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STUDY OF PHOTON CORRELATION TECHNIQUES

FOR PROCESSING OF
LASER VELOCIMETER SIGNALS

By William T. Mayo, Jr.

Summary

The objective of this contract was to provide the theory
and system design for a new type of photon-counting processor
for low-level Dual Scatter laser velocimeter (LV) signals which
would be capable of both the first-order measurements of mean-
flow and turbulence-intensity and also the second order time

- statistlcs: cross-correlation, auto-correlation, and related

spectra.

_ This report provides a general Poisson process model for
low-level LV signals and noise which is valid from the photon-
resolved regime all the way to the limiting case of non-station-
ary Gaussian noise. Computer simulation algorithms and higher
order statistical moment analysis of Poisson processes have

been derived and applied to the analysis of photon correlation
techniques. A Dual Correlate and Subtract frequency discrimina-
tor technique is postulated and analyzed. Expectation analysis
indicates that the objective measurements are feasible. Error
analysis for the mean-flow case indicates that practical
transonic wind tunnel measurements are possible with 100-1000
times less light than is required for burst-counter processors,
A system design for a new high-speed photon processor for LV
signals is provided. Accesion For
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INTRGODUCTION

The Problem

Classical laser velocimeter (LV) electronic signal pro-
cessing techniques are sometimes inadequate for detection of
light scattered by amall scattering particles which are required
for following fluid motiona. In other situations detection of
larger scattering particles ic difficult due to limjted system
sensitivity. Photon counting techniques offer improved system
sensitivity by allowing velocity neasurements to be made even
when there are insufficient sigual photons available to define
the classical scattering signal., Such techniques are thus appli-
cable when the presently used classical burst-counter and fre-
quency tracker-techniques are not.

The general objective of this contract was to provide the
system design for a new type of photon~counting processor for
low~level Dual Scatter LV signals which would be capable of both
the first-order measurements of mean-flow and turbulence-inten-
aity and also the second order time statistics: cross correla-
tion, auto-~correlation, and rela‘ed spectra. This was to be
accomplished by extending the preliminary feasibility analysis
develcped under a brief NASA Langley sponsored study® in early
1974, 1In addition to theory, the system design would incorporate
Judgement based ‘on experience in the experimental hardware devel-
opment [1l] of a related, but simpler, photon-counting processing
system designed and constructed for the U.S.A.F. Arnold Engi-
neering Development Center to measure mean-flow velocities.

*The final report for that study (Contract NAS1-13140)
was informal and not disseminated. This report contains
revised versions of all the necessary mathematics.




Background

Signal modeling.~ Earlier modeling efforts have treated
LV signals for which the noise could be considered as additive
independent, stationary, and Gaussian [2,3,4,5]. This is the
limiting case of stationary Poisson shot noise which occurs for
vieible light photodetection when a steady light source such
a8 & heterodyne reference beam [2] or high background light
level [3]) dominates the signal. In a recent simulation of low-
level dual scatter signals, the accuracy of the noise model was

u(t)
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Figure 1. Triply Stochastic Nature of Low--Level
LV Signals: Turbulence, Bursts, and
Photo electron Pulses.




extended by treating it as a nonstationary Gaussian process
whose variance is proportional to the incident optical power.*

When we discuss '"'noise'" in LV signal detection we are
usually referring to the variation of the electronically
detected signal with respect to a scaled version of the classi-
cal optical (power) signal incident on the PMT. In a general
analysis the classical LV signals are also random processes due
to the random amplitudes and the arrival times of the signal
bursts. Mayo [2] and Adrian [7] have treated these signals as
a Poisson process for steady flow, and Durrani [4] and George
[8] have treated them for the turbulent flow case as Gaussian in
the limit of high particle number density. A new book by Snyder
[8] treats generalized Poisson processes in great detail.
Papoulis [10] provides a good introductory treatment. Snyder
treats "doubly stochastic Poisson processes.'" These are inhomo-
geneous (nonatationary) Poisson processes for which the rate
function is a random process. Such a description is appropriate
either for the classical LV signal bursts with the random turbu-
lent flow affecting the rate of burst occurrence or for the
single photoelectron pulses from the PMT with the random classi-
cal bursts as the rate function. Clearly, when taken from the
turbulence to the photo-electron pulses, a dual-scatter LV signal
is a "triply stochastic" filtered Poisson process [l1l]. This
three level nature of the signals is illustrated by Figure 1.

Classical signals and burst counters. Presently accepted
burst-counter and frequency-tracker LV processors were developed
by analogy with wide-band frequency modulation (FM) and radar
receivers. For FM and radar applications frequency detection
(zero-crossing) circuits generally require about 10 db signal
power to noise power ratio within the bandwidth of the system
filters. The signuls in such cases are continuous and the noise

l"Modified version of noise model described in [6].




is stationary and Gaussian. Comments by several speakers at
the 1975 Minnesota LDA Symposium indicated that they had
experimentally determined that their burst counter LV signal
processors failed significantly when the signal power to noise
power ratio (during a burst) was less than 10 db. This 10 db
condition occurs when there are approximately 10 or more photo-
electron pulses per electronic response time Ty This response
time is rise time or pulse width in the case of low-pass fil-
ter. We have also defined this signal level as the lowest
value of the '"Gaussian'" signal regime wherein the photomulti-
plier current can be modeled as the classical signal plus non-
stationary Gaussian noise; (although neither Snyder (9] or
Papoulis [10] give any helpful rules as tn when this asymptotic
approximation is valid). For lower signal power the signals
must be treated as Poisson,

Photon resolved signals and photon counting.- A radically
different approach to LV signal detection has been taken by
Pike, Oliver, Jakeman, and others. Photon counting techniques
were developed for use with low-level photon resolved signals.
The summary results of several years of development of the
single-clipping real-time photon correlator were described by
Oliver and Jakeman in a recent book [12]. Dr. Pike described
the application of photon-correlation to the processing of LV
signals at the 1972 Purdue conference (13]. The presentation
was apparently not received well by many attendees from the
United States and little has been done in this country with the
development of photon counting techniques until recently.
Increased interest was shown by attendees of the 1974 Purdue
Conference.

One reason that the single~-clipping correlator has been
slow to acceptance in this country is that the original theory
for its use was based on the assumption of many scatterers in
the probe volume with the central 1imit theorem invoked to




render the statistics of the scattered electric fields Gaussian.
Since this assumption is known not to predominate in many appli-
cations of fringe-type LV systems in air, none of the first
theory for a single-clipping correlator was directly applicable.
Another problemwith the existing commercial correlators for
high-speed air flow besides speed (minimum time resolution of
50 nsec) is the lack of any straightforward way to extend the
concept to the determination of flow time statistics such as
correlations and power spectra. The system proposed in this
report addresses this latter deficiency as well as eliminating
the problems of interpretation of single-clipping by using full
multiplication.

Several recent references provide additional valuable
background information on photon correlation. Durrani and
Greated [14) provide a derivation of the expected value of a
photon correlation from single particle (Poisson) signals.
Birch et al. [15]) have made experimental measurements in turbu-
lent jet flows with skewed probability density functions.
Abbiss et al. (18] also provide an analysis which shows that in
some cases the Fourier transform of the correlogram may be
interpreted as the probability density of the fluid velocity
component.* Durrani and Greated [17] have investigated the use
of some of the newer spectral estimation techniques which allow
greater resolution from the limited number of data points in a
typical correlogram. Finally, the reader should be aware that a
new phoion correlator instrument has been developed which was
described by C. Fog [18] but the minimum time resolution inter-
val is 160 nsec which is rather slow for high speed wind tunnel
applications., (It was used for atmospheric studies.)

]
We do not believe this will be a good approximation in
many practical cases. This 1s discussed in a later section.




Burst rate/amplitude distributions.- The statistical dis-
tribution of the classical burst amplitudes and the rate of
occurrence versus amplitude are very significant in the charsac-
terization of any LV signal processor. It 1is generally accepted,
for example, that the optimum rate of occurrence of bursts for
a burst counter is less than the inverse burst duration (non-
overlapping bursts.) It is also generally known that the error
check circuits cause a burst counter to emphasize larger ampli-
tude (good signal to noise ratic) signals. On the other hand,

& photon counting processor must emphasize the lower amplitude
signals in a distribution; the higher amplitude signals would
produce only a single threshold crossing and otherwise be
neglected by the system, It is therefore not possible to compare
two different types of signal processors without knowing the sig-
nal amplitude distributions and the processor behavior as a
function of burst amplitude and other factors. Finally, in

order to relate processor behavior to a specified particle size
distribution, one must first relate the particle size distribu-
tion to the burst amplitude distributions and then do all the
other things already discussed.

During the initial phases of our recent work for the USAF
Arnold Center we addressed such questions as are suggested by
the above statements both with theoretical models and with
experimental measurements of burst rate/amplitude distributions
for natural laboratory (unfiltered and unseeded) air. The reader
is referred to the final report [l] for details. The following
is one of the concluding paragraphs of that report:

The statistical distribution of the amplitudes and
rates of occurrence of classical bursts has been shown
to be central in the problem of specifying or predicting
the data rates and errors from any type of LV signal
processor. Differential and cumulative rate/amplitude
distributions have been formulated and analyzed theo-
retically and have been measured experimentally for an
argon backscatter LV system. The results indicate that,
for the data obtained, the smaller aerosole contribute




more to the photon correlation accumulator than the
larger ones. For the data measured, there would
have been available less than 300 signals per second
adequate in magnitude to produce burst counter data
from scatterers larger than 0.7 um in diameter

while there would have been over 100,000 signals per
second producing photon resolved signals from 0.2 -
0.3 um diameter particles.

Scope

In what fo.lows we first develop general Poisson models
for LV signals which include the non-stationary Poisson occur-
rence of photo-electron pulses and the random amplitude effects
of both the photomultiplier tube and the particle scattering
. cross sections. Formulas are provided for conditional and
unconditional moments including mean, variance, auto-covariance,
and higher moments (Appendix A). These formulas are for signal
current, but they become valid for photon counting by & suit-
able choice of the PMT output filter impulse response function.

The next section eveluates the theoretical expressions

for a specific Gaussian burst LV waveform model. These results
are used to obtain the expected value of a photon correlation
estimate. In addition a Dual Correlate and Subtract estimator
which behaves as a statistical frequency discriminator is postu-
lated and analyzed. The following section is devoted to statis-
tical error analysis of the mean flow estimation technique using
the Dual Correlate approach. The section after that shows that
the statistical frequency discriminator may be applied to the
estimation of turbulence correlations even though the time hist-
ory of the velocity fluctuations is not available except as a

noisy randomly sampled waveform.

The results of the theoretical considerations and the exper-
ience we have had previously with the AEDC [1] hardware study
were utilized in a system design which is provided in Appendix

D. Appendix C is a derivation needed in the section on variabil-
ity errors. Appendix B provides the theory and an example pro-

gram for correct Poisson simulation of low-level LV signals for
evaluation of electronic processor models.




LIST OF SYMBOLS

ENGLISH
B bandwidth
Cii(tl’tz) autocovariance of i(t)
e electronic charge
4 frequency
fm mean Doppler frequency
£( ) optical probe volume response function; pedastal
function, peak amplitude normalized to unity
8y randoin single-photoelectron charge gain
X h Planck's constant
g h(t) impulse response of PMT and succeeding filters
i H(w) Fourier transform of h(t)
ﬁ; i counting index :
ﬁ i(t) photocurrent at anode or succeeding filter output
3 1 optical intensity
J counting index
k counting index
mi(t) time varying statistical mean current <1(t)>
Tk Ml p = Dylp-q ©OF other function of n,
gp photon correlation sum at delay PAT
Mpq accumulation of (pAt,qAr) for Dual Correlate Mode
n(tl,tz) photoelectron count in interval (tl,tz)
n, photon count in At interval about kAT
N number of time increments At (T = NAT)
Nf number of fringes in the transmitter defined l/e'2
probe volume
Nt total number of AT intervals in advanced concept
operation
P integer delay number in photon correlation;
largest delay number in dual correlate and subtract
Pb constant optical background power
P(t) optical power incident on photocathode

o] integer value of delay




location of the nearest approach of scatterer to
center of probe volume

constant rate of signal bursts
instantaneous rate of signal bursts
autocorrelation of A(t) =<A(t)A(t+t)>
a generalized Polsson shot noise signal (Appendix A)
time

instants of photoelectron emission
total data collection time

inverse of mean Doppler frequency l/fm
time varying velocity component

total velocity component

mean velocity component

vector velocity

l/e2 intensity radius at beam waist
Poisson impulse process

integration dummy variable; also l/e half-width
of burst

integration dummy variable

Dirac delta or unit impulse function
simulation time resolution interval
photon processor counting interval

accumulation interval for second level correlation

error

time varying mean rate of photoelectron pulses
A(t) = nP(t)/hv

steady background photoelectron rate

peak photoelectron rate (pedastal) from the jth
scatterer

optical wavelength
mean signal photoelectron rate % <kd>

product of photocathode quantum efficiency .snd
dynode collection efficiency




optical frequency

] P fractional turbulence intensity au/u ® cw/wm

Sy rms deviation of the radiun Doppler frequencies
from scatterers

o?(t) time varying variance of i(t): <(i(t) - <1(t)>)2>

T delay variable

Th rise time or pulse width of low pass h(t)

TJ occurrence time for jth signal burst

0 beam intersection angle; spherical declinatioa
angle from direction of incident light

¢ polar angle

u Poisson parameter

w Fourier transform variable or radian frequency

wd random frequency of jth burst

mean of random variable wd (zﬂtm)

~ Special Notation

0
<x> gtatistical expectation of x = f X Py (x)dx
- 00

2(t)*g(t) convolution: [ £(a)g(t-a)da

A

denotes an estimate of a statistical average
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STATISTICAL THEORY OF DUAL SCATTER SIGNALS

Poisson Models

The Signal Current.- The signal current from a photomulti-
plier tube (PMT) is modeled as inhomogeneous filtered Pcisson
random process (see Appendix A and also reference [19]) given by

i(t) = ] egsh(t-ty) (1)

where ti = random time of the ith phctoelectron
e = electronic charge
gy " random charge gain of PMT
h(t) = impulse response of PMT/filter system
The sy.'vem response h(t) is obtained as a convolution of the PMT
impulse response hp(t). the transmission line impulse renponse‘
ht(t). and the linear filter impulse response hr(t)

h(t) = hp(t)*ht(t)*hr(t) (2} .
where the asterisk denotes the convolution integral:

2(6)g(t) = [ t(a)g(t - a)da (3)

The superposition assumes operation in the linear range of the
PMT electron multiplier. The use of the function hp(t) assumes
that all single photo-electron pulses have the same shape except
for amplitude. This neglects minor random shape variation.

