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Bayesian analysis of semiparametric proportional hazards models

Alan E. Gelfand and Bani K. Mallick

Summary

We consider the usual proportional hazards model in the case where the baseline hazard, the

covariate link and the covariate coefficients are all unknown. Both the baseline hazard and

the covariate link are monotone functions and are characterized nonparametrically using a

dense class arising as a mixture of Beta distribution functions. We take a Bayesian approach

for fitting such a model. Since interest focuses more upon the likelihood, we consider vague

prior specifications including Jeffreys's prior. Computations are carried out using sampling-

based methods. Model criticism is also discussed. Finally, a data set studying survival of a

sample of lung cancer patients is analyzed.

Key words: Bayesian model analysis; Gibbs sampler; Mixture-of-Betas model; model

criticism; survival analysis.
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1 Introduction

Probablistic models and statistical analysis for technologicai and medical survival data have

garnered much attention over the past twenty years. Adopting the medical setting data is

usually obtained for a sample of individuals. For the ith subject, data consists of either an

observed survival time t, or a (right) censorship time vi (in which case t1 > vi) and a set of

explanatory variables or risk factors denoted by the p x 1 vector x,.

Survival distributions are usually characterized by their hazard function which is the

conditional density function at time t given survival up to time t. In customary modeling,

the hazard for an individual is assumed to be a function of the covariates as well as t.

To accommodate censored survival times we also require the survivor function which is the

upper tail probability function of the survival distribution. When survival times are assumed

to be continuous measurements, a widely used class of hazard functions takes the so-called

proportional hazards form,

h(t) = ho(t)g(x) (1)

with ho and g nonnegative.

The integrated hazard associated with h(t) is H(t) = Ho(t)g(x) where Ho(t) = ft ho(u)du.

The survivor function is S(t; x) = exp(-Ho(t)g(x).) and the density for t takes the form

f(t; x) = ho(t)g(x)eHO(0g(X) (2)

Implicit in (1) is the fact that the random variable U(t; x) = Ho(t)g(x) has an Exp(l)

distribution. We shall make use of this later. The function ho is called the baseline hazard

associated with a baseline survival distribution, i.e., when g-=O. If for example, this baseline

distribution is a Weibull, the associated ho has a parametric form ho(t) = pt,-'. The

integrated baseline hazard, Ho(t) as defined above is clearly a nondecreasing function of L.

Dating to Cox (1972), the function g is :ustomarily taken to have the parametric form

eXp(I3Tx) where 0 is an unknown p x 1 vector of coefficients. Drawing upon jargon for

generalized linear models, g can be more generally thought of as a covariate link function.
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In fact, letting 7 = [Tx, because EU(t; x)=l, EHo(t) = 1/g(,7). Since EHo(t) increases

as E(t) increases and E(t) decreases in g(7) we have that g is a non decreasing function

of q/. However since 13Tx can include polynomial forms for any covariate, g need not be a

monotonic function of any covariate.

We shall assume that H0 is an unknown function from R+ --. R+ and that g is an

unknown function from R1 -- R+ which depends upon x through 77 = 83Tx with 8 an

unknown parameter vector. Nonparametric estimation of ho, hence Ho, usually proceeds

from a piecewise constant form for h0 as in Breslow (1974). See Cox and Oakes (1984) for a

more general discussion. If g is specified and 3 is obtained by partial likelihood maximization

(Cox, 1975) then A0 and H0 are determined. If the full likelihood is used'maximization is

carried out iteratively, first for ho given 0, then for 3 given ho, etc., until convergence.

Conventional (wisdom offered for instance in Cox and Oakes, 1984 or McCullagh and

Nelder, 1989) asserts that if ho is estimated nonparametrically, the overall fit is insensitive

to the choice of g(71), supporting the usuage of the mathematically convenient form e".

However nonparametric estimation of g has recently received attention. For instance, in

O'Sullivan (1988) and in Hastie and Tibshirani (1990), it is assumed that g(x) = ee(x) where

O(x) is an arbitrary additive function in the components of x, i.e., O(x) = •Y=1 Gg(zi). Partial

likelihoods are used so that g is estimated independently of Ho. We note that the form e9(x)

does not include our assumed form g(I3Tx). Moreover, an estimate of g(i7) is easily compared

with e", which we may think of as a "baseline" covariate link. Staniswalis (1989) considers

joint estimation of unknown Ho and g with only a single dichotomous covariate. Indeed if

x is a single continuous covariate, i.e., 17 = /o + fl3z, then H0 , g, 0o and 63 need not be

identifiable in the likelihood. Staniswalis's approach uses kernel estimators resulting in the

maximization of a weighted likelihood. Her fitting algorithm is also iterative, maximizing

over Ho given g, then over g given a new H0 , etc.

