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I. INTRODUCTION

This is the final progress report for this two year program sponsored by the Air Force
Office of Scientific Research on "Domain Processes in Ferroelectric Ceramics”. As an issue
which has both scientific and technical importance, domain process in ferroelectric ceramics has
gain more and more attention in recent years, especially in the area of material development for
transducers and smart structures. People are eager to know the mechanism of domain formation
and domain dynamics in order to better process and engineer the required materials to achieve
desired physical properties. This two year research has set a solid foundation to build upon for
future studies aimed toward more thorough understanding of domain formation and domain
dynamics.

As a continuation of the first year's effort (Appendix S) we have made substantial new
progress in the second year as described in this report. Due to the complexity of the problem and
limited resources, we have focused on a few key issues emphasizing the basic theoretical
development. The technical progress for the second year is outlined in each of the following
sections, and the details can be found in the four appendices A1-A4. The technical report for the
first year is attached as Appendix 5 for reference.

Section II describes the theory development. The key issue is the nonlocal coupling of the
polarization vector. This nonlocal coupling is taken into account through a set of polarization
gradient coefficients in the energy expansion, which eventually enter the equilibrium conditions
in the Euler’s equation. These gradient coefficients are proven to directly couple to the dispersion
surface of the soft mode. In terms of the microscopic picture, the gradient energy is the mean
field representation of the inter-site coupling of electric dipoles. The nonlocal coupling strength
determines the domain wall width and the coherent length in domain dynamics. In Section III we
report a study on the feasibility of using electron holography to ascertain the domain profiles, and
try to extract the polarization gradient coefficients from the electron interference pattem. It is our
belief that this direction is worth more effort in the future. Section IV states some combined
experimental and theoretical effort trying to identify and understand more complicated
microdomain structures and trying to find out the intrinsic mechanism behind the modulated
nanoscale structures in doped ferroelectrics. Section VI highlights the current development and
future plans which are generated through this project, and are still carrying on the momentum.
Computer simulation on the domain dynamics is beginning to take off and we believe the
dielectric dispersion in the domain dynamics will be understood through this study.

Many results were produced in this relatively short period of time and we hope the seeds
planted here will flourish in the near future.




I. DOMAIN WALL PROFILE, POLARIZATION GRADIENTS, AND THE DISPERSION
SURFACE OF SOFT MODE

Domain walls in ferroelectrics are the boundaries of different variants in the low
temperature ferroelectric phase, which are generated during the paraelectric-ferroelectric phase
transition. Due to the long range nature of the electric and elastic interactions, nonlocal coupling
of the electric dipoles is very strong, and this nonlocal coupling determines the width of the
domain walls. The formation of a spontaneous polarization can be well characterized by a
Landau-Devonshire type theory[l]. Ferroelectric systems are also strongly nonlinear by
including the nonlocal coupling in the free energy expansion in terms of polarization gradients,
one can derive soliton-like solutions for the domain walls{A1]. These solutions reflect an
intrinsic mechanism for the formation of domain walls without interface defects. It can be shown
that these domain states have higher energy than single domain sate, however, they can be
stabilized through twinband cross pining and/or by elastic or electric boundary conditions. The
formulation described in Appendix Al has included the elastic coupling as well as the
nonlinearity and nonlocal coupling. One of the most important sotutions is the polarization profile
for a 90° domain wall. The spontaneous polarization is strongly coupled to the elastic strain in a
90° domain wall, therefore, is directly responsible for large portion of the field induced
piezoelectric effect in ferroelectric ceramics.

Following the procedure described in A1, one can derive the temperature dependence of the
domain profile for a tetragonal ferroelectric. As shown in Fig. 3 of Appendix Al, with the
decrease of temperature, the magnitude of the spontaneous polarization increases but the domain
wall thickness decreases, The changing rate for both the spontaneous polarization and the domain
wall thickness are most noticeable near the transition temperature, both quantities eventually
become insensitive to temperature for temperature much below Tc. Fig. 4 of Appendix Al
depicts the influence of the six order nonlinearity parameter. It affects very strongly on the
symmetrical part of the polarization vector, which defines the local structural distortion inside the
domain wall , but the influence on the antisymmetric part of the polarization is weak.

The most influential parameters for the domain wall thickness are the polarization gradient
coefficients which reflect the strength of nonlocal coupling. This effect is illustrated in Fig. 2 of
Appendix Al. In general, stronger nonlocal coupling will have broader domain wall. This is
conceivable since the domain wall is actually a spatial transition region between two coherently
distorted structures, it would be easier to transform from one domain state to the other when the
nonlocal coupling is weak.

Using the formulism in Appendix Al all the physical quantities associated with the
ferroelectric domain walls can be calculated. However, the expansion coefficients in the free




energy [Egs. (1-3) of Appendix A1] must be determined experimentally. The elastic, dielectric
and electrostrictive coefficients can be directly measured and are readily available for many
materials. The difficulty is the determination of the polarization gradient coefficients, which many
researches only estimate through some hand waving arguments. It is shown in Appendix A2 that
these gradient coefficients can be directly linked to the microscopic quantities and, in principle,
can be also measured directly. A simplified rigid ion model has been developed for a perovskite
system as described in Appendix A2. Since the polarization which is the density of electric
dipoles can be directly related to the relative displacement vector of positive and negative charge
centers, the gradient coefficients are actually directly related to the dispersion surface of the
corresponding soft mode for the ferroelectric transition. Therefore, through inelastic neutron
scattering experiments, one may be able to derive these polarization gradient coefficients. This
work draws a clear link between the macroscopic Landau formulism and the fundament
microscopic lattice dynamics. Although the problem has been cleared conceptually, in reality, it is
far from completed since the required neutron experiments are very difficult to perform due to the
high temperature involved. In several cases, the soft mode can be over damped which makes it
impossible to measure. A recently emerged technique Electron Holography offers a new direction
in this regard, which is described in the following section.

III. ELECTRON HOLOGRAPHY AND THE OBSERVATION OF FERROELECTRIC
DOMAIN WALLS

Electron holography utilizing the wave characteristics of electrons. Through a sharp
emission tip, the emitted electron beam is largely coherent, or in phase. While passing through
an electric field region, the electron wave will experience a phase shift. If the field is
inhomogeneous, the interference pattern formed on the recording film will be twisted.(2,3]
Assuming no compensation at the surface of the electrodes, a twin structure will form a spatial
varying electric field with large field gradient in the domain wall region. This in principie will
cause a twist of the interference pattern produced by the transmitted electrons. From the twisted
interference pattern, domain wall thickness can be evaluated with appropriate data interpretation.
A typical twisted interference pattern is shown in Fig. 4 of Appendix A3, which is produced by
coherent electrons transmitting through a 90° domain wall in BaTiO3.[3] This new technique
opens up a different avenue to obtain the gradient coefficients in the continuum theory described
in Appendix Al, since one can do back fitting using the experimental data and the theoretical
derived polarization profiles. However, as pointed out in ref. {4] that the charge compensation at
the surface of the ferroelectric is unavoidable, therefore, the internal field supposed to be
produced by the spontaneous polarization is actually shielded, so that the interference pattern
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twisting will notbe  seen in many cases. These twisted interference patterns can be seen only in
some situations when the compensation time constant is very long, or momentarily with the
disturbance of temperature.[4] More thorough theoretical understanding is still needed to perfect
the interpretation of the electron interference patterns.

Some charged defects inside the sample can also produce disturbance to the interference
pattern through the electric field surrounding these defects. Fig. 5 in Appendix A3 shows this
situation. An interesting point is the interaction of these charged defects with domain walls, it
appears that they are attracted to the domain wall region. This observation provides an important
evidence for the defect pinning to the domain walls, which gives us a possible explanation of
why a few percent of aliovalent doping could change the physical properties of piezoelectric
ceramic PZT so drastically[A3]. Many potential applications of this new technique await for
further exploration.

IV. MICROSTRUCTURAL MODULATIONS IN PLT

In domain dynamics, the inertia associated with domain wall motion is quite large since the
whole domain has to be moved in the perpendicular direction to the domain wall motion. It is
conceivable that the domain wall motion will become easier when the domain size becomes
smaller. Small domains may be achieved by aliovalent doping since the charged dopants have
strong interaction with domain walls, hence will affect the domain formation. Smaller domain
size makes it easier to switch and produces relatively larger dielectric response. Appendix A4
reports a study on Lanthanum doped lead titanate which produces a spectrum from pure
ferroelectric to relaxor ferroelectric. As shown in Fig. 3 of Appendix A4, the domain structure
changes from regular large size at 1% lanthanum doping to an ill-defined mirostructural
modulation at 25% doping. The strongly first order ferroelectric phase transition in PbTiO3 is
also graduaily changed to a nearly second order transition. The emerge of microdomain-like
structures within a well defined domain during the increase of lanthanum doping provides a key
for the understanding of dopant driven transition from a conventional ferroelectric to a relaxor
ferroelectric. The domain signature gives us a direct way to distinguish between different types
of ferroelectrics, the dielectric and piezoelectric performance of ferroelectric materials are also
directly coupled to the domain structures.
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V1. PROGRAMS IN PROGRESS

Although the current two years contract has come to a conclusion, the effort initiated by this
Air Force grant has planted a seed for the future study of domain processes in ferroelectrics. The
understanding on this subject is crucial in the development of functional ceramics. One of the
natural extensions of this work is to study domain dynamics. According to our analyses, the
problem may be simplified to a two-dimensional electric dipole problem with inter-site coupling.
Therefore, molecular dynamics methods can be used. We are currently developing a computer
program based on the formulation described in Appendix Al and adding an alternating electric
field. At the beginning stage, only one twin will be calculated, and later we plan to extend the
calculation to multidomain configurations. The primary focus is on the 90° twin for which the
elastic strain is directly coupled to the domain wall motion. It is anticipated that this calculation
can shed light on the extrinsic contributions to the dielectric, piezoelectric and electrostrictive
effects in ferroelectric ceramics.

We also plan to carry out more experimental works using electron holography technique,
which not only helps to develop a powerful new technique for the study of domain ferroelectrics,
but also can push forward the theoretical study on domain walls as well as understanding the
interaction of domain walls and aliovalent dopants.

Many ambiguous points were cleared through this study, such as the morphotropic phase
boundary in PZT, the development of microdomain structures through aliovalent doping, and the
relationship between the macroscopic Landau theory and the microscopic lattice dynamics. A
new technique for direct observation of the domain wall profile is analyzed and some theoretical
ground works are set for the proper interpretation of electron interference patterns generated by
coherent electron going through ferroelectric twins.

Many problems still exist in the domain studies, and it is our belief that the understanding
of these domain processes not only will enhance our knowledge about this fascinating material
structure, but also can provide firm theoretical background for the future development of better
functional ceramics.

REFERENCES

(1]. M.J. Haun, E. Furman, S. J. Jang and L. E. Cross, Ferroelectrics, 99, 13 (1989).
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NONLINEAR AND NONLOCAL CONTINUUM THEORY ON
DOMAIN WALLS IN FERROELECTRICS

WENWU CAO AND L. E. CROSS
Materials Research Laboratory, The Pennsylvania State University,
University Park, PA 16802

Abstract The domain structures in ferroelectrics can be described by a
Landau-Ginzburg type theory with the twin and twin band (domain) structures
being nonlinear and nonlocal excitations of the ferroelectric phase. The
polarization gradients in the theory reflect the degree of nonlocal coupling
along different crystallographic orientations. These gradient parameters can be
obtained either from the dispersion surface of the soft mode or through fitting
the polarization profile measured by the holographic electron microscopy.

INTRODUCTION

The understanding of domain structures is essential for the design and applications of
ferroelectrics. It has been long recognized that the piezoelectric and dielectric properties
of ferroelectric ceramics are mainly determined by the behavior of domain structures.
The formation of domains in ferroelectrics is due to the existence of milti-variants in the
ferroelectric phase. Atomic coherency is usually maintained across the domain
boundaries, which make it possible to switch domain orientations from one to the other
using external (either mechanical or electrical) fields. This switching gives rise to the so
called extrinsic contributions to the materials properties. The formation of domain walls
in ferroelectrics may be treated in terms of solitory wave excitations in a nonlinear and
nonlocal system. Single kink-like and periodic solitory wave solutions for the twin and
periodic domain structures can be derived using the continuum theory.!-4 Since all the
expansion coefficients in the Landau-Devonshire model can be expressed in terms of
measurable macroscopic quantities, the continuum theory can give quantitative
description of the domain wall properties, including the profile of polarization across the
domain wall, domain wall width, energy stored in the muti-domain structure, and the
stress build up at the domain wall region, once the polarization gradient coefficients are

obtained.