The quantity which relates i(t) to the classical optical
power is the statistical mean rate A(t) of occurrence of the
randomly occurring photoelectron pulses. Thus

P(t
A(t) = OPLED (4)

11




where n = product of cathode quantum efficiency and the
dynode collection efficiency

hv = Photon energy
P(t) = Classical optical power, including background
light and a constant component for dark current.

The effects of dark current are included by adding an
equivalent power Pd. The model could be made more exact by add-
ing & separate darx pulse summation with a separate distribution
of amplitudes which are distributed somewhat differently than
By} but this distinction will not often be required in LV appli=-
cations,

The previous material includes little which restricts it
to LV signals. We now consider the form of A(t) which is also
treated a8 a filtered Poisson process,

Superposition of classical single burst signals.- Rigorous
electromagnetic theory analysis of the scattered fields from

more than one scatterer in the probe volume shows [20] mixing

) terms in P(t), the classical power incident on the PMT. However,
in typical dual-scatter systems, the diffraction limited apot
size of the collecting lens is much smaller than the probe vol=-
ume; consgervation of energy arguments show that in such cases
the number of scatterers in the probe volume may be much greater
than unity with statistically negligible coherent mixing, regard-
less of the quality of the collecting lens [2]. This is signif-
icant even for LV systems which only trigger on isolated large
signal bursts because we must also include in the model the
effects of smaller scatterers which may exist at higher number
deneity. We will take the position that at the PMT the classi-
cal power P(t) is the superposition of the backgrouhd light

power and the power from individual scatterers without coherent
mixing cross terma. This will be acceptable so long as the aver-
age number of scatterers in one diffraction limited resolution
cell of the receiver is less than unity.

12




A second consideration concerns the background light.
Even when we neglect coherent mixing of signals, there are fluc-
tuations in the classical background power. Bertolotti [21]
provides a review of these effects. Broadband background sources
can be largely suppressed by the use of narrowband spatial and
wave~length filters, but not always adequately enough for meas-
urements from small scatterers. If the background is modulated
(for example fluorescent lights) the mean value signal is easily
removed by electronic filters, but the non-stationary noise is
not. When the broadband background is '"steady'" there are actu-
ally significant classical fluctuations at rates up to the opti-
cal bandwidth, Bertolotti shows that when the optical filter
bandwidth is much greater than the PMT electronic bandwidth, the
photoelectron statistics behave as though the classical fluctua~
tions did not exist (they are averaged out). Laser light scat-
tered from windows is not broadband and may exhibit undesirable
fluctuations. This background should be minimized, and it
effects studied further, ‘

The random process A(t).- With cognizance of the preceding

discussion, we model P(t) as the summation of a constant back-
ground Pb which includes broadband, laser, and dark current
sources and an inhomogeneous filtered Poisson signal process.

hvA(t) . [ . v ) - ]_tl_y_
o P(t) = kb d-gwkdt(t TJ' VJ, J) - (B)
where TJ = occurrence time of jth scatterer reaching ?J’
AJ = random peak amplitude parameter,
VJ = vector velocity of the jth scatterer,

?J = location of nearest approach of the scatterer
trajectory to the center of the prohe volume, and

£(t,V,¥) = normalized optical system response function.
The notation in equation (5) explicitly shows that in general
the shape of a burst (including signal period, signal envelope,
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and pedestal) is a function of the scatterer vector velocity and
trajectory location. The response also has random AJ amplitude
which depends on both trajectory and particle scattering cross
section. 1In general the set of instants TJ are independent
Poisson random events whose instantaneous rate, R(t), is statis-
tically correlated with the velocity vector.

Discussion of the model.- Equation (5) is cast in a gen-
eral form which obscures certain details with generality. PFirst
it assumes that the velocity of a scatterer remains constant
while in the prohe volume with a value V(td,?d). The extended
theory of filtered Poisson processes is sufficiently general to
encompass the fact that the functional form of the optical
response function £(t,V,T) depends on two vector random varia-
bles.* However, Snyder (9] assumes that the vector random
parameters are independent. We are not certain at the present
time what the statistical dependence of the rate function R(t)
on the velocity V(t) may imply, but no serious consequences will
result with low turbulence flow.

Conditional Signal Statistics of the Photocurrent

At times the models for the systems analysis problem may
be simplified until analytical methods are applicable. In these
cages the use of conditional statistics will usually simplify
the analysis. Papoulis (10] discusses the use of conditional
statistics at length., We utilize this technique at length in a
later section. Basically for a multilevel random process the
technique consists of assuming the higher level random processes
are known and deterministic, evaluating conditional expectations
assuming the higher level processes, then evaluating the expec-
tation of the result with respect to the higher level processes.
First we will consider statistics of i(t) assuming the classical
optical signal A(t) is known.

*Elementary shot noise theory is restricted to an impulse
response function which is constant in shape.
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Tnstantaneous mean, variance, autocovariance.- The result
in Appendix A may be applied to determine the instantaneous mean,
variance and auto-covariance of the signal. These are given in
terms of the function A(t). The results are as follow:

mi(t) - <j(t)> = e<gi>k(t)*h(t) (8)
02 (t) = <«(i(t) - <) = Zgloacemity (1)
0y, () tg) = <A()A(ty)> = <L(t)><d(ty)> (8)

= o225 [ M(a)h(t, - a)h(ty - a)da

where < > denotes statistical expectation and where the asterisk
again denotes the convolution integral. These results include
the specification that hp(t), the impulse response of the PMT
anode, have unit weight, i.e.,

[ ho(t)dt = 1 (9)

in order to maintain conservation of charge. The functions
ht(t) and he(t) may include amplification or loss factors and
need not have unity weight.

Conditional noise and SNR.- The concept of signal-to-noise
ratio arose in communications theory when the ''nolse'" was an
additive stationary Gauseian random process totally character-
ized by a mean, mean-square deviation (variance), and a power
spectral density. The rativ of the peak or average signal to
the rms noise was a useful measure. The preceding equations
show the mean-square deviation (variance) to be an instantaneous
time function which is related to the classical signal. Observa-
tion of real LV signals on an oscilloscope display or computer
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simulations such as that shown in Figure 2 show that the concept
of signal-to-noise-ratio is not an adequste figure of merit
without careful specification.

For an example SNR definition, we consider a low-pass PMT
impulse response as a rectangular function:

h(t) = %i Rect (t/T,) (10)

where

Rect (t) = 1, |t]| < 0.5 (11)
=0, |t| > 0.5

If we now also assume that Ty << %n where Th is the signal

Note: absolute magnitude
of noise greatest
at signal peak
where the '"signal-
to-noise ratio" is |
maximum

I\

A . . . AAAAAA_ ¢

Figure 2. Computer Simulation of LV Signal
using Algorithms similar to Appendix
B. (By J. F. Meyers NASA Langley.)
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period of interest, then we could obtain an instantaneous SNR
from equations (6) and (7) as

sNR(t) = m2 (t)/02 (t) = PPty @B Aty (12)

<g,>2

i
= <‘;2> A(t)Th
where the quantity <gi>2/<312> is typically between 0.5% and
1,0 with magnitude depending on the relative variance of the
PMT single photoelectron pulse gain., For an ideal tube the
quantity X(t)rh would be the instantaneous SNR. This is not
useful since it is a time function instead of a number,

As un alternative, we may take the local time average of
the SNR given by (12) over a single cycle near the peak of the
pedastal. This would give, for ah ideal PMT,

SNRAVpeak o AJTh (13)
where AJ is the peak value of the pedastal of the jth signal
burst, if we assume sparse non-overlapping bursts. We observe
that equations (8) through (8) are valid when h(t)'is a bandpass
function, but (13) is then meaningless unless we redefine Th

for a bandpass h(t). Also we note that this definition would

be necessary for meaningful use with a burst-counter processor,
since it is the bandpass filtered AC signal to wide-band noise
power that is significant in that case.

Signal Regimes.- The idealized quantity SNRavpeak given
in equation (13) as AJTh is at least a useful quantity in defin-
ing a classification system of signal regimes for a low-pass

*Typical rms values are 0,707 or greater ([22]),page 68).
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filtered signal. The following definitions of a photon-resolved,
a photon-limited, and a Gaussian signal regime have been some-
what arbitrarily* identified:

The signal is photon resolved if Arh << 1, 1In this case
the probability of two or more photoelectron events occurring
within the response time T is small. 1Its appearance is that
of individual pulses which vary in height due to the randomness
of 8- Photon counting methods are appropriate. The condi-
tional mean value of i(t) is still proportional to A(t), but
there is no visible resemblance to A(t). This condition is
illustrated by the sxtreme right hand portion of Figure 2.

For Aqh >> 1, the signal i(t) is asymptotically a nonsta-
tionary Gaussian Process. In this case the first and higher
order probability density functions for i(t) at any set of
ingtants (tl,tz,...) may be determined immediately by plugging
the mean, variance and auto-covariance from the preceding equa-
tions into well known Gaussian formulas. Under these same con-
ditions the signal display appears to the eye as a classical
aignal mi(t) plus Gaussian noise. This condition is approached
by peak of the trace in Figure 2. The major difference between
this case and that of classical communications theory problems
. 18 that the ¢ value for the noise is signal (time) and system
dependent. Usually, signals in the Gaussian regime are suitable
for processing by classical methods (burst counter and/or
tracker).

The photon limited regime is that for which Arh is within
an order of magnitude of unity. No mathematical simplifications
are possible., Visually the signal appears as shown in all but
the lowest portions of Figure 2. The upper limits of photon

*See Papoulis [10] page 571. No specific limit on the
magnitude of kTh is given. We define the photon limited regime
ag 0.1 < Arh <'10.
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counting techniques and the lower limits of conventional tech-
niques both fall in this range.

As we have illustrated, the signal classification may
apply to different portions of the same waveform. We may also
use the classification with respect to the peak pedastal value
AjTh to classify signal bursts., Under this type of classifi-
cation, Figure 2 illustrates a photon-limited hurst whose peak
average SNR is less than 10, Additional bandpass filtering
would increase Th and place the central portion of the burst in
Figure 2 in the Gaussian regime. This would not be possible
with a significantly weaker signal.

Unconditional Statistics

Long time mean, variance, autocovariance.- Equations (8) =~
(8) include the assumed deterministic classical signal A(t) which
is proportional to instantaneous optical power. When we wish
later to evaluate the long~time average result which accumulates
during a photon counting experiment, it will be necessary to
treat A(t) as an ergodic random process with long~-time average
equal to the unconditioned statistical mean:

<A(t)> = A (14)
We also make use of the autocorrelation of A(t):
A(E)Mt +71)> = R, (1) (15)

Now from equation (68) taking the expectation with respect to
A(t) gives the average current as

o«

<> = e<g,><\> [ h(t)dt (18)
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where the integral is unity unless h(t) includes preamplifi-
cation or attenuation external to the PMT. 1In order to deter-
mine the long time variance 012 we do not get the correct

answer by taking the expectation of c1 (t) given by equation
(7). Rather, one determines the conditional value of <i (t)>

by adding the square of (6) to (7). The expectation with
respect to A(t) follows; finally, the square of equation (16)

is subtracted from the unconditional expectatinn of iz(t). When

all these steps are completed, and similar ones for the uncondi-

tional autocovariance, we obtain:
-] o0
0,2 = e2[g.>2 | R (a)f, (a)da+ <g.2><A> [ hZ(a)da (17)
i i A h i o

- <«g>2a5% (f n(a)de)?

Ciy(r) = ePl<g>2R, (1)xt, (1) + <> >, (1) (18)
- 22 neran?
where
£,(1) = [ h(a)h(a+T)da (19)

The second term in the expression for Cii(r) vanishes for T
greater than the impulse response time for the PMT and filter
combination; the last term is the square of the mean; the first
term is the correlation of A(t) smoothed by ihe correlation of
h(t) with itself.

