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EXECUTIVE SUMMARY

A. OBJECTIVE

The objective of this research effort was to assess the accuracy of using the shock response

spectrum (SRS) for defining equipment shock tolerance. The focus of the research was on

mission-critical equipment installed in airbase hardened structures, designed to survive the airblast

and ground shock effects of a close-in detonation by a modern, nonnuclear weapon. The

motivation was the prospect of improving the shock tolerance of such eqluipment, by first

improving equipment shock tolerance characterization, thereby improving knowledge of the

factors controlling equipment shock tolerance.

B. BACKGROUND

A shock response spectrum is a plot of the maximum response amplitude of a damped single-

degree-of-freedom (SDoF) oscillator subjected to support excitation, as a function of the natural

frequency and damping value of the oscillator. An SRS is a convenient means of illustrating the

peak response of a collection of SDoF systems to a particular shock excitation. Due to its

simplicity, the SRS has become widely employed as a means of describing the shock response of

structures and equipment.

Since in-structure motions are typically described using shock response spectra (actually

tripartite shock response spectra), it was only natural to attempt to quantify equipment failure in

terms of shock spectra. The advantage of expressing equipment failure with the same

representation used to quantify the in-structure shock environment is obvious. Expressing

equipment fragility in terms of shock response spectra greatly simplifies the design of equipment

shock isolation.

The approach employed to determine equipment fragility is to subject an item of equipment to

a base motion of a certain intensity, frequency, etc. If the equipment does not fail, the intensity of

the base motion is increased until failure occurs. The shock response spectrum of the base motion

which just causes the equipment to fail is called the shock tolerance spectrum, or the fragility

spectrum of the equipment, even though the test SRS is input waveform-dependent,

By comparing the fragility spectrum of an item of equipment to the in-structure SRS at the

proposed equipment location, shock isolation requirements are easily assessed. If the equipment

fragility spectrum exceeds the in-structure SRS at all frequencies, no shock isolation is required.
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If the in-structure SRS exceeds the equipment fragility spectnm at any frequency, shock isolation

is required.

This approach to shock isolation assessrnent is oversimplified, and ignores several sources of

error. The most important source of error is the fact that an SRS does not correspond to a unique
input time-history. An infinite number of different base motions can generate a given SRS. These
different base motions could vary greatly in dration, frequency content, and amplitude. The main
assumption behind the SRS approach to equipment fragility is that equipment failure is
independent of the input waveform. It is assumed that the frequency content of the support
motion does not play a role in equipment failure. All input base motions are assumed to result in
the same failure mode. The possibility of a single item of equipment possessing multiple failure
modes is not considered. In reality, equipment fragility spectra are probably only valid for

frequencies close to the frequency at which the item of equipment was actually tested
Extrapolating equipment fragility based on nuclear testing to the conventional weapon
environn.-nt is now done routinely. The validity of this extrapolation has never been verified.

C. SCOPE

This report quantifies some of the errors introduced by assessing the shock tolerance of
equipment via the classic, linear, SDoF shock response spectrum. Two simple mathematical
equipment models were developed for the investigation: (1) a spring pendulum, which possesses
two degrees of freedom and geometric noniklearity, and (2) a clamped beam carrying a tip mass
having both translational and rotary inertia, which possesses an infinite number of linear,
orthogonal modes. These models were used to investigate the effect of factors such as:
waveform dependency of equipment shock response; multi-degree-of-freedom (MIDoF) vs. SDoF
equipment response; the effect of multidirectional loading or equipment response, and the effect

of geometric nonlinearity on equipment response.

D. CONCLUSIONS

This study uncovered and quantified several shortcomings of the SRS approach to
characterizing equipment shock tolerance:
* It was proven that SRS-based fragility spectra are not unique. Even for an item of equipment

which can be modeled by a simple SDoF undamped oscillator, each different base excitation
produces a different fragility spectrum.

* The spring pendulum model was used to illustrate the response of a geometrically nonlinear

item of equipment to two-dimensional base motioi) It was shown that extienelv erratic
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behavior is possible if the frequency of the base motion approaches one of the natural

frequencies of the equipment model. The maximum response can be several times greater

than that of a simple SDoF oscillator.

* The cantilever beam model was used to show that the maximum repsonse of an MDoF system

will always exceed the response of a simple oscillator.

In conclusion, this study has proven the inadequacy of the linear, SDoF shock response

spectrum for characterizing the shock tolerance of equipment. Complex, nonlinear mechanical

equipment subjected to multi-directional support motion cannot be adequately represented by an

SDoF SRS.

E. RECOMMENDATIONS

Based on the results of this study, a more rigorous approach for assessing equipment shock

tolerance is required. The following points should be kept in mind while developing this new

procedure:
• When an item of equipment is tested to determine its shock tolerance, the test input waveform

must be representative of the anticipated threat input waveform. Multi-directional support

motion must be reproduced. Equipment tests should excite the same response modes, and

produce the same failure modes, as the actual in-service base motion.

• Analytical equipment models must be detailed enough to reproduce the salient features of the

actual equipment response. The model need not encompass the entire item of equipment, but

it must adequately represent the critical components. The input motion to the model must

mimic the in-service motion. Accesion or
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SECTION I

INTRODUCTION

A. OBJEc rIVE

The objective of this research effort was to assess the accuracy of using the shock response

spectrum (SRS) for defining equipment shock tolerance. The focus of the research was on

mission-critical equipment installed in airbase hardened structures, designed to survive the airblast

and ground shock effects of a close-in detonation by a modern, nonnuclear weapon. The

motivation was the prospect of improving the shock tolerance of such equipment, by first

improving equipment shock tolerance characterization, thereby improving knowledge of the

factors controlling equipment shock tolerance.

B. BACKGROUND

A shock response spectrum is a plot of the maximum response amplitude of a damped single-

degree-of-freedom (SDoF) oscillator subjected to support excitation, as a function of the natural

frequency and damping value of the oscillator. For the SDoF oscillator shown in Figure 1, the

response is controlled by three parameters: the mass, m; spring stiffness, k; and damping

coefficient, c. If the base motion (i.e., shock excitation) is described by a displacement time-

history, Y(; and the resulting displacement of the mass is given by x(); the relative displacement

between the mass and the base may be calculated as, u(t) = x(t) -y(t). The peak SDoF system

responses of most interest in shock analysis are: the maximum absolute value of relative

displacement between the mass and base (spectral displacement, Sd); the maximum absolute

value of relative velocity between the mass and base (approximated by the spectral velocity, Sj,.);

and the maximum absolute value of mass acceleration (approximated by the spectral
acceleration, S,,). The three spectral quantities are related by the following defining equation

-S. = = W.s)

where

to,= 1 (rad/sec) (2)

is the natural circular frequency of the SDoF system. This relationship allows spectral



.2

0

I-
>1 0

In

x C
S

0'I
0

C,

9
4-

C

IJ-

2



displacement, velocity, and acceleration to be plotted on a single graph, as a function of system

natural circular frequency, o,; or system natural frequency, f,; where
C,,

'-- (lz) (3)

Such a plot is referred to as a tripartite shock response spectrum. Typical tripartite shock

response spectra are shown in Figure 2. It is common for a tripartite shock response spectrum to

be referred to simply as a shock response spectrum.

