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On Markov Chain Monte Carlo Acceleration

Alan E. Gelfand and Sujit K. Sahu

Abstract

Markov chain Monte Carlo (MCMC) methods are currently enjoying a surge of interest within

the statistical community. The goal of this work is to formalize and support two distinct adap-

tive strategies which typically accelerate the convergence of a MCMC algorithm. One approach is

through resampling; the other incorporates adaptive switching of the transition kernel. Support

is both by analytic arguments and simulation study. Application is envisioned in low dimen-

sional but non-trivial problems. Two pathological illustrations are presented. Connections with

reparametrization are discussed as well as possible difficulties with infinitely often adaptation.

Key words: Adaptive chains; Gibbs sampler; L1-convergence; Markov chain Monte Carlo;

Metropolis-Hastings algorithm; Rejection method; Resampling.

£o@esslou For

IRTIS MRA&I
DTIC TAB 9
UnanrPOwaCed 11
.JU~t :l"qation

By__________

Avatlab i ty •cuoe

'I I
AvaiftbiitT ado



1 Introduction

Markov chain Monte Carlo (henceforth MCMC) algorithms are currently experiencing a surge

of interest within the statistical community. Though they first appeared in the literature forty years

ago (Metropolis et al. 1953), the present enthusiasm arises from their much more recent recognition

as powerful tools for implementing a wide range of statistical inference. For instance in Bayesian

inference, MCMC simulation enables calculation of features of the posterior distribution of model

unknowns given the observations (Gelfand and Smith 1990). For maximum likelihood estimation,

where the likelihood is specified as a non-normalized joint density for the observations, MCMC

techniques can be used for carrying out the maximization (Geyer and Thompson 1992; Gelfand

and Carlin 1993).

In either case the object we wish to learn more about is a function, say f(u), which we assume

is strictly positive and integrable with respect to a measure A over a set of interest denoted by U.

In practice 1 is a product of Lebesgue and/ or counting measures. Utilizing the duality between

population and sample we propose to learn about f by drawing samples from the normalized

version of f, the density h(u) = f(u)/ fu f(u)dg&(u). MCMC techniques permit handling of high

dimensional u but there is also considerable interest in cases where dimension is not so large but

asymptotic approximations are inappropriate and analytic methods are infeasible (see Gelfand,

Smith and Lee 1992 for a broad range of examples). This is the situation we consider with the

objective being to propose and justify modifications to MCMC techniques which tend to hasten

convergence.

A few words regarding convergence of MCMC techniques are appropriate. There is by now

a substantial theoretical literature providing conditions for and rates of convergence of MCMC

algorithms. We mention a few: Geman and Geman (1984); Tierney (1994); Applegate et al. (1991);

Roberts and Smith (1992); Schervish and Carlin (1992). In application, convergence conditions are

readily checked but theoretical rates, usually in the form of bounds, seem to be of little practical

value. As a result there has also arisen a substantial discussion of convergence diagnostics, using the

output stream of the MCMC algorithm, e.g., Ritter and Tanner (1992), Raftery and Lewis (1992),

Zellner and Min (1992), Gelman and Rubin (1992) and Geyer (1992). Since pathological choices

of f(u) can either deceive or render inapplicable such diagnostics, a cynical viewpoint suggests

that we can only hope to demonstrate lack of convergence rather than convergence (Clifford 1993).



However, in practice, a broad range of starting values and a bit tuning of the MCMC algorithm

usually enable the user to feel comfortable with regard to convergence.

In the present work we do not consider the problem of assessing convergence. Rather our

goal is to formalize and support two distinct adaptive strategies for accelerating the convergence

of a MCMC algorithm for low dimensional but non-trivial problems. Practically useful adaptive

accelerators must be built solely from the iterations of the MCMC algorithm and must not be too

costly to implement. This is the case with our proposals though we anticipate refinement. Support

is provided both through theory and simulation. Related work of Gliks et al. (1992) describes

a technique called adaptive direction sampling which, though not discussed here, falls under the

umbrella of our second class of strategies. We confess at the outset that, in using adaptive strategies,

we can not guarantee faster convergence. Occasionally we may be led in the "wrong direction".

However, as we argue in the sequel, the proposed adaptation never compromises convergence itself.

It is well known that all numerical integration approaches perform better when correlation

amongst the components of u is low. In particular, MCMC algorithms converge more rapidly.

