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NOTATION
matrix of elastic areas defined by equation (2.18)
matrix defined by equation (2.23)
coefficient matrix (See equation (3.18).)
plate dimensions along x and y axis, respectively
matrix of elastic statical moment defined by equation (2.18)
matrix defined by equation (2.23)
coefficient matrix (See equation (3.18).)
Fourier series coefficients

coefficient matrix (See equation 3.18)

matrix of elastic moments of inertia defined by equation (2.18)

matrix defined by equation (2.23)
matrix of Did with 6=0.

matrix of D,, with =0 and 6'=0

i
Principal Young's moduli in 1 and 2 directions, respectively
Airy stress function, defined by equation (2.31)
shear modulus in 1-2 planes
total plate thickness
distance from plate midplane to the lamina boundary as shown

in figure 3.

Fourier series coefficients

integers
number of layers in plate 2 - 5
Nxa N a
nondimension inplane normal loads,= = ) ,—:Y—-e-
: D ,.m D

iv




nondimensional inplane shear 1oad,-:¥x—-

Mach number

total number of terms in x and y direction, respectively
bending moment resultants as defined by equation (2.9)
twisting moment resultant as defined by equation (2.9)
integers

inplane normel loeds per unit length in x and y

directions, respectively

induced inplane shearing loads

inplane shearing loads per unit length

induced inplane normal loads

inplane normal resultant as defined by equation (2.8)
inplane shear resultant as defined by equation (2.8)
intensity of transverse load

constitutive coefficient matrix for specially
orthotropic lamina

constitutive coefficient matrix for generally orthotropic'
lamina

dynamic pressure of airstream

integers

midplane displacements in x and y direction, respectively
normel displacements

cartesian coordinates




xy’'yz? 'xz

Ox, Oy, Oz

vi

compressibility factor,‘/ Mi -1

plate mass per unit area
shearing strain components
lemina thickness (See figure 1k.)
normal strains in x, and y directions, respectively
normal midplane strains in x and y directions, respectively
rotation angle of the fibers with respect to the plate axis

rotation angle of the fibers in the inner laminas with respect
to plate axis (See figures 14 and 15.) .

plate curvature as defined by equation (2.5)

cross-flow angle

flutter parameter defined by equation (3.16)

poisson's ratio for orthotropic lamina defined by - 32/E1

normal stress components in x, y, and z directions, respectively

vz shearing stress components

natural frequency

fundamental frequency of simply supported beam as given
by equation (3.17)
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Chapter 1

INTRODUCTION

Laminated composite materials have been in use for many centuries.
Pieces of laminated wood have been found which date back to about 1500 B.C.
Some excellent swords were made in the 15th century by laminating several
layers of steel to provide an extremely hard and keen cutting edge with
a softer tough body. Although some of the advantages of using composite
materials have been known for some time, only in recent years have deter-
mined efforts been made to fully develop composite materials. The advent
of high performance aircraft and spacecraft has brought about the need
for more efficient use of materials. Recent energy shortages have em-
phasized in even a greater way the importance of developing composite
materials for everyday usage.

In recent years, composite materials have been the subject of a large
number of experimental and analytical investigations and have been develop-
ed to the point where structural components are now being used in actual
applications. Previously, most of the composite applications have been
structural components built to replace existing conventional components.
However, new designs are emerging which have considered composite materials
in the total design. As new applications are considered for composite
designs, a better understanding of the behavior of structural components
under various load conditions jis needed.

One structural component that is used extensively in a wide variety

of applications is the flat plate. Plates fabricated from composite
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materials usually consist of individual lamina bonded together. Each
lamina usually consists of a number of high strength filaments aligned in
the same direction and held in place by a plastic matrix material.

The lamine may be highly orthotropic, and since the principal material direc-
tion or the angle the fibers make with the plate axis may differ for each
lamina, the resulting anisotropic plate is more complex to analyze than

an orthotropic plate.

This study is being conducted to obtain a better understanding of
the flutter characteristics of laminated composite flat plates. However,
the following discussion will include a general review of previous studies
of laminated composite plates. Most previous studies of laminated plates
have been concerned only with deflection, vibration, and buckling char-
acteristics. The development and solution of the governing equations
for plates under various conditions will be reviewed and a proposed area
of investigation identified. Solution techniques and possible problem

areas will alsc be discussed.

1.1 Review of Literature

Numerous theoretical analyses of composite laminated plates have been
made and are discussed in references 1-23. These references represent
work that cover the spectrum from classical small deflection theory and
approximate solutions to non-linear theory and exact solutions. Much of
the early analytical work for composite plates was conducted using classi-

cal small deflection theory, and solutions were obtained only for special

classes of plates which resulted in considerable simplification of the




analysis. Recent studies have obtained solutions to more general plate
problems with transverse shear and rotary inertia effects.

In addition to the reports and articles, some excellent books have
considered laminated composite plates. Dietz (24) in 1969 published a good
review of much of the early analytical work in laminated composites and
gave a thorough listing of references. Ashton, Halpin, and Petit (25)
in 1969 published an excellent primer for those new in the field. They
give a good developrment and discussion of the governing equations. Ashton
and Whitney (26) in 1970 published a good review of the progress in lami-

nated plate theory and the various solutions and solution techniques.
1.1.1 Formulation of Equations

Two early investigators, Reissner and Stavsky (1), analyzed a plate
composed of two orthotropic laminas of equal thickness aligned so that the
principal material axes of the two laminas are rotated at an angle of
+0 and -0 with the plate axes (later referred to as angle~ply plates).
They found that even for a small deflection theory analysis, there exists
a coupling between the transverse bending ané inplane streﬁching equations
that does not exist for orthotropic plates. They showed that the coupling
effect exists in the boundary conditions as well as in the governing
equations.

Reissner and Stavsky (1) formulated the governing equations as two
lth order partial differential equations in terms of the Airy stress
function and the traisverse displacement. Due to the coupling of the

two equations, they must be solved simultaneously, and inplane, as well as




transverse boundary conditions, must be specified at each boundary to
obtain a particular plate solution. Stavsky (2) formulated the govern-
ing equations as an eighth order partial differential equation in terms of
the Airy stress function and later (3) in the form of three simultaneous
partial differential equations in the displacements u, v, and w, Al-
though each of the formulations have advantages in certain problems,
trey present about the same order of difficulty in obtaining a solution.
Later contributions to the laminated plate formulations have been
made by several authors. Tsail and Azzi (L) added thermal stresses to
the formulation of laminated plate equations. Whitney and Leissa (5),
and Yang, Norris, and Stavsky (6) included rotary inertia terms in the
formulation and the latter authors also included transverse shear which
becomes important for thick plates. The formulation by Yang, Norris, and
Stavsky results in five coupled partial differential equations in terms of
the displacements u, v, and w and two rotations of the normals to the

midplane,

1.1.2 Solutions for Symmetric Plates

Although available formulations of the governing equations and
boundary conditions are applicable for general leminated plates, most
of the solutions have been obtained for special classes of plates which
result in considerable simplification to the governing equations.
Stavsky (2) in his early work showed that for laminated plates symmetric
about the geometric midplane both in properties and fiber orientation,

the transverse bending and inplane stretching equations and the boundary




conditions become uncoupled and can be solved independently. However,

he showed that even for symmetric leminated plates, the governing equations
and boundary conditions still contain some cross-stiffness terms due to
the laminas which result in the governing equations being different

from those of an orthotropic analysis. He further showed that only for
very special kinds of symmetric plates do the cross-stiffness terms vanish
and the governing equations become identicel with the orthotropic equa-
tions. As a result of these simplifications, symmetric plates have been
studied extensively in the literature.

The Rayleigh-Ritz method of solution with beam mode shape functions
has been used effectively by several investigators to obtain deflection,
vibration, and buckling solutions. Ashton and Waddoups (7) investigated
symmetric laminated plates and presented analyticel results for uniaxially
loaded plates with the loaded edges clamped and the unloaded edges free.
They also presented calculated frequencies and mode shapes for canti-
levered plates which showed good agreement with experiment. Ashton (8)
extended the analysis to include nonuniform cross section and material
properties and presented results for tapered plates under unaxial
loading with simple supported and clamped boundary conditions. Ashton
(9) further extended the analysis to include elastically restrained
boundary conditions and presented some deflection results with re-
strained boundary conditions.

Later Srinivas and Rao (10) obtained closed form solutions for the

free vibration and buckling of simply supported symmetric laminated




thick plates using linear small deflection theory. They compared their
results with thin plate theory and showed that the error associated
with thin plate theory increases with plate thickness and the modular
ratioc between the lamina. A similar analysis by Whitney (11) showed
the same trends. Thus the definition of "thin" for laminated plates

must take into account modular ratio as well as plate thickness.
1.1.3 Solutions for Angle-ply and Cross-ply Plates

Angle-ply plates are unsymmetric and consist of an even number of
layers having the same thickness and elastic properties, and the ortho-
tropic axes of symmetry for each ply are alternately oriented . - angles
of +0 and -6 to the plate axes (See fig. 1). Cross-ply plates are un-
symmetric and consist of an even number of layers all of the same thick-
ness and elastic properties with the orthotropic axes of symmetry in
each ply alternately oriented at O degrees and 90 degrees to the plate
axes (See fig. 2). Whitney and Leissa (5) showed that for angle-ply
plates and cross-ply plates, the governing equations and boundary condi-
tions are considerably simplified but are still coupled and must be solved
simultaneously. As a result of the simplifications, angle-ply and cross-
ply laminated plates have been studied by severel investigators to deter-
mine the effects of bending-extensional coupling.

Several solution procedures have been developed which are effective
in solving the coupled governing equations and boundary conditions.
Whitney and Leissa (S) and Whitney (12) used a Fourier series technique

to obtain solutions for deflection, free vibration, and buckling of both



angle-ply and cross-ply plates for simply supported boundary conditions
which allow inplane displacements normal and tangent to the boundary for
cross-ply and angle-ply plates respectively. Bert and Mayberry (13) used
a Rayleigh-Ritz approach with beam mode shape functions to obtain free
vibration results for cross-ply and angle-ply plates with clamped
boundary conditions. Whitney (1l4) used a Galerkin procedure to obtain
solutions for the shear buckling of cross-ply plates with simply suppor-
ted boundary conditions.

In all cases cited, the bending-extensional coupling significantly
affected the results. Bending-extensional coupling has the overall
effect of reducing the plate stiffness and thus increasing the static
deflection and reducing the natural frequencies and buckling loads. The
effect of coupling is increased as the number of laminas are decreased
and as the degree of anisotropy between leamina is increased.