A- SRS is a convenient means of illustrating the peak response of a collection of SDoF

systems to a particular shock excitation. Due to its simplicity, the SP.S has become widely

employed as a means of describing the shock response of structures and equipment. Years of
earthquake research have shown that all earthquake shock response spectra display similar

characteristics. In fact, it has been shown that approximate upper bound response spectra may bc

constructed, based only on the peak displacement, velocity and acceleration of the oscillator base.

For SDoF systems damped at between 5 and 10 percent of critical damping, an approximate SRS

can be constructed by simply multiplying the peak displacement, velocity and acceleration of the

base by factors of 1.0, 1.5, and 2.0, respectively. Approximate shock response spectra generated

by this approach are assumed to represent the upper bound of the actual shock response spectra,

and are further considered to be independent of the precise form of the input motion.

A technique similar to that described above for bounding earthquake shock response spectra

has been adopted by conventional weapon effects analysts. Kiger, et. al. (1984), have shown that

in-structure shock response spectra can be bounded by multiplying the peak in-structure

displacement, velocity, and acceleration by factors of 1.2, 1.5, and 2-0, respectively. Shock

response spectra generated by this technique are assumed to give an upper bound on the response

of a damped (5 to 10 percent of critical) oscillator located near the center of a buried facility.

Since in-structure motions are typically described using shock response spectra (actually

tripartite shock response spectra), it was only ne tural to attempt to quantify equipment failure in

terms of shock spectra. The advantage of expressing equipment failure with the same
representation used to quantify the in-structure shock environment is obvious. Expressing

equipment fragility in termi of shock response spectra greatly simplifies the design of equipment

shock isolation.
The approach employed to determine equipment fragility is to subject an item of equipment to

a base motion of a certain intensity, frequency, etc. If the equipment does not fail, the intensity of

the base motion is increased until failure occurs. The shock response spectrum of the base motion
which just causes the equipment to fail is called the shock tolerance spectrum, or the fragility

spectrum of the equipment, even though the test SRS is input waveform-dependent.

3



C0
LC)

_ o 2

LC)
llloeb

00

CC'4

LC)

C-) LA N9

4



By comparing the fragility spectrum of an item of equipment to the in-structure SRS at the

proposed equipment location, shock isolation requirements are easily assessed. If the equipment

fragility spectrum exceeds the in-structure SRS at all frequencies, no shock isolation is required.

If the in-structure SRS exceeds the equipment fragility spectrum at any frequency, shock isolation

is required.

This approach to shock isolation assessment is oversimplified, and ignores several sources of

error. The most important source of error is the fact that an SRS does not correspond to a unique

input time-history. An infinite number of different base motions can generate a given SRS. These

different base motions could vary greatly in duration, frequency content, and amplitude. The main

assumption behind the SRS approach to equipment fragility is that equipment failure is

independent of the input waveform. In reality, equipment fragility spectra are probably only valid

for waveforms resembling the one under which the item of equipment was actually tested.

Extrapolating equipment fragility based on nuclear testing to the conventional weapon

environment is now done routinely. The validity of this extrapolation has never been verified.

C. SCOPE

This report quantifies some of the errors introduced by assessing the shock tolerance of

equipment via the classic, linear, SDoF shock response spectrum. Two simple mathematical

equipment models were developed for the investigation: (1) a spring pendulum, which possesses

two degrees of freedom and geometric nonlinearity, and (2) a clamped beam carrying a tip mass

having both translational and rotary inertia, which possesses an infinite number of linear,

orthogonal modes. These models were used to investigate the effect of factors such as:

waveform dependency of equipment shock response; multi-degree-of-freedom (MDoF) vs SDoF

equipment response; the effect of multidirectional loading on equipment response, and the effect

of geometric nonlinearity on equipment response.

5



SECTION I1

LITERATURE REVIEW

A. INTRODUCTION

The literature on equipment shock tolerance is extensive. It includes literature on methods of

analyzing the transient response of mechanical systems to shock input, the origin of and

assumptions underlying the shock response spectrum, observed equipment damage due to shock,
equipment shock testing methods, and equipment shock test data analysis and interpretation.

Since the purpose of this effort is to examine the accuracy of the shock response spectrum in
predicting the shock tolerance of a representative equipment subsystem, an examination of the

history of the shock response spectrum was in order. This inquiry led to a cursory but fascinating
review of the theory of the transient response of linear systems, as developed by well-known
mathematkians and engineers including Cauchy, Heaviside, Steinmetz, Carson, Bush, Biot,

Housner, and Gardner and Barnes.
Heaviside has been credited with the development of much of modem operational system

theory, and Bush's book reinforces that notion. However, as Bush and colleagues, Gardner and

Barnes, studied the subject further, it became clear that Heaviside had ignored more fundamental

methods developed earlier by Cauchy and other mathematicians. Steinmetz, often credited with
introducing complex numbers into AC circuit analysis, gets no credit from Bush or Gardner and
Barnes. Biot's Ph.D. thesis, written at Cal Tech in 1932 under Von Karman, applied complex
variable methods to transient, linear structural dynamics, but the shock response spectrum

concept is not clearly evident there. It is clearly evident in Housner's 1941 Cal Tech Ph.D. thesis.
It was Jacobsen, Crede, and particularly Newmark who popularized the shock response spectrum

concept in protective constuction shock isolation analysis.

B, EQUIPMENT FRAGILITY BASED ON THE SRS METHOD

Current design guidelines for isolating equipment from the effects of conventional weapon-
itiduced structural motions are based on SAFEGUARD test data. The SAFEGUARD Hardness

Assurance Program was conducted to investigate the reliability of equipment installed in hardened
Ballistic Missile Defense (BMD) facilities In SAFEGUARD, some 300 items of off-the-shelf
commercial equipment, assigned to 32 generic equipment groups, were tested to qualify 30,000
critical items located in SAFEGUARD installations Both electical and mechanical components

were subjected to shake-table testing. The base motion consisted of a sine sweep pulse of 5

6



second duration, selected to fit a prescribed acceleration spectrum. The prescribed acceleration

spectrum was based on calculations of the shock environment within the SAFEGUARD BMD

facility.
Initially, fragility testing was conducted on selected equipment items, but most of the testing

was limited to proof-type qualification tests, i.e. tests performed at shock input levels at or below

design levels, to qualify the equipment for operational service. Most SAFEGUARD data is given

in terms of the base motion SRS that the equipment survived in proof-type qualification tests. In

most cases there is no indication of how close the SRS is to the failure threshold of the
equipment. In addition, much of the data does not encompass the sensitive frequencies for the

items of equipment.
Despite the obvious limitations of the SAFEGUARD data, all land-based equipment shock

isolation designs are currently based on this information. The SAFEGUARD procedure is
recommended by both the Army's Fundamentals of Protective Design for Conventional Weapons

and the Air Force's Protective Construction Design Manual, because a better procedure is not yet

available.

7



SECTION II

EQUIPMENT SHOCK RESPONSE

A INTRODUCTION

The previous sections have raised several questions regarding the validity of defining

equipment shock tolerance via the tripartite SRS. The objective of this section is to quantify the

magnitude of the errors intioduced by the SRS approach. Two analytical models were developed

for this purpose: (1) a spring pendulum, and (2) a clamped beam carrying a tip mass.

B. FRAGILITY SPECTRA FROM AN IDEAL EXPERIMENT

The greatest error associated with the SRS approach to equipment shock tolerance

characterization lies in the assumption that the shock tolerance of the equipment is independent of

the precise input waveform. To examine the validity of this assumption, the authors designed a

perfect analytical experiment using an ideal item of equipment with known fragility. It was

assumed that the item of equipment is perfectly modeled by an SDoF undamped oscillator with a

natural frequency of 25 Hz. This simple item of equipment was assumed to fail when the relative
displacement between the mass and the support reached a value of 0.25 inches.

