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A-i' ABSTRACT

We describe a general approach to the paramemization of linear combinations of Gaussian

atomic orbitals, useful for atomic and molecular interactions. We use a Gaussian transform

method and Gauss-Legendre quadratures to express hydrogenic atomic orbitals, with varying

effective charges, in terms of Gaussian-type orbitals. This procedure provides well defined

rules for calculating exponent factors and combination coefficients of the linear combinations of

Gaussians in problems where nuclear distances may vary over large ranges during interactions.
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1. INTRODUCTION

Since the suggestion by Boys in 1950,' the use of Gaussian functions as basis sets has

-nc-eased useful in theoretical chemistry calculations of electronic structure. Gaussian functions

have been found very useful in the efficient calculation of multicenter electronic integrals.

Gaussian basis sets have been parametrized to optimize the calculation of atomic and molecular

energies, in work that has continued until very recendy.2-13 Gaussian functions also arise when

one introduces the Gaussian transform of atomic orbitals (AOs). In this case, the transform

integral is eventually discretized, to obtain a set of parametrized basis functions. The choice

of discretization has again been guided by interest in the calculation of energies of stationary

states.Z, 14.15

Basis sets are also needed in studies of atomic and molecular interactions, where the main

concern is the calculation of probabilities of electronic transitions, excitation cross sections, and

thermal rates. We have used atomic bases in recent studies, with a time-dependent description

which construct molecular orbitals as combinations of AOs with time-dependent coefficients.16

In the case of atomic or molecular interactions, where distances and bond angles change

over large values, it is important to work with AOs having the correct asymptotic behavior. This

is given by radial functions which decrease exponentially with the distance from an electron

to an atomic core, at a rate depending on the effective charge of the core. This behaviour is

correctly given by hydrogenic atomic orbitals (HAO's). Their orbital exponents must change

to reflect varying effective nuclear charges as nuclei or cores move and exponents change with

time. The aim of this contribution is to provide a general way of expressing these HAO's in

terms of Gaussian atomic orbitals (GAO's), with exponents and coefficients directly determined

from the varying effective charges. Our criterion for choosing the Gaussian basis sets is that they

should properly describe the AOs at distances from atomic cores that are important in dynamical

phenomena, instead of emphasizing the energetics of stationary states.

The angular part of the basis function can be represented in terms of spherical harmonics

Y1,(O, W,) or in terms of integer powers of the Cartesian coordinates. In this case a primitive



basis fbncIon may be writen as

(z,(V,,z) = z' yv 08 ezp(-a r), (1)

and a contracted Gaussian basis function is represented by9

X(z, V, z) = z' V" OR" cj e,(_,,,.2). (2)

We have recently used the time-dependent Schr5dinger equation and a related time-dependent

variational principle, to obtain complex time-dependent hydrogenic atomic orbitals (CTDHAO's)

resulting from their interaction with a moving positive charge; 17 this procedure leads to optimized

trial AOs with time-dependent orbital exponents. Here we use the Gaussian transform, which also

appears in a generator coordinate contex, 15 to express these CTDHAO's in terms of Gaussian

functions. This allows us to construct time-dependent Gaussian basis sets at any given time.

The CFDHAO's have the form

0,1(r, t) = RnI[r; Cui(t)]Yi.(9, jp), (3)

where the time-dependence appears through the complex-valued parameters

Ca(t) = A8,•1(t) + ii..j(t). (4)

We have found from the calculation of the time evolution of the complex parameters17 that

x < A for charges moving at the thermal and hyperthermal velocities of interest in chemical

pplicaions; therefore we use the approximation

¢(t) M A(t) (5)

for the exponential parameters. From now on deal with HAO's whose varying effective char•s

have real values. We introduce a convenient change of integration variable in their Gaussian

transform integral, before discretizing the variable by means of the Gauss-Legendce quadrature.1'

We can control the accuracy of our Gaussian fits by increasing the number of quadrature points

in a systematic way. This allows us to obtain excellent fits to the HAOs without requiring least

square fits or energy optimization.
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"This paper is organized as follows. In sections 2 and 3 we show how to express the HAO's in

terms of a Gaussian basis set of given size. In section 4 we give expressions for ho alizing

the orbitals by the Gram-Schmidt procedure, and in section 5 we express them in terms of

cartesian Gaussians.

2. HYDROGENIC ATOMIC ORBITALS

The radial parts of the Is, 2s, and 2p HAO's are

Ri,(r; Als,) = 2A81) •-j'', (6)

R,,(r; A2,) = 2 (1 - ) ,(7)

and

R23,(r; A2.) A - 2 p-2  e 8

where the exponential parameters may change over time due to nuclear motions.

