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EXECUTIVE SUMMARY

The general emphasis for 1994 would be on increased software
development, testing of subelements and design calculations. For these
purposes, the constitutive law coding and development would be
coordinated by Nick Aravas, and implemented in ABAQUS. The initial
implementation would be the elastic/plastic model for MMCs with interface
debonding developed in 1993 (Leckie). This would be extended in 1994 to
include creep and some aspects of thermomechanical cycling. The code
would be used for design calculations concerned with MMC rotors,
actuators and vanes (Leckie). A plan is being formulated to collaborate with
Pratt and Whitney to acquire MMC sub-elements representative of these
components during 1994. Experimental tests on these subelements would
be capable of providing a direct validation of the code capabilities.

Constitutive law and fatigue lifing software wculd be created for CMCs
using continuum damage mechanics (CDM) approaches (Leckie,
McMeeking). The approach has been motivated by micromechanics models
developed in 1993 (Hutchinson, Zok, Evans). These codes would be used to
calculate stress redistribution effects and fatigue life on simple sub-
elements, such as center notched and pin-loaded plates. Comparison with
experimental measurements needed to test the fidelity of the models will be
based on moiré interferometry and thermoelastic emission. This effort is
coordinated with the NASA EPM program through both General Electric and
Pratt and Whitney. A plan for acquiring sub-elements from DuPont Lanxide
is being formulated.

A new emphasis for 1994 would be on the transverse properties of
CMCs. The measurements and calculations performed in 1993 have
indicated a strategy for curved sections and junctions that would establish a
consistent design approach. The basic approach for resisting failures from
combinations of interlaminar shear and transverse tension involves the use
of stitching and angle ply weaving patterns that inhibit major reductions in
stiffness when matrix cracks are induced by transverse loads and bending
moments. For this purpose, calculations would be performed that combine
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the mechanics of delamination cracks with models of bridging by inclined
fiber bundles (Hutchinson, Ashby, Evans, McMeeking). The insight gained
from these calculations would be used to design and acquire sub-elements,
such as C sections and T junctions.

Additional software development will be for creep and creep rupture
(McMeeking). The models devised in 1993 and test data relevant to MMCs
will be combined into a code that predicts the creep and rupture of
unidirectional MMCs subject to multiaxial loads. Some aspects of this code
will also be applicable to CMCs.

Two new activities will be introduced in 1994: thermal properties and
damping. The thermal properties will be studied on both CMCs and MMCs
(Ashby, Hutchinson). Measurements of thermal diffusivity will be made by
the laser flash method and related to the properties of the interface and the
density of matrix damage in the material. Thermal expansion measurements
will also be performed with emphasis on determining hysteresis effects,
which can be related to the temperature dependence of the interfaces
properties, through cell models. The latter might evolve into a diagnostic for
establishing relationships between the interface properties and
thermomechanical fatigue.

The processing activities in the program will have newly established
goals in 1994. The principal emphasis will be on concepts for affordable
manufacturing. The issues selected for investigation will be consistent with
manufacturing processes that allow near-net shape consolidation while still
yielding reasonable combinations of longitudinal and transverse properties.
Performance models developed in the program would be used as an initial
test of concept viability.

Beyond these general trends, specific activities are planned for 1994.
These are elaborated below. The status of understanding and development
in each of these areas is summarized in Table I. Increasing magnitudes
between O and 1 designate a knowledge range from limited to
comprehensive.
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TABLE 1A

Status of Design Knowledge for MMCs
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TABLE 1B
Status of Design Knowledge for CMCs
[0/90] [45/45]
P S P S
Stress/Strain 3/4 1/4 172 0
Fatigue 3/4 0 0 0
TMF 1/4 0 0 0
Creep and 112 0 0 0
Rupture
Compression
Strength 3/4 1/4 0 0
Transverse
Properties N 12 - o
Thermal 1/4 0 — —
Properties

P Primary Structure
S Secondary Structure
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2. CONSTITUTIVE LAWS

Two approaches will be used to create a formulation capable of
representing the in-plane properties of CMCs. One would be based on
Continuum Damage Mechanics (CDM) (Leckie). The other would use
concepts analogous to those used in plasticity theory (Hutchinson). The
CDM approach uses damage parameters that relate explicitly to
micromechanics models. A potential function has already been identified as
the state variable which separately represents the strain from the elastic
compliance change caused by the matrix cracks and the inelastic strains
associated with the debonding and sliding interfaces. Derivatives of the
potential with regard to strain and damage give the relationships between
variables, such as stress, interface sliding resistance, matrix crack density,
etc.

The first version of the CDM model would use the minimum number of
damage variables potentially capable of representing the behavior of
laminated or woven composites. Cross terms between the damage variables
would not be considered at this stage. Moreover, matrix cracks would be
introduced normal to the maximum principal tensile stress, consistent with
the experimental observations.

The plasticity theory approach would seek a formulation based on
matrix cracks occurring normal to the maximum principal tension. It would
introduce parameters that reflect the inelastic strain caused by interface
sliding upon off-axis loading which would be calibrated from tests performed
in tension in 0/90 and 45/45 orientations.

The insight needed to characterize off-axis loading effects will be gained
from cell models (Hutchinson) in a manner analogous to that previously
used for axial loads. The principal objective will be to understand trends in
matrix crack opening and interface debonding/sliding with applied loads.
The stress on the fibers will be calculated with the intent of predicting
effects of loading orientation on fiber failure. The models will be compared
with measurements made in 45/45 tension, using various CMCs (Evans).

Calibration of the damage parameters for each material would be made
from hysteresis loop measurements in accordance with procedures
developed in 1993. Experimental results obtained in 0/90 tension, 45/45
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tension and in-plane shear will be used. In future work, it is hoped that
shear tests will not be necessary.

The validation of the constitutive laws will be achieved by comparing
calculations with measurements made on sub-elements, especially pin-
loaded holes (Evans). The experimental results include residual strains
obtained by Moiré interferometry (Fig. 2.1), ultimate loads for either tensile
or shear failure and principal strain trajectories delineated by matrix
cracking patterns. Acoustic methods will also be developed to probe the
local values of the elastic modulus (Clarke, Wadley) which could be
compared directly with the CDM predictions.

3. FATIGUE LIFING
3.1 CMCs

A software program for isothermal low cycle fatigue (LCF) of CMCs,
developed in 1993 (Fig. 3.1) will be extended in 1994. The present program
asserts that fatigue is associated with cyclic degradation of the interface
sliding resistance, t, which can be characterized by analyzing hysteresis
loops measured periodically during a fatigue test. With this methodology,
S-N curves have been predicted for both unidirectional and woven 0/90
composites tested in cyclic tension as well as changes in compliance and
permanent strain. Some additional effort is required to analyze data on 0/90
laminates in order to validate the model predictions. The extensions
envisaged for 1994 include thermomechanical fatigue (TMF), strain
controlled LCF and off-axis fatigue (Zok, Evans). Experiments are planned
which would assess the effects of temperature cycling and of inclined fibers
on T degradation, measured from hysteresis loops. Various cell model
calculations (Hutchinson) will be used to interpret the experiments. The
results will be used to establish general rules for interface degradation in
CMCs.

The off-axis experiments will also give insight into the fiber failure
criterion that replaces the global load sharing (GLS) results successfully
used for 0/90 loadings. This study will coordinate with the cell calculations
described above, and the 45/45 tensile experiments.

Notch fatigue studies will be initiated. These will examine cyclic stress
redistribution and notch sensitivity (Evans).
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3.2 MMCs

Fatigue crack growth and notch strength studies in MMCs will be
extended to 0/90 laminates (Zok, Suo). The experiments concerned with
crack growth will be interpreted using crack bridging models. The utility of
such models has been validated in previous years through studies on
unidirectional MMCs. It is envisaged that the fatigue crack growth
characteristics of the unidirectional and 0/90 configurations will be related
through the volume fraction of fibers aligned with the loading direction. The
notch strength behavior will also be interpreted using crack bridging
models. Such models have been developed in 1993 and found to be useful in
rationalizing the behavior of unidirectional materials (Zok, Suo). In all cases,
the mechanical measurements will be augmented by in-situ observations to
identify changes in damage mechanisms with temperature, fiber
architecture, etc. Plans to study the influence of panel thickness on fatigue
and fracture resistance are also being developed, as well as tests to
understand the potential for crack growth in mixed mode loadings (Hirth,
Zok).

Studies of the TMF response of MMCs loaded parallel to the fiber axis
will be initiated (Zok, Leckie). Experiments will evaluate both in-phase and
out-of-phase loadings. Models of load shedding (matrix-fibers) will be used
to interpret the hysteresis loops and to develop fatigue life models applicable
to low cycle, high strain TMF.

4. CREEP AND RUPTURE
4.1 MMCs

The considerable progress made in 1993 towards identifying and
understanding the mechanisms of creep and rupture in unidirectional
MMCs containing non-creeping fibers (McMeeking, Zok) will be used to
develop creep rupture software. The longitudinal creep model to be used
incorporates stochastic fiber fracture and interface sliding in a format
amenable to the prediction of primary and tertiary creep in terms of matrix
creep strength, interface sliding resistance, fiber strength, Weibull modulus,
etc. The concepts would be visualized in a rupture mechanisms map
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(Fig. 4.1). The transverse creep behavior would include interface debonding,
which greatly accelerates the creep, leading to marked anisotropy. A
constitutive law for creep that includes these effects will be developed
(Aravas, McMeeking).

Additional experiments and calculations will be conducted to assess the
effects of notches and holes on creep rupture (Zok, Suo). Experience with
MMCs at ambient temperature indicates that the notch sensitivity is largely
dictated by matrix properties (i.e., strength and ductility). The reduction in
matrix properties at elevated temperatures may lead to a substantial
elevation in notch sensitivity. However, this behavior may be complicated by
the development of alternate damage processes, such as shear bands.

4.2 CMCs

Studies of the creep and rupture of CMCs will continue with emphasis
on materials containing creeping fibers. A particular emphasis will be on
matrix cracking that arises as fiber creep relaxes fiber bridging tractions
(McMeeking, Evans). The experimental studies will be performed on SiC/SiC
composites. Hysteresis loop measurements will be used to monitor matrix
damage during composite creep, using procedures devised in 1993. Models
will be developed based on time dependent fiber bridging concepts
(McMeeking, Cox).

It is envisioned that the lifetime of some CMCs will be dictated by time-
dependent rupture of the fibers. A lifetime prediction tool for such a
composite must incorporate the knowledge of fiber strength degradation over
time. A new activity will be initiated to address this problem (Suo, Evans).
The initial work will involve a survey of data in the existing literature, and a
comparison with available models. A new model is being developed for single
crystal fibers. This model involves a residual pore inside a fiber which
changes shape, under stress, via surface diffusion, to become a crack. These
issues will be viewed in the broad context of fiber and composite
manufacture.
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5. TRANSVERSE PERFORMANCE OF CMCs

Analyses and tests performed in 1993 (Ashby, Hutchinson, Bao) have
highlighted the essential issues related to components that experience
combinations of transverse tension and interlaminar shear. In both
loadings. matrix cracks form at manufacturing flaws at low stresses, of
order 10-100 MPa. These cracks extend across the plies and interact
minimally with the fibers. Although the crack configurations differ for
transverse tension and interlaminar shear loadings, multiple cracks always
form. This multiplicity of cracking causes a major reduction in stiffness,
which can cause unacceptably large displacements and also redis® ‘hute
stress into other areas. The formation of the matrix cracks is probab. “in
nature and governed by the size distribution of manufacturing flaws. Lesign
based on the prevention of such transverse cracks must rely on weakest
link statistics, usually with a low Weibull modulus. Alternatively, it may be
assumed that cracks inevitably form and, instead, reliance is placed on
controlling the diminished modulus of the material, after matrix cracking
has occurred. This approach relies on having 3-D architectures, with
transverse fibers introduced locally either by stitching or by using angle
plies. To explore this possibility, calculations will be performed (Hutchinson,
Evans) to examine fiber architectures that lead to minimum stiffness loss,
subject to acceptable in-plane properties. Based on these calculations, sub-
elements will be designed that test out the concepts.

6. COMPRESSIVE BEHAVIOR

The studies completed in 1993 on the compressive failure of polymer
matrix composites by the growth of kink bands (Budiansky, Fleck) will be
extended to metal matrix composites, through a coordination with 3M.
Compressive failure of Al and Ti MMCs with small diameter fibers has been
observed by 3M to occur in accordance with the same kink band
mechanism known to operate in PMCs and in C/C composites. The theory
should thus extend to the MMCs, with the fiber misalignment, the shear
yield strength of the matrix and its work hardening coefficient as the
principal variables. A comparison between the theory and experimental
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results would provide the basis for specifying the compressive properties of
MMCs.

Compression failure of CMCs occurs by different mechanisms (Ashby).
The dominant failure modes are similar to those that operate in porous
brittle solids such as monolithic ceramics, concrete and rocks. The theory is
well established and validated for these materials. Applications of the theory
to various CMCs will be made and applied to the understanding of a
behavior of pin-loaded holes (Evans, Ashby).

7. THERMAL PROPERTIES

A new focus on the thermal properties of CMCs and MMCs will be
initiated in 1994. Calculations of the effects of matrix cracks in the thermal
expansion of CMCs will be made (Hutchinson). These will be compared with
data obtained from TMF testing (Zok). The effects of such cracks on the in-
plane thermal conductivity will also be calculated (Hutchinson).
Measurements will be performed using the laser flash method (Ashby).

Thermal conductivity measurements will be initiated on Ti MMCs
(Ashby). These will be used to understand the effects of the fiber/matrix
interphases and of matrix damage on the transverse and in-plane thermal
conduction.

8. MATERIALS SELECTION

The Cambridge Materials Selector software will be expanded in 1994 to
include high temperature creep design with the corresponding data base
(Ashby). This expanded version will permit estimates to be made of
temperature limits for MMCs based on creep controlled TMF and on the
transverse creep of components with unidirectional reinforcements.

9. DESIGN CALCULATIONS AND SUB-ELEMENT TESTS

A larger fraction of the effort in 1994 will be on design and sub-element
testing, particularly for MMCs. Discussions are now in progress with Pratt
and Whitney, Textron and 3M to perform design calculations using the
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constitutive equations developed at UCSB and to produce sub-elements for
testing.

The design emphasis for MMCs will be on various diffusion bonded
joints with Ti matrices and monolithic Ti attachments. Two specific
subelements are envisaged. The first involves unidirectionally reinforced
rods (or plates), clad with monolithic metal. The purpose of the cladding is
to prevent exposure of the fibers to the environment and to mechanical
abrasion. The design of clad MMC structures requires consideration of
(i) the residual stresses resulting from thermal mismatch between the
cladding and the composites section, (ii) the potential for fatigue cracks to
initiate and grow through the monolithic material, and (iii) the interaction of
such cracks with the composite section and their influence on the strength
and life of the structure. The design and testing of such subelements (Zok,
Leckie) will be augmented by calculations of crack growth and fracture,
incorporating the effects of thermal and elastic mismatch between the
cladding and the composite (McMeeking). The clad structures will also be
used to initiate studies on the reinforcement of holes in composite sections
with monolithic metal patches, as drawn in Fig. 9.1 (Zok, Suo). The second
subelement involves the attachment of a MMC actuator rod to a pin-loaded
monolithic section (Fig. 9.2). The critical design issues relate to the strength
and fatigue resistance of the interfaces between the composite and
monolithic matrices. Design studies shall also be completed on rotor rings
with special efforts made to produce rule-based design procedures which
would be used by industry at the conceptual level of design to determine
sizes and the efficient disposition of material.

For CMCs, the sub-element studies would be based on the calculations
described above in Section 5. These would include C sections and
T junctions (Fig. 9.3) Negotiations for manufacturing these sub-elements
will be initiated and tests performed at UCSB.

10. AFFORDABLE MANUFACTURING

As our understanding of composite mechanics and its interplay with
design and performance has evolved, it has become increasingly evident that
cost and reproducibility, are major constraints. Even as processing
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developments make the prospect of affordable high temperature fibers more
realistic, evolving knowledge on the mechanical and thermochemical
functions of interfaces have led to design concepts involving carefully
tailored interphase layers, with unfavorable impact on cost. Moreover, if
affordable coated fibers were available today, fabrication costs associated
with consolidation and pressure densification would often remain
prohibitive. Future processing and manufacturing activities are predicated
on these issues, especially the need for new ideas, and the related
knowledge base.

10.1 MMCs

Melt processing methods provide the more affordable options in
composite synthesis with the added benefit of near-net shape capability. For
continuous fiber composites melt infiltration also enables full density while
minimizing the consolidation stresses that typically cause premature
reinforcement failure in solid state processes. However, melt processing
requires a high degree of thermochemical compatibility between matrix and
reinforcement since deleterious diffasional interactions would be accelerated
by the liquid phase. Conventional melt processing also exhibits limited
ability to control the volume fraction and spatial uniformity of the
reinforcements.

Among metal matrices, Ti alloys epitomize unsuitability for direct melt
infiltration owing to aggressive reactivity. Fiber clustering is also a concern,
even in solid state processes based on powder or foil matrices. Composite
consolidation by vapor deposition (PVD) of the matrix on the fibers provides
an avenue for improving homogeneity of fiber spacing. However, present
schemes require expensive pressure densification with its many problems. A
potential solution involves a hybrid manufacturing route wherein part of the
matrix is first applied to the fibers by PVD. The pre-metallized fibers are
then assembled into a preform having the desired shape and then infiltrated
with the remaining matrix in liquid form.

Direct infiltration with Ti alloys could be feasible owing to the protection
of the fiber by the PVD layer, but the high temperatures involved would
exacerbate the diffusional interactions at the fiber-matrix interface. An
alternate approach involves depositing the more refractory constituents of
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the matrix (e.g.. T, Nb, Mo, etc.) by PVD and then infiltrating with the lower
melting point constituents (e.g. Al). Based on stoichiometric considerations,
the latter approach would be suitable for matrices with 2 25 at.% Al, notably
the orthorhombic and a2 alloys. The obvious problem with this approach is
the homogenization of the matrix after consolidation, which may require
lengthy high temperature treatments in the solid state. However, a
significant part of the matrix synthesis reaction could be effected in the
presence of molten Al, followed by a final heat treatment in the solid state.
While this lower temperature infiltration approach is evidently desirable
from a manufacturing viewpoint, it is not clear that matrix homogenization
can be achieved.

A program involving modeling and experimental work will be initiated in
1994 to generate the knowledge base appropriate to hybrid approaches for
Ti matrix composites (Levi, Evans). Cell models (single fiber environment)
would be developed to study diffusional interactions and
remelting/solidification phenomena as a function of processing cycle
(temperature-time history). Experiments would be performed to elucidate
the relevant aspects of microstructural evolution and provide the reaction
and interdiffusion kinetics needed to calibrate the models. Initial
experiments would be performed by infiltrating pure Ti-wire preforms with
molten Al and subjecting the “composite” to different treatments in the
semi-solid state. Subsequent experiments would focus on developing a
metallization route for Ti-Nb alloys on SiC fibers and on the relevant
interactions with infiltrated Al. Larger scale modeling issues would be
tackled in 1995 if the proposed approach appears promising.

Ongoing activities on the understanding of microstructure evolution
and its relationship to properties in in-situ TMC systems based on TiB
reinforcements would be continued (Levi). These are by nature affordable
composites which exhibit inherent thermochemical stability and may be cast
into shapes using conventional Ti processing techniques. A potential
application of these materials would be in joints with unidirectionally
reinforced composites, wherein their higher modulus and creep resistance
combined with acceptable toughness and isotropic properties could be
advantageous. It is also anticipated that these materials could be used for
cladding in PVD or plasma-sprayed form, thereby reducing the potential for
fatigue crack initiation in the cladding. Since TiB is thermochemically stable
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with practically all Ti matrices of interest in fiber composites, such
strengthening concepts may be readily implemented.

10.2 CMCs

Measurements and observations in 1993 have shown that strong, high
strain to failure CMCs can be fabricated using an inexpensive method that
involves a) packing a powder around fibers within a fiber preform using
pressure filtration and b) making the powder matrix strong by heat
treatment followed by infiltration with a liquid precursor that decomposes to
an inorganic material. A composite made this way, with polycrystalline
alumina fibers in a silicon nitride matrix, demonstrated that the matrix
deflects the crack. This observation is significant since it suggest that a
class of CMCs can be processed without needing weak fiber/matrix
interfaces. The potential of this observation will be explored (Lange, Evans),
by processing a composite with strong, polycrystalline alumina fibers in a
mullite matrix because the thermomechanical properties of mullite minimize
thermal stresses and resist creep. In addition, the thermal expansion
mismatch is relatively small. Mixed Al, Si metal alkoxide precursors which
can be gelled in-situ, prior to decomposition, will be used to strengthen the
matrix.

Manufacturing studies would initiate with understanding the precursor
infiltration into mullite power compacts. The densification of the matrix
would be determined as a function of the cyclic infiltration. Microstructure
changes would be controlled to avoid flaw populations during densification.
The fracture toughness and the strength of the matrix would be determined
as a function of the number of precursor infiltration cycles. Composite
processing would initiate with precursor infiltration into alumina fiber
preforms by pressure filtration, with emphasis on the colloidal aspects of
this processing step. The goal would be to determine the processing
conditions needed to produce a matrix that optimizes the ability to deflect
cracks without degrading fiber strength. To optimize composite processing,
panels for testing under conditions of both strain and stress control would
be manufactured.
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11. STRESS AND DAMAGE SENSORS

The extensive exploitation of the optical fluorescence method of
measuring stresses in sapphire fiber and alumina-containing ceramic
compos’tes begun in 1993 will be continued in 1994 (Clarke, Wadley). The
emphasis is on using the method to understand basic, unresolved issues in
stress redistribution in composites by the direct measurement, with high
spatial resolution, of the stresses themselves. Particular attention will be
paid to determining the stress distribution associated with interfacial
sliding. One of the problems to be addressed relates to new concepts for
oxidation resistant interfaces within MMCs and CMCs, particularly the
concomitant roles of fiber roughness and sintering on interface sliding and
debonding, after exposure to high temperatures and cyclic loadings. For this
purpose, fibers with fugitive, low modulus coatings will be explored and
fluorescence measurements used to understand stress evolution and its
connection with fiber durability within the composite. A second problem
relates to the distinction between the line spring and large scale sliding
models for fiber bridging (Budiansky, Hutchinson), so as to determine the
range of applicability of the two models. The two competing models predict
different distributions of stresses in the fibers within the bridging zone and
hence are amenable to validation on the basis of the measured stress
distribution.

Two approaches to measuring local damage are under development and
will be the focus of the sensor activities. One is the use of acoustic methods
(Wadley) to probe local variations in the elastic modulus of CMCs as a
function of load. This should provide a means of mapping the distribution of
damage which can be compared directly with the predictions of continuum
damage mechanics models. The second approach (Clarke) is to detect the
third harmonic signal generated by the presence of local damage.
Preliminary experimental results obtained in 1993 concerned with the
detection of crack-like voids in thin metal lines, together with computer
simulation studies, have demonstrated the viability of the technique. This
work will be extended in order to detect damage accumulation in CMCs and
MMCs.
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Abstract

Problems are analyzed that have bearing on cracking and survivability in the presence of cracking of layered composite
materials composed of brittle layers joined by either a weak interface or a thin layer of a well-bonded ductile metal. The
problems concern a crack in one brittle layer impinging on the interface with the neighbouring brittle layer and either
branching, if the interface is weak. or inducing plastic yielding, if a ductile bonding agent is present. For the case of a weak
interface, the effect of debonding along the imerface is analyzed and results for the stress redistribution in the uncracked
layer directly ahead of the crack tip are presented. Debonding lowers the high stress concentration just across the inter-
face, but causes a small increase in the tensile stresses further ahead of the tip in the uncracked layer. A similar stress
redistribution occurs when the layers are joined by a very thin ductile layer that undergoes yielding above and below the
crack tip. allowing the cracked layer to redistribute its load to the neighbouring uncracked layer. The role of debonding
and yielding of the interface in three-dimensional tunnel cracking through an individual layer is also discussed and
analyzed. Residual stress in the layers is included in the analysis.

1. Introduction

When layered, thin sheets of a brittle material may
have toughness and strength properties far superior to
those of the material in bulk form [1-6). To enable
good strength and toughness, the interface between
adjoining layers must counteract the stress concentra-
tion effect of any crack that occurs in an individual
layer. reducing the likelihood that it will propagate into
the next layer. Depending on the nature of the inter-
face, this may occur by debonding, when the interface
is brittle and relatively weak. or by yielding and sliding
for systems composed of brittle layers alternating with
thin ductile adhesive layers. The latter category is
represented by sheets of Al.O; joined by thin layers of
aluminum (2] and by the model system with sheets of
AlLO, bonded by epoxy {3]. Some of the issues related
to the design of layered brittle materials are similar to
those encountered in the design of fiber-reinforced
brittle matrix composites, such as the selection of inter-
face toughness to prevent matrix cracks from pene-
trating the fibers. Other issues are unique to the layered
geometry, and this paper addresses a few of them. In
particular, the role of yielding or debonding of the
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interface in defeating cracks in individual layers is
analyzed by consideration of the stress redistribution in
the adjoining uncracked layer that accompanies these
processes. Results are given for the energy release rate
of three-dimensional cracks tunneling through an
individual layer. This release rate. which is infiuenced
by interface yielding or debonding. provides the essen-
tial information needed to predict the onset of wide-
spread layer cracking in terms of the thickness of the
brittle laver material and its toughness.

The geometries of the problems to be studied are
shown in Fig. 1. Figure 1{a) shows a cracked layer of
width 2w with zones of either yielding or debonding in
the interface extending a distance 4 above and below
the crack tips. The interface is taken to be either a very
thin ductile layer of an elastic-perfectly plastic material
with shear flow stress 7 or a weak plane that debonds
and slips under conditions such that the layers remain
in contact and exert a friction stress t on each other.
The ductile adhesive layer allows relative slipping of
the layers it joins by plastic yielding, but it is assumed
that debonding does not occur. In this case, the condi-
tion K.=0 must be enforced, leading to well-behaved
shear stresses at the end of the yielding zone and estab-

© 1993 - Elsevier Sequoia. All rights reserved
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(a) (b)

Fig. 1. Specification of the plane strain problems: (a} finite layer
crack; (b) asymptotic problem.

lishing the zone length 4. In the case where the inter-
face debonds, the interface crack is fully closed for
d/w>0.71 {7]. The mode 2 stress intensity factor K, at
the end of the slipped zone will be nonzero, and must
attain the mode 2 toughness of the interface for the
debond to spread. Results for K, are given below.

