
AD-A279 734IIIEIII~Ii~

UJNL I~tfIITj

DTIC
ELECTE

JAN 01994

FACULTY OF COMPUTER SCIENCE

94-14281,lll~hl~l ii, •'% _________

UNIVERSITY OF NEW BRUNSWICK

FREDERICTON, N.B. CANADA E3B 5A3

93 12 2901'I

4SCUBA

A BUFFERED CORE GRAPHICS SYSTEM

BY

Uday G. Gujar

School of Computer Science
University of New Brunswick

Fredericton, N.B.

Aragam R. Nagesh

School of Computer Science
University of New Brunswick

Fredericton, N.B.

TR79-016, June 1979

This report has been submitted for outside
publication and has been issued as a Research
Report for early dissemination of its contents.
As a courtesy to the intended publisher, it
should not be widely circulated until after the
date of outside publication.

ABSTRACT

The graphics community is recently taking a close look at

graphics standardization prompted by issues such as portability

of software, application program structure, diverse hardware,

etc. Through these efforts, the Graphic Standards Planning

Committee of ACM/SIGGRAPH has proposed a standard. This stand-

ard advocates four levels of the Core system, namely basic,

buffered, interactive and complete. This paper describes a

Level 2 (i.e. buffered) implementation of the Core system in

APL, referred to as OSCUBA (APL BUffered Core System). The

details of the structure and organization of OSCUBA are

given. The implementation is highly modular in nature, pro-

vides both two and three dimensional capabilities with several

types of projective transformations and supports full segmen-

tation capabilities. Several examples illustrating the use of

the system are included. The interactive nature of APL is

found to be attractive. Some deviations from the Core system

have been incorporated. These include a modular hardcopy

interface to produce graphics on plotters etc. and a facility

to retain world coordinates of the objects. The system,

though appearing to be satisfactory, has to undergo further

testing to gain user confidence.

1. INTRODUCTION:

c*SCUBA (APL BUffered Core System) is an APL based system for gener-

ating and maintaining graphics displays. The system is implemented

under APLSV to run on an IBM 370/3032 at the University of New

Brunswick. It has been designed and developed to meet the functional

capabilities of the Level 2 Core System proposed by the Graphics

Standards Planning Committee of ACM/SIGGRAPH in July of 1977 [GSPC77].

The main objectives in developing OSCUBA are device independence,

adherence to CORE specifications and maintenance of pictures as simple

user files. Device independence implies that it should be possible to

draw on any graphics devices currently supported, which include storage

tubes, a drum plotter, an electrostatic plotter and line printers.

Close adherence to CORE specifications is the second design goal; Level 2

is chosen because of hardware limitations. Thirdly, maintenance of pic-

tures as user files is prompted by the fact that the application program-

mer is essentially an APL user and hence has to manage the available

workspace area. In terms of capabilities, the system is capable of pro-

ducing 2D or 3D pictures or 2D plots using graphics primitives like MOVE

and DRAW for the creation of pictures. Also, full general viewing speci-

fications are available to create several images (projections) of the

same object. Finally, facilities to interact with the objects and/or

images in terms of changes or transfers to other devices are provided.

In the following sections a brief discussion of the structure,

implementation and the highlights of 4'SCUBA is presented.

-2-

II. STRUCTURE OF OSCUBA:

The complete system has been organized in terms of groups of APL

functions. Three essential groups (CORE1, CORE2, CORE3) form the bulk

of Level 2 Core System specifications and CORE4 forms the modelling

system for SCUBA. Additional groups comprise the global variables,

device drivers and device dependent routines, and the backbone of the

TSIO filing facility. Finally, a hardcopy interface forms a separate

group which helps in transferring pictures to plotters and printers not

directly supported under the APLSV system.

Figure 1 depicts the general organization of OSCUBA and the overall

flow of information in the system. The groups have been combined to

form modules for the sake of clarity.

In conforming to the CORE specification [GSPC77], the modelling

system is separated from the viewing system. This dichotomy not only

helps in achieving a clean system but also saves valuable workspace

area in APL since the user can dynamically release storage used by the

modelling system functions.

Module 'C' comprising of COREl, CORE2 and CORE3 forms the complete

device independent Level 2 Core System. The functions in COREl imple-

ment all the output primitives, viewing transformations, and the general

3D clipping. CORE2 forms the segment operations submodule and has

functions to generate and maintain picture segments and associated data

structures. A slight deviation from CORE specifications is to be found

here in terms of object data structures and retaining of objects in

-3-

Viewing/Control Modelling

Module 'C' CORE1

CORE2 CORE4 Module 'M'
CORE3

TI COREV HARDCOPY
Module '10'

•Module 'V' IMdl H
___________Module 'H'

TEKGRP

WSCUBA
Module 'T'

AP PL I CATI ON PROGRAM

Figure 1: Organization of OSCUBA

addition to the images. The details are discussed later under imple-

mentation. Finally, CORE3 implements the control functions of the CORE

specifications such as setting and inquiry of attributes, selecting

viewing control parameters, etc. Instead of leaving the application

prograinr to make individual function calls (as specified by GSPC) for

various settings or inquiries, one interactive function for each set of

attributes (say, viewing or control or primitive) is written for this

purpose. This approach is found to be of valuable use in the imple-

mentation of some of the CORE functions.

