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HYDRODYNAMICS AND MORPHODYNAMICS OF SHALLOW TIDAL CHANNELS

AND INTERTIDAL FLATS

by

Carl Takeo Friedrichs

Submitted to the Massachusetts Institute of Technology-Woods Hole Oceanographic
Institution Joint Program in Oceanography, February 1993, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

ABSTRACT

The ultimate goal of this study is to relate the hydrodynamics of shallow tidal

embayments to patterns of natural evolution and morphologic equilibrium. The specific
problems addressed in this thesis are largely motivated by two mechanisms previously

identified as major controls on net sediment transport in shallow tidal systems: temporal
and spatial asymmetries in maximum bottom shear stress (r). In the process of
investigating these mechanisms, important aspects of basic mass and momentum balances

in these systems are also revealed.

A new perturbation scheme is applied to nonlinear propagation in shallow

embayments which identifies and quantifies the mechanisms ultimately responsible for

temporal asymmetries in r. This new scheme, which employs a perturbation in time (but

not space) is simpler than previous methods, is consistent with available observations, and
maintains the fundamental features of "exact" numerical solutions. This approach allows

the major geometric properties controlling tidal asymmetry to be combined into a single
non-dimensional parameter, y. Solutions for overtides which determine asymmetry are

compact and easily interpreted. For y > 0, time-varying depth plays a larger role in

determining asymmetry than time-varying width, and the rising tide is of shorter duration.
For y< 0, time varying width plays a larger role, and the falling tide is of shorter duration.

Morphologic implications of the spatial distributions of r are also investigated.
Observations of cross-sectional area along many tidal channels are observed to be
consistent with equilibrium models based on a uniform distribution of r. The critical

stress just capable of initiating sediment motion is found to provide a lower bound on T,

and the characteristic value of r appropriate to individual systems is found to be a function

of spring tidal range. Small along-channel deviations away from uniform r are associated
with along-channel variation in the direction of maximum discharge. Uniform r is then
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used to derive equilibrium hypsometries (the distribution of basin area as a function of

elevation) for intertidal flats. Domination of r by either tidal currents or wind waves is

found to favor convex or concave hypsometries, respectively, a trend which is consistent

with empirical observations. In addition to uniform T, the effect of shoreline curvature on

equilibrium hypsometry is also found to be important.

The investigation of mechanisms which control embayment evolution also reveals

important aspects of basic hydrodynamic balances in shallow tidal embayments. A scaling

relevant to prismatic channels having strong tidal asymmetries indicates friction often

dominates acceleration in the momentum equation. The resulting balance between
pressure gradient and friction gives a single time-varying diffusion equation for tidal

elevation which only permits tidal amplitude to decay along channel. This result, which is

consistent with observations and numerical solutions, diverges from classical co-

oscillation. Classical co-oscillation with (weak) friction suggests amplitude should

oscillate through nodes and anti-nodes due to the interaction of incident and reflected

waves.

Uniform r is used to justify a new scaling of the continuity equation for

exponentially-shaped channels. In tidal channels having a nearly uniform distribution of r

(such as the Delaware, Thames and Tamar), along-channel gradients in velocity are small

and discharge gradients in the continuity equation are dominated by gradients in cross-

sectional area. With this scaling, the resulting governing equation is a first-order wave

equation. The solution is a constant amplitude, forward propagating waveform which is
independent of channel length -- in contrast to the length sensitive resonance of classical

co-oscillation. Amplitude can grow or decay if higher order effects are taken into account,

but these effects are due to variations in the rate of channel convergence rather than

interactions between incident and reflected waves.

Thesis Supervisor: Dr. David G. Aubrey

Title: Senior Scientist

Woods Hole Oceanographic Institution
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Chapter 1:

Introduction
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More than half of the world's non-arctic coastlines are either macrotidal (range >
4 m) or mesotidal (rAnge 2-4 m) (Davies 1980). Tides can be expected to play a

significant role 'n determining morphology along these coastlines, especially where the
coast is embayed by estuaries or fringed by barrier islands (Hayes 1979). Tides can also
play a major role in determining morphology in microtidal regions (range < 2 m) that are
sheltered from wave activity, such as the Chesapeake Bay and its tributaries (Wright et al.
1987). The range of scales of interest to this thesis is broad, from the short, channelized

embayments which are especially common along the east coast of the United States, to
large tidal channels, such as the Delaware or Thames, having lengths of a hundred
kilometers or more. Within these environments tidal channels and flats may occur
together, as along the Ord River in Western Australia (Wright et al. 1973) and in the back
barrier lagoon at Wachapreague Inlet, Virginia (Boon and Byrne 1981). Large tidal
channels, such as the Delaware Estuary (Parker 1984), are also found without extensive
intertidal flats, and large flats can occur without extensive channel networks, such as those

bordering the southwestern coast of Korea (Alexander et al. 1991).

This thesis examines the hydrodynamics and morphodynamics of these tidal
environments with the ultimate goal of relating physically-based mechanisms to patterns of
natural evolution and morphologic equilibrium. Of particular interest are feedback
processes where embayment geometry determines flow patterns, and energetic flows
simultaneously constrain geometry. Descriptive reviews of shallow tidal systems (e.g.,
Hayes 1979; Klein 1985; Nichols and Biggs 1985) have identified morphologies which

are correlated to specific forcings, but these studies are limited by their qualitative
approach. At the same time, deterministic modeling from first principles (e.g., Yalin
1977; Mehta 1984) is hampered in natural tidal environments by broad spectra of length
and time scales and by fundamental uncertainties concerning long-term mechanisms of net
sediment transport. This thesis attempts to tread a useful middle ground via the application

of simplified, yet quantitative, analytic models.

The specific problems addressed in this study are largely motivated b> two
mechanisms previously identified as major controls on net sediment transport in shallow
tidal systems: temporal and spatial asymmetries in maximum bottom shear stress (r).
Controls on temporal asymmetries in r are addressed through a simplified, yet
quantitative, hydrodynamic investigation. Implications of spatial asymmetries in r are
investigated through stability criteria based on a uniform spatial distribution of r at
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equilibrium. In the process of investigating asymmetries in r, important aspects of basic
mass and momentum balances in these systems are also revealed.

Analytic approaches to tidal problems can be of limited value if results are not
compared to available observations. Without the constraint of observations, analytic
formulations may be poorly scaled or may emphasize processes which are not important in
real tidal systems. In preparing this thesis, the literature was reviewed for relevant
observations (see Tables in Chapters 2 to 4, for example). The result is not only
reassurance that theoretical predictions bear resemblance to actual conditions, but also a
compilation of valuable morphologic and tidal information for a range of geometrically
varied embayments.

1.1. Hydrodynamic controls on temporal asymmetries in r

The hydrodynamic investigations in this thesis are largely inspired by continued
interest in geometric controls on temporal tidal asymmetries. During the last two &cades
numerous studies have related temporal asymmetries in tidally-induced bottom shear stress

to patterns of net sediment transport along channelized tidal embayments (e.g., Wright et
al. 1975; Allen et al. 1980; Boon and Byrne 1981; Aubrey 1986; Dronkers 1986).
Recently, temporal tidal asymmetries have been related successfully to specific embayment

geometries through the use of diagnostic one-dimensional numerical models. By
modeling specific embayment geometries, Speer and Aubrey (1985) and Friedrichs and
Aubrey (1988) showed flood dominance to be associated with large fluctuations in channel

depth during the tidal cycle and ebb dominance to be associated with large fluctuations in
embayment width. As a consequence, systems characterized by large depth fluctuations
may tend to fill more quickly with sediment, whereas systems characterized by large width
fluctuations may represent more stable morphologies.

However the study of temporal asymmetries in shallow channelized tidal
embayments still lacked a straightforward analytical derivation. Analytic methods, where
tractable, have the potential to relate a process to its range of consequences in the most
concise manner possible, condensing a wide range of forcings and outcomes into a single
expression. But analytic methods are only useful if they both clarify the process of
interest and simultaneously retain the most important physics. A theoretical approach can

easily retain so many terms that all feeling for the underlying processes is lost. For
example, previous analytic studies of tidal asymmetries (e.g., Kreiss 1957; Shetye and
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Gouveia 1992) have employed formal perturbation techniques which result in many terms

contributing to each overtide and render physical interpretation difficult.

In Chapter 2 of this thesis (and also in Chapter 4) a simpler perturbation scheme is

applied to tidal propagation in shallow embayments. This less formal perturbation in time

(but not space) is asymptotically correct for embayments much shorter in length than the

tidal wave and maintains the fundamental features of "exact" numerical solutions in longer

systems as well. This approach allows all the major geometric features controlling tidal

asymmetry to be combined into a single parameter, y. The solutions for the overtides
which determine tidal asymmetry are scaled by %, are compact, and are easily interpreted.

For y> 0, time-varying depth plays a larger role in determining asymmetry than time-

varying width and the rising tide is of shorter duration. For y < 0, time-varying width is

more important and the falling tide is of shorter duration.

1.2. Morphologic ramifications of spatial asymmetries inr

The morphologic investigations in this thesis are largely motivated by long-

standing models of morphologic equilibrium and net sediment transport in shallow tidal

systems based on the spatial distribution of bottom shear stress (r). Emphasis on spatial

asymmetries in r actually predates the discussion of temporal asymmetries in the literature.
For tidal inlets, Bruun and Gerritsen (1960) and Bruun (1967) developed an equilibrium

criterion based on an empirical stability shear stress, r,. They argued that wherever r < r,

cross-sectional area will be reduced by deposition, and a constriction of flow will then

increase r back toward r. Wherever r > rs, cross-sectional area will be increased by

erosion, and an expansion of flow wil! decrease T back toward r,. The often cited "scour

lag" and "settling lag" effects espoused by Postma (1961; 1967) are also mechanisms by
which sediment moves from areas of high r toward areas of ow . Equilibrium criteria

for tidal channels base4 on a uniform dissipation of energy (Myrick and Leopold 1963;
Wright et al. 1973) can also be re-expressed in terms of a uniform shear stress model.

The study of morphologic change and equilibrium based on the spatial distribution

of shear stress is a simplification of more a physically grounded but complicated approach
based on divergence of sediment flux. Since common formulations for erosion,

deposition and net transport are generally expressed as functions of T, often in the form of
power relations (e.g., Dyer 1986), the spatial distribution of r is a useful starting point

before attempting to estimate sediment transport directly using more uncertain predictions.
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Bottom shear stress can be derived from hydrodynamic relations with a greater degree of
confidence.

In Chapter 3 of this thesis, equilibrium models based on uniform r are tested by
examining spring tidal discharge and cross-sectional geometry from 146 sections in 18
separate tidal systems. Until now, no systematic survey of existing data on the spatial
distribution of r had been performed. In Chapter 3, the distribution of T within individual
systems is found to be statistically consistent with uniform :. The critical shear stress just
capable of initiating sediment motion is found to provide a lower bound on r, and the
characteristic value of r appropriate to individual systems is found to be a function of
spring tidal range. Small along-channel deviations away from uniform r are associated
with along-channel variation in the direction of maximum discharge, suggesting a
feedback mechanism between temporal and spatial asymmetries in r: It is hypothesized
that convergence in the direction of maximum shear stress (due to temporal asymmetries)
causes deposition, a reduction in cross-sectional area, and an increase in velocity. Area is
reduced and velocity is increased until a locally increased magnitude of r is reached which
effectively disperses the sediment once more (via spatial asymmetries).

An analogous study of intertidal flat morphology in Chapter 5 is inspired by
success in examining the spatial distribution of r along tidal channels. The application of
uniform r concepts to intertidal flats is further motivated by recent empirical observations
of tidal flat morphology (e.g., Dieckmann et al. 1987; Kirby 1992) which have associated
characteristic hypsometric forms (the distribution of basin area as a function of elevation)
with different types of hydrodynamic forcing. Hypsometric analysis has the advantage of
representing broad aspects of tidal flat morphology in a concise and quantitative manner.
Chapter 5 applies uniform r to derive equilibrium hypsometries for flats exposed either to
tidal currents or to wind waves. Domination of r by tidal currents is found to favor
convex hypsometries, and domination of T by wind waves is found to favor concavity,
each in a manner consistent with empirical observations. In addition to the role played by
uniform T, the effect of shoreline curvature on equilibrium hypsometry is found to be
important.

1.3. Basic momentum and mass balances

Although originally motivated by the mechanisms which control temporal
asymmetries in T, the hydrodynamic investigation in Chapter 2 also illuminates important
aspects of basic force balances in shallow tidal channels. A scaling of the governing
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equations for prismatic channels which are characterized by strong tidal asymmetries
indicates the friction term in the momentum equation often dominates acceleration at lowest
order. Application of "zero-inertia" to short prismatic channels results in a single time-
varying diffusion equation which clarifies the most basic dynamics, namely a balance
between pressure gradient and friction. The balances applied in Chapter 2 build on the
work of LeBlond (1978), who utilized zero-inertia in prismatic channels of infinite length.

Investigation of spatial asymmetries in r in Chapter 3 indicates a nearly uniform
distribution of r is found along many tidal channels and suggests a new scaling of the
continuity equation for channels near morphologic equilibrium. This is the primary
motivation for the hydrodynamic investigation in Chapter 4 of this thesis. In tidal
channels having a nearly uniform distribution of r, along-channel gradients in velocity are
small and discharge gradients in continuity are often dominated by gradients in cross-
sectional area. In Chapter 4 it is also shown that the above scaling of continuity
guarantees a zero-inertia balance in momentum. The result is a first-order wave equation
with solutions which are simpler and more'easily interpreted than previous solutions for
tides in convergent channels with friction.

Previous analytic solutions for the dominant tidal frequency in shallow channels
have generally emphasized similarities between solutions with friction and classic
frictionless solutions. In textbooks, for example, the governing equation with (weak)
friction is typically assumed to be a damped second-order wave equation and the solution
is described by nodes and anti-nodes resulting from the interaction of incident and
reflected waves (e.g., Ippen 1966; Officer 1976). In Chapters 2 and 4 of this thesis the
governing equations and solutions derived for tides in shallow embayments diverge
markedly from these classical solutions.

In Chapter 2, the time-varying diffusion equation only permits tidal amplitude to
decay along-channel. Thus nodes and anti-nodes cannot occur. In Chapter 4, the first-
order wave equation results in a constant amplitude waveform which can only propagate
forward and is independent of channel length -- in contrast to the length-sensitive
resonance of classical co-oscillation. Amplitude can grow or decay along channel if the
effects of acceleration and velocity gradients are taken into account at higher order, but the
resulting along-channel variations in tidal amplitude are due to variations in the rate of
channel convergence rather than interactions between incident and reflected waves. The
slight attention previously paid to tides in shallow convergent channels may be due in part
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to the complex nature of the few solutions (Hunt 1964; Jay 1991) which have previously
emphasized their unique character.

1.4. Future work

This thesis is motivated in large part by the roles of temporal and spatial
asymmetries in -r in determining equilibrium forms and patterns of net sediment transport.
This thesis succeeds in quantifying the mechanisms responsible for temporal asymmetries
and in deriving forms which will result if spatial asymmetries are minimized. Preliminary
feedback mechanisms between these two processes are also identified for some
equilibrium tidal channels. However, much work remains to be done in evaluating the
applicability and relative importance of these two mechanisms and in synthesizing them in
systems where both play a role.

One promising line of research involves a return to diagnostic numerical modeling
in the spirit of Speer and Aubrey (1985) and Friedrichs and Aubrey (1988). Future
modeling efforts can take advantage of the equilibrium forms derived in this ti.t,. ý and
examine patterns of temporal and spatial asymmetries in more realistic two-dimensional
embayments which include flow over intertidal flats and morphologic forms not easily
studied by analytic methods. Some initial progress has been made in this area, including
the numerical implementation of a zero-inertia balance to solve for intertidal flows in a
realistic yet numerically stable fashion (Friedrichs et al. 1990; Friedrichs et al. 1992).

Important questions which can be addressed via diagnostic numerical modeling
include: What are the likely patterns of temporal asymmetries in - in basins with
minimized spatial asymmetries in ?? If strong temporal asymmetries in r do exist in these
more realistic embayments, will the temporal asymmetries cause spatial asymmetries to
develop which will create feedback and counteract the effects of the temporal asymmetries?
If so, is this tendency true of most realistic basin forms? Or are there specific forms which
are likely to evolve towards equilibrium and other forms which are inherently unstable?
Preliminary work is underway to address some of these questions (Friedrichs et al. in
prep, b).

Another issue that requires further attention is the role of wind waves in generating
patterns of bottom shear stress in tidal embayments, especially over intertidal flats. Over
many tidal flats, wind waves (rather than tidal currents) can be expected to be the major
source of bottom shear stress. The role of wih.. waves in determining equilibrium flat
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morphology is addressed in a simplified manner in Chapter 5, and a field study is

underway to provide some relevant observations (Friedrichs et al. in prep, a). However
much work remains to be done, including the addition of waves to some degree in future
numerical modeling efforts.

Finally, additional theoretical and observational justification for the morphologic
approach employed in this thesis is desired. Morphologic change based on the spatial

distribution of r assumes dispersive modes of sediment transport are at least as important
as other modes which are based on systematic properties of the velocity field (such as
temporal asymmetries due to tidal nonlinearities). Unlike temporal asymmetries, the

properties of the velocity field which lead to dispersive sediment transport are not well
resolved -- although dispersive mechanisms which have been previously applied to the
mixing of tracers (e.g., Fischer et al. 1979) likely play a role.
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Chapter 2:

Nonlinear Diffusion of the Tidal Signal in Frictionally
Dominated Embayments
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Abstract to Chapter 2

The dynamics of many shallow tidal embayments may be usefully represented by a

single "zero-inertia" equation for tidal elevation which has the form of a nonlinear

diffusion equation. The zero-inertia equation clarifies the lowest order dynamics, namely,

a balance between pressure gradient and friction. It also provides insight into the
properties of higher-order harmonic components via the identification of compact

approximate solutions and governing nondimensional parameters.

Approximate analytic solutions which assume a constant diffusion coefficient are

governed by the nondimensional parameters x/L and IIk011L, where L is the length of the

embayment, and 01k0 11-1 scales both the length of frictional dissipation and the physical

length of the diffusive waveform. As Ilkof L increases, the speed at which the tidal signal

diffuses decreases and the rate of decay of tidal amplitude with distance increases. The

parameter IIk0ML increases as depth is reduced, friction is increased, forcing amplitude or
frequency is increased, or total embayment width is increased relative to the width of the

channel.

Approximate analytic solutions which assume a time-varying diffusion coefficient

result in additional components at the zeroth, second and third harmonic frequencies. The

zeroth and second harmonics are governed by the parameter y, as well as x/L and IIk0I1L.

The parameter ymeasures the relative importance of time variations of channel depth ('Y>

0) versus time variations in embayment width (y,< 0). If y,> 0, the diffusion coefficient is

larger near the crest of the tidal waveform, causing the rising tide to be of shorter duration

and mean elevation to be set up. If y < 0, the diffusion coefficient is larger near the

trough, causing the falling tide to be shorter and elevation to be set down. The third
harmonic is produced by fluctuations in the diffusion coefficient associated with times of

greatest surface gradient. The third harmonic is governed only by the parameters /L and
lIk0 11L, vhich indicates the third harmonic is insensitive to time variations in cross-sectional

geometry.

Comparisons to field observations and to numerical solutions of the full equations
including inertia terms indicate that the zero-inertia equation (1) reproduces the results of

the more general one-dimensional equations to within the accuracy predicted by scaling

arguments and (2) reproduces the main features of the nonlinear tidal signal observed in

many shallow tidal embayments.
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List of symbols in Chapter 2

a amplitude of C
A A advective acceleration scale

Am amplitude of ,,,/a

b total embayment width

bo time-average of b

bo x-independent, representative value of bo

b, channel width

bE x-independent, representative value of bC
bEl SHIL

Cd drag coefficient
Do first-order diffusion coefficient

F friction scale

g acceleration of gravity

h cross-sectionally averaged channel depth

h0 time-average of h
ho x-independent, representative value of ho
h1  elevation of lower break in intertidal slope

h 2  elevation of upper break in intertidal slope

I inertia scale

k0  first-order complex wave number

L total length of tidal channel

LA local acceleration scale

m signifies mth harmonic component

n Manning's friction coefficient

So time-averaged submerged surface area of embayment
S11 submerged surface area of embayment at mean high water

Sc submerged surface area of embayment at mean low water

I time

T tidal period

u cross-sectionally averaged velocity

U amplitude of u

x along-channel co-ordinate

a 5/(3ho)

p (I/a) (Ab/bo)
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List of symbols in Chapter 2 (continued)

Ab amplitude of tidal variation in b

5 parameter governing third harmonic

e amplitude of tidal variation in IOVaxU1M

parameter governing tidal asymmetry

tidal elevation

Srmth harmonic in ?-domain

INm mth harmonic in t-domain

e 2,P + x/2

,, phase angle of

x-dependent portion of

•,,, x-dependent portion of
T transformed time variable
0 phase angle of tanh koL

wo tidal frequency
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2.1 Introduction

In the study of open channel flow and flood routing, it has long been recognized
that the zero-inertia approximation results in a nonlinear diffusive governing equation

which advantageously can be applied to gradually varying unsteady problems (Hayami

1951; Henderson 1966; Ponce et al. 1978). Application of the zero-inertia approximation
to flood routing leads to depth and storage dependent flood crest propagation and
dissipation, and accounts for the highly asymmetric rise and fall typical of flood waves.
However, it was not until recently that the zero-inertia approximation was applied to the
study of nonlinear flow in tidal channels (LeBlond 1978). LeBlond showed that in
shallow tidal rivers, frictional forces exceed inertial forces over most of the tidal cycle. By
dropping the inertial terms in the depth-averaged one-dimensional (1-D) momentum
equation, he formed a single nonlinear diffusion equation for tidal velocity and showed
that long time lags associated with the propagation of low water could be accounted for by
the form of the nonlinear diffusion coefficient.

Since the important work of LeBlond (1978), many papers have investigated
nonlinearities in frictionally dominated tidal embayments using a combination of scaling
arguments, field observations, and numerical modeling (Parker 1984, 1991; Aubrey and
Speer 1985; Speer and Aubrey 1985; Friedrichs and Aubrey 1988; Westerink et al. 1989;
Miinchow and Garvine 1991; Friedrichs et al. 1992). However, the study of tidal
propagation in frictionally dominated embayments is still lacking an analytically based

discussion of overtides which includes all four principal sources of nonlinearity: quadratic
friction, time-varying channel depth in the friction term, and time-varying channel depth

coupled with time-varying embayment width in the continuity equation. No second-order

analytic study has considered the generation of harmonics by large variations in

embayment width during the tidal cycle, which is the primary source of nonlinearity in

many tidal embayments of interest (e.g., Boon and Byme 1981; Friedrichs and Aubrey

1988). Through analytic methods, the present paper aims to synthesize all these nonlinear

mechanisms in a manner most easily adapted to physical interpretation.

Previous second-order, linearized solutions to the 1-D equations with friction have

been found via formal perturbation analyses (Kreiss 1957; Gallagher and Munk 1971; Li
1974; Kabbaj and LeProvost 1980; Uncles 1981; DiLorenzo 1988; Shetye and Gouveia
1992). Although rigorous perturbation expansions are important for spectral modeling of

overtides and compound tides (Kabbaj and LeProvost 1980), such techniques can make
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simple physical interpretation of analytical results difficult. When applied to the full 1 -D

equations for tidal embayments, formal perturbation analysis is algebraically intensive and

results in solutions with many terms contributing to each overtide.

In this study we take a less formal approach. We make a zero-inertia assumption

along the lines of LeBlond (1978), and form a single nonlinear diffusion equation for tidal

elevation. Second-order solutions are found by approximating the nonlinear diffusion

coefficient as constant in space and expanding only the time-varying portion. This

approach conveniently combines the four primary nonlinear mechanisms into a single

time-varying coefficient. Approximate analytic solutions for the zeroth, second, and third

harmonic components are compact and allow straightforward physical interpretation via

identification of their governing nondimensional parameters. Finally, we compare our

approximate analytic solutions to field observations and to "exact" numerical solutions

with and without the inertial terms.

In this study we examine the nonlinear properties of tidal elevation in tidal

channels closed at one end. This particular application was chosen because of its

relevance to a large volume of readily available field observations. Nonlinear tidal

velocities in similar channels can also be examined with the 1-D zero-inertia equation.

This equation may also be applied to the nonlinear properties of tidal velocity and elevation

in channels with elevations forced at either end (e.g., Wong 1989). The- : topics are the

subject of ongoing research.

2.1.1 The frictional dominance assumption

Through scaling arguments, field measurement and/or numerical modeling of the

individual terms in the 1-D momentum equation, many authors have demonstrated the

dominance of friction over the inertial terms in well-mixed, shallow tidal embayments and

estuaries. A survey of the literature (Table 2.1) indicates that in systems of interest (well-

mixed, tidal amplitude/mean depth > -0.1, tidal velocities -0.5 m s-1), the friction term is

typically 1 to 2 orders of magnitude larger than either the local or the advective acceleration

term. Furthermore, the local and advective acceleration terms are typically of opposite

sign and partially cancel. In a recent paper, Jay (1991) showed that the acceleration terms

can be entirely cancelled to lowest order by topographically generated terms in tidal

channels with exponentially convergent geometries.
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The last two entries in Table 2.1 serve to demonstrate the limits of the frictional
dominance assumption. In the Lower Columbia River Estuary, where salinity intrusion is
present, the shear stress at the bed is reduced by stratification in the water column,

partially decoupling the overlying flow from the bottom (Giese and Jay 1989). Upriver
beyond the intrusion of salinity, the tidal pressure gradient is primarily balanced by
friction (Giese and Jay 1989). In the final example (Pingree and Maddock 1978), the

English Channel is simply too deep and bottom stress too small for friction to dominate
the momentum equation. Approximate quantitative bounds on the conditions under which

friction dominates inertia in well-mixed tidal embayments are provided by a scalar analysis

of the I-D governing equations.

The cross-sectionally integrated, I-D equations of motion for well-mixed,
channelized flow in a tidal embayment with intertidal flats (Figure 2.1) may be expressed

as (e.g., Speer and Aubrey 1985)

ac a(b, h u)b=- + -x.,, 0, (2.1)

i)u + u + c u+ L- = 0, (2.2)

where b is total embayment width (including tidal flats), C is tidal elevation, h is cross-

sectionally averaged channel depth, b, is the width of the channel, u is cross-sectionally
averaged velocity (confined to the channel), and cd is the drag coefficient. In addition to
the usual assumptions of channelized flow, (2.1)-(2.2) assume u = 0 on the tidal flats, and

be/h >> 1.

Restated in terms of characteristic scales, (2.1) and (2.2) become

&a + hbcU = 0, (2.3a)
T L

F2 jea &I U2

L /+2LLL + T + = 0 (2.3b)T7 L L h'

where a and U are the amplitudes of tidal elevation and velocity, T is the tidal period, and

L is the characteristic horizontal length scale. Here we are assuming that the length scales

of variation in u and Care of the same order. Thus this analysis is limited to nonlinearities
with a basin-wide character and does not consider advective nonlineari6 es typically
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localized to smaller geometric features such as inlets, sand banks, or channel meanders

(Zimmerman 1978).

Solving for L in (2.3a) and then eliminating L in (2.3b) gives

L + AaIL + bga CdU 2  0 (2.4)
T bchT bchUT h

The sum of the inertia terms is O(UT) if we assume O(ba/bc h) < 1. Combining the first

two terms of (2.4) and dividing (2.4) by its third term gives the magnitudes of inertia and

friction relative to the pressure gradient, which we assume to be order one:

bcU 2 h + I + bccdU 3T = 0. (2.5)
ba2g ba2g

The ratio of the friction scale to the inertial scale is then

F = TUcd (2.6)
1 h

In shallow tidal embayments of interest, U is of the order 0.5 m s-1 , Cd =

10-2 - 10-3, the semidiurnal period T = 4.5 x 104 s, and I m _< h _5 10 m. Therefore F

will typically be 1 to 2 orders of magnitude larger than I in these tidally dominated

embayments. Since F/I is frequency dependent, however, one should use the period of

the overtide of interest when considering highly nonlinear flow. This is not a serious

limitation: F will still dominate I by an order :f magnitude, even if one scales (2.6) with

the quarter-diurnal tidal period.

2.1.2. Derivation of the zero-inertia equation

If we assume that frictional effects are much larger than acceleration (i.e., F/I >>

1), then the momentum equation for cross-sectionally averaged flow in a tidal embayment

may be expressed, accurate to O(F/I)"1 , as

+9 n2gulul = 0, (2.7a)
ax h 4/ 3

or, equivalently,

U h2/3 a(2.7b)
n IaClaxl1t 2 ax
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where n = hlI6(cjlg)I1 2 is Manning's friction coefficient, which is assumed to be constant

in space and time. (If using complex notation for C, the expression IaCaxl =

Abs ( Re(aQ/ax) ).

Inserting (2.7b) into (2.1) yields a single governing equation for tidal elevation in

the form of a nonlinear diffusion equation:

S =ao.h51 0 (2.8)
at b ax ýnpo4lI2 xjX

There are four sources of nonlinearity in (2.1)-(2.2) which contribute to the time

variability of the diffusion coefficient in (2.8): time-varying embayment width, b, from

continuity; time-varying Ia•axlIt2 from quadratic friction; and two contributions to time-

varying channel depth, namely, hZw from the depth effect on friction and another power

of h from continuity. Equation (2.8) is solved numerically in Section 2.4, where it is

compared to numerical solutions to (2.1)-(2.2), to approximate analytic solutions derived

in Section 2.3, and to field observations.

To enable approximate analytic solution, we expand the time-varying geometric

parameters:
h-I. oo/ 3 = hoS/ 3 (l+a4, (2.9a)h5/3 = ho51j 1+ h =r : 01 I+(.a

b-- bo(I + PO , (2.9b)

IaC/xl1/2 = (IaC•XI1'12)0 (1 + e(t)), (2.9c)

where
a = 5- 3 b (2.9d)

3h 0 ' a b0

and the dependence of r on t will be determined in a later section. In (2.9) the subscript

zero indicates time-averaged values, and Ab is the amplitude of change in b during the tidal

cycle. Introducing (2.9a)-(2.9d) it, (2.8) yields

ac I ÷___ a , b,/ho 5/ 3 (1 + at) ab" 0. (2.10)
at bo (I +PC) ax ~n (OCI&Ix12) o(I +e(t)) ax(
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In the following sections we develop approximate analytic solutions to (2.10).
These analytic approximations allow a straightforward interpretation of the lowest order

dynamics and provide insight into the properties of higher-order harmonic components via
the identification of their governing nondimensional parameters.

2.2. Constant diffusion coefficient

2.2.1. Solution

In solving the lowest order case, we neglect terms O(aCPe) and assume bo, bc,
h0 and (I'ax[x1/ 2)0 may be treated adequately by x-independent values. Then (2.10)
becomes

ac - Do• _ =0(2.11)

where

D o c = /3 constant, (2.12)so ,n (I a /ax I 2) o

and the overbars indicate x-independent, representative values. The boundary conditions

for (2.11) are (with the landward end at x = 0)

C(x=L) = acos(ot, LC (x=0) = 0. (2.13)

It is not necessary to assume bo, bc and ho are x-independent to reach a first-order
analytic solution. A geometric or exponential dependence on x may be treated via Bessel

functions (Prandle and Rahman 1980; Appendix 1 of this thesis) or by a modified Green's

law approach (Jay 1991). For the embayments of interest to this study, however, the
assumption of a prismatic geometry simplifies the form of the solution while retaining the

essential physics.

For a linear, constant-coefficient governing equation with periodic forcing, it is

convenient to employ complex variables and assume a solution of the form

C(x,t) = 4(x) exp iwt, (2.14)
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where it is tacitly understood that only the real part of the complex solution is retained. If

we insert (2.14) into (2.11) and solve the resulting ordinary differential equation in .(x)

subject to the boundary conditions given by (2.13), we have the solution

cosh kox exp iwot (2.15)S=acosh koL

where

o = 1/2 = (1 + i) ( 12Do (2.16)

The cross-sectionally averaged velocity, u, is obtained from the continuity

equation (2. 1) as the real part of

_ iboa(o sinhkox
u bchoko coshkoL expiaot. (2.17)

2.2.2. Nature of the constant coefficient solution

For values of Iko1IL << 1 (Ilkoll is defined as {(Re(ko)) 2 + (Im(ko))2 )1}2), sinh kOx

= k0x, cosh koL = 1, and

a cosot, u - aoboLo. X sin wvt, (2.18)b•h L

i.e., corresponding to the simple pumping mode, with peak velocities preceding high and

low water by 90". Similarly, for Iko0 lx >> 1, sinh kox = cosh kox (1/2) exp (kox), and

a exp - (X" L) cos -- x- L) +rog

cosLw / 1 2/ (2.19)

U bhollkollL exp 2-'•'(x-L) sin k/ (x - L) + wo-

i.e., corresponding to an exponentially decaying progressive waveform traveling in the
negative x direction, with peak velocities preceding high and low water by 45. In

contrast, a frictionless linear tidal wave in an infinite channel has peak velocities exactly
coinciding with extreme water levels.