Cracks in individual layers spread as three-dimen-
sional tunnel cracks propagating through the layer (Fig.
2). Once the crack has spread a distance of at least
several layer thicknesses in the z direction it ap-
proaches a steady state wherein the behavior at the
propagating crack front becomes independent of the
length of the crack in the z direction. Under these
steady-state conditions, the energy release rate of the
propagating front can be computed by use of the plane
strain solution associated with the geometry of Fig. 1(a)
(other examples of tunnel cracks are given inref. 8). The
steady-state energy release rate can be computed in
terms of the average of the opening J(x) of the plane
strain crack. The zone of yielding or debonding
increases the tunneling energy release rate, thereby
lowering the overall stress at which widespread layer
cracking can occur. Results for the tunneling energy
release rate are given below. The role of residual
stresses in the layers are readily accounted for: this is
discussed in the final section.

When the interface is weak and debonding occurs,
the interface crack is fully open with mixed mode
intensity factors when d/w <0.24 [7]. This case can be
approximated well by the asymptotic problem for a
semi-infinite crack impinging the interface where the
remote field is the K-field associated with the problem
in Fig. 1(a), with d=0. The stress redistribution in the
next layer ahead of the impinging crack tip is given,
with a correction of previous energy release rate results
for the doubly-deflected interface crack [9]. When
plastic yielding of a ductile adhesive layer occurs,
another asymptotic problem applies when o is suffi-
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Crack plane

piane of intentace (x = 0

Fig. 2. Specification of the three-dimensional tunneling crack
problem.

ciently small compared with 7. Then, the asymptotic
problem is that shown in Fig. 1(b) for a semi-infinite
crack loaded remotely by the same K-field. In this case
also, the effect of yielding in the thin adhesive layer on
the stress distribution ahead of the crack tip in the
uncracked layer is emphasized.

2. Effect of plastic yielding on stress redistribution

As discussed above, the thin ductile adhesive layers
in Fig. 1(a) are assumed to be elastic-perfectly plastic
with a yield stress in shear of 7, and are modeled as
+ sing zero thickness. The plane strain problem is

onsidered where the central cracked layer has the
samr= elastic properties (E, v) as the semi-infinite
t.cks adjoining across the interfaces. Under mono-
tonic increase of the applied remote stress o, the zones
of yielding of half-height d spread allowing slip in the
form of a tangential displacement discontinuity & ross
the interface in the yielded region. The condition
o, = trt is enforced within the yielded zones of the
interface. The Dugdale-like condition K,=0 at the
ends of the yielded zones ensures that the shear stress
on the interface falls off continuously just outside the
yielded zone, and it determines the relation of d/w to
o/t under the monotonic loading considered. Integral
equation methods are employed to solve this problem
as well as the others posed below; the methods used are
outlined briefly in Appendix A.

The two most important functional relations needed
to solve the three-dimensional tunneling crack problem
discussed below are shown in Figs. 3 and 4. In Fig. 4, 6
is the average crack opening displacement defined by

17
s=o— [ a0t (1)

The elastic value of 4, valid when there is no yielding

(1= ), is 8,= (1 - v*)ow/E. Yielding of the adhesive
layers begins to make a significant centribution to the
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dw

Fig. 3. Relation between applied stress and height of the yielding
zone in a thin ductile adhesive layer.

J

] ] Ny L
2 3 4 § 6

o/t

Fig. 4. Average crack opening displacement as a function of the
ratio of applied stress to shear yield stress of the thin ductile
adhesive layer.

average crack opening displacement when o/ T exceeds
unity. The redistribution of normal stress o,,(x, 0} in
the block of material across the interface is shown in
Fig. § for three levels of o/tr. The curve shown for
o/t=1.5 is only very slightly below the elastic distri-
bution

(0,(x. 0)=(& +1)/(2 +23)!"

for x= x/w >0.05. Reduction of stress ahead of the crack
tip begins to be appreciable when o/7=2.7, and is
quite significant when o/ 7= 6.4. The drop in stress just
across the interface is offset by a slight increase in
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4 -

Fig. 5. Stress distribution ahead of the crack tip in the uncracked
layer at several levels of applied stress to shear yield stress of the
thin adhesive layer.

stress relative to the elastic distribution further from
the interface. This feature is seen in all the stress re-
distribution results.

Stress redistribution can be presented in another
way when d/w is sufficiently small, by use of the asymp-
totic problem shown in Fig. 1(b). Provided d/w is suffi-
ciently small, the yielding behavior is small-scale
yielding with the elastic stress intensity factor K as the
controlling load parameter. The remote field imposed
on the semi-infinite crack is the elastic K-field. This
asymptotic problem has also been solved with integral
equation techniques. The extent of the yield zone in the
asymptotic problem is

d=0.052 (5)
T

Figure 6 displays the normal stress directly ahead of
the crack tip in the adjoining block normalized by the
elastic stress field for the limit 7= <. The stress ratio in
Fig. 6 depends on x/d but is otherwise independent of
K in the asymptotic problem. Yielding reduces the
stress below the elastic level over a region ahead of the
crack tip which is slightly larger than d/10. Beyond that
region the stresses are slightly elevated above the
elastic levels and approach the elastic distribution as
x/d becomes large. The stress redistribution due to
debonding (Fig. 6) is more dramatic: this is discussed
below.
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Fig. 6. Stress redistribution ahead of the crack tip in the layer
across the interface for the two asymptotic problems (d < w),

3. Effect of plastic yielding on tunnel cracking

As stated above, the steady-state energy release rate
for a three-dimensional tunneling crack can be com-
puted by use of the plane strain solution. For the
geometry and loading shown in Figs. 1(a) and 2, the
leading edge of the tunneling crack propagating in the z
direction experiences mode 1 conditions. Let G
denote the energy release rate averaged over the prop-
agating crack front. An energy balance accounting for
the release of energy per unit advance of the tunnel
crack under steady-state conditions gives 2wG,; as the
work done by the tractions acting across the plane of
the layer crack in the plane strain problem as .hose
tractions are reduced to zero from ¢. For the present
problems, this is the same as

Gs\=f 4(o')dd’ (3)

where 4 is the average crack opening displacement for
the traction-free plane strain crack under monotoni-
cally increased remote 5. The elastic result for d=0
(i.e. T=0)is

0 a(l-v)o'w

= 4
G, 5E (4)

The ratio of G, to G.” can be computed from the data
in Fig. 4 by use of simple numerical integration. The
result is plotted in Fig. 7. Increases of the steady-state
release rate above the elastic value become important
when o/t exceeds unity.
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o/t

Fig. 7. Normalized steady-state energy release rate for the
tunneling crack in the case of thin ductile adhesive layers with
shear yield stress t.

4. Effect of debonding and frictionless slipping on
stress redistribution

The plane strain interface debonding problem for
the geometry of Fig. 1(a) is as follows for the case
where no frictional resistance is exerted across the
debonded interfaces (i.e. =0). According to ref. 7, the
debonded interface will be fully open when d/w<0.24,
and the interface crack tip at the end of the debond is
subject to mixed mode conditions, as discussed for the
asymptotic problem below. For 0.24 <d/w<0.71, the
debond crack tip is closed and therefore in a state of
pure mode 2, but a portion of the interface rear the
main layer crack is still open. For d/w>0.71, the inter-
face is fully closed and the interface crack tip is in
mode 2. The top curve for the normalized mode 2
stress intensity factor in Fig. 8 applies to the frictionless
case. It was computed using the integral equation
methods outlined in Appendix A under the constraint
that the interface remains closed. The results are
strictly correct only for d/w>0.71 (and agree with the
results of ref. 7), but are only slightly in error for
smaller d/w. The average crack opening displacement
0 needed for the tunnel crack calculations is shown in
Fig. 9, where the top curve again applies to the friction-
less case.

The role of debonding on stress redistribution is
seen in Fig. 10, where curves of the stress ahead of the
right-hand layer crack tip (normalized by the remote
applied stress o) are plotted for various levels of
debonding, all for the closed interface with 7=0.
Debonding clearly has a significant effect on lowering
of the stress on the adjoining material just across the
interface; more so than for plastic yielding of a thin
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Fig. 8. Norm:..1zed mode 2 stress intensity factor for the debond-
ing interface crack at several levels of interface friction stress to
applied stress.

dw

Fig. 9. Average crack opening displacement as a function of
debond length at several levels of interface friction stress to
applied stress.

ductile layer discussed in connection with Fig. 5. For
sufficiently small d/w, the debonded interface is fully
open and the asymptotic problem for a semi-infinite
crack impinging on the interface applies, as shown in
the insert in Fig. 6. The stress redistribution is plotted
in Fig. 6, which shows that the stress ahead of the layer
crack tip is reduced below the level in the absence of
debonding over a distance from the interface equal to
half the debond length 4. Figure 6 also shows that
debonding appears to be more effective in protecting
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Fig. 10. Stress distribution ahead of the crack tip in the
uncracked layer across the interface for the case of no interface
friction.

the uncracked layer across the interface than plastic
yielding of a thin ductile adhesive layer.

As a digression, the mode 1 and 2 stress intensity
factors are recorded for the open interface crack tip for
the asymptotic problem of Fig. 6

The associated ratio of the energy release rate of the
interface crack tip to that of a mode 1 crack pene-
trating straight through the interface without debond-
ing is 0.263 when both the deflected tips and the
penetrating tip emerge from the main crack tip at the
same applied K. These results correct results given in
ref. 9 that were in error for the case of the doubly-
deflected interface crack. A complete set of corrections
of this energy release rate ratio for this case over the
full range of elastic mismatch across the interface is
giveninref. 10.

S. The effect of frictional slipping on debonding and
tunnel cracking

Figures 8 and 9 show curves for the normalized
mode 2 stress intensity factor and the average crack
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opening displacement respectively in the plane strain
problem for several levels of a constant friction stress 1
relative to o acting over the bonded interface. A con-
stant friction stress, as opposed for example to a
Coulomb friction stress, has been used by some work-
ers to represent the frictional forces exerted across
slipping interfaces in composites. The purpose of the
present limited study is to illustrate the effect of friction
in establishing the extent of debonding and its asso-
ciated influence on the three-dimensional tunneling
energy release rate. Almost certainly, additional studies
will be required before understanding is good. includ-
ing studies with other friction laws. Some results for the
effect of Coulomb friction on the mode 2 interface
stress intensity factor are given in ref. 11.

Let K_ denote the mode 2 toughness of the interface.
Attention will be concentrated on the behavior
following initiation of interface debonding when the
debond length d is sufficiently large (i.e. greater than
~w/4) such that the debond interface crack tip is in
mode 2. Impose the debonding condition K,=K_ on
the solution presented in Figs. 8 and 9. The relation-
ships of the applied stress with the debonding length
and the average crack opening displacement that result
are plotted in Figs. 11 and 12. The two nondimen-
sional stress parameters in these figures are the applied
stress parameter o(w)'*/K_ and the constant friction
stress parameter 7(w)'/*/K_. (It is necessary to inter-
polate values between the curves of Figs. 8 and 9 to
arrive at the plots in Figs. 11 and 12, since a constant
value of 7(w)!*/K_ does not correspond to a constant

0 L ] I L !
0 1 2 3 4 H

Fig. 11. Relation of normalized applied stress and debond height
at several levels of the non-dimensiona’ interface friction stress:
the condition K. =K_ is imposed, where K_ is the mode 2 inter-
face toughness.
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value of 7/0.) In the range of d less than ~wuy/4, the
predictions are not expected to be correct since the
interface undergoes mixed mode debonding and not
mode 2 debonding. Thus, the details in the vicinity of
the initiation of debonding are not correct. In par-
ticular, the value of a(w)' /K, at which 0 begins to
depart from 0, (see Fig. 12} would depend on the
mixed mode condition for debond initiation. But once
debonding has progressed to the point that the inter-
face crack tip is closed. the mode 2 criterion is appro-
priate and the curves are accurate.

In the absence of friction the debonding process is
unstable, since for a fixed o, K, has a maximum when
d=w and then drops slightly to an asymptote as ¢
increases further. Under a prescribed o. the mode 2
debond would advance dynamically after it was
initiated. In this sense, the curves shown in Figs. 11 and
12 for 7=0 represent unstable debonding behavior.
Friction stabilizes the debonding process, giving rise to
a monotonically increasing debond length and average
crack opening displacement as the applied stress
increases A nondimensional friction stress of the order
of 1(w)'2/K_=1/8 or more is required if friction is to
be important.

The steady-state energy release rate for tunnel
cracking can be computed from the curves in Fig. 12
using eqn. (3). The results of this calculation are plotted
in Fig. 13. As before, G,, is normalized by the value for
a layer crack with no debonding given in eqn. {4). The
above remarks on accuracy in the vicinity of debond
initiation also apply to these curves. It can be seen from
Fig. 13 that debonding can significantly promote tun-
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Fig. 12. Relation of the average crack opening displacement and
normalized applied stress at several levels of the nondimensional
interface friction stress: the condition K. =K_ is imposed. where
K. is the mode 2 interface toughness.
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Fig. 13. Steady-state energy release rate for the tunneling crack:
the condition K, =K_ is imposed. where K is the mode 2 inter-
face toughness.

neling cracking when the nondimensional friction
stress is less than about 7(w)!* /K = 1/2.

6. Accounting for residual stress in the cracked layer

The role of a uniform residual tension o,, = oy pre-
existing in the layer that undergoes tunnel cracking can
readily be taken into account in the various results
presented above. For the purpose of discussion, let
0, = 0, be the applied stress, replacing the notation for
o given above. The results in Figs. 3,4, 7-9 and 11-13
apply as they stand if o is identified with g, + ox. The
results for stress redistribution shown in Figs. 5 and 10
can also be used, with the following modifications.
With o identified with g, + oy, the results in Figs. 5 and
10 are correct for the change in g, in the layer ahead
of the tip due to cracking if the numerical value of the
ordinate is reduced by 1. To obtain the total stress o,,
in the layer in question, one must then add the change
and the stress o, existing in the layer prior to the
crackingevent.
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Appendix A: Numerical approaches

Two integral equation formulations were used in the
solution of the problems discussed. As these have been
used by various authors to solve related plane strain
problems, details of the methods are not given here. In
some cases, results were generated by use of both
schemes as a check. The methods used for the prob-
lems for the closed interface cracks at the ends of the
finite length layer crack (see Fig. 1(a)) are discussed
first.

The integral equations in method 1 are formed by
representation of both the layer crack and the mode 2
interface cracks in terms of distributions of disloca-
tions. With reference to Fig. 1(a), let b,(x)= —dd, /dx
denote the amplitude of the dislocation opening dis-
tribution extending from 0 to w along y=0, and let
b{y)= —dd,/dy denote the amplitude of the disloca-
tion shearing distribution along x = w extending from 0
to d. The condition that o,=0 along y=0 for
~w<x<wcanbe writtenas

" d
f H,(x, x')b..(x')dx'+f Hi{x.y)b{y)dy= -0 (6)

where H,(x, x') denotes the stress o,(x) along y=0
due to by(x’), with due regard for the symmetry of this
distribution with respect to x=0, and H,(x, y) denotes
o.(x) due to b(y), with the appropriate four-fold
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symmetry on this distribution imposed. Similarly. the
condition that o,, = —r along x =w between 0 and d
(with the corresponding shear conditions met along the
other three legs of the H-crack)is

w d
[ Hiy xibixrax + [ Hiwyb¥)idy=-¢r (1)

1] 0

where Hy(y, x') is 0,,(y) along x =w due to b,(x') and
H{y, y')is 0, y)dueto b y').

Method 2 uses the solution for the problem of four
symmetrically placed dislocations interacting with a
traction-free crack extending along the x-axis from —w
to w. With H(y, ') denoting the shear stress a,,(y)
along x =w between 0 and d due to b y'), with due
regard for the other three symmetrically placed dis-
locations, the single integral equation for b_is

H{y,y)b{y)dy = —0,"(y)-7 (8)

€ e

where 0,,% y) is the shear stress along x =w due to the
remote stress acting on the layer crack in the absence
of the interface cracks.

The kernels of the above integrals have Cauchy
singularities. The dislocation distributions can be
techniques. Once the distributions are known in either
obtained by use of several well known numerical
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method, they can be used with other integral expres-
sions to compute the stress components at any point in
the plane and the mode 2 stress intensity factor at the
end of the interface crack. For the cases in which K, is
nonzero. the distribution b v) has an inverse square
root singularity at y=d. while it diminishes with the
square root of the distance from y=d for the plastic
yielding problems with K,=(. The solutions do not
rely on a precise incorporation of the correct behavior
of the dislocation distributions at the corner point at
x=w on y=0. A number of choices were made,
including representations that built in the correct
lowest order functional behavior near this point.

The asymptotic problem for the semi-infinite layer
crack and the mode 2 interface cracks (see Fig. 1(b))
was solved using method 2. Now, H(y, )’) is the shear
stress along x = 0 between 0 and d due to just two sym-
metrically placed dislocations on x=0 at *y’ interact-
ing with a traction-free semi-infinite crack, and o0,."( y)
is the shear stress on x=0 due to the K-field in the
absence of the interface cracks. The second asymptotic
problem discussed in connection with Fig. 6, in which
the interface crack opens, is also solved using method
2, but here both shear dislocations and opening dis-
locations must be used and the problem becomes a set
of dual integral equations. In all the cases involving
method 2, the kernel functions A can be obtained in
closed form by use of complex variable methods of
elasticity.




MATERIALS

Notch Sensitivity and Stress
Redistribution in CMCs

Thomas J. Mackin,* Thomas E. Purcell,* Ming Y. He* and Anthony G. Evans*

*High Performance Composites Center
Materials Department
College of Engineering
The University of California at Santa Barbara
Santa Barbara, CA 93106-5050

tPratt and Whitney
United Technologies
17900 Beeline Highway
Jupiter, Fl 33478




ABSTRACT

Fiber reinforced ceramic matrix composites depend upon inelastic
mechanisms to diffuse stress concentrations associated with holes, notches and
cracks. These mechanisms consist of fiber debonding and pullout, multiple
matrix cracking and shear band formation. In order to understand these effects,
experiments have been conducted on several double-edge-notched CMC's that
exhibit different stress redistribution mechanisms. Stresses have been measured
and mechanisms identified by using a combination of methods including: x-ray
imaging, edge-replication and thermoelastic analysis. Multiple matrix cracking
was found to be the most effective stress redistribution mechanism.
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1. INTRODUCTION

One of the major attributes of fiber reinforced ceramic matrix composites
(CMC's) is the existence of inelastic mechanisms that allow stress redistribution
around strain concentration sites such as notches, holes, attachments, etc.1-4
These mechanisms, analogous to plasticity in metals, involve combinations of
matrix cracking and fiber pull-out.1.6-10 Recent research has identified three
principal damage phenomena that occur in the vidinity of holes and notches
(Fig 1): Class I, the propagation of a single matrix crack accompanied by fiber
fracture and pullout; Class II, the formation of multiple matrix cracks in the
absence of fiber failure; and Class III, the formation of shear bands. Other
damage mechanisms may, of course, exist. The operative damage class depends
upon the magnitudes of non-dimensional parameters which combine interface,
fiber, and matrix properties.17.8.10 The intent of the present article is to provide
an experimental assessment of stress redistribution effects around notches in
CMC's that exhibit both Class II and Class Il damage behaviors.

CMC's exhibit a variety of tensile (Fig 2a) and shear (Fig 2b) stress/strain
curves,1,10,14 with varying amounts of inelastic strain prior to failure. One
purpose of the present study is to attempt to relate features of the inelastic strain
measured in tensile and shear tests to the stress redistribution behavior. This
would be achieved through an understanding of the operative inelastic
mechanisms and their role in governing the dominant mode of damage (Fig 1).

The importance of stress redistribution is manifest in the notch sensitivity,
which is a key factor affecting the practical utility of a structural material. 11,12
Notches and holes are a source of strain concentration. The corresponding stress
concentration depends upon the material response. One limit obtains for elastic
materials, where the stress concentrations are severe and result in extreme notch
sensitivity. When inelastic mechanisms operate, the stresses redistribute in
regions of large strain concentration and reduce the notch sensitivity. In some
cases, the stress concentration can be completely eliminated, resulting in a notch
insensitive material.3.13 More generally, the behaviors can be presented on a
notch sensitivity diagram11,12 (Fig. 3). In this diagram, the ordinate is a measure
of the tensile strength normalized by the un-notched strength, while the abscissa
is the notch/hole size (2ap) relative to the plate width (2b). Each line represents a
measure of the inelastic displacement permitted by the material near the notch

Mackin et al: Notch Sensitivity and Strer. Redistribution in CMC's




tip, prior to failure. This measure is given by the ratio of the notch length to the
length of the inelastic zone.11

Related stress redistribution mechanisms are known to occur in polymer
matrix composites (PMC's), particularly upon cyclic loading. 13-21  Studies on
PMCs have established a precedent for a test methodology!5-21 that can be used
to monitor damage in CMCs and thereby measure its effects on the stress
distribution. The methods include the use of Moiré interferometry to measure
strain distributions, thermoelastic measurements to assess stress distributions,15-
19 x-ray imaging with dye penetration to highlight damage,2 13 and replication
methods to examine matrix cracking.15-21 All of these methods may be
augmented by conventional optical and scanning electron microscopy. In the
present study, a combination of these methods is used to study stress
redistribution in three CMCs: SiC/CAS,322 C/C2 and SiC/SiC.10 The materials
and their properties are described elsewhere.2-3,10.22

The experimental procedure given principal emphasis is the thermoelastic
emission method, which provides a measure of the stress distribution.15-19,23-26
A brief synopsis of this method is given in the next section, prior to a description
of the experiments and their analysis.

2. STRESS ANALYSIS BY THERMOELASTIC EMISSION

Stress Pattern Analysis from Thermoelastic Emission (SPATE ) is a
technique that relates instantaneous changes in the hydrostatic stress at any
location in a material to instantaneous changes in local temperature.23-26 The
method has been used extensively to evaluate stress distributions in monolithic
metals and polymer matrix composites.15-19 The underlying phenomenon
concerns the temperature change that occurs when an elastic body is subjected to
hydrostatic deformation under adiabatic conditions. The fundamental
thermodynamic relation for the temperature change T and its dependence on the
hydrostatic stress rate Ok, is given by (see Appendix):23-30

NP
KaB To+poC, | 1)
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where Kn, is the isothermal bulk modulus, Cy is the specific heat at constant
volume, B is the bulk thermal expansion coefficient, pg is the density, and Tpis
the mean temperature. The denominator in Eqn (1) is dominated by the term in
density and specific heat, resulting in a useful approximation,

R X }
Tw=- G
[POCV «

(2)

Typically, the material constants are combined to define a thermoelastic
‘constant,’ x given by,

B
poCy 3

K=

In the SPATE method a sinusoidal stress input is used, which creates a
thermal response at both the first and second harmonics. The temperature °
change, AT, at the first harmonic, is given by,20-25

AT = kToAGK sin (1) )

where o is the frequency, Aok is the hydrostatic stress amplitude, and t is time.
A key feature of thermoelastic emission is that the spatial variation in
temperature, AT(x,y), is related to the hydrostatic stress distribution, Acyx(x,y).t
Moreover, when matrix damage occurs, such as microcracks, the properties
which influence x, (namely pg, Cy, and B) are unchanged and eqn (4) _still
applies.

For typical values of the imposed stress range, Acik, the expected
temperature changes for CMC's are between = 0.1°C and 0.01°C. Very sensitive
measurements are thus required. Furthermore, to satisfy the adiabatic
assumption, the thermometry must be in thermal equilibrium with the test
specimen. To satisfy these requirements, recent experimental techniques use

H For a composite, the material constants that relate stress and temperature involve combinations of the
properties of the fiber and the matrix, leading to anisotropy in the thermoelastic ‘constant’, x. The
magnitude can be obtained either by calibration or calculation, 2223
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the principle of black body radiation and infrared thermometry, wherein the
radiant photon flux from a specimen is measured by a detector sensitive to
infrared radiation.’23.24 In practice, the detector response is the sum of the
photon radiance due to the thermoelastic effect, that due to equilibrium radiance,
and the background. Improvements in signal to noise are made by averaging
the sample many times at a given location. This is accomplished by locking the
detector data acquisition onto the frequency of the applied cyclic stress. A
commercial system which embodies these conceptst has been used to measure
thermoelastic emission from the test specimens. The system consists of a
mercury doped CdTe detector affixed to a liquid nitrogen cooled dewar. The
detector is housed within a camera body to reduce the effect of spurious
radiation. A collimator and lenses at the inlet to the camera body focus the
emitted IR onto the detector. The IR emitted from the sample is measured over a
spot size of 400um diameter at a working distance of 25cm and 0.001°C
temperature sensitivity. Before testing, specimens are coated with a thin layer of
commercial flat black paint to provide uniform emission from the sample
surface. Background IR is reduced by placing a flat black card behind the
Specimen.

The exreriments are conducted by applying a 10Hz, uniaxial cyclic load,
creating a 10Hz fluctuation in the thermoelastic response. The frequency is
chosen to minimize the effects of thermal conduction from the measurement
zone during the measurement time, approximating adiabatic conditions.23:24
The maximum load is usually chosen to correspond to a stress less than the
elastic limit, while the minimum is chosen to retain specimen alignment. A lock-
in amplifier controls the data acquisition system by locking the detector output to
the frequency of the applied load. The phase lag is automatically adjusted by
locking into the peak signal difference at the test frequency. Locking into the
applied cyclic load performs two basic functions: It correlates the thermal signal
to the applied stress, and it eliminates the effect of absolute temperature changes
that may be occurring in the specimen.

* Typical IR detectors have a band gap of ~0.1¢V, corresponding to photon wavelengths <14 microns.
+ SPATE 9000 IR imaging systern by Ometron
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3. EXPERIMENTAL PROCEDURES

Test coupons were fabricated from panels of 0/90 composites of C/C,
SiC/SiC and SiC/CAS. These materials and their properties are described in
detail elsewhere.23,1022 Representative tensile and shear stress-strain curves are
shown in Fig 2. The chosen composites exhibit a broad range of behavior. In
tension, the C/C is nearly linear whereas the SiC/CAS has substantial non-
linearity. Moreover, in shear this trend is reversed.

Double edge-notches were cut into the sides of the test coupons using a
diamond blade, resulting in a nominal notch root radius of 250um, and having
relative notch depths, 0.33Sag/b< 0.5. Aluminum tabs were bonded onto the
ends of the test coupons for gripping purposes. The specimens were aligned and
clamped using hydraulic grips in an Instron universal test machine with a
50,000Ib load cell.. A strain gage was attached at a location remote from the
reduced section to allow monitoring of the far field strain. The strain gage was
connected to a dynamic strain amplifier, the output of which was used to
calibrate the thermal emission.

