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NOTATION

Ai matrix of elastic areas defined by equation (2.18)

A*i matrix defined by equation (2.23)

a Mns coefficient matrix (See equation (3.18).)

a,b plate dimensions along x and y axis, respectively

B ij matrix of elastic statical moment defined by equation (2.18)

Be ij matrix defined by equation (2.23)

b mns coefficient matrix (See equation (3.18).)

C mn , C rs Fourier series coefficients

c ij coefficient matrix (See equation 3.18.)

D ij matrix of elastic moments of inertia defined by equation (2.18)

D*i matrix defined by equation (2.23)

D ij matrix of D ij with e=0.

D ij matrix of Di, with e-0 and e,-o

Ell,E 22 Principal Young's moduli in 1 and 2 directions, respectively

F Airy stress function, defined by equation (2.31)

GI12 shear modulus in 1-2 planes

h total plate thickness

h k distance from plate midplane to the lamina boundary as shown

in figure 3.

H mnH rs Fourier series coefficients

i ,J integers

K number of layers in plate22

ivi
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N a2

F nondimensional inplane shear load,--•
Y D 21

% Mach number

M,N total number of terms in x and y direction, respectively

M x,M bending moment resultants as defined by equation (2.9)

M twisting moment resultant as defined by equation (2.9)xy

m,n integers

Nx' ,y inplane normal loads per unit length in x and y

directions, respectively

N' induced inplane shearing loadsxy

N inplane shearing loads per unit length
xy

N',X N' y induced inplane normal loads

N , N inplane normal resultant as defined by equation (2.8)x y

N inplane shear resultant as defined by equation (2.8)zy

p intensity of transverse load

Qij constitutive coefficient matrix for specially

orthotropic lamina

ýZij constitutive coefficient matrix for generally orthotropic

lamina

q dynamic pressure of airstream

r,s integers

u0 , v° midplane displacements in x and y direction, respectively

w normal displacements

xyz cartesian coordinates
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compressibility factor, M2-

plate mass per unit area

y xyyyz,yxz shearing strain components

6 lamina thickness (See figure 14.)

Cx , y normal strains in x, and y directions, respectively

E°, C° normal midplane strains in x and y directions, respectivelyx y

o rotation angle of the fibers with respect to the plate axis

e' rotation angle of the fibers in the inner laminas with respect

to plate axis (See figures 14 and 15.)

Kx,Ky,Kxy plate curvature as defined by equation (2.5)

A cross-flow angle

A flutter parameter defined by equation (3.16)

V1 2  poisson's ratio for orthotropic lamina defined by - E2/E1

ca, ay, az normal stress components in x, y, and z directions, respectively

Txy, Txz, Tyz shearing stress components

W natural frequency

W fundamental frequency of simply supported beam as given

by equation (3.17)
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Chapter 1

INTRODUCTION

Laminated composite materials have been in use for many centuries.

Pieces of laminated wood have been found which date back to about 1500 B.C.

Some excellent swords were made in the 15th century by laminating several

layers of steel to provide an extremely hard and keen cutting edge with

a softer tough body. Although some of the advantages of using composite

materials have been known for some time, only in recent years have deter-

mined efforts been made to fully develop composite materials. The advent

of high performance aircraft and spacecraft has brought about the need

for more efficient use of materials. Recent energy shortages have em-

phasized in even a greater way the importance of developing composite

materials for everyday usage.

In recent years, composite materials have been the subject of a large

number of experimental and analytical investigations and have been develop-

ed to the point where structural components are now being used in actual

applications. Previously, most of the composite applications have been

structural components built to replace existing conventional components.

However, new designs are emerging which have considered composite materials

in the total design. As new applications are considered for composite

designs, a better understanding of the behavior of structural components

under various load conditions is needed.

One structural component that is used extensively in a wide variety

of applications is the flat plate. Plates fabricated from composite

1
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materials usually consist of individual lamina bonded together. Each

lamina usually consists of a number of high strength filaments aligned in

the same direction and held in place by a plastic matrix material.

The lamina may be highly orthotropic, and since the principal material direc-

tion or the angle the fibers make with the plate axis may differ for each

lamina, the resulting anisotropic plate is more complex to analyze than

an orthotropic plate.

This study is being conducted to obtain a better understanding of

the flutter characteristics of laminated composite flat plates. However,

the following discussion will include a general review of previous studies

of laminated composite plates. Most previous studies of laminated plates

have been concerned only with deflection, vibration, and buckling char-

acteristics. The development and solution of the governing equations

for plates under various conditions will be reviewed and a proposed area

of investigation identified. Solution techniques and possible problem

areas will also be discussed.

1.1 Review of Literature

Numerous theoretical analyses of composite laminated plates have been

made and are discussed in references 1-23. These references represent

work that cover the spectrum from classical small deflection theory and

approximate solutions to non-linear theory and exact solutions. Much of

the early analytical work for composite plates was conducted using classi-

cal small deflection theory, and solutions were obtained only for special

classes of plates which resulted in considerable simplification of the
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analysis. Recent studies have obtained solutions to more general plate

problems with transverse shear and rotary inertia effects.

In addition to the reports and articles, some excellent books have

considered laminated composite plates. Dietz (24) in 1969 published a good

review of much of the early analytical work in laminated composites and

gave a thorough listing of references. Ashton, Halpin, and Petit (25)

in 1969 published an excellent primer for those new in the field. They

give a good development and discussion of the governing equations. Ashton

and Whitney (26) in 1970 published a good review of the progress in lami-

nated plate theory and the various solutions and solution techniques.

1.1.1 Formulation of Equations

Two early investigators, Reissner and Stavsky (1), analyzed a plate

composed of two orthotropic laminas of equal thickness aligned so that the

principal material axes of the two laminas are rotated at an angle of

+6 and -e with the plate axes (later referred to as angle-ply plates).

They found that even for a small deflection theory analysis, there exists

a coupling between the transverse bending and inplane stretching equations

that does not exist for orthotropic plates. They showed that the coupling

effect exists in the boundary conditions as well as in the governing

equations.

Reissner and Stavsky (1) formulated the governing equations as two

4th order partial differential equations in terms of the Airy stress

function and the transverse displacement. Due to the coupling of the

tio equations, they must be solved simultaneously, and inplane, as well as
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transverse boundary conditions must be specified at each boundary to

obtain a particular plate solution. Stavsky (2) formulated the govern-

ing equations as an eighth order partial differential equation in terms of

the Airy stress function and later (3) in the form of three simultaneous

partial differential equations in the displacements u, v, and w. Al-

though each of the formulations have advantages in certain problems,

th.ey present about the same order of difficulty in obtaining a solution.

Later contributions to the laminated plate formulations have been

made by several authors. Tsai and Azzi (4) added thermal stresses to

the formulation of laminated plate equations. Whitney and Leissa (5),

and Yang, Norris, and Stavsky (6) included rotary inertia terms in the

formulation and the latter authors also included transverse shear which

becomes important for thick plates. The formulation by Yang, Norris, and

Stavsky results in five coupled partial differential equations in terms of

the displacements u, v, and w and two rotations of the normals to the

midplane.

1.1.2 Solutions for Symmetric Plates

Although available formulations of the governing equations and

boundary conditions are applicable for general laminated plates, most

of the solutions have been obtained for special classes of plates which

result in considerable simplification to the governing equations.

Stavsky (2) in his early work showed that for laminated plates symmetric

about the geometric midplane both in properties and fiber orientation,

the transverse bending and inplane stretching equations and the boundary
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conditions become uncoupled and can be solved independently. However,

he showed that even for symmetric laminated plates, the governing equations

and boundary conditions still contain some cross-stiffness terms due to

the laminas which result in the governing equations being different

from those of an orthotropic analysis. He further showed that only for

very special kinds of symmetric plates do the cross-stiffness terms vanish

and the governing equations become identical with the orthotropic equa-

tions. As a result of these simplifications, symmetric plates have been

studied extensively in the literature.

The Rayleigh-Ritz method of solution with beam mode shape functions

has been used effectively by several investigators to obtain deflection,

vibration, and buckling solutions. Ashton and Waddoups (7) investigated

symmetric laminated plates and presented analytical results for uniaxially

loaded plates with the loaded edges clamped and the unloaded edges free.

They also presented calculated frequencies and mode shapes for canti-

levered plates which showed good agreement with experiment. Ashton (8)

extended the analysis to include nonuniform cross section and material

properties and presented results for tapered plates under unaxial

loading with simple supported and clamped boundary conditions. Ashton

(9) further extended the analysis to include elastically restrained

boundary conditions and presented some deflection results with re-

strained boundary conditions.

Later Srinivas and Rao (10) obtained closed form solutions for the

free vibration and buckling of simply supported symmetric laminated
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thick plates using linear small deflection theory. They compared their

results with thin plate theory and showed that the error associated

with thin plate theory increases with plate thickness and the modular

ratio between the lamina. A similar analysis by Whitney (11) showed

the same trends. Thus the definition of "thin" for laminated plates

must take into account modular ratio as well as plate thickness.

1.1.3 Solutions for Angle-ply and Cross-ply Plates

Angle-ply plates are unsymmetric and consist of an even number of

layers having the same thickness and elastic properties, and the ortho-

tropic axes of symmetry for each ply are alternately oriente -. angles

of +6 and -e to the plate axes (See fig. 1.). Cross-ply plates are un-

symmetric and consist of an even umber of layers all of the same thick-

ness and elastic properties with the orthotropic axes of symmetry in

each ply alternately oriented at 0 degrees and 90 degrees to the plate

axes (See fig. 2). Whitney and Leissa (5) showed that for angle-ply

plates and cross-ply plates, the governing equations and boundary condi-

tions are considerably simplified but are still coupled and must be solved

simultaneously. As a result of the simplifications, angle-ply and cross-

ply laminated plates have been studied by several investigators to deter-

mine the effects of bending-extensional coupling.

Several solution procedures have been developed which are effective

in solving the coupled governing equations and boundary conditions.

Whitney and Leissa (5) and Whitney (12) used a Fourier series technique

to obtain solutions for deflection, free vibration, and buckling of both



angle-ply and cross-ply plates for simply supported boundary conditions

which allow inplane displacements normal and tangent to the boundary for

cross-ply and angle-ply plates respectively. Bert and Mayberry (13) used

a Rayleigh-Ritz approach with beam mode shape functions to obtain free

vibration results for cross-ply and angle-ply plates with clamped

boundary conditions. Whitney (14) used a Galerkin procedure to obtain

solutions for the shear buckling of cross-ply plates with simply suppor-

ted boundary conditions.

In all cases cited, the bending-extensional coupling significantly

affected the results. Bending-extensional coupling has the overall

effect of reducing the plate stiffness and thus increasing the static

deflection and reducing the natural frequencies and buckling loads. The

effect of coupling is increased as the number of laminas are decreased

and as the degree of anisotropy between lamina is increased.

