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ABSTRACT

The Electron Nuclear Dynamics (END) approach is developed for a linear chain in a
parametrized model inspired by the PPP (Pariser-Parr-Pople) model. Particular attention is given
to the model parameters, and the choice of basis functions in this time-dependent theory. The
resulting equations of motion include electronic-vibrational couplings. Explicit analysis of the
simplest model leads to coupling between the highest frequency longitudinal vibrational mode
and the electrons.
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I. introduction

The recently developed Electron Nuclear Dynamics (END) method [1-10] offers promising
opportunities towards an integrated understanding of electronic and nuclear motion and their
coupling. Instead of the traditional separation of that problem into basically three steps — the
calculation of a potential energy surface, the determination of an analytical representation of that
surface, and the dynamics on the surface — the END method attacks the problem in one step.
This has both conceptual and computational advantages. The general framework of the END is
a variational approach towards the solution of the time-dependeat Schrdinger equation for all
the particles of interest in the system.

Employing the time-dependent variational principle (TDVP) [11, 12], a set of first-order
coupled differential equations for parameters characterizing a time-dependent state vector is
derived. These time dependent parameters define an approximate solution of the time dependent
| Schridinger equation for the system under study. The parameters can be of “electronic™ type,
such as coefficients of basis functions in molecular or crystal orbitals, or of “nuclear” type, i.e.
characterizing the state vectors for the nuclei. The method has the flexibility to accommodate
cither a quantum mechanical or a classical treatment of the nuclei. When the nuclei are treated
as classical particles the nuclear coordinates and momenta are the parameters that evolve in time.

The END theory can be viewed as a general approach to study time evolution, and thus also,
through appropriate Fourier transforms, spectra in general scattering or bound state problems.
A particular choice of the form of state vector or wavefunction and associated basis sets yields
a certain realization of END or in other words a particular model within the END framework.
When parameters are independent of time the equations of motion reduce to the extremum
conditions of the time-independent variational principle. The computer program ENDyne [13],
which implements the theory, can thus also be used for geometry optimization calculations. With
frozen nuclei the dynamical equations can accomplish wavefunction optimization and in general
simultaneous geometry and wavefunction optimization.

The simplest possible approximation of END theory involves classical nuclei and a single
determinantal wavefunction for the electrons. The latter choice may seem somewhat restricted,
bhowever, with appropriate choice of wavefunction parameters the determinantal wavefunction
can be given the form of a coherent state. In this so called Thouless form [14] of the determinant
the parameters that determine the degree of mixing of the basis functions are chosen in such a2
way that as they change in time all possible determinantal states in the given basis can in principle
be accessed. The dynamical spin orbitals that make up the Thouless determinant are complex
nonorthogonal functions, which can permit general spin orbitals of various kinds in line with
the work of Fukutome [15). The computer code ENDyne is implemented at this simplest level
of approximation. However, the theory has been worked out for a general multiconfigurational
state vector for the electrons [6] and for 8 wave packet treatment of the nuclei [5). fd'—

Most of the applications of END carried out so far are concerned with reactive collision 0OJ
problems involving small species, and in particular electron transfer reactions for such systems. O
Modifications necessary for larger systems including extended polymeric systems are under way. -
The present paper employs the END to develop a consistent procedure to describe the coupling
between electronic and nuclear motion in extended systems. This will bring two areas together |
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which have 30 far ofien been treated separately, namely lattice dynamics and band theory. Only
small vibeations of the nuclei (ion cores) around their equilibrium positions are considered in
the present model.

The purpose of the present paper is to identify in some detail and address a number of
problems connected with the application of the END method to an extended system. The long
range aspect of the Coulomb interaction becomes a particularly important issue in the treatment
of extended systems, with wavefunctions that must extend throughout the system [16). Both in
tradiional lattice dynamics and band theory the associated problems are well-known [17], and
it is essential to keep them in mind when developing a new approach.

Instead of attempting directly a full ab initio treatment a model system is discussed where
some of the steps in the development can be handled analytically. The Pariser-Parr-Pople (PPP)
model (18, 19] was originally developed for incorporating electron-electron interaction in the
treatment of x-electron molecular systems. The PPP Hamiltonian [20], which has grown out
of the original work, has been applied to a wide range of many-electron problems. It has been
applied at several levels of approximation not the least to the treatment of polymers (see for
instance [21] and [22] and references therein). This PPP Hamiltonian forms the starting point of
the present paper. The particular features of the END method and the fact that it considers both
nuclear and electronic dynamics requires a careful analysis and specification of the traditional
parameters. An essential aspect of the PPP model is that the parameters can be chosen so as o
preserve the long range properties of the Coulomb interaction. The energy of the system for a
static lattice in this model will therefore be proportional to the number of atoms (the volume) of
the system and it is important to study how the energy depends on the small nuclear vibrations
around the equilibrium positions. A harmonic approximation in terms of these deviations is
therefore natural. A harmonic approximation of the total energy is adopted with respect to the
electronic parameters. The model then represents a fully coupled electronic-nuclear problem
at the level of the Random Phase Approximation (RPA) or linearized Time-Dependent Hartree
Fock (TDHF). This approach has been discussed in general terms in reference [3).

The main part of the paper is planned as follows. The basic END framework is summarized
in the next section. In section III a number of problems associated with the treatment of extended
systems are reviewed, with particular attention givea to the separation of long and short range
forces and also to the importance of working with quantities that scale correctly with the size
of the system. In section IV the particulars of the chosen model are discussed. The question of
how to choose the electronic basis functions for the END treatment is discussed in a separate
section. In sections VI, VII, and VIII explicit applications of END to three cases are carried out.
First, in order to connect to more traditional treatments, the cases with only nuclear parameters
(section VI), and only electronic parameters (section VII) are treated. Then in section VIII the
general case is considered with both electronic and nuclear parameters. Finally, the results are
summarized and further possible extensions are discussed in the last section.

lIl. The END equations for a single determinant and classical nuclel.

A lattice, periodic in one dimension, is considered, that consists of M unit cells of length
a with one atom per unit cell. Generalization to an arbitrary number of atoms per unit cell
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is straightforward. Periodic boundary conditions are imposed so that all wavefunctions satisfy
@ = a&))
¥(F+ Md) = ¢(7). (L1
‘The integer m labels the A cells in the Bomn-von Kérmén region (BK) ~M/2 < m < M/2-1.
The actual nuclear (core) positions are denoted
R(m) = i 4+ p{(m) 11%)
where 17 is a point in cell m defined by the equilibrium position for that nucleus. In other words
this is the anchor point of the nucleus (core) and p{m) is the displacement from the equilibrium
of that nucleus (core). The presentation is limited to small vibrations around the equilibrium
positions 30 that p << R. The nucleus in cell m has momentum P(m). The displacements
A(m) and therefore the nuclear positions, as well as the momenta depend on the time parameter
¢, while the anchor points 74 are time independent.
The electrons in the system are described by a single determinant built from dynamic spin
orbitals (¢ = (¥,{) with { the spin coordinate)
K
i@ =€)+ D $i(6)zi(t); 1<i<N. a.3)
j=N+1
The rank of the spin orbital basis {1);} is K and the first N of the basis spin orbitals make up
the 30 called reference determinant. The time dependent electronic wavefunction is defined as
I3) = det{xi(é;)} @4
where 3 is used as a collective symbol for all the N(X-N) complex parameters z;; = z;;(t). This
form of the determinantal wavefunction has the form of a generalized coherent state [23, 24, 3).
It is unnormalized and the normalization is
S(z*,3) = (z]s) = det{1 +s's). s)
Classical treatment of the nuclei can be considered as the narrow wavepacket limit of a

