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Abstract

Angus, J.E., Computer-assisted improvement of mean squared error in smnsual estimation, Mathematics and
Computers in Simulation 35 (1993) 1-13.

A computer-assisted method for improving the mean squared error (MSE) in estimation for parametric
models is presented. Assuming existence of nontrivial sufficient statistics, the method involves generation of
Monte Carlo samples from the conditional distribution of the observables, given the sufficient statistic(s). The
= method is illustrated inconnection with a simple back-propagation neural network model for estimating a
logistic regression function, and a specific numerical example related to logistic regression is presented.

1. Introduction and basic method

Suppose that X is a random d-vector having density belonging to the dominated family
{f(-:0), 6 € 8] with dominating o-finite measure u. Suppose fc- the moment that 6 is
real-valued, and that it is desired to estimate @ using squared error loss. Typically, many
estimators are available, and sometimes an estimator that is optimum in some sense (e.g., a
uniform minimum variance unbiased estimator) can be shown to exist in theory. Often, the
statistician is forced to use a suboptimum estimator. For example, this can happen if the

- —-optimum-estimator is analytically intractable, or if economic considerations-dictate that pre-ex- - -

isting algorithms, created without regard to optimality, must be used without modification.

Examples of the former abound, while the latter situation exists, for example, in the case where *

a nonlinear regression function is estimated using a back-propagation neural network. White
[13] describes such neural networks, and shows that the back-propagation algorithm leads to
estimators of the network weights that are less efficient (i.e., have greater asymptotic variances)
than ordinary nonlinear least squares estimators. See also {7,8,12] for descriptions of the
back-propagation algorithm, which is a version of stochastic gradient descent. Angus [1]
discusses connections between back-propagation neural networks and statistical nonlinear least
squares. White’s [13] landmark paper connecting neural networks with concepts in asymptotic
statistical estimation presents a method for “correcting” the back-propagation algorithm to
make its asymptotic efficiency equivalent to that of nonlinear least squares. The correction is
analogous to the method of scoring in efficient likelihood estimation as presented in [11), for
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2 J.E. Angus / Computer-assisied improvement of MSE

example, and amounts to taking one nonlinear least squares Newton-Raphson step from the
back-propagation solution.
A statistic T= T(X) is by definition sufficient for the parameter 0 if the conditional
distribution of X given T does not depend on 6. The usual method for finding sufficient
- - statistics is the application of the factorization criterion, which states that under fairly general ‘

conditions the statistic T is sufficient for @ if the density function of X factors as f(x; 8) =

O h(x)g(T(x); 8), where the function h does not depend on 0, and the function g depends on x

' only through 7(x). When a sufficient statistic T is available, and 8 = 8( X) is an estimator of 6

having finite second moment, then the Rao-Blackwell theorem implies that the new estimator

— —— defined by 518(7‘):5(0!13, the condmonal cxpecuuonﬁf 6 given T. has smalier mean

squared error than 6. 6. That i is,

-

MSE(5) = E(5 — 6)* < MSE(d) = E(6 - 6)".

See [6] for further details on sufﬁclency, the factorization cntcnon and the Rao-Blackwell
theorem. : —

It happens often that the improved estimator § cannot be used. For example, the conditional
expectation E(6|T) may be difficult to compute analytically and/or economic constraints may
dictate that only the algorithms for computing 6 can be used. For example, a “canned”
algorithm package that cannot be modified may be the only resource available. In the case of a
neural network an advantage of the back-propagation learning algorithm, a relatively (statisti-
cally) inefficient parameter estimation algorithm, is that it can be implemented in hardware or
firmware by éssentially running the network architecture in reverse. However, the user of such
a network would not be free to modify the estimation algorithm to achieve greater efficiency.

If it is relatively easy to generate (i.e., simulate) independent and identically distributed
observations from the conditional distribution of X given T, then the following algorithm can
be used to approximate 6¢T") after taking the observation of X. Here, # can now be a
vector-valued parameter, and the abbreviation “iid” stands for “independent and identically
distribut
- (i) If X =x is observed, calculate the observed value ¢ of T by ¢ = T(x).

STy (i) Generate X?*,..., X,*,id according to-the conditional-distribution of X given T =1.
o (iii) Compute (1)

ft

.
{
3
-

12 .
o=t (Xt X )=~ LHXY - o o
. i=]

as the approximation to 8(¢).

