created for CMCs
using continuum damage mechanics (CDM) approaches (Leckie,
McMeeking). The approach has been motivated by micromechanics models
developed in 1993 (Hutchinson, Zok, Evans). These codes would be used to
calculate stress redistribution effects and fatigue life on simple sub-
elements, such as center notched and pin-loaded plates. Comparison with
experimental measurements needed to test the fidelity of the models will be
based on moir6 interferometry and thermoelastic emission. This effort is
coordinated with the NASA EPM program through both General Electric and
Pratt and Whitney. A plan for acquiring sub-elements from DuPont Lanxide
is being formulated.

A new emphasis for 1994 would be on the transverse properties of
CMCs. The measurements and calculations performed in 1993 have
indicated a strategy for curved sections and junctions that would establish a
consistent design approach. The basic approach for resisting failures from
combinations of interlaminar shear and transverse tension involves the use
of stitching and angle ply weaving patterns that Inhibit major reductions in
stiffness when matrix cracks are induced by transverse loads and bending
moments. For this purpose, calculations would be performed that combine
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the mechanics of delamination cracks with models of bridging by inclined

fiber bundles (Hutchinson, Ashby, Evans, McMeeking). The insight gained

from these calculations would be used to design and acquire sub-elements.

such as C sections and T Junctions.

Additional software development will be for creep and creep rupture

(McMeeking). The models devised in 1993 and test data relevant to MMCs

will be combined into a code that predicts the creep and rupture of

unidirectional MMCs subject to multiaxial loads. Some aspects of this code

will also be applicable to CMCs.

Two new activities will be introduced in 1994: thermal properties and

damping. The thermal properties will be studied on both CMCs and MMCs
(Ashby, Hutchinson). Measurements of thermal diffusivity will be made by

the laser flash method and related to the properties of the interface and the

density of matrix damage in the material. Thermal expansion measurements

will also be performed with emphasis on determining hysteresis effects,
which can be related to the temperature dependence of the interfaces

properties, through cell models. The latter might evolve into a diagnostic for

establishing relationships between the interface properties and

thermomechanical fatigue.

The processing activities in the program will have newly established

goals in 1994. The principal emphasis will be on concepts for affordable
manufacturing. The issues selected for investigation will be consistent with

manufacturing processes that allow near-net shape consolidation while still

yielding reasonable combinations of longitudinal and transverse properties.
Performance models developed in the program would be used as an initial

test of concept viability.
Beyond these general trends, specific activities are planned for 1994.

These are elaborated below. The status of understanding and development

in each of these areas is summarized in Table I. Increasing magnitudes

between 0 and I designate a knowledge range from limited to

comprehensive.
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TABLE LA

Status of Design Knowledge for MMCs

[O"n MIMIC [0"/90"]n

LONG. TRANS.

P S P S P S

Tensile

Strength 3/4 1 1 1/2 1/4 -0

Creep and

Creep 3/4 0 1 0 0 0

Rupture

Cyclic Flow
(Isothermal, 1/4 0 1 1/2 0 0

TMF)

Crack

Growth

(Isothermal 0 1/2 0 0

Fatigue)

Crack

Growth 1/2 1/2 0 0 0 0

(TM_

Compressive

Strength 3/4 0 0 0 0 0
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TABLE lB

Status of Design Knowledge for CMCs

[0/90] [45/45]
P S P S

Stress/Strain 3/4 1/4 1/2 0

Fatigue 3/4 0 0 0

TMF 1/4 0 0 0

Creep and 1/2 0 0 0
Rupture

Compression 3/4 1/4 0 0
Strength

Transverse 3/4 1/2
Properties

Thermal 1/4 0
Properties

P Primary Structure

S Secondary Structure
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2. CONSTITUTIVE LAWS

Two approaches will be used to create a formulation capable of
representing the In-plane properties of CMCs. One would be based on
Continuum Damage Mechanics (CDM) (Leckie). The other would use
concepts analogous to those used in plasticity theory (Hutchinson). The
CDM approach uses damage parameters that relate explicitly to

micromechanics models. A potential function has already been identified as
the state variable which separately represents the strain from the elastic
compliance change caused by the matrix cracks and the inelastic strains
associated with the debonding and sliding interfaces. Derivatives of the
potential with regard to strain and damage give the relationships between
variables, such as stress, interface sliding resistance, matrix crack density,

etc.
The first version of the CDM model would use the minimum number of

damage variables potentially capable of representing the behavior of
laminated or woven composites. Cross terms between the damage variables
would not be considered at this stage. Moreover. matrix cracks would be
introduced normal to the maximum principal tensile stress, consistent with

the experimental observations.
The plasticity theory approach would seek a formulation based on

matrix cracks occurring normal to the maximum principal tension. It would
introduce parameters that reflect the inelastic strain caused by interface
sliding upon off-axis loading which would be calibrated from tests performed

in tension in 0/90 and 45/45 orientations.
The insight needed to characterize off-axis loading effects will be gained

from cell models (Hutchinson) in a manner analogous to that previously
used for axial loads. The principal objective will be to understand trends in
matrix crack opening and interface debonding/sliding with applied loads.

The stress on the fibers will be calculated with the intent of predicting
effects of loading orientation on fiber failure. The models will be compared
with measurements made in 45/45 tension, using various CMCs (Evans).

Calibration of the damage parameters for each material would be made
from hysteresis loop measurements in accordance with procedures
developed in 1993. Experimental results obtained in 0/90 tension, 45/45
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tension and in-plane shear will be used. In future work, it is hoped that

shear tests will not be necessary.
The validation of the constitutive laws will be achieved by comparing

calculations with measurements made on sub-elements, especially pin-

loaded holes (Evans). The experimental results include residual strains

obtained by Moirt interferometry (Fig. 2.1), ultimate loads for either tensile

or shear failure and principal strain trajectories delineated by matrix

cracking patterns. Acoustic methods will also be developed to probe the
local values of the elastic modulus (Clarke, Wadley) which could be

compared directly with the CDM predictions.

3. FATIGUE LIFING

3.1 CMCs

A software program for isothermal low cycle fatigue (LCF) of CMCs,

developed in 1993 (Fig. 3. 1) will be extended in 1994. The present program
asserts that fatigue is associated with cyclic degradation of the interface

sliding resistance, r, which can be characterized by analyzing hysteresis
loops measured periodically during a fatigue test. With this methodology,
S-N curves have been predicted for both unidirectional and woven 0/90

composites tested in cyclic tension as well as changes in compliance and

permanent strain. Some additional effort is required to analyze data on 0/90
laminates in order to validate the model predictions. The extensions

envisaged for 1994 include thermomechanical fatigue (TMF), strain

controlled LCF and off-axis fatigue (Zok, Evans). Experiments are planned
which would assess the effects of temperature cycling and of inclined fibers

on T degradation, measured from hysteresis loops. Various cell model

calculations (Hutchinson) will be used to interpret the experiments. The
results will be used to establish general rules for interface degradation in

CMCs.
The off-axis experiments will also give insight into the fiber failure

criterion that replaces the global load sharing (GLS) results successfully

used for 0/90 loadings. This study will coordinate with the cell calculations

described above, and the 45/45 tensile experiments.
Notch fatigue studies will be initiated. These will examine cyclic stress

redistribution and notch sensitivity (Evans).
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3.2 MMCs

Fatigue crack growth and notch strength studies in MMCs will be
extended to 0/90 laminates (Zok, Suo). The experiments concerned with
crack growth will be interpreted using crack bridging models. The utility of
such models has been validated in previous years through studies on
unidirectional MMCs. It is envisaged that the fatigue crack growth
characteristics of the unidirectional and 0/90 configurations will be related
through the volume fraction of fibers aligned with the loading direction. The
notch strength behavior will also be interpreted using crack bridging
models. Such models have been developed in 1993 and found to be useful in
rationalizing the behavior of unidirectional materials (Zok, Suo). In all cases,
the mechanical measurements will be augmented by in-situ observations to
identify changes in damage mechanisms with temperature, fiber
architecture, etc. Plans to study the influence of panel thickness on fatigue
and fracture resistance are also being developed, as well as tests to
understand the potential for crack growth in mixed mode loadings (Hirth,
Zok).

Studies of the TMF response of MIMCs loaded parallel to the fiber axis
will be initiated (Zok, Leckie). Experiments will evaluate both in-phase and
out-of-phase loadings. Models of load shedding (matrix-fibers) will be used
to interpret the hysteresis loops and to develop fatigue life models applicable
to low cycle, high strain TMF.

4. CREEP AND RUPTURE
4.1 MIMCs

The considerable progress made in 1993 towards identifying and
understanding the mechanisms of creep and rupture in unidirectional
MMCs containing non-creeping fibers (McMeeking, Zok) will be used to
develop creep rupture software. The longitudinal creep model to be used
incorporates stochastic fiber fracture and interface sliding in a format
amenable to the prediction of primary and tertiary creep in terms of matrix
creep strength, interface sliding resistance, fiber strength, Weibull modulus,
etc. The concepts would be visualized in a rupture mechanisms map
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(Fig. 4.1). The transverse creep behavior would include interface debonding,
which greatly accelerates the creep, leading to marked anisotropy. A

constitutive law for creep that includes these effects will be developed

(Aravas, McMeeking).

Additional experiments and calculations will be conducted to assess the
effects of notches and holes on creep rupture (Zok, Suo). Experience with
MMCs at ambient temperature indicates that the notch sensitivity is largely

dictated by matrix properties (i.e., strength and ductility). The reduction in
matrix properties at elevated temperatures may lead to a substantial

elevation in notch sensitivity. However, this behavior may be complicated by

the development of alternate damage processes. such as shear bands.

4.2 CMCs

Studies of the creep and rupture of CMCs will continue with emphasis
on materials containing creeping fibers. A particular emphasis will be on
matrix cracking that arises as fiber creep relaxes fiber bridging tractions

(McMeeking, Evans). The experimental studies will be performed on SiC/SiC
composites. Hysteresis loop measurements will be used to monitor matrix
damage during composite creep, using procedures devised in 1993. Models
will be developed based on time dependent fiber bridging concepts
(McMeeking, Cox).

It is envisioned that the lifetime of some CMCs will be dictated by time-
dependent rupture of the fibers. A lifetime prediction tool for such a
composite must incorporate the knowledge of fiber strength degradation over
time. A new activity will be initiated to address this problem (Suo, Evans).

The initial work will involve a survey of data in the existing literature, and a

comparison with available models. A new model is being developed for single

crystal fibers. This model involves a residual pore inside a fiber which
changes shape, under stress, via surface diffusion, to become a crack. These
issues will be viewed in the broad context of fiber and composite

manufacture.

KJS 41271P



Axial Stress, (MPa)

O • E 0

1 ~II II II

S. o

ta I a a •

4 ) Gas 4 D C L

0 Li ,, 0

p 
''

d: ~ Q_

0TE

E0
I-0/

C14~

CYC

03/D 'SseS I8e!xV PGSe!leWJON

Figure 4.1



12

5. TRANSVERSE PERFORMANCE OF CMCs

Analyses and tests performed in 1993 (Ashby, Hutchinson, Bao) have
highlighted the essential issues related to components that experience
combinations of transverse tension and interlaminar shear. In both
loadings, matrix cracks form at manufacturing flaws at low stresses, of
order 10-100 MPa. These cracks extend across the plies and interact

minimally with the fibers. Although the crack configurations differ for
transverse tension and interlaminar shear loadings, multiple cracks always
form. This multiplicity of cracking causes a major reduction in stiffness,
which can cause unacceptably large displacements and also redis, bute
stress into other areas. The formation of the matrix cracks is probab . in
nature and governed by the size distribution of manufacturing flaws. Dcsign
based on the prevention of such transverse cracks must rely on weakest
link statistics, usually with a low Weibull modulus. Alternatively, it may be
assumed that cracks inevitably form and, instead, reliance is placed on
controlling the diminished modulus of the material, after matrix cracking
has occurred. This approach relies on having 3-D architectures, with
transverse fibers introduced locally either by stitching or by using angle
plies. To explore this possibility, calculations will be performed (Hutchinson,
Evans) to examine fiber architectures that lead to minimum stiffness loss,

subject to acceptable in-plane properties. Based on these calculations, sub-

elements will be designed that test out the concepts.

6. COMPRESSIVE BEHAVIOR

The studies completed in 1993 on the compressive failure of polymer

matrix composites by the growth of kink bands (Budiansky, Fleck) will be
extended to metal matrix composites, through a coordination with 3M.

Compressive failure of Al and Ti MMCs with small diameter fibers has been
observed by 3M to occur in accordance with the same kink band
mechanism known to operate in PMCs and in C/C composites. The theory
should thus extend to the MMCs, with the fiber misalignment, the shear
yield strength of the matrix and its work hardening coefficient as the
principal variables. A comparison between the theory and experimental
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results would provide the basis for specifying the compressive properties of

MMCS.

Compression failure of CMCs occurs by different mechanisms (Ashby).

The dominant failure modes are similar to those that operate in porous

brittle solids such as monolithic ceramics, concrete and rocks. The theory is

well established and validated for these materials. Applications of the theory

to various CMCs will be made and applied to the understanding of a

behavior of pin-loaded holes (Evans, Ashby).

7. THERMAL PROPERTIES

A new focus on the thermal properties of CMCs and MMCs will be

initiated in 1994. Calculations of the effects of matrix cracks in the thermal
expansion of CMCs will be made (Hutchinson). These will be compared with

data obtained from TMF testing (Zok). The effects of such cracks on the in-

plane thermal conductivity will also be calculated (Hutchinson).

Measurements will be performed using the laser flash method (Ashby).

Thermal conductivity measurements will be initiated on Ti MMCs

(Ashby). These will be used to understand the effects of the fiber/matrix

interphases and of matrix damage on the transverse and in-plane thermal

conduction.

S. MATERIALS SELECTION

The Cambridge Materials Selector software will be expanded in 1994 to

include high temperature creep design with the con-esponding data base

(Ashby). This expanded version will permit estimates to be made of

temperature limits for MMCs based on creep controlled TMF and on the

transverse creep of components with unidirectional reinforcements.

9. DESIGN CALCULATIONS AND SUB-ELEMENT TESTS

A larger fraction of the effort in 1994 will be on design and sub-element

testing, particularly for MMCs. Discussions are now in progress with Pratt

and Whitney, Textron and 3M to perform design calculations using the

KS4W274
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constitutive equations developed at UCSB and to produce sub-elements for
testing.

The design emphasis for MMCs will be on various diffusion bonded
joints with Ti matrices and monolithic Ti attachments. Two specific
subelements are envisaged. The first involves unidirectionally reinforced
rods (or plates), clad with monolithic metal. The purpose of the cladding is
to prevent exposure of the fibers to the environment and to mechanical
abrasion. The design of clad MMC structures requires consideration of
(1) the residual stresses resulting from thermal mismatch between the
cladding and the composites section, (it) the potential for fatigue cracks to
Initiate and grow through the monolithic material, and (Oi) the interaction of
such cracks with the composite section and their influence on the strength
and life of the structure. The design and testing of such subelements (Zok.
Leckle) will be augmented by calculations of crack growth and fracture,
incorporating the effects of thermal and elastic mismatch between the
cladding and the composite (McMeeking). The clad structures will also be
used to initiate studies on the reinforcement of holes in composite sections
with monolithic metal patches, as drawn in Fig. 9.1 (Zok, Suo). The second
subelement involves the attachment of a MMC actuator rod to a pin-loaded
monolithic section (Fig. 9.2). The critical design issues relate to the strength
and fatigue resistance of the interfaces between the composite and
monolithic matrices. Design studies shall also be completed on rotor rings
with special efforts made to produce rule-based design procedures which
would be used by industry at the conceptual level of design to determine
sizes and the efficient disposition of material.

For CMCs, the sub-element studies would be based on the calculations
described above in Section 5. These would include C sections and
TJunctions (Fig. 9.3) Negotiations for manufacturing these sub-elements
will be initiated and tests performed at UCSB.

10. AFFORDABLE MANUFACTURING

As our understanding of composite mechanics and its interplay with
design and performance has evolved, it has become increasingly evident that
cost and reproducibility, are major constraints. Even as processing

KJS 42713
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developments make the prospect of affordable high temperature fibers more
realistic, evolving knowledge on the mechanical and thermochemical
functions of interfaces have led to design concepts involving carefully
tailored interphase layers, with unfavorable Impact on cost. Moreover, if
affordable coated fibers were available today, fabrication costs associated
with consolidation and pressure densification would often remain
prohibitive. Future processing and manufacturing activities are predicated
on these issues, especially the need for new ideas, and the related
knowledge base.

10.1 MMCs

Melt processing methods provide the more affordable options in
composite synthesis with the added benefit of near-net shape capability. For
continuous fiber composites melt infiltration also enables full density while
minimizing the consolidation stresses that typically cause premature
reinforcement failure in solid state processes. However, melt processing
requires a high degree of thermochemical compatibility between matrix and
reinforcement since deleterious diffasional interactions would be accelerated
by the liquid phase. Conventional melt processing also exhibits limited
ability to control the volume fraction and spatial uniformity of the
reinforcements.

Among metal matrices, Ti alloys epitomize unsuitability for direct melt
infiltration owing to aggressive reactivity. Fiber clustering is also a concern,
even in solid state processes based on powder or foil matrices. Composite
consolidation by vapor deposition (PVD) of the matrix on the fibers provides
an avenue for improving homogeneity of fiber spacing. However, present
schemes require expensive pressure densification with Its many problems. A
potential solution involves a hybrid manufacturing route wherein part of the
matrix is first applied to the fibers by PVD. The pre-metallized fibers are
then assembled into a preform having the desired shape and then infiltrated
with the remaining matrix in liquid form.

Direct infiltration with "I alloys could be feasible owing to the protection
of the fiber by the PVD layer, but the high temperatures involved would
exacerbate the diffusional interactions at the fiber-matrix interface. An
alternate approach involves depositing the more refractory constituents of

lus 4WJ%4
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the matrix (e.g., TI, Nb, Mo, etc.) by PVD and then infiltrating with the lower
melting point constituents (e.g. Al). Based on stoichiometric considerations,
the latter approach would be suitable for matrices with > 25 at.% Al, notably

the orthorhombic and a2 alloys. The obvious problem with this approach is
the homogenization of the matrix after consolidation, which may require
lengthy high temperature treatments in the solid state. However, a
significant part of the matrix synthesis reaction could be effected in the
presence of molten Al, followed by a final heat treatment in the solid state.

While this lower temperature infiltration approach is evidently desirable
from a manufacturing viewpoint, it is not clear that matrix homogenization
can be achieved.

A program involving modeling and experimental work will be initiated in

1994 to generate the knowledge base appropriate to hybrid approaches for
T1 matrix composites (Levi, Evans). Cell models (single fiber environment)
would be developed to study diffusional interactions and
remelting/solidification phenomena as a function of processing cycle
(temperature-time history). Experiments would be performed to elucidate
the relevant aspects of microstructural evolution and provide the reaction
and interdiffusion kinetics needed to calibrate the models. Initial
experiments would be performed by infiltrating pure TI-uire preforms with
molten Al and subjecting the "composite" to different treatments in the
semi-solid state. Subsequent experiments would focus on developing a
metallization route for TI-Nb alloys on SiC fibers and on the relevant
interactions with infiltrated Al. Larger scale modeling issues would be
tackled in 1995 if the proposed approach appears promising.

Ongoing activities on the understanding of microstructure evolution
and its relationship to properties in In-situ TMC systems based on TIB
reinforcements would be continued (Levi). These are by nature affordable

composites which exhibit inherent thermochemical stability and may be cast
into shapes using conventional Ti processing techniques. A potential
application of these materials would be in Joints with unidirectionally
reinforced composites, wherein their higher modulus and creep resistance

combined with acceptable toughness and isotropic properties could be
advantageous. It is also anticipated that these materials could be used for
cladding in PVD or plasma-sprayed form, thereby reducing the potential for
fatigue crack initiation in the cladding. Since TIB is thermochemically stable
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with practically all Ti matrices of interest in fiber composites, such

strengthening concepts may be readily implemented.

10.2 CMCs

Measurements and observations in 1993 have shown that strong, high
strain to failure CMCs can be fabricated using an inexpensive method that
involves a) packing a powder around fibers within a fiber preform using
pressure filtration and b) making the powder matrix strong by heat

treatment followed by infiltration with a liquid precursor that decomposes to
an inorganic material. A composite made this way, with polycrystalline

alumina fibers in a silicon nitride matrix, demonstrated that the matrix
deflects the crack. This observation is significant since it suggest that a
class of CMCs can be processed without needing weak fiber/matrix
interfaces. The potential of this observation will be explored (Lange, Evans),
by processing a composite with strong. polycrystalline alumina fibers in a
mullite matrix because the thermomechanical properties of mullite minimize
thermal stresses and resist creep. In addition, the thermal expansion
mismatch is relatively small. Mixed Al, Si metal alkoxide precursors which

can be gelled in-situ, prior to decomposition, will be used to strengthen the
matrix.

Manufacturing studies would initiate with understanding the precursor
infiltration into mullite power compacts. The densification of the matrix
would be determined as a function of the cyclic Infiltration. Microstructure

changes would be controlled to avoid flaw populations during densification.
The fracture toughness and the strength of the matrix would be determined

as a function of the number of precursor infiltration cycles. Composite
processing would initiate with precursor infiltration Into alumina fiber
preforms by pressure filtration, with emphasis on the colloidal aspects of

this processing step. The goal would be to determine the processing
conditions needed to produce a matrix that optimizes the ability to deflect
cracks without degrading fiber strength. To optimize composite processing,

panels for testing under conditions of both strain and stress control would

be manufactured.

US 427S4
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11. STRESS AND DAMAGE SENSORS

The extensive exploitation of the optical fluorescence method of
measuring stresses in sapphire fiber and alumina-containing ceramic

composltes begun in 1993 will be continued in 1994 (Clarke, Wadley). The
emphasis is on using the method to understand basic, unresolved issues in
stress redistribution in composites by the direct measurement, with high

spatial resolution, of the stresses themselves. Particular attention will be
paid to determining the stress distribution associated with interfacial
sliding. One of the problems to be addressed relates to new concepts for
oxidation resistant interfaces within MMCs and CMCs, particularly the
concomitant roles of fiber roughness and sintering on interface sliding and
debonding, after exposure to high temperatures and cyclic loadings. For this

purpose, fibers with fugitive, low modulus coatings will be explored and
fluorescence measurements used to understand stress evolution and its

connection with fiber durability within the composite. A second problem
relates to the distinction between the line spring and large scale sliding

models for fiber bridging (Budiansky, Hutchinson), so as to determine the

range of applicability of the two models. The two competing models predict
different distributions of stresses in the fibers within the bridging zone and
hence are amenable to validation on the basis of the measured stress

distribution.

Two approaches to measuring local damage are under development and

will be the focus of the sensor activities. One is the use of acoustic methods
(Wadley) to probe local variations in the elastic modulus of CMCs as a

function of load. This should provide a means of mapping the distribution of
damage which can be compared directly with the predictions of continuum
damage mechanics models. The second approach (Clarke) is to detect the

third harmonic signal generated by the presence of local damage.
Preliminary experimental results obtained in 1993 concerned with the

detection of crack-like voids in thin metal lines, together with computer
simulation studies, have demonstrated the viability of the technique. This
work will be extended in order to detect damage accumulation in CMCs and

MMCs.

KJS 4a27l



22

gs4W2I94



Ahiteriat.• Science aun Engineering. A 167 (1993) 57-64 7

Cracking and stress redistribution in ceramic layered composites
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Abstract

Problems are analyzed that have bearing on cracking and survivability in the presence of cracking of layered composite
materials composed of brittle layers joined by either a weak interface or a thin layer of a well-bonded ductile metal. The
problems concern a crack in one brittle layer impinging on the interface with the neighbouring brittle layer and either
branching. if the interface is weak. or inducing plastic yielding, if a ductile bonding agent is present. For the case of a weak
interface, the effect of debonding along the interface is analyzed and results for the stress redistribution in the uncracked
layer directly ahead of the crack tip are presented. Debonding lowers the high stress concentration just across the inter-
face. but causes a small increase in the tensile stresses further ahead of the tip in the uncracked layer. A similar stress
redistribution occurs when the layers are joined by a very thin ductile layer that undergoes yielding above and below the
crack tip. allowing the cracked layer to redistribute its load to the neighbouring uncracked layer. The role of debonding
and yielding of the interface in three-dimensional tunnel cracking through an individual layer is also discussed and
analyzed. Residual stress in the layers is included in the analysis.

I. Introduction interface in defeating cracks in individual layers is
analyzed by consideration of the stress redistribution in

When layered, thin sheets of a brittle material may the adjoining uncracked layer that accompanies these
have toughness and strength properties far superior to processes. Results are given for the energy release rate
those of the material in bulk form [1-6]. To enable of three-dimensional cracks tunneling through an
good strength and toughness, the interface between individual layer. This release rate, which is influenced
adjoining layers must counteract the stress concentra- by interface yielding or debonding. provides the essen-
tion effect of any crack that occurs in an individual tial information needed to predict the onset of wide-
layer. reducing the likelihood that it will propagate into spread layer cracking in terms of the thickness of the
the next layer. Depending on the nature of the inter- brittle layer material and its toughness.
face, this may occur by debonding. when the interface The geometries of the problems to be studied are
is brittle and relatively weak, or by yielding and sliding shown in Fig. 1. Figure 1 (a) shows a cracked layer of
for systems composed of brittle layers alternating with width 2 w with zones of either yielding or debonding in
thin ductile adhesive layers. The latter category is the interface extending a distance d above and below
represented by sheets of AI,0 3 joined by thin layers of the crack tips. The interface is taken to be either a very
aluminum [21 and by the model system with sheets of thin ductile layer of an elastic-perfectly plastic material
AI.O. bonded by epoxy [3]. Some of the issues related with shear flow stress r or a weak plane that debonds
to the design of layered brittle materials are similar to and slips under conditions such that the layers remain
those encountered in the design of fiber-reinforced in contact and exert a friction stress r on each other.
brittle matrix composites. such as the selection of inter- The ductile adhesive layer allows relative slipping of
face toughness to prevent matrix cracks from pene- the layers it joins by plastic yielding, but it is assumed
trating the fibers. Other issues are unique to the layered that debonding does not occur. In this case, the condi-
geometry, and this paper addresses a few of them. In tion K, = 0 must be enforced, leading to well-behaved
particular, the role of yielding or debonding of the shear stresses at the end of the yielding zone and estab-
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$ Fig. 2. Specification of the three-dimensional tunneling crackI problem.
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Fig. 1. Specification of the plane strain problems: (a) finite layer

crack, (b) asymptotic problem. ciently small compared with r. Then, the asymptotic

problem is that shown in Fig. 1(b) for a semi-infinite
crack loaded remotely by the same K-field. In this case

lishing the zone length d. In the case where the inter- also, the effect of yielding in the thin adhesive layer on
face debonds, the interface crack is fully closed for the stress distribution ahead of the crack tip in the
d/w >0.71 [7]. The mode 2 stress intensity factor K, at uncracked layer is emphasized.
the end of the slipped zone will be nonzero, and must
attain the mode 2 toughness of the interface for the
debond to spread. Results for K, are given below. 2. Effect of plastic yielding on stress redistribution

Cracks in individual layers spread as three-dimen-
sional tunnel cracks propagating through the layer (Fig. As discussed above, the thin ductile adhesive layers
2). Once the crack has spread a distance of at least in Fig. l(a) are assumed to be elastic-perfectly plastic
several layer thicknesses in the z direction it ap- with a yield stress in shear of r, and are modeled as
proaches a steady state wherein the behavior at the / ing zero thickness. The plane strain problem is
propagating crack front becomes independent of the onsidered where the central cracked layer has the
length of the crack in the z direction. Under these san'e elastic properties (E, v) as the semi-infinite
steady-state conditions, the energy release rate of the L.,= cks adjoining across the interfaces. Under mono-
propagating front can be computed by use of the plane tonic increase of the applied remote stress a, the zones
strain solution associated with the geometry of Fig. 1(a) of yielding of half-height d spread allowing slip in the
(other examples of tunnel cracks are given in ref. 8). The form of a tangential displacement discontinuity L ross
steady-state energy release rate can be computed in the interface in the yielded region. The condition
terms of the average of the opening 6(x) of the plane o - + r is enforced within the yielded zones of the
strain crack. The zone of yielding or debonding interface. The Dugdale-like condition K, = 0 at the
increases the tunneling energy release rate, thereby ends of the yielded zones ensures that the shear stress
lowering the overall stress at which widespread layer on the interface falls off continuously just outside the
cracking can occur. Results for the tunneling energy yielded zone, and it determines the relation of d/w to
release rate are given below. The role of residual or/r under the monotonic loading considered. Integral
stresses in the layers are readily accounted for: this is equation methods are employed to solve this problem
discussed in the final section. as well as the others posed below; the methods used are

When the interface is weak and debonding occurs, outlined briefly in Appendix A.
the interface crack is fully open with mixed mode The two most important functional relations needed
intensity factors when dlw < 0.24 [7]. This case can be to solve the three-dimensional tunneling crack problem
approximated well by the asymptotic problem for a discussed below are shown in Figs. 3 and 4. In Fig. 4, 6
semi-infinite crack impinging the interface where the is the average crack opening displacement defined by
remote field is the K-field associated with the problem
in Fig. 1(a), with d= 0. The stress redistribution in the 1
next layer ahead of the impinging crack tip is given, 6 =2wf 6(ý)6,1
with a correction of previous energy release rate results ft
for the doubly-deflected interface crack [9]. When The elastic value of 6, valid when there is no yielding
plastic yielding of a ductile adhesive layer occurs, (r- o), is 6& = r(1 - v2)aw/E. Yielding of the adhesive
another asymptotic problem applies when a is suffi- layers begins to make a significant centribution to the



K. S. Chan et al. / ('eramic hyered ('omposites 5t)

7 4-

30 - 3 40

td

d /w 
i

Fig. 3. Relation between applied stress and height of the yielding
zone in a thin ductile adhesive layer. 012
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Fig. 5. Stress distribution ahead of the crack tip in the uncracked
3 layer at several levels of applied stress to shear yield stress of theothin adhesive layer.

stress relative to the elastic distribution further from
X I- )Owthe interface. This feature is seen in all the stress re-
2 so Edistribution results.

Stress redistribution can be presented in another
way when d~w is sufficiently small, by use of the asymp-
totic problem shown in Fig. Il(b). Provided d/w is suffi-
ciently small, the yielding behavior is small-scale
yielding with the elastic stress intensity factor K as the
controlling load parameter. The remote field imposed

I I Ion the semi-infinite crack is the elastic K-field. This
0 1 2 3 4 5 6asymptotic problem has also been solved with integral

O/T equation techniques. The extent of the yield zone in the
Fig. 4. Average crack opening displacement as a function of the asymptotic problem is
ahseratio of appliedlyr stress to shear yield stress of the thin ductile d:052 )K-()

average crack opening displacement when o/r exceeds Figure 6 displays the normal stress directly ahead of
unity. The redistribution of normal stress o,,.(x, 0) in the crack tip in the adjoining block normalized by the
the block of material across the interface is shown in elastic stress field for the limit T = oo. The stress ratio in
Fig. 5 for three levels of o/r. The curve shown for Fig. 6 depends on x/d but is otherwise independent of
U/r= 1.5 is only very slightly below the elastic distri- K in the asymptotic problem. Yielding reduces the
bution stress below the elastic level over a region ahead of the
( o,,.(x 0) =( (,+ 002(•- + 2.i)tr-- crack tip which is slightly larger than d/l 0. Beyond that

- region the stresses are slightly elevated above the
for fc a x/w- >0.05. Reduction of stress ahead of the crack elastic levels and approach the elastic distribution as
tip begins to be appreciable when U/r=2.7, and is x/d becomes large. The stress redistribution due to
quite significant when or/r = 6.4. The drop in stress just debonding (Fig. 6) is more dramatic: this is discussed
across the interface is offset by a slight increase in below.
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Fig. 6. Stress redistribution ahead of the crack tip in the layer shear yield stress r.
across the interface for the two asymptotic problems (d4 w).

4. Effect of debonding and frictionless slipping on
3. Effect of plastic yielding on tunnel cracking stress redistribution

As stated above, the steady-state energy release rate The plane strain interface debonding problem for
for a three-dimensional tunneling crack can be corn- the geometry of Fig. I(a) is as follows for the case
puted by use of the plane strain solution. For the where no frictional resistance is exerted across the
geometry and loading shown in Figs. 1(a) and 2, the debonded interfaces (i.e. r = 0). According to ref. 7, the
leading edge of the tunneling crack propagating in the z debonded interface will be fully open when d/w< 0.24,
direction experiences mode 1 conditions. Let G, and the interface crack tip at the end of the debond is
denote the energy release rate averaged over the prop- subject to mixed mode conditions, as discussed for the
agating crack front. An energy balance accounting for asymptotic problem below. For 0.24 < d/w< 0.71, the
the release of energy per unit advance of the tunnel debond crack tip is closed and therefore in a state of
crack under steady-state conditions gives 2 wG,, as the pure mode 2. but a portion of the interface near the
work done by the tractions acting across the plane of main layer crack is still open. For d/w>0.71, the inter-
the layer crack in the plane strain problem as hose face is fully closed and the interface crack tip is in
tractions are reduced to zero from a. For the present mode 2. The top curve for the normalized mode 2
problems, this is the same as stress intensity factor in Fig. 8 applies to the frictionless

case. It was computed using the integral equation

G o- (a')do (3) methods outlined in Appendix A under the constraint
that the interface remains closed. The results are
"strictly correct only for d/w>0.71 (and agree with the

where i is the average crack opening displacement for results of ref. 7), but are only slightly in error for
the traction-free plane strain crack under monotoni- smaller d/w. The average crack opening displacement
cally increased remote .g. The elastic result for d= 0 6 needed for the tunnel crack calculations is shown in
(i.e. r = CO) is Fig. 9, where the top curve again applies to the friction-

less case.
," n - v2)o12(4) The role of debonding on stress redistribution is

2E seen in Fig. 10, where curves of the stress ahead of the
right-hand layer crack tip (normalized by the remote

The ratio of G,, to G,.," can be computed from the data applied stress a) are plotted for various levels of
in Fig. 4 by use of simple numerical integration. The debonding, all for the closed interface with r = 0.
result is plotted in Fig. 7. Increases of the steady-state Debonding clearly has a significant effect on lowering
release rate above the elastic value become important of the stress on the adjoining material just across the
when a/r exceeds unity. interface; more so than for plastic yielding of a thin
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dtw Fig. 10. Stress distribution ahead of the crack tip in the
uncracked layer across the interface for the case of no interfaceFig. 8. Norrm :ized mode 2 stress intensity factor for the debond- friction.

ing interface crack at several levels of interface friction stress to

applied stress.

the uncracked layer across the interface than plastic
6 - yielding of a thin ductile adhesive layer.

0I dV) OW As a digression, the mode I and 2 stress intensity
5 - Efactors are recorded for the open interface crack tip forH- the asymptotic problem of Fig. 6

4 - 2w

T/F00.1 K,= 0.399
K

3 0.15
and (5)

20.2 
K___= = O.322
K

The associated ratio of the energy release rate of the
I Iinterface crack tip to that of a mode l crack pene-

0 1 2 3 4 s trating straight through the interface without debond-
d/w ing is 0.263 when both the deflected tips and the

Fig. 9. Average crack opening displacement as a function of penetrating tip emerge from the main crack tip at the
debond length at several levels of interface friction stress to same applied K. These results correct results given in
applied stress. ref. 9 that were in error for the case of the doubly-

deflected interface crack. A complete set of corrections
ductile layer discussed in connection with Fig. 5. For of this energy release rate ratio for this case over the
sufficiently small diw, the debonded interface is fully full range of elastic mismatch across the interface is
open and the asymptotic problem for a semi-infinite given in ref. 10.
crack impinging on the interface applies, as shown in
the insert in Fig. 6. The stress redistribution is plotted
in Fig. 6, which shows that the stress ahead of the layer 5. The effect of frictional slipping on debonding and
crack tip is reduced below the level in the absence of tunnel cracking
debonding over a distance from the interface equal to
half the debond length d. Figure 6 also shows that Figures 8 and 9 show curves for the normalized
debonding appears to be more effective in protecting mode 2 stress intensity factor and the average crack
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opening displacement respectively in the plane strain value of r/o.) In the range of d less than -,'/4, the
problem for several levels of a constant friction stress r predictions are not expected to be correct since the
relative to a acting over the bonded interface. A con- interface undergoes mixed mode debonding and not
stant friction stress, as opposed for example to a mode 2 debonding. Thus, the details in the vicinity of
Coulomb friction stress, has been used by some work- the initiation of debonding are not correct. In par-
ers to represent the frictional forces exerted across ticular, the value of o(w)' 2/K, at which 6 begins to
slipping interfaces in composites. The purpose of the depart from 6c, (see Fig. 12) would depend on the
present limited study is to illustrate the effect of friction mixed mode condition for debond initiation. But once
in establishing the extent of debonding and its asso- debonding has progressed to the point that the inter-
ciated influence on the three-dimensional tunneling face crack tip is closed, the mode 2 criterion is appro-
energy release rate. Almost certainly, additional studies priate and the curves are accurate.
will be required before understanding is good, includ- In the absence of friction the debonding process is
ing studies with other friction laws. Some results for the unstable, since for a fixed a. K, has a maximum when
effect of Coulomb friction on the mode 2 interface d w and then drops slightly to an asymptote as d
stress intensity factor are given in ref. 11. increases further. Under a prescribed a, the mode 2

Let K1 denote the mode 2 toughness of the interface. debond would advance dynamically after it was
Attention will be concentrated on the behavior initiated. In this sense, the curves shown in Figs. 11 and
following initiation of interface debonding when the 12 for r=0 represent unstable debonding behavior.
debond length d is sufficiently large (i.e. greater than Friction stabilizes the debonding process, giving rise to
- w/4) such that the debond interface crack tip is in a monotonically increasing debond length and average
mode 2. Impose the debonding condition K, =-K, on crack opening displacement as the applied stress
the solution presented in Figs. 8 and 9. The relation- increases A nondimensional friction stress of the order
ships of the applied stress with the debonding length of r(w)12/Kc = 1/8 or more is required if friction is to
and the average crack opening displacement that result be important.
are plotted in Figs. 11 and 12. The two nondimen- The steady-state energy release rate for tunnel
sional stress parameters in these figures are the applied cracking can be computed from the curves in Fig. 12
stress parameter o(w)"2/Kc and the constant friction using eqn. (3). The results of this calculation are plotted
stress parameter r(w)}/2/Kc. (It is necessary to inter- in Fig. 13. As before, G,, is normalized by the value for
polate values between the curves of Figs. 8 and 9 to a layer crack with no debonding given in eqn. (4). The
arrive at the plots in Figs. 11 and 12, since a constant above remarks on accuracy in the vicinity of debond
value of r(w)/-2 /K, does not correspond to a constant initiation also apply to these curves. It can be seen from

Fig. 13 that debonding can significantly promote tun-
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Fig. 11. Relation of normalized applied stress and debond height Fig. 12. Relation of the average crack opening displacement and
at several levels of the non-dimensional interface friction stress: normalized applied stress at several levels of the nondimensional
the condition K, =K, is imposed, where Kc is the mode 2 inter- interface friction stress: the condition K: = Kc is imposed, where
face toughness. K, is the mode 2 interface toughness.
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6. Accounting for residual stress in the cracked layer

The role of a uniform residual tension a, = oR pre- Appendix A: Numerical approaches

existing in the layer that undergoes tunnel cracking can Two integral equation formulations were used in the
readily be taken into account in the various resultspresented above. For the purpose of discussion, let solution of the problems discussed. As these have been
pres benthe applied sortressreplacie notatisc ion, fr used by various authors to solve related plane straina, - oA be the applied stress, replacing the notation for prbesdtalofhemhdsrentgenee.I

a given above. The results in Figs. 3, 4, 7-9 and 11-13 problems, details of the methods are not given here. In
apply as they stand if o is identified with o^ + 0 R. The some cases, results were generated by use of bothresults for stress redistribution shown in Figs. 5 and 10 schemes as a check. The methods used for the prob-lems for the closed interface cracks at the ends of thecan also be used, with the following modifications. finite length layer crack (see Fig. 1(a)) are discussed
With a identified with oA+ aR, the results in Figs. 5 and first.
10 are correct for the change in ao., in the layer ahead The integral equations in method I are formed by
of the tip due to cracking if the numerical value of the representation of both the layer crack and the mode 2
ordinate is reduced by 1. To obtain the total stress 0 ersnato fbthtelyr rc n.temdordinathe layrin qucesb .Tion one u then toad sthess c .. interface cracks in terms of distributions of disloca-in the layer in question, one must then add the change tions. With reference to Fig. Il(a), let b,,(x) = -d6,./dx
and the stress a, existing in the layer prior to the tos ihrfrnet i.1a.ltbx
cracking event. denote the amplitude of the dislocation opening dis-

tribution extending from 0 to w along y= 0, and let
b,(y) = -d6,,/dv denote the amplitude of the disloca-
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symmetry on this distribution imposed. Similarly, the method, they can be used with other integral expres-
condition that a., - - r along x - w between 0 and d sions to compute the stress components at any point in
(with the corresponding shear conditions met along the the plane and the mode 2 stress intensity factor at the
other three legs of the H-crack) is end of the interface crack. For the cases in which K, is

d nonzero, the distribution b,(y) has an inverse square
f , , f , , root singularity at v = d. while it diminishes with the

,xb dy)b•( y) dy' = - 7) square root of the distance from v= d for the plastic
"yielding problems with K, = 0. The solutions do not

where H1( y, x') is oa,.(y) along x = w due to b,,(x') and rely on a precise incorporation of the correct behavior
H4(y, y') is oa,.(y) due to b,(y'), of the dislocation distributions at the corner point at

Method 2 uses the solution for the problem of four x - w on y = 0. A number of choices were made,
symmetrically placed dislocations interacting with a including representations that built in the correct

traction-free crack extending along the x-axis from - w lowest order functional behavior near this point.
to w. With H(y, y') denoting the shear stress .,.(y) The asymptotic problem for the semi-infinite layer
along x = w between 0 and d due to b,(y'), with due crack and the mode 2 interface cracks (see Fig. 1(b))
regard for the other three symmetrically placed dis- was solved using method 2. Now, H( y, y') is the shear
locations, the single integral equation for b, is stress along x = 0 between 0 and d due to just two sym-

metrically placed dislocations on x = 0 at ±y' interact-
d ing with a traction-free semi-infinite crack, and ora(y)
f H(y, y')b•y')dy'= -o"(y) - r (8) is the shear stress on x = 0 due to the K-field in the
0 absence of the interface cracks. The second asymptotic

problem discussed in connection with Fig. 6, in which
where oa.° 0(y) is the shear stress along x = w due to the the interface crack opens, is also solved using method
remote stress acting on the layer crack in the absence 2, but here both shear dislocations and opening dis-
of the interface cracks. locations must be used and the problem becomes a set

The kernels of the above integrals have Cauchy of dual integral equations. In all the cases involving
singularities. The dislocation distributions can be method 2, the kernel functions H can be obtained in
techniques. Once the distributions are known in either closed form by use of complex variable methods of
obtained by use of several well known numerical elasticity.