Fortier (15) used a Rayleigh-Ritz solution procedure to investigate

the effects that various types of inplane boundary restraints have on

the behavior of angle-ply and cross-ply plates with small initial curva-

ture. He also considered the effects of transverse shear and inplane

loads on the natural frequencies. He found that inplane boundary condi-

tions, initial curvature, transverse shear, and inplane loads all have

a significant effect on the behavior of unsymmetric plates. However,

Whitney (16) considered transverse shear for cylindrical bending of

symmetric and cross-ply plates and showed that transverse shear has less

effect on the deflection of cross-ply plates than symmetric plates.
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1.1. 4 Approximate Solutions

Due to the difficulty of obtaining general plate solutions, approxi-

mate solutions have emerged also. A "reduced bending stiffness" method

was proposed by Ashton (20) in which the bending-extensional coupling

is accounted for in an approximate way. Approximate solutions were ob-

tained by reducing the bending stiffness of the plate by an amount deter-

mined by the coupling terms and then neglecting the coupling effect.

Ashton used the method to compare maximum deflections of a cross-ply and

an angle-ply plate with measured results and obtained good agreement.

Whitney (21) also used the method to compare results with those calcu-

lated using the Fourier series technique and showed good agreement for

both angle-ply and cross-ply plates for simply supported boundary condi-

tions, but for clamped boundary conditions, relatively poor agreement was

obtained for certain angle-ply cases.

A more refined analysis was presented by Srinivas (22) which con-

siders transverse shear deformations and rotary inertia effects. By

assuming piecewise linear variations of the displacements u and v

and constant values of w across the plate thickness, the problem be-

comes two dimensional. Trigonometric series solutions were obtained for

the approximate two dimensional problem for plates with simply supported

boundary conditions, and the results showed good agreement with exact

theory.
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1.1.5 Dynamic Stability

A limited number of investigators have considered the dynamic

stability of laminated plates. Smirnov (17) considered the flutter of

an infinite sandwich plate subjected to cylindrical bending in a gas

stream and obtained an exact solution. He later extended the analysis

(18) to include semi-infinite sandwich plates with various boundary con-

ditions. He used linear piston theory aerodynamics and obtained solu-

tions for both clamped and simply supported semi-infinite plates.

Librescu and Badoiu (19) and Ramkumar (23) analyzed the flutter of

flat, symmetrically laminated, simply supported plates with inplane

normal loads. They used linear piston theory dynamics with aerodynamic

damping and the Rayleigh-Ritz solution procedure with beam mode shape

functions. Flutter boundaries are presented as a function of the

orientation of the principal axis of the lamina for various inplane

loads and aerodynamic damping coefficients. However, it should be

noted that all the flutter boundaries presented in reference 19 were

obtained using only two terms in both the streamwise and cross-stream

direction and the results presented in reference 23 were obtained using

ten terms in the streamwise direction but only two terms in the cross-

stream direction. Thus, in both cases, the results presented may not

have been completely converged.

1.2 Statement of Problem

Although much work has been done in the analysis of composite

laminated plates, as discussed in the literature survey, panel flutter
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stands out as having received very little attention. Panel flutter has

long been recognized as a problem for the design of conventional panels

subjected to supersonic flow. This is evident by the large number of

reported panel flutter investigations some of which are listed in refer-

ences 27-42. The panel flutter work that has been done for laminated

plates is so limited that it is of little value to the designer. It is

evident that to design efficient laminated composite panels for super-

sonic application, a better understanding of their flutter characteris-

tics is needed.

Another area that has received little attention is the solution of

general laminated plate problems where the plates may have any number

of layers stacked in an arbitrary sequence with the fibers in each layer

rotated at an arbitrary angle to the plate axis. For general laminated

plates, the complete bending and extensional governing equations and

boundary conditions are coupled and must be solved simultaneously to

obtain plate solutions. Considerable difficulty is encountered in

solving the coupled equations and boundary conditions. Thus, although

the governing equations and boundary conditions have been formulated for

general laminated plates, no general solutions were found in the litera-

ture survey. All the solutions presented were for specially laminated

(symmetric, angle-ply, or cross-ply) plates whose special geometry

results in simplifications to the governing equations and boundary con-

ditions which make it considerably easier to obtain solutions. However,

since in the design of laminated plates it is not always practical or

desirable to use specially laminated plates, an analysis is needed which
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obtains solutions for general laminated plates.

The purpose of this investigation is to obtain the flutter charac-

teristics of flat, general laminated plates using approximate methods.

The analysis will be based upon small deflection theory but will consider

the general coupled governing equations and boundary conditions for

simply supported plates. Thus, an approximate solution procedure will

be developed for completely general plates which may have any number of

layers stacked in an arbitrary sequence and with the fibers in each

lamina rotated at an arbitrary angle to the plate axes. The plate may

be subjected to uniform inplane normal and shear loads.

An extended Galerkin method will be used to obtain approximate

solutions to the governing equations and boundary conditions. The

extended Galerkin method will be used since it provides a straight-

forward solution procedure for nonconservative problems (See ref. 42)

using simple series to describe the displacements. The aerodynamic

loading on the panel will be assumeu to be given by linear piston theory

and the flow may be at an arbitrary cross-flow angle. Piston theory

aerodynamics will be used because it gives simple expressions for the

aerodynamic loading and has been shown to be applicable for Mach numbers

greater than 1.6 (See ref. 28 and 294.

Since symmetric and angle-ply plates have been the subject of many

investigations, approximate solutions will be obtained for typical

laminated plates from each class, and a limited parametric study will be

conducted to determine the effects on the flutter boundaries. The param-

eters to be studied will include the number and orientation of the plies,
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length-width ratio, inplane shear and normal loads, and cross-flow

angles. The flutter boundaries from this analysis will be compared with

those calculated using classical orthotropic plate theory and the reduced

bending stiffness method.

Since general laminated plates have not been investigated prior to

this time, approximate solutions of their governing equations will be of

special interest. Thus, flutter boundaries will be calculated for some

typical general laminated plates and the results will be compared with

those obtained for specially constructed symmetric and angle-ply plates.

Flutter boundaries will also be calculated for some composite stiffened

aluminum plates that do not have a symmetric or angle-ply construction.

Although the approximate procedure will be developed for the purpose

of obtaining flutter solutions, the analysis will also have the capability

of giving natural vibration frequencies, and inplane normal arid shear

static buckling loads. Since no numerical results are available in the

literature for general laminated plates, a significant contribution to

the literature could be made by using the natural vibration and static

buckling capabilities of the analysis. However, only a limited number

of natural frequency calculations will be made to compare with published

results to verify the solution procedure.



Chapter 2

DEVELOPMENT OF GOVERNING EQUATIONS

In order to develop the governing equations for this investigation,

several assumptions are made as follows:

1. The plate is constructed of flat, uniform thickness layers of

orthotropic sheets bonded together. The direction of principal stiffness

of the individual layers do not in general coincide with the plate edges.

2. The plate is thin; i.e., the thickness is much smaller than the

other physical dimensions.

3. The displacements are small compared to the thickness.

4. Each lamina obeys Hooke's law.

5. The Kirchhoff hypothesis is used; i.e., normals to the midplane

of the undeformed plate remain straight and normal to the midplane during

deformation.

6. Transverse shear and normal strains are negligible.

7. Body and rotary inertia forces are negligible.

8. The plate is of constant thickness.

These assumptions give rise to the conclusions that Yxz, Yyz, T xZ T yz and

az are negligible which is the case for an approximate state of plane

stress.

The coordinate system used to identify the plate and lamina

geometry is shown in figure 3. The distances to the individual laminas

are measured from the geometrical midplane of the plate. The positive

directions for stresses are shown in figure 4.

13
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2.1 Lamina Stress-Strain Equations

From elementary strength of materials, Hooke's law for an orthotro-

pic lamina in a state of plane stress is given as follows (See ref.

25.).

a IQ11 Q12 1 [ 1
Ty2 Q12 Q22 o Ej2 (2.1)

T 12 0 0 Q66 Y12 1 9

where the stresses I 1,0 2 ,T 1 2 , and strains Ei,C2 , and Y12 are

referred to the direction of principal stiffness and the subscript i

refers to a particular lamina. This relationship, written for another

(x-y-z) system of axes (See figure 5.) where the x-y axes are rotated at

an angle e with respect to the 1-2 axes, is given as follows:

a x [CQ2 0-6xl
ay E c (2.2)
Ty Qi 2 Q266  [Yyj

where the Qij matrix is a transformed matrix with the elastic proper-

ties along the principal axes of the lamina rotated to the x-y-z

(plate) axes system. The Q matrix has non-zero values for all terms

when the principal axes of the lamina do not coincide with the plate

axes system (for example, a fibrous composite with the fibers rotated at

an angle with the plate axes).



15

From elementary strength of materials considerations, the strain at

any point in a lamina undergoing deformation can be expressed in terms

of the deformation of the geometrical midplane of the lamina. For

small deflections and a state of plane stress, the strain at any point

in a lamina z distance from the midplane is given in terms of the

midplane strain and curvature as follows:

E: -E6- Kx

x ~ x

E = O +Z K (2.3)

where c x e y0, and y 0 are the midplane strains and KxKy , and KXY

are the midplane curvatures. The midplane strains and curvatures de-

fined in terms of the displacements are needed in the later development

of the equations and are given as follows:

0 au° (6)

0 av= (b)

yx a-y (2.4,)

_a2w
= .. () (2.)

Ky •2 25

au 0  av

-4. axi
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-2 a2w
"K - (c)

Using equations (2.2) and (2.3), the stress state at any point in a

lamina may be written in terms of the midplane strain and curvature as:

oro [ ]. + z Q1Q K( (2.6)
. L12 'i22 Q26 y 12t22 Eqain

T0
Ty XiQ6 Q26 Q66 Y Q6 Q26 Q66 KX

or

[a~ i],[~~ + z (K 1~j (2.7)

where z is the distance from the midplane to the point.

2.2 Lamnina and Plate Constitutive Equations

Since for a plate comjosed of several laminas, the stresses,

strains, and displacements will be different for each lamina, it is

convenient to define some equivalent system of forces and moments which

will be considered to be applied to the midplane of the plate. Within

the plane stress assumption, such a system will be defined for a lamina

in terms of three stress and three moment resultants. The stress and moment

resultants for a lamina are defined as:

Sa x dz (a) (2.8)



17

N= y (b)hk

hkN a dz (a)

bhk- xy

M =f iz ax dz

x x (a)

•-k

Mzy = . z axy dz (c)

kk~l

and are statically equivalent to the actual stresses on the lamina and

may be considered to be applied at the midplane of the lamina. The

positive directions for the stress and moment resultants on the plate

are shown in figure 6. Using equations (2.6), (2.8) and (2.9) the

stress and moment resultants can be related to the strain and curvature

of the midplane. The resulting relations are known as the lamina

constitutive equations and are .Aven as follows:
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[N] 1 Q.1 2 Q162 ý16 KX

My z Ky dz

INz Q1 %2 Q2 2 ; 61ky %12Q 22 q26 K

N hk6 26 66 i t -

(2.10)

hI - -£

k-k -1 -

The ple•te constitutive equations will be developed from equations (2.10)

andM(2.11) by suming up the individual terms for each lmina.