Ideal photon correlation.- An idealized photon correlator
counts all photoelectron emission events during successive uni-
formly spaced clock periods of duration At. The number sequence
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{nk} which result: .s algebraically manipulated to yield the
summation of terms nknk+p‘ In evaluating the expected value

of the result of accumulating such a sum we encounter the need
to evaluate the quantities <nk> and <nk-+ nk+p>. These expec-
tations may be evaluated using equations (16) - (19) by assuming

h(t) = Rect(t/AT) (20)
gy ™ l/e

where Rect(t) wes defined in equation (1l1) and
Jh(t)dt = At (21)

With these assumptions, 1(t) is equal to the number of photo-
electron events in the interval (t - At/2, t +A1/2) and the
formulas reduce to

> = < > = <A>At (22)

2 2 2 " o
var n, = o = <aS -<n > om AT (ﬂonx(a) A (F7)do (23)

+ A>AT - <A>2pT2

2

<n, n > = Cii(pAT) + <i> (24)

k k+p

= ATRy (TI¥MT/AT) | oprr oo

where the correlation integral of equation (192) produces a tri-
angular function, i.e.

[ Reat (§) Rect(%FF)da = At ACT/AT) (25)

21



where
ACt/At) = 1 = |t|/8v, |t]| < At (26)
=0 , t] > At

We observe that the generally accepted result that the photon
correlation is shaped like the correlation of the classical
gignal is true subject to the jump discontinuity at zero delay
gpd subject to the triangular weighting function which behaves
a8 & low-pass filter with respect to the detalls of RA(T)'

When At is much smaller than a characteristic signal per-
iod, then equations (23) and (24) simplify:

<nknk+p> - A-r2 Rk(pM), p¥%oO (27)
- Arz RA(O) + <A>At, p=0
var n, = ciz. = <A>AT + A-r2 (<A2> - <A>2) (28)
i.e.,
var n, = <n.> + Atz var A (29)

This last result, which we obtain as a special case, has also
been given by Bertolotti [21]. It provides a way to measure the
variance of the classical signal even with photon resolved sig-
nals 1if a long sequence of D values are available,

PHOTON CQUNTING PROCESSORS FOR MEAN
FLOW AND TURBULENCE INTENSITY

In this section we provide an idealized theoretical basis
for the use of photon correlation and a new type of photon
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counting technique, "dual-correlate-and-subtrect,'" and show how
they may be used for mear-flow and turbulence intensity measure-
ments. Extensions to higher order statistics are discussed in a
later section. Error analysis of the processors described in
this section is presented in the next section.

Specific Signal Model

The form of equation (85) is quite general. In most prac-
tical systems, the function f(t,VJ,FJ) which describes the opti-
cal response with respect to particle position and velocity is
complicated when the effects of limiting pinhole apertures and
variable duration due to high turbulence are included. For the
present we assume a simplified low turbulence model which assumes

a burst with perfect contrast and constant shape:

A(t) = Ay ) AJf(t TJ)[l cos wd(t TJ)] (30)
where AJ = random burst pedastal amplitude
Ab = constant background rate,

f(t) = low-pass pulse waveform with peak equal unity,
i = occurrence time for jth burst,
J

= radian fraquency proportional to one velocity
component of the jth particle

T
W
We may write equation (30) as the sum of a constant, Ab’ & low-

pass process, Azp(t), (the pedastals), and a bandpass process
Ahp(t). Then

A(t) = Ab + Azp(t) + Abp(t) (31)

We assume that there are several fringes in the probe volume so
that the spectra of Alp(t) and Abp(t) are non-overlapping. Thus
Abp(t) is a zero-mean process, and Azp(t) and Abp(t) are uncor::
related. We obtain
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Ry (1) = <A(t)>? + Chp(T) * Crpp(T) (32)

We now use the low turbulence assumption and further assume
that the scatterers are uniformly dispersed in space so that,
R(t), the rate of burat arrivals is a constant R. The results
of Appendix A can he applied to derive expressions for the
three terms in equation (32), the result is

A(t)> = Ay + Ray> [ f£(t)dt (33)
C) 5p(T) = n<;\§> j_“ut) 20t +1)dt (34)
Cypp(T) = R<A§> % <cos wr> | et (35)

where the expectation of the <cos wr> term is with respect to -
the random variable Wy The derivation requires that we expand
the product of cosines with the sum and difference formula and
approximate the 1nte¢ra1 of the product of a low=-pass term and
& bandpass term as zero.

We now assume that the turbulence is Gaussian with mean
radian frequency Wn and rms deviation LA Then by direct appli-
cation of the definition of expectation we obtain™

o 1 e-(m-wm)z/ch

w /2n Ow

<cos wt> = [ cos wt dw (36)

-0212/2
= @ cos w1

*In general <cos wt> is simply related to the statistical
characteristic function for the random variable wJ since this
function is defined as a Fourier transform of theYprobability
density function [10].
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A simplified expression for the autocorrelation of the classical
-signal is thus

By(T) = (A *+ BAp [ £(t)dt)2 (37)

+ RAY>1 + 5 e cos wmr)f_“f(t)f(tn)dt

This result shows that regardless of the shape of the envelope
function £(t), the autocorrelation function has a consinusoidal
variation at the mean signal frequency and a Gaussian envelope
decay factor due to turbulence intensity.

If we now assume that the classical burats are Gaussian
.- shaped (TEMOO beams without aperture effects), then we have

2,.2
2(t) = o~t /@ (38)
where o is the 1l/e half width of the envelope and obtain
[- -] .
[ 2(t)dt = /7T a (39)
00

L 2 2
[ f2(t)f(t+)dt = \@ ae~T /20

The final simplified expressions for the first two moments of
A(t) are

A> wmoaA(L)> = A+ R<AJ> /T o (40)
2.2
-0 T /2 - 2 rs 2
Ry (T) = <A>2-+R<A§> %a(l + % e ¢ cos w T)e /20 (41)

where low percent turbulence has been assumed and
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Ab = background count rate,

R = gcatterer arrival rete,

AJ = random pedastal height from jth scatterer,

o = 1/e half burst duration,

¢ = rms deviation of radian frequency due to turbulence,
w. ™= mean radian frequency (°w/wm << 1), and

T = delay variable of autocorrelation.

The shapes of typical correlation functions for zero tur-
bulence and 10% turbulence are illustrated in Figure 3.

idoalized Photon Correlation of LV Signals

The number 0, is the number of photo-electron emisgion
eventu in the interval which extends :*At/2 from the
instant kidt. An idealized photon correlator produces and
sums delayed products from the uniformly spaced sequence {nk}
We assume the total number or products accumulated is N, The
accunulator produces a sum Mp at the delay value pAt given by

g =]

p ™ L "kPkep (42)

The ideal photon correlator would simultaneously accumulate Nﬁk
defined by '

Nﬁk - ; n, (43)

The unconditional expected value of these sums is obtained from
equations (22) and (27)_atter interchanging expectation and sum-
mation as

<Hi_> <n
Hp = N

knk+p>

= Nat2R, (pAT), p # O (44)

= N[<A>At + ATR,(0)], p=0
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<Nﬁk> = N<A>AT (45)

E]

By combining equations (40) -~ (45), we may obtain an esti-
mator for the autocorrelation of A(t), 1i.e.,

. N
. R, (pAt) = z:g‘ k-l ByBysp P PO (46)

e : 1 A -
: R, (pa1) = —5= (b, - Ni), pmo

- - n (n -1) p=0
; AN ke1 K '

Thie estimator includes the zero delay value, which is usually
ﬁ' o omitted, by making use of the separate mean count computation.

. The samc mean count estimate n, may be used to estimate the long
delay level

?u a()? = ry(=) (47)

<nk/AT>

Interpretation of an autocorrelation estimate computed
according to equation (48) involves, first, the use of an ana-
lytical model such as equation (41); second, a parameter extrac-
tion procedure, such as a mean square error minimizing curve fit
algorithm; third, a correction for any statistical bias errors;
and fourth, a variability error criterion which assures that
sufficient data is accumulated. We have provided a procedure
and an example model for the first step. The bias and varia-
bility errors are discussed in a later section. We have not
considered the optimization of the second step although one
method is discussed below. Some literature [(18,16,17] is begin-
ning to appear, but further effort is needed.
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At the Denmark LDA conference in the summer of 1975,
Abiss et al. [16] described a "new" interpretation of a photon
correlellogram as the Fourier transform of the veloclty proba-
bility density function. This "breakthrough" allows the meas~
urement of the probability density of the velocity field by
digital Fourier transform of the correlation results under the
condition that the pedastal and fringe envelope correlations
are nearly constant over the range of delays for which the sin-
usoidal correlation is appreciable. This result is equivalent®
to the interpretation of spectrum analyser displays (connected
directly to the photo-detector) years ago as the probability
density of the velocity field. The restriction is equivalent
to requiring many fringes in the probe volume so that the transit-
time spectral broadening is small, Our equation (35) showa the
relationship between the probability density function of the
velocity (frequency) samples and the correlation. The expres-
sion <os wt> is the coaine Fourier transform of the probability
density for mj. When there are many fringes in the probe volume
the envelope correlation term is a broad pulse which is essen-
t;ally constant over the extent of <cos wt>. In that case, the
transform of the correlation is actually inverting the statis-
tical characteristic function to produce a scaled probability
density.

The unfortunate truth remains that in most practical LV
problems, the probe volume and spatial frequency of the fringes
must be small with the result that we rarely have the luxury
of having many fringes in the probe volume. For the realistic
case, then, we find the spectrum to be the convolution of the
velocity probability density function and the transform of the
envelope correlation, and care is required in interpretation.

*At least in theory: the photon correlator is much more
efficient at low signal levels than any swept frequency spectrum
analyser could be.




A Photon Counting Frequency Discriminator

This section describes the basis for a statistical mean
frequency discriminatovr for photon resolved LV signals. We
begin with a historical description of the motivating logic
which may offer insight to others for more advanced development.

Autocorrelation Frequency Discrimination.- It is well
known that the autocorrelation function of a zero-mean narrow=-
band random process is cosinusoidal with frequency equal to
the mean frequency of the narrow-band process and envelope
which is the autocorrelation of the amplitude and phase envelope
of the process. For example, 1f the two-sided power Sx(t) of
a random process x(t) is

S,(f) = A(f-fm) + A(f-rfm) (48)

Where A(f) is an even pulse-shaped function and fm is a center
frequency much greater than the frequency width of A(r), then

Rx(r) - ZRa(r) cos 2nfmr (49)

Where A(f) is the Fourier transform of Ra(r). Now we note that
for small perturbations of the argument 2n1fm about the point

T = 3/4 2 (50)

the value of Rx(r) varies in proportion to the perturbation of
either t or fm‘ Thus, if t 1is selected to satisfy equation

(80), then the statistical autocorrelation function would serve
insta,nto.neously"l as a frequency discriminator for small deviations

. .

This is significant in later sections even though the
sgatistécnl autocerrelation function cannot be experimentally
obuserved.
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of fm' If the random process were ergodic, then the same
results would apply to time-average autocorrelations when the
averaging time was long compared with the coherence time of the
process. These principles may be extended to a random process
which is the sum of a narrow-~-band process and a low=-pass pro-
cess by first filtering the process with a high-pass filter to
remove the non-zero mean low-pass process.

Application to photon resolved signals.- In the case of
photon-resolved LV signals, the classical signal random process
1s not necessarily recoverable from the sparse single photon
events, but we have already shown that the autocorrelation
function may be approximated by the expected value of a photon
correlation operation on the photon events. The original con-
cept was thus to devise a high-pass digital filter which would
be applied to the count sequence {nk} to remove the effects of
background light and low-pass pedastal from the statistical
average énk> while leaving the bandpass information signal
information., This filter would be followed by a digital corre-
lation (delayed product summation) at the delay value given hy
equation (50). 8Since the digital electronics had to be very
fast, only simple digital filters could be considered. The
simplest one that we thought of was to delay the sequence {nk}
by one-half period of the signal and subtract. This operation
cancels the low-frequency portions of the expected value of
n, and adds the sinusoidal portions in phase. Such a delay and
subtract filter would produce

-

me = Ng = Dg_ g (81)
Where the counting interval At must be adjusted to satisfy

qAt = 1/(2fm) (82)
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with ¢ an even integer. After this was done one would accumu-
late lag products of my with delay pAt equal to three quarters

of a signal period p = 3q/2. This approach leads one to form
the summation M” given by

Pq
4 N
g ™ - + -
Pa kzl Bg-pTk-q ¥ 2%k"k-p ~ Pkk-p-q (83)

The previous results for photon correlation are applicable for
the determination of the expected value of the quantity ﬁ‘pq.
The details are omitted here and included for the simpler dual-
correlate approach described below, but Figure 4 is a simplified
discriminator characteristic for the expected value of the

result, It is provided for comparison with Figure 5 which is
described in detaill below.