Each test was interrupted at various points along the stress-strain curve in
order to assess the stress distribution, as well as the development of damage
around the notches. The stress was obtained using the thermoelastic emission
procedure, described above, whereby the temperature distribution provides a
map of the hydrostatic stress at the surface of the specimen (Eqn 4). Stress
changes elicited by damage appear as changes in the temperature distribution. A
'stress concentration factor' (SCF) associated with the notches was computed
from the thermoelastic images by taking the ratio of the local to far field
temperatures. The 'stress concentration factor' is defined as (Eqn 4)

SCF = ACik jocal = AToca
ACxk farfiedd ATrfar fiela (5)

As damage is introduced into the specimen, the SCF changes, and serves as a
measure of stress redistribution.

Damage was characterized using both radiographic procedures and
acetate tape replicas. The radiographs were obtained as follows: While under
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load, a zinc iodide penetrant was dispersed onto the specimen.2.13 The
specimens were then unloaded, removed from the grips, and placed into an x-ray
system. The penetrant enters into the damaged region and provides absorption
contrast for an x-ray image of the damaged region.2 Acetate replicas were
obtained while the load was maintained in order to hold the matrix cracks open.
Sections of replication tape were cut and held over the notch root region, and a
small amount of acetone applied above the tape. The replicas were dried,
removed and examined using optical microscopy.t* Combinations of damage
imaging and thermoelastic emission provide a pictorial view of damage
evolution and its effect on stress redistribution.

4. RESULTS
4.1 SPATE Calibration

Before proceeding with thermoelastic measurements, a SPATE calibration
experiment was conducted on an edge notched steel specimen. The notches were
milled into the sides of the sample for precise control over the notch root radius.
Loads were used that ensure an elastic response everywhere in the specimen. A
low resolution full field SPAYTE scan (Fig 4), combined with line scans,
demonstrate the thermal response. In these images, the highest temperature
difference is at the notch root, with a continuous decrease in temperature with
distance away from the notch.  For purposes of analysis, the temperature field
is calibrated to the strain gage response in the far field by comparing
thermoelastic and strain gage signals and adjusting the SPATE output
accordingly. Several items are notable: (i) The specimen was not perfectly
aligned, resulting in bending stresses. This is evident from the slope of the line
scans both through the far field and the notches. (ii) There are fluctuations in the
far field signal (10% of the signal). These arise from polishing scratches,
variations in surface emissivity, and thermal fluctuations in the background. (iii)
Edge effects appear on scans made in the vicinity of the notch and at the sample
edges. The consequence is that a finite edge region, approximately 400um in
width, cannot be analyzed. The edge effect arises for two reasons: First, when

H Assistance in replication was provided by D. Brodnicky at Pratt and Whitney.
H The resolution of the grey scale images is an artifact of photographic reproduction, and is not
indicative of the system resolution.
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scanning near an edge, the detector spot is partially off the specimen. Second,
as the specimen is cyclically loaded, the edges of the specimen move relative to
the detector, adding unacceptable noise levels to the signal.

Stress concentration factors are derived from the temperature
measurements by comparing the temperatures at the notch root with the
temperature in the far-field (Eqn 5). Finite element (FEM) solutions (Fig 5) reveal
that 0.« near the notch root is about equal to the applied stress, while oyy is
between 3 to 4 times larger The thermoelastic signal, which depends upon the
sum, Oxx and Oyy, isthus dominated by oyy near the notch. The experimental
SCF is superposed onto the finite element results (Fig 5). Upon noting that the
spot size is 400um, the SPATE measurement correlates satisfactorily with the
stress concentration calculated by FEM.

4.2 CMC Measurements

Measurements made on the notched C/C material provide SPATE images
obtained at two peak load levels (Fig 6a). These are accompanied by a
radiographic image of the same specimens? (Fig 6b). The C/C material develops
shear bands perpendicular to the notch which are comprised of multiple matrix
cracks, characteristic of a Class Il system?2 (Fig 1). Both SPATE and radiographic
images illustrate this effect. The SPATE scan (Fig 6b) reveals a dramatic
elongation in the notch root field, coincident with the development of the shear
bands. Such bands form in this composite because of its relatively low shear
strength (Fig 2b). Line scans connecting the notches (Fig 7) establish that there is
a reduction in the magnitude of the notch root stress concentration as the shear
bands extend. The line scans are overlayed with a net-section stress line to better
illustrate changes in stress concentration. The results are quantified by plotting a
measure of the stress concentration factor (SCF), eqn 5, as a function of shear
band length, 2 (Fig 8). The oxx stress at this location near the notch should be
approximately equal to the applied stress (Fig 5). Consequently, this ratio of
temperatures is primarily a measure of the oyy stress concentration ahead of the
notch. The initial SCF is quite low compared with that measured on the steel
specimen. This difference is attributed to machining damage that has already
changed the local consititutive properties. Anisotropy effects may also be
involved. Nevertheless, it is evident that the stress concentration factor
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diminishes as the shear band length increases, consistent with finite element
calculations 2 (fig 9).

A similar series of experiments conducted on the SiC/CAS material
revealed different characteristics (figs 10-11). The SPATE images (fig 10) indicate
that the zone of highest temperature moves auay from the notch root toward the
specimen center as the peak load increases. At the highest load, the temperature is
essentially uniform across the net section (fig 11), implying that the stresses are
also uniform and about equal to the net section stress. Such observations are
consistent with the notch insensitive behavior found for this material (fig 2).
Surface replicas revealed a multiplicity of matrix cracks emanating from the
notch (fig 10), with no evidence of shear bands in this material. These
observations classify the SiC/CAS material as a class II composite. Stress
redistribution is achieved through the inelastic tensile deformation provided by
multiple matrix cracks.1,10

SPATE images and line scans obtained for the SiC/SiC material (Figs 12
and 13) show some stress redistribution. However, stress concentration persists
throughout. The damage mechanism operating in this material is presently
unknown. Whichever mechanism operates, it is clearly less effective in stress
redistribution than either the shear band or the multiple matrix cracking
mechanisms that occur in the C/C and SiC/CAS composites, respectively.

5. ANALYSIS AND INTERPRETATION

The combination of SPATE measurements with x-ray and surface
replicated images indicate that matrix cracking damage, occurring as either shear
bands or multiple matrix cracks, modify the stress around notches. To further
understand the implications of the SPATE results, it is recalled that the
measurements are made at small stress levels, following the introduction of
damage at larger stresses. Consequently, the damage must influence the
stress/strain laws applicable at small strains. Unloading/reloading
measurements conducted in both tension and shear have indicated that the
unloading modulus diminishes as a consequence of matrix crack damage 1,1022
(Fig 14). The damaged material would be located primarily ahead of the notch in
the SiC/CAS composite, but normal to the notch, within the shear bands, in the
C/C composite. The diminished modulus is regarded as the phenomenon that
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causes the stresses inferred from the SPATE measurements to differ from the
elastic solution . It is proposed that the damage creates a gradient in the elastic
modulus, such that the stresses near the notch are reduced, as sketched in Fig 15.
Moreover, results for stress redistribution in materials subject to shear bands?
(Fig 9) indicate features comparable to the measurements performed on the C/C
composite. A more detailed understanding of stress redistribution would require
that SPATE measurements be made over a range of superposed mean stresses,
thereby illuminating the non-linear stress-strain behavior in the damaged
regions. Such measurements would provide constitutive relations that could be
used in stress redistribution calculations.

SUMMARY

SPATE measurements, in conjunction with x-ray and replica observations,
indicate the existence of damage mechanisms that result in local gradients in
elastic modulus. These gradients in modulus cause stress redistribution. The
magnitudes of these effects at small strains have been established from SPATE
measurements. These measurements have also revealed differing stress
redistribution behavior for each of the three composite systems, associated with
different damage mechanisms. The damage mechanisms themselves, have been
described elsewhere.l1-5 While the present study affirms that damage
mechanisms occur, which change the local properties of the composite, 31-33
quantitative assessment of stress redistribution requires further research. Most
importantly, the stress redistribution which arises at peak loads will be more
extensive than that found at small strain by the SPATE measurement, because of
the additional contributions to the inelastic strain caused by sliding at the
fiber /matrix interface.16,1022
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APPENDIX

The Thermoelastic Phenomenon

Thermoelasticity describes the relationship between applied stress and
temperature in an elastic body. For completeness, a derivation of the
thermoelastic effect is given, based on formulae presented by Budiansky,28 and
similar to that proposed by Wong et al.2> The change in internal energy in a
body is given by the first law of thermodynamics29

dU =dQ + PdV (A1)

where the change in internal energy, dU, is related to the heat conduction, dQ,
and the work performed on the body, PdV. Upon combining with the second
law,29 the rate of change of internal energy becomes

U=TS + Vo;g; (A2)

The dilatationalt and deviatoric strain-rates are related, respectively, to the

corresponding stress rates by27-29
e=9 +

Kn bt (A3)

o o Sii
%= 26 (Ad)

where Kq, is the adiabatic bulk modulus, G, is the adiabatic shear modulus, and
B is the coefficient of thermal expansion,. The derivative of the Helmholtz free
energy is given by

F=U-T$-ST (A5)

* For convenience the subscript kk is omitted on both the dilatational stress and strain.
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13
which, with eqns (A2) to (A4), gives
F = V(oé +s;j¢;;) - ST (A6)

or

dF = V(cdc + sijdei,-) -SdT ) (A7)

Since the strain and temperature are independent variables, both the free energy
and entropy may be expressed as functions of these variables,

F = F(eej;T) (A8)
S = S(ese;;,T)
From elasticity,
6 = Kme - KmfT (A9a)
and
! 2Gn (A9b)

Equations (A7) and (A9), in conjunction with (A8) can be used to derive a
functional relationship between changes in stress and changes in temperature.
The total differential of the Helmholtz free energy and the entropy become,

dF aF

dF = —de+-—de, +=dT
de ' T (A10)
and
oS aS aS
dS = =—de + —dej; +—dT
" dey ° oT (A11)
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Comparing (A10) and (A7), the partial derivatives of the Helmholtz free energy
are

oF oF oF
—=Vo _=Vs‘ and —=-S
de dej; ! dT (A12)

These relationships can be used to determine the partial derivatives of the
entropy. Noting that F is a perfect differential?’-30 and

the partials of S can be determined as follows:

3 __ 93F __ AF
de  dedT  dTde (A13)

Moreover, from relations (A12), by assuming constant volume (small strain), and
elastic constants independent of temperature,

oF

=—=V0o

de (A14)
such that,

a5 _ 90

de aT (A15)

Using (A9a) as the functional form of 6, the partial with respect to temperature is
do

=K,

aT P (A16)
leading to

A _

o KnBV

(A17)
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In a similar manner,
oS ds;;
-v—J- 0
de (A18)

The differential of heat is related to the specific heat at constant volume, and
temperature through28

dQ=poVC,dT (A19)
and with entropy defined as?®

TdS =dQ (A20)
then,

a5 _pvG

ar T (A21)

Using (A17, A18 and A21 ) in (A11) gives an expression for the total differential
of the entropy in terms of the independent variables

"°VC' PO T + KB Vde (A22)
Multiplying by T, and taking the rate of change of the differentials gives

TS = poVCI + KnfVTe | (A23)
Under adiabatic conditions,

TS =Q=0.
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Then, equation (A23) reduces to an expression for the dilatational strain rate as a
function of temperature,

poCy 4

e=- P

KnBT (A24)

Using (A3) in (A24) gives an expression for the hydrostatic stress rate (eqn 1)

poCv \.
KnB°T

6=-Km%l+

This equation relates temperature changes in an elastic body to changes in the
hydrostatic stress. The second term in brackets is much larger than the first,
resulting in a simpler approximation that, typically, differs in value by less than
0.6%, (eqn 2)

. PG

Q™o ——

BT

The important assumptions that lead to this equation are: (i) a reversible process,
(ii) adiabatic conditions, (iii) e, ejj and T are independent variables, (iv) constant
volume (small strains), and (v) the elastic constants do not change with
temperature.
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Three classes of damage have been identified in CMC's,: (i)
propagation of a single Mode I crack (Class I), (ii) multiple matrix
cracking (Class II), and (iii) shear band formation (Class III).

Representative stress-strain responses for each of the composites
tested in this study: (a) tension and (b) shear.

Notch sensitivity depends upon the size of the inelastic zone, as
measured by the ratio of notch depth to inelastic zone size: A is the
notch sensitivity index. 11112

A SPATE scan on a model test specimen shows the stress
concentrating effect of the notches. The asymmetry is due to
specimen misalignment, resulting in bending stress, as evidenced
in the slopes of both the notch root and far-field line scans.

A comparison of FEM calculations and SPATE measurements of the
stress concentration factor. Edge effects during scanning preclude
measurements within an edge zone equal to the spot size (400um).
The effect of averaging over a400um spot size near the notch root is
shown by the dashed lines.

Images taken during interrupted testing of the C/C composite
shows the development of shear bands. (a) Image before shear
band formation. (b) After shear bands have reached & /ap= 1,
(c)-x-ray dye penetrant image %/ag= 1 (courtesy of F. Heredia and
S. M. Spearing).

SPATE line scans indicating the temperature distribution across
the net section. (C/C specimen).

The stress concentration factor (SCF) varies with shear band size
(2/ag). The linear curve-fit is representative of the trend, but can
not be used to extrapolate beyond the existing data.

Stress redistribution along the notch plane caused by shear bands.
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Figure 10.

Figure 11.

Figure 12.
Figure 13.

Figure 14.
Figure 15.

SPATE images of the SiC/CAS composite following loading to
(a) 30MPa, (b) 50 MPa and (c) 90 MPa. Corresponding images with
contour lines are shown in (d), (e) and (f). These images show stress
redistribution due to multiple matrix cracking.

SPATE line scans extracted from the full field scans shown in
Figure 10 graphically illustrate stress redistribution across the net
section.

SPATE images obtained for the SiC/SiC material.

Overlay of line scans connecting the notches (a) as-received
specimen, (b) after loading to 160MPa.

The unloading modulus decreases with increasing stress.10

A gradient in modulus E(x) results in stress redistribution ahead of
a notch.
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Abstract—Matrix cracking, fiber breaking and interface sliding cause nonlinear deformation in
tiber-reinforced brittle mairix composites. When a notched sample is loaded in tension, the
nonlinear deformation usually localizes around the notch, spreads the stress in the ligament more
evenly, and thereby leads to a higher fracture load. We simulate the interplay of two deformation
mechanisms: a tensile band ahead of, and shear bands perpendicular to, a notch. The shear
deformation evens out the stress distribution in the tensile band, and the strength of the tensile
band sets the extent of the shear deformation. Each band is simulated by a traction-deformation
law. The work of fracture is computed from a small-scale inelastic problem, and the fracture
loads of notched samples from a large-scale inelastic problem. Several important conclusions
emerge from the simulation. First, weak shear bands can substantially increase the work of
fracture. Second, the fracture loads of notched samples are well correlated with the unnotched
strength, work of fracture and notch size, by a formula independent of the shear band description.
The results of the simulation are used to explain the available experimental data, and to suggest

an evaluation procedure for notch-sensitivity.

1. INTRODUCTION

Compared to ductile alloys, fiber-reinforced brittle matrix composites fracture at small
strains, being limited by fiber breaking strains. Yet stresses around notches in such composites
can be reduced by localized deformation. Three deformation mechanisms have been identified
[1-4]: 1) multiple matrix cracks with no fiber breaking, ii) a tensile band consisting of broken
fibers pulling out from the matrix against friction, and iii) shear bands consisting of matrix
microcracking and fiber bending. In this paper, we simulate the interplay of the tensile and the
shear bands, and explore features in the results that simplify mechanical evaluation of these
composites.

The simulation is motivated by recent experiments on carbon matrix composites [3,4)

Figure | illustrates a notched sample loaded in tension, with shear bands extending perpendicular
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to the notch prior to fracture. The bands consist of microcracks in the matrix and bending of the
fiber bundles. General fracture breaks the ligament ahead of the notch. Visible on a fracture
surface are broken fibers and damaged matrix. For a given composite with a range of notched
sample geometry and size, fracture ioads are found to be well correlated by a toughness value K,
(about 15 MPa m!”2 for a carbon matrix composite tested in [3]).

The conclusion of these experiments is better appreciated as follows. Consider a
specimen containing a notch of length 2a, which is small compared to the specimen width,
subjected to remote stress &. Denote G, as the stress that causes the specimen to fracture, and
evaluate the "toughness” according to K, = a,,,,,«/?:& . Repeat the experiment for several
specimens of different notch sizes. Although the fracture load G,,, decreases as the notch size
increases, K_ is found to be nearly independent of the notch size. The applicability of Linear
Elastic Fracture Mechanics is puzzling in this case because the specimens at the onset of fracture
have large inelastic zones. In particular, the height of the shear bands often exceeds the notch
size. Our simulation will resolve this paradox.

Sheaf bands in polymer and metal matrix composites have been modeled by various
authors {5-7]. In this paper, the tensile fracture process is modeled by a traction-deformation
law, Fig. 1, which is more appropriate when fiber pullout significantly contributes to fracture
resistance. The near-notch shear bands do not cause fracture, but increase the tensile fracture
load. The shear bands redistribute the stress in the tensile band, but do not change the bridging

law.

2. THE MECHANICS MODEL
General conditions under which composites develop near-notch shear bands remain
unclear. Shear bands are usually observed in a composite having higher failure strain in the
matrix than in the fibers, e.g. in certain carbon, polymer and metal matrix composites.

Presumably multiple matrix cracks ahead the notches are suppressed, and the shear bands set in
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as an alternative deformation mechanism. Depending on matrix material, either microcracking
or plastic flow facilitates the shear deformation. Shear bands have been observed in
unidirectional, woven and cross-ply composites.

The crack-bridging model has been applied to any composite in which the matrix
fractures before the fibers. However, in composites having larger martrix failure-strains the
matrix fails after the fibers. In many such materials, the complicated deformation process—fiber
breaking and matrix tearing—is still localized in the vicinity of the fracture plane, and the
material a small distance away from the fracture plane remains undamaged and deforms
elastically. Consequently, the deformation process can still be simulated by a nonlinear traction-
deformation law. In the following, the relevant results of the tensile bands without shear bands

are summarized.

2.1 Previous Results on a Tensile Band

A tensile band is represented by a continuous array of nonlinear springs obeying a
relation between the tensile stress o and the deformation &:

o/ ao=x(8/8)- $))

Here o) is the bridging strength, and §, the limiting deformation beyond which stress
vanishes. The sample is elastic outside the band; & is defined as the excess deformation in
addition to the elastic deformation of the composite. The dimensionless function y describes
the shape of the curve, rising when § is small, reaching the peak and then softening (inset of
Fig. 1). The stress is assumed to be bounded everywhere in the sample, i.e. the fracture
toughness at the tip of the tensile band is ignored. The simplification is justified if the crack tip
toughness is small compared to the fracture resistance due to the bridging, which is usually the
case for ceramic matrix composites.

The bridging law has been deduced from the properties of the fiber, matrix and interface

for composites where matrix fractures before fibers [8,9]. Composites having higher matrix
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failure-strains are less studied, but important features can be inferred. The bridging strength o,
must be the volume-fraction average of the matrix and fiber strengths. The fiber smength
dispersion and the interface sliding resistance {10,11] remains to be important, because they
govern the thickness of the deformation band, which in turn governs the limiting deformation
8,- In this paper, relation (1) is prescribed as a part of the constitutive description of the
material.

Consider an unnotched sample subjected to a deformation-controlled load. The sample is
simulated by two blocks connected by an array of springs that represent the tensile band. The
two blocks deform elastically, and the springs deform uniformly according to (1). The peak load
is reached at ¢;. After the peak load, the band continues to deform as the two blocks elastically
unload. The sample fractures when & reaches §,, and the stress vanishes everywhere. During
such a stress history, the two elastic blocks return to their original states, so that the work by the
external load up to fracture is solely consumed by the tensile band. Thus, the work per unit area
of the tensile band is

lo= j:°Od5 = 0050_[31(5 W& @
This work of fracture of the springs scales with both the bridging strength and the limiting
separation.

Next consider an infinite sample containing a semi-infinite notch. The two blocks are
now connected by the nonlinear springs ahead the notch, but the notch faces are free of traction.
Remote from the notch tip and the tensile band, the stress field is unaffected by the nonlinear
springs, and is therefore identical to the stress field around a sharp crack tip in a purely elastic

block. That is, the remote stress field scales as r ™V

2 with r being the distance from the notch
tip. The amplitude of the remote stress field is given by the stress intensity factor K. Of course,
the stress field near the notch tip is nonsingular. The energy released when the notch extends a

unit distance is given by I'j [12], and the critical K, for fracture is related to I'y by I = K2/E.
Here E is Young's modulus of the elastic blocks, assuming, for simplicity, that the blocks are

isotropic.
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Now consider an infinite sample containing a finite notch of length 2a, subjected to
remote stress O ; see Fig. 2, the inset at the upper right comner. If the notch size is sufficiently
large, an annulus exists around the notch tip, inside which the stress field is still approximately
the same as the K-field. In this case, the stress intensity factor can be computed from the
applied stress by the classical formula K = Gvma. The fracture load, O max- 1S reached when K
= K.. Consequently, for a sufficiently large notch, the fracture load is given by
G max = (ToE / ma)'’?. This is the Griffith condition plotted in Fig. 2.

When the notch is small, nowhere in the two blocks can the stress field be the same as the
K-field. As such, the stress intensity factor cannot be defined for two blocks connected by
springs with a small notch. Yet the fracture load can be computed as follows. When subjected to
the stress 0, the two blocks separate more at the tip of the notch than at a position ahead the
notch tip. This nonuniformity causes the notched sample to fracture at a stress & below the
bridging strength o;,. Analyzing the problem coupling the elastic blocks and the nonlinear
springs, one determines the applied stress & as a function of the separation at the notch tip §,.
For the generic bridging law shape in Fig. 2, the applied stress & first increases with the notch
tip separation &, reaches a peak G ,,,, and then drops. This peak stress is the fracture load.

Figure 2, referred to as a notch-sensitivity diagram, summarizes the calculated fracture
loads for several bridging law shapes [13,14]). For each bridging law shape, the peak stress is
0. the limiting displacement is &, and the work of fracture I, is the area under the bridging
law as given by (1). Each bridging law defines a basic material length ToE / 0'3 which, roughly
speaking, scales the size of the zone where the nonlinearity is important. The notch size a is
measured in units of this material length in Fig. 2. As evident from the diagram, the results do
not vary significantly with the bridging law shapes. As discussed before, the Griffith condition is
the exact asymptote for large notches, but incorrect for small notches. Independent of the
bridging law shape %, the same limit is approached at each end of the diagram: the fracture load

approaches the unnotched strength G,,,,, = 0y when the notch size is small, and is given by the
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Griffith formula when the notch is large. Accordingly, it is not surprising that different bridging
laws give similar results.
The following formula interpolated from the two limits gives the approximate fracture
loads for any finite notch size
Fmax ! G0 = [1 +na/(0oE/ 03)]-”2. 3)
This equation is also included in Fig. 2. Given a composite with a fixed material length
[WE/ 0'%, the fracture load will not be significantly reduced by the presence of a notch provided
the notch size is small, say a/ (I’OE / a(z,) < 0.1. On the other hand, the Griffith formula is

approximately valid when a/ (FOE / 0’(2,) >2.

2.2 Simultaneous Tensile and Shear Bands
In what follows we investigate the interaction between the tensile and the shear bands.
Since the shape of the bridging law is of secondary importance, we will study this interaction by
assuming that the tensile band deforms like an array of linear springs: g
c=k©4. 4)
Here k is the spring stiffness and, as before, the spring breaks at stress ¢,. The work of
fracture of an unnotched sample with a uniformly deforming tensile band is
T,=03/2k. (5)
We will assume that the stress is bounded everywhere; that is, the stress intensity factor vanishes
at the tip tensile band. For the linear spring model, this implies that the tensile band spreads over
the entire ligament ahead of the notch.
The interaction between the tensile and the shear bands can be understood as follows.
The separation of the tensile band is nonuniform near a notch. With the linear law used in this
simulation, the sample fractures when the stress at the tail of the tensile band reaches ¢, At
this point, the stress at the other positions in the tensile band is below ¢, so that the failure load

is less than the net cross-section times 0. The shear bands will make the separation of the
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tensile band less nonuniform, and thereby give rise to higher fracture loads. On the other hand,
the extent of the shear bands is governed by the swength of the tensile band. For example, in the
limiting case when the tensile band is vanishingly weak, the shear band will not form before the
composite breaks.

To assess the general validity of certain conclusions, two descriptions of the shear bands
will be used in this paper. In the first description, Fig. 3a, the shear stress 0, and the sliding
displacement §, are connected by

o, =k0;. (6)
The spring stiffness k_ is a material constant. The stress intensity is assumed to vanish at the
tips of the shear bands. For the linear spring model, this requires that the shear bands extend to
the sample boundary, Fi-. 3a. |

Shear experiments with a carbon matrix composite show that a constant resistance
prevails over almost the entire shear deformation process [4). This will be used as a second
description in the simulation, i.e. a constant shear resistance T is prescribed in the shear bands,
Fig. 3b. It is assumed that T is a material property invariant with sample size and geometry.
For this description, the vanishing stress intensity at the tips of the shear bands will determine a
finite hight of the bands, H, Fig. 3b.

As before, the elastic response of the composites is taken to be isotropic. The shear bands
are assumed to remain closed, so that the normal displacements are continuous across the shear
bands. All numerical calculations were done with the ABAQUS finite element code, under plane
stress conditions, with Poisson’s ratio v= 0.3. The solution is also applicable to plane strain

conditions if Young's modulus E everywhere is replaced by E/(1 - V3.

3. RESULTS
3.1 Work of Fracture

Figure 3 shows a semi-infinite notch in an infinite sample. The stress field remote from
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the notch tip is prescribed by the square-root singular solution, scaled with the intensity factor
K. The fracture toughness K is attained when the stress at the tail of the tensile band o,
reaches the spring strength ¢,. Once K is computed, the work of fracture of the composite (as
opposed to that of the springs) is computed from
r=Kk*/E. )
The ratio I'/T indicates the role of the shear bands in toughening the composites.
First use the description that the shear bands behave like linear springs. Linearity and
dimensional considerations dictate that
o,=aK(k/E)?. (8)
The dimensionless number & depends only on k /k, which is computed using finite elements.
In the above, K = K when o, = 6,. A combination of (5), (7) and (8) gives
[/Ty=2/a> )
Figure 3a plots the calculated results. As anticipated, stiff shear bands add little to the work of
fracture, but weak shear bands add substantally.
Next use the description *hat the shear deformation is resisted by a constant stress 7.
The system is linear in both K ard T so that
o= fKH™2+ foT, (10)
K=K~ faH". an
Here K, is the mode II stress intensity factor at the tip of the shear band, and fs are
dimensionless numbers depending on Hk/E. With Kj; = 0 and g, = 0, one rearranges (10)
and (11) as
T/0o=1/(f2+ffs! f3), (12)
T /To=2(Hk/E)/{fi+ £/ fa)- (13)
Once the coefticients y; are computed by usii _ finite elements, the above defines a relation
between I'/T'j and T/0, via the parameter Hk/E. This relation is plotted in Fig. 3b. Again, the
shear bands contribute little to the work of fracture if the shear resistance T is large.

