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L Introduc•on

Th recently developed Electr Nuclear Dynamics (END) method [1-10] offers promising
opp tief towa an Integrated I of electoic and nuclear motion and their
cInstead of the traditional separation of that problem into basically three steps - the
calculation of a potential energy surface, the determination of an analytical representation of that
surfc and th dynamics on the surface - tde END method attas the problem in one step.
This ha both conceptual and s puaoal advantae The general framework of the END is
a variatona approach towards the solution of the time-dependent Schredinger equation for all
the particles of intast in the system

Employing the tint-dependent varaional principle (TDVP) [11, 12], a set of first-order
coupled differeatil equations for parameters carteing a time-dependent state vector is
derived. "x=es time dependent parameters define an approxi;mat solution of the time dependent
Schrodiner equation for the system under study. The parameters can be of "electronic" type,
such as coefficients of basis functions in molecular or crystal orbitals, or of "nuclear" type, i.e.
characterizn the state vectors for the nuclei. The method has the flexibility to accommodate
either a quantum mechanical or a classical treatment of the nuclei. When the nuclei are treated
as classical particles the nuclear coordinaes and momenta are the parameters that evolve in time.

The END theoy can be viewed as a general approach to study time evolution, and thus also,
through appropriate Fourie transforms, spectra, in general scattering or bound state problems.
A particular choice of the form of state vector or wavefunctio and associated basis sets yields
a certain realization of END or in other words a particular model within the END framewor.
When parameters are independent of time the equations of motion reduce to the cxtremum

Svariational principle. The computer program Ent yne [131,
which implements the theor, can thus also be used for geometry optimization calculations. With
from nuclei the dynamical equations can accomplish wavefucMio optimizaion and in general

Imuleou geometry and ad optimization
7Uit simplest possible approximation of EN tmuy involves classical nuclei and a single

deerminantal waveuncion for the electrons. The latter choice may seem somewhat restricted,
howeve, with aprpit choice of wav c parameiers the determinantal wavefuncio
can be given the form of a cohere ntate. In this so called Thouless form [14] of the deterinant
the pwamet that determine the degree of mixing of the basis fmctions are chosen in such a
way that as they hange in time all possible -detminantal state in the given basis can in principle
be accessed. The dynamical spin orbital th make up the oUless determint are complex
no IIrtooal fkicons, which can permit general spin orbitals of various kinds in line with
the wo-rk of F* me [15]. The compuer code ENDyne is at this simplest level
of aprimation. Hwev, the theory has been worked out fora general multiconfigurational
stme vector for the electrons [6] and for a wave packt treatment of the nucl• [51.

Most of do applications of END carded out so far are concerned with rewtive collision 0
problem involving smal specie, and in particula electron transer reactions for mch system.
Modifcatios necessary for larger systems including enMded polymeric systems are under way.-
'lit present paper employs the END to develop a consistent procedure to describe the coupling
betien electronic and nuclear motim in exended systems. This will bring two area together
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which have so far ot been Utd separately, namly attice dynamics and band theory. Only
anall vibratons of the nuclei (ion caoes) around their equilibrium positions are considered in
he preen mode.

7be purpose of the present paper is to identify in some detail and address a number of
problems conneted with the applcation of the E•D method to an extende system. The long
range aspect of the Coulomb Interaction becomes a particulady important issue in the tratment
of extended systems, with wavefuncions that must extend throughout the system [161. Both in
trditional Ie dynamics and band theory the associated problems are wel-known [171, and
it Is essential to keep them in mind when developing a new approach.

Instead of attempting diectly a fil ab Nbo uteament a model system i discussed where
saei of the steup in the development can be handled analytically. The Pariser-Parr-Pople (PPP)
model [18, 191 was originally developed for inoponiratidg electron-electron interaction in the
treatment of w-electron molecular systems. wThe PF Hamiltoinian [20], which has grown out
of the original work, has been applied to a wide range of many-electron problems. It has been
applied at severl levels of appro-mat not the least to the teatment of polymers (see for
instance [211 and [22) and rerences dtemin). This PFP Hamilonian forms the starting point of
the present paper. The particular fesmatur of dte END method and the fact that it considers both
nucear and eectronic dynamics requires a care• analysis don of the tradtional
parameters. An essential aspect of the PPP model is tot the parameters c•n be chosen so as to
preserve the long range properties of the Coulomb intaution. De emaueg of the system for a
static latice in this model will therefo be proportional to the number of atoms (the volume) of
th system and it is Important to study how the ergy depends on the small nuclear vibrations
aromd the equilibrum positios. A harmonic a;ppofimation in terms of these deviations is
therefore natural. A harmonic appr oimadon of the total energy is adopted with respect to the
el ronic parameters. The model then represents a fy coupled electrnic-nuclear problem
at the level of the Random Phae Appr o (RPA) or liearized bme-Depedent Hart:ee
Pock (TI) . This approach has been diwsssed in nead tms in refe c [31.

The main part of the paper is planned as follows. he basic END framework is summarzed
in the na section. In section m a number of problems associated with the tratment of extended
systems are viewed, with particular aentm given so the separaton of long and short range
forces and also to the importance of woddng with quantities that scale orectdy with the size
of the system. In section IV the particulars of dte chosen model are discussed. "The question of
how to choose the eleconic basis functions for the END teatment is discussed in a separate
section. In sections VI, VII, and VMi explicit applications of END to dutee case e carried out.
Pirst, in order to connect to more traditional tratmets, the cases with only nuclear parameters
(section VIX and only electronic parameters (aection VII) are teated. Then in section VIII the
general case is considered with both elecuonic and nuclear parmeters. Finaly, the results are
summar nd ad further possible extensions are discussed in the last section.

L The END equations for a single determinant and classical nuclei.
A lattice periodic in one dimension, is considered, that cosims of M unit cells of length

a with oe atom per unit cell. Genealizadt to an arbitrary number of atoms per unit cell
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is raighfoa rd i odic boundary conditions are imposed so that all wavefunctions sats
m W ;r.)

00Q+ Ma) = 0(f). OIL.)
Me I 11e m labels the M cells in the Born-von Kdrmdn region (BK) -M/2 < m 5 M/2 - 1.

he actual nuclear (core) positions are denoted

where A is a point in cell m defined by the equilibrium position for that nucleus. In other words
this Is the awhorpoint of the nucleus (coae) and P(m) is the displacement from the equilibrium
of that nucleus (core). The pesentation is limited to small vibrations around the equil'brium
positions so that p << .L The nucleus in cell mur has momentum P(m). The displacements
Avm) and therafre the nuclear positions, as well as the momenta depend on the time parameter
r, while the anchor points A arnetim ndepndet.

