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EXECUTIVE SUMMARY

A. OBJECTIVE

The objective of this research effort was to assess the accuracy of using the shock response
spectrum (SRS) for defining equipment shock tolerance. The focus of the research was on
mission-critical equipment installed in airbase hardened structures, designed to survive the airblast
and ground shock effects of a close-in detonation by a modern, nonnuclear weapon. The
motivation was the prospect of improving the shock tolerance of such equipment, by first
improving equipment shock tolerance characterization, thereby improving knowledge of the
factors controlling equipment shock tolerance.

B. BACKGROUND

A shock response spectrum is a plot of the maximum response amplitude of a damped single-
degree-of-freedom (SDoF) oscillator subjected to support excitation, as a function of the natural
frequency and damping value of the oscillator. An SRS is a convenient means of illustrating the
peak response of a collection of SDoF systems to a particular shock excitation. Due to 1ts
simplicity, the SRS has become widely employed as a means of describing the shock response of
structures and equipment.

Since in-structure motions are typically described using shock response spectra (actuaily
tripartite shock response spectra), it was only natural (o attempt to quantify equipment failure in
terms of shock spectra. The advantage of expressing equipment failure with the same
representation used to quantify the in-structure shock environment is obvious. Expressing
equipment fragility in terms of shock response spectra greatly simplifies the design of equipment
shock isolation.

The approach employed to determine equipment fragility is to subject an item of equipment to
a base motion of a certain intensity, frequency, etc. If the equipment does not fail, the intensity of
the base motion is increased until failure occurs. The shock response spectrum of the base motion
which just causes the equipment to fail is called the shock tolerance spectrum, or the fragility
spectrum of the equipment, even though the test SRS is input waveform-dependent.

By comparing the fragility spectrum of an item of equipment to the in-structure SRS at the
proposed equipment location, shock isolation requirements are easily assessed. If the equipment
fragility spectrum exceeds the in-structure SRS at all frequencies, no shock isolation 1s required.

i




If the in-structure SRS exceeds the equipment fragility spectrum at any frequency, shock isolation
1s required.

This approach to shock isolation assessment is oversimplified, and ignores several sources of
error. The most important source of error is the fact that an SRS does not correspond to a unique
input time-history. An infinite number of different base motions can generate a given SRS. These
different base motions could vary greatly in duration, frequency content, and amplitude. The main
assumption behind the SRS approach to equipment fragility is that equipment fuilure is
independent of the input waveform. It is assumed that the frequency content of the support
motion does not play a role in equipment failure. All input base motions are assumed to result in
the same failure mode. The possibility of a single item of equipment possessing multiple failure
modes is not considered. In reality, equipment fragility spectra are probably only valid for
frequencies close to the frequency at which the item of equipment was actually tested
Extrapolating equipment fragility based on nuclear testing to the conventional weapon
environn.2nt is now done routinely. The validity of this extrapolation has never been verified.

C. SCOPE

This report quantifics some of the errors introduced by assessing the shock tolerance of
equipment via the classic, linear, SDoF shock response spectrum. Two simple mathematical
equipment models were developed for the investigation: (1) a spring pendulum, which possesses
two degrees of freedom and geometric nonliiearity, and (2) a clamped beam carrying a tip mass
having both translational and rotary inertia, which possesses an infinite number of linear,
orthogonal modes. These models were used to investigate the effect of factors such as:
waveform dependency of equipment shock response; rulti-degree-of-freedom (MDoF) vs. SDoF
equipment response; the effect of multidirectional loading or equipment response; and the effect
of geometric nonlinearity on equipment response.

D. CONCLUSIONS

This study uncovered and quantified several shortcomings of the SRS approach to
characterizing equipment shock tolerance:

» It was proven that SRS-based fragility spectra are not unique. Even for an item of equipment
which can be modeled by a simple SDoF undamped oscillator, each different base excitation
produces a different fragility spectrum.

» The spring pendulum model was used to illustrate the response of a geometrically nonlinear

item of equipment to two-dimensional base motion. It was shown that extiemely erratic




behavior is possible if the frequency of the base motion approaches one of the natural
frequencies of the equipment model. The maximum response can be several times greater
than that of a simple SDoF oscillator.
o The cantilever beam model was used to show that the maximum repsonse of an MDoF system
will always exceed the response of a simple oscillator.
In conclusion, this study has proven the inadequacy of the linear, SDoF shock response
spectrum for characterizing the shock tolerance of equipment. Complex, nonlinear mechanical

equipment subjected to multi-directional support motion cannot be adequately represented by an
SDoF SRS.

E. RECOMMENDATIONS

Based on the results of this study, a more rigorous approach for assessing equipment shock
tolerance is required. The following points should be kept in mind while developing this new
procedure:

o When an item of equipment is tested to determine its shock tolerance, the test input waveform
must be representative of the anticipated threat input waveform. Multi-directional support
motion must be reproduced. Equipment tests should excite the same response modes, and
produce the same failure modes, as the actual in-service base motion.

¢ Analytical equipment models must be detailed enough to reproduce the salient features of the
actual equipment response. The model need not encompass the entire item of equipment, but

it must adequately represent the cntical components. The input motion to the model must
mimic the in-service motion.
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SECTION 1

INTRODUCTION

A. OBJECTIVE

The objective of this research effort was to assess the accuracy of using the shock response
spectrum (SRS) for defining equipment shock tolerance. The focus of the research was on
mission-critical equipment installed in airbase hardened structures, designed to survive the airblast
and ground shock effects of a close-in detonation by a modemn, nonnuclear weapon. The
motivation was the prospect of improving the shock tolerance of such equipment, by first
improving equipment shock tolerance characterization, thereby improving knowledge of the
factors controlling equipment shock tolerance.

