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FOREWORD

This report covers wind tunnel testing of a realistic hypersonic waverider
vehicle. The work was sponsored by the McDonnell Douglas Space Systems
Company, Huntington Beach, and the United States Air Force Ballistic Missile
Organization, Norton Air Force Base.

Tests were conducted in the Navy's Hypervelocity Wind Tunnel No. 9 located at

| the White Oak, Maryland site of the Dahigren Division, Naval Surface Warfare Center.

Model fabrication was performed by the Division's Engineering Prototype Branch.

The waverider was tested at Mach numbers of 10, 14, and 16.5 to measure
static stability and drag, to determine the distributions of surface press.ure and heat
transfer, and to obtain flow-visualization aata. The two principal objectives of this test
program were to validate the methodology vor designing performance-cptimiz2d
hypersonic waveriders and to obtain data on a complex hypersonic configuration for
validation of computational fluid dynamics codes.
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ABSTRACT

A realistic hypersonic waverider was tested in the Navy's Hypervelocity Wind
Tunnel No. 9 in late Spring of 1993. Sponsored by the McDonnell Douglas Space
Systems Company. Huntington Beach, and the United States Air Force Ballistic
Missile Organization, Norton Air Force Base, tests at Mach numbers of 10, 14, and
16.5 were conducted to measure tatic stability and drag, to determine the
distributions of surface pressure and heat transfer, and to obtain flow-visualization
data.

The two principal objectives of this test program were to validate the
methodology for designing performance-optimized hypersonic waveriders and to obtain
data on a complex hypersonic configuration for validation of computational fluid
dynamics codes. The waverider design included realistically blunted leading edges
and was optimized on an arbitrary figure of merit to include fluid viscosity and internal
volume. The design condition of Mach 14 and Reynolds number based on length of
6.5 million was chosen based on the facility capabilities.

All data appeared to be independent of Mach number and virtually insensitive to
changes in Reynolds number; moreover, all data displayed excellent repeatability.
The lift-to-drag ratio of this waverider with realistic leading-edge radii was found to be
relatively high.
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INTRODUCTION

This document is the final report for the McDonnell Douglas/United States Air
Force Ballistic Missile Organization Waverider Design Validation Test. The test was
conducted in the Navy's Hypervelocity Wind Tunnel No. 9 between 17 May and 9
June 1993. Tunnel 9 is located at the White Oak, Maryland site of the Dahlgren
Division, Naval Surface Warfare Center (NSWC). The test objectives were twofold.
The first objective was to validate a methodology for designing performance-optimized
hypersonic waveriders which incorporate realistic leading-edge radii. Fluid viscosity
and vehicle internal volume were included in the optimization. The second objectlive
was {0 measure surface pressure and heat transfer on a complex hypersonic
configuration for validation of computational fluid dynamics codes. Static stability and
drag, distributions of surface pressure and heat transfer, and flow-visualization data
were obtained at nominal Mach numbers of 10, 14, and 16.5.

The sponsors of this test program were the McDonnell Douglas Space Systems
Company, Huntington Beach, California, and the USAF Ballistic Missile Organization
(BMOQ), Norton AFB, California. The McDonnell Douglas project manager was Mr.
David Burnett. The BMO project managers were CAPT. Patrick Obrien and LT. Doug
Fullingim. Additional test support was provided by Ms. Tobenette Holtz of TRW Corp.
The Tunnel 9 project engineer was Mr. Mark E. Kammeyzr, assisted by Mr. Michael J.

Gillum. All questions concerning this test report should be directed to Mr. Kammeyer,
Code K24.

TEST FACILITY

The NSWC Hypervelocity Wind Tunnel No. 9 is a blow-down facility which
operates at Mach numbers of 8, 10, 14, and most recently, 16.5. Maximuni Reynolds
numbers are approximately 50 x 10° per foot at Mach 8, 20 x 10° per foot at Mach 10,
3.8 x 10° per foot at Mach 14, and 3.2 x 10° per foot at Mach 16.5. The test cell is 5
feet in diameter and is over 12 feet long. This allows the testing of large model
configurations. A photograph of Tunnel 9 is shown in Figure 1.
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Tunnel 9, shown schematically in Figure 2, uses nitrogen as the working fiuid.
During a typical run, the vertical heater vessel is used to pressurize and heat a
volume of nitrogen to a predetermined pressure and temperature. The test section
and vacuum sphere are evacuated to a low pressure and are separated from the
heater by a pair of metal diaphragms. When the nitrogen in the heater reaches the
proper temperature and pressure, the diaphragms are ruptured and the gas flows from
the top of the heater and expands through the nozzlr.. As the hot gas exits the
heater, cold gas tfrom three pressurized driver vessels enters the heater base. The
cold gas drives the hot gas in a piston-like fashion, thereby maintaining constant
conditions in the test cell during the run. More detailed information concerning the
facility can be obtained from Reference 1. Nominal tunnel conditions for this test
program are listed in Table 1.

MODEL HARDWARE

The aerodynamic design of the wind-tunnel model was carried cut by
McDannell Douglas, with fabrication performed by NSWC persornel. An electronic
design was mairntained from the aerodynamic definition through ‘abrication. A few
details are presented in order to familiarize the reader with the methodology.

AERODYNAMIC DESIGN

The process used to generate the waverider shape is described in detail in
Reference 2. A modified version of the University of Maryland Axisymmetric
Waverider Program (MAXWARP) code was used to generate a sharp-edged waverider
optimized on a figure of merit which encompzssed viscous L/D, volume, and wetted
area. The design condition of Mach 14, Re, = 6.5 million, was chosen based upon the
facility capabilities. The resulting geometry was in the form of body coordinates at a
specified number of crass sections. Using a CAD system, splines were fit through the
points to create a wire-frame model. The model was split at the sharp edge. The
upper and lower halves were separated far enough to accommodate a leading edge
with a radius of 0.25 inch. The final design had an overall length of 39 inches, a span
of 16.161 inches, and a base height of 6.839 inches. The planform and base areas
were 375.3 and 64.6 square inches, respectively. The planform area was selected as
the reference area for defining aerodynamic coefficients.
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MODEL FABRICATION

The wire-frame geometry, shown in Figure 3, was transferred electronically from
McDonnell Douglas to NSWC for fabrication of a wind tunnel model. The data were

read into a solid-modeling CAD system. Surfaces were fit to the wire-frame model
and a solid model created. The solid model was then broken into sections for the
mechanical design. Upon completion of the mechanical design, tool paths were
generated for the parts and post-processed for computer numerically controlled (CNC)
machining. An aluminum prototype model was fabricated to ensure that the desired

geometry was properly reproduced. The details of this process are presented in
Reference 3. ‘ ’

The test article was fabricated in eight parts. The body consisted of four
sections manufactured from 6061-T6 aluminum. The nose, both leading edges, and
the main cavity cover plate were manufactured from 17-4 PH stainless steel. The final
step was hand finishing of the surfaces to remove tool marks. A photograph of the
model mounted in the tunnel is shown in Figure 4.