MATERIALS

Notch Sensitivity and Stress

Redistribution in CMCs

Thomas J. Maddn,* Thomas E. Purcell,t Ming Y. He* and Anthony G. Evans*

*High Performance Composites Center
Materials Department
College of Engineering

The University of California at Santa Barbara
Santa Barbara, CA 93106-5050

tPratt and Whitney

United Technologies
17900 Beeline Highway

Jupiter, Fl 33478



2

ABSTRACT

Fiber reinforced ceramic matrix composites depend upon inelastic
mechanisms to diffuse stress concentrations associated with holes, notches and
cracks. These mechanisms consist of fiber debonding and pullout, multiple
matrix cracking and shear band formation. In order to understand these effects,
experiments have been conducted on several double-edge-notched CMC's that
exhibit different stress redistribution mechanisms. Stresses have been measured
and mechanisms identified by using a combination of methods including: x-ray
imaging, edge-replication and thermoelastic analysis. Multiple matrix cracking
was found to be the most effective stress redistribution mechanism.

Mackin et Notch Smaiidvity and Stress Redisutrimu in CMCs
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1. INTRODUCTION

One of the major attributes of fiber reinforced ceramic matrix composites
(CMC's) is the existence of inelastic mechanisms that allow stress redistribution
around strain concentration sites such as notches, holes, attachments, etc. 14

These mechanisms, analogous to plasticity in metals, involve combinations of
matrix cracking and fiber pull-out.1,64 0 Recent research has identified three
principal damage phenomena that occur in the vicinity of holes and notches
(Fig 1): Class I, the propagation of a single matrix crack accompanied by fiber
fracture and pullout; Class II, the formation of multiple matrix cracks in the
absence of fiber failure; and Class EI, the formation of shear bands. Other
damage mechanisms may, of course, exist. The operative damage class depends
upon the magnitudes of non-dimensional parameters which combine interface,
fiber, and matrix properties.1 ,7,8,10 The intent of the present article is to provide
an experimental assessment of stress redistribution effects around notches in

CMC's that exhibit both Class II and Class HI damage behaviors.
CMC's exhibit a variety of tensile (Fig 2a) and shear (Fig 2b) stress/strain

curves,1 ,10 ,14 with varying amounts of inelastic strain prior to failure. One

purpose of the present study is to attempt to relate features of the inelastic strain
measured in tensile and shear tests to the stress redistribution behavior. This
would be achieved through an understanding of the operative inelastic
mechanisms and their role in governing the dominant mode of damage (Fig 1).

The importance of stress redistribution is manifest in the notch sensitivity,
which is a key factor affecting the practical utility of a structural material. 11,12

Notches and holes are a source of strain concentration. The corresponding stress
concentration depends upon the material response. One limit obtains for elastic
materials, where the stress concentrations are severe and result in extreme notch
sensitivity. When inelastic mechanisms operate, the stresses redistribute in
regions of large strain concentration and reduce the notch sensitivity. In some
cases, the stress concentration can be completely eliminated, resulting in a notch
insensitive material.3,13 More generally, the behaviors can be presented on a
notch sensitivity diagram11,12 (Fig. 3). In this diagram, the ordinate is a measure
of the tensile strength normalized by the un-notched strength, while the abscissa
is the notch/hole size (2ao) relative to the plate width (2b). Each line represents a
measure of the inelastic displacement permitted by the material near the notch

Mackin et ai: Notch Sensitivity md Strr. Redistribution in CMCs
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tip, prior to failure. This measure is given by the ratio of the notch length to the

length of the inelastic zone.1I

Related stress redistribution mechanisms are known to occur in polymer
matrix composites (PMC's), particularly upon cyclic loading. 13-21 Studies on

PMCs have established a precedent for a test methodology15"21 that can be used

to monitor damage in CMCs and thereby measure its effects on the stress

distribution. The methods include the use of Moire interferometry to measure

s distributions, thermoelastic measurements to assess stress distributions,1 5-
19 x-ray imaging with dye penetration to highlight damage,2,13 and replication

methods to examine matrix cracking.1 5-2 1 All of these methods may be

augmented by conventional optical and scanning electron microscopy. In the

present study, a combination of these methods is used to study stress

redistribution in three CMCs: SiC/CAS,3,22 C/C2 and SiC/SiC.10 The materials

and their properties are described elsewhere.2,3,10, 22

The experimental procedure given principal emphasis is the thermoelastic
emission method, which provides a measure of the stress distribution.15-19,23-26

A brief synopsis of this method is given in the next section, prior to a description

of the experiments and their analysis.

2. STRESS ANALYSIS BY THERMOELASTIC EMISSION

Stress Pattern Analysis from Thermoelastic Emission (SPATE ) is a
technique that relates instantaneous changes in the hydrostatic stress at any

location in a material to instantaneous changes in local temperature.23-26 The

method has been used extensively to evaluate stress distributions in monolithic

metals and polymer matrix composites.15 - 19 The underlylAig phenomenon

concerns the temperature change that occurs when an elastic body is subjected to

hydrostatic deformation under adiabatic conditions. The fundamental

thermodynamic relation for the temperature change T and its dependence on the

hydrostatic stress rate 6kk, is given by (see Appendix):23-30

KmP'To+p0Co } (1)
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where Km is the isothermal bulk modulus, C, is the specific heat at constant

volume, P is the bulk thermal expansion coefficient, P0 is the density, and To is

the mean temperature. The denominator in Eqn (1) is dominated by the term in

density and specific heat, resulting in a useful approximation,

' o-]kk (2)

Typically, the material constants are combined to define a thermoelastic
'constant,' ic given by,

poC, (3)

In the SPATE method a sinusoidal stress input is used, which creates a

thermal response at both the first and second harmonics. The temperature

change, AT, at the first harmonic, is given by,20 '25

AT = kToAoksin (cat) (4)

where co is the frequency, Aukk is the hydrostatic stress amplitude, and t is time.

A key feature of thermoelastic emission is that the spatial variation in

temperature, AT(x,y), is related to the hydrostatic stress distribution, AOk(xy).t

Moreover, when matrix damage occurs, such as microcracks, the properties

which influence K, (namely po, Cv, and 0) are unchanged and eqn (4) still

applies.

For typical values of the imposed stress range, Aakk, the expected

temperature changes for CMC's are between = 0.1°C and 0.01 1C. Very sensitive

measurements are thus required. Furthermore, to satisfy the adiabatic

assumption, the thermometry must be in thermal equilibrium with the test

specimen. To satisfy these requirements, recent experimental techniques use

t For a composite, the material constants that relate stress and temperature involve combinations of the

properties of the fiber and the matrix, leading to anisotropy in the thermoelastic 'constant', K. The

magnitude can be obtained either by calibration or calculation. 22,23

Mackin et ah Notch Sensitivity and Stress Redistribution in CMCs
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the principle of black body radiation and infrared thermometry, wherein the

radiant photon flux from a specimen is measured by a detector sensitive to

infrared radiation.*23,24 In practice, the detector response is the sum of the
photon radiance due to the thermoelastic effect, that due to equilibrium radiance,

and the background. Improvements in signal to noise are made by averaging
the sample many times at a given location. This is accomplished by locking the
detector data acquisition onto the frequency of the applied cyclic stress. A

commercial system which embodies these concepts' has been used to measure
thermoelastic emission from the test specimens. The system consists of a
mercury doped CdTe detector affixed to a liquid nitrogen cooled dewar. The
detector is housed within a camera body to reduce the effect of spurious
radiation. A collimator and lenses at the inlet to the camera body focus the
emitted IR onto the detector. The IR emitted from the sample is measured over a
spot size of 400gtm diameter at a working distance of 25cm and 0.001'C
temperature sensitivity. Before testing, specimens are coated with a thin layer of
commercial flat black paint to provide uniform emission from the sample
surface. Background ER is reduced by placing a flat black card behind the
sp.cimefl.

The exreriments are conducted by applying a 10HIz, uniaxial cyclic load,
creating a 10Hz fluctuation in the thermoelastic response. The frequency is
chosen to minimize the effects of thermal conduction from the measurement
zone during the measurement time, approximating adiabatic conditions.23,24

The maximum load is usually chosen to correspond to a stress less than the
elastic limit, while the minimum is chosen to retain specimen alignment. A lock-
in amplifier controls the data acquisition system by locking the detector output to
the frequency of the applied load. The phase lag is automatically adjusted by
locking into the peak signal difference at the test frequency. Locking into the
applied cyclic load performs two basic functions: It correlates the thermal signal

to the applied stress, and it eliminates the effect of absolute temperature changes
that may be occurring in the specimen.

0 Typical IR detctors have a band gap of - 0.1eV, corresponding to photon wavelengths <14 microns.

t SPATE 9000 IR imaging system by Ometuon

Macin et al: Notch Snsitivity and Stress Redistribution in WCs



7

3. EXPERIMENTAL PROCEDURES

Test coupons were fabricated from panels of 0/90 composites of C/C,

SiC/SiC and SiC/CAS. These materials and their properties are described in

detail elsewhere.2,3,10,22 Representative tensile and shear stress-strain curves are

shown in Fig 2. The chosen composites exhibit a broad range of behavior. In

tension, the C/C is nearly linear whereas the SiC/CAS has substantial non-

linearity. Moreover, in shear this trend is reversed.

Double edge-notches were cut into the sides of the test coupons using a

diamond blade, resulting in a nominal notch root radius of 250jtm, and having

relative notch depths, 0.33.ao/b< 0.5. Aluminum tabs were bonded onto the

ends of the test coupons for gripping purposes. The specimens were aligned and

clamped using hydraulic grips in an Instron universal test machine with a

50,0001b load cell.. A strain gage was attached at a location remote from the

reduced section to allow monitoring of the far field strain. The strain gage was

connected to a dynamic strain amplifier, the output of which was used to

calibrate the thermal emission.

Each test was interrupted at various points along the stress-strain curve in

order to assess the stress distribution, as well as the development of damage

around the notches. The stress was obtained using the thermoelastic emission

procedure, described above, whereby the temperature distribution provides a

map of the hydrostatic stress at the surface of the specimen (Eqn 4). Stress

changes elicited by damage appear as changes in the temperature distribution. A
'stress concentration factor' (SCF) associated with the notches was computed

from the thermoelastic images by taking the ratio of the local to far field

temperatures. The 'stress concentration factor' is defined as (Eqn 4)

SCF = AcakkJO = ATIIL
Fwarjoied ATfa field (5)

As damage is introduced into the specimen, the SCF changes, and serves as a

measure of stress redistribution.

Damage was characterized using both radiographic procedures and

acetate tape replicas. The radiographs were obtained as follows: While under

Mackin et at Notch Saistivity and Samss Redisuibution in CMCs
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load, a zinc iodide penetrant was dispersed onto the specimen. 2 ,13 The

specimens were then unloaded, removed from the grips, and placed into an x-ray
system. The penetrant enters into the damaged region and provides absorption
contrast for an x-ray image of the damaged region.2 Acetate replicas were
obtained while the load was maintained in order to hold the matrix cracks open.
Sections of replication tape were cut and held over the notch root region, and a
small amount of acetone applied above the tape. The replicas were dried,
removed and examined using optical microscopy.f Combinations of damage
imaging and thermoelastic emission provide a pictorial view of damage
evolution and its effect on stress redistribution.

4. RESULTS

4.1 SPATE Calibration

Before proceeding with thermoelastic measurements, a SPATE calibration
experiment was conducted on an edge notched steel specimen. The notches were
milled into the sides of the sample for precise control over the notch root radius.
Loads were used that ensure an elastic response everywhere in the specimen. A
low resolution full field SPAIE scan (Fig 4), combined with line scans,
demonstrate the thermal response. In these images, the highest temperature
difference is at the notch root, with a continuous decrease in temperature with
distance away from the notch. + For purposes of analysis, the temperature field
is calibrated to the strain gage response in the far field by comparing
thermoelastic and strain gage signals and adjusting the SPATE output
accordingly. Several items are notable: (i) The specimen was not perfectly
aligned, resulting in bending stresses. This is evident from the slope of the line
scans both through the far field and the notches. (ii) There are fluctuations in the
far field signal (10% of the signal). These arise from polishing scratches,
variations in surface emissivity, and thermal fluctuations in the background. (iii)
Edge effects appear on scans made in the vicinity of the notch and at the sample
edges. The consequence is that a finite edge region, approximately 400pm in
width, cannot be analyzed. The edge effect arises for two reasons: First, when

t Assistance in replication was provided by D. Brodnicky at Pratt and Whitney.

t The resolution of the grey scale images is an artifact of photographic reproduction, and is not

indicative of the system resolution.

Mackin et al: Notch Semitivity and Samss Redisabation in CMCs
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scanning near an edge, the detector spot is partially off the specimen. Second,
as the specimen is cyclically loaded, the edges of the specimen move relative to
the detector, adding unacceptable noise levels to the signal.

Stress concentration factors are derived from the temperature
measurements by comparing the temperatures at the notch root with the
temperature in the far-field (Eqn 5). Finite element (FEM) solutions (Fig 5) reveal
that oxx near the notch root is about equal to the applied stress, while uyy is

between 3 to 4 times larger The thermoelastic signal, which depends upon the
sum, oxx and Oyy, isthus dominated by oyy near the notch. The experimental
SCF is superposed onto the finite element results (Fig 5). Upon noting that the
spot size is 400pun, the SPATE measurement correlates satisfactorily with the
stress concentration calculated by FEM.

4.2 CMC Measurements

Measurements made on the notched C/C material provide SPATE images
obtained at two peak load levels (Fig 6a). These are accompanied by a
radiographic image of the same specimens 2 (Fig 6b). The C/C material develops
shear bands perpendicular to the notch which are comprised of multiple matrix
cracks, characteristic of a Class M system2 (Fig 1). Both SPATE and radiographic
images illustrate this effect. The SPATE scan (Fig 6b) reveals a dramatic
elongation in the notch root field, coincident with the development of the shear
bands. Such bands form in this composite because of its relatively low shear
strength (Fig 2b). Line scans connecting the notches (Fig 7) establish that there is
a reduction in the magnitude of the notch root stress concentration as the shear
bands extend. The line scans are overlayed with a net-section stress line to better
illustrate changes in stress concentration. The results are quantified by plotting a
measure of the stress concentration factor (SCF), eqn 5, as a function of shear
band length, I (Fig 8). The oxx stress at this location near the notch should be
approximately equal to the applied stress (Fig 5). Consequently, this ratio of
temperatures is primarily a measure of the ayy stress concentration ahead of the
notch. The initial SCF is quite low compared with that measured on the steel
specimen. This difference is attributed to machining damage that has already
changed the local consititutive properties. Anisotropy effects may also be
involved. Nevertheless, it is evident that the stress concentration factor

Mwckin et ak Nowh Sesitivizy and Streus Redisuibution in CMCs
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diminishes as the shear band length increases, consistent with finite element
calculations 2 (fig 9).

A similar series of experiments conducted on the SiC/CAS material
revealed different characteristics (figs 10-11). The SPATE images (fig 10) indicate
that the zone of highest temperature moves away from the notch root toward the
specimen center as the peak load increases. At the highest load, the temperature is
essentially uniform across the net section (fig 11), implying that the stresses are
also uniform and about equal to the net section stress. Such observations are
consistent with the notch insensitive behavior found for this material (fig 2).
Surface replicas revealed a multiplicity of matrix cracks emanating from the
notch (fig 10), with no evidence of shear bands in this material. These
observations classify the SiC/CAS material as a class H composite. Stress
redistribution is achieved through the inelastic tensile deformation provided by
multiple matrix cracks.1,10

SPATE images and line scans obtained for the SiC/SiC material (Figs 12
and 13) show some stress redistribution. However, stress concentration persists
throughout. The damage mechanism operating in this material is presently
unknown. Whichever mechanism operates, it is dearly less effective in stress
redistribution than either the shear band or the multiple matrix cracking
mechanisms that occur in the C/C and SiC/CAS composites, respectively.

5. ANALYSIS AND INTERPRETATION

The combination of SPATE measurements with x-ray and surface
replicated images indicate that matrix cracking damage, occurring as either shear
bands or multiple matrix cracks, modify the stress around notches. To further
understand the implications of the SPATE results, it is recalled that the
measurements are made at small stress levels, following the introduction of
damage at larger stresses. Consequently, the damage must influence the
stress/strain laws applicable at small strains. Unloading/reloading
measurements conducted in both tension and shear have indicated that the
unloading modulus diminishes as a consequence of matrix crack damage 1,10,22
(Fig 14). The damaged material would be located primarily ahead of the notch in
the SiC/CAS composite, but normal to the notch, within the shear bands, in the
C/C composite. The diminished modulus is regarded as the phenomenon that

Madcin et & Notch Snsitivity And Stress Redisuibution in CMCs
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causes the stresses inferred from the SPATE measurements to differ from the
elastic solution. It is proposed that the damage creates a gradient in the elastic

modulus, such that the stresses near the notch are reduced, as sketched in Fig 15.
Moreover, results for stress redistribution in materials subject to shear bands2

(Fig 9) indicate features comparable to the measurements performed on the C/C
composite. A more detailed understanding of stress redistribution would require
that SPATE measurements be made over a range of superposed mean stresses,
thereby illuminating the non-linear stress-strain behavior in the damaged
regions. Such measurements would provide constitutive relations that could be
used in stress redistribution calculations.

SUMMARY

SPATE measurements, in conjunction with x-ray and replica observations,
indicate the existence of damage mechanisms that result in local gradients in
elastic modulus. These gradients in modulus cause stress redistribution. The
magnitudes of these effects at small strains have been established from SPATE
measurements. These measurements have also revealed differing stress
redistribution behavior for each of the three composite systems, associated with
different damage mechanisms. The damage mechanisms themselves, have been
described elsewhere. 1-5 While the present study affirms that damage
mechanisms occur, which change the local properties of the composite, 31-33
quantitative assessment of stress redistribution requires further research. Most
importantly, the stress redistribution which arises at peak loads will be more
extensive than that found at small strain by the SPATE measurement, because of
the additional contributions to the inelastic strain caused by sliding at the
fiber/matrix interface.1 ,6,10,22

Mackin et aJk Notch Senitivi4y and Stress RedisUibution in CMCs
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APPENDIX

The Thermoelastic Phenomenon

Thermoelasticity describes the relationship between applied stress and

temperature in an elastic body. For completeness, a derivation of the

thermoelastic effect is given, based on formulae presented by Budiansky,28 and

similar to that proposed by Wong et al.2 The change in internal energy in a

body is given by the first law of thermodynamics 29

dU=dQ+PdV (Al)

where the change in internal energy, dU, is related to the heat conduction, dQ,

and the work performed on the body, PdV. Upon combining with the second

law,2 the rate of change of internal energy becomes

0U-it + Va~ii WA)

The dilatationalt and deviatoric strain-rates are related, respectively, to the

corresponding stress rates by2 -29

and

2Gm (A4)

where Km is the adiabatic bulk modulus, Gm is the adiabatic shear modulus, and

P is the coefficient of thermal expansion,. The derivative of the Helmholtz free

energy is given by

P =f V -TS -St (AS)

t For couvenien= the subscript kk is anined on both tho dilsamiora stess and saum.
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which, with eqns (A2) to (A4), gives

P = V( + sijij) - ST (A6)

or

dF = V(de + sijdi 1 )-SdT (AW)

Since the strain and temperature are independent variables, both the free energy
and entropy may be expressed as functions of these variables,

F = F(e,ei, T) (W8)
S = S(eeijT)

From elastidty,

o = Kme- KmfT (A9a)

and

sii
S2Gi (A9b)

Equations (AW) and (AW), in conjunction with (A8) can be used to derive a

functional relationship between changes in stress and changes in temperature.

The total differential of the Helmholtz free energy and the entropy become,

aF 8F CFdF = ý& ~+ +d +•dTaeiji aj (A10)

and

=as as as
-d + rr
d =•di• (All)
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Comparing (AIO) and (A7), the partial derivatives of the Helmholtz free energy

are

aF= dF•a Vo= V, iaF = Vsij and F = -S
(A12)

These relationships can be used to determine the partial derivatives of the

entropy. Noting that F is a perfect differential27-30 and

S CF
sT

the partials of S can be determined as follows:

Sas ()F a aF9= ý;--ffi - nae (A13)

Moreover, from relations (A12), by assuming constant volume (small strain), and

elastic constants independent of temperature,

Ze (A14)

such that,

as GaO
ffi -T (A15)

Using (AMa) as the functional form of a, the partial with respect to temperature is

(A16)

leading to

ac =(A17)
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In a similar manner,

•S = __s

Si(A18)

The differential of heat is related to the specific heat at constant volume, and
temperature through28

dQ= poVCvdT (A19)

and with entropy defined as29

TdS =dQ (A20)

then,
as =povcV
5T T (A21)

Using (A17, A18 and A21 ) in (All) gives an expression for the total differential
of the entropy in terms of the independent variables

dS +- T +K.Vd(T (A22)

Multiplying by T, and taking the rate of change of the differentials gives

TS = POVCt + IMPVT6 (A23)

Under adiabatic conditions,

TS -=0.
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Then, equation (A23) reduces to an expression for the dilatational strain rate as a

function of temperature,

Kmn[T (A24)

Using (A3) in (A24) gives an expression for the hydrostatic stress rate (eqn 1)

This equation relates temperature changes in an elastic body to changes in the
hydrostatic stress. The second term in brackets is much larger than the first,
resulting in a simpler approximation that, typically, differs in value by less than

0.6%, (eqn 2)

The important assumptions that lead to this equation are: (i) a reversible process,
(00) adiabatic conditions, (iii) e, eij and T are independent variables, (iv) constant
volume (small strains), and (v) the elastic constants do not change with

temperature.
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LIST OF FIGURES

Figure 1. Three classes of damage have been identified in CMC's,: (i)
propagation of a single Mode I crack (Class D, (ii) multiple matrix
cracking (Class I), and (iii) shear band formation (Class III).

Figure 2. Representative stress-strain responses for each of the composites
tested in this study: (a) tension and (b) shear.

Figure 3. Notch sensitivity depends upon the size of the inelastic zone, as

measured by the ratio of notch depth to inelastic zone size: A is the
notch sensitivity index. 1,11,12

Figure 4. A SPATE scan on a model test specimen shows the stress
concentrating effect of the notches. The asymmetry is due to
specimen misalignment, resulting in bending stress, as evidenced
in the slopes of both the notch root and far-field line scans.

Figure 5. A comparison of FEM calculations and SPATE measurements of the
stress concentration factor. Edge effects during scanning preclude
measurements within an edge zone equal to the spot size (4001am).
The effect of averaging over a40O01m spot size near the notch root is
shown by the dashed lines.

Figure 6. Images taken during interrupted testing of the C/C composite
shows the development of shear bands. (a) Image before shear
band formation. (b) After shear bands have reached I/ ao - 1,
(c)-x-ray dye penetrant image I /ao- 1 (courtesy of F. Heredia and
S. M. Spearing).

Figure 7. SPATE line scans indicating the temperature distribution across
the net section. (C/C specimen).

Figure 8. The stress concentration factor (SCF) varies with shear band size
(I /ao). The linear curve-fit is representative of the trend, but can
not be used to extrapolate beyond the existing data.

Figure 9. Stress redistribution along the notch plane caused by shear bands.
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Figure 10. SPATE images of the SiC/CAS composite following loading to
(a) 30MPa, (b) 50 MPa and (c) 90 MPa. Corresponding images with
contour lines are shown in (d), (e) and (f). These images show stress
redistribution due to multiple matrix aacking.

Figure 11. SPATE line scans extracted from the full field scans shown in
Figure 10 graphically illustrate stress redistribution across the net
section.

Figure 12. SPATE images obtained for the SiC/SiC material.

Figure 13. Overlay of line scans connecting the notches (a) as-received

specimen, (b) after loading to 160MPa.

Figure 14. The unloading modulus decreases with increasing stress. 10

Figure 15. A gradient in modulus E(x) results in stress redistribution ahead of
a notch.
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Abstract-Matrix cracking, fiber breaking and interface sliding cause nonlinear deformation in

fiber-reinforced brittle matrix composites. When a notched sample is loaded in tension, the

nonlinear deformation usually localizes around the notch, spreads the stress in the ligament more

evenly, and thereby leads to a higher fracture load. We simulate the interplay of two deformation

mechanisms: a tensile band ahead of, and shear bands perpendicular to, a notch. The shear

deformation evens out the stress distribution in the tensile band, and the strength of the tensile

band sets the extent of the shear deformation. Each band is simulated by a traction-deformation

law. The work of fracture is computed from a small-scale inelastic problem, and the fracture

loads of notched samples from a large-scale inelastic problem. Several important conclusions

emerge from the simulation. First, weak shear bands can substantially increase the work of

fracture. Second, the fracture loads of notched samples are well correlated with the unnotched

strength, work of fracture and notch size, by a formula independent of the shear band description.

The results of the simulation are used to explain the available experimental data, and to suggest

an evaluation procedure for notch-sensitivity.

1. INTRODUCTION

Compared to ductile alloys, fiber-reinforced brittle matrix composites fracture at small

strains, being limited by fiber breaking strains. Yet stresses around notches in such composites

can be reduced by localized deformation. Three deformation mechanisms have been identified

I1-41: i) multiple matrix cracks with no fiber breaking, ii) a tensile band consisting of broken

fibers pulling out from the matrix against friction, and iii) shear bands consisting of matrix

microcracking and fiber bending. In this paper, we simulate the interplay of the tensile and the

shear bands, and explore features in the results that simplify mechanical evaluation of these

composites.

The simulation is motivated by recent experiments on carbon matrix composites [3,4]

Figure 1 illustrates a notched sample loaded in tension, with shear bands extending perpendicular
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to the notch prior to fracture. The bands consist of microcracks in the matrix and bending of the

fiber bundles. General fracture breaks the ligament ahead of the notch. Visible on a fracture

surface are broken fibers and damaged matrix. For a given composite with a range of notched

%ample geometry and size, fracture ioads are found to be well correlated by a toughness value K,

(about 15 MPa m11 for a carbon matrix composite tested in [31).

The conclusion of these experiments is better appreciated as follows. Consider a

specimen containing a notch of length 2a, which is small compared to the specimen width,

subjected to remote stress 6. Denote Emax as the stress that causes the specimen to fracture, and

evaluate the "toughness" according to Kc = FmU 4imr. Repeat the experiment for several

specimens of different notch sizes. Although the fracture load dmaz decreases as the notch size

increases, KC is found to be nearly independent of the notch size. The applicability of Linear

Elastic Fracture Mechanics is puzzling in this case because the specimens at the onset of fracture

have large inelastic zones. In particular, the height of the shear bands often exceeds the notch

size. Our simulation will resolve this paradox.

Shear bands in polymer and metal matrix composites have been modeled by various

authors [5-71. In this paper, the tensile fracture process is modeled by a traction-deformation

law, Fig. 1, which is more appropriate when fiber pullout significantly contributes to fracture

resistance. The near-notch shear bands do not cause fracture, but increase the tensile fracture

load. The shear bands redistribute the stress in the tensile band, but do not change the bridging

law.

2. THE MECHANICS MODEL

General conditions under which composites develop near-notch shear bands remain

unclear. Shear bands are usually observed in a composite having higher failure strain in the

matrix than in the fibers, e.g. in certain carbon, polymer and metal matrix composites.

Presumably multiple matrix cracks ahead the notches are suppressed, and the shear bands set in
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as an alternative deformation mechanism. Depending on matrix material, either microcracking

or plastic flow facilitates the shear deformation. Shear bands have been observed in

unidirectional, woven and cross-ply composites.

The crack-bridging model has been applied to any composite in which the matrix

fractures before the fibers. However, in composites having larger matrix failure-strains the

matrix fails after the fibers. In many such materials, the complicated deformation process-fiber

breaking and matrix tearing-is still localized in the vicinity of the fracture plane, and the

material a small distance away from the fracture plane remains undamaged and deforms

elastically. Consequently, the deformation process can still be simulated by a nonlinear traction-

deformation law. In the following, the relevant results of the tensile bands without shear bands

are summarized.

2. / Previous Results on a Tensile Band

A tensile band is represented by a continuous array of nonlinear springs obeying a

relation between the tensile stress a and the deformation &

a / a0 = A68 / 60). (1)

Here ao is the bridging strength, and 60 the limiting deformation beyond which stress

vanishes. The sample is elastic outside the band; 6 is defined as the excess deformation in

addition to the elastic deformation of the composite. The dimensionless function Z describes

the shape of the curve, rising when 8 is small, reaching the peak and then softening (inset of

Fig. 1). The stress is assumed to be bounded everywhere in the sample, i.e. the fracture

toughness at the tip of the tensile band is ignored. The simplification is justified if the crack tip

toughness is small compared to the fracture resistance due to the bridging, which is usually the

case for ceramic matrix composites.

The bridging law has been deduced from the properties of the fiber, matrix and interface

for composites where matrix fractures before fibers [8,9]. Composites having higher matrix
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failure-strains are less studied, but important features can be inferred. The bridging strength a0

must be the volume-fraction average of the matrix and fiber strengths. The fiber strength

dispersion and the interface sliding resistance [10,111 remains to be important, because they

govern the thickness of the deformation band, which in turn governs the limiting deformation

60. In this paper, relation (1) is prescribed as a part of the constitutive description of the

material.

Consider an unnotched sample subjected to a deformation-controlled load. The sample is

simulated by two blocks connected by an array of springs that represent the tensile band. The

two blocks deform elastically, and the springs deform uniformly according to (1). The peak load

is reached at a0 . After the peak load, the band continues to deform as the two blocks elastically

unload. The sample fractures when 8 reaches 30, and the stress vanishes everywhere. During

such a stress history, the two elastic blocks return to their original states, so that the work by the

external load up to fracture is solely consumed by the tensile band. Thus, the work per unit area

of the tensile band is

=o Jodb = abo IJ x(4)cg. (2)

This work of fracture of the springs scales with both the bridging strength and the limiting

separation.

Next consider an infinite sample containing a semi-infinite notch. The two blocks are

now connected by the nonlinear springs ahead the notch, but the notch faces are free of traction.

Remote from the notch tip and the tensile band, the stress field is unaffected by the nonlinear

springs, and is therefore identical to the stress field around a sharp crack tip in a purely elastic

block. That is, the remote stress field scales as r-112 , with r being the distance from the notch

tip. The amplitude of the remote stress field is given by the stress intensity factor K. Of course,

the stress field near the notch tip is nonsingular. The energy released when the notch extends a

unit distance is given by F0 [12], and the critical K, for fracture is related to F0 by 1o = K 2 / E.

Here E is Young's modulus of the elastic blocks, assuming, for simplicity, that the blocks are

isotropic.
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Now consider an infinite sample containing a finite notch of length 2a, subjected to

remote stress a; see Fig. 2, the inset at the upper right corner. If the notch size is sufficiently

large, an annulus exists around the notch tip, inside which the stress field is still approximately

the same as the K-field. In this case, the stress intensity factor can be computed from the

applied stress by the classical formula K = Ca4 . The fracture load, am-., is reached when K

= Kc. Consequently, for a sufficiently large notch, the fracture load is given by

FTmaX = (roE / ira)'1 2 . This is the Griffith condition plotted in Fig. 2.

When the notch is small, nowhere in the two blocks can the stress field be the same as the

K-field. As such, the stress intensity factor cannot be defined for two blocks connected by

springs with a small notch. Yet the fracture load can be computed as follows. When subjected to

the stress Fr, the two blocks separate more at the tip of the notch than at a position ahead the

notch tip. This nonuniformity causes the notched sample to fracture at a stress E below the

bridging strength o"0. Analyzing the problem coupling the elastic blocks and the nonlinear

springs, one detenmines the applied stress E as a function of the separation at the notch tip 81r

For the generic bridging law shape in Fig. 2, the applied stress F first increases with the notch

tip separation 5, reaches a peak it., and then drops. This peak stress is the fracture load.

Figure 2, referred to as a notch-sensitivity diagram, summarizes the calculated fracture

loads for several bridging law shapes [13,14]. For each bridging law shape, the peak stress is

a0, the limiting displacement is 80, and the work of fracture r 0 is the area under the bridging

law as given by (1). Each bridging law defines a basic material length FoE / a6 which, roughly

speaking, scales the size of the zone where the nonlinearity is important. The notch size a is

measured in units of this material length in Fig. 2. As evident from the diagram, the results do

not vary significantly with the bridging law shapes. As discussed before, the Griffith condition is

the exact asymptote for large notches, but incorrect for small notches. Independent of the

bridging law shape x, the same limit is approached at each end of the diagram: the fracture load

approaches the unnotched strength dmn, = ao when the notch size is small, and is given by the
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Griffith formula when the notch is large. Accordingly, it is not surprising that different bridging

laws give similar results.

The following formula interpolated from the two limits gives the approximate fracture

loads for any finite notch size

Emax/ ao=[ + sa /(17E/ 2)]'/ 2  (3)

This equation is also included in Fig. 2. Given a composite with a fixed material length

roE / a02, the fracture load will not be significantly reduced by the presence of a notch provided

the notch size is small, say a / (r0E I/ 2) < 0.1. On the other hand, the Griffith formula is

approximately valid when a / (FOE / a0•) > 2.

2.2 Simultaneous Tensile and Shear Bands

In what follows we investigate the interaction between the tensile and the shear bands.

Since the shape of the bridging law is of secondary importance, we will study this interaction by

assuming that the tensile band deforms like an array of linear springs: /

a = k8. (4)

Here k is the spring stiffness and, as before, the spring breaks at stress a0. The work of

fracture of an unnotched sample with a uniformly deforming tensile band is

ro = a(2 /2k. (5)

We will assume that the stress is bounded everywhere; that is, the stress intensity factor vanishes

at the tip tensile band. For the linear spring model, this implies that the tensile band spreads over

the entire ligament ahead of the notch.

The interaction between the tensile and the shear bands can be understood as follows.

The separation of the tensile band is nonuniform near a notch. With the linear law used in this

simulation, the sample fractures when the stress at the tail of the tensile band reaches a0. At

this point, the stress at the other positions in the tensile band is below a"0 , so that the failure load

is less than the net cross-section times ar0 . The shear bands will make the separation of the
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tensile band less nonuniform, and thereby give rise to higher fracture loads. On the other hand,

the extent of the shear bands is governed by the strength of the tensile band. For example, in the

limiting case when the tensile band is vanishingly weak, the shear band will not form before the

composite breaks.

To assess the general validity of certain conclusions, two descriptions of the shear bands

will be used in this paper. In the first description, Fig. 3a, the shear stress a, and the sliding

displacement 8s are connected by

as= ks•8. (6)

The spring stiffness k, is a material constant. The stress intensity is assumed to vanish at the

tips of the shear bands. For the linear spring model, this requires that the shear bands extend to

the sample boundary, Fi>,. 3a.

Shear experiments with a carbon matrix composite show that a constant resistance

prevails over almost the entire shear deformation process [4]. This will be used as a second

description in the simulation, i.e. a constant shear resistance T is prescribed in the shear bands,

Fig. 3b. It is assumed that T is a material property invariant with sample size and geometry.

For this description, the vanishing stress intensity at the tips of the shear bands will determine a

finite hight of the bands, H, Fig. 3b.

As before, the elastic response of the composites is taken to be isotropic. The shear bands

are assumed to remain closed, so that the normal displacements are continuous across the shear

bands. All numerical calculations were done with the ABAQUS finite element code, under plane

stress conditions, with Poisson's ratio v = 0.3. The solution is also applicable to plane strain

conditions if Young's modulus E everywhere is replaced by E/(l - v).

3. RESULTS

3.1 Work of Fracture

Figure 3 shows a semi-infinite notch in an infinite sample. The stress field remote from
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the notch tip is prescribed by the square-root singular solution, scaled with the intensity factor

K. The fracture toughness K. is attained when the stress at the tail of the tensile band a,

reaches the spring strength Go. Once K, is computed, the work of fracture of the composite (as

opposed to that of the springs) is computed from

= K' / E. (7)

The ratio r/r0 indicates the role of the shear bands in toughening the composites.