THE MODEL

The Landau-Devonshire type phenomenological theory for ferroelectrics has been
developed for the ferroelectric phase transition.5:6.7 For a cubic system, such as
perovskite ferroelectrics, the elastic Gibbs free energy can be expressed in the following
form;
G=Gp + G| + G¢ (hH
Gp=A (P12 + P22 +P32 )+ B (P14 + Py4 +P3%) + C (P16 + Py6 +P36)
+D (plz p22 + p22 p32 + plz p32) +E( Pl4 p22 + plz p24 + p24 p32 +p22 p34
*P32 P14+ P12 P3%)+ HP2Py2 P32 (2)
Gei = - %‘1 (X112 + X222 +X332 ) - s12 ( X11X22 + X22X33 + X11X33)

-4 (X122 + X132 +X23?) 3)

Ge = Q11 (X11 P12 +X22 P22 +X33 P32 ) + Quz [ X11 (P22 + P32 ) + X2 (P12 +
P32 ) + X33 (P12 + P22 )] + Qa4 ( X12 Py P2 + X3 P1 P3 + X23 P2 P3)
4)
where A, B, C, D, E, H are the linear and nonlinear dielectric constants, s;; are the
elastic compliance coefficients, Q;j are the electrostriction constants, P; and Xj; are the
components of polarization and stress, respectively. All the coefficients are assumed to
be independent of temperature except A which is a iiacarly function of T,
A=0a(T-Tp) &)
In a homogeneous system, a paraelectric-ferroelectric phase transition occurs at Tc.
Under stress free condition, the phase tra:sition teraperature Tc and the spontaneous
polarization P at the transition can be derivzd by i imizing Eq. (1),

2
Tc =To+ B (6)
4 C«
Pcz= :2_BC" . (7)

One of the low tempcrature ferroeiectric phases is the tetragonal phase. There are six
energetically degenerate variants in the .etragonal phase: (£ Ps, 0,0), (0, £ P, 0) and
(0, 0. £ Pg), where P; is the spontaneous polarization given by

[+ B2-3AC
Ps=‘\ 3 C (8)

These energetically dezenerate variants can coexist in the ferroelectric phase to form the
twin struci:tes. Electron microscopy reveals that the ionic coherency is maintained
acrose domain walls, but domain walls are not atomically sharp. Domain wall width is
determined by the nonlocal coupling strength of the f2rroelectric system.




Since the nonlinearity has been included in the model [see Egs. (1)-(4)], if we add
the contributions of nonlocal coupling, then from soliton theory, we may expect solitory
wave excitations in the ferroelectric phase. These excitations are in deed found and they
represent the ferroelectric domain walls.

For a perovskite system, the symmetry of the high temperature phase is cubic,
therefore, the Gibbs energy representing the nonlocal coupling can be written as
follows:2

|
Gg=75g11 (P12 +P2,22* P332 ) + g12 (P1,1 P22 *P1,1 P33 * P22 P33)
1
+784a [ (P2 + P2,1)2 + (P13 +P31)2 + (P23 + P32)2] 9)

here the indices after the comma represent derivatives with respect to space variable
along that axis. Upon the minimization of the total free energy of the system Egs. (1)
and (9), one can obtain the solutions for the domain walls.2

90° DOMAIN WALLS

There are two types of domain walls in the tetragonal ferroelectrics. One is the 180°
domain wall which divides a twin domain with identical strain but opposite polarization,
and the other is the 90° domain wall which divides two domains whose polarization and
spontaneous strain are nearly 90° from each other. Solutions for the 180° domain walls
can be easily obtained since the problem is one-dimensional.2 Here we only solve the
problem of 90° domain walls for which the problem can be rendered to quasi-one-
dimensional.

From transmission electron microscopy studies, domain walls tend to broaden or
bent near the surface, however, inside the sample they have well defined wall-like

f110]  X2{010]

N

s{100]

x4,[100]

FIGURE 1. A tetragonal twin structure and the coordinate system used in this paper.




structure with translational symmetry parallel to the wall plane. Therefore, while dealing
with a <110>-type domain walls in tetragonal ferroelectrics we can rotate the x|, x3
coordinates about the x3 coordinate by 45° so that the properties of the domain walls
only depend on one space variable (s-coordinate as indicated in Fig. 1) only.

In the new coordinate system the equilibrium conditions are governed by the
following equations:2

_a_[_ag_]__a_G_=o, (isj=svr,3)

an aPi,,- oP; (10)

X, =0, (ij=s.13) (11)
and we also need the elastic compatibility relations

€ikl €mn XInkm =0 (i,jklmn=s, 1, 3) (12)

to insure the elastic continuity since in our model the domain walls are intrinsic
excitations, no defects are created in the domain wall region. xj, is the component of
elastic strain tensor and €y is the Levi-Civita density.
Eqs (11) and (12) has three nontrivial solutions:
Xp3=0 (13)

Xn=2—(s——sl—s%—){[ 2512Q12 -511(Q11+Q12)1P3 -[ 2512Q12 -511(Q11+Q12-Qus) 1P
119ss-3512
-[2512Q12 -511(Q11+Q12+Qas))P?) (14)

X33=—L—([512(Q11+Q12) -285sQ12)P3 -[ 512(Q11+Q12+Qaa) ~2555Q12]P?

2(s lsss's%z)
-[512(Q11+Q12-Qas) -255sQ12] P3) (15)
where
sss""‘%(sl 1+Slz+%5-)~

It can be easily verified that the two stress components Xyr and X33 are nonzero only in
the vicinity of the domain wall. These nonzero stress components near the domain wall
region is the cause of the faster etching rate which makes the domain walls visible
through chemical etching technique.

In order to see the general trend of the variation of polarization profile without
specifying the coefficients to a particular system, we normalize the polarization and the
space variable s into dimensionless forms by the following substitutions:

P=y/ - 2C fe=Pcf; Py ='\/—‘—'256_ fs=Pcfy (16a,b)
s=7§, 7=(——”—“f ASZ )1/4 (17a,b)

where




Gu=3{g11+812+284).  Gr=h(E11-812).
and define the dimensionless temperature as

T-To

then the equilibrium condition Eq. (10) can be written in the following form for a 90°
twin structure,

a f; ge= 7o fo+ befd+ c ff2+ df+ (8 - %d) 212+ (4 - %d) f,f4

(19)
Lt g= bt b2+ £ + dff+ 8 - 2d) i3+ 4 - Loy £t 20)
where the coefficients are given by
ama | Oss
Gl’S . (21)
(1+4/ 1-271)
T=t- 4 —{(Qu+Qi2 - Qu)[2512Qi2-511(Q11+Q12)]
3(sy lsss‘s%QB
+2Q12[512(Q11+Q12)-254Q121} (22)
(“‘\/ 13:) ‘
=T 4 ((Q11*+Qi2+Qaa)[2512Q12-511(Q11+Q12))
3(s1 lsss's%Z)B
+2Q12[512(Q11+Q12)-255Q12]} (23)
be=-2- B— L ((Q11+Q12-Qua)(2512Q12-511(Q11+Q12-Qas)]
B 2B(s(15ss-5%2)
+2Q12[512(Q11+Q12-Qu4)-2555Qu2] } (24)
=2-Dyp 1 2 - +Q12+Qu4)]
by B B(s“s“_sh){(QlelﬁQu)[ $12Q12-511(Q11+Q12+Qus
+2Q120512(Q11+Q12+Qu44)-2555Q12] } 25)
c=-6+D+ L {(Qui+ Q12- Qaa)[2812Qu2- 511(Q11+Q12+Q44)]
B 2B(s15s-5%2)
+2Q12[512(Q11+Q12+Q44)-255Q121 } (26)
d =%( 1+ %) Q@n

RESULTS AND DISCUSSIONS

-




Using the normalized equations, we can study the influence of different parameters to
the polarization profile and obtain a conceptual understanding on the nature of the
polarization variation in the domain wall region. Fig. 2 shows the variation cf the
polarization components with the parameter a across 2 90° domain wall. One can see
that the domain wall becomes wider as a increases. In real dimensions, because the
scaling factor of the space variables, v, is directly related to the product Gss*Gys [see
€q.(17)], domain wall becomes wider as the gradient coefficients become larger.
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FIGURE 2. Variation of polarization components fs and fr induced by the change of
parameter q across a 90° domain wall. The gradient parameter a determines the width
of the domain wall.
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FIGURE 3. Variation of polarization ¢. mponents fs and fr with temperature T across
a2 90° domain wall. The asymptotic values of the polarization components increase
and the domain wall width decrease while lowering temperature.
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Fig. 3 shows the variation of the polarization with temperature t. The asymptotic
values of the magnitude of the polarization components increase and the domain wall
thickness decreases as the temperature is lowered. The temperature dependence is strong
near the transition and gradually becomes insensitive when the temperature is far below
Tc. Fig. 4 shows the variation of the polarization components f; and f; induced by the
change of parameter d. We can see that the magnitude of f; is very sensitive to d while
the domain wall thickness is relative insensitive to d. We can also calculate the
polarization components f; and f; in the original coordinates. One example is given in
Fig. 5 (a) for a set of chosen parameters. The corresponding unit cell distortion and the
polarization variation across the domain wall are illustrated in Fig. 5(b). The polarization
vector rotates gradually from one orientation into the other accompanied also by a
change of the magnitude.

All properties of the domain walls can be quantitatively calculated using this
model once the expansion coefficients are known. As we have mentioned above that the
polarization gradient coefficients are most crucial for the study of domain walls, which
may be derived from the measurements on the dispersion surface of the soft mode.8.9 In
general, inelastic neutron scattering to probe the soft mode may be difficult due to the
relatively high transition temperature in many systems of interest and in some cases, the
soft mode is over damped. An alternative way to obtain these coefficients would be to
probe the polarization profile across the domain wall and then fitting the unknown
coefficients using the differential equations (19) and (20). The recently emerged new
technique, electron holography, may offer an option to this end.!0.11
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Polarization Gradient Coefficients and the Dispersion Surface of the Soft Mode

in Perovskite Ferroelectrics

Wenwu Cao
Materials Research Laboratory, The Pennsylvania State University, University Park,
Pennsylvania 16802

Abstract

The gradient coefficients in the Landau-Ginzburg theory are crucial for quantitative
description of domain walls in ferroelectrics. The magnitude of these gradient coefficients are a
measure of nonlocal coupling strength of the polarization. In this paper, we intend to explain the
physical meaning of these gradient coefficients in terms of lattice dynamics and give some
relationships between these gradient coefficients and the dispersion surface of the soft mode. The
implications for the study of over damped soft modes are also discussed.

PACS Numbers: 64.60.-i, 63.20.Dj, 64.90.+b




L. Introduction

Many ferroelectric materials have perovskite structure with a cubic symmetry in the
paraelectric phase. The symmetry of the low temperature ferroelectric phase can be tetragonal,
rhombohedral or orthorhombic. Ferroelectric phases usually have more than one variants and
these variants may coherently coexist within the symmetry frame of the parent phase, forming the
5o called twin structures. It is shown that these twin structures can be well described by Landau-
Ginzburg (LG) type models.!-2 All the expansion coefficients in the Landau theory correspond to
certain macroscopic physical quantities and can be obtained experimentally. However, the
physical meaning of the gradient coefficients, which regulate the domain wall formation and
control the domain wall width in the twin structures, still needs to be specified.

A paraelectric-ferroelectric phase transition is characterized by a softening of a transverse
optic mode at the Brillouin zone cenfer due to the cancelation of the long range Coulomb forces
and the short range repulsive forces.3 The soft mode is stabilized above the phase transition
temperature by the anharmonic interactions whose strength weakens as the temperature decreases.
Using mean field theory, one can still formally retain the terminology of normal modes if the
“soft mode” frequency is assigned to be temperature dependent.

Close to the phase transition temperature, the dominant contribution in the lattice
Hamitonian is from the soft mode. Therefore, one may simply study the soft mode behavior to
characterize the phase transition near T.. For an inhomogeneous system, the spatial variation of
the order parameter must be considered. This is done by adding an energy term induced by the
order parameter gradients. Because the inclusion of both nonlinear and nonlocal terms in the
energy expansion, one may expect to obtain large amplitude soliton-like solutions which can
describe the domain walls (the transition region between coherent twin structures).*3:6 The
physical meaning of these gradient coefficients can be seen from the study of small amplitude
oscillations for which the nonlocal coupling can be treated as perturbations.6.7 We will show in




this paper how these polarization gradients can be derived from a simplified lattice dynamical
model.

Since polarization is the density of dipoles per unit volume, it is proportional to the
magnitude of the associated optical mode. As will be shown in the third section of this paper that
the lattice potential for a given optical mode can be written in terms of the polarization vector.
Therefore, the Landau-Ginzburg potential can be directly used in the lattice dynamical calculations
in the small representation of the soft mode.

I Gradient Cocfficients and Dispersion Surface of the Soft Mode

From soft mode theory, the potential energy for a cubic system may be expanded in terms

of the eigenvector of the soft mode3

G=12&(u§ +u} +u}) (1
where x is related to the temperature dependent soft mode frequency, x o (T-T¢), and u; (i =
1,2,3) are the components of the eigenvector of the soft mode. For the ferroelectric phase
transition u is a relative displacement field.