We model Ho and g using a dense class of monotone functions from R+ to R+ and from

R1 to R+ respectively. The classes arise from mixtures of Beta distribution functions and

have not been previously considered in this context. We adopt a Bayesian framework to
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fit such a model thus assuming fl, Ho and g are random. Bayesian fitting yields an entire

posterior distribution for a model unknown rather than merely a point estimate and perhaps

a precision estimate. Inference is exact rather than asymptotic. If useful prior information

is available say about coefficient parameters we would be happy to use it. However, inter-

est usually focuses more upon the likelihood whence we would tend to use noninformative

priors (see section 3 and the example of section 5.). With large data sets such automatic

Bayesian inference will be close to that arising under classical maximum likelihood analysis.

For smaller data sets the Bayesian approach would be expected to provide more believable

estimates of variability than under likelihood analysis. Recent advances in Bayesian com-

putation through the use of sampling based methods (Gelfand and Smith, 1990; Smith &

Gelfand, 1993) enable reasonably straightforward fitting of such models. Bayesian fitting of

fully parametric proportional hazards models using sampling based methods is discussed in

Dellaportas and Smith (1992).

Our approach models the strictly monotone functions H0 and g, each transformed by a

suitable monotone transformation to have range in [0,1], as unknown cumulative distribution

functions. In the process the resulting domain also becomes [0,1]. We thus characterize each

function as a mixture of Beta distribution functions. Here we appeal to a well known result

as in, e.g., Diaconis and Ylvisaker (1985), which says that any continuous density on [0,1] can

be arbitrarily well approximated by a discrete mixture of Beta densities. Unlike distributions

arising under a Dirichlet process, which could also be used here, we have a continuous, dense

class of distributions admitting an explicit form. In practice we have treated the number

of mixands r, as fixed comparing various choices. Alternatively, a discrete prior could be

attempted. As such we have taken an infinite dimensional problem and converted it to

a finite dimensional one. Though arbitrarily high dimensional models can be employed,

happily, in practice they will not usually be needed. In experimenting with a range of r's, for

a number of examples, we have discovered, perhaps not surprisingly, that robustness occurs

with quite small r. In introducing randomness to this finite mixture form we could either

assume the mixture weights to be random or the parameters of the Beta densities to be

random. Mathematically it is much simpler to work with the former. Hence for a given r we
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choose a fixed set of Beta densities and then assume, a priori, that the mixing weights arise

as a random draw on the r-dimensional simplex. Earlier work with this approach (Mallick

and Gelfand, 1993) looked at the problem of fitting a generalized linear model when the link

function is assumed unknown.

The format of the paper is thus as follows. In section 2 we formalize the likelihood,

in particular the modeling of the unknown H0 and g. In section 3 we discuss the prior

specification needed to complete the Bayesian model. Section 4 describes briefly the sampling

based fitting of this model. Model criticism and comparison are the subject of section 5.

Finally, in section 6 we analyze a set of survival data, with censoring, on 40 advanced lung

cancer patients which is discussed in Lawless (1982).

2 Likelihood specification

Suppose a total of n subjects. For the ith individual let -yi = 1 if 4t > vi, =0 otherwise

and let yi = min(t1 , vi). Then the joint density of the sample, following from (2), is
n 1--ri

-II[ho(y,)g(3Txj)] ezp(-Ho(yi)g(Prxi)) (3)
i.=1

With Ho0 g and 0 unknown we may view (3) as a likelihood function L(P, H0 , g). Indeed L

has an infinite dimensional argument; without fiurther assumptions it need not be identifiable.

For example, if fTx = io + ,6z then H0 , g, 6o, and fl, cannot be identified.

As noted in section 1, our inference approach is Bayesian requiring the specification of

a prior f(P,Ho,g) whence L(O,Ho, g).f(1, Ho,g) is the Bayesian model. In section 3 we

discuss forms for the prior f. The identifiability question from a Bayesian point of view

becomes whether or not the data can inform about all of the unknown parameters in the

model. If yes, provided a proper posterior results, there is no identifiability problem. If

no and if f is improper then the posterior necessarily is as well and we have an ill-defined

Bayesian model. If no and if f is proper then the prior drives the posterior.