By Kolmogorov’s strong law of large numbers [10}, 6* converges with probability 1 (with
respect to the probability space on which the X;*’s are defined) to the mean of the conditional
distribution of &(X) given T=1, i.c., to 8(:)-E(O(X)IT-1) Also, it will be shown that §*
achieves a reduction in mean squared error over the original estimator 6, although not as great
a reduction as that achieved by 5. Moreover, an advantage of algorithm (1) is that the -
st algorithms already existing for computation of 6(X) can be reused with the simulation data
- without modification. That is, no (substantial) new algorithms are needed. For example, in the
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J.E. Angus / Computer-assisted improvement of MSE 3

case of the back-propagation neural network, the initial observation X (called an *“examplar”)
is a random vector containing an cbservation of a set of inputs along with the corresponding -
output. To apply algorithm (1), n simulated exemplars X*,..., X, would be generated
independently and “ideatically distributed from the conditional distribution of X given a
sufficient statistic T. The network would then be retrained n times (once for each simulated
examplar), and the resulting weights from each of the » training sessions would be averaged to
form the new estimated weights having improved mean squared error. Of course, for this
approach to be successful, the form of the distribution of the exemplar vector X must be
known and amenable to extraction of a nontrivial sufficient statistic.

By enlarging the original probability space, it may be assumed that all the above random
variables are defined on the same probability space. Suppose for thc moment that 0 is
real-valued. If S is a random variable with E(S?) < =, the conditional variance of S given Tis
defined by Var(S|T) = E((S — E(S|T))*|T). The relative merits of the three estimators 6, & _
and 8" in terms of mean squared errors are summarized as follows (see the next section for a
derivation of these): . — . i

MSE(6) = bias?(d) + Var(5) + E(Var(6|T)), (2a)
MSE(5) = bias*() + Var(§), - S ()
MSE(5*) = bias?(6) + Var(s) + %E(Var(é |T)), (2¢)

where bias(§) = E(9) - 6. Thus, in theory, th. computer-assisted estimator 6* can be con-
structed to have mean squared error arbitrarily close to that of the improved estimator & by
simply increasing n. In pamcular, if @ is unbiased for 0 (i.e, E(§) =0 for all 8 € O) and & is
the uniform minimum variance unbiased estimator of 8, then 8* is also unbiased, the mean
squared errors in (2) become variances, and §* can be made to have variance arbitrarily close
to the optimum.

2. Mathemaﬁal backmnnd and notatlon

Following are mathematical and statistical notations and concepts that are used in the
remainder of the paper. It is assumed that the reader is familiar with the rudiments of
measure-theoretic probability, further details of which may be found in [4,10,11).

Vectors will be taken to be column vectors, and a superscript “t” will denote matrix
transpose. R? is the d-dimensional Euclidean space with the usual norm || - Ii; R¢ represents
the class of Borel subsets of RY.

Random d-vectors X are measurable R%valued functions defined on a common probability
space with sample space f2, o-field of events J, probability measure P and expectation
operator E. If d =1, X is referred to as a random variable. N,(m, A) will signify (depending
on context) either the d-dimensional normal or Gaussian distribution with mean vector m and
variance-covariance matrix A, or a random vector having this distribution. If X is a random
d-vector, Var( X) denotes its variance covariance matrix E((X — EXX X - EX)).

A sequence of random d-vectors {X,; n » 1} converges in distribution to the random
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4 - J.E. Angus 7 Computer-assisted improvement of MSE

d-vector X and n —» =, written X, =X as n =, if P(X, €A} »P(X €A} as n - for all
Borel sets 4 € R with boundary 34 satisfying P{X € 34} = 0. The term “almost surely” (a.s.)
is synonymous with “on a set of probability 1”. Thus, for example, X, - **X as n — = means
that for all & in a set having probability 1, X (w) - X(w) as n — «. The indicator function of a
set A, denoted by /,, satisfies [ (w) = 1 if w € A, and is 0 otherwise.