The nature of the frictionally dominated solution depends strongly on the channel
length, L, relative to the frictional decay scale, Mk011[1 = (DO/co) 1/2 (Figure 2.2), which in

turn depends on the value of the diffusion coefficient given by (2.12). To obtain an
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estimate of Do, we must evaluate the term ('8Va/d1 2)o. From (2.15), the time-averaged

magnitude of faCx is

I o= Ilk 0 a sinh kox (2.20)

I 10 ax cosh koL x

If we represent (20) with its value at x = L, then

=a o Ilikoll a Itanh koLAI 2 . (2.21)

Introducing the square root of (2.21) into (2.12), we obtain the necessary closure of the

problem, i.e.,

Do = bco (lkoll a IItanh koLII •)-' 2  (2.22)
bn

Since Itkoll = (aVDo) 112, (22) may be written as a dispersion relationship:

(IIkoIL) 312 21 2 2 nal/onal2 oL,3  (2.23)

(ltanh koLI)1/2 r1 2 b/ ho

For IIkoL << 1, Iltanh koLII = 1OHL, and (2.23) reduces to

= 1 (21/2 b hona1/2wL3/2 (2.24)

For 1lkoIIL >> 1, 11tanh koLII 1 , and (2.23) reduces to

I[o1 )" 2L /21 2F n a 2wo L 3 / 22/3 (2.25)

According to (2.23)-(2.25), the speed at which the tidal signal diffuses decreases and the

rate of decay of tidal amplitude with distance increases as channel depth is reduced,

channel length is increased, friction is increased, forcing amplitude is increased, or total

embayment width is increased relative to the width of the channel. Equations (2.23)-

(2.25) also state that the amplitude decay rate increases as frequency is increased,

indicating frictionally dominated embayments act as low-pass filters.
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2.3. Time-varying diffusion coefficient

2.3. 1. Governing equation

We now use the results from our constant coefficient solution to estimate the time
dependent values of (I + yj, (I + PC)-, and ((IaClaxIIt2)0 (I + e(t))} -, each of which

was assumed to be constant in formulating (2.11). We still neglect x-dependence in these

three expressions, however, and chose values at x = L to be representative. Then from

(2.15),

1 + YC - 1 + ra cos ot, (2.26a)

(1 + "- (1 + •a cos wt)-l I - a cos wot, (2.26b)

((a~~120(1 + C(t)))-I (2.26c)

- {Ilkoll a lltanh k0 LII Icos (ot + 0 + x/4)1)"12 ,

where 0 = the phase angle of tanh koL, and Y(4 = the phase angle of ko.

Equation (2.26c) may be treated more easily if we consider a Fourier series

approximation of Icos (ot + 0 + x/4 )1 followed by the use the Binomial theorem to

approximate the inverse square root:

~X (2 3a

Icos ((o ++ 0+/4)1'2

- (X)I/2 { ()22o++.4} (2.27b)"-l'I2) (1 + ("2)3"cos 2(wJt + 0 + ir/4)l2.(.2b

Figure 2.3a compares the left and right hand sides of (2.27b). From Figure 2.3a

we see that the right-hand side of (2.27b) underestimates the value of Icos (wt÷++ir/4) 1-"/2

at the times when RC/axI is largest, i.e., precisely when we can expect discharge to be
greatest and the effects of friction to be most important. Thus we will approximate Icos
((ot + 0 + ,r/4)-1 t2 instead as

Icos (wor + 0 + r/4) 1 '2
(f)1/2 (1 + 8 cos 2(01+ + /4)) = (ff)l/2 (1 -t) (2.28)
•2) .'
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such that the minima of the two functions coincide exactly (Figure 2.3b). This gives 6

- (2/Yr)1/ - 1 - -0.20. The poles indicated by Figure 2.3, which are poorly represented

by the approximation in (2.28), are not significant because they coincide with slack water

when friction is small.

Substituting (2.26) and (2.28) into (2.10) gives

-, , .1,/2 I (I + ycos wt+ 8cos (2wrt+ 0)) a bc: 0, (2.29a)-Tt - 2 bo n (1lkoll alltanh koLll11)/2 ax ax .(22a

where
9 = 2o + A. (2.29b)

2'

= a (a-P) = a _ (2.29c)
3 ho bo

Relative to (2.8), (2.29) is accurate to O(r,8,aa,pa) 2 plus an unquantified error due to our

choosing x = L to be representative in (2.26). If we once again assume bo, bc, and h0 to

be constant in x then (2.29) reduces to

m_ 32• = -0. (.0

S +(1 + coswt+8cos (2w•t + O))Do - (2.30)

Bessel functions can be used to find approximate solutions to the higher-order
harmonics in embayments with geometrically or exponentially varying along-channel

geometry (see Appendix 2). However, the basic physics which determine the properties

of the higher-order tidal components in frictionally dominated embayments are more

clearly illustrated if we assume a prismatic geometry.

2.3.2. Solution

We treat the time-varying portion of the diffusion coefficient in (2.30) by changing

variables from t to r such that

• T = (1 + Ycos wt+5cos (2wt + 0)) (2.31)

Then (2.31) becomes
a Do a2 0 (2.32)
57 aX2
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with
(o'r= a)t + vsin cot + -Asin(2wt+ 8). (2.33)

2

The boundary conditions for (2.32) are still af/x = 0 at x = 0, and " = a cos ox at
x = L. However, the boundary condition at x = L must be transformed to the new time
variable, r. Utilizing (2.33), trigonometric identities, and approximations to

O(y,&aa,ap) 2 (for details, see Appendix 2), it can be shown that

cos Cot= i Am cos (m 0?+ ;m), (2.34)
M=41

where A-1 = -A 3 = ./4, A0 = -A2  y •f2, A 1 = 1, -op., = 6, and opo = 9) = 9 ff= 0.

Since (2.32) is linear, we may express the solution as a sum of terms C,, each
satisfying the governing equation

a" Do - = 0, (2.35)

and the boundary conditions

m = 0 at x=0, , = aAmcos(m wr+q9W) at x=L. (2.36)ax

We look for solutions to (2.35) of the form

Cm(x,r) = a Amam(x) exp i(m w r + n,,). (2.37)

For m * 1, (2.37) is already O(y8,aaaP), so if we discard O(y,8,aa,ap)2 terms,
(2.37) transforms directly back to

C,(x,t) = a Am-4,(x) exp i(m wt + n). (2.38)

In order to transform the m = 1 case, we must reexpress exp iWn in terms of t. Utilizing
(2.33), trigonometric identities, and neglecting O(y,8,aa,ap)2 terms (for details, see
Appendix 2), it can be shown that

exp ico = exp icOt - F Am expi(mwt+ qý). (2.39)
m*1
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Equation (2.39) is substituted into (2.37) for the m = I case, and then the resulting

equation is added to (2.38) to reconstruct the full solution in t.

We represent the full solution as a sum of single frequency components:

C(xI) = a j m(X) exp i(m wt + 4Q,. (2.40)
M=-1

with
11. = 1) (2.4 1a)

4

110 = (40 - 41), (2.41b)
2

7l7 = 41, (2.41c)

'12 = (41- 42), (2.41d)

73 = A (4 i- 3). (2.41e)
4

By substituting (2.37) into (2.35) we see that the governing equations for :,,(x)

are

imwom - Do d24m = 0, (2.42)d~X2

with boundary conditions

d.m = 0 at x=0, 4.• = I at x=L. (2.43)
dx

Equations (2.42)-(2.43) have a solution of the same form as the constant coefficient case:

=M = coshx(ima /Do) 1 2 - cosh mt /2ko x (2.44)

cosh L (im o/Do)1/2 cosh m1/2koL

2.3.3. Nature of the time-varying coefficient solution

The harmonics produced by the time-varying coefficient solution are scaled by the

nondimensional parameters y, 8, IIk0IIL, and x/L. The parameter y scales the zeroth

harmonic, which determines set up or set down, as well as the second harmonic, which
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determines duration asymmetry in the rising and falling tides. If yis positive, there is set

up of mean elevation and the embayment is "shorter-rising" (Figure 2.4a). If 7 is
negative, there is set down and the embayment is "shorter-falling" (Figure 2.4b). These

effects may be understood physically if we reexamine the definition of yand the relevant

governing equation:

a(a- = 5h _ (2.45)

(1+ 7cos wt+ 8 cos (2t + 0))DO 2C = 0. (2.46)
ax2

If y> 0, (2.45) indicates changes in channel depth during the tidal cycle are more

important than changes in embayment width. (The total effect of time-varying channel

depth is, in turn, 2/5 due to nonlinear friction and 3/5 due to nonlinear continuity. These

proportions follow from the binomial expansion used to derive a in (2.9).) With y> 0,
the time-varying diffusion coefficient in (2.46) is larger than Do near the crest of the
waveform (ot - 0), when channel depth is greatest. And the diffusion coefficient is

smaller than Do near the trough of the waveform (wt = -t), when the channel is shallowest.

Since the speed at which the waveform diffuses is proportional to the square root of the

diffusion coefficient, with y> 0 the crest diffuses landward faster than the trough,
"catching-up" with the trough and causing a shorter-rising asymmetry. Since the rate of

decay of the waveform with distance is also proportional to the square root of the

diffusion coefficient, with y> 0 the amplitude of the crest decays more slowly than that of

the trough, resulting in set up (Figure 2.4a).

The effect of y < 0 is simply the opposite of y > 0. If y < 0, (2.45) indicates

changes in embayment width are more important than changes in channel depth. With 7<

0, the diffusion coefficient in (2.46) is larger than Do near the trough of the waveform (Wt

- ir), when the embayment is narrowest, and the diffusion coefficient is smaller than Do

near the crest (wt = 0), when the embayment is widest. Thus with 7 < 0, the trough

diffuses landward faster then the crest, causing a shorter-falling asymmetry, and the

trough decays more slowly than the crest, resulting in set down (Figure 2.4b).

With y held constant, duration asymmetry and set up or down increase as IIk01IL is

increased or x/L is decreased (with x = 0 landward) (Figure 2.5). This is a

straightforward consequence of the different diffusion speeds and decay rates of the crest

and trough of the waveform. As IIk011L increases or x/L decreases, the effective distance



-33-

over which the signals travel increases. Therefore the difference between the crest and
trough travel times and the difference between the degree of crest and trough amplitude

decay both increase.

These approximate analytic results are consistent with the numerical experiments

of Speer and Aubrey (1985). Through finite difference solutions of (2.1)-(2.2), they
found that embayments with large tidal amplitude to depth ratios and small areas of
intertidal flats tend to be shorter-rising, whereas embayments with small amplitude to

depth ratios and large areas of intertidal flats tend to be shorter-falling. Speer and Aubrey
also found tidal asymmetry to be more sensitive to channel depth than intertidal flat extent.

This latter finding is also consistent with (2.45), which weights a/h4 more heavily than
4b/bo in the definition of Y.

The parameter 8 scales the third harmonic as well as a transfer of some energy
back to the first harmonic via (2.41 a). The effect of 8 in (2.46) can be understood if we
recall that 0 is ultih - ately related to the phase of the surface gradient. 8 and 0 cause the
time-varying diffusion coefficient in (2.46) to be smaller when the surface gradient (i.e.,
velocity) is largest. In other words, large velocities impede the diffusion of the tidal
signal.

The third harmonic does not contribute to duration asymmetries. Unlike y, 8 is not
a function of cross-sectional geometry, but, to our order of approximation, 8 is constant
for all cross-sections. According to the approximate analytic solutions, the third harmonic
varies only as a function of x/L and IlkoI.L. Thus the third harmonic is less sensitive than
the second harmonic to time variations in channel cross-section. We should expect the
magnitude of the third harmonic to become progressively smaller relative to the zeroth and
second harmonics as the overall tidal signal displays stronger duration asymmetry.

2.4. Comparison to numerical solutions and observations

2.4.1. Methods

Forcing M2 amplitude and geometric parameters required as inputs to the
numerical and approximate analytic models are listed in Table 2.2 for 12 tidal embayments
on the Atlantic Coast of the United States. The geometric parameters in Table 2.2 were
determined by fitting the hypsometry of each embayment to an idealized, prismatic
geometry with a cross-section of the form given in Figure 2.1. S, is the horizontal area of
the embayment that is submerged at mean low water; S11 is the area submerged at mean
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high water;, and So is the time-averaged area. Model widths were determined by averaging

these areas over the length of the each real embayment. The parameter ho is the spatially
averaged depth at mean sea level of the portion of the embayment encompassed by Se.
The heights h, and h2 were chosen to best represent the hypsometry of each embayment

using prismatic, linearly sloping intertidal storage areas (see Figure 2. 1).

Once prismatic approximations of the twelve real embayments were constructed,

finite difference representations of (2.1)-(2.2), which include the inertia terms, were
solved for each embayment. Manning's n was the only independently adjustable
parameter, and it was varied until the solutions of (2.1)-(2.2) were reasonably consistent
with the observed tides (Figure 2.6). For several of the embayments there is significant

disagreement between observed and calculated M2 phase lag (Table 2.3; Figure 2.6b),
especially for small phase lags. This is largely due to the varied locations, relative to the
embayment inlets, of the outside, "forcing" tide gauges needed to calculate the observed
phase lags within the embayments. Set up, M 2, M4 and M 6 were determined by least

squares harmonic analyses of both the observed surface elevations and the numerical

solutions to (2.1)-(2.2). Results of the harmonic analyses appear in Table 2.3. Also

included in Table 2.3 are analyses of numerical solutions to (2.8), the governing equation

without the inertia terms and approximate analytic solutions to (2.8) given by (2.40)-

(2.41) and (2.44). These solutions were calculated with the same n used in the solution of

(2.1 )-(2.2).

The embayments at Chatham, which is shorter-rising, and North Inlet, which is

shorter-falling, were examined in particular detail. These systems each contain many tide

gauges and provide case studies for along-channel variation in tidal distortion.

2.4.2. Numerical solutions

Numerical solutions to (2.1)-(2.2) and to (2.8), the equations of motion with and

without inertia, are consistent within the scaling arguments presented in Section 2. 1.1. As

predicted by (2.6), the two numerical solutions for M 2 disagree by about 5% or less,

Shile amplitudes of M4 and M 6 disagree by about 10% and 15%, respectively (Table 2.3;

Figures 2.7a, 2.7c, and 2.7e). Phases predicted by the two solutions for each tidal

component disagree by only a few degrees (Table 2.3; Figures 2.7b, 2.7d, and 2.70.

Disagreements between the two numerical solutions are largest for embayments with

relatively deep channels (e.g., Wachapreague, Price), which is also consistent with (2.6).

Nonetheless, these relatively small disagreements do not affect the basic dynamic balance.
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Thus, to the degree that the zero-inertia equation clarifies the fundamental physical balance
while maintaining the most important r.onlinear processes, the zero-inertia equation is a

valid approximation of the more classical 1-D equations typically applied to tidally

dominated shallow embayments.

The consistency of the approximate analytic solutions and the "exact" numerical
results is quite good. The residuals in Figure 2.7 are all small in comparison to the range
of the signal. Of course, there are also important differences between the analytic and

numerical solutions. This is not surprising given that aa = 5a/3ho and ap = Ab/bo, which
were assumed to be small, actually approach unity in several of the embayments of interest
(Table 2.2). There are also some systematic, x-dependent differences between the
numerical solutions and analytic approximations which are illustrated by a closer

examination of the solutions for Chatham and North Inlet (Figure 2.8). Relative to the
numerical results, the approximate analytic solutions for M2 (Figures 2.8a-2.8b) tend to

underestimate both amplitude decay and phase lag for large x/L (i.e., near the forced end)
and overestimate them at small xIL (i.e., near the landward end). These discrepancies

partly result from our treatment of 00Axl1l2 in evaluating (2.8) analytically.

By approximating ID/&I-1/2 as x-independent in our analytic solution, we neglect
two specific aspects of the fully nonlinear, x-dependent problem. First, we do not recover
a factor of 1/2 that would appear if we were to expand (2.8) by differentiating an x-

dependent kC/axl-12n:

a I'ac -1/2- signx' ac /21=xl aci2 -12a2x (2.47)

Neglecting this differentiation overestimates the diffusion coefficient in both (2.11) and
(2.46) and, therefore, underestimates the decay and delay of the tide. (We also tried

differentiating CI&,xI- 1 2 before treating it as x-independent, i.e., by including the factor of

1/2. However that equally arbitrary approach caused the approximate analytic solution to
be too dissipative in comparison to the numerical solutions. Hence we chose to treat

OV/&xI-1/2 as x-independent throughout the derivation.)

The second error resulting from our treatment of IDC/axI-1/2 relates to the no-flow

boundary condition, a/ax = 0, at x = 0. In (2.2 1) and (2.26c) we approximate iOvax for
all x with its nonzero value at x = L, therefore underestimating IDO/axI-If at small x/L

(where the no-flow condition requires the surface gradient to approach zero). Since
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(2.12) indicates that the diffusion coefficient is proportional to IOIaxl-1i2, at small x/L our
approach underestimates the magnitude of the diffusion coefficient and overestimates the
decay and delay of the tide. This effect, together with that described in the previous
paragraph, causes the decay and delay of the tidal signal to be somewhat too small near the
seaward end of the embayment and somewhat too large near the landward end. The
nature of discrepancies in the higher-order harmonics is analogous. For example, the

approximate analytic solutions for AMSAM2 (Figure 2.8c) underestimate the transfer of
energy to M4 at large x/L (cf. an underestimate of M2 decay) and overestimate the transfer

at small xlL (cf. an overestimate of M2 decay).

2.4.3. Observations

For the M2 tide, the consistency of the analytic results with the observations
(Figures 2.8a-2.8b, and 2.9a-2.9b) supports the overriding importance of just two
nondimensional parameters, IIk011L and x/L, in determining the degree of amplitude decay
and phase lag throughout frictionally dominated tidal embayments. For example,
Chatham has a significantly larger value of IIk011L than North Inlet and a correspondingly
larger decay and delay of the M2 tide. In both embayments, amplitude decay and phase
lag increase landward with decreased x/L. Observations are also consistent with the
analytically derived roles of y, tIk 011L and x/L in determining the amplitude and relative

phase of M4 (Figures 2.8c-2.8d, 2.9c-2.9d). Chatham has a large IIk01IL, Y > 0, and a
large M4 ; North Inlet has a smaller Ilk01/L, y< 0, and a smaller M4. In both embayments,
AM4/AM2 increases in magnitude landward toward x/L = 0. In general, all the

embayments with y,> 0 are observed to be shorter-rising (0" < 2q9M2-q74 < 180"), and all
those with y< 0 are observed to be shorter-falling (180' < 2,pM2-qp4 < 360"). Regardless

of the sign of y, observations indicate AM4/AM2 increases as the absolute value of y

increases (Table 2.3).

The observed and analytic AM6/AM2 ratios are of the same order, and both tend to

increase landward (Table 2.3). Observed and analytic M 6 relative phases (3q'M2-OO6) also

increase as one moves landward toward x/L = 0. There is no discernible relationship

between time variations in cross-sectional geometry and the observed M6 tide, which is

consistent with our derivation of a constant governing parameter, S. The inability of the

analytic (or numerical) results to better reproduce the observed M 6 tide may result from

our treatment of Manning's n as constant in space and time. Several field studies of

shallow tidal embayments suggest n can be a complex function of tidal height, flow
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direction, and observation location within a single embayment (e.g., Swift and Brown
1983; Wallis and Knight 1984; Lewis and Lewis 1987).

The approximate analytic solutions and numerical results both predict significant

set ups of mean tidal elevation in several of the shorter-rising embayments (Table 2.3).
Unfortunately, none of the tidal observations for shorter-rising embayments listed in Table
2.2 includes references to an absolute vertical datum. However, set up has been

documented in shorter-rising tidal rivers in Great Britain with tidal amplitude to depth
ratios too large to be represented by the approximation (aa)2 = (5a/3ho)2 << 1 employed

in this study, e.g., The Fleet (Robinson et al. 1983) and the Conwy (Wallis and Knight

1984), each with (aa)2 - 1.8. Observations from North Inlet do include elevation relative
to an absolute datum and suggest a significant set down of the tide within North Inlet

(Nummedal and Humphries 1978). Although the approximate analytic solutions to (2.11)
do predict a small set down for North Inlet (Table 2.3), the numerical solutions predict a
small set up. Perhaps the observed set down is due to non-tidal dynamics or an aspect of

the geometry not captured in our prismatic approximation.

2.5. Summary and conclusions

Scaling of the 1-D equations indicates that the friction term is typically I to 2

orders of magnitude larger than the inertial terms over the range of geometric and
hydrodynamic parameters common to many shallow tidal embayments. Neglecting the
inertial terms leads to a single "zero-inertia" governing equation for tidal elevation which
has the form of a nonlinear diffusion equation. The zero-inertia equation clarifies the

fundamental physical balance typical to shallow tidal embayments, while retaining the
principal sources of basin-wide nonlinearity, namely, quadratic friction, time-vary:i 'g

channel depth, and time-varying embayment width.

First-order solutions are found by assuming the diffusion coefficient to be constant

in both time and space. The first-order solutions are governed by two nondimensional

parameters, Mk01ML and x/L, where L is the length of the embayment, and 1Ik01k1-, which is
proportional to the square root of the diffusion coefficient, scales both the length of

frictional dissipation and the physical length of the diffusive waveform.

As 1koILL increases, the speed at which the tidal signal diffuses decreases and the
rate of decay of tidal amplitude with distance increases. For IIk0 11L << 1, the solution

reduces to a simple pumping mode, whereas for IIk0olL >> 1, the solution reduces to an
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exponentially decaying, progressive waveform. Ilk011L increases as depth is reduced,

friction is increased, forcing amplitude or frequency is increased, or total embayment

width is increased relative to the width of the channel.

Second-order solutions are found by approximating the nonlinear diffusion

coefficient as constant in space and expanding only the time-varying portion. This.

approach conveniently combines the primary nonlinear mechanisms into a single time-

varying coefficient. Approximate analytic solutions for the zeroth, second and third

harmonic components are compact relative to more formal perturbation analyses and are

more easily adapted to physical interpretation.

The zeroth harmonic, which determines set up or down, and the second harmonic,

which determines duration asymmetry, are both governed by the parameters xIL, IIk0IIL,

and y= 5a/3ho - Ab/bo, where a is forcing amplitude, h0 is average channel depth, Ab is

the amplitude of time variation in embayment width, and bo is average embayment width.

If Y > 0, then time variations in channel depth are more important than time

variations in embayment width. With y> 0, the diffusion coefficient is larger near the

crest of the waveform than near the trough. The crest diffuses landward faster and decays

slower than the trough, resulting in a shorter-rising asymmetry and set up of mean

elevation. If y< 0, variations in width are more important than variations in depth. With

y < 0, the diffusion coefficient is larger near the trough of the waveform, the trough

diffuses faster and decays slower, and the tide is shorter-falling and set down.

The third harmonic is produced by fluctuations in the diffusion coefficient

associated with times of greatest surface gradient. The only independent parameters

governing the third harmonic response are IIk011L and x/L. Thus analytic results indicate

the response of the third harmonic is less geometry dependent then the response of the

zeroth or second harmonics.

"Exact" numerical solutions show that the zero-inertia equation reproduces the

results of the more general I-D equations, including harmonic overtides, to within the

accuracy predicted by scaling arguments for shallow tidal embayments. The approximate

analytic solution to the zero-inertia equation also reproduces the main features of the

numerical solutions, including the fundamental behavior of M4 and M6. Disagreements

between analytic and numerical solutions are largely due to the neglect of space

dependence in the diffusion coefficient of the analytic solution. Nonetheless, the insight
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provided into the numerical solutions by the analytic approximations demonstrates the

usefulness of the simplified second-order approach.

Finally, observations are also consistent with the analytically derived roles of y,

IIk0 IIL and x/L in determining the amplitude and relative phase of M2, M4 and M6.

Observed M2 amplitude decay and phase lag generally increase with increased IIk0llL or

decreased x/L (i.e., landward). All observed embayments with with y > 0 have shorter

rising tides, and all those with j< 0 have shorter falling tides. Observations also indicate

the amplitude of M4 generally increases as IIkMOtL increases, x/L decreases, or the absolute

value of yincreases. The order of magnitude of the observed M6 tide is also reproC iced,

but observations indicate a significant, unexplained spatial variance that is speculated to

result from unresolved temporal and/or spatial variations in real embayment friction

factors.
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Figure captions for Chapter 2

Figure 2.1. Diagram of an idealized tidal embayment cross-section: C(xt) is

surface elevation relative to mean sea level (MSL) at the forced end of the embayment; b,
and h are the surface width and cross-sectionally averaged depth of the channel; b is the

total width of the embayment cross-section, including tidal flats which act in a storage

capacity only; bo is the time-averaged width of the embayment cross-section (at an

elevation not necessarily coinciding with MSL). Elevations hl and h 2 are used in

specifying the geometry of the intertidal storage area. Vertical exaggeration is on the order

of 100:1.

Figure 2.2 Time series of (2.15), the analytic solution to the linearized zero-inertia

equation, during two tidal cycles calculated at x/L = 1, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0
landward): (a) IIkoIIL = 1/2, (b) IIkoIIL = 1, (c) I[k0IL = 2, and (d) Itk0IIL = 4.

Figure 2.3. Approximations of Icos(wt + s + Yr/4)[ 1 /2 : (a) exact is solid line;

(Yr/2)It 2 (1 - (1/3) cos 2(wt + 0 + Yr/4)) is dashed line; (b) exact is solid line; (r/2)1M(1 +

5 cos 2(ot + 0 + x/4)) is dashed line.

Figure 2.4. Time series of (2.40)-(2.41), (2.44), the approximate analytic

solution of the zero-inertia equation with a time-varying diffusion coefficient, with IIk0IIL =

I during two tidal cycles calculated at x/L = 1, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0
landward): (a) y = 0.5, and (b) y,= - 0.5.

Figure 2.5. Time series of (2.40)-(2.41), (2.44), the approximate analytic
solution of the zero-inertia equation with a time-varying diffusion coefficient, with y= 0.5
during two tidal cycles calculated at x/L = 1, 0.8, 0.6, 0.4, 0.2, and 0 (x/L = 0 landward):

(a) IIk0IIL = 1/2, (b) UIk011L = 1, (c) IIk0IIL = 2, and (d) IIk0IIL = 4.

Figure 2.6. Comparisons of numerical solutions to (2.1)-(2.2), the equations of

motion including the inertia terms, with observations at 32 tide gauges in 12 tidal

embayments (see Table 2.3): (a) M2 amplitude divided by M2 forcing amplitude, and (b)

M 2 phase (deg.) relative to forcing M2 phase. The solid line is unit slope, std is the

standard deviation of the residuals from their mean, and bias is the mean residual.

Figure 2.7. Comparisons of numerical solutions to (2.1)-(2.2), the equations of
motion including the acceleration terms, to numerical and approximate analytic solutions
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of the zero-inertia equation for 32 tide gauges in 12 tidal embayments (see Table 2.3): (a)
M 2 amplitude divided by M2 forcing amplitude, (b) M2 phase (deg.) relative to forcing M2

phase, (c) local M4 to M2 amplitude ratio, (d) local M4 to M2 relative phase (deg.), (e)

local M 6 to M2 amplitude ratio, and (f) local M 6 to M2 relative phase (deg.). Numerical

solution of (2.8), the fully nonlinear zero-inertia equation are circles; (2.40)-(2.41),
(2.44), the approximate analytic solution with a time-varying diffusion coefficient are

pluses. The solid line is unit slope, std is the standard deviation of the residuals from their

mean, and bias is the mean residual.

Figure 2.8. Tidal surface elevation parameters as a function of distance for the

tidal embayments at Chatham (pluses) and North Inlet (circles): (a) M2 amplitude divided

by M2 forcing amplitude, (b) M2 phase (deg.) relative to forcing M2 phase, (c) local M4 to
M2 amplitude ratio, and (d) local M4 to M2 relative phase (deg.). Field observations are

dotted lines; numerical solutions to (2.1)-(2.2), which include the inertia terms, are solid
lines; numerical solutions of (2.8), the fully nonlinear zero-inertia equation, are dashed

lines; (2.40)-(2.41), (2.44), the approximate analytic solution with a time-varying

diffusion coefficient, are dash-dot lines.

Figure 2.9. Comparisons of observations at 32 tide gauges in 12 tidal

embayments (see Table 2.3) to (2.40)-(2.41), (2.44), the approximate analytic solution of

the zero-inertia equation with a time-varying diffusion coefficient: (a) M2 amplitude

divided by M2 forcing amplitude, (b) M2 phase (deg.) relative to forcing M2 phase, (c)

local M4 to M2 amplitude ratio, and (d) local M4 to M2 relative phase (deg.). The solid

line is unit slope, std is the standard deviation of the residuals from their mean, and bias is

the mean residual.
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Chapter 3:

Stability Shear Stress and Equilibrium Geometry
of Tidal Channels and Tidal Embayments



- 56-

Abstract to Chapter 3

This study relates channelized tidal embayment morphology to flow properties via a
physical mechanism, namely the stability shear stress (-r,) at peak discharge just necessary

to maintain zero gradient in net along-channel sediment transport. A survey of the literature
provides estimates of peak discharge at spring tide (Q), channel cross-sectional area (A)

and hydraulic radius (hR) at 146 sections in 18 separate tidal systems for use in applying

this concept.
A theoretical lower bound on rs (and an upper bound on cross-sectional geometry)

is provided by the critical shear stress just capable of initiating sediment motion.
Application of critical shear stress theory predicts along-channel geometry will follow the

relation AhR116 - Q. Along-channel regressions of the form AhR'1 6 - Qp give a mean
observed value for f of 1.01±+0.04, which is indistinguishable from one and, therefore,
consistent with critical shear stress theory. However, the equation AhR"16 - Q is consistent
with any uniform value of along-channel rs, and observations indicate r, in individual

systems can vary widely above the value predicted by initiation of sediment motion.

Observed rs is found to vary among all systems according to the relation Ts

1.7 Rs,,0 .8 , where Rp (in meters) is spring tidal range, and Tc is the total shear stress at
the initiation of sediment motion. r, may vary with R, because of an associated increase
in sediment supply or because of a correlation between Rs and characteristic patterns of
discharge asymmetry. Observed deviations from uniform rs along individual channels are
associated with along-channel variation in the direction of maximum discharge. It is
hypothesized that a convergence in the direction of maximum discharge may cause

deposition, a reduction in A, and a local increase in U = Q/A until a locally increased r, is
reached which prevents further deposition. Geometries and discharge asymmetries along

several channels are observed to be consistent with this pattern.

Finally, an assumption of uniform along-channel T, is used to derive equilibrium

along-channel geometries for entire embayments as a function of storage in flats and marsh.
Theoretical predictions are consistent with published observations from Wrecked Recorder

Creek, Virginia, and the Ord River in Western Australia. The morphologic tendency
towards uniform rs has important ramifications concerning classical views of mass and
momentum balances, mechanisms for net sediment transport, and mathematical

formulations of along-channel mixing coefficients.
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List of symbols in Chapter 3

A channel cross-sectional area

b time-averaged embayment width

bobL batx=Oorx=L

bsuw b at spring high water

bsLw b at spring low water

d grain diameter

g acceleration of gravity

G specific weight of sediment in fluid

h cross-sectionally averaged depth

hR hydraulic radius

K eddy diffusivity

L total length of tidal channel

Le tidal excursion length

n Manning's friction coefficient

q discharge

Q peak spring q

Qebb peak spring q during ebb

Qflo peak spring q during flood

R o b, observed tidal range

RSP spring tidal range

s.e. standard error

I time

T semi-diurnal tidal period

u velocity

i depth-averaged u

U cross-sectionally averaged u

U, U at the initiation of sediment motion

w channel width

x along-channel co-ordinate

z height above bottom

zO length scale related to bottom roughness

Z amplitude of '

ZO,ZL Z at x = 0 or x = L.
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List of symbols in Chapter 3 (continued)

a regression coefficient for A - Qa
P regression coefficient for AhRI1 6 - QP
Af error in generic variable or functionf

C tidal elevation
K von Karman's constant

;'bAz constant describing exponential variation of b or Z
p fluid density

cOb,az constant describing power-law variation of b or Z
r total bottom shear stress
T grain shear stress
Tit form drag

TC T at the initiation of sediment motion
T'c iC at the initiation of sediment motion
Te erosion shear stress for cohesive mud
T'a Tic on channel bank of slope 0
Ts stability shear stress

VC critical Shields parameter
W tidal frequency

£2 spring tidal prism
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3.1. Introduction

Feedback between tidal channel morphology and tidal flow properties has long been
recognized by coastal engineers and geologists (see text by Bruun 1976, for example).
Deepening of tidal channels by dredging may reduce peak tidal velocity to a level below that
necessary for sediment transport, causing accelerated deposition and an eventual return to
an equilibrium channel depth. In contrast, a reduction of tidal prism by infllling or diking
of marsh or lagoons may reduce velocities at a tidal inlet and cause deposition, leading to a
smaller equilibrium cross-sectional area. Changes in channel morphology can occur on
rapid time scales, with inlet cross-sectional area fluctuating by 10-15% over only a few
days in response to variations in discharge due to storms or the spring-neap cycle (Byrne et
al. 1975). Geologists have also noted the long-term impact on channel morphology of
changes in tidal prism brought about by submergence or emergence of the tidal watershed
(Gardner and Bohn 1980).