B. BACKGROUND

A shock response spectrum is a plot of the maximum response amplitude of a damped single-
degree-of-freedom (SDoF) oscillator subjected to support excitation, as a function of the natural
frequency and damping value of the oscillator. For the SDoF oscillator shown in Figure 1, the
response is controlled by three parameters: the mass, m; spring stiffness, k; and damping
coefficient, c. If the base motion (i.e., shock excitation) is described by a displacement time-
history, ){?), and the resulting displacement of the mass is given by x(/); the relative displacement
between the mass and the base may be calculated as, w(7) =x(¢+)—y(1). The peak SDoF system
responses of most interest in shock analysis are: the maximum absolute value of relative
displacement between the mass and base (spectral displacement, S,), the maximum absolute
value of relative velocity between the mass and base (approximated by the spectral velocity, S, ),
and the maximum absolute value of mass acceleration (approximated by the spectral
acceleration, S,). The three spectral quantities are related by the following defining equation

1
—S,=5,=0,S
W Sa v wn d (])

where

w, =,[— (rad/sec) 2)
m

is the natural circular frequency of the SDoF system. This relationship allows spectral
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displacement, velocity, and acceleration to be plotted on a single graph, as a function of system
natural circular frequency, @, or system natural frequency, f,; where

w’l
/.= " (Hz) (3)

Such a plot is referred to as a tripartite shock response spectrum. Typical tripartite shock
response spectra are shown in Figure 2. It is common for a tripartite shock response spectrum to
be referred to simply as a shock response spectrum.

A~ SRS is a convenient means of illustrating the peak response of a collection of SDoF
systems to a particular shock excitation. Due to its simplicity, the SPS has become widely
employed as a means of describing the shock response of structures and equipment. Years of
earthquake research have shown that all earthquake shock response spectra display similar
characteristics. In fact, it has been shown that approximate upper bound response spectra may be
constructed, based only on the peak displacement, velocity and acceleration of the oscillator base.
For SDoF systems damped at between 5 and 10 percent of critical damping, an approximate SRS
can be constructed by simply multiplying the peax displacement, velocity and acceleration of the
hase by factors of 1.0, 1.5, and 2.0, respectively. Approximate shock response spectra generated
by this approach are assumed to represent the upper bound of the actual shock response spectra,
and are further considered to be independent of the precise form of the input motion.

A technique similar to that described above for bounding earthquake shock response spectra
has been adopted by conventional weapon effects analysts. Kiger, et. al. (1984), have shown that
in-structure shock response spectra can be bounded by multiplying the peak in-structure
displacement, velocity, and acceleration by factors of 1.2, 1.5, and 2.0, respectively. Shock
response spectra generated by this technique are assumed tc give an upper bound on the response
of a daniped (5 to 10 percent of critical) oscillator located near the center of a buried facility.

Since in-structure motions are typically descnbed using shock response spectra (actually
tnpartite shock response specira), it was only n:tural to attempt to quantify equipment failure in
terms of shock spectra. The advantage of expressing equipment failure with the same
representation used to quantify the in-structure shock environment is obvious. Expressing

equipment fragility in terms of shock response spectra greatly simplifies the design of equipment
shock isolation.

The approach employed to determine equipment fragility is to subject an item of equipment to
a base motion of a certain intensity, frequency, etc. If the equipment does not fail, the intensity of
the base motion is increased until failure occurs. The shock response spectrum of the base motion
which just causes the equipment to fail is called the shock tolerance spectrum, or the fragility
spectrum of the equipment, even though the test SRS is input waveform-dependent.
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By comparing the fragility spectrum of an item of equipment to the in-structure SRS at the
proposed equipment location, shock isolation requirements are easily assessed. If the equipment
fragility spectrum exceeds the in-structure SRS at all frequencies, no shock isolation is required.
If the in-structure SRS exceeds the equipment fragility spectrum at any frequency, shock isolation
is required.

This approach to shock isolation assessment is oversimplified, and ignores several sources of
error. The most important source of error is the fact that an SRS does not correspond to a unique
input time-history. An infinite number of different base motions can generate a given SRS. These
different base motions could vary greatly in duration, frequency content, and amplitude. The main
assumption behind the SRS approach to equipment fragility is that equipment failure is
independent of the input waveform. In reality, equipment fragility spectra are probably only valid
for waveforms resembling the one under which the item of equipment was actually tested.
Extrapolating equipment fragility based on nuclear testing to the conventional weapon
environment is now done routinely. The validity of this extrapolation has never been verified.

C. SCOPE

This report quantifies some of the errors introduced by assessing the shock tolerance of
equipment via the classic, linear, SDoF shock response spectrum. Two simple mathematical
equipment models were developed for the investigation: (1) a spring pendulum, which possesses
two degrees of freedom and geometric nonlinearity, and (2) a clamped beam carrying a tip mass
having both transiational and rotary inertia, which possesses an infinite number of linear,
orthogonal modes. These models were used to investigate the effect of factors such as:
waveform dependency of equipment shock response, multi-degree-of-freedom (MDoF) vs. SDoF
equipment response; the effect of multidircctional loading on equipment response, and the effect
of geometnic nonlinearity on equipment response.




SECTION I

LITERATURE REVIEW

A. INTRODUCTION

The literature on equipment shock tolerance is extensive. It includes literature on methods of
analyzing the transient response of mechanical systems to shock input, the origin of and
assumptions underlying the shock response spectrum, observed equipment damage due to shock,
equipment shock testing methods, and equipment shock test data analysis and interpretation.
Since the purpose of this effort is to examine the accuracy of the shock response spectrum in
predicting the shock tolerance of a representative equipment subsystem, an examination of the
history of the shock response spectrum was in order. This inquiry led to a cursory but fascinating
review of the theory of the transient response of linear systems, as developed by well-known
mathematicians and engineers including Cauchy, Heaviside, Steinmetz, Carson, Bush, Biot,
Housner, and Gardner and Barnes.

Heaviside has been credited with the development of much of modemn operational system
theory, and Bush's book reinforces that notion. However, as Bush and colleagues, Gardner and
Bames, studied the subject further, it became clear that Heaviside had ignored more fundamental
methods developed earlier by Cauchy and cther mathematicians. Steinmetz, often credited with
introducing complex numbers into AC circuit analysis, gets no credit from Bush or Gardner and
Bames. Biot's Ph.D. thesis, written at Cal Tech in 1932 under Von Karman, applied complex
variable methods to transient, linear structural dynamics, but the shock response spectrum
concept is not clearly evident there. It is clearly evident in Housner's 1941 Cal Tech Ph.D. thesis.
It was Jacobsen, Crede, and particularly Newmark who popularized the shock response spectrum
concept in protective constuction shock isolation analysis.