INSTRUMENTATION

TUNNEL INSTRUMENTATION

The instrumentation used to monitor the wind tunnel conditions included one
transducer to measure supply pressure, two thermocourles to measure supply
temperature, and two Pitot tubes in the tunnel test cell. The two thermocouples and
the two Pitot tubes are used for reliability, and readings are averaged when both are
felt to be reliable. The supply-temperature thermocouples were fabricated at NSWC.
The angular position of the model support system was measured with a reel-type

readout potentiometer attached to the tunnel sector mechanism. The specific types of
tunnel instrumentation used are outlined in Table 2.

MODEL INSTRUMENTATION

The mode! was instrumented with a six-component balance to measure forces
and moments, 32 pressure transducers, and 48 coaxial thermocouples. The
measurement of static stability and drag were considered primary. All instrumentation
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was provided and installed by Tunnel 9 personnel. The specific types of model
instrumentation used are outlined in Table 3.

Force Balance

The force balance used for this test program was an Able Corporation 1.5 inch
Mk 34a with the Tunnel 9 designation of 9HV6-3. The maximum load ratings for this
balance were as follows:

Normal force: 2000 Ibf
Yaw force: 500 Ibf
Axial force: 600 Ibt
Roll moment: 800 in-ibf

Pressure Instrumentation

Pressures were measured at 32 locations on the model: 24 on the body and
eight on the base. The body pressures were arranged along rays emanating from the
model nose and confined to the left half of the model. This is illustrated in Figures
5(A-C). The naming nomenclature and coordinate locations of the taps are given in
Table 4. The locations of the base pressure taps are shown in Figure 5(D). With two
exceptions, all pressure taps on the model used stainless steel tubing with an inside
diameter of 0.062 inch. The gages were Kulite model XCW-062-5A transducers, and
were connected to the taps with short lengths of flexible Tygon tubing. These gages
have a nominal rating of 5 psia. Tubing lengths were limited to one inch or less in
order to minimize lag, as outlined in Reference 1.

The exceptions were at locations P3G and P9G. These gages were Kulite
model XCW-093-15A transducers, nominally rated at 15 psia. They incorporated
special screens consisting of a single pinhole, 0.031 inch in diameter, and were
mounted flush with the external surface. This was done in order to study the spectral

content of the pressure signal. The results of this effort will be reported under
separate cover.

Heat-Transfer Instrumentation

Measurements of surface temperature rise and heat transfer were made using
Medtherm model TCS-E-10370 coaxial thermocouples. The thermocoupie materials
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were chrome! and constantan. The gages were cemented into the model using Loctite
No. 271 adhesive and sanded to conform to the external contours; the sanding formed
the thermal junction. Locations and nomenclature are presented in Figures 5(A-C)
and Table 4. Complete information regarding the coaxial thermocouple technique can
be found in References 4 and 5.

Temperature-sensitive Paint

Runs 2393 and 2395 explored the feasibility of a temperature-mapping fiow-
visualization technique. The technique, as researched at Purdue University, exploits
the temperature-dependent fluorescent quantum efficiency of the rare-earth chelate
europium thenoyltrifluoroacetonate. The fluorescent intensity can be measured with a
photo-diode, and a correlation between photo-diode output and temperature can be
determined. The objectives of the effort were to obtain detailed visualization of
boundary-layer transition and leading-edge vortices, as well as quantitative mapping of
the surface heat transfer. More detailed information concerning this technique, and its
results as applied to this test program, can be obtained from Reference 6.

TEST CONDUCT

RUN PROCEDURE

Preparations for a tunnel run began with setting the model orientation in the
tunnel and securing the test cell and tunnel room. The heater vessel -vas then
charged to its initial pressure, and pressurization of the driver vessels was begun.
Calibrations cf the pressure instrumentation were then performed. First, the tunnel
supply-pressure transducer was calibrated in place. A series of shunt resistances
simulating known pressures were applied to the transducer, and the output recorded,
allowing a calibration curve to be computed. Caiibration of the test-cell Pitot and
model pressure transducers was then performed by recording data while the test cell
was evacuated from atmospheric pressure to approximately 1 mmHg. Two MKS
Baratron type 145 transducers with ranges of 1000 and 10 mmHg monitored the test-
cell pressure and were used as the reference standards. The evacuation was halted
briefly when calibration data were recorded 10 ensure unifor:n pressure in the test cell.
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After the tunnel evacuation was completed, static tare readings were recorded
with the mode! at a fixed angle of attack. Next, dynamic tare readings were recorded
during a wind-oif pitch sweep. The 25-minute heating cycle was then begun. Another
static tare was recorded toward the end of the heating, approximately two minutes
before the run. When the desired supply conditions were reached, the {unnel run was
initiated by bursting the twu me.al diaphragms. After flow was established, the model
was pitched through a wind-on sweep identical to that used for the dynamic tare,

For the majcrity of the runs, the mode! support system was programmed to hold
the model at zero angle of attack until the starting shock wave had passed. Then the
model was pitched tc -10° while the starting transients died out. The sweep from -10°
lo +25° was timed to occur during the equilibrium portion of the run. After the hot gas
was exhausted, the model was brought back to zero. For run 2394, the shorter run
time dictated that the model be held at -10* during tunnel start-up and that the sweep
begin from that position. The maximum angle of attack for this run was also limited to
+4° by the balance capacity.

Wind-off loads were computed from the static and dvnamic fare data taken
before heating. The wind-on loads were computed from the pre-run static tare and the
wind-on data. Aerodynamic loads were determined by subtracting the wind-off loads
from the wind-on loads at the same pitch angle, The pre-run static tare data were
also used to update the pressure transducer calibrations, using a reading from the
0-10 mmHg referencez transducer. This procedure corrects for any transducer drift
during heating and improves the accuracy of the calibrations at low pressures.

DATA ACQUISITION

Data were sampled and recorded using the Tunnel 8 Data Acquisition and
Recording Equipment (DARE) VI. DARE VI is a simultaneous-sample-and-hold,
single-amplifier-per-channel system with 14-bit resolution. The output signals of all the
instrumentation were amplified and fed through six-pole low-pass Bessel filters with a
cutoff frequency of 25 Hz before being recorded. The analog filters removed most 60-
Hz electrical noise. The sample rate was 250 Hz for all of the runs.