Tbe electrom in the system wre described by a Aim&le determinant built from dynamic spin
oabltash(f- (C) with Cthe spin coordinate)

Kx.(C) = ,(C) + • #,(C)zjs(t); 1 __i <NJ. ('1.3)

The rank of the spin orbital basis {f.} is K and fte first N of the basis spin orbitals make up
the so called reference detunmiant. " time dependent electron wavefuction is defined as

I) = det{xA(M)1 (12.4)
where z is used as a collective symbol for all the N(K-N) complex parameters zj, = z,,(i). This
form of the d A n wavefunctio has the form of a generalized coherent state [23, 24, 3].
It is inormalized and the normalizatio is

S(s*,z) = (sI=) = det{1 + s.s). (0")

Classical treament of the nuclei can be considered as the narrow wavepacket limit of a
product of frozen (aussians. The TDVP is used to arrive at a set of coupled differential equations
for the electron nuclear dynamics by making stationary the quantum mechanical action [81. The
dynamical equations can be expressed as

0 -0aE/lR 
OL6)

0 0 0 1) E/19R( o0 0 \ aElOP
where the dot denotes time differentiation, say i - ds/dt. The dynamical metric has the matrix
elements

alS/84810 = C(o (M)
and the total energy E is a sum of the electronic energy (sIHs)/(ulu) (H being the electuoc

a), the nuclear kinetic energy, and the nuclear-nuclear repulsion energy.
The integration of this very large set of coupled difterental equations in time is a technical

problem that has been solved in practic for finite molecular systems. Mhe actual choice of basis
functio and electronic pamears x are discussed in sections V and VII.
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11. Special considerations for extended systems

Long and dt raw potendas
In order to fte an auend system in a meaningfl] way one cannot simply let the number

of nucei and electrons row indefinitely. Great care is required in order to insure that the
eOxeions scale correctly with siz and thatelectric neutrlity is maintained. ThiS Is particularly
Impotantsince the Coulomb interaction is long range. Mlw final quantities are always expressed
per unit volume, per unit cell, per atom, or per electron and thus proper scaling with size is
crucial This must be kept in mind when partitioning the energy or other quandties into partial
quantities. Each part must be proportlonal to M, the number of unit cells.

It is well-known (see e.g. Fetter and Walecka [16]) that transition from a finite to an
extmded system with Coulomb intmrtions is exuemely sensitive. It may be handled by means
of two coupled limiting procedures. One replaces the true Coulomb interaction by a screened
interaction

e-rnlr. ([I~l)

When the desired quantities have been calculated one lets the screening constant in the corre-
sponding expressions tend to zero at the same time as the size (the number of unit cells) of
the system tends to infinity in such a way that the interacdon remains operative throughout the
whole system.

equirements of this type imposed by the physics of the problem also show up in the form
of the need for lattice sums to be converlen MTa partitioning of the total energy into three parts
(apart from the nuclear kinetic energy, which by itself is proportional to the total number of
nuclei) is an important example; each pa chosen proportional to the total number of electrons
in thesystem 25]. Thus, B = A + A + Bs, where

is the elecUtonc kinetc nergy,

I= ZY L3)

d_1d/ 2 '_,+2 J ~•, r12

is the sum of the nuclear-nuclear repulsion energy, the electron-nuclear attraction energy, and
the electro-elecom Coulomb repulsion energy, i.e. the total elecrotatic energy, and

£s~fd~ie2r(fjf2 ICC2). - I17(flIi )ye162)(m)

is th exchange-coeation energy. In these expressions -f is the fiint order and r the second
orde reduced density matrix of the electronic system in the state under consideration, Z3 is the
charge of nucleus (core) g, and Rgb,, rig, and r12 are the appropriate interparticle distances.
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lb icakay m a system has M nuclei and N electrons so that

M

MTe om matrix is partitioned such that

( )( 6)
0=1

iLe. each term is associated with one atom (one unit cell), 'Ib charge associated with each

tarm is

n# dcee (111.7)

implying that,

N ihg- (ILS)

Each oew of the three terms in the electrostati enegy (1.3) contains a long range component,

which is such that the three contrbution cancel l w first trm, the nuclear repulsion energy,

is purely long rag and will be left as it stands. In oder to separaw the long and short range
conruibutios to the other two the potential due to the charg distribution -s:

9 2 ' (111.9)

is rnabyzed 7hsm is a function of Fl. Expandn 1/r12 in spherical harmonics and rearranging
ow d obtains

v,(4,) = -w~rig), 
(UMlO)

rig

where
00

I r22,dr2a, Idfl 2, IdC2,yg(f C2I)[-L --

-> Jdf2#IYg(f2If2)4 ~ics 1)

Her r< is the sane and r> the: greater of rig and r2g, respectvely, 012 the angle between.

rig and Y%, and d%~ the volume element relaing to the polar angles of -0a,.
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Use of (Gl.10) leads to

r12 2. 12

- f Jdf&7u(flt6)[$ - W(FI&)J + 1Xd i(1iiVufu (L2

-w ( A n) J d gI C 1h

2 t

+11 / df17#,(e1fI)V,(7*I).
2 ji

similar pulo of the electron-nuclear a ction term gives

n, w(4,JdC (L13)

%)] _ ( Z, C if"

Thm re the Iong rie ompoent of the elecMotaic part E2 of the total energy can be
writn as

,p -(z-.)(z -.nk)1EZ sl)(h1h (11L14)