First use the description that the shear bands behave like linear springs. Linearity and

dimensional considerations dictate that

a, = aoK(k / E)112 . (8)

The dimensionless number a depends only on ks/k, which is computed using finite elements.

In the above, K = Kc when a, = a0 . A combination of (5), (7) and (8) gives

r / ro = 2 / a (9)

Figure 3a plots the calculated results. As anticipated, stiff shear bands add little to the work of

fracture, but weak shear bands add substantially.

Next use the description that the shear deformation is resisted by a constant stress T.

The system is linear in both K and T so that

a, f=KH-t 2 + f 2T, (10)

K11 = f3K - f 4TH1"2. (11)

Here K11 is the mode II stress intensity factor at the tip of the shear band, and fs are

dimensionless numbers depending on Hk/E. With K11 = 0 and a, = ao, one rearranges (10)

and (11) as

T ao ==1/ (f2 + fAf4 If 3 ), (12)

r /T= 2(Hk I E)/(fy + f' 3 / f4 2 . (13)

Once the coefficients ji are computed by usi, - finite elements, the above defines a relation

between F7/I-0 and T/ao via the parameter HkIE. This relation is plotted in Fig. 3b. Again, the

shear bands contribute little to the work of fracture if the shear resistance T is large.

That the curves in Figs. 3a and 3b turn sharply may be an artifact due to the model used
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in the paper. In reality, the inelastic deformation is not localized to the mathematical planes. In

some composites, the shear bands may involve more intricate micro-mechanisms, which cannot

be described by a simple traction law [5]. These uncertainties will persist in any model that

predicts work of fracture. However, the situation becomes much better when one tries to

correlate the fracture loads of notched samples with an experimentally measured work of

fracture, as demonstrated in the following.

3.2 Notch-Sensitivity

Consider a sample containing a finite notch loaded in tension by stress F, Fig. 4a. The

notch size 2a is small compared to the sample width, so that the sample is assumed to be

infinite. The fracture loads in the absence of the shear bands are given in Fig. 2; the

enhancement due to the shear bands is studied in this section. For composites with the linear

stress-deformation laws (4) and (6), both tensile and shear bands extend to the sample boundary.

The stress in the tail of the tensile band varies linearly with the applied stress:

a1 =flui. (14)

Here 03 depends on both ks/k and ak/E, which is computed using finite elements. Note that

ak / E = a / (2rOE / a2) for the linear spring. For the linear spring, the applied stress 6 reaches

the fracture load, 6 m., when a, reaches the bridging strength cr0 . Consequently,

6ma.. / ar0 = I / fl, which is plotted in Fig. 4a. The fracture loads depend on shear property ksIk.

Weak shear bands relieve stress concentration and thereby lead to high fracture loads. The

diagram conveys the essentials of the role of the shear bands, but is difficult to use in practice

because of the uncertainties in the shear band characterization discussed previously.

Figure 4b plots the same results, but using the total work of fracture I of semi-infinite

notches calculated previously to replace 10. The new diagram shows that curves for different

values of ks/k collapse onto one curve. That is, the fracture loads are insensitive to the

constitutive details of the shear bands, so long as the total work of fracture r is used to scale the
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diagram. The outcome is not unexpected because, again, the curves for different values of k~Ik

have the same asymptote for either small or large notches. For small notches, the fracture load is

close to the strength of the unnotched composite, 6 mx = ao. For large notches, the fracture load

is given by Griffith formula, am. = (FE/ ira)1/2. Indeed, the fracture load curve in Fig. 4b is

identical to that in Fig. 2 computed using the linear springs.

Encouraged by this finding, we then use constant T for the shear bands to confirm the

general validity (Fig. 5a). The tensile stress at the notch tip and K,, at the shear band tip are

linear in E and T:

a, =gF+g2 T, (15)

K,,H-'2 = g3 C - g4T. (16)

The dimensionless coefficients gi depend on aklE and HkIE, and were calculated by using

finite elements. With K11 = 0 and or, = a0 , one finds from (15) and (16) that

T / ao = 1/(g 2 +g1g 4 /g 3), (17)

ama/O=l (g1 + g 2 g3 1 g4). (18)

For a given notched composite, akiE and Tlao are fixed, the shear band height H at the onset

of fracture ir determined from (17). Using this height, one can plot (18) in the form of Fig. 5a.

The fracture loads vary with shear resistance T, as anticipated. The same results are plotted in

Fig. 5b, replacing F0 by F computed previously. Once again, the notch-sensitivity diagram is

almost independent of the shear band property T/ao. For small TIo, our calculation have

shown that the height of the shear bands H can be several times the notch size a at the onset of

fracture.

Note that the fracture load curves in Fig. 4b and 5b are identical, even though the shear

properties are different. Given the uncertainties in characterizing nonlinear deformation near the

notches, a pragmatic approach to determine fracture loads in notched samples should be

valuable. As suggested by the present simulation, two measurements are required for a given

composite: the bridging-strength ao from an unnotched sample, and the work of fracture F
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from a sample containing a "large" notch. The latter may be readily accomplished in practice

because the Griffith formula Umx" (FE / ira)1"2 is valid so long as a / (FE / "2)> 2. This

condition applies even when the height of the shear bands is larger than the notch size. The

fracture loads for a sample containing a finite notch can then be obtained from Fig. 2 or Eqn. (3),

with F0 replaced by the measured F.

An example using th- experiniental data in [3] will illustrate the procedure. For a

carbon-carbon composite, the unnotched strength is measured to be a0 = 300 MPa, the fracture

load is omax = 100 MPa for a sample with notch size a = 6 mm. Upon fracture, the height of

the shear band is slightly larger than the notch size. Using the standard calibration for a crack in

an infinite sample, one finds that the fracture toughness is Kc = Emr. Y-a= 14 MPa m10. (The

finite sample width only gives a small correction.) Also note that a / (rE / 2)- a / (Kc / ao)'=

2.4, so that the notch is large enough for the Linear Fracture Mechanics to apply. The fracture

loads measured from samples containing notches of a = 1, 2, 4, 6 mm indeed are well

represented by the notch sensitivity diagram; see Fig. 5a in Ref [3].

4. CONCLUDING REMARKS

Three important conclusions are drawn from this simulation. First, shear bands in brittle-

matrix composites can substantially increase work of fracture, which in turn reduces notch-

sensitivity. Second, regardless of the relative height of the shear bands H/a, Linear Fracture

Mechanics is valid if the notch size is sufficiently large, a / (K, / ao) > 2. Third, for samples

containing small notches, the fracture loads are well correlated with the work of fracture, the

unnotched strength and the notch size by

ax / 70 = [1 + *(To /

Note that the formula is independent of the shear band properties and the relative height Hla, but

is restricted to samples having small notches compared to the width. The conclusions are

reached by two shear band descriptions with wide range parameter variations, and are expected
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to have much more general validity. For example, finite samples with either crack-like notches

or holes may be similarly treated. That is, the notch sensitivity diagrams presented in [ 131 can be

used with materials with shear bands, with r reinterpreted as the total work of fracture.
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FIGURE CAPTIONS

Fig. I A drawing of a notched sample, loaded in tension, damaged with a tensile band and

two shear bands.

Fig. 2 Notch-sensitivity diagram.

Fig. 3 Fracture energy ratios showing the contribution of the shear bands: a) shear band is

an array of linear springs, and b) shear band has a constant resistance T.

Fig. 4 Notch-sensitivity diagram including shear bands with linear stress-sliding law. a)

The notch size is normalized by the work of fracture of the tensile band, 10 . b) The

crack size is normalized by the total work of fracture, r.

Fig. 5 Notch-sensitivity diagram including shear bands with constant resistance. a) The

notch size is normalized by the work of fracture of the tensile band, r0. b) The

crack size is normalized by the total work of fracture, F.
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Wed, Jan 12, 1994



Ga

0*00tes0l band000 0

00 08

00 00 0T

0Figure 1

Mu~.UL~~~.4U ~0 .OUt1.



44- 0

0*

wr
L1U

0 ~ CcJ

C14

0 O0~0

00

1~ 1- 0 0c



(40 S0

Go
S, c0

-~ cU

00

0c



.Ago-

(ID
cs*

0



100
ccm"

co~ (D
cs ci o

0.0/xlew~



l o w I I

"x 0Lfl- CD

0 a

- _ _ _-_

// 0

UU

a

1a

I

a

c;I



____ ____ 0

UU

00

U,

eci

Lf0
c; 2.0

01 
UBW



U, Ic'U)

~ODLO

IN

I t1E

IL

/00

LOEI
I./ ewc



MECH-224

ON LARGE SCALE SLIDING IN FIBER-REINFORCED COMPOSITES

Z. Cedric Xia, John W. Hutchinson, Anthony G. Evans* and Bernard Budiansky

Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

and *Materials Departnent, University of California, Santa Barbara, CA 93106, U.S.A.

Division of Applied Sciences
HARVARD UNIVERSITY

Cambridge, Massachusetts 02138

November 1993



ON LARGE SCALE SLIDING IN FIBER-REINFORCED COMPOSITES

Z. Cedric Xia, John W. Hutchinson, Anthony G. Evans* and Bernard Budiansky

Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

and *Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.

ABSTRACT

A critical examination is made of the use of the line-spring model to represent fiber bridging

of matrix cracks in the analysis of failure phenomena in fiber reinforced brittle matrix

composites. Attention is focused on composite systems designed to undergo fiber debonding and

sliding when matrix cracking occurs. For most composites of this class, it is found that the

distance along the fiber within which sliding occurs is often too large to justify use of the line-

spring representation. A model which allows for large scale sliding (the LSS model) is proposed

and applied to three problems: a matrix crack emerging from a semi-infinite unbridged through-

crack in a uni-directional fiber reinforced composiFe, the same problem for the finite length

unbridged through-crack, and matrix cracking of a cross-ply composite. Primary emphasis is

placed on the stress concentration in the bridging fibers. Predictions from the LSS model are

compared with those from the line-spring model. In general, the line-spring model is found to

overestimate the stress concentration in critically located fibers. A discussion of the significance

of the lower estimates of the stress concentration factors is given for several composite systems.

NOMENCLATURE (partial listing)

cf, cm fiber, matrix volume fractions (cf+ cm=l)

E longitudinal Young's modulus, =cfEf+cmEm

Ef, Em fiber, matrix Young's moduli

I length of the sliding zone

Rf fiber radius

Of tensile stress in the bridging fibers

p=cfof smeared-out bridging stress in the bridging fibers

r interface sliding shear stress
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1. INTRODUCTION

High strength ceramic fibers are employed to enhance the fracture performance of ceramic

matrices. A well designed composite can sustain matrix cracks traversing the composite.

Unbroken, debonded fibers then provide bridging restraint across the matrix crack faces. After

the matrix is fully cracked, the intact fibers continue to carry additional load. Eventually the

fibers fail and the composite ruptures, but the load-bearing capacity may substantially exceed the

stress for matrix cracking.

An approach to studying matrix cracking and fiber stress concentrations in fiber-reinforced

composites has emerged, wherein a line-spring model is used to represent the effect of intact

fibers bridging matrix cracks. If the radius and spacing of the fibers are small compared to other

length scales characterizing the deformation of the composite, the bridging-fiber forces can be

smeared-out and treated as stresses provided by springs connecting crack faces. A bridging law

is then used to relate the spring stress to the crack opening displacement. If the fiber-matrix

interface has negligible debonding energy, if initial stresses are ignored, and if a constant

frictional sliding stress z is assumed, the following nonlinear bridging law results from an

elementary shear lag analysis:

p(x) = P (I)

where p(x) is the smeared-out fiber bridging stress and 8(x) is the effective opening displacement

along the bridged region. The nonlinear spring constant p is given by

f= 4cf. 2EfE}2 (2)

where the notation is defined in the Nomenclature. The distance along the fiber I within which

sliding occurs on each side of the crack surface is related to the smeared-out fiber bridging stress

by

I(x) = cmEmRf p(x) (3)
2c fEt

The bridging law is consistent with I greater than several fiber radii.'

1 Reader should be aware that the bridging law (1,2) is not exactly the same as some in the earliest papers on the
subject. The formula for P given by Marshall, Cox and Evans (1985) and Marslall and Cox (1987) is missing a
fab r [c, mFmE]'12. Marshall and Cox (1988) give a formula identical to that given here. McCarney's (1987)
formula is also the same as the present one, apart from a factor l-v2. The transverse interacion between the fiber
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The bridging law can be used together with integral equation methods to formulate and solve

various problems for stresses in bridging fibers and stress intensity factors of matrix cracks.

Thus, for example, it was in this way that Marshall et a! (1985) and McCartney (1987) obtained

conditions for the spread of a matrix crack from an initial, finite length bridged matrix crack.

The critical stress required to propagate the matrix crack approaches the steady-state cracking

stress for a semi-infinite bridged matrix crack, originally obtained by energy-based analyses by

Aveston, Cooper and Kelly (1971) and Budiansky, Hutchinson and Evans (1986). Marshall and

Cox (1987) and Budiansky and Cui (1993) have used the line spring approach based on (1) to

study the effect of an anbridged through-crack in a uni-directional composite on the subsequent

propagation of a matrix crack extending from the through-crack. These authors also determine

the maximum stress experienced by the bridging fibers as the matrix crack spreads. Given the

strength of the fibers, they estimate the ultimate strength of the composite as a function of initial

through-crack flaw size. With much the same aim, Xia and Hutchinson (1993) have used the

line-spring approach to investigate matrix cracking and fiber stress concentration in cross-ply

composites.

Line-spring models have become valuable tools in the micromechanics analysis of various

toughening mechanisms (see Bao and Suo (1992) for a review). These models replace bridging

elements by an equivalent traction-displacement law applied as a boundary condition along the

crack line. For the fiber bridging model, the constituent properties of the composite and the

interface are nicely incorporated into one single spring parameter, P. In addition, the spring

model allows use of well established analytical techniques to solve crack bridging problems. As

convenient and powerful as the line-spring model appears to be, suspicions have arisen that

results obtained from this model for fiber stress concentration in the presence of through-cracks

may be unduly high. Specific experimental evidence giving rise to these suspicions is cited in

Section 6 of this paper, where it is noted that the ultimate strength of some cross-ply composites

should not be as high as experimentally measured, given the stress concentration levels predicted

in the fibers by the line-spring model. It was this apparent discrepancy between theory and

and dh maorix due to Poisson conwaction con be appminmated in various ways leading to such minor variations in
the Jaw (see discussion in the Appeni of He et al (1993)). More recently, Meda and Steif (1993) proposed a
modificaion of the bridging law with a nonzero bridging sum as 6 becomes zero.
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experiment which motivated a critical examination of the line-spring model for this application,

and which led to the identification of large scale sliding (LSS) as one possible source of the

d cy.

The large scale sliding model is proposed in the next section, and a solution procedure using

this model is outlined. It is then applied to three representative problems in subsequent sections:

(i) the asymptotic problem for a semi-infinite through-crack collinear with a semi-infinite

bridged matrix crack (Fig. 1), (ii) a finite length through-crack with fully extended collinear

matrix cracks (see ahead to Fig. 5a), and (iii) a multiply cracked cross-ply laminate (see ahead to

Fig. 5b). For each problem, key parameters of the problem are identified and solutions based on

the line-spring model are obtained. The new LSS model is then applied to the problem, and the

results are compared with those from the line-spring model. For composite constituent

properties chosen within practical ranges, substantial reductions of stress concentration in the

most highly stressed fibers just ahead of the through-crack tip are predicted by the LSS model

relative to the line-spring model. At the same time, it is demonstrated that line-spring results are

applicable when the constituent properties are such that small scale sliding does occur. Summary

discussion is given in the last section, along with the appraisal of the experimental observations

alluded to above.

2. THE LARGE SCALE SLIDING MODEL

The uni-directional fiber-reinforced composite containing a semi-infinite through-crack with

a fully extended matrix crack will be used to introduce the LSS model. As shown in Fig. 1, the

crack is loaded by a remote, mode I field specified by the monotonically increasing stress

intensity factor K1. Plane strain conditions are assumed for the composite blocks, and the mode

I field is that for a crack in an elastically orthotropic solid. The primary quantity of interest is the

stress in the leading fibers just ahead of the through-crack tip, at x=O.

The line-spring model is indicated in the lower left-hand corner of Fig. 1. The traction-

separation law (1) and (2) is applied as a boundary condition along the x-axis, for x>O. In region

A, outside the sliding zone, the solid is characterized by the orthotropic elastic behavior of the

composite, i.e. the matrix material reinforced by perfectly bonded, uni-directional fibers. A
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nonlinear integral equation for the distribution of the opening displacement 8(x) is formulated.

Solution of this equation provides both the opening displacement and the distribution of the

ste in the fibers where they cross the x-axis, ahead of the through-crack tip- Details of this

solution will be given in the next section.

The rationale for a line-spring approximation requires that the extent of sliding be small

compared to all relevant in-plane lengths. Only then can a sliding zone of finite width be

confidently replaced by an equivalent traction-displacement condition applied along a line. In

the present problem of Fig. I, there is only a single characteristic length parameter, described in

the next section. In the other problems, additional relevant lengths may be pertinent, such as the

length of a through-crack or, in the case of the cross-ply composite, the ply thickness.

The LSS model distinguishes between region B in which fiber sliding has occurred and

region A in which it has not. Denote the boundary between regions A and B by r, characterized

by the extent of fiber sliding I(x). This boundary is not known in advance but must be

determined as part of the solution process. If it is assumed that sliding is one-signed, consistent

with KI being monotonically increased, the load transfer from the fibers to the matrix, within B,

is known precisely. For a theory based on smeared-out fibers, the load transfer is equivalent to a

body force per unit volume given by

f 2cf (4)Rf

It acts in the sense shown in Fig. 1, required by symmetry with respect to the x-axis. Denote the

stress in a fiber at the line of the matrix crack on y=0 by of, and denote its value at the top of the

slipped region at y=1 by ofr. A simple shear lag analysis based on equilibrium of the fiber (see

Fig. 1) and compatibility of strain at the top of the sliding zone requiresor " (5a)
Rf

"C"= of (5b)
Ef E

These combine to give
=cmEMRf (0 (6)

2Ec 
f
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In addition to the body force f in region B, the sliding fibers exert a line load (load per unit

thickness per unit length in the x-direction) along r equal to cforV The one remaining quantity

needed to fully describe the behavior of the slipped segment of a fiber is its vertical displacement

vr at the top of the slipped region. It is related to the other quantities by

vr =l ,__Lf2) (7)

where, by symmetry, the vertical displacement of the fibers is zero along y-O for x>O.

The LSS model is posed as follows. Assuming that the location of r is known (it must be

determined by iteration), the sliding fibers in B may be regarded as separate entities from the rest

of the solid. Represent the remnant material in region B by a linear elastic material whose

properties are those of the matix with cylindrical holes rather than fibers. These are constrained

only in the transverse direction, because the fiber and matrix remain in frictionless contact. This

replacement will be specified more precisely below. The material in A is assigned the

orthotropic moduli of the composite with bonded fibers. The loads on the planar body

comprising regions A and B are the remote Kj -field, the vertical body force f in B, and the

vertical line load cfo4 acting along r. The remnant matrix in B has zero tractions acting along

the matrix crack line (y=O, x>0). The sliding fibers in B are governed by the three equations

(5a), (6) and (7) and are described by four unknowns, of, a?, e and yr. The deformation of the

sliding segments of the fibers is coupled to that of the remaining body by requiring that vr

coincide with the vertical displacement of the body on 1, i.e. vr(x) = v(xt (x)).

In a given iteration with I(x) regarded as known, the system of equations for the body in

regions A and B, together with Eqs. (5a) and (7) for the sliding fiber segments and the coupling

condition on r, specifies a solution for all field quantities, including the stresses in the fibers. In

general, however, this solution will not be consistent with Equation (6) specifying the vertical

extent of the zone of sliding. Given oa from the current iteration, Eq. (6) can be used to

generate I(x) for the next iteration. However performed, an iteration process must be used to

determine the location of Ir.
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Like the composite material in region A, the remnant elastic material in region B is

orthotropic with one axis of orthotropy aligned with the y-axis; transverse isotropy with respect

to the y-axis would be assumed for both materials in most instances. The moduli of the remnant

material in B are those of the matrix material alone, but containing cylindrical holes with freely

sliding fibers. Since the composites being considered in this paper are assumed to have a

residual compression acting across the fiber-matrix interface, the sliding fibers in region B

continue to constrain the behavior of the remnant matrix by frictionless contact. Various

methods are available for estimating the moduli of the remnant material. The one employed for

the present problems will be mentioned in the next section. For the problems investigated in this

paper, the main quantities of interest are rather insensitive to details of the elastic properties in B.

In fact, it was found that the moduli of the material in A could be substituted for those in B with

little consequence. The significance of this substitution is that the problem for the combined

regions A and B becomes elastically homogeneous, opening up such LSS problems to solution

by analytical methods which could not otherwise be used.

In this paper the LSS problems have been analyzed by accounting for the different elastic

properties in regions A and B. A finite element method has been used for this purpose. Most

aspects of the implementation of the model in a finite element code are standard. It is convenient

to regard the sliding fibers in region B as a "fiber sheet" which has a Young's modulus cfEf in the

y-direction and all other moduli (including shear moduli) taken to be zero. The sliding stress r

acts on the fiber sheet as the body force f but in the direction opposite to that on the remnant

matrix. The fiber sheet has zero vertical displacement along the x-axis and is connected to the

planar body along r. The fiber sheet representation is completely equivalent to equations (Sa)

and (7). As already mentioned, (6) is used to update the location of r for the next iteration when

o° has been determined.

3. A MATRIX CRACK EMERGING FROM A SEMI.INFINITE THROUGH-CRACK

The problem addressed in this section is an asymptotic problem in which a matrix crack has

extended from the tip of a semi-infinite through-crack which is loaded by a remote mode I field

with stress intensity K1. Two sub-problems are considered: the problem mentioned in connection
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with Fig.l where the bridged matrix crack extends to infinity, and a version of the same problem

where the matrix crack has finite length am. The emphasis in the first problem will be on

determination of the stress distribution in the fibers where they bridge the matrix crack. The

bridging stress of the leading fibers will also be of concern in the second problem, along with the

stress intensity factor at the tip of the matrix crack. These quantities will be computed using both

the line-spring model and the LSS model. The problem of Fig. 1 for the fully extended matrix

crack is considered first.

A closed form expression can be readily obtained for the bridging stress of the leading

fibers, po0 p(O), as predicted by the line-spring model based on the bridging law (1). Application

of the J-integral to connect the remote field to the opening along the crack faces gives

J = =J 0)p(8)d8 (8)

Here E=E/(l-v 2) where E is the Young's modulus of the composite for stressing parallel to the

fibers , v is the Poisson strain ratio of transverse contraction to axial elongation, and A is an

orthotropy factor. This factor, which depends on cf and on non-dimensiopal moduli

combinations specifying the properties of the uni-directionally reinforced composite (such as

Ef/Em) has been presented by Budiansky and Cui (1993). Substitution of the bridging law (1)

into (8) yields

Po , 4AE } (9)

Determination of the distribution of the bridging stress, p(x), for the line-spring model

requires the formulation and solution of an integral equation. These procedures are now well

established; therefore, the equation and the numerical analysis used in its solution will not be

recorded here. The analysis employed has been used by Xia and Hutchinson (1993) to study

similar equations. The integral equation for p(x) can be put in non-dimensional form using two

quantities: the bridging stress at the tip, po, and a quantity with the dimensions of length,
2

d =(10)
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This is the only length parameter in the problem. Numerical results for the bridging stress p(x)

normalized by po are plotted as a function of x/d in Fig. 2 as a solid line; note that the bridging

stress p is cgff. The curve in Fig. 2 is universal in the sense that there is no additional parametric

dependence. Included in Fig. 2 is the classical inverse square root stress distribution,

Kl/(2xx) / 2, specifying the remote field, which takes the formp/p 0 = (2/3)213 /,2x(x/d).

Note that the length quantity d characterizes the transition to the classical field, with any

significant difference from it disappearing for x greater than about l.Sd. The length of the

sliding zone at the tip will be compared to d in the assessment of whether LSS conditions pertain.

Now consider the large scale sliding model of this problem. It is convenient to use the two

quantities po and d defined above. The formula (6) relating the slip length to the stress in the

fibers along the line of the matrix crack (y=0) can be rewritten as
1

I(L) cf Ef E p(x) (01)

d 3) CmEmAE PO

where now p(x) = cf o(x). The body force f is given by
I

P0= 3•i cm2Em2AE (12)
d 2) cfEfE2

and the remotely applied stress intensity factor is linked to aO and d by
2

K, G ()3 P.,rd (13)

It follows from (I 1)-(13) that, according to the LSS model, the stress distribution in the

bridging fibers, normalized by po, will depend only on x/d, in addition to the non-dimensional

moduli parameters characterizing the composite, such as Ef/Em, and the fiber volume fraction cf.

In all the numerical examples presented in this paper the Poisson's ratios of the fiber and the

matrix are taken to be the same and equal to 0.2. In the four problems studied in this paper, we

have used Hill's (1965) self-consistent results for the transversely isotropic elastic properties of

the composite in region A. The moduli in region B have also been represented as transversely

isotropic and have been determined using the same self-consistent equations, but replacing fibers

by cylindrical holes for the purpose of estimating the axial modulus, the Poisson's ratio relating

the transverse and axial strains, and the longitudinal shear modulus. The transverse modulus and
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Poisson's ratio relating the two transverse strains were taken to be the same as those of the

composite with bonded fibers. This approximately accounts for the constraint afforded by

contact across the fiber/matrix interface. The transversely isotropic properties were used to

generate the plane strain moduli quantities needed in each of the problems studied here. The

LSS model is now fully specified.

Numerical calculations were carried out for a wide range of Er/Em and cf (with vf-vm=0.2).

To appreciate the numerical results, consider the ratio of the extent of sliding of the fibers at the

through-crack tip to d as predicted by the line-spring model, i.e. (11) with p(0)=po,
1 1

(0) cfEMAE 3(14)

For typical values of the parameters appearing on the right hand side of (14) the ratio of sliding

length to d will not be small compared to unity. Only materials with small 4 will give rise to a

small values of this ratio. It will be seen that if 4 is not small the LSS predictions will differ

appreciably from those of the line-spring model. This is illustrated by the LSS stress

distributions for Ef/Em=1 and various cf, covering a range of 4, in Fig. 2. The LSS distributions

progressively approach the distribution of the line-spring model for decreasing 4. But of the

examples shown, agreement arises only for 4--0.05 corresponding to the unrealistically small

fiber volume fraction cf = 0.05. Fig. 3a presents LSS results for the stress in the fibers just ahead

of the through-crack tip. The results are presented as the ratio (cff )LS /(cfof )M, where

(cfof)sm=po is the line-spring model prediction. This ratio reflects the extent to which the LSS

prediction is lower than the line-spring prediction for the most severely stressed fibers. For all

practical values of Ef/Em and cf, the line-spring model overestimates the fiber stress

concentration substantially. Fig. 3b reveals a remarkable near-collapse to a single relationship of

all the numerical results in Fig. 3a when they are plotted as (cfof)LSs /(cfof)I= versus 4. The

solid line in Fig. 3b is an empirical curve fit to the numerical data. For this problem, Fig. 3b

clearly shows that the parameter 4 provides a measure of the degree to which LSS predictions

differ from the line-spring predictions. In turn, by (14), this confirms that the necessity of

invoking an LSS approach is tied to the magnitude of the ratio of the sliding length at the

through-crack tip to d.
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A selected set of the above numerical computations with the LSS model were repeated with

only a change in the elastic moduli in region B. We found very little sensitivity in the

predictions for the fiber stresses to the details of the moduli in B. An excellent approximation to

the results presented above were obtained by taking the moduli in B to be the same as those in A.

Evidently, the essential difference between the LSS and line-spring models lies in the modeling

of the spatial aspects of the load transfer from the fibers and not in complications of the modified

moduli in region B. The finite height of the sliding zone at the tip of the through-crack tends to

diffuse the stress concentration in the most highly stressed fibers.

Next consider a matrix crack of finite length am ahead the through-crack tip as shown in the

insert in Fig. 4. Now the emphasis will be on the stress intensity factor Kt at the matrix crack tip,

as well as the stress concentration in the fiber at the through-crack tip. The line-spring model

version of this problem was first solved for all values of am/d, and the results are presented in

Fig. 4. Fig. 4a displays K^ 1 as a function of normalized matrix crack length, am/d, while Fig.

4b displays the companion plot of ctaf/po for the fibers just ahead of the through-crack tip. Also

shown in Fig. 4 are numerical results obtained from the LSS model for Ef/Em=l and several

values of cf, again chosen to illustrate the approach to the line-spring predictions when cf (and

thus 4) becomes small. Differences between the predictions of the two models for the matrix

crack stress intensity factor are relatively small. The substantial reductions in stress

concentration in the lead fibers predicted by the LSS model compared to the line-spring model

are seen to be only weakly dependent on am/d.

4. UNI-DIRECTIONAL COMPOSITE CONTAINING A FINITE THROUGH-CRACK

AND FULLY EXTENDED MATRIX CRACKS

The second problem to be investigated using the LSS model is that of a uni-directional fiber-

reinforced composite containing a finite through-crack of length 2a with fully extended matrix

cracks emerging from each tip, as depicted in Fig. 5a. A remote stress a acts on the composite.

This problem was previously studied by Budiansky and Cui (1993) by means of the line-spring

model in an effort to determine the tensile strength of the composite in the presence of crack-like

flaws. Determination of the stress concentration in the leading fiber ahead of the through-crack



-12-

tip has special interest, because failure of the leading fibers will precipitate failure of the

composite.

Define the stress concentration factor (SCF) for the leading fibers at the through-crack tip as

=CfA, (15)
a

where cfaf is again the smeared-out bridging stress of the leading fibers. Since the through-crack

is not bridged by fibers, ). will exceed unity. The line-spring version of the problem is again

obtained by formulating and solving an integral equation. In accordance with the analysis of

Budiansky and Cui, the solution for X is fully characterized by a single non-dimensional

parameter, 1I, defined as

3Rcf 2EfE 2 at (16)
c. 2EM2AE Rfa

The relation between X and i1 obtained from the numerical solution of the integral equation is

plotted in Fig. 6a as the solid line. A remarkably accurate approximation to this result is given

by

ý, = T1%(17)

shown as the dashed curve in Fig. 6a (obtained from Eq. (12) of Budiansky and Cui).

The LSS model is similar to that developed for the previous problem. The slip length in (3)

is now normalized by the half-length of the unbridged through-crack and written as

t(x) = 3xcfEfE I p(x) (18)

a 2c,E,AE Tj a

and the body force f is expressed as

f 2c 2E.,2A (19)
a 3xcEE 2 (

It can now be shown from a non-dimensionalization of the governing equations for the LSS

model that the SCF, X, depends on 1i and on the non-dimensional parameters such as Ef/Em and

cf specifying the composite.

There are two length quantities in this problem: the half-crack length a and the measure d

which may still be defined as in (10), but now with K, = o./xi. To place the need for an LSS
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approach into perspective, the height of the sliding zone at the tip of the through-crack, 1(a), as

predicted by the line-spring model will be compared to both a and d. By (15), the approximation

(17), and (18),

L(a) cfEfE 3 ~ I 213

a cmEmAE 211 21(

A plot of 1(a)/(4a) versus il is given in Fig. 7a. Similarly, the line-spring estimate of the other

length ratio is

1(a) cfEfE +12/3 1q2/3cmEaA (317 11/2) (21)

and 1(a)/(4d) is also plotted in Fig. 7a. For a given value of the parameter k, the ratiol(a)/d is

nearly constant over most of the range of Y1, while 1(a)/a is largest for small Tj and falls off

gradually for large i1. Based on experience with the previous problem, LSS conditions are again

expected to depend on the magnitude of 4 as well as 11.

Results obtained from the LSS model for three values of cf with Ef/Em =1 (vf'Vm=0.2 ) are

included in Fig. 6a. The appreciable deviation between the two models with increasing cf is

clearly evident. The influence of a change in Ef/Em is displayed in Fig. 6b. It is apparent that

the discrepancy between the two models is considerable over essentially the entire practical

range of parameter space, with the LSS model predicting lower values of stress concentration.

The numerical data points from the two plots of Fig. 6 for 11=1, 5 and 30 are used to plot the ratio

(cfOf )Lss (cfof)Ws as a function of 4 in Fig. 7b. The lowest curve in this figure is the empirical

fit to the numerical results for the semi-infinite through-crack problem in Fig. 3b, which

correspbnds to the limit 11oo. It can be noted that for 11 ranging from about 5 to - the reduction

in the LSS prediction for the stress in the leading fibers relative to the line-spring model depends

primarily on
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S. A MULTIPLY CRACKED CROSS-PLY LAMINATE

The last of the problems to be studied is a fiber-reinforced cross-ply laminate with unbridged

through-cracks across the 900 plies connected by bridged matrix cracks in the 00 plies, as

illustrated in Fig. 5b. The plies are equally spaced with ply thickness 2t, and the applied stress

carried by the composite is a. The pattern is doubly periodic with the spacing between cracks

taken as 2L. The sequence of events leading to an idealized pattern such as that envisioned in

Fig. 5b is as follows. For the properties of a typical brittle-matrix cross-ply composite, the first

cracks to form as the applied stress is increased are those in the 900 plies which spread from

flaws and tunnel in the direction perpendicular to the plane of Fig. 5b. They extend all the way

across the 900 plies. At higher applied stresses, these cracks serve as flaws from which plane

strain matrix cracks spread across the 00 plies. The fibers in the 00 plies of a well designed

composite must survive this process if the composite is to display any appreciable "ductility".

The process just described has been analyzed in some detail by Xia and Hutchinson (1993), who

used a line-spring model to represent fiber bridging in the 00 plies. Their emphasis was on the

applied stress associated with matrix cracking and the stress concentration in the most highly

stressed fibers located at the ply interfaces. The doubly periodic cracking pattern shown in Fig.

5b is one of two patterns considered by Xia and Hutchinson to model crack interaction effects.

The issue to be addressed here is whether the stresses predicted by the line-spring model for the

most highly stressed fibers are unduly high, with clear implications for survivability of cross-

plies with fully developed matrix cracks.

The fibers at the interfaces between the 900 and 00 plies will experience the highest stress.

Again, define the stress concentration factor, X, for these most highly stressed fibers by (15).

The parametric dependence of this stress concentration factor has the general form

X = t.(E.•f , f (22)

where t/L is the crack density and 11 is now defined using t rather than a as

3Itcf 2EfE2 tZ (23)
= -cm 2E A Rfo
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The dependence of X. on vf and vm is left implicit; vf=Vm=0.2 is used in the calculations.

In the case that the fibers and the matrix have identical elastic properties, the cross-ply is

homogeneous and isotropic prior to any cracking. Solutions to the line-spring model version of

the problem can be obtained by the integral equation techniques used by Xia and Hutchinson

(1993). The results of the line-spring model for the SCF for the case t/L=0 are shown in Fig. 8.

Because all the load is carried by the bridging fibers in the 00 plies, X is never less than 2. The

stress concentration factors for the same problem obtained from the LSS model are also plotted

in Fig. 8 for three values of cf. The conclusion is that the line-spring model again overestimates

the SCF in the range of practical values, sometimes significantly so.

Consider next the effect of the crack density, t/L, on the stress concentrations in the bridging

fibers. An important consequence of multiple matrix cracking and sliding is the alleviation and

ultimate elimination of the stress concentration in the fibers in the 00 plies. Elimination arises

when the fibers are fully sliding (i.e., I = L across the entire ply), as shown by elementary

considerations of fiber equilibrium and stretching for the geometry in Fig. 5b. ^n accurate

estimate of the critical density of matrix cracks at which X drops to 2 is obtained by setting I = L

and p=2a in (3) giving

S cfEtt CmEmAE (24)
(crit CmEmRfO- 3=cfEfE

Stated differently, as the applied stress a increases, the matrix crack density increases until the

fibers become fully sliding. In this state, the stress in each fiber where it bridges a matrix crack

is given by af--2cF/cf.

Numerical calculations based on the LSS model have been performed for a representative

case of Ef/Em=l and cf=0.4. Results for =cfaf/da are plotted as a function of the crack density

t/L for different values of il in Fig. 9. The numerical results are connected by dashed lines to the

intercepts corresponding to first attainment of X=2 given by the formula (24). The accuracy of

the simple formula is evident. Indeed, the numerical solutions revealed that the sliding zone

approached the condition I = L fairly uniformly across the 00 plies, as assumed in the derivation

of (24).
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In summary, as the applied stress on the cross-ply is increased, leading first to tunnel

cracking in the 900 plies and then matrix cracking in the 00 plies, the stresses in the fibers at the

ply interfaces will be the greatest. However, as the applied stress and the matrix crack density

increase, the stress concentration facor for the fibers at the ply interfaces drops until matrix

cracking is saturated with full sliding. In this state, the fibers uniformly share the load and the

stress in the fibers at the matrix crack line becomes of=2a/cf.

6. THE EXPERIMENTAL SITUATION

The ultimate tensile strengths (Su) of many unidirectional and cross-ply CMCs have been

reported to conform with predictions based on global load sharing (GLS) (Curtin, 1991). The

GLS model considers that the load is distributed uniformly among all intact fibers. The CMC

materials that give good agreement with the GLS model include various SiC/C composites

(Heredia et al, 1992), SiC/CAS (Prewo, 1986) and SiC/CAS (Beyerle et at, 1992). Each of these

materials has the common characteristic that the interface sliding stress c is relatively small

(2<1<40 MPa). The situation has been comprehensively summarized by Curtin (1993). The

implication of this agreement for the present discussion is that the stress concentration in the

fibers is minimal at the failure loads, despite the presence of manufacturing flaws and matrix

cracks. Otherwise, the stress concentration would lead to premature fiber failure and ultimate

tensile strength values appreciably below the GLS predictions.

To further explore the situation, the preceding LSS model is used to evaluate the fiber stress

concentration for various of the experimental conditions wherein OLS predictions have been

found to apply. The most stringent test of the LSS model arises for cross ply laminates. For this

case, the unbridged crack dimension is the largest (the ply dimension 2t), resulting in

correspondingly large values of 11 (Eq. 23). Experimental information for several CMCs is

summarized in Table I. These experimental characteristics can be most readily compared with

the LSS model by using (24), with a=Su, to predict the crack spacing at which the stress

concentration in the fibers is eliminated. For all three composites, (/L)crit is about unity or less

(Table I). Crack spacings in CMCs almost invariably satisfy t/L>l prior to composite rupture

(Beyerle et al, 1992; Guillaumat, 1993). The applicability of the GLS criterion for the ultimate
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tensile strength is thus consistent with the predictions of the LSS model. One other factor is

relevant for the SiC/C composite, which gives the largest (t/L)aji (Table I). Processing flaws

tend to induce inter-ply shear cracks (Turner el a, 1993) which suppress matrix cracks in the 00

plies, while also eliminating stress concentrations in the fibers.