If X and Y are random variables with E|Y | <<, then (one version of) the conditional
expectation of Y given X, denoted by E(Y | X), is a measurable function of X, g(X), having
the property that [,g(X)dP = [ Y dP for any event A in the o-field generated by X. With
this definition of E(Y | X), the convention is made that E(Y | X =x) = g(x) for all x in the
range of X. If X and Y have joint density f,, with respect to Lebesgue measure, and X has
marginal density f, with respect to Lebesgue measure, then g(x) = E(Y | X =x) may be
computed using the formula

* fxv(xs y)
E(Y|X=x)= [ y=———dy.
Vix=x)=[ y=5 0y o
Conditional expectations have the following properties:
. ' E(E(Y|X))=E(Y), if E|Y| <,
e e E(h(X)Y | X)=h(X)E(Y | X) as., if h is a measurable function of X,

. EINX)Y) <, E|Y| <,
E(Y,+Y,1X)=E(Y, | X) +E(Y,|X) as., if E|Y,|<w, E|Y,|<=.

From these propertics, the relations (2) in Section 1 can be verified assuming that E(6?) < .
First, E(8) = E(E(8]T)) = E(0), and E(8* | T) = 5(T), almost surely. Hence,

MSE(5) = E(8 - 8)° = E(5 — E5 + E8 — 8)* = Var(5) + bias(é),
MSE(6) = E(6 - 0) =E(6-5+8-0)
= MSE(8) + E(E((6 - 8)"IT)) + 2E((5 - 0)E(6 - 817T))
= MSE(3) + E(Var(41T)),
MSE(5*) = E(8* ~0)* = E(8* -5 + 5 - 0)’
= MSE(8) + E(E((8* - 8)°1T)) + 2E((8 - 6)E(5* - 5IT))

e N, Mt Ten %
Y SEF e

= MSE(8) + %E(Var(ﬁ IT)).

3. A central limit theorem

FRpr e In applying the algorithm (1), it is of interest to know whether the conditional distribution of
: vn (8* - 8) given T approximates, in some sense, the unconditional distribution of v (5 — 6)
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J.E. Angus / Computer-assisted improvemens of MSE 5

when a random sample X, ..., X, is available. The former is the distribution that would resuit
from repeated independent applications of algorithm (1) using the same fixed value of ¢ on
each application, and it depends on the initial estimator 8 as well as the choice of sufficient
statistic 7. This conditional distribution is a type of “bootstrap” distribution (see [5)), because it
involves Monte Carlo resampling from a conditional distribution that depends on the outcome

" of the original sample. This question of approximation is difficult to answer in general, but can
at least be addressed asymptotically for important special cases.

To be definite, assume that X, X),..., X, are random d-vectors that constitute a random
sample from a d-parameter regular exponential family with density f(x; n) = exp(n'x - c(n))
with respect to a o-finite measure x on (R?, R9). Here, n € T c R where 7T contains an open
rectangle in RY, and the function c is twice differentiable and satisfies '

3c(n)

az
B =252, Var(X) = E(GXS) - (BX)(EX) = 5o

am'’

Let 6 m 3c(n)/9n = E(X,) be the parameter of interest. It can be shown that Var(X,) depends
on 7 only through 8, and that the Fisher information matrix /(@) for 0 satisfies /~'(9) =
Var( X,) (see [9, p. 127], for example). Suppose that it is of interest to estimate 8 = E(.X,)
efficiently and in unbiased fashion. For this problem, it is easy to show (see [9, Example 5.3, p.
—— ~-438, and Section 6.5) that the most efficient unbiased estimator of 0 is given by 8(X,,..., X,)
= (1/n)L}., X, = S,/n. Suppose that the initial estimator of 6 is taken to be 6 = X,. It follows
from the multivariate central limit theorem that Vi (8 —6) = N,(0, I-%0)) as n—» . If
algorithm (1) is applied in this context with T=S§ , it would be desirable to have, with
probability 1, the conditional distribution of vz (5* ~ ) given T also converge to N0, 7-'(6))
in some sense. The following theorem, which applies to more general situations, helps address
this issue. The result of this theorem is very similar to the fundamental Bootstrap Central Limit
Theorem (see [2], for example). Before stating and proving Theorem 2, the following lemma is
needed. Its proof is essentially the same as that of the result of {11, p. 147, Problem 4.7}.