product of frozen Gaussians. The TDVP is used to arrive at a set of coupled differential equations
for the electron nuclear dynamics by making stationary the quantum mechanical action [8]. The

dynamical equations can be expressed as
iC 0 0 O i OE/ds*
0 —-iC* 0 0 ) | OE/5s
o o o -1)|Rr]|=]|er/em @)
(1] 0 1 0 P OE/[oP

where the dot denotes time differentiation, say £ = dz/dt. The dynamical metric has the matrix
clements
#1nS/023025 = Cap (11 )

and the total energy E is a sum of the electronic energy (s|Hsz)/(sls) (H being the electronic
Hamiltonian), the nuclear kinetic energy, and the nuclear-nuclear repulsion energy.

The integration of this very large set of coupled differential equations in time is a technical
problem that has been solved in practice for finite molecular systems. The actual choice of basis
functions and electronic parameters s are discussed in sections V and VIL
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Hl. Special considerations for extended systems

Long and short range potentials

In order to treat an extended system in a meaningful way one cannot simply let the number
of nuclei and electrons grow indefinitely. Great care is required in order to insure that the
expressions scale correctly with size and that electric neutrality is maintained. This is particularly
important since the Coulomb interaction is long range. The final quantitics are always expressed
per unit volume, per unit cell, per atom, or per electron and thus proper scaling with size is
crucial. This must be kept in mind when partitioning the energy or other quantities into partial
quantities. Each part must be proportional to M, the number of unit cells.

It is well-known (sce e.g. Fetter and Walecka [16]) that transition from a finite to an
extended system with Coulomb interactions is extremely sensitive. It may be handled by means
of two coupled limiting procedures. One replaces the true Coulomb interaction by a screened

interaction
ey, (m.1)

When the desired quantities have been calculated one lets the screening constant in the corre-
sponding expressions tend to zero at the same time as the size (the number of unit cells) of
the system tends to infinity in such a way that the interaction remains operative throughout the
whole system.

Reguirements of this type imposed by the physics of the problem also show up in the form
of the need for lattice sums to be convergent. The partitioning of the total energy into three parts
(apart from the nuclear kinetic energy, which by itself is proportional to the total number of
nuclei) is an important example; each part chosen proportional to the total number of electrons
in the system [25). Thus, E = E; + E; + E;, where

By =3 [4tvi(alcl) @)
is the electronic kinetic energy,
_1s 45§ (G13)]
Ez—zg R 22,/&:1 rig
1 y(&1lé1)v(€aléa)
+3 / dbrdé2 —

is the sum of the nuclear-nuclear repulsion energy, the electron-nuclear attraction energy, and
the electron-electron Coulomb repulsion energy, ie. the total electrostatic energy, and

T(6i6aléata) - $r(&aléa)r(baléa) L4)

r12

(1IL3)

By = [dte
is the exchange-correlation energy. In these expressions 7 is the first order and I' the second
order reduced density matrix of the electronic system in the state under consideration, Z; is the
charge of nucleus (core) g, and Rg, 714, and ry2 are the appropriate interparticle distances.
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The electrically neutral system has M nuclei and N electrons so that
M
Y z,=N. (WLS)
=l
The one matrix is partitioned such that

M
v(all) =D n(ald) (IIL6)
g=1

ie. each term is associated with one atom (one unit cell). The charge associated with each
term is

ny= [ dem(ele), aw7)
implying that
M
N=Y"n, (IL8)
=1

Each one of the three terms in the electrostatic energy (111 3) contains a long range component,
which is such that the three contributions cancel. The first term, the nuclear repulsion energy,
is purely long range and will be left as it stands. In order to separate the long and short range
contributions to the other two the potential due to the charge distribution ~4:

Valfy) = / dg, IR (f;"’) a@L9)

is analyzed. This is a function of 7;. Expanding 1/ry2 in spherical harmonics and rearranging
one obtains

v.(ﬁ.)=§5-wm.), (IL10)

W(Fig) =,,/ rlydra [ 401, / dcn.(ezlez)[;:—.—;:;l .

-y / dfza’ln(lefz);ffﬁ(mi’u)-
=1 >

Here r is the smaller and ry the greater of ri, and rg,, respectively, 92 the angle betweea .
71, and 7, and dfl;, the volume element relating to the polar angles of 3,.
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Use of (TIL10) leads to

/ a6 d&.ﬂﬁ‘lﬂ‘l’_&l -Z / déydes 2 (alé1)n(&ala)

r12

= §'§ /dfl’h(fl 'El)[;'l:' - w(ru)] + -2- ; /dfl‘h(fﬂfl)V,(i’l,)

. ny ﬁ' ) (Imw.12)
-1 ;p..( AL - () - [dan@len@a
+3 X [@an@lamey.
'
Similar manipulations of the electron-nuclear attraction term gives
_EZ /df &I&Z ZZ Z/df ‘n(fllfl)
(L13)

--ZZ.[——-«:(R',:.)]—EZ ]delﬁ‘l“—

Therefore the long range component of the electrostatic part E; of the total energy can be
written as

E (Z, - "L)(Zl n) @L14)

which obviously vanishes when Z; = n; for all g.
The short range part of the electrostatic interaction can then be expressed as

% [ denteienlzhie - 2

3 {L15)
+3 222, ~ nhotBp) ~ [ dern@lerotFun)
e

Hartree-Fock versus density functional theory

Whenever extended systems are discussed it is unavoidable to touch the question of the
basic one-electron approximation. It became clear very early that the Hartree-Fock method is
unsuitable for large systems, particularly for metals where it leads to a vanishing density of states
at the Fermi energy [26]. This is easily seen for the electron gas and it has been shown much
later how this pathology is the result of the conjunction of three factors (i) Coulombic forces, (ii)
extended systems, and (iii) the restricted Hartree-Fock method [27, 28). For nearly thirty years
density functional methods [29], based nn the Hohenberg-Kohn theorem [30] have provided
a better zeroth order description of extended systems, which has led to an unprecedented and
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extremely useful interaction between theory and experiment. In the practical implementations
of density functional methods the so called “local density approximation” of the exchange-
correlation potential still dominates. The weakness of that approximation together with the
difficulty of making systematic improvements have during the last few years lead to somewhat
of a renaissance of the Hartree-Fock method for extended systems (see for instance volume 42,
issue 1 (1992) of the International Journal of Quantum Chemistry). This renewal is coupled with
the awareness of the necessity to combine Hartree-Fock with corrections to remedy pathologies
as the one alluded to here. In the electron gas case it has been shown explicitly how the Random
Phase Approximation (RPA) can provide such corrections [31]. This is sometimes summed up
by saying that “Hartree is a better starting point than Hartree-Fock” for extended systems [32].