Thus,

FM z ajdz z 42%2 46C z+z22"22 2KYd-,II
-M f i1 6 ,2 Y6L[yJ 6Lýl6 126ý 4

k-i L 2.12)

and

(2.13)
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Since C' and K are functions of x and y only and " is a function of

lamina properties, they can be taken outside the integral. Thus,

x K x K X

N y %.2%2%6 0 Y dz+L1 412;2 26 K y zdz
k=l kal

Ný L IC JJ
Z t• Z° hI _i

and (2.14h)

K K x

__ K l12 Q16 Zdz4 K~ dz 1 01

M 2 2266 CO k ýl '16  &26 266 ýlZd Kz2
ýxy] k=l k6-Mxy 6 0'26 'ý6 Y; fQ6 Q26 66 "Xxy

"-- hk-i

(2.15)
or after integrating these may be written as:

N l A 1± 6 C Bl B1 B1 6  K x

iNy - A12 A2 2 A26  c-Y + B12 B 22 B 26 B y (2.16)

M1 B1 B12 B16 Cx DII D12  D16  KF:: B 12 B22  Be6  y 12 22 26 y

M B16 B26 B66 '0 DI6 D2 6 D6 6
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where

K

A =j (4j (hk -hk-1.) (a)

k-1

K

B ~ 2 2 1i (b)
ij (ý uk 2K N-1 (2.18)

ka1

KZ

k=1

Writing the constitutive equations for laminated plates in matrix

notation, they become:

[N] - [A] [co] + [B] [K] (2.19)

[M] = [B] [cO] + [D] [K] (2.20)

These equations indicate that for a general laminated plate either stress

or moment resultants produce both strains and curvatures. Thus there is

a coupling between the stress and moment resultants through the matrix [B].

Since [B] is an even function of h (See eq. (2.18M), it is zero and hence

the equations are uncoupled for classical orthotropic plates and for

laminated plates that are symmetric about the plate midplane.

Equations (2.19) and (2.20) will be rewritten in a more useful form

for the following development by solving equation (2.19) for the midplane

strains, and rewriting equation (2.20) in terms of the stress resultants.

Equations (2.19) and (2.20) become:



21

[e 0 ] * [A*] [N] + [B*] [KI (2.21)

[M] - [-B*1] [N] + [D'] [K] (2.22)

where

[A*] = [A71 ]

[B*] -_[•A] [B]

[DO] [D] - [B] [A-11 [B] (2.23)

2.3 Plate Governing Equations

Due to the coupling between moment and stress resultants noted in

equations (2.19) and (2.20), two differential equations are required to

describe the behavior of the plate under various load conditions. The

first equation will be developed using plate equations of motion and the

second equation will be developed from the cmpatibility conditions that

must be satisfied between the strains.

2.3.1 Equations of Motion

The equations of motion for a thin laminated plate are identical to

those of homogerous plate theory. For a plate subjected to inplane normal

and shear loads a.nz loads perpendicular to the plate surface, the equations

of motion are given as follows (See ref. 26Q where the inertia terms in the

x and y directions are considered to be negligible.

3N UN
Tx÷ y (2.24)
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aN aN
_L'+ -• - 0 (2.25)ay ax

a2 a2M a2 a 2
-2 + y +2 •X.U" p-N - pN
ax 2 ay ax

- - - 2 N + (2.26)
Ya2Xy =aXY at2

The inplane loads Nx, Ny, and N may be separated into the uni-

form externally applied loads and the loads induced by the plate deflections

as follows;

N + N' (a)
x x x

N = + N' (b)
y y Y

N = N +N' (c) (2.2T)
XY xy xy

Substituting the expressions for Nx, Ny, and NXy given by equation (2.27)

into equations (2.24), (2.25), and (2.26) results in the following

equations of motion:

aN' aN'
x + 5 0 (2.28)

aN' aN'
Y-+ x= 0 (2.29)ay ax
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82 2M 32M4 - a222 + Y+ 2 2- - - 2
a2 a2 x ax 2 xy 3x-y (2.30)

y ;2 -2t

The higher order terms (N1 2 i a V- and ,
xax2 y ay 2 axay

have been neglected in equation (2.30).

Defining a stress function F such that.

N' a --- " (a)
x ay2

N' = a2F (b)
Y ax2  (2.31)

a 2F
N' - (c)

then equations (2.28) and (2.29) are satisfied identically by the function.

The function F is referred to in the literature (See ref. 26.) as the

Airy stress function. Using the definitions of F given by equations

(2.31), the definitions of curvature given by equation (2.5), and the

expression for the moments given by equation (2.22) in equation (2.30),

the following expression is obtained:

a 2 * p 2

2~l + 6 321P - Dl .Lv -D 32
ax2  B2 ax 2ax 2 12 ay2

-2 D16 xay+ 2 axay 3B6 2 - 6B + *66 axay
ay a
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- 32V D * i3 2 ) .1. B~ 316 - D26 ay2 66 + - B2

"- B2 2  -2FB 6 2 +- DI 2 - D2 2 D
22 x 62TX 12ax 2 a6y

p - 22 % +AV
x x Ya2 Xy=xy at 2

or

a4F -2 * *2 B) 41aF B26 _ B61 - + (B* + B* .
B 2 (D2 D661' 3 ÷U 22 66) 2ax axy ax ay

+ 2B4F4F+ l '4+ 4 D 4

+(2B16 -B 6 2 B26 B - x+D 3 D 4 +16  32 37cX 12-a-x ax ay

,4V awv+ aw2(D *+ 2 -*+ D2 -3- ;J12 :66 42 2 26 3 2ax ay ax3y y a

3 2v +i 2Lv~ 2 ,~ (2.33)
X ax 2  y ' M

If p is taken as the aerodynamic loading due to air flow over the

plate surface, then equation (2.33) is one of the equations needed to

solve for the flutter of flat laminated plates. Aerodynamic loads pre-

dicted by piston theory have often been used in the literature (See ref.

28 - 42Q to obtain flutter solutions. Piston theory gives a relatively

simple expression for p and has been shown to be applicable for Mach

numbers greater than 1.6 (See ref. 28 and 29.). For supersonic flow

over one side of a flat plate at an angle of A with the x-axis as
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shown in figure 7, piston theory gives the following expression for the

aerodynamic loads.

P .hx sin A (2.34)

Substituting the expression for p given by equation (2.34) into

equation (2.33), the following governing equation is obtained for flutter

of flat laminated plates.

4 4 F4F
B2, 2 + (2 _ ) B + (B 1 + B2 2 -2 B6 6 ) • 2 (2.35)x x3 y Bax ay

+ *2 ~ - 3--+ B1 1a+wl-7+4D1+ (2B 6 - B6 2) ax ay3  12 -II4DI 6  ax3ay

a w * aw * a•v
+ 2 (DI2 + 2 D6)-3 y2+ 4 D- y+ D 34w, +

12 66 7 -2ay2  26 3xa 22 -y

ax a- aw ~ a

91(hf cos A + hsin A) - V 22 -V 32 -2 w+Y2L 0
B a ax 2 ay32  N1y ax at 2

This expression is a 4th order partial differential equation which governs

the flutter behavior of flat laminated plates but is in terms of two un-

knowns w and F. Thus an additional equation relating w and F is

needed before solutions to.'flutter problems may be obtained.
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2.3.2 Compatibility Equation

The additional equation needed to solve for the plate flutter

behavior is obtained from the compatibility condition that must be

satisfied between the midplane strains. The appropriate equation is

obtained by eliminating the midplane displacements from the strain-

displacement relations given in equation (2.4). Differentiating c*
x

(eq. 2.4(a)) twice with respect to y and co (eq. 2.4(b)) twice with
y

respect to x and adding, the following expression is obtained:

a2 Ox + a 2 c o 3%u0 + a3,o (a) (2.36)
ax. 2 3 x2--- ay

but from eq. (2.4(c)):

2 2 3. 3 v (b)
axay2 + ax2ay

therefore:

a2 eo a2 co a 2 'y0Xoy_..X + . (2.37)
ay2 ax2 xy

Equation (2.37) is referred to as the compatibility equation and will be

used to develop the second governing equation in terms of w and F.
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Using the expressions for strains given by equation (2.21) and the

force resultants given by equations (2.27) and (2.31) and the

curvatures . given by equation (2.5) in equation (2.37), give rise to the

following expression:

a2 3F y a2? A' 3 -Bl 8a2  (2.38)

- %2 • -2 ax =y* = y2÷A28A2 34 + 2 2 -A 16 -3y 1.w2

*ax v 2 A 2 ( a2 F 2
-B 82B 2 -(I + A 22121 J3xy,) + /2L (422

" 8F* *• (2 * a- , _ p• 32 "

6 ax3y BaxyB66 x2By
ax 12W~ 26

__ 3,VF 2 2 6_

A 2 6 =a x y- B62 .71 a - B 2 ay 2 2(B.2axay

a*2 2 F *32F *aw a2 vTX5 6A + A 26"2- -A6a---- B6 -~ 2 B 66
axy a6 x2 6 b -x~y 6 1 7x2 62 2x~

or

42a4F _ 2463F (242+46) 2 '4 6
22axr ax ay ax6 axy Wxy

ai 4 als a 4 o
+ All 7 B2,ax - (2 B2 6 - B61) 3 B*11 + B 222B:6ax2y2

ay ax aay 26~~

* * 3'4vv
-2 B ;) .1 -- 0 (2.39)
B6-62 axy3 1

This is the second governing equation needed to solve for the plate be-

havior. It is also a fourth order pa~rtial differential equation in terms
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of F and v and for flutter problems must be solved simultaneously with

equation (2.35). In order to solve the equations for a specific problem

the boundary conditions must be specified.

2.4 Boundary Conditions

Proper boundary conditions which guarantee unique solutions to the

two governing equations must be specified. It has been found (See

reference 26.) that the necessary boundary conditions are those of

classical homogeneous plate theory plus those of an inplane elasticity

problem. Thus due to the coupling, the usual deflection, slope, moment, or

shear boundary conditions used in classifical plate theory do not give

unique solutions but inplane boundary conditions must also be specified.