"which obviously vanishes when ZS a ns for al g.
"The short range part of the electrostatic intrction can then be expressed as

f Jdfjvv(Ci Ifi)[! V,(-,1 ) - -L

+ I 1:[(2Z# - n,)w(Aa)- J lde,(f Ii)w(- k)]. OEM

Hartre-Fock versus density ftnctlonal theory
Whenever extended systems are discussed it is unavoidable to touch the question of the

basic one-ekcat approximation. It became clear very early that the Hartree-Fock method is
unsuitable for Ilr systems, paricularly for metals where it leads to a vanishing density of states
at the Fermi energy [261. This is easily seen for the electron gas and it has been shown much
later how this paho is the result of the conjuncdon of three factor (i) Coulombic forces, (ii)
extended Ws ms, and ORi) the restricted Hartree-Fock method [27, 281. For nearly thirty years
density functioml methods [291, based on the Hohenberg-Kohn theorem [30] have provided
a better aeroth order decripion of extended systems, which has led to an unprecedented and
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extremely useful interaction between theoM and experiment In the practical implementations
of density functional methods the so called "local density approximation" of the exchange-
correlation potential still dominates. The weakness of that approximation together with the
difficulty of making systematic improvements have during the last few years lead to somewhat
of a renaissance of the Hartree-Fock method for extended systems (see for instance volume 42,
issue 1 (1992) of the International Journal of Quantum Chemistry). Ths renewal is coupled with
the awareness of the necessity to combine Hartree-Fock with corrections to remedy pathologies
as the one alluded to here, In the electron gas case it has been shown explicitly how the Random
Phase Approximation (RPA) can provide such corrections [311. This is sometimes summed up
by saying that "Hartree is a better starting point than Hartree-Fock" for extended systems [32].

It should be noted that although the END approach employed here uses a single determinantal
wavefunction for the electrons, it is not synonymous with the Hartree-Fock method. The time-
dependent END theory at this level of approximation can be labeled as being fully nonlinear
lime-Dependent Hartree-Fock (TDHF). The RPA is equivalent to linearized TDHF and thus
the present description contains the necessary corrections to the pathologies observed for the
Hartree-Fock method.

IV. The model
The purpose of the present paper is to apply the END theory to an extended system. This

requires a model that is sufficiently realistic yet not too complicated. A Hamiltonian inspired
by the PPP model seems to meet those requirements. For applications to extended systems an
important advantage of the PPP model is that it correctly describes the long range aspects of
the Coulomb interaction [33].

Originally the PPP method was devised to describe the (optical) r electrons in planar organic
molecules. The model employs a basis of atomic Pz orbitals, one on each carbon atom. In
order to simplify the calculations one invokes the so called "zero differential overlap" (ZDO)
approximation, meaning that in the many-center integrals charge densities associated with atomic
orbitals on two different atoms are neglected. This can be considered a reasonable approximation
if the atomic otbitals (AO) are interpreted as "orthogonalized atomic orbitals" (OAO) [25, 34].
On the other hand OAO's can be regarded as Wannier functions [25].

As in the PPP model the Hamiltonian is expressed in second quantization and associated with
a certain set of basis spin orbital. For present purposes this basis can be the (exact) solutions
to the RHF problem at the equilibrium positions of the nuclei. The canonical solutions are then
Bloch functions, whereas the corresponding Wannier functions are certain unitary transformations
of these Bloch functions. The corresponding LCAO (linear combination of atomic orbitals)
approximation would employ linear combinations of OAO's for the Wannier functions and linear
combinations of Bloch sums of the basic AO's for the canonical solutions. In either case one
refers to the exact or approximate solutions of the RHF problem at the equilibrium nuclear
positions as SCF Bloch functions and SCF Wannier functions. The reasons for this choice of
basis are discussed in more detail in section V.

The SCF Wannferrfunctions (WF) are expressed as

"U-W,(C) = u(F- iV)v(C) = tu,(r() (IV.l)

7 Febuary 23, 1994



lcldlpg A spin factor, and th SCF 8lc frcwi (BF) become

M/2-1

. 0) v(k , , )O(() = M-1/ 2 E u,,(,)eikmo,(C). (1V.2)
rn-U/2

The Invea r tnfo (k = 2WKIMa) can be expressed as

M12-1

u,(f=M-)= • •(k,M-/1. (P.3)
uM'M/S

This ma that the wave number k lies in the interval - a k < r/a, which is the first
Brillouin = (BZ). Ihe electron field operators .(m),a(m)} orrspo to the W, and

{b.(k), 4(k)} to the BF, where the subscript refers to the spin. The creio opetors taform
as t spin orbitals

BKt

bF(k) = M-1/2 :a(m)e'k"
UZ (W.4)

4t(m) = M-'/ 2  I(k)e-k&-

and the adjoint relations hold for the annihilation operators.
The Hamiltonian in the WF reprsenation can be expressed as

BK BK
H = Ho + , a(m) E n,(m) + � P(m, n)at (m)a,(n)

1 BK (IV.5)
+ 1: 7(m-,--) E ,or-,)-. (n)

2 ins 0,00

where the Occupation number operator n.w(m) = 4t(m)av(m) and where in the last sua the
tem with n = n and o = aý is missing.

The diagonal matrix element a(m) of the core Hamiltonian with respect to the Wannier
function centered at m is (Q is the atomic core charg)

O(M)=a. E Q(IV.6)

TIe first term depends on the core displ ts Pm) (which are not restricted to any one
direction) via a short range potential. The sum can be separated into two terms. A Coulombic
one independent of the core displacements that cancels similar terms in the electronic and the
nuclear repulsion energies and one that depends on the core displacements. The off-diagonal
elements P(m,n) of the core Hamiltonian also depend on the displacements via short range

Seuary 23, 1994



potentals. Mhw ppmmeor -y(n - m) represent the interaction between electron density on atom
n (or density in cell m) and that on atom n. Due to the choice of basis functions these parameters
depend on the di tane In3 - fI -- R but not on the displacements. Following Stolarczyk et
.L. [351 the form

1 1
(R) + e()R/7 (0)R) (IV.7)

Is chosen to obtain
A-'(R) = -.R(I + o(DPy(O)R)M (1V.8)

which shows that the term A(R) is free of spurious long range effects.
The term Ho in the Hamiltonian represents the repulsion between cores

H. = 11: Q2  (V9
Ho~2 - . If(m) -/N(n)l (TV.9)

As discussed in section U the total wavefunction is assumed to be a single Slater determinant.
The corresponding one matrix or the Fock-Dirac density matrix in the Wannier rep• smtation
can be expressed as

BK
y(Cle') = E un.u(f)D&"(m, n)un,, (4'). (IV. 10)

The matrix elements DOW'(m, n) clearly depend on the choice of basis and constitute an average
over the state under consideration

D"'(m,n) = (4,(n)a,(m)). (IV.11)

The notation
Dee(m, n) + DOO (m, n) = D(m, n) (lV.12)

is introduced demanding that D0 (m, m) = DPA(m, m) = Q/2 in the reference state, where Q
is the core charge of the only type of atom present in the chain.