After all of the above reasoning, it occurred to us that
another approach (we thought) consisted of performing the delay
and subtract filtering operation on the correlation estimate
after it was made rather than on the high-speed signal sequence
{nk}. Reference to Figure 3 shows that a one-half-period shift
and subtract of the typical LV correlation will approximately
cancel the low-pass portion of the autocorrelation. The results
of this approach provide an approximate discriminator response
as shown in Figure 8 with less high-speed data arithmetic
required. This '"dual correlate and subtract'" approach also
leads to larger frequency range for the discriminator function,
and thus has been chosen for development. Hindsight has now
shown us that by algebraic rearrangement this approach is most
ecoromically implemented with high-speed delay and subtract
filter prior to multiplication. This technique may be shown
to be just another implementation of the original fllter and
correlate concept.
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Dual correlate and subtract.- We will let the quantity
i__ be defined as follows

Pq
N N
G = L, = )
N N
- Zlnk“k-p - kEf‘k“k-q
where
m = B (a0 = By o) (85)

It is straight forward to show that, except for a few end

terms, ﬁpq is mathematically identical to the quantity ﬁp-ﬁ
where ﬁp‘and ﬁq‘are defined by equation (42). It is for this
reason that we will lable the approach as the '"Dual Correlate
and Subtract'" technique even though the delay values are nega-
tive instead of positive.* We now demonstrate that the expected
value of ﬁpq behaves as a frequency discriminator as illustrated
in Figure 5 under conditions which we will identify. The
adjustment of the system clock period At leads to a null in the
expected accumulator value. Measurement of At provides & direct
measure of the mean signal frequency as we shall now show with
our simplified signal models.

From equation (44) we obtain the expected value of the
estimator as

4. - NA'rz[RA(pAT) - R, (qA1)] (58)

The complete expression is obtained for our simplified signal

[ ]
The negative delay implementation was more suitable for
the hardware design.

34




model by using equation (41) in its entirety. Here we assume
that pAtr and qAtc are both small compared with o so that the
pedastal terms cancel as well as the steady term., This leaves

2 2.1 |u
<ﬁpq> = NAt R<AJ> E‘J; o . (87)

- 3 (35 +02)(par)? - 35+ 6®)(qan)?
* e o cos wmpAT-e @ cosmqut .

Now we require that

p = 3q (58)

and observe the behavior of equation (57) near the values of
At specified by letting qAt be one gquarter of the signal per-
iod where both cosine terms will vanish.

QAT w 2ﬂ/4wm = Tm/4 (59)

The shspe of the term in braces is plotted in Figure 5
under the assumption of many fringes in the probe volume
(¢ lerge) and low turbulence (°w sm&ll). Thus the quantity
plotted is simply

[cos 3qAT w_ -~ cos QAT wm] (80)

m
Figure 5 illustrates the expected behavior of the accumulator
sum for changes in the mean signal fregquency W If the sys-
tem clock frequency is changed to change 41, then the respounse
is the product of Atz and the curve shown in the figure. The
shape of the curve is affected but the zero crossing locations
are not.
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Selection of delay constants.- The theory does not
uniquely specify the relationship of At (the above system clock

~ pericd) to T the signal period because q is not specified.

For a given value of signal period, T the largest possible
value of At for an acceptable null is when q=1 and

AT =T /4. This produces the least variability error (as we

will show) and the most bias error due to time smear (the tri-
angular weighting function in equation (24). The value q = 1
al80 aliowsithe highest signal frequencies to be measured for
anivenhmaximum system clock frequency. The bias errors can
be reduced at the expense of increased variability error and
;educea maximum signanl frequency by using q = 2, At = Tm/s.

X . In ordor to facilitate experimental research, our design for a
- reseurch 'instrument allows selection of p and q over a wide

range.

STATISTICAL ERROR ANALYSIS

Introduction

The two principle types of error which arise in statis-
tical measurements are bias error and variability error. Bias
error is a term which refers to the difference between the
statistical expectation cf the measurement system output and
the desired average value being measured. The variability
error is the rms value of the random deviation of a specific
experimental result from the statistically expected value. For
ergodic random processes, the variability error converges to
zero in the limit of infinitely long data collection time; but
it converges to an acceptable level (which must be defined in
the measurement objectives) within a finite measurement time.
The bias error cannot be removed by further averaging but it
can often be removed by analytical compensation or by experi-
mental calibration when it 1is small compared with the desired
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quantity. In general, analysis of both types of errors is
required in any statistical measurement.

There are three different methods for evaluation of the
statistical errors of a measurement system; these are: analysis,
simulation, and experiment. Appendix A provides theory for the
h;gher order moments of inhomogeneous Poisson processes which
we have expanded for application to the demonstration of con-
cepte in the previous sections and analysis of errors in this
section. The study of the theory of Poisson processes has also
provided the concepts necessary for digital simulation of the
LV signals and their detection by photon counting systems.

The concepts and a FORTRAN computer program which we have
developed for this simulation are provided in Appendix B. The
simulation provides a method of investigating such nonlinear
effects as processor dead time and counter saturation which we
have not yet been able to do with analysis.

Bias Errors

The sources of bias errors which have been studied in
the rieasurement of mean flow are as follows: fringe number,
turbulence intensity, time smear, and dead time.

Fringe number and turbulence intensity.- When the number
of fringes N in the probe volume is small, subtraction® of
RA(T - 3Tm/4) - RX(T - Tm/4) is slightly negative instead of
zexo. The error becomes significant only for small values of
Ne. The signal frequency estimate using the zero criterion
will be too small. We have computed the error in percent in
the following manner.

Let RA(SQAT) - RA(qAr) ) Y(qAt). For large number of

¥
This error pertains to the dual correlate and subtract
technique.




T
fringes (N+») then y(qAT) = O when AT = 7? where T  is the

mean signal period. When N<», then

Rk<3Tm/4) - RA(Tm/4) = Ag = Y(AT = Tm/4) <0 (61)

A~ Ae
The correct value of qAt for Y(qAt) = 0 is qAtr = Thf4+EWTT;7ZT

and the fractional error e in accepting Y(qAt) = 0 as indica-
tion that qAt = T,/4 is approximately

49(T_/4)
€ = T;WT?T;7ZT (82)

We have evaluated ¢ for various levels of p = rms turbulence/
mean vélocity and for Nf - number of static~opticg1 fringes in
l/e2 gignal width.

The result of the parﬁmetric computations are presented
in two forms in Figures 6 and 7. From the results we conclude
that the bias error is not very sensitive to turbulence
intensity at the levels shown. A first order correction inde-
pendent of turbulence is thus possible. A second order correc-

tion is possible with only very imprecise estimates.of turbu-
lence intensity.

Time smear error and correction techniques.- The photons
represented by the count n, at time kAt were in fact smeared

in occurrence time over the range [(k-1/2)At, (k+1/2)AT].

The effect of this is usually neglected by assuming At is small
compared with any significant variations in the classical sig-
nal. This is never true in the most difficult experimental

cases where the electronic speed limitations force At to be an
appreciable function of the signal period Tm‘ The result pro-
vided in equation (24) for photon correlation included the time
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smear effect in the triangular function A which convolves with
the autocorrelation of the classical signal. After equation
(28) the triangular function was treated as a delta function,
i.e., in the limit of small AT,

3= A(1/AT) + 8(1) (63)

and equation (27) results from the convolution.

Now, if we do not make the limit assumption,® we note
that the effects of the triangle function are easily displayed
in the frequency domain: From Bracewell [24] we have the rela-
tionship

[ & Mr/a)e™ 2T e gine? (gav) (84)
where
sinc (fAt) = 5%%5%£A1 (68)

This Fourier transform relationship is illustrated in Figure 8.
The convolution theorem of Fourier transform theory assures us
that in the frequency domain, the effect of the convolution in
equation (24) is a product. 1In other words, the frequency
spectrum associated with the signal correlation by Fourier
transform is attenuated by a low-pass filter whose form is

sine (fAt). This function is plotted in Figure 8c. As the
figure shows, there is little attenuation when fmA'r = A-r/Tm- 1/186,
i.e., when the clock period is 1/18 of the signal period. For

F'7I‘he offect of time discretization is a sinéikr) type of

low-pass filter. This is similar to a result in our previous

work of determing turbulence power spectra from randomly tried
samples [23]).
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Signal Part of Rx(r)

Weighting
Functions

At = 'rm/4
At = Tm/e
At = Tm/le

i T

T >
~ m
: F;u) Triangular Weighting Functions corresponding to choices
o for At relative to mean signal period. (illustrated at
SO delay locationa for Dual Correlate Approach)

‘JZLM ' K

(b) Fourier transform relationship of A and sinc

2 function

M ainc? (1, 81)

~p AT/T = £AT

(¢) Low Passe Filter effect of At selection.

Figure 8. Time Smear Effects of Finite Art.
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very low turbulence and a large number of fringes Nt' the
signal spectrum would be small in width and At could be made
a8 large as Tm/2.* However, for values of At > Tm/8 we see
that a correction of the velocity probability density function
could be useful for all but very small turbulence levels,

Such a correction would be effected by multiplying the trans-
form of the correlation estimate by l/sinc2 (At?) prior to
final data interpretation.

Dead time effects.- No physically realizable photo-
detector and electronic counter combination can be constructed
without some dead time; i.e., a period of time following a
threshold crossing by the analog photodetector voltage wave-
form during which no additional crossing events will hbe
counted. This dead time is typically 10 nsec for commercial
photon disceriminator circuits at the time of this writing.
There is no fundamental reason why this cannot be reduced tn
less than 3nsec with the fastest photomultiplier tubes and
counting circuits now available. We will also distinguish two
other types of counting dead time. The first of these is
"pulse pile up" in which the photodetector analog waveform
remains above the threshold level due to there being more than
one photoelectron event within the pulse response time of the
photo detector. There is also a brief interval during the
periodic counting interval during which the counter is being
reset and 1s not available. This is true even when two counters ;
are used alternately, since a small guard interval i® required |
to keep both counters from counting the same event. Practical
dead intervals T, may be on the order of 2nsec or less.

*This limit could be actually exceeded because the
sampling theorem really refers to bandwidth, not maximum fre-
quency:; however, the attenuation would then be severe.
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| The counter dead interval Ty will be considered first
’Q since it is the simplest. To first order it can be neglected,
- but correction in the formulas is simple. It is only neces-
sary to replace At by Ar—rr in the theoretical formulas where
the At refers to the counting width. The amount of delay
remains equal to some integer multiple of At. As a simple
A example the mean value of Ny bhecomes <A(t)>(Ar—Tr) instead of
o <A(t)>Ar.

The effects of pulse pile up are least known for the
photon=-limited signal cases. For higher photon rates the PMT
analog waveform will generally remain above the photon counting
threshold and so produce no counting eoffects. The pulse pile
up effects can be studied with the present signal simulation
program (see Appendix B) when a more complete processor simu-
lation subroutine is completed in the future. At present the
photon processor simulation is idealized so that discretized
photoelectron event times are used directly without synthesis
of the PMT anode waveform and a threshold crossing circuit
model,

The effects of discriminator dead-time effects have been
presented analytically by Jakeman®™ for the case of Gaussian
optical electric field statistics. We have not yet extended
the theory to the single-particle LV signal situation (non-
Gaussian field statistics) and can offer no improvement analyti-
cally here over Jakeman's results. However, we dispute Jakeman's
conclusion® that in practice dead time errors are not a serious
limitation of photon correlation. The seriousness of the
effect is demonstrated below using the computer simulation pro-
gram provided in Appendix B.

We have simulated a wind tunnel instrumentation
example with the conscants given in Table 1. The results are

*page 118, [12].
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Theory Program
Symbol Name Value Description
7 TTOT 10" %gec Total time limit
t; MNTOT 3x 10° Photoelectron limit
Iny KMAX 480 Number of At's per burst
f <AJ> AFAC 107/sec Mean peak pedastal rate
HIGH 10 Max A, = High:<),>
LOW 0.1 Min Ay = Low «<d,>
- IR2 4 AJ = AFAC (not random)
f 1/R TB 5%10~8 Mean time between bursts
g THEORY TRUE Logical: Selects ideal
} : processor
) MAXC 103 Maximum count of processor
(high to avoid limitation
here)
%} D 8x10"7sec  1/e2 half width of bursts
CON 3 D CON = Total buret width
AME 1.0 Burst modulation index
fm FO 6.25:c106Hz Signal frequency
At /At ITAU 4 Ratio of processor resolu-
tion to simulation resolu-
tion
IP 20 Maximum correlation delay
WAVE TRUE Logical: True=Bursts present
Ab-o CONST FALSE Background: True-kb present
Td/At DEAD 0,1,2,3,4 Dead time in At units
At DT 5 nsec Simulation resolution
interval
AT DT*ITAU 20 nsec Processor resolution
interval
ONE FALSE Logical: Time=Dual Correlate
TABLE 1. PARAMETER SELECTIONS FOR DEAD TIME SIMULATION.



plotted in Figure 8. For comparison, the figure also shows
the theoretical expected value of the accumulator sums as
predicted by the following equations. We use the values in
Table 1 with equations (40), (41) and (44) to obtain the
mean level <A(t)» as

<A> = 2,005 x 106 photoelectrons/sec (68)

2

<ﬁp>- 80.4 + 283.8 (1 +% cos2nf t)e 2(5.86x10 ) (87)

where
T = (pAT) = p(ZOxIO"9 sec)

- 6
tm 6.25 x 10° Hz

From Figure 9 it is clear that for dead times which are an
appreciable fraction of the clock interval, there will be dis-
tortion of the correlation functions. This does not appear to

be a problem'tor At = Tm/8 except at the first delay valve and a
general amplitude reduction but further study is needed. The dead
time effect is seen to seriously affect the first delay; this
-will seriously affect the dual correlate approach if At = Tm/4.

