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We describe a general approach to the parametrization of lincar combinations of Gaussian
atomic orbitals, useful for atomic and molecular interactions. We use a Gaussian transform
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effective charges, in terms of Gaussian-type orbitals. This procedure provides well defined
rules for calculating exponent factors and combination coefficients of the linear combinations of

Gaussians in problems where nuclear distances may vary over large ranges during interactions.
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1. INTRODUCTION

Since the suggestion by Boys in 1950,! the use of Gaussian functions as basis sets has
increased useful in theoretical chemistry calculations of electronic structure. Gaussian functions
have been found very useful in the efficient calculation of multicenter electronic integrals.
Gaussian basis sets have been parametrized to optimize the calculation of atomic and molecular
energies, in work that has continued until very recently.2-1? Gaussian functions also arise when
one introduces the Gaussian transform of atomic orbitals (AOs). In this case, the transform
integral is eventually discretized, to obtain a set of parametrized basis functions. The choice

of discretization has again been guided by interest in the calculation of energies of stationary
states. 231415

Basis sets are also needed in studies of atomic and molecular interactions, where the main
concern is the calculation of probabilities of electronic transitions, excitation cross sections, and
thermal rates. We have used atomic bases in recent studies, with a time-dependent description
which construct molecular orbitals as combinations of AOs with time-dependent coefficients.!6

In the case of atomic or molecular interactions, where distances and bond angles change
over large values, it is important to work with AOs having the correct asymptotic behavior. This
is given by radial functions which decrease exponentially with the distance from an electron
to an atomic core, at a rate depending on the effective charge of the core. This behaviour is
correctly given by hydrogenic atomic orbitals (HAO’s). Their orbital exponents must change
to reflect varying effective nuclear charges as nuclei or cores move and exponents change with
time. The aim of this conﬁibution is to provide a general way of expressing these HAQO's in
terms of Gaussian atomic orbitals (GAO’s), with exponents and coefficients directly determined
from the varying effective charges. Our criterion for choosing the Gaussian basis sets is that they
should properly describe the AOs at distances from atomic cores that are important in dynamical
phenomena, instead of emphasizing the energetics of stationary states.

The angular part of the basis function can be represented in terms of spherical harmonics
Yim(8, ) or in terms of integer powers of the Cartesian coordinates. In this case a primitive
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basis function may be written as

7(z,y,z) =z y™ 2™ “P(-“'JL 1)
and a contracted Gaussian basis function is represeated by’

x(z,v,2) = 2% y™ 2™ ) ci ezp(—air?). ()}

We have recently used the time-dependent Schrédinger equation and a related time-dependent
variational principle, to obtain complex time-dependent hydrogenic atomic orbitals (dlDHAO’s)
resulting from their interaction with a movirg positive charge;!” this procedure leads to optimized
trial AOs with time-dependent orbital exponents. Here we use the Gaussian transform, which also
appears in a generator coordinate context,!® to express these CTDHAO’s in terms of Gaussian
functions. This allows us to construct time-dependent Gaussian basis sets at any given time.

The CTDHAO’s have the form

Yuim(T,t) = Rul[r; C-l(t)]Ylm(o’ ¥)s &)]

where the time-dependence appears through the complex-valued parameters
Caa(t) = Aar(t) + ixai(2). @)

We have found from the calculation of the time evolution of the complex parameters!’ that
x < ) for charges moving at the thermal and hyperthermal velocities of interest in chemical
applications; therefore we use the approximation

(@) = A1) ®

for the exponential parameters. From now on deal with HAO’s whose varying effective charges
have real values. We introduce a convenient change of integration variable in their Gaussian
transform integral, before discretizing the variable by means of the Gauss-Legendre quadrature.}®
We can control the accuracy of our Gaussian fits by increasing the number of quadrature points
in a systematic way. This allows us to obtain excellent fits to the HAOs without requiring least
square fits or energy optimization.