The comparison with experiments has emphasized the importance of large scale sliding in

governing the stresses in fibers within cross-ply composites, resulting in the applicability of

global load sharing concepts for predicting the ultimate tensile stress. Related arguments would

apply regarding the role of manufacturing flaws within the plies. Such flaws result in unbridged

cracks, which would be expected to introduce stress concentrations into the fibers. The line-

spring model and the LSS results taken together show that, where these stress concentrations

exist, they can be relatively small provided that 71 is less than about 3 (cf. Fig. 6), especially

when Ef/Em is large. The clear implication from (16) is that the material becomes more tolerant

to manufacturing flaws when the interface sliding resistance is low.
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TABLE 1

Propeertes of cross-ply CMCs

Matetial Em (GPA) (Wa Su (MPa) TI Cf OfIO (t/L)cri

SiC/C 20 10 340 90 - 2 1.03

SiCICAS 100 15 220 10 2 0.81

Sic/LAS 100 3 300 1 2 0.08

Ef -200GPa

Rf--7pm

cfu:0.4, cminO.6
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Fig. I. A semi-infinite, unbridged through-crack with a semi-infinite, collinear bridged matrix
crack. Conventions for the line-spring model and the large scale sliding model
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Fig.2. Bridging stress distributions ahead of the through-crack tip.
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Fig. 3a. Ratio of the bridging stress directly ahead of the through-crack tip as predicted
by the LSS model to that by the line-spring model (i.e., po given in (9)).
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Fig. 3b. Ile ratio in a) plotted against defined in (14). Ile solid line curve is an
empirical fit to the computed values.
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.8 - line-spring model

LSS model:
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Fig. 4 a). Ratio of the stress intensity factor of the bridged matrix crack to remote stress
intensity factor as a function of the normalized matrix crack length.

b). Ratio of the bridging stresses just ahead of the unbridged through-crack as a
function of the normalized matrix crack length as predicted by the two models.
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a). Finite length unbridged through-crack with collinear semi-infinite bridged matrix cracks.

i ~ 0p
0- 0
%o oofoeo-:0 :.

Os @ 0 9pe 00

1-o2 t .- 2 t -"-,2 t wl

b). Transverse section of a cross-ply matrix with a uniform distribution of unbridged

through-cracks in the 900 plies and bridged matrix cracks in the 00 plies.

Fig.5. Conventions
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a). The effect of varying fiber volume fraction in the L S S model.

3.5

- line-spring model

b2.6

'~ 2
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b). The effect of varying Ef/Em in the LSS model.

Fig. 6. Stress concentration factor for the bridging stress just ahead of a finite length
through-crack as a function of n1 defined in (16) as predicted by the two models.
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Fig. 7a. Normalized variation of the ratios of the height of the sliding zone at the tip
of the through crack, I(a), to the crack half-length, a, and the length quantity,
d, defined in (10), as predicted by the line-spring model.

0 .5 1 1.6 2

Fig. 7b. Ratio of the bridging stresses just ahead of the through-crack tip from the two
models cross-plotted against 4 for several values of TI.
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Fig. 8. Stress concentration factor for the bridging stresses at the interface between the 00
and 900 plies of a cross-ply composite as predicted h the two models for the case
t/L=O. The line-spring prediction depends only on '•, defined in (23); the LSS
prediction depends on il and on constituent paramen--rs such as cf and Ef/Em.

' ' v , ' I I ' , I r , , I # , I i , .

2.6 -- i7=3

-- e- I)I= lO e -

b 2.4

2.2

21
0 .5 1 1.5 2 2.5

t/L

Fig. 9. Stress concentration factor for the bridging stress at the interface between the 00 plies
and the 900 plies in a cross-ply composite as a function of crack density, t/L, as
predicted by the LSS model. The intercept with the horizontal axis is given by (24).
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ON THE TENSILE STRENGTH OF A FIBER-
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ABSTRACT

THE TENSILE STRENGTH of a fiber-reinforced ceramic composite containing a through-the-fiber flaw in the
form of a sharp crack is studied. The strength of a brittle unreinforced ceramic containing a sharp crack
of length 2a,. subjected to uniaxial load in the direction normal to the crack plane. is given by linear elastic
fracture mechanics as a, = Km/i/nao. where K,. is the fracture toughness of the material. However. for a
fiber-reinforced ceramic. the strength can only be determined on the basis of a full analysis ofcrack growth
in the matrix and the failure of crack-bridging fibers. The tensile strength of a flawed ceramic material that
is reinforced by fibers aligned in the direction perpendicular to the flaw surfaces is studied in this paper.
Crack-bridging fibers are assumed to slip relative to the matrix when a critical interface shear stress is
reached. The orthotropy of the composite produced by the presence ofaligned fibers is rigorously accounted
for in the analysis. The dependence of the composite tensile strength on fiber tensile strength, matrix
toughness, flaw-size and frictional shear stress at the fiber-matrix interface is determined and described in
terms of a universal set of non-dimensional parameters.

INTRODUCTION

Tnis PAPER IS CONCERNED with the tensile strength of flawed, fiber-reinforced ceramics.
On the basis of linear elastic fracture mechanics, an unreinforced brittle ceramic
containing a sharp, two-dimensional flaw of length 2ao, loaded in the direction
perpendicular to the faces of the flaw, has a tensile strength given by a, = Km/1I-n-ao,
where K. is the fracture toughness of the material. However, the tensile strength of a
fiber-reinforced ceramic can only be determined by a full analysis of a process involv-
ing matrix crack growth, frictional sliding along the fiber-matrix interfaces and failure
of crack-bridging fibers. We shall study the configuration shown in Fig. I, in which
a large, aligned-fiber reinforced ceramic body containing an isolated center flaw of
length 2a0 that cuts through the fibers is subjected to uniform remote tension in the
fiber direction. We define the tensile strength as the maximum applied stress the
composite can carry. and seek to determine this stress theoretically.

As in most previous studies the fibers are assumed to be held in the matrix by
friction: that is. sliding between the fibers and the matrix is suppressed only if the
interface frictional shear is less than some limiting stress r. The brittle ceramic matrix
is assumed to have a fracture toughness Km. and, except near the tip of the matrix
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Fici. I. Initial throueh-the-fibers crack-like flaw.

crack, the composite is treated as a homogeneous orthotropic elastic medium. The
effects of crack-bridging fibers are taken into account by means of a spring model
that embodies the additional assumption that the frictional resistance is low enough
to permit long slip lengths relative to the fiber diameter. Failure of the composite is
assumed to be associated with the fracture of crack-bridging fibers in the matrix crack
plane and we assume that there is no statistical variation in fiber strength. It is further
assumed that during the course of matrix crack extension leading to the final failure
of the composite. no longitudinal splitting or shear banding takes place in the vicinity
of the flaw tip. Both splitting and statistical variation in fiber strength may often be
important. but we neglect them in the present study.

*rhe mechanical behavior of both flawed and unflawed unidirectional fibrous com-
posites has been a subject of research efforts for the past two decades. Matrix cracking
without associated fiber failure is a distinctive tensile damage mechanism often
observed in unidirectional fibrous ceramic composites. The tensile stress required for
the steady-state propagation of a single. long matrix crack. known as the matrix
cracking stress. was first evaluated by AVESTON et a]. (1971) for the limits of large
and small frictional shear resistance at the fiber-matrix interfaces. More recently.
BUDIANSKY et al. (1986) extended these results to intermediate friction values. For the
limiting case of very long initial flaws. the solution for tensile strength has be,-n
obtained by BUDIANSKY and AMAZIGO (1989) on the basis of the small .scale hridtjilkq
condition, wherein (see Fig. 2) the bridge length Aa prior to fiber failure is very small
relative to the original flaw length 2a,. Although MARSHALL and Cox (1987) have
done extensive calculations for a composite with a flaw of arbitrary length. their
presentation is quite complicated and it is difficult to extract the desired general.
comprehensive results for the composite tensile strength from their paper.

There are many parameters governing the tensile failure of unidirectional
composites. such as fiber tensile strength. matrix toughness. flaw-size, fiber and matrix
elastic properties and fiber-matrix frictional shear stress. We shall, however, be able
to determine the composite strength a, in terms of just the following three basic stress
quantities that suffice to characterize the flawed composite:

"* a',. the critical applied stress for the initiation of matrix cracking:
" am,. the steady-state matrix-cracking stress: and
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2%o bridging fibers

Fiu. 2. Matrix cracking initiated from flaw tips.

c,. = ,S. the base fibers-onl\ ýrength.

where S is the fiber fracture strce.s and c, is the fiber volume concentration. More
precisely. the ratio of a, to any one of these stresses depends on only two ratios of the
three parameters. We start witti. qualitative description of the matrix crack growth
process that leads to failure of a flawed, unidirectional fiber composite.

DESCRIPTION OF FAILURE PROCESS

When a tensile stress a is applied to the composite in the fiber direction (Fig. I).
failure due to a pre-existing. through-the-fibers flaw that is normal to the fibers always
begins with growth of the crack in the matrix (Fig. 2). and ends with the fracture of
bridging fibers. Consider a typical curve of applied stress a vs matrix crack growth
Aa. shown schematically in Fig. 3. Such a curve would be governed by the requirement
that the average energy release rate along the matrix crack front must remain equal
to the critical value for matrix crack extension. In the absence of fiber failure, a typical

a C'rfmc

I I

Aaf Aap A afoo

FHu;. 3. Applied stress vs matrix crack growth.
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a-Aa curve has the following qualitative features. Crack growth starts when the

applied stress o reaches the initiation stress at,, which is essentially a crack-size
parameter. Due to the constraining effects of crack-bridging fibers. matrix crack
growth requires increasing applied stress a until a peak value a, is reached at Aa = Aa,.
Then the crack growth continues under decreasing applied a. which approaches
the steady-state matrix cracking stress am,,, asymptoticall) for Aa- :). (It is also
conceivable that for sufficiently small values of the initiation stress 0,. the applied
stress a may never reach a peak value at a finite Aa, but simply increases monotonicall%
as it approaches the steady-state matrix-cracking stress a,,,. asymptotically.) After the
matrix crack extends to infinity, the applied loading is supported entirely by the crack-
bridging fibers. and the vertical line at Aa = x indicates that further increase in a is
then possible.

Now consider fiber failure. Corresponding to each point on the a - Aa curve, there
is a smeared-out bridging stress distribution p(x) that has its maximum value p(ua,)
at the original flaw tip. Let Aaf denote the amount of matrix crack growth cor-
responding to the first-fiber-failure criterion p(a,) = cf S. and ifAaf < xr-. let a, be the
value of the associated applied load. Similarly, for the composite containing a matrix
crack that has grown to infinity from each edge of the original flaw (Fig. 4). let afm,,
denote the value of the applied stress a that gives p(ao) = crS. In both cases, we find
that maintaining the applied load o at the value that produces the first fiber failure
results ;n the failure on the matrix crack plane of all the fibers. Accordingly. the
strength o, of the composite is set by one of the following three conditions:

(i) the flaw-tip fibers fail during increasing applied stress at a value of applied stress
Or < aP and Aaf < Aa,; then a, = of;

(ii) the applied stress reaches the peak value or without the occurrence of fiber
failure, and op exceeds the value of the stress ofmc needed to produce flaw-tip fiber
failure when the crack is infinitely long; then a, = a,:

(iii) the matrix crack extends to infinity without fiber failure, and a. is less than
ofm,, then a. = or..

A complete determination ofthe strength of flawed composites will therefore require

FX

FIG. 4. Auxiliary problem: fully cracked matrix~.
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consideration of both the transient crack-growth problem of Fig. 2 and the auxiliar%
problem of the fully cracked composite shown in Fig. 4.

MATRIX CRACKING: INITIATION. GROWTH AND STEADY-STATE

Crack growtth criterion

We shall now discuss an appropriate criterion for matrix crack growth in an aligned-
fiber composite (Fig. I). What we seek is a criterion based on the stress-intensity
factor of a crack, bridged or unbridged. in an equivalent, uniform. orthotropic (but
transversely isotropic) material (Fig. 2). Consider the plane-strain energy release rate
. for a Mode-I crack lying in the plane of transverse isotropy. We can write

1 -- 2•g=-- Ki (I)AE

where K, is the conventional stress-intensity factor, E is the Young's modulus for
longitudinal tension normal to the crack plane, v is the associated Poisson's ratio (for
the ratio of transverse contraction to longitudinal extension), and A is a dimensionless
factor that characterizes the orthotropy. We will assume that matrix crack growth
occurs when the orthotropic energy release rate ., given by (1). satisfies the condition

T = 01- cf)q. (2)

where 1, is the critical energy release rate for fracture in the matrix, given by

Em (3)

in terms of the elastic constants of the matrix and its fracture toughness Km. The
factor (I - cf) accounts for the reduction in length of the edge of the matrix crack due
to the presence of the aligned fibers. It follows that the critical orthotropic stress
intensity factor Ki, for matrix cracking in the direction perpendicular to the direction
of fibers in unidirectional fibrous ceramic composites is

AE(I -vv)Kic = K.V f - -c,). 4

The magnitude of A as a function of the plane-strain compliances of an orthotropic
material follows from the formula given by TADA et al. (1985) for the energy release
rate (see Appendix A). If we let E. Er and Em be the Young's moduli of the composite,
fiber and matrix. respectively, and if we assume, for the sake of simplicity, that fibers
and matrices have the same Poisson's ratio Vr = %i = v, then E is given by the rule of
mixtures formula E = crEf+(I -cf)Ein. The dependence of A on EriEm and c, for
rf= r,, = 1/4 has been calculated on the basis of the HILL (1965) self-consistent
estimates for the effective compliances of an aligned-fiber composite having isotropic
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constituents, and the results for A vs c, are plotted in Fig. 5(a) for various values of
E, Em > 1. [These curves, and the associated formulas shown in Appendix A. correct
errors in the earlier work by BUDIANSKY and AMAZIGO (1989).] Figure 5(b) shows .4
for several values of E E, < I.

It is important to note that the parameter Kic is a material property of the composite
which encompasses information about matrix toughness. fiber volume concentration.
the orthotropy induced by unidirectional fiber reinforcement and the moduli of the
matrix and composites. In order to analyse the matrix cracking problem illustrated
in Fig. 2. we will be calculating the orthotropic stress intensity factor K, in the presence
of both external loading and crack bridging fibers, and then using K, = Kl(- as the
criterion for matrix crack growth.

Matrix crackinq initiation

For the special case of matrix cracking initiation in the configuration of Fig. i. we
can use the familiar formula K, = a /'7zao, which is valid for any anisotropic as well
as isotropic 2D elastic body (Sm et al.. 1965). Setting K, = K1,. gives the matrix crack-
growth initiation stress of the composite-one of our three basic stress parameters-
as

an = K, , n-a. (5)

Thus a, may be regarded as a crack-length parameter. decreasing like a, , Note
too. that for v,. = v, = v. the initiation stress a( is related to the corresponding strength
a,, of an unreinforced. cracked monolithic ceramic of the same crack geometry by

A(-1- c4 )E
A,= Em(,,,. (6)

Matr'i crack qroi-th

Equations connecting the applied stress, the bridging-fiber stress distribution, and
the matrix crack extension in the absence of fiber failure (Fig. 2) are presented in
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Appendix B. In this formulation the orthotropic stress-intensity factor is kept equal
to K1,. and the smeared-out bridging fiber stress p(xj is related to the displacement
r(x) of the upper crack face (Fig. 2) by

()= oi (x) (71

where the equivalent spring constant #1 is given by

I 4cý&E E2T}
R( I -cl )

where R is the fiber radius and T is the interface slipping shear resistance stress. This
relation follows from the assumption of "large" slip lengths adjacent to the crack
faces and neglect of initial stresses (AVESTON et al.. 1971. BUDIANSKY et al.. 1986:
BUDIANSKY and AMAZIGO. 1989). Various non-dimensional forms of the governing
equations and their numerical solution are discussed in detail in Appendix B.

Steady-staie matrix cracking

As already mentioned. when the matrix crack extension becomes large. the applied
stress a approaches the steady-state matrix cracking stress of AVESTON et al. (1971)_
Under the assumptions adopted, the steady-state matrix cracking stress am, is given
by

[6,',- I -,'•,)KrE, 113 E
[6f0- Im)Kj E (9)

L (I -c,-) RE I Em.

This is the second of the three basic stress parameters that define the composite: the
third one. we remind the reader, is just af, = cf S.

MATRIX CRACK GROWTH AND PEAK STRESS

The analysis and calculations described in Appendix B provide the connections
between the applied stress a and the matrix crack extension Aa (Figs 2-3) shown non-
dimensionally in Fig. 6. (These relations assume no fiber fracture. and so the basic
stress parameter c-S is not involved.) The abscissa aoGam is a measure of the original
flaw size. Note that for Aa 1,, > 0.5 the curves giving oaGm, vs oofiam,, cross each other
in the vicinity of = 0.95. It follows that the peak stress oa during crack growth
(see Fig. 3) must occur for Aapia, > 5 whenever the flaw size corresponds to
ara,,, < 0.94: but for ar,'o/, > I. Aap, a4 must be less than 0.5!

As discussed earlier, the strength a, of the flawed composite will. for some para-
metric ranges, be equal to the peak stress a. attained during matrix crack growth (Fig.
3). The results for oa obtained from the solution of the crack-growth equations are
completely described by the cur.e in Fig. 7. which shows trtrm as a function of
a, am,. (This curve is actually the upper envelope of the family of curves in Fig. 6.)
Note that aP is almost always very close to either a,, or mr. The accuracy to which
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FiG. 6. Applied stress for various amounts of matrix crack grorth.

we could calculate a. was much better than that of the associated values of Aun. It
may be that a. becomes equal to amc beyond a sufficiently large value of aU, 6m,.
corresponding to a monotonic increase in the value of the applied stress as the matrix
crack grows to infinity, but the numerical calculations do not resolve this point. In
any case, this is not important. and, as we shall see. parametric ranges for which the
strength o, is given by ap turn out to be small.

FULLY CRACKED MATRIX: AN AUXILIARY PROBLEM FOR aer,+

V c will find that there are significant ranges of the ratios of the three basic stress
parameters for which failure of the flawed composite occurs only after the matrix

2

0 I t I p p

0 .5 1 1.5 2

FiG. 7. Peak stress during matrix crack growth,
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NUMERICAL SOLUTION

.... APPROXIMATE FORMULA
V) .6

b .4 -

.2 -

0 5 10 15 20 25
4,Ad cisa. = ,,[<•,/(RS)]

Fi(-. I. Results for a,- fully cracked matrix.

crack has become infinite, and then a, equals the strength ," of the fully cracked
configuration sketched in Fig. 4. Clearly, am. is independent of the fracture toughness
Km of the matrix, but because of the bridging-fiber stress concentration induced at the
edge of the original through-the-fibers crack, afm, suffers a reduction from the base
fibers-only strength cfS it would have if the flaw were absent. An integral-equation
formulation for the calculation of armc is given in Appendix C in terms of the non-
dimensional combination

a 2[1 ,T (10)

of the basic stress parameters, where

r6i(ql - r )c, EE, 1

The parameter d0. independent of Km. may be regarded as a measure of the original
flaw size. The solution found numerically for tT-,,,'(crS) as a function of this parameter
is shown by the solid curve in Fig. 8.t A remarkably accurate approximation to this
result is given by

a, - cf = ) O'm (12)do Ser0 -- CrS kC S)

which provides the dot-dash curve in Fig. 8. This formula was discovered fortuitously.
and we have not found a persuasive way to derive it.

tSee Suo et al. (1992) as well as BAo and Suo (1992) for the results of similar calculations based on
other bridging laws. and suggestions concerning the possibility of unifying these results over a wide range
of bridging laws via energy concepts.
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STRFNGTH r,, i RESL LTS AsNi) Dist Lssio\

We can no" put together the final results for the strength a, of- the comnposite Inl
terms of the basic stress parameters (J,. 1o,, and t, S. and we %011 displa\ these results
in se~ era! different forms to bring out \arious, trends. B\ monitoring~ the mianiltude
of the bridainiŽ-fiber stress at the original fla" tip during the matrix crack gro~~th. as
calculated from the anal~sis of' Appendix B. the magnitude of' thle load r, cor-
responding to fiber failure durine this erow.th has been determined. and, onl the basis
of the discussion given in the earlier description of the failure process. the appropriate
choices have been made for the assignment of'ra,. t7. or ,,to the streneth r,,. This
has been done on the basis of' various non-dimensional forms of' the e~oxernin,_
equations. described in detail in Appendix B.

One non-dimensional form of the results for a, is

6, F(, i's 19, 13)

where a, t7,, may be regarded as a modified streigzlwenini ratio provided to a flawed
ceramic by aligned-fiber reinforcement. :The actual strengthening ratio is ni, a~.to
which ao,[see (6)1 is a fair approximation., We prefer. however, to introduce the
parameter

A 2- J± ( -) (14)

in lieu of cfS, a. in exhibiting the results for the strength of the composite. and we
have done so in Fig. 9. where we show curves of or, o, vs A for various values of

Oi'm.The quantity A is the modified toiughening ratio K A'1 - found by BcDIANSKN'

6

4 - 0 '~--

b4

b

2

2 3 4 5 6

Fi(;. 9. Modified strengthening ratio a, a,, for various values of a, a_,, The parameter A is the nmodified
toughening ratio For small-scale bridging.



rensk ýIc tre~th ol fi I r- ,,ionlorced ct.ra n,,.: c.I ,',i

and AMAZI[(( 1! 1989) for the case of .simi-v tlt hrjikjnmq. Thle significance of'.A is that
it provides the modified strengthening ratio of' a Comnposite Containing a \cr\ longu
initial crack. which corresponds to a \.er\ small %alue of a,, a,,,. Thus. a7, r,, = A lbor
(;,, am. = 0. and this is an Lipper bound to a7, a,, tor all finite values ot', a, In eflect.
the sequence of' curses in Fig. 9 showks quantitati'.el\ ho%% much the small-scale-
bridging strengthening due to aligned-fiber reinfIorcemient is reduced lbor tla~ks of'
decreasing size.

As indicated b\ the ke\ to the line types in Fig. 9. the stre:ngth r,,. at each liked]
value of ra,, (,,,L. always starts out equal ito aI at loý% values of' A. t,(r a sutffcietlli
lar-e value of' A. this first range. associated with fiber f'ailure durini2 matrix crack
growth (Fig. 3). merges into a gencrall\ small interval in A f'or wkhich a, is eiven b\
the "'peak" stress a.. and then. beyond :nother critical value ol' A. failure at a, I= (11
in the fully cracked matrix become s the rule. Note that because aT,, r,,,, does not depend
on S. each of the curves of Fig. 9 can be interpreted as showving the influence of fiber
strength on the composite strength.

The results for a, have also been computed in the form

and F~e. 10 shows a, 7,, vs A for v'arious fixed values of c,~S a,,. which may be regarded
as a crack length parameter that is an increasing function of the initial flawA size. Since
cS a,, is independent of the shear stress T. each curve in Fig. 10 shows howk the fiber-
matrix interface friction affects the strength. The mnatrix cracking stress an, is an
increasing function 01 T [eq'.xation (9)]. and therefore the small-scale-bridging tough-
ening ratio A gets larger as T goes down. The curves in Fig. 10 showk that f'or flaws of
finite size the strengthening generally remains an increasing function of I r. except
for some insignificant isolated parametric ranges.

6

a',=o'p

Nb

b

2

12 .3 4 -I
A=[ I +2(,/_

Fit;. 10. Modilied strernLthenine ratio ty, a., br various values of ., S a_, The parameter A is the modified
ioughenine ratio for small-scale bridgingc.
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In both Figs 9 and 10. displaying the ratio a,,ooa, as the dependent variable provides
the answer to the question: how much has the flawed matrix been strengthened by
aligned fibers? An alternative viewpoint is to contemplate the base fibers-only strength
af, = c-S as a starting point of reference, and study what happens to the ratio a,. c'S
under the degrading influence of a flaw and the reinforcing presence of the matrix. A
useful representation of the results is in the form

a•, amc o,.<C
Cf-s ('O2 )

as shown in Fig. 11. The abscissa j, is a flaw-size parameter that is independent of
the matrix toughness Km,, and the increasing values of am~lcfS labelling each curve
reflect increasing values of Kn. The curve for ao,,icrS = 0 reproduces the one in Fig.
7; for Km = 0, the matrix will crack out to infinity as soon as a load is applied, and
then the strength will be given by Ofmc The curves in Fig. I I show ti'.it af,-, constitutes
a lower bound to the strength, and that for reasonable finite values of omJ(crS) only
modest increases above this value are obtained. In terms of the parameters of (16)
and Fig. II, the identity of the failure mode can exhibit a curious progression. Thus.
for amJClcS = 0.75, a, is given by af for large flaw size; then, as a0 decreases, a, = op
over for a tiny interval of the abscissa; this is followed by a, = Gnfmc along the bottom
curve; and finally, below a critical value of flaw size, a, = ap again. Actually, values
of the abscissa much below unity are unlikely to be in a range of practical interest.

The formula (12) suggests that the results of Fig. I I might usefully be replotted as
shown in Fig. 12, wherein a,/(crS) is shown over the full practical range of (d0 )- 1-
Note" that for a,,,,/cfS greater than some critical value between 0.75 and 0.85. failure
siwetys occurs during finite extension of the matrix crack.

('.6

b
.4 __

.2 . ---- _ _ _ _ .....---- .- .

00 5 10 15 20 25
3 (CS2

0;,./ fC)-fa'o) ,, [%/(R S) ]

FIG. 11. Strength ratio a,(cS) vs 4o -= a;/CrSoo for various vaiues of a,-; (frS). The constant a is defined

in (I1).
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Fir. 12. Strength ratio a,1cS) vs (do) - (I •.,cfSoD) for various values of r, (cfS). The constant
a is defined in (II).

NUMERICAL EXAMPLES

To provide some quantitative feel for the theoretical results of Figs 9-12. we present
a set of numerical examples for a well-documented ceramic composite system that
was used in matrix cracking experiments by MARSHALL ez al. (1985), consisting of
silicon-carbide fibers in a lithium-alumino-silicate glass matrix. The nominal values
of pertinent parameters were

cr = 0. 5 R = 802m

, = % = 0.25 E=142.5GPa = 2 MPa m' 2

Em = 85GPa S= I GPa

Ef = 200 GPa T = 2 MPa.

On the basis of this data, we get

A = 0.95, emc = 265 MPa. A =3.8.

Table I shows the strength predictions of the present analysis. for several values of
flaw length 2a, and the corresponding values of or, c S/ao and a0. Numerical results

TABLE I

2a,, (pm) al, (MPa) cS a, j, a, (MPa) 0•/oo a.i(c1S) Type

32.5 250 2 0.60 415 1.7 0.83
130 125 4 2.38 319 2.6 0.64 "m
290 83.3 6 5.36 257 3.1 0.51 17
520 62.5 8 9.53 213 3.4 0.43 ar
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for a, are given. as well as the ratios a, a, and a.iy,S): the failure type Ii.e. a,. a, or
af,,) is listed.

In these examples the strength a.,, of the unreinforced ceramic is about 10"o higher
than a,, [equation (6)]. Thus. the composite containing a flaw (or sharp notch) about
I 2 mm in length is strengthened considerably (by about a factor of three) b% the
presence of aligned fibers that do not bridge the initial flaw. But the failure mode. of
the af type. remains catastrophic. occurring before the onset of widespread matrix
cracking at amc. In contrast. the strength of the matrix with the smallest of the flaws
considered above is increased by only about 50%. but this is enough to raise a. above

CONCLUDING REMARKS

Our study has produced theoretical results for the tensile strength of a flawed.
aligned-fiber ceramic composite in succinct non-dimensional forms that encompass
the effects of a large number of geometrical and physical variables. The results for the
strength a.,. displayed in terms of three basic characterizing reference stresses a,. a,,,
and crs in Figs 9-12. may provide a basis for the micromechanical design and analysis
of such materials, as well as for the formulation of design criteria. A useful lower
bound to the strength a, is given by the post-matrix-cracking failure stress ofm,
provided by Fig. 8.

The present study provides a sound foundation from which to proceed to elab-
orations that include the effects of initial stress and statistical variations in the fiber
strength. The latter, in particular, can lead to intra-matrix fiber failures at locations
off the crack faces, and the ronsequent higher fiber-pullout lengths during failure can
produce substantial increases in predicted composite strengths (THOULESS and EVANS.
1988). However, the extent to which design should rely on beneficial effects of stat-
istical dispersions in fiber strength remains an open question. Finally, it should be
emphasized that the possible intervention of failure modes not considered here. such
as longitudinal splitting or shear localization, requires investigation.
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APPENDIX A: ORTHOTROPIC FACTOR A

This Appendix corrects the one with the same title in the paper by BUDIANSKY and AMAZIOO
(1989). in which several blunders occur.

We consider a transversely isotropic. orthotropic elastic material satisfying the stress-strain
relations

l 17, E-io .E-ia E
= -ia,, E+a, ,E-var E

r: = -fa, E-va, E+a- E (Al)
t;',, = T,_ G.

According to TADA el al. (1985). quoting results of Sim et al. (1965). the plane-strain energy
release rate at the edge of a mode-I crack lying in the transversely isotropic .x-: plane is

f = CKI (A2)

where

2_ Al 2/111~ WA)

and the A, arc defined by the plane-strain constitutive relationsI Ia
A,cAr_,+A,.,a, (4

Atqj_(A4)
""Th A4, ae,,.

The A,, are given b•
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I -• - (I +i•) I-v•Et I
A ,, 4 G--E (A5)

Hence. in the representation

(I - v-)Kl
A E

we have

I -- v "
A - (A7)CE

For the aligned fiber composite. the elastic constants E. G. f. • have been calculated for the
case v = rr = v,., in terms of c. E. and E,. and the resulting dependence of .4 on c, is plotted
in Figs 5(a) and (b) for various values ofE ,E1 .

APPENDIX B: FORMULATION AND NUMERICAL SOLUTION FOR MATRIX CRACKING

INITIATED FROM A CRACK-LIKE FLAW

Formulation

This section details the formulation of an integral equation and an associated scalar equation
for matrix cracking that is initiated from a pre-existing flaw. The matrix crack together with
the original flaw is modeled as a crack of length 2(a,+ Au) (see Fig. 2) with a cohesive, bridged
zone of length Aa at both ends. The upper crack face displacement is

2(I-: = .,,+ )

r(x) = 2AE ,(ao1+Aa).,_ 7rAE jI P(•)

xlogl,/(,I+Aa +,.(a +Aa)1--3()

Except for the factor A. the first term is the standard crack face displacement due to remote

uniform loading of an isotropic material. The second term is the crack face closure displacement
due to the bridging stresses, and, again except for A. is obtained by superposition of the crack
face displacements due to concentrated loading on crack surfaces given by TAMA el al.
(1985). The orthotropy factor A. defined by (I) in terms of energy release rate. correctly takes
orthotropy into account in this expression for displacement. (This can most easily be shown
by weight-function considerations.) An integral equation for p(x) may be obtained by equating
r(x) in (B I) to [p(x)/f#-2 in accordance with the bridging law (7). and then differentiation with
respect to x gives

)dp(.) 212 ( I -2 0
d• --•x= AE.,,(a(,+ Aa) 2--.x2

X[f "",> Aa+Aa---p(•)d.+ -r] for al, <. x , - a. (B2)

A scalar equation that must be satisfied simultaneously with (B2) is obtained by asserting that
the orthotropic stress intensity factor K, [which depends on a and p(x) in the same way as for
isotropy] must remain equal to KR. Hence (TADA et ol.. 1985)



Tensile strength of fiber-reinforced ceramic composite 17

K,=o Yr/a, 1+Aa)-2 .. .. I' d. = K__d . (B3)S,~u,+a-. • ,,N (a,,+ Au)'2-x:

By making the substitutions

x = (a,,+Aa)s p(x) = m,,q(s)

I = = (B4)

one may express the governing equations (B2) and (B3) in the normalized forms

s, dq(s) = - 4J(s) g f(i.s)q(t)di+ ] for a<s <l (B5)

(- f Ws)q(s)ds = 21 (B6)

where

f,/y)= 0 ___, ',.t.s)= - and f,(s)=--_ . (B7)
,ii +yN/ I

For assigned values ofa. (BS) and (B6) can be solved for ,: and q(s) vs Zo. and thereby provide
the results of Fig. 6. and the curve for apiam, in Fig. 7. The condition offiber fracture at x = a 0

is q(l) = cfSl,. Hence, for given values of I, and crS/l., (B5) and (B6) can be solved (by
a Newton-Raphson technique) for the corresponding distributions p(s) and magnitudes of a
and I• = arf/, at fracture, and then the points for ajia, = aia, = If/I,, on the dot-dash
curves of Fig. 9 can be plotted.

To get points on the dot-dash curves of Fig. 10. we assign values of crS/u0 as well as cfS/a,
replace 1- in (B5) and (B6) by the ratio of these quantities, and similarly solve for Ir.

Finally, to plot the curves for a, = a, in Figs I I and 12. it is convenient to renormalize the
governing equations by letting

_ S.,_ . 4 (s) (B8

to get

q(s) = - -- 4f,(s) (1,s)q(t)dt+ for i<s I (B9)

s_ 372:•d~-()is=/T "

- j W4 W/ do (B IO)

The fracture criterion is now q(l) = 1, and so, for assigned values of a, and a,.,(ctS) the
magnitude of1, = F., corresponding to this condition can be found from (B9) and (B 10).

We omit a &etailed description of the fairly straightforward procedures used to plot the
curves in Figs 9-12 corresponding to the results in Figs 7 and 8 for oa and a,..

Numerical procedure

This section describes the numerical procedure used to solve (B5) and (B6) for q(s) and I;
the method is equally applicable to (B9) and (B 10). Make the substitutions

si=[(n+00+( 30z], I= -[(1+o)+(I q(s(:))=Q(:) (BI 0)
in (B9)-(BI10) to get
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dQ:) 4/,[.1%:] Il- 1-2 1 G 2)l--:qi-:~ l)_ = - 3I:v. .lt!£)..:l-l()lQt.dC-1. . BZ i B

for-I -1 L.and

Z-n~ t[.lz]Ozd:= 1!:',. (BI3)

Note that the displacement r x I - near I. and since Q u r it is appropriate to
write

Q l-:)' a, T,() (814)

where Tj:) is the Chebyshev polynomial of the first kind of degree k. For gi'cn valucs of 2.
and 1-. the M coefficients aL. together with the additional unknown T. were determined b%
collocation of (B12) at the A/ points

/ ir
O (r1= 2 ..... M) (BI51

and enforcement of (B13). The definite integrals with respect to : in (132) and (313) were
evaluated by means of the general Cauchy-Chebyshev formula (ERDOGAN and GUPTA. 1972)

F(;,-__, d; _ -_ _ (r=l.2 ..... M) (BIN6

and the standard Gaussian integration formula

f F(:)d: (&17)-- =- = V +- F(--,) (1117)

where
. (2p- I)7r

:, Cos [=2(M = SL ] (p = 1.2..... M+ l). (138)

A Newton-Raphson iterative scheme was used to find solutions for the a~s and '. with
convergence specified by a relative change of less than 0.01% in the values of each of the
unknowns in successive iterations. The physical argument that for a long matrix crack the
applied stress a should approach the steady-state matrix cracking stress a, provides a con-
sistency check on the accuracy of the numerical solution. It was found that with M between
40 and 60. the consistency check was always satisfied to within about 0. 1%.

APPENDIX C: AUXILIARY PROBLEM FOR arm,

We obtain an integral equation for the auxiliary problem of Fig. 4 by letting Aa - _ in
(B2). The result is

p ,.dp(.,)"-l 2/1-(1I-r2)I, rA - c -,-x
. _- -p(-l)d, for a,, _<x< . (ol)

By making the substitutions shown in (114). together with

. = a Y (C2)

we obtain



Tensile strength of fiber-reinforced ceramic composite 19

40) I •0) dii for I -<y< x. (C3)
I orV

Note (Fig. 4) that under the applied stress a. 4(x) = a•'c,S) = £. and the condition for fiber
fracture at the original flaw tip is given by

4l() = l. (C4)
Accordingly. for assigned values of0 d ,c, Sr,. the solutions 4(y) of (C3) that satisf) (C4)
provide the associated values of 4(x ) = a,,(rS) needed to plot the solid curve of Fig.
8. In the numerical solution of (C3) the transformation

y= l= 1 (C5)

was introduced to map the infinite domain into the interval (- I. 1), and. except for the need
to impose the condition 4 = I at w - I. the subsequent procedure used was similar to that
outlined in Appendix B,
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ABSTRACT

Tension experiments performed on a 0/90 laminated SiC/CAS

composite at room temperature establish that this material is notch

insensitive. Multiple matrix cracking is determined to be the stress

redistribution mechanism. This mechanism is found to provide a particularly

efficient means for creating local inelastic strains, which eliminate stress

concentrations.
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1. INTRODUCTION

One of the most important attributes of ceramic matrix composites

(CMCs) is the existence of mechanisms that redistribute stress at strain

concentration sites, such as notches and holes. 1-5 These mechanisms involve

matrix cracking as well as fiber pull-out and bridging. The basic stress

redistribution phenomena are manifest as three classes of behavior (Fig. 1),

each associated with different contributions of matrix cracking and fiber pull-

out.2,6 Class I behavior, dominated by fiber bridging and pull-out, has been

extensively documented and characterized through the development of large

scale bridging modelsl,5,', 8 (LSBM). Class III systems redistribute stress by

shear band formation. This phenomenon has also been analyzed9 ,10 and

related to the in-plane shear strength of the material. Class II behavior has

received least attention, and yet, appears to be the most effective means of

stress redistribution. 4 The underlying phenomenon is the occurrence of

multiple matrix cracks, with minimal accompanying fiber failure. The intent

of the present article is to study matrix cracking and stress redistribution

around strain concentration sites in a class II system. Moreover, it has been

proposed that continuum damage mechanics (CDM) may be useful for

characterizing stress redistribution in such materials.2,12 The present results

may provide perspective on the potential for CDM as an analysis procedure.

The material of choice is a NicalonTM silicon carbide fiber in a calcium

alumino silicate glass ceramic matrix (SiC/CAS) material.1 3 The material is in

the form of a 0/90 laminate. The tensile characteristics and the constituent

properties are described elsewhere11,1 4,15 (Fig 2). In this material, the matrix

crack spacing in the 0" plies changes with stress11' 14 (Fig. 3) in a manner that

fundamentally governs stress redistribution.
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2. EXPERIMENTAL APPROACH

2.1 Material

Plates of the SiC/CAS composite were provided by Corning. 13 The

material was laid up in a 0/90 laminate structure with a nominal fiber

volume fraction, f - 0.36, and a fiber fraction aligned in each of the two

principle axes, f, - 0.18. The laminate structure consisted of 16 alternating 00,

900 layers with a double 900 center layer. The structure was densified by a hot

pressing technique. After densification, the total thickness of the composite

was - 3 mm. Optical microscopy established that the average thickness of each

ply to be- 180 gm.

2.2. Test Procedures

Tensile specimens with a variety of holes and notches, located at both

the center and the edges (Fig. 4), were cut from the plates by diamond

machining. The ratio of the notch length to the sample width (ao/b) was

varied between 0.25 and 0.75. The specimens were then polished to remove

surface irregularities and to reveal the first underlying fiber layer in the

composite. Tensile tests were performed on these specimens, by using

gripping and alignment procedures described in other articles.10 ,11

The tensile tests were carried out on a servohydraulic load frame. Strain

gages were used to measure localized strains at the notch tip and in the far

field. In some cases, the specimens were monotonically loaded to failure, in

order to document the influence of the notch on the ultimate tensile strength

(UTS), designated S*. In other cases, the tests were interrupted at various

fractions of the UTS, whereupon several measurements and observations
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were made concerning matrix crack accumulation, as well as stress

redistribution.

Matrix crack measurements were accomplished by using a surface replica

technique that duplicated the topography of the specimen surface. Stress

redistribution was assessed using thermoelastic measurements, by means of a

technique involving stress pattern analysis through thermal emission

(SPATE). 4 In this technique, temperature gradients produced by cycling the

stress between 1.5 and 40 MPa at 10 Hz are measured and related to the first

stress invariant, C(kk.

