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EXECUTIVE SUMMARY

The general emphasis for 1994 would be on increased software

development, testing of subelements and design calculations. For these

purposes, the constitutive law coding and development would be

coordinated by Nick Aravas, and implemented in ABAQUS. The initial

implementation would be the elastic/plastic model for MMCs with interface

debonding developed in 1993 (Leckie). This would be extended in 1994 to

include creep and some aspects of thermomechanical cycling. The code

would be used for design calculations concerned with MMC rotors,

actuators and vanes (Leckie). A plan is being formulated to collaborate with

Pratt and Whitney to acquire MMC sub-elements representative of these

components during 1994. Experimental tests on these subelements would
be capable of providing a direct validation of the code capabilities.

Constitutive law and fatigue lifing software would be created for CMCs
using continuum damage mechanics (CDM) approaches (Leckie,
McMeeking). The approach has been motivated by micromechanics models

developed in 1993 (Hutchinson, Zok, Evans). These codes would be used to
calculate stress redistribution effects and fatigue life on simple sub-

elements, such as center notched and pin-loaded plates. Comparison with

experimental measurements needed to test the fidelity of the models will be

based on moir6 interferometry and thermoelastic emission. This effort is

coordinated with the NASA EPM program through both General Electric and
Pratt and Whitney. A plan for acquiring sub-elements from DuPont Lanxide
is being formulated.

A new emphasis for 1994 would be on the transverse properties of
CMCs. The measurements and calculations performed in 1993 have

indicated a strategy for curved sections and junctions that would establish a

consistent design approach. The basic approach for resisting failures from

combinations of interlaminar shear and transverse tension involves the use

of stitching and angle ply weaving patterns that inhibit major reductions in

stiffness when matrix cracks are induced by transverse loads and bending
moments. For this purpose, calculations would be performed that combine
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the mechanics of delamination cracks with models of bridging by inclined

fiber bundles (Hutchinson, Ashby, Evans, McMeeking). The insight gained

from these calculations would be used to design and acquire sub-elements,

such as C sections and T junctions.

Additional software development will be for creep and creep rupture

(McMeeking). The models devised in 1993 and test data relevant to MMCs

will be combined into a code that predicts the creep and rupture of

unidirectional MMCs subject to multiaxial loads. Some aspects of this code

will also be applicable to CMCs.

Two new activities will be introduced in 1994: thermal properties and

damping. The thermal properties will be studied on both CMCs and MMCs

(Ashby, Hutchinson). Measurements of thermal diffusivity will be made by

the laser flash method and related to the properties of the interface and the

density of matrix damage in the material. Thermal expansion measurements

will also be performed with emphasis on determining hysteresis effects,

which can be related to the temperature dependence of the interfaces

properties, through cell models. The latter might evolve into a diagnostic for

establishing relationships between the interface properties and

thermomechanical fatigue.

The processing activities in the program will have newly established

goals in 1994. The principal emphasis will be on concepts for affordable

manufacturing. The issues selected for investigation will be consistent with

manufacturing processes that allow near-net shape consolidation while still

yielding reasonable combinations of longitudinal and transverse properties.

Performance models developed in the program would be used as an initial

test of concept viability.

Beyond these general trends, specific activities are planned for 1994.

These are elaborated below. The status of understanding and development

in each of these areas is summarized in Table I. Increasing magnitudes

between 0 and 1 designate a knowledge range from limited to

comprehensive.
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TABLE 1A

Status of Design Knowledge for MMCs

1[O']n MMC [O'79001n

LONG. TRANS.
P S P S P

Tensile

Strength 1 1 1/2 1/4 -0

Creep and

Creep 3/4 0 1 0 0 0

Rupture

Cyclic Flow
(Isothermal, 1/4 0 1 1/2 0 0

TMF)

Crack

Growth
1 1 0 1/2 0 0(Isothermal

Fatigue)

Crack

Growth 1/2 1/2 0 0 0 0

(TMF)

Compressive
Strength 3/40 0 0 0 0
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TABLE lB

Status of Design Knowledge for CMCs

[0/90] [45/45]

P S P S

Stress/Strain 3/4 1/4 1/2 0

Fatigue 3/4 0 0 0

TMIF 1/4 0 0 0

Creep and 1/2 0 0 0
Rupture

Compression 3/4 1/4 0 0
Strength

Transverse 3/4 1/2

Properties

Thermal 1/4 0
Properties

P Primary Structure

S Secondary Structure
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2. CONSTITUTIVE LAWS

Two approaches will be used to create a formulation capable of

representing the in-plane properties of CMCs. One would be based on

Continuum Damage Mechanics (CDM) (Leckie). The other would use
concepts analogous to those used in plasticity theory (Hutchinson). The
CDM approach uses damage parameters that relate explicitly to
micromechanics models. A potential function has already been identified as
the state variable which separately represents the strain from the elastic
compliance change caused by the matrix cracks and the inelastic strains
associated with the debonding and sliding interfaces. Derivatives of the
potential with regard to strain and damage give the relationships between
variables, such as stress, interface sliding resistance, matrix crack density,

etc.

The first version of the CDM model would use the minimum number of
damage variables potentially capable of representing the behavior of
laminated or woven composites. Cross terms between the damage variables

would not be considered at this stage. Moreover, matrix cracks would be
introduced normal to the maximum principal tensile stress, consistent with

the experimental observations.

The plasticity theory approach would seek a formulation based on
matrix cracks occurring normal to the maximum principal tension. It would
introduce parameters that reflect the inelastic strain caused by interface

sliding upon off-axis loading which would be calibrated from tests performed
in tension in 0/90 and 45/45 orientations.

The insight needed to characterize off-axis loading effects will be gained
from cell models (Hutchinson) in a manner analogous to that previously
used for axial loads. The principal objective will be to understand trends in
matrix crack opening and interface debonding/sliding with applied loads.
The stress on the fibers will be calculated with the intent of predicting

effects of loading orientation on fiber failure. The models will be compared
with measurements made in 45/45 tension, using various CMCs (Evans).

Calibration of the damage parameters for each material would be made
from hysteresis loop measurements in accordance with procedures

developed in 1993. Experimental results obtained in 0/90 tension, 45/45
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tension and in-plane shear will be used. In future work, it is hoped that

shear tests will not be necessary.
The validation of the constitutive laws will be achieved by comparing

calculations with measurements made on sub-elements, especially pin-

loaded holes (Evans). The experimental results include residual strains

obtained by Moir6 interferometry (Fig. 2.1), ultimate loads for either tensile

or shear failure and principal strain trajectories delineated by matrix

cracking patterns. Acoustic methods will also be developed to probe the
local values of the elastic modulus (Clarke, Wadley) which could be

compared directly with the CDM predictions.

3. FATIGUE LIFING

3.1 CMCs

A software program for isothermal low cycle fatigue (LCF) of CMCs,

developed in 1993 (Fig. 3.1) will be extended in 1994. The present program
asserts that fatigue is associated with cyclic degradation of the interface

sliding resistance, r, which can be characterized by analyzing hysteresis
loops measured periodically during a fatigue test. With this methodology,

S-N curves have been predicted for both unidirectional and woven 0/90

composites tested in cyclic tension as well as changes in compliance and
permanent strain. Some additional effort is required to analyze data on 0/90
laminates in order to validate the model predictions. The extensions

envisaged for 1994 include thermomechanical fatigue (TMF), strain

controlled LCF and off-axis fatigue (Zok, Evans). Experiments are planned

which would assess the effects of temperature cycling and of inclined fibers

on t dcgradation, measured from hysteresis loops. Various cell model

calculations (Hutchinson) will be used to interpret the experiments. The
results will be used to establish general rules for interface degradation in

CMCs.
The off-axis experiments will also give insight into the fiber failure

criterion that replaces the global load sharing (GLS) results successfully

used for 0/90 loadings. This study will coordinate with the cell calculations

described above, and the 45/45 tensile experiments.

Notch fatigue studies will be initiated. These will examine cyclic stress

redistribution and notch sensitivity (Evans).
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Fatigue Methodology
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3.2 MMCs

Fatigue crack growth and notch strength studies in MMCs will be
extended to 0/90 laminates (Zok, Suo). The experiments concerned with
crack growth will be interpreted using crack bridging models. The utility of
such models has been validated in previous years through studies on
unidirectional MMCs. It is envisaged that the fatigue crack growth

characteristics of the unidirectional and 0/90 configurations will be related
through the volume fraction of fibers aligned with the loading direction. The
notch strength behavior will also be interpreted using crack bridging
models. Such models have been developed in 1993 and found to be useful in
rationalizing the behavior of unidirectional materials (Zok, Suo). In all cases,

the mechanical measurements will be augmented by in-situ observations to
identify changes in damage mechanisms with temperature, fiber

architecture, etc. Plans to study the influence of panel thickness on fatigue
and fracture resistance are also being developed, as well as tests to
understand the potential for crack growth in mixed mode loadings (Hirth,

Zok).

Studies of the TMF response of MMCs loaded parallel to the fiber axis
will be initiated (Zok, Leckie). Experiments will evaluate both in-phase and

out-of-phase loadings. Models of load shedding (matrix-fibers) will be used
to interpret the hysteresis loops and to develop fatigue life models applicable

to low cycle, high strain TMF.

4. CREEP AND RUPTURE

4.1 MMCs

The considerable progress made in 1993 towards identifying and
understanding the mechanisms of creep and rupture in unidirectional
MMCs containing non-creeping fibers (McMeeking, Zok) will be used to

develop creep rupture software. The longitudinal creep model to be used
incorporates stochastic fiber fracture and interface sliding in a format

amenable to the prediction of primary and tertiary creep in terms of matrix

creep strength, interface sliding resistance, fiber strength, Weibull modulus,
etc. The concepts would be visualized in a rupture mechanisms map
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(Fig. 4. 1). The transverse creep behavior would include interface debonding,

which greatly accelerates the creep, leading to marked anisotropy. A

constitutive law for creep that includes these effects will be developed

(Aravas, McMeeking).
Additional experiments and calculations will be conducted to assess the

effects of notches and holes on creep rupture (Zok, Suo). Experience with

MMCs at ambient temperature indicates that the notch sensitivity is largely

dictated by matrix properties (i.e., strength and ductility). The reduction in

matrix properties at elevated temperatures may lead to a substantial

elevation in notch sensitivity. However, this behavior may be complicated by

the development of alternate damage processes, such as shear bands.

4.2 CMCs

Studies of the creep and rupture of CMCs will continue with emphasis

on materials containing creeping fibers. A particular emphasis will be on

matrix cracking that arises as fiber creep relaxes fiber bridging tractions

(McMeeking, Evans). The experimental studies will be performed on SiC/SiC

composites. Hysteresis loop measurements will be used to monitor matrix

damage during composite creep, using procedures devised in 1993. Models

will be developed based on time dependent fiber bridging concepts

(McMeeking, Cox).

It is envisioned that the lifetime of some CMCs will be dictated by time-

dependent rupture of the fibers. A lifetime prediction tool for such a

composite must incorporate the knowledge of fiber strength degradation over

time. A new activity will be initiated to address this problem (Suo, Evans).

The initial work will involve a survey of data in the existing literature, and a

comparison with available models. A new model is being developed for single

crystal fibers. This model involves a residual pore inside a fiber which

changes shape, under stress, via surface diffusion, to become a crack. These

issues will be viewed in the broad context of fiber and composite
manufacture.
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5. TRANSVERSE PERFORMANCE OF CMCs

Analyses and tests performed in 1993 (Ashby, Hutchinson, Bao) have

highlighted the essential issues related to components that experience

combinations of transverse tension and interlaminar shear. In both
loadings, matrix cracks form at manufacturing flaws at low stresses, of

order 10-100 MPa. These cracks extend across the plies and interact
minimally with the fibers. Although the crack configurations differ for
transverse tension and interlaminar shear loadings, multiple cracks always
form. This multiplicity of cracking causes a major reduction in stiffness,
which can cause unacceptably large displacements and also redistribute

stress into other areas. The formation of the matrix cracks is probabilistic in
nature and governed by the size distribution of manufacturing flaws. Design

based on the prevention of such transverse cracks must rely on weakest

link statistics, usually with a low Weibull modulus. Alternatively, it may be
assumed that cracks inevitably form and, instead, reliance is placed on
controlling the diminished modulus of the material, after matrix cracking
has occurred. This approach relies on having 3-D architectures, with
transverse fibers introduced locally either by stitching or by using angle
plies. To explore this possibility, calculations will be performed (Hutchinson,
Evans) to examine fiber architectures that lead to minimum stiffness loss,

subject to acceptable in-plane properties. Based on these calculations, sub-

elements will be designed that test out the concepts.

6. COMPRESSIVE BEHAVIOR

The studies completed in 1993 on the compressive failure of polymer
matrix composites by the growth of kink bands (Budiansky, Fleck) will be

extended to metal matrix composites, through a coordination with 3M.

Compressive failure of Al and Ti MMCs with small diameter fibers has been
observed by 3M to occur in accordance with the same kink band
mechanism known to operate in PMCs and in C/C composites. The theory

should thus extend to the MMCs, with the fiber misalignment, the shear

yield strength of the matrix and its work hardening coefficient as the
principal variables. A comparison between the theory and experimental
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results would provide the basis for specifying the compressive properties of
MMCs.

Compression failure of CMCs occurs by different mechanisms (Ashby).
The dominant failure modes are similar to those that operate in porous
brittle solids such as monolithic ceramics, concrete and rocks. The theory is
well established and validated for these materials. Applications of the theory
to various CMCs will be made and applied to the understanding of a
behavior of pin-loaded holes (Evans, Ashby).

7. THERMAL PROPERTIES

A new focus on the thermal properties of CMCs and MMCs will be
initiated in 1994. Calculations of the effects of matrix cracks in the thermal
expansion of CMCs will be made (Hutchinson). These will be compared with
data obtained from TMF testing (Zok). The effects of such cracks on the in-
plane thermal conductivity will also be calculated (Hutchinson).
Measurements will be performed using the laser flash method (Ashby).

Thermal conductivity measurements will be initiated on Ti MMCs
(Ashby). These will be used to understand the effects of the fiber/matrix
interphases and of matrix damage on the transverse and in-plane thermal

conduction.

8. MATERIALS SELECTION

The Cambridge Materials Selector software will be expanded in 1994 to
include high temperature creep design with the corresponding data base
(Ashby). This expanded version will permit estimates to be made of
temperature limits for MMCs based on creep controlled TMF and on the
transverse creep of components with unidirectional reinforcements.

9. DESIGN CALCULATIONS AND SUB-ELEMENT TESTS

A larger fraction of the effort in 1994 will be on design and sub-element
testing, particularly for MMCs. Discussions are now in progress with Pratt
arid Whitney, Textron and 3M to perform design calculations using the
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constitutive equations developed at UCSB and to produce sub-elements for

testing.
The design emphasis for MMCs will be on various diffusion bonded

joints with Ti matrices and monolithic Ti attachments. Two specific
subelements are envisaged. The first involves unidirectionally reinforced
rods (or plates), clad with monolithic metal. The purpose of the cladding is
to prevent exposure of the fibers to the environment and to mechanical

abrasion. The design of clad MMC structures requires consideration of
(i) the residual stresses resulting from thermal mismatch between the
cladding and the composites section, (ii) the potential for fatigue cracks to
initiate and grow through the monolithic material, and (iii) the interaction of
such cracks with the composite section and their influence on the strength
and life of the otructure. The design and testing of such subelements (Zok,
Leckie) will be augmented by calculations of crack growth and fracture,
incorporating the effects of thermal and elastic mismatch between the

cladding and the composite (McMeeking). The clad structures will also be
used to initiate studies on the reinforcement of holes in composite sections
with monolithic metal patches, as drawn in Fig. 9.1 (Zok, Suo). The second
subelement involves the attachment of a MMC actuator rod to a pin-loaded
monolithic section (Fig. 9.2). The critical design issues relate to the strength
and fatigue resistance of the interfaces between the composite and
monolithic matrices. Design studies shall also be completed on rotor rings
with special efforts made to produce rule-based design procedures which
would be used by industry at the conceptual level of design to determine

sizes and the efficient disposition of material.
For CMCs, the sub-element studies would be based on the calculations

described above in Section 5. These would include C sections and
Tjunctions (Fig. 9.3) Negotiations for manufacturing these sub-elements

will be initiated and tests performed at UCSB.

10. AFFORDABLE MANUFACTURING

As our understanding of composite mechanics and its interplay with
design and performance has evolved, it has become increasingly evident that
cost and reproducibility, are major constraints. Even as processing
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developments make the prospect of affordable high temperature fibers more

realistic, evolving knowledge on the mechanical and thermochemical

functions of interfaces have led to design concepts involving carefully

tailored interphase layers, with unfavorable impact on cost. Moreover, if

affordable coated fibers were available today, fabrication costs associated

with consolidation and pressure densification would often remain

prohibitive. Future processing and manufacturing activities are predicated

on these issues, especially the need for new ideas, and the related

knowledge base.

10. 1 MMCs

Melt processing methods provide the more affordable options in

composite synthesis with the added benefit of near-net shape capability. For
continuous fiber composites melt infiltration also enables full density while
minimizing the consolidation stresses that typically cause premature
reinforcement failure in solid state processes. However, melt processing

requires a high degree of thermochemical compatibility between matrix and

reinforcement since deleterious diffusional interactions would be accelerated
by the liquid phase. Conventional melt processing also exhibits limited

ability to control the volume fraction and spatial uniformity of the

reinforcements.

Among metal matrices, Ti alloys epitomize unsuitability for direct melt

infiltration owing to aggressive reactivity. Fiber clustering is also a concern,

even in solid state processes based on powder or foil matrices. Composite

consolidation by vapor deposition (PVD) of the matrix on the fibers provides

an avenue for improving homogeneity of fiber spacing. However, present
schemes require expensive pressure densification with its many problems. A

potential solution involves a hybrid manufacturing route wherein part of the
matrix is first applied to the fibers by PVD. The pre-metallized fibers are

then assembled into a preform having the desired shape and then infiltrated
with the remaining matrix in liquid form.

Direct Infiltration with Ti alloys could be feasible owing to the protection

of the fiber by the PVD layer, but the high temperatures involved would

exacerbate the diffusional interactions at the fiber-matrix interface. An
alternate approach involves depositing the more refractory constituents of
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the matrix (e.g., Ti, Nb, Mo, etc.) by PVD and then infiltrating with the lower
melting point constituents (e.g. Al). Based on stoichiometric considerations,
the latter approach would be suitable for matrices with > 25 at.% Al, notably
the orthorhombic and (X2 alloys. The obvious problem with this approach is
the homogenization of the matrix after consolidation, which may require
lengthy high temperature treatments in the solid state. However, a
significant part of the matrix synthesis reaction could be effected in the
presence of molten Al, followed by a final heat treatment in the solid state.
While this lower temperature infiltration approach is evidently desirable
from a manufacturing viewpoint, it is not clear that matrix homogenization

can be achieved.
A program involving modeling and experimental work will be initiated in

1994 to generate the knowledge base appropriate to hybrid approaches for
Ti matrix composites (Levi, Evans). Cell models (single fiber environment)
would be developed to study diffusional interactions and
remelting/solidification phenomena as a function of processing cycle
(temperature-time history). Experiments would be performed to elucidate
the relevant aspects of microstructural evolution and provide the reaction
and interdiffusion kinetics needed to calibrate the models. Initial
experiments would be performed by infiltrating pure Ti-wire preforms with
molten Al and subjecting the "composite" to different treatments in the
semi-solid state. Subsequent experiments would focus on developing a
metallization route for Ti-Nb alloys on SiC fibers and on the relevant
interactions with infiltrated Al. Larger scale modeling issues would be
tackled in 1995 if the proposed approach appears promising.

Ongoing activities on the understanding of microstructure evolution

and its relationship to properties in in-situ TMC systems based on TiB
reinforcements would be continued (Levi). These are by nature affordable

composites which exhibit inherent thermochemical stability and may be cast
into shapes using conventional Ti processing techniques. A potential
application of these materials would be in joints with unidirectionally
reinforced composites, wherein their higher modulus and creep resistance

combined with acceptable toughness and isotropic properties could be
advantageous. It is also anticipated that these materials could be used for
cladding in PVD or plasma-sprayed form, thereby reducing the potential for
fatigue crack initiation in the cladding. Since TiB is thermochemically stable
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with practically all Ti matrices of interest in fiber composites, such

strengthening concepts may be readily implemented.

10.2 CMCs

Measurements and observations in 1993 have shown that strong, high

strain to failure CMCs can be fabricated using an inexpensive method that
involves a) packing a powder around fibers within a fiber preform using
pressure filtration and b) making the powder matrix strong by heat
treatment followed by infiltration with a liquid precursor that decomposes to
an inorganic material. A composite made this way, with polycrystalline

alumina fibers in a silicon nitride matrix, demonstrated that the matrix
deflects the crack. This observation is significant since it suggest that a
class of CMCs can be processed without needing weak fiber/matrix
interfaces. The potential of this observation will be explored (Lange, Evans),
by processing a composite with strong, polycrystalline alumina fibers in a
mullite matrix because the thermomechanical properties of mullite minimize
thermal stresses and resist creep. In addition, the thermal expansion

mismatch is relatively small. Mixed Al, Si metal alkoxide precursors which
can be gelled in-situ, prior to decomposition, will be used to strengthen the

matrix.
Manufacturing studies would initiate with understanding the precursor

infiltration into mullite power compacts. The densification of the matrix
would be determined as a function of the cyclic infiltration. Microstructure

changes would be controlled to avoid flaw populations during densification.
The fracture toughness and the strength of the matrix would be determined
as a function of the number of precursor infiltration cycles. Composite
processing would initiate with precursor infiltration into alumina fiber
preforms by pressure filtration, with emphasis on the colloidal aspects of

this processing step. The goal would be to determine the processing
conditions needed to produce a matrix that optimizes the ability to deflect

cracks without degrading fiber strength. To optimize composite processing,
panels for testing under conditions of both strain and stress control would
be manufactured.
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11. STRESS AND DAMAGE SENSORS

The extensive exploitation of the optical fluorescence method of
measuring stresses in sapphire fiber and alumina-containing ceramic

composites begun in 1993 will be continued in 1994 (Clarke, Wadley). The

emphasis is on using the method to understand basic, unresolved issues in
stress redistribution in composites by the direct measurement, with high
spatial resolution, of the stresses themselves. Particular attention will be
paid to determining the stress distribution associated with interfacial
sliding. One of the problems to be addressed relates to new concepts for

oxidation resistant interfaces within MMCs and CMCs, particularly the

concomitant roles of fiber roughness and sintering on interface sliding and
debonding, after exposure to high temperatures and cyclic loadings. For this
purpose. fibers with fugitive, low modulus coatings will be explored and
fluorescence measurements used to understand stress evolution and its

connection with fiber durability within the composite. A second problem
relates to the distinction between the line spring and large scale sliding
models for fiber bridging (Budiansky, Hutchinson), so as to determine the
range of applicability of the two models. The two competing models predict

different distributions of stresses in the fibers within the bridging zone and
hence are amenable to validation on the basis of the measured stress

distribution.
Two approaches to measuring local damage are under development and

will be the focus of the sensor activities. One is the use of acoustic methods

(Wadley) to probe local variations in the elastic modulus of CMCs as a
function of load. This should provide a means of mapping the distribution of

damage which can be compared directly with the predictions of continuum
damage mechanics models. The second approach (Clarke) is to detect the

third harmonic signal generated by the presence of local damage.

Preliminary experimental results obtained in 1993 concerned with the
detection of crack-like voids in thin metal lines, together with computer

simulation studies, have demonstrated the viability of the technique. This
work will be extended in order to detect damage accumulation in CMCs and

MMCs.
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Abstract-There is an intrinsic barrier to the adoption of new materials in engineering

design--of which ceramic matrix composites are certainly an example. Designers are
conservative, wishing to avoid costly mistakes; and the evolution of new design meth-
ods to exploit the new materials to the full are slow to develop. Here we review the im-
portance of materials selection in design. The ideas are deployed in a case study to

show how design methods might change to utilise ceramic matrix composites.

1. INTRODUCTION

The following is a first attempt to assess the interactions between materials characteri-

sation, processing and design necessary in order to achieve an innovative and

successful use of new materials. The focus is on design. To research the topic in depth
would be to go beyond the scope of this thesis, but certain conclusions-applicable to

the case of ceramic matrix composites--can nonetheless be drawn. The consequences

for design with ceramic matrix composites are illustrated in a case study.

Design can be defined as the creative act of finding and establishing a technical

solution to a recognised need of society. In original design the engineer starts from

scratch, whereas incremental design is the adaptive development of an existing

technical solution. Both involve the following basic steps: first, the need, often called
market need has to be defined as clearly as possible. Then existing and new technical

concepts have to be developed to meet the perceived need, and analysed for their
physical and economic viability. A full concept outlines a system, divided into

subsystems and components, each of which has to fulfil one or more specific functions.

I



Feb 94 Kaute and Ashby--Mazerials Selection and Innovation in Design

One important factor for the feasibility of a concept is the availability and cost of the

materials that are to be used. This is the point at which materials selection comes in.

Historically, materials selection has taken place at a late stage of the design process-

once the function and working conditions of each component have been determined.

This means that a desired material property profile is defined, which gives a rough out-

line of strength, toughness, temperature range etc. of the materials to be used. As long

as the range of available materials was small, the design engineer knew what he could

reasonably expect, and he normally defined a component with a specific material in

mind. This approach to design with a known or a new material the engineer intuitively

feels is right has certainly shown to be viable. However, the advent of a multitude of
new materials and grades with unusual and promising property profiles makes it more

and more difficult for the design engineer to rely on his intuition for the right choice of

material. And, in many cases, the consequences of the materials choice for the perfor-

mance and competitiveness of a product have become too important for it to rely solely

on intuition.

This is the reason why a more rational approach to materials selection in design has

been a focus of research in recent years. Dieter [1991] outlines the important aspects in
materials selection, one of which is the definition of a detailed materials property pro-

file. Ashby [1992a] has delivered a methodology for translating design performance

objectives into materials indices that need to be optimised. These indices are based on

condensed material properties like stiffness, strength and toughness. All authors agree

that materials selection at an early stage of the design process is important for innova-

tive design-in consequence the classical design methodology with materials selection

only late in the design process needs to be changed. Especially when new materials

with unusual performance characteristics are needed, the design engineer must be in

close contact with materials characterisation and processing right from the beginning in

order to achieve optimal materials selection and design. Some of these interactions are

depicted in the schematic of Figure 1.

The following sections focus on the way in which a materials property profile is drawn

up, and the interactions between design, processing and materials characterisation nec-

essary for an optimal design with the most promising materials.

2. THE MATERIAL PROPERTY PROFILE

One of the crucial points for materials selection is the definition of a material property
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profile derived from the envisaged function and operating conditions of the component

under consideration. Generally a differentiation between materials indices (e.g. specific

strength and stiffness in light weight design) which optimise specific design perfor-
mance objectives (e.g. maximum strength at minimum weight), and constraints (like

maximum load, allowable deflections, particular dimensions, working temperature etc.)

is made [Ashby, 1992a]. Some of the constraints are go- no go criteria, for example a

working temperature capability of 400*C will exclude most polymers a priori. The ma-

terials indices are treated as discriminators between those materials that meet all of the

constraints. Rare are the cases where one single materials index has to be optimised.

Often different indices are contradictory and compromise has to be struck, which is
nearly always the case when physical performance and cost have to be brought to-

gether. The task of materials selection is then to find the material which fulfils all the
constraints while presenting an optimal profile with respect to the various performance
objectives expressed in form of materials indices.

The definition of objectives and constraints is not as straight forward as it may seem

from the discussion so far. Often it is difficult to tell constraints and objectives apart.
What is a constraint in one design, may be an objective in another. Much depends on a
precise definition of the function and working conditions of the component. However,
this precise definition is difficult in the early stages of design. As a result, constraints
are frequently drawn up more from habit than necessity (e.g. a certain minimum
strength and toughness), and this may exclude some otherwise promising material

candidates a priori.

From this short description it becomes clear that materials selection is sensitive with re-

spect to the definition of both objectives and constraints. Frequently certain minimum
or maximum numerical values are set which have to be met. However, it is
questionable to reject a material which has a testified working range up to 380TC if

400*C has been specified and the material performs best in all other criteria. This

example shows that the setting of absolute constraints may present an unnecessary
innovation barrier. A first requirement for materials selection must therefore be to
restrict absolute (hard) constraints to a minimum in order to keep the mind open for all
materials that have a close but not perfect match with the desired performance profile.
The aim is therefore the definition of target values for most materials indices, and for

the constraints--the definition of fuzzy constraints, so to say. How a candidate material
can be best selected will be subject of the following sections. Before, the material

property profile for the turbine blade of a gas turbine shall be considered in order to
illustrate the way in which material selection enters design.

3



Fb 94 Kaute and Asiby--Mateials Selection and Innovation in Design

Case study--part 1: a material property profile for the turbine blade of a gas turbine

The gas turbine is one of the key subsystems of the jet engine with great influence on

its overall performance. If we want to redesign the jet engine as a whole, and the gas

turbine in particular, our analysis needs to be based on the market need. However, this

market need is not as straight forward as in the case of simple consumer goods, because

the jet engine is not directly bought by the end user. It is bought by an airline which

uses the engine in conjunction with an aircraft to offer a service at its customers-the

passengers. The main interests of the end user are relatively simple-safety, low cost,

comfort and good service. Only the first two of these needs are directly relevant for the

jet engine. However, several further factors are also important, arising from

government and airport regulations. These are, for instance restrictions on certain

emissions, especially NOx, and on noise emissions, and act as design constraints.

Concerning the design of the next generation of a jet engine, these rather vague market

needs take more concrete forms, because in the sales negotiations of the jet engine

manufacturer with the airliner, the specifications of the next generation of jet engines

are precisely fixed. The task of the design team is to meet these specifications, which

fix engine attributes like

* Thrust

* Specific fuel consumption

* Overall weight

* Ease of maintenance

* Life of the engine

• Life of key components like the turbine blades, which influences both safety and

maintenance intervals

* Noise and NOx emissions

* Price

All of the above attributes translate into specific performance needs for the gas turbine.

However, with regard to long term innovation it is simpler to identify the two key

driving forces in the jet engine. They are:

Reduction of cost. This concerns the running cost-much of it in form of fuel con-

sumption-which lies at around 70% of the overall running cost, and the capital

cost, that is the cost of the jet engine itself, which is about 30% of the overall cost

of an aircraft.
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0 Maximum possible safety.

To give an example of how important specific fuel consumption is: a gain of one per-

cent point would result in annual savings of the order of 1 million dollars for each of

the major airlines [Forster, 1986, p. 189]. Let us now examine how the two driving

forces listed above translate into performance objectives for the gas turbine, and in par-

ticular the turbine blade, and identify the main material indices and constraints required

to meet these objectives.

Specific fuel consumption is very important for coSL With respect to the gas tur-

bine, it is mainly determined by maximum turbine entry temperature and the blade

tip speed [Rolls-Royce, 19861. Concerning turbine entry temperature, a long-term

goal is a blade material temperature capability of 2000*C and beyond. Blade tip

speed is limited by the specific strength of the blade material, as has been illustrated

by Ashby [1992a, p. 80 ff.] in the case of a high flow fan for a vacuum cleaner.
Note, though, that it is linked to the rotational speed of the compressor and cannot

be fixed independently. Another performance limiting factor is the tolerance be-
tween blades and casing, which leads to losses due to leaks in the air flow. High

specific stiffness, a low thermal expansion coefficient and high creep resistance are

probably the main material property targets here. Other design variables are the
aerodynamic shape of the blades, their surface finish, and their trail edge radius.
An indirect but important running cost factor is the weight of the blades, because a

reduction in blade weight has a knock-on effect. This is independent of the turbine

entry temperature. Lower weight of the blade, measured in grams, will make a

weight reduction in the disk holding the blades possible, perhaps also in the shaft

transmitting the power to the compressor, and ultimately in the pins fixing the en-
gine to the wings, and the wings themselves. This can substantially increase the

power to weight ratio and thus the payload and profitability of the aircraft. The

driving force to lower weight is therefore considerable. Even more weight, and

money, could be saved through materials with higher temperature capability, if they

can make the omission of part of the complex cooling system possible.
The importance of the capital cost of the engine itself means a turbine design must

not substantially increase cost. This cost includes material cost, machining and as-

sembly cosL

The second condition listed above, safety, is important for any jet engine producer

because sales are quite sensitive to this issue. For the turbine blades this means they
must be damage tolerant, which is equivalent to the development of subcritical

damage before failure. Much of this damage tolerance must be effective at room
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temperature, because the risk for the equipment is highest while it is being handled

for instance during maintenance. The damage must be able to survive until the next

maintenance check, and it must be detectable by methods of non-destructive testing.

This list is far from complete and shows the complexity of designing a gas turbine. The

importance for the overall engineering system, the jet engine, is considerable. It is evi-

dent, that a key to increasing the efficiency of the jet engine are the temperature capa-

bility and specific strength of the turbine blade materials. Ceramic materials are cur-

rently the only material class which can combine these features, and large efforts have

been made to introduce them into the gas turbine [Devendra, 1990]. Of all ceramic ma-

terials, ceramic matrix composites are the only ones which have the potential to fulfil

the additional requirement of damage tolerance. However, the hurdles for their intro-

duction in the gas turbine are still high. This will be further discussed below.

3. MATERIAL PROPERTY PROFILES AND DESIGN

The previous section has described and illustrated the way in which a property profile

can be established. At the conceptual design phase, this profile may be quite crude, and

may have to be refined and completed in further iterations. Nevertheless, any set of

material indices and constraints with target values allocated to them can serve as a basis

for screening available materials and making a preliminary selection. A computerised

materials data bank is best suited for this task. At the conceptual level the Cambridge

Materials Selector can serve this function [Cebon and Ashby, 1992].

The result is a set of materials which fulfil the requirements of the performance profile.

However, rare are the cases when an ideal material candidate appears, most have one or

several severe draw-backs. For example, high physical performance targets nearly

always result in high cost. And sometimes, no appropriate material which fulfils all

requirements is found. In such a case, a natural approach is to revise the design concept

and with it the property profile.

Value analysis

One of the well-known methods used to revise a design concept is value analysis

[Dieter, 1991]. All functions of a given component are analysed with respect to their

contribution to the overall value of the system and the satisfaction of the underlying

market need. This may lead to a critical revision of the required material property pro-

file, e.g. by allocating different functions to separate components, or by using different

6



F.b 94 Kaute and Asbby-Materials Selection and Innovation in Design

materials in one component. A classical example for the latter case is the separation of
required surface characteristics like wear resistance and hardness, and bulk characteris-

tics which are not as stringent, but where better machinability and thus a softer material

would considerably lower manufacturing cost. A simple solution is the application of

coatings or of surface heat treatments after manufacture of such a component.

Matching property profiles

Another approach for finding the appropriate material to fulfil the needs of a particular

design concept is to think over carefully all targets for material indices, and the con-

straints, and relax targets and especially hard constraints wherever possible. However,

going through all the targets and constraints and questioning their value may be tedious

and long. A more efficient methodology would be useful.

A better approach is to find one or several materials which match the target profile

closely and look most promising for the design, and try to revise those constraints or

targets which are not met by the particular candidate material(s).

Are these targets really indispensable for the function of the component? Can they be

relaxed by changing the design of the component itself or that of other components in

the system? If shape restricts the selected material, can the shape be adapted to a feasi-

ble one for the chosen material? Is the constraint necessary for bulk or surface proper-

ties?

In a way, this is value analysis targeted on a specific material. Let us give an example

how this methodology can lead to an innovative design concept in the case of the gas

turbine.

Case study-part 2: matching property profiles between SiC-SiC and the turbine blade

The case study of the previous section has given an outline of the material performance

objectives for the turbine blades of future gas turbines. At first glance, ceramic matrix

composites look like the ideal candidates with respect to the main required material

properties--even currently available silicon carbide reinforced silicon carbide (SiC-

SiC) looks promising with a temperature capability up to 1400*C, an excellent specific

stiffness, low thermal expansion coefficient, and good creep resistance, respectable

specific strength, and an acceptable room temperature toughness-all in comparison to

the nickel-based superalloys currently used (Table 1).

7



Feb 94 Kaute and Ashby-Materials Selection and Innovation in Design

COMPARISON OF PROPERTIES
SiC-SiCa~b NI-based Supermiloyc

Density (g/an3 ) 2.5 7.9

Modulus (GPa) 230 214

Specific modulus (GPa/(g/cm 3)) 92 27

Tensile strength (MPa) 250 1300

Specific tensile strength 100 165
(MPa/(g/cm 3))

Usable (matrix cracking/yield) 100 800
strength (MPa)

Specific usable strength 40 100(MPa/(g/cm3))

Usable compressive (onset of 300 800
damage/yield) strength (MPa)

Specific usable compressive 120 100
strength (MNW(g/cm 3))

Fracture toughness (MPa m1f2) 30 'I00
Temperature capability °C 1400 950

Oxidation resistance up to 1400C protection needed

Coefficient of thermal expansion 3 12
(10-6 K-1)
Thermal diffusivity 12
(10-6 m 2 s- 1)

Fatigue resistance good acceptable

Creep resistance good acceptable

Thermal shock resistance good good

Impact resistance ? good

a. Suppliers data; b. Lackey and Start[1990]; c. Ashby and Jones [1986].

Table 1. Approximate properties of SiC-SiC and nickel based superalloys.

The one fundamental drawback of ceramic matrix composites is that toughness-an

indispensable requirement for its aerospace application-is linked to a high amount of
damage prior to failure. High toughness and a low threshold for the onset of this dam-

age in the form of matrix cracking are fundamentally connected. To be effective, the
threshold for the onset of matrix cracking needs to lie far below ultimate tensile

strength, it is at about 40% in the case of SiC-SiC. And as soon as matrix cracks ap-

pear, gases of a hot, corrosive environment can penetrate into the interior of the mate-
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rial and attack fibres as well as the fibre-matrix interface. Both are not oxidation resis-
tant at the high working temperatures at which ceramics unfold their full potential. This
leads to embrittlement in use. In other words, the potentially high toughness of ceramic
matrix composites can only be used for stopping fast fracture. It cannot be used in fa-
tigue and creep applications because any damage will quickly lead to embrittlement of
the material in a high temperature oxidative environment. Much attention is currently
directed towards this problem, solutions are sought especially by developing better fi-
bres and temperature and oxidation resistant fibre-coatings to serve as the interface.
Yet, a fundamental physical limit of protecting small diameter fibres exists: because of
their high surface to volume ratio they will always be susceptible to embrittlement un-
der oxidative attack. Effective and reliable component coatings-another option--do
not yet seem to be in reach. In consequence, if used in high-temperature applications,
the design stress for a ceramic maLa, composite like SiC-SiC will have to be below the
matrix cracking stress [Raj, 1993]. This imposes a serious restriction on the application
of ceramic matrix composites to hot section structural components, because their usable
specific strength falls far below that of currently used superalloys (Table 1).

The other main drawback of today's ceramic matrix composites is cost. At a price of up
to £10,000 per kilogram for SiC-SiC any application has to lead to a substantial im-
provement in performance to justify the high expenditure. However, much of this high
price is due to the high development cost of the material at a very low volume of sales.
A long term limit for the price is seen at a much more reasonable £300 per kilogram,
double the current price of carbon-carbon composites which are produced by the same
method [P.J. Lamicq, private communication]. Alternative processing routes like liquid
melt oxidation may bring the price down even further.

Table 1 also reveals a very promising property of SiC-SiC, that of its specific usable
compressive strength. Already today it is above that of nickel-base superalloys. As a re-
sult of the work presented elsewhere [Kaute and Ashby, 19941, it is known how
subcritical damage in compression develops. Most of it emanates from internal
macropores, so that, contrary to tensile matrix microcracking, no path into the specimen
is created for the hot corrosive gases. Moreover, should accidental matrix cracking
occur, compressive stresses tend to close these cracks up and this will slow degradation
down. So there is much to be said for the use of ceramic matrix composites like SiC-
SiC in compression.

And there is yet another great advantage of ceramic matrix composites-their high po-
tential for improvement. Currently used metals and intermetallics are being pushed to

9
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their physical limits. This is achieved by applying state of the art materials science to
its full-from precision alloying and control of crystalline structure to the projected use
of fibre reinforcements. However, there are absolute physical limits at about 1200'C.

Further scope for engine performance is gained by extensive cooling of the blades: at

present this permits a maximum turbine entry temperature of 1500"C while the maxi-

mum temperature of the nickel-based superalloys in use is kept at 950TC. But also here,
there are limits, and the design is very complicated.

In conclusion, the main advantage of ceramic matrix composites over bulk ceramics,
damage tolerance, is not degradation resistant and brings down usable specific strength

to uncompetitive levels. The question then is this: how can this weakness in the prop-

erty profile of ceramic matrix composites be overcome by adapting the design?

4. REVISING THE DESIGN

Case study-part 3: a new design approach with two materiaLs for two different func-

lions

By analysing the working of a turbine blade, it can be seen that there are two main

functions:

"* The transmission of impulse from the hot corrosive gases (coming out of the com-

bustion chamber) to the shaft in order to power the compressor.

"* The safe retention of its own weight due to the high centrifugal forces stemming

from high rotational speeds.

The first function does not imply high tensile stresses for the component. The principal
mode of loading is bending, but the loads are low. Here, the potential advantages of ce-
ramic matrix composites could be fully exploited.

It is the second function-withstanding the centrifugal force-which causes the main

problems. A confinement ring designed to support the centrifugal forces exerted by the

blades could solve the problem. This would mean that the two functions combined in
the turbine blade would be separated and allocated to two different components, turbine

blade and confinement ring, which would surround the shroud, already part of some

current design solutions (Figure 2). While the turbine is in use, compressive stresses
would build up in the blade, and thus exploit one of the competitive performance char-
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acteristics of ceramic matrix composites.

One of the principal difficulties for such a design solution is to find a suitable material

for the confinement ring which mainly has to have one quality: high tensile strength at

low weight. The choice is practically independent from the choice of material for the

turbine blade. It is at this point that the conceptual design method described by Ashby

[1992a], can be helpful: the goal is to choose the best suitable material for a confine-

ment ring, and than to check whether it could actually withstand the loads under current

operational conditions. This then shows if the design approach is potentially feasible.

Good thermal conductivity, and a relatively high temperature resistance are also impor-
tant design requirements. However, for the moment it will be assumed that the con-

finement ring can be protected from the immediate heat of the gases through a protec-

tive layer similar to that of the shroud in current turbine blade design, and can be suffi-

ciently cooled to cope with the heat flow emanating from that shroud. Such secondary

requirements can be part of a second step in conceptual design. The aim here is to find

a material which is strong enough to contain ceramic matrix turbine blades under

current operating conditions.

Case study-part 4: a new and independent materials selection

As a turbine is spun up, the stresses exerted on the confinement ring start building up,
leading to a large hoop stress. This hoop stress is due to two contributions: the pressure

exerted by the blades attached to it and the pressure due to its own mass. The contribu-

tion of the rotational weight of the confinement ring to hoop stress cannot be neglected

because of the high rotational speeds of up to 10,000 rpm (for typical civil gas tur-

bines). In other words, the mass of the confinement ring reduces the strength available

for containing the turbine blades. An efficient confinement ring therefore has a high

tensile strength at minimum weight. Think of it as a cylindrical ring of radius r thick-

ness t, and width b. Assuming a small thickness t, the mass of the confinement ring is

M=p.2.xf.r.b.t (1)

where p is the density of the confinement ring material. The mass is the quantity we

want to minimise.

11
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TYPICAL GAS TURBINE WORKING CONDITIONS

Turbines 0o (rpm) T (K) D (on) Number of Weight of

Blades Blade (g)

High Pressure 10,000 1522 65- 87.5 102 227

Middle 6,500 1208 673-5100 92-102 >227
Pressure

Low Pressure 4,500 1068 67.5- 110 92- 102 >>227

Table 2. Typical data for working conditions of civil engine turbines.

Let us now analyse the stresses owing to the turbine blades. They push onto the ring
due to centrifugal forces. Let us callf the centrifugal force exerted by one turbine blade.

It is determined by the geometrical requirements of the turbine blade, the density of its

material, as well as the working conditions of the turbine (Table 2 gives typical
working conditions for a current civil aircraft jet engine). Taken together, the forces ex-

erted by all n turbine blades lead to an average radial stress atb,r exerted on the inner

surface of the confinement ring

n-f 
(2)t,.,2. x .r. b

It in turn contributes with hoop stress Ortbh due to the turbine blades to the overall hoop

stress

r = (3)
t 2.xr.b.t (3)

The hoop stress due to centrifugal forces acting on the confinement ring is (again as-

suming a small thickness t)

2,h = p 2o" r' (4)

where o is the angular velocity of the turbine disk. The section bt of the confinement

ring must be sufficient to carry the load due to both contributing factors. This means
that the sum of the two stresses above (equations (3) and (4)) must not exceed the
failure stress af of the confinement ring material. In other words, the available stress
aust for containing the turbine blades must be equal to

12
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a. = EL n. f (5),,f 2 . irt b -t

where Sfis a safety factor. Eliminating the section bt between equations (1) and (5)

leads to

M =(s, *f) 2r (6)

The first bracket contains the functional requirement that the load due to the turbine

blades is safely supported. The second bracket contains the specified geometry, the
working conditions of the turbine, as well as the material properties, neither of which

can be separated mathematically (in this particular case). As can be seen, the best mate-

rials for minimising M in the confinement ring are those with high values of the mate-

rial index P

P = of (7)
P

Any material chosen must fulfil the minimum requirement that it does not fail due to its

own centrifugal forces

f1  > p " )2. r ' (8)

Figure 3 shows a chart of strength versus density. Values of P correspond to a grid of
lines of slope 1. One such line is shown at the value P = 100 kJlkg. Candidate materials

with high values of P lie in the search region towards the top left. The best choice are
engineering composites, particularly carbon fibre reinforced polymers (CFRP), because

they combine high performance with high modulus, which is important for tolerances

(Data for CFRP: Density-l.5 g/cm 3. Modulus-189 GPa. Strength-1050 MPa [Weeton

et al., 1992]).

In the next section we will analyse, whether carbon fibre reinforced polymers as cur-

rently available would be suitable for supporting ceramic matrix composite turbine

blades under the current working conditions and geometrical specifications of a typical

high pressure gas turbine (see Table 2). Of course, it is not assumed that carbon fibre

reinforced polymers will actually be used in this application. What could be used is a

13
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strong, stiff fibre, perhaps carbon, probably ceramic, which is embedded in a light,

temperature resistant matrix to transfer shear loads in case of single fibre failure.

Carbon carbon may be an option using the right fibres. Such a material would probably

have to be tailor made. As data are difficult to come by, carbon fibre reinforced poly-

mer data are used to show feasibility with respect to the principal requirement, suffi-

cient tensile strength.

Case study-part 5: verifying practicability under current operating conditions

In a first very simple approach we will assume that the design of the blades has the fol-

lowing form (Figure 2):

"The turbine blade has a similar shape to that of its present day counterparts.

However, the conventional-and bulky-fir tree arrangement for fixing the blades

to the disk can be avoided, because the weight of the blade is supported by the con-

finement ring.

" The blades lead into a cylindrical ring section of ceramic matrix composite which

shields the actual confinement ring from the hot gases, evenly distributes the cen-

trifugal forces onto it and serves for fixing the position of the blades. We will call it

a shroud because it is similar in shape to the shroud of current turbine blades.

Let us first calculate the pressure exerted by ceramic matrix composite turbine blades

on the confinement ring under current operating conditions (Table 2). There are two

separate contributions-acting at different radial distances: the stresses exerted by the

blade itself with mass mblade and mean radial distance , and those of the shroud

with mass mshroud and radial distance r (taken to be the same as that of the confinement

ring. The two parts exert the force

f = mu.& (..F + m.,,., - ('. r (9)

Taking the dimensions of the turbine blade to be the same as those of a present-day

turbine blade, the mass of the blade can be estimated as

mbt* = p. -,1- . blatb•.. (10)

where I is the length (100 mm), bbaJe the width (35 mm) of the turbine blade-slightly

larger than the width b of the confinement ring-and tblade is a reasonable mean thick-

ness (3 mm). The values given in the brackets are those taken in the calculations which
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follow. Taking the density of commercial SiC-SiC (Table 1), this leads to a mass of

mblad& = 31.0 g. Similarly, the mass of the ring section can be estimated as

2. 9 -r
Sb . t(11)

where n is the number of turbine blades, tshroud is the thickness of the ring section. This

leads to a mass of mshroud = 7.4 g. Note that the overall mass per turbine blade (38.4 g)

is far below that of a current design (up to 225 g)-so the potential for weight savings,

discussed in Section 2, is substantial.

Inserting the masses calculated from equations (10) and (11) in equations (9), then (2)

leads to an average radial stress of 20.9 MPa acting on the confinement ring. This,

transformed into hoop stress (equation (3)), must be equal to the available strength ause

(equation (5)). The maximum compressive stress in the turbine blade is 130 MPa-far

below its usable compressive strength.

Let us now calculate the available strength ause, choosing commercially available uni-
directional CFRP as our preliminary confinement ring material. The hoop stress due to
centrifugal forces acting on the confinement ring is equal to 335 MPa. Taking a safety
factor Sfof 1.1, this leads to an available strength of 619 MPa-always assuming oper-
ating conditions similar to those of a current gas turbine. The resulting required thick-

ness of the confinement ring is 15.1 mm, which is still a reasonable value-taking into

account that there is scope for improvement. Figure 4 shows the technical realisation of

such a design with a carbon-carbon confinement ring.

It has to be emphasised again, that the calculations above based on carbon fibre rein-

forced plastics are only used to see whether the proposed new gas turbine design is con-

ceptually feasible-taking into account only the principal performance index, strength

over density. Clearly, such a confinement ring is feasible. A more refined approach,

taking into account further design requirements must now follow.

Thus far, it has been shown that the considerable obstacles in the way of an

introduction of ceramic matrix composites into the gas turbine can be reduced by

rethinking the current design functions of turbine blades and isolating the one function

that prevents their application-the task to withstand their own centrifugal forces. In a

second step, it has been shown that such a design is potentially feasible.
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Case study--part 6: finding a confinement ring material to cope with further perfor-

mance requirements

Although the shroud may initially shield off the direct heat of the hot gases from the

confinement ring, the confinement ring will ultimately have to cope with a combination

of relatively high working temperature and/or very high heat conduction-implying

cooling from outside (of course without diminishing strength to weight ratio). The by

far best solution seems to be a material that can take very high temperatures and does

not need any cooling at all. A solution to this material selection/composites design

problem seems to be the second major design hurdle. The material taken in the design

shown in Figure 4, carbon-carbon, may be a viable solution if the confinement ring can

be protected from attack by the hot corrosive gases.

Other questions also have to be addressed, for instance:

" The influence of differences in stiffness and thermal expansion coefficients between

the ceramic matrix composite turbine blade and the confinement ring material and

the importance of radial expansion due to the high centrifugal forces and changes in

temperature.

" Differences in stress between inner and outer surface of confinement ring, influence

of thermal gradients.

" The influence of possible stress concentrations at the T-junction between blade and

shroud on the stress distribution inside the confinement ring (this would mean a

non-evenly distributed-or sinusoidal-radial stress acting on the inner surface of the

confinement ring)

"* The importance of oxidation resistance at the relatively high working temperatures,

and possibly choice of suitable coatings.

Many of these questions have already been solved in similar engineering applications

and the answers need not be invented anew. Others may lead to further performance in-

dices that have to be maximised. Ashby [1992c] has set out a methodology of how to

find possible composites candidates if currently available materials do not have the re-

quired combination of properties. It may well turn out that the project has to be aban-

doned after this stage because a suitable material to fulfil all the criteria can neither

found nor potentially created. This would still be a relevant result.
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In the last section of this report, the importance of materials processing and materials

characterisation in the design process is discussed and illustrated in the last part of our

case study.

5. THE ROLE OF MATERIALS PROCESSING AND
CHARACTERISATION

So far, only one way to tackle the mismatch between the required materials profile and

that of a promising candidate material has been discussed-changing the design and

with it the required material profile to fit that of existing materials. Usually, this is the

most economic approach.

Another possibility to tackle the mismatch between required material property profile

and the actual properties of a candidate material is to adjust its properties due to better

processing and microstructural control of a material. This is especially true for new

materials with unusual profiles which need development to maturity in any case. An

example is the better control of interface properties in ceramic matrix composites, or

the adaptation of reinforcement architecture and lay-up of composites in general [see

for instance Ige, 1992]. It is, however, always an expensive way of designing and the

potential gains in must therefore be substantial.

New materials face yet another challenge. Because of their more complex internal

structure, new and unusual failure modes may occur, which are sometimes only

detected after a product has been launched. This danger is especially acute in the case

of fibre reinforced composites with their directional properties. Their off-axis

mechanical properties must therefore be established beforehand and converted into

design specifications, especially if they are to be used in safety sensitive applications.

In both of the tasks described above, improvement of materials and definition of design

specifications, the materials engineer is needed for translating understanding on the

atomistic and microstructural level into information that can be used by both design and

processing. The property profile used by the design engineer necessarily consists of

condensed information, ideally easily measurable quantities like stiffness, strength, and

toughness, or relations between fatigue life, creep rates, stress levels and temperature.

With the creation of a new material, the goal of the materials engineer is not only to

supply these condensed data, but to understand their origin, so as to be able to predict

behaviour under changed circumstances, like different stress states, and temperature

range. The best models are based on an understanding of the underlying physical mech-
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anism and relate macroscopic behaviour to constituent material properties [Ashby,

1992c]. Advances in formalising the way in which both design and materials engineers

can be brought to speak the same language have been achieved recently by Ashby

[1992a]. However, in the case of processing, the basis for common understanding be-

tween materials and processing engineers is still limited and needs to be developed.

Case study-part 7: generating the required knowledge for ceramic matrix

composites-outline of a testing programme

By introducing an innovative design approach using a separate confinement ring
around the blades, we have taken away the main obstacle concerning the application of

ceramic matrix composites as gas turbine blade materials-the high sensitivity to

tensile loading. It has been shown that the main design constraint on the confinement

ring-the high tensile loading in a rotational field--can be overcome in principle. From

this point on a design solution for the two now separated functions-transmitting the
load on one side, and containing the weight on the other-can be pursued

independently. We have laid out the conceptual path for designing the confinement ring
in the last section. Let us now take a look at further steps concerning ceramic matrix

composites.

The task of the materials engineer is to analyse the modes of loading in the new poten-

tial design and find critical failure-prone points. The goal is, first, to generate

understanding of material behaviour under these critical, loads, and-perhaps-show

ways to improve material behaviour under these loads (via better processing). The sec-

ond goal is to engender a clear set of criteria within which the designer can safely de-

sign his component. Also in this case, not all has to be invented anew. Polymer matrix

composite blades of a similar shape have now for long been contemplated for applica-

tion in the compressor, some of the results may well apply here.

Finite element analysis may be the right tool for identifying critical loads at this prelim-

inary stage. A good understanding of purely aerodynamic requirements concerning the

optimum aerofoil shape of the turbine blade (without having to serve for the secondary

function of bringing in its own cooling air) is necessary prior to such a FE analysis.

Notwithstanding, intuition may help identify the main modes of loading even without

elaborate numerical analysis. Figure 5 shows a schematic of the proposed turbine blade
including the shroud and identifies potential trouble spots. They would lead to the

following three areas of principal interest for materials testing and modelling:
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"* Mode I and mixed mode delamination in curved section of the T-bent.

"* Compression, and compressive bending, possibly buckling. The gas pressure acting

on the blade both at start and during cruise conditions would have to be known.

"* Influence of contact stresses at the blade root where the forces are transmitted to the

shaft (possible shear failure).

"* Note that the design does not necessitate either notches or bolts, which are a known

source of trouble in design with brittle materials.

Knowledge about the high temperature behaviour under these same conditions is also
vital, because the use of ceramic matrix composites without cooling was one of the im-
portant assumptions in evaluating their innovation potential in the jet engine (e.g. use at
12500C).

6. CONCLUSIONS

The discussion of design in this report is not claimed to be original, it rather reflects
current thinking-taken up because of important consequences for ceramic matrix
composites, which are illustrated in a case study. Materials selection is shown to play
an important role in design and, if used properly, can be used as a tool for guiding in-

novation. A methodology has been sketched out generating options for innovation
based on promising candidate materials. It has been applied to the gas turbine and a
novel conceptual approach for its design to make advantageous use of ceramic matrix
composites has been outlined-exploiting their good compressive characteristics and

their light weight. It shows that best design results can be achieved in an interactive
process between processing, materials selection and design. This does not lead to an
automated selection of the best material and design, but is one of several tools in the
hand of the engineer, pointing the way, but not relieving him of the actual creative act

of design.
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Figure 1. Interactions necessary between processing, characterisation and design for
designing with new materials like ceramic matrix composites.
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Figure 2. Schematic of proposed geometry for turbine blades and confinement ring.
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Figure 4. Turbine rotor made with ceramic blades and a carbon-carbon confinement ring
to withstand tensile stresses [Fitzer, 1987].
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Figure 5. Intuitive analysis of critical loading and failure modes in new turbine blade
design.
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Abstract and defined by
The mismatch of coefficients of thermal expansion ri • u,,,;1'

(CTE) of fiber and matrix in metal-matrix composites 12 cr"I_(1 + v,)+ 3(1 -_v,)
reinforced with ceramic fibers induces high thermal
stresses in the matrix. Elasto-plastic analyses-with where aor, (a,, + ar, + ca.,)/3.
different degrees of simplification and modeling-show
that an interface layer with a sufficiently high CTE can
reduce the tensile hoop stress in the matrix 1 INTRODUCTION
substantially.

Metal-matrix composites reinforced with ceramic
Keywords: thermal mismatch, metal matrix, ceramic fibers have attractive properties for engineering
fiber, coating layer, elasto-plasticity applications. These composites have a high strength

associated with a low density. The ceramic fibers
NOTATION provide high-temperature resistance, and their brittle

behavior is compensated to some extent by the

E,, v, Young's modulus, Poisson's ratio of j ductility of the metal matrix. However, because
f Fiber ceramics have a lower coefficient of thermal expansion
j f, l, m (CTE) than metals, a thermal mismatch is induced
I Layer which is responsible for thermal stresses in composites
m Matrix subjected to a change in temperature.
R, External radius ofj Cracking in the matrix has been observed after
t/ Layer thickness (=Rl - Rf) cooling down from processing temperature to room
a, CTE of j temperature for brittle matrix materials.- It has been
AT Change in temperature proposed that the insertion of an adequate interface
A,, u, Lamd coefficients ofj (A, = E~v,/(l - layer between the fiber and the matrix can reduce the

2v,)(I + v,) and j, = E,2(1 + v,)) tensile stresses in the matrix to a level which prevents
a,, Initial yield stress in j matrix cracking.
a,, Radial stress (a,,) in j Some numerical parametric studies3' suggested that
am, Hoop stress (o,)inj the optimum interface layer should have a CTE
o-1 Axial stress (oU:) inj between those of the matrix and the fiber. a low

Young's modulus, and a high thickness. However.
In the same manner, we define the total strains. E,,, these conclusions were based on a questionable
Cft, f~, and the plastic strains. ,P, -P, -P optimization procedure1  or on limited numerical

results and did not provide an understanding of theis, von Mises equivalent stress in] prblm
problem.

In the same way that the von Mises equivalent stress is Recently. Jansson and Leckie' conducted a
related to the distortion energy, a so-called damage simplified analysis assuming a rigid fiber and a very
equivalent stress' is related to the total elastic energy thin layer. They concluded that a compensating layer

with a sufficiently high CTE can reduce the residual"*Present address: Centric Engineering Systems Inc.. 3801 srse ntemti infcnl.Acmlt lsi
EastBayhor Rod. alo lto CA9433, SA.stresses in the matrix significantly. A complete elasticEast Bayshore Road. Palo Alto. CA 94303. USA.

analysis was performed by Doghri et al.," who
Composites Science and Technology 0266-3538/94/$07.(X) proposed an ontimi7ation procedture offering a
S 1994 Elsevier Science Limited. window of candidate layer materials. Both of these
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Layer '., = constant = e.. The other strains are given by
Matrix = d and d, = r-

Fiber dr r

I I I I and there are no shear strains.
One may use the finite element method (FEM) to

solve this problem. But the problem being axisym-
metric, we developed a procedure which proved to be

more flexible and much less computer time consuming
than the FEM. The interface laver is assumed to be

S-, - , -elasto-plastic while the fiber and the matrix are elastic.
A solution is sought which will satisfy the following

conditions:
SCl. The constitutive equations everywhere.

C2. The exact static equilibrium equations with no
Fig. 1. Concentric three cylinder model. body forces in (f) and (m).

C3. The continuity of displacement between (f) and
(I): Uf= UL at r = Rf.

studies showed that. while the hoop stress in the C4. The continuity of displacement between (I) and
matrix can be reduced substantially, the axial stress in (in): U, = U. at r = R1.
the matrix is less affected by a layer. They also C5. The stress-free condition at the outer surface of
pointed out that plastic yielding may occur in the the compound cylinder Ora = 0 at r = Rm.
interface layer. C6. A weak form of the equilibrium in (I).

In this paper, plasticity is taken into account. The C7. The axial equilibrium condition associated with
first part of the study is based on a three cylinder a generalized plane strain assumption:
model, isolating one fiber with an interface layer and a R,

matrix layer (Fig. 1). The interface layer is elastic- Gur dr = 0
perfectly plastic while the matrix is considered elastic. 'I

The material properties are assumed to be constant. A This solution will not satisfy the continuity of the

remarkably accurate and efficient numerical procedure stress vector at the interfaces (f)/(I) and (1)/(m).
is developed allowing one to have approximations of However, it was found that the resulting jumps are
the stress and strain fields everywhere in the small. The iterative procedure adopted is the

composite. following:
In the second part of this study, finite element (i) Propose AT. a temperature increment.

computations are performed. Both the coating layer (ii) For the given AT. propose Ae1. a total strain
and the matrix are assumed to be elastic-perfectly increment in (I).
plastic, and the temperature dependence of material -Find stresses in (I) which satisfy the
properties is taken into account. The accuracy of the constitutive equations.
three cylinder model is investigated by studying the -Find strains and stresses in (f) and (m) which
response of a unit cell of a hexagonal array of the satisfy the conditions (C1)-(C5).
fibrous composite. -Check the satisfaction of the equilibrium

conditions (C6) and (C7).
- If not satisfied, propose another AE1 . i.e. go

to (ii).
2 DEVELOPMENT OF THE STRESS-STRAIN - If satisfied, for this temperature, the
ANALYSIS FOR THE AXISYMMETRIC solution is accepted.
THERMAL PROBLEM

2.1 Equilibrium conditions C6 and C7
The composite is not subjected to transverse loading Any form of the total strain field in (I) may be
and the outer surface of the compound cylinder is assumed, provided that the compatibility conditions
traction free. The thermal loading is assumed to be are satisfied. For example, the following form of the
axisymmetric with respect to the z-axis. so that the total strains in (I) is assumed
displacement in the transverse plane is radial: U,(r). R)
The fibers are long and the strain and stress r, =c 1 - (2) d,
distributions are uniform in the z-direction except at (2)
the end regions which are not studied here. A . R
generalized plane strain assumption is made so that Er = \r-



Elasto-plastic analYsis of metal-matrix composites 65

where c, and d, are dimensionless constants to be and
found.

We have used the present form of the total strain
field in (1) because it has a uniform trace: hence. the ({,} = o,(I)

stress field has a uniform trace also. and since o:11
=constant = e., the stresses oa, are likely to be

almost uniform, which is in agreement with a The system of three equations of equilibrium can he
generalized plane strain assumption. rewritten as:

The radial displacement is given as R,

U, = cr + dR (3) - R1Ur(Ri)

The local equations of equilibrium in the layer are + - Rrm(R) = (

3o,, r (4) 2 2

We use the same procedure by which the local where the superior index T denotes transposition.
equations of equilibrium are extended to the global Note that all the stresses in (f) are uniform and thatones. We multiply the local equations by Ut and the axial stress in (m) is also uniform (see Ref. 6 for
integrate over the domain of ( i) to give: details).