DATA REDUCTION

All acquired data were reduced unless believed to be in error or extraneous. A
list of all inoperative transducers for each run is presented in Table 5.
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-Diqital Filtering

In addition to the analog filters used on all channels, the data were filtered
during data reduction using a low-pass, sixth-order Butterworth digital filter. A cutoff
frequency of 10 Hz was used for filtering the tunnel supply temperature and pressure
dalq, the lect cell Pitot data, and all of the model temperature and pressure gage data.
Force-balance data were filtered based on the vibration frequencies of the particular
combination of sting, balance, and model. A cutoff frequency of 5 Hz was used for
the normal-force, pitching-moment, and axial-force data. The side-force, yawing-
moment, and rolling-moment data were filtered using a cutoff frequency of 3 Hz. The
data wers filtered both forward and backward to prevent the introduction of time lag.

Tunnel Conditions

The supply and Pitot pressures were determined from their respective
calibrations, as oullined above. The supply temperature was determined “- .. the
NIST tables for the thermocouple materials. The tunnel conditions were caiculated
from these quantities using real gas thermodynamics, as outlined in Reference 1.

Force Dala

Balance loads were computed using a calibration performed prior to the test
entry. The calibration included first-order interaction effects.” A balance and sting
bending calibration was used to correct the measured pitch and yaw angles for
bending of the sting due to the mode! weight and aerodynamic load. The force data
were reduced to coefficient form in both the body-axes and the stability-axes
coordinate systems. The definitions of axes systems, aerodynamic angles, and all

transformation equations used in the data reduction program are consistent with those
given in References 7 and 8.

Pitching and yawing moments measured about the balance center were
transferred to the model moment reference center (MRC) using reference
measurements made during installation. A base drag correction was applied to the
measured axial force to obtain corrected axial-force coefficients in the body axes. The
base pressure coefficient was compute as an integration of the eight base pressure
measurements. The areas assigned v each base pressure tap are presented in
Table 6. No base drag corrections were done in the stabllity axes. The reference

lengths and areas used are summarized in the data tabulations, and can also be
found in the nomenclature.
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Pressure Data

The pressure data were reduced in units of psia as welil as the nondimensional
forms P/PINF and CP.

Heat-Transfer Data

The millivolt output of each coaxial thermocouple was converted to surface
temperature rise using the conversion factor for chromel-constantan thermocouples. A
heating rate was computed from each temoerature rise using a finite-difference
solution of the unsteady, one-dimensicnal, heat-conduction equation for a
homogeneous planar siab of finite thickness, as discussed in References 4 and 5.

The tharmocouples were mounted in 17-4 PH stainless steel, using plugs in those
parts which were aluminum. The lurped thermal properties of 17-4 steel, chromel,
and constantan are essentially equivalent, justifying the assumption of material
homogeneity. A uniform initial temperature was assumed, and the inside surface of
the model was assumed to experience zero heat transfer. The measured temiperature
rise at the heated surface provided the remaining boundary condition needed to
compute the temperature distribution within the slab. Temperalures were caiculated at
50 node points in the slab, and the heating rate was computed from the temperature
gradient at the surface and the thermal conductivity of the gage material. Calcuiations
were also performed with 20 and 100 nodes; these calculations showed thai ihe
solutions were converged with 50 nodes.

The assumption of one-dimensional planar heat conduction was not valid for
gages TN, T2D2, T2D3, T503, T5D4, and T5D5. For these gages, a cylindrical
implerentation of the cne-dimensional hieat equation was used. While the cylindrical
equation was more realistic, the heating was two or three dimensional. This shou!d be
kept in mind when interpreting the data.

Photographic Data

Photographic data for this test program consisted of 35-mm color setup shots,
and 16-mm and 70-mm color schiieren flow-visualization photographs. The 16-mm
camera was operated at a rate of 500 frames per second. The 70-mm camera was
operated at approximately 20 frames per second. Timing marks were recorded on
each frame, along with the date and the run number. FExample photographs from the

70-mm camera during runs 2388 and 2391 are presented in Figures 6 and 7,
respectively.
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MEASUREMENT UNCERTAINTY

Measurement uncertainties were estimated using the principles set forth in
Reference 9, using specific procedures for Tunnel 9 given in Reference 10. In
general, the uncertainty in 2a measurement was composed of a combination of fixed
error or bias, B, and random error or precision, P. The root-sum-square model was
used to estimate the uncertainties at the 95% confidence level:

U,

Ires

=1[B2+p2J}/2
=252+ (£4,5) 2]1/2

where U, is the uncertainty, S is the sample standard deviation, and t,; is the 95th
percentile point for the two-tailed Student's "t" distribution (95-percent confidence
interval). For sample sizes greater than 30, t,, is considered equal to 2. Bias and
precision errors were propagated threcugh to calculated parameters individually, then
combined into overall uncertainties using the method given in Reference 11.
Estimated uncertainties are presented in Tables 2, 3, 7, and 8. Traceability of working
standards to the National Institute of Standards and Technology is maintained through
the Navy Metrolcgy and Calibration {METCAL) Program'? and through manufacturer-
provided calibrations.

DISCUSSION

A total of eight tunnel runs were accomplished in this test program. The test
matrix is summarized in Table 9. Runs were first performed at the waverider's design
point of Mach 14 and a unit Reynolds number of 2.0 x 10%ft. Two pitch-sweep runs
(2387, 2389) and one yaw-sweep run (2388) were performed at these ccnditions. The
pitch-sweep run was repeated because the first fifteen degrees of sweep for run 2387
occurred while condensed flow still existed in the test cell. The run was successfully
repeated (run 2389) to include the full pitch sweep of interest. Runs were also
performed to investigate the effects of off-design Mach numbers (runs 2390 and 2391)
and the effects of Reynolds number (run 2394). Runs 2393 and 2395 were performed

to investigate the temperature-sensitive paint,® but these runs also provided data to
assess repeatability.

Two sets of runs could be used to assess facility repeatability and flow
angularity/mode! misalignment. Runs 2387 and 2389 provided repeat data for angles
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of attack between 5 and 25 degrees at Mach 14, Re = 2.0 x 10%ft. Runs 2391, 2393,
and 2395 provide repeat data for angles of attack between -10 and 10 degrees at
Mach 10, Re = 2.0 x 10%/ft. Run 2393 was performed with the model at a fixed angle
of attack, allowing comparisons of fixed versus sweep data. Run 2395 was performed
with the model/balance/sting rolled 180 degrees, allowing an assessment of flow
angularity/model misalignments.

The data appeared to be consistent and repeatable. However, two points need
to be made. First, it was discovered during testing that the sting support was not
aligned with the tunnel centerline. Position measurements showed that the model was
mounted squarcly on a sting that was yawed 0.9 degrees to the right. This resulted in
a non-zerc BETA on the pitch-sweep runs and an increased ALPHA on the yaw-
sweep run. The effects could be seen in the data, e.g. a rolling-moment trend.
Second, on run 2388, YFC and YMC were not zero at BETA = 0 degrees. Constant
increments of 0.00241 and €.00158 were respectively added to YFC and YMC for run
2388 to shift the curves through zero at BETA = zero. The error is attributed to bias
in the balance yaw-force and yaw-moment measurements. No other data corrections
were performed.