The resulting boundary conditions require one member of each pair of the

following quantities to be specified along the boundaries:

V aMnt -- 3 -- w-.
w or '- + (a) (2.40o)

_• or M (b)
an n

u° or N (c)
n n

or N (d)ut Nnt

where n and t are used to denote coordinates normal and tangential to the

plate boundary respectively.
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For this analysis, the boundary conditions chosen represent those

for a simply supported plate with no inplane edge restraints and are

given as follows:

w (Oy) - w (ay) - w(x,O) - w(xb) - 0 (a) (2.41)

M (0,y)Y- M (a,y) - 0 (b)

M (x,o) -M (uz,b) - 0 (c)Y y
x (O,y)- N' (ay)--0 (d)

N' (xo) = N' (xb) , 0 (e)
y y

N' (O,y) = N' (a,y) = N' (x,O) = N' (x,b) 0 (f)Xyxy XY xy

These equations will be rewritten in terms of w and F using the expression

for moments given by equation (2.22) and the definitions of strain, cur-

vature, and F given by equations (2.4), (2.5), and (2.31) respectively.

Thus the boundary conditions become:

v (0,y) = w (a,y) = w (x,O) - v(x,b) - 0 (2.42)

32 * a2F * D2P *
-B6 B 1+B -- '- V D (2.43)

Iay x21 61axy ax

a2w a2w
ayy- I2 *y2 2 DI6 axw

,F 2F Dl 32
•2F - B '2F +• - D-B2 a - B2 2 ax-2 2 axay 2 ax 2

-, a2 ,+w * a2
- D22 +y2 D26 = 0 at y O, b (2.44)

ay
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2
3 F 0 at x = 0,a (2.45)
ay 

2

32 F-a2 0 at y = 0,b (2.46)ax2

a- = 0 at x = O,a

y = o,b (2.47)

The governing equations (2.35) and (2.39) along with the boundary con-

ditions (2.42) through (2.47) will be solved by using approximate techniques

in the next chapter.



Chapter 3

APPROXIMATE SOLUTIONS OF THE FLUTTER EQUATIONS

The two governing fourth order partial differential equations (2.35)

and (2.39) along with boundary conditions given by equations (2.42)

through (2.47) will be used to obtain approximate flutter so-iitions. The

analysis will be developed for the flutter of general laminated plates where

arbitrary stacking sequence and orientation of the lamina fibers is

permissible. Since certain special classes of plates have been studied

almost exclusively in the literature, the simplifications to the

general solution dne to the special constructions will be discussed. The

special classes of plates considered are symmetric laminated plates and

angle-ply plates. Symmetric plates may be composed of any even number of

lamina of arbitrary thickness and orientation of the fiber directions as

long as for every lamina above the plate midplane there is an identical

(in thickness, material properties, and orientation) lamina equal

distance below the plate midplane. Angle-ply plates are less general than

symmetric plates and consist of an even number of laminas all of the same

thickness and elastic properties with the orthotropic axes of symmetry

in each lamina alternately oriented at +e and -0 to the plate axis.

Although the analysis and solution procedure will be developed basically

to study panel flutter, the analysis is general and the resulting computer

program can also be used to determine static buckling loads and natural

vibration frequencies.

31
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3.1 General Laminated Plates

An extended Galerkin method will be used to obtain approximate

flutter solutions since it provides a straight-forward solution proce-

dure for nonconservative problems (See ref. 42.) using a simple series

to describe the assumed displacements. The extended Galerkin method

admits solutions only when the assumed deflections satisfy the geometric

(deflection and slope) boundary conditions. However, the number of

terms required in the solution to obtain converged results are probably

reduced if the assumed deflections satisfy some or all of the natural

(force or natural constraints) boundary conditions. Since functions are

not available which satisfy all the boundary conditions given by equa-

tions (2.42) through (2.47), the capability to account for the natural

boundary conditions makes the extended Galerkin method particularly

suited to this analysis.

The extended Galerkin method of solution is illustrated by the

following equation written in terms of the virtual work for displace-

ments w.

f f(governing equation)6w dxdy + fl(vxY) 6w dx + f2(w.bny)6 21 dx

00 0 0 0 0

+ f3 (wVxy) 6w dy + ff(wxY) 6 2y dy 0 (3.1)

0 0 0 0
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The terms under the double and single integrals are usually individually

set equal to zero and referred to as the governing equation and boundary

conditions, respectively. For the boundary conditions to be satisfied,

either the functions f.(w,x,y) or the variation of the deflections or the
.

slopes must be zero at the appropriate boundaries. In usual applications

of the Galerkin method, a series of functions is chosen which satisfy all

the boundary conditions and the coefficients of the functions are deter-

mined so that the double integral term is zero or equivalently the coeffi-

cients are determined so that each term of the series is orthognal to the

exact solution (See ref. 43). When all the natural boundary conditions

are not satisfied, the extended Galerkin method requires that the coeffi-

cients be determined using the unsatisfied single integral terms as well

as the double integral terms in equation 3.1.

For the flutter of general laminated plates, a series of functions

for both w and F are needed which exactly satisfy the geometrical

boundary conditions given by equation (2.42) and which satisfy as closely

as possible the natural boundary conditions given by equations (2.43)

through (2.47). The functions assumed for this analysis are given as

follows:

M N Cn sin MRx sina nb--est (3.2)

11la b
M1- n1l
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These functions exactly satisfy the geometrical boundary conditions and

the natural boundary conditions given by equation (2.47) but the re-

maining natural boundary conditions are not completely satisfied. The

unsatisfied natural boundary condition terms are given as follows:

For Mx: a2F + B D2  + 2DI 6 D (a) (3.4)

11 ay2 221 ax2 0

M B ----- + 2 D6 ax y (b)
y 12 a2 B22 ax2 0

N a F a(c)Nx: ay2 0

a 2F: (d)

The boundary condition terms that must be included in the extended

Galerkin method written in terms of the virtual work are given as follows:

b a2 F a2 L* 2 a
ForM :M ÷ - 211 axay 6 dy (3.5)

f ay 2  21 ax2  16 ax
0 0

£M/ f a2F * 2 I dx (3.6)
j2'+42 2y +2 2 6  ay 0My:y 2 a x2+B2

N: .aF u° dy (3.7)

f ay 0
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axy2 (38)

where the displacements uO and v* are given as follows and were obtained by

substituting the definition of curvature given by equation (2.5) and the

expression for strain given by equation (2.22) into equation (2.4) and

integrating.

U°= fxo dx A12  +A* a2 6  ay (3.9)A1 -Bl dx A16 3.9

B . _ __w _e 2 . _.
- • •, -f! -w d x - 2 B6 *1

U ~X 1 ay

f= y° • -A 6 3X ÷ 22J 92 (3.10)

" 2 w . 'f 2w P

B2B2  3x D VJ dy -B2  av

Using the assumed functions given by equations (3.2) and (3.3) and applying

the extended Galerkin method, the orthogonality relations for the governing

equations (3._5) and (3.39) with the boundary condition terms given by

equations (3.5) through (3.10) added may be written as follows:
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)C [(K1 -yw
2 ) sin m~r sin = sin a sin -E (3.11)fbr a b b

0 r=l sal

K Cos .. x cos nr Rys sin 'y + Cos A cos Swx sin 3Z

3 a ba b b

+~ sin =X-I sl ~sinrxan Off mx nlry

-sin A sin- cos -o s + H K cos M- Cos
be a b

sin s-y sin r'_xb a

- K sin sin y sin sin sw1y dx d2 a b a b-

+ C 2 D6 o • scsco a ossin bo

0l 016()n- r CO- Coso . rfysnOT d0
+ 2 D+6 B22.Lr) I-f Cosa cos sin r -tzC -os dTYx-26f/b~ a aL b 05b

00

r + ~[x ~9 B21(!!)] f =,COBC.!! nw Co rlx sin S J dy
11 0

+ [B 12 ( -)2 + B 2 (! )2 COB Co !!.w sin rlxco o 871Y f i
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ane

a b1

0 0 r1B1 ra [5 a b a b I a (31)b

+HK con wx con sin Msin BU!Z coo MC s cOsydx

an [K2 acb 4 b ab

K Nb

.. ~ m b (i)2)f [A!*6 41 B~~2 b)rJ a 01b

ruln-1 niIN

Cos rwxsn mm d
a b

a

awx nwy 
B

""W (coo coo un !I! Cos dx!- a 1 6 sj a ba

where

Y1 - D l + 2 (D +2  66 ) ( 
)2

D12. ?D66) a D22 x

2  B26 -B)(Fý) (6 -B 62) )

• (TLI3MIM}3••IIWsfIW\.-.)
.3 a D16 + D ( ) (3.13)

K4- B2 1 ( + (B 11 + B22 -2 BL) ( b2~24 B12

K 5 - 4 - )+(2 4 12 + 6)+ AL
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Integrating and rearranging the terms, the following equations are

obtained:

C ýKW 2 D11w H K + 4 BK + HiK÷]rs (i-(n)r-i)(i U )r4U)mn1--2'V m\1n H ] -2 1: A 4 r 3 rK 2_22 2 2)Wr a W -1i 1(
M Nri

÷U ' r - mr cos A (U- (-i 1i (1 (jj5+n)
CE 224c i

r =1 a (r2-m) s-I s -n

- Cr 2 C D16 • l1Dmrs - ( Hr2 n re (3.11)

r-1 s=1

21 ru 2r 2 Crr D26 •b -

- BI 2  Hrs n2 sr - 422 H r a(; 2 r] (lr(-l))(l)sn) -2

and
MUN

HK ÷ C + ÷ S ¶ K6 -+ K K+4 re

mm5 2 mm ir2 E Er .rj(rm).-

"N N w2 .2rHre (i-(-i)r+M)((-i)s+ni-) 
B 1 

2 k + B22 0 A2 6

r-1 s-1

(3.15)

- rs)(-) - F-a
W - Bi(a)+B12(I)! A16~)u

r-1 11-1
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where

5 " (3.16)
B D1 1

Wr (31T)

Equations (3.14) and (3.15) results in 2(MxN) equations in term of the

two unknowns Crs and H rs. In order to get the equations in a form

that can be solved, H must be solved for in terms of C . This canrs8 rs"

be done using equation (3.15) and writing it in the following matrix

form:

[bar [Hrs Jrfam I [C ] (3.18)

where r and s are siu ed from 1 to M and N respectively and

b and a are the coefficient matrices for H and C res-"mnrs mnrs mn mn

pectively. To obtain Hrs as a function of Crs, premultiply each side

of equation (3.18) by the inverse of (b mnrs as follows:

[bm ]- (b[MrsCH] [riJ.- [byar ]-1 [ams] (Cr.' (3.19)

since [b Mrs [bM,8 a I

[H mn [b Ms]'1 [a.s] [Cre (3r20)

Equation (3.20) results in a series solution for H in terms of themn

unknown coefficients C
rs
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Using equation (3.20) to eliminate H from equation (3.14), MxNan

homogenous equations are obtained in terms of the unknown C rs* The

resulting equations may be written in the following form:

Ca 21c 22 - 22) .C am-0 (3.21)

C Ml * *. (CN '~MN

where the c n are the coefficients of C mn. Equation (3.21) is recog-

nized as the well known characteristic equation and has a non-trivial

solution obtained by setting the 4eterminant of the coefficient matrix

to zero. This results in an algebraic equation of order MxN in terms

of w. The roots of the algebraic equation are the characteristic values

or eigenvalves and represent the plate nondimensional vibration fre-

quencies.