Some tensile experiments were performed with sequential, repeated load

cycling, subject to full unloading and reloading. The properties of the

interface and the misfit strain were obtained from the associated hysteresis

loops and the permanent strain. 15-19 Finally, measurements of fiber pull-out

were made using scanning electron microscopy (SEM) on the failure plane.

3. RESULTS

3.1 Monotonic Loading

Stress/strain curves obtained from edge-notched specimens revealed

appreciable non-linearity before failure (Fig. 2b). This non-linearity also

coincided with an increase in compliance. The ultimate tensile strength

(UTS) data are presented in terms of the ratio of the notched UTS, designated

S*, to the unnotched UTS, designated S. This ratio is plotted as a function of

the relative notch width, ao/b. The results are summarized in Fig. 4. It is

evident from these results that the 0/90 SiC/CAS material exhibits notch

insensitive behavior.1 In fact, there is evidence that some notch

strengthening may be occurring.
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3.2 Damage Observations

Measurements of matrix cracks (Fig. 5) taken from samples tested to

failure, as well as from the replicas, indicate a relatively high crack density

close to the notch root. Generally, cracks first appear at the notch root (Fig. 6).

Then, as the load increases, the density of cracks increases. Thereafter, some of

the cracks extend throughout the cross section. Eventually, the saturation

crack spacing is approached near the notch root. The final average crack

spacing decreased as the ratio ao/b increased, such that the crack density in the

specimen with ao/b = 0.75 most closely resembled that found in an

unnotched tensile specimen after testing.

SPATE measurements revealed an initial stress concentration at the

notch root (Fig. 7 ), which diminished as matrix cracks appeared. These

measurements relate to the matrix cracks, which generate a compliance

gradient,4 that lowers the stress concentration, as well as -redistributing the

stress across the remaining section. A comparison of SPATE line scans with

acetate replicas taken at the same damage level (Fig. 8) provides striking

evidence of the effect of multiple matrix cracking.

The fiber pull-out measurements and the hysteresis loop data (Figs. 9

and 10) can be used to provide information about the interface sliding stress,

c, and the residual stress, q.11,14,1 6 -19 The sliding stress obtained from these

measurements (T - 20 MPa) is in reasonably good agreement with the values

previously reported for this material.1 1,14 However, the permanent strains

suggest a residual stress, q = 30 MPa, somewhat lower than that found

previously.1 1,14 This difference reflects changes in processing conditions.
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4. DISCUSSION

All of the above results indicate that the 0/90, SiC/CAS behaves as a

notch insensitive material in tension at room temperature. The most direct

evidence is given by the trend in the UTS with notch size (Fig. 4).

Confirmatory evidence is provided by the crack density distribution, as well as

the SPATE results.

The crack density within the 00 plies may be approximately related to the

Oyy stress in those plies, in accordance with the curve shown in Fig. 3.

Notably, the crack density measured around the notch (Fig. 6) may be used

with Fig. 3 to estimate the Oyy stress distribution. The results (Fig. 11) confirm

that the stress concentration is small prior to failure.

The SPATE measurements (Fig. 7) reflect the influence of the matrix

cracks on the elastic stiffness of the material around the notch.4 The gradient

in stiffness caused by these cracks allows the Okk stress to redistribute and

eventually become uniform across the net section. Thus, the change in the

SPATE line scans with peak load provide an excellent qualitative picture of

how the tensile stresses are being redistributed across the net section.

However, as yet, they cannot be used to accurately measure the magnitude of

those stresses.

5. CONCLUSION

Some simple experiments have been performed which vividly

demonstrate that a 0/90 SiC/CAS composite is notch insensitive in tension at

room temperature. The behavior is related to the inelastic strains (Fig. 2) that

arise from matrix cracking (Fig. 3), which redistribute stress around notches.
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The matrix cracking mechanism appears to be particularly efficient for this

purpose, because stress concentrations can be completely eliminated, even

though the ductility is small, < 1% (Fig. 2). Since the matrix crack density is

relatively high at strain concentration sites, it should be possible to develop a

mechanism-based CDM approach12 which could be used to predict

redistribution effects. The available matrix cracking models, 17-20 combined

with the constituent properties should be suitable for this purpose.
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FIGURE CAPTIONS

Fig. 1. The mechanisms of fiber pull-out and matrix cracking that lead to
stress redistribution in CMCs are identified with 3 classes of
behavior.

Fig. 2. Tensile stress-strain curve for 0/90 laminated SiC/CAS composite
indicating unload-reload hysteresis loops, (a) schematic,

(b) experimental results.

Fig. 3. The trend in crack density with stress for the 00 plies with applied

stress for 0/90 SiC/CAS.

Fig. 4. Effect of notch size on relative UTS, indicating that SiC/CAS is notch
insensitive in tension at room temperature. The inset shows a
schematic of the test specimen. The parameter A is a measure of the
notch size to the damage zone size [1,5]. For SiC/CAS the calculated
value of A is approximately 0.02.

Fig. 5. A replica showing the matrix cracks that occur between two edge

notches.

Fig. 6. The crack density as a function of distance from the notch at differing
levels of net section stress, ON, for a specimen with edge notches,

ao/b = 0.5.

Fig. 7. Typical results of SPATE measurements: (a) full-field temperature
distributions before and after matrix cracking. (The low resolution of
these images is an artifact of the gray scale imaging). Regions of
greatest temperature change are shown in black near the notch roots,
with a continuous decrease in temperature change with distance
from these locations. (b) Line scans after exposure to various peak
loads show the distribution of Okk between the notches. The
differences in shape depict the role of damage in stress redistribution.
The stress concentratdons are artificially low near the notch root due
to a smoothing program that filters out the notch-root edge effect.

KJS-Evwv*-i1-TA-Nlich Sn ClJC OIU015-4:42 PM.5/19/93 12



Nevertheless, the average stress between the notches is, in all cases,
consistent with the net section stress indicated in the figure.

Fig. 8. A comparison of SPATE images at several loads with the replicas

taken at the same loads. The replicas record the crack density at each

damage level, while SPATE images reveal the hydrostatic stress

distribution.

Fig. 9. Fiber pull-out distribution measured from the failure plane

Fig. 10. Hysteresis loop data presented as a function of the peak stress with

the predicted line for T = 20 MPa indicated.

Fig. 11. Estimate of the distribution of ,yy stresses between the notches based

upon crack density measurements (Fig. 3). Results shown for two

levels of net section stress, ON.
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ABSTRACT

The effects of holes and notches on the ultimate tensile strength of a

unidirectionally reinforced titanium matrix composite have been examined.

During tensile loading, a narrow plastic strip forms ahead of the notch or hole prior

to fracture, similar to that observed in thin sheets of ductile metals. Examination of

the fibers following dissolution of the matrix indicates that essentially all the fibers

within such a strip are broken prior to catastrophic fracture of the composite. The

trends in notch-strength have been rationalized using a fracture mechanics-based

model, treating the plastic strip as a bridged crack. The observations suggest that the

bridging traction law appropriate to this class of composite is comprised of two parts.

In the first, the majority of fibers are unbroken and the bridging stress corresponds

to the unnotched tensile strength of the composite; in the second, the fibers are

broken and the bridging stress is governed by the yield stress of the matrix, with

some contribution derived from fiber pullout. This behavior has been modeled by a

two-level rectilinear bridging law. The parameters characterizing the bridging law

have been measured and used to predict the notch strength of the composite. A

variation on this scheme in which the fracture resistance is characterized by an

intrinsic toughness in combination witf• rectilinear bridging traction law has also

been considered and found to be cons with the predictions based on the

two-level traction law.
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1. INTRODUCTION

Fiber-reinforced titanium matrix composites are being considered for

structural applications in advanced aerospace enginesl. It is envisioned that, in

some applications, holes will be introduced for either fastening or cooling. The

design of such structures will require an understanding of the damage processes

occurring around the holes and the influence of damage on structural performance.

The intent of the present article is to examine the nature of such processes and to

assess the utility of non-linear fracture mechanics-based models for describing the

influence of holes and notches on tensile strength.

It will become evident that the trends in strength with hole or notch size can

be rationalized in terms of models based on crack bridging, analogous to those used

to describe the notch sensitivity of monolithic ductile metals and ceramic matrix

composites (CMCs). As a result, the following section provides a brief review of the

existing crack bridging models. The review is followed by a description of the

experimental portion of the study and comparisons with the model predictions.

2. BACKGROUND ON NOTCH SENSITIVITY

In brittle materials, the tensile strength df of a panel containing a sharp,

through-thickness notch can be described by the Griffith equation

S-Er
(1)
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where r is the toughness, E is Young's modulust and 2ao is the notch length.

Alternatively, if the panel contains a circular hole with a radius ao that is large in

comparison to the intrinsic flaw size, c, the strength is given by

3 = tc (2)

In essence, the hole reduces the strength by a factor equivalent to the stress

concentration factor (kt = 3), independent of the absolute hole size*. Consequently,

Eqn. 2 can be re-written as

F = Fo/3 (3)

where do is the tensile strength in the absence of a hole or a notch.

Ductile materials, particularly in the form of thin sheet, behave differently. In

the presence of a notch, tensile fracture is preceded by the development of a narrow

zone of intense plasticity ahead of the notch2. Fracture occurs by the formation and

propagation of a crack within the plastic zone. This process can be modeled by

considering the tip of the plastic zone to be the tip of a hypothetical crack and the

material within the plastic strip to be a "bridged zone"3A. The tractions exerted by

the bridged zone are taken to be equivalent to the yield stress of the metal, Ty.

Moreover, the intrinsic fracture energy, to, is taken to be zero, such that all the

fracture resistance is derived from bridging. Using the J-integral, the contribution

derived from bridging, rb, can be expressed ass

rb = c, d8 = y 8C (4)

*Corresponding to either plane stress or plane strain conditions, as appropriate.

"Neglecting the effects of volume on strength.
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where 8 is the crack opening displacement and 8c is the critical value needed to

fracture the metal. Moreover, the fracture stress varies with notch size according to

the relation4

2= cos- (Sa)

where a is a normalized measure of the notch size

SFE (5b)

and the unnotched tensile strength, do, is taken to be the yield stress, ay. This

approach is commonly referred to as the Dugdale-Barenblatt model.
-2

The parameter used to normalize the notch size, r E/ 0o, is a characteristic

bridging length scale that governs the degree of notch sensitivity. When this length

scale is large compared to the notch length, the tensile strength is reached after the

plastic strip extends only a small amount and thus the steady-state toughness, given

by Eqn. 4, is not fully realized. Conversely, when the bridging length scale is

sufficiently small, the toughness is fully utilized prior to catastrophic fracture,

whereupon the stress-notch length relation (Eqn. 5b) reduces to the Griffith relation

(Eqn. I).

More recently, models based on crack bridging have been developed for

predicting the notch-strength characteristics of ceramic matrix composites (CMCs)6".

The essential difference between these models and the one developed by Dugdale

involves the functional form of the bridging traction law. The traction laws

considered to date include linear softening, linear hardening and parabolic

"7LMS37(Decembs 27. 1993)3:13 PM/mef



6

hardening, in addition to the rectilinear law. Figure 1 shows three typical bridging

traction laws and their effects on notch sensitivity. A notable feature here is that the

notch sensitivity is governed predominantly by the parameter a, and is relatively

insensitive to the shape of the traction law. Moreover, for large values of a (> 1), the

notch-strength follows the Griffith relation (Eqn. 1), with r = Fb.

An additional feature that has been incorporated into recent calculations is

the intrinsic fracture energy, r 07,8. This energy can be represented by a

non-dimensional parameter, X, defined by

S= ro/rb (6)

Some trends in notch strength with X for the rectilinear traction law are illustrated

in Fig. 2. The main effect of A, is to increase the strength for small values of at. At

higher values of a, the notch-strength again follows the Griffith relation, with r

replaced by the total fracture energy: r = ro + rb.

Calculations have also been performed to evaluate the strength of such

materials in the presence of circular holes7. Figure 3 shows an illustrative example.

For small values of a, the strength is similar to that corresponding to a sharp notch.

However, for large values (aX > 1) the strength asymptotically approaches the value

predicted on the basis of the stress concentration factor, given by Eqn. 3.

T-.MS37(Decmber 27, 1993)3:13 PMIef
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3. EXPERIMENTS

3.1 Materials

The material used in this study was a Ti-6A1-4V matrix reinforced with

unidirectional, continuous SiC fibers*, 100 pm in diameter. The composite panel

was comprised of six plies, with a total thickness of 1.0 mm. The fiber volume

fraction was 32%. Prior to consolidation, the fibers had been coated with - 1 pun of C,

followed by -1 Igm of TiB2. The TiB2 coating serves as a diffusion barrier between

the fiber and the matrix. During consolidation, the TiB2 reacts with the matrix to

form a layer of TiB needles, - 0.7 ýum thick.

3.2 Tensile Tests

Uniaxial tensile tests were conducted on specimens containing either notches

or circular holes, located at the specimen center. To minimize damage, the

specimens were prepared using electrical discharge machining (EDM). The holes

ranged in diameter from 0.6 mm to 6 mm. The notches were - 400 pm wide and

ranged in length from 1.5 mm to 6 mm. The ratio of notch or hole size, 2ao, to

specimen width, 2w, was fixed at 0.2. In one case, wherein the hole size was 0.6 mm,

specimens with ao/w ratios of 0.2 and 0.05 were prepared and tested. In all cases, the

ratio of specimen length to specimen width was greater than 3.

Prior to testing, one face of each specimen was polished to a 1 pm finish.

Beveled stainless steel tabs were bonded to the specimen ends with an epoxy

adhesive. In some instances, a 0.8 mm strain gauge was attached immediately ahead

of the notch or hole. The tests were conducted in a servohydraulic testing machine,

using hydraulic wedge grips to load the specimen. The tests were conducted at a

fixed displacement rate, between 0.005 and 0.03 mm/min. For comparison, uniaxial

* Sigma fiber, produced by British Petroleum.

71MS37(Dwcember 27. 1993)3:13 PWmef



8

tests were also -onducted on straight (unnotched) tensile specimens, 6 mm wide,

with axial strains measured using a 12.7 mm contacting extensometer. Additional

details pertaining to the unnotched tensile strength of this material can be found in

a companion paper 9.

3.3 Observations

During the tensile tests, the region immediately ahead of the notch or hole

was monitored using a traveling stereo-microscope and recorded using a digital

video camera. These observations were used to establish the extent of plasticity. In

some cases, the tests were interrupted following the development of an extensive

plastic zone (- 1 to 3 mm), but prior to fracture. The extent of fiber fracture within

this zone was determined by dissolving the matrix in the vicinity of the notch with

a 49% HF solution and examining the underlying fibers in a scanning electron

microscope (SEM). Some of the fracture surfaces were also examined in an SEM.

3.4 Toughness

The composite toughness, r, was evaluated using an edge-notched four-point

work-of-rupture specimen10,"', shown in the inset of Fig. 9. (For reasons described

below, the notched tensile tests could not be used to obtain r.) The test was

conducted at a displacement rate of 0.5 mm/min. The toughness (or fracture energy)

was evaluated using the relation

I = f°c Pdu

t(w-a.) (7)

where P is the load, u is the load point displacement, uc is the displacement at

fracture, and t is the specimen thickness.
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3.5 Bridging Law Parameters

As detailed in a subsequent section, the effects of holes and notches on the

tensile strength of this composite can be rationalized in terms of crack bridging

models. One of the important parameters involved in the bridging traction law is

the crack opening displacement at fracture, 8 c. This parameter was determined in

the notched specimens from measurements of the notch width both before and after

fracture. The post-fracture notch width was taken to be the sum of the normal

distances from the notch surfaces to the tips of the fracture surface, as shown in the

inset of Fig. 10. Similar measurements were made on specimens with small holes

(0.6 and 1.5 mm diameter).

Another key paramete, in the traction law is the displacement 8 f at the onset

of fiber failure. This displacement can be estimated using the relation

8f - hp rf (8)

where hp is the width of the plastic zone measured parallel to the loading direction

and Ef is the failure strain of the fibers. The plastic zone size was measured off of

micrographs of both sides of the fractured specimen, taken using Nomarski

interference microscopy. At each notch tip, - 20-30 such measurements were made,

starting immediately ahead of the notch tip and proceeding at intervals of - 0.2 mm.

Yet another parameter in the traction law is the strength of the composite

following fiber fracture. This strength was measured using a two-step procedure.

First, a specimen with a 6 mm notch was loaded in tension until plastic strips

- 3 mm long had developed on both sides of the notch. SEM examinations of

similar specimens indicated that all the fibers had indeed fractured within this strip.

Narrow, longitudinal strips (- 2 mm wide), passing through the plastic strips, were
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then cut from the tested specimen. These strips were tested in tension, with a

10 mm clip gauge placed across the plastic strip to measure the local displacements.

4. EXPERIMENTAL RESULTS

Figures 4 and 5 show a typical stress-local strain response of a notched panel

and a corresponding series of optical micrographs taken during the test. Initially, the

response was linear, with non-linearity occurring at a stress of 450 MPa. At a

slightly higher stress (590 MPa), a plastic zone was observed at the notch tip (Fig. 5a).

Upon further loading, the length of the plastic strip increased stably, reaching

- 3 mm at a stress of - 750 MPa. The specimen was subsequently unloaded for

further examination. The local strain at the notch tip was - 5%: considerably higher

than the fracture strain measured in the unnotched tensile specimens (- 1%). The

ultimate tensile strength of a sinilar specimen was - 850 MPa.

Examinations of specimens interrupted prior to fracture showed that all of

the fibers contained within the plastic strips had been broken. Figure 6 shows one

such example, from a specimen with a notch of length, 2ao = 3 mm. In this case, both

the plastic strip and the "plane" of fractured fibers follow the same, somewhat

non-planar, path. The specimens containing circular holes exhibited similar

patterns of plastic strips and fiber failure prior to catastrophic fracture.

Fractographic examinations showed that minimal fiber pullout occurs during

the fracture process (Fig. 7). The pullout length is vpically < 100 Pm (i.e. one fiber

diameter).

The trends in tensile strength d with notch or hole size, 2ao, are summarized

in Fig. 8. Evidently, the strength drops quickly with ao in the regime

0 < 2ao < 1.5 mm. For larger values, 2ao > 1.5 mm, the strength continues to decrease,

though at a much slower rate. The specimens containing holes exhibited similar
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trends, though the strengths were slightly higher than those corresponding to

notches of the same size, by - 6-7%.

The results of the work of rupture test are shown in Fig. 9. Combining these

measurements with Eqn. 7 yields a toughness, F = 72 kJ m-2 . In this configuration, a

similar process of plastic yielding was observed ahead of the notch tip. Once a crack

had formed, it propagated stably across the specimen along a mode I path, resulting

in a relatively smooth, continuous load-displacement curve.

The measurements of plastic zone width, hp, and local displacement at

fracture, 8 c, are summarized in Fig. 10. A typical optical micrograph used for

measuring hp and 8c is shown in Fig. 11. The values of both parameters are

independent of the specimen size and the specimen confirmation (notch vs. hole),

with average values, hp - 0.9 mm. and 8c - 80 gim.

Figure 12 shows the results of a tensile test conducted on a specimen

containing a plastic strip within which all fibers had been broken. The results are

presented in the form of stress vs. displacement (not strain), since virtually all the

inelastic strain was localized within the previously yielded strip. In this test, the

response was essentially elastic-perfectly plastic, with a "yield stress" of

- 800-850 MPa (approximately one half of the unnotched tensile strength). The

inelastic displacement at fracture was - 40 jim. As expected, this value is lower than

that measured on the notched tensile specimens (Fig. 10), a result of the prior

inelastic deformation occurring during the development of the plastic strip.

5. ANALYSIS

5.1 Preliminary Assessment

A preliminary assessment of the trends in notch strength was made using

two simple modeling approaches. The first was based on the Griffith relation
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(Eqn. 1). Figure 8 shows the predicted trends in strength with notch size for values of

r ranging from 5 to 30 kJ M-2. The second approach was based on the classical

Dugdale model (Eqn. 5). The predicted trends are also shown in Fig. 8, taking ao to be

equal to the unnotched tensile strength (d0 = 1590 MPa) and r to range between 5

and 30 kJ m-2 , as before. It is apparent that neither approach provides even a fair

representation of the experimental measurements. This disparity between

experiment and theory provides the motivation for the subsequent modeling effort.

Moreover, it demonstrates that the trends in tensile strength with notch length

cannot be used to infer the composite toughness.

5.2 Proposed Bridging Traction Law

The present measurements and observations suggest that the notch strength

characteristics of the Ti/SiC composite can be rationalized in terms of a bridging

traction law having the features shown on Fig. 13. In this law, the stress initially

increases with dksplacement, analogous to the stress-strain response measured in a

uniaxial tension test. At a critical stress, S1, taken to be the unnotched tensile

strength of the composite, do, the fiber bundle within the bridging zone fails,

causing the stress to drop rather precipitously with increasing crack opening

displacement. The corresponding critical displacement, 81, depends on the width of

the plastic strip (being the effective gauge length) and the fiber failure strain, in

accordance with Eqn. 8. Upon further crack opening, the bridging stress reaches a

saturation level, dictated by the yield stress of the metal and the "pullout"

contribution from broken fibers (detailed later). At a yet larger crack opening

displacement, the local strain reaches the failure strain of the metal, leading to the

formation of a matrix crack and a loss in bridging.

For modeling purposes, it is convenient to represent this behavior by a two

level bridging traction law, shown schematically by the dashed lines in Fig. 13. Each
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of the two parts of the traction law are characterized by a strength (Si or S2) and a

critical displacement (81 or 82). The total (or steady state) fracture energy, obtained

using the J-integral, is

r Obd8= +r (9a)

where r1̀ and r 2 are the areas contained within the top and bottom parts of the

traction law, given by

T, = (S]-S2)81 (9b)

and

T"2 = S282 (9c)

A preliminary assessment of the proposed traction law can be made by

comparing the total fracture energy, computed using Eqn. (9) along with the

measured values of the traction law parameters, with the value obtained through

the work-of-rupture test. The experimental measurements indicate that

S1 = Uo = 1590 MPa, S2 = 850 MPa (Fig. 12), and 82 = 80 p.m. Moreover, combining the

plastic zone width, hp = 0.9 mm, and the unnotched tensile fracture strain, Ef = 1%,

with Eqn. 8 yields 81 - 9 pm. Equation 9 thus predicts a fracture energy, r = 71 kJ n-2,

essentially identical to the value obtained experimentally (F = 72 kJ m-2). This

correlation provides some initial confidence in the proposed traction law.

5.3 Model of Notch Strength
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For the purpose of modeling the notch-strength behavior of such a material,

the two-level rectilinear law was incorporated into a fracture mechanics model,

shown schematically in Fig. 14. In the model, the composite panel is taken to be

infinitely large and contain a sharp, through-thickness notch of length, 2ao. The

panel is loaded remotely with a uniform tensile stress, CF. The material is assumed to

be linearly elastic, except within the plastic strips formed ahead of the notch tips.

The stress intensity factor K at the tip of the plastic zone is taken to be zero, such that

the material possesses no intrinsic toughness. Two relevant "crack lengths" are

identified. The first, 2al, represents the point at which the crack opening

displacement 8 reaches the critical value, 81. Ahead of this point, the tractions on

the crack face are given by S1, and behind it, by S2. The total crack length (notch and

plastic strip) is designated 2a2, and the crack opening displacement at the notch tip is

designated D.

Two regimes are considered, governed by the value of D. In the first, D < 81,

such that the model reduces to the classical Dugdale-Barenblatt model, with a

uniform bridging stress, S1. The plastic strip thus extends according to3,

CF = 2CS'a
Si X (~a,) (10)

with a crack opening displacement at the notch tip of

DE 8 Ina

aoS 1 S, a (11)

The maximum stress is obtained by combining Eqns. 10 and 11 and setting D = 81. In

the second regime, D lies in the range 81 < D < 82, such that the plastic zone consists

of two parts. Along the part of the crack plane defined by ao < I x I < al, the bridging
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stress is S2, and, in that part defined by al < I x I < a2, the bridging stress is S1, as

noted earlier. The stress-crack length relations are obtained from handbook

solutions of stress intensity factors and crack opening displacements 13. In

non-dimensional form, the relevant solutions can be expressed as

S,_ E = f l _ f 2 s_ _ f, S

c a. a a (12)

K $, S2,a ý,/ ao = 1 - 92 "- - 93 •(3
= a a (13)

and

D. E = h, -h2 .L.' h3 S2

a ao (F ar (14)

where the parameters fi, gi and hi are functions of the crack length ratios, al/ao and

a2/ao, and are listed in the Appendix. Recognizing that K = 0 allows Eqn. 13 to be

re-written as

E = &2 +_ ý S2
$ g g $1 T (15)

which, combined with Eqn. 12, gives

81E (g 2  gs 3 S2 fj _ S
S, a. ~g 1  1SI)' f 3S, (16)

The stress-crack opening displacement curve is obtained by incrementally

stepping through values of al/ao, starting with the one evaluated using Eqn. 11 with
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D f 81. At each point, the ratio a2/ao is evaluated by numerically solving Eqn. 16,

and the result then combined with Eqns. 12 and 14 to get a and D, respectively.

Figure 15 shows illustrative examples of the trends in a with D for a strength

ratio, s$/s 2 = 2, and a toughness ratio, r1 l/r 2 = 0.1. For reasons that will become

apparent in the subsequent section, the toughness ratio r 1/rl2 is designated .,

analogous to Eqn. 6. Three types of behavior are obtained, governed by the

normalized notch length, (X. (i) For very small notch lengths ( << 1), the

maximum stress is reached almost immediately after D exceeds 81. In this case, the

ductility of the matrix (manifested in the critical displacement, 82) does not increase

the notch strength of the composite. (ii) For intermediate sized notches, the

maximum stress occurs at a value of D that is substantially larger than 81.

Consequently, composite fracture does not occur immediately following the onset of

fiber failure. Here, the matrix ductility provides some enhancement in tensile

strength. (iii) For very long notches (a >> 1), the maximum stress is obtained when

the matrix fails, i.e. D = 82. The relationship between strength, d, and notch length,

a, is obtained from the maximum points in these curves.

Figure 16 shows the predicted trends in strength with notch length, for

$j/$2 = 2 and rFii 2 ranging from 0 to 0.2. Also shown are the values obtained

experimentally. The comparisons show that the predictions are in close agreement

with the measurements for ri/r2 in the range - 0.03-0.1. The inferred value of

r,/r 2 is comparable to the one calculated using the values of S1, S2, 81 and 82 quoted

above: rj/r 2 - 0.09.

Because of the similarities in the strength characteristics of the specimen

containing holes and notches, no calculations were conducted for holes. The

similarities are consistent with previous calculations which show that the strength

of materials that exhibit bridging is insensitive to the shape of the discontinuity,

provided the bridging lengrh scale is sufficiently large compared with ao. Indeed, for
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the entire range of hole and notch sizes used in this study, the normalized notch

size lies in the range ax < 0.5 (Fig. 3).

5.4 An Alternate Approach

It is instructive to consider an alternate description of the fracture resistance:

one that leads to a simpler solution to the notch sensitivity. For this purpose, it is

noted that the energy dissipated in the top portion of the traction law is small in

relation to the total. (i.e. lri/r2 - 0.05). Moreover, the critical displacement 81 is

small in relation to 82. Consequently, the energy dissipated in the top portion can be

lumped into an intrinsic fracture energy, ro, whereupon

ro = T)= (S1-S2) (17)

The fracture resistmace can thus be characterized by r 0 in combination with a

single-level rectilinear bridging traction law, with a characteristic strength, S2, and a

critical displacement, 82. The toughness derived from bridging is thus

rb a T2 = S2 82 (18)

and the toughness ratio is again defined by 1, = ro/rb.

The notch strength of such a system can be evaluated following the approach

presented in the preceding section, with two modifications. First, since the stress

along the entire bridged zone is uniform, al is equivalent to ao. Second, the crack tip

stress intensity factor is finite and taken to be equal to the intrinsic fracture

toughness, 4r,-'E. In this case, Eqns. 12-14 reduce to
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a 2 x a. a2 (19)

and DE 4 1 8 8 2  a2 _I C In I (20)
a a0  a0) a • Fa-) 'o2- 2 a-)

The stress-crack opening relation is obtained by incrementally stepping through

values of a2/ao, starting from zero. At each point, the stress a is evaluated from

Eqn. 19 and the result combined with Eqn. 20 to obtain D. Figure 15 shows

comparisons of the predicted trends in a vs. D with those obtained from the

two-level rectilinear law. Evidently, the two solutions provide essentially the same

results for D/82 > 0.1.

Figure 16 shows the predicted trends in strength with notch length, again for

values of X ranging from 0 to 0.2. Over the range of interest (a > 0.1, X < 0.1), the

predictions are essentially identical to those of the two-level bridging law. For

smaller values of 0a, the model predicts a strength-notch length relation of the form

U E1r
S1  21aoS• (21)

in accordance with the Griffith equation. In this regime, the model strongly

overestimates the notch-strength of the composite. Consequently, the two-level

bridging law is required to capture the relevant trends.

It is of interest to note, parenthetically, that a conservative estimate of the

notch strength can be obtained by assuming , = 0, whereupon both models reduce to

the Dugdale-Barenblatt model (Eqn. 5), with the bridging stress replaced by S2 = S1/2.
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6. DISCUSSION

The present measurements allow some rudimentary connections to be

established between the parameters involved in the traction law and the properties

of the composite constituents. Such connections are important in understanding the

role of microstructure in composite behavior and provide guidance for the

development of new materials.

As noted previously, the peak stress, S1, is equivalent to the unnotched

composite tensile strength, do. This strength is controlled by the matrix yield stress

and the in-situ fiber bundle strength, as described in a companion paper9. For this

class of composite, the fiber bundle strength is independent of gauge length,

provided the gauge length exceeds a critical value,

1 
(22)

where T: is the interfacial sliding stress, R is the fiber radius, So is the reference

strength corresponding to a length Lo in the Weibull distribution, and m is the

Weibull modulus. In the Ti/SiC composite, the critical length is of the order,

tc - 2 mm: being approximately twice the relevant gauge length in the bridging

process, namely, the plastic zone width, hp. Simulations of fiber bundle failure for

gauge lengths in the range 0.5 < /ic < 1 suggest that the tensile strength is elevated

only slightly (- 5-10%) over the value corresponding to a long gauge length

(t/Ic ; 1)12. Consequently, S1, is expected to be essentially the same as the tensile

strength measured on a standard tensile coupon.

Bounds on the strength, S2, characterizing the post-fiber failure regime, can be

established in the following way. An upper bound estimate is obtained by taking the
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average stress acting across a hypothetical crack plane passing through the middle of

the plastic zone, whereupon

S2 = (1-f)OaY + f af (23)

with Of being the average fiber stress resulting from fiber/matrix sliding following

fiber fracture. For simplicity, the fiber failure sites are assumed to be randomly

distributed within the plastic zone, with an average distance between the fracture

sites and the hypothetical plane of -hp/4 (Fig. 17). Using a simple shear lag model,
A
Of can be approximated by

&f - ThP/2R (24)

Using the relevant measurements (hp - 800 gm, R = 50 p.m, 1T = 130 MPa,

01 = 1000 MPa) yields a value of strength, S2 - 1000 MPa, somewhat higher than the

measured value (850 MPa). This discrepancy may be attributed to the pullout

distances being less than hp/4 (-200 Pm), as manifest in the relatively short pullout

lengths measured on the fracture surface (<100 pm). A lower bound estimate is

obtained by neglecting the pullout contribution derived from broken fibers,

whereupon the strength reduces to

S= (1- f) aC , (25)

This result predicts a value of strength, S2 - 680 MPa, somewhat lower than the

measured value.

The critical displacements, 81 and 82, are both expected to scale with the width

of the plastic zone. As noted earlier, 81 is governed by the strain at fiber bundle
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failure, in accordance with Eqn. 8. Similarly, 82 scales with the ductility of the

matrix, Em, according to the relation

&2 - Fm hp (26)

Combining the measured values, 82 - 80 pun and hp - 0.9 mm, with Eqn. 26 yields

an estimate of the matrix ductility, Em - 9%, in agreement with values reported for

similar Ti alloys [8- 10%]14 .

The origin of the plastic zone width is presently not understood. It is

speculated that it may be controlled by the panel thickness (- 1mm), as it is in thin

ductile sheets2 . This hypothesis requires experimental verification.

7. CONCLUDING REMARKS

The present study demonstrates that the notch-strength characteristics of

fiber-reinforced Ti matrix composites can be described using crack bridging models,

similar to those used to describe the behavior of ductile metals and ceramic matrix

composites. The parameters controlling the bridging traction law have been

measured and found to provide a consistent description of both the notch

sensitivity and the steady state composite toughness. The two models considered

here (one based on the two-level rectilinear bridging law and the other on the

rectilinear law with a finite intrinsic toughness) yield similar predictions for notch

sizes that are relevant in structural design (2ao > 1 mm). Owing to its simplicity, the

latter model is preferred. The models are computationally relatively simple, making

them amenable for use in design.
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Table I Summary of Tensile Test Results

Hole or Notch Specimen Width, Ratio, Ultimate Tensile

Size, 2ao (mm) 2W (mm) ao/W Strength, Ou (MPa)

Unnotched 6.0 - 1590 ± 100*

Hole 0.6 12.0 005 1210

Hole 0.6 3.0 0.20 1180

Hole 1.5 7.5 0.20 980

Hole 3.0 15.0 0.20 910

Hole 6.0 30.0 0.20 860

Notch 1.5 7.5 0.20 910

Notch 3.0 15.0 0.20 850

Notch 6.0 30.0 0.20 810

"Average and standard deviation from 8 tests.
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APPENDIX

The geometric parameters, fi, gi and hi, in Eqns. 12-14 are given by13

f, = 4 (Al)

+-- = oh R n1 Csl- -_% • coth 2

1 ( 4-11)l-

h22

coth-/ L- +21 COth-), 21 (A6)

h1,):1 (APm
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92 ý- "/ý 12 Cs, I
a =(y1 (A8)

9 -2 2 ;11 [cos..2l ' -C s-(n~

t T )(A9)

where Tji and 112 are normalized crack lengths defined by

il a al/ao (AlO)

and 12 m a2/ao (All)
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NOMENCLATURE

2ao Notch width, or hole diameter

2al Crack length at 8 =

2a2 Total length of notch and plastic strip

c Flaw size

D Crack opening displacement at notch tip

E Young's modulus

fi, gi, hi Geometric parameters (Appendix)

hp Plastic zone width

K Crack tip stress intensity factor

I-c Critical (transfer) length

1.0 Reference length (1 m)

m Weibull modulus

P Load

R Fiber radius

so Reference strength, corresponding to Lo = I m

S1 , $2 Bridging stresses in two-level rectilinear law

t Panel thickness

w Half width (width for edge notched specimen)

a Normalized notch length (ao U.2/ME)

8 Crack opening displacement (COD)

81, 82 Critical values of 8 in bridging traction law

& COD needed for fiber fracture

8c COD needed for matrix fracture
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Ef Fiber failure strain

Em Matrix failure strain

r Fracture energy

ri, r2  Components of fracture energies from bridging

rb Fracture energy derived from bridging

ro Intrinsic toughness

Toughness ratio

(0=ro/rb for rectilinear law, ý,=rj/r 2 for two-level rectilinear law)

0 Remote tensile stress

Oo Bridging stress

a Notched tensile strength

14D Unnotched tensile strength

Omy Matrix yield stress

COy Yield stress of monolithic metal

SInterfacial sliding stress
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FIGURES

Fig. I Predicted trends in notch-strength with normalized notch size for several
different forms of the bridging traction law.

Fig. 2 Influence of the intrinsic toughness ro on the notch-strength characteristics
for the rectilinear bridging traction law.

Fig. 3 Effects of circular holes vs. sharp notches on strength.

Fig. 4 The stress-local strain response of a specimen containing a 6 mm notch.

Fig. 5 Optical micrographs showing the progression of plastic strip development.
The labels A, B, and C correspond to the stress levels shown in Fig. 4.

Fig. 6 Comparison of (a) the plastic strip ahead of a notch tip, with (b) the pattern
of fiber fracture following matrix dissolution. The micrographs show
identical regions of the specimen.

Fig. 7 SEM micrograph showing degree of fiber pullout.

Fig. 8 Trends in tensile strength with hole or notch size. Also shown for
comparison are predictions based on the Griffith equation and the Dugdale
model.

Fig. 9 Load-displacement curve measured on work-of-rupture specimen.

Fig. 10 Trends in (a) plastic zone width, hp, and (b) local displacement at fracture,
8c, with hole or notch size.

Fig. 11 Optical micrograph showing plasticity around the hole following fracture.

Fig. 12 Tensile tests of specimen containing plastic strip with broken fibers.
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Fig. 13 Schematic diagram of the proposed traction law governing fracture in the
Ti/SiC composite.

Fig. 14 Schematic diagram of the crack bridging model.

Fig. 15 Predicted stress-crack opening curves for the two traction laws: (i) the
two-level rectilinear law, with no intrinsic toughness (Fo = 0), and (ii) the
rectilinear law, with an intrinsic toughness, ro.

Fig. 16 Comparisons between experimental measurements and predictions of
models based on (i) the two-level rectilinear traction law, (ii) and the
simple rectilinear law, with an intrinsic toughness ro.

Fig. 17 Schematic diagram showing contribution from matrix yielding and fiber
pullout on the composite strength in the post-fiber failure regime.
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LOCALIZATION DUE TO DAMAGE
IN TWO DIRECTION

FIBER REINFORCED COMPOSITES

Franqois HID
Per-Lennart LARSSON
Frederick A. LECKIE

Abstract: Fiber pull-out is one of the fracture features of fiber reinforced ceramic matrix

composites. The onset of this mechanism is predicted by using Continuum Damage

Mechanics, and corresponds to a localization of the deformations. After deriving two

damage models from a uniaxial bundle approach, different configurations are analyzed

through numerical methods. For one model some very simple criteria can be derived,

whereas for the second one none of these criteria can be derived and the general criterion

of localization must be used.
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1. Introduction

Ceramic Matrix Composites (CMC's) can either be reinforced by fibers in one direction or

by fibers in two directions. The aim of this paper is to study composites reinforced with fibers in

two perpendicular directions by extending a previous study on CMC's with fibers in one direction

(Hild et al., 1992).

The rupture of most of the CMC's involves two separate failure mechanisms. The first

mechanism is matrix cracking. The matrix cracks develop and their density saturates as the load

level increases. The second mechanism is fiber breakage accompanied with fiber pull-out.

Enventually, the final rupture will take place around one of the matrix cracks: it correponds to

localized fiber pull-out due to fiber breakage. The occurrence of this mechanism corresponds to

the appearance of a macro-crack and will be described by a localization of the deformations. The

initiation of macro-cracks in a structure during service often constitutes the early stage of the final

failure of the structure. Starting from a material that is assumed free from any initial defect, the

initiation of macro-cracks can be predicted using Continuum Damage Mechanics. The driving

force is fiber breakage, which is accompanied by di-tribured pull-out. The approach using

localization has successfully been used for ductile materials (Bilardon and Doghri, 1989a,b;

Doghri, 1989). The initiation stage is considered as the onset of a surface across which the velocity

gradient is discontinuous. Under small deformation assumptions, this phenomenon is mainly

driven by the damage mechanism that causes strain-softening. For CMC's, the damage mechanism

is related to fiber breakage, and the damage variable describes the percentage of broken fibers (Hild

et al., 1992).