B. EQUIPMENT FRAGILITY BASED ON THE SRS METHOD

Current design guidelines for isolating equipment from the effects of conventional weapon-
induced structural motions are based on SAFEGUARD test data. The SAFEGUARD Hardness
Assurance Program was conducted to investigate the reliability of equipment installed in hardened
Ballistic Missile Defense (BMD) facilities. In SAFEGUARD, some 300 items of off-the-shelf
cominercial equipment, assigned to 32 generic equipment groups, were tested to qualify 30,000
cntical items located in SAFEGUARD installations. Both electical and mechanical components
were subjected to shake-table testing. The base motion consisted of a sine sweep puise of 5




second duration, selected to fit a prescribed acceleration spectrum. The prescribed acceleration
spectrurn was based on calculations of the shock environment within the SAFEGUARD BMD
facility.

Initially, fragility testing was conducted on selected equipment items, but most of the testing
was limited to proof-type qualification tests, i.e. tests performed at shock input levels at or below
design levels, to qualify the equipment for operational service. Most SAFEGUARD data is given
in terms of the base motion SRS that the equipment survived in proof-type qualification tests. In
most cases there is no indication of how close the SRS is to the failure threshold of the
equipment. In addition, much of the data does not encompass the sensitive frequencies for the
items of equipment.

Despite the obvious limitations of the SAFEGUARD data, all land-based equipment shock
isolation designs are currently based on this information. The SAFEGUARD procedure is
recommended by both the Army's Fundamentals of Protective Design for Conventional Weapons
and the Air Force's Protective Construction Design Manual, because a better procedure is not yet
available.




SECTION II

EQUIPMENT SHOCK RESPONSE

A. INTRODUCTION

The previous sections have raised several questions regarding the validity of defining
equipment shock tolerance via the tripartite SRS. The objective of this section is to quantify the
magnitude of the errors intioduced by the SRS approach . Two analytical models were developed
for this purpose: (1) a spring pendulum, and (2) a clamped beam carrying a tip mass.

B. FRAGILITY SPECTRA FROM AN IDEAL EXPERIMENT

The greatest error associated with the SRS approach to equipment shock tolerance
characterization lies in the assumption that the shock tolerance of the equipment is independent of
the precise input waveform. To examine the validity of this assumption, the authors designed a
perfect analytical experiment using an ideal item of equipment with known fragility. It was
assumed that the item of equipment is perfectly modeled by an SDoF undamped oscillator with a
natural frequency of 25 Hz. This simple item of equipment was assumed to fail when the relative
displacement between the mass and the support reached a value of 0.25 inches.

Fragility testing of this simple SDoF equipment item was conducted analytically. The support
excitation was a half-cycle sine velocity pulse of the form

yn =V, sin(’l)l for 0srst, 4

d
and
y()=0 otherwise (5)
where V_, is the amplitude of the pulse, and 1, is the duration.

The first fragility test was conducted for a half-cycle sine velocity pulse with a duration of 1
second. The amplitude of the support motion was increased until the maximum relative
displacement reached a value of 0.25 inches. Equipment failure occured when the amplitude of
the sine pulse reached a value of 982 in/sec.

A second fragility test was performed with a pulse duration of 0.01 seconds. The pulse
amplitude producing failure was 42 in/sec.




Thus, we now have two half-cycle sine velocity pulses which will just precipitate failure in the
ideal SDoF 25 Hz item of equipment. The maximum relative displacement spectra for these two
sine pulses are shown in Figure 3. Notice that the two spectra coincide at only a single point
(Frequency = 25 Hz).

The tripartite shock response spectra for the two half-cycle sine base excitations are shown in
Figure 4. Again, notice that the spectra coincide at only one point (the point at which they were
forced to agree). Which of these two spectra is the correct fragility spectrum for the item of
equipment? Neither one! There are an infinite number of possible fragility spectra for this simple
item of equipment. The only similarity between these spectra is the fact that they all intersect at a
frequency of 25 Hz and an amplitude of 0.25 in.

This analytical experiment clearly illustrates the inadequacy of SRS-based fragility
characterization.

C. EFFECT OF TWO-DIMENSIONAL BASE MOTION ON EQUIPMENT RESPONSE

An item of equipment located in a hardened shelter will be subjected to three-dimensional
support motion. In all likelihood, the equipment item possesses multiple degrees of freedom, and
exhibits nonlinear response to shock input. The obvious question is -- what is the error
introduced by modeling a nonlinear MDOF item of equipment subject to three-dimensional
support motion, with a linear SDoF oscillator?

To begin a quantitative investigetion of this question, an equipment model capable of
responding to multi-directional support motion was required. A simple two-dimensional spring
pendulum equipment model was developed for the investigation (see Figure 5). This simple
model possesses two degrees of freedom and geometric nonlinearity. The model is capable of
responding to horizontal and vertical support motion, individually or in combination. The
complete mathematical development of the spring pendulum model is presented in Appendix A.
The computational algorithm described in Appendix A was coded into a FORTRAN computer
program named SPEND. A listing of SPEND is included as Appendix B.

The spring pendulum equipment mode! exhibits charactenistics of both a spring-mass oscillator
and a simple pendulum. Thus, it possesses two characteristic natural frequencies of interest; the
natural frequency of a simple pendulum, given by

1 1g
o= — = 6
where g is the acceleration due to gravity, and / is the length of the pendulum, and the natural
frequency of a simple spring-mass oscillator, given by

T ol TSI RTINS
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1 |k
S oprng-mass = 7lm (Hz) @)
where k is the spring stiffness, and m is the oscillator mass.