Flutter solutions have been obtained using a digital computer to

solve equation (3.21) for its eigenvalves. Since the coefficients,

Cii, are a function of the flutter parameter, A, the plate vibration

frequencies are also a function of A. The criteria used to define the

point of flutter is the lowest value of A which results in two of the

frequencies (wii) coalescing and thus having a negative imaginary

value. This criteria.was selected because a negative imaginary fre-

quency results in the assumed deflection function (See equation (3.2).)
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iWt
becoming unbounded since it is multiplied by e . Similar criteria

has been used extensively in the literature (See ref. 39.) to define the

point of flutter.

3.2 Symmetric Laminated Plates

Plates that are laminated such that they are symmetric about the

midplane represent the largest class of laminated plates of practical

use. Their symmetric construction results in warp-free structural

elements which are desirable in most applications. Also, the governing

differential equations and the boundary conditions are considerably

simpler than for general laminated plates. Thus, symmetric plates have

been investigated more than any other class of laminated plates.

As was pointed out in section (2.2) and as shown by equation

(2.18(b)), B is an even function of the lamina thickness and for

symmetric plates all the B terms vanish. Thus, the flutter equations

(equations (2.35) and (2.39)) are considerably shortened and more impor-

tantly become uncoupled. Then only equation (2.35) needs to be solved

to obtain a flutter solution. For a symmetrically laminated plate, the

governing flutter equation becomes:

a 4 ' axa4 y '4
ax6 +23 1 2 +2 66 ) 2 +'2 D 2 6  xa 3

'4 ~ o A 2

+ D2  a \a + 1 cs Wsin) V (3.22)
22( y A) xa

N 2 2w a2v
yN--2 Nx - 2 =
ay2 ' Way art
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where the asterisks have been left off the D terms since D -

D* for symmetric laminated plates.En

Although equation (3.22) is considerably simpler than the flutter

equations for general laminated plates, it differs from the governing

equation for flutter of an orthotropic plate by the additional D16  and

D26  terms. These terms appear in the governing equation as a result of

the fibers not being aligned with the plate axes.

Since for symmetric plates the governing equations become uncoupled,

the boundary conditions that must be satisfied for a flutter solution

are given by equations (2.42) through (2.44) and are rewritten as

follows with the B terms removed:
Mn

v(Oy) v v(a,y) - v(x,O) - v(xb) - 0 (2.23)

1 ax2 12 2F1 =

8vDz o;_S• - 2 -w o at = -o (2.24)

12 2 2 217 6 axayax 3y-DII

"-I - D2 2  -i.-2 D " 2.5

These equations differ from the boundary conditions for a simply

supported orthotropic plate by the D16  and D2 6  terms.

To obtain a standard Galerkin solution for symmetric plates, it is

necessary to assume a function for w that satisfies all the boundary

conditions (3.23) through (3.25). However, the D16  and D26 terms.

make it difficult to .find satisfactory functions. Therefore, the same

deflection function used in section (3.1) for general laminated plates

and given by equation (3.2) will be assumed and the extended Galerkin
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method used to account for the unsatisfied natural boundary conditions.

The boundary condition terms that must be accounted for by the extended

Galerkin method are given as follows:

b 2a

f2D 6  a 6W d (3.26)

0 0

a b

2 D26  6 2 dx (3.27)
26a~ ay0 0

Using the assumed functions given by equation (3.2) and applying the

extended Galerkin method to the governing equation (3.22) with the D.6

and D26 boundary condition terms included, results in the following

equation:

[( 12 + 66 m, (~ 2 D + D 22n)4 2 V as2 N~

C m + 2 V.D1 \b -1 + D1X r 1 wJ
I r

M N 16c D
rs 16 I a !26 #a . *v Ma _3]rs

-DW2bD D m b)3 2 W21 2 22_2
r=1 sal I1~ bi ( r -m )(s -n

M N

+' C 14Xa (l-(-1Jj~n cosA + C 4 jsn i(,ana n 2 2 a s ;r -bir 2 2

aE r-i rs D 11-n -
r-1 s=1

M N3

+ 1: : L 26 (a Mars01 sa Crs D1 (r )
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Equation (3.29) represents a system of (MxN) linear homogenous equations

in terms of the unknown C and is recognized as the eigenvalue equa-mn

tion. Flutter solutions are obtained for equation (3.29) in the same

manner as discussed in section (3.1) for general laminated plates.

3.3 Angle-ply Plates

Angle-ply plates by definition are constructed so as to have an even

number of layers all of the same thickness and elastic properties ano

with the orthotropic axis of symmetry in each ply alternately oriented

at +e and -e to the plate axis (See Fig. 2.). Although angle-ply

plates do not represent as large or as important a group as the symmetric

plates, they are important from an analytic viewpoint for obtaining a

better understanding of general laminated plates. Because of the special

geometry of angle-ply plates, the governing equations are considerably

simplified but are still coupled. Thus, angle-ply plates retain many of

the characteristics of general laminated plates but relatively simple

solutions can be obtained. These characteristics have resulted in the

angle-ply plates being studied extensively in the literature to obtain a

better understanding of general laminated plates.

For angle-ply plates, it can be shown (See ref. 5.) that this

special construction results in some of the coefficients being zero as

follows: * * * *
I6 26 16 26 0

0 (3.30)
0' =Bl B =B =B: -21 = 22 66 12

Setting these terms to zero in the flutter equations (2.35) and (2.39),

results in the following governing equations.
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(2B -B) + (2BFB ). F +D(3 .31)26 - 61 ax3ay I6 - 62) ax ay3  1D ax(

a 4 w a~ 4 wi+ 2 (D + 2 D ) + D + cos A + - sinA
12 66 2_2 22 77 a

-N -- 2 2 -~ay 2 w ay a1 t ay )- •w 3 2w 27 a •w + 2wa

x~ ~ ax2 Ya2 XY axay r2

and

'4 ah m F * a4F
A2 a + (2A -A----A+ A a (3.32)

22 x 1 66' ax ay ay

- (2 B2 6  B6 1 ) - (2 B - B62) = 0
ax3ay 6y62 ay

These equations are coupled and must be solved simultaneously.

Since the governing equations for angle-ply plates are coupled, all

the boundary conditions given by equations (2.42) through (2.47) must be

satisfied. However with some of the coefficients being zero as indicated

by equations (3.29), the boundary conditions are simplified as follows:

w(0,y) = w(a,y) w(x,0) = w(x,b) = 0 (3.33)

0 awF a~ a+ S= 0 at x = O,a(B ' axay 11 1x2 D12 ayt2 (3.34)

2 y2w
62aay 12 w2 D 2  =O0at y=0,b (3.35)62 x~ + D12 a 2 +D 22ayy-!
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a2F = 0 at X - 0, a (3.36)
ay 2

VF = 0 at y - 0, b (3.37)ax2

2F 0 at x ,a (3.38)
axay y = 0, b

If the functions for w and F used for the general laminated

plates (section 3.1) and given by equations (3.2) and (3.3) are used,

then boundary conditions (3.33), (3.34), (3.35), and (3.38) are satis-

fied. Boundary conditions (3.36) and (3.37) are not satisfied directly

but will be shown to be satisfied indirectly by the following develop-

ment. Since equations (3.36) and (3.37) are not satisfied, the terms

that must be included in the extended Galerkin method are given by

equations (3.7) and (3.8) and are repeated as follows:

b y 2

f~uo7o

0 0

a 2bJ 2 v 1F jdx (3.8)

0 0

Using equations (3.9), (3.10), (3.29) and (3.30), the displacements u

and v are given as follows:
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+F A f32F dx - 2 B1 6 ay (3.39)Ywu°- - A11 *x 12y 72-- y

0 Lf 3y + 2 (3.140)= 221f 2 4 ay- 26 3x

Using the assumed functions given by equations (3.2) and (3.3) in equa-

tions (3.39) and (3.40) results in zero values for u0  and v0  on the

boundaries x = 0 and a, and y = 0 and b, respectively. Thus, all

the boundary conditions are satisfied without using the extended

Galerkin method.

Substituting the expressions for F and w given by equations

(3.2) and (3.3) into equations (3.31) and (3.32) results in the follow-

ing equations:

[D +~i) 2 (Di2 +~ 2 D66 (.n1() + C2 sibW iA-2

'[(2 8, )(!L\(n' (• __V2!\H slnE.xsin n~

+ n H msin sin iX si

C sn -a b (3.41)

(f ) (m w fni w r MYr 2 o !\ =mX ___

-r a rs a b

+(-sinAsinM Cos 0

and
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MN 4 ý12 ("\2 i
22 ! (2 + A66) .J (2 X Hi H (3.42)

*[2 426 - B61:) b._ ~2) + (2 B 16 -B62) (0a)(a""3 cM -

Eliminating H between the two equations, the following expression isMn

obtained:

MN

+ +n ^W ]sin-in sin nof
m-- nI n 3 X 0a b

- ff n Co WXCo + Z& [o. A(-mJLcos Mff sin (343)

+ sin A b/ft-i bX o

where

_ D 11  2 (D12  + 2 D66 ) b + D 2

K2 -(2 B2 6 - B6 ) + (2 B16 -B2 B62) (3.44)•1 •
Ka3= A22  +(2 AI2  A6 6 ) b Ai

Applying the Galerkin procedure to equation (3.43) and rearranging the

terms, the following "equation is obtained:
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mn K X b- - w2

M N = z(zr= 3(zns 3•
+ 281 Ž.. Cr= Vb (22)(2 a2) (45)

m-1 n-1

2A A Co r+:mm(g i s (I-(-1)s+n) 0
C 2 2 -m 2 b ( 7- 7 )

rlr -m s1 J

Equation (3.45) results in MxN homogenous equations in terms of C

and is recognized as the eigenvalue equation. Flutter solutions are

obtained for equation (3.45) in the same manner as discussed in section

3.1 for general and symmetric laminated plates.