-4-

Module 'M' is the modelling functions module used to describe the

orientation or position of the object in the world coordinate system.

This module is used in conjunction with the module 'C' since the initial

object definition is to be through primitive invocations in an open

segment.

Module 'V' is entirely made up of global variables used by the sys-

tem. It contains such items as representative data structures for ob-

jects and images, list of viewing parameters, some 'HELP' documentation,

etc.

Module '10' consists of essential TSIO routines for creation and

maintenance of retained segments. Any errors that are detected in this

module are passed on to the higher level routines in module 'C' for

reporting.

The module 'T' consists of device drivers (currently only TEKTRONIX

4015 storage display drivers) and thus form the device dependent portion

of the (ýSCUBA system. The functions of this module can be used for line

drawing, character writing, screen erasing, etc. It also includes some

global variables like character stroke table, screen dimensions and

control characters.

The hardcopy interface in module 'H' consists of a specialized set

of routines which transfer pictures drawn on the TEKTRONIX display to

any of the other plotting devices not supported under APLSV. The

technique used is to record all the 'pen movements' in a TSIO file as

the picture is constructed and use this file as an input to the 2D

-5-

plotting package [GUJA72, GUJA76] available under the general operating

system. The details of this module are explained under implementation.

The overall structure of 4SCUBA lends itself to easy application

programing. A majority of the functions are niladic and any input ex-

pected of the user is handled interactively via a conversation. Thus

the application programmer's knowledge of APL has essentially been

kept to the minimum. Error reporting, although done through individual

functions, is organized so as to avoid occurrences of suspended func-

tions and holding of storage space. A knowledgeable APL programmer,

however, can make use of the facilities of cSCUBA much more efficiently

by defining his/her own functions using the ýSCUBA functions. By doing

so, the user can obtain the intended results in a faster way.

III. IMPLEMENTATION DETAILS:

The implementation langauge being APL, its dynamic array handling

capabilities are extensively used. All the data are represented as real

arrays thus maintaining a consistent storage structure. For retaining

purposes the available TSIO facilities [UNB74] under APLSV are used.

The character strings appearing in text are converted to equivalent

real constant by using the encoding operator of APL. This proves to

be simple and economical on storage. Figure 2 summarizes the structure

of the various arrays used for storing objects and their images; the

following notation is used in that Figure:

XW,YW and ZW are the world coordinate dimensions of a point,

XI,YI are the transformed dimensions representing the image of a

point,

A

-6-

Nx,0 for MOVE
N 4 1 for DRAW

OORI XW YW ZW

a) Wire frame drawing in world coordinates.

J SYMBOLO - Index in the

N x 4 APL symbol
set

SYMBOL# XW YW ZW

b) Markers in world coordinates.

XW YW ZW HTW WDW XSP YSP

XI YI R XSPI YSPI HTI WDI

LENGTH TEXT CODE TEXT CODE TEXT COD TEXT CODE TEXT CODE

c) Text Vector - World definition and/or corresponding image.
S---EP I EP 2

xI I YI XI i Jd
EPl - End Point 1

NX4 EP2 - End Point 2

XI Y1 XI YI

d) Image of wire frame drawing.

SYMBOLI XI YI

SYMBOL# = Index in the APL
symbol set

SYMBOL# XI YI

e) Image of markers.

Figure 2: Data structures for objects and images

-7-

XSP,YSP,XSPI,YSPI are the spacing parameters in a line of text in

the world and image coordinates respectively,

HTW,WDW,HTI,WDI are the character size parameters in world and

image coordinates respectively and

R is the angle, in radians, of inclination of the text string; it

is calculated internally.

At Level 2, the Core System provides everything except detectability

of segments, input primitives and image transformations. Thus, all the

output primitives and their attributes (excepting some device dependent

ones like text font, color and highlighting) are implemented. In imple-

menting the text primitives, only the low quality text is chosen. The

high quality text is too expensive to implement and the medium quality

text, it is felt, does not offer any great advantage over the low qual-

ity. In fact, the medium quality text has the disadvantage of overlapped

characters (see examples in [GSPC77]). A software stroke chracter gener-

ator to produce standard APL character set of 120 symbols is provided.

To implement the viewing transformations, the synthetic camera

analogy of the Core System [NEWM78, GSPC77] is used. The user could

choose a particular view from the six possible views: perspective,

oblique, isometric, top, front and side. The latter four are particu-

lar cases of orthographic projections; certain viewing parameters are

set automatically by the system for these views. The user must be

knowledgeable of the viewing transformations to set the particular para-

meters for getting two or three point perspectives or a particular cab-

inet or cavalier projection. The mathematics used in this implementation

-8-

is based on the paper by Carlbom and Paciorek [CARL78] and discussions

by Rogers and Adams [ROGE76] and Newman and Sproull [NEWM73].