Tew average value of the various terms in the Hamiltonian requires the evaluation of the
expectaton values (n,(m)n1e(n)), which for a single determinant becomes [20]

(n,(m)ne,(n)) = (n,(m))(ne,(n)) = D"(m,m)D•fI" (n, n). (IV.13)

The expectation value of the Hamiltonian (IV.5) with respect to a single determinantal state can
then be expressed as

1K BK(H) -- 2!,• + Ea(m)D(m,m)

1:~ IA(m)_ - (n)j
BK BK

+ y(O) I D'°(m, m)DOI(m, m) + F ,(n, m)D(m, ,) (P1.14)
1 K spin

+• E -y(n - m) Z D"',(m, m)DW''(n, n).
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u ft above defintion includin (IV.7) and the expansion

1 1 A+ r 3(A i22_-R2,
Sfi + -) F3 + 2R5  + .V.15)

for r << R, the monopole terms are

E• [Q - D(m, m))[Q - D(n, n)] (1V.16)
2a--- Im- n"

This expression corresponds to (lL 14) in the general rUatment. For ionic systems this is the
Madelung energy. It vanishes when Q = D(mrn, m) for all m, a condition that means that the
number of electrons associated with atom m is the same as the core charge. This is the'case
for the reference state. When the nuclei vibrate and the electrons react to this motion the
atomic charges will fluctuate. The fluctuations around the equilibrium charge add up to zero,
while expression (IV.16) represents the Madelung energy of these fluctuating atomic charges.
It follows that the requirement

BK
_ D(m, m) = MQ (IV.17)

is a reasonable one.
In sections VII and Vm a particular kind of fluctuations are introduced such that

D(m, m) = Q + (-)'q, (IV.18)

which obviously satisfies condition (IV.17), and gives the Madelung energy

_2 BK Mq2ln2
2aE Im-ni a

1"his condition is assumed to hold in the following analysis.

The next set of terms in the multipole expansion (lV.15) are

1 (m ) ) - n1P3 , - D(m,,m)], (0V.20)

an expression that also vanishes under the condition Q = D(m, m) for all m, and also with the
special choice (IV.18) this sum is zero, since

Qq BK(-1)'(m-n)

"son BI( (IV.21)

= 2 - (-1)'5P(m) E -- = 0

10 Fetruay 23, 1994



However, a state with general fluch;ating charges will contribute to the Madelung energy.
Similarly, some of the tram sppotimal to a-3 vanish, so that for small vibrations

(H) 4 _ P8(T)Px(fl) + p,(m)p,(n) - 2p,(m)p,(n)

2 j"I - 13

BK Mq2In2
a

B-K BK (IV.22)
+,y(O) " D'(n, m)DOO(m, m,) + E f(n, n)D(m,,n)

BK
+23 A(n - m)D(m, m)D(n, n).

In somewhat mone detail than expressed by (IV. 18) one finds

D*(m,m) = + (-1)'Sq (lv.23)

wher the notations D& D+ and DOM =i D- have been introduced. One may then also write

BK
• D+(m,m)D1(m,m) = [ + q+q_. (IV.24)

"The parameters a,, and A(m, n) are due to the short range forces within and between the cores
and are expanded in terms of the displacements as

sDIl,, I S.31,'

Qctm = Qar0 + Aipi(m) + j E ip()A ) T.53 3d'(v.5

and

(n,-m) = -O(n, m) + E 6(n, m,,,)[p(n) - p,(m)]

+ (lV.26)
1 ,l,z

+ , fliai,(n, m) pi(n) pj,(m).
2 jj,

Ibi result has beo obtained using the, relation ((n, m,) = -f((m, n) for the first derivatives.
Th total energy separates into two parts. one, Ed consisting of those terms that depend on the
nuclear displacements and another, E& being the energy of the system with the static lattice, ie.

(H) = E.t + Ed (IV.27)
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Bat C {(Qa, +5 E #(n, m)D(m, ns) +,(f 7 q+ q-)J + 2 M
"inM# (lV.28)

+~ it [ (-1)*A(n) - '2

and
Qq Ba (1) ,
-= • .-L1) ) + (m)

+ _ -: p(m)pB(n) + py(m)p'(n) - 2ps(m)]p(n)
W a Ofn Im - n13

BK Bi'l 1 BK Bis

"+ E AjpQn) + E A,,.p,(m)pa(ra)

MON j MOjj
B K " , 1 , 1

+ •[ (D, ,n) + D(m,,,,)]{ • •(n, ,m.)p,(n) + i j S ,y,(n Z,(~,(n)

(IV.29)
'a first and the lat tm in the expression for Ed at rally of higher order and ar not part of the

ic aroI; maton, but kept heb to show how such serms enter. The nuclear displacements
and the dynamical variables z can be chosen such that they are zero at a stationary point, which
mew that

(9(E4 , + Ed) 0_=_(E _ +E =00 _ _ o o S0V.30)
lp I

0 p=0

are the equations defining the stationary point The symmetrized factor [D(m, n) + D(n, in)]
Iur Ie a real result for the last term.

V. Electronic basis functions

Mw choice of basis functions for the description of electrons in a system with moving nuclei
requs carel analysis. Only the situation where the nuclei undergo small vibrations always
keeping them close to their equilibrium positions is considered. In principle, a complete set
of electronic basis functions is needed. Formally such a set is available in the form of all the
solutions of the band theory problem for the equilibrium positions of the nuclei. Such a basis is
obtained as the solutions to an effective one-electron equation for a static, fully periodic lattice.
At this stage of the discussion ther is no reed to specify that equation in more detail. It could
be, my, of Hwa-Fock type, of density functional type, or something else. What is needed is
the propety common to all such equations, namely the translational symmetry, which implies
that the solutions are Bloch functions, i.e. eigenfunctions of the translation operator.
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In actual calculatiom a specific choice of such Block fmctions obviously has to be made.
The calculation of the energy bands and the corresponding wavefunctions is a well developed
p-ocedure [36, 37) and ther are a number of possible choices for representing the solutions to the
static lattice problem in terms of specific bais functionL This presentation limits the discussion
to the cae when the original buis functions ae atomic orbitals of some kind centered at the
equilibrium nuclear positions. From each type of atomic orbital in a unit cell a Bloch sum can be
formed adapted to the trantiocial symmetry. lbe final solutions of the effective one-electo
pblem are then linear combinaons of such Bloch sums. The term 'SCF Bloch functions' are
used for such solutions.