How shall we model Ho and g? From the previous section we assume H0 is a strictly
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increasing function from R+ onto R+ and that g is a strictly increasing function from R' onto

R+. Let Jo = aoHo/(aoHo + bo) where ao, bo > 0 are specified constants (choice of ao, bo will

be taken up below). Then Jo is a differentiable c.d.f. Modeling Jo is equivalent to modeling

an unknown distribution function. Similarly, let J. = ai/(aig + b1) where a,, b1 > 0 (choice

of a,, b, Will be clarified below). Then again Jg is a differentiable c.d.f.

A rich class of models for Jo and for J. may be created as follows. Associate with Ho a

specific baseline hazard function Ho. For instance 0o(t) might be t" for a given p. (Random p

could be handled using a hyperprior but we have not investigated this). Similarly, associate

with g a specific baseline covariate link §. For instance §(7) might be e". Diaconis and

Ylvisaker (1985) argue that discrete mixtures of Beta densities provide a continuous dense

class of models for densities on [0,1]. A member of this class has a density of the form
I.

f(U) wjBe(ucjl, d,) (4)
I--1

where r denotes the number of mixands, w, _> 0, E wl = I and Be(ulcl, dj) denotes the Beta

density in standard form with parameters, Cq and di. If IB(u; cl, d1) denotes the incomplete

Beta function associated with Be(ujcl, d41) then let

" TIJo(t;wO) = F lwjB(jo(t); udu) and Jg(C;w 2 ) = W2 11_B(Jg(7);c2 1,d 2.) (5)
1=1 1=1

where .Jo(t) = ao o(t)/(aoio(t) + bo) and ig(7) = ai(•)/(a1 §(77) + b1). Clearly Jo and Jg

are c.d.f.'s.

It will be of interest in subsequent sections to calculate ho(t) = YO(t) and g'(77). Since

Ho = bOjo/aO(1 - Jo), H; = (o OJo/lt)/lao(1 - Jo)2 . Similarly g = bi(1 - J,)/IJ, so g'
(-b 1 6 8,Jg/l )l/•a,. From (5), aUo(t; wj)/lt = w•l wBe(•o(t); cu, d1,), 8J,(,; 9)In% -

.; E•=, WzBe(J,(77); c2l, d21) with J0 = aoboH'/(aofo + bo) and .'= -aii01(a4 +

We note that models incorporating mixtures other than Beta could be used, e.g., Gammas

on R+, uniforms on R1 . We work with Beta densities since the restriction to the bounded

interval [0,11 enables, for a given r, convenient choice of the set of cq, d, so that mixing with

a weight vector w=( wl,-- w,) belonging to the r-dimensional simplex yields a rich family

of densities.
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In our experience, inference using mixtures with small r is virtually indistinguishable

from those with much larger r. In fact, allowing r>n does not insure perfect fit since Ho

and g are restricted to be monotone. Hence we specify r making (3) a finite dimensional

likelihood. Given r, it is natural and certainly mathematically easier to assume that the

component Beta densities are specified but that the weights are unknown. In particular we

choose the set of q, d4 to provide a collection of Beta densities which blanket [0,1]. Within

this objective, our experience shows that inference is again robust to the particular choice.

In our example we set ri = r2 = r, cl, = c2 , di =- dl = 41 with c-=A,/ d, = A(r+1-/.

(See section 3 for further discussion of this point.) In any event, specification of H0 and g is

equivalent to specification of w, and w 2 and we can denote the likelihood by L(f3, W 1 , w2 ).

Lastly we return to the choice of ac, b0 and a,, bl. This is not a modeling issue but a

computational one. For example, if 1711 is very large, §(71) = e" will produce over or underflow.

Since, in (5), only j,(77) is needed, scaling and centering using appropriate a, and b, can

alleviate this problem. In practice a, and b, could be obtained by looking at the range of
Tx over the sample with 4 say the partial likelihood maximizer. For Jo(t), often ao = bo=1

will work. Again, there is no notion of "best" values. Many choices of ai and bk will work

equally well and, to keep notation simpler, we suppress the ai and b1 in the sequel.

3 Prior specification

Given the likelihood L(O3, w1 , w•2 ) we next address the specification of the prior f(fl, wI, w 2).