Qualitative effects such as these have motivated many'investigators to relate
empirically the cross-sectional area of tidal channels and/or inlets to flow parameters, most
commonly to spring tidal prism (e.g., O'Brien 1931) or to peak spring discharge (e.g.,
Chantler 1974). For short inlet channels connecting bays or lagoons to the ocean, these
empirical controls have been synthesized with hydrodynamic relations, resulting in stability
curves for inlet cross-sectional area (e.g., Escoffier 1977; van de Kreeke 1990). Relatively
less attention has been paid to the morphodynamics of longer tidal channels typically
associated with the interiors of tidal marshes and with the lower reaches of tidal rivers. Yet
morphodynamic relations for these channelized tidal embayments are arguably simpler and
more closely related to fundamental physics. Tidal channels well within embayments are
isolated from the complicating effects of direct wave attack and littoral drift and are
generally subjected to less severe spatial gradients in tidal amplitude and phase than are
channels within tidal inlets.

The purpose of this study is to relate channelized embayment morphology to flow
properties via a physically-based mechanism, namely the "stability" shear stress (r.) just
necessary to maintain a zero gradient in net along-channel sediment transport. It is
assumed that if the peak shear stress during spring tides is locally greater than r,, then net
erosion will occur, whereas if it is less than r, there will be net deposition. At first the
problem is simplified by assuming stability is reached when grain shear stress is
everywhere equal to the critical level necessary for initiation of sediment motion. Resulting
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theoretical relations between cross-sectional area and peak spring discharge are compared to

observations from the literature taken at 146 cross-sections in 18 separate tidal systems.

Next, likely causes of observed deviations from this simplest application of r, theory are

discussed. Among tidal channels, increases in r, above that predicted by initiation of

sediment motion are found to be correlated with increased tidal range. Along-channel

variations in r, are hypothesized to result from systematic along-channel patterns of

velocity asymmetry. Finally, the above morphologic controls are combined with continuity

of fluid flow to predict equilibrium along-channel geometries for entire embayments.

Geometric predictions for entire embayments are compared to observations from two

systems which have previously been the subject of morphodynamic investigations, namely

Wrecked Recorder Creek, Virginia (Myrick and Leopold 1963), the Ord River in Western

Australia (Wright et al. 1973).

The present application of T, theory to tidal channel morphology involves several

simplifying assumptions. Primary among them is the assertion that bottom shear stress can

be related to the cross-sectionally averaged amplitude of the current. This requires density-

driven currents to be at most second-order, but does not require fresh water discharge to be

zero or even negligible. It is also assumed that contributions to bottom stress by wind-

driven currents and waves are negligible. Hence this analysis does not address the

equilibrium morphology of inlet channels exposed to sgnificant wave activity and/or littoral

drift. Another limitation of the present argument is its emphasis on non-cohesive sediment.

The simplest form of r, theory relies in part on the Shields entrainment function for the

initiation of grain motion (e.g., Yalin 1977) and other relations based exclusively on non-

cohesive material. However the Shields criterion can be replaced with another critical

erosion parameter based on studies of cohesive sediment (e.g., Dyer 1986), and the

fundamental results still remain.

3.1.1. Previous observations of equilibrium tidal channels

A survey of the literature (Table 3. 1) reveals about a dozen observational studies
which quantitatively relate cross-sectional morphology to flow along tidal channels or

through tidal inlets sheltered from offshore wave activity. Many of the authors in Table 3.1

noted cross-sectional area (A) to be nearly proportional to either spring tidal prism (12) or

peak discharge (Q) through relations of the form

A - DOa or A - Qa, (3.1.1a,b)
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where a - 1, and A corresponds to the time of peak Q. If discharge is assumed to be

sinusoidal, then

Q =L.Q , (3.1.2)
T

where T is the tidal period, and the two relations in (3.1.1) become interchangeable.
However, time-series of discharge in tidal channels are often strongly asymmetric,
especially in channels having large amplitude-to-depth ratios and in the upper reaches of
well-mixed channels having finite fresh-water input. For the purposes of this study, direct

observations of Q are preferable to estimates calculated via (3.1.2).

Figure 3.1 contains values for Q and A determined from information published in
the sources listed in Table 3.1. The discharges in Figure 3.1 are (in order of preference)

either (i) taken directly from published values of Q, (ii) calculated from published values of
cross-sectionally averaged peak velocity, U, such that

Q = A U, (3.1.3)

or (iii) calculated from published values of 12 via (3.1.2). Here Q is (ideally) defined as the
magnitude of maximum discharge under spring tide conditions. Where Q corresponds to a
known stage of the fortnightly cycle other than spring, then Q is scaled by the ratio of the
mean spring tidal range (R,,) to the range at the time of the discharge measurement (Robs).

R., is taken either from the sources in Table 3.1, from N.O.A.A. tide tables, or from
information on U.S.D.M.A. bathymetric charts. Where tides are of the mixed type (i.e.,
San Francisco and Oregon in Table 3.1), RSP is defined as the difference between mean
higher high water and mean lower low water. Errors in Q are estimated to be on the order

of 20%.

Wherever possible, A is the area of the wetted cross-section at the time of Q. More

often, however, the precise area at the time of Q is unavailable, and the cross-sectional area
below mean tide level is used instead. Nonetheless, errors in the measurement of A are
likely to be smaller than errors in the measurement of Q. Here A is estimated to be accurate

to within 5%. Table 3.1 includes only locations for which values for cross-sectionally
averaged depth (h) are also available. All but two of the sources in Table 3.1 include h
directly (or at least width, w, so that h = Aiw can be calculated). Widths for the Western
Scheldt sections were taken from Gerritsen et al (1991), and widths for the sheltered
Australian inlets were obtained from U.S.D.M.A. charts H.O. 3451 and N.O. 74183.
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Finally, the seaward-most cross-section of several of the channels (Alsen, Siletz, Yaquina,

Western Scheldt, and Ems) were purposely excluded from the analysis because of clear

morphodynamic alteration by ocean waves and associated littoral drift.

3.1.2. Previous explanations for proportionality of area and discharge

Published explanations for the near proportionality of A and Q in tidal channels

include maximum entropy (Myrick and Leopold 1963; Wright et al. 1973), uniform critical

velocity (Chantler 1974; Riedel and Gourlay 1981; Byme et al. 1981), a form of z, theory

based on plane bed flow (de Jong and Gerritsen 1985), or merely agreement with previous

empirical relationships (Goodwin et al. 1970; O'Connor et al. 1991). From an analogy to

thermodynamics, the maximum entropy hypothesis states that tidal channel geometry

adjusts toward a uniform distribution of energy dissipation and a minimum rate of work in
the system as a whole. Uniform energy dissipation can be re-expressed as a uniform

distribution of shear stress, a concep! which is consistent with the present study. Minimum

work, however, is not connected directly to the equations governing tidal flow and

sediment motion. Thus the maximum entropy hypothesis will not be pursued further in

this paper.

In its simplest form, the critical velocity (Uc) hypothesis states that A adjusts until a

characteristic cross-sectionally averaged U = Uc causes a bottom shear stress just capable

of dislodging material from the channel bed and banks (Chantler 1974). If U > Uc, net

erosion will increase the section's area, and U will decrease. Conversely, if U < Uc, net

deposition will decrease the section's area, and U will increase. This concept is more

properly termed critical shear stress theory since bottom shear stress, rather than U, is

dynamically linked to initiation of sediment motion. In open channel flow, boundary shear

stress is strongly dependent on U and weakly dependent on depth (Henderson 1966).

Thus Uc should vary weakly as a function of depth among tidal channels as well as along

,he length of individual channels. In fact, the mean value of a in Table 3.1 is a bit less than

one, suggesting a slight decrease in U typically occurs as Q and depth decrease together

along the length of individual channels.

Krishnamurthy (1977) applied a criterion related to critical shear stress theory to his

study of tidal inlet morphology in the absence of littoral drift. Krishnamurthy suggested

that for morphologic equilibrium, the time-averaged magnitude of bottom shear stress in the

inlet should be no greater than the critical value required for sediment motion In the study

of bed load transport by tidal currents, however, it is generally agreed that the peak value of
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bottom shear stress is a more relevant parameter than its time-averaged magnitude (e.g.,
Bruun 1967; Pingree and Griffiths 1979).

The form of r, theory applied by de Jong and Gerrittsen (1985) was originally
developed for tidal inlets subject to significant littoral drift (Bruun and Gerritsen 1960;
Bruun 1967). Bruun (1967) observed U to be 1 m/s ±15% at seventeen sandy inlets of
various sizes distributed across northern Europe and the east, west and Gulf coasts of the
United States. According to Bruun, A adjusts until the total bottom shear stress produced

by U flushes away the most possible sediment with the least possible frictional loss. In
many inlets, U - I m/s is just sufficient to flatten dunes and produce a plane bed, thereby
applying the maximum portion of available total shear stress directly to the bottom material.
A similar mechanism may apply to tidal channels which are subjected to large inputs of
sediment. However a stability theory based solely on plane bed flow is inadequate for a
generalized study, for U is well below I m/s in many stable tidal channels.

3.2. Stability shear stress given by critical shear stress

In this study, shear stress (r,) is defined as the total bottom shear stress just
necessary to maintain a zero along-channel gradient in net sediment transport. The lower

bound on rs can be derived from the condition f-' f ,, where f is maximum grain shear
stress and f, is the critical grain shear stress necessary for initiation of sediment motion.
This end member is the simplest form of Ts theory and is also known as critical shear stress
theory. In this section, previous applications of critical shear stress in unidirectional flow

are briefly reviewed. Critical shear stress theory is then applied to the equilibrium
geometry of tidal channels. Finally, theoretical predictions of cross-sectional geometry
versus discharge are compared to observations from 146 cross-sections in 18 separate tidal
systems.

3.2.1. Insight from unidirectional flow

Critical shear stress theory has long been applied to the design of stable canals
under conditions of unidirectional flow (e.g., Lane 1955; Henderson 1966). Where zero
scour of the canal beds and banks is desired, the limiting design condition is that i' is no
greater than f'c at any point of the channel boundary. However, more recent investigations
of self-formed sand channels (Parker 1978; Diplas 1990) indicate a dynamic equilibrium is
possible only if f' is slightly greater than fc, therefore allowing the presence of a small but
finite bedload. This is inconsistent with a critical shear stress theory based solely on the
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initiation of sediment motion, in that r'> t, should cause erosion of the channel banks and

instability. To allow f > T', while maintaining equilibrium, a lateral diffusion mechanism

supplements the critical shear stress model (Parker 1978; Diplas 1990). In the presence of

finite bed load transport, lateral diffusion of momentum due to turbulence continually

moves grains from the channel axis toward the channel banks, counteracting the bank

erosion caused by r> >'c. Laboratory experiments with self-formed sand channels

confirm that at equilibrium, f along the channel axis is up to 15% greater than ic (Diplas

1990).

In this investigation it is assumed that a single representative value for critical shear

stress may be reasonably applied to the entire perimeter of the tidal channel. Actually, ic

will be somewhat lower on steep portions of the channel bank due to the disturbing force of

the grain's weight resolved down the bank slope. A balance of forces on a non-cohesive

grain shows that the shear stress for initiation of motion on the bank (f 0) relative to that on

a flat bed (4c) is given by

c-a = Cos 0,I - tan2o (3.2.1)

r'c tan 2 '

where 0 is the bank slope angle, and , - 30" is the angle of repose of the sediment

(Henderson 1966). The derivation of (3.2. 1) requires the dynamic lift force on the grain to

be small with respect to the drag force, an assumption consistent with the results of

laboratory experiments (Ikeda 1982). The mean width-to-depth ratio of cross-sections

used in Figure I is 150, so the (larger than bedform scale) slope of the channel bcd may be

assumed to be negligibly small over the vast majority of any typical section.

3.2.2. Application to tidal channels

Critical shear stress theory is used to constrain the form of equilibrium tidal channel

cross-sections as a function of discharge via the following steps: (i) relating U = QIA to

total bottom shear stress, r, (ii) relating r to grain shear stress, f, and (iii) requiring r' =

iec at equilibrium.

If flow is assumed to be steady, two-dimensional, uniform and fully rough

turbulent, then the familiar log-layer solution can be derived via dimensional analysis (e.g.,

Yalin 1977):

U I n (it-) (3.2.2)
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where ic - 0.4 is von Karman's constant, p is fluid density, z is height above the bottom,

and zo is a length scale related to the bottom roughness. Integrating (3.2.2) over the depth

of the water column, h, gives

jii V In IJ (3.2.3)

where U is depth-averaged velocity. If T is constrained to equal some critical value at

equilibrium, (3.2.3) indicates that depth-averaged velocity should decrease weakly with

decreased h.

An alternative equation for well-behaved flow in open channels is given by the
more empirically based Manning-Strickler formula (e.g., Henderson 1966):

SA- .n g R (3.2.4)

where g is the acceleration of gravity, n is Manning's friction coefficient (with metric units

of m-1 /3s), and hR is the hydraulic radius of the channel. Whereas (3.2.3) assumes

uniform two-dimensional flow, (3.2.4) is based on observations of three-dimensional flow

in natural rivers and large man-made channels. The form of (3.2.4) inherently incorporates

the effects of cross-channel depth variations and channel bends. Furthermore, r in (3.2.4)

can be treated as a characteristic total bottom shear stress for the cross-section as a whole.

Thus (3.2.4) will be used in this study to relate U to r. According to Henderson (1966,
Table 4-2), typical values of n for natural rivers are 0.025 to 0.030 m-1/3s for "clean and

straight" channels and 0.033 to 0.040 m-1/3s for those that are "winding, with pools and

shoals". A reasonable value of n for equilibrium tidal channels, then, should be about

0.03±0.005 m'1/s.

Following the suggestion of Einstein (1950), total shear stress (r) is typically

related to grain shear stress (f') by r = f + e", where r" is bedform drag. A survey of the
literature reveals relatively few direct measurements of the ratio f'/r over naturally formed

bedforms (Table 3.2). The few values that have been reported over sand range widely

from less than 0.1 to nearly 0.7. Some of the disagreement in Table 3.2 results from the

precise location of measurement. Kapdasli and Dyer (1986) measured '/T directly above
the ripple crest, where r" is largest. The other measurements in Table 3.2 are spatially

averaged. In their review paper, Engelund and Fredsoe (1982) suggest that when r' is

only slightly greater than T'c, '/r i- 0.5 in the presence of ripples and r'/r - 0.3 in the
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presence of dunes. Since spatially averaged values of ii/ are needed here, a reasonable

estimate for tidal channels in non-cohesive sand should be 0.4±0.2.

For uniform, non-cohesive sediment under rough turbulent flow, dimensional

analysis indicates the following relation should hold at the initiation of sediment motion

(e.g., Yalin 1977):

WC = .'. (3.2.5)
pgGd'

where G is the specific weight of the sediment in fluid, d is the grain diameter, and the

dimensionless constant Vc is the critical Shields parameter. Experimental work by Shields
(in Yalin 1977) indicates •Vc = 0.05±0.01. Combining (3.2.4) and (3.2.5) by setting r' =
,'c finally gives the following upper bound on equilibrium cross-sectional geometry as a
function of discharge and other "independent" variables describing sediment and roughness

characteristics:

A hR1/6 = Qn-e) 1/2, (3.2.6)

where the total critical shear stress, re, is given by

"c = VcP g G d(). (3.2.7)

3.2.3. Comparison to observations

To compare (3.2.6) to the observations in Figure 3.1, several additional

assumptions are necessary. The density of the sediments is assumed to be well represented

by quartz, for which G = 1.65. Because of the large width-to-depth ratio of the channels,
it is reasonable to equate hR to the mean depth of the cross-section, h. Errors in Q are

estimated to be 20%, whereas A and h are assumed accurate to within 5%. Likely variance
in n and e/r are somewhat larger, as discussed in the previous section. However the least

constrained variable is d.

Table 3.3 lists the few sources from Table 3.1 which provide bottom sediment

information. Four sources indicate fine-to-medium sand bottoms, one indicates cohesive

mud, and one indicates bottom sediment which is "highly organic and black and has a

texture not immediately obvious in the field" (Myrick and Leopold 1963, p.4). Of course

(3.2.7) is not relevant to mud bottoms, for which the issue of cohesion must be addressed,

and likewise for "highly organic" sediment. In applying (3.2.6) - (3.2.7) to the four
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systems with bottom sediments that are known to be non-cohesive, reasonable
approximations for d are used (Table 3.3). Otherwise, d = 2±1 phi is chosen, where phi =
- log2(d in mm). This choice is centered at d = 0.25 mm, and includes the range typically

defined as fine to medium sand (1/8 to 1/2 mm). Using d = 2 phi, along with p = 103

kg m-3 and the previously discussed values for V,, G and f/r, gives r, = 0.5 N m-2 with
upper and lower error bounds of 0.1 N M-2 and 1.1 N M-2, respectively.

If critical shear stress theory is applied to cohesive sediment, a frst-order result is
given by evaluating (3.2.4) using the magnitude of critical erosion shear stress (re)
typically observed above mud bottoms (e.g., Partheniades 1965; Dyer 1986). According
to Dyer (1986), the thin layer of loosel], held mud flocs typically found at the surface of
quiescent mud bottoms generally erodes at T - 0.1 N m-2. Once this layer has been
suspended, the underlying mud deposit generally has a er of about 1 N m-2 . Setting r = r,
in (3.2.4) gives the following expression for cross-sectional geometry:

A hR116 = Qn (P)1. (3.2.8)

In evaluating (3.2.8), n is again chosen to be 0.03±0.005 m-1/3s, since the

application of Manning's n to natural channels appears to be insensitive to bottom sediment

type within the mud to sand range (Henderson 1966). Partheniades (1965) found rapid

erosion of San Francisco Bay mud occurred after a critical shear stress of about 0.5 to 1.3

N M-2 had been exceeded. Thus r. is chosen here to equal 0.9±0.4 N m-2. Equation

(3.2.8) admittedly neglects the role of bedform drag. However the value of f/r applied to

(3.2.6) - (3.2.7) is for non-cohesive sand only and cannot confidently be used in deriving

(3.2.8).

Figures 3.2 and 3.3 display (3.2.6) and (3.2.8), along with error bounds, super-

imposed on the field observations. The propagation of normally distributed, random error

in (3.2.6) and (3.2.8) is determined by the relation (e.g., Young 1962):

,df2 = -ýf ý 2 + (2 4b 2 + (3.2.9)

where zf is the error in f, dia and Ab are the errors in a and b, andf =f(a,b, ...). For the

error bounds in curves in Figure 3.2, uncertainty is considered in both the abscissa and the

ordinate. Thus
f = A hR1/6  Lc_ )1/2 (3.2.10)

Qn ýPg "
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Applying (3.2.7) then gives

(4Yh = 14A (3.2.11)

The error analysis for Figure 3.3 is identical, replacing T, for zt.

Within error bounds, (3.2.6) roughly predicts the geometric parameter AhR'1 6 as a

function of Q and the other "independent" variables (Figure 3.2). More than h•-f of the

cross-sections fall within the error bars of (3.2.6). However most of the sections fall

below the line predicted by (3.2.6), and many fall entirely below the range of the likely

error. As was earlier emphasized, critical shear stress theory only provides a lower bound

on r, and, therefore, an upper bound on equilibrium geometry. It is reassuring to note that

none of the observations in Figure 3.2 fall above the error bounds.

The error bounds on (3.2.8) encompass fewer of the observations (Figure 3.3).

Again, available information (Table 3.3) suggests the majority of the tidal channels in Table

3.1 are not formed in cohesive mud. However (3.2.8) also under-predicts AhR1/ 6 for

many cross-sections, including most of those known to be floored by cohesive material

(Figure 3.3). Thus r, may be an overestimate of the r, appropriate to some mud channels.

Except for the error bounds, (3.2.6) and (3.2.8) produce similar curves. This explains

why (3.2.6) in Figure 3.2 also encompasses the cross-sections known to be formed in

cohesive material.

Thus critical shear stress theory provides a reasonable upper bound for the

observed relationship between peak discharge and cross-sectional geometry of tidal

channels, at least for channels in non-cohesive sediment. For both cohesive and non-

cohesive sediment, the theory predicts that at equilibrium, tidal channel geometry will

follow the relation

AhR1/6 - Q. (3.2.12)

If regressions of the form AhR 1/6 - QP are applied to the individual systems in Table 3.1,

then the mean value for p is I..01±0.04 (Table 3.4). This value is indistinguishable from

one and, therefore, consistent with critical shear stress theory.
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3.3 Deviations of stability shear stress from critical shear stress

3.3. 1. Deviations among channels

Cross-sections from systems having small Q fall about evenly on either side of
(3.2.6) and (3.2.7) in Figures 3.2 and 3.3. However cross-sections with larger Q fall

consistently below the theoretical curves. This qualitative trend is confirmed statistically if

a least-squares regression of the form AhR116 - (Q,'lfl2)P is performed on all the cross-

sections at once. (,- 112 is included in the regression because zc can vary between systems
as a function of d.) The regression shows P-- 0.90-0.01, rather than P = I as predicted by
critical shear stress theory. Yet the mean along-channel value for p is statistically

indistinguishable from one (Table 3.4). This supports a second form of r, theory, namely

that r• tends to be uniform throughout any one channelized tidal embayment, but may have

a value greater than that required for initiation of sediment motion.

Even though large Q is associated with over-prediction of AhR"16 in Figures 3.2

and 3.3, Q is probably not the variable directly responsible for the observed deviation. If
the misfit were directly a result of increasing Q, then along-channel variations in Q, which

can be several orders of magnitude, should also cause fl < 1. Here it is postulated that

among different systems, consistent deviations from a single theoretical curve are largely

due to differences in spring tidal range. Unlike Q, RSp is nearly constant throughout
individual systems and is therefore compatible with uniform along-channel behavior of

AhR' 1 6. Thus the population-wide Q-dependent deviation may largely be the result of a

fortuitous correlation between Q and Rp.

Figure 3.4 displays mean (log-space) deviations from (3.2.6) as a function of R.,

for each system in Figure 3.2 along with the best-fit log-log least-squares regression. The

best-fit curve with standard errors is (with Rp in meters):

Ah 16 r 1~/2
A hR' = (0.77±0.13) Rsp-0.39 ±0.14 (3.3.1)

Qn P

Or equivalently,

A hRt/ 6 = Q n (' g), 1 (3.3.2)

where

r, = (1.7±0.4) Rsp0.8±0.3 rc • (3.3.3)
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Since rc has already been shown to provide a reasonable lower bound on r,, it is sensible

to apply (3.3.3) only to those systems with tidal ranges large enough to give , > ,r. Thus

(3.3.3) applies only to systems with RP > -0.5 m. Tidal channels with R# < 0.5 m can

be expected to have a system-wide r, about equal to rc. For systems with Rp > 0.5,

however, system-wide r, typically increases as a function of Rsp.

Figure 3.5 displays (3.3.2) - (3.3.3) superimposed on all of the field observations,

with error bounds again determined via (3.2.9). The observations in Figure 3.5 fall about

evenly on either side of (3.3.2), suggesting (3.3.2) provides a reasonable mean value for

cross-sectional geometry as a function of discharge, not jus' ,n upper bound. If a
regression of the form AhR116 - (Qr,-i/ 2 ) Pis performed on all the cross-sections, the result

is p = 0.95_+0.01, which is significantly closer to one. Propagation of error in (3.3.2) -

(3.3.3) is a function of tidal range, which cannot be shown directly on Figure 3.5. The

error bounds in Figure 3.5 are therefore determined by averaging the error bounds given by
(3.3.2) - (3.3.3) for each observed tidal range.

Stability shear stress may vary with R,, partly due to the nature of the analysis used

in this study. It is possible that the methods used overestimate the value of Q most relevant

to equilibrium morphology in channels with large RS, and underestimate the most relevant

Q in those with small Rp.. First, the ratio of spring to mean tidal range generally increases

with tidal range. On the Potomac (R~p = 1 m) spring range is only 10% greater than the

mean range, whereas on the Tamar (Rsp = 4.7 m) it is 36% greater, and on the Usk (Rsp =

12 m), it is 45% greater. If the most relevant discharge is actually a weighted average of all

discharges, then use of spring discharge alone will tend to overestimate rs in channels with

large tide ranges. Second, systems having small tide ranges may be more sensitive to

morphologic change by non-tidal forces. The occasional flood or storm surge is more

likely to overflow the banks of a smaller tide range channel and cause more severe erosion.

Neglecting non-tidal forces may underestimate the most relevant Q (and thus underestimate

AhR116) in channels with small tide ranges.

Stability shear stress may also be a true function of spring tidal range. Salt

marshes, which often act as sediment traps, are sensitive to tide range and generally do not

extend below about one meter of the mean high water line (Frey and Basan 1985). The
larger the tidal range, the smaller the relative area of sediment-trapping marsh and the larger

the likely expanse of exposed sediment in intertidal flats. These properties may result in a

greater sediment supply to the channels. The relative "clogging" of the channel with
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sediment may decrease cross-sectional area and increase U = QIA until a -rs > rc is reached

which can disperse the sediment as fast as it is supplied. Tide range is also associated with

characteristic patterns of tidal distortion, which, in turn, should favor increased or

decreased channel cross-sectional area at equilibrium. All else being equal, channels with

small tide ranges tend to be ebb-dominant, whereas channels with large tide ranges tend to

be flood-dominant (Friedrichs and Aubrey 1988; Chapter 2 of this thesis). Ebb-dominant

channels will tend to flush sediment out of a system more effectively, decreasing the level

of T, otherwise needed to prevent shoaling. Flood-dominant systems will tend to trap

sediment within a tidal channel, increasing the needed level of r,.

3.3.2. Along-channel deviation

An assumption of uniform r, along the length of individual tidal channels leads to

the relation AhR116 - Q. Along-channel deviations from AhR 1/6 - Q are measured by a

least-squares fit of AhR116 - QP to the cross-sectional data from a single system. If 0 > 1,

AhR"16 will be larger than predicted near the seaward end of the channel where Q is high

and smaller than predicted near the landward end of the channel where Q is low. If the

channel is stable, then P > I also implies that r, decreases in a seaward direction. If p3 < 1,

then the opposite is true, and r, decreases in a landward direction. In the previous section

it was suggested that ebb- or flood-dominant discharge could cause an entire system to

have a higher or lower Ts. In this section it is suggested that along-channel variations in

discharge asymmetry can lead to along-channel variations in rT.

If the seaward portion of a tidal channel is flood-dominant while the landward

portion is ebb-dominant, then a spatial convergence in the direction of maximum discharge
will cause a localized increase in sediment concentration. This process has been

documented previously as a "tidal turbidity maximum" in such tidal rivers as the Gironde in

France (Allen et al. 1980) and the Tamar in the U.K. (Uncles and Stephens 1989; Stephens

et al. 1992). Seaward of the turbidity maximum, flood-dominance brought about by a

large tidal range-to-depth ratio favors landward movement of sediment; landward of the

turbidity maximum, ebb-dominance brought about by fresh water discharge favors seaward

movement of sediment. The resulting turbidity maximum is observed to migrate along-

channel as seasonal variations in fresh water discharge cause displacement of the

convergence point.

Both Allen et al. (1980) and Stephens et al. (1992) used I-D numerical models to

study the hydrodynamics associated with tidally-induced turbidity maxima. When using
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realistic along-channel geometries from the Gironde and the Tamar, both of their models

predicted a localized increase in maximum shear stress associated with a rapid constriction
in cross-sectional area. In each case, maximum shear stress was predicted to decrease
landward and seaward of this point. For both the Gironde and the Tamar this fixed region

of increased shear stress was found to be in the general vicinity of the previously observed,
migrating turbidity maximum. Both studies suggested that this local increase in shear

stress may enhance resuspension in the vicinity of the migrating turbidity maximum.

Here it is argued that the tidal turbidity maxima and locally increased stress are
morphodynamically related and may help explain observed deviations from P3 = I along

some stable tidal channels. Evolution towards equilibrium might proceed as follows:
First, an along-channel switch from ebb- to flood-dominance favors collection of sediment

at a tidal turbidity maximum. Then deposition at the turbidity maximum reduces cross-

sectional area, locally increasing U = Q/A and, therefore, increasing maximum bottom

shear stress. Ultimately, A is decreased until a r, is reached which prevents further
deposition and effectively disperses sediment as fast as it is supplied. At equilibrium, T,
will decrease both seaward and landward from the transition from flood- to ebb-

dominance.

If a stable channel is examined seaward of the switch from ebb- to flood-
dominance, then a seaward decrease in T, should cause P > 1 and be associated with flood-
dominant discharge. Conversely, a decrease in r, landward of the transition should cause 03
< I and be associated v"i ebb-dominance. The larger the tidal range, the farther inland

this transition from 3 > I to P3 < I should occur, and the more likely a fit to all the cross-

sections will give p > 1. These trends seems to borne out iy Table 3.4 which indicates that
the six channels with Rsp > 4 m all have P3 ? 1. Of these six channels, sufficient
information is available to calculate ratios of flood-to-ebb peak discharge (QflodfQebb)

along the Ord, Western Scheldt and Tamar. Average values for QfloodQebb at sections
along these three tidal channels are 2.0, 1.5 and 1.2, respectively, confirming an

association of flood-dominance with 3 > 1. The relatively low value of P = 1 for the high

tide range Thames (Rsp = 5.2) may be due to a sampling of cross-sections on both sides of

the transition from flood- to ebb-dominance. Figure 5.6 displays AhR"16 as a function of Q
for the Thames as predicted by (3.3.2) - (3.3.3). A least-squares fit of AhR116 - QP to the

seven most seaward sections gives /3> 1, while a fit to the three most landward sections

gives /i < 1.
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All of the tidal channels subject to tides of mixed type (San Francisco and the three
Oregon channels), have p < 1 (Table 3.4). This may be due to a systematic association of

mixed tides with ebb-dominance. In a mixed-tide regime, the lower low tide usually
follows the higher high tide, causing the largest changes in tidal elevation to occur

consistently during the ebb. However this consideration is merely speculative. The
unusually low values for P in the Oregon channels could also result from choking of the

seaward end by littoral drift even beyond the most seaward cross-section (the seaward-

most section of each Oregon channel has already been dropped from the analysis).

3.4. Application to embayments

In this section uniform along-channel r, theory is used to derive equilibrium along-
channel geometries for entire embayments. If the embayment length is much less than the

tidal wavelength, then continuity of fluid flow may be applied kinematically to determine

along-channel discharge as a function of intertidal storage in areas such as tidal flats or

marshes. A known distribution of along-channel discharge then can be combined with

results from the previous section relating AhR1" 6 to Q. In the following sub-sections
relations for embayments with exponential and power-law storage areas are first derived

theoretically and then compared to observations from actual exponential and power-law

embayments, namely Wrecked Recorder Creek, Virginia (Myrick and Leopold 1963) and
the Ord River in Western Australia (Wright et al. 1973).

3.4.1. Theory

In tidal channels where the length of 1 wave is much greater than the length

of the channel, spring tidal elevation (6) and .;ge (q) at the dominant tidal frequency

are reasonably described by

S= Z(x) cos wt, and q = Q(x) sin wt, (3.4.1)

where wo = 2,r'T, and x - 0 at the landward end of the embayment. Any contributions from

fresh water discharge are neglected. The linearized continuity equation for channelized

flow in tidal embayments with intertidal storage in flats or marsh is given by

b LC+q = 0, (3.4.2)at ax
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where b is the time-averaged total system width (including storage regions), and q is

confined to the central tidal channel. Substituting (3.4.1) into (3.4.2) then gives

bZ -, or Q = b Z dx'. (3.4.3a,b)
or 01 d

When evaluating (3.4.3), tidal embayments are considered with observed b(x) and
Z(x) which may be crudely described either by a power law, i.e.,

b = bL(-) Ob, and Z = ZL (X) z, (3.4.4a,b)

or by an exponential relation, i.e.,

b = boe4x/L. and Z = Z7oezx/L. (3.4.5a,b)

(Figure 3.7). The subscripts 0 and L indicate values at x = 0 and x = L, and ab,, a, z and

, are dimensionless constants describing the rate of expansion of the storage area and rate
of growth of tidal amplitude with distance.