. Lemma 1. Foreachn 3 1, let X,,, X,5,..., X,, be independent R®-valued random vectors with
T EX,=0, EX, X, =A,, and let p,, be the probability distribution of X,;,. Suppose that as

n = ®,

M =5 Au-a
R
(ii) for every ¢ >0,
1 n
;l-lf(x:lxl>cﬁ)
Then (X,y + -+ +X,,)/Vn = N0, A) as n —.

xll%u,{dx) =0, asn—e,

R _fg_";. -.'Lcl-.-’.'..,!

Theorem 2 can now be stated and proved.
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Theorem 2. Assume that X,, X,,... are iid random d-vectors defined on a fixed probability space
(N, 3, P), each having covariance matrix A. Let S,=X,+ --- +X,, and for each n, let
(S, ") be a regular conditional probability distribution of X, given S,. Conditioned on S,, let
XMooy X, beiid according to p(S,, - ). Then, with probability 1, as n — =,
- X'+ - +X2-§, ~ -- o
P{ = eAIS,,} - P{N,(0, A) € A},

for every Borel set A € R with boundary 3A satisfying P(N,0, A) € 34} = 0.

Proof. Clearly, E(X*|S5,) = E(X, | S,) = S,/n almost surely. The idea of the proof is to apply
Lemma 1 to the sequence {X,!-S,/n; 1 <i<n}, conditioned on S,, and find a set of
probability 1 where the conditions of the lemma apply. Now let

S,
Yi=X3-E(X,15,)=X5-~".

Then using obvious symmetries,

3l

L £ rnis) 2 Erxisy) - 22 (%)

By the strong law of large numbers, S,/n = **EX, as n — », Let o, be the o-ficld generated
by {S,, Sp+1s--.). Then E(X,X;|S,) = E(X,X; |o,). But g, decreases to N ,,,0,, the tail
o-field of the sequence (S,, n > 1), and it follows [4, p. 228] that

as.
E(x,xs.) = E{x.xi N a,),
n>1
T as n—w. But N, 0, is contained in the o~field of permutable events [10, pp. 373, 374] and
hence contains only events of probability 0 or 1 by the Hewitt-Savage 0-1 law, so that the latter -
conditional expectation is constant almost surely [10, p. 374]. But since

E(E(X,X,‘l N a)) =E(X,X]),

n>t

that constant must be E(X,X}). It follows that

l n
- LE(Y,Ys,) =4,
L=

e ERR Lot

as n —» «, This establishes (i) in Lemma 1.
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Note that it is sufficient (and necessary) to verify condition (ii) of Lemma 1 only for rational
e > 0. Again, employing obvious symmetries, and letting C > 0 be a constant, -

i ;'l-iE(llY,»ll'il{ll)'.-lT>ev’;)lS.) o o T

i=m]

=E(ll X, - E(X, |S,)I’I{Il X, ~ E(X,|5,)Il > eVn }1S,)
(el
=

+zﬂ%—ﬂ£{ X, 1 x, 1% > c}is,),

in-’ +2JE))P[nx, —E(X, 1)1l >eVn IS}

rp(ux. 1*>cis,}+E(1x, 1’11 x,1°>C}iS,)

with all inequalities being understood as “almost sure” inequalities. By Chebyshev’s inequality,

)

which converges almost surely to zero by using arguments similar to those used in verifying (i)
of Lemma 1, and the strong law of large numbers. Using Chebyshev’s inequality again as well as
the same arguments just mentioned, it follows that almost surely

P{li X, - E(X, ISl >eﬁls.}<(v’r7¢)"(£(nx. I :s,,)+ﬂl:1

2
i%‘ﬂ P(LX, 175 18} + E(1x, 11 X, 1% > C)is,)

S
o Ze(nx x> chs,)
G e e
‘C"nfl E(1X,1215,) + E(I X, {1 X, 1*> C} 1S,)
S
+zﬂ;‘!ﬂ£(ux,nz{ux,n%c}ts,.).
which converges almost surely as n — ® to
C-HHEX, WPE(I X, %) + E(0 X, 1*K{1 X, 12> C})
+ 2 EX, NE(I X, W {0 X, 1*> C}).

Since C was arbitrary, letting C — «, and applying the Dominated Convergence Theorem [4] to
the last two terms, the entire expression tends to 0 and it follows that condition (ii) of Lemma 1
is satisfied almost surely for all rational e > 0. The number of exceptional w sets where the
aforementioned calculations and inequalities fail, as well as those where the u,, 7 > 1, fail to

————d—— ¢
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8 J.E. Angus / Computer-assisied improvement of MSE

be probability measures, is at most countable, and each has probability 0. Hence, the
conclusion of the theorem follows. O

.