It should be noted that although the END approach employed here uses a single determinantal
wavefunction for the electrons, it is not synonymous with the Hartree-Fock method. The time-
dependent END theory at this level of approximation can be labeled as being fully nonlinear
Time-Dependent Hartree-Fock (TDHF). The RPA is equivalent to linearized TDHF and thus
the present description contains the necessary corrections to the pathologies observed for the
Hartree-Fock method.

IV. The model

The purpose of the present paper is to apply the END theory to an extended system. This
requires a model that is sufficiently realistic yet not too complicated. A Hamiltonian inspired
by the PPP model seems to meet those requirements. For applications to extended systems an
important advantage of the PPP model is that it correctly describes the long range aspects of
the Coulomb interaction [33].

Originally the PPP method was devised to describe the (optical) x electrons in planar organic
molecules. The model employs a basis of atomic p, orbitals, one on each carbon atom. In
order to simplify the calculations one invokes the so called “zero differential overlap” (ZDO)
approximation, meaning that in the many-center integrals charge densities associated with atomic
orbitals on two different atoms are neglected. This can be considered a reasonable approximation
if the atomic orbitals (AO) are interpreted as “orthogonalized atomic orbitals” (OAQ) [25, 34].
On the other hand OAQ’s can be regarded as Wannier functions [25].

As in the PPP model the Hamiltonian is expressed in second quantization and associated with
a certain set of basis spin orbitals. For present purposes this basis can be the (exact) solutions
to the RHF problem at the equilibrium positions of the nuclei. The canonical solutions are then
Bloch functions, whereas the corresponding Wannier functions are certain unitary transformations
of these Bloch functions. The corresponding LCAO (linear combination of atomic orbitals)
approximation would employ linear combinations of OAO’s for the Wannier functions and linear
combinations of Bloch sums of the basic AO’s for the canonical solutions. In either case one
refers to the exact or approximate solutions of the RHF problem at the equilibrium nuclear
positions as SCF Bloch functions and SCF Wannier functions. The reasons for this choice of
basis are discussed in more detail in section V.

The SCF Wannier functions (WF) are expressed as

ume(£) = u(F - M)o(() = um(F)o(() av.n
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including a spin factor, and the SCF Bloch functions (BF) become
M[1-1
ve(k, ) = v(k,Mo(() = M~12 Y up(Met*ma((). av.2)
m=M/2
The inverse transformation (k = 2xx/Ma) can be expressed as

Mf1-1
u“(".‘)sM—llz Z v(k”-.-)e—ikcm. av.3)
x=M/3

This means that the wave number k lies in the interval —x/a < k < x/a, which is the first
Brillomn zone (BZ). The clectron field operators {a,(m),as(m)} correspond to the WF and
{bs(k), 8(k)} to the BF, where the subscript refers to the spin. The creation operators transform
as the spin orbitals

BK )
b(k) = M~/ Y al(m)etem
2 av.4)
al(m) = M1 bl (k)eikem
k

and the adjoint relations hold for the annihilation operators.
The Hamiltonian in the WF representation can be expressed as

H=H +Ea(m)2n,(m) + Z B(m, n)al(m)as(n)
myn (IVS)
227(m n)z:n,(m)n,o(n)

where the occupation number operator nq(m) = a}(m)as(m) and where in the last suta the
term with m = n and 0 = ¢’ is missing.

The diagonal matrix element a(m) of the core Hamiltonian with respect to the Wannier
function centered at m is (Q is the atomic core charge)

BK
Q av.e)

o) = em = 2 Ry — AT

- The first term depends on the core displacements p{m) (which are not restricted to any one
direction) via a short range potential. The sum can be separated into two terms. A Coulombic
one independent of the core displacements that cancels similar terms in the electronic and the
nuclear repulsion energies and one that depends on the core displacements. The off-diagonal
elements S(m,n) of the core Hamiltonian also depend on the displacements via short range
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potentials. The parameters v(n — m) represent the interaction between electron density on atom
m (or deasity in cell m) and that on atom n. Due to the choice of basis functions these parameters
depend on the distance |t — | = R but not on the displacements. Following Stolarczyk et
al. [35] the form

1

MR = Fr e /5(0)

% +A(R) av.yn
is chosen to obtain
X (R)=-R(1+ 1(0) ReTOR) av.s)
which shows that the term A\(R) is free of spurious long range effects.
The term Hp in the Hamiltonian represents the repulsion between cores

_1 Q? ’
Ho= 3 2. ) — T -

As discussed in section II the total wavefunction is assumed to be a single Slater determinant.
The corresponding one matrix or the Fock-Dirac density matrix in the Wannier representation
can be expressed as

BK
7€) = 323 ume() D7 (m,n)un, (£). (Iv.10)
o’/

m,8 o,
The matrix elements D?°’(m, n) clearly depend on the choice of basis and constitute an average
over the state under consideration
D°% (m,n) = (a}.(n)as(m)). @av.11)

The notation
D**(m,n) + DPP(m,n) = D(m,n) (Iv.12)
is introduced demanding that D*®(m,m) = DPP(m,m) = Q/2 in the reference state, where Q
is the core charge of the only type of atom present in the chain.
The average value of the various terms in the Hamiltonian requires the evaluation of the
expectation values (n,(m)n,s(n)), which for a single determinant becomes [20]
(na(m)ng(n)) = (ng(m))(ng(n)) = D (m,m)D* (n,n). av.13)
The expectation value of the Hamiltonian (IV.5) with respect to a single determinantal state can
then be expressed as
Qg BK 1

BK
B =5 2 R * & WD)

BK BK
+7(0) Y_ D**(m,m)D?#(m,m) + Y, B(n,m)D(m,n) av.14)
m mytn

1 3K "i. ’o0
+3 Y 1(n —m) Y D*(m,m)D*"Y (n,n).
mytn v,
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Using the above definitions including (IV.7) and the expansion

1 R-7 3(R-7)?- R¥W?
I}E’ﬁ'ﬁ* B F+ X ?ns tee av.15)
forr<<R.thcmonopolemmsm
Z - D(m,m - D(n,n

‘I‘hisexptaﬁoncormpondsto(m.u)inthemerdueaunem For ionic systems this is the
Madelung energy. It vanishes when Q = D(m,m) for all m, a condition that means that the
number of electrons associated with atom m is the same as the core charge. This is the case
for the reference state. When the nuclei vibrate and the electrons react to this motion the
atomic charges will fluctuate. The fluctuations around the equilibrium charge add up to zero,
while expression (IV.16) represents the Madelung energy of these fluctuating atomic charges.
It follows that the requirement

BK
Y D(m,m) = MQ av.17)

is a reasonable one.
In sections VII and VIII a particular kind of fluctuations are introduced such that
D(mv m) =Q+ (_)mq’ (IV.18)
which obviously satisfies condition (IV.17), and gives the Madelung energy