A general 3D clipping is employed for world coordinate clipping

where the particular viewing volume (infinite or truncated pyramid or

parallelopiped) is derived from the viewing parameters. An algorithm

given by R.F. Puk [PUK77] is implemented for achieving the above clip-

ping. The clipping (both window and depth) is user controllable and the

options have been included as control parameters along with the type of

world coordinate system (left or right).

Picture segmentation and naming facility of the Core System is im-

plemented through the segment operations submodule and the TSIO module.

A segment is created by invoking the CREATE function. The created seg-

ment can be either named or unnamed and can be retained or nonretained.

Only nonretained segments can be nameless. Any created segment results

in the creation of an entry in a system maintained segment directory

(see Figure 3). An entry in the segment directory shows an eight

character segment name (padded with blanks to the right, if needed) and

three flags associated with visibility, type and residence. The visi-

bility and the type are directly the segment attributes of the Core

System. The residence flag is a special flag which indicates the pre-

sence or absence of the world coordinate definition of a particular

segment in the APL workspace. This additional feature is prompted by

the facility to retain objects in addition to the images in a segment.

More details of this new facility are discussed in the following section.

-9-

S~U

013 0.

Segment Name > 9

Directory
Entry

8 bytes 1 1 1 byte

Figure 3: Segment Directory

For each created segment, there can possibly be two TSIO files - one

for image and one for object. In addition, each user will have his/her

segment directory as a TSIO file which is augmented each time a segment

operation affecting the segment directory is performed. At any time

the user can inquire the contents of his/her segment directory by means

of a LISTDIRY function. Independent loading and storing of the dir-

ectory is also possible by means of LOADDIRY and STORDIRY functions.

The double buffering required in Level 2 of the Core System [GSPC77]

has been achieved through RENAME function. In addition, a NAME function

has been provided which can be used to name an unnamed segment. This

feature helps the user to work on an unnamed segment initially until

the segment appears to be satisfactory; at this time a name can be

-10-

attached to retain the segment, if desired.

As mentioned before, the CORE functions are implemented in an inter-

active mode via a conversation with the user. Typically, setting up of

the viewing parameters, segment attributes and primitive attributes is

handled via niladic functions such as SETVIEW or SETPRAT. Similarly,

inquiry of attribute values is handled via the INQUIRE function. Clearly,

this scheme can be employed either separately or inside other functions

developed by an application programmer.

Error handling has been achieved through individual functions them-

selves rather than through a separate error handler. However, depending

on the severity of an error, the user is either prompted to continue

with a corrective action (e.g. duplicate segment name error) or to

terminate current activity through a return to the highest level of

function call. The latter is achieved in APL very easily through exe-

cution of a niladic branch arrow. Care has been taken to see that the

user is not confronted with incomprehensible error situations. Even

in the worst case of a workspace overflow, an elementary knowledge of

APL and of the names of the modules of the system will help the user to

dynamically expunge some variables to make room in the workspace in

order to continue execution.

The implementation -f an auxillary hardcopy interface for the d'SCUBA

system is necessitated by the nonavailability of other devices such as

plotters under APLSV. Currently, a device independent plotting system

[GUJA72, GUJA76] is available for FORTRAN users in the Computing Centre

-11-

of the University of New Brunswick. The package takes in two dimensional

plotting data to plot lines, curves and text strings. Special needs such

as line styling are handled by special routines. The interface consists

of a FORTRAN program which is submitted through the RJE/RJO facility of

APLSV [GUJA75] on behalf of the user of the 4SCUBA system. The input to

this FORTRAN program is a plot file constructed out of the device co-

ordinates determined at the time of image construction. This plot file

is prepared dynamically as the image is displayed on the view surface of

the 46SCUBA system. A simple sequential file structure is chosen for this

plot file which is constructed as a TSIO file. The details of this file

structure are reported elsewhere (NAGE79].

The user intending to get a hardcopy has to first initialize his/her

plotfile before invoking the 4SCUBA functions. After displaying the re-

quired image, transfer to other devices is handled via an interactive

routine TRANSFER which allows the user to specify the device, size of

plot, etc. and prepares a remote job to be submitted to the system 370

through RJE/RJO facility [GUJA75]. The output from this job will be

the user's hardcopy.

A complete summary of the ýSCUBA functions is given in Appendix II.

IV. DEVIATIONS FROM CORE SYSTEM:

One important deviation from the CORE specifications is the facility

to retain the object in the world coordinate system. There are two

reasons for this. Firstly, this feature conserves the workspace.