Introducing (3.4.4) and (3.4.5) into (3.4.3b) and integrating gives

Q = bL (3.4.6)

for power-law embayments, and

Q =LZobo (e(;b++k)xL l} (3.4.7)

(Ab + Az)

for those following an exponential relation. Finally, (3.3.2) is used to eliminate Q,

yielding

Apg 1 /2 (aLZLbL (L=((0b+Oz+I) (3.4.8)
S= '?s (ob+ r. + 1) LI

and

A R16 = n~ (ýP)l/2 (oLZobo (e(4 + )x/L- 1) (3.4.9)

for power-law and exponential systems, respectively.
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3.4.2. Comparison to observations

Observations from Wrecked Recorder Creek (Figure 3.8) and the Ord River (Figure

3.9) are chosen for comparison to (3.4.6) - (3.4.9) because of the detailed morphologic

information available (Myrick and Leopold 1963; Wright et al. 1973) and also because of

their reasonable correspondence to idealized power-law and exponential relations for

intertidal storage area. Figure 3.10 displays best fits of (3.4.4) and (3.4.5) to observations

of b and Z as a function of along-channel distance. Values for Z along the Ord are

observed M2 amplitude scaled by the ratio Rsp,,Robs (see Table 3.1). Wrecked Recorder

Creek is so short that Z is constant along channel, and a, = 0.

Time-averaged widths are calculated as b = (bSHW + bsLw)12 , where SHW and

SLW indicate spring high and low water. Estimates of bSHW are made by dividing the

surface area between each "storage segment boundary" in Figures 3.8 and 3.9 by the length

of each channel segment. bSLW is assumed equal to the average value of w for each

segment. The areal extent of tidal marsh drainage into Wrecked Recorder Creek (Figure

3.8) is inferred from the positions of neighboring tidal Creeks also depicted by Myrick and

Leopold (1963). The areal extent of intertidal flats adjacent to the Ord is clearly shown by
Wright et al. (1973).

Best-fit values for the geometric parameters in (3.4.4) - (3.4.5) are bo = 430±120

m, Ab = 3.7±0.4, Z0 = 0.63_+0.23 m and )4 = 1.6±0.5 for the Ord River, and bL = 210±30

m and ab = 0.17_+0.10 for Wrecked Recorder Creek. ZL for Wrecked Recorder Creek is

assumed to equal to Rspl2. Figure 3.11 shows (3.4.6) and (3.4.7) superimposed on

observations of Q as a function of distance along the Ord and Wrecked Recorder Creek.

The M2 tidal period is used to calculate , and propagation of error is once more calculated

via (3.2.9). The excellent agreement confirms that the intertidal storage areas of these

systems may be represented adequately by a simple power-law or exponential relations.

The minimal scatter in Figure 3.11 should not be too surprising, however. Because Q(x) is

an integration of b(x), Q(x) will naturally be "smoother" than b(x).

In order to compare (3.4.8) and (3.4.9) to observations, rs must first be estimated.

From (3.2.7) and (3.3.3),
'r.= 1.7 Rsp8vcpgG"Gr. (3.4.10)
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To evaluate (3.4.10), the same values for v, p, G and z/e that were used in earlier

sections are applied once more. Then the relatively large tidal range (RSP = 5.9 m) and

coarse sediments (d - 0.35 mm) in the Ord give a prediction of r, - 5 N M-2 with lower

and upper bounds of I and 10 N m- 2. The smaller tide range at Wiecked Recorder Creek

(RSP = I m) and unknown sediment properties (i.e., let the equivalent d - 0.25 mm) lead to

a best guess of -r. - 0.9 N m-2 with lower and upper bounds of 0.2 and 1.9 N m- 2.

Figure 3.12 shows plots of AhR"I6 predicted by (3.4.8) - (3.4.9) superimposed on

observations from the Ord and Wrecked Recorder Creek. The observed cross-sectional

geometries as a function of distance along-channel are well within error bars and, therefore,
are consistent with the predictions of uniform r, theory. The error bars in Figure 3.12 are

based solely on uncertainty in the prediction of r, by (3.4. 10). Uncertainty in the estimates

of Q(x) and n have been purposely excluded to emphasize the huge possible range in rT.

More accurate predictions of r, are not possible without further constraints on such
variables as sediment type, form drag, and the correlation of T, with tidal range. Though

the likely magnitude of any system-wide T, is poorly constrained, the successful

reproduction of the form of along-channel variation in AhR1/ 6 supports the concept of a

system-wide nearly uniform r•. Further work is warranted to understand better the large
variations in characteristic T, among different tidal channels.

3.5. Further implications of uniform stability shear stress

This study demonstrates the tendency of tidal channels to minimize along-channel

variations in U by morphodynamically adjusting toward a uniform distribution of r,.

Uniform U and r have important ramifications concerning classical views of mass and
momentum balances, mechanisms for net sediment transport, and formulations of along-

channel mixing coefficients.

Morphologic equilibrium directly affects the appropriate scaling of the continuity

equation given by (3.4.2). When modeling channelized tidal embayments analytically, it is

common practice to assume a prismatic channel and express continuity as

b-- + A-x = 0. (3.5.1)
at ax
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However, a channel near morphologic equilibrium will have nearly uniform along channel

velocity. Assuming the length of the tidal wave is much greater than the length of the tidal

channel, then (3.4.2) should be approximated more properly as

b - + u d& = 0. (3.5.2)

at dx

The hydrodynamic implications of (3.5.2) are discussed in Chapter 4 of this thesis.

In the momentum equation, uniform U obviously minimizes the contribution of

advective acceleration to the momentum balance. In fact, the scaling which allows

formulation of continuity as (3.5.2) also indicates that local acceleration must be much

smaller than the pressure gradient (see Chapter 4). The only term left in the 1-D

momentum equation which can balance pressure at lowest order is friction. The result is a

zero-inertia equation in momentum that, when combined with (3.5.2), yields a first-order

wave equation for elevation or velocity. This equation and the form of its solutions diverge

from the classical wave equation for tides and the conventional view of tidal co-oscillation

(see Chapter 4).

Uniform r, is also affects classical models for net sediment transport based on

"scour lag" and "settling lag". According to Postma (1961), as a waning current falls

below the speed necessary for sediment suspension, a sediment particle will continue to

travel landward because it takes some time for the particle to reach the bottom (settling lag).

After the turn of the tide, the particle will not be re-suspended until later in the tidal cycle

because the bottom shear necessary for resuspension is significantly higher than that

necessary for suspension (scour lag). As long as there is a landward decrease in r, these

mechanisms will result in net landward sediment transport. If T does not decrease

systematically in a landward direction, however (and uniform r, theory suggests it often

does not), then settling lag and scour lag will be about the same on the ebb and the flood,

and these lags will not cause net sediment transport.

Uniform T, also impacts the analytic prediction of eddy diffusivities based on the

distribution of tidal currents and tidal excursions. In tidal estuaries, the eddy diffusivity,

K, has been predicted to be proportional to the tidal excursion, Le, times the velocity

amplitude, U (Arons and Stommel 1951). If a short tidal channel is assumed to be

prismatic, then U and Le will both be proportional to x/L, and, therefore, K - (x/L)2

(Arons and Stommel 1951). If the tidal channel is near equilibrium, however, U and L,
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will be nearly uniform. Thus K - UL, should be nearly constant along an equilibrium

channel, rather than proportional to (x/L)2.

3.6. Summary and conclusions

A survey of the literature allows estimates of peak spring discharge and cross-

sectional geometry at 146 sections in 18 separate tidal systems. Previous explanations for

the near proportionality of cross-sectional area (A) and discharge (Q) include maximum

entropy, uniform critical velocity, and a propensity toward plane bed flow. The purpose of

this study was to relate channelized tidal embayment morphology to flow properties via a

more robust, physical mechanism, namely the stability shear stress (,s) just necessary to

maintain a zero gradient in net along-channel sediment transport. It is assumed that if r >

T,, net erosion will occur, increasing A, and reducing T - (Q/A) 2 back toward rT. If r < T,

there will be net deposition, reducing A and increasing r toward rT.

A theoretical lower bound on T, (and an upper bound on A) is provided by the

condition f = iT, where r' is maximum grain shear stress and f, is the critical grain shear

stress necessary for initiation of sediment motion. Critical shear stress theory is applied to

equilibrium tidal channel geometry by (i) relating U = QIA to r via the Manning-Strickler

equation, (ii) relating total shear stress, r, to T' via empirical ratios observed in the

literature, and (iii) determining e' = f', from the Shields criterion for the initiation of

sediment motion. For cohesive sediments, r is assume to equal r, at equilibrium, where re

is the magnitude of critical erosion shear typically observed above mud bottoms.

Comparison to observations indicates f' = r'e does a reasonable job of predicting

equilibrium cross-sectional geometry in general and an excellent job of predicting the upper

bound on likely geometry. Error bars on likely geometry are large due to uncertainties in

sediment grain diameter and in the appropriate value for *r. Except for error bounds, T, =

f'c and T = r, produce similar curves. In either case, uniform critical values for r predict

that at equilibrium, along-channel geometry will follow the relation AhR116 - Q, where hR

is the hydraulic radius. Along-channel regressions of the form AhR116 - Q0 give a mean

observed value for / of 1.01±0.04, which is indistinguishable from one and, therefore,

consistent with critical shear stress theory.

Although along-channel geometry agrees, on average, with the prediction AhR'1 6 -

Q, the uniform T, appropriate to individual systems can vary widely above that predicted by

f'= re. Observed T, is found to vary among systems according to the relation rs - 1.7
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RspO°8 rc, where Rp (in meters) is spring tidal range, and rc is the total shear stress when

f = 4c. r, may vary with R3P because of the decrease in sediment-trapping vegetation and
increase in exposed flats associated with large Rsp. An increased sediment supply may
"clog" the channel, increasing the Ts necessary for effective sediment dispersal. Also,

small Rsp favors ebb-dominance, whereas large Rsp favors flood-dominance. Ebb-

dominance may aid the flushing of sediment, decreasing s, whereas flood-dominance may

enhance shoaling and increase rs.

Observed deviations from AhR 1 6 ~ Q along individual channels are associated with
a convergence in discharge asymmetry. It is hypothesized that a spatial convergence in the

direction of maximum discharge may cause net deposition, a reduction in A, and a local

increase in U = QIA until a T, is reached which prevents further deposition. In a stable

channel, Ts will then decrease both seaward and landward of the convergence point. If a

regression of the form AhR' 16 - QP is applied along such a channel, one should find P > I
associated with flood-dominance landward of the maximum in rs and f/ < 1 associated with

ebb-dominance seaward. Geometries and discharge asymmetries along several channels

are observed to be consistent with this pattern.

An assumption of uniform along-channel T, is used to derive equilibrium along-

channel geometries for entire embayments. Assuming the embayment to be short relative to

the tidal wavelength, continuity of fluid flow gives along-channel Q as a function intertidal
storage in flats and marsh. Previously derived relations between AhRI16 and Q then predict

equilibrium AhR1/ 6 as a function of distance along channel. Theoretical predictions are
consistent with published observations from Wrecked Recorder Creek, Virginia, and the

Ord River in Western Australia.

Finally, consideration of uniform -s calls into question classical models for first-
order mass and momentum balances, likely mechanisms for net sediment transport, and

analytic expressions for along-channel mixing coefficients commonly applied to real tidal

channels.
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Table 3. 1. Data for tidal channels and sheltered inlets.

Location Source # of Robs Rs A - Qa
Sects. (m) (z a S.e.

Wrecked Recorder Myrick & Leopold 6 1.1 1.0 1.04 0.08
Crk., Virginia, USA (1963), Tab. 3

Creek off San Pestrong (1965), 10 2.4 2.6 0.91 0.07
Francisco Bay, USA Fig. 18

Delaware Bay, Harleman (1966), 5 1.4 1.6 0.92 0.16
USA Tab. 10.5, Fig. 10.9

Barnstable*, Redfield (1967), 6 n.a. 3.4 0.91 n.a.
Massachusetts, USA Tab. 1
Alsea, Oregon, Goodwin et al. (1970), 7 2.6 2.5 0.65 0.11
USA Tab. 1, Fig. 17

Siletz, Oregon, 7 2.1 2.5 0.80 0.18
USA

Yaquina, Oregon, 8 2.4 2.5 0.83 0.04
USA

Ord, West. Aust., Wright et al. (1973), 3 5.7 5.9 0.97 0.04
Australia Tab. 1, Fig. 4
Thames, England, Chantler (1974), 10 n.a. 5.2 0.94 0.06
UK Appendix

Creek off Potomac, " 6 n a. 1.0 0.92 0.01
USA

Forth, Scotland, 12 n.a. 4.9 0.98 0.06
UK

Savannah, 7 n.a. 2.5 1.34 0.20
Georgia, USA
Sheltered inlets off Byrne et al. (1981), - 12 .4-.5 .4-.5 0.93 0.13
Chesapeake, USA Tables 1, 2
Sheltered inlets, Riedel & Gourlay 3 2 2 1.12 0.12
Queensld., Australia (1981), Tab. 1, Fig. 6

Western Scheldt, de Jong & Gerritsen 9 3.6 4.4 0.97 0.03
The Netherlands (1985), Fig. 4

Tamar, England, Uncles et al. (1985), 3 4.6-.9 4.7 1.07 0.06
UK Figs. 2, 3

Usk, Wales, O'Connor et al. 24 12 12 1.05 0.05
UK (1991), Figs. 4,6

Ems, de Jonge (1992) 8 n.a. 2.6 1.04 0.05
The Netherlands Tab. I, Fig. 7

Mean along-channel a: 0.97 ± 0.03
*Data for individual sections not available
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Table 3.2. Ratio of grain to total shear stress over naturally formed ripples and dunes.

Location Source Mean d r'/
(mm)

Laboratory flume Bagnold (1963) 0.2-0.7 0.2-0.5

Columbia River Smith (1977) and 0.27 0.18-0.24
Smith & McLean (1977)

Laboratory flume Engelund & Fredsoe (1982) 0.2-0.9 0.3-0.5

and Fredsoe (1982)

Paola (1983) 0.2 0.58-0.65

Kapdasli & Dyer (1986) 0.14-0.5 0.08-0.17*

*Observation over ripple crest. Other four observations are spatially averaged.
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Table 3.3. Channel bottom sediment type at cross-sections.

Location Source Sediment type Median phi

Wrecked Recorder Myrick & Leopold "highly organic" n.a.
Crk., Virginia, USA (1963)
Creek off San Pestrong (1965) mud 7.8
Francisco Bay, USA

Ord, West. Aust., Wright et al. (1973) medium fine sand 1.5±0.5
Australia

Sheltered inlets off Byrne et al. (1981) med. to fine sand 2±1
Chesapeake, USA

Sheltered inlets, Riedel & Gourlay fine sand 2.5±0.5
Queensld., Australia (1981)

Western Scheldt, de Jong & Gerritsen fine sand 2.5±0.5
The Netherlands (1985)
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Table 3.4. Data for tidal channels and sheltered inlets.

Location # of RS, A - Qa Ah'/ 6 - QP
Sects. (m) a p3 s.e.

Wrecked Recorder Crk., Va., USA 6 1.0 1.04 1.08 0.08

Creek off San Francisco Bay, USA 10 2.6 0.91 0.97 0.07

Delaware Bay, USA 5 1.6 0.92 0.92 0.17

Barnstable*, Massachusetts, USA 6 3.4 0.91 0.94 n.a.

Alsea, Oregon, USA 7 2.5 0.65 0.68 0.11

Siletz, Oregon, USA 7 2.5 0.80 0.81 0.20

Yaquina, Oregon, USA 8 2.5 0.83 0.86 0.04

Ord, West. Aust., Australia 3 5.9 0.97 1.02 0.04

Thames, England, UK 10 5.2 0.94 1.00 0.06

Creek off Potomac, USA 6 1.0 0.92 0.96 0.01

Forth, Scotland, UK 12 4.9 0.98 1.02 0.06

Savannah, Georgia, USA 7 2.5 1.34 1.41 0.20

Sheltered inlets off Chesapeake, USA 12 .4 -.5 0.93 1.00 0.13

Sheltered inlets, Queensld., Australia 3 2 1.12 1.22 0.03

Western Scheldt, The Netherlands 9 4.4 0.97 1.02 0.02

Tamar, England, UK 3 4.7 1.07 1.08 0.05

Usk, Wales, UK 24 12 1.05 1.14 0.05

Ems, The Netherlands 8 2.6 1.04 1.08 0.03

Mean along-channel a or D: 0.97 1.01 ±0.04
*Data for individual sections not available
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Figure captions for Chapter 3

Figure 3.1. Observations of cross-sectional area as a function of peak spring

discharge at 140 sections from 17 separate tidal channels or shelter inlet systems. Data

sources are given in Table 3.1.

Figure 3.2. Observations of the cross-sectional parameter AhRI/ 6 as a function of

peak spring discharge, the total critical shear stress for non-cohesive sediments, and other

"independent" variables, superimposed on the 1:1 line given by (3.2.6). Sections with

bottom sediments that are known to be non-cohesive are indicated by circles.

Figure 3.3. Observations of the cross-sectional parameter AhRI1 6 as a function of

peak spring discharge, the critical erosion shear stress for cohesive sediments, and other

"independent" variables, superimposed on the 1:1 line given by (3.2.8). Sections with

bottom sediments that are known to be cohesive are indicated by circles.

Figure 3.4. Observations of the cross-sectional parameter AhR116 divided by peak

spring discharge, total critical shear stress and other "independent" variables, averaged for

each tidal system, and plotted as a function of spring tidal range. Also shown is the least-

squares log-log regression given by (3.3.1). Sections with bottom sediments that are

known to be non-cohesive are indicated by circles.

Figure 3.5. Observations of the cross-sectional parameter AhR116 as a function of

peak spring discharge, the stability shear stress predicted by (3.3.1), and other

"independent" variables, superimposed on the 1:1 line given by (3.3.2). Sections with

bottom sediments that are known to be cohesive are indicated by circles.

Figure 3.6. Observations along the Thames River of the cross-sectional parameter

AhRI 1 6 as a function of peak spring discharge, the stability shear stress predicted by

(3.3.1), and other "independent" variables, superimposed on the 1:1 line given by (3.3.2).

Also shown are least-squares log-log regressions for the three most landward and seven

most seaward cross-sections.

Figure 3.7. Representations of idealized equilibrium tidal embayments. Plan

views of embayments with intertidal storage areas following (a) a power-law and (b) an

exponential relation. A schematic cross-section applicable to either type system is shown

in (c).
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Figure 3.8. Map of Wrecked Recorder Creek based on information from Myrick
and Leopold (1963). Intertidal storage areas are divided into segments over which time-
averaged embayment width at spring tide is calculated.

Figure 3.9. Map of Ord River based on information from Wright et al. (1973).
Intertidal storage areas are divided into segments over which time-averaged embayment
width at spring tide is calculated.

Figure 3.10. Least-squares approximations of observed along-channel properties
to idealized exponential and/or power-law relations for the Ord River and Wrecked
Recorder Creek. (a) Tidal amplitude along the Ord River. (b) Time-averaged spring
embayment width along the Ord River and Wrecked Recorder Creek.

Figure 3.11. Comparison of tidal discharge observed along the Ord River and
Wrecked Recorder Creek to that predicted by (3.4.6) - (3.4.7).

Figure 3.12. Comparison of the cross-sectional parameter AhR1/ 6 observed along
the Ord River and Wrecked Recorder Creek to that predicted by (3.4.8) - (3.4.9).
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Chapter 4:

Tidal Propagation in Strongly Convergent Channels Near
Morphologic Equilibrium
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Abstract to Chapter 4

Strongly convergent channels near morphologic equilibrium include such widely

studied tidal estuaries as the Delaware in the U.S. and the Thames and the Tamar in the

U.K. In this paper a solution is derived for tidal propagation in these channels which

diverges from classical views of co-oscillating tides. At each step of the derivation,

theoretical predictions are compared with observations from the Delaware, Thames and

Tamar. A scaling of the governing equations appropriate to these channels indicates that at

first order, gradients in cross-sectional area dominate velocity gradients in the continuity

equation and the friction term dominates acceleration in the momentum equation. Finite

amplitude effects, phase-generated velocity gradients and local acceleration all enter the

equations at second-order.

The first-order governing equation for elevation is a first-order wave equation, in

contrast to the classical second-order equation which results from low friction and a

prismatic channel. The first-order solutions are constant amplitude, forward-propagating

wave forms with velocity leading elevation by 90', unlike the conventional view of co-

oscillating tides. Velocity and elevation have the same phase relation as a standing wave,

yet they are individually progressive. Also, the solutions are independent of channel length

-- in contrast to the length-sensitive resonance of classical co-oscillation.

The second-order governing equation is also a first-order wave equation, and

solutions at the dominant frequency propagate at the first-order wave speed. At second-

order, however, the phase lead of velocity decreases as channel convergence decreases,

and amplitudes are modulated by eukx, where k is the first-order wave number. The

parameter u incorporates the partially cancelling effects of local acceleration and limited

along-channel convergence. Because tp determines changes in velocity magnitude, Au 0

along channels which are near morphologic equilibrium. The second-order solution

demonstrates that undulations in amplitude and phase along these channels are due

primarily to changes in the rate of channel convergence rather than interactions between

incident and reflected waves as predicted by classical co-oscillation.

Compact solutions are also provided for the amplitude and relative phase of the

second harmonics of elevation and velocity. The harmonics are scaled by r= a/h - ,Ab/,

where a is tidal amplitude, h is channel depth, 1 is system width and Ab is the amplitude of

tidal variation in width. If y > 0, the wave crest propagates faster than the trough, and

rising elevations are of shorter duration. If y< 0, the opposite holds and falling elevations

are shorter. Unlike elevation, velocity asymmetry is predicted to reverse a short distance

into the channel. For y > 0, ebb currents dominate at the mouth, whereas flood currents

dominate within the channel. For y< 0, the opposite pattern is predicted.
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List of symbols in Chapter 4

a amplitude of C

A cross-sectional area of channel
A time-average of A

Ao A at seaward end of channel

b total system width
L time-average of b

b0  h at seaward end of channel
c propagation speed of tidal wave-form
Cd drag coefficient

cg frictionless shallow water wave speed

F friction term in momentum equation

g acceleration of gravity

h cross-sectionally averaged channel depth

Ti time-average of h
hR hydraulic radius

_j signifies value of variable - forjth channel segment

k tidal wave number

L total length of tidal channel

L, e-folding length of along-channel variations in a

LA e-folding length of along-channel variations in A
Lb e-folding length of along-channel variations in

Lg frictionless shallow water wavelength

LT length of tidal wave form

Lu e-folding length of along-channel variations in U

m signifies mth harmonic component

r linearized friction coefficient

t time

u cross-sectionally averaged velocity

U amplitude of u

UO U at seaward end of channel

Vm mth harmonic of velocity in t-domain

w channel width

x along-channel co-ordinate

xO representative location along channel
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List of symbols in Chapter 4 (continued)

xb location of tidal barrier

Zm real amplitude of Wa at x = 0

am complex amplitude of C at x = 0

Y Ch-Eb

Ab amplitude of tidal variation in b

E signifies second-order term

Ea LA/La

Ebb

ET 2z-LA/LT

EU LA/LU
EO (o a/r

C" tidal elevation

Cm mth harmonic of elevation in r-domain
Tlm mth harmonic of elevation in t-domain

0 tidal phase

em phase angle ofC

(Avm phase angle of Vm

(p,7m  phase angle of i1m

L/LA - L/Lb

S a- "ET

x-dependent portion of C

T transformed time variable

w tidal frequency
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4.1. Introduction

In his treatise on tidal hydraulics, Pillsbury (1939) defines an "ideal estuary" as one

where "simple harmonic fluctuation of the tide at the entrance will produce throughout the

channel primary tides of constant range and primary currents of uniform strength" (p. 228).

In this paper a new solution describes tidal propagation in just such a channel. The channel
characteristics which lead to this solution are strong along-channel convergence of cross-

sectional area together with a distribution of velocity amplitude indicative of morphologic

equilibrium. This channel type is common and includes such wdely-studied tidal estuaries

as the Delaware in the U.S. and the Thames and the Tamar in the U.K. The governing

equation and solution appropriate to these channels diverge from classical views of damped

tidal co-oscillation. It is thus useful to review briefly the classical approach to the

propagation of tides in channels.

4. 1. 1. Classical tidal co-oscillation

The classic approach to tides in channels (e.g., Ippen 1966) derives basic wave
patterns of interest to oceanographers with little or no consideration of friction or channel

convergence. In a frictionless, prismatic channel of rectangular cross-section, the I-D

linearized governing equation for elevation (C) reduces to the familiar second-order wave

equation:

2 = _g2 (4.1.1)
t2 Cg X2

where t is time, x is distance, and cg = (gh)1f2.

For a channel closed at one end, (4.1.1) produces a standing wave solution,

characterized by incident and retlected waves of equal amplitude. The incident and

reflected waves interact to form nodes and anti-nodes which are a function only of the

length and depth of the channel. If the channel is exactly one-quarter wave in length, then

the incident and reflected waves cancel entirely at the mouth, and infinite resonance occurs

within the channel. In his review of tidal dynamics in estuaries, Ippen (1966) provided

solutions to (4.1.1) for channels closed at one end, of infinite length, and forced at both

ends. Ippen then used Green's Law to examine tides in channels of gradually varying

cross-section, but again limited his discussion to the frictionless case.
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The last solution presented by Ippen (1966) is once more for a prismatic,
rectangular channel, but for the more "realistic" case of a damped co-oscillating tide which

includes the effects of friction. Inclusion of linear friction transforms (4.1.1) into a
damped second-order wave equation:

°a2 + r 2Cx C9 2' (4.1.2)

where r is a constant friction factor (Ippen 1966). In a channel closed at one end, the

solution to (4.1.2) consists of exponentially-modified incident and reflected waves which
are of equal amplitude at the landward reflection point. The phase speeds of the incident

and reflected waves are equal to each other and, for weak friction, are only slightly less

than Cg. For large r, the second term in (4.1.2) dominates the first, and (4.1.2) reduces to

a time-varying diffusion equation. The frictionally-dominated asymptote is addressed in

detail in Chapter 2 of this thesis.

For short channels (having lengths less than a quarter tidal wavelength), solutions

for the amplitude of C derived from either (4.1.1) or (4.1.2) can be quite similar to

observations. Furthermore, tidal phase in real channels is often observed to propagate at

speeds close to (gh) 1/ 2. Thus (4.1.1) - (4.1.2), along with cg = (gh)112, are commonly
viewed as adequate explanations for most aspects of first-order tidal propagation in natural

channels. However, more subtle but important constraints on tidal phase and especially on

the solution for cross-sectionally averaged velocity (u) reveal the shortcomings of (4. 1. 1) -

(4.1.2) when applied to some real tidal systems.

Tidal phase in many tidal channels is observed to increase linearly landward.

However neither (4.1.1) nor (4.1.2) can produce a linear increase in phase along a channel

of finite length. In a finite channel, (4.1.1) produces a phase that is everywhere equal,

whereas (4.1.2) produces a phase lag that varies non-linearly along-channel. Although
observed phase may indeed have a speed near cg, neither (4.1.1) nor (4.1.2) actually

predicts that it should. c9 is the predicted phase speed of the individual forward and

backward propagating waves in (4.1.1) - (4.1.2), not the predicted speed for the

combination which makes up the observed wave-form.

Along some tidal channels the relative phase of u to C is observed to be nearly

constant at -90" (Hunt 1964; Wright et al. 1973). Although this is the phase relation for

finite channels given by (4.1.1), (4.1.2) predicts that the phase of u to C should be 90" only
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at the landward reflection point and should decrease monotonically toward the channel
mouth. Finally, the scaling inherent in (4.1. 1) - (4.1.2) leads to unrealistic values for the
amplitude of tidal velocity. In a short prismatic channel, conservation of mass requires u to
be proportional to distance from the reflection point, whether applying (4.1.1) or (4.1.2).
As shown in Chapter 3 of this thesis, however, the amplitude of u is nearly constant along
the length of real tidal channels which are near morphologic equilibrium. The only way to

predict realistic first-order solutions for channels near morphologic equilibrium is to include

both friction and along-channel variation in cross-sectional area.

4.1.2. Previous solutions for convergent tidal channels with friction

Perroud (1959) re-expressed the linearized I-D equations of motion for tides in
terms of particle displacement and considered channels with (i) linearly varying width and
constant depth, (ii) exponentially varying width and constant depth, and (iii) uniform width
and linearly varying depth. Solutions for (i) and (iii) were reached via Bessel functions,
whereas the solution for (ii) was reached via trigonometric functions. In all three cases,

solutions for " were expressed in terms of incident and reflected waves modified by

exponentials. The phase speed for the incident and reflected waves was presented as a
perturbation around c., and no solutions were provided for u. There was no discussion or
even graphical representation of the solutions and no comparison to observations. Thus it
is not surprising that the work of Perroud (1959) did little to change the common view of

tidal co-oscillation.

Hunt (1964) was the first to emphasize the fundamentally different nature of tidal
propagation along convergent channels having friction. Hunt solved the linearized 1-D

equations for (i) exponentially varying width and constant depth and (ii) linearly varying
depth and width varying like x3/2 . Like Perroud (1959), Hunt solved (i) with sinusoids
and (ii) via Bessel functions. Hunt pointed out that, unlike solutions for prismatic
channels, solutions for convergent channels can pruduce a progression in tidal phase along-

channel while simultaneously maintaining a relative phase of u to ; near 90". He even

suggested that the previous agreements of observed phase speed with (gh)1!2 were "both
fortuitous and misleading" (p. 442). He de-emphasized the importance of incident and
reflected waves by expressing his solutions as single, exponentially modified, forward
propagating wave-forms. Finally, Hunt showed his analytic solution to be consistent with

observations from the Thames.
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Prandle and Rahman (1980) used Bessel functions to derive solutions for channels

whose widths and depths obey arbitrary power laws and compared their results to

observations from a wide range of tidal systems. Their generalized solutions are a function

of only three parameters: one which scales channel convergence, one which indicates

position along channel, and one which indicates the strength of friction relative to

acceleration. Prandle and Rahman stressed the role of nodal points in determining the

nature of the solutions, thus emphasizing similarities between their solutions and classic

damped co-oscillation. They did note, however, that tidal amplification was controlled by

the geometry of the channel as a whole and not simply by its length and depth.

Jay (1991) used a modified Green's function approach for channels having

exponentially varying width and depth, but did not compare analytic results to

observations. Jay showed wave behavior at lowest order to be a function of channel

convergence and the importance of friction relative to acceleration. Like Hunt (1964), Jay

emphasized the role of channel convergence in producing a wave-form which is

fundamentally different from classical damped co-oscillation. Jay found that a single

incident wave in a channel with strongly convergent geometry may mimic a standing wave

by having a relative phase of u to C near 90" without the presence of a reflected wave. Jay

also found that under conditions of "critical convergence" the effects of channel

convergence and local acceleration cancel entirely at first-order, leaving an effective balance

between friction and pressure gradient.

A likely explanation for the continued emphasis on damped co-oscillation, despite

the important contributions of Hunt (1964), Jay (1991) and others, is the complicated form

of their solutions. Application of either Hunt or Jay's solution requires repeated

transformations and/or substitutions which partly obscure the solution's intuitive impact.

Simple interpretation of solutions based on Bessel functions is even more difficult.

Unfortunately, the solution and (mis)interpretation of (4.1.2) is still much simpler in

practice.

Part of the difficulty in interpreting the results of these previous investigators stems

from the large number Gf first-order terms they have all kept in the equations of motion.

All previous investigators of convergent systems have assumed that (i) friction scales no

larger than local acceleration in the momentum equation, and (ii) discharge gradients due to

channel convergence scale no larger than those due to velocity gradients in the continuity

equation. This choice of first-order scaling is inappropriate to the class of channels of



- 106-

interest to this study. The above scaling may have been applied in the past to shallow,

strongly convergent channels due to a lack of comparison to observations from real tidal

channels during the scaling process. Of course near-resonant, convergent tidal systems do

exist where acceleration is as or more important than friction. Exaimples include the Gulf of
Maine and the Bristol Channel, both of which were examined by Prandle and Rahman

(1980). However these systems are hundreds of kilometers in length and 12any tens of

meters deep.