-nm - Mq’ln2
Z oy — (Iv.19)
This condition is assumed to hold in the following analysis.
The next set of terms in the multipolc expansion (IV.15) are
a? z (mlm n)f:lgm)lq ~ D(m,m)}, (Iv.20)

anupmssionthatalsovamshesundertheconditionQ:D(m,m) for all m, and also with the
specialchoice(lV.lS)thissumiswo,since

s Z (C)mm—r)

Im —nf®

Z( l)mﬂ,(M)Zl Ia

(Iv.zi
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However, a state with general fluctuating charges will contribute to the Madelung energy.
Similarly, some of the terms proportional to ™ vanish, so that for small vibrations

=2 i"f eemle) ()~ B )t

N QZ“-- fonz

5K av.z)

+ 7(0)Zm°(m,m)v”(m, m) + }: B(n,m)D(m,n)
BK

+3 Z A(n ~ m)D(m, m)D(n,n).
myfn

Insomewhatmoiedetailthanexpmsedby (IV.18) one finds
Di(m,m) = % + (-1 av.23)

where the notations D*® = D, and D?? = D_ have been introduced. One may then also write

BX
Zm(m, m)D-.(m, m) = M[— +44-]- av.24)

The parameters am and #(m,n) are due to the short range forces within and between the cores
and are expanded in terms of the displacements as

£,9,5 ‘ ¥

Qom = Qa’ + 2 Ajpi(m)+ 5 2 Ajjpi(m)pjr(m),

Jvl'

av.2s)

£,9,%

Bl ) = 8% m)-+ 3 Bl mls(n) = )]
29,3 (Iv.26)
+3 Z Sy, m)pj (o (m).

This result has been obtained using the relation §9(n,m) = ~5%(m, n) for the first derivatives.

The total energy separates into two parts, one, E4 consisting of those terms that depend on the

nuclear displacements and another, E,, being the energy of the system with the static lattice, i.e.
(H) = Ex+ Eq Iv.zy7)
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tI .,

with

BK Qz Qg BK
Eq=M{Qa"+ ) _ f'(n,m)D(m,n) + 7(O)- +a40-1+ 5 D A(m)
nyim 2 - my0 (IV.28)
+£ [T omam - =),
nyk0

2: ,( VT3 ) + p2(m) + p2(m)

m — n?

s (N - 2P, M
+203 2 Pe(m)ps( )+Py'(:)f:'(";) ps(m)ps(n)

BK .D'D' BK z,9,5
+ E Aipim)+ 53 3 Asppi(m)py(m)
LAY
,0,3 z,9,5

+ E[D(n, m) + D(m, n)l{z By (n,m)pi(n) + 7 - Z Bliv(n,m)pj(n)pjo(m)}.

IR

av.29)

The first and the last term in the expression for Ey4 are really of higher order and are not part of the
harmonic approximation, but kept here to show how such terms enter. The nuclear displacements
and the dynamical variables z can be chosen such that they are zero at a stationary point, which

means that
O(Ex + Ey) (En + Eq)
9z |2=0% ——'%;'—' 2=0=0 (av.30)
p=0 p=0

are the equations defining the stationary point. The symmetrized factor [D(m,n) + D(n,m)]
guarantees a real result for the last term.

V. Electronic basis functions

The choice of basis functions for the description of electrons in a system with moving nuclei
requires careful analysis. Only the situation where the nuclei undergo small vibrations always
keeping them close to their equilibrium positions is considered. In principle, a complete set
of electronic basis functions is needed. Formally such a set is available in the form of all the
solutions of the band theory problem for the equilibrium positions of the nuclei. Such a basis is
obtained as the solutions to an effective one-electron equation for a static, fully periodic lattice.
At this stage of the discussion there is no need to specify that equation in more detail. It could |
be, say, of Hartree-Fock type, of density functional type, or something else. What is needed is |
the property common to all such equations, namely the translational symmetry, which implies j
that the solutions are Bloch functions, i.e. eigenfunctions of the translation operator.
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In actual calculations a specific choice of such Bloch functions obviously has to be made.
The calculation of the energy bands and the corresponding wavefunctions is a well developed
procedure [36, 37) and there are a number of possible choices for representing the solutions to the
static lattice problem in terms of specific basis functions. This presentation limits the discussion
to the case when the original basis functions are atomic orbitals of some kind centered at the
equilibrium nuclear positions. From each type of atomic orbital in a unit cell a Bloch sum can be
formed adapted to the translational symmetry. The final solutions of the effective one-electron
problem are then linear combinations of such Bloch sums. The term *SCF Bloch functions’ are
used for such solutions.

Given any set of Bloch functions in a band the corresponding set of Wannier functions can
always be constructed by means of a unitary transformation [38]. If that is done with a set of
Bloch functions expressed as linear combinations of Bloch sums of atomic orbitals, the resulting
Wannier functions can be closely approximated by linear combinations of orthogonalized atomic
orbitals. But the unitary transformation can also be carried out on the exact solutions to the
static lattice problem, and that may be valuable from a formal point of view. The formally
exact Wannier functions are then obtained, which constitute a set of non-canonical orbitals for
the single determinantal wavefunction to represent the solution of the static lattice problem.

The functions (IV.1) and (IV.2) primarily represent such exact canonical and non-canonical
solutions of the effective one-electron static lattice problem. They do not constitute a complete
set of functions since they correspond to only one band. But, in principle, it is possible to include
more than one band. These functions provide a good description of the system at the equilibrium
nuclear positions. For small departures from the equilibrium positions it would therefore seem
natural to employ these functions as a basis for the END treatment. Since the term “basis
function” is used in several different contexts one should clarify the following points. The
electronic basis functions for the END treatment are the exact or approximate solutions of the
effective one-electron equation for the static lattice problem, i.e. functions (IV.1) and (IV.2). The
parameters characterizing the PPP Hamiltonian are thus expressed in terms of these functions.

In ab initio calculations obviously more specific choices have to be made. One can discern
two distinct alternatives. One would be to use the primitive basis of Gaussians centered at the
nuclei. These basis functions are allowed to follow the nuclear motion. At any given moment
the nuclear framework shows no particular symmetry. This approach has led to successful
descriptions of small molecular systems. However, for an extended system the lack of periodicity
means that one cannot speak about Bloch or Wannier functions, leading to great complications.
The other possibility, which has been chosen here, is based on the notion that the nuclei never
depart very far from the regular equilibrium positions and the SCF Bloch or Wannier functions
will be adequate choices.

Using the Bloch or Wannier functions in one band means that the possibility for the electrons
to adjust to the changing auclear environment resides in mixing the spin orbitals used in the
reference determinant with, in principle, all virtual spin orbitals. In order to explore the effects
of such mixing in a somewhat systematic fashion the pairing of each reference spin orbital with
one virtual spin orbital is first considered. This can be looked upon as a successive lowering of
the translational symmetry. Since the translational symmetry can also be used to classify normal
modes of vibration, such pairings should provide a number of useful special cases of END.
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VL. Lattice dynamics

In order to connect the END treatment of vibrational and electronic structure with more
traditional procedures this section treats the special case where the total energy in the equations
of motion (11.6) does not depend on the electronic dynamic variables.