3.4 Approximate Solutions

An approximate theory (See ref. 20.) referred to as the reduced

bending stiffness theory will be compared with the present analysis. In

the approximate theory, the plate bending stiffness is reduced by an

amount depending on the coupling between the governing equations and

then the coupling is neglected when solving the equations. The reduced

bending stiffness is the same as that defined by equation (2.18(c)).

Thus, the governing equation for the reduced bending stiffness theory

is obtained from equation (2.35) by neglecting the coupling [B mnI and

is given as follows:
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D11 * D ' + 2 (DI2 2 D + 4 D
DII • +14D 1 6  ax3ay 22 6) 2 D2 6  axaY3

axr ax ay ax ay aa

+ D a 32V- 2 a2w + 2w 0  (3.46)
* 22  - T x 2 y .

ay x2 X 3XB alC2

Since the coupling is neglected, only boundary conditions given by equa-

tions (2.42) through (2.44) with [B rn = 0 need to be satisfied. The

boundary conditions are given as follows:

w(O,y) = w(ay) = w(x,0) = w(x,b) = 0 (3.47)

-* 2 2 * 2

D --- D 2 - 2 D 32v = 0 at x - 0, a (3.48)2w 2L = 0 at y = 0,b (3.49)

12 ax 22ay D6a~
*22D 2"

- D1 2 •-- - D22 - 2

The resulting governing equation (3.46) and boundary conditions

(3.47) through (3.49) are identical to those used for symmetric lamin-

ated plates (See equations (2.22) through (2.25).) except that [Dp] is

used instead of [D]. Thus, the approximate theory reduces the solution

for general laminated plates to that of a synetric plate with the bend-

ing stiffness reduced. For angle-ply plates; the D*I6 and D*26 terms

(See equation (3.29).) i.-e zero and the approximate governing equation

(3.46) and boundary conditions (3.47) through (3.49) are identical to

those for classical plate theory. Thus, the reduced bending stiffness

theory can be used to obtain solutions for angle-ply plates from
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published classical plate theory results. Since for symmetric plates

[Bmn] = 0 and [D*] = [D], the reduced bending stiffness theory and the

present analysis are identical.

The advantages of using the approximate theory are evident for

angle-ply plates since results can be obtained using well known published

solutions. For symmetric and general laminated plates, the advantages

are not so clear since a symmetric analysis similar to the one discussed

in section 3.2 is necessary even to obtain approximate solutions. How-

ever, prior to the present analysis the reduced bending stiffness theory

was the only solution procedure available for general laminated plates.



Chapter 4

RESULTS AND DISCUSSIONS

The equations governing the behavior of general laminated plates

have been programed for approximate solution on a digital computer.

Although the computer programs were developed largely to obtain flutter

results, natural vibration frequencies and static buckling loads may

readily be obtained using the programs. Special analysis and programs

were developed to obtain solutions for symmetric and angle-ply plates.

However, the advantages of using the special programs over the one

developed for the general laminated plates were minimal and in all cases

gave identical results.

Flutter boundaries have been calculated for symmetric, angle-ply,

and general laminated plates. The plate nomenclature and geometry are

shown in figure 8 for symmetric plates, in figure 9 for angle-ply plates,

and in figure 10 for general laminated plates. Flutter boundaries were

also obtained for an aluminum plate with one, two and four layers of

composite material applied to one or both sides of the plate as shown in

figure 11. The material properties of the individual lamina used in

making the calculations are typical of those for boron-epoxy and glass-

epoxy materials. These material properties are given in table I.

Material properties for the composite stiffened aluminum plate are given

in table II.

52
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4.1 Convergence of Results

When using a series solution, it is important to determine that

sufficient terms are used in the analysis to obtain converged results.

However, using more terms than necessary results in considerably longer

computation times. The usual procedure for determining convergence is

to start with a small number of terms and increase the number until the

solution does not change as more terms are included. For solutions

obtained herein, a converged result is one which changes no more than

1 percent when more terms are included in the flutter determinant. This

method of determining convergence is demonstrated in figure 12 for a

four-ply, symmetric, square panel where the flutter parameter is shown

as a function of the number of terms in the x-direction. Curves are

shown for 0 = 00 and 600, and the symbols represent the different

numbers of terms used in the y-direction. For e = 00, four terms in

the x-direction and only one term in the y-direction are sufficient for

converged results. For 0 = 600, approximately six terns in both the

x- and y-directions are needed to obtain results converged within 1 per-

cent. Note that for 0 = 600, the converged solution is approached from

higher values of A for m > 4 and n > 2. This suggests that the

cross-stiffness terms have an adverse effect on the flutter solution, a

phenomena that will be discussed in a later section.

The modes that coalesce to produce flutter for B = 0 and B = 600

are shown in figures .13(a) and 13(b), respectively, where A is shown

as a function of the non-dimensional frequency squared. For both cases,
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the (1,1) and (2,1) modes coalesce and result in flutter. The different

numbers of terms required to obtain converged results for the two cases

are due to the D16 and D26 cross-stiffnessterum. For 8= 00, the cross-

stiffness terms are zero, and the plate is an orthotropic plate for

which it has been shown (See ref. 40.) that only the first mode in the

cross-stream direction has an effect on the flutter solutions. For

e = 600, the cross-stiffness terms couple the modes in the x- and

y-directions, and consequently, all modes effect the flutter solutions.

An attempt has been made throughout the remainder of this study to in-

sure that the values presented are converged within approximately 1

percent.

4.2 Comparison with Literature

In order to verify, as well as possible, the accuracy of the present

analysis, the analysis will be used to obtain flutter data comparable

with that presented in reference 19 for square symmetric plates. The

material properties for the plate considered in reference 19 are given

in table III. A comparison of the flutter boundaries is shown in figure

1i where A is shown as a function of the orientation angle of the out-

side lamina. The dashed curves were obtained from reference 19, and the

solid curves were obtained using the present analysis. Both sets of

curves were calculated using only two terms in the x- and y-directions.

The agreement between the two analyses is very good except for e' = 00

and 8' = 900 and for 6 near 900 where large discrepancies do exist.

Since the present analysis uses a Galerkin method of solution and the
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analysis of reference 19 uses a Rayleigh-Ritz method, the discrepancy is

attributed to the difference between the two methods when an insufficient

number of terms are used in the analysis to obtain converged results.

For converged results, both analyses should give the same values. Con-

verged flutter boundaries obtained using the present analysis are shown

in figure 15. Although it is evident that the two-term solutions are

not converged, there is still good agreement between the trends shown by

the two-term and the converged analysis. For e = 00 or 9 = 900 and

for 6'1= 0 or 0' = 90 , the present analysis should give the same re-

sults as an orthotropic analysis since the cross-stiffness terms are

zero. This is shown in figure 15 where the symbols represent orthotropic

results obtained from reference 31.

Although no flutter solutions were found in the literature for

angle-ply or general laminated plates, some comparisons of natural fre-

quencies for angle-ply and cross-ply plates are possible. The four

lowest natural frequencies calculated using the present analysis are

compared in tables IV and V with those calculated in reference 15 using

a Rayleigh-Ritz method for square angle-ply and cross-ply plates, res-

pectively. The natural frequencies calculated by the present analysis

for simple supports should compare directly with those referred to in

reference 15 as having hinge-free-tangential and hinge-free-normal

boundary conditions, respectively, for the angle-ply and cross-ply

plates. For angle-ply plates, natural frequencies are given for the

principal material directions rotated at 00, 100, 200, 300, and 400

with respect to the plate axes. The agreement between the two analyses
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is excellent.

For cross-ply plates, natural frequencies calculated using the two

analyses are compared (See table V.), for values of Ell/E2 2 = 1, 10, 20,

30, and 40. The agreement between the two analyses is excellent except

for the higher frequencies and high values of the ratio Ell/E22 . How-

ever, the differences are too small to be of practical significance.

Since a special analysis was not made for cross-ply plates, the analysis

for general laminated plates was used to obtain the natural frequencies.

Thus, the assumed mode shape functions do not satisfy the boundary con-

ditions exactly, but they are satisfied through the extended Galerkin

procedure as discussed in section (3.1). The good agreement between the

natural frequencies indicates the validity of using the Galerkin method

to account for the boundary conditions not satisfied by the assumed mode

functions.

4.3 Symmetric Plates

Flutter boundaries for symmetric plates with lamina properties

typical of boron-epoxy material or a glass-epoxy material are presented

in this section where A is shown as a function of the angle that the

fibers make with the x-axis. The effects of inplane normal and shear

loads and cross-flow on the flutter of a square boron-epoxy plate com-

posed of 4 laminas are also shown. The values of A in each case are

based on D11 which is the value of D with all the fibers aligned

with the x-axis.
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4.3.1 Flutter Boundaries

Flutter boundaries for square, symmetric, glass-epoxy and boron-

epoxy plates are presented in figure 16(a), and 16(b), respectively, for

plates composed of two, four, and six laminas. For square symmetric

plates, the highest flutter stability is obtained with the fibers aligned

with the x-axis; rotating the fibers away from the x-axis results in a

continuous reduction in flutter stability for values of 6 up to 900.

Flutter boundaries calculated using classical orthotropic plate theory

which neglects the cross-stiffness terms DI6 and D26 are seen to be

inaccurate and nonconservative. Thus, inclusion of the cross-stiffness

terms in the analysis has a destabilizing effect on flutter. Increasing

the number of laminas composing the plate results in improved flutter

stability and flutter boundaries that are closer to those given by

classical plate theory. A comparison of the flutter boundaries for the

glass-epoxy (See fig. 16(a).) and boron-epoxy (See fig. 16(b).) plates

shows that increasing the orthotropy (for glass-epoxy material El /E22

= 3, and for boron-epoxy material Ell/E22 = 10) of the laminas causes

the discrepancy between classical plate theory and the present analysis

to be more pronounced. Also, for the more highly orthotropic material

properties, orienting the fibers transverse to the flow has a larger

destabilizing effect on flutter.

Flutter boundaries similar to those presented in figure 16 for a

square plate are presented in figure 17 for a boron-epoxy plate with a

length-width ratio of 2.0. These flutter boundaries show the solutions

based upon classical plate theory to be highly nonconservative due to
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the neglect of the cross-stiffness terms. For the a/b = 2.0 plate,

rotation of the fibers away from the x-axis results in an increase in

the flutter stability to maximum values of X for 0 of approximately

300 and 400, respectively, for plates composed of two and four laminas.

Thus, in designing composite laminated plates, proper fiber orientation

is important to improved flutter stability for the plate.

4.3.2 Effect of Inplane Normal and Shear Loads

The effect of the flutter boundaries of inplane normal and shear

loads for a square, symmetric, boron-epoxy panel composed of four

laminas is shown in figures 18 and 19 where X is presented as a func-

tion of the inplane load. Flutter boundaries are shown for values of

0 0 00 = 00, 150, and 30 . The circle symbols indicate the point of buckling

with air flow.