In the following section a careful scaling of the equations of motion is performed
which is appropriate to an arguably more common type of strongly convergent tidal

channel, namely those having depths on the order of ten meters or less and which are near
morphologic equilibrium. Scaling appropriate to such real tidal channels as the Delaware in

the U.S. and the Thames and the Tamar in the U.K. indicate that at first order, gradients in

cross-sectional area dominate the continuity equation and friction dominates in the
momentum equation. This realization leads to a simpler first-order governing equation
which has the form of a first-order wave equation. The solution includes all the ma'or
properties which distinguish tidal waves in strongly convergent channels, yet is more

amenable to conceptual interpretation. Finite amplitude effects, velocity gradients and local

acceleration, which all enter the equations at second order, then lead to systematic,

interpretable perturbations on the first-order solution.

4.2 Scaling of equations

The cross-sectionally integrated, I-D equations for a tidal channel with linearly

sloping intertidal flats (Figure 4.1) n.ay be expressed as (Speer and Aubrey 1985)

continuity: b = - -x(A-u) (4.11)
at ax

momentum: + UL- = -g - F, (4.2.2)at ax a

where b(x,t) is total system width (including flats), C(x,t) is tidal elevation, A(x,t) is cross-

sectional area of the channel (excluding flats), u(x,t) is cross-sectionally averaged velocity

(confined to the channel), and F represents bottom friction. In addition to the usual
assumptions of channelized flow, (4.2.1) - (4.2.2) assume u = 0 on the flats (Speer and

Aubrey 1985).
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The tidal channels considered here are near morphologic equilibrium such that the

amplitude of tidal velocity, U, varies only weakly in x. To simplify the scaling arguments,

it is assumed that the amplitude of tidal elevation, a, also varies only weakly in x and that

the solutions for € and u can be approximated by the following progressive wave forms:

- a cos (wt - /x), and u = U cos ((ot - x - 0), (4.2.3a,b)

where w is the tidal radian frequency, k = 21dLT is the tidal wave number where LT is the

observed tidal wavelength, and 0 is the relative phase of tidal velocity.

These assumptions reasonably fit such well-studied tidal estuaries as the Delaware

in the United States (Harleman 1966; Parker 1984), and the Thames (Hunt 1964; Prandle

1980), and the Tamar (George 1975; Uncles et al. 1985; Uncles and Stephens 1990) in the

United Kingdom. As discussed in Chapter 3, the amplitude of cross-sectionally averaged

tidal velocity is nearly constant along the lengths of all three of these estuaries (Figure 4.2).

Values for LT, determined from the slopes of the linear regressions in Figure 4.2b, are

listed in Table 4.1. Observations shown in Figure 4.2 for the Delaware and the Thames are

M2 data from Parker (1984) and Prandle (1980), respectively. Data for the Tamar are

spring tide values from George (1975). George (1975) provides spring and neap, but not

mean tide data. Only the spring observations are examined here because under spring

conditions, the tide is more likely to dominate river flow, and freshwater effects are not a

focus of this investigation.

In the following paragraphs, the continuity equation is examined first to determine

which terms must be retained at first and second order. Results from continuity are then

used similarly to scale the momentum equation. (For reference, the dimensionless

quantities which are assumed to be small in this study are summarized in Table 4.2.)

4.2.1 Scaling of continuity

For estuaries represented by Figure 4.1, continuity may be expanded as

K , t, g-K - (A - __ I(M) u (+ O(ch));TLy.
(4.2.4)

area gradient velocity gradient

The first two terms on the right hand side of (4.2.4) arise from the along-channel gradient

of cross-sectional area, whereas the last term on the right is due to the along-channel
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gradient in tidal velocity. The small parameters e,% and eb arise from finite amplitude and
intertidal slope effects and are defined as:

Ch =-9, and Eb = b-w _ (4.2.5a,b)
h b b

Over-bars indicate time-averages such that h + jr C, b + rb C, and A + eh Cw.

h(x,t) is cross-sectionally averaged channel depth, and w(x) = A/h is both the width of the
channel and the total embayment width at low tide (see Figure 4.1). Observed values for e

and eb are given in Table 4. .

In ordet to scale the terms in (4.2.4), estuary width, cross-sectional area, and tidal
velocity are assumed to vary as:

b = b0 e-X-Lb, A = A0 e-4LA , and U = Uo e±XLU, (4.2.6a-c)

where Lb, LA and LU are e-folding lengths of along-channel variation, and x = 0 at the

forced end of the channel. Observed X and b for the Thames are taken directly from
previous compilations (Hunt 1964; Parker 1984). Observed b for the Thames is

determined from U.S.D.M.A. charts 37145 and 37146. A and b" for the Tamar are
calculated from channel cross-sections published by Uncles et al. (1985). The division
between the momentum transporting channel and the "storage only" flats in the Tamar
cross-sections is based on the break in bank slope and corresponds roughly to the neap low

water line.

Observed U values for the Delaware and Thames are taken directly from previous
compilations (Harleman 1966; Chantler 1974). For the Delaware, Harleman (1966) did not

measure U directly, but calculated the cross-sectionally averaged velocity via integration of
observed tidal elevations. For the Thames, Chantler (1974) presented values for U as a

function of A. In Figure 4.3b, x-values were estimated for the Thames by interpolating

from the A(x) data provided by Hunt (1964). Observed U for the Tamar is calculated from
harmonic analyses of time-series of sectionally-averaged spring velocity presented by

Uncles et al. (1985).

Figure 4.3 illustrates the fit of observed b, A and U to exponential curves, and
Table 4.1 lists observed values for Lb, LA and LA/LU. Clearly U does not generally follow

a simple exponential curve over the length of an entire estuary. The main purpose here is to

illustrate that Lb and LA are much less than LU on a system-wide scale.
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For tides and estuaries described by (4.2.3b) and (4.2.6), Eq. (4.2.4) may re-

expressed in terms of scales as follows:

a0oLA (1 + cb) = 1 + h +(1 + h)(eu2 + er).
(A/b)U(4.2.7)

area velocity
gradient gradient

The small parameters £u and er are defined by

EU2 = L-a- and er = kLA = 2SLA (4.2.8a,b)
LU LT

Observed values for ru, eT and awLA(A/b)-'1U- are presented in Table 4.1. The quantity

awLA(A/b)''U 1' is nearly constant along channel because a, A/b and U are each nearly

constant along channel.

Observations indicate that the above scalings are sensible (Table 4.1). In all three

estuaries the quantity aowLA(A/b)- 1U-1 is O(1), and the O(e) parameters are less to much

less than one. Thus at first-order, only two of the terms in (4.2.4) are retained, namely the

first term on the left hand side and the first term on the right hand side:

!;K () (4.2.9)

The scaling in this section has shown that in tidal estuaries of interest to this

chapter, along-channel gradients in discharge are dominated by along-channel gradients in
cross-sectional area. The dominance of gradients in cross-sectional area is due to strong

channel convergence. The next most important contribution to the discharge gradient, at
O(er), is from along-channel variations in the phase of tidal velocity. On a system-wide
scale, the least important contribution to the discharge gradient, at O(eC2), is from along-
channel gradients in the amplitude of tidal velocity. This is because the tidal channels are
near morphologic equilibrium. The above ordering is contrary to classic models of co-
oscillating tides in short prismatic channels, which suggest gradients in the amplitude of

velocity should be most important and gradients in cross-sectional area should be least
important.
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4.2.2 Scaling of momentum

For tides and estuaries described by (4.2.3) and (4.2.6), momentum may be
expressed in terms of scales as:

U + 1 I + - + + F. (4.2.10)
LA LA

where ra2 = LA/La and La is the e-folding length of tidal amplitude. Table 4.1 lists
observed values for c. At first order, (4.2.7) indicates that:

U ,awL_ = .b-- Czher, (4.2.11)A W

where c = 0k. Dropping ra2 relative to e. in (4.2.10) and using (4.2.11) to eliminate U

then yields:

-e 2 = w gh +w_ Fer + & ch er 2 "b + Ch
W b c2  b (Oth (4.2.12)

local advective pressure friction
accel. accel. gradient

The speed of a linear shallow water gravity wave in a prismatic channel with
intertidal storage and low friction is given by cg = (ghw/b)1/ 2 (e.g., Robinson 1983). In
the presence of friction, one might expect c < cg, so the pressure gradient term in (4.2.12)
should be 0(1) or greater. However the argument is not quite that straightforward. In a
classic low friction, short prismatic channel, c9 is not the phase speed of the single
"observed" wave-form, which is termed c in this study. Instead, cg is the phase speed of
the individual progressive waves which propagate up- and down-estuary and which sum to

form the single "observed" wave-form. Nonetheless, for the Delaware, Thames and
Tamar, the third term in (4.2.12) is significantly greater than er (most significantly for the
Tamar, least so for the Delaware). Table 4.1 displays the ratio of er to the pressure

gradient term in (4.2.12).

The only term in (4.2.12) that can balance the pressure gradient at lowest order is
the friction term. Thus an important result has been derived: In tidal channels with
er&c2/(wgh) << 1, the lowest order balance must be between pressure gradient and friction.
This conclusion has been reached without any i priori knowledge of the magnitude of the
drag coefficient or of the tidal velocity. Furthermore, if er/e, = 0(1), the local acceleration
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term can be no more important than nonlinearities generated by finite amplitude effects in

the continuity equation. Finally, (4.2.12) indicates that advective acceleration term is three

orders in c smaller than friction. Thus when examining the system-wide tidal signature of

strongly convergent tidal channels near morphologic equilibrium, advection may be

neglected.

The dominant role for friction suggested above is in contrast with classic solutions

for co-oscillating tides in prismatic channels which often neglect friction entirely. More

realistic analytic approximations which consider convergent channel geometry in the

presence of "strong" friction (Prandle and Rahman 1980; Jay 1991) have treated friction

and local acceleration at the same order. The resulting solutions are expressed in terms of

Bessel equations or repeated co-ordinate transformations which can interfere with

conceptual interpretation. However, the scaling presented in this section suggests that by

neglecting acceleration at first order, useful insights may be gained toward our

understanding of tidal flow in strongly convergent tidal channels. This approach simplifies

and clarifies the problem without sacrificing the fundamental physics.

4.3 First-order solution

4.3.1. Form of the general solution

If only first-order terms are retained in the continuity equation, then (4.2.1) may be

re-expressed as:

at dxU I ator

Equation (4.3.1b) guarantees that at first order C and u will be 90" out of phase, as in a

standing wave. Dropping O(e) terms, (4.2.2) may be written as:

0 = -g - F. (4.3.2)
ax

In one-dimensional numerical models of channelized tidal flow, the friction term is

commonly formulated as (e.g., Speer and Aubrey 1985):

F = Cd 1u LU (4.3.3)
hR
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where Cd is a non-dimensional drag coefficient, and hR is the hydraulic radius of the
channel. In this study the friction term is linearized by expressing bottom friction as
follows (e.g., Harleman 1966):

F=ru, with r =__cdU (4.3.4ab)

where r is a constant friction factor, and U is the "characteristic amplitude" of tidal velocity.
It is reasonable to let hR - h for channels having w >> h. The assumption that r is constant
in space is only approximately true due to along-channel variations in channel depth. The
8/(3r) in (4.3.4b) is derived from a truncated Fourier expansion of lulu in (4.3.3) (e.g.,

Speer and Aubrey 1985).

Substituting (4.3.1) into (4.3.2) then gives:

ac = .-E d, (4.3.5)
ax g9dx at

which is a variable-coefficient, first-order wave equation for tidal elevation. The above
governing equation is entirely different from the second-order wave equation which results
from neglecting friction in a prismatic channel. It is also in contrast to the results of
Friedrichs and Madsen (1992) who found tidal propagation in frictionally-dominated

prismatic channels to be governed by a time-dependent diffusion equation.

By assuming a solution of the form 4- Real ({(x) eiwt), (4.3.4) becomes:

--- -- " Sr- I ,(4.3.6)
dx gldxl~

or

In -g-o dx'. (4.3.7)

The only boundary condition on (4.3.6) is 4(0) = a, specified at the seaward end of
the channel. Thus (4.3.6) may not be valid in the immediate vicinity of x = L, where it is
presumed that zero tidal flow exists. However, the implied form of the velocity solution in
(4.2.3), as well as the scaling inherent in (4.3.1), indicates that an upstream no-flow
boundary cannot be important to the overall solution. Thus the potential loss of validity
near x = L is not a significant restriction. Since the dominant length scale of tidal
discharge is LA, a no-flow boundary condition at x = L cannot be felt much seaward of x/L



- 113-

1 - LA/L, and in tidal estuaries of interest to this chapter, LAIL is significantly less than 1

(see Table 4.1).

Although there is zero tidal flow at x = L, there is usually finite fresh-water
discharge in a real tidal estuary. The impact of fresh-water discharge at x = L can be scaled

as follows along a strongly convergent tidal channel: To maintain morphologic stability,
the freshwater velocity at x = L should be about the same as the tidal velocity in the
seaward portion of the channel (see Chapter 3). Under "normal" conditions, then, the ratio
of freshwater velocity to total velocity will have a decay length scale of LA, and be
negligible for x/L < - 1 - LAIL. Wherever possible, observations used in this study are
from "low" runoff conditions, further reducing the impact of freshwater discharge on tidal
propagation. During high runoff or along channels that are not strongly convergent, river
flow will have a more significant effect on tidal propagation throughout the channel (e.g.,

Godin 1991; Parker 1991). However these conditions are not a focus of this study.

4.3.2. Exponential channel convergence

Substituting the expressions for exponentially varying estuary width and channel
cross-sectional area given by (4.2.6) into (4.3.7) gives:

(1) = _r- w boLA exp x'/LA - x/Lb) cx', (4.3.8)a g A0 '=O

which integrates to
Ini " r bOLA L (e;x/Lt 1)- (4.3.9)

a g A0  A.

where A = LILA - L/Lb.

Since it has already been shown that LA/Lb = I (see Table 4.1), it is likely that ;. is
small in estuaries of interest to this study. Observed A. (Table 4.3) were calculated by
fitting exponential relations to plots of 51A versus x/L. Observed A is indeed less than one,
and Xx/L is even smaller since x/L < 1. If LXx/L << 1, then eIx/L -- I + lx/L, and (4.3.9)

becomes:

- irw boLA x, (4.3.10)

or
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a --ae-i , (4.3.11)
where

k rco b rco L_ , (4.3.12)
LT g Ao g (A/b)

if LAlLb" 1.

Using (4.3.11), solutions for elevation and velocity become simply:

= a cos(w:t- kx), and u U -Usin (wt- kx), (4.3.13a,b)

where

U - awboLA . awLA (4.3.14)
Ao (A/5) (

is found by substituting (4.3.13a) into (4.3. lb). Equation (4.3.13) is entirely consistent
with the form of solution which was assumed when scaling the problem in Section 4.2.

Finally, the phase speed of (4.3.13), which is equal to the "observed" wave speed, is given

by:

C = - gAo . g(AIb) (4.3.15)

k rboLA rLA

Equation (4.3.15) indicates phase speed to be constant along the length of the channel.

4.3.3. Discussion of first-order solution

The first-order solution for strongly convergent channels near morphologic

equilibrium diverges from the conventional view of co-oscillating estuary tides. From

examining (4.3.13a,b) together, it is clear that C and u are out of phase by 90, as in a
standing wave. Yet (4.3.13a,b) individually appear progressive. The first-order solution

given by (4.3.13) is a forward propagating wave-form which is independent of the length

of the tidal estuary -- in sharp contrast to the length-sensitive quarter-wave resonance of

classic tidal estuary theory. Furthermore, the solution given by (4.3.13) is of constant

amplitude, whereas the amplitude of a classical co-oscillating tide undulates along channel

due to the interaction of incident and reflected waves.

The constant amplitude solution derived here is also significantly different from the

frictionally-dominated solution found to hold for prismatic channels in Chapter 2. In

Chapter 2, tidal phase was found to vary non-linearly along-channel and tidal amplitude
was found to decay exponentially (see Figure 2.8). In frictionally-dominated prismatic
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channels, frictional losses are such that a constant tidal amplitude cannot be maintained

along the length of the channel. In strongly convergent channels, however, discharge

decreases so quickly along-channel that a much smaller pressure gradient is required to

maintain a given amplitude. Thus constant amplitude can be maintained at first order, even

under conditions of frictional dominance.

The lack of a reflected wave in (4.3.13) indicates that the first-order solution does

not "feel" landward conditions. Conceptually, the strong landward convergence of cross-

sectional area quickly dissipates any seaward propagating information. Even if a reflected

wave were somehow included in (4.3.13), perhaps to improve the solution in the

immediate vicinity of an upstream boundary, the reflected wave would only propagate over

a distance of order LA before becoming negligible in comparison to the landward

propagating wave. This result has important ramifications concerning the potential effect of

tidal barriers. In strongly convergent channels, the installation of a tidal barrier at x = xb

should have a minimal effect on the tidal signal seaward of x = Xb - LA. This finding is

consistent with Prandle and Raman (1980) who examined the effect of tidal barriers using

Bessel function solutions. Upon introduction of barriers into strongly convergent

channels, they found the amplitude and phase of elevation and velocity to be altered by only

a few percent outside the immediate vicinity of the barrier.

The velocities predicted by (4.3.14) for the Delaware, Thames and Tamar (Table

4.3) are somewhat higher than the observed values. This is partly because predicted U is

averaged over w, whereas observed U, as presented in other investigations (Harleman

1966; Chantler 1974; Uncles et al. 1985), is averaged over all of b (see Figure 4.1).

Predicted and observed velocity agree best for the Delaware, for which wib = 1, and worst

for the Tamar, for which wib is smallest. According to Uncles et al. (1985), maximum

current speeds in the deep central channel of the Tamar are on the order of I m/s, which is

more consistent with the predicted value. Comparison to observed U in all three estuaries

is further complicated by differences in the amplitude of the forcing tide during the periods

of velocity observation and during the periods of elevation observation -- which are

generally neither synchronous nor of equal duration. Also, velocity in general is much

more sensitive than tidal elevation to measurement location and to variations in channel

shape away from an idealized geometry. Considering these limitations, differences

between the magnitude of observed and predicted U do not undermine the applicability of

the first-order theory.
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Equations (4.3.12), (4.3.14) and (4.3.4b) allow the wavelength of the dominant
tidal frequency to be predicted with cd as the only independent parameter.

LT = 3x 2  g (A'b)2  (4.3.16)
4 Cd A 0a2 LA2

Alternatively, the observed value of LT can be used to solve for the unknown drag

coefficient. The resulting "observed" values for cd are displayed in Table 4.3. These cd

values are consistent with those previously employed in I-D numerical models of strongly

convergent tidal estuaries. For example, in modeling the Delaware, Parker (1984) allowed

Cd to vary between 2.0x10-3 and 3.7xio-3, and in modeling the Tamar, Uncles and

Stephens (1989) used cd = 1.6x I0-3. (Prandle (1980) did not discuss his choice of Cd for
his model of the Thames). However these drag coefficients are several times smaller than

cd values which have been used in I -D representations of other embayments such as Great

Bay, New Hampshire (Swift and Brown 1983) and Nauset Harbor, Massachusetts

(Aubrey and Speer 1985; Speer and Aubrey 1985).

Embayments represented by Cd values which are 0(10-2), such as Great Bay and

Nauset contain sharp channel bends and sudden along-channel expansions in cross-

sectional area (Aubrey and Speer 1984; Swift and Brown 1983). At these sudden
transitions, transfer of momentum occurs from organized along-channel flow to large

turbulent eddies. On a system-wide scale, these eddies may be justifiably modeled as

frictional losses and lead to large values of Cd. At both Nauset and Great Bay, sudden
morphologic irregularities are largely a product of antecedent geology -- unevenly filled

depressions in glacial outwash and ice contact deposits and at Nauset (Oldale 1979) and a

rock-walled valley formed along a major fold axis at Great Bay (Haug 1969). Thus neither

embayment can be described as being near morphologic equilibrium.

Equations (4.3.15) and (4.3.16) predict wave speeds and lengths which are the

same order as those predicted by the frictionless shallow-water gravity wave speed for

systems without tidal flats, namely, cg = (gQ)n/ 2 . Table 4.3 lists predictions for the

frictionless wave length, L, (neglecting the role of intertidal storage), for the M2 tide in the

Delaware, Thames and Tamar. The similar magnitude of LT and L9 has no doubt

exacerbated the historic mis-interpretation of tidal propagation in highly convergent

channels as being well-described by classical damped co-oscillation.
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4.4 Second-order solution

4.4.1 Derivation of governing equation

At second-order (see Table 4.2), (4.2.7) indicates that the following terms are kept

in the continuity equation:

(I + Eb~~ 6(1+ c4 )(ýx U L (4.4.1)

The first-order solutions for Cand u, i.e. (4.3.13), may be substituted into the second-

order terms of (4.4. 1), giving

bO{(+ebcOs(rWt-kW)) = +- h cOs(wt-kx)) L'A'0 u + Aoiku, (4.4.2)

where the exponential expressions for b and X (4.2.6a,b) with LA = Lb have also been

used. Solving for u in (4.4.2) then gives, to O(e),

u = {IY-cos (wt-kx)) (I - iT) LAbo (4.4.3)

Ac, at

where el 4 - eb. Observed values of yare listed in Table 4.3.

Retaining only those terms of (4.2.11) which are significant at second order,

momentum may be expressed as

au - ru. (4.4.4)

T1 ax

Second-order effects arising from the friction term will not be considered in this study,

even though the formulation of (4.3.3) does generate tidal harmonics. If the friction term is

formulated in the common manner of (4.3.3), even harmonics will be produced by tidal

modulation of hR, and odd harmonics will be produced by ulul (e.g., Parker 1991;

Friedrichs and Madsen 1992). The production of second-order tidal harmonics by (4.3.3)

has been demonstrated conclusively by numerical solutions which include it (e.g., Speer

and Aubrey 1985). However, field observations of tides in channels have not

demonstrated that the formulation in (4.3.3) accurately reproduces observed nonlinearities

in natural tidal channels.



- 118-

For example, one-dimensional numerical solutions for tides in channels which use

(4.3.3) generally do a poor job of reproducing along-channel variations in M6 (e.g.,

Prandle 1980; Parker 1984; Friedrichs and Madsen 1992). There is little doubt that the

friction term is the major source of M6 production within tidal channels. However, (4.3.3)

questionably assumes that the drag coefficient is time-invariant. Field observations suggest

that in energetic tidal flows cd can be a complex function of tidal height, tidal velocity, and

flow direction (Wallis and Knight 1984; Lewis and Lewis 1987; Weisman et al. 1990). By

applying observations to the terms in the 1 -D momentum equation and solving for the drag

coefficient, Lewis and Lewis (1984) and Weisman et al. (1990) found Cd to vary by three-

to-four times over the tidal cycle, while Wallis and Knight (1987) observed an order of

magnitude variation in cd. Thus the true M6 produced by friction may not closely resemble

that predicted by (4.3.3) unless cd is more properly represented as varying in time.

Tidal modulation of Cd will affect even harmonics directly. For example, if

modulation of cd is out of phase with modulation of hR, net production of even harmonics

may be reduced in real tidal channels. This may be partly why a one-dimensional

numerical model of the Thames which used (4.3.3) (Prandle 1980) predicted M4

amplitudes several times larger than the observed values. Yet in a similar one-dimensional

model of the Delaware, Parker (1984) was able to reproduce along-channel variations in

M4 amplitude quite well (although he presented no model output of M4 phase). When

Parker (1984) examined the various sources of M4 in the model, he found that the M4 from

non-linear continuity was 3.7 times larger than the M4 from friction and more than ten

times larger than the M4 from advection. He stated that the various contributions to M4 had

different phases, and that the total M4 amplitude was less than the sum of the individual

contributions. Thus his model might have reproduced M4 just as well without including

tidal modulation of hR in the friction term.

The only remaining second-order term in (4.4.4) is the local acceleration term.

Substitution of the first-order solution into this term gives

iou = -__- ru, (4.4.5)

ax

or
=- -(I+ ie~)u, (4.4.6)

ax g

where e (d= aor. Using (4.3.4b) and (4.3.14), e., can be re-expressed as
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3xo (Ab (4.4.7)
8 cd chLA

This parameter, which determines the importance of acceleration relative to bottom friction,
is independent of both tidal velocity and tidal frequency. Table 4.3 indicates e,0 is indeed

less to much-less than one in all three estuaries of interest. The values given for ew. in Table

4.3 are similar to the values for the ratio erbc2/(wgh) given in Table 4.1, which also

predicted the relative unimportance of acceleration.

Substituting (4.4.3) into (4.4.6) to eliminate u yields a single equation for •:

ac = -{1I - YCOS (w~t- kr)}(I +'AU) 9 (4.4.8)

ax c at4

where w = - er, and c is the first-order wave speed given by (4.3.15). Observed values

for p are given in Table 4.3. Eq. (4.4.8), like (4.3.5), is a first-order wave equation with

only one boundary condition, namely - a cos ot at x = 0.

4.4.2 General solution

The second-order solution is derived in a manner similar to Friedrichs and Madsen

(1992). The solution is formally perturbed in time only, and the second-order spatial

dependence is treated kinematically. The cosine term in (4.4.8) is evaluated at x = x0,

where 0 -x0 • L is some representative location along the channel. This greatly simplifies

the form of the second-order solution without significantly affecting its accuracy for

relatively short systems. More formal perturbations in time and space (e.g., Shetye and

Gouveia 1992) produce a myriad of additional terms which obscure the most important

non-linear mechanisms and hinder physical interpretation.

Next the time variable is transformed from t to r, with

WT' = wt + Ysin(wt - kxo). (4.4.9)

Then by using the relation aC(.dt = C/'ar dr/dt, (4.4.8) beccmes

a = C(,, +j) a (4.4.10)

ax c ts

which has time-independent coefficients.
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The formulation of r in Friedrichs and Madsen (1992) differs slightly by
considering non-linearities produced by the friction term. In their paper. Y= 5/3 Eh - rb
instead of gh - cb. Friedrichs and Madsen included frictional non-linearities in their analytic
discussion in order to make diagnostic comparisons to numerical solutions which also
included non-linear friction. Here it is argued that field observations do not support
inclusion of non-linear friction in the form o'f (4.3.3). The difference in approach between
here and Friedrichs and Madsen affects the magnitude of the non-linear mechanism.

However it does not fundamentally affect the interpretation of the processes most

responsible for generating harmonics.

Since (4.4.10) is linear, its solution may be expressed as a sum of individual terms,
each satisfying (4.4.10) at the single frequency ma. Thus the general solution to (4.4.10)
at each frequency takes the form:

"("x) = am m(x)exp(imwor), (4.4.11)

where Iý,nl = 1 at x = 0.

In order to apply the boundary c'-ndition at x = 0 to (4.4.11), the boundary
condition must be transformed from r to T. Utilizing the definitic-n of r, trigonometric
identities, and approximations valid at 0(e) (for details see Appendix 2), it can be shown

that

2
(x=0,t) = a cos(o t - C(x=0,r) = a I Zmcos(m0Tr--Om), (4.4.12)

M=0

where Z0 = -Z2 = -#2, ZI = 1, -0o = 02 = kxo, and 01 = 0. Applying (4.4.12) to (4.4.11)

gives an,, = a Z. e-i, and the solution in the r domain becomes

"(x") = aZm 4m(X) exp (imcoT- Omi). (4.4.13)

Next, (4.4.13) is transformed back to the t domain. For m = 0 and m = 2, (4.4.13)

is already 0(r), so by discarding O(e) 2 terms, (4.4.13) becomes 4,m(tx) = aZm •,m exp
(ima -em) directly. In order to transform the en = 1 case, however, exp (ian) must be re-
expressed in terms of t. Utilizing the definition of r, trigonometric identities, and
approximations valid at 0(e), it can be shown (see Appendix 2) that

expiw• = -lexpikxo + expiwot + -Xexpi(2wt-kxo). (4.4.14)
2 2
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The full solution in the i domain may may then be expressed as a sum of single

frequency components, i.e.:

2
e,(x,t) = a 7, ,m (x,t), (4.4.15)

maO

where

no ( 0(- 41) Cli rO, (4.4.16a)
2

l11 = $I•io~, (4.4.16b)

112= 2 (C -C 2 ) e i(2 -k . (4.4.16c)
2

By substituting (4.4.13) into (4.4.10), the governing equations for 4(x) are seen
to be

-m(x) = im (C4m(X). (4.4.17)
dx C

Eq. (4.4.17) integrates easily to

m = ei•mt e-imk, (4.4.18)

where k = eofc. Substituting (4.4.18) into (4.4.15) - (4.4.16) then gives the following,

compact second-order solution for tidal elevation:

1 el-ie e-iak)eikxo + eltei(aWt-`)a 2
+ 2(ei~e2P~e~ir~e20s~o.(4.4.19)

The second-order solution for velocity is found by substituting (4.4.15) - (4.4.16)
into (4.4.3), giving,

u = iU(I-ycos (o)r- kxo))(I-ier) (41 eiwlt+ r(4i -2)eid2wt-f-o)), (4.4.20)

where U is the first-order velocity amplitude given by (4.3.15), and xO has been used for
consistency with the solution for elevation. Multiplying out (4.4.20), dropping terms that

are O(C)2, and using (4.4.18) to eliminate gm then gives the following real solution for tidal
velocity:
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u = U(Vo+V 1 +V 2), (4.4.21)

where

V0 = -ePA sin k(x - o), (4.4.22)

V1 = - PA sin (wt - kx) - er cos (wt - kx), (4.4.23)

V2 = _ {(eisbsin (2wt-kx-kkxo) - 2e 2 Ax sin (2:t- 2kx-kxo)). (4.4.24)

4.5 Discussion of second-order solution for elevation

4.5. 1. Dominant tidal frequency

The second-order solution at the dominant tidal frequency is given by the real part

of the second term in (4.4.19), namely

71 = etkx cos (wt - kx). (4.5.1)

Equation (4.5.1) describes a purely progressive wave with the same phase speed as the
first-order solution. However the amplitude which is modulated by e.Lb, where p = e, -

eT. This result is consistent with the observations in Figure 4.2 (especially for the

Delaware) which indicate along-channel phase variation to be more strongly linear than

along-channel amplitude variation.

The exponential modulation of tidal amplitude at second-order is due to the

combined, partially-cancelling effects of (i) non-zero acceleration, which is represented by
ew, and (ii) limited convergence, which is represented by Er. Conceptually, non-zero

acceleration increases tidal amplitude by allowing a dynamic along-channel convergence of

energy. This effect is analogous to Green's law in the frictionless, weak convergence limit

and has previously been termed "topographic funneling" (Jay 1992). Limited convergence

(i.e., a tendency toward a prismatic channel) decreases tidal amplitude because a larger

pressure gradient is required maintain a given amplitude along a prismatic channel.

Acceleration effects do not produce a reflected wave because the form of the governing

equation (4.4.8) allows information to travel only landward.

If p > 0, then acceleration effects overcome damping due to limited convergence,
and tidal amplitude grows along channel. If p < 0, damping due to limited convergence
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overshadows acceleration, and amplitude decays. Because p is smaller than either r,0 or er,

the second-order solution for elevation is more like the first-order solution than might be
predicted from the size of coo or eT alone. Thus the applicability of the first-order scaling, if

based on the size of p, is extended. If p = 0, these two second-order effects cancel

entirely, and the solution for 11l is identical to the first-order case. Jay (1991) found a

similar result via a more complex, modified Green's function solution. Under conditions

he termed "critical convergence", Jay also found local acceleration to cancel with a

convergence-related term from the continuity equation, leaving an effective balance between

friction and pressure gradient.

The observed exponential variation in the amplitude of tidal elevation, described by

the e-folding length La, should be related to p as follows:

=I LT (4.5.2)
2ii La

Table 4.3 lists LT/(2llLa) for the Delaware, Thames and Tamar. The correspondence to p =

c, - eT is consistent within error bars for the Delaware and Thames. Application of (4.5.2)

to the Tamar is inconsistent with M = to) - -r. M = r~o- = 0.15±0.06 indicates tidal

amplitude should increase along the Tamar, while observed a' ,g-channel tidal amplitude

clearly decreases in Figure 4.2. However, the observed sp-ing didal amplitude along the

Tamar may not be entirely dynamic. Since ch = a/h = I along the Tamar, the channel is

nearly dry at low tide, and low water elevation is largely constrained by the elevation of the

bottom. This phenomenon has been discussed in detail by Speer et al. (1990).

Observed spring tidal elevations along the Tamar were recorded relative to a single

horizontal datum (George 1975). Thus it is possible to examine along-channel variationb in

the elevation of high water. If the "dynamic" tidal amplitude along the Tamar is defined as

local high water elevation minus mid-tide elevation at x = 0, then tidal amplitude is found to

increase along channel (Figure 4.4) with an e-folding length-scale of La = 190±20 km.

Using this new estimate of La, (4.5.2) gives p = 0.23±'0.02, which is consistent with , =

c. - er to within error bars. Figure 4.4 displays the observed "dynamic" amplitudes along

the Tamar with the second-order solution given by (4.5. 1).