Analyses were performed on the force and moment data, the pressure data,
and the heat-transfer data. Each of these types of data will be discussed here

separately, focusing on both the qualitative and quantitative aspects of the data as
well as the overall repeatability observed for all the runs.

FORCE/MOMENT DATA

Design Mach Number

Perhaps the most distinguishing piece of information about the performance of
any waverider is its lift-to-drag ratio (L/D). The L/D of this waverider with realistically
blunted leading edges was found to be relatively high. Figure 8 shows the L/D for the
design condition of Mach 14, Reynolds Number of 2.0 x 10%ft. Runs 2387, 2388, and
2389 are all plotted here and appear to be in excellent agreement. This is the first of
many plots that show the tunnel's excellent repeatability. Figures 9 to 11 are plots of
CLS, CDS, PMCS, and XCFP vs. angle of attack, ALPHA, for runs at the design
Mach number.

10
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Yaw Sweep
Run 2388 was a yaw sweep. The model had a constant angle of attack of

about 1.09 degrees throughout the full sweep. Figures 12 to 15 are plots of L/D, CLS,
CDS, YMCS, and XCPY vs. angle of side slip, BETA.

Mach-Number Effects

To further emphasize repeatability while introducing the Mach-number
independence observed during the test proagram, Figures 16 to 19 show L/D, CLS,
CDS, PMCS, and XCPP vs. ALPHA for three different Mach numbers: Mach = 14 (run
2389), Mach = 16.5 (run 2390), and Mach = 10 (run 2391). These coefficients appear
to be virtually insensitive to the changes in Mach number.

Reynolds-Number Effects

Figures 20 to 23 show L/D, CLS, CDS, PMCS, and XCPP vs ALPHA for all of
the Mach-10 runs. All runs except run 2394 were for a Reynoids number of 2.0 x
10%ft. Run 2394 had a Reynolds number for 20 x 10%/ft. Notice that there is only a
slight difference in the character of these curves. Furthermore, for run 2395 the model
was rolled 180 degrees and tested upside down. This enabled data to be taken to the
more negative angles of attack, while again showing tunnel repeatability.

Drag Polar
Another excellent example of tunnel repeatability, Mach-rumber independence,

and Reynolds-number effects was a plot of the drag polar for all runs. Figure 24 is a
piot of CLS vs. CDS for all eight runs. Again, excellent agreement was found.

PRESSURE DATA

Since the mode! was instrumented with gages on the top surface, bottom
surface, base, and leading edges, a map of pressures for virtually the entire body
could be assembled. These pressure data were somewhat useful in trying to quantify
the location and strength of the shock wave as it spilled over the leading edges.
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Design Mach Number
Figure 25 is a plot of pressure coefficient, CP, vs. ALPHA for a gage located on

the top centerline and for one on the bottom centerline. Gages P2A and P2G from
runs 2387 and 2389 were chosen here.

Mach-Number Effects

Figure 26 is a plot of CP vs. ALPHA for gages P2A and P2G for three different
Mach numbers. Runs 2389, 2390 and 2391 were ch: sen here. Figures 27 to 29 are
plots of the axial surface pressure coefficient variations aiong the top and bottom
centerline rays of the model at -10°, 0° and 10° angle of attack. Surface pressures
on the leeward surface were significantly lower than those measured on the windward
surface. This seemed to be a result of the shock containment around the leading
edge. The same trend was seen with the heat-transfer data, as would be expected.

With only two pressure gages around the leading edge, it was difficult to say
much about the location of the shock, other than to bound its strength. Figure 30
shows the changes in the two leading-edge gages, P6D1 and P6D2, with angle of
attack for runs at Mach numbers 14, 16 5, and 10. The windward gage sees a much
stronger portion of the leading-edge shock than the leeward gage, which measures a
lower value. Although this may be intuitively obvious, this trend helps to quahtatlvely
check the gage output.

Base pressures were expected to be only a fraction of free-stream pressure.
Figure 31 shows the variation in the average base pressure with angle of attack for

Mach numbers 14, 16.5, and 10. The respective variations in free-stream pressure,
PINF, are also shown for each Mach number.

HEAT-TRANSFER DATA

Design Mach Number

Figure 32 is a plot of Stanton Number, ST, vs. ALPHA for a gage located on
the top centerline and one on the bottorn centerline. Gages T3A and T3G from runs
2388 and 2389 were chosen here.

12
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Mach-Number Effects

Figure 33 is a plot of ST vs. ALPHA for gages T3A and T3G for three different
Mach numbers. Runs 2389, 2390 and 2391 were chosen here. Figures 34 to 36 are
plots of top and bottom centerline axial Stanton number distributions for angles of
attack equal to -10°, 0° and 10°, respectively. Large, abrupt changes in heat transfer
along the surface of the model may be attributed to transition from laminar to turbulent
flow. The approximate location of transition may be seen to move forward as pitch
angle is increased.

The cluster of five thermocouples and the reduced heat-transfer data provided a
slightly better understanding of how the strength of the leading-edge shock varies from
the bottom to the top surface. Figure 37 shows the heating rates detected at these
gage locations as a function of angle of attack. As with the pressure gage's data
trend, a change from higher heating to a lower heating as one moves from the
windward gage to the leeward gage is obvious.

Theoretically, an infinitely sharp leading edge would have an attached shock
everywhere along it, thus preventing any spill-over of fluid from the bottom surface,
where pressures are high, to the top surface, where pressures are very low. Even for
a blunted leading edge, there seemed to be some shock containment, and spill-over
was not occurring to a significant degree. This was a resuit of the detached shock's
becoming much weaker as it wrapped around the leading edge. The measurements
of both pressure and heat transfer support this shock-containment theory.