With oaly nuclear dynamic variables the equations of motion reduce to

~dP/dt = 8E/OR
dR/dt = 8E/6P

ie. the classical Hamilton’s equations of motion.
Restricting the considerations to longitudinal vibrations, i.e. dynamics for which p.(m) =

py(m) = 0 for all m leads to simpler and more transparent expressions than those of the full
treatment while clearly displaying the capabilitics of the model. Adding the nuclear kinetic

energy to (IV.27), and using (IV.30) yields

(VL)

BK p3
E=E..+E4+zﬁ;-

_ palmlps(n) (1S5,
= Egq a3 Z —Ap 22A::P;(m) (V12)

E Bss(n, m)p,(m)P'(n) + E P2(m)

The core charge is setto @ = 1 andthefonowmgnotmonxsmuoduced
Bjj(n,m) = Do(n, m)ﬂg,-.(n, m), (VL3)

with [j, i = z,y, or 2] It should be noted that the density matrix of the reference state satisfies the
relation Do(n,m) = Do(n — m,0). In equation (VL3) and in the expression for E,: the density
matrix Dy of the reference state appears. The energy derivatives with respect to displacements
then are

BK BK
OE 2 Pz(n!
—— N - A sPs BJS 1] 3 . 4
9ps(m) ~ ¥ .;m fm—np T 4P (m)+§m (m,n)ps(n) V14
Thus, the coupling between different nuclear displacements is due to the “hopping parameters”
B in the Hamiltonian and also introduced via the multipole expansion.
The equations of motion for this special case (longitudinal nuclear motion and one kind of
nuclei with mass AM,)
dP,(m) OE
dt Ops(m)
dps(m) O (VL5)
dt ~ 8P(m)
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can be combined into

dzp.(m) 8F
M= = " Bp(m) (V16

Expanding the displacements in normal coordinates 0(g,), such that
BZ
pem) = e - Qante ™, VL7

substituting this into the equatini. of motion, multiplying by exp (—igam), and smmmng over
m yield

2 n BK e—iren BK .
R D DL LR LUC N
T
The ansatz
Q(g,t) = Qo(g)e~ " (VL9)

used in equation (VL8) yields the following expression for the longitudinal frequency

2(Q) =M. { e z: '”P + A+ an(n’ o)e-'!"}

M[2-1 u/z-l (V1L10)
_1 - _:_3 3 cog(qaﬂ) +A;, 42 Z B,.(n,0) cos(gan)}.
" nm]

In order to get the correct behavior for small g, ie. w(g) — 0 the condition

QM M/2-1
-3 =1 + A +2 Z Bys(n,0) =0 (VL1D)

nal a=x]
is needed.
The inverse transformation

Qg,t) = \/— 2 ps(m)e ™, (VL12)

of the displacements together with the condition that p,(m) are real, gives the relation Q*(q,t) =
Q(—q,t). The general expression for the displacements can then be written as

BZ
pu(m) = —rem(Q@o+ 3 [Qula, s gam ~ Qu(g,singaml),  (VLID)
. >0
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with the real and imaginary parts of the normal coordinates given by
Q1(2,?) = Qo1(q) coswi(g)t + Qoa(q) sinwi(g)t
Q2(9,t) = —Qo1(g) sin wi(g)t + Qoa(g) coswn(q)t.
Should transversal vibrations also be included in (V1.2) the general expression becomes

B Bty 3 2mes() 4 ay(mly(n) = 2p(mloe)

(VL14)

jm —nj?
1 BK s,9.5
Z Z Ajjpj(m)pj(m) (VL1S)
1 BK =, 3 BK ﬁz
2 Z Bjjr(n,m)pi(m)pj(n) + 2M

-#m 3
Thus, the one-center parameters induce couplings between dxﬁ'uent nuclear displacement com-
poneats on the same atom, while the “hopping parameters” 8 produce the couplings between
all components on different atoms.

VIl. Time-dependent band theory

As another special case the END equations for fixed nuclei are studied. This is the Born-
Oppenheimer starting point for most problems of electronic structure. The equations of motion
(11.6) that determine the time evolution of the electronic state now reduce to

iC O dz/dt \ _ (OE/8z*
( 0 -.'c‘) dz‘/dt) =\ 9E/dz ) (VILD)
The electronic basis consists of all the SCF Bloch (IV.2) or SCF Wannier (IV.1) functions in a
particular band. The most general combination of spin orbitals is of the form

RZ
vo(k,€)+ Y vor (K, €) 2renta(t); (k in L2Z). (VIL2)
bo
Here the abbreviation LZ = Little Zone is used for the interval —~x/2a < k < x/2a and RZ
= Residual Zone for the remainder of the first Brillouin Zone (BZ), which consists of the two
intervals —~x/a < k < —x/2a and x/2a < k < x/a. The reference determinant is doubly
filled with the orbitals v(k,) in the LZ. The virtual orbitals v(¥,7) are characterized by the
wave numbers ¥’ in RZ.

The possibility of using fully general spin orbitals like (VIL.2) should certainly be considered.
Here the case where each spin orbital has either a or 8 spin is first explored. The corresponding
orbitals are then in general different. One set of orbitals wy(k,7) is combined with o anG
another set w_(k,7) with # spin,

RZ
wi(k,7) = o(k,7) + Y v(K,PDzspa(t); (k in LZ)
22 (VIL3)
w_(k,7) = v(k,7) + Ev(k'9 i‘?l.;yg(t); (k in LZ).
bl
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Each set of these functions can without loss of generality be chosen orthogonal, even though
they are not normalized to unity, ie.

[ skt 947 = darbu

RZ (vi4)
dur =1+ shansaan =1+ (&'u) '
h!
Because of the pairing theorem [39] the z parameters can be assumed to satisfy
[ s P (1797 = At
(VILS)

Arp =14 :Lz;)u.

Thus, both the two (M/2)x (M/2) matrices 4 and A3 and the product matrices z},z_ and 2! 2,
are diagonal.
The corresponding Fock-Dirac density matrix
p(6.€) = p+(?. #)e(C)a((’) + o~ (7.7)B()B(C)

p£(Fi7) = Z:d; w(k, Pl (k, 7). (VIL6)

can then be expressed in terms of the 2’s (see e.g. [8]). The basic Bloch functions are here
assumed to be solutions of a restricted Hartree-Fock problem and time reversal symmetry would
imply that

v(—k,f) = v*(k,)

v(—k,7) = v*(¥,7).
There is no reason to impose such relations on the functions (VIL3).