Variability Error

In this section we derive formulas for the fractional rms
error of a mean flow measurement with a dual correlate and sub-
tract system in terms of the mean photon rate and the system
response (integration) time. We assume that the accumulator
sum is zero after summing for total time T. This implies that
the clock frequency is in error by an amount required to cancel
a random (finite time) variability error in the accumulator sum.
These compensating errors are assumed small so that a perturba-
tion may be used.
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_ An error €s in the accumulator sum is equivalent to an
error en in the estimation of one quarter of the mean signal
obtained by dividing by the slope of the discriminator function
A(T)

ep = €,/A (T /4) (68)

where A(t) is an abbreviation for <ﬁpq> given earlier in equa-
tion (56) and (57). The fructional error £ in estimating the
period Tm is thus

eA/A (1,/4) de,
Tl v ol A, EY (68

This is the same form as equation (62) with the only difference
being the type of error. We proceed by obtaining a simplified
expression :qr A(Tm/4) by neglecting the Gaussian exponentials
in equation‘(57). Evaluation of the derivatives gives

A' (T, /4) » NA12R<A2 gn J% a (70)

The quantity € is the rms deviation of the accumulator value
Mpq after data collection time T, The evaluation of this
quantity is discussed in Appendix C und the result for cases
where the steady background light is larger than the signal is
obtained.* For this case we have

€y = )| kbAT (71)

When these results are combined we have the fractional error
in the velocity estimate given by

*This is simpler to evaluate than the low background
case and gives a bound on the time required to produce a given
error in cases where the background is less.
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2Ab

E™ T (72)
o/ TAT R<Aj>n/w
where
Ab = buckground photoelectron rate >> signal rate
a = burst 1/e half width
<A§> = mean square peak pedastal burst amplitude

(photoelectron rate)
R = rate of occurrence of bursts
total time = NArT

L]
"

ADVANCED PHOTON PROCESSOR FOR
TURBULENCE TIME STATISTICS

Introduction

fn this section we propuse and analyse a photon-processing
scheme for estimation of the temporal autocHrrelaiion of the
time varying velocity fluctuations. Part of the bhasis for this
is the fact that the frequency discriminator characteristic of
Figure 5 appiies not only to the long time average of the dual
cbigelate and subtract sum ﬁpq but also instantaneously in a
conditional statistical sense. We iiay therefore tune At to the
value which centers the long-term average aut the zero of the
frequency characteristic and then obtain short periodically
occurring accumulations of ﬁpq whose conditional expected
values follow the velocity deviation. Even when the photoelec-
tron rate is small, the correlation of the velocity fluctuations
may then be obtained by conventional digital correlation of

the sequence of short time ﬁpq's.

We define here AT as a period greater than At, the
processor counting interval, and less than the significant
times of change of the turbulent fluctuations., The quantity
i is a sum over the interval [(n-1)AT < t < nAT] of m,

pqn
defined in equation (55) as
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m, = nk(nk_p - nk_q); (73)

i.e., N - ﬁpq over the nth AT interval. We will consider

pqn
an autocorrelation estimate of the npqn sequence !
Nt-i
R L g f (74
Re(14T) = w1 3&1 pan pa(n+i) )

We will show that the expected value of this sequence contains
the shui:e of the turbulence autocorrelution function under
‘certain conditions. Further it appears that the magnitude of
the turbulence intensity may be obtained by a normalization
procedure which will be discussed.

Spectral Analysis of Randomly Sampled Signals

Continuvus Fun-ziions.- In our previous development [23]
we showed that correlations and frequency power spectra can
be obtained frocm randomly timed discrete samples of a velocity
component u(t) where the sampling function z(t) is a uniform
Poisson impulse process. The same principles may be generu}-J
ized to the present more complicated data processing problem.
First, let us assume that a continuous sigral s(t) is available
such that

s(t) = x(t)p(t) (75)

p(t) = u(t)/U (76)
where u(t) is a zero-mean time-varying velocity component
deviation from the mean component U and the random process

x(t) is a filtered Poisson shot noise process (see Appendix A)
statistically independent of u(t):
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x(t) = ﬁlﬁﬂt-n) | (77)

Here f(t) is a low-pass 1mpulse_respoqse function, the ?3'5
~are random occurrence times which obey a stationary Polsson
law, and the bJ'a are equally-distributed statistically-
independent random amplitude variables. The functions are
illustrated in Figure 10, From the properties of Poisson
processes we know that if £(t) is a positive function, then.
Rx(t) = <x(t)x(t+1)> is a positive function and, making use
of the independenqe assumption C

Rp(r) = <p(t)p(t+1)> . (78}
= Bg(T)/Ry(1) |

We observe that the zero value of Rp(r) is the normalized
mean-square turbulence intensity <pz>. Figure 10 illustrates
the fact that when the duration of the pedastal correlation im
small compared with the duration of the velocity correlation,
the value <pz> may be obtained approximately from Rp(r) where 1
is small but greater than the pedastal duration. If the turbu-
lencelintensity is obtained in some other manner, we may theo~
retically obtain the shape of Rp(r) even without obtaining
Rx(r), except in the vicinity of v = 0, since Rx(r) - conspgnt
elsewhere.

We may extend the above reasoning to the situation where
two sets of processes are avallable

8, (t) = %, (t)p;(Ty,t) (79)
8p(t) = X5(t)0y(Ty,t)
So long as X, and X, are independent of Py and Pgs then
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Figure 10. Random Sampling Waveforms and
Correlation Functions.
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Rslz(t) - <sl(t)92(t+1)> (80)
o= X (8)xg (t+1)><p, (Tq, ) (T, tHT)>
= Ry12(T)R, (1)

and the cross correlation Rplz(r) may be obtained by division

Ry12(T) = Rgya(T)/Ryqg(1) (81)

The frequency power spectra are Fourier transforms of the
correlation functions.

Sampled Data Estimates.- In the preceding, we assumed

- s(t) and x(t) were continuous and computed statistical corre-
~lation functions. We now suppose that real-valued discrete

lgmpleﬂ_sn and xn of s(t) and x(t) are taken at uniform inter-
vals AT which are small compared with the duration of the
random sampling pulse f£(t) and correlation time of p(t). We
may form discrete estimates of R (t) and R (T) at T = 1AT by
computing a finite time average, for example

N, -d
f - S 8 (82)
g(14T) N1 nzl n n+i

where NtAT is the accumulation time T and the expected value
1s

<R (18T)> = R (T = 1AT) (83)

If such estimates are formed for Rx and Rs' then we may form
an estimate for Rp(r) by division:

A A A
R (1AT) & ﬁs(iAT)/Rx(iAT) (84)
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This procedure does not insure that <Rp(iAT)> is an unbiased

eatimate but it becomes one in the limit of sufficiently long
accumulation time when the numerator and denominator converge
to their respective expected values.

Conditional Expectation Again.- The problem is still
more complicated. Because we do not have the classical optical
signal A (t) available for direct observation, we cannot form
x(t) and s(t), or even xn and sn. We will process the fast
photon=-counting sequence n, to obtain discrete~valued sequences
Mxn and Msn whose conditional expected values given A(t) are
proportional to xn and Sn'

We thus have an estimate ﬁs(iAT) defined not by equation
(82), but by

N.~1
. £
Cst(iAT) - ﬁﬁfI nzl MonMg(n+1) (88)

The expected value of the estimate is

MUgnMgne1)” ™ <<Msnlx(t)><Ms(n+i)|x(t)>> (88)

2
w C <SJSJ+1>

- czns (1AT)

where C2 is the proportionality constant. This result depends
on the fact that given A(t) the discrete random variables

Msn and Ms(n+i) formed from non overlapping portions of the
sequence n, are conditionally independent. This follows from

the fact that Dy is ?oisson counting process.
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In equation (86) the notation <x|A> denotes'expected _
value of x given A" and we made use of the fact that the uncon-
ditional expectation may be obtained in two steps: first, with
respect to x given A; then with respect to A.

Application to Photon Processing of
Turbulence Correlation

It remains for us to identify measurable quantities with
the properties attributed to Msn and Mxn above and to describe
a means of implementation.

Conditional treguencz'discriminator.- We now reconsider
the estimator ﬁpq defined in equations (54) and (55). We

restrict ourselves to the signal model given in equations (30)
and (38) with* Ab w 0 and with rarely overlapping burats;
i.e,, a<<l/R. This is the '"low density" shot noise case dis-
cussed by Papoulis [10), page 874. For "low density' shot
noise we may use the approximation that [10] if

g(t) = Zh(t = rd) (87)
then '
s?(t) ¥ In?(t - Ty) (88)

with thege constraints we obtain

@y oA (E)> = AL - paT) (89)
2 % , 2,2
- At JJL“AJ £9(t - 14){1 + cos wy{t-1y)

+ cos wd(t - TJ -pA'r)+%- cos(Zth- ZwJ't"1 -pwJA'r)

+ % cos pwJAr}

“Mhe A\, = 0 assumption does not affect the result due to
the subtraction. .
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In equation (89) the product of cosine terms has been expanded
as sum and difference frequency ferms, and the delay pAt has
been neglected in the envelope function f£(t). With m, defined
by equation (85) we may determine <mk|k(t)> ffom two sets of
terms like that in (89). We then determine <M > as

pan
M [A(t) T | )
M |A(t)> = <m, | A(t)> (90
pqn ks(n-1)L &%
At nAT ©

v 2,2
2 (n=1)AT JJL”AJ f (t-rd)[cos pwJAT
- COB quAr] + [(Band pass termdl} dt

where
L = AT/AT (81)

In the right hand side of this equation the sum is replaced by
& time integral which it approximates. Since AT is long com-
pared with the Doppler period, the bandpass terms average to a
small value; however, since AT was assumed short compared with
the burst envelope duration, the integral does not smooth the
firat expression in the right hand side of (90). The result
is therefore

(- -]

<ﬁpqn> ~ A—'-‘iﬂ J-Z_“ Adz f2(t - TJ)[GOS pAwJ - CcOS qA'rmJ] (82)

o AraAT Azzp(t)[cos pAtw(t) - cos qAtw(t)]

By proper selection of a high speed digital clock period,

At, the sequence ﬁpqn approximates the sequence ﬂsn described
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above for certain values of the integers p and q. For other
choices of p and q the sequence ﬂpqn approximates the sequence
uxn' Thus, velocity correlations may be obtained by simul-
taneously duplicating the computations of (73) with two differ-
ent sets of integers p and q, and then proceeding with soft-
ware processing of the two sequences Msn and Mxn' To show
this last link in the procedure we examine the cosine differ-
ence term in (82). For the Mansequence we select p and q and
adjust the variable At to the conditions given previously for
the mean frequency discriminrator in equations (88) and (89).

(p = q)wmAr - (93)
pwmAr = 3r/2
qQuuat = /2
Example selections for p, q and At are S,I.Tm/4; 6,2,Tm/8;
12,4,Tm/16; where Tm = 2n/wm is inverse of the mean signal

froquency. Expansion of the bracketed cosine term in (92)
gives '

TAw S"Afl
[com pAm:J - 0OS8 qA-cm] - [sin(‘_wm )+sin(mn-‘ )] (94)

where we have used the substitutiona

AwJ - wJ - W (95)

"3 ?ﬂAw
cos |z (“’m+A‘”J)] = 8in(m—>=")

L“®m m
nr TAw
cos .’5; (:om + Aw:J )] = ~gin( o )
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Equation (94) was shown plotted in Figure 5 since it is also
the approximate long-time average frequency transfer charac-
teristic for the mean flow measurement. The trigonometric
substitutions along with the small angle approximation sin & = 8
shpw that for small turbulence levels, equation (92) becomes

M [A(E)> ® ATATAS (£)mp(t) (96)

Where p(t) ¥ A“J/wm during non-zero portions of Azp(t).