It follows from Theorem 2 that if algorithm (1) is applied in the context of the dnscussnon at
the beginning of this section, theén along almost all sample sequences- X, Xs;..., —the
conditional distribution of vn (5* — &) given S, converges in distribution to N0, I~ ‘(0)) as
n = », which is the same limiting distribution as that of Vn (5 — 6).

4. Application to a back-propagation neural network implementation of logistic regression

To illustrate the method of applying algorithm (1), consider the logistic regression model. In
this model, a dichotomous random variable Y has the conditional probability mass function
AY=1{X}=1-PY=0| X} =F(X'6) where F is the cumulative distribution function of the
logistic distribution, namely F(x) = e*/(1 + ¢*). Here, X is a random p-vector of explanatory
variables, and 0 is a p-vector of unknown parameters. This model arises in bioassay, medical
diagnosis, linear discriminant analysis and many other statistical contexts. Suppose that random
samples Y, ,,..., Y, from the conditional distributions of Y | X, i = 1,..., K, are available and
itis desu'ed to esmnate 8. Several statistical techniques are available for esumatmg 6, including
maximum likelihood, and minimum logit chi-square (see [3] and Section 5). In fact, Berkson [3]
studies the problem of improving the mean squared error of the minimum logit chi-square
estimator of 6 through the use of the Rao-Blackwell theorem. The initial estimation problem,
however, also fits naturally into a simple two-layer back-propagation neural network with
logistic sigmoid response function (see Fig. 1).

K exemplars eonsmtmg of the pairs (X, 5,),...,( Xy, px) would be presented to the
network of Fig. 1, where p}=(1/m,)L7:Y, ;. The network, using the back-propagation algo-
rithm, would then “leam" the connection wengbts (the 0.’s) that provide a minimum of the
quantity TX (5, — F(X0))%. (A modified value of j, that lies strictly between 0 and 1 may be
necessary to avoid numerical instabilities, see Section 5.) The mean squared errors of the

_ estimators of the 6,’s thus obtained can be improved using the method of Section 1 as follows.

It is assumed that theanalysesareillcond’txonil‘onlhevaluaofmc X;'s: Thatis; the X,’s are
treated as constants.

It follows directly from the factorization criterion for sufficiency that T=T(Y) =
2,-,}:,-,)(,)’ is sufficient for 6, where Y-(Y, preeesYimp YagseoosYamoeoos Yers oo s Yo )

Denoting by y the observed value of ¥, it is easy to show that the condmonal dnstnbutnon of Y
x,0 .
2,0—=——0 s PY =1 X=(xy,....x,))

x,0

Fig. 1. Simple two-layer back-propagation neural network for logistic regression.
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given T = T(y), is uniform over the region defined by D, = {z: T(z) = T(y)}. To implement the
method of Section 1, independent and identically distributed observations ¥ *(1),...,Y*(n),
cach uniformly distributed over D,, are zenerated via a sxmulauon. and the back-propagauon
network is retrained on each of n “new exemplars

R Y ) (Xl’ p-l‘(v))’“.'(xx’p“;(u)), ﬁ“(v)-—';- El)’i;(l,‘), r=1,...,n,

i ju]

yielding the set 6*(1),.. 8"‘(n) of back-propagation estimates of 6. The nmproved MSE
estimator of @ is then (1 /n)Z 0% ().

5. Numerical example of a computer-assisted improvement in mean squared error

The following numerical example is intended to illustrate the many different concepts
presented in this paper in connection with algorithm (1). Assume the logistic regression model
of the previous section with p = 1 (one independent variable), and

()4

~ PY=11X}=1-PY=0|X)= °e,x-r(ox)

In order to obtain closed-form solutions so that comparisons can be made and for ease of
exposition, assume that instead of minimizing L, ( §; - F(6X,))?, 8 is estimated by minimizing
Berkson's [3] logit x? defined by

XL(O) - 21’”51’:(1 Pa)(axt - lol"(Pa»
where logit(p) =In(p/(1 - p)), p €(0, 1). To avoid singularities, j; will be taken to be the
modified estimator