Fortier (15) used a Rayleigh-Ritz solution procedure to investigate
the effects that various types of inplane boundary restraints have on
the behavior of angle-ply and cross-ply plates with small initial curva-
ture. He also considered the effects of transverse shear and inplane
loads on the natural frequencies. He found that inplane boundary condi-
tions, initial curvature, transverse shear, and inplane loads all have
a significant effect on the behavior of unsymmetric plates. However,
Whitney (16) considered transverse shear for cylindrical bending of
symmetric and crossfply plates and showed that transverse shear has less

effect on the deflection of cross-ply plates than symmetric plates.




1.1.4 Approximate Solutions

Due to the difficulty of obtaining general plate solutions, approxi-
mate solutions have emerged also. A "reduced bending stiffness" method
was proposed by Ashton (20) in which the bending-extensional coupling
is accounted for in an approximate way. Approximate solutions were ob-
tained by reducing the bending stiffness of the plate by an amount deter-
mined by the coupling terms and then neglecting the coupling effect.
Ashton used the method to compare maximum deflections of a cross-ply and
an angle-ply plate with measured results and obtained good agreement.
Whitney (21) also used the method to compare results with those calcu-
lated using the Fourier series technique and showed good agreement for
both angle-ply and cross-ply plates for simply supported boundary condi-
tions, but for clamped boundary conditions, relatively poor agreement was
obtained for certain angle-ply cases.

A more refined analysis was presented by Srinivas (22) which con-
siders transverse shear deformations and rotary inertia effects. By
assuming piecewise linear variations of the displacements u and v
and constant values of w across the plate thickness, the problem be-
comes two dimensional. Trigonometric series solutions were obtained for
the approximate two dimensional problem for plates with simply supported
ﬁoundary conditions, and the results showed good agreement with exact

theory.




1.1.5 Dynamic Stability

A limited number of investigators have considered the dynamic
stability of laminated plates. Smirnov (17) considered the flutter of
an infinite sandwich plate subjected to cylindrical bending in a gas
stream and obtained an exact solution. He later extended the analysis
(18) to include semi-infinite sandwich plates with various boundary con-
ditions. He used linear piston theory aerodynamics and obtained solu-
tions for both clamped and simply supported semi-infinite plates.

Librescu and Badoiu (19) and Ramkumar (23) analyzed the flutter of
flat, symmetrically laminated, simply supported plates with inplane
normal loads. They used linear piston theory dynamics with aerodynamic
damping and the Rayleigh-Ritz solution procedure with beam mode shape
functions. Flutter boundaries are presented as a function of the
orientation of the principal axis of the lamina for various inplane
loads and aerodynamic damping coefficients. However, it should be
noted that all the flutter boundaries presented in reference 19 were
obtained using only two terms in both the streamwise and cross-stream
direction and the results presented in reference 23 were obtained using
ten terms in the streamwise direction but only two terms in the cross-
stream direction. Thus, in both cases, the results presented may not

have been completely converged.

1.2 Statement of Problem
Although much work has been done in the analysis of composite

laminated plates, as discussed in the literature survey, panel flutter
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stands out as having received very little attention. Panel flutter has
long been recognized as a problem for the design of conventional panels
subjected to supersonic flow. This is evident by the large number of
reported panel flutter investigations some of which are listed in refer-
ences 27-42, The panel flutter work that has been done for laminated
plates is so limited that it is of little value to the designer. It is
evident that to design efficient laminated composite panels for super-
sonic application, a better understanding of their flutter characteris-
tics is needed.

Another area that has received little attention is the solution of
general laminated plate problems wheré the plates may have any number
of layers stacked in an arbitrary sequence with the fibers in each layer
rotated at an arbitrary angle to the plate axis. For general laminated
plates, the complete bending and extensional governing equations and
boundary conditions are coupled and must be solved simultaneously to
obtain plate solutions. Considerable difficulty is encountered in
solving the coupled equations and boundary conditions. Thus, although
the governing equations and boundary conditions have been formulated for
general laminated plates, no general solutions were found in the litera-
ture survey. All the solutions presented were for specially laminated
(symmetric, angle-ply, or cross-ply) plates whose special geometry
results in simplifications to the governing equations and boundary con-
ditions which make it considerably easier to obtain solutions. However,
since in the design ;f laminated plates it is not always practical or

desirable to use specially laminated plates, an analysis is needed which
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obtains solutions for general laminated plates.

The purpose of this investigation is to obtain the flutter charac-
teristics of flat, general laminated plates using approximate methods.
The analysis will be based upon small deflection theory but will consider
the general coupled governing equations and boundary conditions for
simply supported plates. Thus, an approximate solution procedure will
be developed for completely general plates which may have any number of
layers stacked in an arbitrary sequence and with the fibers in each
lamina rotated at an arbitrary angle to the plate axes. The plate may
be subjected to uniform inplane normal and shear loads.

An extended Galerkin method will be used to obtain approximate
solutions to the governing equations and boundary conditions. The
extended Galerkin method will be used since it provides a straight-
forward solution procedure for nonconservative problems (See ref. 42)
using simple series to describe the displacements. The aerodynamic
loading on the panel will be assumeu to be given by linear piston theory
and the flow may be at an arbitrary cross-flow angle. Piston theory
aerodynamics will be used because it gives simple expressions for the
aerodynamic loading and has been shown to be applicable for Mach numbers
greater than 1.6 (See ref. 28 and 29).

Since symmetric and angle-ply plates have been the subject of many
investigations, approximate solutions will be obtained for typical
laminated plates from each class, and a limited parametric study will be
conducted to determine the effects on the flutter boundaries. The param-

eters to be studied will include the number and orientation of the plies,
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length-width ratio, inplane shear and normal loads, and cross-flow
angles. The flutter boundaries from this analysis will be compared with
those calculated using classical orthotropic plate theory and the reduced
bending stiffness method.

Since general laminated plates have not been investigated prior to
this time, approximate solutions of their governing equations will be of
special interest. Thus, flutter boundaries will be calculated for some
typical general laminated plates and the results will be compared with
those obtained for specially constructed symmetric and angle-ply plates.
Flutter boundaries will also be calculated for some composite stiffened
aluminum plates that do not have a symmetric or angle-ply construction.

Although the approximate procedure will be developed for the purpose
of obtaining flutter solutions, the analysis will also have the capability
of giving natural vibration frequencies, and inplane normal and shear
static buckling loads. Since no numerical results are available in the
literature for general laminated plates, a significant contribution to
the literature could be made by using the natural vibration and static
buckling capabilities of the analysis. However, only a limited number
of natural frequency calculations will be made to compare with published

results to verify the solution procedure.




Chapter 2

DEVELOPMENT OF GOVERNING EQUATIONS

In order to develop the governing equations for this investigation,
several assumptions are made as follows:

1. The plate is congtructed of flat, uniform thickness layers of
orthotropic sheets bonded together. The direction of principal stiffness
of the individual layers do not in general coincide with the plate edges.

2. The plate is thin; i.e., the thickness is much smaller than the
other physical dimensions.

3. The displacements are small compared to the thickness.

L. Each lamina obeys Hooke's law.

5. The Kirchhoff hypothesis is used; i.e., normals to the midplane
of the undeformed plate remain straight and normal to the midplane during
deformation.

6. Transverse shear and normal strains are negligible.

7. Body and rotary inertia forces are negligible,

8. The plate is of constant thickness.

These assumptions give rise to the conclusions that L sz’ T, Tyz’ and

Xz
O, are negligible which is the case for an approximate state of plane

z
stress.

The coordinate system used to identify the plate and lamina
geometry is shown in figure 3. The distances to the indiyidual laminas
are measured from the geometrical midplane of the plate. The positive

directions for stresses are shown in figure kL.
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2.1 Lamina Stress-Strain Equations

From elementary strength of materials, Hooke's law for an orthotro-

pic lamina in a state of plane stress is given as follows (See ref.

25.).
% QS O <)
9, = 1o Qp 0 €, (2.1)
TR N E

where the stresses 01.02,112. and strains 81,62, and Y12 are
referred to the direction of principal stiffness and the subscript £
refers to a particular lamina. This relationship, written for another

(x-y-z) system of axes (See figure 5.) where the x-y axes are rotated at

an angle 6 with respect to the 1-2 axes, is given as follovs:

% U Y g € |
o, = 5&2 352 656 €, (2.2)
:xy_ . Ems Qs s . :xyd .

where the -;J matrix is a transformed matrix with the elastic proper-

ties along the principal axes of the lamina rotated to the x-y-z
(plate) axes systeh. The 3;3 matrix has non-zero values for all terms
when the principal axes of the lamina do not coincide with the plate

axes system (for example, a fibrous composite with the fibers rotated at

an angle with the plate axes).
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From elementary strength of materials considerations, the strain at
any point in a lamina undergoing deformation can be expressed in terms
of the deformation of the geometrical midplane of the lamina. For
small deflections and a state of plane stress, the strain at any point
in a lamina 2z distance from the midplane is given in terms of the

midplane strain and curvature as follows:

- - -
€ Pe° K ]
X X X
€ = e° + K 2.3
v y 2z v (2.3)
(o]
K
Txy Y s
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where ex°, sy°, and ny° are the midplane streins and Kx,Ky, and ny
are the midplane curvatures. The midplane strains and curvatures de-
fined in terms of the displacements are needed in the later development

of the equations and are given as follows:
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2
-2 3w
Ky = o3y (c)

Using equations (2.2) and (2.3), the stress state at any point in a
lamina may be written in terms of the midplane strain and curvature as:

-

T — - =1 [.] [~ - = [ ]
%% G, Qo Y6l | Q1 Yo Q¢ Kx
o | = | T gl 5] *z|%w B s k| (2.6)
o _516 b 666_ . LY?n_r . _-Q-16 % E66_ . 9
or
(0], = (@, (], + 2 (T, [x], (2.7)

where 2z is the distance from the midplane to the point.
2.2 Lamina and Plate Constitutive Equations

Since fcr a plate comjosed of several laminas, the stresses,
strains, and displacements will be different for each lamina, it is
convenient to define some equivalent system of forces and moments which
will be considered to be applied to the midplane of the plate. Within
the plane stress assumption, such a system will be defined for a lamina
in terms of three stress and three moment resultants. The stress and moment

resultants for a lamina are defined as:

N

Nx = Ux dz (8.) (2.8)

-1.
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y y (b)

N = T  dz (e)
Xy Xy

hk
M = z 0 dz
X .I. x (a)

M = { z 0 dz (v) (2.9)

M = z 1, dz (c)
K1

and are statically equivalent to the actual stresses on the lamina and
may be considered to be applied at the midplane of the lamina. The
positive directions for the stress and moment resultants on the plate
are shown in figure 6. Using equations (2.6), (2.8) and (2.9) the
stress and moment resultants can be related to the strain and curvature
of the midplane. The resulting relations are known as the lamina

constitutive equations and are _iven as follows:
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(2.10)
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(2.11)

The plate constitutive equations will be developed from equations (2.10)

and§(2.ll) by summing up the individual terms for each lamina.