Fragility testing of this simple SDoF equipment item was conducted analytically. The support

excitation was a half-cycle sine velocity pulse of the form

(t) .-- sin -- 't for O ,<t4 (4)

1)

and
() = 0 otherwise (5)

where V.. is the amplitude of the pulse, and 'd is the duration.

The first fragility test was conducted for a half-cycle sine velocity pulse with a duration of 1

second. The amplitude of the support motion was increased until the maximum relative

displacement reached a value of 0.25 inches. Equipment failure occured when the amplitude of

the sine pulse reached a value of 982 in/sec.
A second fragility test was performed with a pulse duration of 0.01 seconds, The pulse

amplitude producing failure was 42 in/sec.

8



Thus, we now have two half-cycle sine velocity pulses which will just precipitate failure in the

ideal SDoF 25 Hz item of equipment. The maximum relative displacement spectra for these two

sine pulses are shown in Figure 3. Notice that the two spectra coincide at only a single point

(Frequency = 25 Hz).

The tripartite shock response spectra for the two half-cycle sine base excitations are shown in

Figure 4. Again, notice that the spectra coincide at only one point (the point at which they were

forced to agree). Which of these two spectra is the correct fragility spectrum for the item of

equipment? Neither one! There are an infinite number of possible fragility spectra for this simple

item of equipment. The only similarity between these spectra is the fact that they all intersect at a

frequency of 25 Hz and an amplitude of 0.25 in.

This analytical experiment clearly illustrates the inadequacy of SRS-based fragility

characterization-

C. EFFECT OF TWO-DIMENSIONAL BASE MOTION ON EQUIPMENT RESPONSE

An item of equipment located in a hardened shelter will be subjected to three-dimensional

support motion. In all likelihood, the equipment item possesses multiple degrees of freedom, and

exhibits nonlinear response to shock input. The obvious question is -- what is the error

introduced by modeling a nonlinear MDoF item of equipment subject to three-dimensional

support motion, with a linear SDoF oscillator?

To begin a quantitative investigotion of this question, an equipment model capable of

responding to multi-directional support motion was required. A simple two-dimensional spring

pendulum equipment model was developed for the investigation (see Figure 5). This simple
model possesses two degrees of freedom and geometric nonlinearity. The model is capable of

responding to horizontal and vertical support motion, individually or in combination. The

complete mathematical development of the spring pendulum model is presented in Appendix A.

The computational algoithm described in Appendix A was coded into a FORTRAN computer

program named SPEND. A listing of SPEND is included as Appendix B.

The spring pendulum equipment model exhibits characteristics of both a spring-mass oscillator

and a simple pendulum. Thus, it possesses two characteristic natural frequencies of interest; the

natural frequency of a simple pendulum, given by

fpndyium = 2 (l z) (6)

where g is the acceleration due to gravity, and I is the length of the pendulum, and the natural

frequency of a simple spring-mass oscillator, given by

9
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(Hz) (7)

where k is the spring stiffness, and m is the oscillator mass.

A parameter study was performed to investigate the response of the spring pendulum
subjected to simultaneous horizontal and vertical support motion. As a baseline for comparison,

the response to the superimposed motion was compared to the response due to vertical base

motion only. The support motion for all cases was a half-cycle sine velocity pulse of the form

described in Equations (4) and (5). All support motions had an amplitude of 20 in/sec. Pulse

durations varied from 0.05 to 0.5 seconds.

The first set of calculations were performed using velocity pulses with a duration of 0.05

seconds. The results are given in Figure 6. The solid line in Figure 6 represents the response of
the spring pendulum subjected to vertical support motion only This response mode corresponds

to a simple I -D spring-mass oscillator. The three remaining curves represent the response of the

spring pendulum when subjected to both horizontal and vertical support motion simultaneously.
Notice that biaxial support motion always results in a spring force greater than that caused by

vertical support motion only. The amplification of the spring force increases as the pendulum

frequency approaches the frequency of the support motion.

Figure 7 presents the results of calculation set number 2. For this run, the pulse durations

were all 0. 1 second.

The results of the third calculation set are given in Figure 8. The support motions for these
calculations had a duration of 0.25 seconds. This corresponds to a frequency of approximately 4

Hz. Notice the marked increase in the spring pendulum response for the pendulum frequency of 3

l-z.

Results of the last calculation set are given in Figure 9. The duration of the support motion for
this set was 0 5 seconds (frequency - 2 Hz) Notice the response of the spring pendulum for the

pendulum frequency of 2 Hz. When the frequency of the support rnoticn And the pendulum
frequency of the spring pendulum model coincide, the response of the model ,vcoines erratic.

Figure 9 clearly illustrates what is possible when a nonlinear equomn.t item with certain

fundamental frequencies is subjected to biaxial support motion. The ma' imum response of such

an equipment item could be many times greater than the response calculated using a simple
oscillator.
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D. EFFECT OF MDOF EQUIPMENT RESPONSE

It is common practice to use the fundamental period (or frequency) of an MDoF system, and

enter the shock response spectrum for a given support motion to determine the peak structural

response of the system. The contributions to the structural response from higher modes are

usually ignored.

To quantify the errors introduced by ignoring higher mode contributions to the structural

response, a cantilever beam carrying a tip mass having both translational and rotary inertia was

used as a two-dimensional MDoF equipment model. The equipment response was assumed to be

linearly elastic. This simple MDoF model is shown in Figure 10. The mass density, cross-
sectional area, Young's modulus, moment of inertia, and length of the beam are denoted by p, A,

E, I, and L, respectively. These parameters were assumed constant throughout the beam. The

mass and the radius of gyration of the tip mass are denoted by m and r, respectively.

The derivation of the equation of motion, along with the initial and boundary conditions for

this structural system when subjected to support motion are given in Appendix C. The support

motion is prescribed as a displacement time-history, z(), allowing a velocity jump at time I = 0.
The relative displacement of the beam with respect to the support is denoted as u('x,). Based on

the principle of linear superposition, the total response of the system can be expressed as the sum

of modal contributions via a modal analysis. Due to the orthogonaiity of different vibration

modes, each modal equation of motion can be solved as that for an SDoF system. The derivation

of the orthogonality relationship for distinct vibration modes, and the modal equation of motion

are also included in Appendix C. Furthermore, the exact solution can be obtained if the support

motion can be described by a simple analytical function.

An item of equipment with k, = I and k2 = 0.0025 (refer to Equations (C-51) and (C-52) in

Appendix C), is used as an example. The characteristic curve (i.e., the plot ot Equation (C-58))

of this system is shown in Figure 11. The roots of this curve are the characteristic values of the

free-vibration equation (Equation (C-27)), and the corresponding characteristic functions
(obtained from using Equations (C-36), (C-49) and (C-59)) are the free-vibration mode shapes.
Although this system ha" an infinite number of natural vibration modes, only the first seven modes

are retained for a modal analysis. The characteristic values of these modes are identified in Figure

I1. The normalized mode shapes of the first seven modes are shown in Figures 12 through 18,
respectively. The accuracy of the characteristic values and mode shapes deteriorates with higher

modes, but fortunately the contributions from higher modes are relatively insignificant.