The stresses {o,} are implicit functions of {e} and

f R, ['90, + I the stresses qf. o.., ,, and a~ are explicit functions
+- 3r r , of {e}. Then, the last system is a nonlinear system of

R>I] three equations and three unknowns, which are the
[cr+dIdJrdr=O (Vc,.Vd1 ) (5) components of ({e. This method looks like a FEM

r with on!y three DOFs (degrees of freedom), which

This is a weak form of the equilibrium because we makes it a particularly efficient tool.
assume only a particular form of the displacement
field. 2.2 Iterative approximation of the total strain

The previous equation leads to the following system increment in the layer
SR 9Keeping the previous notation, we have {Ae)} =

"', I r23r + r(C - all")_I dr = 0 [fBAe}.
fR• °--+r(Orr-OH)] dr=O (6) For the starting iteration. (Ae} = (0) is proposed.aa, RT a dr= 0 If the solution found in (f). (I) and (m) does not

.,,, ( r satisfy the equilibrium equations. Newton's method is
used in order to propose another approximation forBy partial integration this system becomes e:

f r(c,, + a...) dr + I uH -0 =((1(7),l =o{•e)+• c,={0} (12)
R (7) 3

T'r(a,,- a,.)dr + R•[o, = where (Cj represents a 'correction' to {Ae} and

This system represents the equilibrium condition C6. [-]= [B]f[H]IB]r dr + [h1] (13)
To this system we add the equilibrium condition in the 3e "
z-direction. i.e. the equation of condition C7. Since Here [H1 is the 'tangent' matrix at each point of (I). If
o:, and an,, are uniform, we obtain: perfect plasticity associated with a von Mises yield

R, 2R•, R2) surface is considered, and if the material properties
no::r dr + - C of + -- = ( (8) are assumed not to change with temperature. then the

f,2 2- 2 continuum' expression for [H] during plastic yielding

We now define the following matrix notations, is (see Doghri' for details)
which are suitable for numerical analysis:ft',i][l I -(R,/r) -I r {c, [HJ = EJ - -- (u}{ h'} (141

F(Rlr)) fo 1 0 = [Bile) where E, is the Hooke's operator in (I) and oal is the
:l 0' J deviatoric stress in (I).

(9) The details of the computation of the matrix Ih']
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are given in Appendix 1. This matrix takes into are not given as constant, but depend on {e}. Its
account the fact that the external loads applied to (I) matrix form is as follows:

a3,, 
3

, 0- 01.,
R2 -R-2 (RI) R -- R--- (R,) R - R - (RI)

3 3c1- 3d oar ao. _.

IV = R•-2 -R'--c (RI) R1 - -R1 (R,) R c-- -R ... (R,)

S3c' 3d 3d, oe, o'

R2 3o:, Rý,Rý 3o, R23a:1  1 R;ýRý 3az, R' 3a- 1 R, R &7o

2 3c,+ 2 2 3c, 2 3d,+ -2-2 3 , 2-3e, 2 2) 32,,

2.3 Stresses in the layer • Continuity of the stress vector at the interfaces
Once (Ae} is given, one knows JAtE) everywhere in (f)MAI) and (1)/(m).
(I). The stresses (and the plastic strains) are then - Zero stress vector at the outer boundary.
computed by integrating the constitutive equations. - Generalized plane strain assumption.
An elastic predictor/plastic corrector method is used. Since for the thermal loading case. Refs 6 and 8
A fully implicit integration scheme is adopted and the both make the same assumptions, one expects that
nonlinear equations are solved by a Newton method. they would obtain the same results in that case. This
It can be shown that the corrections are found was checked numerically with the data corresponding
explicitly (see Doghri7 for details). to system 4 of Table 1 in Ref. 8.

3 NUMERICAL kESULJIS OF THE THERMAL Fiber: SiC
PROBLEM E, = 431 GPa v, = 0.25 a, = 4-86 x 10 "'PC

Matrix: titanium aluminate
We first recall and compare elastic solutions E,, = 96.5 GPa v, = 0.30 a, 9.25 x 10 "PC
developed by Benveniste et al.' and Doghri et al.' avr Ca5bIn
Benveniste et al. evaluated local fields and the overall Layer: CarbonE, = 34.48 GPa v, = 0.20 a, = 3.3 x 10I "°C
thermomechanical properties of composites reinforced
by coated fibers or particles. The local strain fields in
each inclusion of phase (f) or (I) were assumed to be The volume fractions for (f), (I). and (m) were 0.4.
equal to the fields in a single inclusion of phase (f) or 0.0107 and 0.5893. respectively. They were simulated
(I) which is embedded in an unbounded matrix (m) using the following data:

and subjected to remotely applied strains which are Rf= 6957 pm R, =lOpm t1 = 0-92 ym
equal to the average strain in the matrix, and also to a
uniform temperature change. After deriving general Figure 2 shows the stress distributions in (f). (I) and
results for arbitrary shapes, the authors applied their (m) obtained by the method developed in Ref. 6. It is
method to a three-phase composite containing coated identical to Fig. 8 in Ref. 8.

cylindrical fibers of circular cross-section. Theyconsidered six loading cases, the sixth one cor- 3.1 Coating layer candidates
resonsideredsixloading to atum hae sinh t nemera . The elastic studies of Jansson and Leckie' and Doghriresp o n d in g to a u n ifo rm ch a n ge in te m p e ra tu re . e l ' p o e h t a c m e s t n l v r w t
Doghri et al. considered this last case only. However.
they tried to solve the optimization problem: for a sufficiently high CTE can significantly reduce the

given (f) and a given (m). find the best (I). In other residual stress in the matrix. They also showed that

words, which material properties and what thickness the hoop stress ir, the matrix can be reduced

should (I) have in order to minimize the tensile substantially but the axial stress in the matrix is less
stresses in (m)? affected by a layer. These studies pointed out that the

For the thermal loading case. the solutions in Refs 6 stresses in the layer can be high enough to induce

and 6 both satisfy the following conditions: plastic yielding.
A practical optimization procedure is proposed in

"* Linear thermoelastic behavior in (f). (I) and (m). Ref. 6 offering a list of candidate laver materials.
"* Static equilibrium equations with no body forces According to this procedure. silver. 'or example.

in (f). (I) and (m). seems to be a good candidate since the matrix stresses
"* Continuity of the displacement at the interfaces are considerably reduced- but one may question the

(f)/(I) and (1)/(m). selection of silver as a coating material. The answer
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3.2 Constant material properties
\The fiber and the matrix are defined by the following

0.6 °zf data:

Fib'r: SiC (SCSIS)

a] LIý=31 a I •=II ",:4'L. III v, ( 1, n',ir,1

0.3 AT= 1 C Matrri• T3Al
"• O'Girt (Yet Orl 75 l= ' G- Pa| 11 . l25" , n ,= - 1 7 . III ,• P. R Il.

a.. ~ -...
(ar

5 0.0
05 The radii R, and R. are related to the fiber volume

fraction, C,. by

-0.3 -G(Tm = ' ! ) =4-1r

Gzm The Ag layer is defined by the following data:

-06 .1_ _ El = 71 GPa, v, = 0-30, a, = 25-9 x I0-(,/.C,
0.4 0.7 1.0 1.3 1.6 a,, = 100 MPa. tj = 10 im,

Radial Distance / Fiber Radius In this section, both (f) and (m) are elastic, while (I)

Fig. 2. Stress distributions in System 4 (Table 1) of Ref. 8 in is elastic-perfectly plastic. The results were found
the case of a uniform temperature increase of V°C. Fiber: using the method developed in Section 2.

SiC; layer: carbon; matrix: titanium aluminate.

3.2. 1 Monotonic cooling
The final values of stresses and strains at the inner
radii are given in Tables I and 2. respectively.

is that this material has properties that are needed for Analyzing the results, the following observations can

this concept to work. In a real situation, however, Ae the r

several other considerations have to be taken into be made

account (cost, chemical compatibility, melting point, • The reductions of the maximum a, or o. are
etc.). One may use the optimization charts in Ref. 6 important: &m,/,!fc 0-50 if (I) is elastic and
to choose other coating materials. For example, 5,15_,--l)0.55 if (I) is plastic.
copper seems to be a possible candidate. - The reduction of the maximum Oar, is even more

In this section, we will study the effect of a plastic important: OGm/Or,.I = 0"37 if (I) is elastic and
layer to complement the previously obtained elastic Oom/o,,ur = 0"22 if (1) is plastic.
results. All the numerical applications which follow ° When the layer is added, all the stresses in (m)
correspond to a monotonic cooling of AT = -800'C. are reduced; however:
The results are always compared to a reference case - Without the layer, the maximum tensile stress in
(fiber and matrix, without layer). the matrix is the hoop stress: o,/O,,, 0-(84

Table I. Stresses in the compound cylinder after monotonic cooling

Stresses in matrix 7,, o., a.. a
Reference o(MPa) -187.3 422-2 372.0 597.5 6402.5
(I) elastic o(MPa) -5o .4 163.5 292.8 3W44.2 320-3

7/o,, 0.27 0.37 0.79 (4.544 44.53
(I) plastic a(MPa) -30.4 98.7 342-( 327-5 342.7

o/o,", 0.16 0.22 0(92 (4.55 11.57

Stresses in layer
(I) elastic Y(MPa) -260.1 1529.5 1437.1 1745,2 19401.7
(I) plastic o(MPa) -36.3 64.9 62.5 44).4) 98.X

Stresses in fiber
Reference a(MPa) - 187.3 - 187.3 -546-5 359.3 536.0
(I) elastic a(MPa) -2644-1 -2I-I -790-5 52t4-4 7631X
(I) plastic a(MPa) -43.6 -43.6 -417-8 374.2 404.-6

Stiesses are given at the inner radii of (m) and (I). Stresses arc uniform in (M
Constant material properties.
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Table 2. Strains in the compound cylinder after monotonic
cooling -- L.ejr cltu,

Strains in matrix - . t.J\.r d:liuc-pertej.l pIa.,tl.
Reference - 1.45 -0-41 -. 2
(I) elastic c( '4? -I.15 -0-(90 -t(0-5
(I) plastic (' - 1.12 -0.90 -0.50
Thermal strains: a,, AT -(.94'?

Strains in layer
(I) elastic C(,; ) -3-69 -0-41 -0158
(I) plastic F('G ) -5.27 -((38 -0.50

FEvl ) 3.10 1-60 1.50 I
Thermal strains: a, AT = -2.07'? - - iher ma.Iri

Strains in fiber )aer : macc
R e fe re n ce e (' ) - 01 4 1 - (0 4 1 - (0 -5 3 0 ----... . . . .. . . . .. . . . .
(I) elastic F(4) -0-41 -(041 -0.58 0) 0. 1( ( ;5 (2( (125
(I) plastic E('4 ) -0-38 -0(38 -0.5)1
Thermal strains: a, AT = -0-39`' tf

Strains are given at the inner radii of (m) and (I). Strains are Fig. 3. Influence of the layer thickness on the maximum ,on
uniform in (f). Constant material properties. Mises equivalent stress in the matrix.

for a,*. The best reductions in the maximum C",,, are:
With the layer. oa,, exceeds the maximum a,,, 0"

and this trend is accentuated when (I) is plastic: ,
o:m/o~m = 1"79 if (I) is elastic and oU.,/UH = 346 0 5 when () is plastic, and it is obtained for 0-16
if (I) is plastic. R -

" Since the stresses in (I) are reduced when plastic
yielding is considered, there must be an increase 10.4 when (I) is elastic, and it is obtained for- = 0.23
in stresses elsewhere. We see that the stresses in R,
(f) decrease and that oa and a,, decrease: then (b) With all other parameters kept constant, the
it is to be expected that on,. increases, by influence of a,, was studied. Since 6, =ao, (perfect
comparison with the elastic layer situation. plasticity). one knows that if a,, increases then the

"* One observes in Table l that the matrix does not stresses in (I) increase, and one expects that this may
yield. So the assumption which was made in reduce the stresses in (m). Figure 4. however.- shows
Section 2 (elastic matrix) is legitimate. that the value of a,t does not affect 5,,,. This result"* We have mentioned at the beginning of Section 2 leads to another interesting prediction: if the
that our solution does not satisfy the continuity of temperature dependence of properties is taken into
the stress vector at the interfaces (f)/(]) and account, plasticity in (I) will indeed occur sooner
(1)/(m). But the following results show that the (since oa, will be smaller) but (rn) will not yield and
jumps in a,, are not too large: the results will not change too much. This will be

J a,(R,) = -43.57 MPa J a,,(R,) = -36-03 MPa checked in Section 3.3.1.

o,,(R,) -36.27 MPa a,.,(Ri) = -30.41 MPa 4

"* Table 2 gives the strains in (f). (I) and (m). It can
be noticed that even when (I) is considered C 3
elastic, the strains in (1) are important (due to laver
high thermal strains). When we consider plasticity
in (I). the trend becomes accentuated (because ,
the stresses in (I) are reduced).

"fiberS".2.2 Senlsitiv~itY stud\" -• - ... --. " -.......---..-- .--.--.--.-..-..............t --
3.2.2~~ ~~ 1esh't 15d ------------------------------- --------- ------------(a) With all other parameters kept constant, the . -.

influence of t, was studied. Figure 3 shows that if 01
(t/R-I • (I. ll. th#e two cases (I) elastic and (I) plastic 0 200 400 600 800 1000 1200 i(40 1600
give the same v;oues for the maximum 6.m. If (, 1 (MPat
(t,/RI) >0.11. then for a given t. the maximum t7,, is Fig. 4. Influence of the laver yield siress( on the maximum
higher when (I) is plastic. The same conclusions apply Von Mises equivalent stress in the matrix
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3.3 Temperature-dependent material properties of the stresses in (m) at the inner radius are given in
In this part of the study,. the temperature dependence Figs 7(a) and 7(b). The final values of the stresses and
of the material properties is taken into account. the strains at the ianer radii of each material are given

The following materials were considered: in Tables 3 and 4. These results show that:

Fiber: SCS6 Matrix: TikAl Layer: Ag • In the reference case. (m) yields. The laver

The material properties were compiled from Refs prevents yielding from occurring in (m).
9-13. The data are given in Figs 5(a)-5(d). The fiber ° The laver reduces the maximum oa,, significantly.

is elastic and the layer and the matrix are assumed to while a. is increased:

be elastic-perfectly plastic. Finite element computa- -,, 12 ad ,
tions were performed with ABAOUS. " A generalized =-23 and ----- = I.42

plane strain assumption was made. More details about

the boundary conditions and the modeling are given in It is interesting to note that we made the same
Appendix 2. remarks in Section 3.2.1 when the material properties

were assumed to be constant. One also notices that
3.3. 1 Concentric cylinder models the strain values are almost identical to those obtained
The FE mesh used for the three (or two) cylinder in that section. We may conclude that. from a
models is given in Fig. 6a. The temperature variation qualitative point of view. taking into account plasticity

400 0.32

S fiber

0.28 -layer

S300

0.24
matrx

S200 0.20

C ~- Sfiber

0.26
100

marix 0.12

layer
ioo

0 0.01
0 200 400 600 800 1000 0 200 400 600 800 1000

Temperature (0C) Temperature ( 0C)

(a) (b)
35 400

30 - ~layer mti

25 
30

S20 • ~-• 00
U.) 15 mamix

10a
fiber

0 200 400 600 800 100(0 0 200 4(1 6(0) S00 I(NX

Temperature (°C) Temperature C°C)

(c) (d)

Fig. 5. Temperature dependence ot the material properties. Fiber: SiC (SCS6): laver' Ag: matrix: TiAI. (a) Young's modulus,
(N) Poisson's ratio: (c) CTE: (d) initial yield stress
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400

300 ,

200

Fiber Layer Matrix

Rf=70 pm tj 10gm 1

o-- Without layer
Rm= 1I0t irm -- With layer

(a) 01
A B 0 200 400 600 800 1000

Temperature (
0
C)

(a)

400

C - Without layer
axial - With layer

-300

hoop

(b) axial

Fig. 6. Finite element meshes: (a) three cylinder model; (b) =200

unit cell of a hexagonal array.

t100
in the layer is more important than the temperature hoop

dependence of the material properties.
-.

3.3.2 Unit cell of a hexagonal array 0 200 400 600 800 1000
The manufacture and testing of composite materials is Temperature (MC)
demanding in time and effort so that there is special (b)
need for procedures that can help determine the
macroscopic properties of the materials from the Fig. 7. Temperature variation of the stresses at the inner

radius of the matrix cylinder: (a) von Mises equivalentproperties of the constituents. Success in thisst e ;(b t nil sr se .stress; (b) tensile stresses.
endeavor would mean that prediction of composite
properties would bypass expensive and time-
consuming manufacture and test procedures. axisymmetric problems. the three cylinder model

The so-called homogenization procedure is used to seems to be a simple but accurate representation.
predict the macroscopic properties of the composite However, with the unit cell. it will be possible to study
from the properties of the individual constituents. the composite behavior under transverse mechanical

The composite. under consideration is composed of loading since the three cylinder model is clearly not
a hexagonal array of SCS6 fibers coated with the adequate for non-symmetric problems.
interface layer, in a TiAl matrix (Fig. 8). A
hexagonal array presents more symmetries than a 4 CONCLUSIONS
square array. Taking into account the structure
periodicity, the problem can be reduced, for The optimization procedure proposed in Ref. 6 on the
symmetric loading, to the study of a single unit cell basis of an elastic study allows a choice of good
(ODBA), shown in Fig. 8. with the appropriate candidate layer materials. The elasto-plastic analysis
boundary conditions, as detailed in Appendix 2. The conducted here confirms that such interface layers can
F E mesh for the cell is shown in Fig. 6(b). reduce the hoop stress and the von Mises equivalent

The stress and strain values were found to be almost stress in the matrix significantly. However. the axial
identical to those obtained for the three cylinder stress in the matrix is less affected by a layer (and it
model (presented in Section 3.3.1). Thus, for may even increase). This implies that these layers
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Table 3. Stresses in the compound cylinder after monotonic cooling

Stresses in matrix 0 ., a-.. a-, a o

Reference o(MPa) -130.8 261.7 235.4 38(0. 377.7
(I) pldstic u(MPa) - 1.i-,3 61.82 335.0 317.! 329-3

0/o0,I 01. 0 0.23 1.42 0.83 0-87
Stresses in layer

(I) plastic o(MPa) -1.40 98.13 99.07 100(. 117.4
Stresses in fiber

Reference o(MPa) -159.7 -159.7 -503.7 344.0 491.3
(I) plastic o(MPa) -41.18 -41-18 -426.7 385.5 415-8

0.26 0.26 0.85 1.12 0.84

Stresses are given at the inner radii of (m) and (1). Stresses are uniform in (f).
Temperature-dependent material properties.

Table 4. Strains in the compound cylinder after monotonic cooling
Strains in matrix Accumulated

(c%) EC, E.. E:: plastic strain
Reference -1.61 -0.437 -0.517 0.34
(1) plastic -[108 -0.961 0.506 0

Strains in layer

(I) plastic -5.00 -0-594 -0.506 2-94
Strains in fiber

(%)
Reference -0.405 -0-405 -0.517
(I) plastic -0.381 -0.381 -0-506

Strains are given at the inner radii of (m) and (I). Strains are uniform in (f).
Temperature-dependent material properties.

could be successful in composites where pre-
"dominantly radial cracking is observed in the matrix.

_ý30° The interface layer should be ductile enough to

sustain relatively high strains. It should also have a
"yield stress high enough to improve the range of shake
down of the composite.

It appears that taking into account plasticity is much
more important than the temperature dependence of

(a) the material properties. Comparison between the
results given by the three cylinder model and a unit
cell of a hexagonal array shows that for axisymmetric

2 problems the concentric cylinder is a simple but

At B E,- accurate model.

h ACKNOWLEDGEMENTS

---. I The work was supported by a grant from the
-- @ O~D F NASA-Lewis Research Center. The authors wish to

h express their gratidude to Dr Steve Arnold for the
encouragement and support.

(h b) ih REFERENCES

Fig. 8. Fibrous composite: (a) hexagonal array: (b) region I. Lemaitre. J & Chaboche. J. L.. Mechanc% o .Solidof analysis. tUJnit cell parameter: h = R1(•/2C,3)' = Materials. Cambridge University Press. Cambridgc,
104.8 Mm. 1990.



72 1. Doghri. F. A. Leckie

2. Brindley, P. K., Bartolotta. P. A. & MacKay. R. A., The radial and longitudinal stresses in (f) are then:
Thermal and Mechanical Fatigue of Si(/Ti3AI + Nh.
2nd HITEMP Revie". NASA CP-1tX)39. paper 52. o,= 2()A, + 11,)c, + Ae, - (3;,, + 2p,)a, AT
1989.

3. Ghosn. L. J. & Bradley. A. L.. Optimumn Interface :, = 2Ac, + (A, + 2i,)e, - (3)`, + 2p,)a, AT
Properties for Metal Matrix Composites. NASA
TM-102295, 1989. Condition C4. i.e. the continuity of the displacement

4. Caruso. J. J.. Chamis. C. C. & Brown. H. C.. between (I) and (m). gives:
Parametric Studies to Determine the Effects of Compliant
Layers on Metal Matrix Composite Systems. NASA R
TM-102465. 19901. cmR + - d, - cR, + d,R,

5. Jansson. S. & Leckie. F. A.. Reduction of thermal
stresses in continuous fiber reinforced metal matrixR R
composites with interface lavers. J. Comp. Mater.. 26 Cm + / dm C' + d
(1(0) (1992) 1474-86. R,

6. Doghri. L.. Jansson. S., Leckie. F. A. & Lemaitre. J..
Optimization of coating layers in the design of ceramic Condition C5. i.e. the stress free condition at r R,,
fiber reinforced metal matrix composites. J. C'omp. gives:
Mater. (in press).

7. Doghri. L.. Fully Implicit integration and consistent 2(Am + pm)cm + Ame: - 2pmdm
tangent modulus in elasto-plasticity. Int. J. Eng. (in (3Am + 2pm)Om AT = 0
press).

8. Benveniste. Y.. Dvorak. G. J. & Chen. T., Stress fields This gives
in composites with coated inclusions. Mech. Mater.. 7
(1989) 305-17. Are: + 2(Am + 4m)(c, + d) - (3;m + 2m)a mAT

9. Brindley. P. K.. Draper. S. L.. Nathal. M. V. & dm = R
Eldridge. J. I.. Factors which Influence Tensile Strength 2/Mm + 2(Am + ( - )2
of SiC/Ti3AI+Nb. 2nd HITEMP Review. NASA
CP-10039. paper 51. 1989.

10. Shafrik. R. E.. Dynamic elastic moduli for the titanium and
aluminides. Metall. Trans. A. 8A (June 1977) 1(9)3-6. R

11. Dicarlo. J. A.. High temperature properties of CVD c, = c + d, -(-d,
silicon carbide fibers. Int. Conf. of Whisker-and R,)
Fiber-Toughened Ceramics. Oak Ridge. TN. June 7-9.
1988. Then, the radial and longitudinal stresses in (m) at

12. Jansson, S.. Deve. H. E. & Evans. A. G., The r = R, are
anisotropic mechanical properties of a Ti matrix
composite reinforced with SiC fibers. Metall. Trans. A. ,
22A (December 1991) 2975-84. o,ý= 2(Am + pm )cm + AmCe - 2/u

13. Boyer. H. E. & Gall. T. L., Metals Handbook. Desk
Edition. ASM, Metals Park. Ohio. 1985. x d, - (3Am + 2pr)am AT

14. ABAOUS, version 4.7. Hibbitt, Karlsson and Sorensen,
Inc. o = 2A,,c, + (Am + 2pm)e: - (3Am + 2pm)a, AT

15. Ranaweera. M, P., Finite element analysis of a metal
matrix composite under mechanical and thermal
loading. Report. UC Santa Barbara. Department of Computation of [h+]
Mechanical and Environmental Engineering. June. The matrix [h'] contains the partial derivatives of the
1989. stresses a,. o,(Rj,) a, and o~, with respect to the

components c,. d, and e: of {e} (see Section 2.2).
- Fiber contribution

APPENDIX 1: CONTRIBUTIONS OF (fM AND We have
(m) TO THE RESIDUAL FORCE VECTOR
AND INCREMENTAL STIFFNESS MATRIX ac, ac. I R an - '=
(SECTIONS 2.1 AND 2.2)--= Ic . =, ( i and Y-- =

Here, the fiber and the matrix are assumed to be Q- a,=2(A,_ + 3c, )-- 0, -=2(A,+ u,)

elastic, their stress and strain fields are completely 3c, ac, 3d, 3d,
defined by the acknowledge of three constants: c,. Cm, c0, ac,
dm (see Ref. 6). e. 2(A + ce) +e,

Condition C3. i.e. the continuity of the displace- -. ' 37,
ment between (f) and (I). gives: , 2 ' - = 2•A,

c (3c, , d 3id, d,

R1 R.9, 3c,
cjR, = cR, + d, R, >C'= c, + di 2A -+(A, +2pu)" R, c3e., 3C.
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Matrix contribution Edge effects will not be considered. and hence the
We have analysis can be done using the theory of homogeniza-

3d,__, 2(;., + M,)tion. We consider symmetric loading so that the edges
ad•,., + ,,) = ad,,, of the unit cell as well as the axes 01 and 02. will
ac, + 2dp remain straight during deformation. Hence onlv a

R, quarter of the unit cell need to be considered for

3dm )'m analysis, and this is taken to be the positive quadrant
9e~lRm zof the 01. 2 axes.

"de. 2pm + 2( m + R)(- If this quarter cell (OFEA) is isolated and allowed
to deform symmetrically, it will undergo displace-

ac_ = I Rm I-3d" 3cm ments as shown in Fig. A l(a). The centerline DCB.
ac, \R,/ amc, -d," about which the region is skew-symmetric, will

2dmdisplace as shown. If (u_. u) are the displacements ofac" R,_ 3e. C. (uW. u) are the displacements of a point P on CB,
e. \ R e: and (u'°, uV) are the displacements of a point 0 on

3C_ aCm DC such that QC = CP. then:=c 2(Xm. + pm) - 2' •=u
3C ac, U,=u =0
R .- d a3,a, p + 0o-0

adI ýc , d I + u1 = 0

3e- 2(, + pm) 3e. R - ac , If this skew-symmetry is taken into account, only
e-- -e- R- ac--- the half (ODBA) of the quarter cell need to be

ao90=, 2 c, a9o,,m analyzed. The deformed shape of (ODBA) is shown
c 3c, =3c, --- in Fig. Al(b). after giving it a rigid body translation so

a0ZM a3c that points in the side OD do not undergo u,
=e. =2 + (Am + 2,um) displacements. In analyzing region ODBA. the

ae- ae, boundary conditions to be used are:

(i) Along OD, u2 = 0
(ii) Along OA. u = u

APPENDIX 2: MODELING AND FINITE
ELEMENT DISCRETIZATION 2

A' ----- B' E'ABAQUS generalized plane strain elements CGPE5 -A E

and CGPE6 were used, two extra nodes (EXI and V -,"
EX2) were needed to impose the generalized plane ,P -

strain condition. The node EXI has one DOF
representing the longitudinal displacement which is -

the increase in thickness of the model. The node EX2 Q
takes care of the rotations at the end planes, and these -

are prescribed to be zero. A unit thickness is assumed. o_ - - _ -_ F
o' DF

(a) Two and three cylinder models (a)

Because of the symmetry of the problem. only a
quarter of the cross-section is considered. The A' B

dimensions and the mesh used are shown in Fig. 6(a). I
The normal displacements of the nodes of the two A B t,

straight edges of the section in Fig. 6(a) are imposed
to be zero. The two cylinder model (fiber and matrix) PI/C'
is simply obtained by saying that the layer material is C
identical to the matrix one.

- Q
(b) Unit cell O' (D ' D
The composite is composed of a hexagonal array of 0 0

SCS6 fibers coated with the layer, in a Ti,AI matrix. (b)
The transverse section is given in Fig. 8. We adopt the FiR. A1. Unit cell definition: (a) region of analysis and
same approach as in Ref. 15. boundary conditions: (b) unit cell and boundar, conditions.
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(iii) Along BA. u2 = u displacements of the node A and the u, displacement
(iv) Along DB, for points such as P and 0. of the extra node EXI. In terms of these nodal

UP +displacements. the average (macroscopic) direct
U + U1 = 0 strains in the composite are given by:

u2 + u, =uA'

The FE mesh used is given in Fig. 6(b). With the U" 0 .- \.
boundary conditions given earlier, the key displace- V3h /I-
ments of the FE model are the u, and u, 2
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Abstract-The anisotropic mechanical behavior of a continuous fiber reinforced Ti alloy matrix composite
which possesses a weak fiber matrix interface is modeled numerically. Effects of interface properties and
residual stresses incurred during the fabrication are addressed in detail. The computational modeling is
guided by comparison with experimental data. The study provides an understanding which will be used
to model the multiaxial behavior of weakly bonded composites and to provide a tool for predict.ng the
failure of composite structures.

1. INTRODUCTION the matrix strength. The use of a weak interface in the
SCS6/Ti 15-3 system results in a transverse strength

Continuous fiber reinforced metal matrix composites that is substantially lower than the matrix strength.
(MMC's) are attractive because of excellent longi- A detailed micro-mechanical model is developed
tudinal properties and relatively high transverse that determines the influence of weak interface, re-
strength and stiffness. The MMC's can be utilized sidual stresses from fabrication and the matrix plas-
effectively when the loading is predominantly uniax- ticity. The model is verified by comparing the
ial with primary stresses in the longitudinal direction computations with experinentai data obtained from
and only secondary stresses in transverse directions. longitudinal tension, transverse tension and in-plane
However, many structural components and joints are shear tests performed on specimens manufactured
subjected to complex multiaxial stress states. The from the composite plate. The different failure modes
efficient use ofcomposite materials in such situations are also investigated so that failure criteria can be
requires an understanding of the overall anisotropic established.
mechanical behavior of the MMC systems. MMC's
are presently available in restricted quantities and
shapes which limit the data that can be produced 2. COMPOSITE MATERIAL
experimentally. This implies that for the present,
numerical models are useful supplements and provide The material used in this study is SCS6,!Ti 15-3
estimates of mechanical responses that cannot be made by Textron. It consists of SiC fibers with a
determined experimentally. The models also provide carbon and a SiC coating in a uniaxial lay-up. The
insight which helps establish the failure conditions of fiber volume fraction is 35% and the average fiber
the composite. diameter 140rmm. The matrix is a fl-Ti alloy,

Experimental and numerical procedures have been Ti-15V-3Cr-3AI-3Sn. The composite is fabricated
applied in a previous study 11], to establish the by vacuum hot pressing a fiber-matrix foil lay-up.
anisotropic behavior of an FP/AI system which fea- Detailed information of the processing is not avail-
tures a strong interface. The present study focuses on able, but the composite is consolidated at approxi-
the anisotropic mechanical behavior of SCS6/Ti 15-3 mately 900'C. In the subsequent cool down. the
which is a candidate for moderately high temperature mismatch in coefficients of thermal expansion of
application. The composite features a weak interface fibers and the matrix causes residual stresses.
designed to maintain the fiber strength in the fabri- Tensile properties of the matrix were obtained
cated composite. from tests on matrix foil extracted from the com-

Single deformation modes such as the transverse posite. The fiber modulus was determined from the
tensile behavior of the similar system SCS6/Ti-6V- average of 50 bend tests [I]. The remaining properties
4AI has been studied by Nimmer et al. [2, 31. Exper- have been extracted from the literature and the elastic
iments [7] established that the fiber matrix interface properties are summarized in Table I. The matrix and
plays a major role on the transverse and in-plane fiber stress-strain curves arc shown in Fig. I.
shear behavior of the composite. For a system featur- The longitudinal and transverse behavior [71 were
ing a perfect bond, the constraints induced by the determined using dog-bone specimens for longitudi-
fibers cause the transverse strength to be higher than nal and transverse tension. Specimens of the

3147
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Table I. Matrix and fiber properties at ambient temperature 02

Matrix Fiber

Young's modulus (GPa) 115 360
Poisson's ratio 0.33 0.17 0
Tensile strength (MPa) 950 4300
Strain to failure in tension (%/) 3 1.2 .,

(IC) 9.7- 10-1 4.5 10-6

011 0 • (11

Iosipescu type were used to determine the in-plane 2 ® _
shear response.

3. MICRO MECHANICAL STUDY 0

Numerical simulations were performed using hom-
ogenization techniques in conjunction with the gen- Fig. 2. Hexagonal array with unit cell indicated.

eral purpose finite element package ABAQUS [4]. In
the computations the fibers are assumed to be long In the homogenization technique, cf. Jansson [6],
parallel cylinders arranged in a hexagonal array the displacement field is assumed to have the form
(Fig. 3). This is the simplest periodic array for which
the linear properties are transversely isotropic. The u, = u0 + (f, >.X, + uP (I)
nonlinear response of the array has a slight deviation
from transverse isotropy. It was demonstrated by where u, is an arbitrary constant displacement. <t, )
Jansson [1] that the array can be used to predict the is the average strain in the composite and uf is an
properties of a transversely isotropic system with unknown displacement field which is periodic on the
randomly distribute fibers, if care is exercised when unit cell. The average stress (a,,) can be determined
selecting the loading directions. For a system with from the traction T, on surface S on the unit cell by
randomly distributed fibers the matrix area fraction use of the mean stress theorem as
on any plane cut through the composite is equal to
the matrix volume fraction, cf. Underwood [5]. How- (<Oil >f T,.x, ds. (2)
ever the matrix area fraction is strongly dependent on
the orientation and location for a periodic array. The All the loading cases considered are symmetric with
present system has some form of arrangement result- respect to the xi and x, axes in Fig. 2 and the
ing from the fiber-foil consolidation process, but is displacement field has an inversion symmetry about
difficult to identify any definite simple array type, the point (x, = a,/3/2, x, = a/2). This implies that
since the distribution pattern differs from point to only the unit cell A-B-C-D in Fig. 2 need be
point. However it was found that an important analyzed. Ten node quadratic generalized plane
feature of the weakly bonded systems for transverse strain elements with reduced integration were used to
tension is the matrix area fraction on the weakest model the longitudinal and transverse behavior. The
planes. It was determined to be 40%, which is boundary conditions at the interface were selected to
substantially lower than the value of 65% for ran- satisfy the interface bond characteristics. A fully
domly distributed fibers. The corresponding value for bonded interface was modeled by enforcement of
the hexagonal array is 38% when loaded in the displacement continuity across the interface. The
1-direction, Fig. 2. The hexagonal array was selected weak interface was modeled by a 3-node sliding
in this case because it models the correct volume interface element available in ABAQUS. The inter-
fraction and matrix area fraction on the weak planes face is assumed to debond when the normal stresses
that dictates the transverse strength. become tensile and the interface is thereafter traction

free. Normal compressive stresses can be ac-
1000 companied by shear stresses given by Coulomb's law

oo -- of friction. Restrictions of the code meant that the
800 modeling of the in-plane shear response required a

A 3-dimensional analysis using a 20 node brick element.
.600 Boundary conditions whtch ensured generalized

2" 400 plane strain behavior and the symmetries on the unit
400 cell were imposed. These conditions reduce the de-
200 grees of freedom in the model substantially and

0 results in reasonable solution times. Numerical
0 1 2 3 difficulties were encountered when calculating re-

E (%) sidual stresses using available 3-dimensional interface
Fig. I. Uniaxial stress-strain behaviors of Ti 15-3 matrix elements. This difficulty was overcome by modeling

and SCS6 fibers. the interface as a thin elastic-perfectly plastic solid
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1000 bonded composites. When calculating the residual
stress fields the composite is assumed to be stress free

800 at the consolidation temperature before it is sub-
Initial Yield Stress sequently cooled down to room temperature. The

0- 6exact details of the processing are unknown and
2 400 • consequently no time-dependent viscous behavior

400 awas included in the analysis. The residual stress
200 ar m distribution in the matrix is shown in Fig. 4 for the

consolidation temperature 900'C. The residual stress

0 200 400 600 8oo 1000 in the fiber consists of a compressive axial stress of

720 MPa and almost uniform compressive radial and
T (*0 ) hoop stresses of 220 MPa. The residual hoop and

Fig. 3. Temperature dependence ofmatrix the yield strength radial stresses in the matrix vary substantially. The
and highest calculate equivalent matrix stress for a consol- highest magnitudes are found near the interface with

idation temperature of 900°C. a compressive radial stress of 200 MPa and a tensile

hoop stress of 500 MPa. The axial stress is tensile and
layer whose yield strength was selected to be equal to is almost constant, varying between 390 and
the sliding resistance of the interface. 420 MPa. No matrix cracking was observed in the as

The fibers were assumed to be isotropic and linear received composite [71 which suggests that the matrix
elastic and the matrix is assumed to be elastic-plastic toughness and ductility are sufficiently high to sustain
with isotropic hardening. The influence of different the tensile stresses induced during processing.
temperature dependence of moduli and matrix yield
strength were studied. It was found that the simplified 3.2. Longitudinal tension

temperature dependence of the yield stress given in The computed stress-strain curves following the
Fig. 3 together with temperature independent moduli different assumed consolidation temperatures of 0,

gave the same residual stress distribution as more 600 and 900'C are shown in Fig. 5. The difference in
refined models. The elastic properties of fiber and response for different consolidation temperatures is
matrix given in Table I and the temperature depen- modest which indicates that the magnitude of re-
dence of the matrix yield strength given in Fig. 3 were sidual stress has only a weak effect on the longitudi-
used in the computations. nal behavior. The calculated longitudinal modulus

3. ). Residual stresses after fabrication E 33 and Poisson's ratio v, are close to the experimen-
tal values given in Table 2. A slight sample to sample

The residual stresses following fabrication are variation in the longitudinal tensile response was
likely to influence the mechanical behavior of weakly observed in experiments, as shown in Fig. 5. The

variation is equivalent to a variation in the consolida-

tion temperatures of 600'C. This is unlikely and the

so observed variation is most likely caused by handling•0• 18/ 34 20 of the panels after fabrication.
Since the longitudinal response is only weakly

affected by the constraint in the transverse direction
200 _'the longitudinal stress strain relationship can be

00 estimated closely using the simple parallel bar model

0340 to give

'733 =AfE + (I _f)Fn(' 33¶! + cr (3)
Radial Stress Hoop Stress E.,

2000

1200 ,

4 ~~340 0.. 1200

390 g Boo

4100

0 0.2 0.4 0.6 08 1 1 2

Axial Stress F-33 (%)

Ftg 4. Calculated residual stress distribution after consoli- Fig. 5. Longitudinal stress-strain behavior for different
dation at 900,C. consolidation temperatures.
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Table 2 Comparison of computed and experimental elastic properiie,

E,, E,, G ",,I
(GPa) i, (GPa) I,: t" (MPa) (GPa) (MPa) (GPai (MPa)

Experimental 196 0.25 129 0,34 0.2 420 62 300 62 400

Computed 202 027 133 048 0 17 420 64 300 71 4()0

'Longitudinal loading.
f'Transverse loading.

0.0 lower than the experimental value, while the limit
strength is in close agreement with experiment.

When a residual stress state corresponding to the
.0.1 consolidation temperature of 900 C is included in the

"AT 0 analysis for the weakly bonded interface, it was found
that the elastic properties, Table 2. and the strength

0.2 agree very well with experiment. The influence of the
coefficient of friction at the interface on the

W-0.3 0 stress-strain relationship is negligible as is shown in
..0 -Fig. 7(b) for the values of u = 0 and 0.8. The

calculations predict that debond initiates when
a, = 140 MPa at the pole of the fiber and the angle

-0.4 of debond increases rapidly with applied stress until
Computations it subtends an angle of 90. Matrix yielding was

- Experiments predicted to occur in a small confined region on first
-0.5

0.0 0.2 0.4 0.6 0.8 1.0 loading but the effect of plasticity on the transverse

-33 (%)

Fig. 6. Transverse contraction for longitudinal loading. (a)

1200
where, f is the volume fraction, Er is the fiber modu-
lus, Em is the matrix modulus, a. is the longitudinal 1000
residual stress in the matrix after consolidation and ................. "-
a. is the longitudinal stress in the matrix. This , 800

relation agrees well with the corresponding calcu- L.
lations when the longitudinal residual stress used is 600 Expnmen

that determined by computation. 400 - Computed
The calculated transverse contractions follow- . - -- ,-Fl, Bna

ing consolidation temperatures of 0 and 900'C 200 - -- 0-- .AT. 900c
are compared with the experimental data in Fig. 6. -.- i.o.,,.oc

The experimental and calculated curves exhibit 0 0.5 1 1.5 2 2.5 3

the same behavior with an initial linear response
followed by increased contraction after matrix ILi (%)
yielding. The difference in the calculated responses
for the two consolidation temperatures is modest (b)
and is of the same order as the sample to sample 600

variation.
500 Elastic calculation , Expenment

3.3. Transverse tension ,AT 900C

The effect of interface bond conditions on the -@" 400

transverse tensile behavior was first investigated by 2 300
computing responses for an initially stress free state. -

Calculations were performed for a fully bonded and 0 2oo

for a weak frictionless interface. As illustrated in Computations

Fig. 7(a), the stress-strain curve for the fully bonded 100 --- 0. AT. 900 C
interface has an initial transverse elastic modulus of - - .AT - C

167 GPa and a limit strength of 1195 MPa. These 0.0 0.2 0.4 0.6 0.8 1.0 1.2

values are higher than the experimentally observed
values of 129 GPa and 420 MPa respectively. For a i (%)
weak frictionless interface the calculated elastic Fig. 7. Transverse tensile stress strain behavior for different
modulus is 48 GPa and the limit strength 380 MPa. interface characteristics. (a) Effect of interface bond con-
For this case the predicted elastic modulus is much dition (b) Effect of friction at the interface
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0.00 0.00

0.05 "" ".. 0.05 "

A T-1 
,6 T-.

AT.- \

El\nn ,. ,

-0.30 Pisl Mlen nls f \ -030 Fl
---- Elaseim li Ugils AT-,,n

-,-- Ftuey 8midi lL0.8 "-0.35 -0.35
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-02 (%) eAT %

Fig. 8. Contraction in unloaded transverse direction for Fig. 9. Contraction in longitudinal direction for transversetransverse loading. AT = 0 indicates an initially open inter- loading.
face and AT = oc indicates an interface that remains closed.

stress-strain behavior is not noticeable until after initial linear response and the limit behavior are
debond. This is illustrated in Fig. 7(b) where the lo.~ely modelled uig a consclidation temperature of"
stress-strain curve for a linear elastic matrix shows 900°C and a sliding interface. While a coefficient of
the same response up to debond and the non-linearity friction /p = 0.8 fits the experiments most closely
caused by plasticity is only evident after the initiation the sliding resistance has modest influence on the
of debond. response.

The presence of the weak interface reduces the
transverse strength of the composite to approxi-mately 40% of the matrix strength. A limit load (a)
calculation, based on a constant tensile stress in the oo . .

ligament, gives the limit strength [IJ as 50 d, l • l

GTL = • A fm. o (4) m.40 ~ 1 15~
where A E,. is the matrix area fraction and Em is the 3
matrix strength. The limit load calculated using . 200

equation (4) is 420 MPa which agrees well with
experimental and computational values. 100

The measured contraction in the unloaded trans f . 9 . .............................
verse direction for transverse loading is shown in 0 0.5 1 1.5 2 2.5 3 3.5
Fig. 8. The initial linear response is closely given by tY3 (%)
a linear elastic calculation based on a value of p = 0.8
at the interface and a residual stress state sufficiently (b)

high 10 maintain continuity at the interface. Follow- 700_ing the initial linear response, when debond occurs 600 8 fit l thetse
there is substantial strain increment in the loaded t slidi rei--sl-e thdirection. The total strain just after debond is closelygiven by a calculation for a fully debonded interface reduces 400

with a linear elastic matrix. For higher stress the •~ 30 7 15p xelincontraction increases as the region of plastic defor-

mation increases in the matrix. The slope then follows 2 a)
the calculation for a fully plastic matrix and a 100 Fully '

debonded interface. The full simulation following 0-
consolidation temperature of 9000C has all the fea- 0 1 2 3 4tures of the observed deformation but slightly overes- Y13 (%)

twhaer fis the montrxaefraction.adai h 0 Y11silaEPWr

e ima t as the contrac tio . vFig. 10. In-plane shear stress-strain curves for differentThe longitudinal contraction resulting from sliding conditions at the interface. (a) Longitudinal loading
the transverse loading is shown in Fig. 9. The (b) Transverse loading
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3.4. In plane shear with linear and periodic, equation (I). components

Experimental results are available for the Iosipescu fails to pick up this feature.

specimen for two fiber orientations [7]. In one set of To simulate this constraint the deformation field in

experiments the fibers are oriented in the direction of the elastic fiber was still assumed to have linear and
the notches. Fig. 10(a), and is referred to as longitudi- periodical components. However the deformation
nal loading. The other case when the fibers are field in the matrix was assumed to have only linear

oriented perpendicular to the notches, Fig. 10(b) ;s components, to be given by
referred to as transverse loading. It was observed 141 = u0 + 1•'3>x,. (5)
experimentally that the initial elastic moduli are close
for the two orientations but the limit strength for This formulation suppresses the development of
transverse loading at 400 MPa was approximately regions with high concentrations of shear. The calcu-
40%, higher than the value of 280 MPa observed for lated responses assuming the same interface charac-
longitudinal loading. In longitudinal loading the teristics as those assumed for longitudinal loading are
fibers are oriented such that the global stress field is shown in Fig. 10(b). It can be observed that use of the
constant over a long segment of the matrix orientated same interfacial shear strength as that for longitudi-
in the fibers direction. This condition permits highly nal loading predicts the correct limit behavior for
concentrated bands of shear to develop in the matrix transverse loading. The initial shear modulus before
along the fibers at the weakest plane. In the case of debond and limit strengths for calculations based on
transverse loading only a short segment of the matrix an interface shear stress of 115 MPa are listed in
along the fiber directions is subjected to the higher Table 2 for the two loading cases.
stress in the gauge section. This effect suppresses the A simple estimate of the limit strength for longi-
development of bands of concentrated shear since the tudinal loading is given by considering a deformation
stresses decrease with increasing distance from the that is given by a slip in the matrix on the surface
gauge section. Consequently the limit strength is x1 = 0 and at the fiber matrix interfaces. This gives
higher for transverse loading compared to longitudi-
nal loading. No such dependence on fiber orientation it = A
was observed [I] for a system that has a strong 2 1 3

interface and a smaller fiber diameter. where rL is the limiting strength of t1, T' is the sl-'ar
The computed and experimental shear stress-strain strength of the interface, OLm is the limit stress of the

curves for longitudinal loading are shown in steghothinrfcO.stelmtsrssfte
cowndin matrix under uniaxial tension and A,. is the matrix

Fig. 10(a). The computations for a fully bonded area fraction of the weakest plane. For the system
interface predict an initial elastic response which under consideration Ar = 0.4 and use of equation (6)
agrees with experiment, but the final limit strength is with experimental limit strength T, = 300 MPa gives
substantially higher than the experimental value. A an interface shear strength T; = 95 MPa, which is
calculation based on an interface yield strength of close to the computed value of 115 MPa.
185 MPa exhibits an initial non-linear response that The limit strength for the transverse loading can be
agrees with experiment but the predicted limit estimated by assuming that the deformation in the
strength is higher than the experimental value. The matrix is linear and as given equation (5). This
correct limit strength is given by a computation for deformation causes a plastic deformation throughout
which the interface yield strength is 115 MPa. Hence. the matrix with slip at the interface. A work balance
it might be inferred that the interface is initially in full gives
contact. Sliding first develops when the shear stress at I 4
the interface is 185 MPa and the sliding stress is TL = -- Lt(l- -f)+- f (7)
subsequently reduced during the slip to a saturation = 1t3
value of I1 5 MPa. where f is the fiber volume fraction. This expression

The initial linear elastic response for transverse is a modified version of the upper bound given by
loading. Fig. 10(b). is identical to the response for Majumdar and McLaughlin (8] for a strong interface.
longitudinal loading. This suggests that the calcu- Using the experimental strength TL = 400 MPa in this
lations based on the assumption that the local dis- relation gives an interfacial shear strength of
placement field consists of linear and periodic r, = 100 MPa, which is consistent with the value of
components, equation (I). also predict the correct 115 MPa determined from the computations.
linear elastic response for transverse loading. How-
ever the limit strength is higher for transverse load- 3.5. Transverse shear
ing. Fig. 10(b). than the longitudinal loading, While no experimental results are available for this
Fig. 10(a). This implies that the calculations based on form of loading, the calculations were performed to
equation (I) underestimate the limit strength for provide a more complete understanding of the an-
transverse loading. As mentioned earlier, the plastic isotropic behavior of the material. Shear loading r in
deformation in the matrix is very constrained for this the transverse plane is represented by the principal
loading and the assumption of a displacement field stress state shown in Fig. I1. Two loading conditions
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(a) inforced composites. It was observed in the

600 calculations that the debond always initiated close to

- -- ,the point of the interface whose normal coincides
500 with the direction global maximum principal stress.

-400-- Pure transverse shear loading results in global
300,x strains that have both shear and normal components.
300 For a fullv bonded interface the normal strain com-

- 200 F ... ponent exists only when one of the constituents has
100 P - 0. AT a non-linear response. However for this case. as
100 ~--.o-- la-o0. sT-s900C

1 0-. .O. AT-0C shown in Fig. H (c). the normal component is very
0 small compared to the shear strain. For a weak

0 1 2 3 4interface the normal strain is small before debond

"713 (%) and grows to 30% of the shear strain after debond.
Fig. I 1(c). For an initially stress free state the debond

(b) occurs earlier and the normal strain component is
600 greater.

S400 
4. FAILURE MECHANISMS

a 0 MaThe computational procedures described pre-
viously provide the local stress and strain distri-

S200 --- o- Ful Bonded butions in the composite which can be used to

100 -0-T- v.0,AT-9W0C determine local failure conditions of the constitu-
-6- A-o.AT-OC tents. Macroscopic failure condition for the com-

0r::
0 1 2 3 4 5 posite can then be predicted for different loadings.

Y13 (%) 4. 1. Longitudinal tension

The fracture in the longitudinal tension is domi-
(c) nated by fiber failure. The observed failure strain of

0.4 the composite is of the same magnitude as the fiber

0.3 • --- -0 failure strain c,. The stress at failure can be written

. as

Z70.2 USf +( ()= OL'6TS =fOr + (I -- f)oym . +18

CJ 0.1 0T. 900C 
EC

Fulty Bonded where a, is yield stress of the matrix at fiber failure
0... and aF is the stress in the fibers at failure. For the

0 100 200 present residual stress state a_ = 900 MPa at failure.
0 100 200 300 400 500 600 The exact nature of the fiber failure is still an open

N question. Failure occurs when a defect of critical size
has formed in the composite. One extreme estimate of

Fig. I1 Calculated transverse shear stress strain curves for the strength is to assume that fracture occurring in
different consolidation temperatures and interface bound two adjacent fibers within a stress transfer length
conditions (a) Stress strain curve for e.. = -n, = :. (b) causes a critical defect. The average stress in the fibers
Stress- strain curve for a.. = - r.. = - (c, Normal strain

components f•r the two loadings when this occurs is given bN

S [nd/s Ill I r io -,

have been investigated: one loading defined h% F(l + i m) L121 .1
q 1== -a:=.r and the other b• -i*: == (i-- I)k - It 1:".'.
where T >0. Computed shear stress strain cu:•es for - 19)

a full. bonded and a frictionless interface followking

a consolidation temperature of 900 (C are shown in where t is the loaded %olume, A the stress concen-
the Fig. I I(a) and b h) For the full, bonded interface tration in a fiber next to a broken fiber. d is the fiber
the two loading cases. (T > 0 and 7:: > 0 exhibit verN diameter. e, is the stress transfer length and [ is the
similar behavior with a limit strength of oslMPa gamma function This is the model bh ZAcben and
Howeer in the case of a Aeak interface, the strength Rosen 19] modified to account for a lincarl% %ar•,ing
for rira > 0 is 310 MPa Ashile the strength :or n:- > 0 fiber stress within the transfer length ol the fiber
is 270 MPa. This diff.krence indicate, that a sstcm Based on data for the SCS6 fiber gien hý Baan cr a/
with a debonded interlace does not exhibit the trans- !10f it vas deduced that the aserage fiber strength is
sers isotropý commonlI a,,sumed for fiber re- r., 4 3 GPa for a gauge length I = t 2'ý mm and the

AMA 4 .1
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Weibull modulus is i = 9-4. For the present speci-
men the loaded volume r = 125 mm' and the transfcr
length is estimated to be 6, = a, T d 4. where the
sliding resistance of the interface r, = 115 MPa. An * 1.0..D
upper bound on k for fibers arranged in an hexagonal
array is k = 1.17. Use of these values in equation (9) • • • 0.9 < D < 1.0
gives a failure strength CtTS = 1880 9 Pa. A 0.8 <D <0.9

The other extreme is to assume that fiber fractures
do not introduce local stress concentrations in adja- 0.5 < D < 0.8
cent fibers and that global load sharing occurs. The
fiber contribution at the load maximum for the global 0.0 < D < 0.5

load sharing model has been estimated in an approxi-
mate way by Curtin [I1] and Neumeister [12] as Debonding

Fig. 12. Distribution of damage parameter D for transverse
CF +l I 4 10rTF(I +lrým)1•7i tension, at ,,=l%.

F(l +lIm)m +21m +2 da-F "
(10)

This model predicts a strength CUTS = 2060 MPa. where the variable D is used as a damage variable
Both models predict the strength within 10% and are with D = 0 for a virgin material and D = I when the
in good agreement with the experimental result. Tests material has lost its load carrying capacity and
of specimens of different volumes and with stress t = r. The evolution of the damage D has been
gradients are required to reveal the exact nature of calculated by integrating equation (12) numerically
the failure process and to discriminate between the using the stresses and strain increments from the
models, computations.

The distribution of the damage parameter D in
4.2. Transverse tension and shear transverse tension is shown in Fig. 12 for a global

strain of /%, which is close to the observed failure
The observed failure strain in transverse tension is strain of 1.2 %. The computations indicate that most

1.2% which is approximately 40% of the uniaxial of the load carrying capacity is lost. A region of high
matrix failure strain (Fig. I). The computations for damage is localized in the matrix ligament between
transverse tension and shear indicate that the stiff the fibers and stimulates fracture on a plane approxi-
fibers cause multiaxial stress fields to develop in the mately at 45 to the loading direction. Microscopic
matrix. When a ductile material is subjected to stress observations [I] showed the failure surface consists of
states with a high hydrostatic tension component the plastically deformed matrix ligaments and debonded
failure ductility is reduced. Hancock and Mackenzie matrix fiber interfaces.
[13] suggested that failure is the result of void nucle- The damage distribution for transverse shear with
ation and growth. They estimated that the effective T > 0 is shown in Fig. 13 for a global shear strain of
plastic strain at failure. ( '. for multiaxial stress states 1.6%. The trend is similar to transverse tension with
is related to the uniaxial failure strain by a region of high damage in the matrix ligament

I k-I between the fibers, orientated in the direction of the
'f= l.65,exp _ (11) global tensile principal direction. The damage starts

to exceed unity in some regions of the matrix when
the global stress is 272 MPa. which is 13'.% lower thanwhere ,, is the plastic component of the uniaxial

failure strain of the matrix. a, is the hydrostatic the predicted limit strength of 310 MPa. This suggests

stress and a' is the von Mises equivalent stress. From
the umaxial stress strain curve for the Ti alloy in /\
Fig. I. it can be deduced that i,, = 3%. This value for
the matrix foil is sunstantally lower than what I is 1.0 < D
normally observed for fl-Ti alloys The low matrix 0.85 < D < 1.0
ductihty implies that large strain effects can be neg-
lected in the analssis. For a time dependent stress 0.7 < D < 0.95
state, the void growth rate has to be integrated over 1 0.6 < D < 0.7
the historN and the used portion of the matrix
ductilitx is given b% 0.5 <D<0.5

cxP & 00 <D<0.5

) = - - -12) Fig 13 Distrihution or damage parameter 1) (or transNer.e
,hear a! 0 I
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........... initial sliding stress of 185MPa that subsequently
.. .reduces to 115 MPa when the sliding is fully devel-

.. ...< D oped. However the interface characteristics deter-
mined from the shear test with longitudinal loading

,. 0.7 < D < 1.0 predict the substantially different strength for the
shear test with transverse loading. The different lirnit

.0.5 < D<0.7 behavior for transverse and longitudinal shear load-
ing indicates that the in-plane shear response is

• 0.0. < D <0.5 strongly dependent on the extent of the plastic zone
. . along the fiber direction. This feature has to be

addressed in the formulation of macroscopic consti-
tutive equations.

Fig. 14. Distribution of damage parameter D for in-plane The analysis of the transverse tension test indicates
shear, at •'• = 30/0. that the sliding resistance at the interface can be

modeled by Columb friction with a coefficient of
that the available matrix ductility may be exceeded in friction p -, 0.8. Use of this value and the residual
portions of the matrix before the limit condition is stress state following a consolidation temperature of
reached. 900'C predicts an initial sliding resistance of 160 MPa
4.3. In-plane shear for in-plane shear. This is close to the value deter-

mined from the in-plane shear test of 185 MPa.
The only non-vanishing stress components in-plane However, during the in-plane shear loading after

shear, except for the residual thermal stresses, are the matrix yielding the normal pressure at the interface
shear stresses T, and T,,. This implies that this type relaxes and the steady state sliding resistance vanishes
of loading does not cause high hydrostatic stresses to for a Columbs friction model. Microscopic obser-
build up in the matrix. The effect of the initial residual vations of the fibers showed that the fibers have a
stress is small and the failure criterion described surface texture with ridges oriented in the hoop
previously then simplifies to direction. For in-plane shear loading the sliding

idirection is normal to the ridges while it is parallel to
D (13) the ridges for transverse tension and this could cause

1 = f.65 Lthe observed steady state sliding resistance for in-

The computed damage distribution for longitudi- plane shear.
nal loading corresponding to the observed failure Using the mechanism of interface debonding and a
strain y•3 = 3% is shown in Fig. 14. The damage void growth model for matrix failure it was possible
exceeds unity across the whole matrix ligament be- to predict with accuracy the macroscopic failure
tween the fibers indicating that the model predicts a strains for matrix dominated failure modes. The exact
failure strain slightly lower than the experimental nature of the longitudinal failure is still an open
value. question. However, models of two extreme failure

conditions give approximately the same predictions

5. CONCLUSIONS of the failure stress.
It has been demonstrated that the composite prop-

The longitudinal and transverse tensile properties erties can be predicted from the matrix, fiber and
can be predicted by a computational model which interface properties by using established compu-
makes use of fiber and matrix properties, fiber distri- tational procedures. In this case the interfacial prop-
bution and an interface which debonds when the erties have not been measured but have been inferred
interface is subjected to normal tension. In addition from the longitudinal shear test of the composite.
to predicting the elastic properties and limit strength Independent push-through tests [14] show sliding
the calculations also predict the failure strains. The resistances that are close to the saturation value used
residual stresses following the fabrication strongly here. The push-through test may therefore be used as
affect the mechanical behavior. The compressive nor- a means of providing some information on the sliding
mal residual stress at the interface dictates that the characteristics for the analysis.
initial elastic properties are consistent with normal
continuity at the interface. In transverse tension the Acknosledgementis-Funding for this work has been pro.

applied stress can overcome the residual stress and vided bý NASA-LeAis Research Center (NAG3.834). Pratt
interface debonding occurs which gives arise to a loss and Whitney (F432052) and the DARPA lJRI at UCSB
of stiffness. The presence of the debond also decreases (ONR N442.2494-23100)

greatly the transverse limit strength. with the com-
posite strength being dictated by a matrix perforated REFERECES
by un-reinforced holes. I J J Afch Atater 12. 4' 19911

The in-plane shear properties cannot be predicted 2 R P Nimmer. R J Bankert. F S Russell. G S Smith
b, a frictionless irterface It is necessary to assume an and P K %right. J (n rp Te(hn.l Re.ý 13, 3 (19911
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ABSTRACT

An investigation of the ultimate tensile strength and fracture strain of a

fiber-reinforced Ti-matrix composite has been conducted. Comparisons have been

made between experimental measurements and predictions of two

micromechanical models: one assumes that the fibers behave independently of the

matrix, i.e. as in a dry fiber bundle, and the other assumes frictional coupling

between the fibers and the matrix, characterized by a constant interfacial sliding

stress. To conduct such comparisons, a number of constituent properties have been

measured, including the fiber strength distribution, the thermal residual stress and

the interfacial sliding stress. In addition, the effects of gauge length on the tensile

properties of the composite have been studied. The comparisons indicate that the

model prediction based on frictional coupling provide a good representation of the

experimental results. In contrast, predictions based on the dry fiber bundle approach

strongly underestimate both the ultimate strength and the fracture strain and

predict a gauge length dependence that is inconsistent with the experiments.
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1. INTRODUCTION

There has been considerable interest in fiber-reinforced Ti matrix composites

for use in advanced aerospace propulsion systems, motivated by the attractive

stiffness, strength and creep resistance characteristics of this class of composite at low

and intermediate temperatures (to - 600C)1. The present article focuses on the

room temperature tensile properties of a unidirectionally reinforced composite. A

study of the notched strength characteristics of this material is presented in a

companion paper 2 .

In unidirectional materials, the tensile response is characterized by two,

approximately linear regimes 2"4 . In the first, the material is elastic, with a modulus

given by the rule-of-mixtures. In the second, the matrix is yielded whereas the fibers

remain essentially elastic. In the latter regime, fiber fracture also occurs, resulting in

a slight deviation from linearity and ultimately causing composite fracture. The

main objective of this work is to assess the utility of micromechanical models in

predicting both the ultimate tensile strength (UTS) and the fracture strain of this

class of composite.

The paper is organized in the following way. Section 2 reviews the existing

models pertaining to the tensile properties of unidirectional MMCs. The models

identify the relevant constituent properties that need to be measured in order to

rationalize the properties of the composite and assess the utility of the models.

Section 3 describes the various experimental measurements made in this study,

with the results being presented in Section 4. Analysis of the results and

comparisons with model predictions are presented in Section 5.

71:MS35RDucber 22, 1993)1:-57 PImef
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2. THEORETICAL BACKGROUND

The axial tensile stress-strain response, ac (E), of a unidirectional MMC can be

written as

ac (E) = f of (E) + (14) Om() (1)

where f is the fiber volume fraction, and of (E) and am (e) represents the

volume-average axial stresses in the fiber and the matrix, respectively. If both

phases respond elastically, then

Of(E)= EfC (2a)

and

Om (E) =Em E (2b)

whereupon the composite response becomes linear, with a modulus,

E = f f+(l-f) Em (3)

with Ef and Em being the Young's moduli of the fibers and the matrix, respectively.

In the absence of residual stress, non-linearity in the stress-strain curve occurs

at a strain equal to the matrix yield strain, ey . Assuming the matrix to be

elastic-perfectly plastic, the subsequent tensile response (E > EY ) is given by

Tc (E) = f Of (E) + (1-) OY (4)

where oYm is the matrix yield stress (= Em eyý).

71MS35(Dwcember 22. 1993)1:57 PM/mef



The fiber contribution, caf (E), is governed by the statistical distribution in

strengths generally characterized by the Weibull function 5,

Pf = 1 -exp Loo (5)

where Pf is the cumulative failure probability, a is the tensile stress acting on the

fiber, L is the fiber length, (a0 and Lo are reference values of stress and length, and m

is the Weibull modulus. In some cases, the in-situ strength characteristics of the

fibers differ from those of the pristine fibers and therefore require independent

measurement following composite consolidation. This can be achieved by

extracting fibers from the composite and measuring their tensile strengths4,6,7.

Moreover, it has been recognized that the fiber bundle within a composite behaves

differently from that of a dry fiber bundle, a result of the sliding resistance of the

fiber/matrix interface8-11 . The coupling between the fibers and matrix in

combination with the fiber strength characteristics represent dominant features in

the fiber response.