Thus,
N K o, " 311 512 61 2 K 511 612 Y
Ny =; o | az = Q, §p Odfes | as *z: 2|9, 3, O az
Bl "y - 6 L 4 'x 1 [ %s

1 hy ) Py-1 gt L a2 *

and

M, K 0 %% K . U Yo 44 % 9 Y2 34 %
My = 2 z oy, dz = 2 19, 9 Q, e; 2 Q12 0‘22 Q.? 0
M k= h T k=l 16 626 Q%d ['x Q:L6 026 Q6 X
-4, k-1 % Pe-1 % 2
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and x are functions of x and y only and Q is a function of

3, 3, 3
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or after integrating these may be written as:
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properties, they can be taken outside the integral. Thus,

2 dz

e Pkl

(2.1k)

%P1

(2.15)

(2.16)

(2.17)
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where
K .
Ay s, @) (B -m ) (a)
k=]
K
= ry l,2 2
B, = kzl Q) 3 g - b)) () (2.16)
K
= 1 3_,3
= D, @) 1 omdond) (c)
k=1
Writing the constitutive equations for laminated plates in matrix
notation, they become:
[N] = [A] [e°] + [B] [K]) (2.19)
(M] = [B] [e°] + [D] [K] (2.20)

These equations indicate that for a general laminated plate either stress
or moment resultants produce both strains and curvatures. Thus there is
a coupling between the stress and moment resultants through the matrix [B].
Since [B] is an even function of h (See eq. (2.18)), it is zero and hence
the equations are uncoupled for classical orthotropic plates and for
laminated plates that are symmetric about the plate midplane.

Equations (2.19) and (2.20) will be rewritten in a more useful form
for the following development by solving equation (2.19) for the midplane

strains, and rewriting equation (2.20) in terms of the stress resultants,

Equations (2.19) and (2.20) become:




[e°] = [a*] [N] + [B®] [x] (2.21)
(M) = [-B*T) [N] + [D*] [] (2.22)
where
[a%] = [a7%)
[8*] = -[a7}] [B]

[p*] = (D] - [B] (A7) [B] (2.23)
2.3 Plate Governing Equations

Due to the coupling between moment and stress resultants noted in
equations (2.19) and (2.20), two differential equations are required to
describe the behavior of the plate under various load conditions. The
first equation will be developed using plate equations of motion and the
second equation will be developed from the compatibility conditions that

must be satisfied between the strains.
2.3.1 Equations of Motion

The equations of motion for a thin laminated plate are identical to
those of homogerous plate theory. For a plate sublected to inplane normal
and shear loads ard loads perpendicular to the plate surface, the equations
of motion are giveﬁ as follows (See ref. 26) where the inertia terms in the

x and y directions are considered to be negligible.

N W _
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Ay
w T w2 (2.25)
M 3N 22 )2
Tt T Y 2 gyt =5

ax dy xoy *

2 2 2

3w 3w 9w

-N <X _ ox £y .
Y aya xy oxdy * Y 2t (2.26)

The inplane loads Nx' Ny. and ny may be separated into the uni-

form externally applied loads and the loads induced by the plate deflections

as follows:

N, = Fx + N (a)
Ny = Ny + N (b)
N = N +XN' (c) (2.27)

xy xy xy
Substituting the expressions for Nx, Ny, and ny given by equation (2.27)

into equations (2.24), (2.25), and (2.26) results in the following

equetions of motion:

3N' 3N
X, XX . o (2.28)

oy
ay + 3% = 0 (2029)
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M. 2% 34 2 2
X 4 L4 2 Ela o P - N dv -2N .
ox? 3y2 ox3y X o xy 3xdy (2.30)
2 2
-F, . 4y
Y oy at
32v 32w 2
The higher order terms (N’ -3 » N =5, and N/ ) »
X oy 3y xy 3x3y

have been neglected in equation (2.30).

Defining a stress function F such that:

N;‘ = la—g. (8.)
3y
2
2E (v)
x (2.31)

N

2
' o O F
Ny = oy

then equations (2.28) and (2.29) are satisfied identically by the function.

The function F is referred to in the literature (See ref. 26.) as the
Airy stress function. Using the definitions of F given by equations
(2.31), the definitions of curvature given by equation (2.5), and the
expression for the moments given by equation (2.22) in equation (2.30),

the following expression is obtained:

2 2 2

2 . 321r 2 '

3x2 ( 11 ay 21 ax 61 9x3y 11 ax2 12 3y2

oyt D), 2 ([ % B, ¥ (2.32)
16 9x3y 9x3dy 16 3y2 26 ax 2t 66 Xy *




2 2 2 2
® 3 T w * 3% 9 " 32F
16 axz 26 3y2 €6 5xay) 3y2 12 3y2
2 2 2 2
e % » 3% e P 2%y . 3
22 ax2 62 5:5; 12 ax2 22 aya 26 515;
2 2 2 2
= 3w = Fw - w Yo w
a-p-N — . N —_— - 2 N
x ax2 y ay2 xy 9xdy at2
or
L 4 N
® 3F » 3F o * 3°F
B + (2B -B,.) + (B.. +B - 2B,.)
21 axn 26 61 3x33y 11 22 66 3x23y2
" 4 4 4
d aF ® 3F *® J'w o w
+ (2B, -B.) + B +D + 4D
16 62 8x3y§ 12 ayu 11 3 L 16 ax3ay
L h 2
i ® oW * d'w *® dw w
+2 (D, +2D,) +4D +D +y—3 =
12 66 3x23y2 26 axay3 22 ayﬂ 3 ta
2 2 2
= dw,6,= 3w - 9w
p+N axa*Ry - +2Nn iy (2.33)

If p 1is taken as the aerodynamic loﬁding due to air flow over the
plate surface, then equation (2.33) is one of the equations needed to
solve for the flutter of flat laminated plates. Aerodynamic loads pre-
dicted by piston theory have often been used in the literature (See ref.
28 - 42) to obtain flutter solutions. Piston theory gives a relatively
simple expression for p and has been shown to be applicable for Mach

numbers greater than 1.6 (See ref. 28 and 29.). For supersonic flow

over one side of a flat plate at an angle of A with the x-axis as
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shown in figure T, piston theory gives the following expression for the

aerodynamic loads.

=22q( 3w 3v
P=-3 (Sx cos A + 5y sin A (2.34)
Substituting the expression for p given by equation (2.3L) into

equation (2.33), the following governing equation is obtained for flutter

of flat laminated plates.

L k4 L
® 3F U » OF A \d hd OF
B + (2B -B, ) —==—+ (B + B -28B,..) (2.35)
21 axﬁ 26 61 ax3ay 11 22 66 3x23y2
L b L N
3F « 3 * v ol A w
. e + B # +D + 40D
+ (2 Big - 362) ax ay3 12 11 axﬁ 16 ax3ay
N I h
" d dw * 3w ® 3w
+2(D,.+2D,..) + 4D +D +
12 66 3x28y2 26 axay3 22 3yli
2 2 2 2
2q v 4 _ 0w w _¥ o w - O w 9w -
8 (ax cos A + 3y sin A) Nx _ax2 Ny —ay -2 ny B%0y + Y 3t2 0

This expression is a Lth order partial differential equation which governs
the flutter behavior of flat laminated plates but is in terms of two un-
knowvns w and F. Thus an additional equation relating w and F is

needed before solutions to.flutter problems may be obtained.
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2.3.2 Compatibility Equation

The additional equation needed to solve for the plate flutter
behavior is obtained from the compatibility condition that must be
satisfied between the midplane strains. The appropriate equation is
obtained by eliminating the midplane displacements from the strain-
displacement relations given in equatiom (2.4). Differentiating e;
(eq. 2.4(a)) twice with respect to y and e; (eq. 2.4(b)) twice with

respect to x and adding, the following expression is obtained:

2%, 325°I 30 330
v + e 8 et 4 e (a)
dy ax axdy>  ax2dy (2.36)
but from eq. (2.4(c)):
2.0
9 Ygx - 33u° . 33v° (b)
x3y 3x3y2 axaay
therefore:
9%¢0 32e° 92y°
—_Xy e . X (2.37)
3y2 ax2 axdy

Equation (2.37) is referred to as the compatibility equation and will be

used to develop the second governing equation in terms of w and F.
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Using the expressions for strains given by equation (2.21) and the
force resultants given by equations (2.27) and (2.31) and the
curvatures : given by equation (2.5) in equation (2.37), give rise to the

following expression:

2 2 2 2 2
) * 3°F *  F *  °r * v
—— om— — - A - B — (2- 38)
2y A " Ao el 16 My " P2
2 2 2 2
. 3% . 3% ) 3 ( » 3% # %
B2 3y§ 16 3xdy ax2 Ao 3y2 22 , 2
. 3% * 35 e 3%, * 2%
Ax oxdy By a2 =By 5 - 2By %9y
x dy
2 2 2 2 2 2
9 * 3°F = 9°F * 3°F * 3w * 9w hd
xdy 16 3y2 26 %2 66 axdy 61 %2 62 ay2 66
or
L L L L
b O'F 9F . OF * 3'F
A -2 A + (2 +4A,.) -2
22 ¥ 26 532y Ao * Agg 20y AMe 20y
. ahr » a“w a“w o bd ah"

+ - B - (2B., -8B, ) - (B.. + B 2B.,) .2,2
A11 ayﬂ 21 axE 26 61 ax3ay 11 22 66’ ax“dy
L

L dw

\d ] 9w * = 0 (2.39)
- (2 B - B ) — E
16 ~ 62’ a3 Bio ay

This is the second governing equation needed to solve for the plate be-

havior. It is also a fourth order partial differential equation in terms
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of F and w and for flutter problems must be solved simultaneously with

equation (2.35). In order to solve the equations for a specific problem

the boundary conditions must be specified.