The support motion (or base acceleration) in this study was modeled as a unit triangular pulse

with duration Id and no rise time Mathematically, the base acceleration can be expressed as

18
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P(V) T (8)id IT

where T, defined by Equation (C-17) in Appendix C, is the characteristic period of the system.

The effects of pulse duration on the equipment response parameters, such as tip mass
displacement, base shear, and base moment, were evaluated as functions of td IT. The cyclic

natural frequency in Hz of the ith mode, fi, is related to the characteristic period by

fi- M Xj2 (9)

2nT

The characteristic period, T, of the system was assumed to be 0.02 sec in this example. With

the characteristic values and mode shapes given, the modal amplitudes, 0,, for the first seven

modes were obtained by directly integrating Equation (C-123). Figure 19 shows the relative
displacement time-history of the tip mass for a base motion of duration 2T, considering MDoF

response. The base shear and base moment can be calculated using Equations (C-3) and (C-4),

respectively. Figure 20 shows the base shear time-history for a base motion of duration 5T.

Since the response in each mode is given explicitly, the error of ignoring higher mode
contributions can be computed. The error is defined herein as the difference between

MDoF(including all seven modes) and SDoF(including the first mode only) values, assuming the

total response of the equipment is predominantly in the first mode. The percentage error from
using the SDoF model in the calculation of tip displacement, base shear, and base moment is

shown as a function of impulse duration in Figure 21. The error increases with the degree of

differentiation of the relative displacement with respect to length.
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this study was to investigate the errors associated with characterizing the

shock tolerance of equipment via the classic, linear, SDoF shock response spectrum. Two simple

mathematical equipment models were developed for the investigation: (1) a spring pendulum,

which possesses two degrees of freedom and geometric nonlinearity, and (2) a clamped beam

carrying a tip mass having both translational and rotary inertia, which possesses an infinite number

of linear, orthogonal modes. These models were used to investigate and quantify the effect of

factors such as: waveform dependency of equipment shock response; multi-degree-of-freedom

(MDoF) vs. SDoF equipment response; the effect of multidirectional loading on equipment
response; and the effect of geometric nonlinearity on equipment response.

This study uncovered and quantified several shortcomings of the SRS approach to

characterizing equipment shock tolerance:
" It was proven that SRS-based fragility spectra are not unique. Even for an equipment item

which can be modeled by a simple SDoF undamped oscillator, different base excitations

generally produce different fragility spectra.
" The spring pendulum model was used to illustrate the response of a geometrically nonlinear

item of equipment to two-dimensional base otion. It was shown that extremely erratic

behavior is possible if the frequency of the base motion approaches one of the natural
frequencies of the equipment model. The maximum response can be - everal times greater

than that of a simple SDoF oscillator.

" The cantilever beam model was used to show that the maximum repsonse of an MDoF system

will always exceed the response of a simple oscillator.

In conclusion, this study has proven the inadequacy of the linear, SDoF shock response
spectrum for characterizing the shock tolerance of equipment. Complex, nonlinear mechanical

equipment subjected to multidiiectional support motion is often not adequately represented by an
SDoF model.
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B. RECOMMENDATIONS

Based on the results of this study, a more rigorous approach for assessing equipment shock

tolerance is required. The following points should be kept in mir I while developing this new

procedure:
* When an equipment item is tested to determine its shock tolerance, the test input waveform

must be representative of the anticipated threat input waveform. Multidirectional support

motion must be reproduced. Equipment tests should excite the same response modes, and

produce the same failure modes, as the actual in-service base motion.

* Analytical equipment models must be detailed enough to reproduce the salient features of the

actual equipment response. The model need not encompass the entire item of equipment, but

it must adequately represent the critical components. The input motion to the model must

mimic the in-service motion.

33



SECTION V

REFERENCES

Department of the Army, Fundamentals of Protective Design for Conventional Weapons,
Technical Manual No. 5-855-1, Headquarters, Department of the Army, Washington DC, 3
November 1986.

Drake, J.L., Twisdale, L.A., Frank, R.A., Dass, W.C., Rochefort, M.A., Walker, R.E., Britt, J.R.,
Murphy, C.E., Slawson, T.R., and Sues, R.H., Protective Construction Design Manual, Report
No. ESL-TR-87-57, Air Force Engineering & Services Center, Engineering & Services
Laboratory, Tyndall Air Force Base, FL, November 1989.

Kiger, S.A., Balsara, J.P., and Baylot, JT., "A Computational Procedure for Peak Instructure
Motions and Shock Spectra for Conventional Weapons," The Shock and Vibration Bulletin, No.
54, June 1984.

Blume, J.A., Newmark, N.M., and Coming, L.H., Design of Multistory Reinforced Concrete
Buildings for Earthquake Motions, Portland Cement Association, 1961, updated as Ghosh, S.K.
and Domel, A.W., Jr., Design of Concrete Building for Earthquake and Wind Forces, Portland
Cement Association and International Conference of Building Officials,1992; see also Paz, M.,
Structural Dynamics / Theoy and Computationi, Van Nostrand Reinhold Company Inc., New
York, 1985.

34



BIBLIOGRAPHY

American Standard Specification for Design. Construction and Operation of a Variable Duration,
Medium Impact Shock Testing Machine for Lightweight Equipment, ASA Publication S2.1,
(1961).

American Standard Specification for Design. Construction and Operation of Class HI (High
Impact) Shock Testing Machines for Lightweight Equipment, ASA Publication Z24.17, (1955).

Anon, A Study of the Determination of the Internal Impedance of a Machine, A.D. Little, Inc.,
(July 1961), 55 pp., ASTIA #265995.

Anon, "Shock and Vibration Test Equipment," Electro-Technol., Vol 69, (February 1962), pp.
233-234, 236, 238, 240.

Anon, Code of Equipment Design Practice, Technical Progress Statement No. 3, Contract No.

NU/C/345/GSIA, EPS, Lts., Sitting Bourne Kent, (no date).

ASTM Standards, Part 7, (1955), p. 1087.

ASTM Standards, "Shock Testing Mechanism for Electrical Indicating Instruments," ASA
Publication C39.3-1948, Part7, (1955), p. 1101.

Belsheim, R.O., G.J. O'Hara, and A.F. Dick, "Shock Design Analysis of Shipboard Machinery and
Equipment," Shock, Vibration and Associated Environments, Bulletin No. 28, Part I, (July 1960),
p. 130.

Biot, M.A., "Theory of Vibration of Buildings Durirg Earthquake" (in English), Zeitschrift fur
Angewandt Mathematik urd Mechanik, Band 14, Heft 4, (August 1934)

Biot, M.A., Transient Oscillations in Elastic Systems, Ph.D. thesis, California Institute of
Technology, (1932).

Blake, R.E., R.O. Belsheim, and J.P. Walsh, "Damaging Potential of Shock and Vibration," Shock
and Vibration Instrumentation, ASME, (1956).

Brodd, R.J., and W.G. Eicke, Jr. "Effect of Vibration and Shock on Unsaturated Standard Cells,"
J. Rsch., NBS, Vol 66C, (April/June 1962), pp. 85-97.

Bush, V., Operational Cir,,it Analysis, Wiley, (1937).

Carson, John E., Electric Circuit Theory and Operational Calculus, McGraw-Hill, (1926).

35



Cauthen, L.J., "The Effects of Seismic Waves on Structures and Other Facilities," Engineering
with Nuclear Explosives, Proc., 3rd Plowshare Symposium, AEC TID-7695, (1964), pp. 207-
228.