Traditionally, the approach to evaluating of (E) has been based on the

behavior of a dry fiber bundle, assuming that no coupling exists between the fibers

and the matrix (the so-called "rule-of-mixtures" approach) 12 . In this case, the fiber

response is simply

af (E) = (1-Pf) E Ef (6)

Combining this result with Eqn. 5 and recognizing that a = C Ef yields the result

af(E) = (LEf) -L (cE, m

o'o CFOL, 22. (7)
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The composite tensile strength Yu and the corresponding fracture strain Cu are

evaluated by setting

da(e) = fdof(F) = 0

de de (8)

whereupon

YU = f 0. meJ + (1-f)aaL (9a)

and

E- L.} (9b)

Trends in the normalized strength, cau/f ao, with gauge length, L/Lo, and Weibull

modulus, m, are plotted in Fig. 1. A key feature predicted by this model is the

reduction in strength with increased gauge length.

Recently, models have been developed to account for the frictional coupling

between the fibers and the matrix and its effect on the statistics associated with fiber

fracture9-1 1. At the simplest level, the coupling can be characterized by a constant

interfacial shear stress, T, acting along the debonded interface. Such debonding

occurs in regions adjacent to the fiber failure sites and leads to the development of

shear tractions at the fiber ends, allowing stress to be transferred from the matrix to

the fibers. The length over which this transfer occurs is the slip length, d, given by

71:MS35(Decmber 22. 1993)1.57 PMmef
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oR
d -- R

2,t (10)

where a is the tensile stress acting on the fiber when it failed and R is the fiber

radius. Outside of this region, the fiber stress remains unchanged. Upon further

loading, the fiber may fail at numerous other points along its length, with each

failure event occurring essentially independently of all others.* Consequently, the

stress-strain response of a fiber bundle embedded within a ductile matrix is

essentially identical to that of a single fiber embedded in the same matrix9 ,10.

The tensile response of a fragmenting, embedded fiber can be expressed as

c =f (e) E Ef (1 - a) + e Ef
2 (11)

where a is the fractional length of the fiber contained within the slip zones adjacent

to fiber breaks. The factor of 2 in Eqn. II arises because the average fiber stress

within the slipped region is one-half of that in the unslipped regions (provided that

none of the fragments are shorter than 2d). The parameter ax can be interpreted as

the cumulative fiber failure probability within a gauge length, I = 2d, at a stress, a.

Consequently,

f= P = 1- exp,--2-d-°(12)

which, combined with Eqn. 10, gives

a= 1-exp - Il-(

Provided the fragment length remains large in comparison to the slip length.

71:MS35(December 22. 1993)1:57 Ph/mef



8I

This result can be re-written as

Mr+1

= 1 - exp - ' ) (14)

where aY is a characteristic stress defined by

R) (15)

Provided the argument within the exponential term in Eqn. 14 is sufficiently small

compared with unity, the term can be approximated by the first two terms in the

Taylor series expansion,

M+1 f in+"
exp -, (1)-)I °)(6

Combining this result with Eqns. 11 and 14 yields the stress-strain response9 ,1 0 ,

'f(E) - r 1-1

a. L 2 (17)

where X is the normalized strain,

X = E Ef /C. (18)

The maximum average stress OB that the fragmenting fiber can support is evaluated

by setting daf/de = 0, whereupon

"7l:MS3$(Docaber 22, 1993)1:57 PM/mef
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B (2 NV(m+l)
a. = +m) m+1) (19)

with a corresvonding strain of

Ef 1m+2) (20)

Trends in both the ultimate strength and the failure strain with Weibull modulus

predicted by this model are presented in Fig. 2".

It should be recognized that Eqns. 19 and 20 represent upper bound estimates

of the UTS and fracture strain. This is a consequence of the implicit assumption

that all volume elements within the composite are equivalent. However, for

statistical reasons, the process of fiber fragmentation may occur more rapidly in

some regions than in others, leading to strain localization prior to the stress

maximum predicted by Eqn. 19. A set of lower bound conditions for fracture can be

obtained by assuming all the fiber failure sites within a section of length 2d to be

aligned in a plane perpendicular to the loading direction. Along this plane, the

response of the fibers is given by

Of (E) = C Ef (1 - a) (21)

° A more rigorous solution to the fiber fragmentation problem has recently been developed, accounting

for the potential overlap of slip lengths of adjacent fiber breaks and the "shadowing" of defects that
occurs within the slipped regions11 . The predictions of ultimate strength resulting from this solution
are essentially the same as those of the approximate solution, differing by < 5% for m > 4.
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differing from Eqn. 11 by the contribution associated with the slipped region

(E Ef a/2). The local stress maximum is again evaluated by setting daf/dS = 0,

whereupon the fracture stress becomes:

3. 2+m m+2, (22)

This estimate differs from the upper bound (Eqn. 19) by a factor of 21/((m+1). The

fracture strain is then evaluated by substituting Eqn. 22 into the constitutive law,

Eqn. 17. Comparisons of the upper and lower bound estimates of the t&nsile

strength and fracture strain are shown in Fig. 2.

Following similar arguments, the average fiber fragment length, if, during

tensile loading can be expressed as

, =2dif Pf (23a)

which, combined with Eqns. (10), (12) and (15), gives

to o) (23b)

Another factor influencing the composite response is the residual stress,

arising from thermal expansion mismatch and phase transformations. In most

metal matrix systems, the matrix thermal expansion coefficient, (Xm, exceeds that of

the fibers, czf. Consequently, after cooling from the processing temperature, the

matrix experiences an axial tensile stress, ar, whereas the fiber experiences an axial
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compression, _,,r Neglecting relaxation effects due to matrix creep or plasticity, the

residual stresses due to a misfit strain, Q, are 13

Im/Em = P Q (24a)

and =f/Ef -0 (24b)

where

f = (+Ef/E)
1+(1-2v) E/Ef (24c)

Cs = (1-f)E.
f Ef (24d)

with V being the Poisson's ratio (assumed to be the same for the fibers and the

matrix). The misfit strain is

Q = (czf- am) AT + Up (24e)

where AT is the temperature change and Up is the (unconstrained) linear strain

associated with phase transformations.

In general, Ti matrix composites are consolidated at temperatures at which

the matrix can readily creep, and thus the relevant temperature governing the

residual stresses is ill-defined. Furthermore, Ti alloys undergo a phase

transformation from the high temperature BCC (P) phase to the low temperature

"7.MS'I(5Mwfbc r 22. 1993)1:57 PM emcf
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HCP (a) phase. For the Ti alloy of interest in this study, the transformation

temperature lies in the range 950-1000"C14: lower than the processing temperature

(- 1100-1200"C). The volume expansion associated with the P -+ a transformation

is - 2.2%, resulting in a linear strain, Up ~ 0.7%14. Because of the difficulties in

accurately ascertaining both the relevant misfit strain and the flow and creep

characteristics of the matrix over the entire processing cycle, experimental methods

for evaluating residual stresses are preferred.

The effects of residual stress on the composite response can be understood

with the aid of the schematic in Fig. 3. Provided Or < 0 , the material initially

behaves elastically with a modulus, E, given by Eqn. 3. Yielding of the matrix occurs

at a strain, ec, at which the total matrix strain (thermal plus mechanical) reaches the

(unconstrained) matrix yield strain, eY. This result can be expressed as

y y r

cc = S• - Em (25)

Upon further loading (C > ey), the slope (or tangent modulus) of the curve is dictated

by the fiber properties. Provided the extent of fiber failure is small and the matrix is

elastic-perfectly plastic, the slope in this regime is - f Ef. Fiber bundle failure then

occurs when the average fiber stress reaches OB. This occurs at a strain, yc, of

* r
F- EB - Of/Ef (26)

The corresponding stress, Oc, is

*yGIc = f OB + (1-)0 O (27)
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where CFB is given by either Eqn. 20 or 22, and the matrix yield stress, GY, is related to

the composite yield strain through

-Y (eY _) (28)

The axial residual stress in the fibers also influences the average fiber

fragment length. This effect can be incorporated into Eqn. (23b) by adding the

thermal component of stress to the mechanical one, yielding the result

"f._ = .•- + C"/-•

to CO (29)

The preceding background identifies a number of key measurements that are

required in order to assess the models. The measurements include: (i) the tensile

stress-strain response of the composite, (ii) the in-situ fiber strength distribution,

(iii) the interfacial sliding resistance, T, and (iv) the axial residual stresses. In

addition, tensile tests conducted on specimens of various gauge lengths should

provide additional evidence, supporting either the dry fiber bundle model (which

predicts gauge length dependent behavior) or the fiber fragmentation model (which

predicts gauge length independent behavior). The experimental portion of this

study is based on this insight.

3. EXPERIMENTS

The material used in this study was a Ti-6AI-4V matrix reinforced with

unidirectional, continuous SiC fibers, 100 pm in diameter. The composite panel

"Sigma fiber, produced by British Petroleum.
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was comprised of six plies, with a total thickness of 1.0 mm. The fiber volume

fraction was 32%. Prior to consolidation, the fibers had been coated with - 1 pm of

C, followed by - 1 jim of TiB2. The TiB2 coating serves as a diffusion barrier between

the fiber and the matrix. During consolidation, the TiB2 reacts with the matrix to

form a layer of TiB needles, - 0.7 pwn thick. Micrographs of a transverse section

through the composite showing the distribution of fibers and the fiber coatings are

shown in Fig. 4.

Uniaxial tensile tests were conducted at ambient temperature. The specimens

were - 6 mm wide and cut parallel to the fiber axis. Aluminum or steel tabs with a

10" bevel were bonded to the specimen ends. Tests were conducted in a

servohydraulic testing machine, using hydraulic wedge grips to load the specimen.

The specimen gauge length was varied between 12 mm and 220 mm. Axial strains

were monitored using a 12.7 mm contacting extensometer. Tests were conducted at

fixed displacement rates, corresponding to a nomi,,al strain rate of 0.5%/min..

The average fiber fragment length of one of the long specimens was

measured following fracture, using a two step process. First, the tabbed end of the

broken specimen and a small portion of the gauge length were masked with an

epoxy adhesive, and the matrix material within the remaining portion of the

composite dissolved using HF acid. The length of the dissolved section was

- 140 mm. During this process, the broken fibers within the gauge section were

extracted and discarded. The remaining "brush" of fibers protruding from the

masked section was then impregnated with epoxy and the epoxy allowed to cure.

The brush was subsequently cut along the edge of the mask and the fiber fragments

extracted from the epoxy by dissolving the epoxy in a solvent. The lengths of the

individual fragments were measured using vernier calipers. Provided that none of

the remaining fragments spans the entire length of the dissolved section, the

average fiber length measured in this fashion corresponds to exactly one-half of the

71:l[S35(December 22. 1993)1:57 PM/mef
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average fragment length within the composite. In the present case, only - 5% of the

fibers spanned this length.

The axial residual stresses were measured using a matrix dissolution

technique15,16. A long, thin strip was cut from the composite panel parallel to the

fiber axis. Both the composite strip and a reference steel strip of known length were

mounted adjacent to one another on a glass plate. Scratches were then scribed on

the sample near both ends of the steel strip. The distances between the scratches and

the ends of the steel strip were measured in an optical microscope. The ends of the

composite strip (including the scratches) were masked with epoxy and the matrix in

the central region dissolved using HF add. The length of the dissolved section, 1,

was 32 mm. The masks were subsequently removed and the specimen again

mounted on the glass plate adjacent to the reference strip. The distances between

the scratches and the ends of the reference strip were re-measured. These

measurements were combined with those taken prior to dissolution to obtain the

length change 5 in the fibers due to the relaxation of residual stress. The residual
r r

axial stresses in the matrix (rn and in the fiber (,r prior to dissolution are related to

by15, 16

d = -8Ef/L (30a)

and

m -af /(I-f) = 8Eff/L(1-f) (30b)

An independent measure of the matrix yield stress was obtained using

micro-hardness measurements. Vickers indentations were made in the matrix rich

regions between fibers on a composite section cut perpendicular to the fibers.

Following several preliminary tests, it was found that the indentation size could be

kept to within < 1/3 of the edge-to-edge fiber spabi~g fur an indentation load cf 200 g
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(Fig. 5). This load was used for all subsequent measurements. The matrix yield

stress was estimated using the relation 17

Oym = H/C (31)

where H is the Vickers hardness (expressed in units of MPa) and C is a plastic

constraint factor, taken to be - 2.5.

The in-situ strength characteristics of the fibers were measured on individual

filaments that had been extracted from the composite. The tests were conducted in a

dedicated fiber tensile tester*. Four gauge lengths were used: 5, 12.7, 25 and 265 mm.

For each length, a minimum of 50 fibers were tested. The strength distribution was

characterized using the Weibull function (Eqn. 5). For comparing the strength

characteristics of fibers of different gauge lengths, it is convenient to re-write Eqn. 5

as

In (-Rn (1-Pf)) - In L/Lo = m In a - m In aYo (32)

such that a plot of In (-In (1-Pf)) - In L/Lo vs. In a can be used to evaluate m and To.

The results were compared with those obtained on pristine fibers with a length of

25 mm, provided by the fiber manufacturer.

The sliding resistance of the fiber-matrix interface was measured using fiber

pushout tests18. Specimens for pushout testing were prepared by cutting sections

- 500 gm thick transverse to the fibers, followed by grinding and polishing to a final

thickness of - 400 Wm. The matrix on one side of the specimen was then carefully

etched to a depth of - 30 pm, leaving the fibers protruding above the matrix surface.

"Micropull Science
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A 300 g±m tall cylindrical indentor was placed on top of a selected fiber. (The

indentors had been machined from the Sigma-SiC fibers themselves.) The fibers

were subsequently pushed out of the section and the load-displacement

characteristics measured. Additional details of the testing apparatus can be found

elsewhere 18 . In calculating the interfacial sliding resistance, T, the shear stress was

assumed to be uniform along the interface and given by

P
" -21cR(t-u) (33)

where P is the applied load, t is the section thickness and u is the amount of sliding

displacement.

4. MEASUREMENTS AND OBSERVATIONS

The tensile stress-strain curves exhibited the features shown in Fig. 6. Upon

initial loading, the response was elastic with a modulus, E = 201 ± 11 GPa. This

value is consistent with one calculated from the rule of mixtures, E = 203 GPa, using

a matrix modulus, Em = 110 GPa19, and a fiber modulus, Ef = 400 GPa°. The onset of

yielding occurred at a tensile strain of - 0.45%. This strain corresponds to a nominal

matrix stress (neglecting the residual stress) of - 500 MPa. Fracture occurred at an

average tensile stress of 1590 ± 100 MPa and a tensile strain of 0.94 ± 0.05%. There

was no apparent effect of the specimen gauge length on the shape of the stress-strain

curve, the ultimate tensile strength or the fracture strain (Fig. 7).

The apparent fiber length distribution following dissolution of a broken

specimen is shown in Fig. 8. The average length in this distribution is t = 39mm,

Provided by fiber manufacturer.
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corresponding to an in-situ fiber fragment length, if = 2 7 = 78 mm. No correction

was made for the fibers that had remained intact over the entire length of the

dissolved section, though the number of these was small (- 5%) and is not expected

to substantially alter the result.

The dissolution experiment to measure residual stress yielded a length

change of 85 gm in a gauge length of 32 mm. Combining this result with Eqn. 30
rr

yields axial residual stresses of Cr = 490 MPa and rf = - 1040 MPa. These results

have been combined with the measured composite yield strain along with Eqn. 28 to

obtain the (unconstrained) matrix yield stress, cy = 1000 MIa. This value is in

reasonable agreement with the range of values inferred from the microhardness

measurement: CY = 940 MPa. In addition, both of these values are consistent with

the yield strengths of similar Ti-6AI-4V alloys, which range from - 900 to

- 1050 MPa19.

The results of the fiber tensile tests, presented in the form suggested by

Eqn. 32, are shown in Fig. 9. In this form, the data collapse onto essentially a single

band. This result confirms the scaling of failure probability with gauge length via

Eqn. 32. Though the curve exhibits some non-linearity at low values of strength,

the majority of the data can be reasonably well approximated by the two parameter

Weibull function, using values ao = 1.47 ± 0.2 GPa and m = 5.3*. It should also be

noted that the strengths of the extracted fibers are substantially lower than those of

the pristine fibers, indicating that additional flaws are introduced into the fibers

during composite consolidation.

The results of the pushout tests are presented in Fig. 10. In all cases, sliding

initiated at a stress, T - 90-120 MPa. Upon further loading, the sliding resistance

increased and reached a saturation level of T - 130 MPa following - 0.5 PM of fiber

"Based on linear regression analysis, neglecting the 5 lowest strength values. These 5 constitute - 2% of
the total number of tests. A more detailed discussion of the effects of gauge length on the strength
distribution can be found in Ref. 7.
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displacement. The same sliding resistance was measured for fiber displacements up

to - 20 p.m.

5. COMPARISON OF EXPERIMENT AND THEORY

Comparisons of the experimental results with the model predictions are

shown in Figs. 6 and 11. The relevant constituent properties used in the models are

summarized in Table 1.

In Fig. 7, the predicted upper and lower bounds to the fracture stress and

fracture strain from the fiber fragmentation model are plotted as solid horizontal

lines. The error bars represent the range of predicted values, resulting from the

uncertainty in the fiber reference strength (CFo = 1.47 ± 0.2 GPa). The dashed lines

correspond to the predictions of the dry fiber bundle model. It is evident that the

dry fiber bundle model strongly underestimates both the fracture stress and fracture

strain, a consequence of the assumption that no coupling exists between the fibers

and the matrix. In addition, the model predicts a gauge length dependence that is

inconsistent with the experimental measurements. Conversely, the fiber

fragmentation model predicts a fracture stresses and a fracture strain that are broadly

consistent with the experimental measurements, with the better correlation being

established with the lower bound estimates. Furthermore, the fragmentation model

predicts gauge length independent behavior, consistent with the experiments.

The predicted average fragment lengths for the relevant range of values of (5o

are also in good agreement with the experimentally measured values (Fig. 11),

providing yet additional support for the fragmentation model.
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6. CONCLUDING REMARKS

The present work demonstrates that the axial tensile properties of

unidirectional Ti/SiC composites can be described using models based on fiber

fragmentation, taking into account the effects of the thermal residual stress, the

in-situ fiber strength distribution, the matrix yield stress and the sliding resistance of

the fiber-matrix interface. Clearly, models based on the behavior of a dry fiber

bundle model are inadequate. Moreover, the conclusion that the strength of the

composite is independent of gauge length has important implications regarding the

design of large structures, particularly since material characterization is generally

conducted on relatively small coupons.

An important additional feature incorporated into the fragmentation model

is the lower bound condition for fiber bundle failure. The present results indicate

that this bound is consistent with the measurements of both fracture stress and

fracture strain in the Ti/SiC composite. Moreover, since this bound is conservative,

it would be appropriate for use in the design of composite structures.
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TABLE 1 Summary of Constituent Properties

Fibers

Young's modulus, Ef 400 GPa

Axial Residual Stress, Cr -1040 MPa

Weibull Modulus, m 5.3
Reference Strength, co 1.47 ± 0.2 GPa

Volume fraction, f 0.32

Diameter, 2R 100 gm

Matrix

Young's Modulus, Em 110 GPa

Axial Residual Stress, (y- 490 MPa

Yield Stress, a'Ym 1000 MPa

Volume fraction, 1-f 0.68

Interf ao

Sliding stress, r 130 MPa
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FIGURES

Fig. 1 Trends in normalized tensile strength, (Tu/f CFo, with gauge length, t/1o, and

Weibull modulus, m, for GFY = 0 based on dry fiber bundle behavior.

Fig. 2 Predictions of the upper and lower bounds to (a) the fracture stress and

(b) the fracture strain, resulting from the fiber fragmentation model.

Fig. 3 Schematic diagram showing the effects of thermal residual stress on the

composite response.

Fig. 4 Transverse section through composite, showing (a) the spatial distribution

of fibers and (b) the fiber/matrix interfacial region.

Fig. 5 Optical micrograph of the indentation produced using a 200 g load.

Fig. 6 Typical tensile stress-strain response of the Ti/SiC composite. Also shown
is the prediction from the fragmentation model, with the two thin arrows

corresponding to the lower and upper bond estimates of the fracture point.

Fig. 7 Influepce of gauge length on (a) the ultimate tensile strength and (b) the

fracture strain. Also shown are the upper and lower bounds predicted by

the fiber fragmentation model, and the prediction of the dry fiber model.

Fig. 8 Distribution of fiber fragment lengths following tensile fracture.

Fig. 9 Results of the fiber tensile tests, presented in the form suggested by Eqn. 32.

Also shown are the results for the pristine fibers, derived from > 1000 fiber

tests conducted by the fiber manufacturer.

Fig. 10 Results of fiber pushout tests.

Fig. 11 Comparison of predicted average fiber fragment length with the measured

values.
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Abstract

This paper examines theoretically the stress distribution around fiber breaks

in a unidirectional reinforced metal matrix composite subjected to axial load-

ing when plastic yielding of the matrix is allowed to occur. The composites

considered have a ductile interphase bonding the matrix to the fiber. The like-

lihood of failure of a fiber adjacent to the existing broken fiber is considered.

Detailed and systematic results are given for composites with a wide range of

fiber volume fractions, Young's modulus of the fibers and the matrix, interphase

properties and Weibull modulus for the strength of the fibers. The objective

is the optimization of these material and geometric variables to ensure global

load sharing among the fibers in the longitudinal direction which will give the

composite good longitudinal strength. Calculations are also carried out for

transverse loading of the composite to determine the effect of the ductile in-

terphase on the yield strength. Characteristics of the ductile interphase are

determined that will provide good longitudinal strength through global load

sharing and a relatively high yield strength in the direction transverse to the



fibers. This, in turn, will allow control of the strength anisotropy of uniaxially

reinforced metal matrix composites.

1 Introduction.

Metal matrix composites (SiC/Ti, Al 20 3/Al) as engineering materials are now in the

process of development. The metal matrix can be reinforced by fibers. particulates

or whiskers. Continuous fibe, reinforced metal matrix composites are particularly

attractive as they offer outstanding unidirectional mechanical properties, such as high

stiffness, strength and creep resistance in comparison with composites reinforced by

particulates or whiskers.

Engineering components made of continuous fiber reinforced metal matrix com-

posites are usually formed by one of a range of processes, which involve dry pressing.

hydrostatic molding, extrusion or injection molding, followed by final machining. The

processing can cause damage of the fibers in the finished component. Final machin-

ing of the component further increases the probability of failures in the fibers. When

mechanical load is applied to the finished component, further damage initiates in the

form of isolated fiber breaks. The failure of one fiber in a homogeneous stress state

may then cause a neighboring fiber to fail because of stress concentration. This be-

havior is associated with localized load sharing among fibers around a broken fiber.

Thus a single fiber failure may tend to cause a spreading of damage in the form of

fiber breaks near a single plane across the section. This will lead to localized high

plastic and elastic strains in the matrix near the breaks perhaps giving rise to ma-

9



trix failure and, eventually, leading to a complete failure of the composite. To avoid

this situation, it is necessary to ensure global load sharing. whereby the load shed

from a broken fiber is shared nearly equally among all intact fibers. This can be

achieved with a weak interface between the fiber and the matrix. All sucressful fiber

reinforced metal matrix composites have a weak interface giving rise to global load

sharing among the fibers and thus have significant longitudinal strength(I-3). How-

ever, the weak interface leads to debonding under transverse load and the strength in

this orientation is usually less than the un-reinforced matrix material. This represents

"a significant deficiency of fiber reinforced metal matrix composites.

An alternative approach, which has not received significant attention, is to provide

"a low strength interface between the fiber and the matrix in the form of a well bonded

shearable interphase. This will diminish stress concentrations around fiber breaks and

limit the spread of fiber failure just as when a weak, debonding interface is present.

However, a well bonded shearable interphase between the fiber and the matrix should

be capable of providing adequate transverse strength. Such an approach is explored

in this paper.

Theoretical studies on fiber failure stochastics have already been carried out by

several investigators leading to statistical strength prediction procedures for compos-

ites (1,4,5). He et. al.(1) developed a criterion to predict the transition from global

load sharing to local load sharing by evaluating around a broken fiber the relative

survival probabilities 0, of the nearest neighbor fibers (6') and the next nearest

neighbor fibers (6NN). They noted that the survival probability of a ring of N fibers

that fracture in accordance with a two parameter Weibull distribution and subjected

3



to a uniform stress azz over a length 6, is given by

- ln6, = N[uzz/So]"(b,/Lo) (1)

where S, and L. are strength and length parameters of the Weibull distribution and

m is the Weibull modulus. When ONN < ON, the survival probability of the nearest

neighbor exceeds that of the next nearest neighbor. He et al.(1) argued that this

condition would ensure that the development of a well-defined crack from an initial

fiber failure cannot occur and thus a global load sharing mechanism would apply.

Fiber failure would be more likely to occur far from an existing break rather than in

the nearest neighbors. Consequently, the condition for global load sharing depends

on the number of fibers around a broken fiber and on the stress ratio

A NN (2)

azz

where oaNZ is the stress in the nearest neighbor fibers around a break and a" is the

stress in the next nearest neighbors. Furthermore, the condition ONN < N from (1)

ensuring global load sharing occurs when

NN N (NNN/NN)" (3)

where NN is the number of nearest neighbors around a break and N NN is the number

of next nearest neighbors. For a typical close packed arrangement of fibers. where

NN = 6 and NNN = 9, He et al.(1) found for fibers with m=10 that a stress concen-

tration ratio, A, less than 1.04 appeared to be required for global load sharing.

Based on this criterion, detailed axisynmmetric finite element calculations were

conducted by He et al.(1) to examine the influence of fiber volume fraction, interface
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sliding stress and the Young's modulus of the fibers and the matrix on the levels

of stress concentration relevant to global and local load sharing when there is fiber

breakage. It was found that for a homogeneous material (Ef= E,), only at very large

fiber volume fraction did the stress ratio A exceed the levels required for global load

sharing. A lower matrix stiffness increased the stress concentration in neighboring

fibers and made it more likely that the composite would experience local load sharing.

However, the presence of a weak interface with a low sliding stress reduced the stress

concentration and made global load sharing more likely. This was consistent with

experimental observations(2) for ceramic matrix composites. However, the numerical

results(l) were limited to the situation where both the fibers and the matrix were

elastic and the influence of matrix plastic yielding was not examined. In the present

work, we consider the situation where the fibers are elastic but the matrix can yield.

This influences the stress concentration around fiber breaks.

Recently, the anisotropic mechanical behavior of metal matrix fiber composites

has been examined by Jansson et al.(2) and Gunnawardena et al.(3). However, their

results are for a specific set of properties (Ti/SiC) for a material with a weakly bonded

fiber-matrix interface. In the present work, systematic studies are conducted for a

material with a well bonded interphase between the fiber and matrix to examine

the influence of the fiber volume fraction, the elastic stiffness of the fibers and the

matrix and the interphase properties on the degree of global load sharing and on the

transverse yield strength of the composite. The objective is to ensure global load

sharing among the fibers for longitudinal strength and a relatively high load carrying

capacity in the direction transverse to the fiber.



Axisymmetric models similar to those used by He et al.(1) are used to analyze

the longitudinal behavior of a metal matrix fiber composite which exhibits matrix

plastic deforimiation. Cell models, widely used for both continuous and discontinuous

reinforcements(6,7), are used to conduct the analyses for the transverse yielding of the

composite. Both perfectly bonded interfaces and cases with a shearable interphase

bonding the matrix to the fiber are considered. The shearable interphase is modeled

by a very thin elastic perfectly plastic layer between the matrix and the fibers. The

thin layer has a perfect bond with both the fibers and the matrix and was considered

to have a tensile yield strength which is lower than that of the matrix. The low

strength interphase permits fiber-matrix sliding at a reduced shear stress compared

to the yield strength in shear of the matrix. The results for the longitudinal behavior

of the composite presented below are therefore identical to those for the material with

a weak debonding interface permitting sliding by friction with a uniform shear stress.

However, the calculations for transverse behavior given below are not relevant to the

material with a debonding interface where it is known that the transverse strength is

severely reduced by debonding of the interface between fiber and matrix(2,3).

2 Numerical Model

The close-packed arrangement of fibers shown in Fig.1 is analyzed. For the longi-

tudinal problem, an axisyrrnmetric volume containing one broken fiber is modeled as

shown. This model is similar to that used by He et al.( 1) for analyzing weakly bonded

composites with fibers and matrix deforming elastically. An axisymmetric view of the
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finite element model is given in Fig.1. A thin ring of ductile material surrounds the

broken fiber. The nearest (N) and the next nearest neighbor (NN) fibers are repre-

sented by annuli having the fiber elastic modulus. All components of the composite

material (fiber, matrix and interphase) are isotropic. The matrix is considered to be

an elastic perfectly plastic material. The interphase is omitted between the matrix

and the annuli representing the intact fibers. Beyond the annulus representing the

next nearest neighbors, the material is considered to be homogeneous and to have the

composite properties, which are defined in accordance with the rule of mixtures. That

is, the Young's modulus of the composite, EL equals fEj + (1 - f)Em and the post

yield stress-strain relationship is given by e = [o - (1 - f)ao]/fEf, where Ef and

Em are the Young's moduli of the fibers and the matrix respectively, 0' is the applied

stress and o,, is the yield stress of the matrix. First yield occurs at 0' = aoEL/Em,

after which the material hardens according to the above stress-strain relationship. Al-

though in reality it is anisotropic, the material properties of the region representing

composite behavior are assumed to be isotropic such that the properties defined above

are used in all directions. This approximation can be made because the emphasis in

this analysis is on the longitudinal behavior. The transverse behavior is dealt with in

a separate cell model.

It is assumed that the number of nearest neighbor fibers, NN is 6 and the number

of next nearest neighbor fibers, NNN is 12 in the finite element calculations. A range

of geometries with fiber volume fractions varying from 0.15 to 0.65 are analyzed. As

shown in Fig.1, the annulus representing the nearest neighbor fibers has its inner

radius at the closest location of the nearest neighbor fibers to the broken fiber. The
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cross-sectional area of the annulus equals the sum of the cross-sectional area of the

nearest neighbor fibers. The annulus representing the next nearest fibers is located

so that the spacing represents the volume fraction.

Cell models are used also for the transverse strength problems. Two fiber arrange-

ments have been considered: hexagonal and square with the fiber volume fraction

ranging from 0.1 to 0.7. Finite element grids for cells with a fiber volume fraction

of 0.35 are shown in Fig.2 (a) and (b) for the square and hexagonal arrangement re-

spectively. In the transverse analysis, the fibers are treated as rigid and the analysis

is plane strain since the emphasis is on the fully plastic behavior. Modeling the fiber

as rigid significantly influences the results of the elastic and elastic-plastic stages of

the analysis, but not the fully plastic behavior.

For both the longitudinal and transverse problems, the surfaces of the unit cell

(except those bonded to the fibers) remain planar during loading with zero shear

traction. Kinematic boundary conditions are used to impose distortions on the unit

cell to simulate straining. The distortions are chosen to impose uniaxial stress in the

longitudinal problem and a tensile stress in the transverse problem.

A commercial finite element code ABAQUS(8) on an IBM/Risc workstation is

used for the calculations. Isoparametric second order hybrid and non-hybrid ele-

ments with reduced integration are used to model the transverse and longitudinal

problems respectively in order to avoid the problem of mesh locking associated with

incompressible deformation. The matrix deforms by small strain J2 flow theory with

a non-hardening tensile yield stress ao in all calculations such that the yield strain

6o = Uo/Em = 1.5 x 10-. The matrix Poisson's ratio is 0.33. For the longitudinal
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problem, the fiber is elastic and has the same Poisson's ratio as the matrix.

Both perfectly bonded interfaces and shearable interphases between the fibers and

the matrix are considered, where the shearable interphase is modeled by a very thin

elastic perfectly plastic layer around the broken fiber in the longitudinal problem and

between the matrix and all fibers in the transverse problem. The yield strength in

shear of the thin interphase, 70 is varied from 0.01 to 1/1vr times the tensile yield

strength of the matrix, ao,. When ro, = o/,,/x3/, the interphase yield strength in shear

is the same as that of the matrix and the interphase disappears as a distinct material.

In most of the calculations, the thickness of the thin interphase equals 0.025 times the

fiber diameter. However, in one case with a fiber volume fraction of 0.35, the ratio

of the thickness of the interphase, t, to the fiber diameter, D, is varied to assess its

influence on the transverse strength and the stress concentration in the neighboring

fibers.

3 Results

3.1 Longitudinal Behavior

Since the failure of fibers is governed by statistics, the values of the average stress

at the cross sections of the fibers should be used in eqn(2) to determine the degree

of global load sharing. Therefore, only the results associated with the average stress

on the cross sections of the nearest and the next nearest fibers are presented in this

section.
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3.1.1 Strong Interface

Before examining the influence of the interphase properties on the longitudinal strength.

it is instructive to examine other factors such as the fiber volume fraction and the

Young's modulus of the fibers and the matrix when the interface is perfectly bonded.

This allows us to identify the major features of the longitudinal behavior when plastic

yielding of the matrix is allowed to occur. When the interface is perfectly bonded. the

stress on average at a cross section in the nearest and the next nearest neighboring

fibers is presented as a function of a normalized distance, Z/D in Fig.3 (marked no

interphase), where Z is measured from the plane of the fiber break along the fiber

direction and the strain is at such a level that the ratio of the average stress concen-

tration in the nearest to the next nearest fibers reaches its peak value. It is found

that the average stress in the neighboring fibers has its maximum value at a position

which is some distance from the plane of the break. The difference of the fiber stress

at Z/D=5 in the nearest neighbors and the next nearest neighbors, i.e. the difference

of the remote fiber stress, is due to the constraint effect of the imposed boundary

condition. It is notable that the stress concentration even in the nearest neighbor is

mild even when the interface is strong.

The ratio of stress concentration in the nearest to the next nearest fibers is pre-

sented in Fig.4 as a function of the remote fiber stress a1 normalized by the yield

strength of the matrix for a range of fiber volume fractions when Ef/E, = :3. The

remote fiber stress can be related to the axial strain by 07 = Ef-:. The stress conl-

centration ratio A is defined as the largest longitudinal stress in the nearest neighbor

divided by the largest longitudinal stress in the next nearest neighbor. In all cases.
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the stresses used in the calculation are the averages over the cross section of the

fiber. Fig.5 illustrates the influence of the elastic mismatch EjiEm on the ratio of

the stress concentration when the fiber volume fraction is 0.35. Examination of the

results (Figs.4 and 5) reveals that the stress concentration ratio initially increases

with the applied stress due to the plastic deformation in the matrix adjacent to the

fiber break. The plastic zone around the fiber break tends to concentrate stress in

the nearest neighbor fiber(N) but only increases the stress in the next nearest neigh-

bor (NN) slightly. The stress concentration ratio reaches a peak value, then drops off

with increasing applied stress. Eventually, when the matrix is completely yielded, the

stress concentration ratio approaches an asymptotic value and remains constant with

further increase of the applied stress. For a fixed value of the fiber volume fraction

(i.e. as in Fig.5), an increase of Ef/E, tends to reduce the peak value of the stress

concentration ratio. For a fixed modulus ratio (i.e. as in Fig.4), increasing the volume

fraction of fibers enhances the average stress concentration ratio.

The peak value of the stress concentration ratio for each vc ae fraction is plotted

in Fig.6 (marked yielded matrix) as a function of the modulus ratio. For comparison.

the value obtained when the matrix deforms elastically (equivalent to the results of He

et al.(1)) is shown also (marked elastic matrix). It is evident from the results in Fig.6

that the plastic yielding of the matrix increases the maximum stress concentration

ratio with the value rising with an increase of fiber volume fraction. When plastic

deformation of the matrix occurs, the stress ratio decreases with an increase of E,/E,,

in contrast to the situation where both the matrix and the fiber deform only elastically.

Examination of Fig.6 also reveals that when both the fiber and the matrix deformn
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only elastically, most of the composites satisfy the condition for global load .haring

except for those materials with very large values of f anc Ef/Em. That is. the stress

concentration ratio for almost all cases is less than 1.04 which is the critical value

for fibers with m=10 when .VNV/NA`* = 1.5 as found by He et al.(1). Note that

NN I/N' = 1.5 is a conservative choice. Its value will often be larger than 1.5

in practical materials which makes global load sharing more likely. However. when

plastic deformation occurs in the matrix, the average stress concentration ratio for

a composite with typical values of fiber volume fraction and stiffness ratio is larr r

than 1.04, placing the composite in the global load sharing regime.

3.1.2 Shearable Interphase

The results for the average stress in the nearest and the next nearest neighbor fibers

when a shearable interphase is present between the fiber and the matriy with 7o/o, =

0.25 and ro/o, = 0.1 are illustrated in Fig.3 alongside that obtained with a perfectl\

bonded interface. Note that the strain for each case is different and it is at such a

level that the ratio of stress concentration in the nearest to the next nearest fibers

has reached its peak value in each case. ItL is found that similar to the case with a

perfectly bonded interface, the average stress in the neighboring fibers has its peak

value at a position which is some distance from the plane of the break. The position

of the maximum stress moves toward the plane of the fiber break with decrease of

7" / 0o.

Fig.7(a) shows the stress concentration ratio as a function of remot!, fiber stress

for various values of 7o/a, for a composite with a fiber volume fraction of 0.35 and
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EL/Em equal to 3. It can be seen that a low strength interphase reduces the peak

stress concentration ratio. Examination of the figure also reveals that two peaks of

stress concentration ratio occur when the interphase has a low yield strength compared

to the matrix. The first peak is associated with the yielding of the thin interphase

while the second one is associated with the yielding of the matrix. The smaller the

ratio r7/ar, the smaller is the applied stress required for the stress concentration ratio

to achieve its peak value. Similar to the results obtained for the perfectly bonded

interface, the stress concentration ratio decays and approaches an asymptotic value

as the load is increased after the second peak. The results obtained with different

values of fiber volume fraction and modulus ratio Ei/Em show similar trends. These

results are summarized in Fig.7 (b) through (c).

The peak value of the stress concentration ratio for each case is plotted as a

function of r7.o/ for various fiber volume fractions and Young's moduli in Fig.8 (a)

through (c). The results show broadly that the stress concentration ratio increases

with increasing fiber volume fraction and decreases with increasing modulus ratio

EI/E,. However, the latter trend is reversed when 7o/Uo is very low. It is evident

from these results that in general the peak stress concentration ratio decreases with

decrease of ro/o. Close examination of these results. however, reveals that the peak

stress concentration ratio is sensitive to the variation of r7/a, only in a sirall range

values of r0 /o/o. Outside this range, change of ro/7o, has negligible effect on the

stress concentration ratio. The higher the ratio of EjIEm and the higher the fiber

volume fraction, the higher is the value of the ratio of 7o/c>7 at which the stress

concentration ratio rises from low to high. For example. for f=0.215 and Ef/E,, = 3.
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the stress concentration ratio is sensitive to the variation of 7o/a 0 within the range

0 < io/co < 0.2 while for EjIEm = 10. the corresponding range of sensitivity is 0.4 <

ro/r < 0.577. These values should be compared with the ranges 0.1 < r0/o/, < 0.35

for f=0.5 and Ef/Em = 3 and 0.45 < r0 o/,, < 0.577 for f=0.5 and Ej/Em 10.

These results clearly suggest that in a composite with a large fiber volume fraction

and fiber to matrix stiffness ratio, a ductile interphase with a very small yield strength

is no more efft :tive at diminishing the stress concentration ratio than an interphase

with a larger yield strength as long as the interphase yield strength is below the

transition level. Thus a strategy is suggested in which an interphase is introduced

with a yield strength just below the range of high sensitivity. It is not effective to use

a yield strength much below this level since the transverse strength may be adversely

affected.

By examining the values of the stress concentration ratio in Figs.7-8, the maximum

value of r7/o1 which permits global load sharing according to the criterion of He et

al.(1), i.e. from eqn(3), can be determined. These values of 1o/Uo are presented

in Figs.9-11 as functions of fiber volume fraction for some representative values of

Ef/Ema, Weibull modulus, m and the ratio of "fiber strength" to yield strength of

the matrix, Sf/lou. The number of nearest neighbor fibers N is 6 and the number

of the next nearest neighbor fibers NN is assumed to be 9. As noted previously.

this assumption is conservative. For values of ro,/ao below the relevant curve, the

composite is in the global load sharing regime up to stresses in the fiber equal to "f.

This parameter S1 can be considered to be the strength of the fibers, although an

interpretation is required since the fibers have a statistical distribution of strengths.
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For a metal matrix composite experiencing global load sharing, the ultimate tensile

strength is given by Curtin (4) as

S2 _ 1/(+1m + 1

fO ±+ 2 +÷(1-)ro (4)

where o, is given by
2S~roLo 1/(m•+1)

D

where D is the diameter of the fiber. At the ultimate stress, the strain is ( 2 -_

so that the stress in a fiber far from any break is [2/(m + 2)]l/(m+lya. At strains

greater than that causing the ultimate strength of the composite, global load sharing

is no longer important since the stress on the composite is falling. Therefore, the

effective strength of the fiber is considered to be

Sf = [2/(m +2)11/(m+') (6)

and the global load sharing criterion is required to be met for fiber stresses up to

this level. That will ensure that the predicted ultimate strength in eqn(4) can be

achieved. The maps in Figs.9- 11 therefore ensure that global load sharing is retained

up to the ultimate strength of the composite if ro/ao lies below the relevant curve.

For a given fiber and interface/interphase, ac is fixed and the value of Sj/ao will

reflect the strength level of the matrix which can be modified by heat treatment.

When the fibers are effectively strong and the matrix weak (e.g. Sj/ 0, = 10 as in

Fig.9(c)) the requirements for global load sharing are stringent and To/o may have to

be very low to ensure it. This occurs because the relatively high strains at maximum

load of the composite induce the high peak values of X'/c0'Nj which occur at large
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values of rlo/,o in Figs.7 and 8. However, when the fiber strength is effectivelv weak

or the matrix is strong (e.g. Sj/fo = 2 as in Fig.9(a)), the ultimate strength is

reached at low values of ao/o,. As a result, the composite fails before the peak values

of ON IzNN in Figs.7 and 8 are reached and global load sharing is therefore easier

to preserve even with large values of ro/ao. This feature is clear in Fig.9(a) where

global load sharing can be achieved without a weak interface or interphase up to fairly

significant fiber volume fractions. This is in contrast to Fig.9(c), where global load

sharing without a weak interface or interphase can only be achieved when the Weibull

modulus is low. When Sf/lo, is higher than 10, the resulting maps of the type shown

in Figs.9(c), 10(c) and 11(c) are almost exactly the same as those for Sf/o0 = 10.

Therefore, Figs.9(c), 10(c) and 11(c) actually serve as maps for Sl/co, = 10 and

greater. This indicates that when S//o0 = 10 for ELI/E = 3,5 and 10, the peak
vales f N 1, NN

values of azz/ zz are reached before ultimate failure and that global load sharing

can only be ensured by keeping those peak values down to acceptable levels.

Another parameter which plays a role in determining global and local load sharing

is the ratio EfI/E,. When Sf/lo is small, e.g. 2, the matrix has a yield strength

approaching the effective strength of the fiber and it is found that the composite with

a large value of EI/Em is more likely to be in the local load sharing regime. This is

consistent with the elastic calculations performed by He et al.(1). However, when the

ratio Sj/or, increases to 5 or 10 so that the yield strength of the matrix is relatively

low and therefore plasticity is more likely to occur, the situation is more complicated.

On the one hand, with a strongly bonded interface, a composite with a fiber volume

fraction of 0.35 and a small ratio Ef/Em could be in the local load sharing regime,
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whereas the same composite with a h;gher ratio of EjiE,m may be in the global load

sharing regime. For example, with Sj/0o0 = 5, m=7, f=0.35 and Ef/Em = 3, Fig.9(b)

indicates that a composite with a strongly bonded interface is in local load sharing.

while the same composite with Ej/Em equal to 10 as illustrated in Fig.11(b) is in the

global load sharing regime. On the other hand, if a shearable interphase is present,

a low value of ro/1a is much more effective in placing the composites with smaller

values of Ef/Em in global load sharing than composites with higher values of Ej/E,.

As an example, when f=0.5, Sj/cro = 5 and m=5, examination of Fig.9(b) reveals

that global load sharing could be achieved for the composite with a value of r7/a0, of

0.2 when EjIEm = 3. Global load sharing can never be achieved for the composite

with the same material properties and interphase when Ef/Em = 10 as illustrated in

Fig.11(b).

3.2 Transverse Behavior

In previous studies, the transverse yielding of metal matrix fiber composites with

strong interfaces were analyzed by the authors(6,9). It was found for perfectly plas-

tic matrices that with increasing transverse strain, the transverse average stress ap-

proaches an asymptotic value, which is the transverse limit load. When a shearable

interphase is present in the composite, the transverse behavior is similar. Typi-

cal transverse stress strain curves are given in Fig.12 for various ratios of the yield

strength in shear of the thin interphase to the yield strength of the matrix for both

square and hexagonal arrangements of fibers at a volume fraction of 0.35. It can be

seen that the transverse limit strength of the composite is reduced when a shearable
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interphase with a low yield strength is present. (These calculations were carried out

with rigid fibers so that the elastic and elastic-plastic response represents the behavior

for extremely stiff fibers only. However, the limit strength is correctly calculated for

any fiber stiffness since it is independent of fiber and matrix elasticity)

The transverse limit strength Z calculated for hexagonal and square arrangements

of fibers is presented in Fig.13 for a range of fiber volume fractions and for various

ratios of the yield strength in shear of the thin interphase to the yield strength of the

matrix. The transverse limit strength is the asymptotic value of the transverse stress

at large strain for each case. It is evident from these results that the ratio of the yield

strength in shear of the thin interphase to the yield strength of the matrix strongly

influences the transverse limit strength. For all the problems analyzed, the transverse

limit strength decreases monotonically with decreasing ro/1a. An interesting feature

of the results is that when -r/eI is v•ry small, the values of the limit strength decrease

dramatically with the decrease of r7/a,. When r•,/ao is greater than about 0.1, the

transverse limit strength increases almost linearly with ro/ao. When the fiber volume

fraction is small, there is little sensitivity of the transverse limit strength to 7o/010 .

However, for larger values of f the effect of 7o/cOo on the limit strength is significant.

This is attributed to the fact that for the large fiber volume fraction, the volume

of the thin interphase is a larger fraction of the volume of the composite than in

the low fiber volume case. Therefore, the reduction of the yield strength of the thin

interphase in the high fiber volume fraction case will have a more significant effect on

the reduction of the transverse limit strength.

When the fiber volume fraction is small. the results obtained for the transverse
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limit strength for the hexagonal arrangement of fibers are very close to those obtained

for square arrangement of the fibers. However, when the fiber volume fraction is

large, the transverse strength for the square arrangement is much more sensitive to

the variation of -r/lor than for the hexagonal arrangement.

For a composite with a fiber volume fraction of 0.35, the ratio of the thickness t

of the thin interphase to the fiber diameter D was varied to allow assessment of the

effect on the transverse limit strength. Fig.14 illustrates the transverse limit strength

as a function of T 0 / 0o for a range interphase thicknesses for the square arrangement

of fibers. It is evident from these results that for any given yield strength of the

thin interphase, the thicker the interphase, the lower the transverse limit strength

with the strength decreasing almost linearly with the yield strength of the interphase

except at low values of To/aU, when the interphase is very thin. It is worth noting

that the longitudinal results discussed in the previous section have been found to be

independent of the interphase thickness.

4 Discussion

An important result of this study is that around a broken fiber, plastic yielding of the

matrix tends to increase the ratio of stress concentration in the nearest fiber to that in

the next nearest fiber. The introduction of plasticity has the same effect as reducing

the matrix modulus in the purely elastic case. Both matrix plasticity and a low

matrix elastic modulus have the effect of making the matrix more compliant. In the

range of parameters studied, the impact of a more compliant matrix is a higher stress
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concentration in the nearest neighbor fiber. The higher stress concentration and the

higher stress concentration ratio A will tend to promote spreading of damage ii) the

form of fiber breaks near a single plane across a section of the composite. Indeed for

a metal matrix composite with technologically typical values of fiber volume fraction

(e.g. f=0.35) and with a ratio of Ef/Em typical of technological systems (e.g. SiC

Ti alloy with ElI/Em = 3), numerical results indicate that plastic yielding places

the composite with a strongly bonded interface near the transition from global load

sharing to local load sharing. Local load sharing will mean that one broken fiber will

tend to cause its neighbor to break, leading to composite failure. This is in contrast

to the situation if both fibers and the matrix are assumed to deform only elastically

(1). For f=0.35 and Ef/Em = 3, He et al.(1) found the composite to be in the global

load sharing regime even when the interface is strongly bonded. Therefore, when the

matrix is capable of yielding, it is important to determine when global load sharing

occurs so that a high longitudinal strength can be achieved.

In the present work, a ductile interphase with lower yield strength than the matrix

is introduced in the composite to achieve global load sharing among fibers in the lon-

gitudinal direction. This ductile interphase can represent just as well as a debonded

interface with sliding resisted by friction, which is known to ensure satisfactory longi-

tudinal strength(1-3). From the set of problems analyzed, the circumstances in which

global load sharing will occur have been identified. This has been done based on a

criterion introduced by He et al.(1).

Maps have been provided delineating in terms of material parameters the region in

which global load sharing will occur (i.e. Figs.9, 10 and 11). The maps indicate that
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a low interface/interphase shear strength., a high matrix yield strength, a low fiber

strength and a low Weibull modulus all make global load sharing easier to achieve.

Although just about all material parameters influence the tendency for global load

sharing to occur or not, most interest centers on the shear strength of the interface or

interphase and the yield strength of the matrix since those quantities can be tailored

for a given composite in which the fiber and other matrix properties and the fiber

volume fraction are set. Not surprisingly, a low value of the interface or interphase

shear strength compared to the matrix yield strength is desirable to induce global load

sharing. As noted above, this is commonly achieved by use of a weak interface which

debonds easily and slides frictionally with low friction thereafter. The disadvantage

of this approach is that when transverse stress is applied, the interface can debond.

This limits the transverse strength, which is often below the unreinforced matrix

strength(2), leading to relatively poor transverse properties and significant anisotropy

in terms of longitudinal and transverse strength.

An alternative approach is to introduce a well bonded ductile interphase between

the fiber and the matrix with the interphase having a relatively low yield strength.

With the appropriate choice of yield strength for the interphase, global load shar-

ing can be assured. Moreover, the interphase will affect the transverse strength by

yielding or by fracture. The results presented in this paper show that by keeping

the interphase relatively thin and not too weak in yielding. a reasonable transverse

limit strength can be retained. A reasonable transverse strength would be equal to

or above the unreinforced matrix yield strength. This assertion can be made be-

cause results have shown that only limited transverse strengthening above the matrix
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strength can be achieved with well bonded fibers (no interphase) unless the fiber

volume fraction is so high that the fibers are almost touching(6). Therefore, there

is little point in expecting transverse strengths much in excess of the unreinforced

matrix strength. Given that the transverse stresses in the composite will be, at the

most, comparable to the matrix strength, it should be relatively easy to select an

interphase which will resist fracture at those stresses and, therefore, ensure that the

projected transverse strength can be achieved. The results in Fig.13 indicate that the

limit transverse strength is only weakly dependent on the interphase yield strength

as the latter parameter is reduced except when T, is very low. Thus there exists a

window of reasonable values of T, which will retain reasonable transverse strength but

permit longitudinal global load sharing.

For example, consider a Ti matrix/SiC fiber composite with a fiber volume fraction

of 0.35. The Young's moduli are such that EfiEm = 3 and it has been established(2)

that SCS6 fibers with a diameter of 140rm have m=9 with S, = 4500MPa and

L, = 1m. A matrix yield strength ao = 95OMPa is appropriate for Ti alloy. From

eqns(5) and (6), we can determine that

L = ( 2 1/m+l 2SmLo 1/m+1 T /M+(
=( ) mO) ) (7)

a0  m + 2 D-

An estimate for SS/ao can be obtained by taking r0 o/a = 0.5 which is reasonable since

even if ro/ao is significantly less than 0.5, (ro/0o)1/1+m will be similar to 0.51/I+m

because m=9. Thus we take qf/ao=8.5. Since the stress concentration ratio as

indicated in Fig.7(a) for the case with f=0.35 and Ef/Em = 3 peaks well before

Ss/ao = 8.5 for any value of %o/ao, it is relevant to choose the map with Sf/ao = 10
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(i.e. Fig.9(c)) for this particular material system. Fig.9(c) shows that global load

sharing can be achieved for this case if ro/0o is 0.18 or less. With an interphase of

thickness 3.5pjm so that t/D=0.025, Fig.13(b) shows that the transverse strength will

be greater than the unreinforced matrix strength as long as 7o/ao is greater than 0.1.

Therefore, we conclude that an interphase with a yield strength in shear anywhere

from 95MPa (7,/Qo = 0.1) to 170MPa (ro/,o = 0.18) would ensure global load sharing

and therefore good longitudinal strength without degrading the transverse strength.

An ultimate strength of 2.75GPa for r, = 95MPa and 2.88GPa for 7T = 170MPa is

predicted from eqn(4). The transverse strength would be in excess of 950MPa. For

comparison, it has been established that a Ti alloy composite with 35% by volume of

SCS6 SiC fibers which has a weak, debonding interface has a! ultimate strength of

1.8GPa and a transverse strength of 420MPa, which is 0.4uo(2). It is worth noting

that the difference between the experimental data and the predictions for the ultimate

strength using eqn(4) is probably due to the effect of the short specimen gauge length

used in experiments of Jansson et al.(2) and discussed by them.

5 Closure

It is evident from the above discussion that the key to designing a metal matrix fiber

composite with good longitudinal and transverse strength lies in the development of

maps such as those in Figs.9-14, from which one can optimize the material parameters.

The present study of global versus local load sharing based on axisymmetric finite

element models and the criterion of He et al.(1) provides a preliminary set of maps
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for technologically significant combinations of material parameters relevant to Ti/SiC'

and Al/Al 203 composites among others. These maps can be extended by further

calculation to cover other material systems and can be refined by more elaborate

computations.
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List of Figures

Fig.1 A planar view and an axisymmetric view of the composite material with one

broken fiber and the finite element model.

Fig.2 Typical finite element grids for a cell which has a fiber volume fraction of 0.35

with the fibers in (a) a square arrangement and (b) a hexagonal arrangement.

Fig.3 The average stress in the nearest and the next nearest neighbor fibers adjacent

to a broken fiber as a function of distance Z measured from the plane of the

fiber break along the fiber direction. The axial strain is different for each case

and can be related to the remote fiber stress by e = arlEf.

Fig.4 The ratio of the stress concentration in the nearest and the next nearest neighbor

fibers adjacent to a broken fiber as a function of the fiber stress for various

volume fiber fractions f for a material with a fiber having a Young's modulus 3

times that of the matrix.

Fig.5 The ratio of the stress concentration in the nearest and the next nearest neighbor

fibers adjacent to a broken fiber as a function of the fiber stress for a material

with a fiber volume fraction of 0.35. The results are shown for materials having

different ratios of fiber to matrix Young's moduli.

Fig.6 The peak values of the stress concentration ratio in the nearest and the next

nearest neighbor fibers adjacent to a broken fiber as functions of the ratios of

fiber to matrix Young's moduli for a range of fiber volume fractions.
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Fig.7 The ratio of the stress concentration in the nearest and the next nearest neighbor

fibers adjacent to a broken fiber as a function of the interphase yield strength

in shear normalized by the yield strength of the matrix for a material with (a)

f=0.35 and E 1/E, = 3 (b) f=0.35 and Ef1E,m = 5 (c) f=0.35 and E 1/E, = 10

(d) f=0.5 and Fl/E, = 3 and (e) f=0.215 and Ej/E, = 3

Fig.8 The peak value of the average stress concentration ratio in the nearest and the

next nearest neighbor fibers as a function of the ratio of the shear yield strength

of the interphase to the yield strength of the matrix for a range of ratios of fiber

to matrix Young's moduli for (a) f=0.215 (b) f=0.35 (c) f=0.5

Fig.9 Maps of the global load sharing domain for a material with fibers having a

Young's modulus three times that of the matrix with various ratios of effective

fiber strength to matrix tensile yield strength and fiber Weibull modulus m.

The global load sharing domain lies below the curves which are shown for (a)

Sl/o, = 2 (b) S/lo,, = 5 and (c) Sf/ao = 10

Fig.10 Maps of the global load sharing domain for a material with fibers having a

Young's modulus five times that of the matrix with various ratios of effective

fiber strength to matrix tensile yield strength and fiber Weibull modulus m.

The global load sharing domain lies below the curves which are shown for (a)

Sf/0o = 2 (b) Ssloo = 5 and (c) Sfloo = 10

Fig.11 Maps of the global load sharing domain for a material with fibers having a

Young's modulus ten times that of the matrix with various ratios of effective

fiber strength to matrix tensile yield strength and fiber Weibull modulus in.
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The global load sharing domain lies below the curves which are shown for (a)

Sf/lo- = 2 (b) Sf lo- = 5 and (c) S/lier = 10

Fig.12 Transverse stress-strain curves for various ratios of interphase shear yield strength

-r to matrix tensile yield strength a, for (a) a square and (b) a hexagonal fiber

arrangement when the fiber volume fraction is 35%. The fibers are rigid and

the interphase thickness is 2.5% of the fiber diameter.

Fig.13 The transverse limit strength of the composite as a function of the ratio of

the interphase shear yield strength r7 to the matrix tensile yield strength 0o

for a range of fiber volume fractions in (a) a square and (b) a hexagonal fiber

arrangement when the interphase thickness is 2.5% of the fiber diameter.

Fig.14 The transverse limit strength of the composite as a function of the ratio of

interphase shear yield strength r, to matrix tensile yield strength ao for various

ratios of the interphase thickness t to the fiber diameter D for a square fiber

arrangement when the fiber volume fraction is 0.35.
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ABSTRACT

Simulations of the inelastic strains caused by matrix cracking in unidirectional CMCs are

performed. They are based on a cell model, which has previously been analyzed by a shear lag

approximation. Here, finite element solutions are used to arrive at more accurate formulae,

differing from the shear lag results mainly in the range of small debonds. The model relates the

inelastic strain to the constitutive properties, particularly the interface sliding and debonding

resistances. Comparisons with experimental results indicate good correspondence for a SiC/SiC

composite but divergences for a SiC/CAS composite. The divergences are attributed to the

contribution to the inelastic strain from fiber failure.

1. INTRODUCTION

In composites with either a ceramic (CMCs) or intermetallic (IMCs) matrix, cracks can

form in the matrix while the fibers remain essentially intact (Aveston, Cooper and Kelly, 1971;

Kim and Pagano,1991; Marshall and Evans, 1985; Beyerle, Spearing, Zok and Evans, 1992;

Evans, 1991). This capability is imparted to the material by using a fiber coating that allows

debonding and frictional sliding as the cracks interact with the fibers (Evans, Zok and Davis,
1991). Furthermore, in metal (MMCs) and polymer (PMCs) matrix materials, similar matrix

cracks form upon cyclic loading. The matrix cracks may develop upon either tensile or shear

loading (Bronsted, Heredia and Evans, 1993). Both beneficial and detrimental effects arise when

matrix cracks form. The beneficial effect occurs because the cracks introduce inelastic strains

(Aveston, et al, 1971; Nardonne and Prewo, 1988; Beyerle, et al, 1992; Evans, Domergue and

Vagaggini, 1993). Such strains provide stress redistribution mechanisms, which impart notch



insensitivity when the composite constituents are optimized (Evans, et al, 1993; Cady, Mackin and

Evans, 1993). For optimization purposes, it is important to understand the factors that govern the

formation of matrix cracks, as well as their effect on the inelastic, or 'plastic', strains. The

detrimental consequence concerns the stress concentrations induced in the fibers by matrix cracks,

especially at ply interfaces and in the vicinity of manufacturing flaws (Budiansky and Cui, 1993).

These stress concentrations, when they exist, may weaken the composite.

Most composites with practical utility include fibers having at least two orientations. The

simplest such configuration is a 00/900 laminated material such as that shown in Fig. 1. Analyses
concerned with such materials are basic. Upon tensile loading, cracks in the 900 layers first form

by a three dimensional tunneling process, spreading from initial flaws (Xia, Carr and Hutchinson,
1993). At higher stresses, the cracks in the 900 plies begin to spread into neighboring 00 plies as

plane strain matrix cracks, bridged by fibers. The associated uniaxial stress/strain behavior is

depicted schematically in Fig. 2 (Beyerle, et al, 1992; Evans, et al, 1993). The behavior addressed
in the present article concerns the tensile stress-strain behavior of 00 plies, following earlier work

on the same problem (Pryce and Smith, 1992; Weitsman and Zhu, 1993; Evans, et. al. 1993;
Vagaggini and Evans 1993). The largest contributions to the inelastic strains arise due to matrix

cracking and fiber debonding and sliding in the 00 plies. Knowledge of the behavior of these plies

is an essential part of paining an understanding of the performance of a laminated composite.

The inelastic strains caused by matrix cracks are most directly assessed on unidirectional

materials. For such materials, the stress/strain behavior is sketched in Fig.3. At stresses
above Gmc, matrix cracks develop. The average spacing d between the matrix cracks diminishes

as the stress increases. At as, the cracks saturate, with a spacing ds. The slope of the

stress/strain curve usually increases as the stress approaches and exceeds 5s. A methodology,

described in references cited above, has been developed for predicting the uniaxial stress-strain

behavior in terms of the constitutive properties of the fiber/matrix system such as fiber volume
fraction, interface debond energy, frictional sliding stress, and residual stresses. For the most

part, solutions available for carrying out this methodoloev are obtained from approximate shear lag

analyses. The primary purpose of this paper will be to present a fairly comprehensive set of more

accurate results which will allow assessment of the shear lag predictions and, more importantly, to

enable workers in the field to carry out accurate implementation of the general methodology.

2. PRELIMINARIES AND RESULTS FROM SHEAR LAG ANALYSIS

The focus will be on the stress-strain behavior of a unidirectional fiber reinforced

composite under uniaxial stressing parallel to the fibers such that the overall strain is monotonically
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increasing. Fig. 3 depicts the stress-strain behavior of such a composite. As already remarked,

matrix cracks begin forming when the overall stress a reaches the matrix cracking stress Omc
with debonding and sliding occurring along the fiber/matrix interfaces. Let E be the modulus of

the uncracked composite. There are several contributions to the overall strain c in addition to the

strain expected for the uncracked composite, a/E. Even without debonding and sliding, the
matrix cracks increase the compliance of the composite. Debonding and sliding further increase the

compliance and thereby add to the overall strain. The modulus of the cracked 'nd debonded
composite at afixed average spacing of matrix cracks d and atfixed debond length f (see Fig. 4)
will be denoted as Ec such that in the absence of interface friction and of any residual stress

c= o/Ec (1)

Friction along the fiber/matrix interface reduces the overall strain relative to (1). Conversely, a
residual tensile stress in the matrix is relieved by matrix cracking and gives rise to additional overall

straining relative to (1).

In this paper, attention is restricted to systems with a residual compressive stress acting

across the fiber/matrix interface such that the debonding process involves mode 11 cracking and
such that the debonded interfaces remain closed. A constant friction stress t is assumed to act
within the debond region as depicted in Fig. 4. The misfit strain giving rise to residual stress in the

uncracked composite is denoted by Q. Following the scheme in Hutchinson and Jensen, 1990
(hereafter designated by HJ), 0 is identified with the axial strain mismatch between the fiber and
the matrix such that a positive Q2 corresponds to residual tension in the matrix. A difference in

radial and axial strain mismatches between the fiber and matrix is taken into account; XSŽ denotes
the radial strain mismatch. The results for the quantities of interest will be calculated using the

axisymmetric cell displayed in Fig. 4. Details of the specification of this cell will be given in the
next section, as will the method for calculating the quantities which follow. In the remainder of

this section, we present the form of the mechanics solution for this cell model, introducing the
essential nondimensional coefficients. We also present the approximate results from shear lag
analysis for these coefficients. In the next section, the more accurate results for the coefficients

based on full numerical calculations will given along with some further motivation tor the particular
form of the mechanics solutions, as well as assessments of the shear lag approximations.