A parameter study was performed to investigate the response of the sprning pendulum
subjected to simultaneous horizontal and vertical support motion. As a baseline for compariscr,
the response to the superimposed motion was compared to the response due to vertical base
motion only. The support motion for all cases was a half-cycle sine velocity pulse of the form
descnibed in Equations (4) and (5). All support motions had an amplitude of 20 in/sec. Pulse
durations varied from 0.05 to 0.5 seconds.

The first set of calculations were performed using velocity pulses with a duration of 0.05
seconds. The results are given in Figure 6. The solid line in Figure 6 represents the response of
the spring pendulum subjected to vertical support motion only. This response mode corresponds
to a simple 1-D spring-mass oscillator. The three remaining curves represent the response of the
spring pendulum when subjected to both horizontal and vertical support motion simultaneously.
Notice that biaxial support motion always results in a spring force greater than that caused by
vertical support motion only. The amplification of the spring force increases as the pendulum
frequency approaches the frequency of the support motion.

Figure 7 presents the results of calculation set number 2. For this run, the pulse durations
were all 0.1 second.

The results of the third calculation set are given in Figure 8. The support motions for these
calculations had a duration of 0.25 seconds. This corresponds to a frequency of approximately 4
Hz WNotice the marked increase in the spring pendulum response for the pendulum frequency of 3
Hz.

Results of the last calculation set are given in Figure 9. The duration of the support motion for
this set was 0.5 seconds (frequency ~ 2 Hz) Notice the response of the spring pendulum for the
pendulum frequency of 2 Hz. When the frequency of the support moticn and the pendulum
frequency of the spring pendulum model coincide, the response of the model h:zcoines erratic.

Figure 9 clearly illustrates what is possible when a nonlinear equiameit item with certain
fundamental frequencies is subjected to biaxial support motion. The ma-imum response of such
an equipment item could be many times greater than the response calculated using a simple
oscillator.
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D. EFFECT OF MDOF EQUIPMENT RESPONSE

It is common practice to use the fundamental penod (or frequency) of an MDoF system, and
enter the shock response spectrum for a given support motion to determine the peak structural
response of the system. The contributions to the structural response from higher modes are
usually ignored.

To quantify the errors introduced by ignoring higher mode contributions to the structural
response, a cantilever beam carrying a tip mass having both translational and rotary inertia was
used as a two-dimensional MDoF equipment model. The equipment response was assumed to be
linearly elastic. This simple MDoF model is shown in Figure 10. The mass density, cross-
sectional area, Young's modulus, moment of inertia, and length of the beam are denoted by p, A4,
E, I, and L, respectively. These parameters were assumed constant throughout the beam. The
mass and the radius of gyration of the tip mass are denoted by m and r, respectively.

The denvation of the equation of motion, along with the initiai and boundary conditions for
this structural system when subjected to support motion are given in Appendix C. The support
motion is prescribed as a displacement time-history, 2z(7), allowing a velocity jump at time 7 = 0.
The relative displacement of the beam with respect to the support is denoted as u(x,7). Based on
the principle of linear superposition, the total response of the system can be expressed as the sum
of modal contributions viz a modal analysis. Due to the orthogonaiity of different vibration
modes, each modal equation of motion can be solved as that for an SDoF system. The derivation
of the orthogonality relationship for distinct vibration modes, and the modal equation of motion
are also included in Appendix C. Furthermore, the exact solution can be obtained if the support
motion can be described by a simple analytical function.

An item of equipment with k} = 1 and k5 = 0.0025 (refer to Equations (C-S1) and (C-52) in
Appendix C), is used as an example. The characteristic curve (i.e., the plot ot Equation (C-58))
of this system is shown in Figure 11. The roots of this curve are the characteristic values of the
free-vibration equation (Equation (C-27)), and the corresponding characteristic functions
(obtained from using Equations (C-36), (C-49) and (C-59)) are the free-vibration mode shapes.
Although this system ha- an infinite number of natural vibration modes, only the first seven modes

are retained for a modal analysis. The charactenistic values of these modes are identified in Figure
11. The normalized mode shapes of the first seven modes are shown in Figures 12 through 18,
respectively. The accuracv of the characteristic values and mode shapes deteriorates with higher
modes, but fortunately the contributions from higher modes are relatively insignificant.

The support motion (or base acceleration) in this study was modeled as a unit triangular pulse
with duration 7; and no nise time. Mathematically, the base acceleration can be expressed as
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Blv) =1-—L ®

where T, defined by Equation (C-17) in Appendix C, is the characteristic period of the system.
The effects of pulse duration on the equipment response parameters, such as tip mass
displacement, base shear, and base moment, were evaluated as functions of 14 /T. The cyclic
natural frequency in Hz of the ith mode, f;, is related to the characteristic period by

i 9)

The characteristic period, T, of the system was assumed to be 0.02 sec in this example. With
the characteristic values and mode shapes given, the modal amplitudes, 6,, for the first seven

modes were obtained by directly integrating Equation (C-123). Figure 19 shows the relative
displacement time-history of the tip mass for a base motion of duration 27, considering MDoF
response. The base shear and base moment can be calculated using Equations (C-3) and (C-4),
rcspectively. Figure 20 shows the base shear time-history for a base motion of duration 5T.

Since the response in each mode is given explicitly, the error of ignoring higher mode
contributions can be computed. The error is defined herein as the difference between
MDoF(including all seven modes) and SDoF{(including the first mode only) values, assuming the
total response of the equipment is predominantly in the first mode. The percentage error from
using the SDoF model in the calculation of tip displacement, base shear, and base moment is

shown as a function of impulse duration in Figure 21. The error increases with the degree of
differentiation of the relative displacement with respect to length.
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this study was to investigate the errors associated with characterizing the
shock tolerance of equipment via the classic, linear, SDoF shock response spectrum. Two simple
mathematical equipment models were developed for the investigation: (1) a spring pendulum,
which possesses two degrees of freedom and geometric nonlinearity, and (2) a clamped beam
carrying a tip mass having both translational and rotary inertia, which possesses an infinite number
of linear, orthogonal modes. These models were used to investigate and quantify the effect of
factors such as: waveform dependency of equipment shock response; multi-degree-of-freedom
(MDoF) vs. SDoF equipment response; the effect of multidirectional loading on equipment
response, and the effect of geometric nonlinearity on equipment response.