Chapman, C.W., "Dynamic Loading and Some Indications of Its Effect on Internal Combustion
Engines," Proc. Inst. Mech. Eng., (London), Vol 153, (1945), pp. 221-236.

Chew, R.S., "Effect of Earthquake Shock on High Buildings," ASCE Proceeding s, Vol. 34, No.
1, (Jan 1908), pp. 8-15; discussion Vol. 34 No. 3, (Mar 1908), pp. 292-296; discussion Vol. 34,
No. 4, (Apr 1908), pp. 391-393.

Crandell, F.J., "Ground Vibration Due to Construction Blasting and its Effects Upon Structures,"
J. BSCE, (April 1949), pp. 222-245.

Crawford, R.E., C.J. Higgins, and E.H. Bultmann, Jr., A Guide for the Design of Shock Isolation
Systems for Ballistic Missile Defense Facilities, Mechanics Research, Inc., Civil/Nuclear Systems
Division final report to the U.S. Army Construction Engineering Research Laboratory,
Champaign, Illinois, CERL-TR-S-23, (August 1973).

Crede, C.E., "Concepts in Shock Testing Equipment," Colloggim on Shock and Structural
Respons, ASME, (August 1960).

Crede, C.E., "How to Evaluate Shock Tests," Machine Design, (December 1951).

Crede, C.E., "Shock Testing of Airborne Electronic Equipment," Tele-Tech Mag., (July/August
1951).

Crede, C.E., "The Role of Shock Testing Machines in Design," Mechanical Engineering, (July
1954), pp. 564-567.

Crede, C-E., "The Simulation of Shock and Vibration Environments," Proceedings. Society for
Experimental Stress Analysis, Vol XVII, No. 1, (1957).

Crede, C.E., Unpublished Data from Tests Conducted at the California Institute of Technology,
(1962).

Crede, C.E., and M.C., Junger, "Designing for Shock Resistance," Machine Design, (December
1950), Parts I and II.

Crede, C.E., and M.C. Junger, A Guide for Design of Shock Resistant Naval Equipment, U.S.
Bureau of Ships, NAVSHIPS 250-660-30, (1949).

Crede, C E , and E.J. Lunney, Establishment of Vibration and Shock Tests for Missile Electronics
as Derived from the Measured Environment, WADC TR 56-503, (1 December 1956), ASTIA
Document No. AD 118133.

36



Criner, H.E., G.D. McCann, and CE_ Warren, "A New Device for the Solution of Transient
Vibration Problems by the Method of Electrical-Mechanical Analogy," ASME JAM, Vol. 12, No.
3, (1945), pp. A-135 to A-141.

D'Agostino, Robert, "Selecting Threaded Fasteners for Shock Loads," Machine Design, Vol 35,
No4, (February 1963), p. 169-171.

Dick, A.F., Reed-Gage Shock-Spectrum Characteristics of Navy Light-Weight High Impact
ShokMachine, NRL Report 4749.

Dick, A.F., and R-E. Blake, Reed-Gage Shock-Spectrum Characteristics of Navy Medium-Weight
High Impact Shock Machine, NRL Report 4750.

Dove, R.C., Evalpation of in-Structure Shock Prediction Techniques for Buried Structures, U.S.
Army Corps of Engineers Waterways Experiment Station, Technical Report SL-91-20, (October
1991).

Fischer, E.G., "Design of Equipment to Withstand Underground Shock Environments," Shock.
Vibration and Associated Environments, Bulletin No. 28, Part I, (July 1960), p. 75.

Gardner, M.F., and J.L. Barnes, Transients in Linear Systems, Vol. 1, Wiley, (1942); Vol 2 was
never published

Granath, J.A., and C.A. Miller, "Response of Electronic Equipment to' Nuclear Blast," Shock.
Vibration and Associated Environments, Bulletin No. 29, Part II, (March 1961).

Green, J.H., "The Response of Missile Components to Water-Entry Shock," Symposium on
Shock. Vibration & Associated Environments, Bulletin No. 26, (December 1958).

Gupta, A.K., Response Spectrum Method in Seismic Analysis and Design of Structures,
Blackwell Scientific Publications, (1990).

Heaviside, 0., Electrical Papers, Macmillan, (1892).

Heaviside, 0., Electromagnetic Theory, Vol. I (1893), Vol. 2 (1899), Vol. 3 (1912), Van
Nostrand.

Housner, G.W., An Investigation of the Effects of Earthquakes on Buildings, Ph.D. thesis,
California Institute of Technology, (1941).

Housner, G.W., and P.C. Jennings, Earthquake Design Criteria, Earthquake Engineering Research
Institute Monograph Series, (1982).

37



Jacobsen, R.H., and M.B. Levine, "Effects of Shock and Vibration Environment on Electronic
Equipment," Shock and Vibration, Bulletin No. 22, (July 1955), p. 93.

Kennard, D.C., and I. Vigness, "Shock Testing Machines and Procedures," $_hock and Vibration
Instrumentation, ASME, (1956).

Kornhauser, M., "Prediction and Evaluation of Sensitivity to Transient Accelerations," ASME
Journal of Aplied Mechanics, Vol 21, No 4, (1954), pp. 371-380.

Levin, Alexander, "Shock Hardening Electronic Equipment," Buships J., 12:14, (February 1963).

Lowe, R., Barry Shock and Vibration Control Notes, No 7, Barry Controls, Inc., Watertown,
Mass, (August 1957).

Luhrs, H.N., and HR. Spence, Influence of Shock Machine Loading on Shock Spectra, STL
Report 7103-00 18 NU 000, AFBMD TN 61-31, (May 1961), 11 pp, ASTIA Doc #260308.

Lunney, E.J., and C.E., Crede, The Establishment of Vibration and Shock Tests for Airborne
Electronics, WADC TR 57-15, (July 1958), ASTIA Document No. AD 142349.

MacDuff, J.N., and S.R. Curreri, Vibration Control, Chapter 7, McGraw-Hill Book Company,
Inc., New York, (1958).

Marquis, J.P., and D. Morrison, "Equipment Qualification Procedures and Fragility Data,"
Chapter 12, Section 8 in the Defense Nuclear Agency C.W.E. Handbook, draft, (October 1991).

Matlock, H., E.A. Ripperberger, J. Turnbow, and J.N. Thompson, "Drop-Test Facilities and
Instrumentation." _bock and Vibration Bulletin, No 25, Part II, Page 144, Office of the Secretary
of Defense R&D, (December 1957).

Military Specifications for Electron Tubes. MTL-E-1B (Sec. 4.9.20.5), Armed Services Electro
Standards Agency, Fort Monmouth, New Jersey, (2 May 1952).

Military Specification for Shock Proof Equipment MIL-S-901B (Navy), (9 April 1954), or
Interim Military Specification Tests. Shock, Vibration. and Inclination, MIL-T-17113 (Ships), (25
July 1952).

Mindlin, R.D., "Dynanics of Package Cushioning," Bell System Technical Journal, Vol. 24, Nos.
3-4, (Jul-Oct 1945), pp. 353-461, reprinted as Monograph B-1369.

Newmark, N.M., and W J. Hall, Earthquake Spectra and Design, Earthquake Engineering
Research Institute Monograph Series, (1982).

Nahin, P.J., "Oliver Heaviside," Scientific American, Vol 262. No. 6, (June 1990), pp. 122-129.