That the curves in Figs. 3a and 3b turn sharply may be an artifact due to the model used

9
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in the paper. In reality, the inelastic deformation is not localized to the mathematical planes. In
some composites, the shear bands may involve more intricate micro-mechanisms, which cannot
be described by a simple traction law [5]. These uncertainties will persist in any model that
predicts work of fracture. However, the situation becomes much better when one tries to
correlate the fracture loads of notched samples with an experimentally measured work of

fracture, as demonstrated in the following.

32 Norch-Sensitivity

Consider a sample containing a finite notch loaded in tension by stress &, Fig. 4a. The
notch size 2a is small compared to the sample width, so that the sample is assumed to be
infinite. The fracture loads in the absence of the shear bands are given in Fig. 2; the
enhancement due to the shear bands is studied in this section. For composites with the linear
stress-deformation laws (4) and (6), both tensile and shear bands extend to the sample boundary.
The stress in the tail of the tensile band varies linearly with the applied stress: |

c,=f0. (14)

Here 8 depends on both k/k and ak/E, which is computed using finite elements. Note that
ak/E=a/ (2FOE / og) for the iinear spring. For the linear spring, the applied stress & reaches
the fracture load, 0., when 0, reaches the bridging strength o0,. Consequently,
O max / 09 =1/ B, which is plotted in Fig. 4a. The fracture loads depend on shear property k Jk.
Weak shear bands relieve stress concentration and thereby lead to high fracture loads. The
diagram conveys the essentials of the role of the shear bands, but is difficult to use in practice
because of the uncertainties in the shear band characterization discussed previously.

Figure 4b plots the same results, but using the total work of fracture I' of semi-infinite
notches calculated previously to replace I',. The new diagram shows that curves for different
vilues of kJ/k collapse onto one curve. That is, the fracture loads are insensitive to the

constitutive details of the shear bands, so long as the total work of fracture I' is used to scale the
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diagram. The outcome is not unexpected because, again, the curves for different values of kJk
have the same asymptote for either small or large notches. For small notches, the fracture load is
close to the strength of the unnotched composite, G, = 0. For large notches, the fracture load
ts given by Griffith formula, G e, = (F'E/ a)"! 2. Indeed, the fracture load curve in Fig. 4b is
identical to that in Fig. 2 computed using the linear springs.

Encouraged by this finding, we then use constant T for the shear bands to confirm the
general validity (Fig. 5a). The tensile stress at the notch tip and K, at the shear band tip are
linearin & and T

0, =80 +gT, (15)

KyH = g,6-g,T. (16)

The dimensionless coefficients g; depend on ak/E and HK/E, and were calculated by using
finite elements. With K, =0 and 0, = 0y, one finds from (15) and (16) that

T/0o=1/(g;+8184/ 83)s (17)

. Omax/ O0=1/(8)+ 8283/ 84)- (18)
For A given notched composite, ak/E and T/o), are fixed, the shear band height H at the onset
of fracture i determined from (17). Using this height, one can plot (18) in the form of Fig. 5a.
The fracture loads vary with shear resistance 7, as anticipated. The same results are plotted in
Fig. 5b, replacing Iy by I' computed previously. Once again, the notch-sensitivity diagram is
almost independent of the shear band property T/0,. For small T/g,, our calculation have
shown that the height of the shear bands H can be several times the notch size a at the onset of
fracture.

Note that the fracture load curves in Fig. 4b and 5b are identical, even though the shear
properties are different. Given the uncertainties in characterizing nonlinear deformation near the
notches, a pragmatic approach to determine fracture loads in notched samples should be
valuable. As suggested by the present simulation, two measurements are required for a given

composite: the bridging-strength 6, from an unnotched sample, and the work of fracture I’

11
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from a sample containing a "large” notch. The latter may be readily accomplished in practice
because the Griffith formula &, = (TE / 7a)’? is valid so long as a/(FE/6)>2. This
condition applies even when the height of the shear bands is larger than the notch size. The
fracture loads for a sample containing a finite notch can then be obtained from Fig. 2 or Eqn. (3),
with ', replaced by the measured I'.

An example using th: experimental data in [3] will illustrate the procedure. For a
carbon-carbon composite, the unnotched strength is measured to be 6, = 300 MPa, the fracture

load is G,,, = 100 MPa for a sample with notch size a = 6 mm. Upon fracture, the height of

max
the shear band is slightly larger than the notch size. Using the standard calibration for a crack in
an infinite sample, one finds that the fracture toughness is K, = Em“\/ﬁ = 14 MPa m'2. (The
finite sample width only gives a small correction.) Also note that a/ (F E/ 0'3) =a/(K./ 0’0)2=
2.4, so that the notch is large enough for the Linear Fracture Mechanics to apply. The fracture

loads measured from samples containing notches of a = 1, 2, 4, 6 mm indeed are well

represented by the notch sensitivity diagram; see Fig. 5a in Ref [3].

4. CONCLUDING REMARKS
Three important conclusions are drawn from this simulation. First, shear bands in brittle-
matrix composites can substantially increase work of fracture, which in turn reduces notch-
sensitivity. Second, regardless of the relative height of the shear bands H/a, Linear Fracture
Mechanics is valid if the notch size is sufficiently large, a/ (Kc/ c.'ro)2 > 2. Third, for samples
containing small notches, the fracture loads are well correlated with the work of fracture, the

unnotched strength and the notch size by

-1/2
Omax/ Og= [1 + M(O’o / Kc)z]

Note that the formula is independent of the shear band properties and the relative height H/a, but
is restricied to samples having small notches compared to the width. The conclusions are

reached by two shear band descriptions with wide range parameter variations, and are expected
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to have much more general validity. For example, finite samples with either crack-like notches

or holes may be similarly treated. That is, the notch sensitivity diagrams presented in [13] can be

used with materials with shear bands, with I" reinterpreted as the total work of fracture.
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FIGURE CAPTIONS

Fig. 1 A drawing of a notched sample, loaded in tension, damaged with a tensile band and
two shear bands.

Fig. 2 Notch-sensitivity diagram.

Fig. 3 Fracture energy ratios showing the contribution of the shear bands: a) shear band is
an array of linear springs, and b) shear band has a constant resistance 7.

Fig. 4 Notch-sensitivity diagram including shear bands with linear swress-sliding law. a)
The notch size is normalized by the work of fracture of the tensile band, I'y. b) The
crack size is normalized by the total work of fracture, I'.

Fig. 5 Notch-sensitivity diagram including shear bands with constant resistance. a) The
notch size is normalized by the work of fracture of the tensile band, I'y. b) The

crack size is normalized by the total work of fracture, I'.
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ABSTRACT

A critical examination is made of the use of the line-spring model to represent fiber bridging
of matrix cracks in the analysis of failure phenomena in fiber reinforced brittle matrix
composites. Attention is focused on composite systems designed to undergo fiber debonding and
sliding when matrix cracking occurs. For most composites of this class, it is found that the
distance along the fiber within which sliding occurs is often too large to justify use of the line-
spring representation. A model which allows for large scale sliding (the LSS model) is proposed
and applied to three problems: a matrix crack emerging from a semi-infinite unbridged through-
crack in a uni-directional fiber reinforced composis, the same problem for the finite length
unbridged through-crack, and matrix cracking of a cross-ply composite. Primary emphasis is
placed on the stress concentration in the bridging fibers. Predictions from the LSS model are
compared with those from the line-spring model. In general, the line-spring model is found to
overestimate the stress concentration in critically located fibers. A discussion of the significance

of the lower estimates of the stress concentration factors is given for several composite systems.

NOMENCLATURE (partial listing)
cf,cm fiber, matrix volume fractions (cf+ cp=1)
E longitudinal Young's modulus, =cfEf+cmEm
Es, Em fiber, matrix Young's moduli
£ length of the sliding zone
R fiber radius
of tensile stress in the bridging fibers
p=cfOs smeared-out bridging stress in the bridging fibers

T interface sliding shear stress
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1. INTRODUCTION

High strength ceramic fibers are employed to enhance the fracture performance of ceramic
matrices. A well designed composite can sustain matrix cracks traversing the composite.
Unbroken, debonded fibers then provide bridging restraint across the matrix crack faces. After
the matrix is fully cracked, the intact fibers continue to carry additional load. Eventually the
fibers fail and the composite ruptures, but the load-bearing capacity may substantially exceed the
stress for matrix cracking.

An approach to studying matrix cracking and fiber stress concentrations in fiber-reinforced
composites has emerged, wherein a line-spring model is used to represent the effect of intact
fibers bridging matrix cracks. If the radius and spacing of the fibers are small compared to other
length scales characterizing the deformation of the composite, the bridging-fiber forces can be
smeared-out and treated as stresses provided by springs connecting crack faces. A bridging law
is then used to relate the spring stress to the crack opening displacement. If the fiber-matrix
interface has negligible debonding energy, if initial stresses are ignored, and if a constant
frictional siiding str?ss T is assumed, the following nonlinear bridging law results from an
clementary shear lag analysis:

P(x) = BYB(x)2 )
where p(x) is the smeared-out fiber bridging stress and 8(x) is the effective opening displacement
along the bridged region. The nonlinear spring constant ? is given by

-l
where the notation is defined in the Nomenclature. The distance along the fiber £ within which
sliding occurs on each side of the crack surface is related to the smeared-out fiber bridging stress

by

t(x)=-°-mz§§1p(x) 3

The bridging law is consistent with £ greater than several fiber radii.!

1 Readers should be aware that the bridging law (1,2) is not exactly the same as some in the earliest papers on the
subject. The formula for B given by Marshall, Cox and Evans (1985) and Marshall and Cox (1987) is missing a
factor [cmEny/E)-1/2. Marshall and Cox (1988) give a formula identical to that given here. McCartney's (1987)
formula is also the same as the present one, apan from a factor 1-v2, The transverse interaction between the fiber
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The bridging law can be used together with integral equation methods to formulate and solve
various problems for stresses in bridging fibers and stress intensity factors of matrix cracks.
Thus, for example, it was in this way that Marshall et al (1985) and McCartney (1987) obtained
conditions for the spread of a matrix crack from an initial, finite length bridged matrix crack.
The critical stress required to propagate the matrix crack approaches the steady-state cracking
stress for a semi-infinite bridged matrix crack, originally obtained by energy-based analyses by
Aveston, Cooper and Kelly (1971) and Budiansky, Hutchinson and Evans (1986). Marshall and
Cox (1987) and Budiansky and Cui (1993) have used the line spring approach based on (1) to
study the effect of an unbridged through-crack in a uni-directional composite on the subsequent
propagation of a matrix crack extending from the through-crack. These authors also determine
the maximum stress experienced by the bridging fibers as the matrix crack spreads. Given the
strength of the fibers, they estimate the ultimate strength of the composite as a function of initial
through-crack flaw size. With much the same aim, Xia and Hutchinson (1993) have used the
line-spring approach to investigate matrix cracking and fiber stress concentration in cross-ply
composites.

Line-spring models have become valuable tools in the micromechanics analysis of various
toughening mechanisms (see Bao and Suo (1992) for a review). These models replace bridging
elements by an equivalent traction-displacement law applied as a boundary condition along the
crack line. For the fiber bridging model, the constituent properties of the composite and the
interface are nicely incorporated into one single spring parameter, B. In addition, the spring
mode! allows use of well established analytical techniques to solve crack bridging problems. As
convenient and powerful as the line-spring model appears to be, suspicions have arisen that
results obtained from this model for fiber stress concentration in the presence of through-cracks
may be unduly high. Specific experimental evidence giving rise to these suspicions is cited in
Section 6 of this paper, where it is noted that the ultimate strength of some cross-ply composites
should not be as high as experimentally measured, given the stress concentration levels predicted
in the fibers by the line-spring model. It was this apparent discrepancy between theory and

and the matrix due to Poisson contraction can be approximated in various ways leading to such minor variations in
the law (see discussion in the Appendix of He et al (1993)). More recently, Meda and Steif (1993) proposed a
modification of the bridging law with a nonzero bridging stress as § becomes zero.
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experiment which motivated a critical examination of the line-spring model for this application,
and which led to the identification of large scale sliding (LSS) as one possible source of the
discrepancy.

The large scale sliding model is proposed in the next section, and a solution procedure using
this model is outlined. It is then applied to three representative problems in subsequent sections:

(i) the asymptotic problem for a semi-infinite through-crack collinear with a semi-infinite
bridged matrix crack (Fig. 1), (ii) a finite length through-crack with fully extended collinear
matrix cracks (see ahead to Fig. 5a), and (iii) a multiply cracked cross-ply laminate (see ahead to
Fig. 5b). For each problem, key parameters of the problem are identified and solutions based on
the line-spring model are obtained. The new LSS model is then applied to the problem, and the
results are compared with those from the line-spring model. For composite constituent
properties chosen within practical ranges, substantial reductions of stress concentration in the
most highly stressed fibers just ahead of the through-crack tip are predicted by the LSS model
relative to the line-spring model. At the same time, it is demonstrated that line-spring results are
applicable when the constituent properties are such that small scale sliding does occur. Summary
discussion is given in the last section, along with the appraisal of the experimental observations
alluded to above.

2. THE LARGE SCALE SLIDING MODEL

The uni-directional fiber-reinforced composite containing a semi-infinite through-crack with
a fully extended matrix crack will be used to introduce the LSS model. As shown in Fig. 1, the
crack is loaded by a remote, mode I field specified by the monotonically increasing stress
intensity factor K;. Plane strain conditions are assumed for the composite blocks, and the mode
I field is that for a crack in an elastically orthotropic solid. The primary quantity of interest is the
stress in the leading fibers just ahead of the through-crack tip, at x=0.

The line-spring model is indicated in the lower left-hand corner of Fig. 1. The traction-
separation law (1) and (2) is applied as a boundary condition along the x-axis, for x>0. In region
A, outside the sliding zone, the solid is characterized by the orthotropic elastic behavior of the
composite, i.c. the matrix material reinforced by perfectly bonded, uni-directional fibers. A
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nonlinear integral equation for the distribution of the opening displacement 8(x) is formulated.
Solution of this equation provides both the opening displacement and the distribution of the
stress in the fibers where they cross the x-axis, ahead of the through-crack tip. Details of this
solution will be given in the next section.

The rationale for a line-spring approximation requires that the extent of sliding be small
compared to all relevant in-plane lengths. Only then can a sliding zone of finite width be
confidently replaced by an equivalent traction-displacement condition applied along a line. In
the present problem of Fig. 1, there is only a single characteristic length parameter, described in
the next section. In the other problems, additional relevant lengths may be pertinent, such as the
length of a through-crack or, in the case of the cross-ply composite, the ply thickness.

The LSS model distinguishes between region B in which fiber sliding has occurred and
region A in which it has not. Denote the boundary between regions A and B by I, characterized
by the extent of fiber sliding £(x). This boundary is not known in advance but must be
determined as part of the solution process. If it is assumed that sliding is one-signed, consistent
with K| being monotonically increased, the load transfer from the fibers to the matrix, within B,
is known precisely. For a theory based on smeared-out fibers, the load transfer is equivalent to a
body force per unit volume given by

*R @

It acts in the sense shown in Fig. 1, required by symmetry with respect to the x-axis. Denote the
stress in a fiber at the line of the matrix crack on y=0 by o?, and denote its value at the top of the
slipped region at y=£ by ofr. A simple shear lag analysis based on equilibrium of the fiber (see

Fig. 1) and compatibility of strain at the top of the sliding zone requires

2
of =a?-=2y (52)
R¢
r 0

S - &é“_f (5b)
f

These combine to give

cmE R
£==m_mT 50
2Er | ©
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In addition to the body force f in region B, the sliding fibers exert a line load (load per unit
thickness per unit length in the x-direction) along I' equal to ¢,67. The one remaining quantity
needed to fully describe the behavior of the slipped segment of a fiber is its vertical displacement
vl at the top of the slipped region. It is related to the other quantities by

Vv= -El—f(o?z—-i‘:z’) %)
where, by symmetry, the vertical displacement of the fibers is zero along y=0 for x>0.

The LSS model is posed as follows. Assuming that the location of I is known (it must be
determined by iteration), the sliding fibers in B may be regarded as separate entities from the rest
of the solid. Represent the remnant material in region B by a linear elastic material whose
properties are those of the matrix with cylindrical holes rather than fibers. These are constrained
only in the transverse direction, because the fiber and matrix remain in frictionless contact. This
replacement will be specified more precisely below. The material in A is assigned the
orthotropic moduli of the composite with bonded fibers. The loads on the planar body
comprising regions A and B are the remote K] -field, the vertical body force f in B, and the

vertical line load cfo}- acting along I'. The remnant matrix in B has zero tractions acting along

the matrix crack line (y=0, x>0). The sliding fibers in B are governed by the three equations
(52), (6) and (7) and are described by four unknowns, o , f, £ and vI'. The deformation of the
sliding segments of the fibers is coupled to that of the remaining body by requiring that vl
coincide with the vertical displacement of the body on T, i.e. vI'(x) = v(x£(x)).

In a given iteration with £(x) regarded as known, the system of equations for the body in
regions A and B, together with Eqs. (5a) and (7) for the sliding fiber segments and the coupling
condition on I', specifies a solution for all field quantities, including the stresses in the fibers. In
general, however, this solution will not be consistent with Equation (6) specifying the vertical
extent of the zone of sliding. Given c? from the current iteration, Eq. (6) can be used to
generate £(x) for the next iteration. However performed, an iteration process must be used to

determine the location of T'.
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Like the composite material in region A, the remnant elastic material in region B is
orthotropic with one axis of orthotropy aligned with the y-axis; transverse isotropy with respect
to the y-axis would be assumed for both materials in most instances. The moduli of the remnant
material in B are those of the matrix material alone, but containing cylindrical holes with freely
sliding fibers. Since the composites being considered in this paper are assumed to have a
residual compression acting across the fiber-matrix interface, the sliding fibers in region B
continue to constrain the behavior of the remnant matrix by frictionless contact. Various
methods are available for estimating the moduli of the remnant material. The one employed for
the present problems will be mentioned in the next section. For the problems investigated in this
paper, the main quantities of interest are rather insensitive to details of the elastic properties in B.
In fact, it was found that the moduli of the material in A could be substituted for those in B with
little consequence. The significance of this substitution is that the problem for the combined
regions A and B becomes elastically homogeneous, opening up such LSS problems to solution
by analytical methods which could not otherwise be used.

In this paper the LSS problems have been analyzed by accounting for the different elastic
properties in regions A and B. A finite element method has been used for this purpose. Most
aspects of the implementation of the model in a finite element code are standard. It is convenient
to regard the sliding fibers in region B as a "fiber sheet” which has a Young's modulus c¢Eg¢ in the
y-direction and all other moduli (including shear moduli) taken to be zero. The sliding stress 1
acts on the fiber sheet as the body force f but in the direction opposite to that on the remnant
matrix. The fiber sheet has zero vertical displacement along the x-axis and is connected to the
planar body along I'. The fiber sheet representation is completely equivalent to equations (5a)

and (7). As already mentioned, (6) is used to update the location of I for the next iteration when
67 has been determined.

3. AMATRIX CRACK EMERGING FROM A SEMI-INFINITE THROUGH-CRACK
The problem addressed in this section is an asymptotic problem in which a matrix crack has
extended from the tip of a semi-infinite through-crack which is loaded by a remote mode I field

with stress intensity Kj. Two sub-problems are considered: the problem mentioned in connection
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with Fig.1 where the bridged matrix crack extends to infinity, and a version of the same problem
where the matrix crack has finite length ap,. The emphasis in the first problem will be on
determination of the stress distribution in the fibers where they bridge the matrix crack. The
bridging stress of the leading fibers will also be of concern in the second problem, along with the
stress intensity factor at the tip of the matrix crack. These quantities will be computed using both
the line-spring model and the LSS model. The problem of Fig. 1 for the fully extended matrix
crack is considered first.

A closed form expression can be readily obtained for the bridging stress of the leading
fibers, po=p(0), as predicted by the line-spring model based on the bridging law (1). Application

of the J-integral to connect the remote field to the opening along the crack faces gives

2
J= % = j:“” p(8)dd @®)

Here E=E/(1-v2) where E is the Young's modulus of the composite for stressing parallel to the
fibers , v is the Poisson strain ratio of transverse contraction to axial elongation, and A is an
orthotropy factor. This factor, which depends on cf and on non-dimensioral moduli
combinations specifying the properties of the uni-directionally reinforced composite (such as
E{/Em) has becn presented by Budiansky and Cui (1993). Substitution of the bridging law (1)
into (8) yields .
Po = (%%ﬁ)s )
Determination of the distribution of the bridging stress, p(x), for the line-spring model
requires the formulation and solution of an integral equation. These procedures are now well
established; therefore, the equation and the numerical analysis used in its solution will not be
recorded here. The analysis employed has been used by Xia and Hutchinson (1993) to study
similar equations. The integral equation for p(x) can be put in non-dimensional form using two
quantities: the bridging stress at the tip, pg, and a quantizty with the dimensions of length,

EK, )3
()
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This is the only length parameter in the problem. Numerical results for the bridging stress p(x)
normalized by pg are plotted as a function of x/d in Fig. 2 as a solid line; note that the bridging
stress p is cfor. The curve in Fig. 2 is universal in the sense that there is no additional parametric
dependence. Included in Fig. 2 is the classical inverse square root stress distribution,
K1/(2xx)12, specifying the remote field, which takes the formp/p, = (2/3)2/3/2n(x7d).
Note that the length quantity d characterizes the transition to the classical field, with any
significant difference from it disappearing for x greater than about 1.5d. The length of the
sliding zone at the tip will be compared to d in the assessment of whether LSS conditions pertain.

Now consider the large scale sliding model of this problem. It is convenient to use the two
quantities po and d defined above. The formula (6) relating the slip length to the stress in the
fibers along the line of the matrix crack (y=0) can be rewritten as

1
1) _ (2)3 _SEE_p(x) 1)
d 3) cnEmAE po
where now p(x) = cfo? (x). The body force f is given by
1
= . 2p 2AF
f= 2.0.(:”.)3 Sm En AE (12)
d\2 CfEfE

and the remotely applied stress intensity factor is linked to 6g and d by
2
2\:
(2

It follows from (11)-(13) that, according to the LSS model, the stress distribution in the
bridging fibers, normalized by pg, will depend only on x/d, in addition to the non-dimensional
moduli parameters characterizing the composite, such as Ef/Ep, and the fiber volume fraction cy.
In all the numerical examples presented in this paper the Poisson's ratios of the fiber and the
matrix are taken to be the same and equal to 0.2. In the four problems studied in this paper, we
have used Hill's (1965) self-consistent results for the transversely isotropic elastic properties of
the composite in region A. The moduli in region B have also been represented as transversely
isotropic and have been determined using the same self-consistent equations, but replacing fibers
by cylindrical holes for the purpose of estimating the axial modulus, the Poisson's ratio relating

the transverse and axial strains, and the longitudinal shear modulus. The transverse modulus and
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Poisson's ratio relating the two transverse strains were taken to be the same as those of the
composite with bonded fibers. This approximately accounts for the constraint afforded by
contact across the fiber/matrix interface. The transversely isotropic properties were used to
generate the plane strain moduli quantities needed in each of the problems studied here. The
LSS model is now fully specified.

Numerical calculations were carried out for a wide range of Ef/Em and cf (with v=v=0.2).
To appreciate the numerical results, consider the ratio of the extent of sliding of the fibers at the
through-crack tip to d as predicted by the lme~spnng model, i e (11) with p(0)=po,

10 _(2 3_°.:Exf-_ (2)'
d (3) c.E.AE \3 s (14

For typical values of the parameters appearing on the right hand side of (14) the ratio of sliding
length to d will not be small compared to unity. Only materials with small & will give rise to a
small values of this ratio. It will be seen that if £ is not small the LSS predictions will differ
appreciably from those of the line-spring model. This is illustrated by the LSS stress
distributions for Ef/Eqn=1 and various cf, covering a range of £, in Fig. 2. The LSS distributions
progressively approach the distribution of the line-spring model for decreasing £. But of the
examples shown, agreement arises only for £=0.05 corresponding to the unrealistically small

fiber volume fraction cf = 0.05. Fig. 3a presents LSS results for the stress in the fibers just ahead

of the through-crack tip. The results are presented as the ratio (¢;G¢); g5 /(C£O¢)im» Where
(c£0¢ )ism =P0 18 the line-spring model prediction. This ratio reflects the extent to which the LSS
prediction is lower than the line-spring prediction for the most severely stressed fibers. For all
practical values of Ef/Eq and cf, the line-spring model overestimates the fiber stress
concentration substantially. Fig. 3b reveals a remarkable near-collapse to a single relationship of
all the numerical results in Fig. 3a when they are plotted as (c;0¢)| g5 /(C{O¢);sm versus E. The
solid line in Fig. 3b is an empirical curve fit to the numerical data. For this problem, Fig. 3b
clearly shows that the parameter £ provides a measure of the degree to which LSS predictions
differ from the line-spring predictions. In turn, by (14), this confirms that the necessity of
invoking an LSS approach is tied to the magnitude of the ratio of the sliding length at the
through-crack tip to d.
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A selected set of the above numerical computations with the LSS model were repeated with
only a change in the elastic moduli in region B. We found very little sensitivity in the
predictions for the fiber stresses to the details of the moduli in B. An excellent approximation to
the results presented above were obtained by taking the moduli in B to be the same as those in A.
Evidently, the essential difference between the LSS and line-spring models lies in the modeling
of the spatial aspects of the load transfer from the fibers and not in complications of the modified
moduli in region B. The finite height of the sliding zone at the tip of the through-crack tends to
diffuse the stress concentration in the most highly stressed fibers.