Hence acceleration might be attempted through a reparametrization to approximate orthogonal-

ity. An effective linear transformation to achieve roughly uncorrelated components of u might be

identified through analytic investigation of f(u) or adaptively from early output of the MCMC

algorithm (see MUller 1994 in this regard). Such orthogonalization need not always be worthwhile.

For instance, with a Gibbs sampler, conjugacies, which permit convenient draws from complete con-

ditional distributions, may be sacrificed. In any event, such reparametrization is not in competition

with our approaches, rather it may be employed in conjunction with them.

The format of the paper is as follows. Section two provides a brief review of aspects of MCMC

simulation which we require, as well as a description of the two acceleration strategies. The first is

based upon resampling and support is provided in Section 3. The second is based upon adaptive

modification of the transition kernel mnd support is presented in Section 4. Section 5 provides

two useful examples. The first fits a nonlinear model to a real data set resulting in a very poorly

behaved likelihood. The second reveals that adaptation done infinitely often can modify the ergodic

behavior of the MCMC algorithm.
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2 MCMC Algorithms and Accelerators

MCMC algorithms proceed from the, possibly surprising, idea of creating a. stationary Markov

chain whose invariant distribution is H (here H is the probability measure associated with the

density h(u), i.e., h = 7 ). We work with two such algorithms here, the Gibbs sampler (see, e.g.,

Geman and Geman 1984; Gelfand and Smith 1990) and the Metropolis-Hastings algorithm (see,

e.g., Hastings 1970; Tierney 1994).

2.1 Notation and Review

We introduce a bit of notation. For a discrete time stationary Markov chain we denote its state at

time t by u(0) and its transition kernel by P, i.e., for a p-measurable set A, P(u(t-1); A) =

P(u(t) E A0u(• 1 )). The distribution H is an invariant distribution for P if for all 1-measurable sets

A, H(A) = f P(u; A)dH(u). If PW)(u; A) = P(u(0) E Aju(°) = u) then the invariant distribution

H is an equilibrium distribution if

rn P(t')(u; A) = H(A) (1)
t-.cco

for all p-measurable sets A. Expression (1) captures the basis of the MCMC simulation approach:

after a sufficient number of transitions, u(t) is approximately distributed according to H. All

discussion of convergence diagnosis concerns itself with assessing when t is large enough so that the

"distance" between p(t), which can rarely be computed analytically, and H is small.

We can also work with the marginal distribution of u(0), say H(t), i.e., H(t)(A) = f P(t)(u; A)

dH(0)(u) where H(°) is the distribution of starting states. If (1) holds then limt....a.H(0)(A) = H(A)

for all #-measurable sets A. Of course H(t) also will not be available explicitly but H(t) lends itself

to Monte Carlo integration through the relationship

H(t)(A) - P(u; A)dH(t1)(u). (2)

The Gibbs sampler creates a transition from 0(t - 1 ) to u(t) as follows. If we partition u

into k blocks, i.e., u = (ul, u2,...., uh), we obtain u~t) as a draw from the conditional density,

h(uIu2(t'-1), ue-z)(,..,t u-)). We then obtain u(t) as a draw from h(u 2 Iuj(), u(1-1),..-, u(-),

etc. until finally u(kt) is drawn from h(uk I ut), u• , u"k-l1 ) whence u has been fully updated.
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Thus, the transition kernel of the Gibbs sampler has a density p(u; v) taking the form

kp(u; v) = h(vilvi), v',-I, u÷1,-- uk). (3)
i=1

Note that all of the conditional densities on the right hand side of (3) are proportional to f evaluated

at the corresponding arguments. If any of these densities are not standard, normalization of f is

needed in order that p(u; v) can be computed. Therefore, for the Gibbs sampler, (2) can be

differentiated yielding the marginal density of u(t),

h(t)(u) = p(z; u)h('-1)(z) d,(z).' (4)

The general Metropolis-Hastings algorithm updates u(-1) to u(t) as follows. Suppose Q is a

Markov transition kernel having strictly positive density q(u; v) with respect to it, i.e. Q(u; A) =

fA q(u; v)d(v). Let a(u; v) = min (1, -v,9,,u ) and define r(u) = 1- fu •(u; v)q(u;v)dU4v). A

transition from u(t-1) to u(0) is made by drawing a candidate transition state v from q(u(t-'); v).