The prediction of second-order amplitude and phase variation along the Delaware

and Thames can be improved by dividing up each observed channel into several individual,

exponentially-varying segments. Because (4.5.1) describes a unidirectional wave-form,

the change in amplitude and phase along segmentj is given directly by
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hllil =- I17l.j.l(Lj.l)e1ujkjlj , ql.j = kjx, + q+ l.jil(Lj.l), (4.5.3a,b)

where pj = - erj and kj are calculated from the along-channel geometry of each segment,

and xj = 0 at the beginning of each segment. The boundary condition for each segment is

simply the amplitude and phase at the end of the previous segment. Equation (4.4.7) is
used to determine ezj. The only freely determined parameter is Cd, which is used to

determine c'i and kj via (4.3.16).

The along-channel variations in observed Irh7 and 9).t (see Figure 4.2) suggest that

an improved representation of the Thames requires at least two exponentially-fit segments
(to capture growth of tidal amplitude followed by decay), whereas the Delaware requires at

least three (to capture growth, followed by weak decay, followed by subsequent growth).

There are insufficient geometric observations along the Tamar to merit its division into
segments. Figure 4.4 displays observations and second-order solutions for a 1711 and 19,7

along the Thames and the Delaware. Table 4.4 displays values of;p, LTj and LAj calculated
for each segment. Where pj > 0, tidal amplitude locally increases with distance along

channel, and where pj < 0, tidal amplitude locally decreases.

The observed undulations in along-channel tidal amplitude and observed changes in

the slope of tidal phase displayed in Figure 4.4 are primarily due to changes in the rate of
convergence of channel geometry with distance. They are not due to interactions between a
single landward-propagating incident wave and a single seaward-propagating reflected

wave as commonly presumed through application of classical damped co-oscillation.

Equation (4.5.3) reproduces these undulations yet includes no distinct reflected wave.
Acceleration effects which do occur are more correctly interpreted as a dynamic

convergence of energy propagating in a landward direction as part of the single, overall
wave-form.

In computing the segmented solution, the drag coefficient was held constant at Cd -
3.Ox 10-3 along the Thames and cd = 1.7x10-3 along the Delaware. These "best-fit" Cd
values for the segments of each estuary are smaller than the corresponding Cd values for

each entire estuary. This is not surprising, for acceleration should become increasingly
important at smaller scales. At very small scales (e.g., channel meanders, expansions, or
pools) advective acceleration will also play a role. Thus the smaller cd values for individual

segments do not undermine our earlier assertion that, on a system-wide scale, friction

dominates acceleration at first-order. Rather, the excellent agreement between observations
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and theory displayed in Figure 4.4 indicates that the second-order theory presented above
provides a simple yet powerful explanation of tidal propagation in strongly convergent

channels near morphologic equilibrium.

4.5.2 Second harmonic

From (4.4.19), the amplitude ratio of the second-to-first harmonic is given by

M!2. L7 I I - eutxe-ikt 1= .!(1 ~2 euPcos kx+ e2Iukx) 'f2 (4.5.4)

Equation (4.5.4) is independent of the choice of xo used in evaluating (4.4.19). For the

case of 0 = 0, (4.5.4) reduces to

= 1( - cos kx)n12 . (4.5.5)

Figure 4.5 compares (4.5.4) and (4.5.5) to observations of I17/1711 along the Delaware
(Parker 1984), Thames (Prandle 1980) and Tamar (George 1975). In calculating (4.5.4) -

(4.5.5) for the Tamar, the "dynamic" amplitude discussed in Section 4.5.1 was applied,
which gives Y = 0.75±+0.06. For the Thames and Tamar there is significant disagreement

between theory and observations near x/L = 0 where forcing was assumed to occur only at

the dominant tidal frequency. In reality there is a finite 172 forcing at the mouth of each

system. In the inner estuary, where internally generated 11 is presumed to dominate, the

agreement between theory and observations is better.

The undulations in IrriJ/I along the Delaware mzy be partially explained by changes
in the rate of convergence of channel geometry with distance. Equation (4.5.4) indicates

that IrirJ1 grows along-channel more quickly when y > 0 and and more slowly when p <

0. Observations displayed in Figure 4.5a suggests that growth in 1172/1711 is more
pronounced in the first and third "segments" of the Delaware where p is positive, and less

so in the second segment where u is negative (see Table 4.4). Since 1I72/1711 is scaled by ,=

4h - bb the undulations may be ftirher enhanced by along-channel variations in y, which
was set equal ch for the Delaware. ch = alh increases rapidly in the innermost Delaware

estuary, reaching - 0.2 at x/L = 0.9 and - 0.5 at x/L = 1 (Parker 1984). This increase in
local ycoincides with the sharp increase in observed IJiji/l (Figure 4.5a).

Equations (4.5.4) and (4.5.5) reproduce observed I67/1711 in the inner Thames more
closely than the 1-D numerical modeling of Prandle (1980), who predicted irrjnill = 0.12 at
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x = 0.6 (versus an observed value of 0.03). To calculate Ih2/7i1 for the Thames, the

geometry of the first "segment" in Table 4.4 was used since all the available observations

of r12 are for xIL < 0.8. The poor performance of the numerical solution is likely the result

of two factors. First, Prandle included tidal modulation of channel depth in the friction

term. As argued in Section 4.4. 1, the inclusion of time-varying depth in the friction term is

probably not justified unless the time-dependence of cd can be well constrained.

Second, and perhaps more importantly, Prandle (1980) did not distinguish between

subtidal channels and intertidal flats in his numerical model. According to the analytic

theory developed here, 1772/7/i1 is scaled by y= ch - e,, where E, measures the relative size

of tidal variations in estuary width due to intertidal flats. If eb had been neglected, and it

were assumed that ,= Eh, then the present prediction of Ib2/77l1 for the Thames would have

increased by three-fold. This may also explain why (4.5.4) - (4.5.5) over-predict 112/7711 in

the inner Delaware where a small, but certainly non-zero, region of intertidal storage exists.

The phase of the second harmonic can also be determined from (4.4.19). If 772 is

expressed as 17721 exp i (2at - 1A2), then after some algebra (see Appendix 3) ,172 is given

by

92_sin(kx+ kxo)-e001 sin (2kx + kxo) + (4.5.6)
=cos (kx + kx0)- ( + ) (45

where 5(m,l) = 1 if m = 1, 8 = 0 otherwise. For p = 0, trigonometric identities may be used

(see Appendix 3) to show that (4.5.6) reduces to

9)2 = 3-kx + kx0 - _L (4.5.7)
2 2 lyl

The phase of 172 = 17121 exp i (2wt - IP,72) relative to i• = I~h7 exp i (wot - 1A7) is defined as

2qt - 47,2 (Aubrey and Speer 1985). So from (4.5.7) and (4.5.1), for M = 0,

2 971- 9)n2 = Z .7. + kX - kxo. (4.5.8)
2 1y 2

The solution for 2", - "2, unlike that for l172/7l I, is a function of x0. Figure 4.6

compares (4.5.8) to observations of 2 ,Vi,7 - q),2 using both x0 = 0 and xo = L/2.

Observations for the Delaware and Tamar are again from Parker (1984) and from George
(1975). Phase information for 97,7 and "2 presented by Prandle, however, are relative to

separate constants and thus in a form inconsistent with the application of (4.5.8). Less

extensive observations from Hunt (1964) are used instead.
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As was the case for h12/lll, observed 2 9,,, - Vn2 near the mouth of each estuary is

apparently influenced by existing 172 forcing at the mouth, and agreement between

observations and theory is better within the estuary. Equation (4.5.8) reproduces

observations about as well with x0 = 0 or x0 = L./2. Predictions are less sensitive to x0 and
observed 2 9.1 - )2 is reproduced more closely in the inner Thames and Tamar than in the

Delaware. This is not surprising, since the Tarnar (kL = 0.48) and the Thames (kL = 0.96

if based on segment 1) are much shorter than the Delaware (kL = 3.7), and the use of a

representative x0 is asymptotically valid only for small kL. Nonetheless, (4.5.8) captures

the general sense of tidal asymmetry even in a system as long as the Delaware.

The phase of 172 relative to r/1 indicates whether an asymmetric tidal cycle has a
rising tide of shorter duration (0" < 2q 1l - q72 < 180") or a falling tide of shorter duration

(-180" < 2,p,7 - (Pn2 < 0") (Aubrey and Speer 1985). For kL <_ r, (4.5.8) predicts the tide

will be shorter-rising if yis positive and shorter-falling if yis negative. The sign of ycan

be expected to determine the sense of distortion in the same way for longer tidal channels,

but the above theory is based on a short channel asymptote. Friedrichs and Madsen (1990)

found asymmetry in frictionally-dominated prismatic channels to depend on yin the same

fashion (although their y was defined slightly differently).

The mechanism by which ycontrols asymmetry in strongly convergent channels is

explained conceptually if the tidal wave speed given by (4.3.15) is approximated as

follows:

c(t) - gA(t) = gw h(l + eho gwh (I + yo ) (459)
rLA b(t) rLA F (1 + Cb C) rLAb

If y> 0, the wave speed given by (4.5.9) is greater around high water, when C > 0, than it

is around low water, when C < 0. High water moves faster along the tidal channel,
"1catching-up" with low water, and causing the rising tide to be of shorter duration. If Y<

0, c(t) is greater around low water, low water moves faster along the channel, and the

result is a shorter falling tide.

In the past, observations of shorter-rising tides in strongly convergent channels

have been attributed to time-variation of the frictionless shallow water gravity wave speed,

cg = (gh)112 (Wright et al. 1975; McDowell and O'Connor 1977; Allen et al. 1980). Given

the historical emphasis on low-friction co-oscillation in tidal channels, it is not surprising

that previous authors have looked to the frictionless wave speed for an explanation. A
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time-varying c8 can give results which are qualitatively similar to (4.5.9). For estuaries of
interest to this chapter, however, it is clear that the dependence of cg on low friction makes
its use physically inappropriate.

More recently, shorter-rising tides in frictionally-dominated channels have been
attributed in large part to tidal modulation of depth in the friction term of the momentum
equation (e.g., Parker 1984; Friedrichs and Aubrey 1988). The results presented in this
section, which are well-supported by observations, also refute this explanation. Instead, it
is suggested that non-linear friction plays a less important role in generating tidal
asymmetry in the natural tidal channels of interest to this chapter. The effects described by

(4.5.9) are entirely due to non-linear continuity.

4.6 Discussion of second-order solution for velocity

4.6.1. Dominant velocity frequency

Like the second-order solution for i~j, the second-order solution for V1 (4.4.23)
describes a purely progressive wave, with the same phase speed as the first-order wave,
and with an exponentially-modulated amplitude. An important feature of (4.4.23) is the
role played by er in determining the phase of V1 relative to r7. Maintaining accuracy to

O(er), (4.4.23) may be rewritten as

V1 = -eukx(cos er sin (wt - kx) - sin ercos (cwt-/kx)), (4.6.1)

or simply,

VI = -eA sin ((ot - kx - er). (4.6.2)

Thus to O(er), V1 leads rll by

47n = I _ 4'T. (4.6.3)
2

If er is vanishingly small, i.e., if along-channel convergence is infinitely strong, then V1

leads mqj by 90, which is identical to the first-order case. For larger er, V1 leads 17 by a
smaller phase.

Using (4.2.8b) and (4.3.16), (4.6.3) may be re-expressed as

0171 - VVI = f- _L Cd Ch (02 LA3  (4.6.4)
2 3m g(A'b) 2
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Equation (4.6.4) indicates that in a strongly convergent tidal channel near morphologic

equilibrium, vn - ,vl responds primarily to local geometric conditions. This result is in

sharp contrast to the classical view of frictionally damped co-oscillating tides in channels.

Classical theory indicates that the relative phase of velocity should be a strong function of

xIL. For a frictionally damped co-oscillating tide in a prismatic channel, q1 - VI -+ 90" as

x -* L because of complete reflection at the head, and ql - WVl decreases as x -+ 0 as the

reflected wave becomes more damped with respect to the incident wave.

Figure 4.7 displays observations of pn, - pv, from the Delaware (Parker 1984),

Thames (Hunt 1964) and Tamar (Uncles and Stephens 1990) as a function of CT,

superimposed on (4.6.3). All the velocity time-series available for the Delaware and

Thames are point measurements and, beyond testing 4p,, - W1v, are of limited use for

examining the 1-D theory developed in this chapter. The velocity record for the Delaware

is from x/L = 0.39 (Parker 1984), which is in the second "segment" of the estuary (see

Table 4.4). Thus the calculation of eT used here is based on the geometry of that segment.

The three velocity records for the Thames are from x/L = 0, 0.38 and 0.73 (Hunt 1964), all

of which are in the first segment of the Thames, and er for the Thames is likewise defined.

The agreement between observations and (4.6.3) is quite good for the Delaware, the Tamar

and for two of the three observations from the Thames. The poorly matched point is for

observations at x/L = 0.73 in the Thames, which is relatively near the transition to segment

2. The data point in parentheses is ,71 - ivl for the velocity record at x/L = 0.73 plotted

versus the er value appropriate to segment 2.

In (4.6.2), the parameter p determines the growth or decay of IV1, as a function of

distance along channel. It was shown in Chapter 3 that in stable tidal channels, the

amplitude of tidal velocity is nearly constant along-channel. Figure 4.3 indicates this is the

case along the Delaware, Thames and Tamar. Thus tides in channels near morphologic

equilibrium should, by definition, have p - 0. The theory developed in this Chapter is

therefore closely linked to the morphodynamic evolution of tidal channels. If in an

exponentially-shaped tidal estuary, p is significantly less than or greater than zero, then the

system may not be near morphologic equilibrium. Significant gradients in along-channel

tidal velocity should cause along-channel gradients in sedimentation or erosion, leading to

the eventual adjustment of M toward zero. Of course there are important limitations to this

conclusion. Primary among them is the contribution of tidal harmonics toward spatial

gradients in peak velocity and toward asymmetries in the direction of peak velocity. Likely
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relationships between temporal asymmetries and spatial gradients in velocity in stable

channels are discussed further in Chapter 3.

4.6.2. Second harmonic

From (4.4.24) and (4.6.3), the amplitude ratio of V 2 to V, is

Vy2l = -l- I - 2eLre-ikx = -- l( - 4e•k cos kx+ 4e2AkL)tfl (4.6.5)
V1 ~ 22

IV21V11, like tv2/Ji11I, is independent of x0. But unlike ITi/2hl, IV21VII is predicted to be non-

zero at x = 0. For/1 = 0, IV21/VII is simply .

2= L71 (5-4 cos kx},/2 . (4.6.6)

Time series of cross-sectionally averaged velocity are available only for the Tamar

(Uncles et al. 1985). Figure 4.8 compares (4.6.5) and (4.6.6) to the results of harmonic

analyses of spring velocity observations. y = 0.75 is again used, based on the mean

"dynamic" tidal amplitude. Equation (4.6.6) reproduces the same order of IV2/Vtl as that

observed in the Tamar. However there is no discernable along-channel trend in the

observed data. Nonetheless, these results are encouraging given that velocity in general is
much more sensitive than tidal elevation to measurement location and to variations in
channel shape away from an idealized geometry.

From (4.6.24) and (4.6.2), the phase of V2 relative to V, with P = 0 can be shown
to be (see Appendix 3)

2q'vl- q'2 = (4.6.7'
2w x -m = 2sin (2kx + kxo) - sin (kx + kxo) (4+ ...

2kx +2er-arctan2cos(2kx+kxo)-cos(kx+kxo) 
2 Iy'1

Note that 2¢v' - M, like 21p7 - sn, is a function of x0.

If kx << I (which is true for the Tamar), then sin kx = kx, cos kx - 1 and arctan kr

kx, and (4.6.7) reduces directly to

21m=- w '2 = A 1_ + 2e" - kx - kxc0. (4.6.8)

2 Y

Or equivalently,
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29vi - m 12 1 t- + k(2LA - x - xo). (4.6.9)
2 Y

Figure 4.9 displays 2q,'v - M as determined from velocity observations from the Tamar

(Uncles et al. 1985) along with (4.6.9) for both xO = 0 and xo = L/2. Equation (4.6.9)
does a reasonable job of reproducing both the magnitude and the trend of along-channel

variation in 2 Vvl - M,2 observed for the Tamar. More importantly, (4.6.9) captures the

varying nature of velocity asymmetry along the Tamar.

The relative phase of V2 is a primary indicator of whether tidal velocity is flood-

dominated (-90" < 2Wi1 - M2 < 90") or ebb-dominated (90" < 2qV - W2 < 270") (Aubrey

and Speer 1985). For short channels with y,> 0, (4.6.12) indicates that velocity will be

ebb-dominated for x < 2 LA - xO and will be flood-dominated for x > 2LA - xO. If y < 0,

(4.6.9) predicts the opposite will be true. The predicted switch in dominance (with Y> 0)

is consistent with observations taken along the Tamar (Figure 4.9). A similar along-

channel transition from ebb- to flood-dominance has also been observed in tidal channels at

Murrells Inlet, South Carolina, and at Chatham Inlet in Massachusetts, and in I-D

numerical modeling of frictionally-dominated tidal channels (Friedrichs et al. 1992).

4.7. Summary and conclusions

A scaling of the continuity equation appropriate to strongly convergent channels

(such as the Delaware in the U.S. and the Thames and Tamar in the U.K.) indicates

gradients in tidal discharge are dominated at first-order by gradients in cross-sectional area.

Finite amplitude effects and gradients in velocity due to tidal phase enter at second-order.

Gradients in the amplitude of tidal velocity enter only at third order -- a property attributed

to the channels being near morphologic equilibrium. A scaling of the momentum equation

indicates the first-order balance to be between pressure gradient and friction. Local

acceleration enters at second-order, and advective acceleration enters only at fourth order.

The first-order governing equation for elevation is a first-order wave equation, in

contrast to the classic second-order equation which results from low friction and a prismatic

channel. Assuming cross-sectional area to vary exponentially along-channel, the first-order

solutions for both elevation and velocity are constant amplitude, forward-propagating wave

forms with velocity leading elevation by 90". The form of the first-order solution diverges

from the conventional view of co-oscillating tides. Velocity and elevation have the same

phase relation as a standing wave, yet they are individually progressive. Furthermore, the
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solutions are entirely independent of the length of the estuary -- in sharp contrast to the
length-sensitive quarter-wave resonance of classic tidal estuary theory.

First-order solutions for tidal wave speed and tidal velocity are given by c =

g(A-h)(rL,)"I and U = aawLA(A/b)-", where A/b is the time-averaged ratio of channel cross-

sectional area divided by total embayment width (including tidal flats), a and w are tidal
amplitude and frequency, LA is the along-channel e-folding length of cross-sectional area,
and r is the linear friction factor. Solutions for channels of similar dimensions to the
Delaware, Thames and Tamar give tidal velocities and wave lengths (predicted via c) which
are consistent with observations.

The second-order governing equation is also a first-order wave equation, but
includes the effects of finite amplitude and phase-generated velocity gradients from
continuity and the effects of local acceleration from momentum. Second-order effects
arising from friction are not included because previous observations have not demonstrated
that quadratic drag with tidal modulation of depth-dependence accurately reproduces
observed nonlinearities in natural tidal channels. Finite amplitude effects in the continuity
equation are treated by a formal perturbation in time only, with spatial effects treated
kinematically. This simplifies the form of the solution without greatly affecting its accuracy
for relatively short systems.

Second-order solutions for elevation and velocity at the dominant frequency are
purely progressive wave-forms with the same phase speed as the first-order solution. At
second order the phase lead of velocity is predicted to decrease away from 90" as kLA
increases, where k is the first-order wave-number. Amplitude of both elevation and
velocity are modulated by eAk, where p = a/r - kLA. u represents the partially cancelling

effects of local acceleration and limited convergence. Because p determines the growth or
decay of tidal velocity with distance along channel, we expect to find P = 0 in channels near
morphologic equilibrium. The quantity ao/r - kLA is close to zero along the Delaware,
Thames and Tamar.

Observations of small scale variations in tidal amplitude and phase along the
Delaware and Thames are reproduced by fitting exponential geometries to individual
channels segments and applying the second-order solution to each segment. This is easily
done for the unidirectional wave solution. The only boundary condition on each segment is
the amplitude and phase at the end of the previous segment. The segmented solution
demonstrates that along-channel undulations in amplitude and phase are due primarily to
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changes in the rate of convergence of channel geometry and are not due primarily to

interactions between individual incident and reflected waves as predicted by classical co-

oscillation.

Compact solutions for tidal elevation at the second harmonic frequency are

consistent with observations from the Delaware, Thames and Tamar. The second harmonic

is scaled by Y = af/h - 4 blb, where h is channel depth and Ab is the amplitude of tidal

variation in system width. Control of elevation asymmetry by yis described conceptually
by replacing A/b in c with A()/b(t). Then if 7 > 0, the wave crest propagates faster than

the trough, causing the rising tide to be of shorter duration. If y < 0, the opposite holds

and the falling tide is shorter. y is greater than zero for the Delaware, Thames and Tamar.

Solutions for the zeroth harmonic ar- also scaled by r.

Compact solutions for sectionally-averaged tidal velocity at the second harmonic
frequency are also reasonably consistent with observations (which are available only for the
Tamar). Like elevation, the second harmonic of velocity is also scaled by r. Unlike

elevation, however, the sense of velocity asymmetry is predicted to reverse a short distance

into the channel. For y > 0, ebb currents dominate at the mouth, whereas at distances

beyond about 2LA, flood currents dominate. For y < 0, the opposite pattern is predicted,

with flood currents dominating at the mouth and ebb currents dominating within.
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Table 4.1. Observed and computed tidal and geometric properties of three tidal
estuaries. Parameters are further defined in the text. ± indicates standard errors; < >
indicates along-channel average.

Parameter Delaware Thames Tamar

L (km) 215 95 21

LT (km) 370±10 450±80 270±10

<U> (m/s) 0.63±0.02 0.63±0.05 0.53±0.01

<a> (m) 0.83±0.03 2.2±0.1 2.3±0.1

<h' (m) 5.8±0.3 7.2±0.6 2.5±0.2

<Efh> = <ca>

< 0.14±+0.01 0.31±0.03 0.92±0.08

<Cb> W <b >

<b> -0 0.20±0.02 0.30±0.09

Lb (km) 34±1 23±5 4.6±0.4

LA (km) 32±1 19±1 5.3±0.3

LA/LU 0.012±0.013 0.069±+0.075 0.033-+0.013

e' = (LA/LU)' 1 2  0.11±+0.08 0.27±+0.22 0.18±0.05

eT = 2rLA/LT 0.56±0.02 0.27±0.05 0.12±0.01

<A/b> (m) 5.8±0.3 7.0±0.5 1.7±0.2

<a> wLA

<A/b> <U> 1.0±0.1 1.3±0.2 1.9±0.2

Ea = (LA/La)' 12  0.24_-0.03 0.11±-0.21 0.27+"0.04

<w/b> - 1 0.80±0.02 0.70±0.09

er C2

<w/b>g<h> 0.65+-0.04 0.47±+0.09 0.26±-0.04



- 135 -

Table 4.2. Small terms used in scaling governing equations and in approximating solution.

Formally second-order, 0(e) quantities Other informally small quanitities

h= alh hiw

Eb= AbIb A = LLA- L/Lb

EU =(LAILU)2 LAIL (1)

er= 2;r LAILT LILT (2)

=a (LAILa) 12

EW = aO-r

•'= Lj,h" ,

(M)Important in vicinity of landward boundary. (2)Important for second-harmonic solution.
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Table 4.3. See Table 4.1 for explanation.

Parameter Delaware Thames Tamar

S= LILA - L/Lb 0.30±0.17 0.48±0.29 - 0.60±0.20

U = <a>LA
(m/s) <A'b> 0.65±0.05 0.83±0.08 1.00±0.11

Cd = 3,2g (X'/)2
4LT <Eh> w2 LA2  2.3±0.2x 10-3 3.7±+0.8x 10-3 1.6±+0.3x 103

Lg = 2,r (g<T>)1/2

(km) 340±10 380±20 220±10

< = <Eh> - <Eb> 0.14±0.01 0.10±0.04 0.63±0.12

3 3, <A/b>
8 Cd <eh> LA 0.65±0.09 0.39±0.10 0.27±0.06

A = Cw- VT 0.094±+0.091 0.12±0.11 0.15±0.06

2ii La 0.061±0.009 -0.06±0.12 - 0.58±0.05
0.23±0.02*

*If La is based on the "dynamic" tidal amplitude, defined as local high water minus mean
tide level at x = 0.
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Table 4.4. See Table 4.1 for explanation.

Estuary Segment x/L LT (kim) LA (km)

Thames 1 0 - 0.8 0.34 630 22

2 0.8- 1 -0.41 130 13

Delaware 1 0- 0.22 0.54 530 40

2 0.22 - 0.68 - 0.10 310 44

3 0.68- 1 0.37 450 33
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Figure captions for Chapter 4

Figure 4.1. Diagram of an idealized tidal embayment cross-section: b is

embayment width (including storage in tidal flats), ' is tidal elevation, h is cross-
sectionally averaged channel depth, w is channel width (which is equal to embayment
width at low tide), and A is channel cross-sectional area. Over-bars indicate time

averages.

Figure 4.2. Observed semi-diurnal surface tide as a function of distance along the

Delaware (Parker 1984), Thames (Prandle 1980) and Tamar (George 1975): (a)
amplitude, and (b) phase, along with least-squares linear regressions.

Figure 4.3. Observations of channel cross-sectional area at mid-tide, time-
averaged embayment width, and cross-sectionally averaged velocity amplitude as a
function of distance along the (a) Delaware (Parker 1984), (b) Thames (Hunt 1964), and
(c) Tamar (Uncles et al. 1985), along with least-squares log-linear regressions.

Figure 4.4. Observed semi-diurnal surface tide as a function of distance along the
Tamar (George 1975), Delaware (Parker 1984), and Thames (Prandle 1980) along with
predictions given by second-order solutions: (a) amplitude, (b) phase. Observations of

amplitude along the Tamar are calculated as the difference between local high water
elevation minus mid-tide elevation at x = 0. Predictions for the Delaware and Thames are

based on the "segmented" solution.

Figure 4.5. Observed relative amplitudes for the second harmonic of tidal

elevation as a function of distance along (a) the Delaware (Parker 1984), and (b) the Tamar

(George 1975) and Thames (Prandle 1980), along with predictions given by the second-

order solution.

Figure 4.6. Observed relative phases for the second harmonic of tidal elevation as
a function of distance along (a) the Delaware (Parker 1984), and (b) the Tamar (George

1975) and Thames (Hunt 1963), along with predictions given by the second-order

solution.

Figure 4.7. Observed phase of velocity relative to elevation at the dominant tidal
frequency for the Delaware (Parker 1984), Thames (Hunt 1963) and Tamar (Uncles and

Stephens 1990), along with predictions given by the second-order "segmented" solution
as a function of rT = 2jr LT/LA. The poorly matched point for the Thames is in segment
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one, but relatively near the transition to segment two. Parentheses indicate the same point

plotted using the geometry of segment two.

Figure 4.8. Observed relative amplitudes for the second harmonic of tidal velocity

as a function of distance along the Tamar (Uncles et al. 1985), along with predictions

given by the second-order solution.

Figure 4.9. Observed relative phases for the second harmonic of tidal velocity as

a function of distance along the Tamar (Uncles et al. 1985), along with predictions given

by the second-order solution.



-140-

.. . . . . .

Fiur 4.1



- 141 -

2.5

S 2
'• 1.5

0.5

0 
(a

0 104 06 08

O (b)

t 150

50

0

0 0.2 0.4 0.6 0.8

x/L

• - Delaware = Thames x = Tamar

Least-squares fit to (4.2.3a)

Figure 4.2



- 142 -

106

(a) Delaware
10'

104k At • '(M2)

10,1-,* •.

10W b•(m)

10 U (m/s)

0 0.2 0.4 0.6 0.8 1
10i

(b) Thames

10

M (m)

13
102 ~

I0° U (m/s)

10
10 -, .. . ..

0 0.2 0.4 0.6 0.8

x/L

Least-squares fit to (4.2.6)

Figure 4.3



- 143 -

104

(c) Tamar

102

100 U (m/s)

lO"1
0 0.2 0.4 0.6 0.8

x/L

Least-squares fit to (4.2.6)

Figure 4.3 (cont.)



-144-

3
(a)

2

a 11711

(meters)

0
0 0.2 0.4 0.6 0.8

200 -(b

150

(degrees) i0o

50 °

0

0 0.2 0.4 0.6 0.8

x/L
• = Delaware = Thames = Tamar

=Eq. (4.5.1) = Eq. (4.5.3)

Figure 4.4



-145 -

02
(a) Delaware

0.15

0.1

0.05

00

0 0.2 0.4 0.6 0.81
0.2

(b)

0.15

17 1 0.1

0

0 0.2 0.4 0.6 0.81

*= Delaware x/L

0 = Thames = Eq. (4.5.4)
x =Tamar --------- =Eq. (4.5.5)

Figure 4.5



-146-

200

150

100

(degrees) 0 -----

-50

10 --

0(a) Delaware

-15011
0 0.2 04 0.6 0.8

200

150 -Tamar Thames

100

2q~l - q 2 ..............

29n, 1- q~2 50

(degrees) 0 Thames Tamar

-50

-100
(b,)

0 0.2 0.4 0.6 0.8

*= Delaware x/L

"= Thames

S= Thamas = Eq. (4.5.8), x 0 =0
------------ = Eq. (4.5.8), x 0 =L/2

Figure 4.6



- 147 -

100

80 • i

60

~40

20

0
0 0.2 0.4 0.6 0.81

ET

*=Delaware

*=Thames -Eq. (4.6.3)

=Tamar

Figure 4.7



- 148-

0.6

0.5

0.4

Iv 0.3
VIv Io.

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x/L

x = Tamar = Eq. (4.6.5)
= Eq. (4.6.6)

Figure 4.8



- 149 -

140

EBB-DOMINATED

120

*~100soo

60

40
FLOOD-DOMINATED

20
0 0.2 0A4 0.6 0.8 1

xlL

= Tamar = Eq. (4.6.9), x0 = 0
S-. --. ---.. = E q. (4.6.9), x 0  = L/2

Figure 4.9



-150-

Chapter 5:

Equilibrium Hypsometry of Intertidal Flats



- 151 -

Abstract to Chapter 5

Recent observations of tidal flat morphology have correlated convex hypsometry

with large tide ranges, long-term accretion and/or low wave activity. Concave hypsometry,

in turn, has been correlated with small tide ranges, long-term erosion and/or high wave

activity. This study demonstrates that much of this empirically observed variation in tidal

flat hypsometry may be explained by a simple morphodynamic model which assumes tidal

flats to be at equilibrium if maximum bottom shear stress (T) is spatially uniform. Two

general cases are considered: (i) absence of wind waves where r is equal to maximum tidal

shear stress, and (ii) dominance by wind waves, where r is equal to maximum wave-

generated shear stress.

If one assumes a spatially uniform drag coefficient at the time of maximum shear

stress, then uniform maximum velocity may be used as a proxy for uniform r.

Conservation of mass is used to determine the distribution of maximum tidal velocity (UT)

across the flat, whereas conservation of energy determines the distribution of maximum

wave orbital velocity (Uw). Results indicate that a flat which slopes linearly away from a

straight shoreline does not produce a uniform distribution of UT or Uw, and therefore is not

at equilibrium under domination by either.

If the profile is adjusted until UT is constant, then UT is found to be proportional to

the length of the tidal flat, L, and the equilibrium profile is predicted to be convex. The

equilibrium profile for Uw, in contrast, is concave and has depth increasing like xW, a

form which has been reported empirically for dissipative beaches. Under domination by

Uw, L - ho2/Ho, where h0 is the tidal range and H0 is the forcing wave height. This

expression indicates that L should increase dramatically with tidal range. Since UT ~ L, the

relative importance of tidal currents should also increase strongly with tidal range, favoring

an eventual transition from concave to convex hypsometry as tidal range increases.