Normclizing sequence.- Under the same selection of At as
in (93) but with

pmmAT = 27 : (97)

qwmAr -7

a different effect is obtained, For example, if Msn i{s obtained
with p=3, q= 1 and we let p=4, q=2 in computing Mxn’ the
result corresponding to (94) is

A A
[cos pAtw, - cO8 QATw,] = |cos ,,_2.1 + cos (2“-9-1) (98)
J - J W Wy

The amall-angle approximation for the cosine function is unity,
so the result corresponding to (96) is

- 2
<Mxn|A(t)> ATATA 2p(t) (99)

¥hen we note that ij/wm - uJ/T? and that the ATAT term cancels
by division, we see from equations (96), (99) and (88) that

the autocorrelation of M ndivided by the autocorrelation of Mxn
produces approximately = <u(t)u(t+-r)>/02. Except for a fac-
tor of C2 - ﬂz. the result is normalized in such a manner that
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fractional mean-~square turbulence intensity is directly obtain-
able from the first lag value of the final autocorrelation
qntimate or a prolection back to the zero delay value. (The
analysis we have presented is not vaiid for the zero delay
value without separate consideration. It is possible that cer-
tain effects will cancel and cause this to be a valid point
also.) _

Practical considerations.- The approach outlined above
for normalization would require as much hardware to measure the
"xn sequence as the Msn sequence. In addition, the small angle
approximation which was applied to (88) is not valid over a
very large range of velocity deviation. We have conceived two
other leas expensive approaches. The first of these consists
of oliminuting the mecond M channel completely and relying on
the fact that the shape of the correlation R (1) is approximated
by correlating M n 9Xcepy in the vicinity or & burst duration
from the delay origin. If it were desirable to normalize the
function at the rest of the delay locations, we could esvaluate

+.the required division constant as

AT2 A7 %2 <A2£p(t)>2 - <ﬁ.(nAT)>, nAT >> o (100)

wher2 we have already discussed a possible eatimate for <A2(t)>
in equation (46). Either this estimator or the Mxn approach
deacribed above could be computed with a single channel elec-
tronic system by electronically switching the delay variables

p and q and storing the {ﬂpqn} sequences in different portions
of a computer memory before computing the second level corre-
lations. Time sharing like this would not be as efficient in
possible cancellation of some of the statistical variability
error, but significant cost sevings would result,




DISCUSSION

System Design

We have provided a specification for an advanced computer
gentrolled photon counting processor in Appendix D. The design

‘allows the system to be opersted as a dual-correlate and sub-

tract processor or sequentially as a correlator by time sharing
the multiplier. The system provides synchronous 3-bit X 3-bit

- operations at up to 100 MHz. The design uses '"slow'" emitter

coupled logic (ECL) which is optimum for the speed range speci-~
fied, The system may be operated as an advanced processor by
dumping the accumulator values to computer memory at rates
limited only by the computer. The design allows two identical

units to be used together for either velocity cross-correlation

measurements or for simultaneous second-channel normalization,
An analog feedback loop is provided for automatic mean velocity
acquisition. 1In addition, the system can be used to mersure any

type .of multiple-~interval pheton statigtics by selecting the

correlator clock period (continuously variable both manually and
electronically) and using the computer to sample the values of
ny stored in the delay line,

Sengitivity Comparison

There are four primary sources of variability error,
These are the random turbulent flow itself, the random occur-
rence times of the scattering particles, the random scattering
cross sections, and the random time of photod events., Fhoton
correlation methods are linear in the sense that the effects of
two simultaneously occurring scatterers are added. This is
beneficial in that it avoids the non-linear zero-crossing cap-
ture effect of classical FM systems and thus the error problems
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of multiple scatters; it is not beneficial in the sense that

random amplitude effects will contribute to variability error,
but these distinctions have not been carefully analyzed. The
error versus data collection time trade-~offs which result due
to the random occurrence times of scatterers and due to mini-
mum limits due to the turbulence itself have been previously

analyzed for burst counters, That result* may be expressed as

2
<p™> . 1 1
T3 BTt g (101)

where B i8 the equivalent power bandwidth of the turbulence,'

R' is the mean rate of accepted signal bursts, and <p2> and

<ez> are the normalized mean-square turbulence intensity and

mean-square estimate error, respectively:

2

w?> = .S“TI%E).Z | (102)
2

s o S0 - D%

) v

this result indicates, for example, that for a turbﬁlence equiva-
lent power bandwidth of 2KHz, 10% turbulence intensity, and 0.3%
desired rms error, the data collection time would be at least
0.28 seconds even if the continuous signal U(t) were available
for processing, and would be considerably longer if R' were

less than 4000/sec,

In the following we examine the implications of equation
(72) for transonic wind tunnel measurements. In order to include
the mean value of th2 signal bursts along with the assumed

*page 10, equation (2.14), reference [23].
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background light in equation (72) we use equation (40) for
<A(t)> and (72) becomes '

2(>\b+ As)
e~ -3 (103)
o VTaT R<AJ> YT

where the mean rate due to signal bursts is
Ag ™ R<AJ> /T o (104)

which is less than the mean peak rate <\,> when R is less than
the inverse of the effective burst width, v7 ¢, Now by defin-

ing the variance Gk2 of the pedastal peak rates AJ as
°A2 " <A§> - <AJ>2

we may rearrange (103) as

A
b

2

(x; " %)
]

¢
A K~
‘*J’[ZK'I’ ’ 1] e

3

e =

(108)

Although the parametric behavior of equation (108) is
intuitively acceptable in other ways, the presence of the term
1 + 0A2/<AJ>2] in the denominator seems a little strange.
Increased variability of the scattering cross sections of the
particles would not intuitively decrease the mean-flow varia=-
bility error. It is possible that this indicated behavior is

a consequence of ignoring the variability of the classical power

A(t) in equution (71) and has no physical reality. However,
there does not uppear to be anything wrong with the derivation
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for the limiting case of nigh background light so the strange
result may be true. In any event, a conservative bound is
obtained by removing the bracketed expression in the denomina-
tor to obtain an expression not requiring knowledge of oxz:

A
2r b 1]
g LX; :

w<kj> YTAT

(108)

If we evaluate equation (108) with the following assumed typical
conditions for a transunic wind tunnel measurement we obtain

& required data collection time of 0.5 seconds for a 1% rms
error:

7

A, = 10 (107)

AL, = 10

<A;> = 10

J>
tr = 1078
In this example, the mean signal photoelaectron rate is ten
times leoss than the mean background photo-electron rate and
is equal tc the average peak envelope rate. With this much
background light, the assumption of counstant A(t) should be
valid with respect to the photon-fluctuation induced varia-
bility. The selection of meun peak rate at 107 means that
occurrences of photoelectron count rates greater than 108/sec
(the limit of current hardware state of the art) will be rare
and the effects of nonlinearity negligible). The selected
ratin of <AJ>/As = 10 implies that the measurement volume is
only assumed to contain a scatterer 1/10 of the time on the
average.
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Even though dramatic improvements over the previous exam-
ple situation may result from reduced background light, the
result still indicates that practical measurements may be
obtaired with a peak signal photoelectron rate of 107 sec, In
order to compare this with the performance of a burst-counter
system, we must assume values for p, q and fm' the Doppler fre-
quency. With p = 3, and q = 1 the Doppler frequency fm is
1/4A1 = 25 MHz. This would result from U = 304.8 m/sec with
an optical sensitivity of 82 kHz/m/sec. This peak photoelec-
tggn rate assumed is thus 0.4 photoelectrons/cycle in the pres-
en¢e of 0.4 background photoelectrons/cycle. For comparison we
note that standard optical noise formulas, given A(t) =
Ad(l + cos wmt) + Ab' would result in peak SNR of

2

A
SNR = mrj-l.._—-x;s (108)

In our example, B = 25 MHz and Ab - 107; if we choose AJ-109,
a factor of 100 greater than in our example, then the SNR is

10 at the peak of the signal burst and 1.35 at the 1l/e signal
envelope points. Since this example represents marginal or
inadéquate SNR for burst counter operation we deduce that, even
with 100 times more scattered power, only the larger-than-aver-
age scatterers would contribute.

Under conditions of less background light, the burst-
counter analysis would not be improved; however, the photon
counting system results are expected to improve considerably.
Thus we conclude that mean-flow measurements with from 100-1000
times less optical power are feasible with the photon counting
system.
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Future Work

During this contract effort we have developed simulation
techniques which can be extended to be applicable to all types
of LV signal processors for any level signals. The program in
Appendix B only represents the beginning of how these techniques
can be exploited, and we did not have time under the present
contract to use that program except for check-out waveform simu-
lations and the dead-time example. Similarly, the higher order
moment equations developed in Appendix A have not been yet used
to extend the variability error analysis to include the low
background cease.

A system such as that bpeciried in Appendix D should be
constructed and tested. The results in this report indicate
that such a system would a low LV measurements to be performed
which are not now feasible. 1In addition, the system would be
& valuable research tool for many other fields of research
which require high-speed digital correlation or measurement of
photon interval atatistics.
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CONCLUSIONS

The most significant new results which this report provides
are itemized below:

® A general non-gtationary Poisson process model for
dual scatter laser velocimeter (LV) signals and noise
valid from high level signals down through photon
resolved signals.

e Computer simulation algorithms valid over the entire
range of signal levels, which may be used to evaluate
any new type of LV signal processor.

e A description and statistical analysis of both con-
ventional photon correlation and Dual Correlate and
Subtract frequency discriminator technique for mean,
turbulence intensity and turbulence correlation
estimations from photon resolved signals,

e A system design for an advanced photon-counting
proceasor which implements both conventicnal photon
correlation (sequentially) and the Dual Correlate
concepts with time resolution to 10 nsec.
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APPENDIX A
FILTFRED INHOMOGENEOUS POISSON PROCESSES

Jn this appendix we have used the material from Snyder's
book [8] to derive the higher order moments of a filtered
inhomogeneous Poisson process up through order 4. We begin

. with jntroductory material similar to that given by Papoulis
(0]

. Q - : . ... Inhomogeneous Impulse Processes.

The input to a random linear system is an inhomogeneous i
.Poinlon 1mpulne proceuu z(t) glven by ' b

!(t) - Z“' 5(t-‘r1) : ' . ‘-‘(AI)"-‘:

... . where {r } is the set of random occurrence times, A(t) is the

- 1n-tantaneoua statistical mean value of z(t), (and also the

o inean rate of ooourrenco of the r 's), and 6(t) 1- the dirac
delta function. The random variablen Ti are independent of
each other utatiltioally and obey the inhomogeneous counting
law, i.e., the probability of n=k occurrences in the interval

(tl.tz) is
-u , .k
Pin(ty,ty) = k} = &—{u) (A2)
where
s
poe [ A(t)dt (A3)
Y

The quantity u is also the mean and variance of the random vaf-
iable n(tl.tz).




The Response of a Random Linear System-Campbell's Theorem

The output of the random linear system s(t) is the super-
position of the response h(t - Ty Yi) to each input impulse:

8(t) = ] h(t - 1y, ¥) (A4)

wherg'{Yi} is a set of identically distributed independent
vector random variables. The random variable Y affects the
shape and amplitude of the response function h(t,¥). 1In the
case of the PMT signal it may take the form of a single scalar
amplitude variable. 1In the case of the classical optical sig-
nal from turbulent flow both & random amplitude parameter and
one or more random shape parameters due to velocity magnitude,
direction, and probe volume translational entrance location may
be required. The theory should be applicable so long as the
set of multidimensional random variables Yi is independent of
the set of occurrence times {ti}. The generalized Campbell's
theorem results for the instantaneous statistical mean, variance,
and auto-covariance of s(t) are given below, they apply régard-
less of whether individual pulses are resolved or not. |

w(t)> = [ A(t)<h(t~7,¥)>dr (AB)

o2(t) = <6?(t)> - <a(t)>? = f:A(r)mz(t -1,¥)>dt  (A6)
cov[s(tl)s(tz)] - <s(t1)s(t2)>-<s(t1)><s(t2)> (A7)
- f:A(r)<h(t1-T,Y)h(tz-r.v)mr
where < denotes expectation with respect to Y inside the

integral signs. For a causal signal such as that from the PMT,
where h(t) is zero for t > 0, then the upper limits of
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integration may be replaced by t or the minimum of tl and t2
in equation (A7). For the transient case where the impulse
signal z(t) 1s applied at t = 0, the lower limits of integra-
tion may be replaced by O.

Higher Order Moments

Jummary of statistices.- Given a filtered, inhomogeneous,
compound Poisson process:

s(t) = th(t,'ri;'i’i) (A8)

where t4are random occurrence times which occur with intensity
A(t), and where Yi are vector random variables which are sta-

tistically independent and identically distributed, we obtain
the following result. The cumulants are:

o«

Yi(ty) = 0y = [ A(T)<h(ty, ;) > dr ~ (49)
le(tlstz) - ulz - f A(T)@(tl,T;?)h(tz,T;Y)>dT
lea(tlptzota) - f A(T)<h(t1b'”v)h(t2p'f;v)h(tavT;v)>dT

Y1234 (811 B0 b0 tg) = [ A1) <h(ty, 1iTIB(t,, 1Y)

' h(ta,T;Y)h(t4,r;Y)> dt

The formulas which relate the cumulants to the moments
are as follows:

1. <s(t1)> =N, =Yy (Al0)

2. <8(t1)s(t2)> = M9 + N Ng

where Hig ™ covariance = Y12
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w

‘(t;)8(ty)8(tg)> = Yyp3 * Nyligg + Nglyg

R | | -+ ngyp * NyNgng

[EN
5
e
i
L_.”.
N,
il
e
5
.

4. <3(t1)5(t2>3(t3)5(t4)> - 71234 + n1n2n3n4

* N1Ya34 * NgY¥134 * Na¥1i24 * NgY123

+ UygHgq * HiaMag * Higbas
% - * M14M2N3 * P13NaNg * Hi1aN3Ny

o + HggNyNg ¥ HggNyNg *+ UggNyNg

B Tho derivation of the above formulas follows.

Derivation.- The derivation of the preceding formulas is
L utruighttorward but tediouu if we are given the Joint charac-
-~ teristic function

o (@) = LI (A11)
wheré
W (W, Wy, Wg, Wy) (A12)
and
8 = [8(t;),8(t,),8(ty),8(t,)] (A13)

From Papoulis we know that
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<s(ty)s(tys(tg)s(t,)> (Al4)

'1 (E)

(" By dwy g Buy | Fag

and similarly for other moments; i.e., we may obtain the moments
by determining the appropriate partial derivatives of the joint
characteristic function at @ = O which is in turn a vector
valued Fourier transform of the joint probability function for
the rgndom variables s(tl), s(tz), ete,

The theory of filtered Poisson processes provides us with
the joint characteristic function of the second kind, y, where

Y(w) = 2n ¢ (w) (Al18)
or

p(3) = o¥(®) . (A18)

We may thore:ore either write out ¢ (W) and evaluate the
dorivativel directly or use the above equations to first
express the partial derivatives of ¢ (i) in terms of the par=-
tial derivatives of Y (w). We have taken the latter approach
using the chain rule. As an example

2 2 |

3 i} % 3 3

L L v, (A17)
U)l 0.\2 . wl wz wl (.02

The rest of tha derivatives are omitted here since they get
progressivaly more lengthy.