This study uncovered and quantified several shortcomings of the SRS approach to
characterizing equipment shock tolerance:

« It was proven that SRS-based fragility spectra are not unique. Even for an equipment item
which can be modeled by a simple SDoF undamped oscillator, different base excitations
generally produce different fragility spectra.

« The spring pendulum model was used to illustrate the response of a geometrically nonlinear
item of equipment to two-dimensional base otion. It was shown that extremely erratic
behavior is possible if the frequency of the base motion approaches one of the natural
frequencies of the equipment model. The maximum response can be -everal times greater
than that of a simple SDoF oscillator.

¢ The cantilever beam model was used to show that the maximum repsonse of an MDoF system
will always exceed the response of a simple oscillator.

In conclusion, this study has proven the inadequacy of the linear, SDoF shock response
spectrum for charactenizing the shock tolerance of equipment. Complex, nonlinear mechanical
equipment subjected to multidiiectional support motion is often not adequately represented by an
SDoF model.
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B. RECOMMENDATIONS

Based on the results of this study, a more rigorous approach for assessing equipment shock
tolerance is required. The following points should be kept in mir | while developing this new
procedure:

e When an equipment item is tested to determine its shock tolerance, the test input waveform
must be representative of the anticipated threat input waveform. Multidirectional support
motion must be reproduced. Equipment tests should excite the same response modes, and
produce the same failure modes, as the actual in-service base motion.

« Analytical equipment models must be detailed enough to reproduce the salient features of the
actual equipment response. The model need not encompass the entire item of equipment, but

it must adequately represent the cntical components. The input motion to the model must
mimic the in-service motion.
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APPENDIX A

_ DYNAMIC RESPONSE OF A SPRING PENDULUM TO SUPPORT MOTION




Dynamic Response of a Spring Pendulum to Support Motion

Consider the response of the spring pendulum shown below, to support motion.

o - X

K1

\J
Y

The position vector of the support point, S, is
F=ue +ve
and the position vector of the suspended mass, m, is
R =xg +(l,+y)e,
where
I, =unstretched spring length

u = X-displacement of the support

v = Y-displacement of the support

x = X-displacement of m from the undeformed position

y = Y-displacement of m from the undeformed position
The spring vector 1s

R-F=(x-u)g +[ly+(y-V)5,
so that the spring length is
1= J(R=F)(R—F) =y(x-u)2 + [l +(y- V)]

and a unit vector pointing along the sprning from support to mass is

R-7 _(x-w)g+[lh+(y-v)i&
1 !

n=

‘the spring elongation is
A=1-1

and if the spring stiffness is &, the spring restoring force is
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(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)




F, = —ka% = -k(‘"ITO){u—u)aﬂm(y-v)léz} (A7)

The gravitational force is

F, =mge, (A-8)
'The equation ot motion for the mass is
F,+F,=mR (A-9)
or
f=-£(l—-19)(x-u) (A-10)
m !
.. k /
y=g——(1—-ﬂ){10+(y—v)] (A-11)
my l
The static solution is '
u=v=90 (A-12)
x=y=0 (A-13)
Xog = 0 (A-14)
m
Yor =l =l =28 (A-15)

The static solution defines the initial conditions for a dynamic problem. To initiate a finite
difference solution, we assume that X and § are constant during the first time interval.

i

At

Therefore




- 2
=y + B (A7)

Equation (A-10) thus takes the form

£, =-1‘-(1~1—°)[M—u,} (A-18)

so that

&4
. Ig u,
- - (A-19)
PL8A0 g (A
6l g 6
and Equation (A-11) takes the form
) k Fo(an?
Yo=8-—|ysr t+ -V (A-20)
m 6
so that
L]
o m _ Vi
Yo = 2~ 2 (A~21)
1+ M_l_ 2 + gj‘i
6m k 6
From this point on, the finite difference solution proceeds smoothly.
Step 1: X, =0
Step 2: Vo = e

k




k(an?

Step 4: n= —ﬁm-—z vi+Y,

k(A

1+
ém
For n21
Step 5: L= \/(X,. —u)2+ [l +(yn—va)P
Step 6: B. =£—(1-1—°)
m l,

Step 7: ¥, =-B,(x,-u,)
Step 8: Vn=8=Bally+ (¥ — vy}
Step 9: X, =2X, =X, +%,(41)
Step 10: Yot =2Y, = Yoy + 3, (A1)

Return to step S
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PROGRAM SPEND

2 XTI R E X ERER RS ERS 2R SR AR AR 2222 A2 22 X2 2228222 2 2l Al X2

b SPRING - PENDULUM bl

- -
* -
* *
* *
* Program calculates the response of a spring-pendulum *
* subjected to a support motion in both the vertical *
* and tke horizontal direction. *
* *
* Last Revision: 7 July 1992 (MAR) *
* -
L4 *

L XX A2 RS2 2 X R R R RN 2 A A2 22X AR R A AR AR SRR 2R R SRS 2 X X J

OPEN THE INPUT AND OUTPUT FILES

OO0 O0O000000000000

IMPLICIT DOUBLE PRECISION (A-H,0-2)

CHARACTER INFILE*12

PARAMETER (ID=8000)

DIMENSION U(0:ID),V(0:ID),X(0:ID),Y(0:ID),XDD(0:1ID),¥YDD(0:1ID),
&SF(0:1ID)

PRINT +, ' Input File Name ... '

READ' (A12)',INFILE

OPEN (UNIT=15,FILE=INFILE, STATUS='QLD')
OPEN{UNIT=16,FILE="'XDISP."', STATUS="'UNKNOWN')
OFEN (UNIT=17,FILE="'YDISP."', STATUS="UNKNOWN')
OPEN (UNIT=18,FILE='SFORCE. ', STATUS='UNKNOWN"')
CPEN (UNIT=19,FILE="XACC. "', STATUS="UNKNOWN')
OPEN(UNIT=20,FILE="'YACC.',STATUS="UNKNOWN')