3. GAUSSIAN BASIS SETS

We next express the HAO's in terms of Gaussian mnsforms. This procedure allows us to

choose the best set of Gaussian functions for example at any given time during the collision

process

A. The is orbital

In the Is case, Eq. (6) becomes

Ri,(r; Cis) m 2A1 | - . (9)

In order to eliminate A,,, in the pre-exponential tewm we make a rescaling 4

p.1 = A,, r. (10)

Now dte normalized radial part of the orbital is

li,(P,,) = 2-"., (i)

3



S t

which udaiss
P.I -) J dp. 1ze(p,.) 2  1. (12)

"e Gaussian transform of '(ps.) is
CD

Ii.(p) -2e-,'. =( L (13)
0

wher the weight function L.(5) is

7 =°(m) = (Sr)-i e-i, (14)

ad the generator function G(c,pi,) is

G(, = -' , (1p)

with 5 being the generator coordinate, i e., the Gaussian exponential parameter.

We are interested in numerically evaluating Eq. (13) with a small number of Gaussian

functions. So we make the following change of variables

S=eX(-1g). (16)

which transforms the integration interval from (O,oo) to (0,1).

Eq. (13) then becomes
12

2 (1n~) exp( )dq (17)

Using the Gauss-Legendre quadrature's the integral in (17) becomes a summation and we

have 2 N 2
• (P ls) = 2 2(' • i - ° 4 " "

]EI 1 Wc xp( P,;) ,(18)

where the weights w, and the abscissas q, give the set of exponent factors and combination

coefficients. We have used N=6 Gaussian functions throughout this paper.

Eq. (18) has two singular values at q-0 and q=I. In the present case, where we are using

a small number of points, this is not a problem because the limit points are reasonably far from

0 nd 1, I t vely.
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B. The 2s orbital

For the 2s orbital, Eq. (7), we have after the rescaling of Eq. (10) and normalization that

--(U)=I(1 - &)-,(19)

which has the following Gaussian mmsformLs

2.(P2,.) = f72.(W)a(W, p.)dU, (20)
0

where

72,(,) = (82,0)-1 (2- !) - (21)

and

GOS, .) = e (22)

Applying the change of variables of Eq. (16) to Eq. (20) we have

1

1J( 2(I())d•n" ) " ' P6lnq ' (23)

0 _

which becomes, after application of the Gauss-Legendre quadrature

2w 1 wi (2 + 21n 9,) exp( (24)

C. The 2p orbitals

For the 2p orbit", Eq. (8), the equivalent of Eq. (19) is

IE2,(,P2p) = -2P (25)

The Gaussian transform ists

o2p(P2,)= f , ,(26)
0•..(..



72,(0) = (24,.•)- (- _ 1) e-&, (27)

and

With the change of variables in Eq. (16), Eq. (26) becomes

if .. (-1- 2inn), P2(- 2I q)exp( Pp2),d,, (29)
)= • (- ini,) .16 In,,di

or
•2N(P) = ,., (--2 ,In, ) ( P2f,-," (30)

With the use of Eq. (10) we can write Eqs. (18), (24), and (30) as

N
IL = E ,.-' " (31)

i--1

where the HInear coefficients cr, and the exponents ard, (given in Table I) are expressed in terms

of the weights and abscissas of Gauss-Legendre quadrature, which are given in Table IL

Ij (r; A,,), Eqs. (6)-(8), can be obtained from K (pa) by noting that

R .1 (r;,A,, ) ( 2
S(32)

4. CARTESIAN GAUSSIAN REPRESENTATION

Because they have been preferred in molecular calculations, we are going to express our

spherical Gaussian-type orbitals in terms of cartesian Gaussian functions.

We start out re-expressing the HAO's, Eq. (3), as

Owl.(r, t) = RI[r; Aj,(t)]r-'r'Ya(0, p), (33)

where the solid spherical harmonics, r1Y,,(8, V), correspond to linear combinations of the integer

powers of the cartesian coordinates.

6



In the case of s orbital• W0 and the cartesian and spherical representations are the same.

In the case of 2p orbitals we have

0I2.,(r, t) = k- mA2 e- TV (34)

where k stands for x, y, and z.

Applying the rescaling of Eq. (10) to the "radial" pan, Eq. (34) becomes

02.a, (r,t)k I A2P CAL (35)

which has the following Gaussian transform

io
=- ex(!)ep(_•Ne_) da. (36)

0

Applying the change of variables (16) and the Gauss-Legendre quadrature t' to Eq. (36) we

have
N P2p2

,2p(r,.t) =-1 k-AtIj exp)- (37)
tjr~r2( 1 q4 P 161In ),

If we express Eq. (37) like we did in Eq. (31) we have that

N

02,,(r, t) = k % 7, exp(-a2,,.r 2). (38)
i--I

where 4,¶.") and a2p0i are given in table I.