TEST DATA PACKAGE

The final data package to McDonnell Douglas and the Air Force consisted of
the photographic data and magnetic computer tapes; the tapes contained full lislings
and thinned tabulations of:

Wind tunnel conditions
Static stability and drag data in body-axes coordinates
Static stability and drag data in stability-axes coordinates
Surface pressure data in

1) Absolute pressure in psia

2) Pressure ratio P/PINF

13
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3) Pressure coefficient CP
Aerodynamic heating data in
1) Surface temperature rise in degrees R
2) Heating rate BTU/ft*-sec
3) Stanton number

FORTRAN routines were included for reading and plotting the data. In addition, the
data were interpolated for integer values of the angle of attack. Requests for data
should be directed to:

Naval Surface Warfare Center Dahlgren Division
White Oak Detachment, Code K24, Bldg. 402
10901 New Hampshire Avenue

Silver Spring, Maryland 20903-5640

14
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FIGURE 3. CAD DRAWING OF WAVERIDER WIRE-FRAME DESIGN
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FIGURE 4. WAVERIDER MODEL MOUNTED iN TUNNEL 9
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1640 2388 08

FIGURE 6. 70-mm COLOR SCHLIEREN FLOW-VISUALIZATION PHOTOGRAPH
FROM RUN 2388
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FIGURE 7. 70-mm COLOR SCHLIEREN FLOW-VISUALIZATION PHOTOGRAPH
FROM RUN 2391
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TABLE 1. NOMINAL TEST CONDITIONS

MACH 9.7 104 138 16.7
PO (psia) 1,300 14,000 9,400 21,000
TO (*R) 1,835 1,850 3,050 2,880
REINF (1//t) 2.0x10° 20.0x10° 2.0x10° 3.2x10°
QINF (psia) 24 23.0 3.2 34
UINF (fts) 4,650 4,900 6,450 6,400
PINF (psia) 0.037 0.320 0.024 0.018
TINF (°R) 92 90 88 60

Run time (s) 1.8 0.2 1.0 __LS.D
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TABLE 2. SPECIFICATIONS AND ESTIMATED UNCERTAINTIES - TUNNEL INSTRUMENTATION

Fm e
QTYy Type Range B S dof U.
units
Supply Viatran 304 10000 13.0 0.98 >30 13.1
ressure, PO 1
pel e Viatran 121 20000 535 3.0 >30 53¢
Viatran 214 50000 69.4 5.0 >30 597
Eamsacattey
Supply chromel vs ~2000 18.2 0.015 >30 18.2
temperature, alumel
TO0
°F W5RE vs 5000 14.0 0.032 >30 AL
W26RE B
i
Test cell Pitot | Micro Switch 15 0.014 0.007 >30 0.020 '
pressure, PT | 135PC15A1
i
ps Statham 50 0.036 0.010 >30 0.041
PA208TC
i
Saeactor angle, | Houston - 0.017 0.017 >30 0.038
THETAS Scientific 1150
deg
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TABLE 3. SPECIFICATIONS AND ESTIMATED UNCERTAINTIES - MODEL INSTRUMENTATION -

raaa—— = .
QTY Type Range e S dof U,
units

Force balance 9HV6E-3.
Normal force, | Able 1.5 inch Mk 2000 6.48 A. 0.093 10 A. 6.48
FN 34a 8. 0.051 B. 6.48
ibf C. 0.062 C. 6.48
Side force, 500 2.05 A. 0177 10 A 209
FY B. 0.290 B. 215
Ibf C. 0.092 C. 206
Pitching - 6.59 A. 6.590 10 A. 16.11
moment, MY B. 4.561 B. 12.12
in-1bf C. 0.211 C. 661
Yawing - 5.96 A. 0.288 10 A. 6.00
moment, MZ B. 0.293 B. 6.00
in-Ibf C. 1.340 C. 667
Rolling 800 1.13 A. 0.050 10 A. 114
moment, MX B. 0.0583 B. 1.14
in-Ibf C. 0.092 C. 1.15
Axial force, 600 0.41 A. 0.275 10 A. 074
FA 8. 0.194 8. 060
Ibf C. 0.155 C. 054
Pressure instrumentation.
Base Kulite 5 0.004 0.0004 >30 0.004
pressure, PB XCW-062-5A
psia
Surface Kulite 5 A,C. 0.018 | A,C. 0.006 >30 A,C. 0.022
pressure, P XCW-062-5A B. 0.028 B. 0.009 B. 0.033
ia
ps Kulite 15 AC.0.013 | AC. 0.016 >30 A,C. 0.035
XCW-083-15A 8. 0.013 8. 0.009 8. 0.022
Heat transfer instrumentation.
Surface temp. | Medtherm - 1.0 0.003 >30 1.0
rise, °F TCS-E-10370
A. Slow alpha sweep, 8. Fast alpha sweep, Run 2394, C. Beta sweep, Run 2388,
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TABLE 4. GAGE COORDINATE LOCATIONS AND NOMENCLATURE

. . s
Gauge X loc. Y loc. Z loc Wall
1d. Thickness
™ 0.000 0.000 0.000 1.500
T1A 2.145 0.000 0.258 0.270
T1D 1.950 0.814 -0.550 0.310
TG 2.145 0.000 -0.471 0.290
T2A 3.705 0.000 0.256 0.270
T2D1 4.095 1.871 -0.608 0.540
T2D2 3.900 1.598 -0.785 0.530
T2D3 3.705 1.421 -0.858 0.300
T2E 3.800 0.638 -0.838 0.230
T2G 3.705 0.000 -0.769 0.530
T3A 7.800 0.000 0.256 0.270
T3C 7.800 1.375 -0.300 0.340
T3D 7.800 2.407 -1.431 0.310
TIE 7.800 1.375 -1.438 0.800
T3G 7.605 0.000 -1.377 0.760
T4A 11.700 0.000 0.256 0.370
T4G 11.700 0.000 -2.030 -
TSA 13.455 0.000 0.256 0.370
‘ T5B8 13.650 1.194 -0.208 0.300
| T5C 13.650 2407 -0.890 0.280
T5D1 13.845 3.977 -2.012 0.360
T5D2 13.748 3.938 -2.094 0.360
TSD3 13.650 3.864 -2.162 0.380 !
T5D4 13.553 3.763 -2.203 0.460
T5D5 13.455 3.624 -2.209 0.250 f '
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TABLE 4. GAGE COORDINATE LOCATIONS AND NOMENCLATURE (CONTINUED)
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Gauge X loc. Y loc. Zloc Wall
id. Thickness

TSE 13.650 2407 -2.297 0.240
TSF 13.650 1.194 -2.355 -
T5G 13.455 0.000 -2.315 -
T6A 15.600 0.000 0.256 0.370
T6G 15.600 0.000 -2.664 -
T7A 19.305 0.000 0.256 0.370
178 19.500 1.706 -0.480 0.340
T7C 19.500 3.438 -1.528 0.310
T7D 19.500 4818 -3.041 0.270
T7E 19.500 3.438 -3.106 0.310
T7F 19.500 1.706 -3.272 -
T7G 19.305 0.000 -3.272 -
T8A 23.400 0.000 0.256 0.370
T8G 23.400 0.000 -3.952 -
T9A 27.105 0.000 0.256 £.370
T98B 27.300 2.388 -0.879 0.260
TSC 27.300 4814 -2473 0.300
T90 27.300 6.123 -4.197 0.240
TSE 27.300 4184 -4.134 0.350
T9F 27.300 2.388 -4.488 -
TSG 27.105 0.000 4.571 -
T10A 35.100 0.000 0.256 -