If u is inhomogeneous, we must include the gradient energy in the energy expansion. For

cubic symmetry the gradient energy may be written as follows,

Gg= %—L (uf,) +ud 3+ 3 ) 4312 (U, U2 + UL U3 3 +Uz2U33 )
+28 ((w1 4,7 + (w3 +us )P K3 4320 ) @
Assuming the effective mass for the mode is M then the equations of motion become

M i) + xuy - 811 up, 11 - 812 (U221 +u331 ) - 8ag (U122 +u2,12 + U133 +u3,13) =0, (3a)

M iz + xu2 - 811 u2,22 - 812 (1,12 + U332 ) - 8ag (Ur21 +u2, 1] +u2,33 +u323) =0, (3b)

M i3+ xu3 - 811 u3 33 - 812 (u1,13 +u2,23 ) - 8ag (u1,31 +u3,11 + 12,32 +u3,22) =0, (3¢)
Eq.(3a-c) have plane wave solution of the form
u=Uexp|[j(wt-kwx)) )

Substituting eq. (4) into eqgs. (3a-c) gives the eigenvalue problem




Ma?U=D(k) U (5)

where D(k) is the dynamical matrix

K+511k%+844(k%+k§) 12k ka 12k k3
D(k) d12k; ka k+811k3+844(k3+k3) 812 ka k3 (6)
Si2k; ky S12 k2 k3 K+8) (k§+84a(ki+k3)

If the depolarization field is included, the equations of motion (3a-c) will contain one more
term representing this contribution, which will split the longitudinal and transverse optical

modes.8:9 The depolarization field is given by

(Pek) k
Ek)=-————
&) & k2 )

The additional contribution is a linear function of the polarization vector P which is proportional
to the relative displacement field u. Adding eq. (7) to the r.h.s. of eq. (3a-c) leads to the
dynamical matrix for a given.k. In what follows, we will treat three k-values in the three principle
directions of the k-space.
A k=[k 0,0}

Define Pi=Z e u;, where Z is a constant which has a unit of inverse volume and e is the
electron charge unit. The meanigng of Z will be clear from later derivations. For this k value, the
dynamical matrix can be simplified to the following form

K+A + 8;k? 0 0
D(k 0 K+844 K2 0 ®
0 0 K+844 k2
where A is a constant defined by
A =(l/gg) (Ze)? 9
4




From Eq. (8) one can easily derive the dispersion relations for the longitudinal (o ) and

transverse (@r) modes respectively:

o =Lx+Aa+d) k) (10a)
o} =L (x+ 8,k%) (10b)

L

=K
B. k {2.[1,1,0]

The electrostatic force from the depolarization field is now given by

Z—e—izgﬂﬁ[l,l,O] =;A__(_‘.1.é_"12.2[1, 1,0) (1)
€0

Therefore the dynamical matrix is
K+A2+ (811 +04q) k2/2 A2 + 85 k? 0
D(k) AR +B12) k2 x+A2+ (811+84) K212 0 (12)
0 0 K+ 844 k2
and the dispersion relations are
@ =L ix+ A+l @u+din+8u) K] (13a)
of, =g [x+ LG 812+ 8u) K2 (13b)
of, =ik (x+ Buk?] (13¢)

Here the two transverse modes are not degenerate.
= » 1,11,
C. k 3 i ]

For this case the Coulomb force from the depolarization field is

£ @? P2t P 1, 11 =2 (“'+3“J+"3) (L1 (14
€0

and the dynamical matrix becomes




K+A/3 +(8)1/342 d44/3) k? AJ3 +(8)2/3) k2 A3 + (8;2/3) k?
D(k) A3 + (§12/3) k? K+A/3 +(811/3+2 844/3) k> A/3 + (812/3) k?
A3 +(812/3) k2 A/3 +(8,2/3) k? K+A/3 +(811/3+2 844/3) k*

The dispersion relations are therefore given by

“’(2.=-§4-[K+A+-§-(5n+2512+2544)k2] (16a)
of =d-[x+ 1 @u-812+28u)K2 ] (16b)

Note that the dispersion relations derived above are for the cubic phase near k=0 but not for

the low temperature ferroelectric phase.

IN. TheE ion Coeffici { Lattice D .
Taking the limit k — O in the dispersion relations derived above, one finds that the

coefficient x / M becomes the soft transverse mode frequency square,
Lim 2= /M
koo T an
The longitudinal mode will not become soft at T = T because of the depolarization field

contribution A,

Lm o =l@x+A)
k-0 M

(18)

The simplest model to calculate these coefficients in terms of microscopic quantities is to
study the k =0 mode for a biatomic system using rigid ion model, in which the soft mode
represents the relative displacement field, the mass is the relative mass, and the polarization is
equal to the ionic charge times the relative displacement then devided by the unit cell volume.

However, in the perovskite structure there are three different types of ions, hence, a more realistic

(15)




model would be a three body system model. [n what follows we will use a one dimensional rigid
ion model for BaTiO3 as an example to illustrate the relationship between the coefficients in Eg.
(1) and the microscopic quantities.

According to the structural work of Shirane et al,!0 the soft optical mode in BaTiOj3 consists
of the relative motion of Titanium, Barium and Oxygen (Fig. 1a). Because the center of mass and
the center of charge for each type of ions coincide, we can effectively treat this system as a three-
body system in the lattice dynamical calculations. For convenience the ion groups are labeled as
follows (see Fig. 1b): Ba--- 1; Ti--- 2; and 3 O ---3.

The potential energy represents the k = 0 mode for this three-body system is

¢=52L(x. - x2)? +521(xz - x3)? (19)

In order to derive the equations of motion one should also consider the Lorentz field, which leads

to the following differential equations:

m1x|=-n1(x1-x2)+§1€:q|P (20 a)
m2i2=-K1(xz-Xl)-Kz(x2~X3)+§tQ2P (20b)
m33i3=-K2(X3-X2)+§le:q3P (20¢)
q1+q2+q3=0 n
P=(qxi1+qx2 + q3X3)/a3 (22)

where a, is the lattice constant, q;, q2, q3 are the charges of the three ion groups, P is the
polarization.

For convenience let us introduce two new variables
u=x1 °X3; V=X2'X3.

Using egs. (21) and (22), and the new variables u and v the equations of motion (20a-c) can be

simplified to become
izau+byv (23a)
Vv=cu+dv (23b)




Ba

Ti

30

(a) (b)

Figure 1. (a) jilustration of the ionic displacement in BaTiOg from ref. 10.
(b) One dimensional modal for the soft mode




where
b=-(%§--%“-)+§§-§(%“—+3‘-%§4)

d=-(£‘m—"'2]Sl +%)+§;‘1§(%}{+_Cﬂrn_‘;&2_)
Eqgs (23a,b) have the harmonic oscillator solution
u = ug exp(jax) 24)
V = Vg expy jox) (25)

and the eigenfrequericy @ is given by

2 _ 1., 7. 3
wi=1[-a d++/(a+d)?-4(ad-bc) ] 26

In any given mode the relative displacement u and v are propor:ional to each other. For the
coordinate system in Fig. 1, u and v always have the same sign. Assuming one of the modes,
for example ., becomes soft at lower temperatures due to the decrease of the coupling strength

between different ions, then, their magnitudes have the following relationship:

v0=-2-16(d-a+w/(a+d)2-4(ad-bc))uo 27)

From Egs. (21) and (22) the polarization P is given by

P=(q,u+q2v)/ag=[q,+§35(d-a+«/(a+d)2-4(ad-bc))]u/ag (28)

Therefore, in this mode
Zezlql+-29~2b—(d-a+~/(a+d)2-4(ad-bc))]/£ (29)

The value of P can be obtained from pyroelectric measurements and ¥ may be calculated from
X-ray diffractions of the low and high temperature phases, hence, Ze can also be obtained

experimentally.




Since v and P are linearly proportional to «, we could simplify the problem by constructing

a new single variable potential G= (k/2) u2 which gives rise to the following equation of motion.

(30
where K has the dimension of force constant and M has the dimension of mass according to the
definition of a, b, c and d. For a three dimensional system, the constructed potential which leads
to Eq.(30) will have the same form as Eq. (1) according to symmetry. Because u is also
proportional to the polarization P [eq. (28)], we may also write down the constructed potential in
terms of the polarization vector P, which becomes the Landau potential for a ferroelectric system
G= (/2) P2, a = x/ (Z &)2. |

For longitudinal vibrations, we have to add the depolarization field (- P/g,) to the equation
of motion Eq.(20 a -c), which will add a positive contnibution to the eigenfrequency preventing it
to become soft like the transverse mode. Formally, the relationship between @y, and @t may be
written as

of = of + & (30)

where A is a positive constant reflecting the contribution of the depolarization field.
IV. Summary and conclusions

It is shown that the polarization gradient coefficients in the Landau-Ginzburg theory can be
directly related to the dispersion surface of the soft mode. Therefore, their physical meaning
becomes apparent. The correspondence between the Landau theory and the lattice dynamic
potential was illustrated through a simple one dimensional rigid ion model for BaTiO3 at k=0.
Since the polarization and the relative displacement field have a linear relationship, the polarization
gradient coefficients in the Landau-Ginzburg theory may be calculated from the measured
dispersion curves near the soft mode. For cubic symmetry there are only three independent
gradient coefficients, the dispersion anisotropy of the soft mode can be determined through




measurements along the three principal directions. These gradient coefficients in principle can be
obtained through inelastic neutron scattering experiments. However, in many cases these
dispersion curves are very difficult to measure because of the high transition temperature. To my
knowledge, a complete set of the dispersion relations do not exist in the literatures for the known
ferroelectric materials. One of the intentions of this paper is to re-emphasize the importance to
measure these dispersion curves which can be used for the study of domain walls in
ferroelectrics.

An interesting point should be also mentioned is the possibility of obtaining the dispersion
surface of the soft mode through direct measurements on the domain wall profiles(!1). because the
gradient coefficients can be extracted from fitting the measured polarization profiles to the soliton-
like solutions of nonlinear nonlocal continuous medium theor.(2:6) This couid be very useful to
study the dispersion surface of the over damped soft mode, such as in BaTiO3, which can not be

obtained through inelastic neutron scattering.
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Ahstract

Electron microscopy studies in lanthanum doped lead titanate reveals the evolution of a
spatial modulation in the magnitude of the spontaneous polarization with the increase of the
lanthanum dopant. On the incorporation of ~ 25 atom percent lanthanum, the conventional domain
structure becomes ill-defined, and tweed microstructures are observed. The structural information
can be associated with the change from normal ferroelectric to diffuse ferroelectric phase transition
behavior. Different from twin structures, these modulated structures represent a new type of
polarization variation existing within a single domain. Further understanding of the observed
spatial variation in polarization requires structural analysis at the atomic scale. Holographic
electron microscopy is proposed as a potential tool to study various polarization gradients in
ferroelectric materials. Understanding the spatial variations in polarization is essential to more
fully comprehend the extrinsic contributions to the elasto-dielectric properties in ferroelectrics.




Introduction

Mesoscopic structures within ferroelectrics and related materials have important
consequences with respect to the macroscopic elasto-dielectric properties. These structures exist
on a scale of a few tens to a few thousands of angstroms and include defect structures within the
lattice as well as the polarization domain structures associated with the ferroic phase transition. In
general, there are two contributions to the elasto-dielectric properties: the intrinsic contribution,
which is related to the ferroelectric (antiferroelectric) atomic structure, and the extrinsic
contribution, which is associated with domains and defects.!2 In technologically important
materials, such as Pb(Zr,Ti)O3, the extrinsic factors can contribute as much as 70% to the total
elasto-dielectric response (see Figure 1). Therefore, it is necessary to develop a greater
understanding of all the possible defect and polarization mechanisms which could contribute to the
extrinsic elasto-dielectric properties. However, a comprehensive theoretical description of the
extrinsic contributions is currently not in place.

The most common mesoscopic structures associated with ferroelectric and related materials
are domains and domain walls. Domains form at the phase transition and relate the low
temperature phase to the high temperature prototype phase via certain symmetry constraints. In the
example of “normal” first- or second-order ferroelectric transitions, each domain is an area of
uniform polarization, and the boundary which divides two domains (i.e. a twin structure) is known
as the domain wall. The domain wall is a region of distorted crystal structure in which there exists
a spatial transition of the polarization from one orientation state to another.

There are two main types of twin structures. One type is a twin with inversion symmetry of
the polarization but in which the strain is the same in both variants. The second type is a twin of
two variants with different orientation for both polarization and strain. Ferroelectric twins are
typically of the head to tail configuration. There are reports of other domain configurations, such
as head-to-head types, but these have not been extensively investigated.34

The fine structure of the ferroelectric domain walls depends on a number of inter-related
parameters: including t:e symmetry, temperature, order of the phase transition, spontaneous
polarization, and the electrostrictive and elastic compliances. A number of analytical descriptions
now exist to describe the spatial variation of the order parameter in a ferroelectric domain wall. 567
However, some of the parameters required by the theory cannot be easily acquired with current
experimental techniques, and so there is a need to develop new experimental methods to study
polarization variations in these materials.

Defects and dopants are known to have a strong influence on the elasto-dielectric properties
of ferroelectrics and related materials. Theoretical treatments of the role of defects near structural
phase transitions are usually restricted to defect densities that are much less than the reciprocal
correlation volume (~ 1018 cm3).8 In the perovskite ferroelectrics of commercial interest, such a
situation is almost never realized. )




This article outlines some of the results observed by diffraction contrast electron
microscopy in perovskite-based ferroelectrics.!0 From these results, and requirements of the
theoretical developments, there is an urgent need to experimentally investigate the polarization
gradients, both within the domain region and in the region of the domain wall. Electron
holography is discussed as a technique potentially capable of quantifying the polarization gradients
in these materials.