2.4 Boundary Conditions

Proper boundary conditions which guarantee unique solutions to the
two governing equations must be specified. It has been found (See
reference 26.) that the necessary boundary conditions are those of
classical homogeneous plate theory plus those of an inplane elasticity
problem. Thus due to the coupling, the usual deflection, slope, moment, or
shear boundary conditions used in classifical plate theory do not give
unique solutions but inplane boundary conditions must also be specified.
The resulting boundary conditions require one member of each pair of the
following quantities to be specified along the boundaries:

oM

nt - Jw - 3w
v or +Q ¢+ Nn m * Yoe 35 (a) (2.50)
%{- or Mn (v)
o
ue  or N, (e)
-]
ug or Nnt (a)

where n and t are used to denote coordinates normal and tangential to the

plate boundary respectively.
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For this analysis, the boundary conditions chosen represent those
for a simply supported plate with no inplane edge restraints and are

given as follows:

w (0,y) = v (a,y) = w(x,0) = w(x,b) =0 (a) (2.41)
M (0,y) = M (a,y) = 0 (v)
My (x,0) = My (x,b) = 0 (e)
Ny (0,y) = N, (a,y) = 0 (a)
n' (x,0) = n' (x,b) = 0 (e)

:qr (o.v)-N' (a,y)=N' (x, o)=n' (x,p) =0 (rf)

These equations will be rewritten in terms of w and F using the expression
for moments given by equation (2.22) and the definitions of strain, cur-
vature, and F given by equations (2.4), (2.5), and (2.31) respectively.

Thus the boundary conditions become:

v (0,y) =w (a,y) = v (x,0) = wi(x,b) = 0 (2.42)
s 3%F s 3%p e 3% » 3%
-B, —%5-3B, =5+Bg =D, =% - (2.43)
dy Ix axdy 9x
2 2
* 3w * 3w -
-Dla-a—z- 2D16 %0y 0 at x 0, a
Y
12 3y2 22 ax2 62 axdy 12 8x2
—D.a +2D 2% =0aty=0,0 (2.44)
22 ay 26 5 5
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x = 0,a

x = 0,8
y=0,b

(2.45)

(2.46)

(2.47)

The governing equations (2.35) and (2.39) along with the boundary con-

ditions (2.42) through (2.47) will be solved by using approximate techniques

in the next chapter.




Chapter 3

APPROXIMATE SOLUTIONS OF THE FLUTTER EQUATIONS

The two governing fourth order partial differential equations (2.35)
and (2.39) along with boundary conditions given by =quations (2.42)
through (2.47) will be used to obtain approximate flutter sciutions. The
analysis will be developed for the flutter of general laminated plates where
arbitrary stacking sequence and orientation of the lamina fibers is
permissible, Since certain special classes of plates have been studied
almost exclusively in the literature, the simplifications to the
general sclutisn dne to the speciael constructions will be discussed. The
special classes of plates considered are symmetric laminated plates and
angle-ply plates. Symmetric plates may be camposed of any even number of
lamina of arbitrary thickness and orientation of the fiber directions as
long as for every lamina above the plate midplane there is an identical
(in thickness, material properties, and orientation) lamina equal
distance below the plate midplane. Angle-ply plates are less general than
symmetric plates and consist of an even number of laminas all of the same
thickness and elastic properties with the orthotropic axes of symmetry
in each lamina alternately oriented at +0 and -6 to the piate axis.
Although the analysis and solution procedure will be developed basically
to study panel flutter, the analysis is general and the resulting computer
program cen also be used to determine static buckling loads and natural

vibration frequencies.

31
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3.1 General Laminated Plates

An extended Galerkin method will be used to obtain approximate
flutter solutions since it provides a straight-forward solution proce-
dure for nonconservative problems (See ref. 42.) using a simple series
to describe the assumed displacements. The extended Galerkin method
admits solutions only when the assumed deflections satisfy the geometric
(deflection and slope) boundary conditions. However, the number of
terms required in the solution to obtain converged results are probably
reduced if the assumed deflections satisfy some or all of the natural
(force or natural constraints) boundary conditions. Since functions are

not available which satisfy all the boundary conditions given by equa-

tions (2.42) through (2.47), the capability to account for the natural
boundary conditions makes the extended Galerkin method particularly
suited to this analysis.

The extended Galerkin method of solution is illustrated by the

following equation written in terms of the virtual work for displace~

ments w.
b, a 8 b a b
f f(governing equation)§y dxdy +ffl(w,x,y) Sw ldx + ffe(w,x,xy)é 5—31
i 00 0 0 ) 0
|
i
| b a b a
| ow
| +ff3(w,x,y) Sw | dy + ffh(w,X,}') ) 3-; , dy = 0 (3.1)
‘ 0 (3] 0 0

dx
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The terms under the double and single integrals are usually individually
set equal to zero and referred to as the governing equation and boundary
conditions, respectively. For the boundary conditions to be satisfied,
either the functions %ﬁw,x,y) or the variation of the deflections or the
slopes must be zero at the appropriate boundaries. In usual applications
of the Galerkin method, a series of functions is chosen which satisfy all
the boundary conditions and the coefficients of the functions are deter-
mined so that the double integral term is zero or equivalently the coeffi-
cients are determined so that each term of the series is orthognal to the
exact solution (See ref. 43). When all the natural boundary conditions
are not satisfied, the extended Galerkin method requires that the coeffi-
cients be determined using the unsatisfied single integral terms as well
as the double integral terms in equation 3.1.

For the flutter of general laminated plates, a series of functions
for both w and F are needed which exactly satisfy the geometrical
boundary conditions given by equation (2.42) and which satisfy as closely
as possible the natural boundary conditions given by equations (2.43)

through (2.47). The functions assumed for this analysis are givén as

follows:
M N
w = C  sin ZIX g4y B Jut (3.2)
mn a b
m=1 n=1l
N
F = H  cos ZIX .og MY lut (3.3)
mn a b
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These functions exactly satisfy the geometrical boundary conditions and
the natural boundary conditions given by equation (2.47) but the re-
maining natural boundary conditioms are not completely satisfied. The

unsatisfied natural boundary condition terms are given as follows:

F M L] 32F » 32F hd 32w 1° ( ) ( h)
or M,: Bll - * le > + 2 Dl6 _8x3y a 3.
L oy ox 0
o : ko)
2 2
, *  °F . 3% 3y
Myi By T3 * By T3t 2D 3xay (b)
Jy Ix 0
L -
- 2 -‘ a
N, a—-g' (c)
oy
_j 0
o b
2
y 9x
L Jo

The boundary condition terms that must be included in the extended

Galerkin method written in terms of the virtual work are given as follows:

b 2 2, 2 8
. * 3°F * 3 " 3w S

For Mx' f Bll - + le —3 *2])16 —axay) 8 x ‘ dy (3.5)

0 Yy ox 0

a b

2 2 2
LA I ) * 3P & 3w ) ow ‘ dx (3.6)
M..: B —— 4+ B —_—t 2D ——— 6§ ==
Yy f (12 3y2 22 , 2 26 3xdy oy 5

0
r &
o S (-]
N_: f 5 S u / ay (3.7)
(4}
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2
Ny: 2{% S v° r dx
9x 0

(3.8)
vwhere the displacements u® and v° are given as follows and were obtained by
substituting the definition of curvature given by equation (2.5) and the

expression for strain given by equation (2.22) into equation (2.4) and

integrating.

oo froax= at 2E, 2[R ¢ o
u'ﬁxu Ao ¥ M ay2 dx - A¢ 3y (3.9)

2
ow ] 9w * Jw
- By % B2 ;y—a‘”"”lsw

2
cfcoaa. 3, o[ " ¥
vo'fey Vihgax * hefiT YAy (3.10)

2
» w33 * o
- 2By ax"Balfge'dV'Baz 3y

Using the assumed functions given by equationms (3.2) and (3.3) and applying
the extended Galerkin method, the orthogonality relations for the governing
equations (3.35) and (3.39) with the boundary condition terms given by

equations (3.5) through (3.10) added may be written as follows:
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! f E z s L - ) sin%—sin%xain r—::xain !%I {3.11)

r=1 g=)

- K3 cos E:-’-‘- cos 5-:-1 sin E_";‘L sin ﬂbl + %‘1 (cos A(——)cos BIX oin 2’%1

X s mrx oy
+ sin A(-:l) sin _m‘:x cos __ln:)sin a oo b ’Hra Ky, cos a %%

STy rmx
sin 5 sin =—— m

- K sinmsinn—“ﬂlsin r—“-!ainm dx dy

2 a b a b
M N b .
* Z E crs 2 D;s(;&)(':;)(il) [coa— cos x’—"lcos sin 2%1 dy
| r=]1 gel !
\
‘ +2 D (:ﬂ)(b )(%l)fcos X s -!%1 sin _r% cos LEI r dx
0
2 2 ® a _
"
- le (%1!-) + 321(?) f-:l cos _m% cos n_:x cos r_;rx_ sin -s%l dy
r=l s-l 3 :

b

2

° (= "" ST cos IUX oo BWY .o rfx o suy

+ 312 (b) 22( ]b cos s CO8 > sin Y cos > fdx = Q
0 0
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and
v M N
j f Z E H KS onx -bH- sin -;—. n !
o 1r=l sg=]
(3.12)
m[x2 L2 —:’l Kh sin -!Ex—.uin —"l] o Y §ax dy

. (%‘) L (3.13)

(e e O 4
“u(in)" (2 17, + rg) (=) (= F s, (!_)u

s (BB + 2 () ()
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Integrating and rearranging the terms, the following equations are

obtained:

*
2 D s+n rem)
c [k -9 11} ,_S K+HK" 1-(-1 1-(-1 .
[mn(l © 2 ‘5 mn 2 e rs h (82_n2)(r2 _ .2)

» »
AD AD +
+ E ¢ Tll mr _cgs 2 (1-(=2F*™) + E e S ___sén g (1-(-1)%""
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where

3
A= g""'«r (3.16)

wf = 11 (3.17)

Equations (3.14) and (3.15) results in 2(MxN) equations in terms of the
two unknowns Crs and Hrs' In order to get the equations in a form
that can be solved, Hrs must be solved for in terms of Crs’ This can
be done using equation (3.15) and writing it in the following matrix

form:

[Opnrs) [H ] = [ay, 1 [c) (3.18)

where r and s are summed from 1 %o M and N respectively and
bmnrs and amnrs are the coefficient matrices'fbr Hmn and C’mn res-
pectively. To obtain Hrs as a function of crs’ premultiply each side

of equation (3.18) by the inverse of [bmnrs] a8 follows:

[v

-1
anrs I fa, Jlc 1 (3.19)

]-l [bmnrs] [Hrél" [bmnrs

since [bmsj-l [bms] = ]

(B) = (b 07 [a ] [c_ ] (3.20)

Equation (3.20) results in a series solution for Hmn in terms of the

unknown coefficients . Crs'
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Using equation (3.20) to eliminate H = from equation (3.14), MxN
homogenous equations are obtained in terms of the unknown Crs' The

resulting equations may be written in the following form:

(e)) - wq) e « v - Cin

2 (e22 - m22). ) C_ =0 (3.21)

‘M1 . .« .« (CMN - mhg}

where the c_  are the coefficients of C . Equation (3.21) is recog-
nized as the well known characteristic equation and has a non-trivial
solution obtained by setting the determinant of the coefficient matrix
to zero. This results in an algebraic equation of order MxN in terms
of w. The roots of the algebraic equétion are the characteristic values
or eigenvalves and represent the plate nondimensional vibration fre-
quencies.