Secondly, although the image retaining facility allows one to keep

-12-

several images of the same object, the advantage of retaining one object

definition and viewing it under different viewing conditions interactively

seems to be more desirable. Thus three functions, LOAD, STORE and ERASE,

are written to work with objects; a residence flag in the segment direc-

tory entry indicates the presence or absence of the object in the active

workspace. One other advantage of this facility is that viewing of two

or more different objects under the same viewing setup is possible.

The file structure for objects is similar to that for images. Line

definitions and/or text definitions and/or marker definitions are all

stored as sequential real numbers in fixed blocked records. An identi-

fication code precedes each set (lines, text or markers) along with the

number of entries. Specific format and its size, etc. are discussed

elsewhere [NAGE79] in detail.

In addition to the object retaining facility, the hardcopy interface

can also be considered as a deviation from CORE specifications. How-

ever, this interface is highly modular and can be considered as an aux-

illary addition which is easily identifiable and removable. Finally,

the interactive nature of the *SCUBA system does in a way reflect a

slight deviation from the rigorous specifications of the Core System;

however, this is a welcome enhancement provided by the base language

APL.

-13-

V. EXPERIMENTAL RESULTS:

In this section, several displays created using the *SCUBA system

are given. The world coordinate definitions of the displays created in

Figures 4 to 6 are given in Appendix III.

Figure 4 shows a three point perspective view of a garage. Thr

point perspective is obtained by having a view plane which intersects all

the three principal axes in the world coordinate system. The view refer-

ence point is the right bottom corner and the center of projection is

located at the roof level and is at a fair distance from the garage.

URP-144 0 120
tWH-O.5 0.25 1
U*P-O 1 0
DIR-50 100 -100
TVP PERSPECTZUE

910--29 200 0 150

Figure 4: A Perspective View of a Garage

THIS

PAGE

IS

MISSING

IN

ORIGINAL
DOCUMENT

-15-

URP-172 0 50
UPN'0 0 I
'JUP"O 1 0

DI'R-0.577 0,333 "1
TYP.OEL ZQUE

INo'20 200 0 150

Figure 6: An Oblique View of a Building

THIS IS R 20 DEMO STRRTION.

JOHN 7

Figure 7: A 2D Demonstration

1a

-16-

Figure 7 shows a two dimensional example. The size and spacing at-

tributes for the two text strings are set by a call to SETPRAT function.

The markers appearing on the left are plotted through MARKREL2 called

in a loop. The outline of the man is constructed as a polyline through

the invocation of a function POLYREL2. The set of lines shown in the

figure is just an arbitrary set drawn through the POLYABS2 function.

The position of the man is set through the MOVEABS2 function call.

An example of an application program using the (OSCUBA functions to

plot curves is shown in Figure 8. The problem is to create a plot show-

ing two simple trigonometric functions. An auxillary APL function STEP

makes up intervals for the plots and the functions SIN and COS evaluate

the respective trigonometric functions. The two curves are realized in

two different ways. One is plotted as a series of two dimensional markers

and the other is "pictured" as a two dimensional object. The function is

written using the primitives and is enclosed in a segment for the purposes

of adhering to CORE specifications. The results are given in Figure 9.

V PLOT2D;A;B;C;D;E;I V Z-STEP X
[1] CREATE I1] Z*-X[1]+0,X[3]x
C21 A*- 61 1 pSTEP 0,(02),0÷30 ir(X[2]-X[1])÷X[3]
C3] B*-(SIN A)+(SIN 2xA) V
[4] C-(SIN A)+(COS 2xA)
[5] D+- 61 2 pAB
£6] E*- 61 2 pAXC V X-SIN Y