READ THE INPUT DATA

D R L L e PR
DETINITION OF INPUT VARIABLES:

PWT = PENDULUM WEIGHT (LBS)

STIi” = SPRING STIFFNESS (LBS/IN)

ULENGTH = UNDEFORMED LENGTH OF SPRING (IN)

NPTS = # OF PTS. IN BASE DISPLACEMENT HISTORY

DELT = TIME INCREMENT BETWEEN TIME POINTS (SEC)

U(N) = HORIZONTAL BASE DISPLACEMENT @ TIME STEP “N" ’
( NOTE: U(0)=0.0 )

V(N) = VERTICAL BASE DISPLACEMENT @ TIME S™-P "N"

{ NOTE: V(0)=0.0)

SIGN CONVENTION:

DOWNWARD VERTICAL DISPLACEMENTS ARE POSITIVE

noo0o0oa0cooaaoOao00000CO0000O00000an

* % ¢ % # % & ¢ # % & F F * B F ¥ + + % ¢ s
L TR N S L O T I N N TN O T RN N B O IR B N

SPRING TENSION 1S POTITIVE




O0no0n

(e NeNe! aOnon

[eNeNg! e NeXel a0 [sNeNe]

O

[eNeNeNe Ny

[eNeNg!

* *
I 222222222222 XX SRR RSRXRSRRRRRSZ SRR RS R R R AR AR AR RS SR AR S 2

READ(15,*) PWT,STIFF,ULENGTH,NPTS, DELT

PRINT *,° Reading Horizontal Base Motion'
READ(1S5,*) (U(N), N=0,NPTS-1)
PRINT *,° Reading Vertical Base Motion'

READ(15,*) (V(N), N=0,NPTS-1)
PRINT +,° Computing Pendulum Response'
ACCELERATION OF GRAVITY (IN/SEC**2)
AGRAV=386.0
CALCULATE THE MASS OF THE PENDULUM (LB-SEC**2/IN)
PMASS=PWT/AGRAV
CALCULATE PENDULUM DISPLACEMENTS @ TIME 0 (I.E., STATIC DEFLECTION)
X(0)=0.0
Y{(0)=PWT/STIFF
STATLEN=Y (0) +ULENGTH
CALCULATE DISPLACEMENT @ TIME STEF >
CON1= (AGRAV*DELT**2.)/ (6.*STATLEN)
X(1)=(CON1/(1+4CON1))*U (1)
CON2= (STIFF*DELT**2.)/ (6.*PMASS)
Y{(1)=Y(0)+(CON2/(1+4+CON2))*V (1)
INITIALIZE ACCELERATIONS & SPRING FORCE @ TIME O
SF(0)=PWT
XDD(0)=0.0
YDD(0)=0.0
LOOP THRU TIME STEPS FROM N=1 TO NPTS-1
DO 100 N=1,NPTS-1
SPLEN=DSQRT { (DABS (X(N)-U(N))}**2.+(ULENATH4 (Y (N)-V(N))}**2.)
ERROR TRAP: FOR LOW FREQUENCY SYSTEMS, THE SPRING MAY BECOME
FULLY COMPRESSED. THIS LEADS TO A DIVIDE BY ZERO
ERROR WHEN CALCULATING BETA.
IF (SPLEN .LT. (0.1*ULENGTH))} THEN
PRINT *+,°' Excessive spring compression has occured!'
STOP
ENDIF
BETA= (STIFF/PMASS) * (1-ULENGTH/SPLEN)
CALCULATE ACCELERATIONS @ TIME STEP N

XDD(N)=-BETA* (X (N)-U(N})
YDD({N)=AGRAV-BETA* (ULENGTH+ (Y (N)-V(N}}}
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C SPRING FORCE @ STEP N
C
SF(N)=(SPLEN-ULENGTH) *STIFF
C
C DISPLACEMENT € STEP N+1
C
X(N+1)=2.*X (N)-X(N-1)+XDD(N) *DELT**2.
Y(N+1)=2,*Y(N)-Y(N~1)+YDD(N) *DELT**2.
C
100 CONTINUE
C
C WRITE QUTPUT FILES
Cc
PRINT +,°* Saving Pendulum Response’
C
C ¥X-DISPLACEMENT
(o}
WRITE(16,*) NPTS
WRITE(16,*) DELT
WRITE(16,*) (X(N}), N=0,NPTS-1}
CLOSE(16)
(o
C Y-DISPLACEMENT
[of
WRITE/17,*) NPTS
WRITE(17,*) DELT
WRITE(17,*) (Y(N), N=0,NETS-1)
CLOSE(17)
C
C SPRING FORCE
c
WRITE(18,*) NPTS
WRITF (18,*) DELT
WRITE(18,*) (S¥{(N), N=0,/NPTS-1)
CLOSE(18)
o
C X-ACCELERATION
o
WRITE(19,*) NPTS
WRITE(19,*) DELT
WRITE(19,*) (XDD(N), N=0,NPTS-1)
CLOSE(19)
C
C Y-ACCELERATION
C
WRITE(20,*) NPTS
WRITE(20,*) DELT
WRITE(20,*) (YDD(N), N=0,NPTS~1)
CLOSE (20)
C
STOP
END
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APPENDIX C

‘TRANSIENT RESPONSE OF A CANTILEVER BEAM CARRYING A TIP MASS
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Transient Response of a Cantilever Beam, Carrying a Tip Mass Having Both Translational
and Rotary Inertia, to Support Motion

Consider the cantilever beam shown below, carrying a tip mass having both translational and
rotary inertia.