2.1 Form of the mechanics solution

At fixed average matrix crack spacing d and atfixed debond length i, the overall strain

depends linearly on a, 't and Q. Specifically, for the cell model of Fig. 4 the solution for the

overall strain can be written as

-3-



a •+D fEmfa2 R _D3l
E E(I- alf)d ERd (2)

where the incremental modulus of the cracked and debonded composite is written as

I =L 1 + (3)

In these equations R is the radius of the fiber, f=(R/B) 2 is the volume fraction of fibers where B is
the outer radius of the cell, and Em is the matrix modulus. The coefficients ai, (and bi and ci
introduced in subsequent equations) are coefficients introduced in HJ. Recipes for these
coefficients are given in I-U for arbitrary fiber and matrix moduli, including the most general cases
where the fiber has transversely isotropic moduli, the matrix is isotropic, and the ratio of the radial
to axial mismatch strains is X. Except when indicated to the contrary, the appropriate coefficients
for the present work are those in HJ associated with Type II boundary conditions (see discussion
in next section). The coefficients Di in (2) and (3), and in (4) given below, are nondimensional
functions of f, I/R, d/R and nondimensional moduli parameters, such as Ef/Em, vf and Vm. These
are the coefficients for which extensive numerical results will be presented in the next section. We
note in advance that their dependence on d/R is relatively weak over most of the parameter range of
interest and for many purposes this dependence can be neglected. Forfixed d and f the mode I1
stress intensity factor Kjj is also a linear function of ;, ,t and f. The form of the solution for K11

for the cylindrical cell of Fig.4 is
KII =D25•/- + 2 Emf a2-FR" 'r

(1 - alf) -4 -R (4)

The fact that DI appears in the contributions in (2) from both a and K, and D2 in the
corresponding contributions in (4), is a rigorous feature of the solution which is shown in the next

section.

The energy release rate G of the mode I] debond crack is related to Kjj by

G = KIn/E (5)

where t is a modulus quantity dependent on the moduli of the fiber and the matrix. When the fiber

and matrix are each isotropic,

"+ -- 'r.] (6)
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where 0 is the second plane strain Dundurs parameter. For most systems the numerical influence

of 132 in (6) is quite small and can be neglected.

2.2 Shear lag results for the Di

Shear lag modeling of fiber debonding and frictional sliding for systems where the

fiber/matrix interface remains closed have been carried out by a number of authors (Gao, Mai and

Cotterell, 1988; Marshall, 1992; HJ). Here the results of HJ will be used and these can be

expressed in the form given in (2) and (4). (Indeed, it was the form of the shear lag results which,

in part, guided the choice of these forms.) The expressions for the Di listed below are obtained by

identification from the NJ expressions. Specifically,

Eeg
D1 = 8 f -E--c 2  (7a)Em R1

DE = E/E c1  (7b)

D3= 2- b2  (7c)

Em

D4 =..(b 2 +b 3)(E/Em) (7d)

The relevant recipes for the coefficients above are those for the Type 11 boundary conditions in NJ,

which are appropriate to the present study because they model a cell in an array as discussed

below. It should be remarked that the above result for D2 is not from a shear lag calculation.

Instead, it is the exact result for the cylindrical model of Fig. 4 for the case d/R--o in the steady-

state limit when t/R becomes sufficiently large. Nevertheless, for brevity, the above set of

formulas will be referred to collectively as the shear lag approximation.

3. NUMERICAL RESULTS FOR THE Di

3.1 The Cell Model

The scheme behind the model envisages a hexagonal array of fibers in a matrix with

uniformly spaced matrix cracks aligned normal to the fiber direction. As is now common practice,

for computational reasons, a cylindrical cell is used to approximate the hexagonal cell (cf. Fig.5

and Fig. 4). The cell is subject to an overall stress, o, parallel to the fiber axis, and the height of

the cell is taken to be equal to the crack spacing, d. ltie cell has a matrix crack at its mid-plane.

The lateral faces are required to remain a circular cylinder with zero shear traction and zero average
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normal traction. The faces of the cell perpendicular to the stressing direction are constrained to

remain planar with zero shear traction and with average normal traction equal to a. As already

introduced, the volume fraction of the fiber is f=(R/B) 2 , where B is the cell radius; £ is the length

of the debond zone. Residual compressive stress is assumed to act across the fiber matrix interface

keeping the debonded interface closed.

The appearance of D1 in the two contributions in (2) and D2 in the two terms in (4) is a

rigorous consequence of the close connection of the effects of applied stress and residual stress on

the overall strain and the stress intensity frctor due to cracking and debonding. The connections

are now established with the aid of the solution schematics in Fig. 6. Prior to any cracking or

debonding, the two contributions to the axial stress in the fiber and the matrix are given by results

from the appropriate Lame problem in H-IJ:
af = ajU and oR =-a2EnD (8a)

a. = (1 - alf)U/(1 - f) and CYM fa2 En /(I- f (8b)

The additional overall strain due to cracking and debonding (with zero friction) in the presence

of 0 is given by problem C in Fig. 6; denote it by AF = (om /Em.)h, where h is a dimensionless

function of the geometric and moduli variables. By (2) and (3), h and D1 are connected by

h = Dt (1- f)EmR (9)
(1 - alf)Ed

Now consider the additional overall strain due to release of the residual stress. From problem C'
= Rin Fig. 6, this is A = (oa /Era)h, where h is the same as in problem C. The expression in (2)

for the contribution due to Q immediately follows using (1 lb) and (12). The argument for the dual

roles of D2 in (4) is similar.

3.2 Numerical Results and More Accurate Formulas for the Di 's

Plots of DI as a function of i/R are shown in Fig. 7a for three levels of fiber volume

fraction and three values of Ef/Em; d/R=16 has been chosen for this cell. The results in this plot,

and others to follow for the cell model, hve been computed with vf=Vm--0. 3 . The value of DI for
e=o, Do, reflects the compliance increase due to matrix cracks without debonding. Plots of Do

0computed, again with d/R=16, are given in Fig. 7b. When used in (3), the results for DO in Fig.

7b provide an estimate of compliance which is valid for sufficiently dilute crack spacings, typically

d greater than about one fiber diameter. Estimates of DO which account for crack interaction could

be presented but are generally not needed for the present purposes since the crack spacing only
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drops to values as small as several fiber diameters when appreciable debonding occurs as well.

Under these circumstances the predominant contribution arises from the fiber/matrix sliding, as can

be seen in Fig. 7a. The linear dependence of DI on t evident in Fig. 7a persists until the debond

is within about one radius of the cell end. As the debond reaches the end of the cell (i.e. i=d/2 )

the value of DI then drops to the HJ result (7a). An approximation which captures the various

features mentioned above is

D1 =D I1 - 2) + 8f E---C12 (10)d Em R

Numerical results for D2 for the same sets of parameters are shown as a function of f/R in

Fig.8. The results from (7b) from the steady-state limit are included. The slow, slight increase of

the numerical results above the steady-state limit as t/R increases above about 3 or 4 is due to the

interaction between i and d, i.e. an influence of d/R. But this influence is quite small until the

debond approaches the end of the cell. The results presented here were computed for a cell with

d/R=16. The steady-state estimate of D2 is also in error as t/R becomes less than about 1/2, but

that too can probably be overlooked in most applications of the present results since the details of

the emerging debond precipitated by the matrix crack are likely to be fairly complicated and three

dimensional in nature. In conclusion, the steady-state estimate (7b) of D2 should be sufficiently
accurate for use in (4).

The reduction in the overall strain caused by the friction between the fiber and the matrix is

given by the third term in (2). Numerical results for D3 are plotted in Figs. 9 a,b. Since the

dependence of D3 on i/R is very strong as V/R becomes small, the abscissa in Fig. 9a is taken to

be the inverse normalized debond length. As t/R becomes large, the numerical results for D3 do

approach the shear-lag prediction (7c), but clearly there are significant discrepancies at smaller

f/R. An approximation for D3 is developed in the Appendix. It has the features that it approaches

the shear-lag result (7c) as f/R becomes large and approaches an approximation to the asymptotic

solution when M/R is small; it is

fcD + [2 E b23 =7(11)
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Comparisons of the prediction from (11) with some of the numerical results for f--0.3 are shown in

Fig. 9b where it is seen that the approximate formula (11) gives a reasonably accurate interpolation

over the entire range of A/R.

The frictional reduction in the mode U stress intensity factor depends on D4, as plotted in

Figs. 10a,b. This coefficient has a very strong dependence on AIR but almost no dependence on f.

The approach to the shear-lag result as M/R increases is very slow. The strong dependence on A/R

is again addressed by an interpolation approximation obtained in the Appendix, which approaches

the shear-lag result (7d) for large t/R and approaches an approximation to the asymptotic solution

for the limit of small /R. This interpolation formula is

D4= {( 2+ (b2 + b3){ t )2}(12)

A comparison between (12) and the more accurate numerical results in Fig. I Ob shows that (12)
provides an adequate approximation to D4 over the entire range of A/R, although not quite as

accurate as the approximation for D3.

4. PREDICTION OF TENSILE STRESS-STRAIN BEHAVIOR

4.1 Behavior Prior to Matrix Crack Saturation

Debonding is controlled by the mode UI debonding toughness Fi. The matrix crack spacing

d(U) is a function of the applied stress. This functional dependence is assumed to be known from

experimental observation or from other theoretical modeling(Curtin, 1993; Spearing and Zok,

1993); no attempt is made to predict d(U) here. The relationship between the debond length A and

the applied stress o is obtained from (4) by imposing the debond condition KI = . Let oi

be the debond initiation stress, defined as the overall stress at which the debond can begin to

spread up the fiber from the matrix crack surface. This stress can be larger or smaller than the

matrix cracking stress, depending on the properties of the composite. If it is larger, debonding is

postponed beyond the onset of matrix cracking until the overall stress reaches oi ; if it is smaller,

the debond jumps to a finite length as soon as a matrix crack forms. From (4) and (7b), the

debond initiation stress is

5i = (I/D 2 ) Eri/R - fa2Em2/(l - fal)

= (1/cl).1Em/ R - (c 2 /ci)Emfl (13)
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Since D2 is given by (7b) for the more accurate results as well as for the shear lag model, this

result holds for both levels of approximation. Equation (7b) has been used to arrive at the second

expression, along with the identity c2/cl=fa2/(1-fal) from YU. The third line in (13) is used to

define the two contributions to ai, one due to the mode II debond toughness and the other due to

the residual stress in the uncracked composite. For applied stresses greater than ai, (4) gives

_ = D, (5-Ui) (14)
R D 4 (Y) t

One of the main differences between predictions from the more accurate cell model and the

shear lag model is the debond length when it is not large. By (14) with (7d) and (12), the ratio of

the predicted debond lengths at a given value of applied stress depends on e/R from the more

accurate model according to

ishar lag mode] ={1+ l2 + b3) (15)

eaccurate mod el I Em

Plots of this ratio are presented in Fig. 11. It can be seen that there is little dependence on the

moduli choices, but the shear lag model significantly overestimates the extent of debonding for

debonds less than about one fiber diameter.

The relation (14) giving M/R, together with d(U), can now used in conjunction with (2) to

predict c as a function of a. The e-dependence of D1 and D3 in (2) and of D4 in (14) must be

taken into account. The most straight-forward procedure to generate stress-strain curves with these

relations is to use f as a free parameter which is increased monotonically (until it reaches d/2),

using (14) to obtain ca and then (2) to obtain F. Specific examples will be given in § 5 where they

will be compared with closed form representations for the stress-strain behavior valid for a shear

lag approximation given in § 4.3

4.2 Consistency Condition for the Cell Height ds at Matrix Crack Saturation

With reference to Fig. 3, let U, be the overall stress at which the matrix cracking saturates

at spacing ds. In modeling the response of the composite by a representative cell of height d, we

do not attempt to capture the statistics of the matrix cracking process wherein new cracks form at

randomly located flaw sites in portions of the composite which have not yet experienced fiber

debonding and sliding. Here we will assume that the matrix cracks are uniformly spaced with the

spacing d identified as the cell height. For this model, d decreases and f increases as a is

increased. AdditionzA matrix cracks cannot be nucleated once complete fiber debonding has
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occurred. Conversely, further matrix cracks will nucleated under increasing stress if the fibers

have not fully debonded. It follows, then, that within the framework of this model, a must attain

US as the fibers become fully debonded (i.e. as e approaches d/2). By (14), this requirement

provides the consistency relation between ds and a, as

ds = 2D2  (s -i) (16)
R D 4 (d,/2)

Well known statistical arguments (e.g.. Curtin, 1993) suggest that the mean matrix crack spacing

at saturation should fall between ds as predicted by (16) and ds/2. A limitation of any model based

on a single representative cell is that it cannot realistically reproduce the effects of variations in the

matrix crack spacing. Here, (16) will be used to specify the limit when matrix crack saturation

occurs, denoting also the point where the fibers have fully debonded.

4.3 Specialization to the Shear Lag Approximation

The above prescriptions simplify for the shear lag approximations of the Di's in §2.2.
Now, D4 is independent of £ in (14). In evaluating E using (2) for U < Us, D3 is independent of

t and DI varies linearly with t. By eliminating i in (2) using (14), one can readily obtain an

equation of the form

"E " -- {AI(- _i)2 + A 2 (U- oi)} (17)

where the coefficients AI and A2 involve the NJ coefficients and parameters such as t and Fi.

A further simplification is achieved if one assumes that vf =Vm =v and if one uses the

formulas in FJ for Type I boundary conditions rather than Type II conditions. Type I conditions

are appropriate for a cell with completely unconstrained lateral sides; these are the conditions
assumed by most authors in carrying out shear lag analyses. Some discussion is given in the

Appendix concerning the error involved in making this replacement, which is generally small for

the presc-t purposes. Under these conditions, (14) and (17) reduce exactly to, respectively,

t. 0 (- f) E, (5o-5j) 018a)
R 2f E t

+ =2 1 ['(l-f)2E.2Rt'- lai)} (18b)

E d(U)L2f E EfT X
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- 4f2EfEr~ E R

U (X1_)EmR Em

where X is a factor close to unity given by

X (I+ v)Ef + (1- v)E (I18d)=(1 + v)[Ef + (I - 2v)E]

The consistency condition (16) becomes

s= (I-f) Em (US- i) (19)

R f E T

4.4 Stress-Strain Behavior Subsequent to Matrix Crack Saturation

Formula (2) for the strain continues to hold when saturation has been attained in the range
i > U with I fixed at the value ds/2. In this state, the fibers are fully debonded and are carrying
all the axial load. There is a minor variation of the axial stress along the fibers due to the frictional
'clamping' of the matrix segments. In the fully debonded state, Type I boundary conditions of Hi
become applicable because there are no longer segments of undebonded material to impose the
transverse constraint associated with Type II conditions. The shear lag approximation to Ec, given
by (3) and (7a), is essentially exact in this state, assuming that the matrix is still in contact with the
fiber. Thus, for stress levels above US, overall stress and strain increments are related by
AE = AI/E,. Type I conditions with vf=vm give the following expression for the modulus Ec of

the composite with saturated matrix cracks,

I I I + ( I (20)
EC E I fEf X 2 J

If X is taken to be unity (it is nearly always within a few percent of unity), the above reduces to the
result Ec=f Ef, which would be expected were it not for the interaction of the fiber and the cracked
matrix through Poisson contraction effects when the fiber remains in contact with the matrix,

Assuming fiber/matrix contact is maintained with the friction stress 't still operating, the
composite strain in the fully debonded state is given by

U a' r d, 1
E= - --of d,(21)

EC Ef 2EfR
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The second term is the residual strain in the fiber, which is largely released in the saturated state.

The third term is the strain resulting from the friction 'clamping' stress on each segment between

matrix cracks. This later term has been determined using a simple shear lag calculation which

neglects any Poisson interaction between the fiber and the matrix (which is accounted for in the

third term in (2) as it stands). This result also applies when fibers have broken, assuming this

occurs beyond matrix crack saturation. Then f should be identified with the effective volume

fraction of fibers, or portions of fibers, carrying their full share of the applied stress. Finally, if
the fibers and the matrix have lost contact and the friction stress is lost, then (21) holds with Ec=f

Ef and the third term omitted.

4.5 TRANSVERSE STRAIN

The cell model can also be used to predict the overall transverse strain CT of the composite
in the various regimes of matrix cracking. There is a substantial literature on elastic properties of

uncracked composites, and no attempt here will be made to summarize results in that regime. A

limited set of results obtained by the finite element analysis of the cell of Fig. 4 is displayed in Fig.
12, showing the effect of matrix crack spacing on the effective Poisson's ratio in the absence of
any debonding (f = 0) or residual stress. In this figure, Veff -ETT/f and the values of the

Poisson's ratios used in the calculation are vf =Vm --0.3.

With minor extension, the results of HJ can be used to give general formulas for the

transverse strain in the regime in which matrix crack saturation has been achieved and the fibers are
fully debonded. Neglecting the very small effect due to frictional clamping on the transverse

strain, one can extend the HJ analysis to compute the change in radius AB of the outer boundary of

the cell. This is computed with B as the value in the unloaded, uncracked state, subject to residual

stresses associated with the mismatch Q). With ET defined as AB/B, this analysis gives

ET = -VeffE + C"2 (22a)

where

Veff = 2f [bi(l-fai)+fa3I (22b)
(I - f) [b2( -fal)+ fa5]

CD veffb2 + (1-f f)(-2b, + vm)]a2 (22c)

The coefficients in these equations are those of HJ for Type I conditions. For vf =Vm =v,
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=2vflf (23a)
[1 + v + f(l - v)]Ef + (I - f)(l + v)(1 - 2v)Em

and, in addition, if Ef =Em, then

vf
Veff = +(lf)(l-v 2)] and COa = Veff(1 - f)(1 + Xv) (23b)

where X is the ratio of the radial to axial mismatch strains defined in WI.

The above results only apply in the range in which C exceeds ES, the strain at which the

matrix cracks saturate, and is less than co, the strain at which the fibers lose contact with the

matrix. The HJ model (Type I conditions apply) gives for the axial strain at which the radial

compression across the fiber/matrix interface drops to zero,

o =[Xl/vf + (a2 - 2vfa 4 )Em/Ef]p (24)
= [./v + (I - f)Em /E]Q

where the second expression applies when vf =Vm =v. This estimate of the strain at which contact

is lost across the fiber/matrix interface takes no account of any possible increase in effective radial
mismatch due to sliding in combination with fiber surface roughness. An example showing the

variation of the transverse strain as a function of the axial strain will be given at the end of the next

section.

5. STRESS-STRAIN CURVES

To illustrate application of the results presented above we will present theoretical stress-

strain curves for two unidirectional composites (Beyerle. et al, 1992; Evans, et al, 1993;

Guillaumat, 1993), one with relatively low frictional sliding stress and interface debonding

toughness (SiC/CAS) and the other with relatively large values of these properties (SiC/SiC). In

each case, the fiber is Nicalon SiC. The constituent properties are summarized in Table I. In each
case, Umc and U, have been experimentally determined as, respectively, the stress at which matrix

cracks first begin to spread and the stress at which matrix cracks saturate. The experimental data

on the matrix crack density development indicates that the density varies approximately linearly
with applied stress in the range, Um, < U < U, according to (Evans, Domergue and

Vagaggini,1993)
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- 1 as -- (25)
d ds as - Umc

In carrying out the calculations of the tensile stress-strain curves, we will use the saturation matrix

crack spacing, ds, from the consistency condition (16) rather than the experimentally observed

average crack spacing at saturation, for reasons discussed in §4.2. The results for ds, obtained

from (16) for both the more accurate model and the shear lag model, are:

SiC/CAS: (ds/R)accuratmodel = 16.9 and (ds/R)shelg = 17.1

SiC/SiC: (ds/ R),v,-,te rdel = 3.6 and (ds /R)shear lag = 4.3

These are larger than the experimentally observed average values (Table I). There is little

difference between the two theoretical values of ds. The experimental values for the average matrix

crack spacing at saturation fall in the range between ds and ds/2, consistent with statistical

arguments (Curtin, 1993).

Tensile stress-strain curves calculated for the two levels of approximation are shown in

Fig. 13 for the SiC/CAS material and in Fig. 14 for the SiC/SiC material. These results were

generated under the assumption that contact is maintained between the fibers and the matrix over
the whole range of stress shown. It is noteworthy that, in spite of the significant differences
between the two approximations in some of the coefficients and in the difference in the predicted

debond lengths, there is very little difference in the predicted stress-strain curves from the two
approximations. (It should be borne in mind that the value of ds in the calculations depended on

the approximation; the value in (26) appropriate for the particular approximation was used.)

Moreover, while the results in these figures were computed using the appropriate coefficients from

HJ for the Type II cell boundary conditions, the predictions obtained from the simpler shear lag

formulas in (18) through (21) are essentially indistinguishable from the more elaborate shear lag

results. It follows, then, that the simpler formulas for the shear lag model can be used to predict

the overall tensile stress-strain curve with essentially the same accuracy as the more accurate
model, as long as ds is derived from (19), and provided that it is understood that the predicted

debond length will exceed the more accurate prediction when the debond length is small.

Comparison between the simulation and the experimental results require some discussion.
For the SiC/SiC composite, there appears to be a good correspondence. However, the composite

fails before matrix crack saturation occurs. This is a consequence of the large matrix cracking
stress caused by the large xr and ri, as well as some fiber degradation during composite

processing. For the SiC/CAS composite, there is substantial discrepancy at large strains. In this
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composite, the tangent modulus after matrix crack saturation is much smaller than (21) would

predict (Spearing and Zok, 1993). Such a discrepancy does not arise in other composites that

attain saturation prior to composite failure (Guillaumat, 1993). One implication is that the

discrepancy is a consequence of fiber failure. Should this hypothesis be correct, the experimental

results can be used to infer the contribution to the inelastic strain from fiber failure. The difference,

AE, between the experimentally measured strain and the theoretical strain from Fig. 13 is plotted

in Fig. 15. The shape of this curve is atypical of the inelastic strains caused by fiber failure,

exemplified by simulations for a monomodal flaw distribution in the fibers (Hild, et al, 1993)
given by the dashed curves in Fig. 15. For fiber failure to be responsible for the present

discrepancy, it would be necessary that the fiber have a bimodal flaw distribution. Should this be

the case, the implications for the ultimate tensile strength (UTS) need to be addressed. Preliminary

analysis (W.A.Curtin, work in progress) has indicated that the measured UTS is consistent with a

bimodal distribution that indeed gives a fiber contribution to the strain compatible with Fig. 15.

There is an additional discrepancy between simulation and experiment regarding the

incremental elastic modulus, Ec, measured from initial unloading data for SiC/CAS (Evans, et al,

1993), as shown in Fig. 16. Under the assumption that the initial unloading response involves no

reversed slipping, Ec should be given by (3) with i=0, where D1 is plotted in Fig. 7b.

Specifically, for the SiC/CAS composite, the value of Di from Fig. 7b is - 1, whereas a value = 4
gives a much better fit to the experimental data. Such discrepancies are commonly found in

CMCs. The phenomenon is attributed to fiber straightening effects that occur as the matrix crack

density increases.

Finally, it is instructive to address the transverse strain ET with reference to experimental

data for unidirectional SiC/CAS (Harris, Habib, and Cooke, 1992) shown in Fig. 17. The model
results of §4.5 for 'T may be cursorily compared with these data by assuming that the Poisson's

ratios of the fibers and the matrix are the same, as given by the experimentally determined value for

the composite, v=0.24; the specific values of vf and Vm are not known. The model results

displayed in Fig. 17 show: (i) the initial segment governed by the composite modulus v, (ii) the

segment with slope Veff from (23a) governing behavior in the regime of fully saturated matrix

cracking, together with the offset Ca fl from (22c), (iii) a segment (arbitrarily taken to be straight)

connecting (i) and (ii) between Emc and cs, and (iv) the value estimated for c from (24), beyond
which contact between fiber and matrix is lost. The model results agree quite well with the data for

axial strains E less than about 0.5%, even with the simplifying assumption about the Poisson's
ratios. The discrepancy with the data at larger axial strains coincides with a similar discrepancy

found above for the axial inelastic strain, attributed to an influence of fiber failure. Analysis of the

effects of fiber failure on ET has yet to be performed.
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6. CONCLUDING REMARKS

The inelastic strain caused by matrix cracking in unidirectional CMCs has been analyzed

using an accurate cell model. The formulae provided allow the straightforward prediction of these

strains from the constituent properties, such as the interface sliding and debonding resistances. In

some cases, the results do not fully account for the measured inelastic deformation. There are

additional contributions from the fibers. For fibers having a monomodal flaw distribution, the
additional inelastic strains caused by stochastic fiber failure are well known. These can be simply

added to the matrix cracking strain. However, it remains to establish fiber failure contributions
when more complex distributions exist. Such effects are believed to be responsible for the

discrepancy between the measured stress-strain curve for SiC/CAS and the curve simulated us-ing

only the matrix cracking contribution. The strain caused by the fibers may also have a contribution
from the straightening of initially curved fibers, as the matrix crack density increases upon loading.

This effect is a possible cause of the smaller elastic unloading modulus measured on SiC/CAS than

that predicted by the cell model.

The next important step is to extend the modeling to cross ply laminates, based on cracks

extending into the 00 plies from tunnel cracks that have previously formed in the 900 plies
(Fig. 1). Such analyses are in progress.
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APPENDIX

Approximation to D3

The shear lag approximation to D3 given by (7c) becomes increasingly accurate at large i.

An approximation is first developed for small f, and then the two limits are combined as (11) to

interpolate over the entire range of t. To obtain an approximation for small f, use is made of the

following consequence of the reciprocal theorem for two independent loadings, 't and 1, on the cell

of Fig.4
l2

-21tRf 0t V (z)dz = tB2 (d / 2)E (A 1)

Here, c is the overall strain due to t, while V(z) is the distribution of the relative tangential

displacement of the crack faces due to a average normal traction I acting on the ends of the cell.
The numerical results indicate that (7b) gives a reasonably accurate representation of K11 for the end

load problem at short debond lengths, i.e. K11 = ciY.(RE/Em) 1 ". The relative tangential

displacements of the faces of an interface crack near its tip are given by the plane strain relation
V(z) = (8K/I• ) (e- z)/271, neglecting any effect of the second Dundurs parameter. Using

these approximations in (A 1) and noting the definition of D3 in (2), gives

32 1- fcLE '
D 3 y.= - (A2)

The form given by (11) was found to give the most accurate interpolation formula among several

considered.

Approximation to D4

The approximation for KII due to c for small I simply makes use of the solution to the

problem of a crack of length 2 1 along an interface between two semi-infinite plane strain blocks
loaded by the shear traction t. If, again, the second Dundurs parameter is taken to be zero, then
K11 = . This approximation is combined with the shear lag result (7d) as the interpolation

formula (12).

Simplification of the shear lag results using Type I boundary conditions

Certain of the predictions of the shear lag model of HI are fairly sensitive to the type of
boundary conditions for the cell, I or II. Discussion of some of the issues surrounding the

influence of boundary conditions is given by Marshall (1992). Here we show that the important
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coefficient Al in (17) is not strongly dependent on the choice of boundary condition for many

composites of interest. This same coefficient also appears in the widely used traction-displacement

law for bridging fibers whose interface with the matrix has zero debond toughness and a frictional

sliding stress 't (Marshall, Cox and Evans, 1985). In the present notation, this bridging law is

8== A1 2, where 8 is the total opening displacement due to fiber sliding. From (l8b) it is seen

that Type I conditions, with vf=Vm, give

(1 f)2 Em2R W)
A = 2f 2 E2 EfCX2

where X is defined in (18d). (In passing, we note that the factor X is not normally included in the

bridging law. It is associated with a Poisson's ratio interaction between the fiber and matrix which

is not taken into account in the simpler shear lag analyses which have been used to arrive at the

bridging law coefficient.) Table II presents the ratio of AI for Type I boundary conditions from
(A3) to that for Type 1I conditions computed using results from FJ for various combinations of

fiber to matrix moduli and two values of Poisson's ratio. Except for large fiber to matrix moduli

mismatches, the difference between the predictions for these two conditions is small.
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TABLE I

Constituent Properties for Composite Systems

SiC/CAS Sic/SiC

Ef (GPa) 200 200

Em (GPa) 100 300

R (4m) 7 7

v 0.25 0.25

f 0.4 0.4

S(MPa) 20 150

Fi (Jm2) 0.1 6

OR (M~a) 80 100

U Ma) 125 350

Us (MPa) 275 700

ds/R 11 2

TABLE 1H

Values of (AI)t/(AI)1

Ef/Em v = .2 v = .3

0.5 .99 .98

1 1 1

2 1.03 1.01

3 1.06 1.21

10 1.19 1 77
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Introduction

The stress-strain behavior of ceramic-matrix composites (CMCs) is often non-linear. The
loading of such composites results in two independent damage mechanisms: fiber failure and
matrix cracking. Furthermore, the fibers are supposed to be subject to global load sharing,
whereby the load transmitted from each failed fiber is shared equally among the intact fibers. Some
aspects of the associated fiber failure stochastics have already been addressed [1-2]. One key
parameter, a characteristic strength [3] is associated with ultimate strengths

I/(m+1)C mlSc = (00))

where "T is the interface shear resistance, m the shape parameter, So the stress scale parameter, LO a
reference length, and R the fiber radius. When the gauge length, L, is sufficiently large, the fibers



are capable of multiple failures within the gauge section. Consequently, the ultimate tensile

strength, iuirs is predicted to be gauge length independent, and given by [2]

_ , 1 •/(M +1) m+l
Curs = fScm-- (2)

where f is the fiber volume fraction along the loading direction. In this paper. the problem is

analyzed in the light of results related to localization of small strains [4].

Expression of the Ultimate Tensile Strength

A composite with a saturation density of matrix cracks is considered, spacing Lm, within a

unit cell of length LR. The length LR is the recovery length and refers to the longest fiber that can

be pulled out and cause a reduction in the load carrying capacity. The recovery length is thus

related to the reference stress T in unbroken fibers by

RTLR =-R (3)

If the fibers exhibit a statistical variation of strength that obeys a two-parameter law [5], then the

probability that a fiber would break anywhere within the recovery length LR at or below a reference

stress T can be written as

PF(T)=l-exp - C } (4)

The average stress C applied to the composite is related to the reference stress T by

c f T I I - PF(T)} -j •FP(T) (5)

where aFp(T) denotes that component of the stress provided byfailedfibers as they pull out from

the matrix. For global load sharing, the pull-out stress is given by

a Fp(T) = f PF(T) db(T) (6)

where db(T) denotes the average stress at x = 0 when a fiber breaks at location x = t, and at the

reference stress level T. Provided that the composite length L > LR, the average pull-out stress, at

reference stress level T, is



db(T) = T / 2 17

Then, the average applied stress takes the form

=f T I1- PF((T)I+f T)= F (T)+ FP(T) (8)

The expression of the external stress is composed of the contribution of unbroken fibers. FB(T),

and the fiber pull-out stress, OFP(T). In Fig. 1, the contributions of the two mechanisms are

plotted when m = 4. It is worth noting that the fiber pull-out stress is a strictly increasing
function, whereas the fiber stress reaches a maximum value. The latter induces overall softening.
Because of the decrease of the fiber stress, an ultimate stress may exist. This decrease leads to a
loss of uniqueness of the stress-strain relationship. Since the fiber stress level decreases, there are
two alternatives. The first one, referred to as homogeneous solution, corresponds to the case
where fiber breakage continues to evolve uniformly in the whole specimen. The second one,
referred to as localized solution, consists in elastic unloading of the unbroken fibers in one part of
the specimen, and further fiber breakage in the other part. Consequently Eqn. (8) after the
localization point corresponds to the homogeneous solution, which usually cannot be reached. The
applied stress level corresponding to the onset of localization will be referred to as localization

tensile strength, and will be denoted by -LTS" In most cases, this stress level corresponds to the

ultimate tensile strength of a CMC. The aim of the remainder of this Section is to derive this stress
level and to compare it with the ultimate tensile strength given by the homogeneous solution.

The localization tensile strength of the composite is thus defined by the condition

d- / dE =0 or dFB /dT=0 (9)

"FB

because the reference stress T is proportional to the average strain on the composite

E = T/ EF (10)

where EF denotes the Young's modulus of the unbroken fibers. Th,, localization tensile strength

arises when

T = I sl/(m+l)

Consequently, the localization tensile strength becomes



(S 11/(m+1) (fS 1 I l+exp(- 1 121
-LTS 2 m+-) 2 m+l)

The ultimate tensile strength corresponding to the homogeneous solution is given by

d• / dE = 0 13)

This equation cannot be solved analytically. A first order solution of the ultimate tensile strength is

given by Eqn. (2). The ultimate tensile strength then arises when

T ( 2 >1/(m+1)

In Fig. 2, the exact tensile strength is compared with the localization tensile strength for different

values of m. It is worth noting that in terms of stress levels, the two strengths are very close.

However, in terms of failure strains, and softening, the two differ more significantly (Fig. 1). In

the following, the tensile strength derived from Eqn. (13) is compared with the localization tensile

strength given by Eqn. (12).

Comparison with Experiment

Comparison of the above stochastics will be made with two different experimental results
for CMCs. Experiments on LAS matrix composites reinforced by SiC (Nicalon) fibers provide the

general information summarized on Table 1 [6]: T = 2-3 MPa, R = 8 4m, LO = 25 mm. The

corresponding predictions are given in Table 1. It is apparent that the agreement between

experiment and prediction is quite good, especially for T = 3 MPa.

EXPERIMENTAL RESULTS

Sample No. m So (MPa) a-rr (MPa)

2369 (p) 0.46 3.8 1740 758

2369 (c) 0.46 2.7 1740 664

2376 (p) 0.44 3.9 1615 670

2376 (c) 0.44 3.1 :-,32 680



PREDICTIONS
YLTS (MPa) aLTS (MPa) (T (MPa)

Sample No. (Tt=2MPa) (t =3 MPa) (T =2 MPa) (T =3 MPa)

2369 (p) 680 745 720 790

2369 (c) 700 780 775 860

2376 (p) 615 670 655 710

2376 (c) 625 690 680 750

Table 1: Experimental results and predictions for LAS matrix composite.

Experiments performed on two carbon matrix composites (material A and C) reinforced by SiC
(Nicalon) fibers [7] are summarized in Table 2:L0 = 25 mm, R = 6.5 4m. Again, the

predictions agree well with experiments.

EXPERIMENTAL RESULTS

Material f So (MPa) m ' UTS (MPa)

A 0.2 1165 4.5 10 290

C 0.2 1140 4.5 14 345

PREDICTIONS

Material - (MPa) - (MPa)"CLTS "LTm

A 295 310

C 310 325

Table 2: Experimental results and predictions for carbon-matrix composites.
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MATRIX CRACKING AND DEBONDING OF

CERAMIC-MATRIX COMPOSITES

By

Franqois Hild, Alain Burr, and Frederick A. Leckie

Abstract

A micromechanical model is introduced to study the effects of matrix cracking

and debonding occurring in Ceramic-Matrix Composites. These two mechanisms

induce loss of stiffness, anelastic strains, hysteresis loops, and crack closure. These

features are analyzed in the framework of Continuum Mechanics through the

introduction of internal variables. Based upon experimental data and micromechanical

modeling, the evolution of the internal variables can be obtained. The influence of

residual stress fields due to processing are included. Comparisons between theory and

experiments performed on layered materials are carried out.
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1. Introduction

The stress-strain behavior of continuous fiber Ceramic-Matrix Composites

(CMCs) is non-linear, when the interfaces can slide with low shear resistance. T. The

loading of such composites causes matrix cracking and debonding which reduce the

secant modulus F2, introduce anelastic strains upon complete unloading. -a. and

hysteresis loops, 8 [Beyerley et al., 1992; Pryce and Smith, 1992].

In this paper, the effects of matrix cracking and debonding are addressed within

the framework of Continuum Damage Mechanics. Constitutive laws are derived by

introducing internal variables which are identified in a micromechanical description of

matrix cracking and debonding. The effects of residual stresses due to thermal

mismatch are also included. The features exhibited in this paper for unidirectional

loading will be used in a later study to derive a constitutive model for multiaxial loading

conditions, making use of the evolution laws of the internal variables in terms of their

associated forces. The results are used to analyze the tensile behavior of a layered

laminate made of alternating layers of alumina and unidirectional carbon/epoxy prepreg

tapes. This composite has a weak interface as all the composites considered in the

present analysis.

2. Study of a Cracked System

Upon loading, a brittle matrix reinforced by fibers or stronger layers exhibits

multiple cracking. The matrix cracking mechanism is mainly driven by principal strains

or stresses. Two commonly used criteria are the Rankine criterion based on the

maximum principal stresses, and the Saint-Venant criterion which uses principal

strains. In fiber-reinforced systems and layered architectures, matrix cracking is

usually accompanied by debonding. Fiber breakage is accompanied by fiber pull-out

February 18, 1994 3



and is mainly driven by the normal stresses or strains in the fiber directions. These two

mechanisms need different treatments.

Let us suppose that the matrix cracking process occurs at load levels

significantly lower than the fiber breakage mechanism, and that we can assume that

both mechanisms are uncoupled. Post-mortem analysis of broken specimens indicate

the presence of arrays of microcracks in the matrix. These microcraks are usually

aligned with the principal stress or strain directions. By studying a cracked panel with

crack of length 2a in a cell of area 4LW (Fig. 1), the reduction in stiffness may be

calculated. The length 2L corresponds to the crack spacing. If the initial behavior of the

elementary i,;11 is isotropic, and the Young's modulus is E, it can be shown that the

stiffness loss depends on the crack density defined as na2 / 4LW. By assuming plane

stress conditions, and assuming that the crack density is small, a first approximation for

the Young's modulus reduction E / E can be written as

E 1 2(1)

1 + 4LW

where E is the new value of the Young's modulus. This relationship can be rewritten

in the framework of Continuum Damage Mechanics as (Lemaitre and Chaboche. 1978:

Lemaitre and Dufailly, 1987]

E-1 -D (2.1)

with

February 18, 1994 4



,-a

D 4- (2.2)

1 + 4LW

and where D denotes the damage variable associated with the presence of cracks. The

damage variable D is therefore related directly to the crack density. When D is small, a

first order solution to Eqn. (2.2) is given by

D = 4LW (2.3)

where the damage variable is proportional to the crack density. For a cracked system,

the macroscopic secant modulus F_ is equal to E, since no friction is involved. The

effect of this change of Young's modulus can also be interpreted in terms of effective

stress [Rabotnov, 1963; Lemaitre and Chaboche, 1978]. The microscopic stress

(T = 6 / (l-D) is higher than the macroscopic stress a because of the presence of a

crack. Therefore the stress/strain relationship becomes

-E (3)
(I-D)

Matrix cracking is usually accompanied with debonding or friction at the tiber/matrix

interface [HSueh, 1993; Vagaggini et al., 19941, and the next Section is devoted to the

study of the features related to the friction on planes perpendicular to a crack face.

February 1, 1994 5



3. The Micromechanics of Debonding

In this Section a simple micromechanical model is developed which describes

the process of sliding at the fiber/matrix interfaces, or in the case of laminate interfaces

between different layers, during the loading-unloading-reloading sequences. The

relevant experimental quantities are identified which provide a simple description ol the

composite behavior.

3. 1. The Initial Loading

Consider the elementary cell shown in Fig. 1. For the sake of simplicity, the

quantities used in this section are unidirectional. The cell is of length 2L, width 2W,

and contains a crack of length 2a. The normalized crack length, a/W, is denoted by f. It

is assumed that at the end of the crack a friction area of length 21F develops

perpendicular to the crack face (Fig. 2). The frictional shear stress, r, is assumed to be

constant.

Initially, for the sake of simplicity we assume that the Young's modulus of each

material in the elementary cell is E. Because of the presence of a crack, the macroscopic

Young's modulus is E in the I-direction as shown in the previous Section. The

evolution of E depends upon the evolution the cell length L, which is the average crack

spacing, and upon the crack size a.

Upon loading, the equilibrium of region (1) in the elementary cell gives the

relation of the friction length, IFP to the microscopic stress, r, by (Fig. 3a)

a (
/F -1 (4
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The total applied strain, corresponding to the average strain of region (2). is given by

-f IF + (5)

and the crack opening displacement, defined as the difference in displacement of a

cracked region (2) and an unbroken region (2), is given by (Fig. 4)

1FM aM (6)

(•(M) - E 2 6

The crack opening displacement is also related to the total strain by

•() f 8(cy)
- (7)1-f L - E

3.2. The Unloading-Reloading Sequence

An unloading-reloading sequence following the first loading is accompanied by

regions of reverse slip. Reversed motion of fibers relative to the matrix has been

studied by numerous authors [Marshall and Oliver, 1987; McMeeking and Evans,

1990; Pryce and Smith, 1992; HSueh, 1993; Vagaggini et al., 19941.

After reaching a maximum stress value 0 M' when the maximum friction length

is IFM' the load is reversed (Fig. 3b). The maximum friction length is related to the

maximum stress GM by

a GM

/FM(GM) = 
( 

a

February 18. 1994 7



Upon unloading by Aau, in the range 0< z •_< /,where ItU is the

unloading friction length, both the relative sliding direction and the frictional shear

stress reverse (Fig. 3b). Between IFU < I zj < IFM. the shear stress remains unchanged

from that prevailing during the loading process. When the stress level is

a = Gm - ACU, the unloading friction length IFU is related to Aau by

a AoCU (•ACU)
/FU- = - IFMý( 2 j (9)

Then, the expression for the total strain is

f 2aM-AG6
E E(= (am- AaU)+ M U (10)1-f L 4 am

and the expression of the crack opening displacement

_2 2

8(amAau)IFM 2aM U (11)8(O'A•U -E 4I I40rM

It is worth noting that Eqn. (7) is still valid for the applied strain during the unloading

sequence, with £(aMAGU) being related to 8(aM,AaU), the opening displacement

during unloading.

Because of friction, anelastic strains remain upon complete unloading

(a = 0, or Aau = aM) and are given by

f GM IFM
a(G=0)-- -- (12)all 8-f 4E L

February 18. 1994 8



The anelastic strains depend upon the maximum load level, as well as the friction

length, 21FM, within the cell of length 2L.

If unloading continues below A7U = 0 M, closure of matrix cracks occurs

when 5 is equal to zero, which leads to the result

AMU = (Tc = ý-2 (TM (13)

Eqn. (13) shows that a closure condition happens only in compression, although it is

shown later that this criterion alters when residual stresses are present. This matter shall

be addressed later.

After reaching a minimum value of stress when AaU = 7m, the load is reversed

again (Fig. 3c) causing reloading. Upon reloading, characterized by T = AGR, sliding

is confined to 0 < S z _FRand,

a AMR

/FR = a (14)
2T

The expression for total strain is then.

2c 2F- 2o V-2+Aa 2

EC= (aM-a+ACR) + I af-FM+M m R(15)1-f L 4 cM

Finally the evolution of the crack opening displacement during the reloading

sequence is given by

February 18, 1994 9



1(2(5 2-)F 2,2 +AG 2

IN M T ~ M R6)5(MCmAR) = E 4 (TM

Eqn. (7) is still valid for the applied strain during the reloading sequence with

(GMO'mAGR) being related to the opening displacement during unloading,

6 (aGMmC ,AGR).

The resulting hysteresis loops can also be characterized by the crack opening

displacement 8 or by the maximum hysteresis loop width. Because the relationship

between anelastic strains and load level is parabolic, the results concerning the

hysteresis loop width are simple. The maximum hysteresis loop width, 65ER, is
UR

reached when the unloading amplitude is equal to half of the maximum unloading

amplitude (amr) and is given hy

f IFM a 2
8-i FM M(17)6 U-R - 1-f 2L 4E aM

It is worth noting that the crack opening displacement characterizes completely

the different steps of a complicated history of unloading-reloading sequences. One of

the main results of this section is that Eqn. (7) is valid in any loading-unloading-

reloading sequence. As mentioned in the previous Section, the actual microscopic stress

or effective stress is Y = cr/(l-D), therefore Eqn. (7) can be rewritten as

I--fL- E(l-D)

In the next Section, the previous results will he modeled in the framework of

Continuum Mechanics based upon the thermodynamics of irreversible processes.
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4. Continuum Mechanics Modeling

In the following Section, the results of the micromechanical study are used to

develop a Continuum Mechanics formulation [Germain, 1973, Lemaitre and Chaboche.

19851.

In the framework of the thermodynamics of irreversible processes [Bataille and

Kestin, 1979; Germain et al., 19831, the first step to establish the model is to select the

relevant state variables which define the condition of the material. The second step is to

write the expression of the state potential in terms of the state variables and the third

step to define the evolution laws of the internal variables. In the following

development, the state potential is derived using results of the micromechanics

discussed previously. In practice, it is not always necessary to model all the details

revealed by micromechanics and in what follows two models are developed which are

progressively more faithful to the earlier analysis.

4. 1. First Model - No Hysteresis

The most important features to model are the reduction in stiffness due to matrix

cracking and the anelastic strains. The hysteresis loops are generally of lesser

importance and are not accounted for by this model. The macroscopic model is based

upon the measurement of the unloading secant modulus E = E(1-D) and the anclastic

strains £an upon complete unloading (Fig. 5). It is assumed that the unloading process

is linear, and is characterized by a damage variable D and that the expression of the state

potential V is written as [Lemaitre and Chahoche, 19851

E (1-) (-19)
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The stress is obtained by partial differentiation ofy with respect to the total strain V

E1(-D) (20.c
aw = ( y---an) (01

aE

and the associated forces to the anelastic strains, can = an(( = 0), and to the damage

variable, D, are respectively given by

(20.2)
S an

E - E an (20.3)

Within the framework of Continuum Damage Mechanics, Y is the strain energy release

rate density [Chaboche, 1978]. In this study, the evolutions of the internal variables are

obtained from experiments by plotting their evolution against the respective associated

force. The measurement of the anelastic strains is easy to carry out since it involves

complete unloading. The measurement of the damage variable can be performed

through the measurement of the unloading modulus E (Fig. 5) and is related to the

anelastic strains and the maximum stress level by

D=I- I M (21)D= l-I 1-!1

E (E M-an)

Eqn. (21) corresponds to a macroscopic descfiption of the degradation which is taking

place in the material [Lemaitre and Dufailly, 1987].
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The evolution laws have to satisfy the second principle of thermodynamics. The

positiveness of the intrinsic dissipation 1 ensures the latter principle. The dissipation D

is written as

D=( a +YD>(0 (22)an

and is a positive function.

In this approach the internal variables are obtained from macroscopic

measurements. In the next section, it will be shown how these quantities can be related

to microscopic quantities.

4.2. Second Model - With Hysteresis Loops

This second model accounts for the three aspects induced by matrix cracking

and debonding, viz. the reduction in stiffness due to matrix cracking, the anelastic

strains due to friction and the hysteresis loops. The development of the model closely

follows the treatment using the micromechanics described earlier (Fig. 6). The details

of the unloading and reloading process are complex and by introducing the crack

opening displacement 6 it is possible to avoid complex calculations. The model can also

account for the closure phenomenon when the loading is compressive. Four different

state variables are required, and are related to the overall strain £, the friction length IF'

the cell length L, and the crack opening displacement, 8.

To derive the free energy density associated with a loading sequence, we

consider two different elastic steps to reach a given state. The first step consists in

moving the unbroken part (2) with respect to the broken part (I ) with no external load

by an amount A (with A = 6 / (1-0) over a length FM (Fig. 7)). This displacement A

gives rise to a self balanced linear stress field along a length Ill in parts (1 ) and (2) as

February 18, 1994 13



shown in Fig. 7. By integration over /M' and then averaging over the total length L.

the elastic energy density associated with this process is given by

2 E A(1-f)j 2) f 'FM
13 ý-FM 1-f L (23)

The crack opening displacement 8 induces an overall opening strain oX expressed as

A f 6
oc = L - 1-fL (24)

The second step consists of an elastic loading so that the elastic energy density is given

by

f= E (l-D) (-c) (25)

The total free energy density is the sum of the two previous energies

1 (_ 2 2 A 1-2 f IFME , (l-D) GEE-0 1-f L (26)

For convenience the free energy can be expressed in a more compact form by using

state variables which are the total strain F- the damage variable D modeling the loss of

stiffness due to the cracking mechanism, the damage variable d = f / (1-f)' FM / L

which defines the size of the slip zone related to the crack spacing, and the crack

opening strain (x. The free energy density in terms of the new internal variables is

2=E(I-D) -i + E(E J (27)
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The crack opening strain a is similar to a kinematic hardening variable, and the

associated force corresponds to the back-stress induced by the slipping mechanism.

The force associated with the previous variables are respectively given by

L _= E (l-D) (G-ca) (28.1)

Y( )-•= (28.2)

y I 2E (- 2\ (28.3)
y~y T d)

X - 4+ (28.4)

By using Eqn. (28.1) and the definitions of the internal variables, it is possible

to determine their evolution by a macroscopic measurement. A micromechanical model

is also able to model its evolution but involves tedious derivations based upon results

obtained on a single filament model [Curtin, 19911. Another way to find the evolution

of D is to use experimental data.

To get some additional information, a complete loading-unloading-reloading

sequence is needed (Fig. 8). The useful information is the maximum applied stress,

9M the anelastic strains corresponding to a complete unloading, Fan' and the secant

Young's modulus, E. It is worth remembering that the secant Young's modulus, E, is

used to define the damage variable, D, for model No. 1 (Eqn. (21)). From Eqn. (12),

and using the effective stress concept developed to derive Eqn. (18), the measure of the

anelastic strains gives information on the values of the damage variables d and D

d E(l-D) (29an
4a - (29)
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From Eqns. (10) (20.1), (28.1), (29), and the concept of effective stress, the value of

the damage variable D can be related to the damage variable D and d by

dD +

d (30)1+-
4

Eqn. (30) shows that the macroscopic damage variable depends upon the two

microscopic damage variables d and D. This definition of damage can be seen by

inspection to be consistent with the usual bounds 0 and 1.

A means of determining the variable D is to measure the initial unloading

modulus, which is equal to F = E(1-D). Similarly, the initial reloading modulus is

equal to E = E(l-D) as shown in Fig. 8. Another means of determining the damage

variables is to measure the maximum hysteresis loop width, 8c. Again, the effective

stress concept applied in Eqn. (17) when am = GM is used to relate the maximum

hysteresis loop width to the damage variables

25-_d GM4 E(1-D)

By inspection of Eqn. (29). the maximum hysteresis loop width is then related to the

anelastic strain by a very simple relationship

2 -E = a (31.2)

This last result is important, since it allows a quick check of the model with respect to

experimental data.
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If the identification is performed using Eqns. (28.1). (29) and (30). the daniage

variables d and D are related to the anclastic strains Ean' the macroscopic dainage

variable D. and to the maximum strain FM by

d Can (32.1)

6 M 2E 2an

D M= C ( (32.2)

EM - 2c an

Eqn. (32.1) shows that when no anelastic strains appear, the damage variable d is equal

to zero. Eqn. (32.2) indicates that when the anelastic strains are small compared with

the corresponding total strains, the damage variable D is very close to the macroscopic

damage variable D. Moreover, when the anelastic strains vanish, the damage variable D

is equal to the macroscopic damage variable D.

The evolution law of the internal variable a uses the results derived during the

loading-unloading-reloading sequence described in Section 3. The only difference

again comes from the concept of effective stress. Upon loading, the evolution of c is

given by

2 (33.1)

The variation of a. Aa = a - ota0 with respect to minimum or maximum value, a0

(corresponding to a maximum unloading or reloading level characterized by (T)) is

related to the strain variation, A = - 0, by
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Aax = dSgn(Aa-) (33.2)-4
E(1-D)aM

The crack closure condition can be obtained by computing the condition when the

anelastic strain (x vanishes (ax cannot be negative). This calculation gives

Aa = 42 0 M* Moreover, the free energy density catches this crack closure

phenomenon, and does not correspond to a partition in positive/negative strains or

positive/negative stresses as is usually assumed [Lemaitre, 1992].

The dissipation (D is

= -X X + Y D + y d > 0 (34)

and has to be positive. Since the model satisfies the principles of thermodynamics on a

micro level, and since this model is directly derived from the micromechanics. the

dissipation is positive.

If the elementary cell is made of parts with different Young's moduli E1 and E2,

respectively, the previous results are easily extended. The only difference is in the

definition of the state variables D, d, and ca. First, the description of the relationship

between D and the crack density is altered, and is not as simple as that given in Eqn.

(2.2). The value of d is then given by d = fE1 / (1-f)E 1FM / L, and the value of

ax is equal to fEl / (1-f)E2 8 / L. All the other relationships derived in this Section

remain valid.
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5. The Effect of Residual Stresses

Mismatches between parts (1) and (2) occur during processing (e.g. due to

cooling, plasticity, creep, or phase transformation). A self-balanced residual stress

field develops and is characterized by the stresses -p 1. and p, in parts (1) and (2)

respectively.

If, for example, the mismatch is due only to thermal strains, the stresses p 1,

and p, in parts (1) and (2) are given by

p1 = (1-f)E Aa1 2 AT (35)

P2 = fE Aa 12 AT (36)

where oa1 is the thermal expansion coefficient of part (1), cc, is the thermal expansion

coefficient of part (2), Acx 12 = a1 - a., is the thermal coefficient mismatch and

AT = To - Tp the negative temperature drop between the room temperature T. and

the processing temperature T . When a crack appears, part of these residual stresses are

relieved within the slipping region. However, not all the residual stresses are relieved.

The free energy density is derived using similar steps as in the previous

Section. The first step consists in moving the unbroken part (2) with respect to the

broken part (1) with no external load by an amount 8 over a length FM (Fig. 9). The

expression of the free energy density is identical to that given in Eqn. (27). Therefore

the forces associated with the previous variables are respectively given by Eqns. (28).

From a macroscopic point of view, the results obtained by taking account of the

residual stresses are unaltered. However, the results obtained from a microscopic

analysis (Eqns. (12) and (13)) depend upon the residual stress field.
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By using Eqn. (28.1) and the definitions of the internal variables, it is possible

to measure the internal variables macroscopically. To get the necessary additional

information, a complete loading-unloading-reloading sequence is again needed. The

useful information are the maximum applied stress, aM, the anelastic strains

corresponding to a complete unloading, Can, the maximum hysteresis loop width. 6 E,

and the Young's modulus, E. Since the residual stresses are unknown, additional

information is needed. When AMU = aM the anelastic strains are now given by

d 2[aM-pl(1-D)] a -

an = 4 (37)
E(1-D)[GM-pl(l-D)]

and the closure condition (a:U = cc) is given by

ac = -42 [GM-p I(I-D)I (38)

Eqns. (37) and (38) when compared with Eqns. (29) and (13) are changed because of

the residual stress field. However, as D increases, the effect of the initial residual stress

field becomes less important.

The evolution law of the internal variable cc uses the results derived during the

loading-unloading-reloading sequence. Upon loading, the evolution of (X is given by

Gd CM-PI(I-D) (39.1)
2 E(I-D)

The variation of cc. Aec = a - a 0, with respect to minimum or maximum value, ex0

(corresponding to a maximum unloading or reloading level characterized by ao) is

related to the strain variation, AG = a - co' by
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Aa d Stm(AG) (39.21

SEGl-D{'GM-pjl(-D)1 I

Instead of the complicated pattern of friction and reverse friction, a unique variable is

introduced, i.e. the opening strain, and Eqns. (39) are similar to Eqns. (33). The only

difference is that the maximum effective stress TM / (l-D) is replaced by the corrected

maximum effective stress am / (I-D) - p1 . This effect is due to the thermal residual

stress field. The expression of the hysteresis loop width, 5-, becomes

-2
-d =M-(40)

2E(1-D)[c;M-pj1(l-D)]

It is worth noting that the simple result given in Eqn. (31.2) is not valid anymore. Eqn.

(40) shows the role of residual stresses on the relationship between anelastic strains and

maximum hysteresis loop width.

From the knowledge of the three previous quantities, the expressions for the

damage variables are given by

EMD- e D-26e

D - an (41)
CM E an -28-

d N(E an + 28Th68(424 - (42)

EM - 'an - 28F

and the residual stress in part ( 1)
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F •an + 28-c )

-P 48E E E (-M - ew, - 26c) (43)

k.4 46E6E

It is worth noting that when p, vanishes, the results given in Eqns. (41-43) are

identical to those of Eqns. (32).

In the following the previous results are applied to a layered material. It is

however worth noting that these results can also be applied to fiber- :einforced

systems. The definition of the damage variables and the opening strain may change

slightly, but the essential features obtained in this paper are identical. In particular. the

method of deriving the free energy density through two elastic steps can be conserved.

6. Analysis of Experiment Results of a Layered Material

The previous models will be used to predict the behavior of a layered material

subject to tension. The material is constructed by alternating three alumina plates and

two unidirectional carbon/epoxy prepreg tapes. At room temperature, the laminate is put

in a Kapton vacuum bag, then hot pressed to a moderate pressure of 350 kPa, at a

temperature of 135°C for 90 minutes [Lange et al.. 1990; Sherman, 19921. The tensile

stress/strain response is shown in Fig. 10. Because of the discrete process of matrix

cracking, there are stress drops at each new break.

6. 1. Identification of the First Model

This first model is completely macroscopic. Therefore, by curve fitting the

evolution of the macroscopic damage variable D, and the anelastic strains c against

maximum applied strain cM. this model is completely identified. Fig. 11 shows the
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evolution of the macroscopic damage variable as a function of the maximum strains,

EM" This variable saturates together with the crack spacing. A convenient way of

describing this saturation is the exponential form

D = D. 1-exp if EM - E0 > 0 (44)

The parameter D. corresponds to the saturation value of the damage variable D, the

parameter c0 corresponds. to the threshold strain below which no cracking takes place,

and E1 is a normalizing strain. For this particular system the following values are

obtained

D. = 0.80

E0 = 0.00069 (.-)

1 = 0.00086

Fig. 12 shows the evolution of the anelastic strains as a function of the maximum

strains, iM. A three order polynomial describes well the experimental measurements

- -27 -3IE =aO+a EM+aE +a C, (46)
•an = 0 1 a M + 8+a3 M3(6

with
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a0 = -0.00014

a, = 0.42

a2 = -64. (47)

a3 = 3700

The agreement between experiments and identification are quite good in terms of

stress/strain response (Fig. 13) as well. The identifications performed in this sub-

Section constitute the basis of the identification of the second model. It is worth

remembering that this model does not account for the hysteresis loops, and that in this

Section, the evolution laws were not known a priori. The identification consisted in

choosing the type of function describing the experiments, and in fitting the parameters

of each function.

6.2. Identification of the Second Model

This model introduces quantities related to microscopic data, viz. the damage

measures of d and D, the anelastic strain ax and the residual stress p1. The residual

stress is important since it defines the onset of the first matrix crack in a composite

system [Budiansky et al., 1986]. The first step is to compute the residual stress pl. By

using Eqn. (43), and the experimental data concerning CM. Ian, and the maximum

hysteresis loop width, 8-F, the residual stress p1 can be calculated at each experimental

data point. It is found that the value of -p, varies only slightly, and since the residual

stress is constant, the average for-p 1 was taken to be +57. MPa (tensile stress). Since

D and Tan are easy to measure (Section 6.1), these measurements will be used to

establish their evolution laws as a fit of those experimental data. By using Eqn. (43),

the evolution law of the maximum hysteresis loop width, 8-F- is then completely known

and given by
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S= 2tn (48)
, [n2 1 + -) -2 _

E(E M - C II-au 6-c

Fig. 14 shows the comparison between the experiments and the predictions. The

agreement is good. These results are compared with those obtained when residual

stresses are assumed to be negligible. In that case, Eqn. (31.2) applies and leads to an

overestimate of the maximum hysteresis loop width. The knowledge of the parameter

P1 is therefore crucial to the evolution of the maximum hysteresis loop width, and the

anelastic strains.

The values of the damage variables can be determined by using Eqns. (41) and

(42). Measuring the initial unloading Young's modulus gives directly the value of D

which can be compared with the prediction. Fig. 15 shows the comparison between the

experiments and the predictions. The agreement is very good. These results are again

compared to those obtained when the residual stresses can be neglected. In this case

there is a slight change in the initial unloading Young's modulus, measured by the

damage variable D, this changes disappears as D increases. The residual stresses have a

weak effect on the damage variable D, modeling the change of stiffness due to matrix

cracks. Unfortunately, there is no way of comparing the damage variable d obtained

experimentally and numerically.

In Fig. 16, the crack closure stresses are computed as a function of the applied

strains, when -p1 = 0. MPa, and -p, = 57. MPa. Because of the presence of residual

stresses, the crack closure stresses are lower when -p, = 57. MPa then those when

-P 1 = 0. MPa. However, as damage evolves the difference in crack closure stresses

decreases since the residual stresses are gradually relieved. There are no experimental

evidences of crack closure to support this prediction. To get some information, the
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unloading should have been conducted in compression, provided huckling was

prevented.

The final step is to derive the evolution laws ol the internal variahles as a

function of their associated forces. This will be convenient in the future to derive

constitutive laws under multiaxial loading conditions.

7. Conclusions

A micromechanical model is derived to describe loading and unloading

sequences. These sequences induce slip and reverse slip. Because of friction,

permanent strains appear upon complete unloading. Moreover, hysteresis loops are

observed upon unloading and reloading. These hysteresis loops characterize the amount

of energy that is dissipated during one unloading-reloading cycle. A way of

characterizing the sequences is to introduce the opening displacement between broken

and unbroken parts.

In the framework of Continuum Mechanics, two models have been studied. The

first model considered damage measured as a macroscopic loss of stiffness and

anelastic strains and was close to a macroscopic model. It was able to model the loading

portion, anelastic strains, but not hysteresis loops. Because of the friction zone. the

difference is the onset of anelastic strains. The second model considered three internal

variables, viz. two damage variables on a microscopic level, and opening strains

defined as the opening displacement divided by the average crack spacing. The

identification procedure involves the value of the macroscopic damage D. the anclastic

strain c'an and the maximum hysteresis loop width, 6c, which are easy to measure

experimentally. These quantities can be used to calculate the residual stresses -p 1. Only

the evolution laws of the macroscopic damage and the anclastic strain need to he Iitted

to the experimental data. From Eqns. (4 1-42), the damaeC variables D and d arc
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computed. The evolution law of 86 is given by a micromechanical analysis in Eqn.

(43).

The procedures were applied to experiments performed on an alumina-

carbon/epoxy prepreg layered material. The predictions ia terms of hysteresis loop

width and initial unloading Young's modulus agree well with the experiments. It is

shown that the residual stress field has a strong influence on the evolution of the

anelastic strains and the maximum hysteresis loop width. On the other hand, the

evolution of the initial unloading Young's modulus is weakly affected by the residual

stress field. This model was able to capture all the details of the microscopic study with

only three internal variables. This general framework can also be used in the case of

more detailed analyses taking into account friction and debonding [HSueh, 1993;

Vagaggini et al., 19941. The expression of the free energy would be identical. The only

difference would come from the evolution laws.

This model will constitute the basis of a constitutive law applied to Ceramic-

Matrix Composites subject to complex loading conditions. In particular the knowledge

of the free energy density, the internal variables and their associated forces are crucial.

These laws have to be generalized under more complex loading conditions.
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Figure Captions

Figure 1: Elementary cell of size 2L x 2W containing a crack of size 2a.

Figure 2: Elementary cell of size 2L x 2W containing a crack of size 2a. A dcbond

zone is characterized by the debond length IF*

Figure 3a: Depiction of the friction length, /F, upon loading, and the corresponding

axial stress in the longitudinal direction.

Figure 3b: Depiction of the unloading friction length, IF.

Figure 3c: Depiction of the reloading friction length, lF.

Figure 4: Depiction of the opening displacement 6.

Figure 5: Stresses, a, versus strain, E, during a loading-unloading-reloading

sequence for model No. 1.

Figure 6: Stresses, a, versus strain. F-, during a loading-unloading-reloading

sequence for model No. 2.

Figure 7: Motion of the unbroken part (2) with respect to the broken part (1) with

no external load by an amount A over a length /F.

Figure 8: Stresses, a, versus strain. E. during a loading-unloading-reloading

sequence for model No. 2.
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Figure 9: Motion of the unbroken part (2) with respect to the broken part (I) with

no external load by an amount A over a length 1F* The residual stresses

are denoted by p, and p2

Figure 10: Experimental stress/strain curve of a layered material subject to tension

(after [Sherman, 19921).

Figure 11: Experimental and fitted evolution of the macroscopic damage variable as

a functio;. of the maximum applied strains

Figure 12: Experimental and fitted evolution of the anelastic strains as a function of

the maximum applied strains

Figure 13: Experimental and predicted stress/strain curve of a layered material

subject to tension.

Figure 14: Experimental and predicted evolution of the maximum hysteresis loop

width as a function of the maximum applied strain, when

-p 1 = 0. MPa, and -p 1 = 57. MPa.