C8] LOOP:'*' MARKF4BS2 D[I;] V
C9] -(612:rI+1)/LOOP

[10] AO VEABS2 Eft;]
[11] POLYABS2(1 0)+E V X-COS Y
[12] PICTURE [1] X-20Y
[13] M*-HOME V
[14] CLOSE V

Figure 8: Program for Plotting Trigonometric Curves

-17-

ýi *0S*E

a a
S" a

OPENl

a a

STREAT
*NTORL DAEFIIIN OF THE SEGMENT [SET ETUNT HUNASE] BE•EN RTAIE

CLOAD
ENTER NAME OF THE SEGMENT: [HET RTUR FCREN]:(2

DESGTRO

ENE IMAME OF THE SEGMENT: SEGMENT3RTIE

* *O *DEFRNRO ON -- NAME SEGMENT OSNT SGEXIT1 A ENRTIE
COPY

ET NAME OF THE SEGMENT: SGET

Fiur 10 Ilutrto EfO -- Few SEMNOSemn OOperatTi*o*s

COP*
ENTERNAMEOF TE SEMENT

oa a

Figur i0Figusre~o 9: 2D Cure PlotigmetOeai

ENEmAEO H EMN HTRTR IF IhN mD] ISIGI EINI

-18-

VI. CONCLUSIONS:

A graphics system capable of meeting the specifications for a Level

2 (Buffered) Core System, in an APL operating environment, has been

achieved. The application programmer being an APL user has the advan-

tages of a simple and fast conversational system for the generation and

maintenance of displays. Highly modular in nature, the implementation pro-

vides both two and three dimensional capabilities and supports full seg-

mentation operations. Provisions are made to obtain various perspective,

isometric and oblique views as well as side, front and top views commonly

encountered in engineering applications. Knowledge of APL at an advanced

level, while a distinct advantage on the part of the user, is not manda-

tory for creating and modifying pictures in the WSCUBA system. Experi-

ments with the system so far indicate that the interactive handling of

setting of attributes, etc. is both efficient and fast. One of the seri-

ous problems found so far has been that of workspace overflow in cases

of complex objects or multiple segments. The system itself is still under

development and as such has to be further tested and modified. Neverthe-

less one can feel the advantages of following GSPC methodology in design-

ing a graphics system. Further, the task of a graphics application pro-

grammer is simplified when equipped with the functional capabilities of

a Core System.

-19-

REFERENCES

[CARL78] I. Carlbom, J. Paciorek

"Planar Geometric Projections and Viewing Transformations".

ACM Computing Surveys, Vol.10, No.4, pp. 4 6 5 - 5 0 2 , Dec.1978.

[GUJA72] U.G. Gujar
"Computer Plotting".
Computing Center, Univ. of New Brunswick, Fredericton, N.B.
Canada, Oct.1972.

[GUJA75] U.G. Gujar
"Remote Job Entry and Output Through APL".
APL75: Conference Proceedings, pp.148-157, Pisa, 1975.

[GUJA76] U.G. Gujar
"A Device Independent Computer Plotting System".
ACM Symposium. on Graphics Languages
SIGPLAN Notices, Vol.11. No.6, June 1976
Computer Graphics, Vol.10, No.1, pp.85-100, Spring 1976.

[GSPC77] "Status Report of the Graphics Standards Planning Committee".
Computer Graphics, Vol.11, No.3, Fall 1977.

[NAGE79] A.R. Nagesh
"4SCUBA - A Buffered Core Graphics System".
Masters Thesis (to be submitted), Univ. of New Brunswick,
Fredericton, N.B., Canada, 1979.

[NEWM73] W.M. Newman, R.F. Sproull
"Principles of Interactive Computer Graphics"
McGraw-Hill, 1973.

[NEWM78] W.M. Newman, A. van Dam
"Recent Efforts Toward Graphics Standardization".
ACM Computing Surveys, Vol.10, No.4, pp.365-380, Dec.1978.

[PUK77] R.F. Puk

"General Clipping on an Oblique Viewing Frustrum".
SIGGRAPH '77 Proceedings.
Computer Graphics, Vol.11, No.2, pp.229-235, Summer 1977.

[ROGE76] D.F. Rogers, J.A. Adams
"Mathematical Elements for Computer Graphics".
McGraw-Hill, 1976.

[UNB74] "APL Public Library #1 - TSIO Documentation".
Computing Center, Univ. of New Brunswick, Fredericton, N.B.
Canada, 1974.

-20-

APPENDIX I

TYPICAL USER SESSION:

A typical conversation with the (SCUBA system is given in this
appendix. The user input is given in the APL font.

)LOAD NEWTHESIS
SAVED 17.20.15 05 22/79
THIS IS THE VERSION WITHOUT EXAMPLES AND WITHOUT HARDCOPY

)ERASE CORE4
)COPY THESIS GARAGE

SAVED 14.47.12 05/18/79
COREINIT
SETVIEW i-+ Viewing parameters are set

VRP:
144 0 120
VPN:
0.5 0.25 1
VPD:
0
TYP:
PERSPECTIVE
DIR:
50 100 100
VUP:
010
WIN:

20 200 0 150
FBD:

50 400
NDC:
VPT 0.5 1.0 0.3 0.7/

CREATE
ENTER NAME OF THE SEGMENT : [HIT RETURN IF UNNAMED] GARAGE
* SEGMENT DIRECTORY SAVED ON TSIO STORAGE *

LISTSEG

SEGMENT NAME VISIBILITY STATUS RESIDENCE

GARAGE 1 0 1

VISIBILITY - 1 FOR VISIBLE, 0 FOR INVISIBLE.
STATUS - 1 FOR RETAINED, 0 FOR NONRETAINED.

RESIDENCE - 1 FOR RESIDENT, 0 FOR NONRESIDENT.

GARAGE - Output primitives invoked through this function call
PICTURE *-. Fig. 4 will be displayed on the screen

CLOSE
SETS GMT

CST : TYPE R FOR RETAINING OR
N OR RETURN OTHERWISE. R
OPEN 4-+ Segment will be reopened for changes.

ENTER NAME OF THE SEGMENT: [HIT RETURN IF CURRENT] (Return)
SETPRAT 4-- New primitive attributes are set.