Next consider a matrix crack of finite length ay ahead the through-crack tip as shown in the
insert in Fig. 4. Now the emphasis will be on the stress intensity factor K; at the matrix crack tip,
as well as the stress concentration in the fiber at the through-crack tip. The line-spring model
version of this problem was first solved for all values of am/d, and the results are presented in
Fig. 4. Fig. 4a displays K/K] as a function of normalized matrix crack length, am/d, while Fig.
4b displays the companion plot of cfo/pg for the fibers just ahead of the through-crack tip. Also
shown in Fig. 4 are numerical results obtained from the LSS model for Ef/Eq=1 and several
values of cf, again chosen to illustrate the approach to the line-spring predictions when ¢f (and
thus &) becomes small. Differences between the predictions of the two models for the matrix
crack stress intensity factor are relatively small. The substantial reductions in stress
concentration in the lead fibers predicted by the LSS model compared to the line-spring model
are seen to be only weakly dependent on ag/d.

4. UNI-DIRECTIONAL COMPOSITE CONTAINING A FINITE THROUGH-CRACK
AND FULLY EXTENDED MATRIX CRACKS
The second problem to be investigated using the LSS model is that of a uni-directional fiber-
reinforced composite containing a finite through-crack of length 2a with fully extended matrix
cracks emerging from each tip, as depicted in Fig. 5a. A remote stress G acts on the composite.
This problem was previously studied by Budiansky and Cui (1993) by means of the line-spring
model in an effort to determine the tensile strength of the composite in the presence of crack-like

flaws. Determination of the stress concentration in the leading fiber ahead of the through-crack
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tip has special interest, because failure of the leading fibers will precipitate failure of the
composite.

Define the stress concentration factor (SCF) for the leading fibers at the through-crack tip as

=50 (15)
(o)

where ¢(O¢ is again the smeared-out bridging stress of the leading fibers. Since the through-crack

is not bridged by fibers, A will exceed unity. The line-spring version of the problem is again
obtained by formulating and solving an integral equation. In accordance with the analysis of
Budiansky and Cui, the solution for A is fully characterized by a single non-dimensional
parameter, 1), defined as

_3rc’EE’ at

"¢ ’E_’AER,0 (16)

The relation between A and 1 obtained from the numerical solution of the integral equation is
plotted in Fig. 6a as the solid line. A remarkably accurate approximation to this result is given
by

A=q1+ 11% (17)
shown as the dashed curve in Fig. 6a (obtained from Eq. (12) of Budiansky and Cui).
The LSS model is similar to that developed for the previous problem. The slip length in (3)
is now normalized by the half-length of the unbridged through-crack and written as
4x) _ 3rc,EE 1 p(x)

a 2cEAEN o (18)
and the body force f is expressed as
6 2c,’E,’AE
= Cm
f a 3rcEE? n (19)

It can now be shown from a non-dimensionalization of the governing equations for the LSS
model that the SCF, A, depends on 1 and on the non-dimensional parameters such as E¢/Ep, and
cr specifying the composite.

There are two length quantities in this problem: the half-crack length a and the measure d
which may still be defined as in (10), but now with K; = 6v/ra. To place the need for an LSS

]
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approach into perspective, the height of the sliding zone at the tip of the through-crack, #(a), as
predicted by the line-spring model will be compared to both a and d. By (15), the approximation
(17), and (18),

) _ _cEE_ 3\/l+n 31[l+1\2’3 )
2n

a c,,,EAE

A plot of £(a)/(§a) versus M is given in Fig. 7a. Similarly, the line-spring estimate of the other

length ratio is

) _ _cEE 141" J1+n2/3
75=6 73 @n
d  cyERAE (3n/2) (3n/2)

and £(a)/(Ed) is also plotted in Fig. 7a. For a given value of the parameter &, the ratio£(a)/d is
nearly constant over most of the range of 1, while £(a)/a is largest for small | and falls off
gradually for large 1. Based on experience with the previous problem, LSS conditions are again
expected to depend on the magnitude of € as well as 1.

Results obtained from the LSS model for three values of cf with Ef/Em =1 (V/=v;n=0.2) are
included in Fig. 6a. The appreciable deviation between the two models with increasing cf is
clearly evident. The influence of a change in Ef/Em is displayed in Fig. 6b. It is apparent that
the discrepancy between the two models is considerable over essentially the entire practical
range of parameter space, with the LSS model predicting lower values of stress concentration.
The numerical data points from the two plots of Fig. 6 for n=1, 5 and 30 are used to plot the ratio
(c¢6¢)Lss /(C¢O¢)1sm as a function of € in Fig. 7b. The lowest curve in this figure is the empirical
fit to the numerical results for the semi-infinite through-crack problem in Fig. 3b, which
corresponds to the limit n=ce. It can be noted that for 1 ranging from about 5 to <o the reduction
in the LSS prediction for the stress in the leading fibers relative to the line-spring model depends

primarily on E.
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§. AMULTIPLY CRACKED CROSS-PLY LAMINATE
The last of the problems to be studied is a fiber-reinforced cross-ply laminate with unbridged
through-cracks across the 900 plies connected by bridged matrix cracks in the 0° plies, as
illustrated in Fig. Sb. The plies are equally spaced with ply thickness 2t, and the applied stress
carried by the composite is 6. The pattern is doubly periodic with the spacing between cracks

taken as 2L. The sequence of events leading to an idealized pattern such as that envisioned in

Fig. 5b is as follows. For the properties of a typical brittle-matrix cross-ply composite, the first
cracks to form as the applied stress is increased are those in the 90° plies which spread from
flaws and tunnel in the direction perpendicular to the plane of Fig. 5b. They extend all the way
across the 900 plies. At higher applied stresses, these cracks serve as flaws from which plane
strain matrix cracks spread across the 00 plies. The fibers in the 0° plies of a well designed
composite must survive this process if the composite is to display any appreciable "ductility”.
The process just described has been analyzed in some detail by Xia and Hutchinson (1993), who
used a line-spring model to represent fiber bridging in the 0° plies. Their emphasis was on the
applied sues§ associated with matrix cracking and the stress concentration in the most highly
stressed fibers located at the ply interfaces. The doubly periodic cracking pattern shown in Fig.
5b is one of two patterns considered by Xia and Hutchinson to model crack interaction effects.
The issue to be addressed here is whether the stresses predicted by the line-spring model for the
most highly stressed fibers are unduly high, with clear implications for survivability of cross-
plies with fully developed matrix cracks.

The fibers at the interfaces between the 90° and 0° plies will experience the highest stress.
Again, define the stress concentration factor, A, for these most highly stressed fibers by (15).
The parametric dependence of this stress concentration factor has the general form

E t
A= k("E'chf’TL "l"') (22)

where t/L is the crack density and 1| is now defined using t rather than a as

= 3R¢f25f52 tt

—~— T (23)
Cm Em AE Rfo

n
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The dependence of A on vr and vn, is left implicit; v/=vm=0.2 is used in the calculations.

In the case that the fibers and the matrix have identical elastic properties, the cross-ply is
homogeneous and isotropic prior to any cracking. Solutions to the line-spring mode!l version of
the problem can be obtained by the integral equation techniques used by Xia and Hutchinson
(1993). The results of the line-spring model for the SCF for the case t/L=0 are shown in Fig. 8.
Because all the load is carried by the bridging fibers in the 0° plies, A is never less than 2. The
stress concentration factors for the same problem obtained from the LSS model are also plotted
in Fig. 8 for three values of cf. The conclusion is that the line-spring model again overestimates

the SCF in the range of practical values, sometimes significantly so.

Consider next the effect of the crack density, t/L, on the stress concentrations in the bridging
fibers. An important consequence of mukiple matrix cracking and sliding is the alleviation and
ultimate elimination of the stress concentration in the fibers in the 0° plies. Elimination arises
when the fibers are fully sliding (i.e., £ =L across the entire ply), as shown by elementary
considerations of fiber equilibrium and stretching for the geometry in Fig. Sb. ~n accurate
estimate of the critical density of matrix cracks at which A drops 1o 2 is obtained by setting £ =L

and p=20 in (3) giving

t Bt ¢ E AE
- =—m———=nn 24
(L)cn CmEmeO 3ﬂCfEfE n i ( )

Stated differently, as the applied stress ¢ increases, the matrix crack density increases until the
fibers become fully sliding. In this state, the stress in each fiber where it bridges a matrix crack
is given by or=20/ct.

Numerical calculations based on the LSS model have been performed for a representative
case of EffEm=1 and cf=0.4. Results for A=cG¢/c are plotted as a function of the crack density
t/L for different values of 1 in Fig. 9. The numerical results are connected by dashed lines to the
intercepts corresponding to first attainment of A=2 given by the formula (24). The accuracy of
the simple formula is evident. Indeed, the numerical solutions revealed that the sliding zone
approached the condition £ = L fairly uniformly across the 00 plies, as assumed in the derivation
of (24).
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In summary, as the applied stress on the cross-ply is increased, leading first to tunnel
cracking in the 900 plies and then matrix cracking in the 0° plies, the stresses in the fibers at the
ply interfaces will be the greatest. However, as the applied stress and the matrix crack density
increase, the stress concentration factor for the fibers at the ply interfaces drops until matrix
cracking is saturated with full sliding. In this state, the fibers uniformly share the load and the
stress in the fibers at the matrix crack line becomes 6=20/cy.

6. THE EXPERIMENTAL SITUATION

The ultimate tensile strengths (Sy) of many unidirectional and cross-ply CMCs have been
reported to conform with predictions based on global load sharing (GLS) (Curtin, 1991). The
GLS model considers that the load is distributed uniformly among all intact fibers. The CMC
materials that give good agreement with the GLS model include various SiC/C composites
(Heredia et al, 1992), SiC/CAS (Prewo, 1986) and SiC/CAS (Beyerie et al, 1992). Each of these
materials has the common characteristic that the interface sliding stress T is relatively small
(2<1<40 MPa). The situation has been comprehensively summarized by Curtin (1993). The
implication of this agreement for the present discussion is that the stress concentration in the
fibers is minimal at the failure loads, despite the presence of manufacturing flaws and matrix
cracks. Otherwise, the stress concentration would lead to premature fiber failure and ultimate
tensile strength values appreciably below the GLS predictions.

To further explore the situation, the preceding LSS model is used to evaluate the fiber stress
concentration for various of the experimental conditions wherein GLS predictions have been
found to apply. The most stringent test of the LSS model arises for cross ply laminates. For this
case, the unbridged crack dimension is the largest (the ply dimension 2t), resulting in
correspondingly large values of n (Eq. 23). Experimental information for several CMCs is
summarized in Table I. These experimental characteristics can be most readily compared with
the LSS model by using (24), with 6=S, to predict the crack spacing at which the stress
concentration in the fibers is eliminated. For all three composites, (t/L)cri; is about unity or less
(Table I). Crack spacings in CMCs almost invariably satisfy /L.>1 prior to composite rupture
(Beyerle et al, 1992; Guillaumat, 1993). The applicability of the GLS criterion for the ultimate
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tensile strength is thus consistent with the predictions of the LSS model. One other factor is
relevant for the SiC/C composite, which gives the largest (t/L)cri¢ (Table I). Processing flaws
tend to induce inter-ply shear cracks (Turner ef al, 1993) which suppress matrix cracks in the 0°
plies, while also eliminating stress concentrations in the fibers.

The comparison with experiments has emphasized the importance of large scale sliding in
governing the stresses in fibers within cross-ply composites, resulting in the applicability of
global load sharing concepts for predicting the ultimate tensile stress. Related arguments would
apply regarding the role of manufacturing flaws within the plies. Such flaws result in unbridged
cracks, which would be expected to introduce stress concentrations into the fibers. The line-
spring model and the LSS results taken together show that, where these stress concentrations
exist, they can be relatively small provided that ) is less than about 3 (cf. Fig. 6), especially
when E(/En, is large. The clear implication from (16) is that the material becomes more tolerant

to manufacturing flaws when the interface sliding resistance is low.
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TABLE 1
Properties of cross-ply CMCs
Material | Em (GPA) | < (MPa) Sy (MPa) | cfof/o (VL)erit
SiC/C 20 10 340 90 =2 1.03
SiC/CAS 100 15 220 10 2 0.81
SiC/LAS 100 3 300 1 2 0.08
Ef=200GPa
Rf=7um

cf=0.4, cm=0.6




21-

’KI"" y { K

L LSS model A Bi ri iofr‘
F - =
B:R crorl |
A r
’KI ‘Kl
.U line-spring model

ol
v
T
\ﬁzgmq T |/
/ y I
o0

¥

Fig. 1. A semi-infinite, unbridged through-crack with a semi-infinite, collinear bridged matrix
crack. Conventions for the line-spring model and the large scale sliding model
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Fig. 3b. The ratio in a) plotted against § defined in (14). The solid line curve is an
empirical fit to the computed values.
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b). Transverse section of a cross-ply matrix with a uniform distribution of unbridged
through-cracks in the 90° plies and bridged matrix cracks in the 00 plies.
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ON THE TENSILE STRENGTH OF A FIBER-
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ABSTRACT

THE TENSILE STRENGTH of a fiber-reinforced ceramic composite containing a through-the-fiber flaw in the
form of a sharp crack is studied. The strength of a brittle unreinforced ceramic containing a sharp crack
of length 2a,. subjected to uniaxial load in the direction normal to the crack plane. is given by linear elastic
fracture mechanics as o, = K,,/\/%a,. where K,, is the fracture toughness of the material. However. for a
fiber-reinforced ceramic. the strength can only be determined on the basis of a full analysis of crack growth
in the matrix and the failure of crack-bridging fibers. The tensile strength of a flawed ceramic material that
is reinforced by fibers aligned in the direction perpendicular to the flaw surfaces is studied in this paper.
Crack-bridging fibers are assumed to slip relative to the matrix when a critical interface shear stress is
reached. The orthotropy of the composite produced by the presence of aligned fibers is rigorously accounted
for in the analysis. The dependence of the composite tensile sirength on fiber tensile strength., matrix
toughness, flaw-size and frictional shear stress at the fiber~matrix interface is determined and described in
terms of a universal set of non-dimensional parameters.

INTRODUCTION

THIS PAPER IS CONCERNED with the tensile strength of flawed, fiber-reinforced ceramics.
On the basis of linear elastic fracture mechanics, an unreinforced brittle ceramic
containing a sharp, two-dimensional flaw of length 2q,. loaded in the direction
perpendicular to the faces of the flaw, has a tensile strength given by ¢, = K, ,'\/ na,,
where K, is the fracture toughness of the material. However, the tensile strength of a
fiber-reinforced ceramic can only be determined by a full analysis of a process involv-
ing matrix crack growth, frictional sliding along the fiber-matrix interfaces and failure
of crack-bridging fibers. We shall study the configuration shown in Fig. 1. in which
a large, aligned-fiber reinforced ceramic body containing an isolated center flaw of
length 2a, that cuts through the fibers is subjected to uniform remote tension in the
fiber direction. We define the tensile strength as the maximum applied stress the
composite can carry, and seek to deterriine this stress theoretically.

As in most previous studies the fibers are assumed to be held in the matrix by
friction ; that is. sliding between the fibers and the matrix is suppressed only if the
interface frictional shear is less than some limiting stress t. The brittle ceramic matrix
is assumed to have a fracture toughness X,,. and, except near the tip of the matrix
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Fic. 1. Initial through-the-fibers crack-like flaw.

crack. the composite is treated as a homogeneous orthotropic elastic medium. The
effects of crack-bridging fibers are taken into account by means of a spring model
that embodies the additional assumption that the frictional resistance is low enough
to permit long slip lengths relative to the fiber diameter. Failure of the composite is
assumed to be associated with the fracture of crack-bridging fibers in the matrix crack
plane and we assume that there is no statistical variation in fiber strength. It is further
assumed that during the course of matrix crack extension leading to the final failure
of the composite. no longitudinal splitting or shear banding takes place in the vicinity
of the flaw tip. Both splitting and statistical variation in fiber strength may often be
important. but we neglect them in the present study.

The mechanical behavior of both flawed and unflawed unidirectional fibrous com-
pusites has been a subject of research efforts for the past two decades. Matrix cracking
without associated fiber failure is a distinctive 1ensile damage mechanism ofien
observed in unidirectional fibrous ceramic composites. The tensile stress required for
the steady-state propagation of a single. long matrix crack. known as the matrix
cracking stress. was first evaluated by AVESTON er «f. (1971) for the limits of large
and small frictional shear resistance at the fiber-matrix interfaces. More recently.
BUDIANSKY et al. (1986) extended these results to intermediate friction values. For the
limiting case of very long initial flaws. the solution for tensile strength has be=n
obtained by Bupiansky and AMAZIGO (1989) on the basis of the small scale bridging
condition, wherein (see [ig. 2) the bridge length Aa prior to fiber failure is very small
relative to the original flaw length 24,. Although MARSHALL and Cox (1987) have
done extensive calculations for a composite with a flaw of arbitrary length. their
presentation is quite complicated and it is difficult to extract the desired general.
comprehensive results for the composite tensile strength from their paper.

There are many parameters governing the tensile failure of unidirectional
composites. such as fiber tensile strength. matrix toughness. flaw-size. fiber and matnix
elastic properties and fiber-matrix frictional shear stress. We shall. however. be able
to determine the composite strength 6. in terms of just the loliowing three basic stress
quantities that suffice to characterize the flawed composite :

e a,. the critical applied stress for the initiation of matrix cracking:
® 0,,. the steady-state matrix-cracking stress : and
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® o, = . S. the base fibers-only -irength.

where § is the fiber fracture stress and ¢ is the fiber volume concentration. More
precisely. the ratio of &_to any one of these stresses depends on only nwo ratios of the
three parameters. We start with: . qualitative description of the matrix crack growth
process that leads to failure of a flawed. unidirectional fiber composite.

DESCRIPTION OF FAILURE PROCESS

When a tensile stress ¢ is applied to the composite in the fiber direction (Fig. 1).
failure due to a pre-existing. through-the-fibers flaw that is normal to the fibers always
begins with growth of the crack in the matrix (Fig. 2). and ends with the fracture of
bridging fibers. Consider a typical curve of applied stress ¢ vs matrix crack growth
Aa. shown schematically in Fig. 3. Such a curve would be governed by the requirement
that the average energy release rate along the matrix crack front must remain equal
to the critical value for matrix crack extension. In the absence of fiber failure. a typical
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Fii. 3. Applied stress vs matnx crack growth.
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o —Aa curve has the following qualitative features. Crack growth starts when the
applied stress ¢ reaches the initiation stress g,. which is essentially a crack-size
parameter. Due to the constraining effects of crack-bridging fibers. matrix crack
growth requires increasing applied stress o untit a peak value g, is reached at Ag = Aa,.
Then the crack growth continues under decreasing applied o. which approaches
the steady-state matrix cracking stress o, asymptotically for Aa — x. (It is also
conceivable that for sufficiently small values of the initiation stress o,. the applied
stress 6 may never reach a peak value at a finite Aa. but simply increases monotonically
as it approaches the steady-state matrix-cracking stress g,, asymplotically.) After the
matrix crack extends to infinity. the applied loading is supported entirely by the crack-
bridging fibers. and the vertical line at Aa = x indicates that further increase in o is
then possible.

Now consider fiber failure. Corresponding to each point on the ¢ — Aa curve, there
is a smeared-out bridging stress distribution p(x) that has its maximum value p(4,)
at the original flaw tip. Let Aa; denote the amount of matrix crack growth cor-
responding to the first-fiber-failure criterion p(a,) = ¢;S. and if Aa; < x. let g, be the
value of the associated applied load. Similarly, for the composite containing a matrix
crack that has grown to infinity from each edge of the original flaw (Fig. 4). let oy,
denote the value of the applied stress ¢ that gives p(a,) = ¢;S. In both cases. we find
that maintaining the applied load ¢ at the value that produces the first fiber failure
results in the failure on the matrix crack plane of all the fibers. Accordingly. the
strength o, of the composite is set by one of the following three conditions :

(i) the flaw-tip fibers fail during increasing applied stress at a value of applied stress
o < 6, and Ag; < Aa,; then g, = oy;

(ii) the applied stress reaches the peak value ¢, without the occurrence of fiber
failure, and o, exceeds the value of the stress o, needed to produce flaw-tip fiber
failure when the crack is infinitely long; then g, = ¢,,:

(iii) the matrix crack extends to infinity without fiber failure, and o, is less than
Ofmc « then 0, = G-

A complete determination of the strength of flawed composites will therefore require

o)
AAAAAAAAAAAALAAAAAMLAAALMALLLALLL
JENNASERRREARNARNAnERnRAnRAAARS]

23,

pi)—/

JLILITITITITIR T TR I R ]}
AAAAARAAAAAAAAAARAAAALAMAAAAAAL]

o

FI1G. 4. Auxiliary problem: fully cracked matrix.
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consideration of both the transient crack-growth problem of Fig. 2 and the auxiliary
problem of the fully cracked composite shown in Fig. 4.

MATRIX CRACKING : INITIATION. GROWTH AND STEADY-STATE
Crack growth criterion

We shall now discuss an appropriate criterion for matrix crack growth in an aligned-
fiber composite (Fig. 1). What we seek is a criterion based on the stress-intensity
factor of a crack. bridged or unbridged. in an equivalent. uniform. orthotropic (but
transversely isotropic) material (Fig. 2). Consider the plane-strain energy release rate
% for a Mode-I crack lying in the plane of transverse isotropy. We can write

1—v?

¥=—p ki o

where K, is the conventional stress-intensity factor, E is the Young’s modulus for
longitudinal tension normal to the crack plane, v is the associated Poisson’s ratio (for
the ratio of transverse contraction to longitudinal extension), and A is a dimensionless
factor that characterizes the orthotropy. We will assume that matrix crack growth
occurs when the orthotropic energy release rate 4, given by (1), satisfies the condition

§=(1-¢)% )
where %, is the critical energy release rate for fracture in the matrix, given by

,
1—v,

E. K. (3)

g, =

in terms of the elastic constants of the matrix and its fracture toughness K,,. The
factor (1 — ¢() accounts for the reduction in length of the edge of the matrix crack due
to the presence of the aligned fibers. It follows that the critical orthotropic stress
intensity factor K¢ for matrix cracking in the direction perpendicular to the direction
of fibers in unidirectional fibrous ceramic composites is

. [AE( )
Kic = Km\/—E:Er:v—f)"(l —c). 4)

The magnitude of A4 as a function of the plane-strain compliances of an orthotropic
material follows from the formula given by TADA et al. (1985) for the energy release
rate (see Appendix A). If we let E, E;and E,, be the Young's moduli of the composite.
fiber and matrix. respectively. and if we assume, for the sake of simplicity. that fibers
and matrices have the same Poisson’s ratio v, = v,, = v, then E is given by the rule of
mixtures formula E = ¢;E;+ (1 —¢()E,,. The dependence of 4 on E/E, and ¢ for
v = v, = 1/4 has been calculated on the basis of the HiLL (1965) self-consistent
estimates for the effective compliances of an aligned-fiber composite having isotropic
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constituents. and the results for 4 vs ¢; are plotted in Fig. 5(a) for various values of
E, E, > 1. [These curves. and the associated formulas shown in Appendix A. correct
errors in the earlier work by BUDIANSKY and AMAZIGO (1989).] Figure S(b) shows 4
for several values of E; E,, < 1.

Itis important to note that the parameter K\ is a material property of the composite
which encompasses information about matrix toughness. fiber volume concentration.
the orthotropy induced by unidirectional fiber reinforcement and the moduli of the
matrix and composites. In order to analyse the matrix cracking problem illustrated
in Fig. 2. we will be calculating the orthotropic stress intensity factor K in the presence
of both external loading and crack bridging fibers. and then using K| = K¢ as the
criterion for matrix crack growth.

Marrix cracking initiation

For the special case of matrix cracking initiation in the configuration of Fig. 1. we
can use the familiar formuia K, = o/ na,. which is valid for any anisotropic as well
as isotropic 2D elastic body (SiH er al.. 1965). Setting K|, = K| gives the matrix crack-
growth initiation stress of the composite-—one of our three basic stress parameters—
as

Jgp = Kl(‘/\"/;t_‘z)- (5

Thus 6, may be regarded as a crack-length parameter. decreasing like a, ' °. Note
too. that for v; = v, = v, the initiation stress ¢, is related to the corresponding strength
a., of an unreinforced. cracked monolithic ceramic of the same crack geometry by

[A(1=¢)E
a, = _“(" E,-:l ) ~ 0y (6)

Equations connecting the applied stress. the bridging-fiber stress distribution. and
the matrix crack extension in the absence of fiber failure (Fig. 2) are presented in

Matrix crack growth




Tensile strength of fiber-reaintorced cerumic composite

Appendix B. In this formulation the orthotropic stress-intensity factor 1s kept equal
10 K. and the smeared-out bridging fiber stress p(.x) is related to the displacement
v{x} of the upper crack face (Fig. 2) by

Py = iy ry) (7}

where the equivalent spring constant ff is given by

;-{ 4 EE’t }': (8)
b= R(l—¢ VE;

where R is the fiber radius and 7 is the interface slipping shear resistance stress. This
relation follows from the assumption of “large™ slip lengths adjacent 1o the crack
faces and neglect of initial stresses (AVESTON et al.. 1971 BUDIANSKY ¢t al.. 1986
BUDIANSKY and AMAZIGO. 1989). Various non-dimensional forms of the governing
equations and their numerical solution are discussed in detail in Appendix B.

Steadv-state matrix cracking

As already mentioned. when the matrix crack extension becomes large. the apphed
stress ¢ approaches the steady-state matrix cracking stress of AVESTON et al. (1971).
Under the assumptions adopted. the steady-state matrix cracking stress oy, is given
by

o [@cﬁ(l—vi)ﬁﬁ,_r_lzl:]”_lz; -
™ (1—¢/)RE E,

This is the second of the three basic stress parameters that define the composite : the
third one. we remind the reader. is just oy, = ¢S.

MATRIX CRACK GROWTH AND PEAK STRESS

The analysis and calculations described in Appendix B provide the connections
between the applied stress o and the matrix crack extension Aa (Figs 2-3) shown non-
dimensionally in Fig. 6. (These relations assume no fiber fracture. and so the basic
stress parameter ¢S is not involved.) The abscissa 6,0, is a measure of the original
flaw size. Note that for Aw/a, > 0.5 the curves giving 6,0, VS 6/0,,,. cross each other
in the vicinity of 6,4/0,,, = 0.95. It follows that the peak stress ¢, during crack growth
(see Fig. 3) must occur for Aa,/a, >S5 whenever the flaw size corresponds to
6:0,. < 0.94; but for 64/6, > 1. Aa,ja, must be less than 0.5!