Results and Discussion
La-dooing in PZT-based P K

Doping in Pb(Zr,Ti)O3-based materials by lanthanum is used as a means to soften the
switching characteristics of piezoelectric materials.!! Additionally, the incorporation of lanthanum
facilitates the fabrication of transparent ceramics for optoelectronic applications.!2 In general,
doping with lanthanum has a significant influence on many of the elasto-dielectric properties. For
sufficiently high levels of doping in Zr-rich PZT compositions, this leads to the observation of
diffuse phase transition behavior having strong diclectric dispersion. Ferroelectrics with this
behavior are generally referred to as relaxors, and are of technological importance owing to their
unique electrostrictive, capacitive, and optoelectronic properties. The domain structures of relaxor
(Pb,La)(Zr,Ti)O3 (PLZT) ceramics are difficult to study using transmission electron microscopy.
However, by carefully cooling a 8.2/70/30 composition, 2 microdomain contrast could be detected,
as shown in Figure 2(a). Under the irradiation of the electron beam, the domain structure is
unstable. By agitating the structure through focusing/defocusing the beam, the domain
configuration transforms to a more stable ordered structure, Figure 2(b). It is believed that
thermally-induced stresses switch the microdomain structure to 2 new domain configuration. 13

The end-member of the PZT solid solution, PbTiO3, has the highest transition temperature
(Tc = 490 °C) and the largest strain [(c/a -1) ~ 6.5 %] within the perovskite family. This makes
PbTiO3 an ideal material to study by transmission electron microscopy. Doping PbTiO3 with
lanthanum (PLT) reduces both the phase transition temperature and the characteristic discontinuity
of the first-order transition. A systematic study of the structural effect of lanthanum on the polar
domain structure in PLT ceramics reveals the development of a strain texture within the normal
domains, Figure 3(a),(b),(c). Using diffraction contrast invisibility conditions, we were able to
deduce that the texture is the result of a non-uniform spontaneous deformation along the c-axis
within the domain. As shown in Figure 3(a), for a sample doped with 1 atom % La, there is no
evidence of a texture. As the lanthanum concentration is increased from between 5 and 10 atom %,
texturing appears, and this becomes progressively more pronounced with increasing dopant
concentration. When the dopant concentration reaches 25 atom %, a normal domain structure is
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not identified, and a full cross-hatched or "tweed” domain structure is observed below the
transition temperature, Fig. 3d. Similar structures have been observed in ferroelastic systems such
as YBap(Cug.9Feg,03)307-8 and Mg- Cordierite.14.15 Inhomogeneous polarization distributions
are not unique to the PLZT system, but also exist in the complex lead Pb(B ‘B )O3 perovskite
systems. In these systems, the intermediate scale B-site cation ordering is the source of the
polarization modulation.16 In order to further our understanding of the polarization variation in
these materials, we need to develop a technique to quantify the polarization gradients and defect
structures. In this regard, the potential of the electron holography technique is discussed below.

Electron Holography

The idea of using coherent electrons in electron microscopy was proposed in 1949 by
Gabor in an attempt to extend the limits of electron microscope resolution.!? However, the
realization of electron holography was achieved only in the 1980’s owing to the development of a
coherent field-emission electron beam. Commercial instruments for electron holography have been
developed by Hitachi Lid. and Philips but have only recently become available. The principle of
electron holography is similar to that of optical holography, in which the the phase and amplitude
of the electron beam are recorded simultaneously. The addition of phase shift information which is
highly sensitive to local changes makes electron holography a more attractive method compared to
conventional electron microscopy techniques. There have been a variety of applications for this
new technique starting since 1980, especially in the study of magnetic domains and fluxons in
superconducting materials. 18

Recently the possibility of using the holography technique to study ferroelectric domain
walls and other defect structures in ferroelectrics was recognized. Some encouraging results have
been reported on the profiles of domain walls, as shown in Figure 4.19 The kink-like electron
interference fringe pattern closely resembles the space profile of the polarization vector across a
domain wall as predicted by the Landan-Ginzburg model.56 Although a complete theoretical
description of the fringe profile in Ref. 18 is not currently availabie, the fact that the electric field
variation can be probed on a scale less than 1 A is both exciting and promising.

It has been demonstrated that the electron holography technique may also be used to study
the location of aliovalent dopants inside crystal structures through the perturbed local electric
fields.20 As shown in Fig. 5a the fringe bifurcations occurred across the domain wall. Potential
contours reveals there are charge centers attracted to the domain wall (see Figure 5b).20 This
information may lead to a significant advance in the understanding of the effect of dopants, and
may shed new light on the study of interactions between the dopants and domain walls and other
polarization modulations as described above.




Quantitative study of the polarization profiles can have a significant impact on the
fundamental understanding of ferroelectrics. Once the relationship between the fringe variation and
the polarization space profile is established, one can obtain the polarization gradient coefficients
through back fitting the observed domain profiles to the theoretical results on domain walls.” These
gradient coefficients a-¢ a measure of the nonlocal coupling strength. Using lartice dynamics, one
may correlate these gradient coefficients to the dispersion surface near the soft mode of the
paraelectric-ferroelectric phase transition.2! Hence, the electron holography technique, together
with the continuum model described in Ref. 6, can potentially provide a methodology to study the
characteristics of the over-damped soft mode in systems such as BaTiO3, which could not be
directly probed through inelastic neutron scattering.

As a new technique, many problems still exist in the electron holography, especially with
regard to the interpretation of the observed fringes. In principle, the total phase shift of high
energy coherent electrons passing through a feiroelectric thin sample ngy be calculated from the
following equationZ = R -

X V :
00030 =2 [ Viro ooz o M

-~ &
where A is the electron wavelength, xo and yo define the point on the thin sample, E is the electron
energy, and V(xo,Yo.2) represents the electrical potential experienced by the traveling electrons.
However, V(xq,yo.2) represents the total potential, and it is quite difficult to delineate contributions
from the “bound™ charges (relevant to the polarization) and the “free” charges (relevant to
compensation). We believe this is the main reason for the inconsistencies encountered in the
current studies of ferroelectrics using electron holography.23 More theoretical analysis of the

interpretation of the holography results is in order.
Conclusions

Observations by conventional transmission electron microscopy techniques on ferroelectric
and related materials reveal a variety of polarization modulations which can be induced when there
exists coupling of the primary order parameter to symmetry breaking defects. From the evolution
of the modulated structures and domain structures, one can see some link between these

A new eclectron-microscopy technique using coherent electrons known as electron
holography opens up opportunities in the study of domain walls and defect structures. In this
technique, phase shifts can be correlated to local variations of the electrostatic fields within
materials. Further development of this new technique in the study of ferroelectrics may help us to

S




gain new insight into the mechanisms of extrinsic contributions to the macroscopic elasto-dielectric
properties.
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. Figure Captions
Figure 1. Tembennn'e dependance of the dielectric permittivity of doped-PZT ceramics. The
theoretical value from the Landau-Devonshire theory is also shown.

Figure 2. (a) Bright field image of liquid nitrogen cooled PLZT 8.2/70/30 relaxor ferroelectric
revealing a microdomain structure. ( b) An in situ switched pseudo-domain
structure of (a).

Figure3 ~  Bright field image of domain structures in a solid solution series
= (Pb1.3x/2Lax) TiO3 with four different La contents.

Figure 4 ~ An electron hologram of a 90° domain wall in BaTiO3, the fringe bending is related
" to the polarization difference across the domain wall (ref. 19).

Figure § (a) An electron hologram showing anomalous fringe bifurcations in a 90° domain
wall in BaTiO3. (b) Electron interferogram of the same area of (a) shows charge
defect centers within the wall (courtesy of Drs. D. Joy and X. Zhang).20
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MICROSTRUCTURAL CHARACTERISTICS AND DIFFUSE PHASE
TRANSITION BEHAVIOR OF LANTHANUM-MODIFIED LEAD TITANATE
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Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544

Abstract The introduction of structural disorder into perovskite ferroelectrics leads
to the observation of diffuse phase transition behavior. In this paper, the
microstructural characteristics and phase transition behavior of lanthanum-
modified lead titanate are discussed. It is shown that the diffuse nature of the
transition is connected with the appearance of ferroelectric domain structures
exhibiting texture on the mesoscopic ( = 10 nm) length scale. The theoretical
implications of these results are briefly discussed.

INTRODUCTION

Diffuse phase transitions in perovskite ferroelectrics occur as a consequence of
some level of structural disorder that breaks the translational invariance of the
lattice. The type of diffuse transition observed depends both on the nature and scale
of the structural disorder. Impurities, point defects, extended defects, incomplete or
inhomogeneous cation ordering, macroscopic fluctuations in chemical composition,
core/shell structures etc. can all lead to smearing of the ferroelectric phase
transition. The physical origin of the smearing and the behavior of the ferroelectric
properties in each particular case, however, may be very different. In chemically
complex compounds and solid solutions, several types of structural disorder are
often present simuitaneously. To establish structure-property relations in these
materials therefore requires characterization at all the relevant length scales,
including the macroscopic (crystal symmetry, chemical homogeneity, core/shell
structures), the microscopic (ferroelectric domain structures, extended defects),
the mesoscopic (cation order domains, texture within ferroelectric domains ), and
the atomic (point defect chemistry, local environment). '

For ferroelectrics such as lanthanum-modified lead zirconate-titanate (PLZT),
the structural disorder arises as a consequence of the complex defect chemistry
associated with the aliovalent A-site substitution of lanthanum?. Keizer, Lansink
and Burggraaf? have shown that the nature of the ferroelectric transition in ceramic
specimens of the end member Pbq.qyLayTiO3 (PLT) changes smoothly from that

expected in a sharp first-order phase change to that of a ditfuse transition as
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the lanthanum concentration is increased. Figure 1 shows that, when characterized
by the exponent yin the generalized Curie-Weiss law, the anomalous dielectric
behavior onsets at y =~ 0.05 and becomes typical of diffuse transitions (i. e. y= 2)
when y > 0.23. Aithough the numerical values of ydepend somewhat on the lead
elimination factor (o) as well as on the grain size, the general trend towards
increasingly diffuse behavior with lanthanum substitution is intrinsic.

In order to better understand how structural disorder evolves and relates to the
dielectric properties in PLT, we have recently undertaken transmission electron
microscopy (TEM) and powder x-ray/neutron studies, the details of which are
reported elsewhere3-S. In this paper, we draw on these results and speculate on
some possible interconnections between the microstructure, dielectric properties,
and the phase transition behavior.

RESULTS AND DISCUSSION

High resolution X-ray diffraction studies4 of sol-gel derived powders have shown
that the addition of lanthanum to lead titanate results in broadened diffraction
profiles showing a marked profile asymmetry. The degree of asymmetry can be
quantified by fitting the profiles to split Pearson distributions®. The split Pearson
function gives two values for the full width at half maximum, gL and pH, which are
characteristic of the peak shape on the low and high angle sides of the peak maximum,
respectively. Figure 2 shows that both the peak asymmetry and the peak breadth
renormalize as a function of lanthanum concentration. The asymmetry (H/pL)
changes markedly between y = 0 and y = 0.01, but then decreases and becomes
constant for samples with y > 0.05. At the same time, the profile breadth decreases.
Corresponding to the changes in the diffraction profiles, the crystal tetragonality
(c/a) begins to deviate from the linear composition dependence as expected based on
Vegard's law. These observations cannot be easily explained by macroscopic
variations in chemical composition, nor by particle size effects.

Alternatively, recent TEM studies3 (Figure 3) reveal that the development of
sub-domain texture in PLT materials closely paraliels the changes observed both in
the X-ray studies and in the dielectric behavior. For samples with y < 0.05, no sub-
domain texture is observed, and the transition behavior is sharp. For samples with
y 2 0.05, sub-domain texture becomes apparent, and increases in degree with
lanthanum concentration. As the sub-domain texture becomes more pronounced, the
dielectric behavior near the transition becomes cormespondingly more
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Figure 3. ‘Transmission electmin micrographs of Pb) Ti03:
(ay=0.01Dby=0.05(c)y=0.10and (dy=0




MICROSTRUCTURE AND DIFFUSE TRANSITION BEHAVIOR OF PLT

anomalous. For compositions with y > 0.25, the microstructure degenerates into a
cross-hatched or tweed texture. For these compositions, the dielectric behavior is
typical of that for diffuse phase transitions. Note that these textures disappear on
heating above the transition temperature, and so cannot be identified with exsolution
lamellae.

The tweed structures observed for the higher lanthanum concentrations would
appear to be precursors for the mottled and poorly defined vestiges of sub-domain
texture as observed for PLZT?. The Zr-rich PLZT compositions exhibit strongly
frequency-dispersive diffuse transitions similar to those of the complex B-site
perovskites such as PbMgqy/3Nb2/303 (PMN) and related compounds. In the later
case, however, it is the cation order domains persisting on a ~10 nm length scale
that lead to the breakdown of the ferroelectric domain structure8-10. The similarity
in mesoscopic domain texture of the PLZT and PMN type materiais!!-13 is
intriguing, since at the atomic level, the origin of the structural disorder in these
two materials is very different.

With regard to the nature of the phase transition in PLT, the first-order
character also follows the changes in structural properties as revealed in the X-ray
data. The development of a Landau-Devonshire'4 formulation for the phase
transition in PLT requires the expansion coefficients to depend on spatial variables,
which results in a distribution of transition temperature. As a macroscopic average,
one expects that the first-order discontinuity of the transition will be drastically
reduced as the transition becomes diffused. The Landau theory is valid, however,
only when the sub-domain modulations are weak, otherwise the gradient related
(Ginsburg) terms must be included. Using the methodology described previously'S,
the coefficients in the Landau-Devonshire expansion were estimated for compositions
with y < 0.05, where judging from Figure 3, this condition is approximately
satisfied. As shown in Figure 4, the coefficient of the quartic term in the elastic
Gibbs function (x11X) increases rapidly toward zero between y = 0 and y = 0.01 but
then changes at a much lower rate. This increase reflects the apparent loss in the
first-order character of the transition as the structure relaxes to the defects and the
long range order is disrupted. The coefficient of the sixth-rank term also
renormalizes, but to a much lesser extent. Large changes in the coefficient of the
quartic term were also observed for PLZT compositions 8.

For the compositions with y > 0.05, the Ginsburg terms must be included in
the formalism. The inciusion of the gradient energy can describe both the domains
and their modulations. Periodic domain structures can be excited for a finite
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system due to the competition between nonlinearity and nonlocality. Modulated
structures and tweed textures can be described in terms of crest riding
periodons'7.18, However, the modulated structures such as those in Figure 3¢ do not
seem to follow the expected temperature variation pattern of the crest riding
periodon excitations, which are unstable and can survive only in a finite
temperature range near the transition. One possible explanation could invoive an
interaction of the defects with the periodons. These excitations might be stabilized
by the lanthanum/vacancies if the defects are appropriately aligned. The alignment
can be driven, on the other hand, by the field gradient created at the walls of the
periodons. Consistent with this notion, the modulations have preferred orientations
(although not perfect), and are nearly periodic, as shown in Figure 3. Further
studies will be required to confirm this picture.