Since primary interest is in the likelihood and since only occasionally will there be useful

prior information we think in terms of vague priors. In this regard one advantage does ac-

crue to the Bayesian compared with the likelihoodist. Maximum likelihood estimators under

L(3, w1 , W2 ) need not be finite, i.e., need not occur within the interior of the parameter space

(see Wedderburn, 1976). However in the Bayesian context the prior distribution typically

overcomes this problem yielding a well behaved posterior density.

We assume that f(, w1 , w 2)= f(#Iw1, w2 ).f(wi).f(w2) where f(w,) is a distribution

6



on the ri dimensional simplex. Since w, determines Ho(t) we might attempt to choose f(w2)

such that in some senses Ho(t) is centered around Hlo(t), i.e., Jo(t; wl) is centered around

Jo(t). From (4) this corresponds to centering the random density f(u) around a uniform

density on [0,1]. Centering using the mean results in the equation

E(wuIB(u; cu, dl) = u (6)

If w, - Dir(yl) then (6) requires that the average of the IB(u; cit, dul) equal u. If ri is even

and cul and d~l are chosen as discussed in section 2 then straightforward calculation (which

we omit) shows that, to a first order approximation, (6) holds. Similar remarks apply to

f(w 2 ) with regard to centering g(rq) around §(71).

Returning to f(10w 1 , w 2) a multivariate normal prior is often proposed. In the limit,

as the precision matrix tends to 0, a flat prior results. It is interesting to investigate the

form of Jeffreys's prior here. Recall that this prior is the square root of the determinant

of the Fisher information matrix associated with L((3, wl, w2 ). Given w, and w 2, standard

calculation shows that Jeffreys's prior is proportional to IXTMXi1/ 2 where X is the n x p

matrix whose rows are the xiT's and M is an n x n diagonal matrix such that

S= -(1 - S(V,;Xj))(g'(i3 TXj)/g(/3 TXj)) 2  (7)

Working with (3), this calculation is clarified by noting that E(1 - -ti - Ho(y,)g( 3 Tx)) = 0.

From (7) we see that Jeffreys's prior depends upon both wi, w 2. Recall that g' was calculated

in section 2; g" follows similarly. In the case of of no censoring, Mi. = -(g'(,8Txi)/g(,3Txi)) 2

which depends only upon w 2. Finally, the question of whether a proper posterior results

under the above specifications c .n be examined using ideas in Ibrahim and Laud (1991). No

details are given here.

4 Implementing the Bayesian model.

Given the Bayesian model L(, w1, w 2 ) -f(31w(1 , w2 ) .f(wl) .f(w 2), all inference proceeds

from the posterior distribution of (16, w1 , w 2) which is proportional to this product. Ana-

lytic investigation of this p + (ri - 1) + (r 2 - 1) dimensional nonnormalised joint distribution
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is infeasible. It would be difficult enough to standardize this form much less to calculate

expectations, marginal distributions, etc. Thus we adopt a sampling based approach using a

Markov chain Monte Carlo algorithm to obtain random draws essentially from this posterior

distribution. In particular, a version of the Gibbs sampler (Gelfand and Smith, 1990) is

natural since the complete conditional distributions for 03, w, and w 2 are also proportional

to the nonnormalized posterior. Because, for a given )3, calculation of L(,6, w2 , wl) requires

n(r, + r2) incomplete Beta function evaluations, making draws directly from these distri-

butions is inconvenient. Instead we utilise a Metropolis-within-Gibbs algorithm (MUler,

1993) with a multivariate normal proposal density for 03, and Dirichlet proposal densities

for w, and w 2. Under a logit transformation of wi to ri - 1 dimensional. space these last

proposals could be multivariate normal. We run short Metropolis sub-chains, typically 20 to

50 iterations, for each update within each iteration of the Gibbs sampler. Such sub-chains

are attractive in that, to proceed from the current step to the next requires only one new

evaluation of the likelihood. Starting points for replications of the Gibbs sampler are taken

in the vicinity of the maximum likelihood estimates for )3 under Hl0 and §o with random

uniform draws for the wi. In the example of section 5 we used 1000 parallel chains initially,

adaptively improving the proposal densities, following Muller's suggestions, for typically 25

iterations after which we ran ten parallel Gibbs chains each for approximately 5000 iterations

using various "convergence" diagnostics before stopping.