In order to illustrate how the END method works the case with only two z-parameters per
wave number in LZ is studied, so that

i (k,7) = v(k, ) + 24 pr0 (¥, 7)

w-(k,7) = v(k,7) + z_anv(¥,7).
This is an example of pairing which can be made in several different ways, both with respect to
the spatial orbitals and with respect to spin [40]. A determinant with half of the electrons filling
w4 ocbitals with spin a, and the other half filling w_ orbitals with spin 8 forms the basis for the
Alternant Molecular Orbital (AMO) method (see [41] and references therein). In applications of
the AMO method to the description of solids [42) the pairing is chosen such that

M=k+x/a; k in LZ; ¥ in RZ. (VIL9)

One could, of course, leave &’ unspecified within RZ in developing the formal theory, and a .
variety of choices could be explored in actual applications. In order to demonstrate the principles

(VIL7)

(VIL®)
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of the END theory it suffices to limit the present development to the choice in equation (VIL.9),
and write

- T4k = gk (VIL10)

This means that there are AM/2 dynamical variables z,(t) for electrons with up-spin and an
equal number of variables z_,(t) for down-spin electrons. The density matrix coefficients (i.e.
elements of the so called charge and bond order matrix) are then

L <X ia(men .
Dy(m,n) = o= zk:e"'( "1+ (-1)"2% ~vVILY
+ (=) zg + [(-1)"7" ~ U |zaaf? + -},
such that
D(m,n) = Dy(m,n) + D_(m,n) =
Do(m,n) + D1(m,n) + D3(m,n)

in terms of the zeroth, first and second order terms (terminating after second order) in the
electronic dynamical variables. This gives

(VIL12)

BK
Y 8°m,n)D(m,n)
myin
9 BK Lz . (VIL13)
=M{B-3; 3 A'(m,0)) llzal’ + lz-al’le™™},
mx=odd k
with BK (3m-1)/2
B= —é 3 L’—Q?n-—ﬂm,o). (VIL14)
m=o0dd>0
For the diagonal elements in (VIL11)
N e L. iym
Dy(m,m) =g+ 313 {sha+ 2} =5 +(-1)"e (VIL1S)
k
Adding the contributions from the two spins yields
D(m,m) = D (m,m)+ D_(m,m) =14 (-1)"¢ (VIL16)

with ¢ = ¢4 + ¢ and with (—1)™g(t) representing the fluctuating charge at site m, such that

BK
S (=1)"g(t)=0 (VILIT)
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at all times. An equation for the total static energy form (IV.28) can then be obtained as
m2 13X .
E-c=M{czl-—;+§.§(-l) A(n)] +a®

1 1 BK
+B+7(0)[7 +940-143 Y An)} (VIL18)
0

BK

Lz
=2 3 A%m,0)) llz4al® + |z—Jeitem.
mwodd

k
Differentiation with respect to the z variables gives

8E
3 2 = 2A0q + 7(0)g- — 2B(k)z3,
T4k (Vn.l9)

dE,
az_': = 2A0q + 7(0)g4 ~ 2B(k)z2,
and their complex conjugates, where,
2 1 BK .
=-—4+3 Y (<1)*A(n) (VIL20)
nykd
and BK .
B(k)= ) B°(m,0)e™. (VIL21)
mm=odd

For k in LZ it holds that B(k) < 0. It follows from (VIL19) that the derivatives vanish when
the z variables do, ie. the electronic dynamical variables are defined relative to a stationary
point of Eg.
The dynamical metric is obtained from
S =(slz) = ] {Q +lzal)0 + 1P}, (VIL22)
kel2

&S
811*82.’.}
nS
Cort= A Su/(1 + =),

Cit-1=Cop1=0.
For the harmonic approximation the dynamical metric is nceded only through zeroth order, i.e.

Cittt=Cp1=bu (VIL24)

Cotl = = 8uf/(1 + |z ?)?,

(VIL23)
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yielding the equations of motion
.dz
it = 2400 +1(0)¢- - 2B(k)z4s
dz_g (VIL25)
= = 240 +7(0)g4 — 2B(k)z_s
and their complex conjugates. Introducing the variables u; = z43 — 2_4, leads to
Lz
S -Z}? Y w1+ u) - 2B(k)us (VIL26)
1
and its complex conjugate. In matrix form .
i1 O u A;-2B A, u
[o -il][t’n’] =1 A A1—ZB][u‘] (VIL2D)
with )
H a2
a column matrix containing the M/2 variables u;, the (M/2)x(M/2) matrix
1 1 ... 1
__10f1 1
A== i i) (VIL2)
11 .- 1
and the diagonal matrix
B(k_py4) 0 0
B 0 B(k_pfa41) - 0 (VIL30)
0 0 -o+ B(kyja41)
The solution of the dynamical equations can be accomplished by the ansatz
fu X 1][e o v
=03 ][5 () s

where the time dependence is confined to the matrix blocks e+, which are diagonal with
clements exp[+iuy (k)t]. Substituting (VIL31) in (VIL27) and writing

V =My, V* =y (VIL32)

Vludtonaetofbomogeneouslinearequadons

a bl|V 0

£ 206} =
20
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with a=-X0-(A; -2B)X — A;

b=0—(A; - 2B) - A;X. (VIL34)
Partitioning of (VIL33) yields
[a~ba™'b]V=0 (VIL3S)
and the frequencies wy (k) are obtained from the secular equation
det{a — ba~1b} = 0. (VIL36)
The dynamical variables can then be expressed as
ur(t) = vje~n Bt 4 :fouv:e‘*“)‘. v
}

Equation (VIL.25) yields a completely analogous treatment for gp = z4x + z_; as that just
completed for ¥;. One gets

LZ
() = wie N 4 3" Yiquyein (O, (VIL38)
1
The original dynamical parameters are obtained as

1
24k = (0 +ua) (VIL39)

1
2.1 = 5(gx — wa).

Vill. Combined electronic-nuclear dynamics
This section presents a simple case where both electronic and nuclear dynamical variables
are allowed to vary simultaneously. The starting point is the harmonic approximation of the
energy for longitudinal vibrations and for paired dynamical spin orbitals as discussed in the
previous section. The core charge is set to unity (Q = 1), and the total energy of the system is
E=Eyq+E4+1T, (VIIL1)
e 2  1%X
En=M{¢[-—+3 ) (-1)"A(n)] + o°
a 2 w7

1 1 BK
+B+1(0)7 +a+e-]1+5)_ M)} (VIIL2)

nyk0
BK L

Z
=2 Y B%m,0) Y llesal + lsalPletem.

m=odd k
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=.._.ZL_1).'.'£§._ 32&2&2‘)

im —n[3 Im — nf?
) .
+ ; Asps(m) + 3 Z Aul’z(m) (VIIL3)

BK
+ E {[D(ma") + D(n, m)l(ﬂf(m» n)ps(m) + -}ﬂgx(mi ")Pl(m)Pl(n)]}:
man

BK 2
Ta=) Fy(m) . (VIL4)

The density matrix D4 (m,n) contains terms of zeroth, first, and second order in the electronic
dynamical variables [cf (VIL11)],

Di(m,n) = Do(m, n)+ D*,l(m, n)+ D*,g(rn,n). (ViILS)

Since ¢ = g4 + ¢ is of first order in the electronic coordinates the first term in (VIIL3) is really
of third order overall and should not enter in the harmonic approximation. This term is neglected
as well as other terms of higher order than two in the dynamical variables. Differentiation with
respect to the nuclear displacements yields the following expression