Flutter solutions have been obtained using a digital computer to
solve equation (3.21) for its eigenvalves. Since the coefficients,
ciJ’ are a function of the flutter parameter, A, the plate vibration
frequencies are also a function of A. The criteria used to define the
point of flutter is the lowest value of A which results in two of the
frequencies (wij) coalescing and thus having a negative imaginary
value. This criteria.was selected because a negative imaginary fre-

quency results in the assumed deflection function (See equation (3.2).)
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becoming unbounded since it is multiplied by elwt. Similar criteria
has been used extensively in the literature (See ref. 39.) to define the

point of flutter.
3.2 Symmetric Laminated Plates

Plates that are laminated such that they are symmetric about the
midplane represent the largest class of laminated plates of practical
use. Their symmetric construction results in warp-free structural .
elements which are desirable in mbst applications. Also, the governing
differential equations and the boundary conditions are considerably
simpler than for general laminated plates. Thus, symmetric plates have
been investigated more than any other class of laminated plates.

As was pointed out in section (2.2) and as shown by equation
(2.18(v)), B, is an even function of the lamina thickness and for
symmetric plates all the an terms vanish, Thus, the flutter equations
(equations (2.35) and (2.39)) are considerably shortened and more impor-
tantly become uncoupled. Then only equation (2.35) needs to be solved
to obtain a flutter solution. For a symmetrically laminated plate, the

governing flutter equation becomes:

N

L 4

oW oW 9w L 9w
D + 4D L v 2 (D, +2D,) + 4D
11 axﬁ 16 ax3ay 12 66 3x23y2 26 9% 8y3

a' . 2q (ow Bw =
+D22 _T+ g \3x cos A + -a?-s:ln A)-Nx ;—2- (3.22)
. oy x
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g &y _oF v o, &w .

Y gy° T axdy at
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where the asterisks have been left off the Dmn‘ terms since Dmn =
D*mn for symmetric laminated plates.

Although equation (3.22) is considerably simpler than the flutter
equations for general laminated plates, it differs from the governing
equation for flutter of an orthotropic plate by the additional D16 and
D26 terms. These terms appear in the governing equation as a result of
the fibers not being aligned with the plate axes.

Since for symmetric plates the governing equations become uncoupled,
the boundary conditions that must be satisfied for a flutter solution
are given by equations (2.42) through (2.44) and are revwritten as

follows with the an terms removed:

v(0,y) = w(a,y) = w(x,0) = w(x,b) = 0 (2.23)

a2 2 2

3w v _ v - (2.24)
.Dll —3-])12 > 2D16 X0y = O0Oat x=0, a

ax 3y

2 2 2

"w w dw - ]
«D, =% =Dy -—aya = 2Dy FA-=Oaty=0,D (2.25)

These equations differ from the boundary conditions for a simply
supported orthotropic plate by the D16 and D26 terms.

To obtain a standard Galerkin solution for symmetric plates, it is
necessary to assume a function for w that satisfies all the boundary
conditions (3.23) through (3.25). However, the D, and D, terms.
make it difficult to.find satisfactory functions. Therefore, the same
deflection function used in section (3.1) for general laminated plates

and given by equation (3.2) will be assumed and the extended Galerkin
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method used to account for the unsatisfied natural boundary conditions.
The boundary condition terms that must be accounted for by the extended

Galerkin method are given as follows:

b 2 a

9w ow
[2 D¢ o s = dy (3.26)
o o
a 2 b

9 w ow
fa Doe 5%y ) ] dx (3.27)
o o)

Using the assumed functions given by equation (3.2) and applying the

extended Galerkin method to the governing equation (3.22) with the Dig

and D26 boundary condition terms included, results in the following

equation:
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Equation (3.29) represents a system of (MxN) linear homogenous equations
in terms of the unknown Cmn and is recognized as the eigenvalue equa-
tion. Flutter solutions are obtained for equation (3.29) in the same

manner as discussed in section (3.1) for general laminated plates.
3.3 Angle-ply Plates

Angle-ply plates by definition are constructed so as to have an even
number of layers all of the same thickness and elastic properties ang
with the orthotropic axis of symmetry in each ply alternately oriented
at +8 and -0 to the plate axis (See Fig. 2.). Although angle-ply
plates do not represent as large or as important a group as the symmetric
plates, they are important from an analytic viewpoint for obtaining a
better understanding of general lamineted plates., Because of the special
geometry of angle-ply plates, the governing equations are considerably
simplified but are still coupled. Thus, angle-ply plates retain many of
the characteristics of general laminated plates but relatively simple
solutions can be obtained. These characteristics have resulted in the
angle-ply plates being studied extensively in the literature to obtain a
better understanding of general laminated plates.

For angle-ply plates, it can be shown (See ref. 5.) that this

special construction results in some of the coefficients being zero as

follows: . " .
A6 = Dyg = Dyg = ©

Ag =
» ™) » ™ " (3.30)
B1 ¥ Bpy) = By = Bgg =B, =0

Setting these terms to zero in the flutter equations (2.35) and (2.39),

results in the following governing equations.
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I I L
» » 3F * " dF ol dw
(2B -B,..) _.__...(23 - B, ) —~———_ 4+ D (3.31)
26 61 ax3ay 16 62 9% ay3 11 axﬁ
+2(D'+2D*)§-h-!——+D. ahw+-2-9-(-a—w-cos1\4--8—“-sin19
12 66 axz aya 22 Byn B 9x 3y
- 2 — 12 - 2 ow
- N é_%._ ¥ 3w _ 2N g g + y .2_5 = 0
ax y dy Xy oxoy om
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Y 4 I
A 9F * 9 F » 9 F
A + (2A, +A,) + A (3.32)
22 axﬁ 12 66 ax23y2 11 ayE
N 4
* 9w » * 9w
-(2B,, -8B, - (2B, -B.) =0
26 61 ax3ay 16 62 axay3

These equations are coupled and must be solved simultaneously.

Since the governing equations for angle-ply plates are coupled, all
the boundary conditions given by equations (2.42) through (2.47) must bve
satisfied. However with some of the coefficients being zero as indicated

by equations (3.29), the boundary conditions are simplified as follows:

w(0,y) = w(a,y) = w(x,0) = w(x,b) =0 (3.33)
2 2 2
*®  J°F *  Sw * 3w
- B e 4 ) — D -—_=Oatx=0’a (3.3)4)
61 dxdy ~ 11 R 27 12 B2
» 3% o A w3

w = -
- B oy * Do o2 +D,, —5 =0aty=0,1 (3.35)
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2
a—g = 0 at X = 0’ a (3-36)
3 .
Y
oF
x
3°F
Sxdy 0 at x=0,a (3.38)
y=0,D

If the functions for w and F used for the general laminated
plates (section 3.1) and given by equations (3.2) and (3.3) are used,
then boundary conditions (3.33), (3.34), (3.35), and (3.38) are satis-
fied. Boundary conditions (3.36) and (3.37) are not satisfied directly
but will be shown to be satisfied indirectiy by the following develop-
ment. Since equations (3.36) and (3.37) ere not satisfied, the terms
that must be included in the extended Galerkin method are given by

equations (3.7) and (3.8) and are repeated as follows:

b 2 a
f-a—g u® dy (3.7)
(o} ay o]
a 2 b
fl-’al svo | ax (3.8)
(o] ax o

(]

Using equations (3.9), (3.10), (3.29) and (3.30), the displacements u

and v° are given as follows:
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2

o . [ ¢ 3w
wE Ay Rt Alz/ayz dx - 2 B¢ 3y (3.39)
o *E_ g X (3.40)
Ve = Ay / o dy + A, 55 7 2By B

Using the assumed functions given by equations (3.2) and (3.3) in equa-
tions (3.39) and (3.40) results in zero values for u’ and v° on the
boundaries x =0 and a, and y =0 and b, respectively. Thus, All
the boundary conditions are satisfied without using the extended
Galerkin method.

Substituting the expressions for F and w given by equations

(3.2) and (3.3) into equations (3.31) and (3.32) results in the follow-

ing equations:

< S * mh " " nmzrma » n'lr'J DX ., D
P11 (;-)* 2 (Pyp + 2 Dgg) (:') (r)* P22 (r) i
m=1 n=
(2 B, B)—’-'-3""+(2B'-B)’”"“"3n sin BX gip 20X
- 26 61'\a J\b 16 62°\a AD mn b
2
¥ (2] + § ﬂ)_ c in ZMX &4 oy
+ () (b Yw msn a sin b (3.41)
I Uy sl nny mnx 29| (mx mx oy
-2crs ny(a (b) cos =¢* cos +crs B(ﬂ)coasl\cos . sin 5%
#(%ﬂ-)sinl\sin——cosg%l =0
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)23 , ) - o (3 6 s (] oo
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Eliminating Hmn between the two equations, the following expression is

obtained:

+ gin A (’b )sin——cos n—:l] =0

where

. L . . 2 2 ) L
Dy, @ +2(D), + 2 ng) @ @ * D‘e.z @
. . 3 . . N3
k, = (2 Byg - Bgy) @ (9 + (2 B¢ = Bg,) @ e’j (3.44)
L ] h [ ] * 2 2 [ h
Ks'“ezé.)*(z‘“lz’%s)é)(b *Ane%

Applying the Galerkin procedure to equation (3.L43) and rearranging the

terms, the following equation is obtained:
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- - mors_ &> (1-(-1)"®)(1-(-1)™*%)
+ 8N c T 3 == — (3.45)
xy Z 2 rs . D, b (r2-m2) (n2 - 32)
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SM : mr (1-(-1)7"®) a as_ (1-(-1)*"%)
+ % Crn cos A —2——2‘ + Cms (;-) sin A(:z-‘-‘?) = 0
n r=1 r-m s=1

Equation {3.45) results in MxN homogenous equations in terms of Con
and is recognized as the eigenvalue equation. Flutter solutions are
obtained for equation (3.45) im the same manner as discussed in section

3.1 for general and symmetric laminated plates.
3.4 Approximate Solutions

An approximate theory (See ref. 20.) referred to as the reduced
bending stiffness theory will be comp;red with the present analysis. In
the approximate theory, the plate bending stiffness is reduced by an
amount depending on the coupling between the governing equations and
then the coupling is neglected when solving the equations. The reduced
bending stiffness is the same as that defined by equation (2.18(c)).
Thus, the governing equation for'ihe reduced bending stiffness theory
is obtained from equation (2.35) by neglecting the coupling [an] and

is given as follows: °
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'y b k h
® 3w * d'w * d AW * 3w
D +4p, S=Z—+2(D,_ +2D,) + LD
11 axE 16 ax3ay 12 66 3x28y2 26 axay3
+ D a_“%_;‘- e 5 B,y D +Yf.z.o (3.46)
22 3y x ax2 Y ay2 Xy ox at2 *

Since the coupling is neglected, only boundary conditions given by equa-
tions (2.42) through (2.44) with [an] = 0 need to be satisfied. The

boundary conditions are given as follows:

w(0,y) = w(a,y) = w(x,0) = w(x,b) = 0 (3.47)
2 2 2
* 3w » 3w * 3w
-D =——=-D, —2-.2D, == z0atx=0, a (3.48)
11 9x2 12 ay2 16 9xdy
2 2 2
* o w * 3w *® 3w _ _
- D, —3x2 - D,, 3y2 - 2 Dy 5x3y - 0Oat y=0,b (3.49)

The resulting governing equation (3.46) and boundary conditions
(3.47) through (3.49) are identical to those used for symmetric lamin-
ated plates (See equations (2.22) through (2.25).) except that [D*] is
used instead of [D]. Thus, the approximate theory reduces the solution
for general laminated plates to that of a symmetric plate with the bend-
ing stiffness reduced. For angle-ply plates; the D*16 and D.26 terms
(See equation (3.29).) /e zero and the approximate governing equation
(3.46) and boundary conditions (3.47) through (3.49) are identical to
those for classical Qiate theory. Thus, the reduced bending stiffness

theory can be used to obtain solutions for angle-ply plates from
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published classical plate theory results. Since for symmetric plates
[an] = 0 and [D*] = [D], the reduced bending stiffness theory and the
present analysis are identical.