38



Novoselov, V.S., "Impact Testing of Measuring Instruments," Leningrad State University,
Izvestiya vysshikh uchebnykh zavedeniy, Priborostr Oye Niye, Vol 5, N,,o 3, (1962), pp. 141-149;
S/146/62/005/003, A.I.D. Press No 791, (12 September 1962).

Parfitt, G.G., and J.C. Snowdon, "Incidence and Prevention of Damage due to Mechanical
Shock," J. Acoust. Soc. Am., Vol 34, (April 1962), pp. 462-468.

The Hyge Shock Tester, Bulletin 4-70, Consolidated Electrodynamics Corp., Rochester, New
York, (February 1957).

The Ralph M. Parsons Company, et. al., A Guide for the Design of Shock Isolation Systems for
Underground Protective Structures, Final Report to the Structures Branch, Research Directorate,
Air Force Special Weapons Center, Kirtland Air Force Base, New Mexico, SWC TDR 62-64,
(December 1962).

U.S. Military Specification MIL-S-4456, or U.S. Air Force Specification 7201.

Van der Pol, B., and H. Bremmer, Operational Calculus, Cambridge University Press, (1964).

Vigness, I., "The Fundamental Nature of Shock and Vibration," Eiectrical Manufacturing, (June
1959).

Vigness, I., "Shock Testing Machines," Shock and Vibration Handbook, Vol 2, Ch 26, McGraw-
H1ill Book Company, Inc., New York, (1961).

Wood, J.D., "Fact;,rs Affecting the Response of Missiles Excited by Ground Shock," Shock.
Vibration and Associated Environments, Bulletin No. 28, Part II, (September 1960).

Woodward, K.E., Damages Resulting from Laboratory Vibrations and High Impact Shock Tests,
USNRL Report 4179, (September 1953).

Zorowski, C.F., "Reduction of Shock Transmission by Equipment Damping," Appl. Sci Res., Vol
I!, (1962), pp. 53-64.

39



This page is left blank

40



APPENDIX A

DYNAMIC RESPONSE OF A SPRING PENDULUM TO SUPPORT MOTION
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Dynamic Response of a Spring Pendulum to Support Motion

Consider the response of the spning pendulum shown below, to support motion.

0 u ;1  -,
V

x

The position vector of the support point, S, is

F = UFI + V2(A-I1)

and the position vector of the suspended mass, m, is

k? = XWI (10 + y)2 (A-2)

where
10=unstretched spring length

u =X-displacement of the support
v = Y-displacement of the support

x =X-displacement, of m from the undeformed position

y = Y-displacement of m from the undeformed position

The spring vector is

RF - F = (X - U' + 10+ (Y - V)YF2  (A-3)

so that the spring length is

I = j(R -F)*(R -F) =kx) 2 [ 0 (-i (A-4)

and a unit vector pointing along the spring from support to mass is

-R -F = (X-U)'F1 +[10 +(Y- V) 2  (A-5)

I he spring elongation is
(A-6)

and if the spring stiffness is k, the spring restoring force is
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X= i I b K+(A-7)

The gravitational force is

F, =mg- (A.8)

The equation ot motion for the mass is

+F, =mR (A-9)

or

X=-.lI-Lo X-U)(A- 10)

The static solution is
u v 0 (A-12)

S=.-0 (A-13)

xsr =0 (A-14)

Ysm = IT - g (A-15)
k

The static solution defines the initial conditions for a dynamic problem. To initiate a finite

difference solution, we assume that j! and 5 are constant during the first time interval.

Yxf

tht t

Therefore

xi  (A) (A- 16)
6
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Y, -Ysr -+ "13(AI)2 (A- 17)
6

Equation (A- 0) thus takes the form

m Is 6 uj(-S

so that

gu

i s_ = U1 (A- 19)+o g(o)l I (,&'),

61r g 6

and Equation (A-I 1) takes the form

YO g- k[yS T + YO(At)2 vI] (A-20)

so that

kv,

"Yo = Am = () (A-21)1+ k-(At)2 +(At) 2

6m k 6
From this point on, the finite difference solution proceeds smoothly.
Step I: x = 0

Step 2: YO = g
k

g(A)1

Step 3: x, Iu1J
g(At)4
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Step 4: .6m vi +YoSte 4:Y 1+ k(At)'

6m
For n2 1

Step 5: 1,, = (- uO +[1o +(y,- v)] 2

Step 7: k =-3 (x_ -u )

Step 8: - AAo+(y, - 'n)

Step 9: x.+ = 2x, - x._I +. F,(/)'

Step 10: Y,,i = 2y.-)-,,I +3.(A)2

Return to step 5
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APPENDIX B

SPEND PROGRAM LISTING
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PROGRAM SPEND
C
C *
C'
C ' "* SPRING - PENDULUM "*

C* *

C* *

C * Program calculates the response of a spring-pendulum
C * subjected to a support motion in both the vertical
C * and the horizontal direction.
C* *

C * Last Revision: 7 July 1992 (MAR) *
C* *

C
C
C OPEN THE INPUT AND OUTPUT FILES
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER INFILE*12
PARAMETER ('D=8000)
DIMENSION U(O:ID),V(O:ID),X(O:ID),Y(O:ID),XDD(O:ID),YDD(O:ID),
&SF(O:ID)

C
PRINT ', ' Input File Name ...

READ' (A12) ',INFILE
OPEN(UNIT=I5,FILE=INFILE,STATUS='OLD')
OPEN(UNIT=16,FILE='XDISP.',STATUS='UNKNOWN')
OPEN (UNIT='7, FILE='YDISP. ',STATUS= ' UNKNOWN')
OPEN (UNIT=18, FILE=' SFORCE. ',STATUS='UNKNOWN')
OPEN(UNIT=I9,FILE='XACC. ',STATUS='UNKNOWN')
OSEN(UNIT=20,FILE='YACC. ',STATUS='UNKNOWN')

C
C READ THE INPUT DATA
C

C *

C DEFINITI'iN OF INPUT VARIABLES:
C*
C ' PWT = PENDULUM WEIGHT (LBS) *
C' *

C * STI. = SPRING STIFFNESS (LBS/IN) *
C*
C * ULENGTH = UNDEFORMED LENGTH OF SPRING (IN)
C*
C NPTS = # OF PTS. IN BASE DISPLACEMENT HISTORY *
C *
C ' DELT - TIME INCREMENT BETWEEN TIME POINTS (SEC)
C*
C * U(N) = HORIZONTAL BASE DISPLACEMENT @ TIME STEP "N" '

C * ( NOTE: U(0)=0.0 ) *
C* *

C * V(N) = VERT'CAL BASE DISPLACEMENT @ TIME S->,P "N" '

C * ( NOTE: V(0)=0.0
C' *

C * SIGN CONVENTION:
C'
C * DOWNWARD VERTICAL DISPLACEMENTS ARE POSITIVE
C'
C * SPRING TENSION IS POFITIVE
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C

C
C

READ(15,*) PWT,STIFF,ULENGTH,NPTS,DELT
PRINT *,' Reading Horizontal Base Motion'
RFkD(15,*) (U(N), N=0,NPTS-1)
PRINT *,' Reading Vertical Base Motion'
READ(15,*) (V(N), N=O,NPTS-1)

C
PRINT ',' Computing Pendulum Response'