At the higher lanthanum concentrations (y > 0.25) the microstructure breaks
down on still finer scales and more degenerate states are created. This will
effectively increase the dielectric response of the system, as observed. For these
materiais, however, arguments based on the continuum theory as summarized above
may not be used because the density representation (both in terms of energy and
polarization) is no longer valid. Instead, discrete models must be developed. The
results described above can be represented schematically as shown in Figure 5,
where the observed relationships between the first-order character of the
transition, the crystal tetragonality, the sub-domain texture, and the dielectric
properties are shown. Here it is worth mentioning that, in the Landau-Devonshire
formalism, close inter-relationships exist between the curvature of the energy
surface, the order of the transition, and the symmetry of the ferroelectric phase. In
this connection, it is of interest to consider how the scenario depicted in Figure 5
may change as zirconium, which lowers the tetragonality of the system and further
fiattens the energy surface, is added to the system. Based on the above discussion, we
might expect that lanthanum will become more effective at breaking down the domain
structure as the rhombohedral side of the PLZT diagram is approached, leading to a
large number of degenerate states and additional contributions to the dielectric
response even at modest lanthanum concentrations.

SUMMARY

The breakdown of conventional ferroelectric phase transition behavior in
lanthanum-modified lead titanate has been comelated with the appearance of
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domain structures exhibiting texture on a nanometer scale. It was suggested that
this type of mesoscopic sub-domain texture is a common feature of ferroelectrics
showing diffuse/frequency dispersive transitions. The theoretical impiications of
the relationships existing between the curvature of the energy surface, the order of
the transition, the symmetry of the ferroelectric phase, the development of the sub-
domain texture, and the resuiting dielectric properties were discussed.
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L. INTRODUCTION

This is the progress report for the first year of a two year program sponsored by the Air
Force Office of Scientific Research on "Domain Processes in Ferroelectric Ceramic”. Domain
processes contribute a large portion in the dielectric and piezoelectric activities in ferroelectric
ceramics, a better understanding of this subject can be of great help in future materials deveiopment
tor acoustic devices and smart structures. The materiai studied in the first year investigation is the
PbZrO3-PbTiO3 solid solution, the so called PZT ferroelectric ceramic, which has been the primary
transduce material for the past thirty years. Although PZT is a well known transducer material and
has been used widely, there has not been any systematic theoretical study in the past, which
unambiguously characterizes this system, especially lacking the knowledge on the mechanism for
the strong piezoelectric activities. Only in the last few years people have started to realize that the
major contributor in the piezoelectric effect is from the domain processes and have made a start to
distinguish and separate the intrinsic and extrinsic contributions. Our focus in this project is to
understand, from a theoretical point of view, the extrinsic contributions. In the first year of this
Air Force sponsored program, we have carried out a critical study on the PZT system and found
many ill-defined concepts and definitions. Among these are the concept of the morphotropic phase
boundary (MPB), the distribution of coexisting phases in a complete solid solution system, the
distinction between domain switching and field induce phase transition, and the relationship
between antiphase boundaries and ferroelectric domain walls in the thombohedral I phase. These
problems have been addressed in the first year and the details are given in the following sections
I, III and IV, respectively. A recently funded University Initiative Research (URI) program by the
Office of Naval Research provided a solid back up on the experimental part of this study.
Collaborative work between the two programs is already in progress (see section IV).




0. STUDY ON THE MORPHOTROPIC PHASE BOUNDARY iN PZT

The most useful PZT compositions are those near the so called Morphotropic Phase
Boundary (MPB). The MPB is defined as a compositional phase boundary at which the free
energies for the thombohedral and tetragonal phases are equal. Itis well known that many
physical properties peak at the MPB, (1) but the reason for this is not well understood. In addition,
the free energy is not a directiy measurable quantity, in order to study the MPB we need to
correlate the equal free energy concept to some measurable quantities. In the past, thermodynamic
concepts developed for liquid-solid transition and liquid (or gas) mixtures were borrowed to
address the MPB and the distribution of structural phase mixture in the PZT system. As a result,
some inconsistencies and confusions are created. In light of this situation, we have conducted a
systematic theoretical study on the MPB in the PZT system during the first year of this project.
A. The Definition of MPB

As pointed out in Appendix I that the MPB is conventionally represented by a nearly
vertical line on the phase diagram (see figure 1 in Appendix I). In the classical book on
piezoelectric ceramic by Jaffe Cook and Jaffe,(1) the MPB line is measured by X-Ray diffraction
technique. The nearly vertical line on the phase diagram in the vicinity of 52/48 Zr/Ti ratio is
obtained according to the criterion of equal volumne fraction of the tetragonal and rhombohedral
phases. In a liquid (or gas) mixture, the equal volume criterion can be derived from thermodynamic
principles for an equilibrium system. However, for the structural phase mixture (which may not
even be in thermodynamic equilibrium), the two phases derived from a common parent phase have
different degree of freedom in the configurational space. It is shown in Appendix I that the MPB
defined according to equal free energy criterion should not have equal volume fraction for the two
coexisting phases if the geometrical constraints are imposed. Because the two low temperature
phases are derived from the same cubic phase, in order to calculate the volume fractions we must
study the actual transition process and include the structural constraints in the transition probability




calculation. It is shown (see Appendix I) that the volume ratio for the thombohedral/tetragonal
phases should be 60:40 at the MPB instead 50:50 used before.
B. Phase Mixing in Complete Solid Solution Systern

As shown in the phase diagram (see figure 1 of Appendix I) PZT is a complete solid
solution system in the cubic phase. There is a paraelectric-ferroclectric phase transition which occur
at around 370 © C for the MPB composiiion. In such low temperaiure regime, there is no chemical
driving force for phase separation to occur in this system. At the transition, the system only
experiences a displacive structural distortion which produces a spontaneous polarization due to the
relative shift of the positive and the negative charge centers. X-ray diffraction shows that the
symmetry of the low temperature ferroelectric phase could be either tetragonal or rhombohedral,
depending on the Zi : Ti ratio in the system. Near the MPB composition, the low temperature phase
is a mixture of the tetragonal and rhombohedral phases. In an attempt, the fraction of each low
temperature phase was described by the lever rule and the two edge compositions were fitted from
the experimental data.(23) Although the fitting appears to be quite good, the edge compositions,
which specify the width of the coexistence region, can not be uniquely determined, width of the
coexisting region ranging from 0 to 20 mole percent. It is found that in general ceramics of smaller
grain size have larger coexistence region and ceramics of larger grain size have smaller coexistence
region.

We have looked into this problem in more detail and found that the description of the phase
coexistence in PZT using the lever rule is actually in contradiction with the nature of the complete
solid solution system, because the two edge compositions in the lever rule actually specify a
solubility gap. Since such solubility gap does not exist in the PZT system, naturally one can not
define these two edge compositions using the lever rule. Considering the fact that the paraelectric-
ferroelectric phase transition is second order for PZT at compositions near the MPB, we propose
that the phase coexistence in this system is a result of a "frozen in" metastable phase from thermal




fluctuations at the paraelectric-ferroelectric phase transition (see Appendix II). A method is
introduced to calculate the fractions of the two "frozen in" phases, which takes into account both
the structural constraints and the statistics. The theoretical calculations agree well with the
experimental results. More importantly, the new model does not contain the two fixed edge
compositions as in the lever rule, instead, two new variables are introduced: one is the MPB
compositon which is a fixed quantity, and another is the width of the coexistence region which is
inversely proportional to the volume of the particles (or grains). The new model not only is
compatible with the nature of solid solution system but also can explain the grain size dependence
of the coexistence region observed experimentally. Although the quantitative test of the new model
awaits more refined experimental input, we believe that the conceptual breakthrough is significant
and could trigger further development on this subject.
I STUDY THE PHASE TRANSITION IN RHOMBOHEDRAL PHASE PZT AND

ANTIPHASE STRUCTURE IN R3c PHASE

As part of the first year effort we have initiated a joined investigation on the PZT system

with the Navy supported URI program . The focus is on the R3m — R3¢ phase transition in the
rhombohedral ferroelectric phase of PZT. This phase transition is not well understood in terms of
the Landau-Devonshire formalism. In addition to the soft zone center mode, there exists another
soft zone boundary mode which involves the tilting of the oxygen octahedra in the perovskite
structure and causes unit cell doubling. We have made a detailed structural study using
Transmission Electron Microscopy. One of the most interesting findings is that many antiphase
boundaries are generated in the R3c phase and these antiphase boundaries are, in most cases, not
confined by the crystal symmetry (see Appendix IlI). The antiphase boundaries with their
orientation compatible with the crystal symmetry have been addressed by Cao and Barsch,(%) but
the observed antiphase boundaries in the PZT system seem to be not confined by symmetry at all.
We suspect that there are two different kinds of antiphase boundaries in the R3c phase of PTZ, in




one kind the boundaries are orientated along the polarization direction and the other kind with their
orientation perpendicular to the polarization. The observed ~ntiphase boundary may be the
combination of the two. Modeling of the antiphase boundary along this line is currendy in
progress.

PZTs of the thombohedral symmetry is one of the hest pyroelectric materials.
Unfortunarely, the existence of this R3m — R3c phase transition produces a second kink in the
polarization versus temperature plot, which effectively limits the temperature range in real
applications. The understanding on this transition process and the associated domain structures
could help to overcome this hindrance.

IV. PAPERS PRESENTED AT NATIONAL AND INTERNATIONAL MEETINGS

1. Wenwu Cao and L.. E. Cross "Elastic Compatibility and Charge Neutrality in the Domain
?gg;fmcs of Ferroelectrics” American Physical Society March Meeting, Indianapolis, Indiana,
2. Wenwu Cao and L. E. Cross "Ratio of the Rhombohedral and Tetragonal Phases on the the
Morphotropic Phase Boundary in Lead Zirconate Titanate”, The Eighth Intemational Symposium
on the Applications of Ferroelectrics, Greenville, SC. August 31-Sep. 2, 1992.

3. L. E. Cross and Q. Jiang "Fatique Effects in High Strain Actuators” Second Joint US-Japan
Conference on Adeptive Structures, Nagoya, Japan, Nov. 12-14, 1991.

4. L. E. Cross "Ceramic Sensors and Actuators for Smart Structures” Indo-US Workshop on
Perspective in New Materials, March 23-24, 1992.

5. L. E. Cross"Ferroelectric Ceramic Sensors and Actuators for Smart Composites and Adeptive
Structures ECAPD2, London, April 12-15, 1992.

V. HONORS TO FACULTY AND STUDENTS
L. E. Cross, Orton Lecture, April 13, 1992. American Ceramic Society Meeting.
L. E. Cross, Materials Research Society Medal and Award, 1992.
VL. PROGRAMS IN PROGRESS
Several important issues have attracted our attention through the first year investigation.
However, due to the limitation of manpower, it is not possible to address all of them. Currently,

based on the already achieved progress, we are pursuing the following topics:




a) Study the periodic structure of domains in ferroelectric systems. This includes theoretical study
on the relationship between the periodicity and the width of domain walls, particularly in PZT
system. The theoretical study will also address the grain size dependence of the domain period,
which can shed some light on the different domain patterns obtained from Transmission Electron
Microscopy.

b) Study the octahedra tilt transition in the chombohedral phase of PZT and the syminety relation
of the antiphase boundaries in the R3c phase to interpret the TEM results reported in Appendix I
c) Extend the model described in Appendix I and II to incorporate the effect of external electric
field. The change of distribution under an electric field will facilitate the calculation on the extrinsic
contributions from the field induced phase transitions.

d) Enhance the link between this program and the Navy funded URI program and try to integrate
the theoretical results with the experimental results. It is expected that the experimental work of the
URI program will catch up in the coming year.
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The Ratio of Rhombohedral and Tetragonal Phases
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A method is introduced to determine the statistical distribution of energetially degencrate but geomettically in-
equivalent states in a temperature induced phase transition in solids. The method hay been employed 10 caleulate the
ratio of the rhombohedral and tetragonal phases in the Pb(Zr, Ti, ., 10, solid solution of the morphotropic phase bound-
ary (MPB) composition. Our results indicate that the MPB determined by Jatte, Cook and Jatle { Prezoelectric Cerannicy
(Academic Press, London, 1971) p. 136] Irom structural measurements should be shitted to the thombohedral side,
wilich is more consistent with the MPB determined from dictecyiv shicdsudClaciis.

KEYWORDS:

A phase diagram representing the subsolidus phase
relations in the system PbZrO,-PbTiO, taken from the
book by Jaffe, Cook and Jaffe" is given in Fig. 1. The
system contains the well known solid solution series
Pb(Zr. Tii-.)O; (PZT) which exhibits a variety of phase
changes. In this system the most interesting compositions
are for those on or near the so-called morphotropic
phase boundary (MPB) (see the nearly vertical line on
Fig. 1). PZTs in this compositional region have superior
piezoelectric properties and are the primary materials cur-
rently used in most piezoelectric transducers and ac-
tuators. As shown in Fig. { the ferroelectric phase is
rhombohedral on the left-hand side and tetragonal on
the right-hand side of the MPB line, respectively (note:
there should be a co-existence region of the two phases
which is not shown in this phase diagram). The MPB in
Fig. 1 as quoted from the book (Jaffe, Cook and Jaffe, p.
136) *‘is considered as that composition where the two
phases are present in equal quantity”’.