‘This paper is organized as follows. In sections 2 and 3 we show how to express the HAO's in
terms of a Gaussian basis set of given size. In section 4 we give expressions for orthogonalizing
the orbitals by the Gram-Schmidt procedure, and in section S we express them in terms of
cartesian Gaussians.

2. HYDROGENIC ATOMIC ORBITALS

The radial parts of the 1s, 2s, and 2p HAO's are

Rys(r; Aie) = 2'\1} e“‘“', : ' (6
A2eT . Azt
Ro,(r; /\3,) = %4\2}(] - -—?2-1 e bib, 1))
and
Rop(r; Agp) = -?-%/'g/\z’* re"i?:, 8

where the exponential parameters may change over time due to nuclear motions.

3. GAUSSIAN BASIS SETS

We next express the HAO's in terms of Gaussian transforms. This procedure allows us to
choose the best set of Gaussian functions for example at any given time during the collision

process.
A. The 1s orbital
In the 1s case, Eq. (6) becomes

Rus(ri 1) 22, F oo, )
In order to eliminate A,; in the pre-exponential term we make a rescaling*
Pal = Aul 1. (10
Now the normalized radial part of the orbital is

Ru(pr,) = 2¢77, (11)




(Rlclnh) = j dpis Rla(ﬂla)z =1 (12)
0

The Gaussian transform of R,,(p;,) is®
Rll(’ll) =2 = / 71.(8)0(81 Pl.)da, 13)
0

where the weight function ,(5) is _
Fu(@ = (xa’)yt e, e
and the genuamt function G(@, py,) is
G(B,p1s) = €77, | (1%)
with @ being the generator coordinate, i. €., the Gaussian exponential parameter.

We are interested in numerically evaluating Eq. (13) with a small number of Gaussian
functions. So we make the following change of variables

7 = exp(mm
which transforms the integration interval from (0, c0) to (0,1).
Eq. (13) then becomes

1
_2 1 [
Ri(p1) = 7 o/ Tt exp(;‘l;-;)dn- amn

Using the Gauss-Legendre quadrature'® the integral in (17) becomes a summation and we

have
Ruon) = 722, Z — ———pex( ), (18)

where the weights w; and the abscnssas q. gwe the set of exponent factors and combination
cocfficients. We have used N=6 Gaussian functions throughout this paper.

Eq. (18) has two singular values at 7=0 and g=1. In the preseat case, where we are using
a small number of points, this is not a problem because the limit points are reasonably far from
O and 1, respectively.




B. The 2s orbital

For the 2s orbital, Eq. (7), we have after the rescaling of Eq. (10) and normalization that

Kza(Ph) = f(l - —)c Q‘,

which has the following Gaussian transform!®

Kz-(m:) = / 72,(U)G(E, P2:)d3,
0

Fu® = @ray @- ) e,

G(&,p2.) = e~ X,

Applying the change of variables of Eq. (16) to Eq. (20) we have

(2+2lnq)
Ras(p2s) = = / Chngt mn )m

which becomes, after application of the Gauss-Legendre quadrature

2
Rau(ors) = —m }: 2 *l:‘“)”;’ 24200m) pLae)
=]

C. The 2p orbitals

For the 2p orbitals, Eq. (8), the equivalent of Eq. (19) is
1 -
Rarlow) = e ¥
The Gaussian transform is!>

Falow) = [ Top(@6(E, r)aa,
0

16lnn;’

(19)

(20)

@1

(22

(23)

(24)

(25)

(26)




To(®) = (ra?) 4 (oo - 1) &, @n

G(&, prp) = =% . (28)
With the change of variables in Eq. (16), Eq. (26) becomes

1
1 f(=1-2nn) _, £}
or
Rap(ps )=7==1 f:w'(—l-zlnm)exp( by ) (30)
Ve g (-t 16lny; ™