Given any set of Bloch functions in a band the corresponding set of Wannier functions can
always be constructed by means of a unitary transfonmation [38]. If that is done with a set of
Bloch fuctons expressed as linear combinations of Bloch sums of atomic orbitals, the resulting
WMnier functions can be closely approximated by linear combinations of orthogonalized atomic
orbitals But the unitary tasformation can also be carried out on the exact solutions to the
static lattice problem, and that may be valuable from a formal point of view. The formally
exact Wannier functions are then obtained, which constitute a set of non-canonical orbitals for
the single detminantal wavefnction to represent the solution of the static lattice problem.

The finc•ons (IV. 1) and (IV.2) primarily represent such exact canonical and non-canonical
solutions of the efective one-electron static latti problem. They do not constitute a complete
set of functions sin= they correspond to only one band. But, in principle, it is possible to include
more than one band. 1hese functions provide a good description of the system at the equilibrium
nuclear positions. For small departures from the equilibrium positions it would therefore seem
natund to employ these functiom as a basis for the END treatment. Since the term "bsis
function" is used in several different contexts one should clarify the following points. The
electronic basis functions for the END treatment are the exact or approximate solutions of the
effective one-eecon equation for the static lattice problem, Le. functions (IV.l) and (IV.2). The
parmete caLcteizing the PPW Hamiltonian are thus expressed in terms of these functions.

In ab •udo calculations obviously more specific choices have to be made. One can discern
two distinct alternatives. One would be to use the primitive basis of Gaussians centered at the
nuclei "bese basis functions are allowed to follow the nuclear motion. At any given moment
the nuclear framework shows no particular symmetry. This approach has led to successful
decriptio of smnal molecular systems. However, for an extended system the lack of periodicity
means that one cannot speak about Block or Wannier functions, leading to eat ompliaio.
The other possibility, which has been chosen here, is based on the notion that the nuclei never
depart very far from the regular equilibrium positions and the SCF Bloch or Wannier functions
will be adequate choices.

Using the Bloch or Wannier fumctions in one band means that the possibility for the electrons
to adjust to the changing nuclear eanvirome resides in mixing the spin orbitals used in the
referenc detmminant with, in principle, all virtual spin orbitaL In order to explore the effects
of such mixing in a somewhat systematic fashion the pairing of each reference spin orbital with
one virtual spin orbital is first considered. This can be looked upon as a successive lowering of
the tanslational symmetry. Since the translational symmetry can also be used to classify normal
modes of vibration, such pairings should provide a number of useful special cases of END.
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Vl. Lattice dynamics
In arde to connect the END treatment of vibrational and electronic structure with more

traditional procedures this section eats the special case where the total energy in the equations
of motion (16) does not depend on the electronic dynamic variables.

With only nuclear dynamic variables the equations of motion reduce to

-dP/dt = DE/OR (VLl
dR/dt = BE/OP

i.e. the classical Hamilton's equations of motion.
Restricting the cosderation to longitudinal vibrations, Le. dynamics for which pz(m) =

p,(m) = 0 for all m leads to simpler and more transparent expressions than those 'of the full
Uteatmnt while dearly displaying the capabilities of the model. Adding the nuclear kinetic
energy to (IV.27), and using (WV.30) yields

BK BK
E p+(m)p,(+n),2= E., - 1 Az+ppx Ip (M) (VI2)

BK BK p2(M)
+ , B"s(n, m)p,(m)px(n) + L "--

The core charge is set to Q = 1 and the following notation is introduced

Bj,(n,-m) = Do(n,,m)p.(n,-,), (VU3)

with [ x,j' y z, ,or z] It should be noted that the density matrix of the reference state satisfies the
relation Do(n,m) = Do(n - m, 0). In equation (VL3) and in the expression for Et the density
matrix Do of the reference state appearL. The energy derivatives with respect to displacements
then amr

OE 2 g K P,(n) BK
S= • m + A,,p(m) + Bxz(m,n)px(n). (VL4)

Thus, the coupling between different nuclear displacements is due to the "hopping parameters"
Sin the Hamiltonian and als introduced via the multipole expansion.

The equations of motion for this special case (longitudinal nuclear motion and one kind of
nuclei with mass Ms)

dP.(m) = E

dp,(m) B OE

dt O.D,(m)

14 Fetruary 23, 1994



can be ccmbined into

ad p.(m) DE V )
S= -Op,(m) (6)

Expading the disp ments in normal coordinates Q(qt), such that
I BZ

P,(m) Q(q=t)e",I (VL7)

substituting this Into the equatio, of motion, multiplying by exp (-iqam), and summing over
n yield

_____ BK
M* dt 2  3, e jn - Ass - E B..(n, O)e""CQ(q, t). (VL8)

The iuatz

Q(q, t) = Qo(q)e-i(')' (VI9)

used in equation (VL.) yields the following expession for the longitudinal fequency

12q 2 BK BK
M. 4 e-l"1 + A,, + B.,(n,O)e-•"}

1. /2-1 coe(qan) M/2-1 t•]o)
=.f- - 7 -E,, + A,, +2 E B,,(n,0)cos(qan)}.

a SI n *=

In order to get the correct behavior for small q, i.e. w(q) --. 0 the condition

Ar/2-1 1 M12-1

-E " + Ass + 2 E B,.(n,o) = 0 (VL)

is needed.
The inverme tasformation

Q(qt) =Ii Jp.(mn)e-tI, (VL12)

of the displacements together with the condition that p,(m) are real, gives the relation Q*(q, t) =
Q(-q,t). The general expression for the displacements can then be written as

1 BZ

p ,(m)= Qo + F,[Ql(q, t) cooqam - Q2(q,t) sinqgam]}, (VL13)
f>O
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with the red and imaginary parts of the normal coordinates given by
Qi(q.t) = QoI(q) ccosl(q)t + Qoj(q) si. ji(q)t

Q2(qt) = -Qoi(q)usinw(q)i + Qo2(q) cosw(q)t.
Sbould transversal vibrations also be included in MVL2) the general expression becomes

S= Estp.(m)pm(n) + P,(m)P,(n) - 2p,(m)p,(n)
2- . E p-" ~ Im - n +

BK xsx+ 2 E Aii,pi(m)pi,(m) (VL 5)

BK 'syx BK g2

, Bi,(n, m)pi(m)pg(n) + F

slim jj' in
"Thus, the one-center parameters induce couplings between different nuclear displacement com-
ponents on the same atom, while the 'hopping parameters" 0 produce the couplings between
all components on different atoms.