As discussed earlier, the strength o, of the flawed composite will. for some para-
metric ranges, be equal to the peak stress o, attained during matrix crack growth (Fig.
3). The results for o, obtained from the solution of the crack-growth equations are
completely described by the cur«e in Fig. 7. which shows 6,0, as a function of
6, 6. (This curve is actually the upper envelope of the family of curves in Fig. 6.)
Note that ¢, is almost always very close to either g, or g,,,.. The accuracy to which
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we could calculate o, was much better than that of the associated values of Aq,. It
may be that ¢, becomes equal to o, beyond a sufficiently large value of o, o,,.
corresponding 1o a monotonic increase in the value of the applied stress as the matrix
crack grows to infinity, but the numerical calculations do not resolve this point. In
any case, this is not important. and, as we shall see. parametric ranges for which the
strength o, is given by o, turn out to be small.

FuLLy CRACKED MATRIX: AN AUXILIARY PROBLEM FOR oy,

V' ¢ will find that there are significant ranges of the ratios of the three basic stress
parameters for which failure of the flawed composite occurs only after the matrix
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FiG. 7. Peak stress during matrix crack growth,
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F1. 8. Results for 6, fully cracked matrix.

crack has become infinite, and then o, equals the strength o, of the fully cracked
configuration sketched in Fig. 4. Clearly. oy, is independent of the fracture toughness
K,, of the matrix, but because of the bridging-fiber stress concentration induced at the
edge of the original through-the-fibers crack. 6, suffers a reduction from the base
fibers-only strength ¢;S it would have if the flaw were absent. An integral-equation
formulation for the calculation of o, is given in Appendix C in terms of the non-
dimensional combination

b
O a,t
dp=—, = :1[—3»] (10)
of the basic stress parameters, where

6n(l —v )¢ EE,
* '[ Au:ﬁ;‘]‘ (an

The parameter a,. independent of K. may be regarded as a measure of the original
flaw size. The solution found numerically for a,,./(¢;S) as a function of this parameter
is shown by the solid curve in Fig. 8.1 A remarkably accurate approximation to this

result is given by
e ol.:lc‘ afmc)_ 3 (ofmc i
“= 086 2[(ch ¢S (12

which provides the dot-dash curve in Fig. 8. This formula was discovered fortuitously,
and we have not found a persuasive way to derive it.

+See Svo er al. (1992) as well as Bao and Suo (1992) for the results of similar calculations based on
other bridging faws, and suggestions concerning the possibility of unifying these results over a wide range
of bridging laws via energy concepts.
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STRENGTH a_: RISULTS AxD Discussion

We can now put together the final results for the strength o, of the composite in
terms of the basic stress parameters a,,. 0, and ¢ 8. and we will display these resulis
in several different forms to bring out various trends. By monitonng the magnitude
of the bridging-fiber stress at the original flaw up during the matnx crack growth. as
calculated from the analysis of Appendix B. the magnitude of the load 6, cor-
responding to fiber failure during this growth has been determined. and. on the basis
of the discussion given in the earlier description of the failure process. the appropriate
choices have been made for the assignment of 6,. a,.. or 6,,, to the strength 6. This
has been done on the basis of various non-dimensional forms of the governing
equations. described in detail in Appendix B.

One non-dimensionat form of the results for a_is

vS 6,
"‘:F,(" . ) (13)
ali o’nlu G

my/

where o, 6, may be regarded as a modified strengthening ratio provided to a flawed
ceramic by aligned-fiber reinforcement. | The actual strengthening ratio is g, 6,,. 10
which o,:0, [see (6)] is a fair approximation.; We prefer. however. to introduce the

parameter
TGV
A=\/l+2<"- ) (14)
GmC

in lieu of ¢;S/o,, in exhibiting the resuits for the strength of the composite. and we
have done so in Fig. 9. where we show curves of 6.6, vs A for various values of
64/0q. The quantity A is the modified roughening ratio K K, found by BUDIANSKY

a,/0,

OlllllJ_LILIlllllLAllLlllll

A=[1+2(cS/0m))”?

FiG. 9. Modified strengthening ratio o, 6, for various values of 4, 6,,.. The parameter A is the modified
toughening ratio for small-scaic bridging.
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and AMAZIGO (1989) for the case of smull-scale bridging. The sigmiticance of A s that
it provides the modified strengthening rutio of a composite contaming a very long
initial crack. which corresponds to a vers small value of 6, 6, Thus. g 6, = A for
6o G, = 0.and thisis an upper bound to g, &, for all imte values of 6, 7, . In effect.
the sequence of curves in Fig. 9 shows quantitatively how much the small-scule-
bridging strengthening due to aligned-fiber reinforcement is reduced for tlaws of
decreasing size.

As indicated by the key 10 the line types in Fig. Y. the strength o at cach tixed
value of 6, 0, . always starts out equal to a4, at low values of A: for a sufhictenthy
large value of A. this first range. associated with fiber failure during mainx crack
growth (Fig. 3). merges into a generally small interval in A for which o_is given by
the “"peak” stress @, : and then. beyond :nother critical value of A. failure at 6_ = a,,,
in the fully cracked matrix becomes the rule. Note thut because o, 6, does not depend
on S. each of the curves of Fig. 9 can be interpreted as showing the influence of fiber
strength on the composite strength.

The results for o_ have also been computed in the form

7. _ F:((',—S; (’,-S) (%)

Ty anh g,

and Fig. 10 shows o, =, vs A for various fixed values of ¢;S ¢,,. which may be regurded
as a crack length parameter that is an increasing function of the iniual flaw size. Since
¢, 8.6, s independent of the shear stress . each curve in Fig. 10 shows how the fiber-
matrix interface friction affects the strengih. The matrix cracking stress g, 1is an
increasing function ot 1 [equation (9)]. and therefore the small-scale-bridging tough-
ening ratio A gets larger as 1 goes down. The curves in Fig. 10 show that for flaws of
finite size the strengthening generally remains an increasing function of 1 1. except
for some insignificant isolated parametric ranges.

0./0,

0 TS SRS N VT SS W S N S U SN TR DN N ST

1 2 3 4 5 6
A=[142(cS/0me)’]"?

FiG. 10. Modified strengthening ratio o, @, for various values of ¢, 5 o,. The parameter A is the modified
toughening ratio for small-scale bnidging.
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In both Figs 9 and 10. displaying the ratio o,,0, as the dependent variable provides
the answer to the question: how much has the flawed matrix been strengthened by
aligned fibers? An alternative viewpoint is to contemplate the base fibers-only strength
d¢, = ¢S as a starting point of reference. and study what happens to the ratio g.:¢,S
under the degrading influence of a flaw and the reinforcing presence of the matrix. A
useful representation of the results is in the form

os_F<o.‘?u- ,a.m-) 6
C{S - ("'SO'(;;’ ('(S ( )

as shown in Fig. 11. The abscissa 4, is a flaw-size parameter that is independent of
the matrix toughness K,,, and the increasing values of a,./c.S labelling each curve
reflect increasing values of K. The curve for o,,./c;S = 0 reproduces the one in Fig.
7: for K,, = 0. the matrix will crack out to infinity as soon as a load is applied, and
then the strength will be given by 6,.. The curves in Fig. 11 show ti'.t g, constitutes
a Jower bound to the strength, and that for reasonable finite values of ¢,,./(c;S) only
modest increases above this value are obtained. In terms of the parameters of (16)
and Fig. 11, the identity of the failure mode can exhibit a curious progression. Thus.
for onc/ccS = 0.75, o, is given by o for large flaw size: then, as g, decreases, o, = o,
over for a tiny interval of the abscissa ; this is followed by ¢, = o, along the bottom
curve ; and finally, below a critical value of flaw size, o, = g, again. Actually, values
of the abscissa much below unity are unlikely to be in a range of practical interest.

The formula (12) suggests that the results of Fig. 11 might usefully be replotted as
shown in Fig. 12, wherein ¢./(c;S) is shown over the full practical range of (G,) ' .
Note that for o, /¢S greater than some critical value between 0.75 and 0.85. failure
siwdys occurs during finite extension of the matrix crack.

1 ‘\' LA —I T T T L] ‘r L) LI ‘ ¥ T T 3 l' T L] L ]

7% . ; B

N\ _ ]
8 :

i \ . —— Oy=0y ) N

r L : ]

8 Y i —— OO : .

o./cS

.2 —
o 1 1 L ‘ 1 L N l Lot 1 L l A L 1 1 | 1 i i i i
0 5 10 15 20 25
O/ (eS05)=alagT/(RS))

F1G. 11. Strength ratio 6,/(c,S) vs d, = 0./c S0} for various values of o,/ (¢;S). The constant x is defined
in (11).
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FIG. 12. Strength ratio 0./(¢;S) vs (d,) ' * = (6. /¢,5a3) ' * for various values of 6., (¢;S). The constant
2 is defined in (11).

NUMERICAL EXAMPLES

To provide some quantitative feel for the theoretical results of Figs 9-12, we present
a set of numerical examples for a well-documented ceramic composite system that
was used in matrix cracking experiments by MARSHALL er al. (1985), consisting of
silicon-carbide fibers in a lithium-alumino-silicate glass matrix. The nominal values
of pertinent parameters were

=05 R =8§um

v, = v =025  E = 142.5GPa K,=2MPam'’
= 85GPa =1 GPa
E;=200GPa t=2MPa.

On the basis of this data, we get
A=095 o6, =265MPa, A=338.

Table I shows the strength predictions of the present analysis. for several values of
flaw length 2a, and the corresponding values of a,. ¢;5/g, and &,. Numerical results

TABLE |

2a, (um) &, (MPa) aSo, do o. (MPa) 6./04 o./(¢;S) Type

325 250 2 0.60 415 1.7 0.83 Oime
130 125 4 2.38 319 2.6 0.64 Tyme
290 833 6 5.36 257 3.1 0.51 oy
520 62.5 8 9.53 213 34 0.43 o




14 B. Buoiassky and Y. L. Cul

for g, are given. as well as the ratios g, 6, and o.(¢;'S) : the failure type (i.¢. 6,. 6, or
Oy ) 18 listed.

In these examples the strength a,, of the unreinforced ceramic is about 10°¢ higher
than o, [equation (6)]. Thus. the composite containing a flaw (or sharp notch) about
1 2 mm in length is strengthened considerably (by about a factor of three) by the
presence of aligned fibers that do not bridge the initial flaw. But the failure mode. of
the o, type. remains catastrophic. occurring before the onset of widespread matrix
cracking at a,.. In contrast. the strength of the matrix with the smallest of the flaws
considered above is increased by only about 50%. but this is enough to raise 6, above
ag

mee

CONCLUDING REMARKS

Our study has produced theoretical results for the tensile strength of a flawed.
aligned-fiber ceramic composite in succinct non-dimensional forms that encompass
the effects of a large number of geometrical and physical variables. The results for the
strength ¢,. displayed in terms of three basic characterizing reference stresses o,,. g,
and ¢S in Figs 9-12, may provide a basis for the micromechanical design and analysis
of such materials, as well as for the formulation of design criteria. A useful lower
bound to the strength g, is given by the post-matrix-cracking failure stress o,
provided by Fig. 8.

The present study provides a sound foundation from which to proceed to elab-
orations that include the effects of initial stress and statistica} variations in the fiber
strength. The latter, in particular, can lead to intra-matrix fiber failures at locations
off the crack faces, and the ~onsequent higher fiber-pullout lengths during failure can
produce substantial increases in predicted composite strengths (THOULEss and Evans.
1988). However, the extent to which design should rely on beneficial effects of stat-
istical dispersions in fiber strength remains an open question. Finally. it should be
emphasized that the possible intervention of failure modes not considered here. such
as longitudinal splitting or shear localization. requires investigation.
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APPENDIX A: ORTHOTROPIC FACTOR A

This Appendix corrects the one with the same title in the paper by BUDIANSKY and AMAZIGO
(1989). in which several blunders occur.

We consider a transversely isotropic. orthotropic elastic material satisfying the stress—strain
relations

e, =6, E~ve, E—%o. E

e, = ~vo, E+o, . E—vo.'E
e.= ~Vg,.E—~ve, E+a. E (AD)
o =T,G

According 10 TADA et al. (1985). quoting results of SiH ez al. (1965). the plane-strain encrgy
relcase rate at the edge of a mode-I crack lying in the transversely isotropic x—= plane is

% = CK; (A2)

doAdn[ (A 24,44,
C= [Infay [22 L 3
\/ 2 [\/;+ 24, ] (Ad

and the 4,, arc defined by the plane-strain constitutive relations

where

&, =A,,0,+4,.0,
£ = A|:0\+A::0‘ (A4)

Ta = Ahhtn‘

The 4,, are given by
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|- v(l+¥) 1—v'EE 1
= —-g- I sv=m = Age = AS
A £ Ao £ A £ G (AS)
Hence. in the representation
(1 —v)K]
G = Ab)
45 1E t
we have
a=lzy A7)

For the aligned fiber composite. the elastic constants E. £, G. ¥ have been calculated for the
case v = v, = v, in terms of ¢,. E, and E,. and the resulting dependence of 4 on ¢, is plotted
in Figs 5(a) and (b) for various values of £, 'E,,.

APPENDIX B: FORMULATION AND NUMERICAL SOLUTION FOR MATRIX CRACKING
INITIATED FROM A CRACK-LIKE FLAW

Formulation

This section details the formulation of an integral equation and an associated scalar equation
for matrix cracking that is initiated from a pre-existing flaw. The matrix crack together with
the original flaw is modeled as a crack of length 2(a,+ Aa) (see Fig. 2) with a cohesive. bridged
zone of length Aa at both ends. The upper crack face displacement is

2“_‘,2) ; - . 2(]__‘,3) oy, + Ay .
r(x) = Td\ (@ap+A4Aa)" —x"— '—aE—‘[" p)

\/:(a(. +Aa)f —.\'f +\/'(a,.+Aa)f "i s (Bl)
Vite+Aa)  —x = ay+Aa)” = -

Except for the factor A. the first term is the standard crack face displacement duce to remote
uniform loading of an isotropic material. The second term is the crack face closure displacement
due to the bridging stresses. and, again except for A. is obtained by superposition of the crack
face displacements due to concentrated loading on crack surfaces given by TADA et al.
(1985). The orthotropy factor A. defined by (1) in terms of energy release rate. correctly takes
orthotropy into account in this expression for displacement. (This can most easily be shown
by weight-function considerations.) An integral equation for p(x) may be obtained by equating
r(x) in (B1) to [p(x)/f]’ in accordance with the bridging law (7). and then differentiation with
respect to x gives

dp(x) 2870 =)y
Py =g == ——
X nAE (as+Aa)" ~x°
o, + Bu ‘_" \+A :_52
x[f lﬂ-‘gt‘%——‘r—p(i)d:+ "—:] for as<xs  +ua. (B

A scalar equation that must be satisfied simultancously with (B2) is obtained by asserting that
the orthotropic stress intensity factor K, [which depends on ¢ and p(x) in the same way as for
isotropy) must remain cqual to K. Hence (TADA 1 al.. 1985)
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~ -~ g+ Aa [ (x) .
K = ay nlug +Aﬂ)—2\/t—‘*‘—' j‘ ___p::__f_“_’_:‘ dx = Ky (B3)
n va N (@ap+Ad) —x-

By making the substitutions

X = (ay+Ad)s  p(X) = 6,.4(S)
(B4)

1
A= g = zomx Go = zuamc
1 +Aa/a,

one may express the governing equations (B2) and (B3) in the normalized forms

S dq(s) 41.(s) ' n
\"/' —sq(s)% = - m I:J: Sale. g dr+ EZ] for a<s< (B3)

5 [ -
I ;';J. fug)ds = 2z, (B6)

where

S = 2=, fls=> :l ' and fi(s) = — !

J1+y rm=s J1-5

For assigned values of . (B5) and (B6) can be solved for I and ¢(s) vs Z,. and thereby provide

the results of Fig. 6. and the curve for 6, /6, in Fig. 7. The condition of fiber fracture at x = a,

is g(1) = ¢;S/o,. Hence, for given values of X, and ¢ S/6,., (BS) and (B6) can be solved (by

a Newton—Raphson technique) for the corresponding distributions p(s) and magnitudes of x

and I, = 0./0 at fracture, and then the points for 6,/6, = 0/64 = L;/Z, on the dot-dash
curves of Fig. 9 can be plotted.

To get points on the dot—dash curves of Fig. 10, we assign values of ¢;S/0, as well as ¢;S/6 ..

replace I, in (BS) and (B6) by the ratio of these quantities, and similarly solve for Z,.

Finally, to plot the curves for o, = o, in Figs 11 and 12. it is convenient to renormalize the

governing equations by letting

(B7)

Ome PO) o_ 0

«Sai’ q¢) = “S® oS

(B8)

Gy =
to get

- 1

N4 —sq(s)fi—:’i‘s—’) == %'n(%"—“ U £, $)q(0) i+ gz] for a<s<!  (BY)

i2

‘ —_
£- 24[ S:(8)g(s)ds = \/1(0——""> NET ™ (B10}
L Y (rs

The fracture criterion is now g(1) = 1, and so, {or assigned values of 4, and &,,./(¢;S) the
magnitude of £, = £, corresponding to this condition can be found from (B9) and (B10).

We omit a detailed description of the fairly straightforward procedures used to plot the
curves in Figs 9-12 corresponding to the results in Figs 7 and 8 for 6, and ;..

Numerical procedure

This section describes the numerical procedure used to solve (B5) and (B6) for g(s) and X
the method is equally applicable to (B9) and (B10). Make the substitutions

s=(l+x)+{ -2z}, t=HA+0)+(=2)). qstz) = Q(2) (B11)
in (B9)-(B10) to get
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for -1 €< ). and

S
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- 7r ' Hn)@ends = 2E.. (B13)
S
Note that the displacement r » |- near - = 1. and since Q 7 v itas appropriate 10
write
A\
P =U-"Y aT, . () (B14)

A=
where 7, () is the Chebyshev polvnomial of the first kind of degree . For given values of .
and X,. the M cocfficients «,. together with the additional unknown X. were determined by
collocation of (B12) at the M points

nr
o, =cos| —— =1.2...../ S
. cos(M_H) (r=1 Al (B15)

and enforcement of (B13). The definite integrals with respect to = in (B12) and (B13) were
evaluated by means of the general Cauchy-Chebyshev formula (ERDOGAN and GUPTA. 1972)

] - v AT b
f LACSL S, Fopd o2 (B16)
,|(_."_;)\//|_;2 M+|,,,,| Ii—ep
and the standard Gaussian integration formula
' F(o)d: n M)
,[_. S T MA E_I F(z,) (BI7)
iz
where
e 2p—Dn 1
"‘_”“—COS[Z(M+|):| (p=12.... M+1). (B18)

A Newton-Raphson iterative scheme was used to find solutions for the a,s and X, with
convergence specified by a relative change of less than 0.01% in the values of each of the
unknowns in successive iterations. The physical argument that for a long matrix crack the
applied stress o should approach the steady-state matrix cracking stress a,,. provides a con-
sistency check on the accuracy of the numerical solution. It was found that with M betwecn
40 and 60. the consistency check was always satisfied to within about 0.1%.

APPENDIX C: AUXILIARY PROBLEM FOR Gy,

We obtain an integral equation for the auxiliary problem of Fig. 4 by letting Aa — . in
(B2). The result is

dv RAE [, -

dp(x (=) (7 x
,,(_\.,_L’(_‘) = - Al ~‘—)j 5 ~ -\Ep(.f)d: for ay<v<=x. (Cl)
By making the substitutions shown in (B4). 1ogether with

X=da,y (C)

we obtain
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F(») —— = — —; ————g{n)dny for I gyv<x. C3
q(» dr 3t |, "__“,_q(rl) y ¥ (C3)

Note (Fig. 4) that under the applied stress . §(x) = 0'(c,S) = £. and the condition for fiber
fracture at the original flaw tip is given by

gay = 1. (C4)
Accordingly. for assigned values of 4, = 0, ¢, S6;,. the solutions (1) of (C3) that satisfy (C4)

provide the associated values of §(x ) = £, = 6y, /(¢;S) needed to plot the solid curve of Fig.
8. In the numerical solution of (C3) the transformation

l+w
l-w

y=14 (C5)

was introduced to map the infinite domain into the interval (- 1. 1), and. except for the need
to impose the condition § = | at w = — 1. the subsequent procedure used was similar to that
outlined in Appendix B.
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ABSTRACT

Tension experiments performed on a 0/90 laminated SiC/CAS
composite at room temperature establish that this material is notch
insensitive. Multiple matrix' cracking is determined to be the stress
redistribution mechanism. This mechanism is found to provide a particularly
efficient means for creating local inelastic strains, which eliminate stress

concentrations.
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1. INTRODUCTION

One of the most important attributes of ceramic matrix composites
(CMCs) is the existence of mechanisms that redistribute stress at strain
concentration sites, such as notches and holes.1-5 These mechanisms involve
matrix cracking as well as fiber pull-out and bridging. The basic stress
redistribution phenomena are manifest as three classes of behavior (Fig. 1),
each associated with different contributions of matrix cracking and fiber pull-
out.2.6 Class I behavior, dominated by fiber bridging and pull-out, has been
extensively documented and characterized through the development of large
scale bridging models!,5.7.8 (LSBM). Class III systems redistribute stress by
shear band formation. This phenomenon has also been analyzed?10 and
related to the in-plane shear strength of the material. Class II behavior has
received least attention, and yet, appears to be the most effective means of
stress redistribution.# The underlying phenomenon is the occurrence of
multiple matrix cracks, with minimal accompanying fiber failure. The intent
of the present article is to study matrix cracking and stress redistribution
around strain concentration sites in a class II system. Moreover, it has been
proposed that continuum damage mechanics (CDM) may be useful for
characterizing stress redistribution in such materials.2.12 The present results
may provide perspective on the potential for CDM as an analysis procedure.

The material of choice is a Nicalon™ silicon carbide fiber in a calcium
alumino silicate glass ceramic matrix (SiC/CAS) material.13 The material is in
the form of a 0/90 laminate. The tensile characteristics and the constituent
properties are described elsewhere!ll,14,15 (Fig 2). In this material, the matrix
crack spacing in the 0° plies changes with stress11.14 (Fig. 3) in a manner that

fundamentally governs stress redistribution.
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2. EXPERIMENTAL APPROACH
2.1 Material

Plates of the SiC/CAS composite were provided by Corning.13 The
material was laid up in a 0/90 laminate structure with a nominal fiber
volume fraction, f = 0.36, and a fiber fraction aligned in each of the two
principle axes, f; = 0.18. The laminate structure consisted of 16 alternating 0°,
90° layers with a double 90° center layer. The structure was densified by a hot
pressing technique. After densification, the total thickness of the composite
was ~ 3 mm. Optical microscopy established that the average thickness of each
ply to be = 180 um.

2.2. Test Procedures

Tensile specimens with a variety of holes and notches, located at both
the center and the edges (Fig. 4), were cut from the plates by diamond
machining. The ratio of the notch length to the sample width (a,/b) was
varied between 0.25 and 0.75. The specimens were then polished to remove
surface irregularities and to reveal the first underlying fiber layer in the
composite. Tensile tests were performed on these specimens, by using
gripping and alignment procedures described in other articles.10.11

The tensile tests were carried out on a servohydraulic load frame. Strain
gages were used to measure localized strains at the notch tip and in the far
field. In some cases, the specimens were monotonically loaded to failure, in
order to document the influence of the notch on the ultimate tensile strength
(UTS), designated S*. In other cases, the tests were interrupted at various

fractions of the UTS, whereupon several measurements and observations
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were made concerning matrix crack accumulation, as well as stress
redistribution.

Matrix crack measurements were accomplished by using a surface replica
technique that duplicated the topography of the specimen surface. Stress
redistribution was assessed using thermoelastic measurements, by means of a
technique involving stress pattern analysis through thermal emission
(SPATE).4 In this technique, temperature gradients produced by cycling the
stress between 1.5 and 40 MPa at 10 Hz are measured and related to the first
stress invariant, Okk.

Some tensile experiments were performed with sequential, repeated load
cycling, subject to full unloading and reloading. The properties of the
interface and the misfit strain were obtained from the associated hysteresis
loops and the permanent strain.15-19 Finally, measurements of fiber pull-out

were made using scanning electron microscopy (SEM) on the failure plane.

3. RESULTS

3.1 Monotonic Loading

Stress/strain curves obtained from edge-notched specimens revealed
appreciable non-linearity before failure (Fig.2b). This non-linearity also
coincided with an increase in compliance. The ultimate tensile strength
(UTS) data are presented in terms of the ratio of the notched UTS, designated
§*, to the unnotched UTS, designated S. This ratio is plotted as a function of
the relative notch width, a5/b. The results are summarized in Fig. 4. It is
evident from these results that the 0/90 SiC/CAS material exhibits notch
insensitive behavior.l In fact, there is evidence that some notch

strengthening may be occurring.
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3.2 Damage Observations

Measurements of matrix cracks (Fig. 5) taken from samples tested to
failure, as well as from the replicas, indicate a relatively high crack density
close to the notch root. Generally, cracks first appear at the notch root (Fig. 6).
Then, as the load increases, the density of cracks increases. Thereafter, some of
the cracks extend throughout the cross section. Eventually, the saturation
crack spacing is approached near the notch root. The final average crack
spacing decreased as the ratio ay/b increased, such that the crack density in the
specimen with ag/b = 0.75 most closely resembled that found in an
unnotched tensile specimen after testing.

SPATE measurements revealed an initial stress concentration at the
notch root (Fig. 7 ), which diminished as matrix cracks appeared. These
measurements relate to the matrix cracks, which generate a compliance
gradient,4 that lowers the stress concentration, as well as-redistributing the
stress across the remaining section. A comparison of SPATE line scans with
acetate replicas taken at the same damage level (Fig.8) provides striking
evidence of the effect of multiple matrix cracking.

The fiber pull-out measurements and the hysteresis loop data (Figs. 9
and 10) can be used to provide information about the interface sliding stress,
1, and the residual stress, q.11,14,16-19 The sliding stress obtained from these
measurements (T =~ 20 MPa) is in reasonably;good agreement with the values
previously reported for this material.11.14 However, the permanent strains
suggest a residual stress, q = 30 MPa, somewhat lower than that found

previously.11.14 This difference reflects changes in processing conditions.
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4. DISCUSSION

All of the above results indicate that the 0/90, SiC/CAS behaves as a
notch insensitive material in tension at room temperature. The most direct
evidence is given by the trend in the UTS with notch size (Fig. 4).
Confirmatory evidence is provided by the crack density distribution, as well as
the SPATE results.

The crack density within the 0° plies may be approximately related to the
Oyy stress in those plies, in accordance with the curve shown in Fig. 3.
Notably, the crack density measured around the notch (Fig. 6) may be used
with Fig. 3 to estimate the Gyy stress distribution. The results (Fig. 11) confirm
that the stress concentration is small prior to failure.