Equilibrium profiles along curved shorelines are also derived by solving

conservation of mass or energy. Under domination of either UT or Uw, results indicate

that an embayed shoreline significantly enhances the convexity of the equilibrium profile,

and a lobate shoreline slightly increases concavity. The nonlinear transformation from

profiles to hypsometries, however, causes the hypsometry of embayed and lobate

shorelines to be much more or less convex than the corresponding profiles -- so much so

that the potential effect of shoreline curvature on equilibrium hypsometry is of the same

order as the effect of domination by UT or Uw.
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List of symbols in Chapter 5

a tidal amplitude

A cumulative horizontal basin area

AL A atx=L

Am maximum value of A

b width of flat parallel to shoreline

bo b at x = 0

bL b at x = L

B B(xlx 2) = (b(xl)/b(x2) + 1)/2

Cd drag coefficient
C 1.2.3 constants

Cg shallow water wave group velocity
D energy dissipation by bottom friction

E wave energy density
g acceleration of gravity
h still water depth

ho h at x = 0

hm maximum value of h

H wave height

H0  H at x = 0

Ho non-dimensional Ho

L shore-normal length of tidal flat

L* shore-normal length of lower profile

r shore-normal co-ordinate for radially symmetric flat
ro ratx=O

rf r at x = xf

rL r at x = L

t time
Tw wave period

u velocity

Ueq equilibrium velocity

UT depth-averaged tidal velocity

uw wave orbital velocity

U maximum depth-averaged velocity

UT maximum depth-averaged tidal velocity
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List of symbols in Chapter 5 (continued)

UTO UT atx = 0

Uw maximum wave orbital velocity

Uwo Uwatx=O

x shore-normal co-ordinate

xf postion of tidal front

z vertical co-ordinate

z* elevation of transition from lower to upper profile

Z profile elevation

Z. upper profile elevation
Z. lower profile elevation

S dtidal elevation

0 angle between velocity and shoreline

p fluid density

a wave frequency

T maximum bottom shear stress

r. maximum tidal bottom shear stress

TW maximum wave-generated bottom shear stress

0) tidal frequency
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5.1. Introduction

More than half of the world's non-arctic coastlines are either macrotidal (range >
4 m) or mesotidal (range 2-4 m) (Davies 1980). The study of equilibrium tidal flat
morphology provides insight into the response of meso- and macrotidal coastlines to such
external forcings as engineering works, periodic storm activity, and changes in relative sea
level. Hypsometric curves, which measure cumulative horizontal basin area as a function
of elevation, usefully represent broad aspects of tidal flat morphology in a concise and
quantitative manner (e.g., Kirby 1992). Recent observations relating characteristic tidal flat
hypsometries to tide range, wind wave activity, and long-term accretion or erosion provide
a base of empirical data with which to compare equilibrium hypsometries predicted by
analytic theory.

In this investigation equilibrium hypsometric curves are derived for intertidal flats
by assuming a uniform magnitude of maximum shear stress (r). A spatially uniform
distribution of r provides a useful first approximation to the more correct statement that a
stable morphology results when there is a zero divergence in net sediment transport. The
resulting analytic forms based on uniform r are consistent with previous empirical
observations and provide insight into the physical mechanisms which determine tidal flat
hypsometry. Domination of -r by tidal currents is found to favor a convexity, whereas
domination of r by wind waves if found to favor concavity. The effect of shoreline
curvature on equilibrium hypsometry is found to be of the same order as the effects of
domination by tides or waves.

5.1.1. Definitions and previous work

Hypsometric analysis, which was formally introduced to geomorphology by
Strahler (1952), is the study of the distribution of surface area of a land mass or basin with
respect to elevation. Hypsometric curves are often presented as non-dimensional plots of
relative elevation and relative surface area, allowing a comparison of hypsometric curves
between systems having different scales. Strahler found distinctive hypsometric curves to
be related to the erosional maturity of land regions formed in homogeneous strata. Boon
(1975) and Boon and Byrne (1981) firvt applied hypsometric analysis to the study of
intertidal basins. They used the hypsometry of intertidal storage areas to model patterns of

asymmetric discharge in tidal channels near Wachapreague, Virginia.
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Figure 5.1, which is modified from Boon and Byrne (1981), shows example basin

morphologies and their associated hypsometries. In Figure 5.1 and throughout this paper,

hypsometric curves display the cumulative horizontal basin area below a given contour. It

is important to distinguish the hypsometric curve from the topographic profile. The profile

is a plot of elevation versus horizontal distance along the gradient of the topography. In
Figure 5.1, for example, all three topographies have linear profiles. Along a straight

shoreline (case i in Figure 5.1) the profile and hypsometric curve are interchangeable.

Along curved shorelines, however, the nonlinear transformation from profile to

hypsometry causes a linear profile to produce a nonlinear hypsometry. If the profile is

straight and the shoreline is embayed (case ii in Figure 5.1), then the hypsometry will be
convex. If the profile is straight and the shoreline is lobate (case iii in Figure 5.1), then the

hypsometry will be concave. Boon and Byrne (1981) emphasized the sensitivity of tidal

flat hypsometry to shoreline curvature.

Recent observations of tidal flat hypsometry have related the form of the
hypsometric curve to other factors including tidal range, exposure to wind wave activity

and patterns of long-term accretion or erosion. In a study of tidal basins along the German

Bight, Dieckmann et al. (1987) noted that hypsometric curves tend to be more concave for

lower tidal range flats and more convex for higher tidal range flats. In a study of

macrotidal (range > 4 m) flats around Great Britain, Kirby (1992) related convexity to

long-term accretion and concavity to long-term erosion. At a few of the locations, Kirby in

turn related accretion or erosion to protection from or exposure to wind waves. Finally, in

a study of sediment exchange off the wide macrotidal flats of western Korea, Wells and

Park (1992) described a periodic increase in convexity associated with a seasonal increase

in wave activity.

The hypsometric trends described above can be summarized by a qualitative ratio
which indicates the relative importance of tidal currents and wind waves:

high -4 CONVEX hypsometry
low -4 CONCAVE hypsometry

This correlation is consistent with observations from the German Bight if spatial variations

in tidal range are assumed to be locally more important than spatial variations in wave

activity. The same trend describes flats in Great Britain if local variations in wave activity
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dominate local variations in tidal activity. The ratio describes Korean flats, too, if temporal
(rather than spatial) variations in wave activity are assumed to be most important.

Potential contributors to equilibrium tidal flat hypsometry which are not addressed
in this study include sediment supply and distribution of grain size. In a study of
equilibrium beach profiles, Wright et al. (1985) noted an increase in concavity associated
with net export of sediment from the surf zone and a decrease in concavity associated with
net import. These associations are consistent with Kirby's (1992) correlation of concavity
and convexity with long-term erosion and accretion on tidal flats. A gradation of sediment
type from high to low water will also affect the equilibrium profile since lower equilibrium
shear stresses may be associated with areas of finer grain size. Using an analytic model of
shoaling waves over various shaped tidal profiles, Zimmerman (1973) suggested that a
decrease in grain size toward high water enhances concavity, whereas an increase in grain

size enhances convexity.

5.1.2. Morphodynamic model

In this study it is assumed that a stable morphology will result when the distribution
of maximum bottom shear stress (r) is uniform across a tidal flat. This is a simplification

of the more correct statement that a stable morphology results when there is a zero
divergence in net sediment transport. Since common formulations for erosion, deposition
and net transport are generally expressed as functions of bottom shear stress -- often in the
form of power relations (e.g., Dyer 1986), the spatial distribution of bottom shear stress is
a useful starting point before attempting to predict sediment transport directly using more
uncertain equations. Bottom shear stress can be derived from hydrodynamic relations more

easily and with a greater degree of confidence.

A deviation of r away from its mean value over a flat is assumed to cause a local
increase or decrease in the rate of sediment dispersal and result in net erosion or deposition

of sediment. This approach focuses on the diffusive nature of sediment transport and does
not address the importance of asymmetries in the direction of bottom shear stress. The tidal

and wind wave processes considered here are linearized such that no asymmetries in
direction of r are generated. Ckarly, asymmetries in r can play a morphodynamic role.
For example, the morphologic impact of tidal asymmetries in embayments is the focus of
Friedrichs et al. (1992) and is a primary motivation for Chapter 2 of this thesis.
Nonetheless, if r is considered to be symmetrical at first-order, then the spatial distribution
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of its magnitude alone should provide valuable insight into the r'1 •rphology of stable tidal

flats.

An assumption of uniform r has also proved useful in previous investigations of
equilibrium morphology. In Chapter 3 of this thesis, uniform r was used successfully to
describe the equilibrium morphology of tidal channels. Although second-order variations
were associated with directional asymmetries, uniform r provided a robust, first-order

constraint on channel geometry. An assumption of uniform energy dissipation, which can
be re-expressed as uniform r, has also been applied to the generation of stable beach
profiles along straight shorelines (Bruun 1954). The resulting equilibrium form is
consistent with empirical observations of dissipative beaches in general (Dean 1977) and
has been applied successfully in individual case studies (e.g., Chappell and Eliot 1979).

For tides in the absence of wind waves or for wind waves in the absence of tides, T
has been expressed as

r = PcaUIU1, (5.1.1)

where p is the fluid density, Cd is a dimensionless drag coefficient, and U is maximum

depth-averaged velocity during a complete wave or tidal period. The shallow-water
approximation allows the decay of wave velocity with depth to be neglected. Bottom stress
given by (5.1.1) is assumed to be dominated effectively by either waves or currents.

Otherwise, wave-current interaction may play a role in determining the net stress field
(e.g., Grant and Madsen 1979). In this study, it is also assumed that p and Cd are constant
in space. Under these conditions, uniform r becomes equivalent to uniform U, and

equilibrium morphologies can be defined by either r or U.

5.1.3. Scaling of problem: southwest coast of Korea

Before beginning a formal derivation of equilibrium hypsometry, it is useful to
scale the problem in order to assess its applicability to real tidal flats. The tidal flats along
the southwest coast of Korea (Wells et al. 1990; Alexander et al. 1991; Wells and Park

1992) are chosen as a field example because of their open form and homogeneous
composition, attributes which make them particularly amenable to first-order analytic
modeling. Unlike many tidal flats bordering the North Sea, the Korean flats lack extensive

dendritic drainage systems, seaward barriers and landward salt marshes (Alexander et al.
1991). The Korean intertidal sediments are predominantly poorly sorted mud and silt,
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whereas sediments on flats in the North Sea typically show a more well-defined shore-
parallel gradation from mud to sand (Klein 1985).

Along the southwest coast of Korea the mean tide range is about six meters and
tidal flats extend as much as 30 km out from the coast (Alexander et al. 1991; Wells and
Park 1992). However a more typical shore-normal length scale is L - 5 km. During calm
summer weather, tidal currents are presumed to dominate bottom shear stress over the flats.

.Assuming a sinusoidal particle excursion, maximum tidal current speed is given by UT =

aL/T, where T is the tidal period. A semi-diurnal period then gives UT = 35 cm s-', which
is sufficient to mobilize unconsolidated sediment. Wells et al. (1990) measured maximum
current speeds of - 40 cm s-1 over Korean tidal flats, which is consistent with the above
estimate.

During the winter monsoon, Korean flats are exposed to extensive periods of large
ocean swell (Wells and Park 1992), and wave-generated shear stress is presumed to
dominate. The amplitude of orbital velocity for a shallow water wave is given by linear
theory to be

Uw = I (gh)'t, (5.1.2)
2h

where H is wave height, h is still water depth and g is the acceleration of gravity. Using

the tidal range to scale h, a storm swell of H = 2 m gives Uw = 120 cm s-1. Since r- U2,

shear stress generated by storm swell will be an order of magnitude larger than that

generated by UT, and Uw will effectively dominate the net field. Since maximum shear
stress generated by waves (,rw) has the potential to be much greater than maximum shear
stress generated by tides (rr), one might expect a seasonal transition from tide- to wave-
dominated hypsometry to be largely erosional, and a transition from wave- to tide-
dominated hypsometry to be largely depositional.

In the following sections, U is used as a proxy for r in deriving equilibrium flat
morphologies. In Section 5.2 conservation of mass is used to determine the distribution of

UT, whereas in Section 5.3 conservation of energy is used to determine the distribution of
Uw. Tidal flat profiles are then adjusted until a uniform distribution of U signifies

equilibrium.
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5.2. Tidal currents

If the shore-normal length scale of the tidal flat is much shorter than the tidal wave
length, then allowing tidal elevation (qi) to pump up and down uniformly across the tidal
flat is a reasonable assumption. Phase lags generated by momentum are important in the
generation of velocity asymmetries over tidal flats (Friedrichs et al. 1992). However a
kinematic approach is useful at first order when examining only the magnitude of tidal
velocity. In the past, kinematic approaches have been used successfully in the study of
velocity distributions along short channels in tidal marshes (Boon 1975; Petick 1980).

Thus the governing equation applied tidal currents in the absence of wind waves is
simply conservation of mass:

d(. + a_{h(x,t)UT(xt)} = 0 (5.2.1)
dt ax

where h is local depth, and UT is tidal velocity. Equation (5.2.1) also assumes tidal flow to

be entirely one-dimensional, thus neglecting the role played by intertidal channels in
concentrating the flow of water across the flats. Nonetheless, flow over tidal flats is often
sheet-like, especially during the flood, even in the presence of intertidal channels (Wells

and Park 1992).

The direction of peak flow over intertidal flats may be at an angle to the bathymetric
contours (e.g., Evans and Collins 1975; Wright et al. 1982). Equation (5.2.1) does not
require tidal currents to be perpendicular to the contours, but only requires currents to flow
at a constant angle to the bathymetry. In such a situation the x-coordinate in (5.2.1) is
simply oriented at the same angle as the velocity. In their study of tidal flats along the
Wash in the U.K., Evans and Collins (1975) found a marked clockwise rotation of the tidal

current throughout the tidal cycle. Although the analytic model presented here allows the
tide to flow at an angle to the bathymetry, rotation of the current is not incorporated.

Integrating (5.2.1) to solve for UT gives

UT(X,t) = h(t)-x d77(t) (5.2.2)h(x,t) dt
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where x~t) is the boundary between the wetted and exposed portions of the flat, hereafter

termed the tidal front (Figure 5.2). Channel depth is defined in terms of its time and space-

dependent components:
h(x,-) = - Z(x) , (5.2.3)

where Z(x) is the local elevation of the tidal flat profile. Equations (5.2.2) - (5.2.3) hold

for any flat lacking along-shore variations. If ln(t) and Z(x) are specified, then h(xj), xl:()

may be calculated, and a solution for UT may be found from (5.2.2).

The parameter U7(x) is defined as the maximum value reached by UT at each point

in x during the tidal cycle. According to the morphodynamic model applied in this chapter

(see Section 5.1.2), if UT is uniform in x, then Ir is uniform also. In the absence of wind

waves, the tidal flats are at morphologic and hypsometric equilibrium. If UT (and therefore

rr) varies in x, then erosion is more likely (or deposition is less likely) in areas with larger

UT -- and vice versa for areas with smaller UT. Under ideal conditions, erosion and/or

deposition will continue until UT and T- become uniform.

The following sub-sections first consider tidal currents on a linearly sloping tidal

flat along a straight shoreline. Next the tidal flat profile is adjusted to produce a uniform

spatial distribution of UT. Finally the role of shoreline curvature is considered. The

uniqueness of the resulting equilibrium profiles will not be proven. The goal of this section

is merely a description of simple profile forms over which UT and rr are constant in space.

In each case it is assumed that

q1(t) = a sin ox, (5.2.4)

where a is tidal amplitude, and wt is tidal frequency. However a similar approach may be

used for more complex time-variations in elevation, including the effects of tidal harmonics

in q1(t). The kinematic role of tidal harmonics in determining flow patterns has been

considered along short marsh channels by Boon (1975) and Pethick (1980) and in the inner

portion of longer tidal channels by Fry and Aubrey (1990). The kinematic ro:e of tidal

harmonics in shaping equilibrium flat hypsometry is the subject of continuing work.

5.2.1. Straight shoreline, linear profile

Figure 5.2 displays a linearly sloping tidal flat with a shore-normal length of L from

the low to high water line. The tidal flat profile is given by



- 161 -

Z(x) = a (2x/L- 1), (5.2.5)

where x = 0 at the low water line, and Z = 0 at x = L/2 (Figure 5.2). For a linear flat,

evaluation of (5.2.2) is particularly straightforward. If the gradient of the flat is constant,

then
Xf(t)-X = constant (5.2.6)
h(xt) 2a (

and

uT(t) L _17 cosw =t =L -0) 1- (5.2.7)
2a dt 2 a 2  "

From (5.2.7) it is clear that maximum tidal velocity will occur when 112 is at a
minimum. For x : L/2, rt2 is at a minimum when 17 = 0. Thus for x < L/2,

UT = La!2 , (5.2.8)

and maximum tidal velocity occurs at mid-tide. For x > L/2, however, the smallest value

of 17 which maintains water at x is (asymptotically) 17 = Z. Thus for x > L/2,

2(Z(X)2 112X 12
Ur(x) - L ) = Lw _ (5.2.9)I T W L-- L 2 1

and maximum tidal velocity occurs at the tidal front. Thus (5.2.9) may be alternately

expressed for x > U2 as

UT(x) = dxL when x = xf. (5.2.10)dt

Note that (5.2.8) - (5.2.10) are all independent of tidal amplitude.

Figure 5.3 shows UT(x)/UTO and rr(x)lrro as a function of x/L across a linearly

sloping flat. For x/L < 1/2, UT and rr are constant, suggesting that (in the absence of wind
waves) a linear profile is at morphologic equilibrium over the seaward half of the flat. If
values are chosen appropriate to the southwest coast of Korea (M2 tide, L - 5 kin) then

UTo = 35 cm/sec, which is large enough to mobilize fine sediment. If the water flows at an
angle to the shore, UTO is potentially higher. For x/L > 1/2, however, there is a dramatic

decrease in UT and rr as x/L approaches 1. Thus according to the morphodynamic model
applied in this study, a linearly sloping flat with a stress field dominated by tidal currents

alone is not at equilibrium for x/L > 1/2. Greater deposition (or less erosion) should occur

on the landward half of the flat until LIT and rr become nearly uniform across the entire flat.
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5.2.2. Straight shoreline, equilibrium profile

A tidal flat profile is now derived which results in a uniform distribution of UT

across the entire flat. Figure 5.4 displays a profile which is linear for x :_ L* and non-

linear for x > L*. L* is defined such that Z = 0 at x = L*. The elevation of the lower tidal

flat profile is given by

Z.(x) = a(xlL*-1) for x<L*, (5.2.11)

where L* is also the length of the lower profile. From the previous section it follows that

for x _< L*, UT = L*ao at mid-tide and, therefore, UT is at least as large as L*w. From the

results of the previous section, it also seems reasonable to assume that for x > L*, UT

occurs at the tidal front. The next step is therefore to determine what Z is required to give

dxf = L*wo (5.2.12)dt
for x > L*.

Following a particle at the tidal front:

= ._ AL .2.13)
dr/ dt dr7

From (5.2.4),
dL = 1_d larcsin•} . (5.2.14)dr n 0 dr a

Utilizing (5.2.12) and (5.2.14) and integrating (5.2.13) then gives

xf - L* = L* arcsin vt/a. (5.2.15)

At the tidal front, x = xf, h = 0, and, from (5.2.3), Z = 17. Eliminating 17 and xf in (5.2.15)

and solving for Z then gives

Z+(x) = a sin (xlL*- 1) for x > L*. (5.2.16)

Since Z+ = a at x = L, from (5.2.16) it is clear that for an equilibrium fla, along a straight

shoreline,

L*/L = (m) + 1)-) . (5.2.17)

Figure 5.5 compares the equilibrium profile given by (5.2.11) and (5.2.16) with

the linear profile given by (5.2.5) and indicates that the upper equilibrium profile is convex
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relative to the linear profile. For a straight shoreline, tidal flat hypsometry is equivalent to
the tidal flat profile. Thus the results of this section indicate that in the absence of wind
waves, tidal currents favor a convex hypsometry at equilibrium, which is consistent with
the general observational trends presented in Section 5.1.

Finally, (5.2.17) can be used to constrain the equilibrium length of a tidal flat in the
absence of wind waves if there exists some characteristic magnitude of UT at equilibrium.
If UT = Ueq, where u.q is some (externally fixed) velocity at equilibrium, then (5.2.17),

along with the relation UT = L*w, yields

L = (r/ 2 + 1) ueq/W. (5.2.18)

Since (5.2.18) is independent of tidal amplitude, why do macrotidal flats generally
cover larger areas than do mesotidal flats? Vegetation, which has so far been neglected in
this paper, undoubtedly plays some role. Salt marshes are sensitive to tide range and
generally do not extend below about one meter of the mean high water line (Frey and Basan
1985). Because of their sensitivity to tidal range, salt marshes clearly will reduce the
equilibrium area of intertidal flats more substantially in micro- to mesotidal environments
(range < 4 m) than in macrotidal areas (range > 4 m). For example, in Great Bay, New
Hampshire (mean range 2 m) extensive intertidal flats are limited to areas below mean water
(Friedrichs et al. in prep., a). Of course wind-waves also play a role in determining the

equilibrium width of intertidal flats. Their role will be discussed in more detail in Section

5.3.

The above "vegetation effect" may partially explain the increase in convexity
associated with increased tidal range by Dieckmann et al. (1987). The convex portion of
the tidal profile in Figure 5.5 is limited to that area above mean water. If a large percentage
of the intertidal area above mean water is vegetated, as might be expected along a meso-
tidal shoreline, then the convexity of the hypsometry will necessarily be reduced. Along a
macro-tidal shoreline, however, vegetation will be viable over less of the convex portion of

the profile.

Eouation (5.2.18) seems to suggest that equilibrium tidal flats that are dominated by

Tr are large. If Ueq = 30 cm s- 1 during an M2 tide, then (5.2.18) gives L = 5.5 km. It
should be remembered, however, that L is the length of the flat in the direction of the
maximum tidal velocity. Thus it is only necessary for the component of the flat
perpendicular to the bathymetric contours to be of length L cos 0, where e is the angle
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between the velocity and the shoreline. Also, intertidal flats may not extend all the way to

high water, but rather abut salt marsh. If a flat along a straight shoreline extends from low

water to mean water, for example, it need only have a length parallel to the velocity

direction of L* = ueq/oA. If uq = 30 cm s-1, the flat in question lies completely below mean

water, and UT is at a 45" angle with the shoreline, then the shore-normal component of the

flat need only extend 1.5 km.

5.2.3 Curved shoreline, equilibrium flat

The effect of shoreline curvature on the distribution of UT over tidal flats is now

considered. Equilibrium tidal profiles are derived and then re-expressed in terms of

equilibrium hypsometries. Figure 5.6 provides plan views of "lobate" and "embayed"

shorelines with tidal flats extending from x = 0 to x = L. A lobate shoreline has a width at

x = L which is less than its width at x = 0, giving bL/bo < 1. An embayed shoreline has

btJbo 1 1, and a straight shoreline has bLJbo = I.

For a curved shoreline which is radially symmetric, continuity is most easily

evaluated in polar coordinates:
d_.i + r ._.rh(r,t)uT(r,t)) = 0. (5.2.19)

dt r dx

In this section it is assumed that tidal flow is everywhere perpendicular to the bathymetry.

Equation (5.2.19) integrates to

uT(r,t) = r'"2 -r 2 d 7n (5.2.20)
2rh(r,t) dt

where rf is the position of the tidal front. Keeping in mind that b is proportional to r (see

Figure 5.6), (5.2.20) may be re-expressed as

UT(r,t) = i (b(rf)/b(r) + 1) rf_--r d7 (5.2.21)
2 h(r,t) d2

Transforming back to the x-coordinate, r = ro + x, rf = ro + xf, and uT(r,t) =

+ UT(X,t), where r0 = r(x=0), and the ± results from the shoreline being embayed (+j or

lobate (-). Then (5.2.21) bzcomes

UT(X,t) = B(xfx) xf ..x dr7 (5.2.22)
h(x,t) dt

where
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B(xfb(x= + 1), (5.2.23)

and
b(x)/bo = I + (btjbo- 1) x/L. (5.2.24)

Equations (5.2.22) - (5.2.24) hold for any radially symmetric flat, regardless of the precise

form of the profile.

If shoreline curvature is negligible (i.e., bdjbo = 1), then b(xf) = b(x), B = 1, and

(5.2.21) becomes identical to (5.2.2). If the shoreline is lobate (blJbo < 1), then b(x) >

b(xf) > 0, and B is bounded by 1/2 <B B< 1. If the shoreline is embayed (bd.bo > 1), then

0 < b(x) • b(xj.), and B is bounded by I S B < *. From the above bounds on B, it is clear

that B is less sensitive to lobate shorelines and more sensitive to embayed shorelines.

The derivation of equilibrium tidal flat profiles along curved shorelines in the

absence of wind waves closely follows that used for straight shorelines. By analogy to

Section 5.2.2, different relations are assumed to govern the equilibrium profile for x - L*

and x > L*. By further analogy with Section 5.2.2, it is assumed that UT = L*o. occurs

simultaneously over all of x 5 L* when xf= L*. Unlike Section 5.2.2, however, i' is not

assumed to be equal zero when xf = L*. Rather, 71 = z* when xf = L*, where z* may be

less than or greater than zero, depending on the nature of the shoreline curvature. For x >

L*, it is again assumed that UT occurs at the tidal front, i.e., dxj/dr = L*w.

In order to determine z*, (5.2.22) is evaluated at x = 0 when xf = LV. Under these

circumstances, (5.2.22) becomes

UT = L*w = B(L*,O) L* drn(z*) (5.2.25)
z* + a dt

Using the expression dil/dt = ao. (I - 772/a 2)I1, and solving for z*/a then gives:

z*/a = B(L*,0)2 - 1 (5.2.26)
B(L*,0)2 + I

If the shoreline is lobate, then B < 1, and z* is negative. If the shoreline is embayed, then

B > 1, and z* is positive. Finally, if the shoreline is straight, B = 1, and z* = 0.

The form of the tidal profile for x < L* is found by solving for Z. (x) in (5.2.22)

with UT = UT, xf = L*, and 77 = z*. Then (5.2.22) becomes
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L*a B(L*,x) L* - x ao Ii Z*2llf2 (5.2.27)
z* - Z.(x) a2

Or solving for Z -a,

Z.(x)la= z*la - B(L*,x) (1 -xlL*) 1 -z*21/2 (5.2.28)a2

for x < L*. If the shoreline is straight, then B = 1, z* = 0, and (5.2.28) becomes identical

to (5.2.11).

For x > L*, it is assumed that UT occurs at the tidal front, i.e., dxf/dt = UT.
Preceding as in Section 5.2.2,

d-xf = d_•dt -dt= L*alw -d-A arcsin -. (5.2.29)
d 17 di d17 w d'7 a)

Integrating (5.2.29) gives

xf - L* = L* (arcsin Z-/a - arcsin z*la). (5.2.30)

Solving for Z.1a in (5.2.30) then gives

Z÷(x)/a = sin ( (x/L* - 1) + arcsin z*la} (5.2.31)

for x > L*. If z* = 0, (5.2.31) becomes equivalent to (5.2.16). Since Z, = a at x =L,

(5.2.31) can be used to get an expression for L* relative to L:

L*/L = (0/2 + 1 - arcsin z*la )-1. (5.2.32)

If z* = 0, (5.2.32) reverts to (5.2.17).

Figure 5.7 displays equilibrium tidal profiles given by (5.2.28) and (5.2.31),

plotted for both lobate (bLjbo < 1) and embayed (bt.bo > 1) shorelines, along with a linear
profile for reference. The equilibrium nature of the profiles given by (5.2.28) and (5.2.31)

was confirmed by using the profiles to solve (5.2.22) directly for UT(x,). The maximum

value of UT was found everywhere to be equal to L*w. Figure 5.7 indicates that an
embayed shoreline significantly enhances the convexity of the equilibrium tidal profile,
whereas a lobate shoreline only slightly decreases the convexity of the profile. This

behavior is consistent with the function B, given by (5.2.23), which is also more sensitive

to embayed shorelines.
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Finally the profiles in Figure 5.7 are re-expressed as hypsometric curves, which are
not equivalent to Z(x) if the shoreline is curved. Hypsometric curves are plots of elevation
versus cumulative basin area, A, where A(x) is given by

A(x) = b(x') dx' (5.2.33)

Using (5.2.24) to eliminate b, (5.2.33) integrates to:

A(x) _ 2XIL + (bLibo - 1) (x/L)2  (5.2.34)
A(L) 1 + bLJbo

If the shoreline is straight, then bdbo = 1, and (5.2.34) reduces to A(x)/A(L) = x/L.

Figure 5.8 contains plots of Zia versus A(x)IA(L) for the same values of blJbo

plotted in Figure 5.7, along with a linear hypsometry for reference. Equilibrium

hypsometries for embayed shorelines are much more convex than the corresponding

profiles. Likewise, hypsometries for lobate shorelines are much less convex than the

corresponding profiles -- so much so that the equilibrium hypsometry for a flat with bdjbo
= 1/4 is primarily concave. The enhanced variation of hypsometries relative to profiles
stems from the nonlinear hypsometric function given by (5.2.34).

To summarize the results of Section 5.2, it was first shown that the landward half
of a linear profile dominated by tidal currents cannot be at equilibrium according to the
morphodynamic model applied in this chapter. Next it was demonstrated that in the
absence of wind waves, tidal currents favor a convex hypsometry at equilibrium, which is
consistent with observations. If the shoreline is embayed, hypsometric convexity is
increased, whereas if the shoreline is lobate, hypsometric convexity is decreased. The
effect of shoreline curvature on equilibrium hypsometry is potentially as strong as the effect

of domination by tidal currents.

Assuming a uniform distribution of UT, it was al3o shown that tidal flat length and
convexity at equilibrium should be independent of tidal range. It was speculated, however,
that marsh vegetation may play a role in reducing flat length and convexity in micro- and
mesotidal environments. Since the most convex portion of a flat dominated by tidal
currents is the landward section, intertidal vegetation will disproportionately redi'ce
convexity in small range environments. This may provide a partial explanation for the
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previously observed correlation between tidal range and convexity (Dieckmann et al.

1987).

5.3. Wind waves

The derivation for wave-dominated conditions parallels that described by

Zimmerman (1973), who also examined the distribution of maximum bottom shear stress
due to shoaling waves. The approach here differs in that Zimmerman did not apply the
shallow water approximation nor did he consider waves shoaling across a linear profile.

The governing equation applied to wind waves in the absence of tidal currents is
conservation of energy for monochromatic, remotely forced, forward propagating, shallow
water surface waves:

d- ( E(x) C, (x)} = -D(x) (5.3.1)
dx

where E is energy density, C. = (gh)1/2 is the wave group velocity, g is the acceleration of

gravity, and D is dissipation by bottom friction. In this section wind waves are required to
propagate perpendicular to the shoreline, thus avoiding the issue of refraction over the flat.
It is assumed that sufficient refraction has occurred by the time waves reach the seaward
edge of the flat that the remaining angle between the wave crest and the bathyretric contour
is negligibly small.

In evaluating (5.3.1) neither the breaking waves nor wave energy reflected from the
shoreline is considered. Thus this approach is inappropriate for highly energetic, steep
beaches. However for wide gently sloping, highly dissipative tidal flats, the approach
should be adequate -- at least .or gaining useful physical insight. It is also assumed that the
largest waves are most likely to occur around the time of hig& water. This is a reasonable

assumption in enclosed intertidal basins because fetch will be smaller near low tide. It is

also a reasonable assumption for open coasts if subtidal topography continues to slope
gently offshore. Then offshore dissipation will be much at lower tide levels, sharply
reducing the height of waves impinging on the flats.

Energy density in (5.3.1) is given by

E(x) = 1/8 pgH(x)2 , (5.3.2)

where p is the fluid density, and H is the wave height. Frictional dissipation in (5.3.1) is

given by
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D(x) cduw luwl uw di (5.3.3)~) T~w f~rwr2

where Tw is the wave period, uw is instantaneous wave velocity, and the quantity in
brackets is instantaneous wave-generated bottom shear stress. If the reasonable

assumption is made that

uw(x,t) = Uw(x) sin (2x /Tw) , (5.3.4)

then substitution of (5.3.4) into (5.3.3) gives

D(x) = P CdUWf sin 2 2yrt/Tw Isin 21rt/TwI dt, (5.3.5)
w f-TWI2

which integrates to
D(x) = A.. PcdUw• (5.3.6)

3 Yr

The above relations for E(x) and D(x), along with the relation C. - (gh)'t2 , are

substituted into (5.3.1), yielding

d (H(x)2 h(x)n2} = _32 g (5.3.7)dx 1 3 ir 9"C 537

Equation (5.1.2) is then used to eliminate H(x) from (5.3.7). The result is a first-order

ordinary differential equation for for Uw:

I dý Uw + 3 dh = 4c (5.3.8)
Uw2 dx 4hUw dx 3ng1/2h 3/2

Equation (5.3.8) is solved more easily if it is rewr the following O.D.E for Ui-t:

L Uw- - _i diL Uw-i 4 cd (5.3.9)

t 4h cit 3yrg1/ 2 2 h5*/

The boundary condition on (5.3.9) is Uw"1 = Uwo' at x = 0, which may determined from
H(x--O) via (5.1.2). Assuming h(x) is known, then (5.3.9) can be solved completely for

Uw.