Then, with probability a(u(t-1); v) we move from u(t-1) to v and take u(t) = v; with probability

1- a(u(t-1); v) we stay at u(-1) and take u(t) = u(t-1). Thus r(u-1)) is the chance of not moving

and the transition kernel takes the form

P(u; A) = fA a(u; v)q(u; v)d,&(v) + ,(u)6u(A) (5)

where 6u denotes the degenerate distribution at u, i.e, Ju(A) = 1 if u E A, 0 if u 0 A. Thus

P(u; A) arises as a mixed measure. Returning to (2), in the Metropolis-Hastings case, though p(t)

is atomic, H(t) is absolutely continuous with respect to 1A if the starting distribution H(°) is. In

fact, using (2) and (5), direct calculation of the Radon-Nikodym derivative yields

dH(t)_
h(t) =• dHt = 8(t-1) + rh(t-1) (6)

where P(t-1)(u) = f a(z; u)q(z; u)h(t1)(z)dpu(z).

2.2 Acceleration Approaches

The term "acceleration" is used in numerical analysis to indicate hastening of convergence. Anal-

ogously, for an MCMC algorithm, an acceleration approach is a technique to diminish the number

of transitions, t, such that u(t) is approximately distributed according to h. We consider two types
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of accelerators. We present them in the setting of say m parallel chains whence at any iteration

t we have m ii.d observations. The approaches are more easily described in this case and the

independence simplifies analytic arguments. However, several authors advocate the use of a few,

perhaps even a single chain as most sensible and efficient (see, e.g., Geyer 1992). Intuitively, we

would expect acceleration to ensue even if we used m iterates from a single chain possibly after an

initial burn-in and possibly with spacing to reduce dependence.

2.3 Acceleration through Resampling

Suppose, then, that we have ui3  1, 2,... ,m, i.i.d 0(t) for each t. The first type of accelerator

attempts to convert the sample from h(V) to a sample approximately from h. The idea is that if

our current marginal distribution is moved "closer" to h, within fewer transitions our draws will be

essentially from h. Indeed, if our current u-) were drawn exactly from h, then all subsequent draws

would be as well. Such conversion can be accomplished using ideas in Smith and Gelfand (1992)

who suggest two resampling methods, the rejection method (see also Devroye 1986 and R1ipley

1987) and the weighted bootstrap (see also Rubin 1988).

Applied to our setting the rejection method proceeds as follows. Compute M = Supu

For each (t) draw zi. ,- U(O,1). If z, ( retain 4 as a draw from h. The weighted

bootstrap computes, for each u(), the weights wiu = f ('(ull) and q, = W. The ) are then

resampled acci rding to the probabilities qj. A resampled u* is approximately distributed according

to h. The rejection method is desirable in that retained observations have exactly the distribution

h. However, computation of M is usually difficult and only a portion (often small) of the m W

are retained. Hence, in practice and in our simulation investigation we use the weighted bootstrap.

It is easy to implement and permits as many resampled observations as desired. However, their

distribution is only approximately h.

Unfortunately, except in the simplest cases, 0t(t) will not be known, so, in implementing a

resampling method, wie must replace h(') by an estimate P(t). This extra level of approximation

should not be viewed as a deterrent. Our goal is only to draw from a distribution which we expect

to be "closer" to h than h(0). In fact, denoting a resampled draw by u*(t), we would make the next

transition via P to obtain u(t+i). Indeed, if u* , h, then so would all subsequent draws under this
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chain.

How shall we estimate h(t)? One possibility is a kernel density estimate based upon the u~t)

(see, e.g., Silverman 1986). An alternative arises using Monte Carlo integration. In particular,

corresponding to (4), we obtain

j=1

where p(.;.) is defined in (3). Monte Carlo estimation of h is more computationally demanding
than a kernel density estimate. However, the RLao-Blac.kwellization encompassed in (7) suggests,

under a wide range of loss functions, a better estimate of h will result (see Gelfand and Smith

1990 in this regard). The form (7) was used in the simulation investigation of the next section.

Corresponding to (6), if we assume 0() • h(s- 1) then h(0) % .0 A Monte Carlo estimate of (t-1)

is straightforward again using the u3t-'). For a given u, we can obtain a Monte Carlo estimate of

r(u) by making draws v, given u from q(u; v).

Note that the proposed adaptive modification of the MCMC algorithm changes the distribution

at the eh iteration from h(t) to a random distribution h: W and results in a non-Markovian transition.