With the use of Eq. (10) we can write Egs. (18), (24), and (30) as
N
Ru=) cae®r @1
s=]1
where the linear coefficients c; and the exponents a,; (given in Table I) are expressed in terms
of the weights and abscissas of Gauss-Legendre quadrature, which are given in Table IL
Rat (r; Mat), Egs. (6)-(8), can be obtained from Ry (pat) by noting that

Rai (r; Alll) =\ ;’ 9
R lou) ™ @2

4. CARTESIAN GAUSSIAN REPRESENTATION

Because they have been preferred in molecular calculations, we are going to express our
spherical Gaussian-type orbitals in terms of cartesian Gaussian functions.
We start out re-expressing the HAO's, Eq. (3), as

Yuim(r,t) = Rat[r; Ai(8)lr~'r'Yim(6, ), (33)

where the solid spherical harmonics, r!Yim (8, ), correspond to linear combinations of the integer
powers of the cartesian coordinates.




In the case of s orbitals, /=0 and the cartesian and spherical representations are the same.
In the case of 2p orbitals we have

Yap(rst) = *T*z, e, (G4

where k stands for x, y, and z.
Applying the rescaling of Eq. (10) to the “radial” part, Eq. (34) becomes

L 47
)=k A . 3
Yap. (1, 2) o e . (35)
which has the following Gaussian transform

Vo (1) = ks ‘/_A,, or / 5~} axp(-)exp(-3 _L) da. 36)

Applying the change of variables (16) and the Gauss-Legendre quadrature 18 tp Eq. (36) we
have

Prp’
V(1) = = =5 Z( ot o) 37

If we express Eq. (37) like we did in Eq. (31) we have that

'/’Zh(ra t) k z “") exP("ab,ir ) (38)

=]

where cz(,, " and a2p,; are given in table L

5. GRAM-SCHMIDT ORTHOGONALIZATION
The exact hydrogen-like orbitals are orthonormal, i. e.,
('ﬁnlm l '/’-'l‘m') = 5.-'6"'6mm'- (39)

However when we calculate Eq. (39) using six Gaussian functions we obtained 0.015976, 1.0015,
0.892141, and 0.942533 for the 1s-2s, 1s-1s, 2s-2s, and 2p-2p overlaps, respectively. Therefore
we decided to orthogonalize the orbitals with the Gram-Schmidt procedure.!®

7




We begin with the normalization of R,,. If we take

KS (01s) = NuRu (o), (40)
and impose that
(Rx(aN )lil(an )) = / dp1, ﬁﬁ(l’u)’ =1, (41)
0
then we have that
1
Nh = ’ ' ’ (42)
;; (Elclﬁla)
- =233 B
-t~ TV 43)
1 1 -
x [ 2

() | 4(=Iany)

Next we want to orthogonalize the 2s orbital. To do this we take the new orthogonal
unnormalized 2s orbital, R;,(pz,), as

Ry, (020) = Faa(pza) + AR (o1a). @)

The requirement that ﬁg,,(pz.) be orthogonal to E(.N )(Plc) allows us to determine S,

B=- B =
(45)

~ 1 S~ wi wj2+2hy), 1 1 -3
N L L T o e W)

f=1 j=1
In the present case f=-0.015963.

Now we normalize the 2s orbital by expressing it as
B (pn) = Ny, Rz, (20)- 46)
Normalizing E;,(N) t0 unity gives us

Nj, = e, @7)




where

(Hﬂ'a’ﬁ‘ﬁ:c) = (ﬁza(m:)lﬁz.(m.)) - ﬂz =

wi(2+2lnn;) w;(2+2ln ;) 1 -3 _ a2 (48)
\/_EE v-Tay NS [16(-1!1'1. e 10'1:)] 7

t=] jul

Since we cannot represent E;,(pg,), Eq. (44), as a single summation, we have instead
shown, in Table I, the normalized Rj,(p3,)

RO (p20) = N2 Raza(ps), . @)

where
1

V(RaulR2)