Although localization can be studied at the scale of fibers bonded to a matrix through an

interface (Benallal et al., 1991a), i.e. at a micro-level, localization also can be analyzed at a meso-

level, when the material is assumed to be homogeneous. Continuum Damage Mechanics, which

represents a local approach to fracture (Benallal et al., 1991b), constitutes an efficient tool for this

purpose. The progressive deterioration of the material is modeled by internal variables defined at
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the mesa-level. These variables are called damage variables. The damage state and the evolution of

these variables is obtained through a uniaxial study based on fiber breakage (Coleman, 1958; Curtin

1991). A 2-D plane stress analysis is performed based on an extended model. The loss of

uniqueness and the localization are studied for shear free states. A criterion referring to a critical

value of the damage or to a maximum normal stress can describe the localization, which constitutes

an objective criterion, from a design point of view.

2. Localization and Loss of Uniqueness

The failure at a meso-level, with the initiation of a macro-crack, is defined as the bifurcation

of the rate problem in certain modes, viz. the appearance of a surface across which the velocity

gradient is discontinuous (Billardon and Doghri, 1989a). This phenomenon is referred to as

localization, and corresponds to the failure of the elliptic'. condition. The condition of localization

can also be compared to the loss of uniqueness of the raw oroblem.

Stationary waves were studied by Hadamard (1903) in elasticity, by Hill (1962) and Mandel

(1962) in elasto-plasticity. Rice (1976) related the localization of plastic shear bands to jumps of

the velocity gradient. Borri and Maier (1989) have given necessary and sufficient conditions for

the onset of modes inside the body, who extended the results given by Rice (1976) and Rice and

Rudnicki (1975, 1980).

Under small strain assumption and in elasticity coupled with damage, the behavior of a

material is assumed to be described by the following piece-wise linear rate constitutive law

E: if=(1)

1.H:i ifD5*0
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where 0 and i respectively denote the stress and strain rates, E and H are fourth rank tensors, E is

assumed to be positive definite, and D is either a single damage variable or a set of damage

variables.

Localization occurs inside the body, if and only if (Rudnicki and Rice, 1975; Borrd and Maier,

1989, Benallal et al., 1991a)

Det (n.H.n) = 0 for a vector n*0 and at a point inside a structure fQ (2)

This criterion corresponds to the failure of the ellipticity condition of the rate equilibrium equation;

it also can be used as an indicator of the local failure of the material, at a meso-scale (Billardon and

Dogbri, 1989a).

Furthermore, any loss of uniqueness, considered as bifurcation of the rate boundary value

problem, is excluded provided

(: i>0 (3)

In this study, the quantity that defines loss of uniqueness and localization is the linear tangent

modulus H. In the following, we analyze loss of uniqueness and loss of ellipticity (i.e. localization)

for states when

{ I =C22 (4)
E12 =0

The parameter cz is referred to as the strain ratio and its inverse is denoted by A. These particular

states only are considered. When the hypothesis of Eqn. (4) is satisfied, the non-vanishing

components of the vector n are nj and n2, and the matrix A = n.H.n reduces to (Ortiz et al., 1987)
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A [ Hlfl +n22 H1212 nln2 (Hl 2 12 +H 1 122)

A = (5)

nln2(HI212+H2211) n21H121 2+n22H22 22

If we rewrite (nl,n2) = (cosO,sinO), X = tan2O, then the localization condition is equivalent to finding

real positive roots of the following equation

aX 2 +bX+c=0 (6)

with

a = H1212H2222

b = HII1IIH2222 - H1 122H2211 - HI 122H1212 - H2211H1212 (7)

c = H1 212H1 111

If real positive roots are found, then the localization direction is perpendicular to the vector

(nl,n2,O) = (cos9,sinO,O), characterized by the angle 9 (Fig. 1). The values of HIlI 11, H2 , H1 122,

H2211 and H1212 are model dependent and specific models are now developed.

3. Constitutive Laws

This section is concerned with the development of two constitutive laws in the case of

CMC's reinforced in two perpendicular directions. At constant temperature, the behavior of a

CMC reinforced by unidirectional fibers in the x2-direction (see Fig. 1) can be characterized by the

Helmholtz free energy density V2, which is a function of the state variables Eli, F22, £12, and the

damage variable D>2 in the x2-direction
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PW2 = PV(Flle22,12,D2,f2,k2) (8)

where D2 represents the fiber degradation in the x2-direction, E2 the Young's modulus in the

x2-direction, V12 the Poisson's ratio, k2 the ratio of the Young's modulus in the fiber direction (E2)

to the Young's modulus in the transverse direction (E1 ), and G12 the shear modulus. It is worth

noting that the elastic quantities depend on the volume fraction of fibers. The expression for the

general Helmholtz free energy density V is given by

pv(XyXdfk) = E2(f) x2+ 2v1 2kk(1-d)xy + ky2 + 2G 12z2  (9)
21

where p is the material density, x,y,z are dummy variables representing strains, d damage, f volume

fraction, and k Young's moduli ratio. The stresses and the thermodynamic force Y2 associated to the

damage variable D2 are derived from the Helmholtz free energy density xV2 as follows

O1 = p 2 •= P f V2 2C12 = P ! (10)

Y2 = P c--

The explicit expressions for the stresses related to the strains and the damage variable modeling the

fiber degradation in the x2-direction are given by

E2
all = l 2 [ElI+VI2(1-D2)k2E22)

k2(1-v 1 2(1-D2)k2J
E2(1-D2)02 _22_2k (•22+v12E11) (I1I)

012 = 2G12E12
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The damage state of fibers in the x2-direction, D)2 can be related to the stress (and is denoted
by D~) or strain state (and is denoted by D(2)). The relationship is either implicit in terms of the

normal stress in the x2-direction (model #1)

D(1) f I- exp [ (_ D { 22 n iffe22 >Oandi22 >O (12)

where m is the shape parameter of a Weibull law (Weibull, 1939), (Oc the characteristic strength

(Henstenburg and Phoenix, 1989), and f2 is the volume fraction of fibers in the x2-dilection; or

explicit in terms of the normal strain in the x2-direction (model #2)

D I)- exP- ( if i22 >0andi2>0 (13)

where Ec is related to the characteristic strength ac by Oc = EF EC (EF is the Young's modulus of

the fibers). Both models describe the same material behavior when subjected to uniaxial tension.

However the models give different predictions for multiaxial loading states (Hild et al., 1992). It is

worth noting that the damage evolution laws are a priori independent of the volume, since we

assume that the local behavior of the fiber degradation is not dependent on the total length of the

fiber (Curtin, 1991). This type of behavior is observed when distributed pull-out happens in

conjunction with fiber breakage, and it can be shown that in most practical cases, the statistics

driving the fiber breakage is independent of the total length of the composite. On the other hand, if

the composite length becomes very small, a length dependence is found again, and in this case the

evolution of the damage variable is mainly given by a fiber-bundle-type of behavior, which leads to

replacing m+l by m, the characteristic strength ac by GO (LaL)I/m, where C0 is the scale parameter

of a Weibull law, and the scale strain Ec by -0 (LoL0 )I/m , where LO is the gauge length at which the
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scale parameter has been identified, and 00 = EF 4 Since the results are the same for both damage

evolution laws when the previous permutation is used, we will just express them in the case when

the model is length independent, which is the most relevant in practice.

If the fibers are in the xl-direction then the breakage can be modeled by a damage variable

denoted by DI. Using Eqn. (9), the Helmholtz free energy density pVI is given by

PVI'I = PV(E22,eu1l,£12,Dlf`Ikl) (14)

If the fibers are in both xl- and x2-directions, then we assume as a first approximation that

the total specific Helmholtz free energy PV12 is given by a law of mixture of the Helmholtz free

energy densities in the xl- and in the x2-directions

PV12 = (1-f)pVI + fP'2 (15)

where f is the fraction of fibers in the x2-direction (f=f2/(f1+f2), and where fl and f2 are the volume

fraction of fibers in the xl- and x2-direction, respectively). This assumption also corresponds to a

iUn-Taylor Hypothesis. The evolution of the stresses is given by

II =P 12 = (-OSll + fS12

022 =P 2 =(1-=)S21 + fS22 (16)k2 - 22

C12 = P 2 = 2G 12E 12

where the explicit expression for Sij is given in appendix 1, and the corresponding thermodynamic

forces associated to the two independent damage variables D1 and 1)2 are
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Y1 - p ý2 = (l-Op 0 (17)

Y2 = P 0#12= aP•-

Again, the evolution of the damage variables can either be implicit in terms of the respective normal

stresses (model #1)

D(1) = I-exp -{ (1)f1 m+ ifEli >OandE 11 >0 (18)

DO•)= I-fexp 12 ifE22 >0andi 22 >0
(-- 2 %Cy

or explicit in terms of the respective normal strains (model #2)

* l-ex (Ell if Eli >OandS 1 1 >0 (19)

D.) _1- ex if 22 > 0 and i22 > 0

It is worth noting that we assume that the statistical properties of the fibers are supposed to be

identical in both directions. This hypothesis will be maintained throughout the paper since

generalization would be straightforward. Both models are studied for shear free states when the

strain ratio cc (see Eqn. (4)), and thus its inverse P are given.

3.1. Failure Criteria for Model #1

For model #1, the evolution of the damage variables is implicit in the sense that 0(1)

(respectively D(U) is a function of the normal stress (1, (respectively a22) and the damage variable
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D(') (respectively D(2)) itself. The evolution is therefore computed by a numerical scheme based

upon a Newton method. To study localization and loss of uniqueness, we need to compute the

tangent operator, which takes the following form

H1111 = [(l-f)FlI + Mf121 (I + fF52F72) - fF22F7 2 [(1-f)F4 1 + fF 421
[1 + fF21F72 ](1 + fF52F72) - f(l-f)F22F72F5sF 7 1

H2 22 = [(1-f)F61 + fF62] [1 + (1-f)F21F71] - (1-f)F5 1F7 1 [(1-f)F41 + fF42]
[1 + fF21F72 ](1 + fF52F72) - f(1-f)F22F72F5 IF7 1

H1122 = [(1-F41 + fF42] (1 + fF52F72) - fF22F72 [(1-f)F6 1 + fF62I (20)
[1 + fF21F72 H(I + fF52F72) - f(I-f)F22F72F5SF 7 1

H2211 = [(1-f)F41 + fl 4 2] [1 + (1-f)F21F71] - (1-f)Fs51F 7 [(1-f)FI, + fF12]

[1 + fF21F72 1(1 + fFS2F72) - f(1-f)F22F72F51 F71

H12 12 = 2012

where the explicit expressions for Fij are given in appendix 2.

The loss of uniqueness and localization are investigated when the fiber fraction f and the

strain ratio a vary. Although analytical results cannot be derived from criterion (2) in the general

case, some simple results can be found when f is equal to 0 or 1. In these cases, the criteria derived

by Hild et al. (1992) apply. If f is equal to 0 (fibers only in the xl-direction), then localization and

loss of uniqueness occur at the same load level when

D()=Dc, 11- / )

011 = Oul fl oY ((m+l)eJ (21)

Y = Y

where the stress T u1 corresponds to the ultimate tensile strength in the xi-direction. It is worth

noting that the three previous criteria are easier to compute than the general criterion (2). The
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direction of localization is 0 = 0*, i.e., a localization surface perpendicular to the fiber direction. If f

is equal to 1, the same kind of result apply and the direction of localization is 0 = 900, i.e., a

localization surface again perpendicular to the fiber direction. When f*O and ftl, these results

cannot be proved. However the computations show that loss of uniqueness and localization can be

described very accurately by the two following criteria

Max (1),Dg)) - Dc l- exp(m+ll1 (22)W•, 1 2 j-- -- I_

lI=aOul or (22= 04 (23)

when the fiber properties are the same in the two directions. The maximum error is .5% in terms of

criteria (22), and (23).

Criterion (22) shows that for model #1, maximum damage at localization depends only on

the Weibull exponent of the fibers. Furthermore, criterion (23) shows that the maximum normal

stress ail (respectively 022) depends only on the volume fraction of fibers in the xl- (respectively

x2-) direction and on the fiber characteristics. This result is consistent with some experimental

observations on woven carbon matrix composites reinforced with SiC (Nicalon) fibers (Heredia et

al, 1992). On the other hand, the localization angle is dependent on the fiber percentage f (see Fig.

2). When the fiber percentage f and the sign of the strains ElI and E22 are constant, the variation of

the localization angle is due to the fact that the maximum tensile stress is either reached in the xl- or

in the x2-diecon.

Moreover, if the strain ratio a is different from 0 and 1 then there is a complete symmetry

of the results. If the strain ratio a, the strains ElI and -22 are positive, changing a into 1, f2 into fl,

changes f into 1-f, and alters the absolute value of the localization angle 101 into itf2 - l10 and keeps

the maximum stresses and damage levels constant. These two properties are referred to as

synmery propertes, and are mainly due to the features of Eqns. (4), (8), (14) and (15).

When the strain ratio a is equal to 1 and the fiber percentage f is equal to .5, the localization
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angle is undeutmined. This is due to the vanishing of the three constants a, b, and c in Eqn. (6), for

HIIII = H1122 = H221I = H2 22 2 = 0. Any value of the angle 0 satisfies Eqn (6). This

phenomenon can be observed when the fiber percentage f is different from 1: if YI 1 YuI and G2

=Ou2 simultaneously, then D21) = D(l) = D,, and HIIII = H1 122 = H2211 = H22 22 = 0. This

particular result shows that in terms of this model, for a given strain ratio a, it is possible to

optimize locally a CMC reinforced by fibers in two perpendicular directions. Indeed, in terms of

fiber breakage, a condition 711 = 0 uI and 022 = iu2 leads to an optimum of the fiber behavior in

both directions.

Model #1 constitutes a straightforward generalization of the fiber bundle models studied by

Krajcinovic and Silva (1982), and Hult and Travnicek (1983). Finally, a shear stress has no

influence on all the previous results since we assumed no coupling between the damage variables

and the shear strain or stress for both model #1 and #2.

3.2. Study of Localization with Model #2

For model #2, the evolution of the damage variables is explicit and therefore is easier to

compute. The tangent operator takes the form

H1111 = (1-f)(F1l- F2 1 F31) + fFl2

H= = (1-0F 62 + f(F42- F52 F32)

H1122 = (1-f)F4 1  + f(F42- F22 F32) (24)

H2211 = (1-f)(F41- F2 1 F3 1) + fF4 2

H1212 = 2G1 2

where the explicit expressions for Fi are given in appendix 2. As shown in the case of fibers in

only one direction (Hild et al., 1992), the localization criterion cannot be described by some simple

6/02/93 Localization due to damage in two directi-n fiber reinforced composites (revised version) 13



criteria as those given by model #1. When fibers are in both directions the latter results are

confirmed. A first consequence is that an optimization procedure can be performed since the

maximum stress at localization, and the maximum damage at localization are dependent on both the

strain ratio a and on the fiber percentage f.

Since the elastic law given in Eqns. (16) is identical for both models, the symmetry

properties apply also for model #2 (see Figs. 3, 4, and 5). It can also be noticed that the maximum

stress at localization varies with the fiber firaction f and with the strain ratio o.

In the experiments reported by Heredia et al. (1992) the stress at localization was given by

the ultimate tensile strength corresponding to the volume fraction of fibers in the same direction.

This is not found by using model #2. Indeed, in a tensile test, when fj = f2 =.5 the maximum stress

022 normalized by the ultimate tensile strength Yu2 is given by .63, whereas the same tensile test

when fl =.0 and f2 =.5 would give a normalized tensile strength a22/Cu2 equal to 1. On the other

hand, the damage at localization D)2 normalized by the critical damage Dc is equal to 1.04 when fl

=.5 and f2 =.5 and is equal to 1. when f1 =.0 and f2 =.5.

It is too early to draw a final conclusion, but it seems that the predictions of model #1

correspond more to reality than those of model #2. On the other hand, model #2 turned out to give

results very close to model #1 when applied to structures with fibers in one direction (Hild et al.,

1992). This will be addressed in the case of structures with fibers in two perpendicular directions

such as spinning discs.

4. Conclusions

Using a one-dimensional study of fiber breakage modeled by a single damage variable, two

models are derived. Both of them are then generalized to a 2-D plane stress analysis, with fibers in

two perpendicular directions. Whereas model #1 constitutes a straightforward generalization of the

elementary study, model #2 exhibits different features. Indeed, loss of uniqueness and localization

can be described by some very simple criteria referring to Continuum Damage Mechanics for
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model #1. Conversely, these simple criteria do not apply for model #2. Physically, model #1 gives

a better description of some experimental trends observed in the case of a carbon matrix reinforced

with silicon carbide (Nicalon) fibers in two perpendicular directions. On the other hand, model #2

is easier to compute, and when applied to the study of spinning disc with fibers in one direction, it

leads to load levels at localization of the same order of magnitude as model #1 (Hild et al, 1992).

Lastly, this study shows that the localization for model #1 can be described by using

criterion (23) derived from the general criterion of localization (2). This criterion can also be used

for a computation in elasticity and may turn out to be sufficient in first approximation to predict

load levels at which at macro-crack initiates, instead of using a computation in elasticity coupled

with damage. This work is still in progress and will be presented in a subsequent publication.
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Appendix 1
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Figure Caption

Figure 1: Localization mode.

Figure 2: Absolute value of the localization angle in degrees at localization for model #1, the main

caption of the axes corresponds to the case where f2 = .5, f1 = .0,.125,.333,.5, and the

captions in brackets correspond to the cases where f1 = .5, f2 = .A,.125,.333,.5.

Figure 3: Normalized maximum stress at localization for model #2, the main caption of the axes

corresponds to the case where f2 = .5, fj = .0,.125,.333,.5, and the captions in brackets

correspond to the cases where fi = .5, f2 = .0,.125,.333,.5.

Figure 4: Absolute value of the localization angle in degrees for model #2, the main caption of the

axes corresponds to the case where f2 = .5, fl = .0,.125,.333,.5, and the captions in brackets

correspond to the cases where fi = .5, f2 - .0,.125,.333,.5.

Figure 5: Maximum normalized damage value at localization (m=4.) for model #2, the main caption

of the axes corresponds to the case where f2 = .5, fl = .0,.125,.333,.5, and the captions in

brackets correspond to the cases where f, = .5, f2 = .0,. 125,.333,.5.
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ABSTRACT

This paper presents a general method for the plane problems of an anisotropic

elliptical inclusion embedded in an anisotropic matrix. The analysis is based upon the use

of a conformal mapping technique and a Laurant series expansion. The solutions for an

infinite anisotropic matrix containing a perfectly bonded anisotropic elliptical inclusion are

constructed by using the corresponding solutions of an infinite homogeneous material

subjected to the same loading. The general solution is presented in terms of infinite series.

Closed form solutions are obtained for the special cases of an elliptical hole and a rigid

elliptical inclusion.

INTRODUCTION

Most engineering materials contain some defects and imperfections in the form of

cracks, voids, inclusions, or secondary particles. These inhomogeneities play an important

role in the mechanical behavior of engineering structures. The elastic response of a material

with such inhomogeneities is a basic problem in solid mechanics, and has been a topic of

extensive studies. One fascinating aspect of the inclusion problems is the interactions of

inhomogeneities with singularities like concentrated forces and dislocations. Elastic

solutions for interactions of singularities with material inhomogeneities not only provide the

kernel functions for singular integral equations and Green's functions for the boundary

element method, but also provide a direct tool to study the phenomena like matrix cracking

in composites, ductile/brittle transition of an interface with impurity segregation, strain

hardening in metal alloys, and toughening and strengthening of metal matrix composites.

During the past decades, many researchers studied the problems of a dislocation

interacting with an inhomogeneity within the frame-work of isotropic elasticity. The

problem of a circular inclusion interacting with an edge dislocation inside the matrix was

studied by Dundurs and Mura (1964) via a semi-inverse method. The problem for a
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dislocation inside a circular inclusion was solved by Durdurs and Senderky (1965). Due to

its flexibility to cover a wide variety of cases ranging from line to circular defects, the

elliptic inclusion has received more attention recently. Warren (1983) solved the problem

of a dislocation inside an elliptic inclusion. Stagni and Lizzio (1983) obtained the solution

for an elliptic inclusion interacting with an edge dislocation inside the matrix. Santare and

Keer (1986) revisited the problem and obtained a closed form solution for the special case

of a rigid elliptical inclusion.

Although a substantial amount of work has also been reported on the inclusion

problems within the frame-work of anisotropic elasticity, these studies mostly deal with the

problem under uniform remote loading. The anisotropic elastic solutions for the interaction

of singularity with an elliptical inclusion have not been reported in the literature. The

present study is partially motivated by the author's interest in modeling the p.oblem of

matrix cracking in the presence of an elliptic hole, and the problem of splitting tangent to an

elliptic hole.
The purpose of the present study is to provide a general method to the plane

problems of an anisotropic elliptical inclusion inside a general anisotropic matrix. The

analysis is based upon the use of a conformal mapping technique and a Laurant series

expansion. We shall show that solutions for an infinite anisotropic matrix containing a
perfectly bonded elliptical anisotropic inclusion can be constructed by using the

corresponding solutions of an infinite homogeneous material subjected to the same loading.

In other words, one can build the solution with an elliptical inclusion as long as one has the

solution of an infinite solid under the same loading. The derivation is valid for general

anisotropic materials. The anti-plane deformation is also considered in the analysis. As

two very useful cases of an elliptical hole and a rigid elliptical inclusion, the solutions are

obtained in a closed form, provided that the solution for the corresponding homogeneous
problem is readily available.

We start with a concise review of the basic results of anisotropic elasticity on the

basis of Lekhnitskii-Eshelby representation and then present a general solution procedure.

Finally, we give a few specific examples.

BASIC RESULTS OF ANISOTROPIC ELASTICITY

Consider the two-dimensional elasticity problem of a general anisotropic material.

The Hooke's law for the material can be written as
6

Ei "= Isi (1)j=1 J
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where

{£il =EA EYY' Lu,' ~YyZ YzX' YjT (2)

(oil} [(Yxx' 0YYYV('zz' TYzV IEX 1rY T (3)

with superscript T denoting the transpose. The 6x6 matrix S is the standard compliance
matrix.

It has been shown by Lekhnitskii (1963) and Eshelby et al. (1953) that, under the
assumption that all displacements are independent of the direction normal to the x,y-plane,

the general solution of the problem can be expressed in terms of three analytic functions,

fl(z 1), f2 (z2 ) and f3 (z3), with three complex variables given by z, =x+ply,

Z2 = x + 427 and z3 = x + ; 3Y. The following algebraic equation has six roots:

12(g) 14(g)-[13(g)] 2 = 0 (4)

where
12(g) = S55 g2 - 2S45 7 + s" (5)

13(9) S15 g3 -(S 14 + S56)2 + (S25 + S46)7-24 (6)

14(p) = sg74 -2s16 113 +(2S12 + S66)g 2 - 2S26 A (7)

The parameters pl, 72 and 93 are the three distinct roots whose imaginary parts are

positive.
In terms of f1(zl), f2(z 2 ) and f3(z 3), the displacements ui, the stresses aij and

the resultant forces on an arc Ti are given by

ui= 2Re AijTf (z=)] T -2 Re[3Lijf1 (zj)] (8)

2=2 Re L fr) i = -2 Re (9)02 p- Li. fjlzj ) I = j~ -R Lij~j fJ(zj] (9)

where Re[] denotes the real part of a complex quantity and ( ) stands for the derivative

with respect to the associated variables. The elements of the matrices A and L can be

expressed in terms of elastic constants as
-1 -92-9,3113

L= 1 1 113 (10)

.- T11 -T12 -1
and

Aia -Sll g + S12 - S16 9a + T1a(S15 - 9a - S14) (11)
A2aZ =S21 7a + S22 /9a - s26 + T0s25 - S24 /9.) (12)

A3a -S41 Ia + S42 / 1 a - S4 6 + T (s45 - S44 / a) (13)

for a = 1,2 and
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A13 =- 'ri3 (sii 193 + S12 - S12 113) + S15 5L3 - S14  (14)

A23 113 (s 2 19i3 +S22/13 -s26 )+S -S 2 4 /9t3 (15)

A 33  13 (S41 3 + S421/ 3 - S46) + S45 - S44/1"1 3  (16)

where L- = -13(g.)/12(1() ,a= 1,2 and 113 = -13(913)/14 (93)

If we introduce the following vectors:

u=[u1 ,u 2 , u3], T=[T3,T 2 ,T 3] f=[fJ(z1 ),f2 (z 2 ), f3 (z3 )IT (17)

Eqs. (8) and (9) can be recast into the form

u = Af(z)+ AfX(z) T = Lf(z) + Lf(z) (18)
It is important to note that the vector f(z) has component fj with the understanding that z is

to be replaced for .fj by zj.

All the above equations hold for the plane stress problem, but they are equally valid

as well for the plane strain counterpart if the following substitution of compliance is made

sij = Sij - SO3 sj3/s33 (19)

THE GENERAL SOLUTION FOR AN INFINITE ANISOTROPIC SOLID
WITH AN ELLIPFIC INCLUSION

Fornuladion
We now construct the general solutions for the problem of an infinite anisotropic

plane with an elliptical inclusion. Let the matrix material occupy the space specified by

X2/a2 + y2 /b 2 > 1, and the inclusion occupy the rest of the plane. The inclusion and the

matrix are assumed to be bonded perfectly together, so that

u1m =ui Tm = Ti on x2 /a2 +y 2 /b2 = 1 (20)

The superscripts m and i of u and T refer to materials in the matrix and in the inclusion
respectively. Throughout this paper, whenever necessary, explicit superscripts and

subscripts m and i will be reserved to signify quantities for the matrix and the inclusion
respectively. We will find the stress potentials fj(zj) for zj both in the matrix and in the

inclusion. Without loss of generality, we assume that loading is applied in the matrix, but

the same procedure can be applied to the case that loading is applied in the inclusion.

Denote the stress potential vector for the corresponding problem of an infinite
homogeneous matrix subjected to the same loading condition as f°(z). Then the potentials

in the presence of an elliptical inclusion may be written as
S=fi(z), z in the inclusion

f(z) = (21)lfro(z) + f0 (z), Z in the matrix
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Here both f1(z) and f' (z) are analytical in their respective regions. The function f0 (z)

may have singularities due to concentrated loading or dislocations.

Substituting (21) into (20) via (18), one obtains

Li f'(z) + if'(z) = L0 [fm(z) + f°(z)]+ L-m[f-zZ) + fOz)" (22)

Ai f1(z) +AX'f'(z) = Am~fm'(Z) + f0 (Z)]+ AIFm(-z) + F'Nz)] (23)

Eqs. (22) and (23) hold for every point on the interface x2/a 2 + y2/b 2 = 1. We shall

solve for fi(z) and f m(z) in terms of f°(z) from these two equations.

Before presenting the general solution procedure, we note that

z~n =x+ = X' + iYm j = 1,2,3 (24)

z = x + lt~y = X +iYj j = 1,2,3 (25)

are affine transformations which map points in the z plane into affine points in z and z~n

planes. The ellipse x2/a 2 + y2/b 2 = 1 in the z plane (physical plane) corresponds to six

ellipses in the planes zn, z', j = 1,2,3.

The mixed boundary value problem defined by Eqs. (22) and (23) may be handled

by a conformal mapping technique. We introduce mapping functions

•J. m +- j= 1,2,3 (26)

which map the areas outside the ellipses in z'", 4 and 3 planes onto the areas inside the

unit circles in ;m, ;m, and ;' planes respectively; and
i aitbi. a-i~tb

ZJ= 1,2,3 (27)
S2 J 2'

For each given value of j, mapping function given by (27) maps the area inside the ellipse

in the zj plane onto the annular region between the unit circles I = 1 and

1 = -pJ- which corresponds to a straight line connecting points

-- -a 2 + (pjb)2 and = a2  f in the zi plane.

It is important to note that for every point P on the contour x2/a 2 + y2 /b 2 = 2 ,

there are six corresponding affine points pl, p2 ....... , p6. However, the conformal

mapping functions defined by (26) and (27) map all these affine points into a single point

on the contour of the unit circle given by ; = ei°, where 0 is connected to the parametric

equations of the innzeface via
y= -basin O (28)



6

Therefore, for each point (xy) on the interface, the corresponding transformed points are
eie =,2,3 (29)

With transformation functions (26), (27) and identities (29), we can rewrite Eqs. (22) and

(23) as

A1 f'(;) + if'(;) - Am[fm(;) + f0(;)]+ A-fm(' f + fs] eie (31)

where fj(;), fj(;), and fo(;) represent fj[z'(;)], fj[zTn(;)], and f°[zjn(;)]

respectively. In addition, the following condition must be satisfied by fj():

240 i F~~(a i g kjb) i e
fgeon = ( +i C ~ =p~~e (32)

since on ;i = pie' 0°ei, points ;j and ýje2ZOO correspond to one and the same point on the

cut fom z=-,a 2 + (ukb) toI a + (gjb) in the z' plane.

We note that once the solutions for f'(;) and fm(;) are obtained, one may

proceed to find the final solutions for stresses and displacements via Eqs. (8) and (9) as

follows. The vector fm(z) can be obtained by first replacing ; with ;T, and then

substituting ;ýn by

- a -(i±b) (33)a + igtnb (3

for the jth component fj. The vector f'(z) can be obtained similarly by first replacing

with ;j, and then substituting • by

Z - z )2 _ a2 _ (tib) 2

a + igt'b (4

for the jth component f'.

General sohadon proced=r

Now, we try to solve the boundary value problem defined by Eqs. (30) and (31).

Recall that function fjm'(;) is holomorphic in 14 < 1, and that function fj(;) is holomorphic

in the annular region 1 < Id < pj. Furthermore, if ;s -= poe' is the singular point whose

distance to 14 = 1 is the shortest among all singular points of fj0(;), then function fo(;) is

holomorphic in the region 0 < Po <jcj - 1. Therefore, one can expand these potentials in

terms of infinite series as
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+j ( It ik q bJ/J (35)k=0 a- + igt~b "

f() •ck;k (36)
k=0 "

f)(;) = ijdj';k +Ce•/k/ (37)

Here the continuity condition (Eq. (32)) across the straight line connecting points

z=- a2 + (.b)2 and zk = a2 + (g'b in the zj plane has been satisfied. To

proceed, we denote

k =-[alka2k.a 3k, Ck=[CIkC2kC3kI (38)

dk = [dlk, d2k, d3k]T, ek =[elk, C2k, e3k] (39)

and

L:ia•bJ 0 0

a0 a-igIb 0 (40)C a + ig'b)

0 
0 

igi bk

a+ 3b)

Substitution of (35), (36) and (37) into (30) and (31) and then comparing the coefficients
of ;k lead to algebraic equations

Liak + L' k = L. Ck +Lmdk + L. ek (41)

AIak + AICak = Am Ck + Am dk + Am ek (42)

Solving for ak, Ck from the above equations in terms of d4 and ek, one obtains the

complete solution for the inclusion problem.

Snecial cases of holes or riyid inclusions

For the special cases of holes and rigid inclusions, the solutions can be obtained in

a compact and closed form. The boundary conditions (30) and (3 1) reduce to

Lm [fm (;) + fo (;)]. U~mF -(;) + f (-;)]=o 0 Cis (43)

for an open hole; and

Am[fm(;)+fO(;)]+XAMf)+ f)] _ ui =U ei (44)

for a rigid inclusion.
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To illustrate the solution procedure, we assume that z' = xo + gLy 0 is a singular

point of f z) For any affine point corresponding to the interface boundary, one has

T a 2 g ijl( o (45)
= +2

and

- -a+i'jb(;-T1j2X;-1o2)21 (46)S= 2

where

lij- = - (IT b)2
ajo tn (47)

=az + it~ (48)
a + 4iLj b

1 +FZ;) -a 2 - (,!b)

a + igT b

Here we have chosen the branch such that jTI,' I 0 >1 = 1,2).

Recall that both f(zjm) and f(zin) are singular at zj = z.j. Therefore function

f¢(;).- fo[zjm(;)] is singular at ; = ,o, and function (;)m a j[z~n()] is singular at

;= 1 1j2, TO. The most frequently encountered singularities of fj°(zjm) are either of the

type In(zp" - z) or of the type (zT - z- )-l, where n is a positive integer. With the use

of (45) and (46), one may decompose each singular term into two separate parts so that
each part contains only one singular point with respect to;. Therefore one may rewrite

fj(;) and fj(;) in the form

f(;)fI i 111) + fm (; - noi) + cons tan t (51)
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g~i - + gJm ( 1°2) + cons tan t (52)

where functions foi, gj are analytical for I1 > 1, but functions fom and gjm are

analytical for I] < 1, since p<1, ITI> 1( 1,2). Substituting (51) and (52) into

(43) and (44), one obtains:

Lm[fm( ;) + f'(;) + fOS(;)]+ Lmf-(;) + gOm(;) + g0 i(;)] =0 (53)

Am [f(m)(;) + f0m (;) + f Oi(0)] + Af--m (;) + gom (;) + goi()] = Ui (54)

Define frm(;) = fm'(!, then on I 1, = 1, rm(;)= fn(;). Since fm(;) is analytical for

jc ; 1, f:(;) is regular for 14 > 1. Regrouping Eqs. (53) and (54), one obtains

Lm[fm + fOm]+L-mgO~m = -L~mfm(4)- Lmf 0 i(;)- -g0 i(;) (55)

Am[fm + f~t]+ Amg'm = _" mfm(;) - Am foi(;) - mgOi(;) + ui (56)

The above equations hold on the circle 14 = 1. The left-hand side of these equations are

analytic inside the circle 14 < 1, while those on the right-hand side are analytic outside the

circle I1 > 1. Analytic continuation arguments lead to equations:

Lm[fm + f0m]+ L-gO constant I4 < 1 (57)

Amfm f] f~mI+ mgom = cons tant 1c] < 1 (58)

Solving for fm (;), one finds

f(;) = f°(o)- f~m()U- LE . gom(,)+ constant jc] < 1 (59)

for an open hole; and

f(;) = f 0 (;)- fOm(;)- A A A-'m g'm(;) + cons tan t 1jc51 (60)

for a rigid inclusion.

EXAMPLES

Ellidcal inhomogeneitv subjected to uaifrm loading atintn

Consider now the problem of an elliptical inclusion in an infinite matrix subjected to
uniform stresses o7, rnd oo at infinity. The solution for the corresponding homogeneous

matrix is

f(z)-= [pIzI,p 2z2,p,z3I +[qz,,q 2z2,q3z3f (61)

where vectors q = {qj} and p = {pj} are given by

Lm q +LA qq= {o 2j} Lmtp + LmEIipi- j} (62)
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Here IA is a diagonal matrix given by

IP = 2 (63)

Introducing diagoia matrices

q•[ q2 Ip 1  P2 (64)

q 3  P3]

one can rewrite Eq. (61) as
f0 (z) Iqz + Ipz (65)

The expansion of fo(;) is

-O (Iq + Ip Xhi;+ b2; 1I) (66)

where h, - 2{aJ + igtnb} and h2 = - {aJ - ilib}. Substitution of Eq. (66) into Eqs.

(41) and (42) yields
ak =Ck =0 k>2 (67)

Therefore, the potentials are

fm (q) = C1; f*(q) = aj4 + (a- iljb)/(a + i~L~b)] (68)

which gives

f2ap z (69)
fi(J) (a + igt'b) (69

The linear form of fii(z') indicates that the stresses are constant inside the elliptical

inclusion, a well known result first discovered by Eshelby (1957).

A concentrated force and a dislocation interacting with an elliptical hole or a rigid elliptical

As a second example, we consider the interactions of an elliptical hole and a rigid

elliptical inclusion with a concentrated force p and a dislocation with Burger's vector b,
both located at x = x0 and y = Yo. The potentials fj°(zj) for the corresponding

homogeneous problem are (Eshelby et al. 1953)

fj(zj) = qj ln(zj - zjo) zjO = xo + jyo (70)

where q = {qj} is a complex vector to be determined in terms of b and p. Since

ln(zj - zjo) is a multivalued function with a branch point at Zjo, we introduce a branch cut
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in the negative x direction. By definition. (70) satisfies the conditions
b=u+ -u- p=T-T- (71)

which lead to
b = 21i(Aq - XA ) p= 27(Lq - E-q) (72)

Solving for q from the above equations, one obtains the solution for the singularities in an

infinite homogeneous matrix.

A direct application of the formula (59) and (60) gives the solutions for the

interaction problems asf,() 'q. I[z,( z. q I(---,o] I(;-110
f{ () =qln[z2()- z..]- q2 ln(; - ll) -- ":' qz n(;-rn2,2)) (73)

f() q3qln[z,(;)-z.],J q3 in(;- T1)J-[q, In(;--n302

for an open hole; and
f,( S)'zq,(In[ )-z°z] i , qIn(;-n 1 ), q, In(;- °')2
f2 (;) = q2 l n[z2(;)- z2,] q 2 in(;- 11*2)- A-.'qW In(;- 12) (74)

If,() q, ln[z,(;) - Z], q3 In(; - [q3 ln(; - n°2)J
for a rigid inclusion.
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ABSTRACT

This paper studies the tensile strength of a fiber reinforced ceramic composite

containing a hole. The strength is determined on the basis of a full analysis of matrix

cracking in the presence of the hole and the failure of crack bridging fibers. The crack

bridging fibers are assumed to undergo large amounts of slipping relative to the matrix and

modeled as an array of springs. The dependence of the composite tensile strength on fiber

tensile strength, orthotropic parameters, hole size and shape parameters, and frictional

shear stress at the fiber-matrix interface is determined and described in terms of a universal

set of nondimensional parameters. The effects of compressive residual stress in the fibers

upon strength are also discussed.

INTRODUCTION

Fiber reinforced ceramic composites containing through-the-fiber cutouts in the

form of notches and circular holes have many design applications. The tensile fracture

strength is one of the important mechanical properties of fibrous ceramic composites when

either notches or holes are present. It provides information not only necessary for practical

design but is also very useful to predict the trends in notch properties. A rigorous

understanding of the relationship between such a design limiting feature and the constituent

properties is essential for further improvement of the composite. For a brittle unreinforced

ceramic containing a hole subjected to uniaxial load, the tensile strength is given as
u, = a/ic, where a is the strength of the material in the absence of the hole and ic is the

stress concentration factor. However, for a fiber reinforced ceramic, the tensile strength

can only be determined by a full analysis of a process involving nucleation of matrix

cracking from flaw near the hole or notch boundary, matrix crack growth, frictional sliding

of the fiber-matrix interface, and failure of crack bridging fibers.

Although a substantial amount of work has been reported on the mechanical

behaviour of unidirectional fiberous composites with or without through-the-fiber cutouts,



these studies mostly deal with either the effects of matrix cracking or fibrous toughening.

Relatively less has been done to evaluate the tensile strength of composites with cutouts. A

recent effort in this direction has been presented by Budiansky and Cui (1993). They

studied the tensile strength of fiber ceramic composites containing a through-the-fiber

crack. The dependence of the composite tensile strength on fiber tensile strength, matrix

toughness, crack-size, and frictional shear stress at the fiber-matrix interface was

determined and described in terms of three basic stress parameters.