The SPATE measurements (Fig. 7) reflect the influence of the matrix
cracks on the elastic stiffness of the material around the notch.4 The gradient
in stiffness caused by these cracks allows the Oy} stress to redistribute and
eventually become uniform across the net section. Thus, the change in the
SPATE line scans with peak load provide an excellent qualitative picture of
how the tensile stresses are being redistributed across the net section.
However, as yet, they cannot be used to accurately measure the magnitude of

those stresses.

5. CONCLUSION

Some simple experiments have been performed which vividly
demonstrate that a 0/90 SiC/CAS composite is notch insensitive in tension at
room temperature. The behavior is related to the inelastic strains (Fig. 2) that

arise from matrix cracking (Fig. 3), which redistribute stress around notches.
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The matrix cracking mechanism appears to be particularly efficient for this
purpose, because stress concentrations can be completely eliminated, even
though the ductility is small, < 1% (Fig. 2). Since the matrix crack density is
relatively high at strain concentration sites, it should be possible to develop a
mechanism-based CDM approach!2 which could be used to predict
redistribution effects. The available matrix cracking models,17-20 combined

with the constituent properties should be suitable for this purpose.
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FIGURE CAPTIONS

Fig. 1. The mechanisms of fiber pull-out and matrix cracking that lead to

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

stress redistribution in CMCs are identified with 3 classes of
behavior.

. Tensile stress-strain curve for 0/90 laminated SiC/CAS composite

indicating unload-reload hysteresis loops, (a) schematic,
(b) experimental results.

. The trend in crack density with stress for the 0° plies with applied

stress for 0/90 SiC/CAS.

. Effect of notch size on relative UTS, indicating that SiC/CAS is notch

insensitive in tension at room temperature. The inset shows a
schematic of the test specimen. The parameter 4 is a measure of the
notch size to the damage zone size [1,5]. For SiC/CAS the calculated
value of 4 is approximately 0.02.

. A replica showing the matrix cracks that occur between two edge

notches .

. The crack density as a function of distance from the notch at differing

levels of net section stress, ON, for a specimen with edge notches,
2,/b = 05.

. Typical results of SPATE measurements: (a) full-field temperature

distributions before and after matrix cracking. (The low resolution of
these images is an artifact of the gray scale imaging). Regions of
greatest temperature change are shown in black near the notch roots,
with a continuous decrease in temperature change with distance
from these locations. (b) Line scans after exposure to various peak
loads show the distribution of Gix between the notches. The
differences in shape depict the role of damage in stress redistribution.
The stress concentradons are artificially low near the notch root due
to a smoothing program that filters out the notch-root edge effect.
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Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Nevertheless, the average stress between the notches is, in all cases,
consistent with the net section stress indicated in the figure.

A comparison of SPATE images at several loads with the replicas
taken at the same loads. The replicas record the crack density at each
damage level, while SPATE images reveal the hydrostatic stress
distribution.

Fiber pull-out distribution measured from the failure plane

Hysteresis loop data presented as a function of the peak stress with
the predicted line for T = 20 MPa indicated.

Estimate of the distribution of Oyy stresses between the notches based
upon crack density measurements (Fig. 3). Results shown for two
levels of net section stress, ON.
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ABSTRACT

The effects of holes and notches on the ultimate tensile strength of a
unidirectionally reinforced titanium matrix composite have been examined.

During tensile loading, a narrow plastic strip forms ahead of the notch or hole prior

to fracture, similar to that observed in thin sheets of ductile metals. Examination of
the fibers following dissolution of the matrix indicates that essentially all the fibers
within such a strip are broken prior to catastrophic fracture of the composite. The
trends in notch-strength have been rationalized using a fracture mechanics-based
model, treating the plastic strip as a bridged crack. The observations suggest that the
bridging traction law appropriate to this class of composite is comprised of two parts.
In the first, the majority of fibers are unbroken and the bridging stress corresponds
to the unnotched tensile strength of the composite; in the second, the fibers are
broken and the bridging stress is governed by the yield stress of the matrix, with
some contribution derived from fiber pullout. This behavior has been modeled by a
two-level rectilinear bridging law. The parameters characterizing the bridging law
have been measured and used to predict the notch strength of the composite. A
variation on this scheme in which the fracture resistance is characterized by an
intrinsic toughness in combination witt  rectilinear bridging traction law has also
been considered and found to be cons - with the predictions based on the
two-level traction law.
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1 INTRODUCTION

Fiber-reinforced titanium matrix composites are being considered for
structural applications in advanced aerospace enginesl. It is envisioned that, in
some applications, holes will be introduced for either fastening or cooling. The
design of such structures will require an understanding of the damage processes
occurring around the holes and the influence of damage on structural performance.
The intent of the present article is to examine the nature of such processes and to
assess the utility of non-linear fracture mechanics-based models for describing the
influence of holes and notches on tensile strength.

It will become evident that the trends in strength with hole or notch size can
be rationalized in terms of models based on crack bridging, analogous to those used
to describe the notch sensitivity of monolithic ductile metals and ceramic matrix
composites (CMCs). As a result, the following section provides a brief review of the
existing crack bridging models. The review is followed by a description of the

experimental portion of the stud); and comparisons with the model predictions.
2. BACKGROUND ON NOTCH SENSITIVITY
In brittle materials, the tensile strength G of a panel containing a sharp,

through-thickness notch can be described by the Griffith equation

Ra, 1)
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where T is the toughness, E is Young's modulust and 2a, is the notch length.
Alternatively, if the panel contains a circular hole with a radius a, that is large in
comparison to the intrinsic flaw size, ¢, the strength is given by

= 1 |ET
c

3VYnc )

In essence, the hole reduces the strength by a factor equivalent to the stress
concentration factor (ki = 3), independent of the absolute hole size”. Consequently,

Eqn. 2 can be re-written as
G = Go/3 3

where G, is the tensile strength in the absence of a hole or a notch.

Ductile materials, particularly in the form of thin sheet, behave differently. In
the presence of a notch, tensile fracture is preceded by the development of a narrow
zone of intense plasticity ahead of the notch2. Fracture occurs by the formation and
propagation of a crack within the plastic zone. This process can be modeled by
considering the tip of the plastic zone to be the tip of a hypothetical crack and the
material within the plastic strip to be a "bridged zone"34. The tractions exerted by
the bridged zone are taken to be equivalent to the yield stress of the metal, Oy.
Moreover, the intrinsic fracture energy, Iy, is taken to be zero, such that all the
fracture resistance is derived from bridging. Using the J-integral, the contribution
derived from bridging, I'p, can be expressed as®

r, = [‘ 6,dd = 0,5, @

1 Corresponding to either plane stress or plane strain conditions, as appropriate.
* Neglecting the effects of volume on strength.
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where 8 is the crack opening displacement and . is the critical value needed to
fracture the metal. Moreover, the fracture stress varies with notch size according to

the relation4

S - 2 s exp :—15)
30 T 8a (5a)

where 0 is a normalized measure of the notch size

TE (5b)

and the unnotched tensile strength, Gy, is taken to be the yield stress, Gy. This
approach is commonly referred to as the Dugdale-Barenblatt model.

The parameter used to normalize the notch size, I' E/ '6}2,, is a characteristic
bridging length scale that governs the degree of notch sensitivity. When this length
scale is large compared to the notch length, the tensile strength is reached after the
plastic strip extends only a small amount and thus the steady-state toughness, given
by Egn. 4, is not fully realized. Conversely, when the bridging length scale is
sufficiently small, the toughness is fully utilized prior to catastrophic fracture,
whereupon the stress-notch length relation (Eqn. 5b) reduces to the Griffith relation
(Eqn. 1).

More recently, models based on crack bridging have been developed for
predicting the notch-strength characteristics of ceramic matrix composites (CMCs)6-8.
The essential difference between these models and the one developed by Dugdale
involves the functional form of the bridging traction law. The traction laws

considered to date include linear softening, linear hardening and parabolic
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hardening, in addition to the rectilinear law. Figure 1 shows three typical bridging
traction laws and their effects on notch sensitivit'y. A notable feature here is that the
notch sensitivity is governed predominantly by the parameter @, and is relatively
insensitive to the shape of the traction law. Moreover, for large values of & (2 1), the
notch-strength follows the Griffith relation (Eqn. 1), with I = T’p.

An additional feature that has been incorporated into recent calculations is
the intrinsic fracture energy, I'o7A8. This energy can be represented by a
non-dimensional parameter, A, defined by

x = l"o/ rb (6)

Some trends in notch strength with A for the rectilinear traction law are illustrated
in Fig. 2. The main effect of A is to increase the strength for small values of .. At
higher values of @, the notch-strength again follows the Griffith relation, with I'
replaced by the total fracture energy: I' = I'q + I'p.

Calculations have also been performed to evaluate the strength of such
materials in the presence of circular holes?. Figure 3 shows an illustrative example.
For small values of @, the strength is similar to that corresponding to a sharp notch.
However, for large values (0. > 1) the strength asymptotically approaches the value
predicted on the basis of the stress concentration factor, given by Eqn. 3.
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3. EXPERIMENTS
3.1 Materials

The material used in this study was a Ti-6Al-4V matrix reinforced with
unidirectional, continuous SiC fibers®, 100 um in diameter. The composite panel
was comprised of six plies, with a total thickness of 1.0 mm. The fiber volume
fraction was 32%. Prior to consolidation, the fibers had been coated with ~1 um of C,
followed by ~ 1 um of TiBj. The TiB2 coating serves as a diffusion barrier between
the fiber and the matrix. During consolidation, the TiB2 reacts with the matrix to
form a layer of TiB needles, ~ 0.7 um thick.

3.2 Tensile Tests

Uniaxial tensile tests were conducted on specimens containing either notches
or circular holes, located at the specimen center. To minimize damage, the
specimens were prepared using electrical discharge machining (EDM). The holes
ranged in diameter from 0.6 mm to 6 mm. The notches were ~ 400 pm wide and
ranged in length from 1.5 mm to 6 mm. The ratio of notch or hole size, 2a,, to
specimen width, 2w, was fixed at 0.2. In one case, wherein the hole size was 0.6 mm,
specimens with ap/w ratios of 0.2 and 0.05 were prepared and tested. In all cases, the
ratio of specimen length to specimen width was greater than 3.

Prior to testing, one face of each specimen was polished to a 1 um finish.
Beveled stainless steel tabs were bonded to the specimen ends with an epoxy
adhesive. In some instances, a 0.8 mm strain gauge was attached immediately ahead
of the notch or hole. The tests were conducted in a servohydraulic testing machine,
using hydraulic wedge grips to load the specimen. The tests were conducted at a

fixed displacement rate, between 0.005 and 0.03 mm/min. For comparison, uniaxial

* Sigma fiber, produced by British Petroleum.
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tests were also -onducted on straight (unnotched) tensile specimens, 6 mm wide,
with axial strains measured using a 12.7 mm contacting extensometer. Additional

details pertaining to the unnotched tensile strength of this material can be found in

a companion paper?.
3.3 Observations

During the tensile tests, the region immediately ahead of the notch or hole
was monitored using a traveling stereo-microscope and recorded using a digital
video camera. These observations were used to establish the extent of plasticity. In
some cases, the tests were interrupted following the development of an extensive
plastic zone (~ 1 to 3 mm), but prior to fracture. The extent of fiber fracture within
this zone was determined by dissolving the matrix in the vicinity of the notch with
a 49% HF solution and examining the underlying fibers in a scanning electron

microscope (SEM). Some of the fracture surfaces were also examined in an SEM.
34 Toughness

The composite toughness, I', was evaluated using an edge-notched four-point
work-of-rupture specimen?0:11, shown in the inset of Fig. 9. (For reasons described
below, the notched tensile tests could not be used to obtain I".) The test was
conducted at a displacement rate of 0.5 mm/min. The toughness (or fracture energy)

was evaluated using the relation

r _[:’ Pdu
- t(w—ao) )

where P is the load, u is the load point displacement, u is the displacement at

fracture, and t is the specimen thickness.
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3.5 Bridging Law Parameters

As detailed in a subsequent section, the effects of holes and notches on the
tensile strength of this composite can be rationalized in terms of crack bridging
models. One of the important parameters involved in the bridging traction law is
the crack opening displacement at fracture, 8. This parameter was determined in
the notched specimens from measurements of the notch width both before and after
fracture. The post-fracture notch width was taken to be the sum of the normal
distances from the notch surfaces to the tips of the fracture surface, as shown in the
inset of Fig. 10. Similar measurements were made on specimens with small holes
(0.6 and 1.5 mm diameter).

Another key parameter in the traction law is the displacement &; at the onset

of fiber failure. This displacement can be estimated using the relation
O = hp & ®

where hp, is the width of the plastic zone measured parallel to the loading direction
and €&y is the failure strain of the fibers. The plastic zone size was measured off of
micrographs of both sides of the fractured specimen, taken using Nomarski
interference microscopy. At each notch tip, ~ 20-30 such measurements were made,
starting immediately ahead of the notch tip and proceeding at intervals of ~ 0.2 mm.
Yet another parameter in the traction law is the strength of the composite
following fiber fracture. This strength was measured using a two-step procedure.
First, a specimen with 2 6 mm notch was loaded in tension until plastic strips
~ 3 mm long had developed on both sides of the notch. SEM examinations of
similar specimens indicated that all the fibers had indeed fractured within this strip.
Narrow, longitudinal strips (~ 2 mm wide), passing through the plastic strips, were
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then cut from the tested specimen. These strips were tested in tension, with a

10 mm clip gauge placed across the plastic strip to measure the local displacements.

4. EXPERIMENTAL RESULTS

Figures 4 and 5 show a typical stress-local strain response of a notched panel
and a corresponding series of optical micrographs taken during the test. Initially, the
response was linear, with non-linearity occurring at a stress of 450 MPa. At a
slightly higher stress (590 MPa), a plastic zone was observed at the notch tip (Fig. 5a).
Upon further loading, the length of the plastic strip increased stably, reaching
~ 3 mm at a stress of ~ 750 MPa. The specimen was subsequently unloaded for
further examination. The local strain at the notch tip was ~ 5%: considerably higher
than the fracture strain measured in the unnotched tensile specimens (~ 1%). The
ultimate tensile strength of a siniilar specimen was ~ 850 MPa.

Examinations of specimens interrupted prior to fracture showed that all of
the fibers contained within the plastic strips had been broken. Figure 6 shows one
such example, from a specimen with a notch of length, 2a5 = 3 mm. In this case, both
the plastic strip and the "plane” of fractured fibers follow the same, somewhat
non-planar, path. The specimens containing circular holes exhibited similar
patterns of plastic strips and fiber failure prior to catastrophic fracture.

Fractographic examinations showed that minimal fiber pullout occurs during
the fracture process (Fig. 7). The pullout length is *vpically < 100 pm (i.e. one fiber
diameter).

The trends in tensile strength G with notch or hole size, 2a,, are summarized
in Fig. 8. Evidently, the strength drops quickly with a in the regime
0 <2ap < 1.5 mm. For larger values, 2a, 2 1.5 mm, the strength continues to decrease,

though at a much slower rate. The specimens containing holes exhibited similar
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trends, though the strengths were slightly higher than those corresponding to
notches of the same size, by ~ 6-7%.

The results of the work of rupture test are shown in Fig. 9. Combining these
measurements with Eqn. 7 yields a toughness, I' = 72 k] m-2. In this configuration, a
similar process of plastic yielding was observed ahead of the notch tip. Once a crack
had formed, it propagated stably across the specimen along a mode I path, resulting
in a relatively smooth, continuous load-displacement curve.

The measurements of plastic zone width, hp, and local displacement at
fracture, , are summarized in Fig. 10. A typical optical micrograph used for
measuring hp and & is shown in Fig. 11. The values of both parameters are
independent of the specimen size and the specimen confirmation (notch vs. hole),
with average values, hp ~ 0.9 mm and & = 80 pm.

Figure 12 shows the results of a tensile test conducted on a specimen
containing a plastic strip within which all fibers had been broken. The results are
presented in the form of stress vs. displacement (not strain), since virtually all the
inelastic strai';tv was localized within the previously yielded strip. In this test, the
response was essentially elastic-perfectly plastic, with a "yield stress" of
~ 800-850 MPa (approximately one half of the unnotched tensile strength). The
inelastic displacement at fracture was ~ 40 um. As expected, this value is lower than
that measured on the notched tensile specimens (Fig. 10), a result of the prior

inelastic deformation occurring during the development of the plastic strip.

5. ANALYSIS

51 Preliminary Assessment

A preliminary assessment of the trends in notch strength was made using

two simple modeling approaches. The first was based on the Griffith relation
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(Eqgn. 1). Figure 8 shows the predicted trends in strength with notch size for values of
I ranging from 5 to 30 k] m 2. The second approach was based on the classical
Dugdale model (Eqn. 5). The predicted trends are also shown in Fig. 8, taking G, to be
equal to the unnotched tensile strength (G, = 1590 MPa) and I to range between 5
and 30 k] m-2, as before. It is apparent that neither approach provides even a fair
representation of the experimental measurements. This disparity between
experiment and theory provides the motivation for the subsequent modeling effort.
Moreover, it demonstrates that the trends in tensile strength with notch length

cannot be used to infer the composite toughness.
5.2  Proposed Bridging Traction Law

The present measurements and observations suggest that the notch strength
characteristics of the Ti/SiC composite can be rationalized in terms of a bridging
traction law having the features shown on Fig. 13. In this law, the stress initially
increases with displacement, analogous to the stress-strain response measured in a
uniaxial tension test. At a critical stress, Sy, taken to be the unnotched tensile
strength of the composite, Go, the fiber bundle within the bridging zone fails,
causing the stress to drop rather precipitously with increasing crack opening
displacement. The corresponding critical displacement, 1, depends on the width of
the plastic strip (being the effective gauge length) and the fiber failure strain, in
accordance with Eqn. 8. Upon further crack opening, the bridging stress reaches a
saturation level, dictated by the yield stress of the metal and the "pullout”
contribution from broken fibers (detailed later). At a yet larger crack opening
displacement, the local strain reaches the failure strain of the metal, leading to the
formation of a matrix crack and a loss in bridging.

For modeling purposes, it is convenient to represent this behavior by a two

level bridging traction law, shown schematically by the dashed lines in Fig. 13. Each
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of the two parts of the traction law are characterized by a strength (51 or S2) and a
critical displacement (81 or 82). The total (or steady state) fracture energy, obtained

using the J-integral, is

5,
r = L 6,déd =T, + I, (9a)

where I'1 and I'; are the areas contained within the top and bottom parts of the

traction law, given by

n = (5-5)% (9b)
and

L = 598 9¢)

A preliminary assessment of the proposed traction law can be made by
comparing the total fracture energy, computed using Eqn. (9) along with the
measured values of the traction law parameters, with the value obtained through
the work-of-rupture test. The experimental measurements indicate that
S1 = Go = 1590 MPa, S, = 850 MPa (Fig. 12), and 02 = 80 um. Moreover, combining the
plastic zone width, hp = 0.9 mm, and the unnotched tensile fracture strain, €= 1%,
with Eqn. 8 yields 8; = 9 um. Equation 9 thus predicts a fracture energy, I' =71 k] m*2,
essentially identical to the value obtained experimentally (I" = 72 k] m-2). This

correlation provides some initial confidence in the proposed traction law.

5.3 Model of Notch Strength
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For the purpose of modeling the notch-strength behavior of such a material,
the two-level rectilinear law was incorporated into a fracture mechanics model,
shown schematically in Fig. 14. In the model, the composite panel is taken to be
infinitely large and contain a sharp, through-thickness notch of length, 2a,. The
panel is loaded remotely with a uniform tensile stress, 0. The material is assumed to
be linearly elastic, except within the plastic strips formed ahead of the notch tips.
The stress intensity factor K at the tip of the plastic zone is taken to be zero, such that
the material possesses no intrinsic toughness. Two relevant "crack lengths" are
identified. The first, 2aj, represents the point at which the crack opening
displacement § reaches the critical value, 8;. Ahead of this point, the tractions on
the crack face are given by Sy, and behind it, by Sz. The total crack length (notch and
plastic strip) is designated 2a2, and the crack opening displacement at the notch tip is
designated D.

Two regimes are considered, governed by the value of D. In the first, D < &y,
such that the model reduces to the classical Dugdale-Barenblatt model, with a
uniform bridging stress, S1. The plastic strip thus extends according to34

cos™! (9—"—)
a, (10)

with a crack opening displacement at the notch tip of

QS

S
5y

(11)
The maximum stress is obtained by combining Eqns. 10 and 11 and setting D = §;. In
the second regime, D lies in the range 8; < D < &, such that the plastic zone consists

of two parts. Along the part of the crack plane defined by a, < | x| < aj, the bridging
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stress is Sy, and, in that part defined by a; < Ix| < az, the bridging stress is Sy, as

noted earlier. The stress-crack length relations are obtained from handbook
solutions of stress intensity factors and crack opening displacements!3. In

non-dimensional form, the relevant solutions can be expressed as

S, E s, .S
21— = § - f 2 f =2

ca, ' %6 ‘o (12)

K S8 &

o+xa, B~ 87 e (13)
and

DE S S

= h, - h -—l—h 22
ca, 1 2 g (14)

where the parameters fj, gj and h; are functions of the crack length ratios, a1/a, and
az/ao, and are listed in the Appendix. Recognizing that K = 0 allows Eqn. 13 to be
re-written as

- B 85
91 g S (15)

la

which, combined with Eqn. 12, gives

6, E (gz g3 Sz) S,
= | 2L 4 23 2 |f -~ - f =<
8 8 5 1~k ok S, (16)

The stress-crack opening displacement curve is obtained by incrementally

stepping through values of a1/a,, starting with the one evaluated using Eqn. 11 with
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D = 8;. At each point, the ratio az/a, is evaluated by numerically solving Eqn. 16,
and the result then combined with Eqns. 12 and 14 to get G and D, respectively.

Figure 15 shows illustrative examples of the trends in ¢ with D for a strength
ratio, S1/52 =2, and a toughness ratio, I'1/T2 = 0.1. For reasons that will become
apparent in the subsequent section, the toughness ratio I'/T"; is designated A,
analogous to Eqn. 6. Three types of behavior are obtained, governed by the
normalized notch length, a. (i) For very small notch lengths (0t << 1), the
maximum stress is reached almost immediately after D exceeds &;. In this case, the
ductility of the matrix (manifested in the critical displacement, 8;) does not increase
the notch strength of the composite. (ii) For intermediate sized notches, the
maximum stress occurs at a value of D that is substantially larger than 8.
Consequently, composite fracture does not occur immediately following the onset of
fiber failure. Here, the matrix ductility provides some enhancement in tensile
strength. (iii) For very long notches (0 >> 1), the maximum stress is obtained when
the matrix fails, i.e. D = 8,. The relationship between strength, G, and notch length,
@, is obtained from the maximum points in these curves.

Figure 16 shows the predicted trends in strength with notch length, for
$1/52 =2 and I'1/T"2 ranging from 0 to 0.2. Also shown are the values obtained
experimentally. The comparisons show that the predictions are in close agreement
with the measurements for I'1 /T2 in the range ~ 0.03-0.1. The inferred value of
I'1/T2 is comparable to the one calculated using the values of Sy, Sz, 81 and 8 quoted
above: I'1 /T2 ~ 0.09.

Because of the similarities in the strength characteristics of the specimen
containing holes and notches, no calculations were conducted for holes. The
similarities are consistent with previous calculations which show that the strength
of materials that exhibit bridging is insensitive to the shape of the discontinuity,
provided the bridging lenguu scale is sufficiently large compared with a,. Indeed, for
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the entire range of hole and notch sizes used in this study, the normalized notch

size lies in the range & < 0.5 (Fig. 3).
54  An Alternate Approach

It is instructive to consider an alternate description of the fracture resistance:
one that leads to a simpler solution to the notch sensitivity. For this purpose, it is
noted that the energy dissipated in the top portion of the traction law is small in
relation to the total. (i.e. I’} /T2 ~ 0.05). Moreover, the critical displacement & is

small in relation to 8;. Consequently, the energy dissipated in the top portion can be

lumped into an intrinsic fracture energy, I',, whereupon
I, =T, = (Sl ‘52)51 17

The fracture resistance can thus be characterized by I'y in combination with a
single-level rectilinear bridging traction law, with a characteristic strength, S5, and a
critical displacement, &,. The toughness derived from bridging is thus

I, =T, = 85,9, (18)

and the toughness ratio is again defined by A = I'o/T%.

The notch strength of such a system can be evaluated following the approach
presented in the preceding section, with two modifications. First, since the stress
along the entire bridged zone is uniform, a; is equivalent to a,. Second, the crack tip
stress intensity factor is finite and taken to be equal to the intrinsic fracture
toughness, YT, E. In this case, Eqns. 12-14 reduce to
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5 cos™ (32)
\] o a, (19)
8 2 aZ
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The stress-crack opening relation is obtained by incrementally stepping through

and

values of az/a,, starting from zero. At each point, the stress G is evaluated from
Eqn. 19 and the result combined with Eqn. 20 to obtain D. Figure 15 shows
comparisons of the predicted trends in G vs. D with those obtained from the
two-level rectilinear law. Evidently, the two solutions provide essentially the same
results for D/&, > 0.1.

Figure 16 shows the predicted trends in strength with notch length, again for
values of A ranging from 0 to 0.2. Over the range of interest (0. 2 0.1, A < 0.1), the
predictions are essentially identical to those of the two-level bridging law. For
smaller values of @, the model predicts a strength-notch length relation of the form

1 T ao Sf (21)

in accordance with the Griffith equation. In this regime, the model strongly
overestimates the notch-strength of the composite. Consequently, the two-level
bridging law is required to capture the relevant trends.

It is of interest to note, parenthetically, that a conservative estimate of the
notch strength can be obtained by assuming A = 0, whereupon both models reduce to
the Dugdale-Barenblatt model (Eqn. 5), with the bridging stress replaced by S, = $3/2.
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6. DISCUSSION

The present measurements allow some rudimentary connections to be
established between the parameters involved in the traction law and the properties
of the composite constituents. Such connections are important in understanding the
role of microstructure in composite behavior and provide guidance for the
development of new materials.

As noted previously, the peak stress, 53, is equivalent to the unnotched
composite tensile strength, Go. This strength is controlled by the matrix yield stress
and the in-situ fiber bundle strength, as described in a companion paper?. For this
class of composite, the fiber bundle strength is independent of gauge length,
provided the gauge length exceeds a critical value,

¢ - [SRLEY™
N 1

(22)
where 7 is the interfacial sliding stress, R is the fiber radius, S, is the reference
strength corresponding to a length L, in the Weibull distribution, and m is the
Weibull modulus. In the Ti/SiC composite, the critical length is of the order,
{c = 2 mm: being approximately twice the relevant gauge length in the bridging
process, namely, the plastic zone width, hp. Simulations of fiber bundle failure for
gauge lengths in the range 0.5 < £/{; <1 suggest that the tensile strength is elevated
only slightly (~ 5-10%) over the value corresponding to a long gauge length
(£/4c 2 1)12, Consequently, Sy, is expected to be essentially the same as the tensile
strength measured on a standard tensile coupon.