In the case of 2p orbitals we just normalize them to unity because their spherical harmonics
make them orthogonal to s-orbitals. So the normalized radial part is

N2a = (50)

R0 (p2p) = NagRap(p2y), (51)

where (by the normalization condition)

Nap = s, 52)
\/ (ﬁbiﬁh)
with
(Rap[Rap) =
_ ‘Liz wi(=1 - 2Inn;) wi(—1 — 21nq,)[ 1,1 3 O
U/r s = T J-hn v-1nn;  '16(=Iny;) * 16(—lnn;)
In the case or cartesian 2p orbitals we normalize the whole orbital to unity , i. e.,
N) 2 * P2p2
',’2}' (r,t) = Nap¥2p,(r, t) = Nap, k4 V2 Z;( n ‘)* (lﬁlnr).') ’ (54)
where (by the normalization condition)
1

Nap, = T 55)
» ('pZPt I'/’ZM (

9




integrals in molecular calculations. An alternative is to orthonormalize the orbitals. The Gram-
Schmidt procedure was found to be convenient for this purpose; it can be implemented with
the expressions we presented in Section 5, and require only a knowledge of the Gauss-Legendre
quadrature points. The small calculated value of the 8 coefficient there suggests that forcing
more strict orthogonality will have only a small effect on molecular densities.

The figures show that the behavior of the physical HAO’s can be well represented over
wide distances, as required for molecular interaction studies. The largest discrepancy is found
near the origen for the cusp behaviour, as expected. This region of the atomic distances is
however inaccessible for thermal and hyperthermal collision velocities so that an error in that
region would not have a noticeable effect on collisional properties such as cross sections. The
long range behaviour of the HAOs is very well reproduced and indicates that the constructed
orbitals would have the correct interatomic overlaps required for the description of electronic

rearrangement in molecular interactions.

One of the authors (HFMDC) would like to acknowledge D. Bek$i¢ and K. Runge for
helpful discussions; he has been supported by the CNPq of Brazil. The research of DAM is
partly supported by the US National Science Foundation and Office of Naval Research.
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Table I

Linear coefficients ¢; and exponents a; for the
Gaussian expansion of the HAO’s.

¢ i
l 2 W A 2

: VF (Cln)t ~ihw

2s ,!2+2lng‘;[ A2

#w. (~lnn) -m

2 {=1=2Inn, .2

P A ~Tehw

2p(“") 1 A i - -\2
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Table 11

Weights w; and abscissas 7; for the Gauss-
Legendre quadrature with N=6.

0.085662

. 0.033765
0.180381 0.169395
0.233957 0.380690
0.233957 0.619310
0.180381 0.830605
0.085662 0.966235




Table III

Numerical values of linear coefficients c;
and exponents a; for normalized orbitals with

An l = l . O o
i Clai Q14 €24 a2 = C2p,i (’“;")
a2p.i "
w

1 0.052469 0.073783 -0.093888 | 0.018446 0.063778 0.002621

2 0.152629 0.140804 -0.406076 10.035201 0.081931 0.007626

3 0.268416 0.258861 0.006884 0.064715 0.052614 0.013412

4 0.381074 0.521758 0.148709 0.130439 -0.003344 10.019041

5 0.472074 1.346976 0.288046 0.336744 -0.062462 {0.023588

6 0.521129 7.278401 0.377034 1.819600 -0.102124 }0.026039
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Figure Captions

Figure 1 — Comparison between the exact radial part of the 1s normalized hydrogenic
orbital and the corresponding numerical one obtained in this work with 6 Gaussians.

Figure 2 — The same as figure 1 for the 2s orbital.

Figure 3 — The same as figure 1 for the 2p orbital.

Figure 4 — Comparison between the exact “radial” part of the cartesian 2p orbital, given
by (3/4x)~1/2 r=! R;, and the corresponding numerical values obtained in this work with 6

Gaussians.
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