CIN:
HELP

-21-

THE FOLLOWING GIVES THE PRIMITIVE ATTRIBUTES THAT CAN BE SET IN ORDER

TO VIEW THE SEGMENT WHICH IS CURRENTLY OPEN. IF NOT INITIALIZED, DEFAULT

VALUES WILL BE USED FOR DISPLAYING.

NAME KEY LENGTH SPECIFICATION DEFAULT

CURRENT INTENSITY CIN 1 ABSOLUTE, 0 FOR DIMMED. 1
1 FOR BRIGHT.

CURRENT LINE STYLE CLS 1 ABSOLUTE, 1 FOR FULL LINE.
2 FOR DOTTED LINE.
3 FOR DOT DASHED.
4 FOR SHORT DASHED.
5 FOR LONG DASHED.

CURRENT LINE WIDTH CLW 1 ABSOLUTE, 1 FOR NORMAL.
2 FOR DOUBLE.
3 FOR TRIPLE.
4 FOR QUADRUPLE.

CURRENT CHAR. SIZE CCS 2 ABSOLUTE, HEIGHT IN Y-UNITS [0,0]
BY WIDTH IN X-UNITS.

CURRENT CHAR. SPACE CSP 2 ABSOLUTE, X-UNITS ALONG WIDTH [0,0]
AND Y-UNITS ALONG HEIGHT.

PROBABLY YOU CAN CHOOSE AND SET YOUR ATTRIBUTES NOW. HAPPY VIEWING!

CIN:
1
CLS:
3
CLW:
2
CCS:
10 8
CSP:
25 0

INQUIRE
ENTER NAME OR ABBREVIATION : SEG
CURRENT SEGMENT : GARAGE

INQUIRE
ENTER NAME OR ABBREVIATION : TYPE
CURRENT SEGMENT TYPE : RETAINED

MOVEABS3 20 20 650
TEXT ' GARAGE'
PICTURE 4-+ Generates a display with a different line style (see below)
WRITE -* Text will be displayed.
CLOSE

-22-

* IMAGE OF £HE CURRENT SEGMENT HAS BEEN RETAINED *

STORE
ENTER NAME OF THE SEGMENT : [HIT RETURN IF CURRENT] GARAGE
* WORLD DEFINITIONS OF THE SEGMENT GARAGE HAS BEEN RETAINED *

DISPLAY
ENTER NAME OF THE SEGMENT : [HIT RETURN IF CURRENT] GARAGE
ENTER ONE OPTION : [ALL/PO/TO/MO/PT/PM/TM] ALL

* E*m1•T A4AS NO mARKERS t . *

RENAME
ENTER NAME OF THE SEGMENT GARAGE
ENTER NEW NAME :HOUSE

SEGMENT DIRECTORY SAVED ON TSIO STORAGE
SEGMENT GARAGE HAS BEEN RENAMED AS HOUSE.

OPEN
ENTER NAME OF THE SEGMENT :(HIT RETURN IF CURRENT] HOUSE

NAMED SEGMENT NOT IN WORK SPACE
S LOAD THE SEGMENT BEFORE OPENING AGAIN

LOAD
ENTER NAME OF THE SEGMENT : HOUSE

YOUR SEGMET HAS BEEN LOADED
OPEN

etc.

i ""- 1

-23-

APPENDIX II

LIST OF (OSCUBA FUNCTIONS:

A complete list of 4SCUBA functions is included in this section.
The functions contained and explained in the GSPC77 report are identified
with a '+'. Additional functions which may be of direct use to the
(0SCUBA user are identified with '*'; explanation of these follows the
list. The remaining functions are mostly used internally.

)GRP COREI

ADJUST CLIPLINE CLIP3D COS CWRITE +
CODE DECODE + DISPLINE DISPOINT DRAWAPS2
DRAWABS3 DRAWREL2+ DRAWREL3 + HOME INVERT
LINE MARKABS2+ MARKABS3+ MARKREL2 MARKREL3+
MARKPLOT* M0 EABS2- MOVEABS3 + MOVEREL2 MOVEREL3+
NAMETRANS NMATRIX. NWRITE OBLIQUE + ORTHO
PARAPED PICTURE POLYABS2 POLYABS3 POLYREL 2 +
POLYREL 3 PROJECT PYRAMID RESCALEX RESCALEY
RESETSCl RESETSC2 SCALE SCALEX SCALEY
SELECT SETSC SIN SWAP TEXT+
TRANSFORM VWRITE WINDOW WRITE*

* MARKPLOT - Creates and displays the image of the markers described by
the marker primitives.

"* PICTURE - Creates and displays the image of the wire frame drawing

described by the line primitives.
"* WRITE - Creates and displays the image of the text described by the

text primitive.

)GRP CORE2

CREATE + COPY* CLOSE + DESTROY+ DESTROYALL +

DISPLAY* ERASE* INITDTRY* LISTSEG* LOAD*
LOADDIRY* NAPE * OPEA" PADA RENAME+

SRCHDIR STORDIRY* STORE*

* COPY - Copies the contents of a retained segment's image file into
work space.