VII. Time-dependent band theory
As another special case the END equations for fixed nuclei are studied. This is the Born-

Oppenheimer starting point for most problems of electronic structume. The equations of motion
(OL6) that determine the time evolution of the electronic state now reduce to

iC 0)(ds'la ) = \ aIla= )" otLI)( iC * )dzl/dt)(O EI t)

The electronic basis consists of all the SCF Bloch (IV.2) or SCF WIanni (IV.l) functions in a
particular band. The most general combination of spin orbitals is of the form

R2Z
vr(k,•) + F e.S(l',f)zkIg;k,(t); (k in LZ). (VI.2)

Here the abbreviation LZ = Little Zone is used for the interval -r/2a <5k < r/2a and RZ
a Residual Zone for the remainde of the first Brillouin Zone (BZ), which consists of the two
intervals - /a < k< -w/2a and r/2a < /k < r/a. The reference determinant is doubly
filled with the orbitals v(k, F) in the LZ. The virtual orbitals v(L, F") are characteid by the
wave numbers k' in RZ.

The possibility of using fully general spin orbitals like (VM.2) should certainly be considered.
Hea the case where each spin orbital has either a or P spin is first explored. The corresponding
orbitals are then in general different. One set of orbitals w+(k, F is combined with a and
another set w-(k,-) with P spin,

Rtz
wt+(k, ) = v(k,") + E.v(VF1z+;kk,(t); (k in LZ)

kI (VII3)
Rtz

w_(k,,) = v(k, rj + 1jv(k', r:_.;&,(t); (k in LZ).
ki
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EaM set of these function can without lons of generality be chosen orthogonal, even though
they an not normalizud to unity, Le.

w (k(rw*(, F.4=)*&j

hi

Bemuse of the pairing theorem [39] the z parameers can be assumed to saisfy

(VL15)
A*k = 1+ sts )kk.

Thus, both dt two (M/2)x(M/2) matrices d. and Ak and the product matrices sZt_ and zts+
an diagonal

Ift .corresponding Fock-Dirac density matrix

P(Ce) = p+Cv,t')a(C)a((') + P-(Or')s(C)(C)
LS (VL6)

can thin be e xessed in terms of the z's (see e.S. [8]). lbe basic Bloch functions ae here
amumed to be solutions of a restricted Hatree-Fock problem and time reversal symmetry would
imply that

v(-,= F v*(k,F) 7)
v(-/',•= v'(k',f). {

Thee is no snm to Impose such relations on the functions (MI.3).
In order to illustrate how the END method works the case with only two z-paramets per

wave number in LZ is studied, so that

w+(k,r) = v(k, F) + Z+.ikvI,,( (VMB,)
w_(k,f) = v(k, F) + z-,Viv(k',9j.

This is an example ofparing which can be made in sevend different ways, both with respect to
the spatial orbitals and with respect to spin [40]. A determinant with half of the electrons filling
w.+ oditls with spin a. and the other half illing w-. orbitals with spin P forms the basis for the
Allernant Molecular Orbital (AMO) method (see [41] and refeences therein). In applications of
the AMO method to the description of solids [42] the pairing is chosen such that

k' = k + w/a; k in LZ; k' in RZ. (VIM9)

One could, of courm, leave k/ unspecilied within RZ in developing the formal theory, and a
variety of choices could be explored in actual applications. In order to demonstrate the principles
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of the END thory it suffices to limit the present development to the choice in equation (VII.9),
and wriw

d Z*;W, = z.Jg. (VILlO)

IsU an that thm ae M/2 dynamical variablea z+&(t) for electrons with up-spin and an
equal number of variables X..WQ) for down-spin electrons. The density matrix coefficients (Le.
elmens of the ao called charpe and bond order matrix) we then

D*(m,n) = I EeaQ"_){1 + (-1)sh (kli)

+ + [(-I)- - lJ]IZ.* 2 + ... ,

such that

D(mn) = D+(m, n) + D_(m,nn) -

Do(mn) + DI(m,n) + D2(m, n) (VII12)

in terms of the moth, first and second order term (terminating after second order) in the
electnc dynmi variables. This gives

BK

PO9'(m, n)D(n, n)
"•"~(VILI3)

BK LZ

M{B - E 9o(m,o) [IX+kl 2 + lZ-kIae•¶,
,.'.odd k

with
B =K -P•(M, 0). (VILI4)

For the diagonal elements in (VILlI)
D.(m,,m) = + F.zk + Z.k= + (-())q.L

2 M

Adding the contributions from the two spins yields

D(m,m) = D+(m,m) + D_(m,m) = 1 + (-1)'q (VILQ6)

with q = q+ + q- and with (-1)'q(t) representing the fluctuating charge at site m, such that

BK
E (-1)m q(t) = 0 (VE.17)
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at all •mes An equation for the total a•tic eaergy form (IV.28) can then be obtained as

1 BBtMfq 2 [--!! + - E (-1)*A(n)j + at

+ B + + q+q_] + 1 K ((,,).ls)
0#0

DK LZ
-2 E 46"(mtO) jflz+j,2 + IjZ-,k,2]eim.

I on with resp to the z vriable gives

OE,= 2Aoq + -y(0)q.. - 2B(k)4+,%
DZ+k (VIL19)
DE t = 2Aoq + 1(0)q+ - 2B(k)zk

nd their complex conjugates, where,

A. - + (-1)sA(n) (V1L20)

and
BY

B(k)= E a(,,,0)c•. (vML21)
m-odd

For k in LZ it holds that B(k) < 0. It follows from (VIL19) that the derivatives vanish when
the z variables do, Le. the electronic dynamical variablw are defined relative to a stationary
point of Es.

Mwe dynamical metric is obtained from

S = (siZ) = "I {(l + IZ+k12)(1 + I(z-.12)}, (V=2)
keLZ

0+-k,,+= - 84& +& = $,,/(I + Iz+112)2,

C-k,-§= -02 _ = 411(l + Iz-,l2)2,(,1123)

¢+k,-l = Ck,+= 0.
For dte harmonic approximation the dynamical metric is noeded only throghi zeroth order, i.e.