Inplane normal loads (See fig. 18.) result in approximately a linear

reduction in flutter stability for loads up to the point of buckling.

The effects of the cross-stiffness terms and rotation of the fibers away

from the x-axis both result in a reduction in the flutter stability and

buckling loads. Thus, classical plate theory, which neglects the cross-

stiffness terms, is nonconservative in its predictions of both flutter

stability and buckling loads.

Small inplane shear loads (See fig. 19.) have a stabilizing effect

on flutter for 8 = 15 and 8 = 30 , but larger loads decrease the

flutter stability. The increase in flutter stability with small inplane

shear loads is contrary to results obtained for isotropic plates (See
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ref. 41.) and is due to a change in the modes that coalesce to produce

flutter. This is shown in figure 20 where coalescence of the frequencies

for e = 15 are shown for values of inplane shear loads K = 0., .5,xy

and 1.0. For K = 0 (See fig. 20(a).) and K = 1.0 (See fig. 20(c).),
xy xy

the two lowest frequencies which correspond to the (1,1) and (1,2) modes

coalesce and result in flu.ter. However, for a small inplane shear load

K of 0.5 (See fig. 20(b).), the lowest frequency and one of the higher

frequencies, which correspond to the (1,1) and (2,1) modes, coalesce to

produce flutter. For K greater than 1.0, the (1,1) and (1,2) modes

continue to coalesce to produce flutter but at lower values of X (See

fig. 19.). The cross-stiffness terms and rotating the fibers away from

the x-axis both result in increased buckling loads and in improved

flutter stability for most values of inplane shear loads. This is con-

trary to results noted for inplane normal loads. It should be noted

that at the point of buckling, the flutter values of A for inplane

shear loads (See fig. 19.) are considerably lower than those of inplane

normal loads (See fig. 18.). This is in contrast with results presented

in reference 4i for isotropic plates.

4.3.3 Effect of Cross-flow

The effects of cross-flow on the flutter boundaries for a square,

symmetric, boron-epoxy plate composed of four laminas are shown in

figure 21. Flutter boundaries are presented for 8 = 00, 150 and 300

where A is shown as a function of the cross-flow angle. For 0 = 150

and 0 = 300, flow at small cross-flow angles may have a substantial
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stabilizing effect on flutter. For 6 = 150, a 30 percent increase in

X may be obtained for a 100 cross-flow angle whereas larger cross-flow

angles result in a reduction in flutter stability. Similar results are

obtained for 0 = 300 where a 45 percent increase in X in obtained

for a cross-flow angle of 200. This increase in the flutter stability

with cross-flow angle can be explained as follows: Cross-flow is de-

stabilizing for an orthotropic plate (See ref. 40.). Orienting the

fibers at an angle with the plate axis results in the maximum bending

stiffness and thus the maximum flutter resistance occurring in that

direction. These factors tend to counteract each other and result in

the maximum flutter stability occurring at an angle between the x-axis

and the fiber directions. Note that the maximum value of X for the

cases shown are obtained at an angle approximately two-thirds of the

angle A the fibers make with the x-axis.

For plates with the fibers aligned with the x-axis (e = 00), cross-

flow is destabilizing, but at small cross-flow angles they have higher

values of X than plates with the fibers rotated at 6 = 150 and 0 =

300. Classical plate theory does not show any beneficial effects of

cross-flow and thus, underpredicts the flutter stability for large cross-

flow angles. For laminated composite plates, cross-flow may be either

stabilizing or destabilizing depending on the flow angle and the orienta-

tion of the fibers. Thus, in designing composite plates that will experi-

ence cross-flow, an optimum orientation of the fibers may considerably

improve the flutter stability of the plate.
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4.4 Angle-ply Plates

Flutter boundaries calculated using the present analysis, classical

plate theory, and reduced bending stiffness theory are presented in this

section for typical angle-ply plates. The effects of inplane normal and

shear loads and cross-flow on the flutter of a square boron-epoxy plate

composed of four laminas are also shown. There is a bending-extensional

coupling between the governing equations for an angle-ply plate which is

neglected by classical plate theory. Since the cross-stiffness terms

discussed in section 4.3 for symmetric plates are zero for angle-ply

plates, the only difference between classical plate theory and the pre-

sent analysis is due to bending-extensional coupling. The reduced bend-

ing stiffness theory accounts for the coupling in an approximate way by

reducing the bending stiffness of the plate by an amount determined from

the coupling terms and then neglecting the coupling in solving the equa-

tions. For 0 = 0° or e = 900, the coupling terms are zero, and the

present analysis and the reduced bending stiffness theory become identi-

cal with classical plate theory.

4.4.1 Flutter Boundaries

Flutter boundaries for square, angle-ply plates with properties

typical of a glass-epoxy and a boron-epoxy material are presented in

figure 22(a) and 22(b), respectively, where X is shown as a function

of 6. Bending-exten~sional coupling has a large destabilizing effect on

the plate composed of only two laminas, but as the number of laminas

increase, the coupllng effect becomes smaller, and the boundaries
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approach those given by classical plate theory. The reduced bending

stiffness theory gives flutter boundaries that are in good agreement

with the actual boundaries even for the plate composed of only two

laminas. The small errors associated with using the reduced bending

stiffness theory, however, are not always conservative. Comparing the

flutter boundaries for the glass-epoxy (See fig. 22(a).) and the boron-

epoxy (See fig. 22(b).) plates shows that increasing the orthotropy of

the laminas increases the destabilizing effect of bending-extensional

coupling. The good agreement between the present analysis and the re-

duced bending stiffness analysis does not deteriorate as the lamina

orthotropy is increased.

Flutter boundaries similar to those presented in figure 22 for a

square plate are presented in figure 23 for a boron-epoxy plate with a

length-width ratio of 2.0. The flutter boundaries show larger destabil-

izing effects due to bending-extensional coupling than found for the

square plates, but increasing the number of laminas composing the plate

reduces the destabilizing effect2. For plates with four or more laminas,

orienting the fibers at an angle with the x-axis may result in large

improvements in the flutter stability with the highest flutter values

being obtained at 0 - 1450. For plates with two laminas, rotating the

fibers away from the x-axis results in little or no improvement in the

flutter stability. In each case, orienting the fibers transverse to the

x-axis results in the most unstable condition. Good agreement is obtained

between the present analysis and the reduced bending stiffness theory

for all plates, but the largest discrepancy is obtained for the plate
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composed of two laminas.

4.4.2 Effect of Inplane Normal and Shear Loads

The effects of inplane normal and shear loads on the flutter of

square angle-ply plates are shown in figure 24 (a) and 24(b), respectively.

Flutter boundaries are shown for values of 0 = 00, 150, and 300. The

circle symbols indicate the point of buckling with air flow. Inplane

normal and shear loads result in a sharp drop in the flutter stability

for loads up to the point of buckling. Bending-extensional coupling has

a destabilizing effect on flutter and reduces the panel buckling loads.

For plates with inplane normal loads (See fig. 2 4 (a).), rotating the

fibers away from the x-axis generally has a destabilizing effect on the

flutter and reduces the buckling loads, but for plates with large in-

plane shear loads (See fig. 24(b).), the opposite effect occurs. How-

ever, for small values of inplane shear, rotating the fibers away from

the x-axis may also be destabilizing. The reduced bending stiffness

theory gives flutter boundaries that are in good agreement with the pre-

sent analysis for each case shown. It should be noted that at the point

of buckling, the flutter values of X for inplane shear loads are con-

siderably lower than those for inplane normal loads. This is in agree-

ment with results shown for symmetric laminated plates.

4.4.3 Effect of Cross-Flow

The effect of cross-flow on the flutter boundaries for a square,

angle-ply, boron-epoxy plate composed of four laminas is shown in figure
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25. Flutter boundaries are presented for 6 = 00, 150, and 300 where X

is shown as a function of the cross-flow angle. In each case, cross-

flow and bending-extensional coupling have a large destabilizing effect

on the flutter boundary. However, rotating the fibers away from the x-

axis results in cross-flow having a less destabilizing effect on the

flutter boundary. Thus, for angle-ply plates, aligning the plate axis

with the flow results in the most stable condition, but if cross-flow is

unavoidable, proper orientation of the fiber directions may reduce its

destabilizing effects. For each condition shown, the reduced bending

stiffness theory shows good agreement with the present analysis.

4.5 General Laminated Plates

The term "general laminated plates" as used in this study encom-

passes plates composed of any number of laminas, with arbitrary thick-

ness, stacking sequence, and material properties, that satisfy the

linear small deflection theory assumptions. This definition covers an

infinite number of plates including the symmetric and angle-ply plates

discussed in sections 4.3 and 4.4.

Flutter boundaries will be shown for two square, boron-epoxy panels

that are composed of four laminas stacked in the sequence shown in figure

10 and designated as P-1 and P-2. In addition, flutter boundaries will

be calculated for six square, composite-stiffened aluminum plates con-

figured as shown in figure 11. The flutter boundaries calculated for

plates P-1 and P-2 using the present analysis will be compared with

those calculated using classical plate theory, and reC bending
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stiffness theory and with those presented for the symmetric and angle-

ply plates in sections 4.3 and 4.4. The difference between the present

analysis and classical plate theory for general laminated plates is due

to both cross-stiffness terms and bending-extensional coupling.

4.5.1 Flutter Boundaries

Flutter boundaries calculated using the present analysis are com-

pared with those calculated using classical plate theory and reduced

bending stiffness theory in figure 26(a) and 26(b), respectively, for

plates P-1 and P-2. The bending-extensional coupling and cross-stiffness

terms have a large influence on the flutter boundary for both plates and

render the classical plate theory highly nonconservative. For these

cases, neglecting the coupling and cross-stiffness terms may result in

flutter values that are close to 100 percent too high. However, flutter

boundaries calculated using the reduced bending stiffness theory show

good agreement with the present analysis. The agreement is slightly

better for plate P-1 than for 0 . This is expected since plate P-1 is

more nearly symmetric and th .e coupling effect is smaller than for

plate P-2.

4.9.2 Effect of Plate Construction

Flutter boundaries for plates P-1 and P-2 are compared in figure 27

with those obtained for the symmetric and angle-ply plates. The curves

shown represent flutter boundaries for six plates, all of which are com-

posed of the same material and have the same thickness but which have

different flutter characteristics as a result of the number of layers
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sad the sequence in which they are laminated. Although the flutter

boundaries for all the plates follow the same basic trends with e, the

angle-ply plate with K = 4 shows considerably more resistance to

flutter than any of the other plate constructions. The symmetric plate

with K = 4 shows the next best resistance to flutter followed by the

general laminated plates P-1 and P-2 which have similar flutter boun-

daries. The symnetric and angle-ply plates with K = 2 show the lowest

values of A, which are as much as 40 percent lower than the maximum

values obtained for the angle-ply plate with K = 4. Thus, improvements

in the flutter stability are obtained by increasing the number of laminas

and stacking them in an angle-ply sequence.