* DISPLAY - Displays the image (whole or part) of a segment anytime its
image definition is in workspace.

* ERASE - Deletes the retained object definition file of a segment
from the system.

* LISTSEG - Displays the segment directory to the user.

* LOAD - Loads the retained object definition file of a segment onto
the workspace.

*LOADD!RY - Loads the retained segment directory to the workspace.

4

-24-

"* NAAE - Names an unnamed segment for the purposes of retaining, if
needed.

"* OPEN - Opens a closed segment for picture additions or other out-
put primitive invocations.

"* STORDIRY - Retains the current segment directory as a TSIO file.

"* STORE - Retains the current object definitions in a segment as a
TSIO file.

"* INITDIRY - Initializes the segment directory.

)GRP CORE3

CHK2D CHK3D CHKCLOSE CHKOPEN CHKVTV
COREINIT+ IGLTB INQUIRE* PEEL QQP
SETCTRL * SETLEFT + SETREST SETRIGHT + SETSGM1T*
SETVIEW* SETPRAT* SETVISB+ TYPDET
"* INQUIRE - All the possible inquiries such as values of primitive at-

tributes, viewing parameters, segment attributes, etc. are
made through this function.

"* SETCTRL - Sets the clipping options.

". SETSGMT - Sets the segment type.

"* SETVIEW - Sets the viewing parameters.

", SETPRAT - Sets the values of primitive attributes.

)GRP CORE4

ROTGEN3D* ROTATE3D* REFLECT3D SCALE3D SHEAR3D*
TRANS3D*

"* ROTGEN3D - Rotates the object about an arbitrary axis.

"* ROTATE3D - Rotates the object about a coordinate axis.

"* REFLECT3D- Generates a reflection of the object about any principal
plane.

"* SCALE3D - Scales the object in any or all directions.

". SHEAR3D - Produces a shearing of the object in required directions.

"* TRANS3D - Translates the object to a required point in world co-
ordinate space.

)GRP COREV

BOUNDS CMNT CTRLLIST CURPOS CURSEG
DIPGLBS FLAG2D FLAG3D INCHAR LRFLAG
OPENFLG PRATLIST PREGLBS ROWKEY SC
SCRNDIST SGAVTDIRY SIN 57 GLBS SCSET
VIEWLIST WC GWCDEF GMKDEF GTXDEF
GLIMGE GMINGE OLDSC

-25-

)GRP HARDCOPY

DROPOS HCOPYINIT* JOBSECU SUMTOCHR PLOTFILE
PRINT PURGE RJERJO TRANSFER* FILEAaz FOR a J0BSEC L

"* HCOPYINIT - Initializes the TSIO file to record 'pen movements'.

"* TRANSFER - Transfers the screen display to the required hardcopy
unit.

)GRP TSIO

CHK DELETE RELEASE TRY
EM• Q

)GRP TEKGRP

CONVT CORD ERASE

H R S XYDIMN ALPH
B CSC Qs OUR ME

d -MLL

-26-

APPENDIX III

The world coordinate definitions of the examples used in constructingFigures 4, 5 and 6 are given below. A left handed system is assumed.

GARAGE (80 x 4 array)
0 0 0 0 0 144 84 390 0 144 48 318
0 12 84 120 1 0 84 390 1 144 80 318
1 12 90 120 0 144 0 390 0 144 64 354
1 72 120 120 1 0 0 390 1 144 64 282
1 156 90 120 0 144 84 390 0 -12 90 396
1 156 84 120 1 144 0 390 1 -12 90 120
1 144 84 120 0 0 84 390 0 12 84 396
1 144 90 120 1 0 0 390 1 -12 84 120
1 72 114 120 0 72 120 120 0 0 84 390
1 0 90 120 1 72 120 396 1 0 84 120
1 0 0 120 0 156 90 120 0 0 0 3901 144 0 120 1 156 90 396 1 0 0 120
1 144 84 120 0 156 84 120 0 15 95 120
1 12 84 120 1 156 84 396 1 15 84 120
0 18 84 120 0 144 0 120 0 36 102 120
1 18 0 120 1 144 0 390 1 36 84 120
0 126 84 120 0 144 84 390 0 54 108 120
1 126 0 120 1 144 84 120 1 54 84 1200 156 84 396 0 144 0 129 0 72 114 120
1 156 90 396 1 144 80 129 1 72 84 120
1 72 120 396 1 144 80 159 0 90 108 120
1 12 90 396 1 144 0 159 1 90 84 1201 12 84 396 0 144 48 282 0 108 102 120
0 12 90 396 1 144 48 354 1 108 84 120
1 156 90 396 1 144 80 354 0 129 95 120
0 156 84 396 1 144 80 282 1 129 84 120
1 12 84 396 1 144 48 282

STAIRS (42 x 4 array)