An alternative approach in solving for Uw during shoaling is to assume that
increases in H due to concentration of energy are balanced by decreases in H due to

dissipation. If this balance holds, then H can be treated as a constant in (5.3.7),
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simplifying the solution for Uw. This approach was used by Wright et al. (1982) in thor
calculations of dissipation rates across a macrotidal beach. If H is held constant, however,

(5.2.1) indicates that Uw - h-1/2 will always increase with decreased depth (seaward of the
breaking point). Thus the morphologic model applied in this chapter suggests a wave-
dominated flat over which H is constant cannot be at morphologic equilibrium. Allowing
H to vary in x is therefore essential to realistically representing equilibrium profiles. The

elimination of H(x) in (5.3.7) via (5.1.2) allows dynamic variations in H to be included
implicitly in the solution for Uw.

In the following sub-sections (5.3.9) is first solved for wind waves impinging on a
linearly sloping tidal flat. Next the tidal flat profile is derived which results in a uniform

distribution of Uw. Finally the role of shoreline curvature is considered.

5.3.1. Straight shoreline, linear profile

Figure 5.9 displays a linearly sloping tidal flat of length L. As in Section 5.2, L is
the shore-normal distance from the low to high water line. The depth of the tidal flat profile

is given by

h(x) = (L - x) holL, (5.3.10)

where ho is the high-water depth at x = 0 and also is equal to the tidal range. Substituting

(5.3.10) into (5.3.9) yields

(L- x)d Uv- + 3 Uw-1 = C, (L-x)-1/. (5.3.11)
dx 4

where

C = 4cdL 31 2  (5.3.12)
3 rg 1/12 h0

312

From the right hand side of (5.3.11), the particular solution for UivA is expected to

have the form

{UW"i}part = C2 (L-x)-'1. (5.3.13)

Substituting (5.3.13) into (5.3.11) yields C2 = 4/5 C1 . The homogeneous portion of

(5.3.1 i) may be re-expressed as:

I dUw-I = d-x, (5.3.14)
Uw-' 4 (L - x)

which integrates to:
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(UW" homo = C 2 (L -x) 3 4 . (5.3.15)

Finally, the boundary condition at x = 0 gives

C3 = Uwo"I L- 3/4 - C2 L-5i4 • (5.3.16)

Combining the above equations yields the following solution for maximum orbital

velocity due to wind waves impinging on a linearly sloping tidal flat:

Uw(x)/Uwo = (Ho (I - XlL)-/LY + (I - Ho) (I -x/L) 314 }- , (5.3.17)

where the non-dimensional forcing wave height, H0 , is given by

HO = 16 CdaL UWo = Cd LHo. (5.3.18)
15wr h0 (gh0 )I/2 15n h02

Figure 5.10 shows Uw(x)/Uwo and rW(x)/nwo as a function of x/L for various values of

H0 ranging from H0 = 0.1 to HO = 2. No value of H0 for a linearly sloping tidal flat results
in a uniform distribution of Uwy across the flat. Thus, according to the morphodynamic

model applied here, a linearly sloping flat dominated by wind waves cannot be at

equilibrium.

Applying reasonable values for the southwest coast of Korea (Cd = 0.01, L = 5 km,

ho = 6 m), then calm weather waves with a height at x = 0 of H0 = 50 cm give Uwo - 30

cm/s and H0 - 0.1. Figure 5.10 indicates that for H0 = 0.1, Uw and rw will increase with

distance from x/L = 0 to x/L = 0.9. According to our morphodynamic model, more

deposition (or less erosion) should occur over the lower profile than over the upper profile.

Assuming a reasonable storm value of H0 = 2 m, then Uwo - 1.3 m/s, and Ho - 0.5. For

Ho = 0.5, Figure 5. 10 indicates Uw and nv will reach a maximum around x/L = 0.3 and

decrease from x/L = 0.3 to x/L = 1. Under storm conditions, greater erosion (or less

deposition) should occur over the lower profile than over the upper profile. Thus (5.3.17)

- (5.3.18) and Figure 5.10 may partially explain the seasonal oscillation in Korean tidal flat

profile observed by Wells and Park (1991) to be a direct function of wind wave climate.

5.3.2. Straight shoreline, equilibrium profile

A tidal flat profile is now derived which results in a uniform distribution of Uw

across the entire flat (Figure 5.11). A similar solution for was found previously by Bruun
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(1954) who assumed energy dissipation to be uniform across an equilibrium shoreface.
However Bruun did not consider the effect of shoreline curvature which is addressed in

this study in Section 5.3.3.

Deriving an equilibrium profile with Uw = UwO everywhere is actually much
simpler than solving for Uw(x). If Uw is constant, the first term in (5.3.9) is zero, and
(5.3.9) may be rewritten as

h112 dh = C- 16 c -1/2 (L - x) . (5.3.19)

9X

Equation (5.3.19) integrates to

h(x)/ho = (I - x/L)213 , (5.3.20)
where h0 is given by

ho = 3- UcUwog-/2 L)2 3 . (5.3.21)

The 2/3 exponent in (5.3.20) has also been observed empirically for shoreface
profiles of dissipative beaches along the U.S. Atlantic and Gulf Coasts (Dean 1977).
Equation (5.3.2 1) can be crudely checked by comparison to the Korean values. If (5.3.21)
is solved for Uwo, then Cd = 0.01, L = 5 km, and h0 = 6 m give Uwo = 1.1 m/s, which is a
value that is certainly capable of mobilizing sediment. Using (5.1.2), this velocity is

equivalent to a forcing wave height of Ho = 1.7 m, which seems like a reasonable value for
typical wave dominated conditions.

Figure 5.12 compares the equilibrium profile given by (5.3.20) with the linear
profile given by (5.3.10) and indicates that the wave-dominated equilibrium profile is

concave relative to the linear profile. For a straight shoreline, tidal flat hypsometry is
equivalent to the tidal flat profile. Thus (5.3.20) indicates wind-waves favor a concave

hypsometry at equilibrium, which is consistent with the observations summarized in

Section 5.1.

Finally, (5.3.21) can be used to derive the equilibrium length for a flat under wave-
dominated conditions. If H0 , h0 and Cd are considered to be characteristic values,
independent of the extent of the tidal flat, then (5.3.21) and (5.1.2) can be combined and

solved for L:

L = -ho2  (5.3.22)4 cd Ho



- 173-

Equation (5.3.22) seems qualitatively sensible in that it indicates that equilibrium tidal flat
width decreases with greater wave height, H0 , and increases dramatically with greater tidal

range, ho. Equation (5.3.22) suggests that the position of the low tide line should oscillate
with seasonal variations in forcing wave height. This predicted oscillation is qualitatively

consistent with the observations of Wells and Park (1992).

Equation (5.3.22) may also help explain the associations of small tidal ranges with
concave hypsometry and of large tidal ranges with convex hypsometry (Dieckmann et al.

1987). If wave height is moderate and tidal range is small, (5.3.22) indicates that L will

also be small. In Section 5.2, UT was found to be directly proportional to L. Thus if L is

small, UT will be small also. Under these conditions, Uw and 2w will dominate UT and rT,

and the equilibrium profile will be concave. If tidal range is large and waves are moderate,
then (5.3.22) indicates L will be much larger (since L is geometrically dependent on h0 ).

Since UT is proportional to L, UT will also be much larger. Uw and rw may no longer

dominate UT and rr, at least under fair weather conditions, and the equilibrium profile may

be expected to be more convex.

5.3.3. Curved shoreline, equilibrium profile

The effect of shoreline curvature on the distribution of Uw over tidal flats is now

examined. As in Section 5.2, equilibrium profiles are derived first and then re-expressed in

terms of tquilibrium hypsometries. Lobate and embayed shorelines are again considered as

described by Figure 5.6.

For a curved shoreline which is radially symmetric, conservation of energy is most

easily evaluated in polar coordinates:

I _d_ ( r E(r) Cg (r)) = -D(r), (5.3.23)r dr

It is assumed that refraction has already caused the wind waves to propagate nearly

perpendicular to the bathymetric contours by the time the waves reach the edge of the flat at

ro = r(x=O). Thus refraction is not considered over the flat.

Evaluation of (5.3.23) is straightforward if Uw = Uwo equals a constant over the
entire profile. Using (5.1.2), (5.3.2), (5.3.6) and the relation Cg = (gh)1/ 2, (5.3.23)

becomes
.d_. (rh3/2) = _ cd Uw 0 g-1 2 r, (5.3.24)
dr 3nf
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Equation (5.3.24) integrates to

rh 312 = cd Uwog-l' (rL2 - r 2) (5.3.25)3 x

where rL = r(x=L). Keeping in mind that b is proportional to r (see Figure 5.6), (5.3.25)

may be re-expressed as

h( = 1 (b(rL)/b(r) + 1) 8 Cd Uwp (rL-r), (5.3.26)2 3Xgl/ 2

Transforming back to the x-coordinate, (5.3.26) becomes

h(x)/ho = { B(Lx)/B(L,O)}V 23 (1 - x/L)21,3 (5.3.27)
where

ho= (B(L,O)8 Cd Uw0 g-12 L )2/3 , (5.3.28)

and
B (Lx) (bL/b(x) + 1). (5.3.29)

B(Lx) is analogous to B(xfx) in (5.2.23) of Section 5.2, and b(x) above is identical to
(5.2.24). If shoreline curvature is negligible (i.e., bLJbo = 1), then bL = b(x), B = 1, and

(5.3.27) - (5.3.28) become identical to (5.3.20) - (5.3.21).

Figure 5.13 displays equilibrium wave-dominated profiles given by (5.3.27),
plotted for both lobate (bdbo < 1) and embayed (btJbo > 1) shorelines, along with a linear
profile for reference. Figure 5.13 indicates that a lobate shoreline only slightly increases

the concavity of the profile, whereas an embayed shoreline greatly decreases the concavity
of the profile -- so much so that the equilibrium profile for a flat with bLjbo = 1/4 is
primarily convex. The greater sensitivity of the profile to embayed shorelines is similar to
that seen in Section 5.2 (see Figure 5.7). As discussed in Section 5.2, this follows from a
dependence of the equilibrium profile on the function B, which is also more sensitive to

embayed shorelines.

Finally, the profiles in Figure 5.13 are re-expressed as hypsometric curves. Figure
5.14 contains plots of h/ho vs. A(x)/A(L) for the same values of bL/bo plotted in Figure
5.13, along with a linear hypsometry for reference. The formula forA(x)/A(L) is given by
(5.2.34). Equilibrium hypsometries for lobate shorelines are significantly more concave
than the corresponding profiles. Likewise, hypsometries for embayed shorelines are
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significantly less concave than the corresponding profiles. In fact, the hypsometries for
bdbo < 1/2 are primarily convex. The enhanced variation of hypsometries relative to
profiles stems from the nonlinear hypsometric function given by (5.2.34).

To summarize the results of Section 5.3, it was first shown that a wave dominated
linear profile cannot be at equilibrium according to the morphodynamic model applied in
this chapter. Next it was demonstrated that a bottom stress field dominated by wind waves
favors a concave hypsometry at equilibrium, which is consistent with observations. If the

shoreline is embayed, hypsometric concavity is decreased, whereas if the shoreline is
lobate, hypsometric concavity is increased. The effect of shoreline curvature on
equilibrium hypsometry is potentially as strong as the effect of domination by wind waves.

Assuming a uniform distribution of Uw, a compact expression was also found for
the length of an equilibrium flat, suggesting L - ho2/Ho, where h0 is the tidal range and H0

is the forcing wave height. The above expression indicates that the width of equilibrium
flats should increase dramatically with tidal range. Since UT is proportional to L (see

Section 5.2), the relative importance of tidal currents should also increase strongly with
tidal range, providing a further explanation for the previously observed transition from
concave to convex hypsometry with increasing tidal range (Dieckmann et al. 1987).

5.4. Summary and conclusions

Recent observations of tidal flat hypsometry have correlated convexity with large
tide ranges, long-term accretion and/or low wave activity. Concavity, in turn, has been
correlated with small tide ranges, long-term erosion and/or high wave activity. This study
demonstrates that much of this empirically observed variation in tidal flat hypsometry may

be explained by a simple morphodynamic model which assumes tidal flats to be at
equilibrium if maximum shear stress is uniform in space. Assuming a constant drag
coefficient, this condition is equivalent to a uniform distribution of maximum velocity.

In the absence of wind waves, maximum velocity is given by maximum tidal
velocity, UT. Assuming the tide to pump vniformly, continuity may be solved
kinematically to determine UT as a function of distance across the flat. The simplest case is
for flow perpendicular to the shoreline, but similar arguments hold for flow at a constant
angle to the shore. For a flat which slopes linearly away from a straight shoreline, results
show that Ut is constant over the seaward half of the flat. Therefore the lower portion of a
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linearly sloping flat is potentially at morphologic equilibrium. Over the landward half,

however, a dramatic decrease in UT is predicted, indicating disequilibrium.

Along a straight, waveless shoreline, the equilibrium profile has a linear lower

portion which produces uniform UT over the seaward portion of the flat. Over the

landward portion of the flat, UT is assumed to occur at the tidal front, xf. The equilibrium

upper profile is chosen so that dxp/dt is constant and equal to the UT determined for the

lower profile. The resulting profile is convex overall and demonstrates that tidal currents

favor convex hypsomerry. The equilibrium value for UT is proportional to the length of the

tidal flat but independent of tidal range. Since the equilibrium profile is most strongly

convex above the mean water line, marsh vegetation extending a finite distance below the

high water line may tend to reduce observed hypsometric convexity, especially for flats

subject to relatively small tidal ranges.

In the absence of waves, an equilibrit a flat along a curved shoreline is derived in a

similar manner. Results indicate that an cmbayed shoreline significantly enhances the

convexity of the equilibrium profile, whereas a lobate shoreline only slightly decreases the

convexity. The nonlinear transformation from profiles to hypsometries, however, causes

the hypsometry of embayed and lobate shorelines to be much more or much less convex

than the corresponding profiles -- so much so that the effect of shoreline curvature on

equilibrium hypsometry is potentially as strong as the effect of domination by tidal

currents.

In the presence of wind waves, maximum velocity is often dominated by the

maximum wave orbital velocity, Uw. Assuming dissipative shallow water waves

impinging at high water, conservation of energy is utilized to determine Uw as a function of

distance across the entire flat. The resulting expression is a first-order ordinary differential

equation for Uw"1. For a flat sloping linearly away from a straight shoreline, the solution

may be expressed in terms of a single dimensionless forcing wave height, H0 . No value of

H0 results in a uniform distribution of Uw, thus no part of a linearly sloping, wave-

dominated flat is at equilibrium.

An equilibrium flat along a straight, wave-dominated shoreline is derived by setting

Uw constant in the previously derived governing equation for UwI1 . The resulting

equilibrium profile has depth increasing like x2/3, a form which has been reportedi

empirically for dissipative beaches and which demonstrates that wind waves favor concawe

hypsometry. The equilibrium profile length, L, is proportional to ho2/Ho, where h0 is the
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tidal range and H0 is the forcing wave height. This expression indicates that L should

increase dramatically with tidal range. Since UT - L, the relative importance of tidal
currents should also increase strongly with tidal range, favoring a transition form concave
to convex hypsometry with increasing tidal range.

An equilibrium flat along a curved, wave-dominated shoreline is derived in a similar
manner. Similar to the no wave case, results indicate that an embayed shoreline

significantly decreases the concavity of the profile -- potentially to the point of convexity --

whereas a lobate shoreline only slightly increases concavity. Again, the nonlinear

transformation from profiles to hypsometries causes the hypsometries to be much more or

much less concave than the profiles.
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Figure captions for Chapter 5

Figure 5.1. Block diagrams of idealized topographies along with associated

hypsometric curves. Modified from Boon and Byrne (1981).

Figure 5.2. Schematic side view of a linearly sloping flat along a straight

shoreline which is dominated by tidal currents. q is tidal elevation, h is local depth, xf is

the position of the tidal front, Z is the elevation of the profile.

Figure 5.3. Maximum (a) tidal velocity and (b) tidally-generated shear stress as a

function of distance across a flat which slopes linearly away from a straight shoreline.

Figure 5.4. Schematic side view of an equilibrium flat along a straight shoreline

which is dominated by tidal currents.

Figure 5.5. Profile of an equilibrium flat along a straight shoreline dominated by

tidal currents. The equilibrium profile is convex relative to the linear profile. Hypsometry

is equivalent to the profile along a straight shoreline.

Figure 5.6. Schematic plan view of a lobate and an embayed shoreline. The

contours 0 - 4 are arbitrary heights between low and high water.

Figure 5.7. Profiles of equilibrium flats along curved shorelines dominated by

tidal currents. The equilibrium profiles are all convex relative to the linear profile.

Figure 5.8. Hypsometries of equilibrium flats along curved shorelines dominated

by tidal currents. bLjbo = 1/2 - 4 are convex, btJbo = 1/4 is concave.

Figure 5.9. Schematic side view of a linearly sloping flat along a straight

shoreline which is dominated by tidal currents. HO is offshore wave height, Cg is wave

velocity, h is local depth at high water, h0 is high water depth at x = 0 and also the tidal

range.

Figure 5.10 Maximum (a) wave orbital velocity and (b) wave-generated shear

stress as a function of non-dimensional offshore wave height and of distance across a flat

which slopes linearly away from a straight shoreline.

Figure 5.11. Schematic side view of an equilibrium flat along a straight shoreline

which is dominated by wind waves.



- 179 -

Figure 5.12. Profile of an equilibrium flat along a straight shoreline dominated by
wind waves. The equilibrium profile is concave relative to the linear profile. Hypsometry
is equivalent to the profile along a straight shoreline.

Figure 5.13. Profiles of equilibrium flats along curved shorelines dominated by
wind waves. bdbo = 1/4 - 2 are concave, bd/bo = 4 is convex.

Figure 5.14. Hypsometries of equilibrium flats along curved shorelines
dominated by wind waves. btdbo = 1/4 - I are concave, bdbo =2 - 4 are convex.
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Topography Hypsometry
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Tidal current dominated linear flat profile: Definitions

x=L
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z=-a
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Figure 5.2
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UT and rT across a linearly sloping flat:
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Tidal current dominated non-linear flat profile: Definitions

U, = dxf
i7(t) -- a sin cot dt
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Z -a
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Figure 5.4
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Profile with UT constant:
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Figure 5.5
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Tidal flat along curved shoreline: Definitions
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Figure 5.6
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Profiles along curved shorelines with UT constant:
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Hypsometries along curved shorelines with UT constant:
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Figure 5.8
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Wind wave dominated linear flat profile: Definitions
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Figuare 5.9



- 189-

Uw and rw across a linearly sloping flat
as a function of non-dimensional H0 :
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Wind wave dominated non-linear flat profile: Definitions

h(x)
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Figure 5.11



- 191 -

Profile with Uw constant:
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Profiles along curved shorelines with Uw constant:
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Hypsometries along curved shorelines with Uw constant:
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Appendix I: Solution of the zero-inertia diffusion equation for embayments with variations

in along-channel geometry

Here we extend the derivation presented in Chapter 2 by no longer assuming b, w

and h to be constant in x. Allowing along-channel variations in h, w and h does not affect

the time-varying portion of the second-order solution. Thus an identical transformation can

be made to the time variable r, and we again look for solutions of the form

Cm(x,?) = a Am ,m(x) exp i(mar + 4pm). (A1.1)

The boundary conditions on Cm are also the same as in Chapter 2, namely,

C. = aAmexpi(mwr+qVm) at x=L, (A1.2)

and, using Equation (2.7b),

uLm-2"3 CM = 0 at x=0. (AI.3)ax

Thus the boundary conditions on . are

I-,=1 at x=L, and T2/3d4, = 0 at x=0. (AI.4a,b)
dx

If we do not assume 5, w and h to be constant in x, then Equation (2.42) becomes

bom., dx_ bo WO.Lfw(x) (0h]I'(x)~' 15/ d_ 0.mima - Do=~-- 7- =o. (A1. 5)
b(x) dx WO,L h 1  j(I5

where the subscripts 0 or L signify values at x = 0 or x = L (depending on the formulation

of b, w and h), and bO.t, wo.. and h0o. replace 5, w and h in Do. In Appendix 1.1 we

solve for 4m assuming a power-law variation in the along-channel cross-section, whereas in

Appendix 1.2 we assume the channel to vary exponentially.

A 1.1. Power-law variation

If the along channel cross-section is assumed to vary as follows,

b(x) = bL Xt"b, w(x) = wL ) aw, h(x) = hL. (I)'7h, (A1.6a-c)

then (A 1.5) becomes:
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4m (~)-tb km2~ (ý t5/3 ah+ awL 7 d = 0, (A 1.7)

where k. 2 = imoaDo. Equation (A 1.6) can be solved through the use of Bessel functions.

We define

- L• afL ,, with + 15/3 oh+0W). (A1.8a,b)

Then

A- = jk.mf)-' I-g (A1.9)
dx d2

and (A 1.7) becomes

L,+ xL -aw ith) d d 0, with or (adb+ 5/ 3Oh+ ,w). (Al.10a,b)

Or, if we eliminate x altogether:

' Xm +.-a Id I"z/cd = 0 (Al. 11)d2 d2

Next we let

S= m, with v =1(_I1). (A 1.12ab)2"

Then after some algebra and differentiation, (A 1. 11) becomes

d22 ^ d2 A 4i~ = 0, (A1. 13)
d X Xd

i.e., a Bessel equation of order v which, assuming v is not exactly an integer, has the

following solution (e.g., Boas 1983):

S= CI Jv(2) + C2 J-v(i). (A1.14)

J±v is a Bessel function of the first kind, whose value is given by the infinite series

, (-1)" I/£)2n±

J~tV(X) =- 2n) V (A 1. 15)JF(n + 1) r(n ± v + 1) RD

Utilizing (A1.12a), (A1. 14) can finally be re-expressed as a general solution for 4:
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4,, = x'-CtJv(i) + C2 J_()). (A1.16)

The boundary condition at x = 0 requires u = 0. From (A 1.4b) and (A 1.6c), this

condition is equivalent to X2/301 dm/dx = 0. Substituting (Al.16) into (A1.9), this

boundary condition may be re-expressed as

X 2/3h+a-I . {"-(ClJV+ C 2 J-v)) = 0 at x=0. (AI.17)di7

After differentiating, using (A 1.8a) to eliminate x, and assuming a > 0 (so that i - 0 when

x -+ 0), (AI.17) becomes

j -.J-vC 1(...'J, +~ J-v) + C2 (-VJ x 1)=0 at i=o, (A.8

where 0 - (1 - 2/3 ah)/a. Using the following Bessel identities (e.g., Boas 1983),

dJ +VJ~ v - X- J±V+I = (-I) (±v) J±v + ý J±V- , (A1.19)

(A 1. 18) is equivalent to

"f' (ClJv+l(I)-C 2 J-v-l(i)) _ 0 at x=0. (AI.20)

As x-- 0, only the first term of (A 1.15) need be retained, and J±v -+ (2/2)±v / r(±v+ 1).

Equation (A 1.20) then asymptotes to

(2 lv+1 Ci --4+2-(J)-V-IC2 -0 as ---v0. (A1.21)

r(v+2) '2 r(-v)

lf• <2 and 2v +Z _0, (A1.21) will go to zero only if C 2 =0. With C 2 =0,

(A 1.16) gives 4,,, = j.-v C1 Jr, and application of the second boundary condition, i.e., ,, =

I at x = L, finally gives the following solution for ,:

=~ (I'~v X (A 1.22)•L J-• '

where L ='(x=L). For a prismatic channel, ab = a , = a = =0, a = 1= , andy = -1/2.

Then if we utilize the Bessel identity (e.g., Boas 1983)

1- /2() =()- -'/2 cosh (x-/i), (AI.23)
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(A 1.22) reverts directly back to Equation (2.44).

A 1.2. Exponential variation

We now assume an exponential variation in the along channel cross-section, i.e.,

we let

b(x) = boeIbxIL, w(x) = woea ,I- ., h(x) = h0o e4XIL. (A1.24a-c)

Then (A 1.5) becomes:

,- e-AbXL km-2 dL e(,Aw+*/3Ah)x/Ld } - 0 (A1.25)

with km2 = imo2Do. Equation (A1.25), like (A1.7), can be solved via Bessel functions,

and we proceed in a manner similar to that followed in Appendix 1. 1. First we let

"X= - m e- axL, with I = (-.b+5/3 Ah + Aw)
(Al1.26a-e)

L ( .L(b +5/3Ah +-A.), XV~ and v
2

Then after some algebra and differentiation, (A 1.25) becomes a Bessel equation of order v
which has a general solution of the form

= CI JM2) + C2 Jv(x), or -= i-v(Ct Jv + C2 J_v) . (Al.27a,b)

The boundary condition d4,,./dx = 0 at x 0 may be re-expressed as

- XV- ( (ClJ,+ C2 J.v)= 0 at x=xo , (A1.28)

where xi0 = ijkL,/ After differentiating (A1.28) and employing the identities in (A1.19),

(A 1.28) becomes equivalent to

C! Jv+I(iO) = C 2 JJ-v- I ( O) = C 3 Jv+I(iO)J-v-lX()J 0), (A1.29)

where C3 is a new constant. Using (A1.29) to eliminate C1 and C2 in (A1.27b) then gives

•m= j-" C 3 (J, (i)J_ l( Vo)+J I(i)J +l(io)) = 0. (A1.30)
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Application of the second boundary condition, i.e., I = 1 at x = L, finally gives the

following solution for 4.:

M= Jv(i)J-v-|(iO) +J-v(i)Jv+l(2°) (A1.31)J,. J(L)J-V_ 1(X-0) +J-v(ý-) Jr,.1(20)'

where L = i(x=L). For a prismatic channel, Ab = Ah = =, = A= = 0. and v = -1/2.

Using (A 1.23) and the additional Bessel identity (e.g., Boas 1983),
J~n(i) = i(2)tnl�2-1 sinh.(2/i), (AI.32)

(A 1.31) becomes

4, = cosh 2/i cosh 20/i - sinh 21i sinh xO/i = cosh (x - •o)li (A 1.33)
cosh Lii cosh 20/i - sinh Lii sinh 2o/i cosh (L - i•0 )li

Equation (AI.33) can be transformed back to Equation (2.44) by using (A1.26a) to

eliminate ? and then employing the asymptote e-Ax/L (I -( x/L) as ;A - 0.
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Appendix 2. Transformation of the time domain in the second-order zero-inertia equation

We are given that

wrn = am + - sin (o- 01) + 7 sin (2at - 8), (A2.1)

where O(ar) = O(wr) = 1, and O(ri) = O(y) = O() << 1. In Appendix 2.1 it is shown

that to O(y),

3
Cos Wt Zmcos (mar - ), (A2.2)

m=, -1

where Z. 1 = -Z 2= n, Zo = -Z2 = ,/2, Z1 = 1,- €-,p = = 02, - o = i = 01, and V'1 -

0. In Appendix 2.2 it is shown that to O(y,

exp iar = exp iWt - I Z. exp i(mtq - vm) . (A2.3)

A2.1. Transformation from t to r

Equation (A2. 1) can be rewritten as

cos W1 =cos { or - yn sin (at- 8t)- n sin (2wt- 02)} , (A2.4)

which to O(y) is equivalent to

cos Wot = cos { on- jt sin (wr - 01) - r2 sin (2wr - 02)) . (A2.5)

Using the identity cos (a - /) cos a cos / + sin a sin/3, (A2.5) becomes

cos ag = cos (ar cos e + sin ar sin e, (A2.6)

where

e = q sin (war- 01) + y sin (2awr- 02) = O(y) . (A2.7)

To O(Y), (A2.6) can b,: rewritten as

cos at = cos;aor + e sinw r. (A2.8)

The second term on the r.h.s. of (A2.8) can then be expanded as



- 201 -

r sin war = sin an sin (wan- 01) + n sin ar sin (2wan- 02), (A2.9)

and-use of the identity sin a sin 3 = 1/2 (cos (a - p) - cos (a + P3) produces

e sin wr-n {cos 01 -cos (2n- O,) +17- [cos (- an + 02)- cos (3w,- 02)). (A2.10)
2 2

Finally, substitution of (A2.10) into (A2.6) gives (A2.2).

A2.2. Transformation from i to t

Equation (A2. 1) may also be rewritten to O(y) as

sin wt = sin ( an- n sin (oar- 01) - r sin (2anr- 82 )} (A2.11)

Then using the identity sin (a - P) = sin a cos P - cos a sin 3, (A2.1 1) becomes, to O(y,

sin av = sin ar - e cos an. (A2.12)

The second term on the r.h.s. of (A2.12) can then be expanded as

rcos ar = ri cos ar sin (war- 01) + r cos ar sin (2war- 02), (A2.13)

and use of the identity cos a sin 3 = 1/2 (sin (a + 3) - sin (a - 3)) produces

ecos Wr= -L2 {sin (2Nor- 01)- sin 01 +-1-(sin(3anr-02)-sin(-anr+02)) . (A2.14)
2 2

Finally, substitution of (A2.14) into (A2.12) gives

3
sin (ot = I Z.. sin (manr- ',,n). (A2.15)

M=-1

Combination of (A2.2) and (A2.15) gives

3
expiwot = coswot + isintwr = Z,,,expi(moar-(m), (A2.16)

or, solving for exp iar,

exp i xp = eCxp - Z.. exp i(mar- ',,,). (A2.17)

To 0(y), (A2.17) is equivalent to (A2.3).
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Appendix 3. The relative phase of the second-harmonic in strongly convergent channels
near morphologic equilibrium

Here relations for the relative phase of the second harmonic are derived for both
tidal elevation and velocity. The phase of 772 relative to rll is derivcd in Appendix 3.1, and
the phase of V2 relative to V1 is derived in Appendix 3.2.

A3.1. q2 to 77, relative phase

From Equation (4.4.19), the non-dimensionalized second-harmonic for tidal
elevation is given by

172 = i' ei2•t {e, -e-i(kx o)-e2uMe-i(2kx +,o)} . (A3.1)

If we apply the identity eix = cos x + i sin x, and separate y into its magnitude and
argument, then (A3.1) becomes

772 L" euA expi(2w-ir3(l,-r/l) ))
(A.2

(cos (kx + kxo) - i sin (kx + kxo) (A3.2)

!oe - ex cos (2k~x + kxo) + i e MA• sin (2kx + kxo ) I I

where 3(m,I) = 1 if m = 1, 8 = 0 otherwise. The identity arg(x + iy) = exp i (arctan(y/x)),
is then used to derive the argument of (A3.2):

trge(n2) = 2w -81, L-Y+ arctan I eM sin (2kx + kxo) - sin (kx + kxo)° (A3.3)
1i~ 11 cos (kx +kxo) -eAkx cos (2kx +kxo)I

The phase of 12 = 11721 exp i (2 a - 9.2) is then

(2 arctanis + x8( 1,:L (A3.4)I cos (kx + k~xo e e1 /a cos (2kx + kxo ) ý "YI

If we define a = 3/2 kx + kxo and /3 = 1/2 kx, then if p = 0, the identities sin (a -/3)
- sin (a + P) = - cos a sin P and cos (a- /3) - cos (a +/3) = sin a sin /3 can be used to
transform (A3.4) to

Vi72 = arctan sincs3/2kx+kxo)1 + • Y( -

s i a r t a2 - 3 / 2 k - x( 1 , ;- Y ) ( A 3 .5 )
arctan I cos (4r2 - 3/2 kr - kxo) } +
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Equation (A3.5) then reduces to

Iq2= kX+kXo - (A3.6)2 2 iy i

The phase of 172 = 11721 exp i (2wt - OP,72) relative to i/t = IiII exp i (wt - 0,71) is defined as
2p,71 - ,V12 (Aubrey and Speer 1985). So from (A3.6) for ji = 0,

297,72= - 7 ...L + k- - kxo. (A3.7)
2 Ity 2

A3.2. V2 to V, relative phase

From Equation (4.4.20), the non-dimensionalized second harmonic for tidal
velocity is given by

V= i2 ei 2±'ft (eCAb e-i(kx"o) - 2e2uab e-i(2kr'kox)). (A3.8)
2

We will consider only the case of g = 0. Following the same steps as in Appendix 3.1,
(A3.8) can be rewritten as

V2 = 21 exp i r/2 + 2o-r (,-/Ir)

{cos (kx + kxo) - i sin (kx + kxo) (A3.9)

And the argument of (A3.9) is

arg(V2 ) = 2a) + 11 ' + arctan 2 sin (2kx + kxo) - sin (kx + kxo) (A3.0)

2 iyi (cos (kx + kxo)- 2 cos (2kx + kxo)

The phase of V2 = IV21 exp i (2ai - Wv2) is then

Vn = rcta 2 sin (2kx + kxo) - sin (kx + kxo ) 5- (A3.11)

N - 2cos(2kx + kxo) - cos(kx + kxo)- 2 i" (A3.*)

From Equation (4.6.2), q'vI = kx + er -=r/2. Therefore the phase of V2 relative to
V, for u = 0 is given by

2 v - V2 2kx + 2er -arctan 2sin(2kx+kxo)-sin(kx+kxo) +_ . (A3.12)
22cos(2kx + kxo)- cos (kx + kxo)] 2 lyl
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