T10G 35.100 0.000 -5.919 -
P1A 1.755 0.000 0.256 -
P1G 1.755 0.000 -0.531 -
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TABLE 4. GAGE COORDINATE LOCATIONS AND NOMENCLATURE (CONTINUED)
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Gauge X loc. Y loc. Z loc Wall
Id. Thickness

P2A 4.095 0.000 0.256 .
P2G 4.095 0.000 | -0.829 -
P3C 7.800 -1.375 -0.300 .
P3G 7.995 0.000 -1.440 -
PSA 13.845 0.000 0.256 -
PSB 13.650 | -1.194 -0.207 -
P5C 13.650 | -2.407 -0.890 -
PS5E 13650 | -2.407 -2.297 -
P5F 13650 | -1.194 -2.355 -
P5G 13.845 0.000 -2.378 -
P6D1 15.600 | -4.330 -2.250 -
P6D2 15.795 | -4.095 -2.526 -
P7A 19.695 0.000 0.256 -
P7C 19.500 | -3.438 -1.528 -
P7E 19.500 | -3.438 -3.106 -
P7G 19.695 0.000 3.337 -
P9A 27.495 0.000 0.256 -
F9B 27.300 | -2.388 -0.879 -
P3IC 27.300 | 4.814 2473 -
POE 27.300 | -4.814 4133 -
POF 27.300 | -2.388 4.489 -
PSG 27.495 0.000 4636 -
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TABLE 5. INOPERATIVE INSTRUMENTATION

Run Inoperative instrumentation -
2387 PSC
2388 P9C, PB3, TOA

2389 P9C, PB3, PB8, TOA,
P6D2 saturated for ALPHA>20

2390 PB8, TOB, T2A

2391 P7€E
2393 P1G

2394 TN, TSD4, T9G
2395 TOB, TN, TSD4, T9G
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- “TABLE 6. BASE PRESSURE TAP AREA ASSIGNMENTS

Base pressure tap Area (In?)

PB1 6.9

| PB2 7.2
PB3 105

PB4 8.0

PB5 6.3

PB§ 8.0

PB7 10.5

PB8 7.2

Total Base area 64.6
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TABLE 7. ESTIMATED UNCERTAINTIES - CALCULATED PARAMETERS

Parameter Nominal c} P Une Comment
units value
e — L ———— ————
B
MACH 9.65e +00 2.26e-02 7.126-03 2.37e-02 | All runs
— = —
I PINF 3.17e-01 9.620-04 2.150-04 9.866-04 | REINF = 20e+06 ft
i sla
l‘ - 3.82e-02 2.38e-04 1.68e-04 2.91e-C4 | REINF = 2,3e+06 ft
QINF 2.440+01 1.95e-02 1.08e-02 2.23e-02 | REINF = 20e+06 fi1
psia 3180400 | 7.600-03 | 7.50e-03 | 1.08e-02 | REINF = 2,3¢+06 ft*
REINF 1.94e+07 3.30e+05 6.24e+03 3.300+05 | RE!NF = 20e+06 ft-!
ﬁ-1
1.91e+06 3.26e+04 3.73e+03 3.28e+04 | REINF = 2,3e+06 fi!
— |
“ RHOINF 9.19e-03 9.44e-05 4.18e-06 9.45e-05 | REINF = 20e+06 ft
lom/ft3
1.02¢-03 1.14e-05 3.17e-06 1.186-05 | REINF = 2,30+06 ft*
TINF 9.75e+01 1.19e+00 1.360-01 1.20e+00 | Mach 10
°R
8.52e+01 5.54e-01 8.548-02 5.61e-01 Mach 14/16.5
UINF 4.75e+03 2.54e+01 1.95e-01 2.54e+01 | Mach 10
ft/s
6.46e+03 1.63e+01 1.64e-01 1.63e+01 Mach 14/16.5
ViP 6.99e-03 5.63e-05 1.118-05 5.74e-05 | REINF = 2,3e+08 ft!
fiire
2.38e-03 1.80e-05 5.550-07 1.80e-05 | REINF = 20e+06 ft
4—_ﬁa=a —
CP B.46e-01 6.640-03 2.93e-03 7.26e-03 | REINF = 2,3e+06 ft°
1.44e-01 7.30e-04 1.50e-04 7.460-04 | REINF = 20e+06 ft
——e
l P/PO1 1.67e-03 2.24e-05 3.64e-06 2.27e-05 | PO = 1300 psia
2.41e-04 2.65e-06 4.03e-07 2.68e-08 | PO = 9400, 14000,
21000 psia
P/PINF 1.20e+02 9.55e-01 4.09e-01 1.040+00 | REINF = 2,3e+06 ft!
1.21e+01 6.57e-02 1.30e-02 6.70e-02 | REINF = 20e+06 ft-!
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TABLE 7. ESTIMATED UNCERTAINTIES - CALCULATED PARAMETERS (CONTINUED)

Parameter Nominal B P Urss Comment
units value

—_——— —— 4_’.___—-—
P/IPT 4,660-01 3.59e-03 1.58e-03 3.93e-03 | REINF = 2,3e+06 ft
i 8.526-02 3.95e-04 8.066-05 4.03e-04 | REINF = 20e+06 ft

ST 5.00e-03 - 8.70e-04 8.70e-04 | All runs

AFC 1.210-01 6.13e-04 €.70e-04 9.08e-04 | REINF = 2,3e+06 f-
2.27e-02 7.46e-05 6.23e-05 9.72e-05 | REINF = 20e+06 ft

ALPHA 9.91e2+00 8.92e-02 2.90e-02 9.37e-02 | Allruns

deg

=

BETA -1.04e+00 4.16e-02 2.38e-02 4.79e-02 | Allruns

deg

BETAP -1.05e+00 4.20e-02 2.42e-02 4.85¢-02 | Allruns

deg

CAFC 1.20e-01 6.53¢-04 6.73e-04 9.37e-04 | REINF = 2,3e+06 ft
2.07e-02 8.01e-05 6.27e-05 1.02¢-04 | REINF = 20e+06 ft

CDos 4.020-01 2.656-03 1.11e-03 2.876-03 | REINF = 2,3e+06 ft
2.52e-02 1.11e-04 5.56e-05 1.25e-04 | REINF = 20e+06 ft°

CLS 6.49e-02 7.09¢-03 3.03e-04 7.09¢-03 | REINF = 2,3e+06 ft!
9.73e-02 6.896-04 4.470-05 7.00e-04 | REINF = 20e+06 ft-

cP8 -1.12e-02 1.64e-03 3.30e-04 1.68e-03 | REINF = 2,3e+06 ft!
-1.148-02 1.65e-04 3.25e-05 1.690-04 | REINF = 20e+06 ft