Let us denote the retained output of the Gibbs sampler, which is approximately a sample

from the posterior, by (P31 ,wj3 ,w;3 ) j = 1, 2,..., m where typically m is 1000 to 2000. This

sample enables us to carry out any desired posterior inference. Such inference would likely

examine the marginal posterior distributions of the coefficients. The posteriors of H0 and ho

can be obtained at any t using the posterior of wl. The posterior of g can be obtained at

any 7 using the posterior of w2.
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5 Model criticism and comparison

Here we consider informal techniques for checking model assumptions and for comparing

models. In the non Bayesian framework, with censored data, assessment of the hazard

function is usually done using a hazard plot. More specifically, a parametric specification

for H0 , equivalently ho, can be checked usng an empirical estimate of H0 or hN. Plots

of H0, logH0, ho or logho vs t or logt can be compared with theoretical plots under the

parametric specification. An alternative is a residual analysis based upon the earlier remark

that given 63, Ho and g, U. = U(t1 ; xi) = Ho(ti)g(f3Txi) Exp(1). Taking Ho and g as

known and insexting a sample estimate for 1, the resulting U1 are compared- with the Exp(1)

distribution using a theoretical or empirical QQ plot (see, e.g., Lawless, 1982; or Cox and

Oakes, 1984). Unfortunately the required estimation sacrifices both the independence and

exact distribution for the Ui.

How should such checking be handled within the Bayesian framework? Generally, model

assessment proceeds from predictive distributions (Box, 1980). At the individual level this

proposes, for the observed survival times, comparison of f(t Idata) with ti,.,; for the censored

survival times evaluation of S(tijdata) at vi. It may be preferable not to include the observed

information on the ith individual in obtaining the predictive distribution for ti. That is, we

would condition on data(i), all of the data excluding the information on the ith individual.

(Such deletion is usually referred to as crossvalidation.) Regardless, Gelfand and Dey (1993)

describe how to use the output of the Gibbs sample to obtain Monte Carlo estimates of

either of these predictive densities and predictive survivor functions.

For instance i(tIdata) = m-1 •= f;(tj;xz) where f;(t;x;z) denotes the density (2)

given (13;, w•, w23 ). Similarly S(t•,jdata) = m-1 'E S;(t,; x,) where S;(t,; x,) denotes the

survivor function associated with (2) given (1)3, w*,, w2*). Appropriate resampling of the

(13;, wlj, w;,) enables conditioning on data(i) (Smith and Gelfand, 1992). In particular for

an observed t, we obtain the conditional predictive ordinate (CPO) as f(tj,objdata(i)). For

an unobserved t, we can obtain S(vildata(i)). A large CPO indicates agreement between the

observation and the model (see Pettit and Young, 1990). Hence models can be compared
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using a plot vs. i of, e.g., CPO's under the various models, CPO ratios, or log CPO ratios.

Similarly, for the censored observations, a large value of S(vildata(i)) indicates agreement

between the observed censoring and the model.

6 An illustrative example

The data in table 1 describes survival data in days for 40 advanced lung cancer patients and

is taken from Lawless (1982). The three explanatory variables are : xi, performance status

at diagnosis (a measure on a scale from 0 to 100 of the patient's general medical condition),

X2, age of the patient in years, and zX, months from diagnosis to entry into the study. Note

that three of the 40 survival times, indicated by * are censored. An exponential model, i.e.,

ho(t)-1, g(,7) = e-", is used by Lawless. For this four parameter model (intercept and three

coefficients ) maximum likelihood estimates and associated standard errors can be obtained

from standard statistical packages and axe presented in table 2. Accordingly, only Zx is very

important. For the 37 uncensored survival times, figure 1 provides a theoretical Q-Q plot for

the U t_,.&.eXp(-_ xi). The exponential model appears adequate but would we prefer a

semiparametric choice?

We investigated four models from a Bayesian perspective. Model 1 has a likelihood

arising under an exponential hazard and an exponential covariate link and is denoted by

EE. Model 2 has a nonparametric hazard specification with an exponential covariate link

and is denoted by NE. The integrated hazard is developed as in section 2 "centered" about

the exponential hazard. Model 3 has an exponential hazard but a nonparametric covariate

link "centered" about the expoponential function and is denoted by EN. Finally model

4 incorporates nonparametric hazard and covariate link each exponentially centered and

denoted by NN. When nonparametric forms are used we took A- = 1 and ri = 3. We

investigated larger ri's but witnessed inconsequential improvement in fit primarily because,

regardless of ri, the function is constrained to be monotonic. This is an obvious advantage

to our modeling approach. We can fit Ho and g using a large number of mixands but, in

practise, a much more parsimonious choice can usually be taken. We used a flat prior on
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Sand, if w1 appears we chose a uniform prior on the simplex in three dimensions. Hence

model 1 has 4 parameters, models 2 and 3 have 6 and model 4 has 8.