The advantages of using the approximate theory are evident for
angle-ply plates since results can be obtained using well known published
solutions. For symmetric and general laminated plates, the advantages
are not so clear since a symmetric analysis similar to the one discussed
in section 3.2 is necessary even to obtain approximate solutions. How-
ever, prior to the present analysis the reduced bending stiffness theory

was the only solution procedure available for general laminated plates.
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RESULTS AND DISCUSSIONS

The equations goverhing the behavior of general laminated plates
have been programed for approximate solution on a digital computer.
Although the computer programs were developed largely to-obtain flutter
results, natural vibration frequencies and static buckling loads may
readily be obtained using the programs. Special analysis and programs
were developed to obtain solutions for symmetric and angle-ply plates.
However, the advantages of using the special programs over the one
developed for the general laminated plates were minimal and in all cases
gave identical results.

Flutter boundaries have been calculated for symmetric, angle~ply,
and general laminated plates. The plate nomenclature and geometry are
shown in figure 8 for symmetric plates, in figure 9 for angle-ply plates,
and in figure 10 for general laminated plates. Flutter boundaries were
also obtained for an aluminum plate with one, two and four layers of
composite material applied to one or both si&es of the plate as shown in
figure 11. The material properties of the individual lamina used in
making the calculations are typical of those for boron-epoxy and glass-~
epoxy materials., These material properties are given in table I.
Material properties for the composite stiffened aluminum plate are given

in table II.

52
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4.1 Convergence of Results

When using a series solution, it is important to determine that
sufficient terms are used in the analysis to obtain converged results.
However, using more terms than necessary results in considerasbly longer
computation times. The usual procedure for determining convergence is
to start with a small number of terms and increase the number until the
solution does not change as more terms are included. For solutions
obtained herein, a converged result is one which changes no more than
1 percent when more terms are included in the flutter determinant. This
method of determining convergence is demonstrated in figure 12 for a
four-ply, symmetric, square panel where the flutter parameter is shown
as a function of the number of terms in the x-direction. Curves are
shown for 6 = 0° and 60°, and the symbols represent the different
numbers of terms used in the y-direction. For 6 = O°, four terms in
the x-direction and only one term in the y~direction are sufficient for
converged results. For 6 = 60°, approximately six terms in both the
x- and y-directions are needed to cbtain results converged within 1 per-
cent. Note that for 6 = 60°, the converged solution is approached from
higher values of A for m > 4 and n > 2. This suggests that the
cross-stiffness terms have an adverse effect on the flutter solution, a
phenomens that will be discussed in a later section.

© ana 6 = 60°

The modes that coalesce to produce flutter for 86 =0
are shown in figures .13(a) and 13(b), respectively, where A 1is shown

as a function of the non-dimensional frequency squared. For both cases,
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the (1,1) and (2,1) modes coalesce and result in flutfer. The different
numbers of terms required to obtain converged results for the two cases
are due to therﬁs and D26 cross-stiffness terms. For 0==0°, the cross-
stiffness terms are zero, and the plate is an orthotropic plate for
which it has been shown (See ref. 4LO.) that only the first mode in the
cross-stream direction has an effect on the flutter solutions. For

8 = 60°, the cross-stiffness terms couple the modes in the x- and
y-directions, and consequently, all modes effect the flutter solutions.
An attempt has been made throughout the remainder of this study to in-
sure that the values presented are converged within approximately 1

percent.
4.2 Comparison with Literature

In order to verify, as well as possible, the accuracy of the present
analysis, the analysis will be used to obtain flutter data comparable
;ith that presented in reference 19 for square symmetric plates. The
material properties for the plate considered in reference 19 are given
in table III. A comparison of the flutter boundaries is shown in figure
14 where )\ 1is shown as a function of the orientation angle of the out-
side lamina. The dashed curves were obtained from reference 19, and the
solid curves were obtained using the present analysis. Both sets of
curves were calculated using only two terms in the x- and y-directions.
The agreement between the two analyses is very good except for 6' = 0°
and 6' = 90° and fo; 8 near 90° where large discrepancies do exist.

Since the present analysis uses a Galerkin method of solution and the
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analysis of reference 19 uses a Rayleigh~Ritz method, the discrepancy is
attributed to the difference between the two methods when an insufficient
number of terms are used in the analysis to obtain converged results.

For converged results, both analyses should give the same values, Con-
verged flutter boundaries obteined using the present analysis are shown
in figure 15. Although it is evident that the tvo-térm solutions are

not converged, there is still good agreement between the trends shown by
the two~term and the converged analysis. For 6 = 0° or 6 =90° and
for 8'=0° or 8'= 900, the present analysis should give the same re-
sults as an orthotropic analysis since the cross~stiffness terms are
zero. This is shown in figure 15 where the symbols represent orthotropic
results obtained from reference 31.

Although no flutter solutions were found in the literature for
angle-ply or general laminated plates, some comparisons of natural fre-
quencies for angle-ply and cross-ply plates are possible. The four
lowest natural frequencies calculated using the present analysis are
compared in tables IV and V with those calculated in reference 15 using
8 Reyleigh-Ritz method for square angle-ply and cross-ply plates, res-
pectively. The natural frequencies calculated by the present analysis
for simple supports should compare directly with those referred to in
reference 15 as having hinge-free-tangential and hinge-free-normal
boundary conditions, respectively, for the angle-ply and cross-ply
plates. For angle-ply plates, natural frequencies are given for the
principal material di;ections rotated at 0°, 10°, 20°, 30°, and ho°

with respect to the plate axes. The agreement between the two analyses
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is excellent,

For cross-ply plates, natural frequencies calculated using the two
analyses are compared (See table V.), for values of Ell/E22 = 1, 10, 20,
30, and 4O. The agreement between the two analyses is excellent except
for the higher frequencies and high values of the ratio 311/E22‘ How-
ever, the differences are too small to be of practical significance.
Since a special analysis was not made for cross-ply plates, the analysis
for general laminated plates was used to obtain the natural frequencies.
Thus, the assumed mode shape functions do not satisfy the boundary con-
ditions exactly, but they are satisfied through the extended Galerkin
procedure as discussed in section (3.1). The good agreement between the
natural frequencies indicates the validity of using the Galerkin method
to account for the boundary conditions not satisfied by the assumed mode

functions.
4.3 Symmetric Plates

Flutter boundaries for symmetric plates with lamina properties
typical of boron-epoxy material or a glass-epoxy material are presented
in this section where A 1is shown as a function of the angle that the
fibers make with the x-axis. The effects of inplane normal and shear
loads and cross-flow on the flutter of a square boron-epoxy plate com-
posed of 4 laminas are also shown. The values of A 1in each case are
based on D), which is the value of D), with all the fibers aligned

with the x-axis.
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4.3.1 Flutter Boundaries

Flutter boundaries for square, symmetric, glass-epoxy and boron-
epoxy plates are presented in figure 16(a), and 16(bv), respectively, for
plates composed of two, four, and six laminae. For square symmetric
plates, the highest flutter stability is obtained with the fibers aligned
with the x-axis; rotating the fibers away from the x-axis results in a
continuous reduction in flutter stability for values of 8 wup to 900.
Flutter boundaries calculated using classical orthotropic plate theory
which neglects the cross-stiffness terms D16 and D26 are seen to be
inaccurate and nonconservative, Thus, inclusion of the cross-stiffness
terms in the analysis has a destabilizing effect on flutter. Increasing
the number of laminas composing the plate results in improved flutter
stability and flutter boundaries that are closer to those given by
classical plate theory. A comparison of the flutter boundaries for the
glass-epoxy (See fig. 16(a).) and boron-epoxy (See fig. 16(b).) plates

shows that increasing the orthotropy (for glass-epoxy material Ell/E22

= 3, and for boron-epoxy material ElllE22 = 10) of the laminas causes
the discrepancy between classical plate theory and the present analysis
to be more pronounced. Also, for the more highly orthotropic material
properties, orientiﬁg the fibers transverse to the flow has a larger
destabilizing effect on flutter.

Flutter boundaries similar to those presented in figure 16 for a
square plate are preqented in figure 17 for a boron-epoxy plate with a
length-width ratio of 2.0. These flutter boundaries show the solutions

based upon classical plate theory to be highly nonconservative due to
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the neglect of the cross-stiffness terms. For the a/b = 2.0 plate,
rotation of the fibers away from the x-axis results in an increase in
the flutter stability to maximum values of A for 6 of approximately

° and ho°, respectively, for plates composed of two and four laminas.

30
Thus, in designing composite laminated plates, proper fiber orientation

is important to improved flutter stability for the plate.
4.3.,2 Effect of Inplane Normal and Shear Loads

The effect of the flutter boundaries of inplane normal and shear
loads for a square, symmetric, boron-epoxy panel composed of four
laminas is shown in figures 18 and 19 where A 1is presented as a func-
tion of the inplane load. Flutter boundaries are shown for values of

9 = 0°

s 150, and 30°. The circle symbols indicate the point of buckling
with air flow.