We now reed only to evaluate the products of partial
derivatives we have obtained at W = 0, From the material given
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e

Bl s

by Bnyder* we have
V@) = [ A(r) «@IB® 1y gq (A18)

where
B(w) = wlh(tl.r;Y)+w2h(t2.r;Y)+ oo wnh(tn,T;Y) (A19)

From the form of the expression for Y(w) it is clear that

Jo

W('w')| - fﬂx(r)«a -1>dr =0 (A20)

w=0
therofore

¢(w) -1 | (A21)
Wm0 |
It is not difficult to see that the form of the partial
derivatives is

n, - ®© ) o .
-}#ﬁ%ﬁ- LI R PR XS <h(ti.r;Y)h(t2.'t;Y)..eJB(‘“)mtl,_ |
" Cw=0
(A23)

w=0

i.e., the partials of Y(w) at w = 0 are equal to the same order
cumulant except for the Jn factor. With this formula we can
now go directly from the expression of the partials of ¢ in
terms of the partials of y to the desired higher order moments.
The result is that given in the summary. If moments higher

*In Snyder's book, Random Point Processes, equation (4.158)
the lower limit of integration 1is to correspond to the begin-
ning of the process. The upper limit is the minimum of the
times ti' This assumes that h(ti,r;Y) is a causal function.




than the 4th are needed we would simply apply the chain rule
to determine the higher derivative of ¢ in terms of those of
V.

expanded all of the moments of a non-zero mean Gaussian

process for comparison, We observe, however, that the factori- @
zation property of zero-mean Gaussian processes does not hold "
for filtered Polsson process. Otherwise there are great simi-

larities except for the cumulants as s |
Gaussian Poisson (A23)
<x1> - n'l <x1> - nl
XyXg> ™ Wjg * MNg KyXg> " H1g ¥ MM
for (ni = 0)

<X1XgXg> = 0 K XgXz> ™ Yya3

Ky XpXaXg> = UjgMgy * Highag Ky XpXgXy> = HigHag * HigHag
* Hiq¥2s * ¥14¥23 * Y1234

(n ¥ 0)

<x4> - 304 + Gczn2 + n4 <x4> - 304 + anoz + n4

+ 4n [ An3(t)dt

+ [andctrat
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APPENDIX B

DIGITAL SIMULATION OF LOW LEVEL DUAL SCATTER
LV SIGNALS AND IDEALIZED PHOTON PROCESSORS

Y This appendix provides theory and an example FORTRAN
¥, program for digital LV signal simulation. Background theory
t and several more complicated Poisson impulse simulation algo=-
rithms are discussed by R. H. Forrester, Jr. in a Masters Thesis
{28) performed under Don Snyder. The simple approach taken
here is to discretize the possible occurrence times of photon
and classical burst signal events to uniformly spaced inter-
: vals of length At, where At is less than any significant sye-
L tem integration time., This diecretization of time imposes
iteself upon all temporal system parameters, such as processor
clock interval At and dead time t,, which would be continuous
' variables in the real situation.

Theory
Realization of inhomogeneous Poisson impulse processes.- A

sample function of an inhomogeneous Poisson impulse process is
specified by a set of event occurrence times'{ti} as described
in Appendix A. The key procedure required for simulation of
LV signals is therefore the generation of a aet'{ti} given a
specified rate intensity function A(t). This may be done by
first generating a homogeneous (stationary) process with unit
intensity A(t) = 1 and then mapping the realization times
through solution of an integral equation. ¥Figure Bl illus-
trates the required mapping in a manner which helps provide
intuitive grasp for what follows.

Let us define the set of interarrival intervals {wi}
between event occurrence times {Ti} as
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unit intensityAp;pcess

At) = Io A(t)dt
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| ti-'A" (ty) y
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A
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Inhomogeneous Process with A(t)

Figure Bl. Transformation of Unit Intensity Process into
Inhomogeneous Process with Specified A(t).




For & homogeneous Poisson impulse process with constant rate

" intensity M(t)= A, it is necessary and sufficient that {wi}

be a set of statistically independent, identically distributed
exponential random variables with common probability density
P, (W), given by,

Py(¥) = Ao~ " (82)
We may therefore generate the setn{Ti} of occurrence times for

& realization of a constant intensity process as

i
T, " kzlwk =Tyt Wy (B3)

Commonly available subroutines* generate statistically'
independent realizations Xy of & random variable x uniformly'
distributed on the interval (0,1). The exponential density
function is monotonic with an inverse function which is commonly;
avallable (namely the natural logarithm function). 1t is |
therafore stralghtforward to determine a transformation which
maps the realizations of the unit uniformly distributed varia-
ble to the desired exponentially distributed variable:

w, = %.1n(£;) (B4)

In summary, generation of unit uniform random variables x;
which are then transfnrmed by (B4) and used in (B3) produce a

l.'There is, however, a difference in the quality of these
subroutines; a survey paper by [26] may be consulted if the
validity or efficiency of a subroutine is in question.
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realization of a homogeneous impulse process with intensity
A. For our purposes, we set A =1 and proceed to the mapping
step illustrated in Figure Bl.

In his recent book* Snyder provides guidance, but leaves
it as a homework exercise to deduce the proof for a method of
rescaling the interarrival times of a unit intensity process
to cbtain a realization of a specified inhomogeneous process.
The results are as follows: Let {Ti} be the set of occurrence
times of a unit intensity process as illustrated in Figure Bl.
Let A(t) be the integral of the specified intensity function
A(t):

t
At) = [ ACa)da (BR)
(o]

This function is continuous and monotonically increasing and
therefore has an inverse function A'l such that

T, = A(ti) (B8)

i

- - -1
ty A (Ti) (B7)
The set of times {ti} generated by applying equation (B7) to
the set {ri} is the required realization of the inhomogeneous
process.

Algorithm for simulation of event times.- The subroutines
which generate uniform random variables Xy produce real numbers.
If the above equations are applied exactly, one would be forced
to digitally solve an integral equation, thus producing another
set of real numbers {ti}. One could carry tae full resolution

*See Snyder (98) page 62.
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of the computer to the hitter end of the simulation. However,
at some point the use pf digital filtering techniques to
simulate analog filter characteristics of real photomultiplier
tubes (PMT) and other electronic devices would become appro-
priate. At such a point, the simulated signal would have to
be interpolated and respecified on uniformly spaced increments
with separation At. We may greatly simplify the required
algorithms by rounding the set of occurrence times to the near-
est At interval and point. By incorporating this step directly
into the solution of the inverse function A'l(ri) we avoid
the problems of solving the integral equation exactly and sim-
plify that step as well. The entire procedure is thus simpli-
fied to the following.

1. Select a At small enough to provide adequate

accuracy for uniform sampling of A(t) and cal-

culating its integral by the trapazoidal rule
integration method.

2. Beginning at o™ to = Q, compute realizations

of T, &8 discussed above.

3. Calculate the trapazoidal rule approximation
of A(kAt) for each integer value. o-fk-fkmax'

4. Use conditional statements to test the latest
real value of Ty against the integral A(kAt)

as it is generated iteratively to determine a
histogram TC of the discretized occurrence
times at kAt. It is possible, in the simula-
tion, for more than one value of Ty to be
mapped to the discretized time kAt.

There are many ways that the fourth step could be implemented.
We have elected the following: If the value of Ty lies in the
range

A(kAt) + Af(k-1)At] < M(k*'l)At]i"’ A(kAt) (B8)

2Ty

where A(kAt) is the trapazoidal approximation of the integral,
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then an occurrence is added to the histogram value at k.

Inclusion of random amplitude effects.~ When the point
event represents a photoelectron pulse or a classical LV sig-
nal burst, we may wish to assign the event an amplitude mark
(impulse weight). This may be done by separately generating
realizations of additional random variables according to
desired statistics and accumulating one each of these at TC
for each occurrence time. Note that 1t is not adequate to
simply multiply each value TC by a random variable, since in
some realizations more than one event contributes to the same
value of k. '

The statistics of the pulse height distribution of a poor
(PMT) may be nearly Rayleigh, while the Gaussian density with
15-25% relative standard deviation may be adequate to model a
good PMT. Very little documentation exists concerning the
probability density of the classical signal bursts. This topic
is discussed and some data is presented in our recent AEDC
report [1]. Of the simplest densities an exponential density
or a Rayleigh density would be used to simulate amplitudes from
an unseeded flow. As we have shown it does not follow that
the amplitude probability density agrees in any recognizable way
with the particle size distribution; even monosized particles
may produce a very strange amplitude probability density [1].

When it is desirable to use Rayleigh or Gaussian random
variables the following procedure is recommended. Generation
of realizations of Rayleigh or Gaussian random variables may be
obtained by first generating uniformly distributed values on
the interval (0,1). Let X, and Xg be two such independent
realizations. Then we obtain

2

R = (-20° 1n :rcl)l/2 (B9)

6 = 21rx2 (B10)
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where R is a realization of a Rayleigh random variable with
parameter o, mean = o{% , and probability density pR(R) given as

B o~(R%/20%)

Pr(R) = .

» R>0 (Bl1l)
and 6 is a realization of a uniformly distributed random vari-
able on the interval (0,2m). Multiplying (B9) by Y2/ produces
Rayleigh variables with mean =1. If Gaussian random variables
are desired, the process is continued from (B8) without the
Y2/n factor by converting to rectangular co-ordinates:

X = R coy 8 (B12)
Y =R sin 8 (B13)

When this is done, X and Y are two independent realizations of
2 Gaussian random variable with zero mean and variance 02, i.e.,

2,, 2 -
p,(X) = 7%% o™X /20 (B14)

and the saﬁe form for py(Y). The above procedure efficiently
produces exactly Gauseian random realizations as opposed to a
program such as GAUSS which sums 12 independent uniform random
variables to obtain approximately Gaussian variables by the
central limit theorem (Forrester [25)).

Example Simulation Program

We have included at the end of this appendix a copy of
the printout of a FORTRAN 1V program which is illustrated in
flow form in Figure B2. The occurrence times of the classical
signal bursts are generuted as a homogeneous Poisson process.
The amplitudes of the bursts may be either generated randomly
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with exponential, Gaussian, or Rayleigh density with a speci-
fied mean, or they may be set equal to a constant. The pro-
gram computes the burst waveforms at each At and sums all that
are present to form a classical signal. This signal is inte-
grated in a trapazoidal fashion and compared with the occur-
rence times of a unit intensity homogeneous Poisson impulse
process simulated as described previously. If random amplitudes
have been assigned to the photoelectron pulses, these are gen-
erated and added to a histogram; otherwise 1's are added to the
histogram.

The idealized photon processor portion of the program sums
the values of the histogram (with no random PMT pulse height
effectsn) over an interval At which is some selected integral
number ( ITAU) of At units in length. The sum is the photon
count sequence referred to in the text as {nk}. The ideal
processor then computes either the photon correlation for delay
values 0-IP (ONE = false) or computes and sums the dual corre-
late and subtract terms (ONE = true).
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APPEND1X C

VARIANCE OF THE DUAL CORRELATE
AND SUBTRACT ESTIMATOR

In this appendix we wilsh to determine a formula for the
mean-square deviation of the estimate ﬂpq defined in the text
equation (868) at value of delay (near Tm/4 where the expected
value of ﬁpq is zero. It was our hope to do this for the
general signal model which we have presented. To complete such
a task requires the use of fourth-order moments of the classi-
cal asignal process A(t), and it was for this reason that the
derivation in the last part of Appendix A was undertaken. We
did not have time during the contract period to evaluate and
use the fourth order moments of the general signal. For this
reason we have restricted this analysiq to the case where
steady background light is the predominant source of variability
error, (Steady light adds variability error even though it
cancels in the mean.) This simplifies the problem because of
the simplicity of the fourth order moment equations for steady
light (homogeneous Poisson counting process).

]
We define ﬁpq here as

o= m (c1)

M = PxPk+p = PxPk+q

where the summations will all be from 1 to N unless otherwise
noted. We have

<mk> = <nk><nk+p> - <nk><nk+q> (C2)

= 0
*This derivation was performed with plus signs in the

delay subscripts instead of minus signs. There is no differ-
ence in the results.

=n° -n
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where n = AAt = nAtP/hv, From (C2) we have

<ﬁpq> -0 (€3)
we wish to evaluate var (ﬁpq) - <ﬂ§q> —.<ﬂpq>2 = <ﬂgq>
2 2
<ﬁpq> - ZZ<mimJ> = >+ E*g <m,m,> (C4)

In (C4) the product of sums was expanded and the order of
expectation and summation interchanged. The 1 = j terms are
separated because they behave differently.