The MPB drawn on a phase diagram is a composi-

N W

Temperoture {*C)

Mole % PBTIO,

Fig. {. Phase diagram of P®Zc, Ti,..0,) [after fatfe, Cook and
Jeffe, ref. 1).

terroslectric ceramic, PZT, lead zirconate titanate, inorphotropic phasc boundary

tional boundary which is defined as the composition for
which the free energies of two adjacent phases are equal.
From thermodynamics, the free energy of a solid solu-
tion system depends on the following variables: tcmpera-
ture, pressure and composition. The compositional
variable in the PZT case has a special property, it can
only be directly accessed in certain temperature range.
Out of that temperature range, the compositional
variable can not be changed while keeping other variables
fixed, as we know that a PZT solid solution caun not be
formed at room temperature. In order to change the com-
position at room temperature, one has 1o first heat up the
system so that a single phase solid solution can Dbe
formed, then cool the system back down 10 room temper-
ature after the new composition is formed. This special
property ot the compositional variable prevents dircct
thermodynamic analysis with this variable, and lhience in-
validates the transition hysteresis argument® in the ex-
planation of the coexistence of two phases. Although the
phase transition frc = the rhombohedral structure to the
tetragonal structure must be of first order, it can not be
realized while keeping the temperature unchanged,
because the composition is not a directly accessible ther-
modynamic variable below a certain temperature limit.
This is to say that we should address the temperature in-
duced transition process in order to understand the
effects of changing composition below i certain tempera-
ture limit.

There are two types of phase mixing: one is the mixing
of phases of dillerent chemical compositions and the
other is the mixing of phases with different structures but
identical chemical compositon. At a lirst glance, it ap-
pears that the two problems seem to be similar, but they
actually have quite different nature. The former retlects
the law of mass conservation (obeying the lever rule), but
the latter is actually a statistical distribution problem. It
is the intention ot this paper to provide a simple method
dealing with the latter case.

From thermodynamic analyses, it is shown that the
paraelectric-ferroclectric transition for compositions
near the MPB is of second order within the experimental
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error,” we therefore expect strong thermal fluctuations to
occur near the transition temperature 7. This thermal
fluctuation is the sole driving force for the phase transi-
tion. For convenience we will work in the order
parameter space. When the system is cooled down near
T. from the paraelectric phase, the magnitude of the ther-
mal induced instant polarization |P,,| increases as the
potential weli around P=0 becomes Hatter and Natter.
Below T., the Ructuation is gradually trozen and the
system acquires a new configurational state with a finite
polarization. in a second order phase transition the tran-
sition process happens in a continuous fashion; but in a
first order phase transition, a finite spontaneous polariza-
tion is obtained at the phase transition. The two cases are
illustrated in Fig. 2 for a one-dimensional system, where
the shaded area represents the level of thermal energy. In
a one-dimensional system the number of allowea (two)
orientations of the instant polarization is the same as that
of the spontaneous polarization. But in two- and three-
dimensional systems, there are no orientational con-
straints for thermal fluctuation (determined by the dimen-
sionality of the problem only) altitough the magnitude of
P.s is regulated by the potential well around the origin.
However, the allowed orientations for the spontaneous
polarization P, are limited. The thick line and the solid
dots in Fig. 3 illustrated this situation for a two-dimen-
sional problem representing a square to rectangular fer-
roelectric phase transition. There are no orientational

T stightly > Te T weil below T

T slightly < T¢

First order
Tronsition
Fig. 2. 1llusiration of the potential wells and thermal fluctuations

near the critical temperature T, for both second and first order phase
transitions in one dimension. The shaded areas represent thermal
energy.

R
Py Y
Qo o
o o
P, T,
] [ ]
[} [}
(a) (o

)

Fig. 3. Representation of Ructuating state and the ferroelectric states
in order parameter space for a two-dimensionsal problem. (3) The
thick and the thin lines are the profiles for the polarization Huctua-
tions of the square-rectangular and square-oblique phase transitions,
respectively, near 7,. (b) The solid dots are the Jdegenerated rec-
tangular ferroelectric states and the open circles are the degenerated
oblique ferroeleciric states, respectively, well below T..

constraints for P.. in the fHuctuating state [profile is
represented by the thick line in Fig. 3(a)} but only four
orientations tor P, [solid dots in Fig. 3(b)] are allowed
well below T..

The question we try to address in this paper is: what is
the probability p, tor the system in Fig. 3(a) to become
the ith low symmetry terroelectric states in Fig. 3(b)? For
the two-dimensional problem mentioned above, the
answer p,= 1 /4 may be obtained intuitively since the four
low-temperature  rectangle  states  are  completely
equivalent, i.e., these states are energetically degenerate
and structurally identical. But in more general situations,
intuition fails to provide an answer, for instance, the case
shown in Fig. 3 where the energetically degenerated rec-
tangle (solid dots) and the oblique (open circle) staies are
structurally different. In this case we need to follow a
well-defined mathemaiical method to calculaie ihese pro-
babilities. Such a calculation is particularly useful for the
study of PZT system, because at the MPB we have pre.
cisely such a situation, i.e., the tetragonal and rhom-
bohedral phases are energetically degenerate.

It is obvious that the probability calculation is only
meaningful in the Quctuating state. After the system be-
ing frozen into one of the low temperature states, ther-
mal energy is no more effective to carry the system from
one configuration to another. Our calculation js based on
the tollowing assumption:

The instant polarization P, is orientationally
ergotic in the fluctuating state near T..

In other words, we assume that the thermal motion has
no orientational preference, although as shown in Fig. 3,
the magnitude |P.q! is regulated by the potential con-
figuration and is a function of direction and temperature.
An immediate inference from the assumption is that the
average total polarization of the system is zero in the fluc-
tuating state, or more concisely, { P> =0 but (P’
=0,

Now we try to correlate this thermal fluctuation with
the transition probabilities to different structural phases.
The assumption tells us that the trigger from the sur-
rounding thermal bath is isotropic, but the actual struc-
tural change resulting from the trigger depends on the
potential energy configuration. Because only a few
isolated orientations for P, are allowed below T. in the
order parameter space, we expect that all P, oriented in
the vicinity of an allowed polarization direction can
potentially develop into that final polarization state.
Hence we can assign each allowed polarization state an
effective solid angle §; in a three-dimensional order
parameter space, the probability p; of that state being
formed under the trigger of thermal fluctuation is
represented by Q,/(4n), where 4x is the normalization
constant.

The next task is to define the boundaries of these solid
angles. Imagine we applv a small dc field E to lift the
degeneracy of the system. Under this field the system will
be forced to develop into one of the allowed low tempera-
ture states whose polarization vector has the smallest
possible angle with the applied electric field. If this field is
applied to the system from another angle, it can cither in-
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duce the same polarization state or a different state de-
pending on whether or not the field is still oriented inside
“ihe effective solid angle of that state. Considering at a
temperature slightly below T, there are two adjacent
energetically degenerate states represented by P, and Ps
respectively, in the order parameter space (P, and P,
form an angle @), the boundary of the two effective solid
angles tor these polarization states may be defined by

E-P=E P, n

Taking the coordinate systems as shown in Fig. 4 we can
write eq. (1) in the following form,

P, cos ¢= P, cos (P—d). Q)

lnterestingly, the magnitude of the electric field has drop-
ped out in eq. (2), hence if we take the limit £—0, the
result in eq. (2) will still hold.

In reality, the problems of intcrest are those cases for
which P,=P,, therefore, eq. (2) can be further simplified
to

o=®/2. Q)

Equation (3) states that the boundary of two effective
solid angles is a plane in the order parameter space pass-
ing through the bisector of the angle @ and perpendicular
to the plane containing P, and P,. If there exist more
than two degenerate states, a boundary may be defined
for each pair of adjacent effective solid angles using eqs.
(2) or (3).

After the boundaries are defined, the remaining task
becomes straightforward. We draw a polyhedron in the
order parameter space surrounding the origin, whose
cdges are on the solid angle boundaries defined by eq. (3).
For a PZT of MPB composition, the degenerated fer-
roelectric states include both -rhombohedral and
tetragonal phases. Assuming for the simplest case that
Pr= pymg, then the corresponding polyhedron is shown
in Fig. 5. The solid angle caiculation can be written in
terms of a surface integral on each of the corresponding
surface which snbtends that solid angle, for example

adxdy
Romun = aﬁ r’+a’)’” Y Y & +yray

Fig. 4. Coordinate system used in the calculations of eqs. (2) and (3).

Fig. 5. The probability distribution polyhedron for PZT of the MPB
compotsition, OT =OR. The solid angle subtended by the surface
fIKH with respect (0 the origin O divided by 4x represents the
probability of the sysiem being transformed into (00, ) state.

where ds is the area element on the surface IHIJK and 7
is the distance between ds and the center point T on that

surface (Fig. 5). The integration of eq. (5) can be carried
out to give an analytic solution
_(3-V3
Qows =4 arcsin s ) (6)

From this result and the arguments given above we con-
clude that for PZT of the MPB composition, the
probability ratio for a system to be frozen into rhom-
bohedral and tetragonal phases from the fluctuating state
is given by

| —6aresin |- V3
Rhombohedral= 1= 6Quyx /4n =0 arcsin 6
Tetragonal mauug /4n N (3 - —3-)
6 arcsin 3
=1.459x=3:2 )

A ceramic system may be treated as an ensemble of do-
mains, and each domain can be considered to be the
system we have discussed above. Then, eq. (7) represents
the molar ratio of the rhombohedral and tetragonal
phases for a PZT ceramic of the MPB composition !his
molar ratio can be calculated directly from X-ray duilrac-
tion intensities, therefore eq. (7) provides a criterion for
the determination of the MPB,

Thermodynamics tells us that maximum values of
many physical quantities should appear at the MPB com-
position due to the existence of maximum number of
energetically degenerated states. However, several ex-
perimental results reveal that these maxima do not match
with the MPB on Fig. | but often slightly deviate to the
rhombohedral side.**® Our analysis above gives a
reasonable explanation to this controversy. Naturally, if
we use the ratio of 3:2 instead of 1:1 as the criterion for
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the MPB, the MPB line on Fig. | would shift to the rhom-
bohedral side.

The novel idea presented in this paper is to take into ac-
count the geometrical constraints in the calculation of
the statistical distributions of those energetically
degenerated states in solids. Through this paper we also
intend to bring people’s attention on treating solid
systems, those thermodynamic theories developed for gas
and liquid systems may not be valid and should be
augmented to incorporate the characteristics of solids.

Finally, we like to point out that a special property per-
taining to this problem has been used implicitly, i.e., the
homotopy mapping between the real space and the order
parameter space. Strictly speaking, thermal motion oc-
curs in real space not in order parameter space. But
because the order parameter is a vector in our problem,
there is a one point to one point mapping between the

‘—
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real space and the order paramerer space, therefore we
did not emphasize the difference between the two spaces
in the text. However, if the order parameter is not a vec-
tor, one can not use the theory developed in this paper.

One of the authors (W.C.) wishes to thank Drs. M.
Grutzeck and A. Saxena for helpful comments. This
research was supported by Air Force Office of Scientific
Research under Grant No. AFQSR-91-0433,
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A statistical model is proposed to address the problem of two-phase coexistence near the morphotro-
pic phase boundary (MPB) in Pb(Zr, _, Ti, JO, solid-solution series. Functional forms for the molar frac-
tions of tetragonal and rhombohedral phases inside the coexistence region are obiained, which may be
used to replace the lever rule to describe the phase mixing in a complete binary solid-solution series
without solubility gap. The model predicts that the width of this coexistence region is inversely propor-
tional to the volume of each element in the statistical ensemble. In addition, the shift of the MPB com-
position from the composition of equal molar fraction of the two coexisting phases is found to be propor-
tional to the width of the coexistence region. Several existing controversial experimental observations

can be reconciled by this model.

I. INTRODUCTION

The most widely used piezoelectric ceramic today is
lead zirconate titanate (PZT), a solid solution of PbZrO,-
PbTiO,, with compositions near the morphotropic phase
boundary (MPB). A MPB is defined as a compositional
phase boundary at which the two adjacent phases in a
phase diagram have equal Gibbs free energy. The phase
diagram determined by Jaffe, Cook, and Jaffe' from x-
ray-diffraction measurements is shown in Fig. 1. The
MPBonthuphmdnmmconnderedtobethe
composition at which the amount of tetragonal and
rhombohedral phases is equal.’! However, it was pointed
out? that the molar ratio of the two low-temperature
phases, i.e., thombohedral:tetragonal, should be 3:2 in-
stead of 1:1 at the MPB (defined by equating the free en-
ergies of the two phases), which provides an explanation
for the discrepancy between the MPBs determined by us-
ing dielectric maximum and from x-ray-diffraction inten-
sities.

Historically, the exact composition of MPB in PZT has
never been pmuely defined; it ranges from 45-50 mol %
of PbTiO;.>™® There is a coexistence region of the
tetragonal and rhombohednl phases whose width is also
not well defined,’® ranging from 2~15 mol % of PbTiO,
around the composition Ti/Zr=48/52.

From many years of study on the PZT system, the fol-
lowing two facts are well accepted:

(1) The PZT system is a complete binary solid solution
of PbTiO, and PbZrO, without solubility gaps.

(2) Below the paraelectric-ferroelectric transition tem-
perature there exists a coexistence region of the tetrago-
nal and rhombohedral phases near the MPB composition,
although the width of this region is still a debatable issue.
Adding small amounts of dopant can shift the MPB and
increase the width of the coexistence region.