Figure 15: Experimental and predicted evolution of the damage variable D as a

function of the maximum applied strain, when -p1 = 0. MPa. and

-p1 I = 57. MPa.

Figure 16: Predicted evolution of the crack closure stress as a function of the

maximum applied strain, when -p1 = 0. MPa. and -p1 I = 57. MIa.
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ABSTRACT

A micromechanics study is presented of the matrix cracking behavior of laminated, fiber-

reinforced ceramic cross-ply composites when subject to tensile stressing parallel to fibers in the 00

plies. Cracks extending across the 900 plies are assumed to exist, having developed at relatively

low tensile stresses by the tunnel cracking mechanism. The problem addressed in this study is the

subsequent extension of these initial cracks into and across the 00 plies. Of special interest is the

relation between the stress level at which the matrix cracks are able to extend all the way through

the 00 plies and the well known matrix cracking stress for steady-state crack extension through a

uni-directional fiber-reinforced composite. Depending on the initial crack distribution in the 900

plies, this stress level can be as large as the uni-directional matrix cracking stress or it can be as

low as about one half that value. The cracking process involves a competition between crack

bridging by the fibers in the 00 plies and interaction among multiple cracks. Crack bridging is

modeled by a line-spring formulation where the nonlinear springs characterize the sliding resistance

between fibers and matrix. Crack interaction is modeled by two representative doubly periodic

crack patterns, one with collinear arrays and the other with staggered arrays. Material

heterogeneity and anisotropy are addressed, and it is shown that a homogeneous, isotropic average

approximation can be employed. In addition to conditions for matrix cracking, the study provides

results which enable the tensile stress-strain behavior of the cross-ply to be predicted, and it

provides estimates -if the maximum stress concentration in the bridging fibers. Residual stress

effects are included.

Notation (Partial listing)

a half crack length

cf, Cm fiber and matrix volume concentration (cf+cm=l)
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t half ply thickness

A orthotropy factor

Ef, Em Young's moduli of fibers and matrix

E, ESM average Young's modulus of plane strain, secant modulus of the cracked composite

L half crack spacing

R fiber radius

13 a material parameter (defined in Eq. (7))

Stotal tensile swain

AE extra tensile strain (inelastic strain due to cracking)

Of tensile stress in bridging fibers

up largest stress a composite can sustain before the matrix crack is fully extended

OR residual stress

Tr fiber/matrix sliding shear resistance

rm critical energy release rate of the matrix

EL, VL, 9L longitudinal Young's modulus, Poisson's ratio and shear modulus of a single ply

ET, VT, 9T transverse Young's modulus, Poisson's ratio and shear modulus of a single ply

1. Introduction

The process by which a fiber-reinforced cross-ply ceramic composite is damaged and

eventually fails under tension is very complex. When the tensile stress is applied along one of the

fiber directions, one often observes an overall stress-strain response as schematically illustrated in

Fig. 1. After an initial elastic response, the damage starts with matrix cracking in the 900 plies.

These cracks spread as 3D tunneling cracks from small flaws located in the matrix of the 900 plies,

and generally arrest at the interfaces between 00/900 plies before spreading into the adjacent 00

plies [1]. With further increase of the applied stress, more tunneling cracks develop in the 900

plies until they saturate. At about this stage, the fully tunneled cracks begin to extend into the

adjacent 00 plies without fiber failure and extend until they overlap. The matrix cracks eventually

coalesce at even higher stress with the matrix of the laminate being fully cracked. The intact fibers

in the 0( plies, which are now carrying all the load, fail at the fiber bundle fracture stress cfS/2.
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The matrix cracking in the 900 plies has been a subject of research efforts for the past two

decades. While most of the work in this area deals with the effect of matrix cracking on the

degradation of the stiffness of the laminate (for example, as reviewed in [2]), relatively less has

been done to relate the full details of the overall stress-strain response to the constituent properties

of the laminate. An attempt along this direction was recently made in [31 where the concept of

steady-state tunneling cracks was employed to model matrix cracking as a three-dimensional

process. The minimum tensile stress required for the onset of tunneling cracks (the start of

nonlinearity in Fig. 1) was predicted. The evolution of the crack density in the 900 plies was

related to the applied stress, and the overall stress-strain behavior (from onset to saturation of the

tunneling cracks in the 900 plies) was obtained as a function of the basic geometry of the

composite, the toughness of the matrix, and the residual stress between plies.

The next logical step is to investigate subsequent damage where matrix cracks spread into the

neighboring 00 plies. This is an unavoidable step if progress is to be made in the effort to

understand the complete tensile behavior of a laminated cross-ply composite. Several new

considerations come into play. Firstly, the matrix cracks are partially bridged by intact fibers in the

00 plies. The fiber-bridged length of the crack is comparable to the unbridged length (the 900 ply

thickness), and small scale bridging (SSB) does not apply. To fully solve this problem, a rigorous

large scale bridging (LSB) analysis is required. Recent research efforts on this general topic can be

found in [4, 51, where the main concern centered on the tensile strength of unidirectional fiber-

reinforced ceramic composites containing a single crack-like flaw. Secondly, interaction among

multiple cracks plays an important, and sometimes even critical, role in the crack growth process.

The modeling of this process under large scale bridging conditions has not been addressed.

Lastly, the laminated composites are anisotropic and heterogeneous in nature. The importance of

material anisotropy and heterogeneity on the fracture performance of such laminates must also be

addressed.

To provide some quantitative feel for the damage sequence of a cross-ply laminate under

tensile loading, we take as an example the CAS/SiC laminate system used in the experiments in

[1]. It consists of Nicalon fibers in a calcium-alumino-silicate matrix in a cross-ply configuration.
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The constituent properties are

Em-97GPa, Ef-200GPa, cf=0.37, R=7.5g.m, rm=25J/m 2 , r=20MPa

and the half ply thickness t is 901gm. Two types of resid,,al stresses exist in the laminate,

introduced during manufacturing process because of mismatch of the thermal properties of fibers

and matrix. One is the overall residual stress between different plies which was measured to be

approximately 30MPa in tension perpendicular to the fibers in the 900 plies, and about same

anomnt of compression in the 00 plies acting parallel to the fibers. At a smaller scale within each

layer, is the residual stress between fibers and matrix which has both an axial and radial

compoment. The measured residual stress in matrix in the axial direction is oRm=100 - 120MPa.

Based on the above information, we can evaluate several important stress quantities, which are also

indiated on the ordinate of Fig. 1:

(1). conset, the stress for onset of tunneling cracking (the formula is given in [3]). This stress

sets die condition under which matrix cracking first can occur in the 900 plies. Accurate prediction

of oaset requires knowledge of the toughness of the 900 plies in the tunneling mode. An

estimated value of aconset for the above CAS/SiC system is around 80MPa. Since there exists a

resi"ai tension of 30MPa in the 900 plies, the net applied stress a needed for the onset of

tunneling cracking will be around 50MPa [3].

(2). ao, a stress quantity measuring the condition at which plane strain cracks in the 900 plies

begin to spread into the neighboring 00 plies. It is one of the basic parameters in this study, and it

will be introduced in more detail later in the development. The calculated c0 from Eq. (6) (see

below) is 88MPa. The residual tension in the 900 plies will lower the net applied stress to about

58MPa.

(3). umc, the steady-state matrix cracking stress for a uni-directional composite 16, 7]. It is

the other basic stress parameter used in this study. It depends on the matrix toughness and the

bridging capabilities of the fibers. It is given by Eq. (5) in next section and is calculated to be

323MPa. Since there exists a residual tension in matrix in the amount of ORm=100 - 120MPa, the

critical applied stress needed to advance the steady-state matrix crack will be in the range 156 -

184MPa. This range of the value is consistent with the experimentally measured range of 140 -
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16OMPa in [I]. One of the main objectives of this paper is to determine the relation between cymc

for the uni-directional composite and the stress at which matrix cracks first cross the 00 plies in the

cross ply composite.

The above three stress values support the illustration in Fig. 1 of the damage process in a

cross-ply laminate. Similar behavior was reported in [1] based on their experimental observations.

Thus, the aim of the present work is a micromechanics investigation of the tensile behavior of

a laminated fiber-reinforced cross-ply ceramic composite with matrix cracks in the 900 plies

penetrating into the adjacent 00 plies. As emphasized, it should be regarded as a continuation of

the work of [3] on tunnel cracking in the 900 plies. Here, the main focus will be on the

constraining effect of bridging fibers and the interaction among multiple cracks during the crack

growth process. The overall tensile behavior of such laminates will be determined. We first

examine the problem of material anisotropy and heterogeneity, and demonstrate that anisotropy can

be accounted for in a simple manner such that accurate approximate solutions can be then be

generated from results for a homogeneous, isotropic material. The effect of bridging fibers is

modeled as distribution of nonlinear springs obeying a traction-separation law characterizing fibers

slipping relative to the matrix under a constant friction stress 'E. Two doubly periodic crack

patterns are analyzed in order to understand interactions among cracks, one, a collinear pattern

(Fig. 2a), and the other, a staggered pattern (Fig. 2b). The collinear pattern models the extreme

situation where stress intensity enhancement due to interactions is maximal. The staggered pattern

represents perhaps a more realistic situation in which overlapping of matrix cracks in the 00 plies

will occur. This type of pattern, opposed to the collinear pattern, models the more or less random

development expected for the tunnel cracks in the 900 plies. Also investigated in this work is the

stress concentration in the bridging fibers. This is an important issue because failure of bridging

fibers constitutes the ultimate failure mechanism for these composites.

The paper is organized as follows. We begin with a general description of the problem

including the fiber bridging model, and go on to demonstrate the validity of the scheme for

accouwting for the laminate anisotropy using results from plane strain isotropy. The body of paper

is devoted to the presentation and discussion of the crack growth process and overall tensile
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behavior for each of the two crack patterns. The applied tensile stress and extra strain due to the

crack growth process are presented for various crack densities, together with the stress

concentration in bridging fibers. The role of residu-a stresses inroduced during the manufac:"i-Ag

process is also illustrated and discussed. The mathematical formulation and numerical solution

procedure are detailed in the Appendices. A numerical example for the above mentioned CAS/SiC

laminate is given in the last section as an illustration. The predicted secant modulus as a function

of the applied stress is compared with experiment data reported in [I].

2. Characterization of the Problem

2.1. An Approximation accounting for the Anisotropy of the Laminate

Previous studies usually take a uni-directional fiber-reinforced composite to be transversely

isotropic about the fiber directions. With fibers aligned with the 1-axis, the constitutive relation for

an undamaged ply is

F 1 01 - V.L (CY22 + CY33)

EL EL£1 - "VL GI 1

C22 E.!L ErI+IC22-V 3
L ET E(1)

E33 VL -OI I -- V0C22 +-10C33
EL Er E
1 1 1

:23 -'C23 E£13 = -0Y13 £12 = -012
£23 L2 2 4T 2A

where the subscript L stands for longitudinal properties and the subscript T stands for transverse

properties. All the elastic properties can be calculated either on the basis of the Hill [61 self-

consistent model or from other models.

The anisotropic effect for a unidirectional fiber-reinforced composite can be characterized by

an orthotropy factor [5]. However, it is less clear how one should account for the heterogeneous

nature of a cross-ply associated with the two orientations of layers. For most ceramic composites,

the ratio Ef/Em of the fiber modulus to the ceramic matrix modulus ranges generally from I to 5.

To obtain some insight into the role of material anisotropy and heterogeneity, finite element

analyses of single and multiple cracking have been performed for several typical values of Ef/Em



-7-

and fiber volume fractions cf of a laminated composite. Two plane strain crack configurations have

been analyzed as shown in the inserts of Fig. 3a and 3b, with crack tips located in the 00 plies. No

bridging tractions are applied. For each geometrical configuration and loading, two sets of material

properties are adopted for the calculations. For the first set, the stress-strain behavior of each of

the plies is taken to be elastically orthotropic obeying (1), with due regard for the two orientations.

For the second set, the composite is approximated to be homogeneous and isotropic, with an

overall Young's modulus E and Poisson's ratio v given by
1 EL 2  2-(1-)-v:

A( EL 1 VL2

2 ET ET EL

V= 2L (2)1+EL1+-
ET

= E
1 - v2

As introduced in [3], E is the uniaxial modulus of the composite in a direction parallel to either set

of fibers, while v is the Poisson's ratio associated with the out-of-plane strain component. Thus,

E, defined above, is the modulus governing plane strain tension parallel to the fibers in the 00

plies (with the out-of-plane strain imposed to be zero). Since the results of interest here are quite

insensitive to the value chosen for the in-plane Poisson's ratio, we have also used the value v

given above as the in-plane ratio.

The calculated ratios of mode I stress intensity factors from the two calculations, KjiSO/Ki, for

the single crack problem are plotted in Fig. 3a, where the geometrical configuration is shown. The

Poisson's ratios of both fibers and matrix are taken to be 0.2 and the fiber volume concentration is

0.5. The deviation from unity reflects the error of the isotropic average approximation for K to that

obtained from the anisotropic, heterogeneous model. Similar results for a doubly periodic crack

pattern are shown in Fig. 3b, where ratios of both stress intensity factors and compliances are

shown. As indicated in Fig. 3a and 3b, the errors introduced by the isotropic average

approximation to the stress intensity factor and compliance for all practical ranges of Ef/Em are

within 8%. As cracks become longer in the 00 plies, it is seen that the errors are further reduced.
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This indicates that the isotropic average approximation with elastic properties defined in (2)

involves little error for the study of fracture performance with cracks spanning both the 900 and the

00 plies. The major advantage of the isotropic average approximation is that it permits one to use

analytical techniques and results to set up the computational problems. In this work we have used

integral equation methods which employ kernels derived using complex variable methods of

elasticity.

The generally adopted criterion for the growth of matrix cracks in the 00 plies is that the

average energy release rate along the crack front remain equal to the critical value cmFm, where Fm

is the matrix toughness (for example, [5, 7-8]). The mode I intensity toughness, KIc, for the crack

tip located in the 00 phes is [5]

K,. = A L2 r (3)

where A is the orthotropy factor characterizing the effect of orthotropy of the 00 plies. This result

follows from the formula given in [9] for the energy release rate of an orthotropic material in terms

of stress intensity factor. The value of A for a wide range of Ef/Em and cf of fiber reinforced

ceramic composite has been calculated and presented in [5] based on ill's self consistent model.

For all practical ceramic composites, it falls between 0.84 and 1.0.

2.2. Characterization of Bridging Fibers

As in most previous studies, the debonding energy between the fibers and the matrix is

ignored and sliding between the fibers and the matrix takes place when the interfacial shear stress

exceeds the friction stress t. When slip lengths are relatively large, as is often the case for many

ceramic fibrous composites, the bridging fiber stress p(x) is related to the crack opening

displacement 8(x) by [10]
2

p(x) 2EfEL2C2 (x)}i (4a)

If residual stresses between fibers and matrix are present, the above fiber bridging law can be

easily modified by an extra term [ I I] such that

p(x) {2i 2 c 2 r(x) } E-- (4b)p~)[REm2cm E=n
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where ORm is the average residual stress parallel to the fibers in the uncracked matrix.

The matrix cracking stress omc, defined as the tensile stress required for the steady-state

propagation of a single, long matrix crack in unidirectional fibrous composites is given by [7-8]

cr= { Ec.r (5)

In the presence of residual stress, the critical applied stress needed to advance the steady-state

matrix crack is given by a modification similar to that in (4b) as Omc-(EL/Em)OR m [8].

The remaining important stress quantity to be introduced is

00 = (6)

where t is the half thickness of each ply. Under the isotropic average approximation for the

composite, yo0 is the remote tensile stress required for the initiation of propagation into the adjacent

00 plies of an isolated pre-existing matrix crack in a 900 ply. For multiple cracks such as those in

Fig. 2, the stress at which the cracks will begin advancing into the 00 plies will usually be lower

than ao due to crack interaction. It is worth noting that this initiation stress depends only on 0Y

and the crack configuration for the reason that the cracks are not yet bridged at this stage.

2.3. Description of the crack growth process

Now suppose the matrix cracks in the 900 plies are fully tunneled and saturated as has been

analyzed in [3]. Under further increase of applied tensile stress a, these cracks will spread into the

neighboring 00 plies under plane strain conditions. The 00/900 interfaces are assumed to be

perfectly bonded. Neither delamination nor splitting along interfaces of the plies or the fiber/matrix

occurs. The bridging fibers in the 00 plies are assumed to remain intacz throughout the crack

growth process.

Consider a cross-ply laminate subject to in-plane tensile loading only. We shall analyze the

two representative crack patterns, where plane strain matrix cracks have already formed in the 900

plies, which are shown in Fig.2 and which were introduced earlier. Suppose all cracks are

growing quasi-statically in the same manner, with current crack length 2a. The average tensile

stress ; applied remotely is determined by imposing the condition that the mode I stress intensity

factor KI maintain the critical value KIc as defined in (3). This large scale bridging problem is
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intrinsically nonlinear. It has been solved rigorously by formulation of a nonlinear singular

integral equation which is solved by iteration. The logarithmic singularity of the crack opening

displacement gradient at the bridging/unbridging point (i.e., at the 900/00 interface) is explicitly

accounted for in the formulation. Mathematical details can be found in the Appendices.

The solution to this problem, in the absence of pre-existing residual stresses, is found to be

completely determined by the crack geometry and a non-dimensional quantity o0/(J3amc), which

encompasses information about both materials and the fiber bridging constraint. The material

parameter 13 is given by (see Appendix A)
I AEL 3 (7)

which arises in the isotropic average approximation. For all practical fibrous composites, 13 is very

close to 1, and reduces to 1 if the fibers and matrix have identical elastic properties. For the

CAS/SiC system discussed before, 13=0.998. For a given laminated ceramic composite,

O0/( 13 Omc) measures the relative compliance of the fiber bridging law. A larger value of

co/(Pomc) represents softer bridging, while smaller values give stronger bridging. The CAS/SiC

system that Beyerle et al [1] used in their experiments has o0/(P3 omc)--0. 2 7. Results will be

presented for o0/(P3 Omc) in the range from 0.1 to 1.0 to cover all practical cases.

In non-dimensional form, the average tensile stress o applied remotely during the crack

growth process can be expressed as
2  a o° t (8)

where a/t is the non-dimensional current crack length, and t/L is the crack density as defined in

either Fig. 2a or Fig. 2b. The extra overall tensile strain AE (i.e., the inelastic strain), caused by

the presence of the matrix cracks, takes the non-dimensional formE AE at GO0 t
- 2(a a0 ,) (9)

Because of the nonlinearity of the fiber bridging law, the extra strain is no longer proportional to

the applied stress o. The total tensile strain E at any time during the crack growth process is given

by the sum
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+ Ae (10)
E

If there exists residual stress in the composite, additional strain will be introduced due to release of

such residual stress by the growth of matrix cracks, as will be included later.

For the convenience of presenting results it is useful to define the plane strain secant modulus

E., which is also a function of a/t, oa(5camc) and t/L, as the ratio

£

Due to stress concentration arising from presence of the crack, the tensile stress in the bridging

fibers is not simply a/cf, as it is well behind the crack tip in steady-state matrix cracking of uni-

directional fiber-reinforced ceramics. In all cases studied, it is found that the maximum stress in

the fibers always occurs in the bridging fibers located at the 900/00 interfaces (the

bridgingfunbridging point). Denote this stress by or, it is given by
Cfof = (.FI, (12)
0 C;. t Pcr,.L

Extensive results will be presented in next section for the non-dimensional functions defined

in (8), (9), (11) and (12) for each of the two doubly periodic crack patterns. In addition, numerical

examples will be presented to illustrate the influence of some of the parameters on the tensile

behavior of laminated fibrous ceramic composites.

3. Crack Growth Process and Overall Tensile Response

A complete analysis of the crack growth problem with bridging fibers in th' 00 plies is

performed, as described in the previous Section. The crack growth process initiated from a single

through-the-fibers crack in a uni-directional fiber-reinforced ceramic composite was discussed in

[5], where emphasis was placed on the tensile strength of the composite. It was found in their

analysis that a typical curve of applied stress a vs. matrix crack growth a/t always has following

features, assuming no fibers break. Following initiation of the matrix crack growth at a0, the

applied stress a increases due to the constraining effects of crack-bridging fibers, until a peak

value ap is reached. The applied stress a then decreases as further growth continues with a

approaching the steady-state matrix cracking stress amc asymptotically for a - cc. Thus op is the
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largest stress the compasite can sustain before the matrix crack is fully extended.

For the cross-ply laminate studied in the present work, matrix cracks in the 00 plies are

bridged by intact fibers, but not those in the 900 plies. The largest stress a laminate can sustain

before the matrix crack is fully extended, up, is thus not necessarily same as that for a uni-

directional fibrous composite. There are two possibilities. One is that the applied stress reaches

the peak value before the matrix crack grows into the next 900 ply, and this peak value is the

desired op. Another possibility is that the applied stress a is still increasing when the matrix crack

reaches the next 900/00 interface. Since no fiber-bridging constraint can occur in the 900 plies, the

matrix crack will run dynamically across the next 900 under constant stress loading. Therefore in

this situation the stress when crack reaches the 900/00 interfaces is the peak stress, op, the largest

stress the laminate can sustain before the matrix is fully cracked. The peak value op for one single

crack in a 900 ply is plotted in Fig. 4 as solid line. It turns out that for most range of oo(o(Pmc)

studied, Op is associated with the second case mentioned above. Also plotted in Fig. 4 are peak

values for other crack configurations. They will be explained later.

For the crack patterns shown in Fig. 2a and 2b, a somewhat different crack growth process is

found resulting from crack interaction. Results will be first presented for the collinear crack pattern

(Fig. 2a), followed by those for the staggered crack pattern (Fig. 2b). The influences of fiber

bridging constraint and crack density on the tensile behavior of the laminates are also

demonstrated. The last subsection will be devoted to the effect of the residual stress on the crack

growth process and the overall tensile response.

3.1. Collinear Crack Pattern

The numerical results for the collinear crack arrays are given in Fig. 5, for the case that the

crack density t/L is equal to 1. For other values of t/L, including the case of a single line of cracks

with t/L=0, the trends are similar. Fig. 5a shows curves of the applied stress a vs. the matrix

crack half length a for a wide range of o0/( 3Omc). These results are obtained by imposing the

condition KI=KIc on the solution, as discussed. Crack growth into the adjacent 00 plies starts

when the applied stress a reaches a critical value which is somewhat below 00 due to crack

interaction. This initiation stress is independent of ao/(Pamc). The actual initiation process of
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crack growth through an interface is very complicated. It depends on the elastic mismatches of the

two materials as well as other features such as flaw size in a way which is not yet established. No

attempt is made to address this issue since it is not critical in the present study. In this study, the

interface is ignored as a potential barrier to the advancing matrix cracks.

As matrix cracks grow, the constraint of the crack-bridging fibers requires an increasing

applied stress a. However, interaction among cracks also becomes stronger, especially the stress

intensity enhancement from the neighboring collinear cracks. The competition between fiber

bridging constraint and crack interaction yields a peak v ilue of o occurring after an initial increase.

This peak value, as,, is plotted in Fig. 4. Also plotted for comparison is the peak value for the case

t/L=O (i.e., a simple array of collinear cracks). It is clear that the main effect of interaction arises

frcm the collinear neighbors. After op is reached, the matrix cracks grow under decreasing applied

stress a until the collinear cracks coalesce at middle of the 00 plies and the matrix becomes fully

cracked.

The competition between fiber bridging constraint and crack interaction is evident in Fig. 5a.

The crack length at which crp is reached is longer for tougher bridging (smaller O0/(i3Omc)). The

corresponding extra tensile strains during the crack growth process are shown in Fig. 5b. Unlike

the applied stress a, extra strains are monotonically increasing except near the coalescence of the

cracks, where the applied stress a drops sharply. To gain some feel of what a tensile stress-strain

curve will look like during this crack growth process, we have also presented the results for the

secant modulus Ew as defined by (11), which is shown in Fig. 5c. It is seen that the nonlinearity

of tensile stress-strain behavior will be greater for softer bridging fibers (i.e., larger aa/(I3amc)).

The tensile stresses of in the fibers at the interface between the 00/900 plies (where the fiber

stress is maximum) is plotted in Fig. 5d as a function of a/t. For cTO/(Pamc)<0.4, the bridging

stress cfef is above matrix cracking stress rmc. Comparison of values in Fig. 5d with the fiber

bundle strength will determine the likelihood of fiber fracture during the crack growth process for

this type of crack pattern. Work currently in progress by the authors indicates that the stress

concentration in the fibers at the 00/900 interface is generally exaggerated by the line-spring model

of bridging. Improved estimates of the stress concentration in the bridging fibers will be reported
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in a subsequent paper.

3.2. Staggered crack pattern

For the staggered crack pattern (shown in Fig. 2b), the collinear cracks are spaced every two

plies as opposed to every other ply for the other doubly periodic cracks. Consequently matrix

cracks will grow a]) the way through the adjacent 00 plies, and possibly extend into the next 900

plies. If they do extend into the next 900 plies, cracks will coalesce dynamically because of lack of

fiber bridging constraint as well as stress intensity enhancement from neighboring collinear cracks.

It is therefore only necessary to consider crack growth in the 00 plies.

For small crack density t/L, the crack growth behavior is determined by the competition

between fiber bridging constraint and stress intensity enhancement from the neighboring collinear

cracks. Fig. 6 shows such a crack growth process for t/L=0.5. The arrangement of the plots in

Fig. 6 is same as Fig. 5, except that the range of all the abscissae a/t are now from I to 3, reflecting

crack extension through the entire 00 plies. This process is qualitatively similar to what was

discussed in connection with the collinear crack arrays, except that no crack coalescence occurs in

this range.

A more interesting behavior is found if the crack density t/L becomes larger, as represented in

Fig. 7 with t/L=l. As matrix cracks pass the center of the 00 plies, the shielding effect from

neighboring parallel cracks becomes strong, and the crack growth process is now governed by the

competition among fiber bridging constraint, stress intensity enhancement from neighboring

collinear cracks, and the shielding effect from parallel cracks. For a large crack density, the

parallel cracks are sufficiently close that shielding becomes dominant. This is reflected in Fig. 7a

by curves of app!;-ld stress a vs. crack length a. Beyerle et al [1] reported from their experimental

observations that some of the longer matrix cracks in the 00 plies seem to arrest under increasing

load. The shielding effect on matrix crack growth displayed by the staggered crack pattern may

explain this observation. The change of secant modulus E. for this crack pattern is much bigger

than that for the regular crack pattern (compare Fig. 7c and Fig. 5c, both for t/L=l). This is due to

the fact that staggered cracks advance all the way through the 00 plies, producing more inelastic

strain.
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The peak value stress ap for two typical staggered crack patterns are shown in Fig. 4, namely,

the cases for t/L=0.0 and t/L=1.0. The difference between them is seen to be relatively small. It is

clear from Fig. 4 that the most deleterious pattern is the collinear arrays. Even with t/L-0, this

pattern can result in a reduction of the peak stress for matrix cracks to spread across the plies of

almost 50% of amc. This is not surprising since the collinear patterns shed all the load carried by

the 900 plies into the 00 plies in the collinear plane, increasing the ligament loads by a factor of

two. Collinear arrays are unlikely from a statistical point; and, as mentioned earlier, the staggered

arrays are probably more realistic. The conclusion to be drawn from the peak stress plots in Fig. 4

is that the single layer, uni-directional matrix cracking stress amc provides a reasonable estimate of

the matrix cracking stress of the 0° plies in the cross ply composite, assuming the initiating cracks

in the 900 plies do not line up in a collinear fashion. Considering the significantly lower peak

stress associated with the collinear arrays, it may be worthwhile to investigate other related crack

configurations which have a high likelihood of occurrence, e.g., two collinear cracks in the

neighboring 900 plies.

This model has been used to generate overall tensile stress-strain behavior as dependent on

several of the key parameters. In Fig. 8a plots are displayed of the normalized applied stress

against the normalized strain for cases /L=l. The solid lines represent the behavior subsequent to

initiation of crack growth into the 00 plies, which is the range considered in this paper. The initial

elastic response, which is also shown as solid line, is terminated at the onset of tunnel cracks in the

900 plies. The transition response connecting the onset of tunnel cracking and the 00 ply cracking

has not been computed here, but a typical response is shown as a dashed line curve. The effect of

crack density on the overall stress-strain relation is illustrated in Fig. 8b, where ao0/([ 3Omc)--0. 3 .

The nonlinear behavior shown in these two figures is in general agreement with experimental data

reported in the literature.

3.3. Residual Stress Effect

Residual stresses and strains are generally introduced during manufacturing process of a fiber-

reinforced cross-ply laminate. As we discussed earlier, two types of residual stresses exist within

different scales. When fibers and matrix are bonded together to form a uni-directional fibrous ply,
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residual stresses in axial and radial directions are introduced between fibers and matrix due to

mismatch of their thermal properties. Another type of residual stresses exists at the ply level.

When the plies are bonded together to form the cross-ply laminates, misfit strain results in residual

stresses between plies. Both types of residual stresses can be rigorously modeled in the present

analysis by a simple stress superposition and possible modification of fiber bridging law according

to (4b), as discussed in Appendix A. For the sake of simplicity, only the results for residual stress

between plies will be presented in this paper. Consistent with our material approximation, we may

assume that an initial, uniform residual tension OR exists in the 900 plies acting parallel to the

applied stress, with same level of compression in the 00 plies.

Fig. 9 shows the effect of a residual stress CR in the laminate, where OR is scaled with the

reference stress 00. Since a residual tension is assumed in the 900 plies, the initiation value of o is

smaller than that if no residual stress were present. As matrix cracks grow, larger applied stress a

is required to overcome the residual compression in the 00 plies. The process is clearly indicated

in Fig. 9a. In any case, the secant modulus E. (shown in Fig. 9b) is smaller than that if no

residual stresses are present. As matrix cracks become long, the differences in E. for various

OR become small. The overall stress-strain response for different residual stresses are plotted in

Fig. 9c.

4. A numerical example

To obtain some real feel of our approach, A numerical calculation is performed for the

CAS/SiC laminate discussed earlier. Based on its constituent properties, the values of relevant

parameters are obtained to be

A=0.97, E=140GPa, a 0=88MPa, P-0.998, Omc= 3 23MPa

The measured residual stress in the matrix ORm is in the range 100-120MPa. We shall use

Rm=1 IOMPa in our calculation. The residual stress between plies ayR-30MPa is also accounted

for in the calculation.

Based on the above information, we are able to perform our calculation using the staggered

crack pattern. The crack density is taken to be t/L--0.88, which is the average saturation crack

density measured in the experiment. The results for secant modulus E.. vs. applied stress a are
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presented in Fig. 10 as solid lines. The experimental data from [I] are also plotted as solid dots.

Also presented in Fig. 10 is the predicted secant modulus Esec for crack density t/L=0.5. The

comparison with the experimental data suggests that in the stress range from 70 to 1OOMPa the

density of matrix cracks in the 900 plies may be still increasing at the same time the matrix cracks

are growing into the 00 plies.
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Appendix A

Integral Equation Formulation for the Partially Bridged Matrix Cracking Problem

An integral equation for the partially bridged matrix cracking problem is formulated based on

the dislocation distribution method (cf. [12]). In this method, cracks are represented as a

superposition of continuously distributed dislocations. For the two doubly periodic crack patterns

studied in this work, we only need to model half of a representative crack by distribution of edge

dislocation b(1i)=by(TQ) (Fig. Al). The stress cyy(X) along crack face induced by edge dislocations

b(ri) at x--q and -b(il) at x=-Tj is given by
Gy Wx = -=-• • + A(x,i) )b(ij) (A-I1)

4 -+A(Ai

"The kernel function A(xri) for the two crack patterns is given in Appendix B.

An integral equation is obtained by choosing the dislocation distribution to meet the traction

conditions along the line of the crack and within crack bridging zone

f f I A~~ijjb~j) il _COW PWfor 0< x <a (A-2)

where oO(x) is the stress normal to the crack surface prior to cracking, including remotely applied

stress a and the residual stress among plies, and p(x) is the fiber bridging stress. Thus the right

hand side of (A-2) should be -(4+0R) for 0<x<t (in the 900 plies), and -(o-oR)+p(x) for t<x<a (in

the 00 plies).

The crack opening displacement 8(x) is given by

8(x) = I b(TI) dTl (A-3)

Since only crack surfaces in the 00 plies (i.e., t<x<a, where t is half ply thickness) are bridged

by fibers, the solution b(il) to the integral equation exhibits a logarithm singularity at 1j=t (cf. [ 13-

141; [9] for crack opening displacement solutions of Dugdale-Barenblatt model). Accordingly we

can approximate b(Ti) with the correct singularities built-in as
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b(TI) =±!1colInt¶ . c.+ IL 1) for 0:5 7 < t
4=o -(A-4)

a ý N2 -I
b(71)=01n doIn11-t+ a- t - dT ,2(. - t) 1) for t<Tl<aa-t T2a-) I=d~jl a- t

t I j=1

where Tj($) is the Chebyshev polynomial of first kind of degree j. cj's and dj's are (N1 +N2)

unknown coefficients which are to be determined.

The asymptotic behavior of b(T) near crack tip ri=a gives the mode I stress intensity factor KI

in terms of the unknown coefficients as
N2 -1

K, = ,rry0 -.~/ -t) di (A-5)

The crack opening displacement 8(x) for t<x<a can be expressed as, by substituting (A-4) into

(A-3),

8(x) = 2n(a - t)ao0 N2-1""() -. dj f1(x) (A-6)

j=O

where
fll 1+ •flTjI(• 2(x - t)

f0(x)= dIn d , fj(x)=! , ( dr ,and s x= t I (A-7)
SJ, Jsq-•,a-t

The fiber bridging stress p(x) is given by, from (3)-(6) in the main text and (A-6) above,

p(x..) -o (2(a-t) lOo )3 j0 d it)'Eo where 1 = AE(_L) (A-8)

00 3t CFO j0O a0OEl-L)

Substitution of (A-4), (A-8) into (A-2) yields
N,-i N2 -1 +GR
ZII~j(x)cj+ 1I2j(x) dj = +R- ,0 for 0:_x < t
ý=O j=0 O

N, -i N2-1 + (a' - t)(00 N2 -1 ELjCRm

X13j(x)cj+ XI 4j(x)dj = - 0 + 3t GO dj==f(x) 0 fort<x<a
j=o j=o =O0

(A-9)

The I(x)'s in the above equation are given by following integrals, after scaling the integration limits

into (4 , 1),
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110(x), 13 0(x)= I [-+A(x,iL) In-dl
2f ~x-71 J 2 (A-10)

11j(X), I31(x) = ±J [..J.-+A(x~iT)] Tj-. 1(ý) dý

where ri~z(I+•)/2, and

120Wx, 140(X) = 7 i/--!-+Ax-•-In+-
2 fil-11] (A .-11)

12j(x), I4j(X) = + A(x2i) -j±ý d(

where Th=t+(a-t)(l+ý)/2. In the designated ranges of x, Cauchy Principle values are understood

for Ii(x's and L4(x)'s in (A-10) and (A- 11).

The choice of allocation points for solving (A-9) is somewhat arbitrary. Chebyshev points

are used in our calculation

xi = tl ++cos[(21i-1)7]t i=-, 2, ... , N1  for 0:Sx<t
(A-12)

Xi = t+ L21I+ Cos[ (2i1- I}, i=1,2, ... ,N 2  for t~x<a
2 1 2N2

An additional equation is obtained by imposing the crack growth condition Ki=KIc. The

combination of (6) in the main text with (A-5) gives
N2-1

Edj t (A-13)
71 -a-Ltj=1

Introduction of (N1+N2) allocation points in (A-12) to (A-9), together with (A-13), provides

(NI+N 2+1) equations for solving (NI+N 2 +1) unknowns co, cl, ..., cN,_; do, dj, .... dN_, and

remotely applied stress m. This set of nonlinear equations are solved numerically by Newton's

method.

It is not difficult to show that the inelastic strain AE introduced by matrix cracking can be

obtained from

AE6 f (x) dx (A-14)
4Lt Jo

where 8(x) can be calculated from (A-3).
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Appendix B. Kernel Function A(xTI)

"The kernel function A(x,TI) used in Appendix A to formulate the integral equation is obtained

by superposition of the stress Oy(X) induced by arrays of periodic edge dislocations. The complete

stress field for an array of periodic edge dislocations can be found in [15].

Fr collinear arrays,

1n -1 4t 4It tt

XT- x tan -1 (x+TI) y=2L,4.,... 2[cosh2y-cos -1 (x- l)
4t 4 4t2t

y sinIt(x-TI) sinh2y sin (x +r1) y sin7(x+r1) sinh2y

+ 2t 12 2t n 2 t I2
[cosh 2y - cos !(x ..fl1) 2[cosh2y-cosE(X +1)] Ecosh 2y -cos -(X + TO

2t 2t 2tx+

(B-1)

For staggered arrays,

Ssin-n(x - i
A(x,1lT) 8tT . +-L. .. 4t

tan71(x-I)x-j tn. (x+ 1)2t y=2~L{4,.2[cosh 2y -cos 71(X - 11)
8t 8t 4t

X sin-sin- (x + 'I) y sinh Iy
2t 4t + 4t 12 I

[cosh 2Y -1 csyco! -L) 2y s 2y +t cos-csx - (x +

4t 4

si n Xt (X+Ty i x+1)sin-(x112y h~
4t-x-j + 4

'-[c T) 1osh 2y + cos-7r(x + TI) ohycs(

4t 4t +TO

(B-2)
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cfS/ -- Fiber Fracture

• 1

amc ' Matrix fully cracked cfEf
-.. .- --

CFO -- - -. ,• '.-,--Tunneling cracks in the 90°plies saturate
Tonset " 16"kOnset of tunneling cracks in the 90°plies

E

0 E

Fig. 1. A schematic illustration of stress-strain curve for a cross-ply laminate under tensile
loading.

a a

(%NJ

Fig. 2. Two representative doubly periodic crack patterns
(a) collinear arrays (b) Staggered arrays.
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Fig. 3. Demonstrations of the validity of isotropic average approximation
(a). an isolated crack (b) doubly periodic cracks
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Fig. 4. Peak stress ap, for several crack configurations.
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Fig. 5. Matrix crack process for collinear arrays, with crack density t/L-- 1 .0
(a) Applied stress vs. matrix crack growth length.

From bottom to top: co(Pmc)=O. 1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
(b) Inelastic strain vs. matrix crack growth length

From bottom to top: Coo/(Pamc)=O. 1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 .0
(c) Secant modulus vs. matrix crack growth length

From top to bottom: ao/V(IPmc)=O.l1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
(d) Maximum fiber bridging stress vs. matrix crack growth length

From top to bottom: cYAI(Pmc)=-O. 1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
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Fig. 6. Matrix crack process for staggered arrays, with crack density t/L=O0.5
(a)-(d): same arrangement as Fig. S.
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Fig. 7. Matrix crack process for staggered arrys, with crack density t/l-1 .0
(a)-(d): same arrangement as Fig. 5.
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Fig. 8a. Stress-strain curves for different ocV(Pamc), staggered arrays, t/L= 1.0

staggered arrays, ao/(fla~j=0.3
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Fig. 8b. Stress-strain curves for different t/L, staggered arrays, arl(amc)=0.3
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Fig. 10. Predicted secant modulus for a CAS/SiC laminate, compared with experimental

data reported in Beyere et al (1992)
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Fig. Al. (a). Dislocations used for each crack to obtain the kernel function in the integral equation
(b). A representative half crack modeled to formulate the integral equation
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Abstract-The topic addressed in this paper is transverse cracking in the matrix of the 90 layers of a
cross-ply laminate loaded in tension. Several aspects of the problem are considered, including conditions
for the onset of matrix cracking, the evolution of crack spacing, the compliance of the cracked laminate,
and the overall strain contributed by release of residual stress when matrix cracking occurs. The heart
of the analysis is the plane strain problem for a doubly periodic array of cracks in the 90' layers. A fairly
complete solution to this problem is presented based on finite element calculations. In addition, a useful,
accurate closed form representation is also included. This solution permits the estimation of compliance
change and strain due to release of residual stress. It can also be used to predict the energy release rate
of cracks tunneling through the matrix. In turn, this energy release rate can be used to predict both the
onset of matrix cracking and the evolution of crack spacing in the 90- layers as a function of applied stress.
All these results are used to construct overall stress-strain behavior of a laminate undergoing matrix
cracking in the presence of initial residual stress.

1. INTRODUCTION These cracks spread as 3D tunneling cracks from
small flaws located on the matrix of the 90- layers in

The macroscopic tensile properties of uni-directional the direction transverse to the applied stress, as
fiber-reinforced brittle composites have been studied depicted in Fig. 1. At even higher applied stress, it
extensively since the 70's, where matrix cracking with was observed that the pre-existing cracks began to
intact fibers plays an important role in longitudinal extend into the adjacent 0' layers stably and without
strength. The transverse and shear strengths of such any fiber failure, until these transverse cracks began
composites are invariably lower than the longitudinal overlapping in the 0" layers.
strength. Consequently, in applications where multi- The work in this paper deals with conditions for
axial stress states are encountered, cross-ply lami- the onset and subsequent multiplication of tunnel
nates are commonly used. While there has been cracks in the 90' layers of cross-ply laminates. In
considerable attention to the elastic properties of addition, the effect of the tunnel cracks on the overall
cross-ply laminates, relatively less has been done to stress-strain relation of the composite will be deter-
establish their fracture performance in terms of the mined, including the contribution from the release of
properties of the constituent phases. This is the topic residual stress. Such constitutive relations are re-
of the present paper where emphasis is on brittle quired if progress is to be made in the effort to
m.a, r~x composites and explicit results for the effect of understand the role of micro-cracking in altering
m: % cracking on overall stress-strain behavior are stress concentration at holes and notches in these
de, ped and presented. Studies of the topic have materials. The paper is organized as follows. We
beeii carried out within a framework of damage begin by posing the problem for the energy release
mechanics where the effects of cracks are not explic- rate of steady-state tunnel cracks. This problem can
itly predicted as represented by [1, 2]. More closely be solved using information from a 2D plane strain
related to the present work are studies in [3, 41 where problem, which also provides the results needed
explicit results for the effect of cracks are given for the desired constitutive changes. Extensive finite
for general laminates. These four papers provide element calculations are then reported, providing
additional references to the general problem area. conditions for the onset of tunnel cracking and for

Recently. a comprehensive experimental study was subsequent multiple crack formation. The results
conducted on a laminated 0'/90' ceramic/matrix permit one to predict the spacing expected between
composite [5]. When the tensile stress was applied the 90W layer matrix cracks as a function of the
along one of the fiber directions, cracks were first applied stress. Given crack spacing in terms of
observed in the 90 layer and always spanned the applied stress, one can then predict the overall
entire ply, but arrested at the interfaces between stress-strain behavior. This point is illustrated by
layers, as sketched in Fig. I. With further increase of giving examples of stress-strain behavior as a
the applied stress, additional matrix cracks developed function of the basic geometry of the composite, the
in the 90 layers in the same way as previous cracks. toughness of the matrix, and the residual stress in the

2365
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w(i.e. = v, = v). This approximation is known to

involve little error. The moduli of the ph are related
Soto the constituent properties b,.

0 EL = cE, - (I -E (2
0 T** 0, *j cdl - -- p,~l I-c)

oCrack Gro~ th jutit • . l- ' "-/m l"r ' /

,0 0 0 and

S= o = V (4)

where c is the fiber volume fraction- Formula (2) is
the rule of mixtures for the longitudinal stiffness, and

0 o (3) was given in [6] using the composite cylinders
o *model. The remaining modulus. E1, has a somewhat

greater dependence on the spatial arrangement of the

0 , , 0 Ifibers. The approximation used here is taken from [6]1 o 001-, ~

ET= Em, (5)..I. -- --. I - •

where

Fig. I. A schematic of the 3D tunneling cracks in the 90 E- -

layers. Em'1- (6)
-,+2

next section. An approximate analysis is carried out E.
in the final section leading to closed form expressions The above formulas apply under the condition that
for the overall compliance change and the tunneling no debonding occurs between the fiber and matrix in
energy release rate as a function of crack density. the plies. To obtain some insight into the role of
These results, which are quite accurate, will be very fiber/matrix debonding, results will be computed in
useful for practical applications, addition for the limiting case where it is assumed that

the complete debonding has occurred. To model this,
2. BASIC MECHANICS we have followed the suggestion in [5] and have taken

Er = 0 in (6), thereby reducing the transverse modu-
lus. The effect of debonding on the longitudinal shear

The elastic properties of an undamaged uni- modulus is ignored since this effect is relatively
directional fiber reinforced ply are accurately taken unimportant.
to be transversely isotropic about the fiber direc- Now consider a cross-ply laminate with equal
tion. With the fibers aligned with the I-axis, the thicknesses of 0 and 90- plies subject to in-plane
constitutive relation for the undamaged ply is

I VLS=-a -- (622+6 31)
EL EL -.

£2 2 --- a1 +-•L0,---a2 , --+ 00o0o0 o 000.

i I I
£23 = 

2  
"23 £1- --- al 3 + 1 = T" 1, (I)

2/atUL 2PT "2UT "o

where the subscript L stands for longitudinal

properties and the subscript T stands for transverse
properties. Notice that PT = ET![2(l +V)] but 0
generally JL 9 E L /[2(l + v A)].

To limit the number of material parameters in the
subsequent development, the difference between the 3

fiber and matrix Poisson's ratios will be neglected Fig. 2 Conventions for the 3D cross-ply laminate.
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loading only, as illustrated in Fig. 2. A standard crack opening displacement. This is applicable to
derivation based on the assumption that the in-plane linear elastic anisotropic materials and can be used
strains are identical in every ply and that there are an when residual stress is present.
equal number of 0 and 90 plies, gives the overall
relation for the laminate to be

3. FL ITE ELEMENT ANALYSIS

i1 \- .. 1. Isolated cracks and the onset of tunnel cracking

A complete analysis of the isolated crack problem
7-= + , depicted in Fig. 3. is performed by finite element

E, E, analysis for all practical ranges of fiber volume

fraction c and the ratio of Young's modulus of fiber
2= 4(7) to matrix, for both bonded and separated

fiber/matrix interfaces. The results for propagation of
where an isolated tunneling crack will be used to generate

(I + Ej: the conditions under which extensive matrix crackingS(I +-s-)- first occurs.

E0 ET L Figure 3 shows the cross section of a laminate with
+ EL)( I a single transverse crack spanning the entire central

2k~ T E ET -L) 90- layer. The stress-strain behavior of each of the
plies is taken to be elastically orthotropic obeying (I),

2__=__ with due regard for the two orientations. The inter-
= EL faces between the layers are assumed to be perfectly

+±-
ET bonded. Plane strain conditions are assumed in the

A =UL (8) z-direction and vm = vf = 0.2. The average tensile
stress applied at infinity is a, and the tensile stress in

are Young's modulus, Poisson's ratio and shear the 90° layer, prior to cracking, is
modulus of the laminate, respectively, in the defined
coordinates. 2E .

The plane strain Young's modulus defined as EL + ET

'E I +One can readily show that the normalized steady-

E, = = (9) state, tunneling energy release rate,
I - V' EL

- VL 
G

will appear frequently in the sequel. Since the trans- at

verse modulus ET depends on whether the
fiber/matrix interfaces are bonded or not, & also
differs for these two cases. t t t t

2.2. Concept of steady -state tunneling cracks

Cracking in layered materials often occurs in the *

tunneling mode within individual layers. as illus- *00

trated in Fig. 1. The energy release rate at the tunnel
front can be computed in principle by a three dimen- .

sional analysis. However, as the length of the tunnel
becomes long compared with layer thickness, a
steady-state is reached in which the same mode I

energy release rate Gss is attained at every point on 00

the front and is independent of tunnel length (7].
From an energy argument, the steady-state energy
release rate Gss can be computed using quantities
from the two-dimensional plane strain solution to the
crack problem depicted in Fig. 3. The result is

S aoW6W dx (10)2t -1-2t 0 2t

where 2t is the layer thickness, a0 is the stress normal
to the crack surface prior to cracking, and 6 is the Fig. 3. An isolated crack in a 90 layer.
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-E,/E.= 3
4
5

1b. Bonded fibers

S"-- Separated fibers

"•'"':-1•'" " ,/E.= 3

0 '5,

0 .2 .4 .6 .8
C

Fig. 4. The function, f(EfIE., c), providing the tunneling energy release rate in (11) for an isolated crack.

defined from (10) is a function only of fiber volume other words, residual tension in the layer, modified by
fraction c and the modulus ratio Er/Em, assuming the the factor (EL + Fr)/(2 ET), is equivalent to an overall
Poisson's ratios have been assigned, i.e.Goss E,, ft t t t t t

E .~~ . . . .

where Eo is defined in (9) for the two cases, bonded *

and unbonded fibers mentioned in connection with
(6). Results displaying the dependence are shown in
Fig. 4 for the two cases. These results were computed

using a 7-layer laminate model with the crack in the
central layer, but they should apply for an arbitrary
large number of layers with high accuracy. In
fact, results computed using a 3-layer model and l-•
normalized in exactly the same way differ only very *

slightly from those shown in Fig. 4.
Denote the toughness of the layers in the tunneling

cracking mode by F, measured in units of energy per
unit area. For a crack propagating entirely in the
matrix, this would be the mode I toughness of the 2 2tH y+--
matrix, F.. For a tunnel crack front encompassing I Ii
the unbonded interfaces between the fiber and matrix, • e
F would be some fraction of Fr. The minimum stress 0
ao., required for propagation of tunneling cracks in (b) (2)

the 900 layers is obtained from (II) as Crack surface

= _r_ L<
= - (12)

This sets the condition for the onset of extensive
cracking in 90' layers. Note that this first cracking
stress is inversely proportional to the square root of"
the ply thickness. If an initial residual tensile stress, o t 2t x (3)
aR, exists in the 90' layers acting parallel to the Fig. 5 (a). The doubly periodic crack pattern analysed in
applied stress, then the sum of aR (EL + E-r)/(2F) and this paper. (b) A quarter of a periodic cell used for the finite
a..,, should appear on the left hand side of (12). In element model.
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(a) 2 r T

e E,/E.= I c=0.2
- E,/E.=3 c=0.4

S• . . ..1.5 .'/.= c0.

.5

0 iii i I i i i i w i ii iII ii
0 .5 1 1.5 2 2.5 3

t/L

(b) 2 , , , , i , , , , i , , , i

1.5 .,E,.=1 - c=0.2

- EriE,=3 c=0.4

SE/E,=5 c=o.6

b

.5 --- ---- -.--

0 .5 1 1.5 2 2.5 3
t/L

Fig. 6. The function, g(E/IE., c, t/L), providing the energy release rate for a doubly periodic array of
tunneling cracks in (13). (a) Bonded fiber/matrix interfaces. (b) Separated fiber/matrix interfaces.

applied stress contribution as far as tunnel cracking again invoked and no traction is applied in the
is concerned. x-direction. Because of symmetry, only one quarter

of a periodic cell needs to be considered in setting
3.2. Multiple cracking up the finite element model, which is shown in Fig.

Multiple cracking in 90' layers occurs when 5(b). Standard symmetry boundary conditions are
the applied stress exceeds the critical level given by applied on all edges of the quarter cell in Fig. 5(b)
(12). Results will be presented in this subsection for except along the crack face where traction-free con-
the doubly periodic, plane strain crack problem ditions are imposed. The average traction on the
depicted in Fig. 5(a). Specifically, results will be vertical faces is required to vanish, consistent with the
presented which allow one to predict: (i) the assumption that no stress is applied in the x-direc-
evolution of crack density in the 90' layers, (2) the tion.
increase in overall compliance as a function of crack The finite element results for Gss, expressed in
density, and (3) the extra overall strain released by non-dimensional form as
the cracks in the presence of residual stress. The
cracks are taken to be equally spaced within all 90'
layers, with spacing 2L and with the doubly periodic Gss 2E0  fE_ (13)
pattern shown in Fig. 5(a). Plane strain conditions are g 2

1 = m'c',(

AM 41--H
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.6

- E,/E==3 ---- C=0.4

.2 - Ei/E.=5 -- c=O.6

(b)

.8

.6

.4 *E,/E.= 1 c=0.2

*Et/E. 1=3 ---- c=0.4

.2 EtE' ----- c=0.6

0 .5 1 1.5 2 2.5 3
t/L

Fig. 7. The function, h (Ef1E., c, tIL), providing the effective Young's modulus for the cracked laminate
in (14). (a) Bonded fiber/matrix interfaces. (b) Separated fiber/matrix interfaces.

are shown in Figs 6(a,b), respectively, for bonded and which only the 00 layers carry the load, which are
separated fiber/matrix interfaces. In Section 4, it will simply
be shown bow to use this result for steady-state
cracking to predict crack spacing as a function of
applied stress. The corresponding results for the I EL
effective plane strain Young's modulus for the 70 EL _+Er 15
periodically cracked composite, defined as f, = a/(
where 4E is the average strain in the y direction, are It can be shown, by the reciprocal theorem of
shown in Figs 7(a,b) as elasticity, that (13) and (14) are related by

I -I E r c. - -16

4 4 4) E.==Ic=

h ( EE c= E 4 C (

E0 E. L ). .

Residual stresses and strains are generally intro-
As the crack density igL becomes larger than duced during the process when the plies are bonded
about 2, the results have asymptoted to the limit in together to form the layered composite. As discussed

j -(5
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In the limit where the crack spacing becomes small
(i.e. tiL becomes larger than about 2). the stress in the
0 layers due to the residual stress is reduced to zero.
Consequently, in this limit. CA is just the negative of
the initial strain in the 0 layers in the uncracked
composite, i.e.

EL+ETTR ( E- (I Ft (18)LA-= --- 1 I--- (
2EL E0  EL/EL

4. APPLICATION TO PREDICT CRACK SPACING

AND OVERALL STRESS-STRAIN BEHAVIOR

4.1. Prediction of crack spacing

Results obtained in the last section will be used
here to predict the tunneling crack spacing in 90
layers as a function of applied stress. The method
employed here is identical to that of Hutchinson and
Suo [7] used to predict the crack spacing in thin films

Fig. 8. A new set of tunneling cracks bisecting an existing under residual tension. It considers the effect of a
set of cracks in a given layer a sequential cracking process where a new set of cracks

tunnels between an existing set of cracks as the stress
is increased, rather than a process where all the cracks

earlier, if an initial, uniform residual stress aR exists tunnel tgther.

in the 90' layers acting parallel to the applied stress the to n t e la t h

all he ffet onthetunelin enrgyrelese ate The calculation of the energy release rate for the
ri, the effect on the tunneling energy release rate

is taken into account by replacing ai on the left cracks tunneling in the sequential process makes use
of the basic solution (13) for simultaneous steady-side of (13) by the sum of riR(EL + ET)/(2ET) and stecrkigThtolinisfrimtaou

a. A aditinaloverll tran, A, ocur du to state cracking. That solution is for simultaneous
h. An additional overall strain, LA, occurs due to tunneling of all the cracks, periodically spaced a

the release of residual stress by the formation of distance 2L apart, in the 90' layers, as in Fig. 5. For
the cracks in the 900 layers. By a simple process aysc aiae h taysaetneigeeg

of sperosiion(se Appndi), ne an how any such laminate, the steady-state tunneling energy
thft erelease rate for each crack is given by (13)
that

(IlrEL + ET G =g - (19).(I '•E+Eri EL+E!410
-) a, =(h--) 2E- E- 1)

where here the dependence of g on Et/Em and c is left

(17) implicit. As noted before, when a residual stress aR

2 1 1 1I 1I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 I1 1

lower Et/E.= I,.

1.5

IN,
b c=0.2

.5

0 , I , , , , I
0 .5 1 1.5 2 2.5 3

t/L

Fig. 9. Relationship between applied stress and crack spacing.
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21 1 T T I I I __ _T - -T T i i i i i i

1.5

c=0.2
-.c=0.4

S1W

upper E/E.=5
b

middle Ef/E.,=3.5 .

.5 /lower E,/E.= 1

0
0 .5 1 1.5 2 2.5 3•'(! 0 t/r)

Fig. 10. Overall stress-strain behavior in the absence of residual stress.

exists in the 900 layers acting parallel to the overall Under the assumption that new cracks will always
applied stress a, then a in the above formula should be nucleated half-way between cracks that
be replaced by a + (EL + Er)ua/(2Er). have already formed and tunneled, and with Gss

Now consider the sequential cracking situation identified with the mode I toughness F along
depicted in Fig. 8, where one set of cracks spaced fiber direction of 90' layers, (20) predicts the relation-
a distance 4L apart has already tunneled across ship between a and the crack spacing t/L. This
all 90' layers, and where a second set bisecting the relation is plotted in Fig. 9 for bonded fiber/matrix
first set is in the process of tunneling across the interfaces. There are two features worth noting.
layers. We depicted in Fig. 8 only an isolated 90' For spacing larger than LIt of about 2, there is
layer for better viewing. The steady-state energy essentially no interaction between the cracks and the
release rate for the cracks in the process of tunneling spacing is indeterminate by the present analysis.
can be obtained exactly from the strain energy For smaller spacings the ratio ilL increases approxi-
difference far behind and far ahead of the tunneling mately linearly with stress a, and the dependence
fronts as on the parameters c and Er/Em is largely captured

in the non-dimensional stress variable aI/V(,oF/i).
G~s° 2g\ - g ( (20) Implicit in the spacing relationship in Fig. 9 is

6 2f---• 2"\2L" the assumption that initial flaws exist in the 90'

1.5 _I I T

s/O. 0I/3 EL/E=I, bonded fibers

o'a/o'.=- 1/3 - -- -
------- (Pa,- 1/

b
,5 -- -- -- -

0 .5 6 1.5 2

Fig. If. An illustration of the effect of residual stress on overall stress-strain behavior.
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layers of sufficient size and density such that the I A= I E, + ET , . (21)
tunnel cracks will initiate when the steady-state h= & +h^=hK+ 2E-r E1 °A
condition is met. In this sense, the relation
between spacing and stress may predict somewhat Here h(Ef/Em, c, tiL) can be obtained from Fig. 7
smaller spacings at a given stress than actually once one has obtained the relation between t/L and

occurs. a as just described.
The calculations described above are now illus-

trated. In Fig. 10 plots are displayed of the normalized
4.2. Prediction of overall stress-strain relation ac- overall applied stress against the normalized overall
counting for progressive cracking strain for cases in which there is no residual stress. As

Let a be the overall stress applied to the composite noted earlier, the stress remains essentially unchanged
and suppose that a residual stress cR exists in the until the crack spacing reaches an Lit of about 2. This
uncracked 90' layers acting parallel to the applied corresponds to the flat portion of the stress-strain
stress. With a replaced by a + (EL + ET)aR/(2ET) in curves in Fig. 10. As Lit diminishes to small values
the non-dimensional stress variable on the ordinate in (below about 1/2) the 0' layers carry most of the load,
Fig. 9, the appropriate curve in this figure can be used leading to the linear response evident in the figure, with
to predict t/L as a function of a. Next, combine (14) (15) providing the asymptotic slope of these curves. A
and (17) to give the overall strain 4 as remarkable feature of these curves is the fact that the

(a) 2

1.5 Upper: EtIE.a=I, c=0.4

Lower: E/E/=3, c=0.4

bN

Ia '-

FEM results -- .-.- •

.5 Theoretical results

0
0 .5 1 1.5 2 2.5 3

t/L

(b)

*k X Upper: EWE.=f1, c=0.4
.8 1k

Lower: Et/E.•3, c=0.4

.8
,• "'~--- -- -- - -- '-----r--•---•-,--

.4
FEM results

Theoretical results

0
0 .5 1 1.5 2 2.5 3

t/L

Fig. 12. (a) Demonstration of the accuracy of explicit formula (39). (b) Demonstration of the accuracy
of explicit formula (41).
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non-dimensional overall stress and strain variables and for 0 plies
used in Fig. 10 nearly collapse all the curves for a eu I- i VLl -VT)

wide range of Ef/E1, and c. •, - .- =I -_ o) (28)
Figure It shows the effect of a residual stress aR in C A\E/ EL

the 90 layers, a positive value representing a residual
tension and a negative value representing a residual I -- vi
compression. The critical stress ao, used to normalize ct, = - -VL(l + VT) EL

-, = - ,+ (29
the residual stress in Fig. I1 is the stress at which cy EL EL
cracks begin to tunnel in all the layers in the absence
of any residual stress. From (13), this stress is Iý flu &+ IV Z-) Y . (30)cY' - c? x 2'UL

E . (22) The boundary conditions for a typical cell of the
ac g (E f. c, 0). doubly periodic problem are the standard ones

reflecting symmetry and the relations between the
This critical stress is between 5 and 10% higher than overall quantities and the averages of local quantities
the onset stress for tunneling of an isolated crack over the cell boundaries.
given by (12). In Fig. 11, a is the applied stress. To proceed, we assume that the stress component
Depending on its sign, the residual stress increases or a, in both plies is independent of x. In other words,
decreases the applied stress at which matrix cracking we look for an approximate solution of the form
occurs and makes a contribution to the overall strain or =_-F(y)+ a' (31)
due to its partial release. Y (

F(y) + a (32)

5. AN APPROXIMATE THEORETICAL SOLUTION where a' and a" are the stresses in the 90 and 0' plies,
respectively, that would result in a damage-free

S.1I. The theoretical development laminate subject to average remote tensile stress a.

In this section we shall develop an approximate They are given by
analytical solution to the doubly periodic plane strain
crack problem posed in Fig. 5(b). Except for a al= 2ET (33)
modification suggested at the end of this section, the ET + EL
approximation follows fairly closely a similar sol- 2 EL
ution in [8]. where it was developed to predict the all (34)
stress transfer between 0 and 90ý plies of a cracked
laminate. The solution in [8] applies to periodic We shall omit a detailed derivation for briefness;
cracks in a single layer sandwiched between 0' layers most of the details are similar to those given in [8].
on both sides. The following equilibrium equations After satisfying equations (23-25), (27), (28), (30)
must be satisfied in both 90ý (denoted as material I) exactly, equations (26) and (29) in an average sense
and 0' (denoted as material II) plies with respect to the x-direction, and satisfying all

the boundary conditions except those listed below
aa,+ c 0r2, in (36) and (37), we obtain the following linear

-+ - = 0 (23) integral-differential equation for F(y)

1F"-(y) - 2atPF "(y) + a' F(y)aav
dx+ 0 . (24)

ax 1 +ao F(y)dy =0 (35)

The stress-strain relations for plane strain here
conditions can be easily derived from (I). They are,
for 90- plies 15( Y v l- , ++L-)2

T EL a - +EL)o, (25)ex ýE (ZT-4Lt -} VL(V_ + /T
~~L~E EL~ EE,__

a l T /V VT- ,, -.VI - T 1•'~~~+L + -L':=- XL - o (6
)- (( (26 + (TE EL) (2) ET,

45u 1 V ( • I I L ELv
I, (e + at) T,, (27) a, - ZXTL- IE L

2 eY cx ýTET}\ETET EL E L
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TVL + VT) where

+n = ,a -al2

hat+ a"

A- E, EL For cases where a, al is equal to or greater than 1,

similar solutions can be obtained. However. for most

- .L. + --- 20 IL E practical fiber-reinforced composites, a. la, is either
r EL ETT L less than I or sufficiently close to I such that (42) is

a good approximation.

The remaining boundary conditions to be satisfied 5.2. Modificaton using the FEM results

are given by
The analytical approximation given by equations

F(O) = 0, F(L) = a', and F(L) = 0. (36) (39), (41) and (42) can be further enhanced by a slight

modification of 0 in (42), which was suggested by the
In addition, it is required that F(y) be an even comparison of the approximate predictions with the

function in y more accurate FEM results obtained in Section 3. We

F(y) = F(-y). (37) found that the accuracy of the above approximation
was improved when we replaced m and n is (42) by

The solution to (35) can be used to express the l.lm and l.in, respectively, and then multiplied 0

integral of F(y) as by the numerical factor of 0.82. Thus the modified
0 is given by

2(1- h)mn cosh 2.2mL 2 2nL\
0.82 - c - -cos (43)* mL2iimsn _ +l snh 2"2t

2.2nL 22mL 2hmnt/ 2.2mL 2.2nL'(3t.lm sin - + .n s+nh -( cosh s--

= I (38) Several comparisons of the results given by FEM

,F&y) dy = t (38) analysis and the explicit formulas of equations (39)
and (41) are demonstrated in Figs 12(a.b). The differ-

where 0 (which is also a function of a0 , a, and a 2) will ences for all practical ranges of E1/Em and c are within
be given below. The Young's modulus of the cracked 5%, and thus we believe the formulas given above are
composite, Ec, is then approximately well suited for practical applications.