The terms in the first summation give

2 2.2 2 2.2
<my" > = <njny, o> - 2<n1n1+pni+q> +o<nyng o> (C8)

2 2 2
= <ni>[<ni+p> + <ni+q> - 2<ni+p><ni+q>]

= (B + 02)(2(F + 02) - 282) = 282 +.25°

where the theory of homogeneous Poisson processes has allowed
the factorization due to independent of nonoverlapping count
intervals® and from which we know that

<n§> - § + Bl (C8)

Next we must evaluate the i # j terms in (C4). There
are N2 - N such terms but .nany of them are zero. We have

9 I"At this point for the general nonsteady signal evaluate
<m, > with A(t) conditionally given and then evaluate fourth
or&er moments of the process A(t) which is also Poisson.
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<inymy> = <nyRy RGNy Lo> - <ngny g 0> (C7)

B S B0 2 b A R BT b K

When all the subscripts are unequal we obtain

g =T =T o

We are restricted to 1 # J and p v q ¥ 0. If we examine the
matrix of products mimd{ the only allowable products for which
some of the subscripts of n in (C7) are equel, excluding the
i=j case, are found on diagonals parallel to the i=j diagonal.
These diagonals are i = j £+ q, 1 = J £ p, and L = J = (p=-q).
Ve examine these diagonals separately: for i = j + q

mymy> = <Ry qRyeqepRitiep” T Beqty+2q®3Py+p” (c8)
- <n2 n n,> + <n2 n n,»>
3+q%3+q+p"3 J+qP3+2q"

R L @R @+ EDE = 0

Similarly for i = jJ - q, 1 = j £ p, the result is zero by sub-
traction. For the diagonals i = j * (p-q), however, we obtain
after substitution and evaluation

<mym,> = 73 (C8)

For iarge N we may neglect end effects and observe that there
are approximately 2N terms which result from these two diagonals.
We may now evaluate (C4) using (C5) and (C9) as

2

<M > = N(2)(F% + 5°) - oNm° (C10)

= ONG° = ZN(AAT)Z = Var(f_ )
pq
This is the desired result.
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APPENDIX D

SYSTEM DESIGN OF AN ADVANCED PHOTON COUNTING
PROCESSOR FOR LOW-LEVEL LDV SIGNALS

Introduction

A problem confronting us in the pfesent design was one of
complexity and cost. A two channel duplication of the AEDC
processor [l] with the extra requirements of dual-channel
advanced-concept operation would have been prohibitively
expensive. To solve this problem we have made several sig-
nificant changes, some of which utilize the power of a high-
speed computer controller.

Design Approach for the Advanced Processor

Major cost savings are associated with exact duplication
of circuit layout. For this reason, the dual channel system
is designed so that it may be operated either as two com-
pletely separate identical units in one rack; or as two inde-
pendent units with synchronized data (for cross correlations)
or as a one channel system with a synchronous normalizing chan-
nel (same system clock and n, sequence but separate delays).
The counter/timer (C/T) functions needed for system control
were obtained in the AEDC system [1] from a $1500 laboratory
counter, selected because of the availability of options ($285)
for computer control and read. It is considerably less expen-
sive to include the C/T functions in the special-purpose hard-
ware to avoid both the cost of two units ($3570) and the asso-
ciated computer cables, I/0 cards, etc. This puts an even more
stringent requirement on reducing complexity of other circuits
to give more room on the wire wrap panel (162-180 IC sockets
unless multiple panels are used). The following system concepts
have been incorporated.
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10.

11.

Eliminate all front panel controls and displays.
The system thus utilizes the display and command
of the controlling mini-computer and cannot func-
tion separately. This saves LED driver integrated
circuits as well as the front panel itself,

Use a newer, lower cost voltage variable oscillator
for the system clock.

Replace the laboratory counter with ECL counter/
timer (C/T) circuits. -

Use an external, separate heavy duty ECL power supply
( 16 Amps) to save space in the system enclosure and
avoid a large heat source in the -enclosure.

Reduce the maximum count to 3 bits instead of 4
(see following justification). This simplifies
all of the circuits and reduces package count.

Reduce the number of control and read data circuits.
(See following discussion.)

Do not require the 3 bit counter to be selectively
saturable, Let it saturate at 7 (1l1ll).

Remove the single-clipper circuit and the associated
multiplexer.

Limit the accumulator to 156 bits + sign to be com=-
patible with the 16 bit word of the computer. Read
the accumulator often enough to avoid overflow.

Replace the 4 bit subtractor with a 3 bit subtractor
adder, The add function could be used in one of the
normalization schemes,

Include an experimental analog servo loop for zero
adjusting the system clock to the proper multiple
of the mean signal frequency.

Reduction of Counter Bit Numher

The maximum periodic rate of discriminator output pulses

is 120 MHz (dead time > 8nsec). The largest random rate is
usually less, say 70 MHz. 1In order for the count of 7 to be
executed therefore, we assume the count interval to be larger
than 0.1 usec (l/fo > 0.4 or 0.8 usec depending on the delay
choices).
quency fo < 2,5 MHz or 1,25 MHz. We observe, however, that a

Thus we may have the count exceeded for signal fre-
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count of 7 in a quarter of a cycle is a peak rate of 14 elec-
trons/cycle. This is where the burst counter can become
useful. Thus a 3 bit counter is adequate pecause when larger
signals are present a burst counter processor should be used.
If the larger signals are unwanted beceuse they occur from -
larger particles, then saturating the count at 7 will reduce
their effect in favor of smaller signals.

. Read logic for photon statistics.- The 16 bit word length
and the high speed of the H.P. 2100 computer will allow straight
forward READ circuitry. Each channel will have a 18 bit T2L
latch connected to the 15 bit plus sign accumulator. In order
that the counter/timer and the multiple interval statistics
may be read, selectable steering gates will be used so that the
first 8 bits can be connected to the output of the multiplier.
Sequential numbers may then be read as follows:

1. Set maximum delay in A+B and set one side of multi-
plier to 1.

2. Run data and clock.
3. Stop clock.

4., Read multiplier out with commanded single clock
advance,

This will produce a string of more than 20 sequential numbers,
In order to read the C/T total (8 digits) 32 bits is required
(BCD code). This will be accomplished by sequentially reading
two 18 bit words time-multiplexed to the TTL output port.

Description of Circuits

This section describes the subsystem circuits and compo-
nents which comprise the dual channel photon processing system
one channel of which is shown in Figure Dl.

External subsystems.- The external subsystems are the
following:

1. Two photomultiplier tubes and associated housings
and power supplies.

95




2. Six precision 50 2 connecting cables.

3. Two preamps.

4, Two amplifier/discriminators.

5. One NIM bin (rack mounted).

6. Two voltage controllable oscillators (1-200 MHz)

7. Two rack-mountéd integrated circuit power supplies
and connecting cables.

8. A computer with two microcircuit I/O cards (16 bits
in and 18 bits out for each with device command line
and device-ready flag line), and two 36 pair twisted
lead cables with connectors.

Three bit counter.- This is a dual section counter which
stops and holds the count of seven instead of turning over to
zero and continuing. Two counter sections alternate so that one
may have data transferred and be reset while the other one is
counting. In order to avold the possibility of counting a
border line event twice, a dead time between count intervals
approximately 2 nsec will be incorporated. The dead time
between input pulses (from the discriminator) will be < 10 nsec
with a design objective of 8 nsec. The alternate count inter-
vals will be equal (design objective). A control bit allows
the counter output to the delays to be set to zero (data gate).

Delay sections.- The two delay sections A and B are speci-
fied as A = {0,1,2,3,4,5,6,8,98,10,11,12} and B = {0,2,4,8}.
This set a.lows sequential autocorrelations with delays up to
20 in addition to the dual correlate and subtract and the
normalizing modes.

For dual channel operation with one channel normalizing,
a multiplexer is provided which allows the data from the other
channel counter to be selected as delay input. Since the sep-
arate channels are identical physically, each has an input and
an output to the other channel.
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Four control bits select the A delay. Two control bits
select the B delay. An additional bit selects the output of
the other data channel instead of the counter output of this
channel.

Adder/subtractor & mode selector.- In the AEDC unit an
option for subtracting a constant from each n, was included.
The purpose was to avoid overflowing the accumulator in auto-
correlate mode when a signal with large mean is encountered.
The ability of the computer for high-speed read to DMA
avoids the necessity of subtracting a constant, since the accu-
mulator may be read often co avoid overflow. The two control
bits allow selection of add, subtract, or add zero. The adder
subtractor output is four magnitude bits plus sign.

Multiplier.- The multiplier has seven bits plus sign out.
A control bit allows the undelayed path input to be set to 001
instead of ny.

Accumulator.- The accumulator has 15 bits plus a sign
bit. It can be reset by a single pulse. It will be implemented
in 2's complement; the computer software will convert to sign
and magnitude. The reset pulse must also transfer the accumu-
lator values to latches in the output port to the computer.

Counter/timer.- This section replaces the external counter/
timer used in the AEDC System. It consists of two 8-decade BCD
counters and associated input selectors and controls. Each
counter may select as input either the precision 1 MHz oscil-
lator, the system clock, or the second discriminator output
(external input). A fast prescaler selects divide by 1, 2, or
B for counter #1, Counter #2 is multiplexed to the 16 bit out-
put port (lst 4 significant decades and 2nd 4 significant
decades separately selectable.) The first counter produces
output pulses at decade counter #1 selector. The package count
does not include multiplexing and read outputs for counter #2.
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A gate generator block does the following: It produces
the pulse which is applied to the accumulator and the computer
flag; it programably reads and resets the C/T; and it produces
a gate pulse between two successive counter #1 output pulses
for application to the counter #2 control gates (counter #2
stops and holds when gate goes back down). The programable
states include: &) read and reset counter #2 at the entry of
the control word (CW) and at each output pulse from counter #1
(PFC); b) read and reset counter #2 CW but not PFC; c¢) read
and reset counter #2 at PFC but not at CW; d) do not read and
reset counter #2 at either PFC or CW. (This allows, by software,
for counting the photon rate over the duration of an autocorre-
lation sequence and then stopping at the end of a number of
smeller intervals.)

The control bits needed for the C/T are as follows:
Three bits are used to select which of 3 inputs goes to each
of the two deécade counters. (Assumes both will not have same
input.) Three bits will select the decade output of the decade
scaler (dounter #1). Two more bits select the prescale divisdr.
(1, 2, 5). Three bits have been allowed for the four read/ .
reset states (2 bits) and an extra control bit (spdre). Finally,
there is one bit which allows application of the control gates
from the other C/T to the accumulator read/reset line instead
of this channel's C/T. (This is for cross correlation with
synchronous accumulator read/reset.)

System glock.- The system clock accepts a periodic wave
form with 1 positive-going transition per cycle)'and shapes this
into a periodic pulse train at the ECL voltage levels., It
includes butffer gates for proper fan out (5 packages). It
includes controls which allow the clock to be stopped cleanly
and a one-shot clock pulse generator which can be activated
by computer insatruction. This feature allows sequential 0y

98




values to be read out of the system for multiple interval
statistics. The control bits are one for on/off and one for
single pulse. There is also an ungated clock line which is
used as an input to the C/T. There is a control bit which
allows the other system clock to be selected (when the other
channel data is used, for example).

Output port.- Each channel has one 16 bit TTL compatible
output port and a 1 bit flag pulse line. The output port
includes a multiplexer (two 16 bit sections of the C/T, the 18
bit accumulator output and a 7 bit output from the multiplier),
a 16 bit latch, and ECL to TTL voltage level translators.

The output multiplexer reduires 2 bits of control to select
one of 4 outputs.

At the present time it is not clear which of the following
approaches could be utilized: a) all ECL construction with
only 17 bits of ECL/TTL translator as the output; b) a separate
panel section of TTL circuitry which includes most of the C/T
and the output latches for the output port. The b) approach
would require less expensive IC's and less power for part of
the system. However, the cost of a separate panel and the
panel interconnections may make a) preferable.

Oscillator control.- This subsystem provides automatic
fine tuning of the variable system clock for the determination
of the mean velocity. The mean value of the multiplier output
is negative while the clock frequency is too high. Thus the
intent here is to use fast digital/analog conversion and
analog integration with controllable reset, integration, and
hold states to provide a control voltage to the external volt-
age controllable oscillator. Two control bits are required.

This feature is a research item. It may later prove more
advisable to use the D/A converter with a portion of the
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computer control word bits so that the mean velocity selection
becomes a software task.

Input port.~- All machine control is accomplished by 30
bits of information and the time at which certain of the bits
are changed. These bits are latched into the processor input
port 15 at a time by a single line command pulse from the com-
puter. All time-critical bits of control are included in con-
trol word 0. (One of the sixteen bits from the computer is
the address of the control word O or 1.) Table D1 provides a
tentative assignment of control bits. The bit number refers
to the power of 2 in standard binary format.

Package count.- An integrated circuit package count esti-
mate of 147 IC's made for one of the two identical channels.
The estimate assumes the use of a panel with 162 sockets and
design for each subcircuit with the same approach previously
developed for the AEDC unit. This leaves 15 spare sockets for
flexibility in design and/or additions. A slightly improved
approach has also been identified which uses 2 bit arithmetic
logic units (ALU) instead of 4 bit ALU's to reduce circuit
speed limitations. This approach would actually produce more
useable sockets because the panel would have 180 standard
sockets instead of 150 plus 12 4 bit ALU sockets.
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