C+I,,+, = C-.,- = 4,1 (V.24)
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yien t qatin of motion

-t 2Aoq + 'y(0)q.. - 2B(k)z41, VL5dt (VII.25)
.dz-1• = 2AOq + 'y(O)q+ - 2B(k)Z...

and thr complex conjugaft s. ntroduci the vaie u = - z.k, leads to

d =- .r LZ(u + u*) - 2B(k)ut (V1L26)

and its complex conjugateW In matrix form

[A 01 [] [A,-2B A._ ][u.] (VL27)

withU= (v].2,8)

a column matrix containing the M12 variables uk, the (M/2)x(M/2) matrix

A1 =- ... ,(V[IM)

and the diagonal matrx

B0 B kM4+1) ... 0(M 0

0o ... B (k,,/,+,)

The solution of the dynamical equations can be accomplished by the wsatz

where the time dependence is confined to the matrix blocks e"+Jt, which are diagonal with
elements exp[(iu-(k)tj. Substituting (VI31) in (V127) and writing

V =eimv; V* =e-i•v*, 0li.32)

lead to a an of homogeneous linear equations

C: 0];= : (V1L33)
2 FeIur [21,
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St St

a = -Xf) - (Al - 2B)X - Ai
b=(1-(AI -2B) -AIX.

Padtoobp of (V1L33) yields

[a- ba-lb]V = 0 (VUL35)

wad the frequencies ata(k) are obtained from the secular equation

det{a - ba-lb} = 0. (VIL36)

Mw dynamical variables can then be expressed as
LZ

=k(t) = vke-i(k)t + E xiVe"('. tV1L37)

I

Equation (VIL25) yields a completely analogous treatment for g = Z+ + Z-k as that just
completed for uk. One gets

LZ

g9(t) = Wke- + EYklWoCe•'. (VIL38)

The original dynamical parameters are obtained as

1
=(ge + Uk) (M39)
1

S-k = j(9k - UV).

VII. Combined electronic-nuclear dynamics
"hids section presents a simple case where both electronic and nuclear dynamical variables

are allowed to vary simultaneously. The starting point is the harmonic approximation of the
energy for longitudinal vibrations and for paired dynamical spin orbitals as discussed in the
previous section. The core charge is set to unity (Q = 1), and the total energy of the system is

E = Est + Edj + T,, (V .1Ll)

with
1BK

E = Mfq 2[- + 1 E (-1)"A(n)j + cO

BK
+ B + -7(0)j + q+q-] + "F A(n)) (VIIL2)

BK LZ

- 2 E #°(Me, o) F[Iz+&t2 + Iz_,tl2,6krm.
rnnodd k
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BK '2BK

SK I BK

+ J A,p,(rn) + AIMPP(m)
m m

+F lD(,, ) + D(n,m)jV.*(m,n)ps(m) + !

and BKx; ;•
To f (M)" ;( '114)

The density matrix D*.(m, n) contains terms of zeroth, first, and second order in the electronic
dynamical variables [cf (VIL11)J.

D*(m,n,) = Do(m,n) + D+,I(m,n) + D*,2(m,n). (VIL5)

Since q = q+ + q- is of first order in the electronic coordinates the first term in (VIIL3) is really
of third order overall and should not enter in the harmonic approximation. This term is neglected
as well as other terms of higher order than two in the dynamical variables. Differentiation with
respect to the nuclear displacements yields the following expression

OB 2 NK.. .n

2 5K _____

Op,(m) 3 - S In - m13 + A, + A,.p,(m)

BK
+ E [Do(m,n) + DI(m,n) + Do(n,,m) + DI(n,m )]#5°(m,,n) (VI.6)

mo.m

BK

+ 3 Do(m,n)#.5.(m,n)p.(n).

Assuming, as is done here, that the reference state corresponds to a stationary point of the

emug implies that

LRE BK
= A, + 2 Do(m,n) ,n) =0 (VIIn)7)

8PX(m) I pUL7O

for all nL The only term in (V11L6) which contains the electronic dynamical variables is

BK

E [ID,(m,n) + DI(n, m)]j..(m,,) =

M1 F,0(k)(4 + "-"--k)

2+2F(a)(r2 + 3,*1)},
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whome = #•(k) + ijo.k),

= l 1 (n,O)coa(kan),•.,,• (VIII.9)

P.On , )rin(kn)
suedd

Sinc the derivatives f(n,0) we odd functions of n p(k) = 0. Using (VIL19) and (VIII.1) the
derivatives with respect to the z variables become

= 2Aoq + 7(0)q- - 2B(k)4k + 2#(k)•j -.z, ,' (VJ)IxO))

E = 2Aoq ()q+ - 2B(k)z*.k + 20(k) I-HI. 10)

and their complex conjugates. These derivatives vanish when all the dynamical variables are
zeo, Le. the dynamical variables are defined wrlave to a stationary point of the energy. Finally,
the derivatives with respect to the nuclear momenta are

OE P"(m) (VIIn.l)
aP.(m) -jwM.

TIM four coupled equations of motion ar
dz• O _E _.d4:& .OE

dt Ozk' dt - Dz*,' (VM1L12)
dp,(m) O BE dP.(m) OE

dt BPN(m); dt Bpx(m)

Introducing the normal coordinates (VL7) the latter two equations become

dQ(k, t) P(k, t)
dt Ma

and ddP(kt) = e(k)Q(k,1)

dt
dZ • (VIL14)

- 2i•k,vI.V/.• P.(l){(z+, + X.-) - (4; + z:')}

with
2 BK E BK

C(k) = i ~ -A,.,. - 2 E Do(0, n),6.0.(0, n)eikan3. (VIL 15)

Thus, the farces (VIILI10) become
OE = 2Aoq + -y(0)q_ - 2B(k)z4.k + 2i&5(k)Q(w/a, t)/ VM-Mn

iaz+kOE (VIIL16)

z_-- = 2Aoq + -1(0)q+ - 2B(k)z_.k + 2i#*(k)Q(wr/a, t)/ VM/-' -
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of 0

and ther complex conjugates. The equations of motion then become

v"k= 2Aoq + f(0)q_ - 2B(k)z+k - 2ifi.(k)Q(w/a, t)/ 1 /rii
dt (VLLl7)

i d .• = 2Aoq + 'y(o)q+ - 2B(k)z-_ - 2iP.(k)Q0(wr,t)lVIiiM

and their complex conjugates. In this particular model only the normal coordinate Q(w/a, t)
couples to the electronic motion. The other normal coordinates satisfy