NFC 8.49e-02 7.08e-03 3.03e-04 7.086-03 | REINF = 2,3e+06 ft
9.80e-02 6.99¢-04 4.53e-05 7.01e-04 | REINF = 20e+06 ft
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TABLE 7. ESTIMATED UNCERTAINTIES - CALCULATED PARAMETERS (CONTINUED)

Parameter Nominal B P U Comment
units value L
e

PMC -4.32e-02 4.60e-03 4.61e-04 4.62e-03 | REINF = 2,3e+06 ft*

-6.36e-02 4.54e-04 4.052-0 4.560-04 | REINF = 20e+06 fi*

PMCS -4.32e-02 4.60e-03 4.61&-;4 4.628-;; REINF = 2,;e+06 ft-!

i 44____;6.363-02 4.54e-04 4.05e-05 4.56e-04 | REINF = 20e+06 ft*

RMC 7.89e-04 1.36e-04 2.51e-05 1.38e-04 | REINF = 2,3e+06 ft"

-7.96e-05 1.80e-05 4.41e-06 1.85e-05 | REINF = 20e+06 ft°

RMCS 8.92e-04 6.10e-04 1.45e-04 6.27e-04 | REINF = 2,3e+06 ft!

| -1.10e-04 2.06e-05 5.82¢-06 2.14e-05 | REINF = 20e+06 ft-!

—YFC 279e-03 2.24e-03 4.33e-04 2.28e-03 | REINF = 2,3e+06 ft!

1.93e-03 | 2.26e-04 8.06e-05 | 240e-04 | REINF = 20e+06 ft°

YFCS 2.19e-03 ] 2.240-03 ;33e-04 ;286-03 REINF = 2,3e+06 ft*

1.93e-03 2.260-04 8.06¢-05 2.40e-04 | REINF = 20e+06 ft-*

YMC -1.37¢-03 1.52e-03 2.92e-04 1.54e-03 | REINF = 2,3e+06 ft°

-1.1de-03 1.526-04 5.35e-05 1.616-04 | REINF = 20e+06 fi-

YMCS -1.37;(; 1.52e-03 2.929-04_7 1.55e-03 | REINF = 273e+06 ft!

. -1.16e-03 1.52e-04 5.34e-05 1.61e-04 | REINF = 20e+06 ft
XCPP -8.53e-01 5.40e-04 2.32¢-03 2.38e-03 | Ali runs
XCPY -6.26e-01 8.88e-02 1.20e-02 8.966-02 | All runs

64




NSWCDD/TR-93/198

“TABLE 8. ESTIMATED UNCERTAINTIES - CALCULATED LIFT-TO-DRAG RATIO

Nominal ALPHA B P Ue
D deg
-3.44 -10.0 1.74e-01 1.31e-01 2.18e-01
2.88 -5.0 7.250-01 4.70e-02 7.27e-01
3.58 0.0 3.21e-01 1.08e-01 3.38e-01
3.23 5.00 9.869-02 4.13e-02 1.07e-01
2.58 10.0 3.51e-02 1.58e-02 3.85e-02
2.08 15.0 1.61e-02 7.38e-03 1.77e-02
1.71 20.0 8.79e-03 4.03e-03 9.67e-03
143 250 5.42e-03 2.44e-03 5.94e-03
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TABLE 9. RUN MATRIX *
— — - T
Run MACH REINF Sweep Comment .
ft
e

2387 14 2.0x 108 ALPHA Pitch stability at design condition.

+5° to +25°
2388 14 2.0x 108 BETA Yaw stabiiity at design condition.

-5° to +5°

2389 14 2.0x 108 ALPHA Repeat of 2387.

-10° to +25°
2390 16.5 3.2x 108 ALPHA Off-design Mach number effects.

-10° to +25°
2391 10 2.0x 108 ALPHA Off-design Mach number effects.

-10° to +25°
2393 10 2.0x 108 ALPHA Temperature-sensitive paint test.

10° fixed

2394 10 20.0 x 108 ALPHA Reynolds number effects. Gritted nose

-10° to +4° | for turbulent boundary layer.
2395 10 2.0 x 108 ALPHA Temperature-sersitive paint test. Model

+10° to -25° | inverted for flow angularity check.
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ABASE
AFB
AFC
ALPHA

AREF

BETA
BETAP

BMO

CAC

CDS
CLS
CNC
cpP
CPB
DARE

dof
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NOMENCLATURE

Base area, 64.6 in’

Air Force Base

Axial-force coefficient, body axes, axial force/(QINF*AREF)
Angle of attack, deg

Referencs area, 375.3 in’

Bias error at 95% confidence level

Sideslip angle, stability axes, deg

Sideslip angle, body axes, deg

Ballistic Missile Organization

Specific heat of nitrogen at constant pressure

Corrected axiai-force coefficient, body axes, AFC +
CPB"(ABASE/AREF)

Drag coefficient, stability axes

Lift coefficient, stability axes

Computer numerically controlied

Pressure coefficient, (pressure - PINF)/QINF
Base pressure coefficient, (PB - PINF)/QINF
Data Acquisition and Recording Equipment

Number of degrees of freedom associated with a standard
deviation calculation
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L

L/D
MACH
MAXWARP
METCAL
MRC
NFC
NSWC

P

PB
PB1-8
PINF

PMC

PMCS
PO
PO1
PTN
PTS
QINF

QDOT

NSWCDD/TR-93/198

Model reference length, 39.000 in

Lift-to-drag ratio based on AFC, stability axes

Free-stream Mach number

University of Maryland Axisymmetric Waverider Program
Metrology and Calibration

Moment reference center, model coordinates (X,Y,2)=(0,0,0)
Normal-force coefficient, body axes, normal force/(QINF*AREF)
Naval Surface Warfare Center

Precision error at 95% confidence level, S

Integrated base pressure, psia

Base pressures 1-8, psia

Free-stream pressure, psia

Pitching-moment coefficient, body axes, pitching
moment/(QINF*AREF*L)

Pitching-moment coefficient, stability axes

Tunnel supply pressure, psia

Tunnel equivalent-perfect-gas supply pressure, psia
North test cell Pitot pressure, psia

South test cell Pitot pressure, psia

Free-stream dynamic pressure, psia

Heat transfer rate, BTU/(ft**sec)
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REINF/L
RHOINF

RMC

RMCS
S
ST

bs

T
THETAS
TINF

TO

TOA, TOB

T0C

T01
Ura
UINF

USAF

NSWCDD/TR-93/198

Free-stream Reynolds number, ft"
Free-stream static density, lbm/ft*

Rolling-moment coefficient, body axes, rolling
moment/(QINF*AREF*L)

Rolling-moment coefficient, stability axes

Sample Standard deviation

Stanton number, QDOT / {Cp*RHOINF*UINF[TO1-(T+70°F)]}
95th percentile point for the two-tailed Student's "t" distribution
(95-percent confidence interval), which for sample sizes greater
than 30 is considered equal to 2.