Inplane normal loads (See fig. 18.) result in approximately a linear
reduction in flutter stability for loads up to the point of buckling.
The effects of the cross~stiffness terms and rotation of the fibers away
from the x-axis both result in a reduction in the flutter stability and
buckling loads. Thus, classical plate theory, which neglects the cross-
stiffness terms, is nonconservative in its predictions of both flutter
stability and buckling loads.

Small inplane shear loads (See fig. 19.) have a stabilizing effect

° and 0= 300, but larger loads decrease the

on flutter for 6 = 15
flutter stability. The increase in flutter stability with small inplane

shear loads is contrary to results obtained for isotropic plates (See
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ref. 41.) and is due to a change in the modes that coalesce to produce
flutter. This is shown in figure 20 where coalescence of the frequencies
for O = 150 are shown for values of inplane shear loads K;y = 0., .5,
and 1.0. For ny = 0 (See fig. 20(a).) and Exv = 1.0 (See fig. 20(c).),
the two lowest frequencies which correspond to the (1,1) and (1,2) modes
coalesce and result in flu.ter. However, for a small inplane shear load
E;y of 0.5 (See fig. 20(b).), the lowest frequency and one of the higher
frequencies, which correspond to the (1,1) and (2,1) modes, coalesce to
produce flutter. For E;y greater than 1.0, the (1,1) and (1,2) modes
continue to coalesce to produce flutter but at lower values of A (See
fig. 19.). The cross-stiffness terms and rotating the fibers away from
the x-axis both result in increased buckling loads and in improved
flutter stability for most values of inplane shear loads. This is con-
trary to results noted for inplane normal loads. It should be noted
that at the point of buckling, the flutter values of A for inplane
shear loads (See fig. 19.) are considerably lower than those of inplane
normal loads (See fig. 18.). This is in contrast with results presented

in reference 41 for isotropic plates.
4,3.3 Effect of Cross-flow

The effects of cross-flow on the flutter boundaries for a square,

symmetric, boron-epoxy plate compcsed of four laminas are shown in

figure 21. Flutter boundaries are presented for 6 = 00, 150 and 30O

where A 1is shown as a function of the cross-flow angle. For 6 = 150

and 0 = 300, flow at small cross-~flow angles may have a substantial
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stabilizing effect on flutter. For 6 = 159, a 30 percent increase in
A may be obtained for a 10° cross-flow angle whereas larger cross-flow
angles result in a reduction in flutter stability. Similar results are
obtained for 6 = 30° where a 45 percent increase in A i~ obtained
for a cross-flow angle of 20°. This increase in the flutter stability
with cross-flow angle can be explained as follows: Cross-flow is de-
stabilizing for an orthotropic plate (See ref. 40.). Orienting the
fibers at an angle with the plate axis results in the maximum bending
stiffness and thus the maximum flutter resistance occurring in that
direction. These factors tend to counteract each other and result in
the maximum flutter stability occurring at an angle between the x-axis
and the fiber directions. Note that the maximum value of A for the
cases shown are obtained at an angle approximately two-thirds of the
angle A the fibers make with the x-axis.

For plates with the fibers aligned with the x-axis (6 = Oo), cross-
flow is destabilizing, but at small cross-flow angles they have higher
values of A than plates with the fibers rotated at 6 = lSo and 0 =
300. Classical plate theory does not show any beneficial effects of
cross~flow and thus, underpredicts the flutter stability for large cross-
flow angles. For laminated composite plates, cross~flow may be either

stabilizing or destabilizing depending on the flow angle and the orienta-

tion of the fibers. Thus, in designing composite plates that will experi
ence cross-flow, an optimum orientation of the fibers may considerably

improve the flutter stability of the plate.




61

L.4 Angle-ply Plates

Flutter boundaries calculated using the present analysis, classical
plate theory, and reduced bending stiffness theory are presented in this
section for typical angle-ply plates. The effects of inplane normal and
shear loads and cross-flow on the flutter of a square boron-epoxy plate
composed of four laminas are also shown. There is a bending-extensional
coupling between the governing equations for an angle-ply plate which is
neglected by classical plate theory. Since the cross-stiffness terms
discussed in section 4.3 for symmetric plates are zero for angle-ply
plates, the only difference between classical plate theory and the pre-
sent analysis is due to bending-extensional coupling. The reduced bend-
ing stiffness theory accounts for the coupling in an approximate way by
reducing the bending stiffness of the plate by an amount determined from
the coupling terms and then neglecting the coupling in solving the equa-

°© or 8= 90°, the coupling terms are zero, and the

tions. For 6 =0
present analysis and the reduced bending stiffmess theory become identi-

cal with classical platé'theory.

k. 4,1 Flutter Boundaries

Flutter boundafies for square, angle-ply plates with properties
typical of a glass-epoxy and a boron-epoxy material are presented in
figure 22(a) and 22(b), respectively, where A is shown as a function
of 6. Bending-extensional coupling has a large destabilizing effect on

the plate composed of only two laminas, but as the number of laminas

increase, the coupi.ng effect becomes smaller, and the boundaries
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approach those given by classical plate theory. The reduced bending
stiffness theory gives flutter boundaries that are in good agreement
with the actual boundaries even for the plete composed of only two
laminas. The small errors associated with using the reduced bending
stiffness theory, however, are not always conservative. Comparing the
flutter boundaries for the glass-epoxy (See fig. 22(a).) and the boron-
epoxy (See fig. 22(b).) plates shows that increasing the orthotropy of
the laminas increases the destabilizing effect of bending-extensional
coupling. The good agreement between the present analysis and the re-
duced bending stiffness analysis does not deteriorate as the lamina
orthotropy is increased.

Flutter boundaries similar to those presented in figure 22 for a
square plate are presented in figure 23 for a boron-epoxy plate with a
length-width ratio of 2.0. The flutter boundaries show larger destabil-
izing effects due to bending-extensional coupling than found for the
square plates, but increasing the number of laminas composing the plate
reduces the destabilizing effect:. For plates with four or more laminas,
orienting the fibers at an angle with the x-axis may result in large
improvements in the flutter stability with the highest flutter values
being obtained at 8 ¥ 45°. For plates with two laminas, rotating the
fibers away from the x-axis results in little or no improvement in the
flutter stability. In each case, orienting the fibers transverse to the
x-axis results in the most unstable condition. Good agreement is obtained
between the present ;nalysis and the reduced bending stiffness theory

for all plates, but the largest discrepancy is obtained for the plate
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composed of two laminas.
4.k.,2 Effect of Inplane Normal and Shear Loads

The effects of inplane normal and shear loads on the flutter of
square angle-ply plates are shown in figure 24(a) and 2U(b), respectively.
Flutter boundaries are shown for values of 0 = Oo, 150, and 30°. The
circle symbols indicate the point of buckling with air flow. Inplane
normal and shear loads result in a sharp drop in the flutter stability
for loads up to the point of buckling. Bending-extensional coupling has
a destabilizing effect on flutter and reduces the panel buckling loads.
For plates with inplane normal loads (See fig. 2h(a).), rotating the
fibers away from the x-axis generally has a destabilizing effect on the
flutter and reduces the buckling loads, but for plates with large in-
plane shear loads (See fig. 24(b).), the opposite effect occurs. How-
ever, for small values of inplane shear, rotating the fibers away from
the x-axis may also be destabilizing. The reduced bending stiffness
theory gives flutter boundaries that are in good agreement with the pre-
sent analysis for each case shown. It should be noted that at the point
of buckling, the flutter values of A for inplane shear loads are con-
siderably lower than those for inplane normal loads. This is in agree-

ment with results shown for symmetric laminated plates.
4.4.3 Effect of Cross-Flow

The effect of cross-flow on the flutter dboundaries for a square,

angle-ply, boron-epoxy plate composed of four laminas is shown in figure
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25. Flutter boundaries are presented for 6 = 0°, 150, and 30° vwhere A
is shown as a function of the cross-flow angle. In each case, cross-
flow and bending-extensional coupling have a large destabilizing effect
on the flutter boundary. However, rotating the fibers away from the x-
axis results in cross-flow having a less destabilizing effect on the
flutter boundary. Thus, for angle-ply plates, aligning the plate axis
with the flow results in the most stable condition, but if cross-flow is
unavoidable, proper orientation of the fiber directions may reduce its
destabilizing effects. For each condition shown, the reduced bending

stiffness theory shows good agreement with the present analysis.
4.5 General Laminated Plates

The term "general laminated plates” as used in this study encom-
passes plates composed of any number of laminas, with arbitrary thick-
ness, stacking sequence, and material properties, that satisfy the
linear small deflection theory assumptions. This definition covers an
infinjte number of plates including the symmetric and angle-ply plates
discussed in sections 4.3 and L.k,

Flutter boundaries will be shown for two square, boron-epoxy panels
that are composed of four laminas stacked in the sequence shown in figure
10 and designated as P-1 and P~2, In addition, flutter boundaries will
be calculated for six square, composite-stiffened aluminum plates con-
figured as shown in figure 11. The flutter boundaries calculated for
plates P-1 and P-2 us;ng the present analysis will be compared with

those calculated using classical plate theory, and rec bending
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stiffness theory and with those presented for the symmetric and angle-
ply plates in sections 4.3 and 4.4. The difference between the present
analysis and classical plate theory for general laminated plates is due

to both cross-stiffness terms and bending-extensional coupling.

4.5.1 Flutter Boundaries

Flutter boundaries calculated using the present analysis are com-
pared with those calculated using classical plate theory and reduced
bending stiffness theory in figure 26(a) and 26(b), respectively, for
plates P-1 and P-2. The bending-extensional coupling and cross-stiffness
terms have a large influence on the flutter boundary for both plates and
render the classical plate theory highly nonconservetive. For these
cases, neglecting the coupling and cross-stiffness terms may result in
flutter values that are close to 100 percent too high. However, flutter
boundaries calculated using the reduced bending stiffness theory show
good agreement with the present analysis. The agreement is slightly
better for plate P-1l than for " ?. This is expected since plate P-1 is
more nearly symmetric and th :e coupling effect is smaller than for

L,5,2 Effect of Plate Construction

Flutter boundaries for plates P-l1 and P-2 are compared in figure 27
with those obtained for the symmetric and angle-ply plates. The curves
shown represent flutter boundaries for six plates, all of which are com-
posed of the same maéerial and have the same thickness but which have

different flutter characteristics as a result of the number of layers
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and the sequence in which they are laminated. Although the flutter
boundaries for all the plates follow the same basic trends with 6, the
angle-ply plate with K = 4 shows considerably more resistance to
flutter than any of the other plate constructions. The symmetric plate
with K = 4 shows the next best resistance to flutter followed by the
general laminated plates P-1 and P-2 which have similar flutter boun-
daries. The symmetric and angle-ply plates with K = 2 show the lowest
values of A, which are as much as 40 percent lower than the maximum
values obtained for the angle-ply plate with K = 4. Thus, improvements
in the flutter stability are obtained by increasing the number of laminas
and stacking them in an angle-ply sequence.