The lever rule, obtained from mass conservation, has
been used to describe fact (2) above.”® Although the data

-

|

® / /'4

g? /' MPS B

‘.’ 3 /o’ -

s | .

g 200 Fapm . Fr -
-

0
Mole % PTIO,

Q [

Pb2r0y

FIG. 1. Phase diagram of PbZrO,-PbTiO: 'P/1
solution series by Jaffe, Cook, and Jaffe (Ref. 1).
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fitting appears to be reasonable, the two edge composi-
tions x, and x, in the lever rule actually specify a solubil-
ity gap, which is in contradiction with fact (1) above. An
alternative explanation of the phase coexistence {fact (2)
above] is to use the transition hysteresis argument within
the context of a first-order phase transition by taking the
composition as an independent variable.'” This is also
inadequate because the composition variable is already
frozen in the temperature region (T <375°C) where the
two ferroelectric phases exist; the system only experi-
ences a diffusionless structural phase transition at the Cu.
rie point. Solid-state reaction, which is needed to change
the composition of PZT, cannot occur until above 800°C.
In other words, once a solid solution is formed at high
temperature (T > 800°C), the chemical composition can-
not be changed at low temperatures, but the system can
have temperature-induced diffusionless struciural phase
transitions. Because the compositional degree of freedom
has beer: frozen in the temperature region of interest, the
transition hysteresis concept is not feasible. In addition,
both cxplanations mentioned above lead to a definite
width of the coexistence region which has not been ob-
served experimentally.

Many physical properties of PZT reach their max-
imum or minimum at the MPB, which is also not well un-
derstood. From the definition of MPB, the two low-
temperature structural phases are energetically degen-
erate at the MPB composition, and it is conceivable that
the electric field or stress-driven phase transitions be-
tween the two ferroelectric structures are possible for the
PZT of composition near the MPB. This field-induced
phase transition could contribute substantially to the ob-
served phenomena. In order to quantify this contribu-

tion, one must know the exact fraction of the two-

structural phases for a given composition in the low-
temperature regime. Looking at classical thermodynam-
ic and statistical theories, one finds that they cannot be
directly applied to address our problem because the MPB
is defined by equating the free energies of the tetragonal
and rhombohedral phases, hence the energy difference
(which is the only criterion in classical statistics) is zero.
On the other hand, after a low-temperature structure is
formed from the paraelectric-ferroelectric phase transi-
tion, the system may be “locked” into this structure be-
cause of the existence of a transition barrier between the
two low-temperature phases (this is reflected in Fig. 1 as
the nearly vertical line of the MPB). This “locked struc-
ture” is thermodynamicaily metastable below the transi-
tion temperature. Therefore, in reality we are not exactly
dealing with the absolute thermodynamic equilibrium at
temperatures well below 7,. It is our opinion that the
coexistence of the two low-temperature phases in the
PZT system is a result of quenched-in thermal fluctua-
tions. Following this idea, the two observations in the
PZT system mentioned above can be explained satisfacto-
rily, and the fractions of the two coexisting phases can be
quantified.

I1. THE MODEL

As a starting point, we assume that the partitioning of
the two phases does not change with temperature after
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being determined at the paraelectric-ferroelectric phase
transition. We therefore only need to calculate the parti-
tioning near T..

The question we are trying to address here is really the
accessibility of all the low-temperature states during the
phase transition. If we assume that all 14 states (8 in the
rhombohedral phase and 6 in the tetragonal phase) are
identical, then the molar ratio, rhombohedral:tetragonal,
should be 4:3 at the MPB. But obviously these 14 states
are not identical, the two low-temperature structures are
geometrically inequivalent. In Ref. 2 we have applied
thic geometrical constraint in the statistical calculation of
this ratio at the MPB, which is close to 3:2, and intro-
duced the concept ot probability polyhedron for systems
with a vector order parameter. This concept may be used
to caiculate the distribution of energeticaliy aegenerate
buat geometrically inequivalent states resuiting in a
second-order phase transition (here the transition refers
to the paraelectric-ferroelectric transition but not the one
between the (wo low-temperature phases). In this paper
we try to extend the model discussed in Ref. 2 to account
for the coexistence of two energetically nondegenerate
and geometrically inequivalent phases by incorporating
the classical statistics.

In order to understand the underlying physics of the
present problem, we first study the driving force for the
phase transition. It has been shown using phenomeno-
logical theory that the paraelectric to ferroelectric phase
transition in PZT for compositions in the vicinity of the
MPB is of second order."! Therefore, thermal fluctua-
tions are the driving force for this phase transition. Inev-
itably, these fluctuations will also play a key role in the
probability distribution of the tetragonal and rhom-
bohedral phases during cooling through the Curie point.

A. The probability polybedron

The construction of probability polyhedron was de-
scribed in Ref. 2. The only assumption made there was
the orientational ergodicity of thermal fluctuations which
is valid for either long-time observation of a single system
or instant observation of a statistical ensemble.

In order to generalize the idea of probability polyhed-
ron we give an equivalent definition below. Considering
the fact that the number of surface planes in the polyhed-
ron is equal to the number of allowed polarization direc-
tioms, it is equivalent to say that in the fluctuating state
each of the polarization states occupies an effective solid
angle in the order parameter space, which is equal to the
solid angle subtended by the polyhedron surface whos
plane normal coincides with that polarization directi«.
The probability of attaining this polarization state ...
cooling through the phase transition is equal to its
effective solid angle divided by 4, the normalization con-
stant.

Now we use this concept to describe the distribution of
polarization states for the PZT of compositions
sufficiently far from the MPB. In this case, the low-
temperature phase is either tetragonal or rhombohedral.
On the tetragonal side (Ti rich) of the MPB, the probabil-
ity polyhedron is a cube with each of the six variants,




|

4 THEORETICAL MODEL FOR THE MORPHOTROPIC PHASE . . .

(xp,0,0), (0, =p,0), and (0,0, =p), occupying an effective
solid angle of (0, =2r/3 (i =1-6), where p is the magni-
tude of the polarization. Hence, the fraction being
transformed into each of the polarization states in an en-
semble (a ceramic can be treated as an ensemble of grains)
is equal to 2, /{4r)=1/6, and the total polarization of
the ensemble is zero in the order parameter space. Be-
cause of the one to one point mapping between the order
parameter space and the real space, the total polarization
in the real space is also zero for a statistical ensemble of
particles. The same can also be said for the compositions
on the rhombohedral side (Zr rich) of the MPB, for
which the probability polyhedron is an octahedron. The
effective solid angle for each variant is 7/2 and the prob-
ability for each polarization state is (w/2)/(4m)=1/8.
Again, the net polarization of the ensemble of rhom-
bohedral phase particles is zero. When the PZT compo-
sition is close to the MPB composition, the two low-
temperature structural phases can coexist and the proba-
bility polyhedron will have 14 faces. In general, the
tetragonal states and the rhombohedral states are not de-
generate unless the composition is exactly on the MPB;
therefore, we expect the effective solid angle representing
the probability of each polarization state to change with
composition.

There is an energy difference between the two structur-
al phases when the composition is not exactly on the
MPB; we introduce an anisotropy factor § to describe
this situation. As shown in Fig. 2, the distance of the sur-
faces (corresponding to different phases) from the center
point of the polyhedron is represented by »; (=0T or
OR), which controls the solid angle subtended by the sur-
face. In other words, r; determines the probability of at-
taining a specific polarization state using the concept we
have introduced above; »; must be a function of energy.
At the MPB composition, the tetragonal and the rhom-
bohedral phases are degenerate, and we have 7y =r,. In
this case, the actual magnitude of 7; does not matter since
the solid angle partitioning is independent of 7;. But for
the nondegenerate case, r; and rp are different and
should depend on the energies of the two low-

FIG. 2. Probability polyhedron for PZT system with the pa-
rameter 8 in the range 1—1/V3>8>1-2/v3. At MPB,
OT=0R and §=0.
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temperature phases. We define the distribution anisotro-
py parameter b as follows:

_ ’r"k

) e

rr
which is a function of composition only when tempera-
ture and pressure are fixed.
=0 represents the MPB composition, at which the
probability ratio of the rhombohedral and tetragonal
phases is®

Sr _ m—6arcsin[(3~-v3)1/6]
fr 6arcsin[(3—Vv3)/6]

t2)

where fp and f; are the probabilities of the rhom-
bohedral and tetragonal phases. This ratio is close to 3:2
instead of 1:1 given by Jaffe, Cook, and Jaffe.'

B. The distribution functions for the coexisting phases
in ?Z’l‘olco-ndﬂol aear the MPB

There are upper and lower bounds for the value of 8.
When & decreases, the probability of transforming into
the rhombohedral phase also decreases until 6=1—Vv 3;
for & less than this critical value, the low-temperature
phase can only be tetragonal because the polyhedron be-
comes a cube. On the other hand, when 8 increases, the
probability of transforming into the tetragonal phase de-
creases, the upper limit for 6§ is 1—1/v3, for
§21—1/V3; the polyhedron becomes an octahedron,
which means that the system can only be rhombohedral.
There is another special value of §, §=1—-2/v3, at
which the representative surface of the rhombohedral
phase on the probability polyhedron changes its shape
from a six-sided polygon to a right triangle, and the
representative surface for the tetragonal phase changes
from a square to an eight-sided polygon. Therefore. in
calculating the effective solid angle for each of the polar-
ization states, one must use Figs. 2 and 3 for the cases of
6>1—2/V3 and § <1—2/V'3, respectively. It can be

>

-
N A

FIG. 3. Probability polyhedron for PZT system with the pa-
rameter § in the range 1 —=2/V3>8> 1=V 3, rr*r,.
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shown that'?
6 . v3[21-8)—V3] ~ 2
- - = y I=Vv3<h<l——=;
. T =R+ [vVI—(1=8I] <8<1773
fr= - 2 3
6 | [VIu=8€-1}} 2 1
- = , ===« -,
—arcsin IV I=8- 1] V3 LA 3
fr=1=fr. (4)
(

C. The physical mesning of § and the width
of the coexistence region

In the PZT system, the free energies of the tetragonal
and rhombohedral phases, Gy and G, depend monotoni-
cally on composition. The two free energies cross each
other at the MPB."’ From thermodynamics, at equilibri-

. um only one of the two low-temperature phases is stable
except at the MPB composition. However, in the vicinity
of the MPB, one expects the energy difference of the two
low-temperature phases to be very small; thermal energy
can introduce some uncertainties in the distribution f;,
which obeys the canonical distribution. Since we have as-
signed the solid angle (1, to be proportional to the distri-
bution function £, {}, may be written as follows:

G, —G,

- !

kT,

where k is Boltzmann's constant, G; and G, are the sys-
tem free energies for the ith low-temperature structural
phase and for the lowest energy phase (“ground state”),
respectively. For a given surface area, the solid angle it
subtends with respect to a given point in space is inverse-
ly proportional to the square of the distance between the
surface and that point, i.c., Q; < 1/r2. Hence, from Eg.
(5) the distance variable 7; can be written in terms of the
free-energy difference:

Q, < f; =exp , (5)

r =

Gi =G l ©)

1
=ex
va, P [ 2%T,
By substituting Eq. (6) into Eq. (1) the parameter 5 be-
comes

™M

Using Eq. (7) and the limiting values of 5, one can calcu-
Iate the required energy difference in order to obtain a
single phase state:

|Gp~Gyl>kT.In3 . @&

Therefore, the width of the coexistence region depends on
how fast the energy difference Gr—G, changes with
compotition. An important conclusion can be drawn
from Eq. (8); the width of the MPB depends on the
volume of the element in the ensemble (for example, the
particle size in a powder system). This is because the
free-energy difference on the left-hand side of Eq. (8) is an

extensive variable while the product on the right-hand
side is an intensive variable. This point can become more
transparent if we recast Eq. (8} in the following form:

kT,
1gr "'8rl=—v o3, 9)

where g and g, are the free-energy densities of the two
phases and v denotes the volume of each element in the
statistical ensemble. Because the free-energy difference is
small for PZT compositions sufficiently close to the MPB,
we may write the free-energy density difference in terms
of a series expansion around the MPB composition:
8r—87= I a,(x—xo)", (10
n=}
where x is the composition variable and x, is the MPB
composition, and

L

axl

a,=—(ga—8r)r» - (ay

Note that Eq. (10) is a mathematical representation but
not the Landau free energy, and there are no symmetry
“constraints for the expansion coefficients.
In & linear approximation, i.e., taking a, =0 for n¥1,
the width of MPB 8x can be derived using Eqgs. (9) and
(10):

2T,
a,v

Ax= In3 . (12)

Equation (12) indicates to us that the width of the coex-
istence region, Ax, is inversely proportional to the
volume of the statistical element. Suppose Ax is 0.1 for a
particle size of 0.1 um, then it would be 0.0123 for a par-
ticle size of 0.2 um. Therefore, it is not surprising that
the values of Ax obtained by different processing tech-
niques are quite different. It is also conceivable that for a
well-sintered ceramic system or a single-crystal system,
Axwiﬂbetoosmlltobedetecublewiththl:::ﬁhble
experimental techniques, which gives an explanation as
to why the coexistence could not be observed in some ex-
periments, especially in a single-crystal system.