Bounds on the strength, S, characterizing the post-fiber failure regime, can be
established in the following way. An upper bound estimate is obtained by taking the
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average stress acting across a hypothetical crack plane passing through the middle of

the plastic zone, whereupon
S, = (1-floy + £ 6 (23)

with 6{ being the average fiber stress resulting from fiber/matrix sliding following
fiber fracture. For simplicity, the fiber failure sites are assumed to be randomly
distributed within the plastic zone, with an average distance between the fracture
sites and the hypothetical plane of ~hp/4 (Fig. 17). Using a simple shear lag model,
6{ can be approximated by

Using the relevant measurements (hp = 800 pm, R = 50 um, T = 130 MPa,

0’,’;‘ = 1000 MPa) yields a value of strength, S; = 1000 MPa, somewhat higher than the
measured value (850 MPa). This discrepancy may be attributed to the pullout
distances being less than hp/4 (~200 um), as manifest in the relatively short pullout
lengths measured on the fracture surface (<100 pm). A lower bound estimate is
obtained by neglecting the pullout contribution derived from broken fibers,

whereupon the strength reduces to
S; = (1-f)op (25)

This result predicts a value of strength, Sy = 680 MPa, somewhat lower than the
measured value.
The critical displacements, 8; and &, are both expected to scale with the width

of the plastic zone. As noted earlier, 81 is governed by the strain at fiber bundle
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failure, in accordance with Eqn. 8. Similarly, 82 scales with the ductility of the

matrix, €m, according to the relation
& = &m hp (26)

Combining the measured values, 82 = 80 um and hp ~ 0.9 mm, with Eqn. 26 yields
an estimate of the matrix ductility, €m = 9%, in agreement with values reported for
similar Ti alloys [8- 10%]14.

The origin of the plastic zone width is presently not understood. It is
speculated that it may be controlled by the panel thickness (= 1mm), as it is in thin

ductile sheets2. This hypothesis requires experimental verification.

7. CONCLUDING REMARKS

The present study demonstrates that the notch-strength characteristics of
fiber-reinforced Ti matrix composites can be described using crack bridging models,
similar to those used to describe the behavior of ductile metals and ceramic matrix
composites. The parameters controlling the bridging traction law have been
measured and found to provide a consistent description of both the notch
sensitivity and the steady state composite toughness. The two models considered
here (one based on the two-level rectilinear bridging law and the other on the
rectilinear law with a finite intrinsic toughness) yield similar predictions for notch
sizes that are relevant in structural design (2ap > 1 mm). Owing to its simplicity, the
latter model is preferred. The models are computationally relatively simple, making

them amenable for use in design.

T1:MS37(December 27, 1993)3:13 PM/mel




ﬁf

ACKNOWLEDGMENTS

Funding for this work was supplied by the DARPA University Research
Initiative Program at UCSB under ONR contract N0014-92-]-1808.

TI:MSI7(Docember 27, 1993)3:13 PM/mef

_




Tablel Summary of Tensile Test Results

Hole or Notch | Specimen Width,| Ratio, | Ultimate Tensile
Size, 2a (mm) 2W (mm) ap/W | Strength, Gy (MPa)
Unnotched — 6.0 _ 1590 + 100°
Hole 0.6 12.0 0.05 1210
Hole 0.6 3.0 0.20 1180
Hole 1.5 7.5 0.20 980
Hole 3.0 15.0 0.20 910
Hole 6.0 30.0 0.20 860
Notch 1.5 7.5 0.20 910
Notch 3.0 15.0 0.20 850
Notch 6.0 30.0 0.20 810

" Average and standard deviation from 8 tests.
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APPENDIX

The geometric parameters, f;, gi and h;, in Eqns. 12-14 are given by13
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where 7|1 and 1)z are normalized crack lengths defined by

™ = a1/a

and N2 = ax/a,
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NOMENCLATURE

2a, Notch width, or hole diameter .

2aj Crack length at & = 6

2a2 Total length of notch and plastic strip

c Flaw size

D Crack opening displacement at notch tip

E Young's modulus

fi, gi, hi Geometric parameters (Appendix)

hp Plastic zone width

K Crack tip stress intensity factor

L Critical (transfer) length

1o Reference length (1 m)

m Weibull modulus

P Load

R Fiber radius

So Reference strength, corresponding to Lo =1m
S1,S2 Bridging stresses in two-level rectilinear law
t Panel thickness |

w Half width (width for edge notched specimen)
o Normalized notch length (a, 52 /TE)

L) Crack opening displacement (COD)

o1, Critical values of § in bridging traction law
O¢ COD needed for fiber fracture

& COD needed for matrix fracture

TEMS37(Decsmber 27, 1993)3:13 PM/mef
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Fiber failure strain

Matrix failure strain

Fracture energy

Components of fracture energies from bridging
Fracture energy derived from bridging
Intrinsic toughness

Toughness ratio

(A=T'o /T for rectilinear law, A=T"y /T2 for two-level rectilinear law)
Remote tensile stress

Bridging stress

Notched tensile strength

Unnotched tensile strength

Matrix yield stress

Yield stress of monolithic metal

Interfacial sliding stress

71:MS37(Docember 27, 1993)3:13 PM/mef
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FIGURES

Fig. 1

Fig. 2

Fig. 7

Fig. 8

Fig.9

Fig. 10

Fig. 11

Fig. 12

Predicted trends in notch-strength with normalized notch size for several
different forms of the bridging traction law.

Influence of the intrinsic toughness I', on the notch-strength characteristics
for the rectilinear bridging traction law.

Effects of circular holes vs. sharp notches on strength.
The stress-local strain response of a specimen containing a 6 mm notch.

Optical micrographs showing the progression of plastic strip development.
The labels A, B, and C correspond to the stress levels shown in Fig, 4.

Comparison of (a) the plastic strip ahead of a notch tip, with (b) the pattern
of fiber fracture following matrix dissolution. The micrographs show
identical regions of the specimen.

SEM micrograph showing degree of fiber pullout.

Trends in tensile strength with hole or notch size. Also shown for
comparison are predictions based on the Griffith equation and the Dugdale
model.

Load-displacement curve measured on work-of-rupture specimen.

Trends in (a) plastic zone width, hp, and (b) local displacement at fracture,
O¢, with hole or notch size.

Optical micrograph showing plasticity around the hole following fracture.

Tensile tests of specimen containing plastic strip with broken fibers.
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Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Schematic diagram of the proposed traction law governing fracture in the
Ti/SiC composite.

Schematic diagram of the crack bridging model.

Predicted stress-crack opening curves for the two traction laws: (i) the
two-level rectilinear law, with no intrinsic toughness (I'p = 0), and (ii) the
rectilinear law, with an intrinsic toughness, I'.

Comparisons between experimental measurements and predictions of
models based on (i) the two-level rectilinear traction law, (ii) and the
simple rectilinear law, with an intrinsic toughness T

Schematic diagram showing contribution from matrix yielding and fiber
pullout on the composite strength in the post-fiber failure regime.
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LOCALIZATION DUE TO DAMAGE
IN TWO DIRECTION
FIBER REINFORCED COMPOSITES

Frangois HILD
Per-Lennart LARSSON
Frederick A. LECKIE

Abstract: Fiber pull-out is one of the fracture features of fiber reinforced ceramic matrix
composites. The onset of this mechanism is predicted by using Continuum Damage
Mechanics, and corresponds to a localization of the deformations. After deriving two
damage models from a uniaxial bundle approach, different configurations are analyzed
through numerical methods. For one model some very simple criteria can be derived,
whereas for the second one none of these criteria can be derived and the general criterion

of localization must be used.
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1. Introduction

Ceramic Matrix Composites (CMC'’s) can either be reinforced by fibers in one direction or
by fibers in two directions. The aim of this paper is to study composites reinforced with fibers in
two perpendicular directions by extending a previous study on CMC’s with fibers in one direction
(Hild et al., 1992).

The rupture of most of the CMC's involves two separate failure mechanisms. The first
mechanism is matrix cracking. The matrix cracks develop and their density saturates as the load
level increases. The second mechanism is fiber breakage accompanied with fiber pull-out.
Enventually, the final rupture will take place around one of the matrix cracks: it correponds to
localized fiber pull-out due to fiber breakage. The occurrence of this mechanism corresponds to
the appearance of a macro-crack and will be described by a localization of the deformations. The
initiation of macro-cracks in a structure during service often constitutes the early stage of the final
failure of the structure. Starting from a material that is assumed free from any initial defect, the
initiation of macro-cracks can be predicted using Continuum Damage Mechanics. The driving
force is fiber breakage, which is accompanied by d/-tributed pull-out. The approach using
localization has successfully been used for ductile materials (Billardon and Doghri, 1989a,b;
Doghri, 1989). The initiation stage is considered as the onset of a surface across which the velocity
gradient is discontinuous. Under small deformation assumptions, this phenomenon is mainly
driven by the damage mechanism that causes strain-softening. For CMC's, the damage mechanism
is related to fiber breakage, and the damage variable describes the percentage of broken fibers (Hild
et al., 1992).

Although localization can be studied at the scale of fibers bonded to a matrix through an
interface (Benallal et al., 1991a), i.c. at 2 micro-level, localization also can be analyzed at a meso-
level, when the material is assumed to be homogeneous. Continuum Damage Mechanics, which
represents a local approach to fracture (Benallal et al., 1991b), constitutes an efficient tool for this

purpose. The progressive deterioration of the material is modeled by internal variables defined at
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the meso-level. These variables are called damage variables. The damage state and the evolution of
these variables is obtained through a uniaxial study based on fiber breakage (Coleman, 1958; Curtin
1991). A 2-D plane stress analysis is performed based on an extended model. The loss of

uniqueness and the localization are studied for shear free states. A criterion referring to a critical

value of the damage or to a maximum normal stress can describe the localization, which constitutes

an objective criterion, from a design point of view.
2. Localization and Loss of Uniqueness

The failure at a meso-level, with the initiation of a macro-crack, is defined as the bifurcation
of the rate problem in certain modes, viz. the appearance of a surface across which the velocity
gradient is discontinuous (Billardon and Doghri, 1989a). This phenomenon is referred to as
localization, and corresponds to the failure of the elliptic”. condition. The condition of localization
can also be compared to the loss of uniqueness of the ra*~ oroblem.

Stationary waves were studied by Hadamard (1903) in elasticity, by Hill (1962) and Mandel
(1962) in elasto-plasticity. Rice (1976) related the localization of plastic shear bands to jumps of
the velocity gradient. Borré and Maier (1989) have given necessary and sufficient conditions for
the onset of modes inside the body, who extended the results given by Rice (1976) and Rice and
Rudnicki (1975, 1980).

Under small strain assumption and in elasticity coupled with damage, the behavior of a

material is assumed to be described by the following piece-wise linear rate constitutive law

G =) 1)
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where G and érespectively denote the stress and strain rates, E and H are fourth rank tensors, E is

assumed to be positive definite, and D is either a single damage variable or a set of damage
variables.

Localization occurs inside the body, if and only if (Rudnicki and Rice, 1975; Borré and Maier,
1989; Benallal et al., 1991a)

Det (n.H.n)=0 for a vector n#Q and at a point inside a structure Q (2)

This criterion comesponds to the failure of the ellipticity condition of the rate equilibrium equation;
it also can be used as an indicator of the local failure of the material, at a meso-scale (Billardon and
Doghri, 1989a).

Furthermore, any loss of uniqueness, considered as bifurcation of the rate boundary value

problem, is excluded provided

T:£>0 (3

In this study, the quantity that defines loss of uniqueness and localization is the linear tangent

modulus H. In the following, we analyze loss of uniqueness and loss of ellipticity (i.. localization)

for states when

{811 =0 €n @

€12=0
The parameter « is referred to as the strain ratio and its inverse is denoted by B. These particular

states only are considered. When the hypothesis of Eqn. (4) is satisfied, the non-vanishing

components of the vector n are n) and ny, and the matrix A = n.H.n reduces to (Ortiz et al., 1987)
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e —

nlzﬂllll"’n%HlﬂZ nn2(Hy212+H1122)
A= (5)
nin2(H1212+H2211) nfﬂlzlz'*ngﬂmz

If we rewrite (n},n7) = (cos0,sin0), X = tan29, then the localization condition is equivalent to finding

real positive roots of the following equation

aX2+bX+c=0 (6)
with

a=Hj212H2222

b = Hi111H2222 — H1122H2211 — Hi122H1212 = H2211Hi212 )

c=Hp212H1111

If real positive roots are found, then the localization direction is perpendicular to the vector
(n1,n2,0) = (cos0,sin0,0), characterized by the angle 8 (Fig. 1). The values of Hj111, H2222, Hi122,
H2211 and Hj212 are model dependent and specific models are now developed.

3. Constitutive Laws

This sectio:: is concerned with the development of two constitutive laws in the case of
CMC’s reinforced in two perpendicular directions. At constant temperature, the behavior of a
CMC reinforced by unidirectional fibers in the x3-direction (see Fig. 1) can be characterized by the
Helmholtz free energy density y», which is a function of the state variables €11, €27, €12, and the

damage variable D2 in the x2-direction
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Y2 = PY(€)1,€22,€12,D2.f2.k2) 8)

where D7 represents the fiber degradation in the x2-direction, E2 the Young’s modulus in the
x3-direction, V)7 the Poisson’s ratio, k3 the ratio of the Young’s modulus in the fiber direction (E2)
to the Young’s modulus in the transverse direction (E1), and Gy2 the shear modulus. It is worth
noting that the elastic quantities depend on the volume fraction of fibers. The expression for the

general Helmholtz free energy density y is given by

x2 + 2vy2k(1—d)xy + ky?
k {1-vik(-0) }

pY(x,y,z.d.f k) =§%(Q [ ] +2Gp22 9)

where p is the material density, x,y,z are dummy variables representing strains, d damage, f volume

fraction, and k Young's moduli ratio. The stresses and the thermodynamic force Y2 associated to the
damage variable D, are derived from the Helmholtz free energy density 2 as follows

oy2 oy

11 =p§-€l-l— O'22=pa—e'2—2' 2012=p§€E (10)
Y2=Pg%%

The explicit expressions for the stresses related to the strains and the damage variable modeling the
fiber degradation in the x2-direction are given by

ka[1-v(1-Do)ky]
_Ex(1-Dy)

22 = —— (€22+V12€11) an
1-v(1-Da)ky

C11 [€11+V12(1-D2)k2€27]

C12 =2G12€12

6/02/93 Localization due to damage in two direction fiber reinforced composites (revised version) 7




The damage state of fibers in the x2-direction, D2 can be related to the stress (and is denoted
by D) or strain state (and is denoted by D). The relationship is either implicit in terms of the

normal stress in the x-direction (model #1)

m+1 .
D(;):l—exp[—{(l—l)%z')z')?zg} ] if€x>0and€p>0 (12)
-DY <

where m is the shape parameter of 2 Weibull law (Weibull, 1939), G the characteristic strength
(Henstenburg and Phoenix, 1989), and f3 is the volume fraction of fibers in the x2-direction; or

explicit in terms of the normal strain in the x2-direction (model #2)

m+1 .
D?)=l-exp[— (%22-) ] ife>0and €22 >0 (13)

where £ is related to the characteristic strength O by O = Ef €; (Ef is the Young’s modulus of
the fibers). Both models describe the same material behavior when subjected to uniaxial tension.
However the models give different predictions for multiaxial loading states (Hild et al., 1992). Itis
worth noting that the damage evolution laws are a priori independent of the volume, since we
assume that the local behavior of the fiber degradation is not dependent on the total length of the
fiber (Curtin, 1991). This type of behavior is observed when distributed pull-out happens in
conjunction with fiber breakage, and it can be shown that in most practical cases, the statistics
driving the fiber breakage is independent of the total length of the composite. On the other hand, if
the composite length becomes very small, a length dependence is found again, and in this case the
evolution of the damage variable is mainly given by a fiber-bundle-type of behavior, which leads to
replacing m+1 by m, the characteristic strength G by G (L/Lg)/m, where Gy is the scale parameter
of a Weibull law, and the scale strain € by € (L/Lg)}/™ , where Ly is the gauge length at which the
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scale parameter has been identified, and Go = EF €. Since the resuits are the same for both damage
evolution laws when the previous permutation is used, we will just express them in the case when
the model is length independent, which is the most relevant in practice.

If the fibers are in the x;-direction then the breakage can be modeled by a damage variable
denoted by D;. Using Eqn. (9), the Helmholtz free energy density py is given by

PV = pY(E2.€11.€12.D1.f1.k1) (14)

If the fibers are in both xj- and x3-directions, then we assume as a first approximation that

the total specific Helmholtz free energy py2 is given by a law of mixture of the Helmholtz free

energy densities in the x;- and in the x2-directions
pV12 = (1-Npw) + fpya (15)

where f is the fraction of fibers in the x3-direction (f=f2/(f1+f2), and where f; and f> are the volume
fraction of fibers in the x;- and x3-direction, respectively). This assumption also corresponds to a
Lin-Taylor Hypothesis. The evolution of the stresses is given by

V12 _
o1 P3en = (1-)S11 + £S12
<522=ng:—%2 = (1-)S2; + S22 (16)
012=P'a;'31%2 =2G12€12

where the explicit expression for S;j is given in appendix 1, and the corresponding thermodynamic
forces associated to the two independent damage variables Dy and Dj are
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¥1=p 352 - 1-np JhL an
Yz*9?1%21—%&’?1)&2

Again, the evolution of the damage variables can either be implicit in terms of the respective normal
stresses (model #1)

' ‘m+l .
DP = 1-exp|-{—ci—}" | ifen>0andé; >0 (18)
L(l‘Dl )floc‘
s -
m+l1 N
D(21)=1—exp - 4 92 . if€En>0and€x >0

L(1"])(21))f2(7c ‘

or explicit in terms of the respective normal strains (model #2)

m+l- .
D(lz) =1- ex{-— (-eé;l) if€;>0and €;; >0 (19

m+] .
DY =1- exp[- (52—2) if €2 > 0 and €2 > 0

It is worth noting that we assume that the statistical properties of the fibers are supposed to be
identical in both directions. This hypothesis will be maintained throughout the paper since
generalization would be straightforward. Both models are studied for shear free states when the

strain ratio & (see Eqn. (4)), and thus its inverse B are given.

3.1. Failure Criteria for Model #1
For model #1, the evolution of the damage variables is implicit in the sense that D(ll)

(respectively D(zl)) is a function of the normal stress G;; (respectively G27) and the damage variable

6/02/93 Localization due 10 damage in two direction fiber reinforced composites (revised version) 10




D(ll) (respectively D(zl)) itself. The evolution is therefore computed by a numerical scheme based

upon a Newton method. To study localization and loss of uniqueness, we need to compute the

tangent operator, which takes the following form

[(1-DF1y + fF12] (1 + fF52F72) — fF20F73 [(1-f)F4) + fF42]
[1+ fF21F72 J(1 + fFs52F72) — f(1-DF22F72F51F7)
_ [(A-NFe + fFe2] [1 + (A-OF21F71] - (1-OF51F7; [(1-)F4) + fF43)

Hun=

Haz [1 + fF21F72 J(1 + fFs2F7) — f(1-DF22F72F51F71
Hyqgp = LA=DF41+ Fag] A + fF5oFg) — FagFy [(1-OF1 + e 20)
[1 + fF21F72 J(1 + fF52F72) — f(1-f)F22F72F 51F71
Hopyg = [(1-f)F4) + fF42] [1 + (1-DF21F71) — (1-HFs51F7; [(1-D)F1; + fF12]
[1 + fF21F72 1(1 + fFs2F72) — f(1-f)F22F72F s1F 71
Hj212=2G;2

where the explicit expressions for Fj; are given in appendix 2.

The loss of uniqueness and localization are investigated when the fiber fraction f and the
strain ratio o vary. Although analytical results cannot be derived from criterion (2) in the general
case, some simple resuits can be found when fis equal to O or 1. In these cases, the criteria derived
by Hild et al. (1992) apply. If f is equal to O (fibers only in the x;-direction), then localization and
loss of uniqueness occur at the same load level when

pW -1

=Dc=1- cxp(a-"_—1

)l/(m+l)
2n

O11=0u1 =f) Gc((m—,,,f)'g
2
0'“1

Yi=Yes———

where the stress Oy corresponds to the ultimate tensile strength in the x1-direction. It is worth

noting that the three previous criteria are easier to compute than the general criterion (2). The
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direction of localization is 8 = 0°, i.e., a localization surface perpendicular to the fiber direction . If
is equal to 1, the same kind of result apply and the direction of localization is 8 = 90°, i.e., a
localization surface again perpendicular to the fiber direction . When f#0 and 1, these results
cannot be proved. However the computations show that loss of uniqueness and localization can be
described very accurately by the two following criteria

Max@{",DP) =D, = 1- exp(m) (22)

C11=0y1 or G2=0p (23)

when the fiber properties are the same in the two directions. The maximum error is .5% in terms of
criteria (22), and (23).

Criterion (22) shows that for model #1, maximum damage at localization depends only on
the Weibull exponent of the fibers. Furthermore, criterion (23) shows that the maximum normal
stress O (respectively G22) depends only on the volume fraction of fibers in the x)- (respectively
x2-) direction and on the fiber characteristics. This result is consistent with some experimental
observations on woven carbon matrix composites reinforced with SiC (Nicalon) fibers (Heredia et
al,, 1992). On the other hand, the localization angle is dependent on the fiber percentage f (see Fig.
2). When the fiber percentage f and the sign of the strains €11 and €27 are constant, the variaton of
the localization angle is due to the fact that the maximum tensile stress is either reached in the x3- or
in the x2-direction.

Moreover, if the strain ratio a is different from 0 and 1 then there is a complete symmetry
of the results. If the strain ratio a, the strains €;) and €2 are positive, changing a into B, f; into f),
changes f into 1-f, and alters the absolute value of the localization angle 10] into 7t/2 - 18 and keeps
the maximum stresses and damage levels constant. These two properties are referred to as
symmetry properties, and are mainly due to the features of Eqns. (4), (8), (14) and (15).

When the strain ratio o is equal to 1 and the fiber percentage f is equal to .5, the localization
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angle is undetermined. This is due to the vanishing of the three constants a, b, and ¢ in Eqn. (6), for
Hi111 = Hi122 = H2211 = H2222 = 0. Any value of the angle 0 satisfies Eqn (6). This
phenomenon can be observed when the fiber percentage f is different from 1: if 0y = Oy and O
= Oy simultaneously, then D(ll) = D(zl) = D¢, and Hyq111 = Hy122 = H2211 = H2222 = 0. This
particular result shows that in terms of this model, for a given strain ratio «, it is possible 10
optimize locally a CMC reinforced by fibers in two perpendicular directions. Indeed, in terms of
fiber breakage, a condition Gy; = Gy and G722 = Oy2 leads to an optimum of the fiber behavior in
both directions.

Model #1 constitutes a straightforward generalization of the fiber bundle models studied by
Krajcinovic and Silva (1982), and Hult and Travnicek (1983). Finally, a shear stress has no
influence on all the previous results since we assumed no coupling between the damage variables

and the shear strain or stress for both model #1 and #2.
3.2. Study of Localization with Model #2

For model #2, the evolution of the damage variables is explicit and therefore is easier to

compute. The tangent operator takes the form

Hun = 1-H(F11—- F21 F31) + fF12

H2222 = (1-f)Fe2 + f(Fa2— F52 F32)

H1122 = (1-H)F4) + f(Fa2- F22 F32) (24)
H2211 = (1-f)(F4)- F21 F31) + fFa2

Hi212=2Gy2

where the explicit expressions for F; are given in appendix 2. As shown in the case of fibers in

only one direction (Hild et al., 1992), the localization criterion cannot be described by some simple
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criteria as those given by model #1. When fibers are in both directions the latter results are
confirmed. A first consequence is that an optimization procedure can be performed since the
maximum stress at localization, and the maximum damage at localization are dependent on both the
strain ratio & and on the fiber percentage f.

Since the elastic law given in Eqns. (16) is identical for both models, the symmetry
properties apply also for model #2 (see Figs. 3, 4, and 5). It can also be noticed that the maximum
stress at localization varies with the fiber fraction f and with the strain ratio o.

In the experiments reported by Heredia et al. (1992) the stress at localization was given by
the ultimate tensile strength corresponding 10 the volume fraction of fibers in the same direction.
This is not found by using model #2. Indeed, in a tensile test, when f] = f3 =.5 the maximum stress
072 normalized by the ultimate tensile strength G2 is given by .63, whereas the same tensile test
when f] =.0 and f2 =.5 would give a normalized tensile strength G22/Gy2 equal to 1. On the other
hand, the damage at localization D7 normalized by the critical damage D¢ is equal to 1.04 when f;
=5 and f2 =.5 and is equal to 1. when f} =.0 and f =.5.

It is too early to draw a final conclusion, but it seems that the predictions of model #1
correspond more to reality than those of model #2. On the other hand, model #2 turned out to give
results very close to model #1 when applied to structures with fibers in one direction (Hild et al.,
1992). This will be addressed in the case of structures with fibers in two perpendicular directions

such as spinning discs.

4. Conclusions

Using a one-dimensional study of fiber breakage modeled by a single damage variable, two
models are derived. Both of them are then generalized to a 2-D plane stress analysis, with fibers in
two perpendicular directions. Whereas model #1 constitutes a straightforward generalization of the
elementary study, model #2 exhibits different features. Indeed, loss of uniqueness and localization

can be described by some very simple criteria referring to Continuum Damage Mechanics for
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model #1. Conversely, these simple criteria do not apply for model #2. Physically, model #1 gives
a better description of some experimental rends observed in the case of a carbon matrix reinforced
with silicon carbide (Nicalon) fibers in two perpendicular directions. On the other hand, model #2
is easier to compute, and when applied to the study of spinning disc with fibers in one direction, it
leads to load levels at localization of the same order of magnitude as model #1 (Hild et al, 1992).
Lastly, this study shows that the localization for model #1 can be described by using
criterion (23) derived from the general criterion of localization (2). This criterion can also be used
for a computation in elasticity and may turn out to be sufficient in first approximation to predict
load levels at which at macro-crack initiates, instead of using a computation in elasticity coupled

with damage. This work is still in progress and will be presented in a subsequent publication.
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