- a &___(39_
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APPENDIX 
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When an initial residual stress oR exists in the 90' layers (a) (b) (c)
acting parallel to the applied stress, an additional overall Fig. AI. Superposition for obtaining eA due to the release
strain (A occurs due to the release of residual stress by the of residual stress.
formation of the cracks in the 900 layers. This additional
strain can be calculated by applying a normal stress of
(-OR~) to the crack surface. Figure A 1(a) depicts a quarter and the overall strain 4E in (c) is given by a uniform plane

of such a periodic cell, with standard symmetry boundary strain tension

conditions applied. By a linear superposition argument, one
can easily verify that the displacement and stress fields of I EL + ET

Fig. A 1(a) can be obtained by subtracting that in Fig. A l(c) (c = 00 2- rR. (A2)

from Fig. A I(b), where (b) has the same crack configuration

as (a), and (c) depicts the crack-free laminate. The elements The overall strain iA in (a) is then
in (b) and (c) are both subject to an average stress
(EL + ET)a/ 1(2F4). The overall strain 'b associated with (b) EL + - OR
is given by (14) 1 ___ 'A- 1) +_r _(A3)

1 EL+ET EL + ETR 24A 1)
E, 2, 2E4r E0 which is (16) given in Section 3.
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ABSTRACT

The operative damage mechanisms in a series of C matrix composites loaded in

tension and shear have been investigated. The composites contained either C-fibers or

Nicalon fibers, both with and without a carbon coating. The matrix consisted primarily

of ex-phenolic carbon with a final carbon layer introduced by chemical vapor

infiltration (CVI). Some composites have a high fiber/matrix sliding stress, T. In these

composites, failure is characterized by localized fiber pull-out. Other composites have a

low T. Failure of these materials is characterized by stochastic fiber failure with a diffuse

fracture surface. The operative damage mechanisms have been identified and used in

conjunction with available models to rationalize composite performance in terms of

constituent properties(fiber, matrix, interface). The properties emphasized include the

inelastic strain, as well as the ultimate tensile and shear strengths.
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1. INTRODUCTION

Carbon matrix composites represent an important class of high-temperature

structural material.1-5 Such composites, reinforced with either C or SiC fibers, have

mechanical characteristics that exhibit both similarities and differences to ceramic

matrix composites (CMCs), such as SiC/CAS and SiC/SiC.6-10 In tension, the C matrix

materials have minimal non-linearity, whereas CMCs exhibit considerable inelastic

strain associated with matrix cracking and interface sliding9-11 (Fig. la). This strain

initiates at a stress,12-14 amc, appreciably below the ultimate tensile strength15 (UTS). In

shear, the C matrix materials experience substantial inelastic deformation at relatively

small strength levels and are relatively ductile 10 (Fig. 1b). The shear strengths of CMCs

are larger but the ductilities smaller.

Related responses occur upon tensile loading in the presence of notches. In C

matrix materials bands of localized shear damage form and extend parallel to the

principal loading direction 5 (Fig. 2). These "shear bands" redistribute stress and

diminish the notch sensitivity of the material.5 In CMCs, tensile matrix cracking is the

preferred damage mode which dominates stress redistribution at notches. The

differences in behavior found between the CMCs and the C matrix materials have been

attributed to differences in matrix modulus, Env relative to that of the fibers, Ej. 5 ,9 For

most CMCs, Er/E1 is in the range, 0.3 -- 2; whereas for C matrix material, Era/E < 0.19

(Table I).

While the damage mechanisms and their role in stress redistribution have been

extensively studied and modelled in CMCs, 9 ,16 the corresponding mechanisms

operating in C matrix composites are not appreciated. The limited knowledge about

stress-induced damage reflects, in part, the experimental challenge in detecting damage

and separating such damage from processing flaws. The current article addresses this

3



issue by devising and applying experimental procedures for detecting and

characterizing processing flaws and distinguishing them from mechanically-induced

damage.

2. MATERIALS

The materials to be used in this study, consisting of both C/C and SiC/C, have

been described in previous studies4,5 (Table I). Briefly, the composites contained either

C-fibers or Nicalon fibers, both with and without a carbon coating. The composites are

2-D materials with an 8-harness satin-weave fiber architecture surrounded by an ex-

phenolic carbon and a final carbon layer introduced by chemical vapor infiltration

(CVI). The fabric layers are positioned back-to-back and front-to-front, yielding a

composite cross-section that resembles a laminate of 0' fiber plies and 900 fiber plies,

with an occasional interply weave bundle (Fig. 3a). For simplicity, the following

nomenclature will be used throughout:

(1) 00 fiber layer or ply-a ply that consists primarily of 0' fibers. In tension, 0* fibers

lie parallel to the tensile loading axis, and

(2) 90 "fiber layer or ply-a ply or layer of fibers that lies perpendicular to 00 plies.

However, it must be appreciated that this is not a 01 - 900 laminate: there are occasional

intrusions into all 'plies' by the weave bundles.

3. MECHANICAL MEASUREMENTS

A range of mechanical tests (described elsewhere4 ,6'8,16) have been performed in

order to activate all of the potential damage mechanisms that operate in C matrix

materials. The tests performed include tension (un-notched, notched, center-hole and

4



center-crack) and Iosipescu shear. Additionally, flexural tests have been performed and

observed in-situ in an optical microscope to monitor damage evolution on the tensile

surface.

The stress/strain characteristics obtained with each of these tests re-affirm that

C matrix materials are readily susceptible to inelastic deformation in shear, but are

essentially linear in tension (Fig. 1). Moreover, there is a substantial property difference

between the two SiC/C materials. These are designated HT and LT. This notation refers

to the interfaces, which have high shear resistance (WT) and low shear resistance (LT),

respectively (Table I). The difference is governed by the fiber coating. The HT material

has the lower tensile strength and seemingly fails from notches by the growth of a

dominant mode I crack.5 The LT material has a high tensile strength and develops

"shear bands" from notches that redistribute stress and cause large notch opening

displacements prior to failure.5

4. DAMAGE CHARACTERIZATION

4.1 Procedures

The experimental methods devised for damage characterization in C matrix

composites have been elaborated separately. 17 They are briefly reviewed here. The

methods are based on both optical and scanning electron (SEM) microscopy, using

either ion etching or penetrants to highlight and distinguish the damage. Diamond

polishing followed by ion etching has been shown to generate surfaces that are

representative of the state of the material, without further damage being created by the

surface preparation procedure. The penetrant approach relies on the use of ZnI, which

infuses the damaged regions and highlights them upon backscatter imaging in the

SEM.4,5,18
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A vital feature that distinguishes processing flaws from stress-induced damage

arises because of the final chemical vapor infiltration (CVI) step used in the composite

processing sequence. This step deposits a 3 - 10 gm thick C layer onto the surfaces of all

accessible porosity and processing flaws. 17 This layer is comprised of oriented columnar

grains with the carbon basal sheets running parallel to the local deposition surface. This

layer can be distinguished by polarized light microscopy (Fig. 3b).

It has been found that damage observations are more readily performed on SiC/C

than C/C because of the contrast between the fibers, the matrix and the interfacial zone.

The contrast enhancement of the former, in optical microscopy, is attributed to the

optical isotropy of Nicalon fibers as opposed to the high optical anisotropy of

graphitized C fibers and CVI carbon. Most of the observations and analyses are

performed on the SiC/C composites, but the general implications are considered

relevant to C/C composites.

4.2 As-Processed Flaws

The as-processed composites display two major types of processing flaw (hereafter

referred to as "processing damage"): transply shrinkage cracks and interfiber axial

porosity. (i) Transply shrinkage cracks with opening displacements of -10-30 g•m are

located periodically within the plies (Fig. 3b). These usually extend fully across the ply,

but do not penetrate adjacent plies.17 There is no obvious spatial correlation between

shrinkage cracks in alternating plies. Such cracks are delineated by the CVI surface

layer, as noted above. (ii) Interfiber axial porosity is prevalent in regions between

individual fibers within a ply (Fig. 3c). These pores are often circumvented by the CVI

layer. Both types of processing damage are attributed to matrix constraint, caused by

the fiber preform, during pyrolysis of the phenolic precursor used for the matrix.
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4.3 Stress-Induced Damage

4.3.1 Tensile Loading

Studies performed on SiC/C composite specimens subject to tensile loading

indicated minimal stress-induced matrix damage within the 0' plies prior to fiber

failure. Such behavior is markedly different from CMCs,6-9 which exhibit multiple

matrix cracking at stresses well below the UTS. The role of the modulus ratio, Em/Ep,

on this difference in behavior is discussed below.

The following observations were made after testing the composite to failure in

tension. (i) The fracture surface of the HT material displayed nearly co-planar fiber and

matrix fracture with some fiber pull-out (Fig. 4a). Conversely, the fracture surface of the

LT material had an irregular appearance, with a wide variation in matrix failure

location (Fig. 4b). (ii) The coating on many of the fibers in the LT material exhibited

sawtooth 'cracks' extending away from the fiber fracture surface, along the length of the

exposed fiber (Fig. 5). Similar features were not apparent in the HT material. (iii) In both

composites, the fibers had multiple fracture sites along the length of the specimen, with

residual opening displacements (ROD). In the LT material (Fig. 6a), the ROD was

relatively large, implying that fiber/matrix interface sliding had taken place.

Conversely, in the HT material, the ROD was small, indicating minimal sliding (Fig. 6b).

There were also matrix cracks associated with some of the fiber fractures in the HT

material.

In-situ observations of the tensile surface of a sample loaded in flexure revealed

additional differences between the LT and HT materials. The LT material appeared to

be free of matrix cracking in either the 0' or 900 plies, but there was considerable 00 fiber

failure at stresses below the UTS, at essentially random locations (Fig. 7a). Conversely,

the HT material exhibited periodic stress-induced matrix cracks in the 90* plies at loads
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exceeding - 0.7 amax. These cracks formed normal to the tensile loading axis and

partially penetrated the 00 plies, causing subsequent fiber fractures (Fig. 7b).

Observations of the transply processing flaws upon loading also resolved

important distinctions between the two materials. In the LT material, these flaws open

uniformly as the load is applied. The opening increases with load such that, just prior to

failure, the increase in opening displacement approaches -3pnm. Conversely, in the HT

material the openings are much smaller (-0.1 ý,m) and essentially elastic in nature. The

openings that occur in the LT material imply relative sliding displacements between the

00 and 900 plies, with a characteristic shear resistance, designated rp (Appendix). It has

not been possible to identify the mechanisms that allow these displacements to occur.

However, the matrix between the fibers at the ply interface must experience

microcracking. It is presumed that the behavior is similar to sawtooth cracking (Fig. 5)

which is typical of Mode II crack growth in brittle materials 2 5 .

4.3.2 In-Plane Shear Loading

Observations made on SiC/C specimens after in-plane shear loading indicate modes

of damage that differ from those found in tension. In the LT material, multiple small

cracks formed in the coating and the CVI layer between the fibers and the matrix

(Fig. 8a). These cracks were oriented at - 15* - 450 to the fiber axis and connect to the

axial porosity (see Fig. 3b). The range of crack angles is attributed to the variation in the

preferred alignment of the carbon next to the fiber.17 At locations having the lower

cracking angles, the carbon layers are well-aligned along the fiber axis. When the

resolved tensile stress exceeds the carbon interlayer strength, cracks initially extend on

these layers parallel to the fiber axis. During fiber sliding, these cracks 'rotate' and

increase their inclination with respect to the fiber axis. Alternatively, where the cracks

form at angles of - 450, the carbon is found to be more isotropic. 17
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In matrix dominated regions, relatively large, periodic matrix cracks occur in both

the LT and I-IT materials (Fig. 8b), oriented - 450 to the loading axis. 10

4.3.3 Notched Tension

Observations of SiC/C specimens after notched tensile loading revealed combined

damage modes, similar to those found in the unnotched specimens. Namely, sawtooth

coating damage and variable fiber failure planes in the LT material. Shear damage was

also evident, especially in the LT material, similar to that found on the shear specimens.

The damage consists primarily of multiple microcracks in the coating and CVI layer

around the fibers, as well as 450 matrix cracks in the matrix-dominated region (Fig. 8).

5. ANALYSIS

5.1 Tension

The inelastic strain and the damage obtained upon tensile loading are addressed by

analysis of the two contributions: fiber failure and matrix cracking. Multiple fiber failure

subject to interface sliding produces inelastic strains. When these failures occur in

accordance with global load sharing15 (GLS), subject to interface sliding at stress -T, the

uniaxial stress-strain a (C) relationship is;23

a/fSC (EfE/S1)[l +1(-1)' 2+n(m+l) (1) Z/+J
S2n! l+n(m+l)

where Sc is the characteristic fiber strength and m is the shape parameter. 15 Upon using

the values of Sc and m obtained independently, from fracture mirror measurements4 ,5

(Table I), the stress-strain curves predicted by Eqn. (1) have been calculated and

superposed onto the experimental curves (Fig. 9). For this purpose, the initial modulus
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has been matched to the experimental value and it has been assumed that all of the load is

carried by the 0 0 plies. It is evident that the inelastic strains are well-represented by

predictions based on stochastic fiber failure, with interface sliding. It is also apparent

from Fig. 9 that the ultimate tensile strength (UTS) of the LT material is predicted with

good accuracy by Eqn. (1), consistent with the operation of GLS in this material.4

However, the UTS for the HT material is substantially less than the predicted value.

This material violates GLS, as noted previously,4 and as elaborated below.

Matrix cracking is subject to lower bound values of stress. For the 00 plies, this

bound, designated amc, is given by:12-14

"6-rFf2E E2 A

OYC = (1-f)E2R J - (2)

where 1m is the matrix fracture energy, f the fiber volume fraction within the plies,

Tr the interface sliding stress, R the fiber radius, aT the misfit stress, Ef the fiber

modulus, Em the matrix modulus and EL the longitudinal ply modulus. In practice,

matrix cracks develop at stresses in the range (1 -+ 2) G•mc. 20 The corresponding result

for the 900 plies is22

O, = [ErF/hg]P -- aR(EL + ET)/2ET (3)

where Er is the transverse Young's modulus, E is the composite modulus, h is the ply

thickness, aR is the residual stress in the plies and g is a function that depends on f,

Ef/Em as well as the interface bonding (Fig. 10). When the interface is weak and

debonds readily as transverse loads are applied, g is relatively small and the matrix
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cracking stress az is large. Conversely, when the interface has high transverse strength

and remains intact upon transverse loading at is considerably smaller.

Inspection of Eqns. (2) and (3) indicates that the matrix cracking stresses must be

relatively large for C matrix composites because Em is small (- 20 GPa). Moreover, for

polycrystalline graphite, rm is usually quite large (rm > 102 jm' 2).21 These constituent

properties signify large values of amc (Eqn. 2) of order 1 -+ 2 GPa, consistent with the

absence of stress-induced matrix damage in the 00 plies.

A major difference in the incidence of 900 ply cracking between the HT and LT

material is rationalized by eqn. (3). The interface in the LT material is 'weak' and prone

to debond upon transverse loading, consistent with the small sliding stress, r (Table I).

Conversely, the interfaces remain attached in the HT material, having the larger c. This

difference is manifest in the magnitudes of ar predicted by eqn. (3), upon assuming that

aR - 0. For the HT material with attached interfaces, ar = 150 MIa. For the LT material

with separated interfaces, a;. = 300 MPa. These values are in accordance with the

observations of cracking which occurs in the HT material below the UTS, whereas

cracking is absent in the LT material.

Another phenomenon supresses 900 ply cracking in the LT material. Sliding

displacements along the ply interface that emanate from the transply procesing flaws

reduce the stress in the 900 plies over zones - 250 gm in length (Appendix). Within

these slip zones, the stress in the 900 plies is substantially lower than that generated by

the external load.

Two factors remain to be addressed: the mechanism that governs interface sliding

and the differences in UTS between the LT and HT materials. Sliding in the LT

materialappears to occur between the coating and matrix. It is speculated that the

carbon coating on the fibers is oriented such that debonding and sliding are facilitated.

In consequence, T is relatively small. By contrast, the coating layer is absent in the HT

material, resulting in a larger T because the matrix and/or particulates interact with the
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fibers and inhibit sliding. However, it has not yet been possible to predict T from the

constituent properties. A new sliding model would be needed for this purpose.

For the LT material, the UTS has already been shown to conform with GLS

predictions. 4 Such behavior is consistent with the absence of matrix damage and the

low sliding stress. The lower strength found in the HIT material was previously

attributed to a violation of GLS, because of the large T. The present observations

provide a possible mechanism: matrix cracking at fiber failure sites (Fig. 7b). It is

supposed that these cracks extend across the 00 plies and cause simultaneous fiber

failure, resulting in a pull-out dominated UTS which is lower than that expected when

GLS applies.9

The consistent interpretation of the tensile properties, based on fiber failure with

sliding interfaces, provides an opportunity to predict changes in the UTS. This

capability is provided by Eqn. (1). However, real progress is still impeded by two

factors. (i) The absence of a fundamental model that relates sliding to the constituent

properties. (ii) The incidence of a fiber failure mechanism change from GLS to pull-out

as "C increases.

5.2 Shear

Inelastic shear deformation in brittle materials proceeds by the formation and

evolution of en echelon microcracks 24,25 (Fig. 12). Models of the growth of this

microcrack array predict a maximum shear resistance, T. (Fig. 12), given by;25

TC = 1J TRGm/h (4)

where IR is the fracture energy for the layer, Gm is its shear modulus, h is the layer

thickness and f is a coefficient between 1 and 1.5. The in-plane shear strength measured

for SiC/C ('ts 100 MPa) refers to a layer thickness, h = 2 Jitm (Fig. 8a) and a matrix
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shear modulus, Gm- 8 GPa (Table I). Hence, the measured shear strength would be

compatible with eqn.(4) for a fracture energy, IR - 10 Jm- 2 . This fracture energy is

much smaller than the macroscopic fracture resistance of graphite. 21 However, it may

be reasonable for small microcracks in a thin C layer. Indeed, it is of the same order as

the mode U debond energy measured for C fiber coatings in SiC/SiC composites.9 It

remains to be explained why the mode II crack is confined to the thin CVI C layer.

5.3 Notch Properties

Tensile loading in the presence of a notch results in "shear bands" normal to the

notch, as elaborated elsewhere.5 These bands arise because of the relatively low ratio of

the shear-to-tensile strength (Fig. 1). The shear deformation mechanism, based on en-

echelon microcracks described above, operates within these bands. An important

function of the shear bands is their role in stress redistribution, whereby a shear

induced reduction in tensile stress concentration at the notch tip results in a relatively

high nominal fracture toughness. 5

The present observations indicate that the failure from the notch in the presence of

a reduced stress concentration (due to "shear bands") is also preceded by stochastic

fiber failure in the 0' plies. This mode of damage is accompanied by inelastic strains

(Fig. 9) which must further redistribute the stress. A complete failure model would need

to account for these additional effects and ascertain the critical event that causes

eventual rupture.

6. CONCLUDING REMARKS

The microstructural and damage observations conducted in the present study have

provided a basis for rationalizing the inelastic deformation behavior of a class of ex-

phenolic C matrix composites in both tension and shear. In tension, the stochastic
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failure of fibers with sliding interfaces dominates, with virtually no contribution from

the matrix. By contrast, the in-plane shear properties appear to be dominated by the

coating and CVI layers between the fiber and the matrix, with the fibers having a

secondary influence. In consequence, the tensile and shear behaviors have no direct

interdependence through the constituent properties. Such behavior is in contrast to that

found in typical CMCs, wherein the matrix, the fibers and the interface have important

interrelated influences on both the tensile and shear behaviors. 6-10

Various models for the inelastic strain, the UTS and shear cracking are consistent

with the measured behavior. Such consistency assists in the rationalization and

interpretation of the observed behavior. However, a predictive capability has yet to be

conceived, because there is no fundamental basis for several of the parameters used in

the model, such as the sliding stress " and the shear crack width, b (Fig. 11).

The notch properties are generally explicable in terms of the tensile and shear

behavior, as elaborated elsewhere. 5 The basic effect concerns the influence of shear

bands on stress redistribution ahead of the notch (Fig. 2). However, a detailed

understanding would require an additional level of sophistication that includes the

influence of fiber failure and pull-out at the notch root on the redistribution of stress

and the failure criterion.
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Appendix

Influence of Interply Sliding on Stress Redistribution

In the LT material, interply sliding has been inferred from the opening

displacements exhibited by the transply processing flaws. If these displacements occur

subject to a uniform shear resistance, tp acting along the ply interfaces, a simple shear

lag analysis gives the stress redistribution. The stress az in the 90' ply near the flaw is

(Fig Al),

"•pZ
h (AW)

where z is the distance from the flaw. The increase in opening displacement, u*, of the

flaw is then

* f -z dz
0 T

- P 1

ETh

(A2)

where e is the sliding length. Furthermore, equilibrium relates f to the remote stress in

the 900 plies, designated OT, by

e - 0Th

P 
(A3)

Combining eqns (A2) and (A3) gives

"Cp= 0. h
E T*
ETU* (A4)
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and

ET (A5)

where r is the applied strain. Inserting measured values of u* at failure gives p = 60

MPa and f - 250 pm. This value of rp is similar to that found for the in-plane shear

strength, 'rs, in the LT material (Table I). The value of t corresponds to the approximate

spacing between transply shrinkage cracks in a given ply.
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TABLE I

Constituent Properties of Carbon Matrix Composites

Fibers Matrix Elastic Moduli (GPa) Sliding In-Plane
Stress, Shear

"t (MPa) Strength,
f Gs(MPa)

Nicalon LT 200 84 10±5 80

HT 90 ± 20 120

Carbon X 35

Y 230 5 40

Em= 20 GPat

Sc = 2.3 GPa(LT), 2.5 GPa(HT)4

m=4.54

t Manufacturers information.

: A value of 20 GPa is consistent with values reported for ex-phenolic carbon.26
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FIGURE CAPTIONS

Fig. I a) Tensile stress-strain curves for several CMCs, compared with those for
C matrix composites.

b) In-plane shear stress-strain curves.

Fig. 2. A schematic of shear band formation from a notch in C matrix composites

showing calculated effects of the shear band, on the stress distribution ahead
of the notch. A radiograph of damage induced upon tensile loading of notched
sample is also shown.

Fig. 3. a) Optical micrograph of a SiC/C composite cross-section showing the ply

designation.
b) A polarized light optical micrograph showing the CVI layer on a transply

shrinkage crack.

c) Interfiber axial porosity present after processing.

Fig. 4. Fracture profiles of SiC/C materials HT and LT after tensile test to failure.

Fig. 5. Sawtooth damage found in the LT SiC/C composite within the CVI carbon

layer, after tensile testing to failure.

Fig. 6. Fiber fracture at regions away from primary composite failure plane. Residual
opening displacement in HT(a) and LT(b) after testing to failure in tension.

Fig. 7. a) Optical micrograph of LT SiC/C material at 0 > 0.70max showing random
fiber fractures with no matrix cracking.

b) 900 matrix crack in the HT SiC/C material extending into 00 plies causing
subsequent 0' fiber fracture at (3 > 0. 7 0max.

Fig. 8. a) In-plane shear loading multiple microcracks found within the coating and

CVI layer in the LT SiC/C composite.

b) 450 matrix cracks formed in the matrix-rich regions of in-plane shear
sample (Photo courtesy of F.E. Heredia).
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Fig. 9. A comparison of the tensile properties measured for the SiC/C composite

(Fig. 1) with curves predicted for a stochastic fiber failure model, with interface

sliding (Eqn. 1): a) LT material b) HT material.

Fig. 10. Effects of elastic properties and fiber volume fraction on the lower band shear

for tunnel cracking across the 900 plies.

Fig. 11. A schematic of en-echelon microcracks associated with the inelastic

deformation in brittle materials.

Fig. Al. A schematic of slip occuring at the ply intefaces which causes transply

shrinkage crack (TSC) opening when tensile loads are applied.
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UNCOUPLED AND COUPLED APPROACHES

TO PREDICT MACROCRACK-INITIATION IN

FIBER REINFORCED CERAMIC-MATRIX COMPOSITES

by

Frangois HILD, Per-Lennart LARSSON, and Frederick A. LECKIE

Abstract: Localized fiber pull-out is one of the fracture features of fiber reinforced ceramic

matrix composites. The onset of this mechanism is predicted by using Continuum Damage

Mechanics, and corresponds to a localization of the deformations. After deriving two

damage models from a uniaxial bundle approach, and criteria at localization, different

axisymmetric configurations are analyzed through two different approaches to predict

macrocrack-initiation.
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1. Introduction

To achieve the new goals of high performance structures, Ceramic Matrix Composites

(CMC's) become a suitable candidate, especially when the elements are subjected to high

mechanical and thermal load historiesl. Indeed, their low density combined with high strength and

good performances at high temperature are appealing features. For example, in the design of the

new generation of jet engines, CMC's will be used in the combuster, the turbine disks and the

nozzle section .

In this paper we will focus our attention on rotating parts, i.e. an element in the turbine

stages where angular rotation induces mechanical loading. To simplify the analysis, we will

consider axisymmetric structures. The structures are assumed to be reinforced by fibers in the

circumferential direction. The main goal of this paper is to predict the initiation of a macrocrack in

the structure, which often constitutes the early stages of the final failure by fracture of the structure.

Starting from a material which is assumed free from any initial macro defect, the initiation can be

predicted using Continuum Damage Mechanics (CDM). In this paper we will neglect the matrix

cracking process. This degradation takes place at an early stage of loading and often does not lead

to final failure of a structure. Matrix cracks gradually develop as the load level increases. They

usually saturate because of the shear effects induced by the interface between fibers and matrix2 .

The results presented herein are valid when the steady matrix stress 3 is less than the ultimate

strength of a fiber reinforced composite4. When that hypothesis is satisfied, the key mechanism

leading to final failure is fiber breakage. The fiber breakage mechanism is accompanied with a

distributed fiber pull-out; a broken fiber pulls out of the matrix and involves shear stresses along

the interface to recover its original load level. This mechanism distinguishes the behavior of fiber

reinforced CMC's from a classical fiber bundle behaviors. From a design point of view, it is

interesting to evaluate their differences especially in terms of load levels.

The degradation mechanism will be described by an internal variable called damage. In
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the framework of CDM, the initiation of a macrocrack corresponds to a localization of the

deformations, which corresponds to the onset of a surface across which the velocity gradient is

discontinuous. Physically, it corresponds to localized pull-out, whereby one macrocrack develops

and pull-out continues to evolve in the vicinity of that macrocrack only. This phenomenon leads to

a different behavior as compared to the homogeneous solution for which damage is still evolving in

a diffusive manner. Under small deformations assumption, localization is mainly driven by the

damage mechanism that causes strain softening6 .

In Section 2, the main results concerning loss of uniqueness and localization will be

recalled. In particular a property giving a necessary and sufficient condition of loss of uniqueness

and localization will be proven and will be applied in Section 3. Section 3 deals with two

constitutive laws modeling fiber breakage. The condition of localization and loss of uniqueness

will be studied and general criteria may be derived using the property given in Section 2. Section 4

presents two strategies to predict the initiation of a macrocrack. The first one, which is referred to

as fully coupled approach consists in calculating the stresses and strains evolution in elasticity

coupled with damage; therefore the damage evolution is fully coupled with the evolution of the

stresses and the strains. On the other hand, the second approach, which is referred to as decoupled

approach and which is an easier calculation more amenable to design consists of an elastic

computation and the use of the failure criterion derived from the localization analysis in Section 3.

The difference between the two approaches are analyzed. The results in terms of loads at

localization are also compared to the corresponding cumulative failure probability when the

structure is assumed to be made of a brittle material.

2. Localization and Loss of Uniqueness

2.1. General Theory

The failure at a meso-level, which corresponds to the initiation of a macrocrack, is defined
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as the bifurcation of the rate problem in certain modes, viz. the appearance of a surface across

which the velocity gradient is discontinuous 7. This phenomenon is referred to as localization, and

corresponds to the failure of the ellipticity condition8 . The condition of localization can also be

compared to the loss of uniqueness of the rate problem.

Stationary waves were studied by Hadamard 9 in elasticity, by HillI and Mandel11 in

elasto-Plasticity. Rice 12 related the localization of plastic shear bands to jumps of the velocity

gradient. Borrf and Maier13, who extended the results given by Rice12 and Rice and Rudnickil4-

15, have given necessary and sufficient conditions for the onset of modes inside the body.

Under small strain assumption and in elasticity coupled with damage, the behavior of a

material is assumed to be described by the following piece-wise linear rate constitutive law

0 0

E. E if D = 0

where • and i respectively denote the stress and strain rates, B and H are fourth rank tensors, B

is assumed to be positive definite, and D is either a single damage variable or a set of damage

variables. Localization occurs inside the body, if and only if3"14

Det (n.H.n) = 0 for any vector n-O and at any point inside a structure a (2)

This criterion corresponds to the failure of the ellipticity condition of the rate equilibrium equation;

it also can be used as an indicator of the local failure of the material, at a meso-scale7.

Furthermore, any loss of uniqueness, considered as bifurcation of the rate boundary value

problem, is excluded provided the operator

's½ (H+HT) (3)
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is strictly positive definite everywhere within the structure. This condition is equivalent to the

condition of hardening

S>(4)

Eqns. (2) and (3) show that the quantity that defines loss of uniqueness and localization is the

linear tangent modulus H. In the following, we analyze loss of uniqueness and loss of ellipticity

(i.e. localization) for states when

S11 = a E22 with a e R (5)

E12 = 0

The parameter a is referred to as strain ratio. These particular states only are considered since the

computations will deal with shear free states. These states lead to a tangent modulus that rakes the

following form

H 1111 H1122  0
H= H2 21 1 H2 2 22  0 (6)

0 0 H 12 12

For problems under hypothesis (5), the non-vanishing components of vector n are ni and n2, and

the matrix A = n.H.n reduces to 16

f 2 2
n1 Hlll+n2 H1212 nln2(H1212+H1122)

A =(7)
2 2 Jnln2(H1212+H221) n 1H1212+n 2H22 22
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We rewrite (nl,n2) = (cosO,sin@), let X be equal to tan2e, and let Y be equal to I/X. The

localization condition (Eqn> (2)) can be written in terms of X or Y

aX 2 +bX+c=O , a•0 (8.1)

cY 2 +bY+a=O c*O (8.2)

with

a = H12 12H2222 (9.1)

b = H11 11 H2222 - HI 122H 2211 - H1 122H12 12 - H22 11H12 12 (9.2)

c = H12 12HIIII (9.3)

If real positive roots are found, then the localization direction is perpendicular to the vector

(ni,n2,O) = (cosO,sinO,O), characterized by the angle 0 (Fig. 1). The values of Hi Ii1, H2222,

HI 122, H2211 and H12 12 are model dependent.

2.2. Necessary and sufficient Condition at localization

A necessary and sufficient condition at localization and loss of uniqueness will be derived

under the following conditions. Let us assume that H1122 = H2211 = vH 2222 (v < "f2), that H1111

and H12 12 are positive numbers and that H22 22 can become negative. This condition will be

satisfied in the models used later. It can be seen from Eqns. (3) and (6) that there is no loss of

uniqueness provided

X> 0 (10.1)

where
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2).= H1111 -H 222 2 + I- I I I - H2222)2 + 2v 2 (H2 22 2)2  (10.2)

Furthermore, it can be noticed that when H2222 is equal to zero then X is equal to zero (loss

of uniqueness) and that the coefficients a, b, and c of Eqns. (8) reduce to

a =0, b = 0, c = HIIII H 1212 > 0(11)

Localization occurs since it is possible to find Y satisfying Eqn. (8.2): Y = 0, and the localization

direction is given by 8 =-t/2. Therefore a sufficient condition of loss of uniqueness and

localization is that H2222 be equal to zero.

Since localization corresponds to a particular mode of all the solutions after loss of

uniqueness, it suffices to show that H2222 equal to zero is a sufficient conditic for loss of

uniqueness. Using the triangular inequality, we have

2 - v 22
2 H2 2 2 2 <X (12)

Loss of uniqueness corresponds to X equal to zero, and therefore H2222 !5 0. Since it has been

shown that H2222 equal to zero is sufficient to define localization and loss of uniqueness, we have

the following property:

a necessary and sufficient condition to have localization and loss of uniqueness is H2222 equal to

zero. The angle at localization is equal to Vr2.

Conversely, bnder the conditions H1 122 = H22 11 = VH1 lll (V < --2), H22 22 and H12 12 are

positive numbers and HI II1 can become negative, a necessary and sufficient condition to have

localization and loss of uniqueness is HI I I I equal to zero. The angle at localization is equal to 0.

The proof is the same as previously when studying Eqn. (8.1).
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3. Constitutive Laws

This Section is concerned with the development of two constitutive laws in the case of

CMC's reinforced in one direction. Since these models will be used to study spinning structures,

we choose a cylindrical coordinate system (r,q) as shown in Fig. 2a. We assume a plane stress

hypothesis. The fibers are assumed to be in the hoop direction, and the two analyzed geometries

are a disk of outer radius a, and a ring of outer radius a and inner radius b (a = 2b) shown in Figs.

2b and 2c. We let (o denote the angular rotation speed. Since the structure, the boundary conditions

and the loading are axisymmetric, the problem is axisymmetric, and the only non zero stresses are

related to the corresponding strains by17

=frr- E - {Err+Vr9 (1-D¢p)kE}) (13)k[ (1-V (Il-Dý)lk}

o70-=1 E-(1-D(P)- (S-W+Vr(rr) (14)

r9 (DP)k

where Eq, denotes the Young's modulus in the hoop direction, VrP denotes the Poisson's ratio, k

denotes the ratio of the Young's modulus in the fiber direction (Eq) to the Young's modulus in the

radial direction (Er), and Dp denotes the damage variable modeling the fiber degradation. The

damage variable can be defined as percentage of broken fibers 17"19 . The percentage of broken

fibers is given by the corresponding cumulative failure probability which will be modeled by a

Weibull expression2". A first expression of the damage variable can be obtained17 by extending a

study of a fiber bundle to 2D configurations, and will be referred to as model No. 0

D) rI [ (V (P if&M > 0andS4€p>0 (15)

rD I -(-D -fao f>
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where m and (To are the shape and scale parameters of a Weibull law, r0 is the corresponding gauge

length, r is the fiber radius (since the fiber length is 27tr), and f is the volume fraction of fibers in

the hoop direction. This first expression corresponds to a generalization the behavior of a fiber

bundle in the hoop direction embedded in a matrix. This means that if a fiber breaks, then it will

not be able to carry any load (i.e. no distributed pull-out takes place), and therefore this model

constitutes a lower bound of the expected behavior of the composite.

On the other hand, it has been proven 2' that due to distributed pull-out, the evolution of

fiber breakage is not dictated by the total length of the fiber (here 2nr), but by the length over

which the tensile stress field recovers its original level. Using a shear lag approach22 23 with

constant interfacial shear stress r, this length, also called recovery length, Lre, is given by (Fig. 3)

LM=RT (16)IT

where R is the fiber radius, T is the tensile stress in the unbroken fibers. In this case, the relevant

length to consider is the recovery length Lrec. By equilibrium considerations, the tensile stress T is

related to the external applied stress a• by

fT (17)(t-D•)

Therefore, instead of r in Eqn. (15), we will consider Lr=. We then end up with a second type of

damage evolution, which will be referred to as model No. 1

exp_{DI-{ , +} } if C" > 0 and 4P > 0 (18.1)

where the expression of the scaling 01 stress is given by
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I/m+r

(18.2)

This stress has been previously used by Henstenburg and Phoenix24 , and by Curtin25 and is

referred to as characteristic strength. It can also be noted that this expression is valid under a global

load sharing hypothesis, i.e. when a fiber breaks then the load it was carrying is distributed to all

the unbroken fibers.

With these two models the ultimate tensile strength in the fiber direction is given by

( ro I/m
S = f ro O mr) for model No. 0

a(M¢ =Y IT =/ (19)
f L I (G(re+1)) for model No. (

It is worth noting that the ultimate tensile strength in the fiber direction does depend on the fiber

length for model No. 0, whereas it is independent of the fiber length for model No. 1. Eqn. (19)

shows that the characteristic strength al corresponds to the scaling stress of the ultimate tensile

strength in the fiber direction. In particular, this result shows that the ultimate strength is

independent of the total length of the fiber. Instead it depends on the recovery length at the

ultimate, which is proportional to the characteristic length25 L1 - R (71 / T. Furthermore, in this

paper only the fiber breakage mechanism is taken into account since it is the most important

mechanism compared to the pull-out mechanism in terms of the contribution to the stress levels21 "

26-27. The damage level at the ultimate tensile point is given by

I- exp(1"- for model No. 0

D, = Dc (20)

11 exp i+-l for model No. 1
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In both models it can be noticed that the percentage of broken fibers at the ultimate tensile point

(Dc) is independent of all material parameters but the Weibull modulus 17 .

For both models the tangent operator H takes the form

F F F( )
S= 2(21.1)

1 +FsF(i)5 3
F

= ((21.2)H 1qq +FsF0i)

5 3
Hrrp = Hqpprr = Vrtp H(p90 (21.3)

Hrcprp = 2 Gr 9 > 0 (21.4)

where Grcp corresponds to the shear modulus of the composite (assumed to be constant), the

explicit expressions for Fj are given in Appendix 1; the superscript (i) refers to either model No. 0

(0) or to model No. 1 (1). It is worth noting that all conditions presupposed in the property derived

in Section 2 are satisfied. Furthermore, it is easily seen that when Dp is equal to Dc then F(i) tends
3

to infinity, and thus Hqpp vanishes. On the other hand, Hrrrr and Hr(Pro remain positive.

Consequently, localization and loss of uniqueness occur if and only if

Dq = Dc (22.1)

0 = CYu (22.2)

These two criteria are easier to compute than the general criteria of localization and loss of

uniqueness. Moreover, the criterion refers to a maximum critical stress which does not need a

computation when elasticity is coupled with damage. Indeed, an elastic computation can use

criterion (22.2), whereas a computation where elasticity is coupled with damage can use both

criteria. Therefore a post-processing approach described by Lemaitre28 is not necessary, in this

particular case, since criterion (22.2) does not refer to damage variables. On the other hand, as it
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will be shown in the next Section, the damaged zone is not small compared to dimensions of the

structures. Therefore a locally coupled approach 28 is not very interesting in this particular case.

It is also worth noting that criteria (22) are independent of the strain ratio a (5) and

therefore the knowledge of the ultimate tensile strength is particularly crucial. The angle at

localization is equal to nt/2, i.e. perpendicular to the fiber direction (Fig. 4a).

If the fibers are in the radial direction, then using the corollary of the property derived in

Section 2, we find that localization and loss of uniqueness can be characterized by

Dr=Dc (23.1)

cyrr = (Yu (23.2)

where Dr denotes the damage variable modeling the degradation of the fibers in the radial direction.

The angle at localization is equal to 0, i.e. again perpendicular to the fiber direction (Fig. 4b).

4. Initiation of Macrocracks in Spinning Structures

As mentioned earlier, we will apply these results to two spinning geometries (Figs. 2b and

2c). In each case, the external boundaries are supposed to be traction free. The first part of this

Section is devoted to the direct application with the two models presented in Section 3. The second

part deals with a simplified approach using elastic computations. Finally, the third part is

concerned with the comparisons between the previous computations and the assessment of the

reliability of those structures using a Weibull-type of approach.

4.1. Fully Coupled Computations

When the constitutive equations presented in Section 3 are considered, it proved impossible

to derive a closed-form solution for the stress state and the damage state. Instead the problem is
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solved using the Finite Element Method. Constitutive laws (13), (14), (15), and (18) are

implemented into a standard finite element code ABAQUS 29 , and a solution is sought for by

discretizing the problem using 2-node axisymmetric shell elements. Since the linear tangent

modulus H had to be implemented into the finite element code, the load (i.e. the angular rotation

speed) required for loss of uniqueness and localization could be conveniently calculated using

ABAQUS through a UMAT routine. In summary, the complete constitutive equations given by

damage coupled with elasticity were implemented. Therefore these computations will be referred to

as fully coupled.

It should be noted that due to the non-explicit expression for the damage parameter given in

(15) and (18) an iterative procedure had to be outlined to determine the damage state characterized

by Dp at every time the calculated strain field did change at a certain Gauss point. This was done

by using a standard bisection method. A test of mesh dependence of the numerical results is also

performed. The number of elements proves to have a very weak influence on the solution and

satisfactory results for the stress and state variable can be obtained by modeling the disk with only

20 elements.

The material analyzed herein is a CMC defined in Appendix 2. The numerical values are

close to those found by Jansson and Leckie30 for a Lithium Alumino-Silicate (LAS) matrix

reinforced with Silicon Carbide fibers (commercial name Nicalon).

In Fig. 5, the stress field in the hoop direction obtained with a fully coupled computation is

compared to the elastic stress field at the same load level. It can be noted that the load level

corresponds to the localization speed for the ring with model No. 1. Due to the damage coupling, a

redistribution takes place. In particular it is worth noting that the stress levels in the most loaded

part (r Z .23 m) is larger in the elastic computation. This trend is the same for both models and

both structures.

In Fig. 6, the outer displacement of the ring obtained by an elastic computation and a fully

coupled computation (model No. 1) are compared. Due to the gradual distribution of the damage all

over the structure, the 'global' stiffness of the damaged structure softens as the applied load
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increases. The higher the load, the higher the softening.

In terms of load levels at localization, Table Ia summarizes the results. It can be noticed

that model No. 1 gives much higher load levels than model No. 0. This is mainly due to the radius

dependence of the ultimate tensile strength (19) of model No. 0 compared to the radius

independence of model No. 1. In Figs. 7 and 8 where the stresses in the hoop direction are plotted

against the radius, the stress levels at localization (i.e. when the curve aTW(r) intersects the curve

au: criterion (22.2)) are in the same ratio as the load levels. It is worth noting that as mentioned

earlier the ultimate tensile strength is r-dependent for model No. 0 (Fig. 7) and r-independent for

model No. 1 (Fig. 8). Criterion (22.1) is shown in Figs. 9 and 10 for model No. 0 and No. 1

respectively; note the different values of the critical damage value. In this case the localization point

is very easy to spot compared to Figs. 7 and 8.

Although the load levels in terms of p0• 2 at localization are very different for model No. 0

and No. 1, it can be noticed that when the dimensionless parameter po•2a 2/Gu(rioc) is studied

(where au(roc) denotes the ultimate tensile strength at the localization radius) the results between

model No. 0 and No. 1 come close together and the main change is given by the ratio b/a (Table

1 b). In first approximation, a good estimate for the dimensionless parameter pco2a2/Gu(rloC) is 2.1

(b/a = .0) for the disk and 2.6 for the ring (b/a = .5).

Finally, the accuracy of the numerical investigations is addressed. Fig. 11 shows that the

radius at localization is well characterized all over the range of loads exceeding the localization load

level. On the other hand, in terms of damage at localization (Fig. 12) and hoop stress at localization

(Fig. 13), localization needs to be spotted more precisely. This phenomenon is more important in

terms of angle at localization (Fig. 14). In this latter case, the number of decimal positions to get an

angle at localization of 890 (instead of 90') is equal to 8! In sunmnary, from a numerical perspective

localization needs to be spotted very accurately especially in terms of angle at localization.
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4.2. Decoupled Computations

In this sub-Section, we will take advantage of the criterion (22.2) which does not require a

fully coupled computation. Therefore a purely elastic set of computations has been carried out. The

aim of this Section is to compare the load levels predicted by the two types of approaches. The

results are summarized in Table 2a. It can be noticed that all the load levels at localization are lower

for the decoupled analysis. This is due to redistribution noticed earlier in Figs. 7 and 8. Moreover,

the error measured as the ratio of the difference between the decoupled angular speed and the fully

coupled angular speed to the fully coupled angular speed is lower in the case of model No. 1. This

is due to a lower stress redistribution at localization for model No. I since the value of critical

damage is equal to .181 (=Il-exp(-l15)) compared to model No. 0 for which the critical damage is

equal to .221 (=l-exp(-1/4)).

Again the load levels in terms of po 2 at localization are very different for model No. 0

and No. 1, but in terms of the dimensionless. parameter poa2a 2/au(rloc), the results are very close

and the main change is given by the ratio b/a (Table 2b). In first approximation, a good estimate for

the dimensionless parameter po)2 a2/au(rtoc) is 2.0 (b/a = .0) for the disk and 2.5 for the ring (b/a =

.5). These results constitute a lower bound when compared to the fully coupled results.

The maximum difference between the two models approaches is -6.1%, which is not

significant. Therefore a decoupled computation gives good information of the loads these kind of

structures can support. Furthermore, due to the stress field redistribution, the decoupled approach

gives conservative results in all the analyzed cases. Therefore it constitutes a 'good' lower bound

approximation of the models No. 0 and No. 1.

4.3. Comparison with a Weibull-Type of Analysis

In this sub-Section we compare the load levels at localization obtained by both approaches

to the cumulative failure probability obtained by modeling the material as an elastic brittle material.
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This kind of analysis may be used to assess the reliability of these spinning structures supposed to

be made of brittle material. In the framework of the weakest link assumption, the expression of the

cumulative failure probability PF is given by a Weibull expression 20}M
PF =l-exp - } dA (24)0 S

2where Ao is the gauge section (AO = x ro). Using the same normalization as in the previous

Sections, the elastic stress filed can be scaled by writing the hoop stress as follows

aW(r) = (po)2a2) f(r) (25)

where the function f is a dimensionless function. Since the function f depends only on the shape of

the stress field but not on its level, it can characterize the stress field heterogeneity, and the

cumulative failure probability can be rewritten as

F exp - Hm = I (26a)

where Hm is a generalized definition of the stress heterogeneity factor31 associated with a Weibull

law, and is defined as

a
1 m

Hm =2 12 fJ2 r {f(r))n dr (26b)
a a_b b

It can be noticed that if the hoop stress is homogeneous then Hm is equal to 1; otherwise as the

stress field gets more heterogeneous, Hm gets closer to zero. In the case of the disk Hm = .04 and
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in the case of the ring Hm = .02. These stress heterogeneity factors fully characterize the elastic

stress field for the spinning disk and the spinning ring in terms of cumulative failure probability,

i.e. in terms of reliability of these structures.

The results of cumulative failure probability for the same load levels as those predicted by

the fully coupled approach are summarized in Table 3. It can be noticed that the cumulative failure

probabilities are very high. Therefore a design strategy using this kind of reliability assessment can

expect quite high value in terms of the cumulative failure probability corresponding to the load

levels at localization.

5. Conclusions

In the framework of Continuum Damage Mechanics a localization criterion corresponds to

the initiation of a macrocrack. Under certain hypotheses, the localization criterion can be rewritten

in terms of a necessary and sufficient condition in terms of one component of the tangent operator.

This result is applied to derive criteria at localization in terms of a critical damage value and a

maximum normal stress for constitutive laws modeling the fiber breakage for unidirectionally

reinforced ceramic matrix composites.

The constitutive laws are used to study axisymmetric spinning structures made of CMC's.

Two approaches are analyzed. The fully coupled approach where the complete constitutive law is

implemented in a FE code is compared to the decoupled approach that consists in using a elastic

computation. Indeed, one of the previous criteria can be used in an elastic computation. The result

predicting localization are on the same order of magnitude. Furthermore, the decoupled approach

gives conservative results in terms of load at localization, and the results in the analyzed structures

are very close to those predicted by a fully coupled method. The fact that the decoupled approach

gives conservative results is due to a stress redistribution when the fully coupled approach is used.

This kind of approach will also be carried out in the case of structures reinforced by fibers

in two perpendicular directions. This enables us to look for an optimum volume fraction of fibers
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in terms of load at localization.
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Appendýx I

Model No. 0 Model No.1I

F1  
Ep

k( 1-V( 2 (-D~)k)

F2 = v(PV(~f+w
(1_ 2V ( -Dcp)k) 2

F4- Vr~p(IlDp))
F4 =1 - 2V ( -D cp)k

F5 = Ep(PvrcPErr+Fw)

F6 =Ep(l-Dp)

1_ (1-D~,)k

rn-1 m

1 (0)D )fa1
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Appendix 2

Material parameters for the ceramic matrix fiber composite analyzed in the finite element

calculations are:

Er = 20. GPa

Ep = 140. GPa

Grp = 13. GPa

vr(p = .0214

m =4.

fo0 = 1450. MPa

ro = .002 m

faTI = 1300. MPa

a = .3 m, b = .15 m
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Figure Caption

Figure 1: Localization mode.

Figure 2: Analyzed structures. The quantity co represents the angular velocity.

(a) Coordinate system

(b) Spinning disk

(c) Spinning ring

Figure 3: Definition of the recovery length. Stress in the fiber against fiber axis x.

(a) Just before the break

(b) Just after the break

Figure 4: Localization angles 8 for

(a) fibers parallel to the (--axis (8 = c2)

(b) fibers parallel to the r-axis (0 = 0)

Figure 5: Hoop stress aq(r) as a function of the radius obtained by a fully coupled computation

and a decoupled computation at localization (p,2 = 2.26 1010 kg/m3/s2) for the ring with

model No. 1. Note the stress redistribution.

Figure 6: Outer radial displacement as a function of the applied load (paz2) obtained by a fully

- upled computation and a decoupled computation up to localization (po)2 = 2.26 1010

kg/m3/s2) for the ring with model No. 1. Note the stiffness softening.
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Figure 7a: Hoop stress aOq,(r) as a function of the radius intersecting (see the arrow) the

r-dependent ultimate tensile strength au(r) at localization (pW02 = .59 1010 kg/m3/s2) for a

fully coupled computation applied to the disk with model No. 0. Note the r-dependence of

the ultimate tensile strength.

Figure 7b: Zoom around the radius at localization of the hoop stress (P(P(r) as a function of the

radius intersecting (see the arrow) the r-dependent ultimate tensile strength aru(r).

Figure 8a: Hoop stress afp(r) as a function of the radius intersecting (see the arrow) the
I

r-independent ultimate tensile strength cu at localization (pc)O2 = 1.87 1010 kg/m3/s2) for a

fully coupled computation applied to the disk with model No. 1. Note the r-independence

of the ultimate tensile strength.

Figure 8b: Zoom around the radius at localization of the hoop stress aqq(r) as a function of the

radius intersecting (see the arrow) the r-independent ultimate tensile strength Yu.

Figure 9: Damage variable Dp(r) as a function of the radius intersecting (see the arrow) the critical

damage value at localization (po)2 =.59 1010 kg/m3/s2) for a fully coupled computation

applied to the disk with model No. 0.

Figure 10: Damage variable Dq(r) as a function of the radius intersecting (see the arrow) the critical

damage value at localization (pco2 = 1.87 1010 kg/m3/s2) for a fully coupled computation

applied to the disk with model No. 1.

Figure 11: Localization radius as a function of the load level, for a fully coupled computation

applied to the disk with model No. 1.
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Figure 12: Maximum damage at localization as a function of the load level, for a fully coupled

computation applied to the disk with model No. 1.

Figure 13: Maximum hoop stress at localization as a function of the load level, for a fully coupled

computation apolied to the disk with model No. 1.

Figure 14: Localization angle as a function of the load level, for a fully coupled computation

applied to the disk with model No. 1.
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Table Caption

Table la: Load levels (pc.)2 ) at localization for the two structures and the two models predicted by

the fully coupled approach.

Table Ib: Normalized load levels (puo2a2/Iu(rnoc)) at localization for the two structures and the two

models predicted by the fully coupled approach.

Table 2a: Load levels (pc)2) at localization for the two structures and the two models predicted by

the decoupled approach, in parenthesis 0 is the difference in terms of angular velocity with

the fully coupled approach.

Table 2b: Normalized load levels (pco2a2/Iu(rloc)) at localization for the two structures and the two

models predicted by the decoupled approach.

Table 3: Cumulative failure probability corresponding to the localization load levels obtained by the

decoupled and fully approaches.
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p0 2 (1010 kg/m 3/s2) Disc Ring

Model No. 0 .59 .71

Model No. 1 1.87 2.26

Table la

Disc Ring
pc02 a 2 /Iau(rloc) DiscRing

Model No. 0 2.2 2.7

Model No. 1 2.1 2.6

Table lb

po2 (1010 kg/m 3/s2 ) Disc Ring

Model No. 0 .53 (-4.6%) .62 (-6.1%)

Model No. 1 1.75 (-3.1%) 2.05 (-4.5%)

Table 2a



Disc Ringpco02a2/au(rloc) ________

Model No. 0 2.1 2.5

Model No. 1 2.1 2.5

Table 2b

"PF Disc Ring

Model No. 0 .60 .53

Model No. 1 1.00 1.00

Table 3
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ABSTRACT

A study of matrix cracking in a unidirectional ceramic matrix composite under

static loading conditions has been conducted. The evolution of crack density with time

has been measured using both flexure and uniaxial tension tests. Sub-critical cracking

has been observed at stresses below that required to develop matrix cracks in short

duration, monotonic loading tests. Furthermore, a relatively high final crack density

has been observed following extended periods (_106 s) under static load. A fracture

mechanics analysis applicable to sub-critical crack growth has been developed and used

successfully to model the evolution of matrix cracking with time and applied stress.

The model incorporates the properties of the matrix, fibers and the interfaces, as well as

the residual stress and the initial flaw distribution in the matrix.
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1. INTRODUCTION

Unidirectional metal (MMC), intermetallic (IMC) and ceramic matrix composites

(CMC) have been observed to undergo multiple matrix cracking during either

monotonic or cyclic tensile loading'- 8 . All of these matrices are susceptible to either

cycle or time dependent crack growth associated with either fatigue (MMC and IMC) or

stress corrosion (CMC). Multiple cracking reduces the stiffness of the material,

contributes to the inelastic strain and results in permanent deformations upon

unloading3,4 .

The development of multiple matrix cracks upon monotonic loading has been

extensively investigated on CMCs by analytical and experimental means1,3,4,9- 13 . It has

also been found that significant degradation of the mechanical properties of CMCs

occur upon cyclic loading14-16. However, the time-dependent behavior under static

load has not been addressed. The aim of this paper is to present an experimental

investigation of such behavior, in conjunction with the mechanics needed to predict

matrix crack growth. The paper builds upon previous experimental studies of the

SiC/CAS system3,4 and associated modeling3,4,10-12.

2. EXPERIMENTAL PROCEDURES

2.1 Mechanical Tests

All experiments were conducted on a unidirectional laminate of Nicalon/CAS

material provided by Corning17. Relevant material properties are summarized in

Table I. Tensile specimens were prepared by diamond machining coupons having

dimensions 150 x 3 x 2.8 mm, followed by polishing. Similar procedures were used to

prepare flexural specimens having dimensions 50 x 3 x 2.8 mm, with the fibers oriented

along the beam axis.
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Tensile tests were conducted in a servohydraulic machine, at constant load. For

such tests, aluminum tabs were bonded to the specimen ends to ensure even load

transfer from the hydraulic grips and also to avoid crushing of the specimen. Surface

replicas were periodically made using a cellulose acetate tape. The replicas were

subsequently examined in an optical microscope to determine the crack density. The

flexure tests were conducted in four-point bending with inner and outer spans of 20 and

40 mm, respectively. The apparatus was situated within an optical microscope,

allowing in situ observations to be made of the cracking process on the tensile face of the

beamý. A thermometer and humidity gauge were placed near the specimens during the

tests. The temperature was consistently in the range 15 to 20'C and the relative

humidity varied from 60 to 80%.

After the onset of matrix cracking, the stress distribution in a flexural beam

becomes non-linear. Analysis of the errors associated with the non-linearity (Appendix)

indicates that the stress on the tensile face is within -10% of the nominal value calculated

on the basis of linear-elasticity. In the subsequent presentation, only the nominal stress

corresponding to each flexure test is reported. The following results validate that stress

re-distribution does not influence the important trends in the damage evolution process.

2.2 Crack Density Measurements

Previous experience with unidirectional CMCs (including CAS/SiC) indicates

that, during tensile loading, matrix cracks develop into more-or-less periodic arrays,

with a characteristic crack spacing 3,4 . The cracks generally span a significant fraction of

the specimen width and are bridged by fibers. One such example is shown in Fig. 1.

Because of the periodic nature of the cracks, the average crack spacing can be related to

changes in the composite modulus and the permanent strain following unloading using

SNo particular effort was made to control the test environmtnt.
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relatively simple models based on shear lag 3,4 . This experience suggests that the

relevant measure of damage in such composites is the linear crack density, measured

parallel to the fiber directiont. This approach was adopted in the present study. In all

cases, the crack density was measured along a 20 mm gauge length parallel to the

tensile axis. At the outset of each test, only one gauge length was examined. After

longer durations (- 30 minutes), measurements were made along three separate gauge

lengths parallel to one another.

In making such measurements, two complicating features were encountered. In

some instances, cracks were seen to bifurcate. Invariably, one of the branches arrested

after propagating - 10-30 gm, whereas the other continued to propagate large distances.

An example is indicated on Fig. 1. In other instances, cracks propagating in one

direction arrested when they reached other cracks which were on nearly the same plane,

but propagating in the opposite direction. In such cases, both sets of cracks arrested

after propagating ~ 10-30 gm past one another. An example is again indicated on Fig. 1.

These artefacts were excluded from the present crack density measurements. This was

accomplished by counting only those cracks that traversed more than - 40 gm on both

sides of the gauge line.

3. EXPERIMENTAL RESULTS

In situ observations of the flexure specimens indicated that matrix cracks evolve

over time at constant load. Two types of cracking were observed (designated Type I

and Type II) . At low stresses and short times, Type I cracking occurred. In this case,

cracks appeared suddenly and grew rapidly across the specimen width. There was no

t The linear crack density is equivalent to the inverse of the average crack spacing.
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evidence that visible cracks were subject to detectable growth'. This observation

suggests that sub-critical* growth occurs at very short cracks which are invisible in the

optical microscope. At larger lengths, the cracks propagated under sub-critical

conditions at a sufficiently high velocity that they could not be followed in the optical

microscope. Type I behavior coincides with low crack densities.

Type II behavior, at higher stresses or long times, involves the extension of

existing, long cracks, between other closely-spaced cracks. One such example is shown

in Fig. 2. This behavior arises at high crack density. This observation suggests that the

cracks "shield" each other, thereby reducing the driving force for further growth, as

shown schematically in Fig. 3.

In situ measurements of the crack density, p, in the flexure specimens revealed

strong effects of the applied stress (Fig. 4(a)). This contrasts with the behavior of

monolithic ceramics, for which time-dependent effects are only apparent at stresses

close to the instantaneous failure stress. Two features of the damage evolution process

are noteworthy: (i) At stresses below the matrix cracking stress measured in short

duration, monotonic tests (130-150 MPa), no cracks were visible initially. However,

appreciable cracking subsequently occurred over a period of - 106 s. Indeed, the final

crack density, pf, measured at 120 MPa reached a significant fraction of the saturation

crack density, Ps- found in short duration, monotonic tests (pf - 1/2 ps)4. (ii) At either

long times or high stress, p tends toward a constant value (p - 12.5 cracks/mm). This

level is higher than ps.

Measurements of crack density made from surface replicas of the tensile

specimens are shown in Fig. 4(b). One of these tests was conducted at a stress close to

'Detectable crack growth is defined as the condition wherein the crack velocity is sufficiently low to
allow crack growth to be followed in the microscope. In contrast, sub-critical crack growth refers only to
conditions wherein the crack tip energy release rate is below the composite toughness. High crack
growth rates (- 10-3 m/s) have been measured in monolithic glass-ceramics under sub-critical
conditions 18 . Such behavior would not result in detectable growth.
• - 10 cracks/rmm.
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the initial matrix cracking stress (150 MPa) and the other at a higher stress (200 MPa).

The results show trends similar to those found in flexure at comparable stress levels.

The slight discrepancies may be attributed to differences in the stress states in the two

types of tests, as well as variations in the testing environment (temperature and relative

humidity). An assessment of the effects of flexure on matrix damage is given in the

Appendix.

4. DAMAGE MECHANICS

The experimental observations affirm the existence of appreciable effects of time

on matrix cracking. The modelling approach used to rationalize the experimental results

has the following features*. (i) Crack growth in the matrix is governed by the crack tip

energy release rate, Gtip, in association with a stress corrosion law. (ii) Bridging of the

crack by fibers occurs, subject to a sliding stress, T. The magnitude of T can change as a

result of environmental interactions. However, in the following analysis, T is assumed

to be constant along the debonded interface. (iii) Fiber bridging is subject to two

regimes. When the cracks are short, the tip energy release rate increases with crack

length. When the cracks are long, the tip energy release rate is independent of crack

length. (iv) Once the cracks became closely spaced, the slip lengths of neighboring

cracks overlap, reducing the driving force for additional crack growth. Much of the

relevant mechanics has been derived elsewhere 9 -13. In this section, adaptations of the

existing mechanics suitable for sub-critical crack growth are presented.

"These features are suggested by the present consensus regarding the mechanisms of stress corrosion in
ceramics 19.
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4.1 Energy Release Rates

The effects of bridging fibers on the crack tip energy release rate Gtip or stress

intensity Ktip for single, isolated cracks have been extensively analyzed 9-13 . Here, the

numerical results of McMeeking and Evans 13 are presented and adapted to the problem

of sub-critical crack growth. The trends in energy release rate with crack length (from

Fig. 6 of Ref. 13) are shown in Fig. 5. These results are found to be well-approximated

by two analytical expressions4 . When 2 Cat R/t a < y,

GripE 1 Y(23otR>•

0 2 ra(1- V2 ) 25 " a

and, when 2 ý at R/'t a >

2GipE 2 = 1 (2aR

where R is the fiber radius; 2a is the crack length; E is the longitudinal composite

modulus,

E = f Ef + (-f) Em (2)

with Em and Ef being the moduli of the matrix and the fibers; V is Poisson's ratio,

assumed to be the same for the matrix and the fibers; y is a numerical coefficient

"y = (12ir/25)3 = 3.43 (3)

$ These features are suggested by the mechanisms of stress corrosion found in monolithic ceramics 19.
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Ot is the stress (applied plus residual),

ot = + q E/Em (4)

with q being the residual axial stress in the matrix; and 4 characterizes the elastic

properties.

(1- f)2 E'

f2EEf(1-v 2 ) (5)

The expressions (1) and (2) are accurate to within 5% over the range

0 < 24 OR/ta 5 20 (Fig. 5) .

For subsequent analysis, Eqns. (1a) and (1b) are re-written in terms of two fixed

quantities, independent of stress and crack length. The first is the steady state matrix

cracking stress in the absence of residual stress, CO. This stress is obtained by setting Grtp

equal to the composite toughness,

F = Fm (1-0 (6)

with F1m being the matrix toughness, whereupon9 ,11

00  
6Ef f2 E2 lFm Y

E' = E (1-f) RJ (7)

SNote that the result of Eqn. (1a) corresponds to the short crack regime wherein the tip energy release

rate increases with crack length. In contrast, the result of Eqn. (lb) corresponds to the steady-state
regime wherein Gtip is independent of crack length.
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This is the stress required to propagate a steady-state crack under monotonic tensile

loading (in the absence of sub-critical behavior). The other quantity is the crack length,

ao, at which steady state conditions are attained at a = Go. This length is obtained by

equating the expressions for Gtip in Eqns. (la) and (lb), yielding

a0  - 2t R(ao +qE/Em) 
(

7, T (8)

Upon combining Eqns. (7) and (8) with Eqns. (1) and (2), the final results are:

Gtip t a )- [a < at
Fm (1f) =-o) 0 C ao) a-- a- (9a)

and

Fm (-f) C, 0 ) Lao GO •. (9b)

The predicted trends in energy release rate, Gtip/Fm (1-f), with crack length,

a/ao, for various values of stress, at/ao, are presented in Fig. 6. Also shown by the

dashed line is the boundary between the short crack and long crack regimes. These

results predict three types of behavior, depending on the level of stress. (i) When

at = a0 , the energy release rate initially increases with crack length, but reaches a steady

state value equivalent to the composite toughness (1-m (1-f)) at a crack length a = ao.