8Pz(m) Ta® z il p.(n)P + As + Assps(m)

BK
+ Z [Do(m,n) + Dy(m,n) + Do(n, m) + Dy(n, m)]ﬂg(m’ n) (VIIL6)

" BK
+ Y Do(m,n),(m,n)ps(r).
nfm

Assuming, as is done here, that the reference state corresponds to a stationary point of the
energy implies that
OE
8ps(m) lp=s=0

BK
=A;+2 E Dy(m,n)Bd(m,n) =0 (VIIL7)
n¥m

for all m. The only term in (VIIL6) which contains the electronic dynamical variables is
BK

Y [Di(m,n) + Dy(n,m)]B%(m,n) =

n¥Em
m (VIILB)
A 1) z{ﬂ(k)(z+k+2—k)

+ﬂ‘ (’f)(2+b +22)}
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B(k) = Be(k) + ifa(k),
Be(k)= ) Bi(n,0)cos(kan),

Bs(k) = E B2(n,0) sin (kan).
amodd
Since the derivatives 52(n,0) are odd functions of n §.(k) = 0. Using (VIL19) and (VIIL1) the
derivatives with respect to the z variables become

5% =2 0 2B(k)z3 k 1 > m
Bay = 2A0g+7(0)g- ~ 2B(R)4s + 26( )—ﬁz(—l) ps(m),

BK - (VIIL10)
6E
=— = 2A0q + 7(0)g+ ~ 2B(k)2% + 28(k)+- Z (=1)"ps(m),
0z M
and their complex conjugates. These derivatives vanish whcu all the dynamical variables are

zero, i.e. the dynamical variables are defined relative to a stationary point of the energy. Finally,
the derivatives with respect to the nuclear momenta are

(VILL9)

O0E  P,(m)
AP m) . (VIIL11)
The four coupled equations of motion are
dz*k 0E — dz*k OE
dt 8z “at T Oz’
dom) BE  dP(m) OE (VEL12)
dt ~ 8P(m) ~ dt  ps(m)
Introducing the normal coordinates (V1.7) the latter two equations become
¢y~ 1(\;:‘) (VIIL13)
and
dhtkd) a0
(VIIL14)
. M, . .
~- 2*&,:/.\/ y73 E Be({(z41+ 2-1) = (251 + 25))}
’ .
with 4
e(k) = = Z o~ s 2200(0 1n)B2,(0,n)e~*a, (VIIL15)
30
Thus, the forces (VIIL10) become
:E — 2B(k)z%y + 2iB4(k)Q(x/a,t)/ vV MM,

o5 (VIIL16)
Y = 2A0q + 7(0)g4 — 2B(k)z2 L + 2iB,(k)Q(x /a,t)/ \/‘_: .
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and their complex conjugates. The equations of motion then become
4 240g + 1(0)g- — 2B(K)z4t - w.(k)o(r/a,t)/\/

= 2A0q + 7(0)g4 — 2B(k)z_x ~ 2i8,(k)Q(x/a,t)/ /M

and their complex conjugates. In this particular model only the normal coordinate Q(x/a,t)
couples to the electronic motion. The other normal coordinates satisfy

dz h (VIIL17)

M, E8%:1) ?éf oY) L o(k)Q(R,2), E#/a, (VILL18)
with the solutions Q(k,t) = Qo(k)e~*(*), with the frequencies given by
w(k) = ~e(k)/Ma. (VIIL19)

This is the same expression as for the longitudinal frequencies in (VL10). The longitudinal
frequency in (VIIL19) can be expressed as

1, 4 M= cos(kan) M/
w’(k)=F[-§ > + A +2 E Dy(0,n)82,(0,n) cos (kan)]. (VIIL20)
. n=] nx=l

Correct behavior at small k, ie. for w(k) — 0 requires that

4 M/{2-1 1 M/2-1
—;—i Z ;5 4+ An +2 E DO(o, ")pgs(o, n) =0. (ViL21)
n=]

n=l

Comparison of (VIL25) with (VIIL17) shows that the difference variable uy = z4; — z_3
still satisfies (VIL26) as in the case with frozen nuclei. Thus, obviously

24k — 2} = vie~wad) 4 ZXuvge""‘m‘ (VIIL22)

as in (VIL37). Introducing the abbreviated notations

Q=Q(t) = Q(x/a,t)/ VMM,
P = P(t) = P(x/a,t)// MM, (VIL23)
straightforward algebra using (VIIL17) gives

S _ (445 +2(0))q — 2B(K)gk — 4iBs(1)Q (VIIL2A)

for the sum variable g = z4; + z—;. The definition of ¢ in equations (VIL15) and (VIL16)
~ leads to the expression

Sdg:' =9 2(9 + 91) — 2B(k)gr — 4i8,(k)Q, (VIIL25)
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with A = (849+27(0))/M. This means that the real, g,), and imaginary, g;;, parts of g; satisfy

grk = —2B(k)gix — 4B,(k)Q (VIIL26)
and
Lz
gir = —AY_ gri +2B(k)gns. (VIL27)
[
These equations combined with
1
= TI:P
. 12 (VIIL28)
B = e(x/a)Q+ 32 ) Al
1
yield in matrix canonical form
Q 0 0o M:! 0 Q
Pl|=|ex/a) » 0 0 Pl (VIL29)

with b a row matrix with elements 45,(l)/M. The matrix A is the analog of the matrix in
(VIL29) with the constant A and B is the diagonal matrix in (VIL30). This is really a partitioned

problem, i.e. N
[g]"[Mg -A?rzn“:] (VIIL30)

P]_[ex/a) b 1[Q]
ffscomiiating (VO “m”[‘:;l”kﬁ P;'ﬁu:ﬂwinz (Vm.3l)oneob(:n[:31)
[S] - [A;((;/:)g?b' 2(Ab-/-A;'l.3)B] L?g =F[z]- (VIIL32)

This nonhermitian problem can be brought to classical canonical form by a similarity transfor-
mation A = L-IFL ie. the resulting matrix A consists of Jordan blocks

A1 A1 0]

A, 1k o A 1], .- (VIIL33)
0 Ml 1o o Al

For the case where all the Jordan blocks are one-dimensional, the matrix A is diagonal. Then,

defining a new column matrix

i =L“[3 (VIL34)
the equation of motion can be expressed as ‘
2¢.
%t{: = Af;. (VIIL35)

The negative of the eigenvalues of A are then the frequencies squared of the coupled system
of electrons and nuclei. The requirement that the frequencies be real puts further constraints
on the parameters in the matrices A, B, and b. For small vibrations around the ground state
all frequencies should be real.
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IX. Conclusions

The END theory, which provides a fully dynamical treatment of electrons and nuclei
without resorting to the common Born-Oppenheimer or Adiabatic approximations, has been
used to formulate an intemally consistent description of electrons and vibrating nuclei of an
extended system. In order to demonstrate the essential features of such a system, allowing for
the coupling between nuclear and electronic dynamics, a PPP-like hamiltonian is employed.
Such a hamiltonian yields a total energy that scales properly with the size of the system and
exhibits a physically correct dependence on small nuclear displacements. It also satisfies the
primary requirement of all treatments of extended electronic systems, namely permitting a proper
treatment of the long range nature of the Coulomb interaction.