With regard to model choice, in figure 2 we present a CPO plot for each of the four

models. The three semiparametric choices are better than EE with the largest model, NN,

the best. For each of the three censored survival times under each model, Table 3 gives

P(tj > vildata(i)) along with the product over these three times. Models NE and NN are

best at explaining the censoring.

Looking at model choice in a different way suppose we compare the estimated nonpara-

metric functions with their centering exponentials. As the Bayes estimate.of the nonpara-

metric function we take the posterior mean. In figure 3a we compare the integrated hazards

under NE and under NN with Ho(t) = t. In figure 3b we compare the hazards under NE

and under NN with ho(t) = 1. The domain for t agrees in both figures and includes virtually

all the observed ti. We note that /0 and ho are almost indistinguishable under NE and

NN but differ dramatically from those for the exponential model. Figure 3 shows that for

this data the aforementioned claim of Cox and Oakes (1984) and of McCullagh and Nelder

(1989) holds: if H0 is estimated, the fit is insensitive to the covariate link. In figure 4 we

compare the covariate links under EN and NN with g(77) = e4. It is convenient to use the

ratio §Ie" plotted over a range which includes all of the 0 zx. The Y's under EN and under

NN are in good agreement for 77 > 0 with growing disagreement as 77 decreases.

All of the above discussion supports NE or NN. Looking at NN in more detail we find the

posterior mean and standard deviations for the Pi under NN in table 2. In terms of inference

for 63 alone there is little qualitatative difference between EE and NN. Finally, in table 4

we provide the posterior correlations amongst the 8 parameters under NN. As expected,

there is high negative correlation between wil and W12 and between W21 and W22 . Otherwise,

correlations are weak and w, (i.e. H0) is essentially uncorrelated with w 2 and 6 (i.e., g).

In conclusion, though the present data set does not, perhaps, warrant a more elaborate

model than EE, it is attractive to have a broader model formulation and the associated

fitting and choice tools to demonstrate this.
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Table 1: Lung Can Survival Data (Lawless, 1982)

* indicates censored observation

1 ,1 1-2 X3 t x1 x2 x3

411 70 64 5 100 60 37 13
126 60 63 9 999 90 54 12
118 70 65 11 231* 50 52 8
92 40 69 10 991 70 50 7
8 40 63 58 1 20 65 21
25* 70 48 9 201 80 52 28
11 70 48 11 44 60 70 13
54 80 63 4 15 50 40 13
153 60 63 14 103* 70 3U 22
16 30 53 4 2 40 44 36
56 80 43 12 20 30 54 9
21 40 55 2 51 30 59 87
287 60 66 25 18 40 69 5
10 40 67 23 90 60 50 22
8 20 61 19 84 80 62 4
12 50 63 4 164 70 68 15
177 50 66 16 19 30 39 4
12 40 68 12 43 60 49 11
200 80 41 12 340 80 64 10
250 70 53 8 231 70 67 18

Table 2: Summary of Lkelihood Analysis for EB
Posteror Analyis for NN

EE ] NN
mle(s.e.) post mean(s.d.)

#0 4.742(.1612) 3.932(.1668)

01 0.060(.009) 0.035(.012)

,62 0.013(.015) 0.001(.018)
03 .003(.010) 0.003(.009)



Table 3: Companison Amongst Models of Survival

Probabilities for Censored Observations

(1) (2) (3)

Model P(t >251 data(1)) P(t2 3 >231 data(23)) P(t 2 9 >1031 data(29)) (1)(2)(3)

EE 0.8852 0.0253 0.5435 0.0121

NE 0.9091 0.1893 0.7019 0.1208

EN 0.8899 0.0904 0.6252 0.0503

NN 0.9133 0.1894 0.7116 0.1228

Table 4: Posterior Correlations under Model NN

,91 .194

92 .026 .039
6j3 .101 .267 -. 042

W .007 -. 017 .011 .018

w12 .004 .011 .015 .019 -. 051

w21 .332 .245 -. 102 .130 .019 .018

w22 -141 .310 -.160 --.236 -. 706 -. 015 -. 813
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