Y

— X

M M+iﬂi[-dx

dx ox

V+ﬂ/—dx
0x

Governin vation, Initial and Boundary Conditions
The total beam deflection is
y=2z+u (C-1)
where
Z = support motion
u =beam deflection WRT the support

The equation of motion for a beam element is

Y. pAdx &’ y
ax

Neglecting the beam element rotary in¢ itia ylelds

pAd.x

(C-2)




oM

V==
dx
and the beam moment-curvature relation is
o’u
M=E=a
Substituting Equations (C-3) and (C-4) into Equation (C-2) yields
Bu_ 0, F

-EI

Pt
or
du pAdu__pA ¥z
ox* EI or El of
The initial and boundary conditions are:
y(x,0)=0 (0€xsL)

aa—f(x,0)=o (0sxsl)
u(0,0)=0 (120)

gr—u(0,1)=0 (120)

Fu s Z [
EI S5 (L) ==mr az[&(L,t)] (120)

du P
E/a—;j=m5’§(1,,x) (120)

Now let

R
[}
el

h o)
{]
t~lw

so that

(C-3)

(C-4)

(C-5)

(C-6)

(C-7)
(C-8)

(C-9)

(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)




Then Equation (C-5) can be written in the form

d'a . pAL* 9’0 _pAL' 3'B
3% | E o H or

and if we set
A
T=1 |82
El
and
=1
V=7
so that
9_oOody_129
ot oy dr Toy

then Equation (C-16) can be written in the final dimensionless form
d'a N d’a _ 9B
ag 4 awz a\vz

with the initial and boundary conditions

a(§,0)=0 (0sEsS))
Beo=-L©  ©Osis)
v oy
a(0,y)=0 (v 20)
Ja
Fa __m'| Pa
da Fp

m | Fa .
55‘(1,‘#)-55[%;(1#)1‘—5‘”7(%]

We first consider the homogeneous form of Equation (C-20),

4 2
8a+8a=0

98" oy’

(v 20)

(v20)

(C-16)

(C-17)

(C-18)

(C-19)

(C-20)

(C-21)

(C-22)

(C-23)

(C-24)

(C-25)

(C-26)

(C-27)




because it turns out to generate a family of orthogonal functions (free vibration modes) that can
be used to solve the nonhomogeneous problem.
We assume that

a(§,v)=o@E)o(y) (C-28)
so that, setting
d¢ _ ., %
at - ¢ (C-29)
de .
d—V =0 (C-30)
substituting Equation (C-28) into Equation (C-27) yields
¢""6+¢6=0 (C-31)
or, dividing by 99,
LA i
0 + i 0 (C-32)

Equation (C-32) says the sum of two independent quantities (one a function of space, the other a
function of time) is zero; therefore they must both be constant. We therefore set

1w é .
% =-5" A (C-33)
so that ¢ and € must obey the equations
0" - X' =0 (C-34)
8+A'9=0 (C-3%)
The solution to Equation (C-34) can be written in the form
b= Af,+Bf,+(f,+ Df, (C-36)
where
J, =coshAg +cosAg (C-37)
S, =sinh AE —sin AL (C-38)
S, =coshAf - cosAf (C-39)
J, =sinh Af +sin Af (C-40)
so that
¢ =A(Af,+ B/, +Cf + Df)) (C-41)
" =N (Af,+Bf, +Cf,+Df)) (C-42)
¢ =N (4f, + Bf,+Cf, +Df,) (C-43)
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R ikins snlP S ——

¢IV = )“(Afl +Bf,+Cf,+Df,)= l.‘(’
Now
£i(0)=2
£:(0)=£,(0)= £,(0)=0
so that Equations (C-23) and (C-36) yield

®(0)=24=0
and Equations (C-24) and (C-41) yield
¢’(0)=2\D=0
so that
A=D=0
If we now set
S ()=F
»
pal ="

r 2
(5) =
then Equations (C-25), (C-41), and (C-42) yield
0" (1)8 =~k k,¢'(1)8

or

M (BF, +CF) =k kX (BF, +CF,)
or

B(F, -kkXNF)+C(F,-kkNNF)=0
and Equations (C-26), (C-36), and (C-43) yield
¢0"(1)0= k,¢(1)8

or

A (BF, +CF,)= -k \*(BF, +CF,)
or

B(F, +kAF) +C(F, +kAF,) =0

Equations (C-54) and (C-56) yield the relative values of B and C.

C_ F‘A-klk2)";F; __F;"’k\”; -

B F-kkNE, E+kNF P

so that
(F, + kML) F, -k kN F) = (F, + kA )(F, =k k,NF,) =0
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(C-44)

(C-45)
(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(C-51)

(C-52)

(C-53)

(C-54)

(C-55)

(C-56)

(C-57)

(C-58)

e

e e ny,




For each root of Equation (C-58), A, there is a ratio

C,
—t=p =59

given by Equation (C-57).

2. Orthogonality of Vibration Mode Shapes
Now consider the incremental work done by the end actions associated with mode i, acting
through incremental displacements associated with mode j.

Mo Vio Mi
/—\_/

ViL

d ou
SW, =V, by, - M S22V, 8y, + M, =L (C-60)
ox ox
Now
o'u EI
M—E]ﬁ-7¢9 (C‘61)
o’u _EI _,,
V=E/5;‘;=—Lz-¢ 9 (C-62)
u=L¢8 (C-63)
%;i =¢0 (C-64)

so that Equation (C-60) can be written in the form

5%, = =680, 070; 47, ] (C-65)
=ZLo36, [ (o9, + 070700, ~ 00,

E[ ! "y "
=086, (0707~ X'0,0, )t (C-66)
Eliminating 8”{1 between Equations (C-65) and (C-66) yi.:lds
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1 L4 1 L U !
fore7de=1[0.0,a5+(076; - 78, ] (C-67)
Since the LHS of Equation (C-67) is symmetric with respect to i and j, the RHS must be also, so
that

[oro7dE =4, [ 9.0,d+[0/07~0.67), (C-68)
Eliminating J;¢,”¢;’d§ between Equations (C-67) and (C-68) yields
(3 - 2)[8,0,d+ (0,07 0,07+ 676~ 60, ], = 0 (C-69)
Now
$(0)=0 (C-70)
¢'(0)=0 (C-71)
and if we set
o= (C-72)
then Equations (C-33) and (C-53) yield
" =k kAP’ (C-73)
and Equations (C-33) and (C-55) yield
Q" = —kA'D (C-74)

so that Equation (C-69) yields

(2 -x) J:¢,¢Jd§+[-kll‘,¢ O, ~ kKD, + kf, A DD+ kX 0,0 )