The nuclei are treated classically and the electrons are described by a single determinantal
wavefunction built with complex spin orbitals. The nuclear positions and conjugate momenta are
the dynamical variables of the nuclear dynamics, while the electronic dynamical variables are
the complex coefficients mixing Bloch functions below with those above the Fermi level. The
Wannier functions (or corresponding Bloch functions) in one band associated with the equilibrium
nuclear positions make up the electronic basis. The particular sample system studied is metallic
with a half-filled band in its reference state.

The equations that govern the time evolution of the dynamical variables are derived via the
time-dependent variational principle. Their analysis is presented in three steps. First, frozen
electronic degrees of freedom lead to a variant derivation of the classical equations of motion
of vibrating nuclei. Second, frozen nuclear degrees of freedom yield a RPA description of
the electronic excitations. Third, the full END equations are solved revealing that the highest
frequency nuclear mode is the only one coupling to the electron dynamics.

In spite of its simplicity, a linear chain with one atom per mit cell and a single valence elec-
tron per atom exhibits the essential complexities to demonstrate the generality of the approach,
yet permits a straightforward and relatively uncluttered analysis. Additional specializations in-
clude the detailed treatment of only longitudinal vibrations and the selection of only one mixing
coefficient per occupied spin orbital linking it to a single virtual spin orbital as is done in the
alternant molecular orbital AMO method.

Permitting a detailed and transparent application of the theory to an extended system these
simplifications in no way reflect any basic limitations of the END approach. As is indicated
in sections IV and VI transverse vibrations follow in exactly the same manner as in traditional
treatments. Similarly, systems with more than one atom per unit cell involve more work, but no
additional conceptual challenges. Also, the consideration of several electronic mixing coefficients
leads to more dynamical equations, but no significantly different behavior from that of the simple
AMO choice. Inclusion of more than one energy band again means more work but adds nothing
fundamentally new.

Extensions of the simplest END model to one with quantum nuclei and possibly also a
multiconfigurational electronic description have been accomplished for finite molecular systems
and might also be attempted for extended systems. In particular, a quantum mechanical treatment
of the nuclei is necessary to permit a discussion of phonon systems and a study of electron-
phonon coupling.

2 February 23, 1994




< —

X. Acknowledgments

Support
Council (NFR) is

ﬁmﬁcOﬁceofNavdRmchmdﬁmmeSwedishNamnlScmmch

gratefully acknowledged. One of us (J-LC) acknowledges the warm hospitality

21 February 23, 1994




(1] B Deumens, Y. Ohm, and L. Lathouwers, Int. J. Quant. Chem.: Quant. Chem. Symp. 21,
321 (1987).

[2] BE. Deumens and Y. Ohm, J. Phys. Chem. 92, 3181 (1988).

(3] E. Deumens and Y. Ohm, Int. J. Quant. Chem.: Quant. Chem. Symp. 23, 31 (1989).

[4]) E Deumens and Y. Obm, J. Mol. Struct. (THEOCHEM) 199, 23 (1989).

[5] A. Diz, E. Deumens, and Y. Obm, Chem. Phys. Lett. 166, 203 (1990).

(6] E. Deumens, Y. Ohm, and B. Weiner, J. Math. Phys. 32, 1166 (1991).

(71 B. Weiner, E. Deumens, and Y. Obm, J. Math. Phys. 32, 2413 (1991). )

[8] B Deumens, A. Diz, H. Taylor, and Y. Ohm, J. Chem. Phys. 96, 6820 (1992). ,

[9] Y. Obm et al, Time evolution of electrons and nuclei in molecular systems, in Time-
Dependent Quantum Molecular Dynamics, edited by J. Broeckhove and L. Lathouwers,
pages 279-292, Plenum, New York, 1992,

[10]E. Deumens, A. Diz, R. Longo, and Y. Ohm, Rev. Mod. Phys 66 (1994).

[11]P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930).

[12)3. Frenkel, Wave Mechanics: Advanced General Theory, Clarendon, Oxford, 1934,

[13])E. Deumens, A. Diz, and H. Taylor, Manual for the Electron Nuclear Dynamics Software
ENDyne, QTP, U. of Florida, 1992.

[14]D. J. Thouless, Nucl. Phys. 21, 225 (1960).

[15]H. Fukutome, Int. J. Quantum Chem. 20, 955 (1981).

[16]A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
New Yok, 1971,

[17IN. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1988.

[18]R. Pariser and R. G. Parr, J. Chem, Phys. 21, 446 and 767 (1953).

[191J. A. Pople, Trans. Fraday Soc. 42, 1375 (1953).

[20]J. Linderberg and Y. Ohm, Propagators in Quantum Chemistry, Academic, New York, 1973.

[21]P. Piecuch and J. Paldus, Int. J. Quantum Chem. S25, 9 (1991).

[22]M. Ozaki, Int. J. Quantum Chem. 42, 55 (1992).

[23]P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational Principle in
Quantum Mechanics, Springer, New York, 1981.

[24)J. R. Klauder and B.-S. Skagerstam, Coherent States, Applications in Physics and
Mathematical Physics, World Scientific, Singapore, 1985.

[25]P.-O. Lowdin, Adv. Phys. §, 1 (1956).

[26)F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York, 1940.

{27]H. J. Monkhorst, Phys. Rev. B20, 1504 (1979).

[28)J.-L. Calais and J. Delhalle, Int. J. Quantum Chem. 42, 35 (1992).

[29)E. S. Kryachko and E. V. Ludena, Energy Density Functional Theory of Many-Electron
Systems, Kluwer, Dordrecht, 1990.

28 February 23, 1994

BT T T DR UV PSSP - —— e




[30]P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[31)G. D. Maban, Many-Particle Physics, Pleoum, New Yock, 1981.

[32]1. Hedin and S. Lundqvist, Solid State Physics 23, 1 (1969).

[33]).-L. Calais and J. Detlhalle, J. Mol. Structure ( THEOCHEM ) 188, 213 (1989).
[3M]L PFischer-Hjalmars, Adv. Quantum Chem. 2, 25 (196S).

[3SIL. Z. Stolarczyk, M. Jeziorska, and H. J. Monkhorst, Phys. Rev. B37, 10646 (1988).
[36]H. L. Skriver, The LMTO Method, Springer, Berlin, 1984.

[37]P. Blaha, K. Schwartz, P. Sorantin, and S. B. Trickey, Comp. Phys. Comm. 59, 399 (1990).
[38]G. H. Wannier, Phys. Rev. 52, 191 (1937).

[39]A. T. Amos and G. G. Hall, Proc. Roy. Soc. (London) A263, 483 (1961).

{40J).-L. Calais, Adv. Quantum Chem. 17, 225 (1985).

[41]R. Pauncz, The Alternant Molecular Orbital Method, Saunders, Philadelphia, 1967.
[42)3.-L. Calais, Arkiv Fysik 28, 511 (196S5).

29 _ February 23, 1994