(ii) When at > (ao, the energy release rate reaches the toughness at a crack length,

a/ao = (a/ao)-8. Crack growth beyond this point occurs subject to a constant energy

release rate, equivalent to the toughness. The steady state conditions predicted by

Eqn. (9b) are never attained. (iii) When at < a0 , the energy release rate reaches its
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steady-state value, ((at/CGo) 3, at a crack length, a/ao = 0/0•. In this regime, the energy

release rate never reaches the toughness. Consequently, the cracks extend only under

sub-critical conditions.

When multiple matrix cracks occur and interact, an important quantity in the

mechanics is the slip length, d, between matrix and fiber, given by9,12,

d/R = 2Eft/(a + qE/Em)Em(1-f) (10)

When the slip zones between neighboring cracks overlap, Gtip for long cracks falls

below the steady state value, Go, for a single, isolated crack, given by

(a+qE/Em) 3 Em(-f)2 R
Go= 6,rf 2 E E 2  (1

The relationship between Gtip and Go is dictated by the spacing, 1, between neighboring

cracks relative to d 12, and can be expressed as

Grip - 1d> 21
Go Id - [ (12a)

Grip = 1-4 1- e 31 <-- < 2

Go 2 I d (12b)

Grip I I 0I_•<

Go =4(]d . (12c)
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Once again it is convenient to re-express these results in terms of two fixed quantities:

the steady state matrix cracking stress, 0o (defined in Eqn. 7), and the slip length, do, at

G = 0o:

= (00 +qE/Em)Em (1-f)
2EfT (13)

Combining Eqn. (9) with (4) and (10) yields the results

Gtip ( t-3 22 -t-

m -(1f) ( 00 [do 01o] (14a)

__rip(a - )- [1 -4(1 Y1[o ao 1
rm (1- f) , L 2do Ft GO do - 00 (14b)

Gtip3f)p 4 ( 0 <_5- < ELt

m(1f) o . (14c)

The predicted trends in energy release rate, Gtip/Fm (1-f), with crack spacing, I/do, for

several values of stress, Ot/Go, are shown in Fig. 7. These results also predict three

types of behavior, depending on the level of stress. (i) When at < ao, the energy

release rate is independent of spacing, provided that Ildo > 2 Gt/Go. In this regime,

the slip lengths of adjacent crack do no overlap. When the crack spacing is in the range,

at/Go <- I/do -< 2 Gt/Go, the energy release rate decreases with decreasing I at a rate

that depends on the stress. Once the crack spacing reaches I/do < at/ao, the energy

release rate decreases with decreasing I at a rate independent of stress. (ii) When the

stress is in the range, 1 < Ot/Go < 21/3, the crack spacing immediately drops to
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do Go 4l CY t1o,/
doGo L , ot) ) .j(15)

Further reductions in spacing lead to a decrease in Gtip, first at a rate dependent on

stress (over the range Gt/Go < I/do < 2 at/ao), then at rate independent of stress

(over the range 0 < I/do -< Gt/Go). (iii) Finally, when the stress (Gt/(Go > 21/3, the

crack spacing diminishes to I/do = 21/3. Further reductions in crack spacing lead to a

drop in •tip independent of stress.

4.2 Crack Growth

The preceding energy release rates Gtip can be used in conjunction with a crack

growth criterion to predict crack evolution. As noted above, stress corrosion is

considered to be the mechanism that causes time-dependent matrix cracking.

Consequently, crack growth can be described by the commonly-used power law,

dat i°Kp/mn f)
da ao (Krtip Ao(Gtip/rm(1-f))ý (16)

where ao is a reference velocity, n is the power law exponent and Km is the critical stress

intensity factor for the matrix. For aluminosilicate glass ceramics 18, stress corrosion is

caused by moisture and the power law exponent is, n = 50.

To provide a basis for further modeling, it is instructive to re-state the key

experimental observations. The process of crack evolution exhibits three regimes. (i) At

low stresses and small crack densities (Type I), damage evolution is governed by short,

non-interacting cracks, with qtip given by Eqn. (9). In this regime, because n is large,

the behavior is dominated by stress corrosion occurring when the cracks are small and

13



invisible. (ii) At either high stresses or long times (Type U), multiple cracks are already

present, and further crack growth occurs under steady-state conditions (independent of

crack length), with Gtip given by Eqn. (14). Then, the new cracks should be continually

visible and grow at a discernible, near-constant velocity across the specimen. (iii) An

intermediate regime must exist which combines features of type I and II behaviors. The

behavior in this regime is inherently difficult to analyze and is not considered in this

study. Instead, interpolation between type I and type II could be used.

4.2.1 Short Cracks (Type I)

For short, non-interacting cracks, the time ti required to grow a matrix crack of

initial length ai is evaluated by integrating the growth law (Eqn. (16)) between

appropriate limits, yielding the result

1 afa, oo 7mO-f) %
t i =a.-£-- d (a /a o)

ao aJa. Gtip (17)

where af is an upper limit on the crack length, described below. Two cases are

considered, defined by the level of stress. In the first, at/(Yo 2! 1. In this regime, the

appropriate upper limit on the integral is the crack length at which qtip reaches the

composite toughness. Beyond this point, the crack grows catastrophically. As noted

earlier, this limit is, af/ao = ((3/ao)"8 . Combining this result with Eqns. (9a) and (17)

gives

-8 ( a
tj= (at /ao) d-

t(18

ao ,0o Jai /ao <ao 1=t 7 1(0t)%() (ai 11%

ao 00o 'go 6- aa° (18)
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For the material of present interest, n is large and thus (a/Co)-8(1"n/ 6 ) << (ai/ao)(1-n/6).

Consequently, Eqn. (18) reduces to

t _ . __ ( a t.).._ ( _6 6 ai )01 /6)

ao ,Oo) k.0n-6, o-,) (19)

The second regime is defined by a/ao < 1. In this case, Gtip initially increases

with crack length according to Eqn. (6), but then reaches a steady state level given by

Eqn. (9b), at a crack length a/ao = G/a 0 . It is therefore convenient to separate the

integral in Eqn. (15) into two parts. One is for condition wherein qtip increases with a,

and the other for Gtip independent of a. The result is

-a/ a. - a + (ta-Y fat/a (- a
ai daIa ) a0) a+ Cab ad
A0 (TrO f ai /ao ýa, aoa•o 00 CFO -aOo

6 6 C __ ( a_/ +(a ) a6 4 (2)ta 0i " 00 6 GO ao ,0 GOo a 0 0° (20)

where af is on the order of the specimen width.

Once again, because n is large, (aF/a 0 o)(1-n/ 6 ) << (ai/ao)(1-n/ 6 ). Furthermore, the

experimental observations suggest that, once steady state conditions have been attained,

the time required to grow the crack across the specimen width is relatively small. As a

result, the last term in Eqn. (20) is neglected. With these approximations, Eqn. (20)

reduces to

t - 1 (rat _ 6)(a(

A0 FOo (n-6 ao (21)
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which is equivalent to the result in Eqn. (19). Consequently, the distinction between the

two regimes is neglected in the subsequent analysis.

A representation for the matrix flaw distribution is now needed in order to

predict damage evolution. For this purpose, an extreme value matrix flaw size

distribution is assumed, given by,

F = 1-exp _ )i]

V. ai(22)

where F is the fraction of flaws having size greater than ai in a volume V, Oc is the shape

parameter, and a* and V* are scale parameters. Consequently, if T11v is the total number

of flaws per unit volume, the number 11 having size a > ai is

al = T'* e x' _ x 1  ( 2 3 )

Assuming that only the largest flaws in the distribution evolve into visible matrix cracks,

Eqn. (23) reduces to

TI = rIV (V/V*)(a*/ai)a (24)

Combining this distribution with Eqn. (21) gives the number of flaws, 71s, that have

developed into steady state cracks within a time, t:
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6cz~ ~8 n a ( - 6

,Is 11V (V )a. c n -6) "n (- 6) (ta 0 )6a-) IGt nI 6

*fVL.* La) 6) GO~

= OJ Xado 0 (25)

where

8n a
X n-6 (26a)

n-6

while X contains all of the parameters characterizing the flaw distribution.

Furthermore, the linear density of cracks p measured parallel to the tensile axis, is

related to TIs through

p = A -Tj5  (27)

where A is the cross-sectional area of the composite.

Equations (25) and (27) suggest that the evolution of crack. density can be

described by a generic law of the form

p = X tY OX (28)

where V' embodies all the relevant material properties. However, many of the

properties contributing to V' -re poorly characterized. Consequently, it is expedient to

17



use Eqn. (28) to fit data at one stress level and then predict crack growth rates at other

stress levels.

4.2.2 Long Cracks

The evolution of crack density in the regime characterized by high stresses and

high crack densities has been computed in a similar fashion. In this case, the governing

relations for Gtip are given by Eqn. (14). Since the energy release rates are crack length

independent, the crack density is computed by combining Eqn. (14) with Eqn. (16) and

numerically integrating. Some predicted changes in crack density with time for a range

of stresses are plotted on Fig. 8. In general, interpolation between these curves and the

short crack results is needed to establish the overall behavior. An approach for such

interpolation has not yet been established. However, it is important to note that,

regardless of the initial state, the crack density eventually evolves with time in a manner

independent of stress. This behavior arises because the strain energy release rates for

multiple cracks converge to a single curve at high crack densities (Fig. 7), corresponding

to the regime of closely-spaced cracks where Eqn. (14c) operates.

4.3. Comparison with Experiment

The approach used to compare experiment to theory involved two steps. (i) One

set of experimental results was fitted to the model, in order to evaluate the unknown

constants. (ii) By using the same constants the model was used to predict the behavior for

other testing conditions. Comparisons of the constants inferred in this manner with

values expected from corresponding phenomena occurring in monolithic material

assess the consistency of the models. This procedure was applied separately to the low

and high stress regimes.

18



The model was used to examine the data shown in Fig. 3(a). In the low stress

regime (Type I), Eqn. (28) was fitted to the data at 120 MPa, using a stress corrosion

exponent, n = 5018 (Fig. 9). The best fit line corresponds to a value of the shape

parameter, a = 1.5. The value of ac inferred from this comparison corresponds to a

Weibull modulus%, m = 3. Values in this range are reasonable for ceramic matrix

composites. Using the same constants, the model was used to predict the crack densities

at other stress levels (Fig. 9). Evidently, the model predictions are in reasonable

agreement with the experimental results for stresses a < 150 MPa and for crack densities

p Z 6 mm. This model thus appears to provide a satisfactory description of damage

evolution at low stresses and low crack densities.

The model predictions for type II behavior at high stresses and high crack

densities was assessed by using the same stress corrosion exponent (n = 50). The curves

were fitted to the measured crack density at 250 MPa after 10 s (9.7/mm), and then used

to predict the behavior at other stresses and times. These predictions appear to be

consistent with the data at stresses a Ž_ 180 MPa at crack densities p > 8/mm.

5. CONCLUDING REMARKS

Matrix cracks have been shown to develop in a time-dependent manner in a

unidirectional Nicalon fiber/CAS matrix composite. The phenomenon has been

rationalized by a stress corrosion mechanism operating in the matrix. This process

results in crack growth at stresses below that found in short duration monotonic tests.

Furthermore, for most stress levels, the crack density ultimately evolves with time in a

manner independent of the stress, and reaches values higher than those found in

"The shape parameter, a on flaw size (Eqn. 22) is half that for the tensile strength, via the Griffith
relationship.
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monotonic tests. Both of these observations have implications for the use of these

materials in structural applications. The behavior of the composite contrasts with that

of monolithic ceramics for which stress corrosion only occurs at stresses within a few

percent of the failure stress. It is anticipated that ceramic matrix composites will be

subjected to localized stresses well above the matrix cracking stress, in which case it will

prove necessary to account for the effect of stress corrosion in the design process.

A fracture mechanics analysis has been used successfully to model the

development of multiple matrix cracks with time and applied stress. The model has

been developed separately for the regimes dominated by either non-interacting short

cracks or interacting steady-state cracks. The approach is consistent with existing

models for matrix cracking under monotonic loading conditions. However, a method

for interpolating between the two regimes has yet to be developed.
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TABLE I

Properties of Unidirectional CAS/SiC Composite 4 ,2 0

Property Value

Fiber Radius, R (um) 7.5

Fiber Volume Fraction, f 0.37*

Matrix Modulus, Em (GPa) 97*

Fiber Modulus, Ef (GPa) 200

Thermal Expansion Coefficient of Matrix, (Xm (K-1) 5 x 10-6

Thermal Expansion Coefficient of Fibers, (Yf (K-1) 4 x 10-6

Sliding Stress, T (MPa) 10-30

Residual Stress, q (MPa) 89

Matrix Fracture Energy, Fm (J/m 2) 25

Matrix Cracking Stress, (oY - q E/Em (MWa) 130 - 150

Ultimate Tensile Strength, Ou (MPa) 450

Ultimate Strain, Eu 1.0%

* K. Chyung, Corning Labs
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APPENDIX: An Assessment of the Effect of Flexure

During flexural loading of unidirectional CMCs, matrix cracks develop along the

tensile face of the beam, leading to non-linearity in the stress-strain response. As a

result, the nominal stress calculated from Euler-Bernoulli beam theory, assuming the

material to be linear elastic, overestimates the true stress acting along the tensile face.

The following analysis provides an estimate of the effects of such non-linearity on the

maximum tensile stress in a flexural beam, both at the onset of loading and after an

extended period under load.

The initial stress distribution (upon loading) is calculated assuming that: (i) the

compressive stress-strai'- response of the composite is linear, with a modulus given by

the rule of mixtures; (ii) the tensile response is that measured in a short-term uniaxial

tensile test (Fig. Al), and (iii) the strain distribution across the beam remains linear. The

analysis involves two steps. In the first, the sum of the forces acting parallel to the fiber

direction is set equal to zero, enforcing static equilibrium. This condition can be

expressed as

Ec de + t OT (F,) de = (AlEC f (Al)

where OT (C) is the tensile stress-strain relation, and Cc and CT are the maximum

compressive and tensile strains, respectively. Solving the first integral in (Al) and

re-arranging gives

[c E - : OT (T() ds] (A2)

This equation relates Ec to CT. In the second step, the applied bending moment, M, is

equated to the moment supported by the beam. This condition can be written as
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(ETeC) ECc (A3)

where B is the beam depth and D the height. The nominal stress, anom, calculated on

the assumption of linear elasticity, is related to M through

Onom = 6M/BD2. (A4)

Combining Eqns. (A3) and (A4) leads to the result

1 3+ E
Onom (ET -- Ec) 2 -+ 6 O T ( C( C. cJ ) dj (A 5)

To proceed further, an expression for OT (E) is required. For this purpose, the

measured tensile stress-strain curve is fit by a polynominal of the form

OT(6) = aE + be 2 + cE 3 + de 4  (A6)

where the coefficients a, b, c and d are

a = 1.4x105MPa

b = -1.12x 107M'a

c = -3.89x109 MPa

d = 5.51xI1011 Ma

This polynominal provides a good description of the experimental curve over the

relevant range of stresses (0 •5 OT -• 300 MPa), as shown in Fig. Al.
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Equations (A2), (A5) and (A6) have been combined to determine the relation

between the stress aT on the tensile face and the nominal applied stress, Onom. The

results are presented in Fig. A2. Below the first matrix cracking stress (150 MPa), the

two quantities are equal, since the composite is linear-elastic in both tension and

compression. At higher nominal stresses, the true stress deviates from the nominal

value, the difference increasing with increasing Gnom. At the highest stress used in the

present study (Gnom = 250 MPa), the difference is -11%.

Under sustained loading, additional matrix cracks are developed, leading to

further stress re-distribution across the beam. A rigorous analysis of this problem is not

presently feasible. However, it is instructive to consider a limiting case in which the

stresses in the matrix on the tensile side of the beam are reduced to zero, such that the

fibers support all the stress. In this case, the tensile response of the composite can be

taken to be

OT(F-) = ETC (A7)

where ET is an effective (reduced) tensile modulus. A conservative estimate of ET is

au/e-, where (Yu is the ultimate tensile strength and eu the corresponding tensile strain.

This relation is plotted as the dashed line in Fig. Al. In this case, Eqns. (A2) and (A5)

reduce to the simple analytical result

OT/Gnom = (l+ /Ou/Ecu)/2 (AS)

Using the experimentally measured values Gu =450 MPa and Eu = 1.0% gives

OT/Onom = 0.80. This result is plotted on Fig. A2. At most, there is a 20% reduction in

the stress belou the elastic value.
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FIGURE CAPTIONS

Fig. 1 An optical micrograph showing matrix cracks in the CAS/SiC composite

following a short duration, monotonic tensile test. The arrow labeled "A"

indicates an example of a crack that had bifurcated and arrested. Arrow "B"

indicates a crack that arrested as it approached another crack on nearly the

same plane.

Fig. 2 (a) Micrograph of matrix cracks upon initial loading of a flexure specimen to

175 MPa. (b) Micrograph of the same region after 3 days at the same level of

stress. Note the additional growth of matrix cracks in (b) (indicated by

arrows).

Fig. 3 Schematic diagram showing the type of cracks observed either at high stress

or long time, and the expected variation in energy release rate as the cracks

interact.

Fig. 4 Evolution of crack density with time under static load: (a) flexure tests,

(b) uniaxial tension tests. For comparison, the results of (b) have been

superimposed onto (a) using dashed lines.

Fig. 5 Trends in crack tip energy release rate with crack length (adapted from [131).

Fig. 6 Variation in energy release rate for single, isolated crack with crack length.

Fig. 7 Effects of crack spacing and stress on the steady state energy release rate.

Fig. 8 Predicted trends in crack density evolution, assuming existing long

(steady-state) cracks based on Eqn. (9).

Fig. 9 Comparison of damage evolution predictions with experimental

measurements. In the low stress regime, the model was fit to the data for

a = 120 MPa; in the high stress regime, it was fit to the datum for

a - 250 MPa at t = lOs.
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Fig. Al Tensile stress-strain response of the CAS/SiC composite.

Fig. A2 Variation in the stress, OT, acting along the tensile face of a flexure specimen
with the nominal stress, Gnom.
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ABSTRACT

An experimental investigation has been conducted on the effects of gauge length

on the tensile strength of SiC fibers. Varying the fiber gauge length provides access to a

broader range of strengths than that which is sampled with a single gauge length. The

results show that the overall strength distribution cannot be described solely in terms of

the two parameter Weibull function. It is demonstrated that such trends would not

have been evident by only considering the strength distribution for a fixed fiber gauge

length, a consequence of the relatively narrow range of strengths accessed by a single

gauge length. The overall distribution is found to be consistent with two independent

Weibull distributions: one of them being characteristic of the pristine fibers, and the

other characteristic of the additional flaws introduced into the fiber during processing

of the composite.
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INTRODUCTION

The axial fracture, creep and fatigue properties of fiber-reinforced metal and

ceramic matrix composites are dominated by the strength characteristics of the fibers.

Several examples are noteworthy. Wi) The ultimate tensile strength measured under

monotonic loading is governed by the in-situ fiber bundle strength. Provided both the

interface fracture energy and sliding resistance are sufficiently small (allowing global

load sharing conditions to prevail1 ), the bundle strength can be described using weakest

link statistics2-5 . In this case, the relevant gauge length in the statistiLal description of

the fiber failure probability depends on the sliding resistance of the fiber-matrix

interface, coupled with the intrinsic fiber strength characteristics themselves2-4.

Typically, these lengths are on the order of a few millimeters. (ii) Under cyclic loading,

matrix cracks can initiate and propagate around the fibers, creating bridged cracks 6-8.

The life of the composite is then dominated by the number of loading cycles required to

initiate fiber failure in the crack wake: a process which is also dictated by the fiber

strength characteristics and the interfacial sliding resistance. (iii) Under static loading

conditions at elevated temperatures (sufficient to cause matrix creep but below the fiber

bundle strength), the axial strain asymptotically approaches a level that depends on the

fraction of broken fibers9 ,10 . Once again, the fiber strength characteristics appear as a

dominant feature. Consequently, knowledge of the fiber strength characteristics is

critical in understanding and predicting the performance of these composites.

The focus of the present study is on the strength characteristics of SiC fibers,

extracted from a metal matrix composite. The study augments concurrent work on the

creep, fatigue and fracture properties of the composite10-12 . One of the main features of

this study involves the effects of gauge length on the fiber strength distribution. Such

effects are important in using experimental data obtained from a fixed gauge length

(typically on the order of a few centimeters) in predicting the mechanical response of

71:MS36(December 2 1993)1:59 PM/mef
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the composite, particularly when the relevant gauge length in the composite is smaller

than that used to characterize the fibers 13 . It is also demonstrated that conducting tests

over a range of gauge lengths provides access to a broader range of strengths, yielding a

more thorough description of the strength distribution. One of the key results

emanating from this work is that the strength distribution of the SiC fibers cannot be

described in terms of the two-parameter Weibull function, despite the fact that the data

sets obtained from fixed gauge lengths appear to be consistent with this function. The

implications of such effects in the use and interpretation of fiber tests are briefly

discussed.

2. THEORETICAL BACKGROUND

The strength distribution of brittle ceramic fibers can be described using weakest

link statistics. A convenient empirical description of this distribution is the Weibull

functions,

Pf = 1- exp Lo (GCO )(1

where Pf is the cumulative failure probability up to a stress, G; L is the length of the

fiber; Lo is a reference length, taken to be 1m; c7o is the reference strength; and m is the

Weibull modulus. The radius, R, of all fibers is assumed to be the same. Physically, Go

represents the stress at a failure probability of Pf = 1 - e -1 = 0.632 in a fiber of length,

L = Lo. The Weibull modulus, m, is a measure of the dispersion in strengths: the

coefficient of variation in the fiber strength scales roughly as 1 /m. For convenience,

Eqn. 1 can be re-written as

71:MS36(Decanb 2Z 1993)1:59 PM/mef



In In (1/Ps)= m In ca + (en L/Lo + m in c 0 ) (2)

where Ps is the survival probability,

Ps = 1 - Pf (3)

The parameters characterizing the strength distribution ((No and m) are usually

obtained experimentally by conducting a series of N tensile tests on individual fibers

with a fixed gauge length, L. The strength data are then sorted in ascending order and

the failure probability corresponding to each strength obtained using the mean rank

estimators5

__ i
Pf N+1 (4)

where i is the ranking of the data. The parameters in Eqn. 1 are obtained by plotting

In In (1 /Ps) vs. In a. In these coordinates, the slope of the data is equivalent to m; the

intercept is given by the term in parentheses on the right side of Eqn. 2, from which ao

is then obtained.

It should be recognized that, within such a series of tests, only a limited range of

strengths from within the entire strength distribution is accessed. The range depends

on the number of tests performed along with the fiber gauge length, and can be

estimated in the following way14 . On average, the lowest strength CGL obtained in a

series of N tests corresponds to a failure probability (following Eqn. 4) of - 1/N.

Combining this result with Eqn. 1 gives
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Assuming that N is large compared with unity, the In term can be well-approximated

by the first two terms in a Taylor series expansion, whereupon Eqn. 5 becomes

ao NL/Lo 0Jým (6)

Following similar arguments, it can be shown that the maximum strength au measured

in the same series of tests corresponds to a failure probability of - 1/(1 + 1 IN).

Combining this result with Eqn. 1 yields the approximate relation

Ou (tnN VM
0" L /Lo) (7)

Trends in the upper and lower strengths with fiber gauge length for m = 3 and 9

are shown in Fig. 1. Here, the number of tests, N, is taken to be 20. It is evident from

this figure that the range of strengths that is accessed can be changed dramatically by

changing the fiber gauge length. In the present case (N = 20), changing the gauge

length by an order of magnitude leads to a substantially different range of strengths.

The range of strengths accessible through a fixed gauge length can also be

represented on a failure probability plot, as shown in Fig. 2. Here the ellipses represent

the range of strengths that would be measured from 20 tests conducted at each of three

different gauge lengths, each length differing from the next by an order of magnitude.

As noted earlier, each of the three gauge lengths give access to different parts of the

distribution, with some overlap between them.
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An important conclusion to be drawn from the preceding analysis is that the

range of strengths obtained from tests on a fixed fiber gauge length represents only a

limited portion of the entire distribution. Consequently, the Weibull parameters

determined from such tests are strictly valid only over the range of measured strengths.

Evaluating failure probabilities outside this range requires extrapolation of the test

results and implicitly assumes that the form of the strength distribution remains the

same over the entire range of strengths.

Based on this insight, an experimental program to evaluate the strength

characteristics of SiC fibers was developed. A central feature of the program was an

assessment of the effects of fiber gauge length on the strength distribution.

Comparisons have also been made with the results for pristine fibers (prior to

composite consolidation).

3. EXPERIMENTS

The motivation for the experimental part of this program stems from concurrent

studies on the tensile strength 11 and creep response 10,12 of fiber reinforced Ti matrix

composites. In those studies, models that describe composite behavior in terms of

various constituent properties are being developed and assessed. For this purpose,

knowledge of the in-situ fiber strength characteristics is essential.

The composite system of interest is a Ti-6A1-4V alloy matrix reinforced

unidirectionally with continuous SiC* fibers. Prior to composite consolidation, the

fibers had a dual coating, consisting of an inner C layer, - 0.5 prm thick, and an outer

TiB2 layer, - 1 pim thick (Fig. 3(a)). During consolidation, the TiB2 reacts with the Ti

alloy to form a layer of TiB needles, - 0.7 gim thick. The fibers were extracted from the

composite by dissolving the matrix in concentrated HF acid. Typically, the dissolution

* Sigma fibers, produced by British Petroleum.
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was completed within - 45 to 60 mins. Extreme care was taken in handling the

extracted fibers, such that no new flaws were introduced. Some of the extracted fibers

were examined in a scanning electron microscope. Over much of the fiber surface, the

C/TiB2 coating was found to have completely spalled off (Fig. 3). Spalling is presumed

to be a result of the residual stresses present in the coating coupled with the relaxation

of these stresses following matrix dissolution. The effects of the HF acid on the fiber

strength distribution were examined by allowing some of the fibers to soak in the acid

following dissolution for a period of 60 hours. The diameter of the fibers was extremely

uniform, with an average value, d = 100 gim.

Tensile tests were conducted on individual fibers using a dedicated fiber testing

machine*. The fiber ends were attached to cardboard tabs (designed specifically for use

with the fiber testing machine) using an epoxy adhesive. To ensure good alignment, the

fiber ends were placed into straight shallow grooves that had been stamped along the

center line of the tabs. The fibers were loaded using a computer-controlled linear

stepper motor, and the load monitored using a 100 N load cell.

Four fiber gauge lengths were used: 5, 12.7, 25.4 and 265 mm. For each gauge

length, 50 tests were performed. The parameters, 00 and m, characterizing the Weibull

distribution were evaluated using three different methods. In the first, the strength data

for each gauge length were sorted and the failure probability evaluated using the mean

rank estimator, given by Eqn. 4. The values of 0o and m were then evaluated from a

least-squares linear regression analysis of the data in the form In In 1/Ps vs. In Y. The

second method was similar, except that the failure probability was estimated using 15,

Pf = (i-0.5)/N (8)

"Micropull Science.
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Monte Carlo simulations of fiber fracture indicate that this estimator provides more

accurate values of Oo and m when the number of tests is relativelv small 15. The third

method did not rely on estimating failure probabilities. Instead, the average strength, Y,

and standard deviation, s, for each data set were evaluated and related to Go and m

through5

- F [1+ i(9)

S((9)o

and 0 0  = (L/L0 ) m (10)

where g. is the variance and F is the gamma function. For convenience, Eqn. (9) is

approximated by a power law of the form

g =- m-0913  (11)

as shown in Fig. 4.

4. EXPERIMENTAL RESULTS

The strength distributions obtained from each of the four gauge lengths are

shown in Fig. 5. In this case, the failure probabilities were evaluated using the mean

rank estimator (Eqn. 4). For comparison, the results for pristine fibers with a 25 mm

gauge length are also shown. The latter results were derived from > 1000 fiber tests
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conducted by the fiber manufacturer. As expected, the strength decreases with

increased gauge length. This trend is manifested as shifts in the failure probability

curves. It should also be noted that the strength of the extracted fibers is substantially

lower than that of the pristine fibers for the same gauge length, indicating that

additional flaws are introduced into the fibers during processing of the composite.

The effects of the HF acid on the strength distribution for a 25 mm gauge length

is shown in Fig. 5(b). Evidently, there is no significant change in the fiber strength

following the additional - 59 h soak in HF. This result is consistent with fractographic

examinations of the fibers which show that fracture generally originates from the

tungsten core, not from the fiber surface11.

The values of a0 and m determined from each data set are shown in Fig. 6. The

three methods used to determine m and a0 yielded essentially the same results.

Evidently, both of these parameters depend sensitively on the fiber gauge length:

decreasing as length increases. The dependencies of Yo and m on gauge length suggest

that the measured distributions are not consistent with the two parameter Weibull

function. In contrast, the high correlation coefficients obtained from the linear

regression analyses for each data set (- 0.96 to > 0.99) suggest that the individual data

sets are consistent with a Weibull distribution.

To elucidate the origin of these seemingly contradictory conclusions, the data

sets were combined in such a way that direct comparisons could be made between the

results from various gauge lengths. For this purpose, it is useful to rewrite Eqn. 2 as

InIn(1/Ps) - tn(L/Lo) = mIn r- mtn(o (12)

The form of this equation suggests that the data corresponding to different gauge

lengths should collapse onto a single curve when the results are plotted as

In In (1/Ps) - In (L/Lo) vs. In a. Figure 7 shows such a plot. In this form, the data do

71:MS36(Docaber 2. 1993)1:59 PMtMed
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collapse onto a single curve, indicating that they are indeed derived from the same

overall strength distribution. However, the overall distribution does not appear to be

linear and thus cannot be described in terms of the two parameter Weibull distribution.

Evidently, the observation that the data are consistent with the Weibull function for a

fixed gauge length is a result of the limited range of strengths accessed by that gauge

length. The variations in m and (To with gauge length are manifestations of the various

strength regimes accessed by the different gauge lengths, each giving values of m and

(Yo that represent a linear approximation to the distribution over a limited strength

range.

One of the key conclusions derived from this work is that the two parameter

Weibull function cannot be used to describe the strength distribution of the SiC fibers,

though it may be consistent with a limited data set obtained using a fixed fiber gauge

length. Consequently, evaluating failure probabilities by extrapolating the test results

from a fixed gauge length to other parts of the distribution may lead to considerable

errors in predicting fiber bundle properties. This effect would be particularly

pronounced in calculating the fiber bundle strength within a composite, wherein the

relevant gauge length may be considerably smaller than the gauge length typically used

to characterize the fiber strength distribution. Conducting tests with varying gauge

lengths provides access to a broader strength range and allows a more complete

description of the strength distribution to be made.

5. ANALYSIS

The strength distribution in Fig. 7 can be rationalized in terms of a modified form

of the Weibull function. For this purpose, it is assumed that there are two populations

of flaws, each characterized by values of m and GO. The total survival probability at a

7l:MS36(Dccanber 2 1993)1:59 PM/fcf



12

prescribed stress Ca and gauge length L is then the product of the survival probabilities

from each of the two distributions. This result can be expressed as

Ps = 1 = exp exp - (

Lo ,1J Lo ,(Y2 (13)

where mi and ai characterize the two distributions. Equation 10 can be simplified and

re-written as

_S=L[Ee rnl__ + )M2

eXLo ,, ,2 (14)

Figure 8 shows an illustrative example of the prediction of Equation 11 for Weibull

moduli of ml =3 and m2 = 9, along with the individual distributions, characterized by

m = 3 and m =9. For simplicity, it is assumed that (31 = 02 = 00. The figure

demonstrates that, for low values of strength, the failure probability associated with the

distribution with the higher Weibull modulus (m2 = 9) is negligible compared with that

of the lower value (ml = 3). Consequently, the strength distribution in this regime is

linear, with a slope, m = 3. In contrast, for high values of strength, the failure

probability is dominated by the distribution with the higher value of m, and thus the

distribution is linear, with a slope, m = 9.

The utility of this approach in describing the strength distribution of the SiC

fibers was assessed in the following way. In the high strength regime, the Weibull

modulus and reference strength were taken to be equal to the values characteristic of

the pristine fibers (m = 18 and a3o = 3.2 GPa). The Weibull modulus and reference

strength for the other flaw population were evaluated from the data at the low end of
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the distribution' (m2 = 4 and (2 = 1.4 GPa). The two distributions were combined using

Eqn. 14 to produce the overall strength distribution, shown in Fig. 9. Also shown for

comparison are the distributions corresponding to 02 = 1.2 and 1.6 GPa. The agreement

between the calculated and experimentally measured curves suggests that the overall

distribution is consistent with the two Weibull distributions, characterized by

01 = 3.2 GPa, ml = 18, 02 = 1.4 GPa and m2 = 4.

As an additional comparison with the experimental data, the apparent Weibull

modulus and reference strength corresponding to the modified Weibull function have

also been calculated for a range of fiber gauge lengths. These parameters were

evaluated by taking a "secant modulus" between the maximum strength, Cu, evaluated

at Pf = N/(N + 1), and the minimum strength, OL, evaluated at Pf = 1/(N+1). In

essence, this calculation gives estimates of the values of m and 0o that would be

obtained from a series of experiments that probe only a limited portion of the entire

strength distribution. Trends in the calculated apparent Weibull modulus and reference

strength with gauge length are shown in Figs. 6(a) and (b), respectively. The calculated

values appear to be broadly consistent with the experimental results.

6. CONCLUDING REMARKS

The present results indicate that the strength distribution of the SiC fibers

extracted from the composite cannot be described solely in terms of the two parameter

Weibull function. These conclusions would not have been reached by considering only

the results for a fixed fiber gauge length, despite the relatively large number of tests

performed at each gauge length. Performing tests over a range of gauge lengths

provides access to a broader range of strengths and a more complete description of the

overall distribution. In the present case, the distribution can be rationalized in terms of

"Excluding the 3 lowest strength values.
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two Weibull distributions, one being characteristic of the flaws in the pristine fibers, and

the other characteristic of new flaws introduced during processing of the composite*.

The results have implications concerning the development of testing procedures

for characterizing fiber strength distributions. It is clear that results obtained from a

single fiber gauge length may not be adequate for predicting fiber bundle properties

when the selected gauge length is substantially different from the length governing

fiber bundle behavior. This problem is exacerbated by the general observation that

failure probability plots, in the coordinates of In In 1i/Ps vs. en 0, usually appear nearly

linear when the strength range is relatively small. This observation may lead to the

erroneous conclusion that the data are consistent with a two parameter Weibull

distribution and can thus be extrapolated to other parts of the distribution, as needed to

evaluate fiber bundle behavior. Non-linearity in failure probability plots (indicating a

breakdown in the two parameter Weibull distribution) only become evident when the

strength range is sufficiently large, as obtained from tests on varying fiber gauge

lengths.

Conducting tests over a range of gauge lengths may also prove to be an effective

means of evaluating the strength parameters, even when the distribution is consistent

with the two parameter Weibull function. It has been recognized that a substantial

number of tests are usually required to accurately evaluate m and 00 from a single

gauge length15, 16. Conducting tests at two or more gauge lengths may be a more

effective and accurate means of evaluating these parameters. The utility of this

approach is presently being investigated 17 .

"Conceivably, other variations on the two parameter Weibull function could be used to rationalize this

strength distribution (see Ref. 13 for an alternate approach).
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FIGURES

Fig. 1 Effects of gauge length on the upper and lower strengths obtained from a series
of 20 tensile tests.

Fig. 2 The strength distribution for fibers with a Weibull modulus of m = 3, showing
the range of strengths that would be expected for various fiber gauge lengths.

Fig. 3 SEM micrographs showing (a) the C/TiB2 coating in the composite, and
(b) spalling of the coating following matrix dissolution.

"ig. 4 Relationships between the variance and the Weibull modulus for a two
parameter Weibull distribution. The sold line represents the approximation of
Eqn. 11.

Fig. 5 (a) Strength distributions obtained from fibers of different gauge lengths
(dissolution time was - 1 h) (b) Effects of dissolution time on the fiber strength
distribution (25 mm gauge length).

Fig. 6 Effects of fiber gauge length on (a) the Weibull modulus, m, and (b) the
reference strength, 00o.

Fig. 7 The strength distributions from Fig. 5(a), re-plotted using a parameter that
combines the failure probability with the fiber gauge length (see Eqn. 12).

Fig. 8 An illustration of the predicted strength distribution obtained from two
independent distributions, each characterized by the Weibull function.

Fig. 9 Comparisons between the experimental and predicted strength distributions.
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Tunneling Cracks in Constrained
S Ho' Layers
Z. SUO A thin, brittle layer bonded between tougher substrates is susceptible to cracking

Mer. ASME. under residual and applied stresses. Such a crack initiates from an equi-axed flaw,
confined by the substrates, tunneling in the brittle layer. Although tunneling is a

Mechanical Engineering Department, three-dimensional process, the energy release rate at the front of a steady-state tunnel
University of California. can be computed using plane strain fields. Several technically important problems

Santa Barbara. CA 93106-5070 are analyzed, including tunnels in adhesive joints, shear fracture, and kinked tunnels

in a reaction product layer. The concept is finally applied to microcracking in brittle
matrix composites caused by thermal expansion mismatch.

Introduction tough
Layered materials subjected to residual and applied stresses

are susceptible to cracking. Depending on the application, such brittle
cracks can either fail device or degrade material. For example,
cracks in multilayer capacitors form easy conducting paths,

leading to electrical leak. For metal matrix composites, mi-
crocracks in fiber coating can be the nucleation sites for fatigue
cracks in the matrix. A commonly observed cracking process, 6,
tunneling, is examined in this paper.

Figure 1 illustrates a thin, brittle layer of thickness h, bond-
ing two tougher substrates, subjected to both applied and re-
sidual stresses. If the net stress in the layer is tensile and a
sufficiently high, it drives pre-existing flaws to tunnel through -
the layer. The energy release rate at the front, GF, varies from w /2 h w/12
point to point, and depends on the tunnel length a. A long
tunnel (a/h - co) reaches a steady-state: the front self-adjusts Flg I A crack funnels In bne lae
to a shape such that GF is the same at every point along the In this paper a new formula for G1,, convenient for finite
front, which no longer depends on the tunnel length, nor on element analyses, is presented. We then discuss tunnel nu-
the initial flaw geometry. This steady-state energy release rate cleation and the relevance of G, in design. The versatility of
is denoted as G. in Fig. 1. the concepts is demonstrated by several technically significant

Two facts, to be elaborated upon later suggest that G. is problems, including cracking in adhesive joints, shear fracture,
suitable for design of constrained thin layers. First, G,. is and kinked cracks. The concepts are finally applied to micro-
relatively easy to compute (only plane-strain analyses are re- cracking in brittle matrix composites caused by thermal ex-
quired). Second, the steady-state is readily reached if pre-ex- pansion mismatch.
isting flaw size is close to layer thickness. These concepts have
evolved from studies of layered materials of many varieties: Driving Force for Steady-State Tunneling
composite laminates (Parvizi et al., 1978; Wang, 1984; Dvorak As sketched in Fig. 1, tunneling is a three-dimensional proc-
and Laws, 1986; Fang et al., 1989), thin films (Gifle, 1985; ess.However, when the steady-state is reached, i.e.,asa/h-co,
Hu et al., 1988; Bueth, 1992; Ye et al., 1992), and brittle G, can be calculated using plane-strain elasticity solutions.
adhesive layers (Suo, 1990). Two alternative formulas are derived below. The tunnel is

Present address: Department of Theoretical and Applied Mechanics, Uni- assumed to be perfectly constrained at the edges so that neither
versity of Illinois. Urbana. IL 61801. interface nor substrates crack. The significance of interface

Contributed by the Applied Mechanics Division of Tarn AmnaucAt S debonding and substrate cracking is reported elsewhere (Ye et
or MacxAwNcAL. ENoissuss for publication in the ASME JoUU0 soF n aL, 1992).
MacKsUics. RI., 1992).

Discussion on this paper should be addressed to the Technical Editor. Pro. For such a semi-infinite tunnel the process that the front
fessor Lewis T. Wheeler, Department of Mechanical Engineenng. University of advances a unit distance is equivalent to (i) remove a unit
Houston, Houston. TX 77204-4792. and will be accepted until four months after thickness of material far ahead of the tunnel and, (ii) append
final publication of the paper itaelf in the ASME Jou.'AL oF Ar Ma-
cKscs. a unit thickness of material in the wake. Let U be the difference

Manuscript received by the ASME Applied Mechanics Division, May 30. I991; in the strain energy stored in the two slices. By definition, it
rinal revision. Aug. 17, 1992. Aisociate Technical Editor: F. Y. M. Wan. follows that
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a) 2nt oah

Fig. 3 The frontal energy release rate Increases with the tunnel length.
approaching quickly to an asymptote

to be a penny-shaped crack of initial diameter, ao, less than
layer thickness (Fig. 3). Some time-dependent subcritical crack-
ing mechanism is assumed, so that the flaw grows slowly into
a long tunnel under a constant applied stress, a. The thin layer
and the substrates are assumed to have identical elastic con-
stants, and substrates are semi-infinite. The main objective of

b) the following discussion is to provide a rough estimate of the
+ + 4 + tunnel length needed to attain the steady-state. None of the

Fig. 2 (a# A plane-strain crack of size h <h used for formula (2); (b) a foregoing simplifications will change the conclusions quali-
plane-strain crack of size h used for formula (31 tatively.

Let a be the current size of the crack (Fig. 3). When a/h < 1,
the growing crack remains penny-shaped, since the energy re-
lease rate is the same at every point along the front. ThIs energyG, = U/h. (1j release rate is given by (Tada et al., 1985)

Observe that U equals the strain energy increase, at constant 2
applied stress, due to introduction of a plane-strain crack in GF= - o2a/l (4)
the unit slice. Let GE be the energy release rate at the edge of Ir
a plane-strain crack of width h' <h (Fig. 2(a)). It has been with E=E/(l - P2), E and r being Young's modulus and Pois-
shown that (Gille, 1985; Dvorak and Laws, 1986) son's ratio. Equation (4) is the straight line in Fig. 3, up to a!

h= I. After touching the interfaces, the crack is confined by
the tough substrates and becomes noncircular. so that (4) is

Gs = J GE(h' )dh'. (2) not valid when a/h > 1.
0 The crack will finally become a long tunnel and reach the

This formula requires GE for plane-strain cracks of various steady-state. To compute G,, the classical solution is needed
width, 0<h' <h. As pointed out by these authors, such in- for GE of a plane-strain crack of width h' (Fig. 2(a)):
formation is available in the literature only for a few inhom- T
ogeneous systems within limited parameter ranges, and finite G 2=- ohv/r. (5)
element computation of GE for various crack lengths is tedious. 2

Alternatively, U equals the work done by the stress through Integral (2) gives
the crack opening (Fig. 2(b)), so that

o(x)6(x)dx. (3) 4
This result is indicated in Fig. 3 as the asymptotic value for

Here a(x) is the stress distribution on the prospective crack a/h-00.
plane prior to cracking; and 6(x) is the opening profile in the Observe that the solutions for two limiting cases, a/h = I
wake. Although (2) and (3) are equivalent, the latter is con- and a/h-os, differ only by 23 percent. Consequently, for
siderably more efficient in computation, since only two instead practical purposes, the tunnel attains the steady-state as soon
of many configurations need be analyzed: the stress in the as a/h - I. The fact that the solution around a/h i I depends
uncracked body and the displacement for a plane-strain crack on the initial flaw geometry and the growth law of subcritical
of final width h (Fig. 2(b)). Each of the two independent cracking discourages further elaboration in this region. The
problems is under plane-strain conditions read.,; analyzed by dashed line in Fig. 3 is the anticipated trend.
commercial finite element codes. Now consider a brittle layer without subcritical cracking

Both (2) and (3) are valid for linear elastic systems uniform -.e.,rhanism, but with a well-defined fracture energy r-that
in geometry, material. and loading along the tunneling direc- is, the crack will not grow if GF<r. Following Dvorak and
tion. In the following, (2) is used if GE for the corresponding Laws (1986), we distinguish thin and thick layers by the ratio
plane-strain cracks, with width varying from zero to the final of the pre-existing flaw size to the layer thickness, ao/h.
tunnelsize, is available in the literature; but (3) is used whenever For a thick layer, where ao/h<<, the critical stress for the
finite element analysis is required. flaw to grow is governed by the flaw size

on = (irrE/2ao)"•. (7)Tnnel Nucleation As suggested by Fig. 3, under a constant applied stress a =a,
Tunnel nucleation is a complicated process. The nature of the flaw grows dynamically into a long tunnel. For example,

Pre-existing flaws plays a predominant role-a gas bubble the flaw size for a dense ceramic scales with grain diameter,
Would behave differently from a microcrack. Several ideali- typically ao- I - 10 om. If the layer thickness is much larger
zations are invoked as follows. The pre-existing flaw is taken than the grain diameter, the stress needed to nucleate a tunnel
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is given by (7). Consequently, the critical stress for a thick
layer is identical to the strength of the material in bulk.

For a thin bonded layer, where the pre-existing flaws are on
the other of layer thickness, i.e., ao/h- 1, the steady-state
energy release rate G,, becomes relevant. From (6), one finds
that the critical stress to maintain tunnel growth is

Oc=(4rE/ih)"/2. (8) o. >'i; V
This critical stress is well defined: no knowledge of flaw -0
geometry or microstructure is needed. It is conservative: any
flaw, regardless of its initial size or shape, cannot grow into
a long tunnel if the applied st'-ss is below oa. Consequently,
the critical stress derived from G,, can serve as a well-defined,
conservative design criterion for avoidance of tunnel cracks in
brittle t-in layers. It is clear from Fig. 3 that the criterion
becomes overly conservative for very thick layers (aol/h<< 0). Fig. 6 Mlcrocrack under combirnd residual stress and applied shear

Observe that the critical stress (8) is governed by layer thick-
ness; the thinner the layer, the higher the strength, everything
else being equal. This has motivated the conception of micro- = 5 Jm- 2, the predicted critical stress is ao = 120 MPa. The
laminates, consisting of alternate metal and ceramic, each layer predicted critical stress indeed discriminates glass layers with
submicron thick, fabricated by a variety of thin film deposition and without tunnels.
techniques (Evans, private communication). Because cracks in
a ceramic layer are confined by the adjacent metal layers, and Periodic Tunnels
dislocations in a metal layer is confined by the adjacent ceramic
layers (Freund, 1990), the microlaminates can have very high Periodic tunnels can form under uniaxial tension (e.g., Parv-
elastic limit, unprecedented by bulk solids. izi et al., 1978; Laws and Dvorak, 1988). Figure 5 illustrates

The rest of the paper will focus on applying tunneling con- tunnels with spacing L. The opening profile, 6(x), is for one
cepts to a variety of technical problems, with nucleation stage of the cracks which is computed using finite elements. The
ignored. Each individual application of the following results computed energy release rate G, is plotted in Fig. 5 for wl
must be validated on the basis that the pre-existing flaw size h = 10. Observe that, except for very compliant substrates, G,
is close to the layer thickness. does not vary substantially with spacing L/h. Consequently,

once the stress is sufficient to drive one tunnel, many tunnels
will follow with a slightly higher stress, so long as the nucleation

Adhesive Layer sites are readily available.
Inserted in Fig. 4 is a cross-section of a tunnel wake. In In Fig. 5, all the cracks are assumed to tunnel simultaneously.

finite element calculations, Poisson's ratios are taken to be With a proper rearrangement of the results in Fig. 5, the driving
P, = P, = 1/3, so that elastic mismatch is specified by (E,-E.)/ force for new tunnels forming between existing tunnels can
(E, + E,). The plane-strain conditions prevail in the tunnel also be obtained (Hutchinson and Suo, 1992).
wake. We analyze the plane-strain field using finite elements;
the computed opening profile is integrated according to (3). Shear Fracture
The normalized G. is plotted in Fig. 4, varying the elastic
mismatch and thickness ratio. Substrate thickness has little Upon closer examination of shear fracture in a laminate,
effect; the curve for semi-infinite substrates is nearly identical one sees microcracks normal to the principal tensile stress
to the curve for w/h = 10 with the resolution of Fig. 4. Figure nucleate and connect, causing macroscopic fracture (Chai,
4 is therefore sufficiently complete for practical purposes. The 1988). As an example consider a brittle thin layer bonded
following illustrates an application. between tough substrates, subjected to shear stress 7 and re-

In an experiment by Zdaniewski et al. (1987), differnt glasses sidual stress op (Fig. 6). The larger principal stress, al, and the
were used to bond alumina substrates. Gas bubbles of size of angle between the interface and the plane of the principal stress,
layer thickness formed in the glass during bonding, acting as 0, are given by
tunnel nuclei. The residual stresses for the four glasses used
in the experiment were oR = 63, 50, 13 I, 132 MPa, respectively, tan 9 - I0T = ol/27 + V,/(oa/2)' + 1. (9)
Tunnels were observed to radiate from the bubbles in the last Regardless of the sign of Up, ol is always tensile; 0<45 deg if
two glasses, but not the first two. Take E,, = 70 GPa and o, < 0, and 0 > 45 deg if oa > 0.
E, .. ,. = 350 GPa. From Fig. 4, this elastic mismatch corre- A tunnel is assumed to form perpendicular to al. For sim-
sponds to GE1/c 2/ = 0.6. Given that h - 50 jum and r,& plicity, the elastic moduli of the substrates and the bonded
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Fig. 7 Kinked tunnels a wavy fracture surface. This did not happen in the system of
He et al. (1991), presumably because the Ta(Ti)-RPL interface

layer are taken to be identical and substrates are seri-infinite.s et t ough er.
The cross-section of the tunnel wake is a Griffith cracko so Thermal Cracking in Brittle Matrix Composites
that (6) is applicable. Identifying the net stress a, and tunnel
width h/sin 8, one obtains All previous examples are related to layered materials. But

tunneling is more prevalent. To illustrate, consider matrix

G1 ,E/hri=- sin a/COS2 6. (10) cracking caused by thermal mismatch. An intermetallic rein-
4 forced by ceramic fibers, such as MoSi 2-SiC, usually has higher

For layers with different elastic constants, the tunnel angle thermal expansion coefficient in the matrix than in the fibers.
should still be determined by (9), but finite element analysis Upon cooling from the processing temperature, the matrix is
is needed to calculate G..,. Judged from Fig. 4, however, the subjected to tensile hoop stress and susceptible to cracking (Lu
results should be insensitive to elastic mismatch if substrates et al., 1991). One experimental finding is that cracking is more
are stiffer than the layer. likely to occur in the matrix reinforced by fibers of larger

radius, so that a critical fiber radius exists, below which matrix
Kinked Tunnels cracking is suppressed.

Focus on the radial crack in Fig.8. The thermal mismatch
When a A1203 plate is diffusion bonded to a Ta(Ti) alloy, strain is

a reaction product layer (RPL) of thickness 2 tmin forms (He MG
et al, 1991). The system debonds along the A1203-RPL inter- of = (a. A no)dT, (14)
face upon loading, leaving behind a trail of microcracks in the tt f
RPL (Fig. 7(a)).

The tunnel is driven by the stress intensity at the parent crack where a. and i are thermal expansion coefficients of the
front. A, and by the residual stress in the layer, al . For sim- matrix and fiber, and t, and T, are the processing temperature
plicity the remote load is assumed o be mode 1, and the and room temperature. The residual stress estimated from the
MICocracks are taken to be perpendicular to the interface, migsmatch strain for MoSi-SiC is high (-d 2 GPa), well in excess
The system is taken to be elastically homogeneous and the two of the bulk strength of MoSi2. Also note that the residual stress
substrates are semid-infinite. None of these assumptions will is independent of fiber radius for a fixed fiber volume. These
affect the conclusions qualitatively, two facts eliminate the possibility of explaining the experi-

For a kink of depth h' under the plane-strain conditions mental finding on the basis of bulk strength.
(Fig. 7(b)), the stress intensity factor is (He et al., 1991) Wm .e assume porosity exists, of size limited only by the fiber

spacing, which tunnels through the matrix under sufficiently
K,=0.374X+ 1.766o,,JT, K,,- -O.347K+0.201,,N/T' high thermal stress (Fig. 8). On dimensional prounds, the

0 1) steady-state energy release rate takes the form

The energy release rate at the kink tip can be computed from G. = EkE.R. 15
Irwin's relation where R is fiber radius and E., is tbe Young's modulus of the

GE-(KI' K' /T. 12)matrix. The dimensioniets prefactor, 0, depends on fiber vol-
GE' K, ,,/E (2 ume fraction, fiber arrangement, elastic mismatch, and inter-

The energy release rate at the tunnel front G. (Fig. 7(c)) can face properties, which has been computed using finite elements
be integrated according to (2), giving on the basis of the tunneling crack concepts developed in the

EG1 /K 2-0.260+0.7881?+ 1.58,72, i=oar.,/i/K. (13) previous sections (Ho and Suo, 1992).
The tunnel will not form if G.<F., r,. being the fracture

The parameter 7 reflects the effect of the residual stress. When energy of the matrix. Thus (IS) gives
a tunnel forms, the residual tension is locally relieved. As the
interface crack grows further, the residual tension recovers, r,,4E.R>a. (16)
driving a new tunnel. The dimensionless group on the left-hand side consists of meas-

Kinked tunnels were also observed by Chai (1987) in anepoxy urable parameters and predicts, among other things, that the
bonded between aluminum substrates. He observed that the larger the fiber radius, the more likely will the matrix crack,
main crack ran alternating on the two interfaces, leaving behind which is in agreement with the experimental findings.

Journal of Applied Mechanics r)FrlF:C FMp 100 ,, %1_1 c%-a-
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ABSTRACT

The effect of interfacial properties on the strength of discontinuous reinforced

metal matrix composites is systematically studied by theoretical modeling. The

calculations were carried out within the framework of continuum plasticity theory

using cell models and the finitn element method. A wide range of inclusion aspect

ratios, volume fractions, and interfacial strengths were investigated for perfectly

plastic and hardening matrices. Interfaces were modeled as either strongly bonded,

as shearable but strong normal to the inclusions, or as debonding at the

reinforcement ends but strong on the sides. Additionally, the effects of

reinforcement arrangement and extensive damage to continuous fiber composites

were addressed. Debonding at the ends of the inclusions was found to be the most

deleterious effect to the strength of the composite. When debonding did not occur

but interface sliding takes place freely, an amount of strengthening is seen which is a

function of inclusion volume fraction but is primarily independent of inclusion

aspect ratio. For extensively damaged continuous fiber composites a weak interface

yields a steady state composite flow strength slightly higher than the volume

fraction of the matrix times the yield strength of the matrix. This increases linearly

with the interfacial shear strength up to the level for strongly bonded composites

and can be estimated from the intact fiber aspect ratio, the matrix yield stress the

volume fraction, and the interfacial strength.
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1. INTRODUCTION

Previous studies on metal matrix composites have dealt with continuous

fiber composites and with discontinuous reinforced composites with a uniform

array of aligned inclusions. These geometries lend themselves to axisymmetric

models for the study of the longitudinal behavior of these composites. Using the

axisymmetric formulation the effects of volume fraction of inclusions [1], inclusion

shape [1], debonding [21, and residual stresses due to mismatch in the thermal

expansion of the constituents [31 have been investigated. Plane strain calculations

have been used to examine the transverse properties of continuous fiber composites

[4] and, by note of similarities in the development of field quantities between the

axisymmetric and plane strain models, the effect of clustering in discontinuous

reinforced composites has been investigated [5,6]. Three dimensional calculations

have been used to investigate the effect of volume fraction in particulate composites

[71, and have validated the use of the axisymmetric model. Three dimensional

calculations have also been used to study the transverse properties of discontinuous

reinforced composites [8]. Constitutive equations for multiaxial loading of weakly

bonded and strongly bonded transversely isotropic continuous fiber composites

have been developed by Gunawardena [9] for the former and by Herath [10] for the

latter. Jansson and Leckie [11] investigated the behavior of a transversely loaded

continuous fiber composite subjected to thermal cycling.

In this work the behavior of metal matrix composites is further investigated.

The role that interfacial strength plays with regard to the axial composite strength of

these materials is systematically studied with the use of the axisymmetric cell model

for a variety of interfacial behavior including strong interfaces, sliding interfaces,

and debonding interfaces. A wide range of volume fractions, inclusion aspect ratios,

and interfacial strengths are examined for composites with cylindrical shaped
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inclusions. In addition, the role of interfacial sliding in continuous fiber composites

is studied for the situation in which the fibers have experienced extensive cracking.

2. CONSTITUENT BEHAVIOR AND CELL FORMULATION

Composite materials can be viewed as having three distinct components: the

matrix, the reinforcement, and the interface. In metal matrix composites the

inclusions are generally ceramic and therefore much stiffer than the matrix and do

not exhibit significant plastic behavior. For these reasons the inclusions are

assumed to be rigid relative to the matrix material in this study.

The matrix and the interface are modeled as elastic-plastic with uniaxial

behavior characterized by

a = 0 0 = Ee ee (1)
KEO} 0

for elastic-perfectly plastic beha iior, and by

=yo- - E>E° (2)

for power law hardening material, where ao is the yield uniaxial stress, co=0o/E is

the yield strain, E is Young's modulus, and n is the strain hardening exponent.

The J2 flow theory of plasticity is used to characterize the rate-independent

material. With the von Mises yield criterion the condition for plastic flow is given

by
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F=3sijsij+2af2 =0 (3)

where Sij is the deviatoric stress, and of is the current value of the yield stress in

tension.

The solutions were calculated incrementally with the stress increment related

to the strain increment through

E v 3 iskI~s~k 4
yiJ = 1+V ij + 1-2vEkkij - 2 1 2 tEt

where a..j is the stress, .ij is the strain, a e= (3sijsij/2) 1 / 2 is the effective stress, V is

Poisson's ratio, and Et is the current tangent modulus of the uniaxial stress-strain

curve. For an elastic increment the last term in (4) is zero. Young's modulus is

taken to be 1000 times the yield stress in tension. For the cases of a work hardening

matrix material, values of n=5 and n=10 were used. Poisson's ratio was given the

value of v=0.25. The matrix stress-strain behavior is shown in figure 1.

The results are based on a widely used axisymmetric cell model. This model

represents a uniform array of aligned inclusions, which have the arrangement

shown in figure 2a. To evaluate the behavior of this arrangement subject to axial

stress, only one of the hexagonal cells, figure 2b, need be analyzed. As a further

simplification, the axisymmetric cell, figure 2c, is used. This has been shown to be a

good representation of the 3-dimensional cell [7]. The cell is subject to an overall

stress a parallel to the cylindrical axis. Based on symmetry and periodicity

requirements, the cell must remain a right circular cylinder with zero shear

tractions on all surfaces and zero average normal traction on the lateral surface. The
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end faces of the cell must remain planar. The inclusions are modeled as rigid

circular cylinders with an aspect ratio X defined as the ratio of the height of the

cylinder to its diameter, X=H/D, and can be fiber shaped, equiaxed, or disk shaped.

Due to the rigidity, the purely elastic results and the transition from elastic behavior

to fully plastic matrix flow do not represent exactly the phenomena which occur in

materials with elastic inclusions. However, the fully plastic flow is captured

accurately in an approach in which rigid inclusions are used. The focus in this

paper is exclusively on the results related to fully plastic flow. The volume fraction

f is taken as the ratio of the inclusion volume to the cell volume. The cell is

constructed such that the thickness of matrix material between fibers laterally is the

same as it is axially.

The axisymmetric formulation does not allow the study of reinforcements

which are aligned but located randomly. To properly address this issue a three

dimensional model is required. However, Christman et al. [7] noted similarities in

the development of field quantities between the axisymmetric formulation and a

plane strain formulation. The assumption that the development of these fields

would remain similar if clustering or random placement of aligned reinforcements

took place allowed them to examine these effects. As the axisymmetric and plane

strain models do not relate to each other on a one to one basis, results in this paper

for staggered inclusions are calculated using plane strain and are compared with

results for non-staggered inclusions also using the plane strain model. The

configuration of these plane strain cells is depicted in figures 3 and 4 for the aligned

and staggered models respectively. The cell geometry is such that the spacing

between reinforcements in the plane strain case is identical to the spacing between

inclusions for the axisymmetric formulation for a volume fraction f=0.4. As with

the axisymmetric model, the reinforcements are modeled as rigid.
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Additional calculations for axial strength were carried out for a model

representing continuous fiber reinforcement after the fibers have broken but the

matrix remains intact. The cell for this is depicted in figure 5. Calculations were

carried out for a material with a volume fraction of fibers equal to 0.4. It was

assumed that the distance between breaks was 10 times the diameter of the fiber and

that breaks were present in all fibers. The fractures in the fibers were all in the same

plane, representing a situation where one broken fiber leads to a stress concentration

in neighboring fibers causing them to fail as well. However, all fiber breaks were

assumed to exist in the material prior to the application of stress.

The calculations were carried out with the ABAQUS finite element code [121

using 8-noded 2-dimensional axisymmetric biquadrilateral elements. With the use

of an FPS500EA computer having 2 scalar and 2 vector processors plus 128 Mbytes of

memory, the calculation of a single stress-strain curve would take from 30 minutes

to 5 hours. The longer computation times were associated with low values of

interfacial strength.

3. PERFECTLY BONDED INTERFACES

Most analytic work with regard to metal matrix composites has assumed that

the matrix is strongly bonded to the inclusions. This is a good model for some

composites, such as Al reinforced with A12 0 3 . In developing a model for this case

the selection of the aspect ratio for the axisymmetric cell is a matter of concern. Bao

et al. [11 have shown that the predicted strength from these cell calculations depends

on the cell aspect ratio which need not be the same as the reinforcement aspect ratio.

Bao et al. [1], as well as Dragone [2] and Christman et al [7], used cells which had the

same aspect ratio as that of the inclusion. However, this results in excessive spacing
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between fibers end to end as compared to the spacing side to side. The converse

occurs for disk shaped reinforcements. The strategy of using cells in which the end

to end spacing is the same as the side to side spacing in all cases is more likely to

represent typical practical situations. However, it must not be forgotten that all the

results depend on the cell aspect ratio and in that sense the results presented here

are special and not general.

Results for Perfectly Bonded Composites

Stress-strain curves for composites with an elastic-perfectly plastic matrix are

plotted in figure 6 for fiber aspect ratios ranging from 0.1 to 10 and a volume fraction

of 0.4. These results are computed with the axisymmetric cell and therefore

represent the arrangement in figure 2. A transient stage from elastic to fully plastic

flow exists which increases in extent as the inclusion aspect ratio deviates from 1.

Disk shaped inclusions cause a larger transient region than fiber shaped inclusions.

Calculations for various volume fractions of reinforcements show that the transient

stage also increases with increasing volume fraction. In figure 6, it can be seen when

the matrix has perfectly plastic behavior that at large macroscopic strains the flow

stress of the composite does not increase with further strain. The resulting steady

state flow stress, E, is defined as the composite flow stress. This is demonstrated in

the inset in figure 7. Figure 7 is a plot of this steady state flow stress versus

reinforcement aspect ratio for inclusion volume fractions of 0.2, 0.3, 0.4 and 0.5.

This demonstrates the strengthening effect of adding well bonded rigid inclusions to

a ductile matrix.

In comparing these results to equivalent calculations of Bao et al. [1], we note

that the stresses computed here for fibers and plates are somewhat less than

computed by Bao et al. However, the difference can be attributed to the shapes of the

unit cell, since Bao et al. [1] used a cell aspect ratio equal to the reinforcement aspect
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ratio, whereas the results shown in figure 7 are based on a cell with the same

distance between fibers end to end and side to side. The results in figure 7 show that

2=6.1 for fibers with a volume fraction of 0.4 and an aspect ratio of 10 and 1=3.3 for

disks with aspect ratio of 0.1. The corresponding values computed by Bao et al. [1]

are 1=7.6 for fibers and X=5.7 for disks. This indicates a relaxation in constraint in

the current model caused by the increase of the distance between fibers side to side

or between disks end to end compared to the cells used by Bao et al. [1]. The

constraint is relaxed more for disk shaped inclusions than for fiber shaped

inclusions. However, the overall conclusions here are the same as for Bao et al. [1].