MU Q2(k,t)-
Sdt 2  = e(k)Q(k,t), k 3 /a, (VML8s)

with the solutions Q(k,t) = Qo(k)e-i'(k)t, with the frequencies given by

w2(k) = -e(k)/M,. (VIIL19)

This is the same expression as for the longitudinal frequencies in (VL.10). The longitudinal
frequency in (VH.19) can be expressed as

2,k) 1_ 4 M/-i M/2-ni"•

W2(k) = _L[_ M- 1 Ax + 2 1 Do(O,n)#xx(O,n)cos(kan)]. (VIM20)

Corect behavior at small k iLe. for w(k) --+ 0 requires that

M/2-1 11/2-1
-4 E 1 +A.,+2 E Do(O,n)P(,x(On)=0.

a3 al n M1 Vl1

Comparison of (VML25) with (VIIL17) shows that the difference variable uk =Z+ - Z-k
still satisfies (VIL26) as in the case with frozen nuclei. Thus, obviously

LZ
Z+k - Z-k = vke-"(k)' + Xve4 (VL22)

as in (VM.37). Introducing the abbreviated notations

Q = Q(t) = Or/a't)/. (VIIL23)

P = P(t) = P(r/a,l,)l/VfM(VL

raightforwa algebra using (Vm.17) gives

4g- f= (4Ao + 'y(O))q - 2B(k)gk -4i•s(k)Q (V1I.24)
dt

fct the SUM variable g = z+k + z.4. The definition of q in equations (VIL15) and (VILl6)
leads to the expssion

•dgt A ,E(g, + g*) - 2B(k)g, - 4i#,(k)Q, (VIL25)

I
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with A = (8Ao+2y(O))/M-. Ths means that the real, g, k.and imaginary, gik, pat of g ais
irk -2B(k)gjk - 4P,(k)Q (V11L26)

and LZ

=i -A g i + 2B(k)gr&. (VM127)

These equations combined with

LZ ('JL.28)
P = e(w/a)Q + #*,)i

I

yield in matrix canonical form[1 .0 0 M;-1  0 1 Q~
i- 0 0 0 -A + 2B g, ('JU29)

P] e(r/a) b 0 00 P
.. j Mbt -2B 0 0g

with b a row matrix with elements 4j,.(I)/M. The matrix A is the analog of the matrix in
(VU.29) with the constant A and B is the diagonal matrix in (VIL3O). This is really a partitioned
problem, Le.

9 or
and [~~e(,r/a) b I1 [Q] VIL1W =L-Mbt -2Bj gJ(J.1

r g (VIL.30) with respect to the time parameter and using (VIl.31) one obtains

(,J- (MA -2B~bt 2(A -2B)B] (K -i 91'ULThi nnhermitian problem can be brought to classical canonical form by a similarity transfor-
matim A = L-1 FL ie. the resulting matrix A consists of Jordan blocks

[A] Ak 1] [Al 1 0

[i,10 Akj 0 Al 1 , .. (VIL33)

10 0 All
For the case where all the Jordan blocks are oe-dimensional, the matrix A is diagonal. Then,

deinng a new column matrix

fs =L-1 ] (VIIL34)

the equation of motion can be expressed as

d2f(

"The negative of the eigenvalues of A are then the frequencies squared of the coupled system
of electrons and nuclei. The requirement that the frequencies be real puts further constra-nts
on the parameten in the matrices A, B, and b. For small vibrations around the ground state
all frequencies should be real.
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IX. Conclusions
Thie END theoy, which provides a fully dynamical treatment of electrons and nuclei

without resorting to the common Bom-Oppenheimer or Adiabatic approximations, has been
used to formulate an internally consistent description of electrons and vibrating nuclei of an
extended system. In order to demonstrate the essential features of such a system, allowing for
the coupling between nuclear and electronic dynamics, a PPP-like hamiltonian is employed.
Such a hamiltonian yields a total energy that scales properly with the size of the system and
exhibits a physically correct dependence on small nuclear displacements. It also satisfies the
primary requirement of all treatments of extended electronic systems, namely permitting a proper
treatment of the long range nature of the Coulomb interaction.

The nuclei are treated classically and the electrons are described by a single determinantal
wavefuncon built with complex spin orbitals. The nuclear positions and conjugate momenta are
the dynamical variables of the nuclear dynamics, while the electronic dynamical variables are
the complex coefficients mixing Bloch functions below with those above the Fermi level The
Wannier functions (or corresponding Bloch functions) in one band associated with the equilibrium
nuclear positions make up the electronic basis. The particular sample system studied is metallic
with a half-filled band in its reference state.

The equations that govern the time evolution of the dynamical variables are derived via the
time-dependent variational principle. Their analysis is presented in three steps. First, frozen
electronic degrees of freedom lead to a variant derivation of the classical equations of motion
of vibrating nuclei. Second, frozen nuclear degrees of freedom yield a RPA description of
the electronic excitations. Third, the full END equations are solved revealing that the highest
frequency nuclear mode is the only one coupling to the electron dynamics.

In spite of its simplicity, a linear chain with one atom per Pnit cell and a single valence elec-
tron per atom exhibits the essential complexities to demonstrate the generality of the approach,
yet permits a straightforward and relatively uncluttered analysis. Additional specializations in-
clude the detailed treatment of only longitudinal vibrations and the selection of only one mixing
coeMficient per occupied spin orbital linking it to a single virtual spin orbital as is done in the
alte2ant molecular orbital AMO method.

Permitting a detailed and transparent application of the theory to an extended system these
simplifications in no way reflect any basic limitations of the END approach. As is indicated
in sections IV and VI transverse vibrations follow in exactly the same manner as in traditional
treatments. Similarly, systems with more than one atom per unit cell involve more work, but no
additional conceptual challenges. Also, the consideration of several electronic mixing coefficients
leads to more dynamical equations, but no significantly different behavior from that of the simple
AMO choice. Inclusion of more than one energy band again means more work but adds nothing
fundamentaily new.

Extensions of the simplest END model to one with quantum nuclei and possibly also a
multiconfigurational electronic description have been accomplished for finite molecular systems
and might also be attempted for extended systems. In particular, a quantum mechanical treatment
of the nuclei is necessary to permit a discussion of phonon systems and a study of electron-
phonon coupling.
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