The effects of cross-flow on the flutter boundaries for the general

laminated plates may be seen in figure 28 where A is plotted as a func-

tion of the cross-flow angle. The flutter boundaries for the symmetric

and angle-ply plates with K = 4 are also shown for comparison. For

the general laminated plates, cross-flow at small angles slightly improve

the flutter stability. For plate P-l, cross-flow at angles greater than

200 and for plate P-2, cross-flow at angles greater than 50 each results

in a steady decrease in flutter stability. Similar results are obtained

for the symmetric plate where large improvements in the flutter stability

are obtained for cross-flow angles up to 10°. However, for the angle-ply

plate, even a small amount of cross-flow results in a reduction in flutter

stability. Although it was pointed out previously that for no cross-flaw,

the angle-ply construction is the most resistant to flutter, the presence

of cross-flow may result in the symmetric construction giving better
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flutter stability. Thus, in designing laminated plates, the stacking

sequence may have a significant effect on the flutter stability.

•4.5.3 Composite Stiffened Aluminum Plates

Flutter boundaries are presented in figure 29 for six square, com-

posite stiffened aluminum plates constructed as shown in figure 11 and

with material properties as given in table II. Two of the plates are of

symmetric construction with one or two layers of composite material

applied to each side of the aluminum. The other four plates are of un-

symmetric construction with one and two layers of composite material

applied to one or both sides of the aluminum. In each case, 50 percent

of the plate mass is composed of composite materials, and the only

difference between the plates is the way in which the composite material

is applied. The flutter boundaries for the composite stiffened plate

are compared with the flutter boundary for an equal mass aluminum plate.

The values of A shown in figure 29 are based on D of the aluminum

plate so that the relative advantages of the various constructions may

be seen.

The composite stiffened aluminum plates have considerably higher

flutter stability than the aluminum plate. For small values of E,

aluminum plates with laminas on both sides of the plate have values of

X that are 50 percent higher than those obtained for plates with the

laminas only on one side and over three times those for the aluminum

plate. However, for increasing values of 0, the values of X decrease

until little or no improvement in stability is obtained by using the
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composite material. For values of 8 between 00 and 900, increasing

the number of layers of composite material also increases the flutter

stability.

These results show that composite materials may be used very effec-

tively to increase the flutter stability of an isotropic plate. For

square plates, aligning the fibers with the plate axis and applying the

composite material symmetrically about the midplane of the plate both

result in improved flutter stability. If the fibers are rotated with

respect to the plate axis, increasing the number of laminas also in-

creases the flutter stability.



Chapter 5

CONCLUDING REMARKS AND RECONNUNDATIONS

For general laminated plates, the bending and extensional governing

equations are coupled and have cross-stiffness terms which are not in-

cluded in classical orthotropic plate theory. The coupling and cross-

stiffness terms occur as a result of the lamina principal directions not

coinciding with the plate axis. These additional terms and the coupling

increase the difficulty of obtaining solutions. However, a solution

procedure has been developed using linear small deflection theory for

the flutter of arbitrarily laminated simply supported plates. The ex-

tended Galerkin method is used to obtain solutions to the governing

equations, and the aerodynamic pressure loading used in the analysis is

that given by linear piston theory with flow at arbitrary cross-flow

angles.

Flutter solutions were obtained for typical symmetric, angle-ply,

and general laminated composite plates, and a limited parametric study

was conducted. The parameters studied include the number, orientation,

and orthotropy of the lamina; the plate length-width ratio; the inplane

normal and shear loads; and the cross-flow angle. In addition, flutter

solutions for several composite stiffened aluminum plate designs were

obtained to determine the most flutter resistant design.

The bending-extensional coupling and the cross-stiffness terms both

have a large destabilizing effect on the flutter of unstressed laminated

plates, but increasing the number of laminas, reducing the lamina

69
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orthotropy, and stacking the laminas in the "best" order reduce the de-

stabilizing effect. For a square plate, aligning the fibers with the

x-axis results in the highest flutter stability, but for a plate with a

length-width ratio of 2.0, large improvements in flutter stability may

be obtained by rotating the fibers away from the x-axis. For angle-ply

plates, inplane normal and shear loads and cross-flow have a destabiliz-

ing effect on flutter similar to that obtained for orthotropic plates.

However, for symmetric plates with the fibers not aligned with the

x-axis, the cross-stiffness terms result in small inplane shear loads

and cross-flow angles improving the flutter stability. Flutter calcula-

tions for equivalent symmetric, angle-ply, and general unsymmetric

plates indicate that for no cross-flow and no inplane shear loads,

plates with an angle-ply construction will have the highest flutter

stability. If cross-flow or inplane shear loads are present, symmetric-

ally constructed plates may have higher flutter stability.

Since classical plate theory does not consider bending-extensional

coupling and cross-stiffness terms, it gives inaccurate and usually non-

conservative flutter boundaries for laminated plates. Reduced bending

stiffness theory, an approximate flutter theory which accounts for the

coupling by reducing the plate bending stiffness as determined by the

coupling terms and then neglects the coupling in solving the equations,

gives flutter solutions that are adequate for all plates for which numer-

ical results were obtained. For angle-ply plates, reduced bending stiff-

ness theory results are obtained using published classical orthotropic

plate theory solutions. However, for symmetric or general laminated
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plates, a solution procedure similar to the present one for symmetric

plates is necessary to obtain even approximate solutions.

The flutter stability of composite stiffened aluminum plates was

considerably better than the flutter stability for an equal mass aluminum

plate. Applying the composite material to both sides of the aluminum

plate results in better flutter stability than by applying all the

material to one side of the plate. Also, if the fiber directions do not

coincide with the plate axis, increasing the number of layers of material

improves the flutter stability.

Since only a limited parametric study was conducted in this investi-

gation, it would be beneficial to use the present analysis to conduct a

parametric study in greater depth. Specifically, a wider variety of

lamina material properties should be considered and additional plates

with general unsymmetric construction should be investigated. Also, the

possible benefits of using composite materials to stiffen conventional

orthotropic and isotropic plates should be studied for several additional

plates. For all results presented, the fiber directions of the laminas

were rotated by the same absolute angle about the plate axis. Thus,

further investigations should be made into the flutter characteristics

for laminated plates in which the fiber directions of the individual

lamina are rotated independently. This becomes of special significance

for laminated plates with inplane shear or cross-flow where significant

improvements in flutter stability may be obtained by rotating the fibers

away from the plate axis.

The flutter results presented in the present analysis were obtained
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for simply supported plates with free normal and tangential inplane dis-

placements. Other boundary conditions, which restrict the inplane dis-

placements have been considered in the literature for simply supported

plates and have resulted in large changes in natural frequencies. Since

changes in flutter characteristics are usually associated with changes

in the natural frequencies, the inplane boundary conditions may have a

significant effect on the flutter characteristics. Thus, an extension

of the present analysis to consider other inplane boundary conditions

would be a worthwhile endeavor.

Although thb reduced bending stiffness theory adequately predicted

the flutter characteristics for all the plates studied, it was shown in

the literature not to give natural frequencies and deflections as

accurately as desired for certain plates. Thus, additional comparisons

between reduced bending stiffness theory and the present analysis are

needed for a wider range of plates. Also, since the reduced bending

stiffness theory does not account for the inplane boundary conditions,

any change in the flutter characteristics due to the changes in boundary

conditions suggested in the above paragraph would not be shown with the

reduced bending stiffness theory. These additional studies are needed

before the reduced bending stiffness theory can be used with confidence.

Since the literature survey revealed no numerical results available

for general laminated plates, a significant contribution to the litera-

ture could be made by using the present analysis to calculate the natural

vibration frequencies and the inplane normal and shear static buckling

loads for general laminated plates. Although this study has been
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concerned primarily with flutter characteristics, the analysis and re-

sulting computer program can be used without modifications to perform

the indicated calculations.
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TABLE I

LAMINA MATERIAL PROPERTIES USED IN ANALYSIS

Material

Properties Boron-epoxy Glass-epoxy

Ell 30,000,000 psi 7,500,000 psi

E22 3,000,000 psi :2,500,000 psi

G12  1,000,000 psi 1,000,000 psi

' 12 .30 .30
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TABLE II

MATERIAL PROPERTIES FOR COMPOSITE STIFFENED

ALUMINUM PLATE

Material

Properties Aluminum Composite

E11  10,000,000 psi 29,600,000 psi

E122 0,000,000 psi 4,130,000 psi

G12 3,850,000 psi 2,020,000 psi

'12 .30 .21
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TABLE III

MATERIAL PROPERTIES OF REFERENCE PLATE

Material

Properties Outside Middle
layers layers

ElE lOE

E22 10E E

GI2 .5E .5E

V1 2 .0349 .349
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TABLE IV

COMPARISON OF FOUR LOWEST NATURAL FRF•"MENCIES

FOR A SQUARE ANGLE-PLY PLATE (EII/E 22 - 4o, G12/E22 = 1, 12 = .25)

7E2 h 1

6 Extended Galerkin Method

0 19.232 24.524 36.229 54.691

10 16.615 23.584 36.471 56.045

20 14.610 24.567 40.984 46.414

30 14.377 28.170 40.452 49.336

40 14.592 32.275 36.235 58.369

Rayleigh-Ritz Method, ref. 15

0 19.232 24.524 36.229 54.691

10 16.615 23.584 36.471 56.045

20 14.610 24,567 40.984 46.414

_0 14.377 28.170 40.452 49.336

40 14.592 32.278 36.235 58.369
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TABLE V

COMPARISON OF FOUR LOWEST NATURAL FREQUENCIES

FOR A SQUARE CROSS-PLY PLATE (G12 /E 2 2 = '5, v1 2 = .25)

Ell /E 2 2  Extended Galerkin Method

1 6.155 15.148 15.148 24.619

10 7.932 21.274 21.274 31.727

20 9.152 25.136 25.136 36.608

30 10.210 28.403 28.403 4O.840

4o Ii.i164 31.312 31.312 144.656

Rayleigh-Ritz Method, ref. 15

1 6.155 15.148 15.148 24.619

10 7.931 21.275 21.275 31.721

20 9.152 25.135 25.135 36.601

30 10.210 28.400 28.400 40.831

40 11.163 31.308 31.308 44.646
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Figure 16.- Concluded.
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Figure 20.- Coalescence of frequencies for a symetric, boron-epoxy,
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Figure 23.- Flutter boundaries for boron-epoxy, angle-ply plate with
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Figure 25.- Flutter boundaries for square, boron-epoxy, angle-ply plate
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Figure 27.- Comparison of flutter boundaries for square, symmetric,
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