Experimental observations show that the tensile strength of fibrous composites

containing a circular hole depends on hole size. Such a phenomenon can not be explained

on the basis of classical stress concentration factor, which predicts no size effects. The

purpose of this paper is to predict the tensile strength of unidirectional fibrous ceramic

composites containing holes, and to provide the answer to the question: how does the

tensile strength of a unidirectional fibrous ceramic composite containing a hole depend on

hole size? We shall study the configuration shown in Fig. 1, where an infinite, two

dimensional, aligned-fiber reinforced ceramic body containing an elliptical hole is subjected

to uniform remote tension in the fiber direction. More specifically, the major semi-axis of

the ellipse is in the direction normal to the direction of fibers and is of length a, and the

minor semi-axis of length b is in the direction of fibers. As in most previous studies the
fibers are assumed to be held by friction, that is, sliding between the fibers and the matrix

is suppressed only if the interface frictional shear is less than some limiting stress . The

effects of crack bridging fibers are taken into account by means of a spring model. Failure

of the composite is assumed to be associated with the growth of a single mode I matrix

crack and the fracture of crack bridging fibers. We assume that no longitudinal splitting

takes place in the vicinity of hole boundary. Splitting is found to be very effective in

relieving the high stress concentration ahead of the tips of cracks or at the boundaries of

holes (Cui, 1993a), but we neglect it in the present study. We also assume that there is no

statistical variation in fiber strength. In addition, we assume that an initial matrix crack

along the direction of the major axis emanates from both poles of the hole before loading is

applied.

ORTHOTROPIC PARAMETERS

Consider the plane strain deformation of an orthotropic material. Following

Lekhnitskii (1963), if x and y axes are coincident with the principal axes of the material, the

Hooke's law for the material can be written as:
•xx = blOxx + b12C;yy (1)

Eyy = bl2Oxx + b2Cyy (2)
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yly = b"'Cxy (3)

It has been shown by Savin (1961) that the general solutions of the above plane strain

problem can be expressed in terms of two analytic functions, O(zl) and 'v(z 2 ) with two

complex variables given by z, = x + sly and z2 = x + s2y. The parameters si and s2 are

the two roots of the algebraic equation
bl ls4 + (2b 12 + b66)s 2 + b22 = 0 (4)

with positive imaginary parts.
In terms of 0(z1 ) and V(z2), the stresses and displacements are given by

ox= MResNI'ZI) + s1V'(Z2)] (5)

o. = 2Re[0'(z,) + V'(z2)] (6)

T= -2Re[s1O'(zl) + s2W'(z 2)] (7)

I= 2Re[pI(zO)+ p2W(z2)] (8)

Uy 2Re[q1 O(zl) + q2W(z2 )] (9)

where Re[ ] denotes the real part of a complex quantity, 0" = A, and-azlan

p& = bls,2 + b12 , qa = b22/s= + bl2sa a = 1,2 (10)

After introducing two nondimensional quantities (Suo, 1990)

X = bll/b22 p= b12 +b66 (11)

one can express the parameters s1 and S2 as

= i(n + m) i(n-m) fop>1 (12)S L -- 4 S2 = •,/ o p>I(2

where

n= , (13)

For ceramic composites, both X and p are generally greater than 1. We therefore will only

consider the case p > 1 and X > 1 in this paper.

It is useful to introduce another orthotropic parameter. For a Mode I crack lying

along the x-direction, the energy release rate can be expressed in terms of stress intensity

factor K, as (Suo, 1990)

G = nb22 4 K (14)

On the other hand, by introducing an orthotropic factor, A, (Budiansky and Amazigo,

1989), one can write

G %F K- 2 (15)
AE

where E is the Young's module in the fiber direction, and v is the Poisson's ratio of the
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composite. It follows from (14) and (15) that

A - I-v 2  (16)

For an aligned fiber composite with matrix Young's module Em, fiber Young's module

Ef, and fiber volume concentration cf, if we ignore the difference between the Poisson's

ratios of the fibers and the matrix (vf = vm = v), the Young's module E of the composite

is given by the role of mixture formula E = cfEf + ( - Cf)Em. The dependence of the

nondmensional orthotropic parameters A, X, and p on Ef, Em, and cf for vf = vm may

be calculated on the basis of the Hill (1965) self-consistent estimates. The results for A vs.
cf have been presented in the work of Budiansky and Cui (1993). Plotted in Fig. 2 is the

results of X vs. cf for various values of Ef/Em. Fig. 3 shows p for scrval values of
Ef/Em. It is seen that for reasonable values of Eg/Em, both X and p are greater than

but not far from 1. However, it is important to note that the above calculations are under

the assumption that fibers and matrix are bounded together perfectly. Since the fiber-matrix

interface is assumed to undergo large amounts of debonding and sliding in the present
analysis, the orthotropic effects, as represented by the parameters X, p, and A, may have

been seriously underestimated.

REVIEW OF THE RESULTS FOR A CRACK LIKE FLAW

In the absence of through the fiber flaws, if we ignore the statistical variations in the

fiber tensile strength, the tensile strength of a unidirectional fiber composite in the fiber
direction is simply the base fibers only strength, cfS. When a tensile stress ; is applied to

a unidirectional ceramic composite in the fiber direction, failure due to a preexisting,
through the fiber crack always begins with the growth of the crack in the matrix and ends

with the fracture of crack bridging fibers. Due to stress concentration at the oringial flaw
tips, the bridging stress at the flaw tip is always the maximum. This nonuniformity in
bridging stress distribution causes bridging fiber at original flaw tip to fracture at a remote
load less than cfS. According to Budiansky and Cui (1993). the ratio of the tensile

strength, co, to cfS under the degrading influence of a crack of length 2a takes the

following nondimensional form:

G.1L = Fao,2 ) (17)
CfS CfS)

where amc is the steady-state matrix cracking stress, and a0 is a nondimensional flaw

index given by
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i- _ a1(18)

6x(1- V2)cfEEf

c=l (19)

•he results in the form of (17) have been summarized in Fig. 4. Note that the flaw index
i is independent of the matrix toughness K,. For a fixed value of the parameter a0 ,

changing values of am /cfS reflects changing values of K. The curve for cy,./cfS = 0,
ci.responding to Km = 0, is of special interest. For Km = 0, the matrix crack will crack

out to infinity as soon as loo ' is applied, and then the strength is given by the critical load
required to produce fiber fracture at oringinal flaw tip for a configuration of two semi
infinite elastic blocks connected by bridging fibers, except for the crack of length 2a. As
indicase in Fig 4, the results for Km = 0 provide not only a lower bound but also a fairly

good approximation to the strength, since only modest increases above this value are
obtained for reasonable finite values of ao/cfS. Suo et al (1993) have done similar

calculations on the basis of Dugdale and linear type bridging laws and developed a uniiimd
.e.#.sntation for strength over a wide range of bridging laws via energy concepts.

FORMULATION AND ANALYSIS
Encouraged by previous findings on through-the-fiber crack, we further assume

dat the matrix toughness, Km., is zero. Under this assumption, the preexisting matrix

cracks (see Fig. 1) will crack out to infinity as soon as load is applied, as discussed in the
plevious section. The strength of the composite therefore equals the strength of the fully
cracked configuration shown in Fig. 5.

The analysis of the stress concentration problem illustrated in Fig. 5 is now taken
up. We smear out the fibers and the matrix, and treat the composite as a homogeneous
onihospic solid. The mechanics problem can be stated as foliows:

Denote the net normal and shear traction by N(x,y) and S(x,y); the boundary

conditions for the open hole are
x2 y 2

S(x,y) = 0 N(x,y) =0 on the hole boundary 4 j- 1 (20)

The boundary condition on the matrix crack faces is
Gyy(x,0) = p(x) a<jxj<-" (21)

where p(x) is the smeared-out stress on the crack faces induced by bridging fibers, and

p(x) must be connected appropriately to the crack-face displacement. As in previous

studies the crack bridging fibers are modeled as an array of springs, and the smeared-out
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bridging fiber stress p(x) is related to the crack-opening displacement v(x) by

p(x) = WI• - OR• (22)
where OR is the compressive residual stress imposed by the matrix upon the fibers and the

spring constant 0 is given as

(44tcfE 2 ) 2 (23)

lR(I-cf)'E .I
The relation (22) follows from the assumption that the frictional resisitance at the fiber
matrix interface is low enough to permit long slip lengths adjacent to the matrix crack faces
compared with the fiber diameter, as elaborated by Aveston et al (1971); Budiansky et al
(1986); Budiansky and Amazigo (1989); Hutchinson and Jenson (1991).

The matrix cracks may be regarded as continuously distributed dislocations:

by(x)=lim v(Cx) -V(- x) a <IxxIoo (24)
4 -ax Ix

The above boundary value problem may be solved by superposing two states of
plane-strain orthotropic elasticity for an infinite body with an elliptic hole, with the stress
free conditions on' the hole boundary automatically satisfied, produced as follows:

(i) apply the uniform remote loading oyyy = oy
(ii) subject the matrix crack to the distributed dislocations by(x), given by (24).

For each problem, we shall calculate the normal stress ryy (0,x). The superposition of the

solutions of the two problems should satisfy the boundary condition (22) on the matrix

crack faces.
Problems (i) and (ii) may be readily handled by the complex-stress-potential method

introduced in the previous section in conjunction with a conformal mapping technique. The

mapping functions
, a-b a+bl.. • m t j = -T( 2 5 )

2 2 2 ;
za = oa(;)=a ,+ a - is• a=l,2 (26)

2 2;
map the areas outside ellipses in z=x+iy, z. = x + say (cx = 1,2). planes into the areas

inside unit circles in ;, ;1, ;2 planes respectively. The stress potentials for problem (i)

have been given by Savin (1961) as
"= aOS 2  (27)

2(s -s2)

a o 's,(28)
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The longitudinal stress on the matrix crack plane due to the uniform remote tension in the

presence of an elliptic hole, calculated on the basis of (27) and (28), is

Y 2m

where e = b/(A)Y'), and the function F is listed in Appendix A.

The solution of problem (ii) may be written on the basis of the fundamental plane-

stuin solution for a single dislocation interacting with an open hole. The stress potentials
for an edge dislocation with Burgers vectors b. at a point (xo,yo) in an infinite orthotropic

body are
*o(zi) = Aln(z1 - z10) z1o = xo + syo (30)

o(Z)= Bln(Z2 - z20) z20 = xo + s2Yo (31)

where
By By

A=- 4B B= By4( (32)

with

B by (33)
B 167mnb22

In the presence of an open hole, the stress potentials of an edge dislocation may be
constructed by writing td and Wd in the form

d--=00+Oh , W d = 0 WO+ h (34)

The stress potentials *h and NVh have been derived by Cui (1993b). In terms of By. these

potentials can be cast into the form

Oh = FIy(ZpZ1 ,Z20 )By (35)

Vh= F2y(z29zIO,z20)By (36)

The F functions are listed in Appendix B. Integrating 0 and Vd over the two matrix

cracks (see Fig. 5), one obtains the stress potentials for the problem (ii).

It follows from (34)---(36) that the longitudinal stress on the matrix crack plane due

to the dislocation array is

0001 )v(t) dt(37)o•(x = n•1b22a IG(x/a,t/a, p, e)- d (37

a
The function G is also listed in Appendix A. In terms of the orthotropic factor A

introduced earlier, Eq. (37) can be written as

=0 A1E r 1 v(t) (8
Gyy (X) A JG~x/a,t/a. , e)--,-dt (8

41t(I - V )a at
The sum of (?Q) and (38) gives the crack-face stress p(x) to be substituted into the
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condition (22), which becomes

f~~/tap.e)-vtdt + -F(x/a, p.e) + 0 = f- 0 R-G (39)

The above integral equation may be nondimensionalized by introducing the non-

dimensional quantities

k=x/a, 11=t/a, v(t)=v(x)/vf, X=ai'/(cfS), ER =OCR/(cfS) (40)

wheom

v = (cfS 2  (41)

The resulting nondimensionalized equation may be written as

jG4%p,.) eav~(" dil + -LF(4, p, e) + 1: = V W- ER (42)
SI22m

Here the nondemsional flaw size parameter, a0 , has the same definition as it does in Eq.

(17). Note that at x = ,, the stress in the bridging springs should be equal to the stress

e applied remotely. Thus the nondimensional displacement of the upper face of the
matrix crack is given by (see Fig. 5)

V (P___+) =(°" =(++ (43)
"(=00 (CS) (CfS)2 _ (+R (43)

Now consider fiber fracture that leads to the overall failure of the composite. Note that the

smeared-out bridging stress distribution p(x) always achive a maximum value p(a) at the

intersection of the hole boundary and the matrix crack. Therefore first fiber fracture occurs

when the condition
p(a) = cS (44)

is satisfied. In terms of crack I-idging displacement, this condition takes the following

nondimensional form:
)2 (45)

In addition, we have found that the failure process of crack bridging fibers is an unstable

process. In orther words, the first-fiber-failure results in the failure of all bridging fibers in

the matrix crack plane, and therefore the separation of the composites. Consequently, we

conclude that the critical remote stress corresponding to first-fiber-failure, denoted as

0" = 02, is the maximum load the flawed composite can carry and is therefore the strength

of the composite.

Equations (42), (43), and (45) suggest that the solution for the tensile strength

depends on the nondemensonal flaw size parameter a0 , the orthotropic parameter p, the
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shape parameter e, the fiber strength, and the residual stress OR. In terms of

nondimensional variables, the strength a, nondimensionlized by the base fibers only

strength, . = os/(cfS), takes the following form:

i(46)

RESULTS AND DISCUSSIONS

On the basis of discussions described in the previous sections, we now present the
final results for the strength oa. The results will be presented in terms of the

nondimensional representation (46). The physical implications of the representation will be

discussed in full details. In the discussions that follow, the results for zero residual stress

is presented first. The effects of residual stress are then disscussed. We start with the

special case of a very large hole.

For the case of a very large hole, the relaxation effects of crack bridging fibers upon

stress concentration is negligible, the strength can be extracted from the stress concentration

factor. The stress concentration factor is

x =1+ 2nXV4 a (47)
b

which may be obtained by substituting Eqs. (27) and (28) into (5).

When a composite contains a very large hole, the bridging stress at the intersection

of matrix cracks and the hole boundary corresponding to the failure of the composite may

be well approximated by p(a) - oc. Setting p(ao)= cfS, one obtains

= cfS (48)

Therefore the tensile strength for aligned fibrous ceramic composites containing a very

large hole equals the strength of the composite in the absence of the hole divided by the

stress concentration factor x. Note that result (48) is valid regardless of the presence of

compressive residual stress in the bridging fibers.

We now present the strength in the form of (46). Consider first the case of

OR = 0. Fig. 6 shows how the strength oS/(cfS) varies with the size of the ellipse, for

several values of parameter e, and p = 1. The curve for e=4, corresponding to the special

case of a through-the-fiber crack, reproduces the curve for a,./(cf S) = 0 in Fig. 4. At a

fixed value of a0 , the curves in Fig. 6 should be interpreted as displaying the -?ffects of the
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asp= ratio b/a on the strength a,. For small values of ao, the strength is little influenced

by the aspect ratio. However, at a0 = 25, as b/a is increased from 0 to ;'14' the strength

is increased by about O6%. Note that at 10 = 0, a, =crS. The results presented in Fig. 6,

displaying the ratio ao/(cfS) as the dependent variable, provide the answer to the question:

how much has the base fibers only strength, cfS, been reduced under the degrading

influnce of a hole?
To give strength a. over a full range of the sizes of the ellipse, we present the

results in terms of V/0-. Plotted in Fig. 7 are the results of O,/cf S vs. 1/,/0, for

p = I and several values of the parameter e. Note that at 1/40 = 0, which corresponds to

the case a0 = -, the strength is O,/cf S = /ic, as discussedd earlier. This result may be

obtained by taking the limit a0 "- o@ in the governing equation (42) and then making use of

Eq. (43). This limit has been defined as the notch-brittle regime of the composite (Suo et

al, 1993). The salient feature of Fig. 6 is that it shows how the ductility of a composite
increases with the parameter l/40 = c-V2 [RS/(az)]jV2 . It is clear that regardless of the

values of the aspect ratio b/(a;v,4 ) the ductility increases with increasing values of R and

S, but decreases with increasing values of a and 'T. An inspection of Fig. 4 indicates that
as V/ra = a-V2[RS/(ar)]' 2 is increased from 0 to 1 ihe enhancement of ductility

decreases with the increasing values of the aspect ratio b/(a2Y 4).

Now consider the effects of p. Note that the orthotropic factor A depends on the
parameter p, and so does the parameter a0. Substitution of (16) and (19) into the
expression of a0 leads to

!n0 (l-cf)2E 2  (49)

Therefore the quantity Z0/n is independent of the parameter p. Thus it is more useful to

plot the szreng•m a-/(cfS) as a function of i0/n rather than as a function of a0 . Shown in

Fig. 8 are the results of a,/(cS) vs. ao/n, for b/aXY4 = 1, and several values of p. At a

fixed value of a/n, it is seen that the strength decreases with increasing values of p.

The tensile strength ;, also depends on the residual stress parameter, CR. The

effects of compressive residual stresss in the fibers upon the tensile strength o, are shown

in Fig. 9 and Fig. 10 for p = 1, and various values of the nondimensional parameter

Oa/(cfS), with b/a = 0 and b/a = X1/ 4 respectively. These Figs. clearly indicate that

compressive residual stresses in the fibers enhance the tensile strength of flawed

composits. An inspection of Fig. 9 and Fig.10 suggests that the enhancement for a
through the fibers crack is greater than for a circular hole -f the same size. Note that at
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both io- =0 and i0 -+ e-, the strength of the composites is independent of residual

stresses. The maximum enhancement always occurs at a finite value of the size parameter

Finally, it is important to note that for a through-the-fiber crack the strength

obtained under the assumption Km = 0 constitutes a lower bound of this property, and that

finite values of Km in the practical range provide only modest increases over this bound.

The same conclusion can be made for the case of holes. Therefore the solution obtained in

this paper is a fairly good approximation of the strength of unidirectional ceramic

composites with holes.
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APPENDIX A

In this Appendix, we list the funcons used in Eqs. (29) and (37). The function F is

F(x/aeC)= (n-rm) F,- (n+ m) F2  (Al)
F-(n+m)e 1-(n-m)e(

where
x/a

4(x/a)2 - I+ (n + m)2e2

and

4(x/a)- (+)(n-rm)e2

With the use of the following expressions:

X/A _JF(X/a) 2 _1+4e2
=a =1,2 (A4)1-sije

1 + I-s e .+ C 1,2 (AS)

-o2 t/a + 4(t/af - I + a=1,2 (A6)•2~ ~ + - lsat

Dx, = -- fa = 1,2 (A7)

SA --2 r - + (AS
SA - 4ii _ ii02)m 4rn (;iio) (A8)

SB S2 ns2 + (A9)S, + 111I (SI + 14°)r m(Q, + Q•)(9

sc = - + I (AlO)Q2- 421 (Q l- qT.2)m m(Q, 412)(A0

SD =- s _ ns + (Al)
(;I2 + li42)r rn(S1 + 41)

where s, = n + m and s2 = n - m, the function G can be expressed as
2 2 (SA-SB)Dxj +(SC-SD)Dx2  (A12)G(x/a,t/a,p,e) = ---.----

x/a + t/a x/a- t/a m
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APPENDIX B

In this Appendix, we list the stress functions used in Eqs. (35) and (36) in the text.

With the use of the following expressions

a+i s1 b a=1,2 
(BI)

zo.+ () 2 a2 .- S2b2
aI += o= 1,2 (B2)a+isgb

2() 2 -2-
--- a"9+ 4 a -- 1,2 (B3)

a - isab

D = Cca -- 1,2 (B4)
44 -a

2 -sb 2

where za = x + say, z: = x0 + soy0 , and z denotes the complex conjugate of a complex

variable z, one can express these functions as follows

FjY(Z 1, Z1O, Z20) = X 4 In4 _ no n) I Ljn(4i _ no ) + I n(4i _,no}B

IF2y(z2' Z10- Z20) =A.¼F -- 4n(;2-T~) n- m ln"mn(;2- n2°)+1--mn(;2 - '1102 (B36)Ln m)mn-m
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Fig. 5. Fully cracked matrix.
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ON THE THEORETICAL TOUGHNESS AND STRENGTH OF CERAMIC
COMPOSITES

BERNARD BUDIANSKY
Division of Applied Sciences, Harvard University, Cambridge, Massacusetts, USA

Abstract
Fracture studies of ceramics reinforced by phase-transforming particles, ductile particles,
or ceramic fibers are reviewed. The concepts of mode-I fracture toughness and tensile
strength of such composites are contrasted. Fracture toughness may be regarded as a
material property for a composite only if the fracture process zone is small relative to crack
size and representative body dimensions; the strength of a composite as a function of
flaws of finite size is a more significant measure of its structural performance. Following
descriptions of the individual effects on toughness and strength of each type of
reinforcement, the interaction of fibers and transforming particles is discussed. A few
more topics in fiber-ceramic composite fracture theory are discussed briefly, including the
effects of fiber-matrix debonding toughness, and aligned short fibers. Some final remarks
are made on deficiencies of the underlying fracture theory.
Kenords* Ceramics, Composites, Fracture, Toughness, Strength, Micromechanics.

1 Introduction

The low fracture toughness of ceramic materials constitutes the primary barrier to their use
in high-temperature structures. Considerable attention has. therefore been directed to the
development of ceramic composites, in which various kinds of reinforcements toughen
and strengthen a ceramic matrix in the presence of flaws.

In this paper, a review is givei, of the micromechanics of fracture of ceramics
reinforced by phase-transforming particles, ductile particles, or ceramic fibers, with the
main emphasis on the last of these. A recurrent theme is the distinction between a
conventionally defined mode-I fracture toughness, which is limited in its applicability to
fracture of a ceramic composite with long cracks, for which the fracture process zone is
small relative to crack size and other relevant geometrical dimensions, and tensile fracture
strength, which must be determined independently as a function of finite flaw size.
Several special topics concerned with fiber composites will also be addressed briefly.

2 Transformation toughening and transformation strengthening

The seminal paper "Ceramic steel" by Garvie et al (1975) showed that the apparent
fracture toughness of a ceramic could be increased by the introduction of tetragonal
zirconia (ZrO2) particles. Based on experimental observations of a tetragonal-to-
monoclinic phase transformation of the particles in the wake of a growing crack, many
theoretical studies of the so-called transformation toughening of long cracks have since
been made. In the most elementary modeling of this phenomenon (e.g., McMeeking and
Evans, 1982; Budiansky et al, 1983; Rose, 1986; Amazigo and Budiansky, 1988), a long
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Fig 1. Zone of transformed particles (black)

crack is presumed to be propagating steadily under an applied, far-field, mode-I
stress-intensity-factor (SIF) equal to K (see Fig. 1). The Zr02 particles, having a volume
concentration c (and possibly containing a dopant that tends to inhibit their
transformation), are assumed to undergo phase transformation to the monoclinic state
when they experience a mean stress 7m equal to a critical value acr. A continuous
distribution of permanent volumetric dislocation cO is imposed within the transformed
zone, where 0 is the "stress-free" phase dilatation that would have occurred if the particles
were unconstrained. (The tetragonal-to-monoclinic phase change of a free crystal also
involves a shear deformation y-.16, but this is ignored in the continuum analysis, with
the excuse that the transformed zirconia inclusions exhibit multiple bands of twinned
monoclinicity, so the net shear strain is small.) The location of the transformed region, as
well as the magnitude of the applied K, are then determined mathematically when the
crack-tip SIF is maintained at the value Km equal to the toughness of the matrix, assumed
to be the same as that of the particles. The consequent value of the toughening ratio
K/Km has been calculated, and its reciprocal is shown by the upper curve in Fig. 2 as a
function of the toughening parameter (Budiansky and Amazigo, 1988a)

)(1 +v Ec•O()

.0 1 . . .. .. . .. . . I. . . .

"" .6

..4 peak.... a

.2

,•=[(1 +i.)l(1 -v•) ]E•cBl/a,,

Fig. 2. Reciprocal of transformation-toughening ratio; steady-state and peak.
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Here E and v are Young's modulus and Poisson's ratio, assumed to be the same for the
matrix and the particles. Note that the toughening ratio becomes infinite at the "lock-up'
value o)- 30; the lock-up phenomenon was discovered by Rose (1986).

In contrast to this steady-state crack growth analysis, the transient growth of an
initially long crack was studied by Stump and Budiansky (1989a), with the results for the
non-dimensional resistance curves shown in Fig. 3. Here, for several values of co, K/K,
is plotted versus the crack extension Aa, normalized by the characteristic length

L=2 [K,.(I+v)]'(2

Unexpectedly, K/Km approaches its steady state value in an oscillatory fashion, and so the
long-crack toughness is actually given by the peak magnitude Kam attained during the
approach to steady state. The reciprocals of these peaks are shown as a function of co in
Fig. 2 by the lower curve, which approaches lock-up at to - 20.

Now consider an isolated 2D crack of initial finite length 2a, subjected to remote
tension a normal to its faces. If the crack is sufficiently long, the tensile strength in the
presence of transforming particles is given simply by a. = Kmax I1Ni, and since the
strength of the unreinforced ceraraic is ao = Km / 1,/, the strengthening ratio a, I a0
would then be the same as the toughening ratio Kmu/Km. But for cracks of arbitrary
initial size a separate transient crack-growth analysis is needed to determine the
strengthening ratio, and this leads to the results in Fig. 4 (Stump and Budiansky, 1989b;
Stump, 1991a). The parameter

t EcO-= , (3)
(1 - v)Km

is a measure of the initial crack size, so the curves show how the long-crack toughening
ratio becomes increasingly less valid an indicator of transformation strengthening as crack
size decreases. For c=.3, values of a in the range .01-1 mm give t roughly between 3 and

3

2 S•W=10

a 10 20 30 40 5o 60 70 50

Ao/L

Fig. 3. Long-crack resistance curves.
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Fig. 4. Transformation strengthening vs. transformation toughening.

30, so a ceramic having only very small flaws would not be helped much by
transformation strengthening; but then it might not need help.

This summarizes the consequences of the most primitive form of the theory of
transformation toughening, based on an arbitrary, certainly highly oversimplified rule for
the stress dependence of the phase changes in the zirconia inclusions. Calculations based
on the assumption that shear stresses as well as the mean stress near the crack tip induce a
dilatational transformation have recently been made by Stump (1992), with some startling
predictions of strangely shaped transformed regions. But reliable rules governing the
activation of the phase transformation of zirconia under complex states of stress remain to
be established. Budiansky and Truskinovsky (1993) speculate about this.

3 Ductile-particle toughening and strengthening

Ductile particles embedded in a brittle matrix tend to impede crack growth by the
mechanism of crack-bridging, but only if the crack is attracted into the particles as it
advances, so that they pin together opposite sides of the crack face (Krstic, 1983). Likely
requirements for such crack attraction are that the particle stiffness be less than that of the
matrix, and that the particle-matrix bond be tough enough to prevent the crack from going
completely around the particle through the interface. But the bond should not be too
good; a certain amount of interface debonding is desirable to permit plastic deformation in
the particle that might otherwise tend to be inhibited by the lateral constraint induced by
perfect bonding (Mataga, 1989).

Let c be the volume concentration of particles. Fig. 5 shows a sketch of the pinned
crack faces near a crack tip; a thought experiment to define crack-face opening
displacements as a function of nominal particle tension 7p; and a schematic sketch of up
vs. 8, the local opening averaged over the appropriate, local vicinity of the particle.
Failure of the particle occurs at 8 =8 F, with a = 0 for 8 > 8 F.

Now let Em and vm be the Young's modulus and Poisson's ratio of the matrix, while
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Fig. 5. Particle bridging, and particle stress vs. local crack opening.

E and v correspond to the homogenized composite. If the critical SIF for the matrix
material is I., an equivalent critical crack-tip Kc for the composite may be defined by

K(I -V )/E2 = K2(l- )(I- v2 )/E2 (4)

wherein the conventional expression for crack-tip in a homogeneous isotropic material is
equated to the energy-release-rate of the growing, bridged matrix crack. The (1-c) factor
takes into account the reduced length of the matrix crack edge due to the presence of the
bridging particles.

Now contemplate a long, initially unbridged crack subjected to a remote K-field in the
homogenized composite. Bridged-crack growth will occur when K exceeds K, with the
crack-tip SIF of the composite maintained at &C. If the particle bridging stresses are
smeared out along the crack faces, an application of the Rice (1968) J-integral then
provides the relation (Budiansky et al, 1988; Sigl et al, 1988)

E(- 2  E +~.!2X. cfO ap(8')d8' (5)

between K and the stretch 8 at the end of the bridged zone. The maximum value of K is
reached for 8 = 8F, giving the long-crack toughness ratio

Km = CEf: Opd6
A =_ 1+ 0 (6)

This, via Eq. (4), is close to the toughening ratio Kmax/Km between the long-crack
composite toughness and the toughness of the unreinforced matrix.

Since 8 may be expected to scale like the particle size, it follows from Eq. (6) that for
a given volume concentration, bigger particles are better, as long as the smeared-out
continuum approximation remains valid.

Even though it is not very realistic, an idealized Dugdale law of the form qp=S for
O<•<8F and o,--O for 8>0, provides a basis for some useful insights. For this law, A
can be related to the particle strength S and the final bridge length by

A- CS E 1+XC - (7)
Kun nK(l )
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Fig. 6. Ductile-particle strengthening vs. toughening.

Consider the possibility of using the long-crack toughness ratio A to estimate the tensile
strength of a composite conta•ining an isolated, unbridged 2D) crack of length 2a. The
crack-growth initiation stues (not too different from the strength of the unreinforced
matrix) is co0 = Kc /I.x•_, and if the long-crack toughness ratio is applicable, the strength
crs would be given by Acio, and the bridge length at each crack tip would be

2.2(

- = X(-1) A2(8)
a 8 c

But the long-crack results are only valid for small-scale bridging, wherein the bridge
length is small relative to the initial crack length. Thus, the estimate as=A;Oo is reliable
only if the long-crack toughening ratio, the crack size (via co0), and the particle strength S
give a sufficiently sinai value for Ila in Eq. (8).

Some direct calculations of the strengthening ratio based on the Dugdale model were
made by Sturnp (1991). For various magnitudes of the initial crack-size parameter
p=cS/oo, the applied stress was tracked versus crack growth, and the strength as of the
composite was set either by the attainment of a smooth maximum in the applied stress as
the crack grew, or by failure of the particles at the ends of the bridging zones. 'Me results
for os/YOo are plotted against the long-crack toughening ratio A in Fig. 6, and they show
that no matter how large A may be, cr•/ao can only get to be comparable to p=cS/ao.
For example, with c=.3, Kin=3 MPa,4m, and a=lImm, yo0-=30 MPa, and so to get the p
parameter into the range p > 2, ductile particles of strength S greater than 200 Mpa, as
well as a toughening ratio A > 3, would be needed.

4 Aligned-fiber toughening and strengthening

Considerable attention has been devoted to the tensile cracking behavior of ceramics
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reinforced by long, aligned ceramic fibers. Although such an extremely anisotropic
composite would usually be impractical, a theoretical understanding of aligned-fiber
composite fracture would appear to be a necessary precursor to the rational design and
analysis of the more isotropic laminates or weaves that would probably be exploited.
Consider the load-body configuration sketched in Fig. 7a, wherein the infinite, aligned-
fiber composite contains a sharp 2D crack of length 2ao that initially cuts through the
fibers, and ask the question: what is the tensile strength c5 ? This question received early
study from Marshall and Cox (1987), and was given a detailed reexamination recently by
Budiansky and Cui (1993), the results of which are summarized here.

a 1M

o- T

(a) (b) (c)

Fig. 7. (a) Through-the-fibers crack. (b) Steady matrix cracking. (c) Long initial crack

The fibers, of radius R and volume concentration cf, are assumed to be prevented
from axial sliding with respect to the matrix by frictional stresses if they do not exceed a
limiting value T. The frictional shear stress is then assumed to stay equal to t during
relative longitudinal motion at the fiber-matrix interface. Initial stresses are ignored for
now, as is any interface debonding fracture energy (but more about these later). The axial
moduli are Ef, Em, and E for the fibers, matrix, and homogenized composite, respectively,
and the corresponding Poisson's ratios (for the ratios of transverse contraction to
longitudinal extension) are vf, vm, and v. The matrix fracture toughness is Km.

The results for os are going to be expressed in terms of three basic stress quantities
that characterize the composite. These are:

"* cS, the base fibers-only strength,
"* (,Y, the steady-state matrix-cracking stress; and

" oa, the critical applied stress for the initiation of matrix cracking in the composite
containing the initial through-the-fibers crack.
The first of these, with the fiber strength S considered to be a deterministic quantity, is

self-explanatory. The matrix cracking stress a• is that required to keep a long matrix
crack propagating steadily around and past intact fibers (Fig. 7b), and has the classical
value

f [)K IEf E



found by Aveston et al (1971); see also Budiansky et al (1986). (A pervasive population
of initial matrix cracks grows into many closely spaced long matrix cracks throughout an
aligned-fiber ceramic composite at stresses in vicinity of a,) The formula (9) is based
on the assumption that the slip length along the fibers is large relative to R.

The stress Oo at which a through-the-fibers crack starts to grow into the matrix is

o= K,/N (10)

where now KI, the critical SIF for the homogenized, orthotropic composite, satisfies
K (1 - v2 )/(AE 2 ) = K(I-_c)(l- V)I E2 (11)

Here A is an orthotropy factor, somewhat smaller than unity (see Budiansky et al, 1993).
Note that Go should be fairly close to the strength Km/X.4o of the unreinforced matrix
containing a crack of the same size.

The determination of the strength of the initially flawed ;omposite of Fig. 7a follows
from a detailed study of the history of the applied stress and the fiber stress at the original
crack tip during matrix crack growth, as well as subsequent to growth of the matrix crack
all the way through the material. But first, as in the earlier studies of this review, we can
determine the toughness associated with a very long initial crack (Fig. 7c). The
constraining effects of fibers bridging the crack are represented by springs that relate the
locally smeared-out fiber stress p to the crack-face opening displacement 8=2v according
to the law

p(x) = K ) (12)
where

1

'- { c }E 2 (13)

Equivalently,

K-2 -- Ic (14)
AE 'am

This is consistent with the analyses of Aveston et al (1971), Budiansky et al (1986), and
Budiansky and Amazigo (1989). Suppose that a far-field K=Km, keeps the
configuration of Fig. 7c propagating with a tip SIF in the composite equal to Kc, while
simultaneously the last bridging fibers are fracturing at p=cfS; then a J-integral (analogous
to the one used in Eq. (5) for bridging particles) gives

K2M )(1- v 2) ,K2(l- V2 ) P=C (S15- p15)d
AE AE 0(

Hence the long-crack toughening ratio is simply (Budiansky and Amazigo (1989)

A = Kmx = F1+ 2cf (16)
KC mc
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Icc,fmc

C0

,Acf ,App A af=I0

Fig. 8. Applied stress vs. matrix crack growth.

Note that the toughening ratio increases as the matrix cracking stress decreases; thus, for a
fixed fiber volume fraction, lowering the frictional resistance r, or increasing the fiber
radius R, raises the toughening ratio. Again, as in the earlier toughening studies, the
strength ratio odao equals A only for sufficiently long initial cracks.

The history of matrix crack growth in the case of an initial through-the-fibers crack of
finite size is sketched schematically in Fig. 8, on the assumption that fiber failure does not
occur. The curve of o vs. Aa, the matrix crack growth from each end of the original
crack, approaches the classical matrix cracking stress oMC as the matrix crack grows to

,4 ._ ... ....... - ...,= .......... ........ ..... .. .. ......... ........

bb -0 ... ..

1 2 3 4 5 6

A=[1 +2(Cf sqo u)a]s/

Fig. 9. Modified strengthening ratio adoo for various values of cfS/co.
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to which as differs from the fibers-only strength ctS in the presence of an initial flaw.
Accordingly, the results of Fig. 9 have been reploued in Fig. 10, wherein, for various
values of the parameter amJ(cfS), the ratio os/(cfS) is shown as a function of the crack-
size parameter 3 _ ao c

!ON c 2=, a -1 17)

where

a 6x(I - v2 )cfEEf (18)(,LA(I-'Cf)2Em (8

The bottom curve, for omc=0, is actually the result for aom,/(cfS), which is the strength
ratio not only in the case of zero matrix toughness, but also in all ranges of No and
am0 /(cfS) for which a, is defined by of. (For example, a= afmc for om,,(cfS)
between .5 and .75, and No between 2 and 5.) Clearly, ofam constitutes a lower bound
to a., and a fairly close one except for extremely small crack sizes.

For large values of 1o, the long-crack toughening formula (16) and the relation

a,-Aoo provide the asymptotic approximation (quite accurate for ao > 25)

U 2+ (o /cfS)3  (19)
cfS FLo

These strength predictions are not very cheerful. For silicon carbide (SiC) fibers in a
calcium-alumino-silicate (CAS) matrix, and the nominal numbers cf=.4 , R=7 ±m, -r=20
MPa, and S=2 GPa (suggested by A.G. Evans, private communication) we find that
a5/(cfS) would be only around 1/3 for a crack of length 2ao=2 mm. A similar estimate for
SiC/SiC composites, with 1=150 MPa, gives oa(cfS) - I/10. But, as we shall see in the
remarks at the end of this review, several idealizations underlying the present theory of
aligned-fiber composite fracture may be quite conservative. Furthermore, it has not yet
been decreed as a design requirement that composites should be able to tolerate through-
the-fiber flaws of a particular size.

4 Addenda

4. 1 Interactive effects of fibers plus transforming particles

In principle, two or more of the reinforcement types discussed can be combined, for
whatever advantages doing so may provide. Becher and Tiegs (1987) studied
experimentally the toughening effects of a combination of ZrO 2 particles plus whiskers;
and several theoretical papers have been published on the combined effects of
transforming and ductile particles (Amazigo and Budiansky, 1988b; Stump, 1991). Here
we mention the results of two more recent analyses of the interacting effects of aligned
fibers and transforming particles.

If steady state matrix cracking of an aligned-fiber composite is contemplated (Cui and
Budiansky, 1993), the addition of a volume concentration ct of transforming particles
increases the steady state matrix-cracking stress from aom to a larger value a.,, as shown

in Fig. 11. Here the ratio Omc]/ Yo is plotted against the long-crack, steady-state
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Fig. 11. Matrix-cracking stress ratio vs. steady-state transformation-toughening
ratio; a = cte/[(1I -v)emc], where eo = oo /E.

transformation-toughening ratio Kt/Km that would be provided by the particles alone. The
0parameter ax on the individual curves is defined by a = cte/[(I - v)en°], where

4o = (om / Eis the original matrix cracking strain due to just the fibers. (In the analysis,
moduli differences among matrix, fibers, and transforming particles were ignored, and
any change in the sliding resistance T that might be induced by the dilating particles was
also neglected.) Evidently, only modest increases in the cracking stress would be
produced by a sprinkling of zirconia.

With the same simplifying assumptions, Cui (1992) also studied interaction effects on
long-crack toughening. Here a key parameter is p = (1.+ v)cfS/ / c,, and Cui found that
for p-4-, the combined toughening ratio becomes simply the product of the toughening
ratio Kmu/Km given by Eq. (16) for the fibers alone, and the steady-state transformation-
toughening ratio KfIm (Fig. 2) due to just the particles. Further, numerical calculations
showed that for K,,A/K, < 4, this limiting result is well approximated for p>2.

4.2 Fiber-matrix debonding toughness and residual stress

Potentially significant effects on both the matrix cracking stress and toughening in an
aligned-fiber composite are provided by residual stresses as well as debonding toughness
GD at the fiber-matrix interface, acting in addition to the frictional sliding resistance r. A
current study by Budiansky et al (1993), based on a simplified version of the analyses by
Hutchinson and Jensen (1990), provides the results in Fig. 12 for matrix cracking. The
quantity aD, the remote applied stress needed to initiate debonding at a crack-bridging
fiber, is given by

C2
=D- 4 ffq (20)(1- Icr)E mR
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Fig. 12. Influence of debonding toughness and initial stress on matrix cracking stress.

and qR is an initial stress quantity defined by (E/Em)a , where a' is the initial
longitudinal stress in the matrix. As before, o. is the base matrix cracking stress (9).