5. GRAM-SCHMIDT ORTHOGONALIZATION

The exact hydrogen-like orbitals are orthonormal, i. e.,

(O.IM I on'im') = 64s111,6M'4 ,. (39)

However when we calculate Eq. (39) using six Gaussian functions we obtained 0.015976, 1.0015,

0.892141, and 0.942533 for the ls-2s, Is-Is, 2s-2s, and 2 p-2 p overlaps, respectively. Therefore

we decided to orthogonalize the orbitals with the Gram-Schmidt procedure. 19

7



W& begin with the normalization of X.1 . If we take

It (40)

and impose that
00

m(N)(-R(N)) Is dpi. (pis.)' 1, (41)

0

then we have that
1

NIS (42)

where O = N N

1 1

[4(- In) + 4(-ni)n

Next we want to orthogonalize the 2s orbital. To do this we take the new orthogonal

unnonmalized 2s orbital, %,(p,), as

*,(p',.) = •R2(p2.) + 0"6 (pN.).

The requirement that t. (P2.) be orthogonal to If (N)(Pl,) allows us to determine 3,

SN =
1 ~ No N w w(2 + 2 In t) 1 1 a (45)

,X~-= LL [ +-E nvi 16(-ln'

In the present caset #.-4.015963.

Now we normalize the 2s orbital by expressing it as

r ()(s)= N;X*(p 2 s). (46)

Normalizing •N) to unity gives us

1

NL; (47i•) )



where

(!aJ1~) =(R2,,(P2#) i'As(2.(p))- -

I l N wi(2+ 2n1%) wj(2+2In17 fi) 1 + 1 -1 _#2. (48)j7'. E E V1i-.•) 1 6(- In,;)

Since we cannot represent t.;,(p2*), Eq. (44), as a single summation, we have instead

shown, in Table M, the normalized R2,(P2,)

N(Ns2(2.) (49)

where
1

N2, = (50)

In the case of 2p orbitals we just normalize them to unity because their spherical harmonics

make them orthogonal to s-orbitals. So the normalized radial part is

-t; (pN ) = N2,p•2(p2,), (51)

where (by the normalization condition)
1

N2p= (52)F(R2p fR2p) (2

with

N Nw (-l-2In %)wi(-1-l 21nql)i 1 + 1 (53)7 24/' ml j=1 r_' _, V/_q 16(- In %7) 16(- In /i-.

In the case or cartesian 2p orbitals we normalize the whole orbital to unity, i. e.,

t),\, = N2,•,02.(rt) = Np. k4%pPA 2  (54)

where (by the normalization condition)

N 2p, fi , ,, (55)

9



integrals in molecular calculations. An alternative is to orthonormalize the orbitals. The Gram-

Schmidt procedure was found to be convenient for this purpose; it can be implemented with

the expressions we presented in Section 5, and require only a knowledge of the Gauss-Legendre

quadrature points. The small calculated value of the P coefficient there suggests that forcing

more strict orthogonality will have only a small effect on molecular densities.

The figures show that the behavior of the physical HAO's can be well represented over

wide distances, as required for molecular interaction studies. The largest discrepancy is found

near the origen for the cusp behaviour, as expected. This region of the atomic distances is

however inaccessible for thermal and hyperthermal collision velocities so that an error in that

region would not have a noticeable effect on collisional properties such as cross sections. The

long range behaviour of the HAOs is very well reproduced and indicates that the constructed

orbitals would have the correct interatomic overlaps required for the description of electronic

rearrangement in molecular interactions.

One of the authors (HFMDC) would like to acknowledge D. Beklii and K. Runge for

helpful discussions; he has been supported by the CNPq of Brazil. The research of DAM is

partly supported by the US National Science Foundation and Office of Naval Research.
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Table I

Linear coefficients ci and exponents ai for the
Gaussian expansion of the HAO's.

"Orbital 4 ai
is 2 to. A

2S w

I. A2 2

Ap 2

12 
J

ii _- *

2P(cart) I " '2 e' 12l2E
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Table 11

Weights wi and abscissas ?ji for the Gauss-
Legendre quadrature with N=6.

Fo Wi= =IN
0.085662 0.033765
0.180381 0.169395
0.233957 0.380690
0.233957 0.619310
0.18038 1 0.830605

10.085662 10.966235
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Table HI

Numerical values of linear coefficients ci
and exponents ai for normalized orbitals with

£ Cli al,. C2,i a2,.i c2pi(

a2pCi

1 0.052469 0.073783 -0.093888 0.018446 0.063778 0.002621

0.152629 0.140804 -0.406076 0.035201 0.081931 0.007626

3 0.268416 0.258861 0.006884 0.064715 0.052614 0.013412

4 0.381074 0.521758 0.148709 0.130439 -0.003344 0.019041

5 0.472074 1.346976 0.288046 0.336744 -0.062462 0.023588

6 0.521129 7.278401 0.377034 1.819600 -0.102124 0.026039

14
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Figure Captions

Figure 1 - Comparison between the exact radial part of the Is normalized hydrogenic

orbital and the corresponding numerical one obtained in this work with 6 Gaussians.

Figure 2 - The same as figure 1 for the 2s orbital.

Figure 3 - The same as figure 1 for the 2p orbital.

Figure 4 - Comparison between the exact "radial" part of the cartesian 2p orbital, given

by (3/4r)-1/2 r- 1 R2. and the corresponding numerical values obtained in this work with 6

Gaussians.
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