L)

1
=(x - A‘,)( [16,0,dE+ k.0, +k,k2¢,’®;)= 0 (C-75)
When j #i the second factor on the LHS of Equation (C-75) must be zero, and when j =i that
factor is arbitrary. Thus we can set
! 14
jo¢,¢1 dE+k @O, +k kD =5, (C-76)

Equation (C-76) would be most useful if the integral were expressed in terms of boundary values.
This can be done by returning to Equation (C-69), and writing it in the form [cf Prescott
(1924:223), Eq. (9.111)]

(0770, - 0707 + 00/~ 9,6/",
Y

Treating A, as a constant and A as a variable, applying L'Hospital's rule to the case in

[0.0,% = (C-77)

which A =1 and noting that
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dyon  db dOE) _, do
2= s A = 00

oo _d0_dOR) _ db
¥=ZM=255 "% s
so that
@ _8,
dx'1°

Equation (C-77) yields

1

oo -orar+ (o -0,

12,y
jo¢id€- 4A7

NPT L2k A O+ hFKIAH (@)
- 4x

[

O +2kD D + kKA (D7)

4
Therefore, when i = j, Equation (C-76) can be written in the form

D +2k,D @ + kKA (@)
4

+h®? +kk (®7) =1
or
(14 4k, )O7 +2k,D & + k k. (44 k kAN (D’) = 4
Now Equations (C-36), (C-37), a- . (C-50) yield
® = BF, +CF,
&’ = A(BF, +CF,)
and therefore
&’ =B +2F,F,BC + F}C*
&’ = M FB +(1F,+ F})BC + RECY

(@) = R{F?B° +21,F,EC + FAC?)
and thus Equation (C-82) can be written in the form
AB +ABC+AC =4

where

(C-78)

(C-79)

(C-80)

(C-81)

(C-82)

(C-83)
(C-84)

(C-85)
(C-86)

(C-87)

(C-88)




A, =144k )F + 2k FF, +kky(4+ kXN F]
A, =2[(144k)EF + kA (RF + F)+ k(4 + kkA)ERF]
A, =(1+4k)F2 + 2k FF, + bk (4 + kXA F]
Substituting Equation (C-59) into Equation (C-88) then yields
B:z(Al +Ap + Alpiz) =4
so that

B = 2
VA + AP, + A}

C=p38

Finally, combining Equations (C-67), (C-73), (C-74), and (C-76) yields

[N =

and

3 Derivation of Modal Equation of Motion by Hamilton's Principle
Let

u(x,0)= 3 1, (0)4, )

i=]

and
z()=u, (1)
then
yix,0)=u(x,1)+z(1)

=3 0.0, (1) + 1, (1)

1=}

The kinetic energy of the system is

(C-89)
(C-90)

(C-91)

(C-92)

(C-93) .

(C-94)

(C-93)

(C-96)

(C-97)

(C-98)




Applying Hamilton's Principle to obtain the equation of motion:

) “S(T-U)di =0 (C-99)
8T = [|pAybydc +my, &, +mriy & (C-100)
8U = [ Elu"&u"dx (C-101)
where
y=Y 04, +i, (C-102)
1=)
& =8i=3 18, (C-103)
j=]
v =t +u =Y n(L)g, +d, (C-104)
im)
&, = &, =3 n.(L)&, (C-105)
u=3n4, (C-106)
w=3 4, (C-107)
1=]
a, =3 (L), (C-108)
iy = 2 n (L), (C-109)
=)
w =3 g, (C-110)
is)
su” = 3 13, (C111)

1=

Equation (C-99) can be expressed as

[ [} A ma 0, NE nodete+ ml 3 nct g+, NE m2)80)
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(Sl mws)- [ E(E T raali=o (12

[ pa(Z ng+i, (X ndg)at = 33 6.5, p4 e+, 3.8, [pAnde  (C-13)

i=) =l pey

S KD+, 3 KD&)=mS 3 4.8,1,(Lyn,(D+mi, T 84m(L)  (C-114)

(=) jw) =]
mr (3 (Da) S (L&) =mr? Y Y 4,84,y (L) (C-115)
[LE(Y (I n dadtx =3 3 q.89, [ Eimmax (C-116) '

Integrating Equation (C-112) by parts and using Equations (C-113) through (C-116),

ii[j;m n,n,d%¢,54, | -[la8, [pan, n,dxd:)

+§(1}, I}A q,dx&;,l: - f’ ii &q, J:;’A n,dxdt)

wmS 3 (0, (a8, [ - [ 480,1.(Lym, (L))

=] =]

+mi(xz,n.(L)&q,|: - ii,&;,n,(L)dz)
wmrt 33 (M08! - [ d8a,mLIm Lk )

‘ii%&h IOLE’ Nt =0 (C-117)

18] =)

Rearranging terms yields

i):f {(i,[joﬁm nn,de+mn, (L), (L)+mrn (L), (L)]+q, Iobn{h;w}ﬁq,dr

tei y=l
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=-3 4, [LLM n,cb:+mn,(L)]8q,dt (C-118)

The orthogonality relations have been shown as

L —_
LoA nnax+mn,(L)n,(L)y+mr*n(L)n;(L) =9, (C-119)
and
Iobﬂf"l;'d’f =0 for i#j
(C-120)
= %A‘, for i=j
Substituting Equations (C-119) and (C-120) into Equation (C-118),
j,h 2": (,7, + % Ag, +id, ['[:oAn,dx +mn,( L)D&,,dx =0 (C-121)
. Vel
Since 3¢, are arbitrary variations, it is necessary that
.  EI [t
9.+ X4, = -",[LDA ndx +mn, (L)] (C-122)

for all 's. Equation (C-122) is the equation of motion for mode i. The nondimensional form of
Equation (C-122) can be expressed as

8, +A—T"o, = -B{ I;¢,d§+ki¢,(l)] (C-123)
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