0 0 0 0 1 13 60 30 0 13 45 10
0 0 0 10 1 13 45 30 1 13 45 301 0 60 10 1 26 45 30 0 26 45 30
1 13 60 10 1 26 30 30 1 26 45 10
1 13 45 10 1 39 30 30 0 26 30 10
1 26 45 10 1 39 15 30 1 26 30 30
1 26 30 10 1 52 15 30 0 39 30 30
1 39 30 10 1 52 0 30 1 39 30 10
1 39 15 10 1 0 0 30 0 39 15 10
1 52 15 10 1 0 0 10 1 39 15 30
1 52 0 10 0 0 60 10 0 52 15 30
1 0 0 10 1 0 60 30 1 52 15 10
0 0 0 30 0 13 60 30 0 52 0 101 0 60 30 1 13 60 10 1 52 0 30

J

-27-

BUILDING (101 x 4 array)
0 0 0 0 1 38 0 66 1 142 50 660 50 0 50 0 38 0 96 0 147 0 66
1 80 0 50 1 38 110 96 1 147 50 66
1 92 0 66 0 50 110 112 0 152 0 66
1 172 0 66 1 50 0 112 1 152 50 66
1 172 0 96 0 80 0 112 0 157 0 66
1 92 0 96 1 80 110 112 1 157 50 66
1 80 0 112 0 92 110 96 0 162 0 66
1 50 0 112 1 92 0 96 1 162 50 66
1 38 0 96 0 92 0 66 0 167 0 66
1 38 0 66 1 92 110 66 1 167 50 66
1 50 0 50 0 80 110 50 0 172 0 66
0 50 110 50 1 80 0 50 0 172 3 72
1 80 110 50 0 92 50 66 1 172 9 72
1 92 110 66 1 92 50 96 1 172 9 90
1 92 110 96 0 97 0 66 1 172 3 90
1 80 110 112 1 97 50 66 1 172 3 72
1 50 110 112 0 102 0 66 0 172 14 72
1 38 110 96 1 102 50 66 1 172 20 721 38 110 66 0 107 0 66 1 172 20 90
1 50 110 50 1 107 50 66 1 172 14 90
0 92 110 66 0 112 0 66 1 172 14 72
"1 92 50 66 1 112 50 66 0 172 25 72
1 172 50 66 0 117 0 66 1 172 31 72
1 172 50 96 1 117 50 66 1 172 31 90
1 92 50 96 0 122 0 66 1 172 25 901 92 110 96 1 122 50 66 1 172 25 72
0 172 50 66 0 127 0 66 0 172 36 72
1 172 0 66 1 127 50 66 1 172 42 72
0 172 0 96 0 132 0 66 1 172 42 90
1 172 50 96 1 132 50 66 1 172 36 900 50 0 50 0 137 0 66 1 172 36 72
1 50 110 50 1 137 50 66 0 172 47 72
0 38 110 66 0 142 0 66

TECHNICAL REPORTS

SCHOOL OF COMPUTER SCIENCE

Number Date Author Title

TR74-001 Feb. 1974 L. F. Johnson A Search Algorithm
for the Simple Cycles
of a Directed Graph

TR74-002 Oct. 1974 W. D. Wasson A New Spanning Tree
R. McIssaac Algorithm

TR74-003 Oct. 1974 U. G. Gujar Remote Job Entry and
Output Through APL

TR75-004 Apr. 1975 U. G. Gujar Subroutines with
Variable Number of
Arguments

TR75-005 July 1975 L. E. Garey Block Methods for
Nonlinear Volterra
Integral Equations

TR75-006 Aug. 1975 D. M. Fellows Comments on "A General
Fortran Emulator for
IBM 360/370 Random
Number Generator 'RANDU'"

TR75-007 Aug. 1975 L. E. Garey Quadrature Formulae for
M. LeBlanc Functions of Two Variables

and Applications

TR75-008 Sept.1975 L. F. Johnson Determining Cliques
of a Graph

TR75-009 Oct. 1975 D. M. Miller An Algorithm for Deter-
mining The Chromatic
Number of a Graph

TR76-010 Jan. 1976 L. E. Garey Step by Step Methods
for the Numerical
Solution of Volterra
Integro-Differential
Equations

TECHNICAL REPORTS (continued)

Number Date Author Title

TR76-011 Jan. 1976 Uday G. Gujar A Device Independent
Computer Plotting
System

TR76-012 Mar. 1976 Patrick P. Emin A Partition Monitor
for Fast-Batch-Pro-
cessing with Limited
Execution (Fable)

TR76-013 Dec. 1976 Uday G. Gujar A Driver for Raster-
J. A. Fitzgerald Like Plotting Devices

TR77-014 Jan. 1977 Uday G. Gujar Automatic Job Schedul-
.... vid . Fellows ing in HASP

TR79-015 May 1979 Uday G. Gujar A Method for Designing
John M. DeDourek a Lexical Analyzer
Marion E. McIntyre

TR79-016 June 1979 Uday G. Gujar 'PSCUBA A Buffered Core
Aragam R. Nagesh Graphics System