The effects of cross-flow on the flutter boundaries for the general
laminated plates may be seen in figure 28 where A is plotted as a func-
tion of the cross-flow angle. The flutter boundaries for the symmetric
and angle-ply plates with K = 4 are also shown for comparison. For
the general laminated plates, cross-flow at small angles slightly improve
the flutter stability. For plate P-1, cross-flow at angles greater than
20° and for plate P=2, cross-flow at angles greater than So each results
in a steady decrease in flutter stability. Similar results are obtained
for the symmetric plate where large improvements in the flutter stability
are obtained for cross-flow angles up to 10°. However, for the angle-ply
plate, even a small amount of cross-flow results in a reduction in flutter
stability. Although it was pointed out previously that for no cross-flow,
the angle-ply construétion is the most resistant to flutter, the presence

of cross-flow may result in the symmetric construction giving better
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flutter stability. Thus, in designing laminated plates, the stacking

sequence may have a significant effect on the flutter stability.
4.5.3 Composite Stiffened Aluminum Plates

Flutter boundaries are presented in figure 29 for six square, com-
posite stiffened aluminum plates constructed as shown in figure 11 and
with material properties as given in table II. Two of the plates are of
symmetric construction with one or two layers of composite material
applied to each side of the aluminum. The other four plates are of un-
symmetric construction with one and two layers of composite material
applied to one or both sides of the aluminum. In each case, 50 percent
of the plate mass is composed of composite materials, and the only
difference between the plates is the way in which the composite material
is applied. The flutter boundaries for the composite stiffened plate
are compared with the flutter boundary for an equal mass aluminum plate.
The values of A shown in figure 29 are based on Dll of the aluminum
plate so that the relative advantages of the various constructions may
be seen.

The composite stiffened aluminum plates have considerably higher
flutter stability than the aluminum plate. For small values of 6,
aluminum plates with laminas on both sides of the plate have values of
A that are 50 percent higher than those obtained for plates with the
laminas only on one side and over three times those for the aluminum
plate. However, for ;ncreasing values of 6, the values of A decrease

until little or no improvement in stability is obtained by using the
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composite material. For values of O between 0° and 90°, increasing
the number of layers of composite material also increases the flutter
stability.

These results show that composite materials may be used very effec-
tively to increase the flutter stability of an isotropic plate. For
square plates, aligning the fibers with the plate axis and applying the
composite material symmetrically about the midplane of the plate both
result in improved flutter stability. If the fibers are rotated with
respect to the plate axis, increasing the number of laminas also in-

creases the flutter stability.




Chapter 5

CONCLUDING REMARKS AND RECOMMENDATIONS

For general laminated plates, the bending and extensional governing
equations are coupled and have cross-stiffness terms which are not in-
cluded in classical orthotropic plate theory. The coupling and cross-
stiffness terms occur as a result of the lamina principal directions not
coinciding with the plate axis. These additional terms and the coupling
increase the difficulty of obtaining solutions. However, a solution
procedure has been developed using linear small deflection theory for
the flutter of arbitrarily laminated simply supported plates. The ex-
tended Galerkin method is used to obtain solutions to the governing
equations, and the aerodynamic pressure loading used in the analysis is
that given by linear piston theory with flow at arbitrary cross-flow
angles.

Flutter solutions were obtained for typical symmetric, angle-ply,
and general laminated composite plates, and a limited parametric study
was conducted. The parameters studied include the number, orientation,
and orthotropy of the lamina; the plate length-width ratio; the inplane
normal and shear loads; and the cross-flow angle. In addition, flutter
solutions for several composite stiffened aluminum plate designs were
obtained to determine the most flutter resistant design.

The bending-extensional coupling and the cross-stiffness terms both
have a large destabilizing effect on the flutter of unstressed laminated

plates, but increasiﬁg the number of laminas, reducing the lamina
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orthotropy, and stacking the laminas in the "best" order reduce the de-
stabilizing effect. For a square plate, aligning the fibers with the
x-axis results in the highest flutter stability, but for a plate with a
length-width ratio of 2.0, large improvements in flutter stability may
be obtained by rotating the fibers away from the x-axis. For angle-ply
plates, inplane normal and shear loads and cross-flow have a destabiliz-
ing effect on flutter similar to that obtained for orthotropic plates.
However, for symmetric plates with the fibers not aligned with the
x-axis, the cross-stiffness terms result in small inplane shear loads
and cross-flow angles improving the flutter stability. Flutter calcula-
tions for equivalent symmetric, angle-ply, and general ungymmetric
plates indicate that for no cross-flow and no inplane shear loads,
plates with an angle~ply construction will have the highest flutter
stability. If cross-flow or inplane shear loads are present, symmetric-
ally constructed plates may have higher flutter stability.

Since classical plate theory does not consider bending-extensional
coupling and cross-stiffness terms, it gives inaccurate and usually non-
conservative flufter boundaries for laminated plates. Reduced bending
stiffness theory, an approximate flutter theory which accounts for the
coupling by reducing the plate bending stiffness as determined by the
coupling terms and then neglects the coupling in solving the equations,
gives flutter solutions that are adequate for all plates for which numer-
ical results were obtained. For angle-ply plates, reduced bending stiff-
ness theory results a;e obtained using published classical orthotropic

plate theory solutions. However, for symmetric or general laminated
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plates, a solution procedure similar to the present one for symmetric
plates is necessary to obtain even approximate solutions.

The flutter stability of composite stiffened aluminum plates was
considerably better than the flutter stability for an equal mass aluminum
plate. Applying the composite material to both sides of the aluminum
plate results in better flutter stability than by applying all the
material to one side of the plate. Also, if the fiber directions do not
coincide with the plate axis, increasing the number of layers of material
improves the flutter stability.

Since only a limited parametric study was conducted in this investi-
gation, it would be beneficial to use the present analysis to conduct a
parametric study in greater depth. Specifically, a wider variety of
lamina material properties should be considered and additional plates
with general unsymmetric construction should be investigated. Also, the
possible benefits of using composite materials to stiffen conventional
orthotropic and isotropic plates should be studied for several additional
plates. For all results presented, the fiber directions of the laminas
were rotated by the same absolute angle about the plate axis. Thus,
further investigations should be made into the flutter characteristics
for laminated plates in which the fiber directions of the individual
lamina are rotated independently. This becomes of special significance
for laminated plates with inplane shear or cross-flow where significant
improvements in flutter stability mey be obtained by rotating the fibers
away from the plate a#is.

The flutter results presented in the present analysis were obtained
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for simply supported plates with free normal and tangential inplane dis-
placements. Other boundary conditions, which restrict the inplane dis-
placements have been considered in the literature for simply supported
plates and have resulted in large changes in natural frequencies. Since
changes in flutter characteristics are usually associated with changes
in the natural frequencies, the inplane boundary conditions may have a
significant effect on the flutter characteristics. Thus, an extension
of the present analysis to consider other inplane boundary conditions
would be a worthwhile endeavor.

Although th= reduced bending stiffness theory adequately predicted
the flutter characteristics for all the plates studied, it was shown in
the literature not to give natural frequencies and defliections as
accurately as desired for certain plates. Thus, additional comparisons
between reduced bending stiffness theory and the present analysis are
needed for a wider range of plates. Also, since the reduced bending
stiffness theory does not account for the inplane boundary conditions,
any change in the flutter characteristics due to the changes in boundary
conditions suggested in the above paragraph would not be shown with the
reduced bending stiffness theory. These additional studies are needed
before the reduced bending stiffness theory can be used with confidence.

Since the literature survey revealed no numerical results available
for general laminated plates, a significant contribution to the litera-
ture could be made by using the present analysis to calculate the natural
vibration frequencies.and the inplane normal and shear static buckling

loads for general laminated plates. Although this study has been
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concerned primarily with flutter characteristics, the analysis and re-
sulting computer program can be used without modifications to perform

the indicated calculations.
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TABLE I

LAMINA MATERTIAL PROPERTIES USED IN ANALYSIS

Material
Properties Boron~epoxy Glass-epoxy
E11 30,000,000 psi 7,500,000 psi
E22 3,000,000 psi 12,500,000 psi
612 1,000,000 psi 1,000,000 psi
v .30 .30

12
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TABLE II

MATERIAL PROPERTIES FOR COMPOSITE STIFFENED

ALUMINUM PLATE

Material
Properties Aluminum Composgite
Ell 10,000,000 psi 29,600,000 psi
E22 10,000,000 psi 4,130,000 psi
(‘,12 3,850,000 psi 2,020,000 psi
\Y .30 .21

12
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TABLE III

MATERIAL PROPERTIES OF REFERENCE PLATE

Material
Properties Outside Middle
layers layers
Ell E 1CE
E22 10E E
612 .5E .5E
Vo .03k49 .349




FOR A SQUARE ANGLE-PLY PLATE (El
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TABLE IV

1/E22 = Lo, 612/1322 =1

COMPARISON OF FOUR LOWEST NATURAL FRF "TENCIES

’ \’12

= .25)

2 3
We. ‘/ Y/E22h

0 Extended Galerkin Method

0 19.232 24,524 36.229 5k.691
10 16.615 23.584 36.471 56.045
20 14.610 24,567 40,984 46,41k
30 14.377 28.170 40.L452 49.336
4o 14.592 32.275 36.235 58.369

Rayleigh-Ritz Method, ref. 15

0 19.232 24,52} 36.229 5h.691
10 16.615 23.584 36.471 56.045
20 14,610 24,567 40.98L L6 b1k
80 14.377 28,170 40.k4s52 49.336
Lo 14.592 32.278 36.235 58.369
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TABLE V

COMPARISON OF FOUR LOWEST NATURAL FREQUENCIES

FOR A SQUARE CROSS-PLY PLATE (612/E22 = .5, V), = .25)

Ell/E22 Extended Galerkin Method

1 6.155 15.1L48 15.148 24,619
10 7.932 21.27h 21,274 31.727
20 9.152 25.136 25.136 36.608
30 10.210 28.L03 28.403 40.8k0
Lo 11.16k 31.312 31.312 bk, 656

Rayleigh-Ritz Method, ref. 15

1 6.155 15,148 15.148 24.619
10 7.931 21.275 21.275 31.721
20 9.152 25.135 25.135 36.601
30 10.210 28.k00 28.400 40.831
Lo 11,163 31.308 31.308 Lk, 6k6
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Figure 3.-~ Lamina coordinate system.
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Figure 6.- Positive direction of stress and moment resultants.
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Figure 7.~ Plate geometry and coordinate system,
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Figure 17.- Flutter boundaries for boron-epoxy, symmetric plate with
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