C
C ACCELERATION OF GRAVITY (IN/SEC**2)
C

AGRAV=386.0
C
C CALCULATE THE MASS OF THE PENDULUM (LB-SEC**2/IN)
C

PMASS=PWT/AGRAV
C
C CALCULATE PENDULUM DISPLACEMENTS @ TIME 0 (I.E., STATIC DEFLECTION)
C

X(O)=0.0
Y(O) =PWT/STIFF
STATLEN=Y (0) +ULENGTH

C
C CALCULATE DISPLACEMENT @ TIME STEF 1
C

CON1= (AGRAV*DELT**2.) / (6. *STATLEN)
X(1)=(CON1/(1+CON1) )*U()
CON2=(STIFF*DELT**2.)/(6.*PMASS)
Y(1)=Y(0)+(CON2/(1+CON2))*V(1)

C
C INITIALIZE ACCELERATIONS & SPRING FORCE @ TIME 0
C

SF(0) =PWT
XDD(O) =0.0
YDD(O) =0.0

C
C LOOP THRU TIME STEPS FROM N=1 TO NPTS-l
C

DO 100 N-1,NPTS-1
C

SPLEN=DSQRT((DABS(X(N)-U(N))) *2.+(ULENTH+ (Y(N)-V(N)))**2.)
C
C ERROR TRAP: FOR LOW FREQUENCY SYSTEMS, THE SPRING MAY BECOME
C FULLY COMPRESSED. THIS LEADS TO A DIVIDE BY ZERO

C ERROR WHEN CALCULATING BETA.
C

IF (SPLEN .LT. (0.1*ULENGTH)) THEN
PRINT *,' Excessive spring compression has occured!'
STOP
ENDIF

C
BETA= (STIFF/PMASS) *(I-ULENGTH/SPLEN)

C
C CALCULATE ACCELERATIONS @ TIME STEP N
C

XDD(N)=-BETA* (X(N)-U(N))
YDD(N)=AGRAV-BETA*(ULENGTH+(Y(N)-V(N)))

C
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C SPRING FORCE 0 STEP N
C

SF(N)=(SPLEN-ULENGTH) *STIFF
C
C DISPLhCEMENT @ STEP N+l
C

X (N+1) =2*X (N) -X (N-I) +XDD (N) *DELT**2.
Y(N+1)u2.*Y(N)-Y(N-1) +YDD(N) *DELT**2.

C
100 CONTINUE

C
C WRITE OUTPUT FILES
C

PRINT *t Saving Pendulum Response'
C
C X-DISPLACEMENT
C

WRITE(16,*) NPTS
WRITE(16,*) DELT
WRITE(16,*) tXUJ), N=0,NPTS-1)
CLOSE (16)

C
C Y-DISPLACEMENT
C

WRITE'17,*) NPTS
WRITE(17,*) DELT
WRITE(17,*) (Y(N), N=0,NPTS-1)
CLOSE (17)

C
C SPRING FORCE
C

WRITE(18,*) NPTS
WRITE(1B,*) DELT
WRITE(18,*) (SI?(N), N=0,NPTS-1)
CLOSE (18)

C
C X-ACCELERATION
C

WRITE(19,*) NPTS
WRITE(19,*) DELT
WRITE(19,-) (XDD(N), N=04d'TS-l)
CLOSE(19)

C
C Y-ACCELERATION
C

WRITE(20,*) NPTS
WRITE(20,*) DELT
WRITE(20,*) (YD)D(N), ?J=0,NPTS-1)
CLOSE (20)

C
STOP
END
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APPEN'DIX C

TRANSIENT RESPONSE OF A CANTILEVER BEAM CARRYING A TIP MAS
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Transient Response of a Cantilever Beam, Carrying a Tip Mass Having Both Translational

and Rotary Inertia, to Support Motion

Consider the cantilever beam shown below, carrying a tip mass having both translational and

rotary inertia.

Q LV

M IM+mdx
dx D ax

V +av
ax

1. Governing FAuation, Initial and Boundar Conditions

The total beam deflection is
y -z+u (C-1)

where

z = support motion
u = beam deflection WRT the support

The equation of motion for a beam element is

Sdx- pd.xL. - pidx-L(z + u) (C-2)
ax at' at

Neglecting the beam element rotary intitia yields
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V= am (C-3)
ax

and the beam moment-curvature relation is

M = E (C4)

Substituting Equations (C-3) and (C-4) into Equation (C-2) yields

4 a 2z al

or

a'u I pA Du pA a2z (C-5)

ax4 E1 a" El at'
The initial and boundary conditions are:

y(rO) = 0 (0< x 5 L) (C-6)

0 ro) = o (05 x5 L) (C-7)

u(O,t)=o (1 0) (C-8)

u (0,) 0) (C-9)

E±-(aL,t1) =-mr 22 - (t > 0) (C-10)

E1 IU ( m 0) (C- 1l)

Now let

a=U (C-12)
L

= (C-3)
L

=- (C-14)

so that

ixD '  Ld (C-15)
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Then Equation (C-5) can be written in the form

Wa pAL4 7aa pAL 4 a2p'  El at2  E (C-16)

and if we set

T= 1 p (C-17)

and

(C- 18)T

so that

adV 4  _ i a(C-19)

then Equation (C- 16) can be written in the final dimensionless form

+ h 2  (C-20)
+4 )2 C'v2

with the initial and boundary conditions
a(s,, o) = o (0: < : 51) (C-2 1)

((0) -L(O) (o<5<1) (C-22)

a(o, W) =0 (v 0) (C-23)

d 3 a 0 [aY .

-(0, W) = 0 (a 0) (C-24)

-d- -(I. M/) 2 pAL C? ( tY of 0) (C-25)

-"-t- a' a(1, V/) + (V') (W a0) (C-26)

We first consider the homogeneous form of Equation (C-20),

- +x -a=0 (C-27)
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because it turns out to generate a family of orthogonal functions (ftee vibration modes) that can

be used to solve the nonhomogeneous problem.

We assume that

a(4, V) (C-28)

so that, setting

dQ = (C-29)

dO = 6 (C-30)
dW

substituting Equation (C-28) into Equation (C-27) yields

0"'+4 = 0 (C-3 1)

or, dividing by O,

+ =0 (C-32)

Equation (C-32) says the sum of two independent quantities (one a function of space, the other a

function of time) is zero; therefore they must both be constant. We therefore set

--- = IV (C-33)

* 0
so that 0 and 0 must obey the equations

1VX -V4 = 0 (C-34)

6+ x4 = 0 (C-35)

The solution to Equation (C-34) can be written in the form
*= AfI + Bf2 +Cf3 + Df4  (C-36)

where

fl = cosh X4 + cosXk (C-37)

f2 = sinh Xk - sin Xt (C-38)

f3 = cosh 4 -cos4 (C-39)

f4 = sinh X, + sin X4 (C-40)

so that
0'=X(Af 2 +Bf3 +Cf 4 +Df) (C.41)

"=X (Af 3 + Bf, + CXI + Df2) (C-42)

*"=X.(Af, + Bf, +Cf 2 +Df 3 ) (C-43)
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0,' =X'(Af,+Bf 2 +Cf 3+Df,)?' (C-44)

Now

A (0) =2 (C-45)

A (0) = () = (o) =0 (C-46)

so that Equations (C-23) and (C-36) yield
4(0) =2A =0 (C-47)

and Equations (C-24) and (C-4 I) yield

'(0 = 2,£) 0(C-48)

so that
A = D =0 (C-49)

If we now set

f, (1) = Fj (C-50)

ki (C-5I)

(L)2 =k 2  (C-52)

then Equations (C-25), (C-4 1), and (C-42) yield

o"l) = -kk 2.'(1)6 (C-53)

or
2 (BF + CF) = kk 2 (BF + CF)

or

B(F - k,k 2VF3)+ C(F - kjk2 .F) = 0 (C-54)

and Equations (C-26), (C-36), and (C-43) yield

'( - k,(I)e (C-55)

or

V (BF, + CF2 ) = -kX (BF + CF)

or

B(F +k kIF)+C(F + kXF3)= 0 (C-56)

Equations (C-54) and (C-56) yield the relative values of B and C.

c F,-k,k2.3 F = F+kX
.B=_-k~k.F, F +k,.tF = p  (C-57)

B ,-k)F 2 + kX3

so that

(F 2 + k,XF.)(F - klk 2 'F,) - (1-; + k,XFj)(F - k,k 2 .F) = 0 (C-58)
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For each root of Equation (C-58), A.,, there is a ratio

c, =P  (C-59)

given by Equation (C-57).