Estimates of the ratio ODI o/, for SiC/CAS and SiC/SiC configurations currently
under study are in the range .6- .9, implying a modest effect of debonding toughness on
matrix cracking; but initial stress effects can be importanL

4.3 Fiber-strength statistics, pullout, and toughening

At least passing reference should be made here to the important studies by Thouless and
Evans (1988) and Sutcu (1989), who observe that because the fiber strength S is actually
a stochastic property, fibers may fail at various locations within the matrix rather than at
the crack faces where each fiber stress is a maximum. Then, even if the average strength
of the fibers is lowered by the strength dispersion, their toughening effects may increase
substantially because of the additional energy (see Eq. (15)) needed to pull the fractured
fibers out of the matrix. In this sense, worse is better! It remains to be seen whether a
reliance on toughening that depends on a guaranteed nonuniformity of strength will find
engineering acceptability.

4.4 Aligned short fibers

Instead of depending on fiber strength dispersion to get interior fiber fractures, why not
try to use randomly arrayed, but aligned short fibers whose length is so chosen that
pullout will occur before fracture, no matter where along their axes a propagating matrix
crack intersects them. The largest fiber length that ensures pullout is 4=SR/'r, and for this
length the average pullout work is much bigger. than that given by the long-fiber integral in
Eq. (15). For the case Kn=O, an elementary calculation provides the simple long-crack
approximation
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o0(short fiber) E 1 for a0 - (21)
o,(long fiber) 2(1-cf)Em f

in terms of the fiber fracture strain ef = S/ Ef, assumed to be the same for the short and
long fibers. Although this strength ratio is big, more detailed calculations (Budiansky and
Cui, 1993b) indicate less spectacular chopped-fiber improvements in strength at finite
crack lengths in the millimeter range. Furthermore, short fibers may induce strength
degradation at smaller crack sizes. For Kn=0, it is clear that for fibers of the critical
length 4f, 0a-+ cfS/2 for ao -* 0, in contrast to the limit cfS (see Fig. 10) for long fibers.
So, besides the processing questions that arise, it is not yet clear whether aligned
chopped-fiber composites merit preference over long fibers of the same strength. But
short fibers (or whiskers) having intrinsic strengths superior to those of long fibers, and
endowed with well-tailored lengths and interfaces, could be very attractive.

5 Critiques of the aligned-fiber micromechanical model for fracture

There are at least two ways in which the bridging-fiber/brittle-matrix model may be
seriously deficient, leading to unduly pessimistic strength estimates. First, in the analysis
of the fiber stresses associated with the matrix crack growing out of an initial through-the-
fibers crack, the possibility of multiple matrix cracking, and consequent changes in
effective composite properties, have been ignored. This could be particularly important if
inclined matrix cracks driven b) shear as well as tension in the vicinity of the last bridging
fibers at the original crack tip lead to concentrated shearing deformations that would tend
to reduce the fiber stress concentration. The material could then be relatively notch
insensitive (Evans et al, 1993).

Further, the spring model for bridging fibers is really based on the presumption that
the neighbors of an individual fiber share essentially the same stress environment. But
this is not consistent with the high lateral fiber-stress gradients near the most highly loaded
fibers. Current calculations (Hutchinson and Xia, unpublished) based on a more realistic
model of the fiber-matrix interaction at the matrix crack face predict substantially smaller
fiber stress concentrations, and hence higher strengths, than those of the spring model.

6 Acknowledgments

This work was partially supported by an ARPA University Research Initiative
(Subagreement P.O. #KK3007 with the University of California, Santa Barbara, ONR
Prime Contract N00014-92-J-1808) and by the Division of Applied Sciences, Harvard
University.

7 References

Amazigo, J.C. and Budiansky, B. (1988) Steady-state crack growth in supercritically
transforming materials. Int. J. Solids Structures, 24, 751-755.

Aveston, J., Cooper, G.A. and Kelly, A. (1971) Single and multiple fracture, in The
Properties of Fiber Composites, Proc. National Physical Laboratory,
Guildford, IPC Science and Technology, U.K., pp. 15-26.

Budiansky, B., Amazigo, J.C., and Evans, A.G. (1988) Small-scale crack bridging and
the fracture toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids,
36, 167-187.

Budiansky, B. and Amazigo, J.C. (1989). Toughening by aligned, frictionally
constrained fibers. J. Mech. Phys. Solids, 37, pp 93-109.



15

Budiansky, B. and Cui, Y.L. (1993a) On the tensile strength of a fiber-reinforced
ceramic composite containing a crack-like flaw. J. Mech. Phys. Solids, in press.

Budiansky, B. and Cui, Y.L. (1993b) Toughening of ceramics by short aligned fibers.
To be published.

Budiansky, B., Evans, A.G. and Hutchinson, J.W. (1993) Fiber-matrix debonding
effects on cracking in aligned-fiber ceramic composites. To be published.

Budiansky, B., Hutchinson, J.W. and Evans, A.G. (1986) Matrix fracture in fiber-
reinforced ceramics. J. Mech Phys Solids, 34, 167-189.

Budiansky, B., Hutchinson, J.W. and Lambropoulos, J.C. (1983) Continuum theory of
dilatant transformation toughening in ceramics. Int. J. Solids Structures, 19, pp
337-356.

Budiansky, B., and Truskinovsky, L. (1993) On the mechanics of stress-induced phase
transformation in zirconia. J. Mech Phys. Solids, 41, 1445-1459.

Cui, Y.L. (1992) Interaction of fiber and transformation toughening. J. Mech Phys.
Solids, 40, 1837-1850.

Cui, Y.L.,and Budiansky, B. (1993) Steady-state matrix cracking of ceramics reinforced
by aligned fibers and transforming particles. J. Mech Phys. Solids, 41, 615-
630.

Evans, A.G., Domergue, J.M., and Vagaggini, E. (1993) A methodology for relating the
tensile constitutive behavior of ceramic composites to constituent properties. To be
published.

Garvie, R.C., Hannink, R.H.J. and Pascoe, R.T. (1975). Ceramic steel, Nature, 258,
695-708.

Hutchinson, J.W. and Jensen, H.M. (1990). Models of fiber debonding and pullout in
brittle composites with friction. Mech. Mater., 9, 139-163

Krstic, V.D. (1983) On the fracture of brittle-matrix/ductile particle composites. Phil.
Mag. A, 48, 695-708.

Marshall, D.B. and Cox, B.N. (1987). Tensile fracture of brittle matrix composites:
influence of fiber strength. Acta. Met., 35, pp 2607-2619.

Mataga, PA. (1989) Deformation of crack-bridging ductile reinforcements in tough brittle
materials. Acta. Metail. 37, 3349-59.

McMeeking, R.M. and Evans, A.G. (1982). Mechanics of transformation toughening in
brittle materials. J. Am. Ceram. Soc., 65, 242-246.

Rice, J.R. (1968) A path-independent integral and the approximate analysis of strain
concentration by notches and cracks. J. Appi. Mech., 35, 379-386.

Rose, LR.F. (1986). The size of the transformed zone during steady-state cracking in
transformation toughened materials, J. Mech. Phys. Solids, 34,. 609-616.

Sigl, L.S., Mataga, P.A., Dalgleish, BJ., McMeeking, R.M. and Evans, A.G. (1988)
On the toughness of brittle materials reinforced with a ductile phase. Acta.
Metall., 36, 945-953.

Stump, D.M. (1991a) Toughening and strengthening of ceramics reinforced by dilatant
transformations and ductile particles. Int. J. Solids Structures, 25, 669-689.

Stump, D.M. (1991b) The role of shear stresses and shear strains in transformation-
toughening. Phil. Mag. A, 64, 879-902.

Stump, D.M. and Budiansky, B. (1989a). Crack growth resistance in transformation
toughened ceramics. Int. J. Solids Structures, 25, 635-646.

Stump, D.M. and Budiansky, B. (1989b). Finite cracks in transformation-toughened
ceramics, Acta. Met., 37, 3297-3304.

Sutcu, M. (1989) Weibull statistics applied to fiber failure in ceramic composites and
work of fracture. Acta. Metail., 37, 651-661.

Thouless, M.D. and Evans, A.G. (1988) Effects of pull-out on the mechanical properties
of ceramic-matrix composites. Acta. Metall., 36, 517-522.



MICROLAMINATED HIGH TEMPERATURE INIERMErALLIC COMPOSITES

R. G. Rowe, D. W. Skelly and M. Larsen

GE Corporate Research and Development, Schenectady, NY 12309

and

J. Heathcote, G. R. Odette and G. E. Lucas

University of California at Santa Barbara, Materials Dept., Santa Barbara, CA

ABSTRACT
Microlaminated composites of Nb 3AI-Nb and Cr2Nb-Nb(Cr) were synthesized by high rate Magnetron® sputtering

with 2 and 6 pm lamination thicknesses and tested at room temperature to determine the effect of metal layers on
mechanical properties. The Nb3 AI-Nb microlaminate with 2 pm layer thickness had a fracture strength of 476 MP& at
room temperature and a steady state fracture toughness of 10 MPaqmr The Cr2 Nb-Nb(Cr) microlaminates with 2 pJm
layer thickness had a fracture strength of 725 MPa and a limiting fracture toughness of about 17-22 MPadm. The same
microlaminate with 6prm layers had a higher fracture toughness but a shallower slope in the resistance curve, and had a
room temperature fracture strength of 475 MPa. The resistance curve behavior and fracture strength could be modeled in
terms of characteristic stess-displacement functions for the constrained metal layers. The higher toughness of the
Cr2 Nb-Nb(Cr) microlaminates appears to be largely a result of the higher strength of the Nb(Cr) reinforcement. The
shallower resistance curve slope of 6 pim Cr2Nb-Nb(Cr) microlaminate and the lower toughness of the Nb3AI-Nb
microlaminate result in lower fracture strengths. The demonstrated toughening of these high temperature intennetallics
by compositing may lead to their utilization and a significant increase in aircraft engine turbine performance. High
temperature property measurements are now needed to determine the limits of their elevated temperature performance.

PMLRQIŽUnflN
The thrust to weight ratio of aircraft engines is limited by the density and elevated temperature capability of high

temperature turbine materials. Single crystal superalloys, which are the current state-of-the-art in high temperature
turbine blade materials, have limitted potential for further increases in temperature capability. High temperature
intermetallics offer the advantage of higher specific strength and higher temperature capability, but lack ductility and
fature toughness below 1000C. By compositing these very high temperatur intermetallics with ductile metals,
toughening may be improved to the point [1-7] where the composites have applicability in aircraft engine turbine
sections.

Lamination of ductile metals with continuous intermetallic layers offers one means of producing such composites.
Small lamellae thicknesses may have advantages related to intrinsic defect sizes and the effectiveness of ductile
reinforcements in load-controlled applications where strength is importanL Intermetallic composites will require a
refractory metal for toughening because of the need for metal strength at temperatures above 1 100*C. Niobium-base
alloys were selected as the toughening layer in this study because of their low density compared to superalloys,
experience with oxidation-resistant niobium alloys [8] and the existence of metal-intermetallic systems in equilibrium at
high temperatures [4, 9, 10]. Two nicrolaminated composite systems, Nb3AI-Nb and Cr2Nb-Nb(Cr) were chosen for
microstructural and mechanical property evaluation. This choice of systems was based upon well established knowledge
of phase relations between the metal and the intermetalfic compositions.

COMPOSITE SY ESIS

Intermnetallic laminated composites were synthesized in-situ [11]. Metal and intermetallic alloys were alternately
vapor deposited by Magnetron® sputtering with 2 and 6 pm thick metal and intermetallic layers to produce
microlaminated composite sheets approximately 0.15 mm thick [11]. The as-deposited compositions and composite
parameters of the two microlaminated composite systems, Nb3 AI-Nb and Cr2Nb-Nb(Cr), are shown in Table 1(a). Pure
Nb was used as the metal layer in the Nb3 A1-Nb microlaminate to maximize room temperature ductility of the metal layer.
The metal and intermetalfic compositions of the Cr2Nb-Nb(Cr) microlaminate were displaced to the Nb rich side of high
temperature equilibrium compositions. Samples of the Nb 3A1-Nb microlaminates were annealed 2 hr. 1000°C to
produce a composite with metal (bcc) and Nb 3AI (A15) lameilae, as shown in Figure 1(a). The compositions of the metal
and intermetallic layers after annealing are shown in Table I(b). The Cr2Nb-Nb(Cr) rnlcvolaminates L17, which had 2
pm layer thicknesses, and L60, which had 6 pm laminations, were annealed 2 h at 12000C to produce metal layers with
the bcc structure and intermetallic layers with a two phase equiaxed Cr2Nb + bcc metal grain structure; these are shown in
Figures 1(b) and (c). All microlaminates exhibited a low density of conical growth defects ranging in size from part-



through 10 pm diameter defects to through-thickniess 100 pm diameter defects (1 1].
Transmission electron microscopy (TM) was used to examine sections across the metal and intermetallic layers of

microlamina-es- L8, the 2 pmi layered Nb3AI-Nb microlammnate, and L 17, the 2 pm layered Cr2Nb-Nb(Cr) microlaminate.
Representative micrographs are shown in Figures 2 (a) and (b), respectively. The metal layers in both rnicrolaminazes
retained columnar bcc microstructures and the intermetaliic layers had two-phase fine equiaxed intermetallic

mres'~ctresafter annealing. The Nb3AJ-Nb microlaminates had a single phase A15 Nb3AJI taternetallic layer
containing small A1203 precipitates along columnar grain boundaries. The intermetallic: layers in the Cr2Nb-Nb(Cr)
microlarninates consisted of Cr2Nb containing bcc Nb(Cr) particles. The volume fraction of bcc Nb(Cr) particles within
the Cr2Nb iznermutallic layers was estimated by backscattered electron imaging. X-rmy intensity measurements and
transmission electron microscopy to be approximately 25%. Fine bubbles, presumably Ar-stabilized voids, were
observed in the matrix and along grain boundaries in the metal and intermetallic layers of both Nb3AI-Nb and Cr2Nb-
Nb(Cr) microaminates. The Nb3AI composite had a higher oxygen impurity content (-700wppm 0) than the Cr2Nb (
l00-200wppm 0) composites.

Table 1(a) MirlmntdComposite Deposited Compositions and Layer Countl

Miscrtoaminate Intermetawlc composition Metal Composition Layer Thickness Number of IM Number of MeWa
No. a(%atom %) (u) La et

LS.19 Nb-l8.3A1 Nb 2 L 32 33
L17 r4__ N____C 2 32 33

Table 1(b) Metal and bitermetallic: Layer Compositions after Annealing

jI j Intermnetaflic LaymrComposition Metal Layer Composition Annealing Temperannure 2 brs.

L8Nb-22.6ALIAI Nb-2.2AI 1000

L17 Cr-33.lNb matrix uls Nb-6.9Cr orciiates Nb-4.7Cr 1200

Roo m I R ratueStent
Sheet tensile specimens, 0. 15 mm thick with gage sections 4.2 mm wide and 12.5 mm long were formed by electric

discharge machining and were annealed in argon for 2 hours at 1000*C and 1200*C for the Nb3Al-Nb and Cr2Nb-Nb(Cr)
composites, respectively. They were tested in tension at room temperature at a strain rate of 7x 104 /s. Most samples
failed at the first cracking event, but a few exhibited microcracking before failure. Mficrocracks appeared to be associated
with the conical growth defects.

The room temperature tensile strengths are listed in Table 2. The average fracture strengths were 476, 735 and 475
MPa for the the Nb3Al-Nb (U8), the 2 pm layer Cr2Nb-Nb(Cr) (L 17), and the 6 pm layer Cr2Nb-Nb(Cr) microlaminate
(L60), respectively.

Table 2. Room Temperature Fracture Strengths of Three Microlaminated Composites

L8, 2 pm Layer L17, 2 Wm Layer L60, 6 pmi Layer
Nb3AI-Nb Cr2Nb-Nb(Cr) Cr2Nb-Nb(Cr)

stress Stress Stress
Heat Treatment (MPa) Heat Treatment (MWa) Heat Treatment (Ma

l0WO"r" h ~ r" I 2 CI h 7 12000 C/2 h 50
IOOPC2 t 441 120(rCr2 h 731a *i0OPC/2 I 441

i 2(rr 725- 1200PC12 h 484b
avg. ±s.d. 1 476±2 1 vg ± ad 735 ±15 avg. ±s.d. 475 ±35

a Through crack 0.39 mm average width at final fracture. bCone growth defect halfway through thickness.

One of the Cr2Nb-Nb(Cr) L 17 micromlaminates (2 pm layer thickness) exhibited cracking and crack arrest prior to
final f~racture, the others fractures with no prior cracking. The engineering stress versus strain curve for the sample that
exhibited subcritical cracking, shown in Figure 3, was derived from the load-time curve (at constant crosshead speed) of

lAs noted later, the intermetallic layers arm initially deposited as metastable solid solutions. Annealing at elevated temperatures transforms them to the
stable intermetailic stucuzcre. For convenience, we will refer to them as the "intennetallic" layers throughout the text.



the specimen. An arrested crack was subsequently measured by fractography to have an average through-thickness
length of 0.39 mm before final fracture. Using a linear elastic fracture mechanics analysis for an off-center through crack
in a finite width sheet [ 12], the room temperature fracture toughness of microlaminate L 17 was estimated to be about
22 MPa'Im.

SEM fractographs of the microlaminaes that were fractured in tension at room temperature are shown in Figures 4
(a-c). Chisel-point necking of the Nb layers such as that shown in Figure 4(a) was observed in all tensile fractures of the
Nb3AM-Nb microlaminate. In all cases, the Nb layer fractured with the appearance of highly restrained metal failure [13]
and little or no metal-intermetallic delamination was observed. Intermetallic Nb3AI layers failed by brittle cleavage. The
A1203 particles that were observed in the internetallic layers did not appear to have affected the fracture path. The tensile
fracture surfaces of the Cr2Nb-Nb(Cr) microlaminates L17 (2 Jim) and L60 (6 Jim) are shown in Figures 4 (b) and (c),
respectively. Fracture appearance was of two types. Most of the fracture surface of the Nb(Cr) layers falded by very
local fluted dimpling parallel to the columnar grain structure of the Nb(Cr) layer. This was distinctly different from the
failure appearance of the Nb3AI-Nb metal layer. The Cr2Nb intermetallic layer fractured by 1at cleavage, but the angle of
fracture and smoothness of the intermetallic fracture surface in L17 (2 Jm) appeared to be related to features within the
Nb(Cr) layers. The intermetallic layers of L60 (6 pjm) were flatter. Both L17 and L6 Cr2Nb-Nb(Cr) microlaminate
intermetallic layers showed evidence of the bcc second phase particles that were observed in metallographic sections. In
the one instance where crack arrest was evident in the tensile sample (L17, the fracture appearance within the region
corresponding to the arrested crack was different; the intermetallic layers still fractured by flat cleavage, but the Nb(Cr)
layers showed evidence of microvoid growth and coalescence along a chisel-point ridge formed by necking - like the
Nb3AI-Nb microlaminate.

Fracture resistance curves were determined for Nb 3AI-Nb microlaminate L9 and for Cr2 Nb-Nb(Cr) micrlaninaes
L17 (2 pm) and L60 (6 pim) using a frame bending technique. A side notched 2.5 cm x 0.787 cm panel of the
microlaminate was glued onto an aluminum support frame which provided a loading surface and prevented buckling.
The compound specimen was tested in three-point bending with the direction of crack propagation within the plane of the
sheet so that the crack cut across all lamellae siultaneously. The effecx of t.,e frame was taken into account in the
calculation of stress intensity. Fracture resistance curves were determined as stress intensity K vs crack length Aa and are
shown in Figure 5.

Fractography was also performed on the three point bend fracture resistance specimens. The fracture surface of the
Nb3AI-Nb three-point bend fracture specimen was similar to the tensile specimen; that is, chisel point failure of the Nb
layers and cleavage of the Nb3AI layers, with little sign of debonding between the two. The fracture surface of the
Cr2Nb-Nb(Cr) microlaminate L17 (2 pm) again had different features in the regions of stable and unstable crack
propagation. Failure of the Nb(Cr) layers in the fast fracture region was by very local fluted dimpling parallel to the
columnar grain structure of the Nb(Cr) layer and the Cr2Nb intermetallic layer fractured by cleavage, similar to the tensile
specimen fracture surfaces. In the region of stable crack growth, however, the failure of the Nb(Cr) layer looked much
more like the Nb 3AI-Nb microlaminate, with evidence of microvoid growth and coalescence along a chisel-point ridge
formed by necking. Again, the metal layers appeared to be tightly bonded to the matrix at the fracture surface.

The resistance curves of Figure 5 were analyzed using a combination of confocal microscopy measurements of
the critical extensions of the ductile ligaments at failure, solid mechanics modeling of the bridged cracks, and
microhardness measurements. Details of the complete analysis will be presented elsewhere. However, the most salient
points can be summarized here. All three microlaminazes exhibited increasing toughness with crack extensions (Aa)
following initiation at Ko -,5 MPa'dm. The resistance curve in the 2 Pm Nb3AI-Nb (L9) samples saturated at about 10
MPalm following about 601m of crack growth. After about 100.m of crack growth, fracture toughness in specimen
L17, the 2pm thick layer Cr2Nb-Nb(Cr) microlaminate, aproached a steady-state value of about 17 MPa4 m. similar to
the value estimated from the tensile test. The resistance curve for L60, the 6ptm thick layer Cr2Nb-Nb(Cr) microlaminate,
manifested a shallower slope but appeared to cross over the resistance curve of the corresponding 2 pm layer specimen at
a crack extension of about 150 pm. This specimen fractured prior to steady state due to crack instability; but based on a
solid mechanics model analysis, a continued increase in toughness to a steady state value of about 21 MPa'im would be
expected at a Aa of about 300 pmn.

The differences in the resistance curves are a consequence of differences in the constrained ductile layer stress-
extension functions S(u). These are shown schematically in Figure 6, where S(u) is a sawtooth function with a
maximum stress Smu and a critical extension to failure u*. In all cases the resistance curves were generally consistent
with this sawtooth form, which has been found in previous studies on other materials as well [5-7]. Moreover, the
maximum toughness values were close to those associated with small scale bridging conditions; that is,
AKnM2 - Kmu2 - K0

2 - Ef X, where E is the plane strain elastic modulus, f is the volume fraction of ductile phase and
X is the value of S(u) integrated over u from 0 to u*.[l,5] Values of u* normalized by the layer thickness t were
estimated to average about u*/t - 0.95 * 0.15. This is in agreement with previous observations on TiAl reinforced by Nb



and TiNb ductile phases [5-7]. Diamond pyramid microhardness (DPH) measurements of the ductile layers indicated that
the Nb(Cr) layers in L17 and L60 were about 1.7 times as strong as the nominally pure Nb in L9. This is of the same
order as the ratio of S". in Ll7 and L60 (- 2750±300 MPa) to SnM in L9 (-. 1500±300 MPa). Moreover, these values
of S,= are about 2.7±0.3 times higher than the nominal tensile strength a, of the metal layer as determined by a,(MPa)
= 3 DPH (kg/mm2). Such high values of constraint (M = Smu/aOu - 2.7±0.3) are consistent with the fractographic
observations of a tightly bonded matx. These values of constraint are somewhat larger than estimates of MW 2.5 for
thicker TiNb reinforcements found in TiAI composites, but again this is consistent with observations of increasing
constraint with decreasing layer thickness and a theoretical upper bound of 3.[141

DISCUSSION OF RESULTS

As noted previously, the differences in the resistance curve behavior of the microlaminates are consistent with
bridging mechanics models and are mediated by the stress-extension function as described previously. The higher
toughness of the 2 pim layer thick Cr2Nb-Nb(Cr) versus thl. Nb3AI-Nb microlaminate can be attributed to the higher
strength of the Nb(Cr) reinforcement The thicker 6 pim reinforcements in L60 versus L 17 produce a higher toughness
after crack extensions greater than about 150 nM. but the slope of the resistance curve is shallower.

These differences in resistance curve behavior may also rationalize the differences in fracture strength as well. Here
strength is believed to be limited by the unstable propagation of pre-existing or nucleated (unbridged) microctacks during
tensile testing. Where observable, it appears the cracks in the tensile samples nucleate at conical growth defects which
range in size up to 100 pm in diameter. Under these conditions fracture strength is determined by the stress at which
both

Ka = Ka and dK,/da = dK,/da (1)
where K. is the nominal applied stress intensity and &• is the material fracture toughness at a given value of crack length a
as determined by the resistance curve. [ 13] First estimates of fracture stresses for the three microlaminates L9, L17, and
L60 were made by assuming a large pre-existing microcrack in a 100pm diameter growth defect at the center of the tensile
specimen - for which K can be determined from handbook stress intensity functions for a center cracked panel - and
taking K=(a) from the measured resistance curves. The estimated fracture stress for L17 was about 775 MPa, in good
agreement with the measured value of about 735 MPa. However, the instability was predicted to occur at a total crack
length of about 200 pm, which is only about 50% of the observed value in the one tensile specimen that showed apparent
crack arrest, Further, the corresponding predicted fracture stresses for L60 and L9 were 675 and 625, respectively,
about 40% higher than the experimentally observed values.

Of course, using resistance curves from three point bend specimens to predict instability in center cracked
specimens is not strictly correct This can be corrected by using the S(u) functions to predict resistance curves for center-
cracked panels; when this is done, however, predicted fracture stresses are generally higher - about 950, 850 and 600
MPa for L 17, L60 and L9, respectively. These estimates might decrease for more realistic crack/specimen geometries
(e.g., eccentric cracks), however, the overpreictions of fracture stress are likely due to other effects such as multiple
cracks, microcracking-induced modulus changes and stress redustributions, varying growth defect size, etc.
Nonetheless, this approach correctly predicts the observed trends, including the higher strength level in the L 17
microlaminate.

CONCLUSIONS
" In-situ vapor phase synthesis by Magnetron® sputtering was used successfully to synthesize metal-intermetallic

laminated composites with independent control over the composition, spacing and volume fraction of the layers.
"* The Nb3 AI-Nb microlaminate with 2 PM layer thickness had a fracture strength of over 476 MPa at room temperature

and a steady state fracture toughness of 10 MPa'm after about 60ptm of crack growth.
"• Cr2Nb-Nb(Cr) microlaminates with 2 Pm layer thickness had a fracture strength of over 725 MPa at room

temperature. Its limiting fracture toughness was determined to be about 17-22 MPa.m The same microlaminate with
6jim layers had a higher fracture toughness but a shallower slope in the resistance curve and a room temperature
fracture strength of only 475 MN.

"* There was a difference in the fast fracture failure mode of the metal layers in the Nb 3A1-Nb and Cr2Nb-Nb(Cr)
microlaminates. The Nb layer in Nb3AI-Nb microlaminate failed in fast fracture by chisel-point necking while the
Nb(Cr) layer in Cr2Nb-Nb(Cr) separated with a fluted ductile dimpling pattern. Under stable crack growth conditions,
both types of metal layers failed by chisel-point necking with evidence of void growth and coalescence along the
necking ridge. Little debonding between metal and intermetallic layers was evident.

"* The resistance curve behavior and fracture strength could be modeled in terms of characteristic stress-displacement
functions for the constrained metal layers. The higher toughness of the Cr2Nb-Nb(Cr) microlaminates appears to be
largely a result of the higher strength of the Nb(Cr) reinformcement. The shallower resistance curve slope of 6 pm
Cr2 Nb-Nb(Cr) microlaminate and the lower toughness of the Nb 3AI-Nb microlaminate result in crack instabilities at



lowpr values of applied stress and hence lower fracture strengths.
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FIG. 1. Backscattered electron micrographs of (a) 1-9 (NB.Al-Nb) after 10000C 2hr. in argon.
(b) L17 (Cr,Nb-Nb. 2 micron layers) after 1200TC 2hr. in argon. and (c) L60 (Cr,Nb-Nb. 6

AA

(a) (b)

FIG. 2. TEMI micrograph of (a) the microlaminate L8 (Nb.,AI-Nb) after 1000TC 2 hr in argon
and (b) microlammnate L17 (Cr2Nb-N~b) after 1200 0C 2 hr inargon.
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FIG. 3. Stress-strain curve for the L17 tensile test that exhibited

subcritical cracking.



IWEL

(a) (c)

FIG. 4. SEM fractographs of tensile specimens fractured at room temperature: a) Nb"Al-Nb annealed at
1000*C, b) Cr,Nb-Nb(Cr) with 2 micron layers annealed at 1200*C and c) Cr,Nb-Nb(Cr) with 6 micron layers
annealed at I1200*C.



102 0 0

r Cr2Nb-Nb - 2pm

SNb3AI-Nb- 2pm

0 Cr2Nb-Nb - 6pm

0 2 !2 i

o o

Aa (mm)
FIG. 5. Fracture resistance curves -
stress intensity vs. crack length - for 19,
L17, and L60.

Smax

Displacement, u

FIG. 6. Schematic stress-extension function
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Abstract

Fracture toughness tests were carried out on AI-4%Mg/Al20 3p

composites containing different sizes and volume fractions of alumina

particulates. The results indicated that the fracture toughness was dependent

on the interparticle spacing provided the particulate size was below a critical

size. The critical particulate size corresponds to the situation wherein the

energy release rate on particulate cracking is sufficient to trigger dynamic

unstable crack extension.



1. Introduction

Particulate reinforced metal matrix composites have attracted

considerable attention in recent years because of their high specific strengths

and stiffnesses as well as the relative ease of fabrication and secondary

processing. The applications for these composites have, however, been

limited because of their low ductility and fracture toughness. An

understanding of the effect of microstructural parameters, such as volume

fraction and particle size of the reinforcement, on the fracture toughness of

these composites is essential for improving their damage tolerance.

Unfortunately, only a few studies on the influence of microstructural

parameters on the fracture toughness of particulate reinforced MMC's have

been reported in the literature [1-7]. These studies have shown that the

fracture toughness was dependent on both volume fraction and particle size

and could be correlated to the interparticle spacing. However, the particle

sizes used in most studies varied in a very narrow range.

The objectives of the present investigation were to study the effect of

particle size, in a much wider range of sizes (3pm-165ptm), on the fracture

toughness of AI-4%Mg/AI 20 3P composite and to use a bimodal mixture of

particle sizes to separate the particle spacing and particle size variables.

2. Experimental Procedure

The composite materials were obtained from University of California

at Santa Barbara in the form of 50mm x 50mm x 12mm blocks. The matrix

for all the composites was a binary aluminum alloy containing 4 wt%

magnesium and the reinforcements were roughly equiaxed alumina

particulates. The composites contained alumina particulates varying from 3Vt

m to 165Mm and the volume fraction of the reinforcements was in the range

45-54'c. Two of the composites had a bimodal mixture of two particulate

, ,.•_ i composites studied in this investigation and the particulate



characteristics are given in Table I. A representative scanning electron

micrograph for one of the composites (AI-4%Mg+165gm, 54% A1203P) is

shown in Fig. 1. One can see that the distribution of the alumina particulates

was nominally uniform and that the surrounding matrix was also free of voids.

Mode I fracture toughness tests were performed on these composites

with the matrix in the annealed condition. The fracture toughness specimen

design is illustrated in Fig. 2. The design was based on the standard compact

tension specimen design recommended by ASTM E-399 [81, the only

difference being that the w/B ratio was 4 instead of 2, which is within

acceptable limits. The fracture toughness specimens were fatigue precracked

and tested in an Instron 1361 testing machine at a crosshead speed of 0.5

mum/min. A clip gauge was used to measure the load-line displacements and

load versus load-line displacements were recorded with the help of a HP x-y

plotter. The broken compact tension specimens were examined under the

scanning electron microscope.

3. Results

Load versus load-line displacement plots for the composites are shown

in Figs. 3 a) and b). Fig. 3 b) is representative for the composite with 1651Lm

size reinforcement whereas Fig. 3a is representative for all the other

composites studied. The conditional fracture toughness (KJQ) was calculated

from the following relationship
P.

KiQ= -g f(a / w) (1)

where PQ is the 5% secant offset load, B the thickness, w the width, a the crack

length and f(a/w) the geometric factor. The calculated values of K1Q for all the

composites investigated are tabulated in Table 2. In most cases the condition

for plane strain R B 2. 5(K, / a,,)2 was not satisfied. Hence, the fracture

!rughness %alce, ,,i!.ined in this investigation are conditional and not plane



strain values. However, comparison of the fracture toughness values across

the study is justified because the thicknesses for all specimens were identical.

It is evident from Table 2 that the fracture toughness values do not exhibit any

correlation with the volume fraction.

SEM fractographs for the composites are shown in Figs. 4 a) and b)

Figure 4 b) is representative of the composite with 165ptm A1 20 3 particle size

whereas Fig. 4 a) is representative of all the other composites. Figure 4 a)

shows that for all the composites except the one containing 165g.m size

alumina particles, fracture occurred by a locally ductile mechanism. The

fracture surface cssentially consisted of large flat dimples associated with the

alumina particles and fine dimples associated with the ductile fracture of the

aluminum alloy matrix. These observations are consistent w-th those observed

for other particulate reinforced aluminum alloy matrix composites [1, 9-11].

The observation of stereo pairs of the broken particle surfaces showed smooth

planar surfaces which indicate that the alumina particulates are cut rather than

decohered. This is consistent with expectations since these composites have a

large interfacial bond strength because of the formation of MgAI20 4 spinel at

the interface [12-13]. In the case of the composite with 165 pm size alumina

particulates, the fracture surface (Fig. 4b) contains numerous cut alumina

particulates. However, there is very limited evidence of small dimples

associated with the ductile fracture of the matrix alloy.

4. Discussion

In the case of composites other than the one with 165gm size particles,

the fractographic features [Fig. 4a] demonstrate that fracture is governed by

the linkage of the microcracks or voids, formed because of particulate fracture.

with the main crack. Thi. linkage occurs by the ductile fracture of the matrix.

Hence. one would expect the fracture toughness to be limited by interparticle

,p.:cing. in ,n ear:-cr .t~d. ,:,n 2014 and '024 a2::.m ,I!o\%, r' 'lrced



with alumina particulates, Kamat et al [3] have suggested that the fracture

toughness in particulate reinforced MMC's is given by a Rice-Johnson type

relationship [14]:
JIc = o~ X• (2)

where of is the flow stress and X the interparticle spacing, corresponding to the

mean edge-edge free path.

The interparticle spacing for composites containing a single mt

value particle size distributions can be theoretically calculated from u.

expression [15]

% (__ _2] (3)

where D is the particle size and VF the volume fraction of the reinforcement.

This expression can be modified for composites containing bimodal particle

sizes to the form:
= 2 X--(xD, +xbDb) (4)

where the subscripts b and s represent properties of the larger and smaller

particles, respectively. Here X is the celitre to centre spacing of the particles

given by

L(V V ] 3/2

AISO, Xb and xs,,the number fraction of the total reinforcement contributed by

the larger and smaller particles, respectively, are as follows.

Xb = i (6)
CIVj, + CbVf(

X CbVft (7)
CIjb + CbVft(7

where c is the volume of an individual particle. The theoretically calculated

interparticle spacings are listed in Table 3.



In order to test the applicability of the Rice-Johnson type model to the

composites tests in this investigation, the KJQ values were converted to JIQ by

the relation

JJQ - E(Iv 2 ) (•)

where E is Young's modulus and u is Poisson's ratio. If the data were to fit the

Rice-Johnson model, (JQ / a1 ) should scale linearly with X. A plot of

experimentally determined J,,I /o versus the theoretically calculated X is

shown in Fig. 5. One can see that the agreement with the Rice-Johnson line is

fairly good for small X, although the experimental values of J,, / cof tend to be

smaller than those predicted by the Rice-Johnson model. The deviation from

the Rice-Johnson line is attributed to the fact that the theoretical calculation of

X assumes a perfectly homogeneous distribution of the particles in the matrix,

whereas in the actual case there are some regions of clustering which would

then act as preferential sites for crack extension. The interparticle spacing in

this region would be smaller than the theoretical X which would then reduce

the deviation from the Rice-Johnson model. Thus, it is apparent that in

composites which fail by a locally ductile mechanism, the fracture toughness

can be increased by increasing the interparticle spacing. It is also evident that

the presence of a bimodal particle size has only an indirect effect on the

fracture toughness through its effect on interparticle spacing.

In the case of the composite with 1651Lm size alumina particulates

which exhibits unstable crack growth (Fig. 3b), one would expect a behavior

analogous to that discussed by Evans [16] for steels below the ductile-brittle

transition temperatures. The initial crack begins to blunt and the stress ahead

of the crack is increased because of the plastic flow and hydrostatic stress

elevation. A particle in the deformed region cracks and if the local energy

release rate is sufficient, runs back to the main crack and triggers unstable

c,.z- rcv.ith. Kanmt ct al [3) ha'e , tha: for tUch a ,ituation. thi.



local expected stress intensity factor for the propagation of the microcracked

particle into the matrix, which is approximately equal to l 10of -ID, should

correlate with the dynamic fracture toughness of the matrix alloy. The static

fracture toughness of the AI-4%Mg alloy is approximately equal to

31MPafm [17] and one would expect the dynamic fracture toughness to be

lower than this value. The value of 10oa .3D for AI-4%Mg alloy with D-165

gm and f--0.54 is 22MPa.V which is 71% of the static value of matrix

fracture toughness and in the expected range for the matrix dynamic fracture

toughness. That is, the dynamic crack arrest critical stress intensity factor

exceeds the static value [18] so that an applied value of the stress intensity

factor that does not lead to static crack propagation can produce dynamic crack

propagation. Hence, in the regime where the composite fails by unstable crack

growth, an increase in the particle size results in an enhancement of the stress

intensity factor ahead of the cracked particle, thereby, resulting in an earlier

fracture of the composite and lower fracture toughness.

S. Summary

The fracture toughness of the A120 3 particulate reinforced AI-4%Mg

alloy matrix composites can be increased by increasing the interparticle

spacing provided that the particle size is below a critical size which

corresponds to the size required for unstable crack extension of the microcrack

into the matrix. One can increase the interparticle spacing by either decreasing

the volume fraction or increasing the particle size of the reinforcement. The

only significant effect of the presence of two markedly different particle sizes

on the fracture toughness is the indirect one manifested by the attendant

change in interparticle spacing. However. once the particle size exceeds a

critical value, a further increase in particle size results in a decrease in the

fracture toughnes, of the composite.
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Table 1: List of composites investigated. The matrix is AI-4%Mg Alloy and
the reinforcement is alumina particulates. Cases 1 and 2 represent the bimodal

particle distributions.

1 2
Composite Total Vol. Part. Size Vol. Part. Size Vol.

No. fraction % fract. fract.
A~m % gm %

1 47 3 26 30 21
2 46 3 41 30 5
3 45 3 45 - -

4 47 45 47 -

5 50 9 50 -

6 53 30 53
7 54 165 54 - -

Table 2: Fracture toughness of the composites investigated

Fracture Toughness

Composite No. K, MPa.f'm

1 11.5
2 8.1
3 3.2
4 17.5
5 10.5
6 12.7
7 9.9

Table 3: Comparison of Experimentally obtained J1Q o fI gm with
interparticle spacing

JQ / OIf
Composite No. gm gm

1 4.12 3.13
2 1.90 2.32
3 0.51 1.10
4 11.35 18.80
5 3.02 3.50
6 5.37 10.7
7 5.30 57.4
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