[I1. COMPARISON WITH EXPERIMENTS

Using the linear approximation, we can rewrite Eq. (7)
in the following form:
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(x ~xg)in3 2 T

§=1—exp i t13) 1 ____5__.__,\ . S

Here x, is the MPB composition and Ax is the width of Q o8 - "%, &

the coexistence region as mentioned above. These two s 06 - g

parameters can be obtained from fitting experimental : x

data to the distribution functions given by Egs. (3) and ; 04 - 2

(4). In practice, the molar ratio of the two coexisting 02 - /3 \‘7

phases is measured from the integrated intensities of the : T T

x-ray-diffraction peaks of the rhombohedral and tetrago- 0 ' MPe x T

nal phases. The value of x;, may be obtained using Eq. 0.2 - A& T

(2), viz., at x =x, the intensity ratio of the rhombohedral 035 04 045 05 055 06 DJ3%

phase to the tetragonal phase is roughly 3:2. Because the Ti COMPOSITION

x-ray technique has a limited accuracy for a second phase
of less than a few percent, especially when the diffraction
peaks are not well separated, it is difficult to measure the
coexistence width Ax. In order to overcome this
difficulty, a useful relation is given below:

172
1 2sininm/12) 1
— = e + ————————P——— -
Xm " %o A“lln:s"' ! 'l-—sin(w/lZ) ] z}
~0.083Ax , (14)

where x,, is the equal fraction composition at which the
molar ratio of the two phases is 1:1, which can be easily
obtained from x-ray-diffraction measurements. Equation
(14) was obtained by substituting Eq. (13) into Eq. (3) and
letting fr=1/2.

For the pure PZT system, the coexistence region is not
only very narrow but also very sensitive to the processing
procedures; there are no reliable diffraction data in the
literature. But when the system is slightly doped, the
coexistence region becomes wider and the peaks become
casily identifiable. As an example, we examine the exper-
imental data of Hanh, Uchino, and Nomurs,® which is
for the solid-solution system

0.1Pby 3Ky, (Zn; /3Nb; /3)0 o5
-(0.9—x)PbZrO;~x PbTiO, .

The squares and circles in Fig. 4 are the measured molar
fractions of the rhombohedral and the tetragonal phases,
respectively; the solid curves were obtsined by Hanh,
Uchino, and Nomura from fitting the experimental data
to the lever rule, and the dotted curves are from the
current model. Linear approximation [Eq. (13)] was used
in the calculation and the two parameters x,=0.5027
and Ax =0.2066 were fitted to the experimental data us-
ing the nonlinear Levenberg-Marguardt method. The
two special compositions x, (MPB) and x,, are also given
in Fig. 4 as references. '

Generally speaking, linear approximation is valid only
when the two free-energy curves are relatively straight as
a function of composition near the crossover point of the
two free energies. It is expected that the calculated coex-
istence region could become slightly narrower when the
full expansion in Eq. (10) is used.

From Fig. 4 one may find that the lever rule seems to
give a good fit to the limited experimental data points,
however, the derivatives of the distributions, df /dx and

FIG. 4. The molar fractions of the rhombohedral and tetrag-
onal phases inside the coexistence compositional region for
O.IPbagl(o ,(Zn,,,sz,, )02.9,—(0.9—1 )PbZrO,-—x PbTiO. solid
solution. The squares and circles are the experimental data
from Ref. 8, the solid curves were fitted from the lever rule, and
the dotted curves were calculated using the proposed model un-
der linear approximation.

dfr/dx are discontinuous at the compositions x; and x,,
which represent the existence of a solubility gap between
x, and x,. This is in contradiction with the complete
solubility of the system. On the other hand, our model
not only provides excellent fit to the experimental data,
but also eliminates such derivative discontinuities, which
makes it more suitable for describing the phase mixing in
complete solid-solution systems.

In order to further illustrate the difference between the
two theories, let us look at a binary system AC-8C and
assume they form solid-solutions a and B for A-rich and
B-rich compounds, respectively. Then, for any given
composition x inside the coexistence region of a and 5,
we have the two theories describe the following situa-
tions:

(a) Lever rule
xAC+(l_X)BC=f¢Ax|B|_x|C(a structure)

+f3 AxZBl‘xIC(ﬁ structure) ;
(15)

{b) Present model
xAC+(1—x)BC=f,A,B,_,Cla structure)

+fpA,B,-,C(B structure) .
(16)

The lever rule specifies a solubility gap from x, to x.. and
the two coexisting phases have different chemical compo-
sitions as shown on the RHS of Eq. (15). On the other
hand, our model was derived from the complete solubility
of AC and BC, indicated on the RHS of Eq. (16), and the
phase coexistence was considered as a frozen-in second
metastable phase from thermal fluctuations.

IV. SUMMARY AND CONCLUSIONS

A theoretical treatment is proposed to calculate the
molar fractions of the rhombohedral and tetragonal
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- phases near the MPB in a PZT system. Under the as-
sumption that the partitioning of the two low-
temperature phases is determined at the paraelectnc-

* ferroelectric transition, the distribution functions are re-
lated to the effective solid angles associated with the low-
temperature phases in the order parametér space. Ana-
Iytic forms were obtained for the molar fractions of the
two low-temperature phases inside the coexistence re-
gion. These molar fractions depend on a single parame-
ter 5, which is a function of the free-energy difference of
the two low-temperature phases. Besides the energy con-
siderations, the geometrical constraints of a solid struc-
ture have been incorporated in the statistical calculations.

Using this model, the two contradictory facts of the
PZT system mentioned in the introduction can be recon-
ciled, as the cutreat wmodel allows for the phase coex-
istence in a complete solid-solution system without solu-
bility gaps. In addition, the controversy about the
undefined width of the coexistence region may also be ex-
plained using Eq. (9}, which states that the width of the
coexistence region is inversely proportional to the volume
of ihe element in a statistical ensemble (such as the parti-
cle size in a powder system). Because the particle (or
grain) size depends strongly on the processing technique,

0ttt
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a unique value for the width Ax cannot be well defined.
The coexistence should not occur in a single-crystal sys-
tem, which is consistent with the experimental observa-
tions.

The model was applied to the experimental data of
Hanh, Uchino, and Nomura,® which is for the complete
solid-solution system, 0. leogKo |( ZH‘/Jsz/J )02_93
-(0.9—x )PbZrO;-xPbTiO,, and compared with the
fitting using the lever rule. Although both theories pro-
vide good fit to the experimental data, the solubility gap
specified by the lever rule makes it unsuitable to this
problem, while the current proposed treatment can elimi-
nate the two unphysical kinks in the distribution func-
tions at x, and x, given by the lever rule. Therefore the
proposed model is more consistent with the nature of
compiete soiid-solution systems. Severai predictions were
made from the current modsl, including the relationship
between the width Ax and the particle volume, which
await further experimental verifications.
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Abstract

A transmission electron micrnscopy (TEM) study was performed on Pb(Z1,Ti)O3
compositions within the R3Im — R3c phase region. The low temperature phase is owing to a
displacive phase transition involving oxygen octahedral tilts. The associated superlattice reflections
are detectable by electron diffraction. Dark Field diffraction contrast imaging of the superlattice
reflections reveals antiphase boundaries associated with octahedral tilt domains. Interaction
between the octahedral tilt antiphase boundaries and the ferroelectric domain structures of the R3¢
phase is studied and discussed .

Introduction

The perovskite solid-solution between end-member PbTiO3 and PbZrQj is the basis of
important technological ceramics used in piezoelectric, pyroelectric and electro-optic
applications.!:3 The phase diagram of PbZrO3-PbTiO3 is illustrated in Figure 1. The phase
diagram contains a variety of displacive phase transitions and there are antiferroelectric and various
ferroelectric phases in the low temperature regime. Compositions between Zr/Ti ratios 90/10 and
65/35 reveals a ferroelectric — ferroelectric transition between rhombohedral space groups RIm —
R3c. This transition involves the oxygen octahedra tilt about the <111> directions.4 The aim of
this investigation is to study the inter-relationship between octahedral tilt domain structures and the
high temperature ferroelectric domain structures. There have been virtually no studies regarding
the domain structures of octahedral tilt systems in perovskites.5 The transmission electron
microscope offers an attractive means to study this subtle phenomena owing to electron scattering
factors being much larger than x-ray scattering factors. The diffraction contrast imaging also
allows a direct means to study the domain states.6




Experimental

Ceramic samples of Pb(Zr,Ti)O3 were made using conventional solid-state sintering
techniques. The starting raw material powders were of analytical grade quality and included PbO,
Zr03, and TiO2. Two compositions were made for this study Pb(Zrg¢Tig.1)O3 and
Pb(Zro.6sTio.35)03. These compositions were batched according to stoichiometric ratios and
accounting for loss of ignitions. The raw powders were ball milled with ethanol solvent for 48
hours for complete mixing. Perovskite phases were fully formed ger Salcining for four hours at
900°C, as determined by a Scintag X-ray diffractometer. The calcined powder was ball milled for
24 hours. Binder and 1 wi% excess PbGC was added to 80 mesh Tved powders. Creca pelicts
with 60% theoretical density were formed using uniaxial pressure followed by binder burnout at
550°C for 1 hour. Smtenng was undenaken at 1250°C for 2 hours to glve pellets from 91-94%
theoretical density and less- L pasees e 1 : :

TEM samples
These sections were mo e _
thinning was performed at RN s a beam current ~ 1 mA.
TEM observations were madeiﬁusl’lulipa 420 ﬂBMul 0 KV A%atan liquid nitrogen two-
mzsmgewuusedmmkemummmmmwc’ﬁ dloc.

o a thickness = 50 pm.
inute epoxy. Ion beam

Results

Figures 2 (a) and (b) show the [110] zone axis diffraction pattems revealing {h + 1/2, k +
172, 1 + 1/2} pseudo cubic superlattice reflections in Pb(Zrg.9Tig.1)O3 and Pb(Zrp 65Tip.35)03
respectively. It is found that byheumg the Pb@oasfmw sample to 80°C the superlattice
reflection disappears, Figure W ‘conversely cooling o Meﬁmm with the Gatan
liquid nitrogen stage the mm&cnun. Mmﬂaﬂuﬂm wfm. associated with a
displacive phase transition. The (b + 1/2,k + 12,1+ 12} di ¥eact " are consistent with the
neutron diffraction study performed by Glazer.# Glazer predicted thelliigin of this superstructure
to be oxygen octahedral tilts within the simple perovskite structure. The oxygen octahedral shifts
with equal componeats about the pseudo-cgbic perovskite axis as to give an effective clockwise
and anticlockwise rotation of oxygen octahedra about the <111> directions parallel to the
ferroelectric dipole displacements of the R3m phase, Figure 3.

Figure 4(a) shows the dark field diffraction contrast image associated with the superlattice
reflection in a Pb(Zrp 9Tip,1)O3 subgrain. A dark ribbon-like boundary is observed under these




imaging conditions, and this is believed to be a wall separating out-of-phase octahedral tilt variants.
Figure 4(b) shows the same subgrain imaged under a multiple beam bright field condition. This
reveals 180° domain boundaries within this region. There is only a weak spatial perturbation
between the 180° ferroelectric domain walls and the octahedral antiphase boundaries.

Figure 5(a) shows a bright field image which reveals ferroelectric twin structures and
inversion 180" ferroelectric domains typical in a rhombohedral ferroelectrics.3 Figure S(b) shows
the same crystallite imaged in dark field with a superlattice reflection. The antiphase boundary
contrast is again observed and shows a strong interaction with the twin boundaries. Generally we
found antiphase boundaries are terminated on the twin boundaries, grain boundaries, or
alternatively contained within closed loops. The antiphase boundaries in the Pb(Zr, Ti)O3 ceramics
predominantly terminate on either twin boundaries or grain boundaries. Region X in Figure 5(b)
shows an example of the antiphase boundary terminated at a {110} twin domain boundary region
Y shows an antiphase boundary to be coincident with a {001} domain wall.

Discussi

From the above results we can infer that the R3m ferroelectric phase has only twin and
inversion domains. Twin domains being 109° or 71° type and twin on habit planes {110} and
{100}, respectively. These observations are consistent with earlier observations on modified
rhombohedral Pb(Zr,Ti)O3 ceramics.” The octahedral tilt transition is driven by a zone boundary
soft mode resulting in the doubling of the unit cell. The reflections observed are consistent with
the proposed model by Glaser, Figure 3. This transition gives rise to two additional variants
which are separate from each other with antiphase boundaries. The antiphase boundaries are
slightly perturbed by 180° domain walls and are strongly perturbed by the twin boundaries. In
some incidents we noted that the anti-phase boundaries were consistent with the twin walls which
may imply a coupling between the gradients of the tilt and the polarization.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4

Figure S.

twin domain walls.

The PbZrO3-PbTiO3 Phase Diagram [Jaffe, Cook, Jaffe (1971)].

[110] Zoney Axis Diffraction Patterns (a) Pb(Zro.sTip.1)O3 and
(b) Pb(Zrg.¢sTio.35)03, both at room temperature, and

(c) Pb(ZrogsTie.35)03 at 80°C.

Schematic representation of the oxygen octahedral-tilting in R3c
phase.

(a) Dark field image of octahedral-tilt superlattice reflection revealing
anti-phase boundaries (APB); (b) multiple bright field image of same
area revealing typical 180° domain wall contrast.

(a) Dark field image of ferroelectric domain walls; (b) Dark field
image of superlattice reflection revealing interaction of APBs with
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Figure 1. The PbZrO3-PbTiO3 Phase Diagram [Jaffe, Cook, Jaffe (1971)].
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Figure 2. [110) Zome Axis Diffraction Patterns (a) Pb(Zre.9Tie.1)03 and
' () PWZre.¢sTig.35)03 both at room temperature, and
(c) Pb(ZrascTin )0y at ROC,
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Figure 4 (a) Dark field image of octahedral-tilt superlattice reflection revealing
anti-phase boundaries (APB); (b) multiple bright field image of same
area revealing typical 180° domain wall contrast.

Figure S. (a) Dark field image of ferroelectric domsin walls; (b) Dark field
image of superlattice reflection revealing interaction of APBs with

twin domain walls.