Measured surface temperature rise, °F

Pitch angle of model support system, deg

Free-stream static temperature, °R

Tunnel supply temperature, °F

Measured tunnel supply temperatures in settling chamber, °F

Measured tunnel supply temperature upstream of particle
separator, °F

Tunnel equivalent-perfect-gas supply temperature, °F
Uncertainty [B? + P?]'?

Free-stream velocity, ft/sec

United States Air Force

Model station aft of nose, in
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XCPP

XCPY

YFC
YFCS

YMC

YMCS
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Pitch center of pressure, fraction of model length aft of nose,
MRC/L - PMC/NFC

Yaw center of pressure, fraction of model length aft of nose,
MRCI/L - YMC/YFC

Butt line location from model centerline, in
Yaw-force coefficient, body axes, yaw force/(QINF*AREF)
Yaw-force coefficient, stability axes

Yawing-moment coefficient, body axes, yawing
moment/(QINF*AREF*L)

Yawing-moment coefficient, stability axes

Model vertical location, in
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TABLE 1. NOMINAL TEST CONDITIONS

" MACH 9.7 10.4 13.9 16.7

" PO (psia) 1,300 14,000 9,400 21,000

" TO (°R) 1,835 1,850 3,050 2,880

" REINF (1/f) 2.0x10° 20.0x10® 2.0x10° 3.2x10°

[ aine {psia) 2.4 23.0 32 3.4
UINF (f/s) 4,650 4,900 6.450 6.400
PINF (psia) 0.037 0.320 0.024 0.018

| TINF CR) 92 90 88 60
Run time (s) 1.5 0.2 10 3.0
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TABLE 7. ESTIMATED UNCERTAINTIES - CALCULATED PARAMETERS (CONTINUED)

Parameter Nominal B P U, Comment
units value
P/PT 4.66e-01 3 59e-03 1.58e-03 3.93e-03 | REINF = 2 3e+06 ft'
8.52e-C2 3.95e-04 8.06e-05 4.03e-04 | REINF = 20e+06 #"
ST 1.00e-03 - €% value 6% value | Laminar data
5.00e-03 - -.0912 ST? | -.0912 ST? | Transitional/turbulent
+.0107 ST, | +0107 ST, | data. ST=d(ST)/d(time)
+7.88e-5 +7.88e-5

* ST uncertainties not

valid for gages TN, T2D2, T2

D3, T50D3, TS5D4, T5DS

AFC 1.21e-01 6.13e-04 6.70e-04 9.08e-04 | REINF = 2,3e+06 ft'
227e-02 7.46e-05 6.23e-05 9.72e-05 __REINF = 20e+06 ft'

ALPHA 9.91e+00 8.92e-02 2.90e-02 9.37e-02 | All runs

deg 3

BETA -1.04e+00 4.16e-02 i 2.38e-02 4.79e-02 | Al runs

deg

BETAP -1.05e+00 4.20e-02 2.42¢-02 4.85e-02 | All runs

deg

CAFC 1.20e-01 6.53e-04 6.73e-04 9.37e-04 | REINF = 2 3e+06 ft'
207e-02 8.01e-05 6.27e-05 1.02¢-04 | REINF = 20e+C6 ft' B

CDS 4.02e-01 2.65e-03 1.11e-03 2.87e-03 | REINF = 2, 32+06 ft'
2.52e-02 1.11e-04 5.56e-05 1.25e-04 | REINF = 20e+008 ft*

CLs 6.49e-02 7.08e-03 3.03e-04 7.09¢-03 | REINF = 2,3e+06 ft'
9.73e-02 6.99e-04 4 47e-05 7.00e-04 | REINF = 2Ce+06 fi"

CPB -1.12e-02 1.64e-03 3.30e-04 1.68e-03 | REINF = 2,3g+06 ft'
-1.14e-02 1.65e-04 3.25e-05 1.69e-04 | REINF = 20e+06 ft'

63 Change 1



NSWCDD/TR-93/198

TABLE 7. ESTIMATED UNCERTAINTIES - CALCULATED PARAMEYERS (CONTINUED)

Parameter Nominal B P U, Comment
units value
NFC 6.49e-02 7.090-03 3.03e-04 7.09¢-03 | REINF = 2,30+06 fit"'

9.80e-02 6.99e-04 4.53e-05 7.01e-04 | REINF = 20e+06 ft'

PMC -4.32e-02 4.60e-03 4.61e-04 4.62e-03 | REINF = 2,3e+06 ft"

-6.36e-02 4.540-04 4.05e-05 4.56e-04 | REINF = 20e+06 tt*

PMCS -4.32e-02 4.60e-03 4.61e-04 4.62e-03 | REINF = 2 3e+086 ft’
-6.36e-02 4.54e-04 4.05e-05 4.56e-04 | REINF = 20e+06 ft"

RMC 7.89e-04 1.36e-04 2.51e-05 1.38e-04 | REINF = 2,3e+06 tt'
-7.96e-05 1.80e-05 4.41e-06 1.85e-05 | REINF = 20e+06 ft'

RMCS 8.92¢-C4 6.10e-04 1.45e-04 6.27e-04 | REINF = 2,3e+06 ft"
-1.10e-04 2.06e-05 5.82e-0G6 2.14e-05 | REINF = 20e+06 ft"

YFC 2.19e-03 2.24e-03 4.33e-04 2.28e-03 | REINF = 2,3e+06 ft'

1.93e-03 2.26e-04 8.06e-05 2.40e-04 | REINF = 20e+06 ft'

YFCS 2.19e-03 2.24e-03 4.33e-04 2.28e-03 | REINF = 2,3e+06 ft"
1.93e-03 2.26e-04 8.06e-05 2.40e-04 | REINF = 20e+06 ft'

YMC -1.37e-03 1.52e-03 2.92¢-04 1.54e-03 | REINF = 2,3e+06 ft'
-1.16e-03 1.52e-04 5.35e-05 1.61e-04 | REINF = 20e+06 ft'

YMCS -1.37e-03 1.52e-03 2.92e-04 1.55e-03 | REINF = 2,3e+06 ft'
-1.16e-02 1.52e-04 5.34e-05 1.61e-04 | REINF = 20e+C6 ft'

XCPP -6.53e-01 5.40e-04 2.32e-03 2.38e-03 | Allruns

XCPY -6.26e-01 8.88e-02 1.20e-02 8.96e-02 | All runs
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