R i : -

- m‘. == - - L e o - P
2 Yi.j +7,
ﬁi - -'_"',-l
Cmin 4, — -

by
1

for fixed r,, 7, >0, which corresponds to the Bayes estimator of p, = F(6X,) using squared
error loss and a beta(r,, 7,) prior distribution. It is easily shown by differentiation that x?(0)
has a unique minimum at the value of @ given by

K
X zl\'i’”ip‘i(l - p;) logit( 5;)
0- fw] -
2 xlzmiﬁi(l -b;)

.__
2N

Now, suppose that K=2, m, -m,-S 7,=7,=001, X;=1 and X,=2. To simplify
notation, define Y, =L} Y,, and Y,=L;.Y,,, so that p,-(Y,+001)/5 02, p,=(Y,+

\ u,m ht%‘;l.r'#:"’:‘ .‘.‘“ .
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0.01)/5.02, the sufficient statistic for @ becomes 7 = T(Y,, Y,) = Y, + 2Y, and the minimum -
logit x? estimator of 8 is

P\(1 -5,) logit( B,) +25,(1 = p,) logit( ;) ~ - = -
Bl B)+ 41~ 5y) '
Note that Y, and Y, are independent random variables, with Y; ~ binomial(5, F(6i)), i =1, 2.

In practice, 8 is unknown, but suppose that its true value is @ = 1. In this example, the expected
value of 8 is casily computed by

d=0(Y,.Y;) =

Fon e [ {7
e L

151

S5 —=i)j1 (5~

s
E@)= ¥ 6, Jj) F(8)'(1 - F(8))*"'F(20)'(1 - F(20))*,

ij=0

and the mean squared error of éis

A S0. . 2 5!5!
MSE@)= I (06 )~ pE e -7

x F(8)'(1 -'F(a))""l-'(za)"(l - F(20))*”,
from which :
E(6)=081296 and MSE(6)=1.15163, for 0 =1.

Thus, the estimator of @ is biased. Denoting S, ={(y,, y;):y, +2y, =1, 0<y,, y,< 5}, the
. conditional distribution of (Y,, Y,) given Tm Y, +2Y, =1, is

rervo=oworr=a= ()3, £, G

(y1,72) €S,

- gad

for (y,, y,)€S,, t€(0,1,...,15}, and is O elsewhere. (Note that this distribution is not

“uniform”, since in this example, the observables were reduced initially by sufficiency to Y, and
- Y,, whereas the variables Y,; in Section 3 were not) The improved estimator of 0 is
R e 8(T) = E(01T), which, in this example, can be computed fairly easily for any given (€
" {0, 1,...,15) by the formula

I ,-‘;)[.(_,‘_}:,;s (f‘)(ys,)];,l S

(y1,¥2) €S,
The unconditional mean squared error of 8 is
1
MSE(8) = ¥ (E(81T =) -6) P{T =1},
t=0

where P(T=1) is computed from the joint unconditional binomial distribution of (Y, Y,).
Hence, from (2),

emLinTy E(Var(61T)) = MSE(6) — MSE(3).




J.E. Angus / Computer-assisied improvement of MSE , I L

AT S |

s

T x!h&vés»,—a-;;;' e Ehca o ﬁ}]‘m\

el LI

' -

Table |
Summary of computations
S, =y, vy, +2y,=1,0<y,. v: <S5} PT=1) .Q(!)-E(OJT-H
0 (0, 0) 31078 - 3.60000
1 (1,0) 4.6-10°" - 1.09429
2 ©, 1,20 38-10°¢ -0.23%:44
3 (1. 1,63,0 24:10°° -0.45605
4 0,2),(2,1),4,0 0.00012 -0.21953
5 (1.2),3,1).(5.0 0.000 51 -0.26307
6 0,3,2,2,4,H 0.00184 -0.03796
7 (1,3),3,2,6,1) 0.005 76 -0.06173
8 0,4),(2,3),(4,2) 0.01564 0.06173
9 (1,4),3,3),(5,2) 0.03704 0.03796
10 (0, 5),(2,4),(4,3) 0.07533 0.26307
11 (1,5,.0,4),5,3 0.13179 0.21953
12 (2,5),(4,4) 0.19290 0.45605
13 3,505, 4) 0.22472 0.23644
14 «,9) 0.20362 1.09429
15 s, 9) 0.11070 3.60000

Novte: The values of 8(t)= E(8]T =1) are independent of the true value of 8, while the values of AT =1} are
computed as:uming 8 =1,

When @ = 1, these computations yield

MSE(8) = 1.11699 and E(Var(§1T)) =0.03464."