2. Orthogonality of Vibration Mode Shapes

Now consider the incremental work done by the end actions associated with mode i, acting

through incremental displacements associated with mode j.

Mo V0o MiL1
ViL

SY = MV + M,8 L-- (C-60)
ax ax

Now

M =El = €"o (C-61)
Wx L

V =EI au El -. -E) (C-62)

u=LiO (C-63)

au (C-64)

so that Equation (C-60) can be written in the form

El
EL (C-65)

El (O' " ,, (-6

L+
= 0,8J o "" (C 66

Eliminating 8W between Equations (C-65) and (C-66) yilds
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= "d" - (C-67)'0, O, d4 + IOj-O"O
Since the LHS of Equation (C-67) is symmetric with respect to i and j, the RHS must be also, so
that

0 I,, d4 + [ ,0"- 0,* 0, (C-68)

Eliminating J_0__,A ,dg between Equations (C-67) and (C-68) yields

- . , , = 0 (C-69)

Now
(0) = 0 (C-70)

01(0) = 0 (C.71)

and if we set
0(1) -() (C-72)

then Equations (C-33) and (C-53) yield

V" = kk 2V4)' (C-73)

and Equations (C-33) and (C-55) yield

0D = -000 (C-74)

so that Equation (C-69) yields

( - ,,,d4 +[-k 1 xc., ,  ' + k1k2 + kTcD]

fO'(1 + k1?,Oj +k~k 2cD;O = 0 (C-75)

When j ithe second factor on the LHS of Equation (C-75) must be zero, and when j= ithat

factor is arbitrary. Thus we can set

f'OO,@sd + k,,), + k~k2f( , , (C-76)

Equation (C-76) would be most useful if the integral were expressed in terms of boundary values.

This can be done by returning to Equation (C-69), and writing it in the form [cf Prescott

(1924.223), Eq. (9.111)]

l 1(C-77)

Treating , as a constant and X as a variable, applying L'Hospital's rule to the case in

which X , =X,, and noting that
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d¢ aO ~ (X4) = ad C-8
A ]d(4) A -. d(XO)

d= d) -- =x do (C-79)d(4) A d(X4)

so that

(C-80)A x
Equation (C-77) yields

-O~v , -:0 + ( 2 - OO"}9

4 A4

¢? + 2k, ,,0'+ '(¢)o (4) .)

4 4 (C-81)
4

Therefore, when i = j, Equation (C-76) can be written in the form

(D" + +2k ki(,r;) = 1

or

(I + 4k,)(i, + 2k?,cI + k1kJ4 + k k. ,)(4i)' = 4 (C-82)

Now Equations (C- 36), (C-37), al - C-50) yield
4= B 2 +C (C-83)

,t'= X(B,; +CF,) (C-84)
and therefore

= + 2FflBC + p,'2C1 (C-85)

4),'= rF[IB + ([;F4 + F,2)BC + F C'I (C-86)

)= A2(FB + I"3FI BC + FC') (C-87)

and thus Equation (C-82) can be written in the form
A B- + A.BC+ A 3C' = 4 (C-88)

where
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Al = (! +4k,)F 2 + 2kF 2 F3 +k~k 2(4+klk 2V,).VFl' (C-89)

A 2 =2[(l+4k,)F2F3 + k , ,(F2 F4 +F)+kk2(4+klk2 ) F3 F4 ] (C-90)

A3  (I + 4k,)F,2 + 2k1 ,%F3F. + k1k2(4 + kik 2V,)XF 42 (C-91)

Substituting Equation (C-59) into Equation (C-S8) then yields

B,2(A, + A2p, + A3p2) =4 (C-92)

so that

2B2 = (C-93)
J, + A2P, + Ap

and
C, = p,B, (C-94)

Finally, combining Equations (C-67), (C-73), (C-74), and (C-76) yields

0 = V (C-95)

3. Derivation of Modal Equation of Motion by Hamilton's Principle

Let

u(x, t) = ir,(x)q, (t)
I.l

and

z(1) = us(1)

then
y(xt) = u(Xt)+ z(t)

- .I, (x)q, (t) + u, () (C-96)

The kinetic energy of the system is

T=2"f0 PA( )dr+ + +) 2 mr j$ (C-97)

and the strain energy of the system is

u iI.: U (C-98)
2 60
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Applying Hamilton's Principle to obtain the equation of motion:

f2 (T-U)dt = 0 (C-99)

ST fJA&&d+M&LL +mruti'& (C-IO0)

3U =EJu"&"dr (C-101)

where

y= n,4,+ ', (C-102)

= = , (C-103)

.YL-u+u f- r(L)4, +u, (C-104)

&YL L = n, (L)64, (C-105)

U' = q, (C-106)

u' = (C-107)

, (C-108)

&L = r:(L)&4, (C-109)

U" = 4, (C- 10)
1I]

8u= -nZ/, (C-l l)

Equation (C-99) can be expressed as

.1,. [n4 pA(_ , + )(++ , )(Y L)
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+mr2( n(L4XXr1(L&~ -JL I( nqX T1'&)djd =0 (C- 112)

j~pA(Xnt4 +j,)(X n34)dr = jjq4tJq 0 Aff~rX~JA Ldx (C- 113)

mr'(Xn())1n'L&~ mr 2 j j&4,rE()T() CI,

JL EI(X n"q)(Y j&)r=~~JE1'1d (C-I 16)

Integrating Equation (C-I 12) by parts and using Equations (C-I 13) through (C-i 16),

+X(fiPfA ,,6q MJ1 , i 3 zJA Ti,dxdIJ

+mj j7,(flL)n) L)4, 3yj -f 4 j (I& L)nj L~J)d

+M~ (L) iis &i, n,(L)dt)

q,&,f)FIt~ldd = 0 (C-lU)

Rearranging terms yields

XXf{4JA n,dx+mml(L)nj(L)+mr'TnKL)T'(L)+qfJ f7 3q,}&!di
8-i -
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= -if, ,LT~* mj()S (C- 118)

The orthogonality relations have been shown as

JAfl, rljdx+mrl,(L)rlj(L)+mr rTl(L)tl'(L)=-o (C-119)

and

_F. (C- 120)

g', for i=jJ

Substituting Equations (C- 119) and (C-120) into Equation (C- 118).

f.A +<,. + m, Y,, ,)D , =0 (C-121)

Since Sq, are arbitrary variations, it is necessary that

4, + -X ,q, =-j,8 pA rl,dr +mrl,(L) I (C-122)

for all i's. Equation (C-122) is the equation of motion for mode i. The nondimensional form of

Equation (C- 122) can be expressed as

T (C-123)
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