Fiber shaped inclusions provide the greatest strengthening and the strengthening

increases with increasing fiber aspect ratio. Disks provide strengthening to a lesser

degree than fibers. It is interesting to note that the lowest level of strengthening is

not given by unit cylinders (H=D), but rather by slightly squat cylinders. This is in

contrast to the results of Bao et al. [1] in which unit cylinders resulted in the least

strengthening. At an inclusion aspect ratio of I the current model is identical to the

model used by Bao et al. [11 and gives the same results.

The influence of a power law hardening matrix material is shown in figure 8.

These calculations were also carried out using the axisymmetric cell and so

represent the configuration in figure 2. In figure 8 the stress is normalized by the

matrix yield stress at the same strain. This has been used by Bao et al. [1] to give an

indication of the extent in terms of strain of the transition stage to pure power law

behavior in the composite. This then allows some comparison with the transition

to perfectly plastic composite behavior which occurs when the matrix is perfectly

plastic. Figure 8 presents stress-strain curves in which the matrix is hardening with

strain hardening exponents of n=5 and 10 and for volume fractions of 0.3 and 0.4 for

fibers with aspect ratios of 5 and 10. The transient stage increases with increasing

hardening. This effect was also observed by Bao et al. [1]. For a given level of matrix
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hardening the transient stage increases with increasing volume fraction and

increasing fiber aspect ratio, as seen for composites with a perfectly plastic matrix.

After the transient stage, the normalized stress-strain curves as shown in figure 8

are flat. At this stage, the composite strength - is equal to a fixed pure number

multiplied by YO, - where ý is the axial strain for the composite material. This

shows clearly that, after the transient stage, the composite material exhibits power

law hardening with the same exponent as the matrix.

The influence of staggered inclusions with strong interfaces is studied using

the plane strain model described in section 2. These were carried out with the plane

strain cell depicted in figure 4. The dimensions of the cell are chosen to be identical

to that for an axisymmetric problem with a volume fraction of f=0.4. The volume

fraction of the plane strain cell is then a function of the reinforcement thickness,

and comparisons between the plane strain and axisymmetric results are made with

respect to the cell geometry and not the reinforcement volume fraction. However,

comparison with the results for the axisymmetric case indicates that the axial

strength for the plane strain case is comparable to the strength when there are 50%

by volume of fibers. All results for the plane strain calculations are for perfect

plasticity. The steady state flow stress is plotted versus reinforcement aspect ratio in

figure 9 for both the case of regular inclusions as shown in figure 3 and the case of

staggered inclusions as shown in figure 4. These results are denoted the "strong

interface" results. With reference to the results for strong interfaces in figure 9,

there is a reduction in the composite flow stress when inclusions are staggered as

compared to the regular case of aligned inclusions for all reinforcement aspect ratios

considered. This is in accord with the calculations of Christman et al. [5]. In fact,

they found that any deviation from the idealized uniform array of aligned

inclusions will have an adverse effect on the composite strength. We infer from
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our results that in a fibrous composite with staggered fibers with a high volume

fraction around 50%, the axial strength would be about 75% of that arising when the

fibers are fully aligned in the regular arrangement shown in figure 2.

4. SLIDING INTERFACES

Strengthening of metal matrices with aligned short fibers is thought to be

largely due to load transfer between the fibers and the matrix through shear stress

on the side of the fibers with the normal load transfer at the fiber ends being

secondary. As a result, the strength of the interface in shear is an important issue

with regard to the strength of these composites. Dragone and Nix [6] allowed

frictional sliding to occur in their model. The condition for interfacial sliding is

then dependent on the local normal stress on the interface. Their results show that

compared to the strength associated with a perfect interface, there is a reduction in

the composite flow strength and initial composite yield strength with the effect

becoming more marked with decreasing friction coefficient. Some reduction

occurred even when the friction coefficient was assigned the high value of 1. In our

work the condition for sliding is considered to be dependent only on the level of

shear stress at the interface. If the shear stress exceeds a specified value, sliding will

occur. This model can represent an unbonded interface subject to friction controlled

by a large residual compression caused by thermal strains compared to which the

stresses due to elastic and plastic strains are negligible. This is a common situation

in composites. In addition, the model can represent the effect of a ductile interphase

with a low yield stress in shear. In this situation, the sliding is controlled by the

plastic straining of the interphase which is considered to be perfectly plastic. The
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interfaces investigated have shear strengths ranging from zero up to the shear yield

strength of the matrix.

Interface Model

For the case of zero interfacial strength the condition is modeled with a

boundary condition on the reinforcement surface. In other cases, the interface is

modeled as a thin bonded layer of perfectly plastic material between the matrix and

the inclusion. The thickness of the interfacial layer is taken as 0.5% of the thickness

of the matrix ligament between inclusions. The thickness of the layer is held

constant throughout the composite stress-strain history. The thin layer is assigned a

tensile yield stress ai. The yield stress of this layer in shear is then z1 = ci/03.

When the shear stress in the interfacial layer exceeds ri extensive straining in shear

will occur. This strain simulates sliding of the matrix relative to the fiber. The

interface can transmit any level of normal stress between the fiber and the matrix

without debonding and constraint then eliminates the possibility of plastic strain

which thickens the interphase. The ratio of ,i/ao is the same as the ratio Ti/To

where ao and To are the matrix yield stress in tension and the matrix yield stress in

shear respectively. The interface is assumed to have values of Ti/To ranging from 0

to 1.4 in these calculations. When r1i/T'o has a value of 0 the interface can slide

freely. If the matrix does not harden, setting ri_!>o will represent a strong interface.

When the matrix is hardening it is useful to assign ri values greater than ro as the

interface is assumed not to have any hardening behavior. Therefore v'.hen t1

exceeds To, slip will occur after some initial hardening takes place in the matrix near

the interface. It should be reemphasized that while the interface is modelled as a

thin layer of ductile material, the layer is so thin that the model is capable of
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representing frictional slip of a debonded interface in compression caused by a large

thermal residual stress.

Results for Interfacial Sliding

Stress-strain curves are plotted in figure 10 for composites with a fiber aspect

ratio of X=10 and a volume fraction f=0.4 as computed with the axisymmetric cell.

These results, therefore, represent the arrangement depicted in figure 2. The matrix

flow behavior is perfectly plastic and curves are given for interfacial strengths

ranging from Ti/To=0 to 1. When interfacial sliding takes place, there is a reduction

in the composite flow strength relative to the case of a strongly bonded non-

shearing interface. The composite strength decreases with decreasing interfacial

shear strength. However, even when the interface is allowed to slide freely the

composite is still seen to be strengthened relative to the matrix material alone. Note

that the transient stage is influenced by the strength of the interface with extensive

strain occurring prior to steady state flow when the interface is weak. In some cases,

the flow strength of the composite is still rising after a strain equal to 20 times the

matrix yield strain. However, the calculations were terminated at this strain level

and the result for flow strength at that strain will be used as an approximation to the

steady state flow strength for the material.

1he flow stress of the composite at 20 times the matrix yield strain is plotted

versus interfacial strength in figure 11 for composites with a perfectly plastic matrix.

The volume fraction of reinforcement is 0.4 in each case. Inclusions which are

particulate shaped, with aspect ratios ranging from X=0.5 to X=2, are not significantly

affected by interfacial sliding when the fiber ends are strongly bonded and the

strength in the sliding case is only a little lower than the strength of the composite

with the non-sliding interface. On the other hand, composites with fiber and disk

shaped inclusions are more seriously affected by slip with the material with fiber
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shaped reinforcements weakened considerably. A factor of 3 is involved in the

strength range for the material with fibers with an aspect ratio of 10. When slip is

allowed to take place freely, with Ti/to=0, the strengthening that does exist is

essentially independent of reinforcement aspect ratio. This suggests that the

strength which does arise in this case is due to constraint and load transfer only near

the ends of the fibers extending over an extent similar in each case independent of

total fiber length.

Also shown on figure 11 are some results for the limit flow stress when slip is

allowed to occur freely for a volume fraction of 0.2 and the results for the same case

when the interface is strong. It can be seen that composites with a weak interface

and a higher volume fraction are less sensitive to variation in reinforcement aspect

ratio. At the lower volume fraction of f=0.2, the composite retains more of its

strength for both the disk shaped and fiber shaped inclusions, but more so for disks.

On the other hand, the particulate materials lose almost all strength in excess of the

matrix when the interface is weak. The results for a sliding interface with Ti=0

when the fibers are in the regular arrangment depicted in figure 2 are summarized

in figure 7.

The influence of matrix hardening is presented in figures 12 and 13. These

show stress-strain curves for hardening matrices with n=10 in figure 12 and n=5 in

figure 13. The volume fraction is f=0.4 and the fiber aspect ratio is X=10 in both

cases. The results are computed with the axisymmetric cell and so represent the

configuration shown in figure 2. Curves for interfacial strengths ranging from

Ti/To=0 to 1.4 are given. In this case to is the initial matrix yield strength in shear.

Also included in these plots is the stress-strain curve for the appropriate composite

in which the interface is strongly bonded. For these curves no sliding takes place.

When the interface is strong, no sliding or debonding takes place. When sliding is

occurring, the interface is nonhardening even though the matrix strain hardens. It
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can be seen that the flow stress of the composite remains below the curve for the

strongly bonded composite, and deviates further from that case as straining goes on

and the matrix continues to harden. The degree of hardening when the interface is

subject to slip is less than that of the composite when it is strongly bonded,

presumably reflecting the nonhardening behavior of the interface. For comparison,

the stress-strain curve for the pure matrix is shown in figures 12 and 13. With

increased matrix hardening (n=5) the reduction in strength relative to the case of a

strongly bonded composite becomes more pronounced. It can be inferred that the

composite strength is controlled more dominantly by the interface strength than by

the matrix properties.

The influence of staggered reinforcement when there is a weak interface is

studied using the plane strain model as before. The calculations are carried out with

the cell shown in figure 4. The geometry for the plane strain cell is chosen to be the

same as used for the axisymmetric model for a volume fraction of f=0.4. As noted

previously, the strength levels from the plane strain calculation are comparable,

however, with the axisymmetric results with a volume fraction of 0.5. The

calculations were carried out with a perfectly plastic matrix. The results for the limit

flow stress versus reinforcement aspect ratio for both the regular and staggered cases

are plotted in figure 9 when the interface has no strength (ci=O). The regular case is

the arrangement in figure 3 whereas the staggered case is shown in figure 4. These

results are denoted the "sliding interfaces" case in figure 9. The composite flow

stress is almost independent of aspect ratio. In addition, staggering of inclusions has

little effect on the composite strength compared to the regular case. This finding

seems to confirm the hypothesis that when there is no interface shear strength,

elevation of the flow strength of the composite material is due only to constrained

flow and load transfer at the reinforcement ends. It follows that the strength is

substantially independent of aspect ratio and depends little on whether the
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reinforcements are staggered or aligned. Thus, an arrangement of staggered fbers

with drag free interfaces between the fibers and the matrix would have the same

strength as found for a regular arrangement (as shown in figure 2) of the same

fibers.

5. DEBONDED INTERFACES

High tensile stresses are typically present at the fiber ends for aligned short

fiber reinforced composites. This indicates a potential site for fiber-matrix

debonding, which has been observed experimentally with cavitation near fiber ends

by Nutt and Duva [13] and Chokshi and Mukherjee [14]. Dragone [6] allowed

debonding at the fiber ends to occur in his calculations when the normal stress

across the interface reached a critical value. Values for the critical stress chosen by

Dragone [6] ranged from 0.3 to 3 times the matrix yield stress. When the interface

strength was 3 times the matrix yield stress, debonding was not seen to occur,

effectively representing a strong interface in his model. His results indicate a rather

sharp break in the stress-strain curve for a strongly bonded composite when

debonding occurred, indicating that the debonding spreads rapidly across fiber ends.

When debonding occurred in Dragone's [6] calculations, the effective hardening of

the composite was drastically reduced compared to the case where no debonding

occurred.

Debond Model

The configuration of the fibers is shown in figure 2. The unit cell is

axisymmetric. In our work, the fiber ends are assumed to be initially debonded.

While this may not reflect the true sequence of events occurring during stressing of
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the pristine composite, the composite flow stress calculated at large composite strain

will be valid as a model for materials in which the fiber end bond breaks during

stressing. In addition, the periodic nature of the material represented by the unit

cells means that the debonding occurs simultaneously at both ends of every fiber in

the composite and this is reflected in the resulting stress-strain curve. Instead, in

reality debonding can be expected to occur over a range of strain, with weak fiber

ends failing first and strong ones later. Such effects cannot be captured in a single

cell model. Thus, this investigation is not concerned with the initial portion of the

stress-strain curve prevailing prior to and during debonding, but rather the focus is

on the macroscopic flow behavior of the composite after extensive debonding has

occurred. It should be noted that only the very end of the fiber debonds and the

lateral surface of the fiber remains strongly bonded to the matrix. A further point is

that there may be materials in which the fiber ends are never bonded to the matrix.

This would occur if the matrix does not wet the fiber end (as opposed to the lateral

surface of the fiber) and so processing fails to make any bond at the fiber end. This

could occur even when strong bonds can form on the lateral surface of the fiber

which often have differing chemistries from the fiber interior. A wide range of

inclusion aspect ratios are considered in this work for reinforcement volume

fractions of 0.2 and 0.4.

Results for Debonded Ends

Stress-strain curves are plotted in figure 14 for composites which have fibers

with debonded ends, but which remain strongly bonded without sliding on their

lateral surfaces. Curves are given for reinforcement aspect ratios ranging from 0.1 to

10. The volume fraction in all cases is f=0.4 and the matrix flow is perfectly plastic.

As noted above, the details of the stress-strain curve are not relevant to a material

which is initially bondcd. % towevcr, tL,. stres-str3ir curves are meaningful tor
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materials which are initially debonded at the end, perhaps due to processing and the

limit flow stress is relevant to the strength of a heavily damaged fibrous composite.

The transient stage to fully plastic flow occurs over less strain in this case than for

the strongly end bonded composite. Indeed, the transition from elastic to fully

plastic behavior in the end debonded case is rather abrupt. The limit stress is plotted

versus inclusion aspect ratio in figure 7 for volume fractions of 0.2 and 0.4. Not

surprisingly, the limit flow stress is very low for disk shaped reinforcements, since

the plastic constraint between the disks end to end that normally provides the

strengthening in these composites is relieved by the debonding. In fact, the

composite is then weaker than the matrix for all disk shaped reinforcements. There

is some strengthening for inclusion aspect ratios higher than 2, but it is only

significant for the larger aspect ratios of 5 and 10. However, with debonded ends, the

strength in these cases is only 1/2 and 1/3 of the strength of the fully bonded

material respectively. This indicates a very significant influence of end debonding.

It should be noted that the strength of the strongly end bonded composite with

particulates of aspect ratio X=2 is 50% greater than the matrix for f=0.2. Thus, the

end debonding eliminates 1/3 of the composite strength for this case and the result

is no stronger than the matrix. It is interesting to note that when the inclusions are

disk shaped the composite with a lower volume fraction is stronger. For short fibers

of aspect ratio 2 to 5, the strength is independent of volume fraction and when the

aspect ratio is 10, the material with the lower volume fraction of fibers has the

higher strength.

If one recognizes that the composite material with end debonded

reinforcements has many penny shaped cracks, the behavior described above can be

rationalized. The number of cracks per unit volume is 2f/XD 3 and so there will be

the highest density of cracks when there is a high volume fraction or a low aspect

ratio (i.e. disks). The density of microcracks will affect the limit strength of the
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composite. Therefore, when the aspect ratio of the reinforcement is fixed, increasing

the volume fraction should decrease the strength. In addition, at fixed volume

fraction, decreasing the aspect ratio of the reinforcements will decrease the strength.

These trends generally are seen to occur in the results depicted in figure 7 for the

end debonded case

The issue of staggered reinforcement is again addressed using the plane strain

model with a perfectly plastic matrix. As before, the spacing between reinforcements

is the same as the spacing for the axisymmetric model with a volume fraction of

f=0.4. The limit flow stress versus reinforcement aspect ratio for both the regular

(figure 3) and staggered (figure 4) cases when there is no end bond is plotted in figure

9. At low aspect ratio there is no difference in composite strength between the

regular and staggered cases. However, when end debonding has occurred,

increasing the aspect ratio causes the composite with staggered inclusions to be

stronger than the composite with reinforcements aligned in the regular fashion. It

should be noted that, although this staggering improves the strength of the

composite when debonding has taken place compared to the fully aligned regular

case, the composite strength remains lower than calculated for composites with

freely sliding interfaces which have strongly bonded ends, which is in turn lower

than the strength of the case with strongly bonded non-sliding interfaces.

The behavior of the plane strain system with reinforcements with debonded

ends is somewhat different from the axisymmetric system. With reinforcements

aligned in the regular arrangement in plane strain, the strength is insensitive to the

aspect ratio of the reinforcements and in all cases studied strength is below that of

the matrix. This seems to arise because deformation can be concentrated near the

ends of the reinforcements and so the length of the reinforcements is irrelevant to

the strength. In contrast, when the axisymmetric cell is used with end debonded

inclusions, there is a weak dependence on aspect ratio of the inclusion.
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Furthermore, if the aspect ratio is greater than 2, the composite is stronger than the

matrix. An additional point is that when the reinforcements are staggered,

significant deformation can only occur if neighboring reinforcements move

relatively in opposite directions causing shearing deformation between them. This

mode of deformation has been discussed by Mileiko (15] in the context of creep. The

strength can be estimated, based on the stress necessary to allow shearing to occur in

the matrix which will be the yield strength in shear of the matrix. This shear stress

will transfer load to the fibers in a shear lag fashion. As a result, for the staggered

end debonded inclusions in the plane strain perfectly plastic matrix case, the

composite strength can be estimated to be fkoo / 21_ over and above the strength

arising from end effects of the reinforcements. The slope of the plot for the

composite material with staggered end debonded reinforcements in figure 9 is

approximately f / 2V3, so the Mileiko [15] model for the effect is quite reasonable.

6. DAMAGED CONTINUOUS FIBER COMPOSITES

Continuous fiber composites with strong fibers provide the greatest

strengthening of metal matrices when the composite is loaded parallel to the

direction of the fibers. The strain to failure is typically low in these composites, due

to low fiber failure strain. In order to improve the ductility of these composites, the

fiber-matrix interface is often tailored with coatings to allow sliding to occur. This

weakened interface is then expected to spread the load transfer between the matrix

and fibers as the fibers begin to fail. This effect will limit the extent of nearby fiber

and matrix failure emanating from an initial fiber failure. In some cases significant

fiber cracking can take place while the composite and matrix remain intact. If fibers

are cracked throughout the specimen, the matrix will be the only continuous
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constituent. Strength arising from the fibers can only be maintained by load transfer

between the fibers and the matrix. However, extensive plastic flow will be possible,

and a composite steady state flow strength will exist Whether this steady state stress

is achieved in practice will depend on the propagation of the fiber cracks into the

matrix and the tendency of the matrix to fail. However, with a low strength ductile

matrix, the strength may be determined by the limit stress of the composite when

plastic flow occurs.

Model for Extensive Damage in a Continuous Fiber Composite

In this work an extensively damaged continuous fiber composite is modeled

as a uniform array of fibers in which all fibers in the composite are cracked in a

periodic manner and in which all cracks in one fiber are aligned with the cracks in

all other fibers. This is shown in figure 5 along with the repeating cell. The intact

length of the fiber is assumed to be 10 times the fiber diameter. The fibers in the

calculations were modeled as elastic with Young's modulus set at 10 times the

Young's modulus for the matrix. This is perhaps extreme for a metal matrix

composite with ceramic fibers which will generally have a lower ratio of fiber to

matrix modulus. The calculations were carried out using the axisymmetric

formulation. One notable difference between this model and the previous

axisymmetric model is that here there is no matrix material between adjacent ends

of the pieces of the fiber. The fibers are initially touching end to end and are allowed

to separate on loading. This is clearly appropriate for fibers which have broken after

processing has been completed so that the matrix cannot intrude into the fiber

breaks. The interfacial properties used for the calculations in this section are

identical to those developed for interfacial sliding. That is, the interface is modeled

as a thin layer of perfectly plastic material with a yield stress yi. The layer has a
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thickness of 0.5% of the matrix thickness between fibers and is constrained in the

radial direction, resulting in a shearable interface capable of transmitting any level

of stress normal to the fiber surface effectively without yielding or debonding. The

interface then has a yield strength in shear of ri = ai//-li3. Sliding will occur when

the shear stress in the interface reaches this level. The matrix used for all these

calculations for broken continuous fibers has a perfectly plastic flow behavior. The

interface is assumed to have strengths ranging from r1i/'ro=O to 1 where ro = ao / -,r3

is the yield stress in shear of the matrix material. The value 1i/To=O means sliding

can take place freely whereas Ti/to=l means the composite is strongly bonded.

Results for Damaged Continuous Fiber Composites with Sliding Interfaces

The stress-strain curve for an undamaged continuous fiber composite with

volume fraction f=0.4 is plotted in figure 15. The curve exhibits a bilinear behavior

with the barely visible knee occurring at the matrix yield strain. This behavior for

longitudinal strain is well known. Also plotted in this figure are stress-strain curves

for damaged continuous fiber composites. These composites also have a volume

fraction of f=0.4 and are for interface strengths ci/,co ranging from 0 to 1. The

existence of extensive cracking in the fibers results in a qualitatively different

behavior and a substantial reduction ;n the composite strength. The damaged

composites exhibit a limit flow stress not seen in the undamaged composite. A

transient stage between elastic and fully plastic behavior is seen which decreases in

extent with decreasing interfacial strength. When the interface can slip freely the

composite experiences an essentially elastic-perfectly plastic behavior with a limit

stress of Z/oo=0.638. This is slightly higher than would be predicted by assuming the

fiber plays no part in the strength so that the composite strength is obtained by

multiplying the matrix volume fraction by the matrix yield stress to get
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10=(1-f)Oo (5)

This results in Zo/a 0 =0.6 for the case of a volume fraction equal to 0.4. Thus, the

inclusions do not play an important role in strengthening of the composite when

the interface can slip freely, but instead have the opposite effect since their presence

serves to eliminate matrix material.

When the interface is strong there is a rather long transient stage leading up

to the limit stress. The limit stress has a value of I/ao=2.87 in this case. This limit

stress can be estimated in the following way, based on the work of McMeeking [16]

and Kim and McMeeking [17]. In the geometry of figure 5, plastic deformation takes

place by the opening of the cracks or by the squeezing of material from between the

fibers at the same time that the cracks open. If it is assumed that the latter

mechanism occurs, the flow of material must be accommodated by a shear stress on

the fiber surface equal to ci so that slip can occur there. As a result, for z>0 (the

upper half of the reinforcement), the shear stress in the matrix is equal to

Drz i f , 2rfr (6)

1-f 2

where the coordinate system is shown in figure 2. This form is such that Orz=ti on

r=D/2 which is the reinforcement surface and Grz=O at the outer lateral surface of the

unit cell. In addition, Orz is in equilibrium with a hydrostatic stress

Y -4,cif (z-11 (7)

1 4
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for z>O where this hydrostatic stress level has been selected to ensure that the

average transverse stress is zero to the neglect of a deviatoric transverse stress. The

axial deviatoric stress is independent of z and so need not be considered in the

balancing of the shear stress against the axial stress. The axial deviatoric stress must

be chosen so that it agrees with the flow of material as it stretches parallel to the fiber

and is constrained by the yield criterion. The result is rather complicated. On the

other hand, a reasonable, albeit high estimate is that the axial deviatoric stress is (o

everywhere in the matrix. As a consequence, the axial stress in the matrix is

aZZ = O + D(-- f) z-() (8)

As long as H/D is large compared to 1, this estimate is reasonaly good in

comparison with more exact numerical results, except that it neglects the details of

the stress distribution near the fiber breaks and near the center of the reinforcement.

However, it can be used to estimate the limit flow strength of the composite

material. At the fiber breaks, all of the composite stress is sustained by the matrix

since the fiber stress there is zero. Therefore the limit flow stress is estimated to be

1-f times azz at z=H/2. Thus

: = (1 - f)Foo + Xfi (9)

which predicts a value of I/a 0 =2.91 for the strong interface when 1i=T0 . This should

be compared with a numerical result of Y/ao=2.87 for this case as depictedin figure

15 at / co = 8. A- noted before, when Ti=0, the limit flow stress is predicted well by

S= (1- f)oo so equation (9) works well for that case as well. Comparison of equation

(9) with the numerical results shown in figure 15 shows that the agreement is

excellent when Z is taken to be the value of - when / E0 = 8. That is, the
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interface (ci=0) to the full strength interface (Ti=to).

7. DISCUSSION

The influence of interfacial properties on the flow strength of metal matrix

composites has been analytically investigated with the finite element method.

Interfacial behavior examined included strong interfaces, interfaces which could

shear but were strong normal to the inclusion surface, and interfaces which were

debonded at the ends of the inclusions but strong on the sides of the inclusions. The

effect of staggered inclusions was investigated for each of these interfacial behaviors.

In addition a study was done on extensively damaged continuous fiber composites.

Strong Interfaces

The calculated strength of composites reinforced with a uniform array of

discontinuous inclusions using an axisymmetric cell model depends on the aspect

ratio of the cell used. A cell in which the spacing between reinforcements end to

end is the same as the spacing side to side was used to represent typical or average

situations. The calculated composite strengths for inclusion aspect ratios other than

1 using these cells is less than calculated by Bao et al. [1] who used cells in which the

cell aspect ratio was equal to the inclusion aspect ratio. This difference arises because

the distance between inclusions for the cells of Bao et al. is smaller parallel to the

smallest inclusion dimension. That is, fibers are closer together side to side and

disks are closer together end to end. This closer spacing in the cells of Bao et al. leads

to a higher level of constraint in their model, and thus higher calculated composite

strengths. The reduction in constraint resulting from the cells used in our work,
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which have the same spacing side to side as end to end, is greater for disk shaped

inclusions than for fiber shaped inclusions. This means a greater reduction in

strength is seen for disk reinforced composites than for fiber reinforced composites,

as compared to the results of Bao et al.,. Surprisingly, the inclusion shape providing

the least strengthening in our calculations is not a unit cylinder, but a slightly

flattened cylinder with aspect ratio 0.5. This demonstrates the importance of

constraint between reinforcements side to side in these composites. When the

matrix is strongly bonded to the inclusions, staggered placement of the

reinforcements in the matrix results in a reduction in the strength of the composite.

Again, this emphasizes the importance of constraint between fibers side to side, as

the staggered arrangement relieves some of the constraint.

Sliding Interfaces

Composites which have interfaces which are allowed to shear, but remain

strongly bonded in the direction normal to the fiber surfaces, experience a reduction

in strength relative to their strongly bonded counterparts. Composites with fiber

shaped inclusions are more seriously affected by interfacial sliding than disk shaped

inclusions. However the fibers continue to provide more strengthening than disks.

It is not too surprising that interfacial sliding does not strongly affect the strength of

composites with disks since the largest fiber surface in these composites is normal to

the loading direction. However, even particulate shaped inclusions, with aspect

ratios up to 2, show little sensitivity to interfacial sliding. This indicates that the

constraint between fiber ends remains important for these aspect ratios. Only with

the higher reinforcement aspect ratios does the constraint between fibers side to side

take on a dominant role. When ri/xo=0 and therefore interfacial sliding takes place

freely, the strength of the composite is due primarily to the difficulty of flow around

the fiber comers. When the matrix hardens but the shearable interface does not, the
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resulting composite hardening behavior reflects the latter feature with a lower

hardening exponent than seen for the strongly bonded composite. With increasing

matrix hardening the composite strength shows little improvement. This indicates

that the strength of matrix hardening composites with nonhardening interfaces is

dominated by the interfacial behavior, and not the matrix behavior. Staggered

arrangement of reinforcements when the interfaces are free to slip has little effect on

the composite strength. As indicated previously, the strength of these composites is

linked to the flow around inclusion corners. The domain of influence of inclusion

corners does not change with staggered reinforcements for a given volume fraction.

Debonded Interfaces

Calculations for reinforcements with debonded interfaces were done with an

axisyrnmetric cell model. The repeating nature of these cells in this model means

that all fibers in the composite are debonded at both. ends. As a result, the composite

can be viewed as having an extensive array of cracks which are aligned. Not

surprisingly, the resulting composite strength is very low. Composites with fiber

shaped inclusions are somewhat stronger than with disk shaped inclusions. This

can be attributed to the effective density of cracks which increases with the aspect

ratio of the diameter to the height for axisymmetric reinforcements. In addition, the

effective density of cracks increases with the volume fraction of reinforcements.

Thus, the weakest cases when the reinforcement ends are debonded are all high

volume fractions and cases with disks with a large diameter to thickness ratio.

Damaged Continuous Fibers

Extensively damaged continuous fiber composites result in a steady state flow

stress for the composite. The limit strength of the damaged composite when there is

no interfacial shear strength and thus when slip can occur freely is given
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approximately by the rule of mixtures with the assumption that the fibers provide

zero strength contribution to the composite. The composite limit strength increases

linearly with interfacial strength as long as the interfacial shear strength is below the

matrix yield strength in shear. Increase of interfacial strength beyond that level has

no effect on composite strength when the matrix is perfectly plastic. The composite

limit strength increases linearly also with the volume fraction of fibers and the

aspect ratio of the broken pieces of fiber, as given by eq. (9).

Closing Comments

Discontinuous reinforced composites are strongest when the interface is

strong. Composites which have an interface that can shear but are strongly bonded

normal to the fiber surface are stronger than composites with debonding at

inclusion ends and a strong interface at the inclusion sides. The strength of

composites with shearable -interfaces is controlled primarily by the interfacial

strength. Composites with debonding ends, on the other hand, are dominated

primarily by the matrix properties. The strength of damaged continuous fiber

composites also depend strongly on the matrix behavior. These composites are

similar to short fiber composites with debonding ends, and therefore it is likely that

debonded short fiber composites with shearable interfaces would behave in a similar

way as the damaged continuous fiber composites with shearable interfaces.

Staggered arrangement of the reinforcements reduces the strength of strongly

bonded composites. However, staggering can be beneficial in the case of end

debonded fiber composites provided the fiber aspect ratio is sufficiently large. Fiber

shaped inclusions provide the greatest strengthening, both for strongly bonded

composites and composites with weakened interfaces.

It should be noted that the limit flow strength of a composite material with

brittle reinforcements may not be achieved if the reinforcements fail or if the matrix
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ruptures before the applied stress reaches the limit flow strength. Therefore, the

concept of the limit flow strength would not be relevant to such materials.

However, the limit flow strength determines the level of stress which can be

achieved without fiber failure and without matrix rupture in those materials and

therefore governs the transition from elastic response to elastic-plastic behavior.

Consequently, the limit flow strength provides valuable insights even for materials

in which reinforcement failure or matrix rupture occurs during the transition from

elastic to plastic response. In addition, the limit flow strength is a valuable concept

for all metal matrix composite materials at high temperature where the reduction of

the yield stress will make fully plastic flow possible without fiber failure.

Furthermore, the limit flow strength provides a guidance on the creep strength of

reinforced composites since the creep strength is closely related to constraint in fully

plastic flow.



30

ACKNOWLEDGMENT

This research was supported by the DARPA University Research Initiative at

the University of California, Santa Barbara (ONR Prime Contract N00014-92-J-1808).

The ABAQUS code was provided by Hibbitt, Karlsson and Sorensen Inc., Pawtucket,

R.I. through an academic license.



31

REFERENCES

[1] G. Bao, J. W. Hutchinson, and-R. M. McMeeking, "Particle Reinforcement of

Ductile Matrixes against Plastic Flow and Creep", Acta Metall. Mat., V39

N8:1871 (1991)

[2] T. L. Dragone, "Effects of Interface Properties on the Mechanical Behavior of

Short Fiber Metal Matrix Composites", AIAA-91-0981 (1991)

[3] D. B. Zahl and R. M. McMeeking, "The Influence of Residual Stress on the

Yielding of Metal Matrix Composits", Acta Metall. Mat., V39 N6:1117 (1991)

[4] D. B. Zahl, S. Schmauder and R. M. McMeeking, "Transverse Strength of

Metal Matrix Composites Reinforced with Strongly Bonded Continuous

Fibers", to be published (1993)

[5] T. Christman, A. Needleman, and S. Suresh, "An Experimental and

Numerical Study of Deformation in Metal and Ceramic Composites", Acta

MetaUl. Mat., V37 Nl1:3029 (1989)

[61 T. L. Dragone and W. D. Nix, "Geometric Factors Affecting the Internal Stress

Distribution and High Temperature Creep Rate of Discontinuous Metal Matrix

Composites", Acta MetalU. Mat., V38 N10:1942 (1990)

[71 C. Horn and R. M. McMeeking, "Plastic Flow in Ductile Materials Containing a

Cubic Array of Rigid Spheres", Int. ]. Plast., V7 N4:255 (1991)

[81 G. Bao and R. M. McMeeking, unpublished work

[9] S. Gunawardena, "Constitutive Equations for Weakly Bonded Metal Matrix

Composites", Ph.D. Dissertation, Department of Mechanical and

Environmental Engineering, University of California, Santa Barbara (1992)

[101 K. Herath, "Constitutive Equations for Fully Bonded Metal Matrix

Composites", Ph.D. Dissertation, Department of Mechanical and

Environmental Engineering, University of California, Santa Barbara (1992)



32

[11] S. Jansson and F. A. Leckie, "Mechanical Behavior of a Continuous Fiber-

reinforced Aluminum Matrix Composite Subjected to Transverse and

Thermal Loading", 1. Mech. Phys. Sol., V40 N3:593 (1992)

[12] ABAQUS Finite Element Program, Version 4.7, c1988, Hibbitt, Karlsson, and

Sorensen, Inc., Pawtucket, R.I.

[13] S. R. Nutt and J. M. Duva, "A Failure Mechanism in Al-SiC Composites",

Scripta Metall., V20:1055 (1986)

[14] A. H. Chokshi and A. K. Mukherjee, Proc. Superplast. Aero. (1988)

[15] S. T. Mileiko, "Steady State Creep of a Composite Material with Short Fibers",

J. Mater. Sci., V45:254 (1970)

[161 R. M. McMeeking, "Power Law Creep of a Composite Material Containing

Discontinuous Rigid Aligned Fibers", to appear in Int ]. Sol. Struct., (1993)

[17] K. T. Kim and R. M. McMeeking, "Power Law Creep with Interface Slip and

Diffusion in a Composite Material", to be published, (1993)



33

FIGURE CAPTIONS

Figure 1: Matrix stress-strain behavior.

Figure 2: a) Hexagonal array of aligned fibers; b) hexagonal cell; c) axisymmetric

cell.

Figure 3: Plane strain cell for inclusions aligned in the regular arrangrement.

Figure 4: Plane strain cell for staggered inclusions.

Figure 5: Configuration and unit cell for damaged continuous fiber composites.

Figure 6: Composite stress-strain curves for strong interfaces and a perfectly

plastic matrix as computed with the axisymmetric cell. Inclusion aspect

ratios range from 0.1 to 10 and the volume fraction is 0.4.

Figure 7: Limit flow stress versus inclusion aspect ratio for volume fractions

ranging from 0.2 to 0.5 as computed with the axisymmetric cell and

perfectly plastic matrix.

Figure 8: Stress-strain curves for composites with strong interfaces in a strain

hardening matrix with n=10 as computed with the axisymmetric cell.

Figure 9: Limit flow stress versus aspect ratio for aligned and staggered

reinforcements with a strong interface as computed with plane strain

cells and a perfectly plastic matrix.

Figure 10: Stress-strain curves for composites with shearing interfaces with

interfacial strengths ranging from zero to strong as computed with the

axisymmetric cell. The matrix is perfectly plastic. The volume fraction

is 0.4 and the inclusion aspect ratio is 10.

Figure 11: Composite stress versus interfacial strength as computed with the

axisymmetric cell. Inclusionspect ratios X range from 0.1 to 10. The

matrix is perfectly plastic and the volume fraction of fibers f is 0.4.



34

Figure 12: Stress-strain curves for composites with shearing interfaces with

interfacial strengths ranging from zero to strong computed with the

axisymmetric cell. The matrix is hardening with n=10. The volume

fraction of fibers is 0.4 and the inclusion aspect ratio is 10.

Figure 13: Stress-strain curves for composites with shearing interfaces with

interfacial strengths ranging from zero to strong computed with the

axisymmetric cell. The matrix is hardening with n=5. The volume

fraction of fibers is 0.4 and the inclusion aspect ratio is 10.

Figure 14: Stress-strain curves for composites with inclusions which have

debonds at the ends computed with the axisymmetric cell.

Reinforcement aspect ratios range from 0.1 to 10. The matrix is

perfectly plastic and the volume fraction of fibers is 0.4.

Figure 15: Stress-strain curves for an undamaged continuous fiber composites

and for damaged fiber composites with shearable interfaces computed

with the axisymmetric cell. Interfacial strengths range from zero to

strong. The matrix is perfectly plastic, the aspect ratio of the broken

fiber pieces is 10, and the volume fraction of fibers is 0.4.
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ABSTRACT

For lamellar aggregates, a small size scale is attained where flow in a ductile layer

occurs by the motion of single dislocations rather than dislocation arrays. Analysis of such a case

indicates that the flow stress should follow an Orowan-type relation accompanied by rapid

effective work hardening. Consequences for flow instability and fracture are considered.



INTRODUCTION

Currently there is much interest in the plasticity of fine scale microstructures

including nanocrystalline materials [1] and structures produced either by the imposition of large

plastic strains such as composites subjected to wire drawing [2] or materials produced by

sputtering or evaporation [3]. There is extensive literature which describes the application of

various strengthening mechanisms to these structures.

However both the scale of the structure and the strength levels attained invite

consideration of some basic issues in crystal plasticity and comparison of the events occurring in

fine scale microstructures with those occurring in work hardening and fatigue of pure metals.

There are in essence two aspects of the problem which arise from the scale of the

microstructure. The first is that alternative processes of relaxation and plasticity may arise due to

the density of high diffusivity paths. These processes effectively translate the mechanisms of

deformation operative at high reduced temperature, T/Tm vaiues to lower temperature regimes

and in addition the fine scale structures may provide alternative relaxation and fracture modes.

There is a variety of experimental data available which demonstrate these effects for fine grain

size materials [4-6].

The second aspect of the problem, the one with which this communication is

concerned, is that pertaining to low temperature plasticity where the flow stresses of the fine

scale microstructures can approach to within a fraction of 1/2 or 1/3 of the theoretical strength of

order p/30, where g. is the shear modulus. In this regime we can consider the following

problems: a) what processes may limit the accumulated local dislocation density?; b) in two

phase material what factors permits the flow stress to attain such high values?; c) as the

theoretical stress is approached does the character of plasticity and its spatial organization change

from that operative during more usual descriptions of plasticity and work hardening?



Format

It is appropriate to consider a simplified view of microstructures in order to draw

some analogiz; between single phase and two phase material. Consider first that the structure

can be divided into lamellar regions a and P. 03 may represent either regions of very high

dislocation density as in a single phase material subject to fatigue or a second phase which differs

:n e•hstic modulus from *hc rCgime a.

If we now consider the deformation process operative in such a structure we can

consider in essence a hierarchy of events: a) the imposition of an appropriate scaling law to

describe the change in dislocation configuration, b) the storage and annihilation of dislocations as

a consequence of flow and c) the geometrical aspects of the spread of plasticity in such

structures.

Single Phase Structures

Crystals deformed at low temperatures in general form rough cells and tangles with

local misorientations of I or 2' and many dislocations of opposite sign, i. e. with dipole character

[6,7]. With either static or dynamic recovery, these cells convert to narrower, well-defined cell

walls [8]. The detailed mechanisms of interaction between the mobile dislocations and the cell

walls or regions of high dislocation density are difficult to elucidate in structures producer bý

uniaxial deformation. In contrast, in single phase structures produced in fatigue, persistent slip

bands develop that have a regular ladder structure consisting of walls of high dislocation density

separated by channels in which dislocation motion occurs. The seminal work of Basinski And

Basinski [91 has shown that at low temperatures the walls contain dislocation densities of the

order 1017 n/m 3, i.e., on the average the dislocations are approximately 3 nm apart. In these

structures, some annihilation of dislocations occurs in a form of local recovery to preserve the

constancy of structure and mechanical response.

Hence, these fatigue structures with the largest local dislo ation densities can sustain
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very large flow stresses. In nanoscale systems with barriers, such as dispersed or lamellar second

phase particles, similar large densities of dislocations can occur. The attendant higher stresses

can result in the shearing of obstacles that are usually impenetrable in mesoscale microstructures.

This shearing relieves local stress concentrations and permits the annihilation of edge

dislocations as an alternative recovery process to climb or to cross-slip of screw dislocations.

ti, thc following, we present an explicit derivation of a flo, relation for ihe case of a

lamellar structure and demonstrate the effects of the scale of the microstructure.

Dislocation Models

The scaling law for dislocation spacing X0 in a single phase material is

X'0 = (1)

3t

applicable for cell structures or random arrays of dislocations, where b is Burgers vector

magnitude, p is shear modulus and T is the resolved shear stress on the glide system. When this

distance becomes small compared to the layer thickness h, the concept of pileups and slip bands

becomes meaningless. Instead single dislocation loops form in the a phase and are deposited at

or near the interface at a spacing X. The process is illustrated in Fig. 1. The structure is akin to

those formed in persistent slip bands in fatigue [9] and in partially relaxed strained layered

structures [10] (strained superlattices). The essential point is that the fine scale plasticity may not

occur by groups of dislocations moving on slip planes separated by distances of the order of a

micrometer but instead by single dislocations moving on closely spaced glide planes from one

boundary to the next. Two issues of importance are the role of image stresses in any possible

standoff distance of the dislocations from the interface and an expression for the flow stress of

the structure.

The image arrays are represented in Fig. 2. For a single screw dislocation in a, for

example,the image repulsion from B produces a standoff distance w given by [ 11]

.4 II



W -- (2)
47ET

where

Y = - 9a (3)
9+9

and il" is a factor representing the multiple interface image correction 12]. Any other interface

will tend to weaken the image repulsion force on the a dislocations, as can be perceived

qualitatively from Fig. 2. Another B interface to the right of that in Fig. 2 would produce a

repulsive force acting to the left which would tend to decrease w. Another a interface to the left

of that shown would decrease the repulsive force acting to the right and again tend to decrease w.

Typical values [12] of the factor i" are -0.5 for w/A = 0.1 and the 71 values decrease

with increasing w/X. With 1" = 0.5, and X = h, Eqs. (1) and (2) give

W =hy (4)
8

An extreme case of large y is provided by the example of alumina B layers and niobium a layers;

giving y = 0.72 and w = 0.09h (the upper bound on y is 1; which would give w = 0. 12X). Even in

this extreme case, to first order one can neglect the standoff distance w compared to the

dimension h. For many considerations w is much smaller: e.g. TiC and Ni where 7 = 0.14 and

w = 0.01 8h. The uncertainty in h introduced by neglecting w in such a case is very small

compared to the uncertainty associated with the assumptions of isotropic elasticity, the

magnitude of the core energy of dislocations and effects associated with dislocation curvature.

For multiple dislocation arrays, the stress field becomes limited [13] by the

dislocation spacing X, the image forces are further reduced, and w becomes even smaller than for

the case discussed above. Hence, to a good approximation, w can also be neglected for this case.

Koehler [14] considered the single interface case where Tl = 1 and suggested that the

limiting strength in a two-phase structure would be reached when the distance w attained the core
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size -b, whereupon the dislocations could in principle penetrate into the harder B3 phase. In many

cases, such penetration would be limited by other factors such as the Peierls stress of the harder

phase or interactiuas with intrinsic interface dislocations. Lehoczky [15,16] has used the Koehler

model to estimate the value of h where dislocations penetrate the hard phase and produce

general yielding in a composite, so that stress no longer varies with h. He found reasonable

agreemcnt with experimental results for Al-Cu and Al-Ag laminates. We regard this agreement

as somewhat fortuitous in view of the above discussions, and note that strength increases

accompanying size decreases into the nm structure scale have been observed for nanostructures.

For an explicit example, we suppose that the interface dislocations in Fig. la are pure

edge so that the moving segments in Fig. Ib are screw in character. With the neglect of w, the

Orowan stress to move the dislocation segments in Fig. Ic is then

= R (5)

where the core cutoff radius is set equal to b. The angle 4 is determined by a balance between

the line tension of the moving screw segment, Ss and that of the edge imbedded in the interface

array, Se

cosco = , 4=r S, h (6)

S5 , b2 en(h/b)

If we assume that the array in Fig. la is uniform, the energy Se is just the interaction

energy when a dislocation is brought from a distance h/2 into the boundary, given by Eq. (19-85)

in ref. 18 as

Se 2 irtbcoth____-_ensinh -b -rhcoth7th+.i sinhsrh (7)S= rt(1 - v) I ) X X ? , X 7,J

In the limit of large (h/X) the bracket term becomes In(A./27tb), and hence

Cos~ 2 In(ek / 27b) (8)
(l- v) n(h/b)

S. . .. • !



Together, Eqs. (5) and (8) give

T ji in 7cb(9)
nh(1 - v) 27rb)

In this limit, the T and h values are related by a pure Orowan relation T - h-1. For smaller (h/)

values, the result is, instead,

,r= 2S-? in (10)
bh , 2 tb i

This gives an Orowan type relation but not of the simple h- 1 form because of the weak h

dependence of Se; a situation analogous to the dispersion hardening case [18].

For a layer structure, the plastic strain is related to k by

m=b- (11)

where Xa is the volume fraction of the oa phase and m is a strain resolution factor of the order of

0.5 for the active slip systems. Hence, the k dependence in Eq. (10) would appear to give strain

softening. This is not the case, however. Instead, the constraint of the undeforming, or less-

deforming, 3 phase produces a stress transfer to B and an overall stress elevation that in turn

yields an effective large work hardening of the composite in the sense of an increased load

carried by the composite even though the resolved shear stress for flow of the aX phase is

unchanged.

Stress Strain Relations

Stress strain relations can be constructed for two cases. We first consider

macroscopic loading parallel to the interface of a lamellar aggregate.

As discussed in the Introduction, once the a-phase begins deforming, it soon develops

a symmetric, plane plastic strain deformation mode. Moreover, with reference to Fig. I a, once

the value <X> is less than h, the stress distribution in the two phases essentially becomes that of a

7



continuum plastic model with the phase flow relation of the form of Eq. (10). The constraint in

the x direction is such that 0 _- _-', F-T = 0 where the superscripts x and p denote the a phase

and plastic strain respectively. The elastic stresses and strains are constrained to obey the
relations P-" = F- = 0, 0 = P-" + C', and cY. =,t / m. Since the major effect is the

XX 'X )y Yy Yx )

compensation of the plastic strain OP by the elastic strain Ec& , we make the simplifying

assumption that a and B have the same elastic constants V and v, which grc,,dly reduces the

complexity of the results. The above conditions together with Hooke's law give the result,

derived in Appendix A,

OP 2g. Eap + -" 2g Ep,
(l-v) )7 M ( )-v)

- m

where m is the Schmidt factor for the operating slip system and the overall strain ,. is equal to

E.. The mean stress a is given by

+ 0 i (13)

This case closely resembles the continuum plasticity result [19,201 for a lamellar

aggregate, the difference being that the slip systems depicted in Fig. 1 result in plane strain

deformation and that m would equal 0.5 for the continuum case. Like that case, work hardening

is rapid for small strains, Eq. (13). In the present case, the rapid hardening persists until one of

two events occurs, whereupon the hardening rate drops precipitously. First, ar,, can reach the

fracture stress a.,, resulting in the breakup of the B phase into segments of length -2h. In this

case, the stress distribution in the B phase is that of Fig. 3 with an average stress < YO,, >= cF. / 2.

This situation again closely parallels the continuum result. Second, aG. can reach the flow stress

of the B phase locally, resulting in a slip band or shear band penetrating the B phase over lengths

8



of -2h. The stress distribution in the B phase again resembles that in Fig. 3 but a* is now the

flow stress in the B phase. Of course, the yield stress t/m is related to h through Eq. (9) or (10).

Once penetration of the P3 phase occurs, a variety of processes can occur which

influence the mechanical stability of the /P3 composites. The flow stress of the microscale

composites is high. As a consequence, geometrical stability can only be sustained either by the

app-rent high work hardening caised by the stress transfer to the P3 phase or by the p.cventi:ln of

geometric instability by means of imposed compressive isostatic stress states such as those in

wire drawing.

Thus, codeformation of (x and P3 may occur by the transfer of individual dislocations

from interface to interface, resulting in uniform deformation of the two-phases, even at very large

strains. Examples of such behavior can be found in the drawing of two-phase systems such as

Cu-Ag or Cu-Nb [21]. However, alternative processes may also occur. If dislocation motion in

the 03 phase is difficult because of high lattice friction, as is true for many compounds such as

oxides, the 03 phase may fracture. In such a case, if the crack length, equal to the width of the 03

phase, is sufficiently large, the local value of the stress intensity at the crack tip can exceed the

critical value KIc for the ax phase and fracture of the entire composite would ensue. Secondly,

the crack tip can blunt and initiate a growing void in the at phase, eventually leading to ductile

fracture of the composite. In the case that the P3 phase deforms, stable subsequent deformation

behavior can follow.

For smaller values of h, cracking of a becomes less likely because of the attendant

smaller thickness of the 03 layers and consequent lower stress intensity at the crack tip. Also, hole

growth at the crack tip is less likely because of the lower stress intensity. Indeed, the size scale

may be in a range where capillary constraints could arise because of the small crack tip curvature

[22]. Delamination at the crack tip would also tend to suppress crack propagation For the case

that the 03 phase deforms, assisted by the compressive isostatic stress elevation arising from load

transfer, large elongations can be sustained before fracture because of the stable symmetrical
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texture that evolves (which eliminates geometrical softening) and the continued effective work

hardening of the composite, both effects tending to suppress necking or macroscopic shear

instability. Such large elongations are found for heavily drawn steel wires [7] and in tensile tests

of nanoscale lamellar aggregates of Al and AI2 0 3 [231.

Finally, we emphasize that any local dilatency may trigger a shear localization

instability that may be noncrystallographic in form at the large siCss lkvels aLJ.5il ii thc

microcomposites, Such a localization results in a macroscopic shear failure that extends across

the ac and P3 regions [23].

The second situation again would correspond to Fig l a, but with loading in the z-

direction and with the dislocations of opposite sign. The continuum plastic analog for this case

has been developed by Drucker [24]. In this case, the plastic strains are s:' and E' = O=

-- E"j. The elastic strains are e = E --= ' = I E and both a and E. are non-zero.

The stress conditions are cy -y.,(Xa/X•),a• O,(.a /X•),o?-=o. and = ,+('t/n)X.

Considerable manipulation of these conditions together with Hooke's law yields, as shown in

Appendix B,

"(1- v) x m

0(1+v) C C

(l-v) X 3m

The form of the stress-strain relation for this case closely resembles that of Eq. (13). The yield

stress is again related to h by the Orowan-like Eqs. (9) or (10). Rapid work hardening occurs and

is terminated by one of several events. First the hydrostatic tensile stress a' can lead to

cavitation in the a-phase. Second, (ap - ,)/ ml can reach the resolved shear stress for flow in

V 0



the B-phase, whereupon both phases deform together. Third, aY.. can reach the fracture stress of

the B-phase, leading to fragmentation and subsequently to hole growth and fracture or brittle

crack propagation. Fourth, interface glide can initiate at the edge of the crystal, Fig. 4. The latter

process will initiate when

GaL = aph + yp -T, (15)

where ar, is the Peierls stress resisting interface dislocation motion (interface sliding), y• is the

surface energy of the B-phase, and 7i is the a-B interfacial free energy.

All of the above processes require resistance to flow of the cc-phase at the edge.

Failure to satisfy Eq. (15) ensures that such flow will not occur by interface sliding. The necking

type flow of the a-phase, as would occur for macroscopic layers, Fig. 5, will not occur initially

because the most favourable dislocation motion is governed by Eqs. (9) or (10) and the other

systems, which would give flow of the type in Fig. 5, require larger stresses and nucleation at the

free surface. For macroscopic layers, where Eq. (1) governs flow, necking would occur, and the

stress build-up in a would be much less, the flow following the Drucker process [24,25].

Discussion

The plastic properties of fine scale structures are of increasing importance. In the

current work we have considered some idealized lamellar structures. In these materials it is

important to consider that the scale of the structure may be reduced to a level where it is

inappropriate to consider that the scale of the structure is such to permit the spread of plasticity

via the operation of Frank-Read sources. The interfaces become both the sources and sinks of

distortion and the structure can store energy during plastic flow by the accumulation of

dislocations at interfaces, thereby causing their extension, rather than by the storage of discrete

lattice dislocations. The energy is manifested macroscopically as elastic energy in the harder

phase and as increased interfacial energy. The present work indicates that the flow stress should

scale inversely with layer spacing and that large effective work hardening should occur for such

I I



flow. Ancillary features are that dislocations in the interface should lead to symmetric plane-

strain tensile textures and to uniform distributions of dislocations in the interfaces, tantamount to

misfit dislocation arrays.

Here, the flow problem is treated for elastically homogeneous layer structures. More

gencally, the incorporation of dislocations into the interface be;.,,:cca xv. s io'.'ds of d/fi,:g

elastic constants may be more complex because the interface may cease to be in local

equilibrium. That is, there may be a standoff distance of the dislocations from the interface.

There is also a problem of the inherent stability of flow. As the scale of the structure

is decreased, the flow stress increases but the energy storing (or work hardening) ability of the

structure is decreased. Thus, fine scale structures may either suffer localized shear or may

deform in a very homogeneous manner by dislocations eventually traversing every atomic plane.

Both the scaling laws relating structure dimensions to critical strains and the detailed mechanism

of storage present further areas for study for such instability events.

Summary

For nanometer-scale lamellar structures, flow is controlled in the softer a phase by

motion of screw dislocations obeying an Orowan type relation, with stress roughly related to the

reciprocal of the ductile layer thickness. This process plates edge dislocations at the a-B

interface which in turn sheds load from the cc to the B phase. For uniaxial loading either parallel

or perpendicular to the ox-B interfaces, this process leads to rapid effective work hardening

followed by flow or fracture of the B phase or, for the perpendicular loading case, to cavitation in

the oa phase. These latter processes lead to a subsequent very low work hardening rate. Hence,

overall, fine scale lamellar aggregates are characterized by a large yield stress and rapid effective

w jrk hardening at small strains, followed by low effective work hardening and attendant plastic

instability or fracture.
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Appendix A - Derivation of Eq. (12)

The boundary conditions from Fig. 1 are
0;s=L F =0; O .E'•+,•.; = (Al)

and the flow condition gives

Y.. = r / m X2)

Since Exx = 0, Hooke's law gives

aO = V(a +CF=, ,.
(A3)

OP =vAO

Hooke's law also gives the relation

C 2 T (A4)
Yy E E v

where E = 2p(l+v) is Young's modulus. Hence
"Cr =(1v 2 R 2_i Fa (A5)

(-v) (- v)

Substitution of eqs. (AI) and (A2) into (A5) gives

= +2A - (A6)
"Cy l-v) _+ m

i i iI I II i



Appendix B - Derivation of Eq. (14)

The boundary conditions from Fig. I are

C -C' E Ec~
-- 1E•(El)

The requirement of zero net force at the surfaces normal to x and z, and equilibrium in the z

direction give

aa (X / X; (T CF)Y(B2)

The flow law yields
OY =o +'C/m =, +, /m (B3)

Substitution of these relations into Hooke's law gives
•= (g + L)(2E• +FP •) + ;• (B4)

Z = (2g+ _)Z 4 ?(2E + ).) IX (B5)
(O' = (gX + ?.)2E:O + XE = -cya(X,, / Xp) (B6)

CFO =2PR + X,)F- + 240 = a. (B7)

where _ is Lame's constant, ý= 2 lv/(1 -2v).

Solving eqs. (B4) to (B7) simultaneously leads to the result

a = (I + v) xO •(1 - v) ý7" (B8)

Cr = ~ + V)x£ 0 '
(l-v) C" m
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Figure Captions

Fig. 1. Dislocation arrays at interfaces of an imbedded layer: views parallel to the interface,

(a) along dislocation line direction, (b) normal to (a), and (c) detail of end of loop in (b).

Fig.2. Dislocations and image dislocations near interface.

Fig. 3. Stress distribution in segmented P phase.

Fig. 4. Interface sliding at laminate edge with slipped area - h.

Fig. 5. Deformation at edge for macroscopic layer structure.
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Fig. 1. Dislocation arrays at interfaces of an imbedded layer: views parallel to the interface,

(a) along dislocation line direction, (b) normal to (a), and (c) detail of end of loop in (b).
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Fig. 2. Dislocations and image dislocations near interface.



0 2h x

Fig. 3. Stress distribution in segmented J phase.
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Fig. 4. Interface sliding at laminate edge with slipped area h.



Fig. 5. Deformation at edge for macroscopic layer structure.
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Introduction

The quest for materials with high specific strengths and stiffness has been the impetus for the development of
metal-matrix composites (MMC's) in recent years. MMC's containing continuous reinforcements possess the highest
strengths and stiffnesses in the direction of the reinforcement. However, such composites have poor transverse
properties and are extremely expensive for most applications. In contrast, MMC's with particulate reinforcements,
wh-il rnot achieving tie strengths and stiffness levels of continuous fiber-reinforced MMC's, exhibit greater isotropy in
their properties. Furthermore, they can be processed by conventional means and are much less expensive.

Active research has led to considerable advances in an understanding of particulate reinforced MMC's. In
particular, substantial experimental and theoretical work [1-201 has been done on the effect of microstructural
" trancters such as volume fraction, particulate size and interparticle spacing on the yield strength of such composites.

However, most of the experimental studies have been restricted to composites containing a single uniform particulate
size and volume fractions less than 0.3. In cases where a range of these parameters were studied, the flow stress was
fcand to vary with the edge-edge particle spacing rather than with volume fraction alone, as would be expected from
simple elastic-plastic models.

The objective of this present investigation was to study the effect of microstructural parameters on the yield
strength of AI-4%MgIA120 3p composites containing volume fractions greater than 0.45 and with a bimodal mixture of
particle sizes in order to further discriminate among the effects of particulate size and interparticle spacing variables.

Experimental

The composite materials were obtained from the University of California at Santa Barbara in the form of
50mm x 50mm x 12mm blocks. The matrix for all the composites was an aluminum alloyed with 4wt% magnesium
and the reinforcements were alumina particulates with an aspect ratio (lit) of about 2. The composites contained
aluniina paitii.ulates varying from 3 to 165ptm in size, and the volume fraction of the reinforcemnent was in the range
0.45 to 0.54. Two of the composites had a bimodal mixture of two particulate sizes. Lists of the composites studied
in this investigation and of the particulate characteristics are given in Table I. The composites contain a nominally
homogeneous distribution of alumina particulates, although there are a few clustered regions. The composites also
have an excellent bonding between the alumina particu]ates and the aluminum alloy matrix because of the formation
of MgAl10.4 spinel at the interface [21.22].

Ten-ion and compresion tests were performed on these composites %% ith the lnatr;x in the annealed condition.
Round-bar ,pecimens -, ith a gage length of 25mm and a gage diameter of 3.2mrm were ued 1Vor ,m-) ion te,,t,. er



cylindrical specimens with a height of 12.7mm and a diameter of 6.35mm were used for compression tests. The tests

were carried out on an Instron 136! testing machine at a constarnt cross-he-ad speed of 0.5am/rmin.

Results and Discussion

The experimentally obtained yield strengths in tension and compression are enumerated in Table 2. Evidently,
there is considerable scatter in the tensile yield strength data. This could be attributed to the greater effect for the large
volume fraction material of particle-particle interactions [23], particle clustering [24] and fracture [25] on plastic
deformation in tension than in compression. Consequently, only compressive yield strength data for the composites
have been considered for correlation with the microstructural parameters and comparison with theoretical predictions.

Dislocation-crystal plasticity based models for strengthening in particulate reinforced MMC's predict a yield
strength dependence roughly with the inverse of interparticle spacing (X-I) for a superdislocation model [26] or on
:avcrse square root of interparticle spacing ()-1/2) [19,20] in a model consistent with a geometrically necessary
di.locat.'on description. In turn, such relations imply an indirect dependence on both volume fraction and particle size
via the dependence of X on these parameters. On the other hand, simple elastic-plastic continuum-mechanics based
mudels [10-17] predict a yield strength dependence on only volume fraction for a given particle shape, which implies
the independence of yield strength from particle size. More refined continuum-mechanics based models that include
strain gradient terms [27,28] contain an explicit dependence on both volume fraction and particle size. The variation

of compressive yield strength with X-t, X-112 and volume fraction are shown in Figs. 1,2 and 3, respectively. Clearly,
the compressive yield strength does not exhibit any correlation with either X-I or X-112. In contrast, the correlation with
volume fraction is good. In addition, Table 2 shows that the yield strength is independent of particle size. The
correlations in Fig. 3 show that the magnitude of the observed strengthening far exceeds that predicted by the elastic-
plastic modified shear-lag theory [10]. However, the magnitude of the strengthening is comparable to the predictions
based on finite element calculations [17]. These observations imply that the strengthening behavior in these
composites obey the simple elastic-plastic continuum-mechanics description. This behavior is in marked contrast to a
number of observations on the tensile yield strength of Al matrix, particulate MMC's [3-9], wherein the yield strength
Sas found to vary explicitly as a function of ? and thus obey a crystal plasticity description.

The discrepancy in the strengthening behavior in the two cases can be attributed to both the difference in
loading and to the large volume fraction of the alumina particulates. The volume fraction of alumina was greater than
0.45 in the present study, whereas it was less than 0.20 in the other cases [3-9]. Large particles and high volume
fractions are known to accelerate particle fracture because of the increased attendant particle-particle interaction of
strain incompatibility Id., [231. Algo, parti.cle clusLering should enhance early fracture [24]. Both effects would in
turn provide defects that would enhance shear localization and trigger further particle cracking. These instability
events observed, as well at lower volume fractions [20,25] in tension, would lead to a lowered flow stress in tension
and, because of the statistical nature of the particle-particle interactions and clustering effects, to a greater scatter in
macroscopic yield events, both effects as observed here. Voids are known to enhance shear localization in tension
129], and the superdislocation model that provides a fair correlation with yield strengths at lower volume fractions
[26] is in essence a shear microband localization model: both observations are consistent with the above view.

In contrast, compressive loading perforce suppresses the propagation of shear localization events (although
voids would still enhance the initiation of recent localization events) [30]. Thus, the picture that emerges is that
testing of these large volume fraction composites in compression results in the suppression of shear localization and a
correlation of flow stress with volume fraction only, as expected from simple elastic-plastic continuum models. In
tension, shear microband propagation introduces a superdislocation bowing dependence on particle spacing, roughly
of the Orowvan ty pe. For large volume fractions. particle interaction effects lead to particle cracking. and a large
statistical variation in these events obscures correlation of the yield strength wkith microstructural parameters.



Conclusion

The compressive yield strength of the AI-4%Mlg/Al 2O3p composition is a function only of wv:.!ce fraction. of
alum~ir.a and is independent of particle size or interparticle spacing, in the volume fraction range of 0.45 to 0.54. The
strengthening behavior obeys a simple elastic-plastic continuum-mechanics microstructural parameteric description in
this volume fraction range. In contrast, the tensile yield strengths are lower and do not correlate well with any
microstructural modes.
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Table 1: List of Composites Investigated (The matrix is A l-4%Mg and the reinforcement is alumina particulates).
Two data sets (1,2) listed for bimodal case.

Composite Total Vol. 2 !ntcrparticle
No Fraction Part. Size gm Vol. fract. Part. Size p.m Vol. fract. spacing gm

Matrix 0 - - 00
1 0.45 3 0.45 - - 1.33
2 0.46 3 0.41 30 0.05 2.32
3 0.47 3 0.26 30 0.21 3.13
4 0.47 45 0.47 - - 18.80
5 0.50 9 - 3.50
6 0.53 30 0.53 - - 10.70
7 0.54 165 0.54 - - 5740

Table 2: Yield Strengths in Tension and Compression for the Composites Investigated.

Yield Strength Yield Strength
Composite (Tension) (Compression)

No. MPa MPa
Matrix 77 83

1 163 210
2 205 214
3 148 217
4 150 221
5 203 227
6 169 247
7 176 245
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Figure 1. Compressive yield strength versus inverse of interparticle spacing
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Figure 3. Compressive yield strength versus volume fraction of alumina.