Table 1 lists the possible values of T, along with the sets S,, values of P{T = r} (assuming 6 = 1)
and the value of the estimator 8(T) at T =,

In practice, the data will be collected, yielding an observed value for T, say T=¢ = 11, but
typically it will happen that the computation of 8§(¢) is intractable. Algorithm (1) would then
allow one to approximate the estimate 5(¢) as follows. Take n = 1000, for example.

(i) Generate (Y,*(i), Y,*(i), i = 1,...,1000, independent and identically distributed fram
the distribution

Py 2) = (y,)(,,,)[(“ms (,,)(,,)] : (y.,;,)esu

(ii) Compute

8% =

1 100,
o0 = YY), Y2 0).

Carrying out this simulation algorithm yielded a value of 8* = 0.2215, which is very close to
the exact value of 8(11) = 0.21953.

rﬁ*@”*'ﬂ* ;JP“" :ﬁ-m#z ’ﬂ'&h :\c‘ﬁ» “”kﬂ
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By formula (2), for this example, this procedure yields an estimator §* with unconditional _
® mean squared error {

MSE(5*) = MSE(5) + 0.001 E(Var(61T)) = 1.11699 + (0.001)(0.03464) = 1.11702.

Hence, while the computer-assisted estimator of 8, namely 8*, has the same unconditional

mean as the original estimator 6 (i.e., E(5*) = E(6) = 0.81296), its mean squared error about :
: the true value of 6 =1 has been improved (MSE(5*) = 1.11702 compared to MSE(§) = !
1.14163).

~ Clearly, by the definition of the estimate 8(11), this algorithm yields an approximation to
8(11). Of course, in this example, 8(11) is easily computed and the algorithm is not necessary.
In other situations, however, the generation of random samples from the conditional distribu-
tion of the observable given the sufficient statistic will be easy compared to the direct
computation of 5(¢).

5. Summary and conclusions

T S A computer-assisted Monte Carlo method for improving the mean squared error in paramet-

: ric estimation has been presented. The method assumes that it is possible to derive a nontrivial

sufficient statistic for the unknown parameter(s), and that is is relatively straightforward to

simulate the conditional distribution of the observables given the sufficient statistic. In

addition, a central limit theorem, similar to the central limit theorem for the bootstrap mean,

has been proven, which demonstrates that for an important class of problems the Monte Carlo

distribution of the computer-assisted estimator (asymptotically) approximates the sampling

distribution of the “ideal” estimator for the problem (i.c., the estimator that the computer-as-

sisted estimator is aiming to approximate). The application of the method to the improved

estimation of the coefficients of a logistic regression function that has been implemented on a

. , simple back-propagation neural network has been illustrated. Finally, a numerical example

Fay e related to the logistic regression function has demonstrated the mean squared error improve-
' ment as well as the concepts behind and implementation of the algorithm.

The idea of computer-assisted statistical analysis is not new. An idea similar in spirit to that
considered. in this paper is the technique of bootstrapping [S), which has revolutionized the °.
practice of applied statistics. In addition, a careful consideration of the theory behind the
algorithm presented in this paper shows that the algorithm is just a simple Monte Carlo
technique for evaluating an integral, that is, the (possibly vector-valued) integral representing
the first moment(s) of the conditional distribution of the basic estimator given the sufficient
statistic. Therefore, the method could be improved further by implementing improved Monte
Carlo integration techniques, an area that is currently being accelerated by the work of
Wozniakowski [14] and others. In this direction, more information would be needed concerning
the conditional distributions than simply an ability to generate random samples from them.

o Also, the current improved integration techniques would address only integrals involving
W distributions having densities with respect to Lebesgue measure, whereas the simple algorithm
Ty (1) works in general. Whether the additional improvement in mean squared error (if any)

3. wfm“ SOANI B R oAl
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achievable by improved Monte Carlo integration is worth the cost of the added computational
complexity for certain estimation problems is an area for further research.
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