Were we to do this at each iteration there is no assurance that the resulting MCMC algorithm con-

verges or that it converges to h (see Section 5.2). However, we envision such adaptive modification

for only a few iterations, thereafter running a stationary chain whose invariant distribution is h so

convergence is assured.

2.4 Acceleration by Changing P

The second type of acceleration replaces the current transition kernel say P1 by a new choice P 2

which is "better than" P1 . What do we mean by "better than" ? It is easier to work with a finite

state space (and, of course, so do computing machines) whence transition kernels become stochastic

matrices. Two such matrices having the same unique invariant distribution may be compared using

their eigenvalues. In particular if P is r x r having eigenvalues 1 = 61 > 182 > .. > Or, let

13(*) = max (,82, f ir 1). Then 6(') can be used to bound the distance between p(t and h. This is

usually referred to as Perron-Frobenius theory and a weak result (see, e.g., Iosifescu 1980) is the

following. Suppose the invariant distribution h is written as an r x 1 vector, h, and we define the
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r x r matrix, say H = (h, h, h). Noting that p(t) is in fact (P)', we have

(P)* - H T= o (t-f-I(Pc'))t) (8)

where y is the multiplicity of O(*). Expression (8) is not as useful as we would like since it does not

provide an explicit bound on a cell difference.

A stronger result is available if P is reversible, i.e., if hP,. = h.P, for all r and s. Diaconis and

Stroock (1991) obtain a bound on the variation distance to equilibrium in terms of #('). Defining

this distance for probability distributions h and g to be 11 h - g 1I= El hI - g11/2 we have

Theorem 1(Diaconis and ,Stroock): If P is a reversible Markov chain with unique invariant

distribution h and P is irreducible then for all j and t
r I ( P)it- h l _< 1 - hj(#€'•)) 2hj "(9)

Thus for Pi, i = 1,2, with associated Pi") we will say that PA is better than P,1 if 6(") < 8"

Again considering m parallel chains each taken to the ttII iteration, the proposal is to utilize the

u7) to adaptively revise P1 to P2 which we expect to be better than P1. For a Metropolis-Hastings

algorithm this means adaptive modification of the proposal transition kernel q(u; v). Such change

results in a chain which is no longer stationary and hence need not converge to h (see Section

5.2). As at the end of Section 2.3, we propose only a few adaptive transitions before settling

into a stationary chain, again to insure convergence. Analytic justification and simulation support

is provided in Section 4. The idea of switching between different transition mechanisms as the

simulation proceeds is discussed in Besag and Green (1993). There, the issue is one of conflicting

demands upon an MCMC algorithm, namely speed of convergence vs. small variability in estimation

using ergodic averages. For the former we want P(*) small. For the latter they show that small

values of 1 help, i.e., negative eigenvalues help. Our proposed switching is only concerned with

the first demand.

2.5 Additional Remarks

We have ignored the cost in computing time to implement the implementation. This cost is clearly

problem specific and might offset the benefit of acceleration. In our simulation investigation this
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was not the cue. We might expect resampling to be more effective than changing P, since the

explicit objective of t te former is to sample approximately from h rather than to improve upon the

current P. Hor -. er, so many factors affect the convergence of an adaptive procedure that such a

conclusion is not generally supportable. Both approac.hes are rather sensitive to the choice of m.

If m is too small a poor estimate of 0(t) or a poor revision of P may arise yielding a potentially

adverse effect on convergence.

3 Acceleration through Resampling

Here we further investigate the resampling approach of Section 2.3. Again our goal is to resample

from the set of (t), j = 1, 2,... ,m, i.id 0(t), a new sample U-0),j = 1, 2,..., m* whose distribution

h is closer to h than h(t ) is. Recall that, since 0(t) is not available, an estimate, P(t) must be used

to implement the resampling. Hence ht is random.

In Section 3.1 we argue that such resampling works in the sense that, under mild conditions,

the variation distance, ,t) -h f) - h $[-- 0 a.s. as m -* oo. The practical implication is that for

a suitably large m, resampling may be expected to produce draws from a distribution "closer" to

h. In Section 3.2 we present some very encouraging simulation results regarding the distribution

of JM'. , in comparison with the constant 1 10(t) - h fl.

3.1 Theoretical Results

Recalling the rejection method described in Section 2.3, suppose M = supu u, z - U(0, 1) but

u ,.. g 1(u). Suppose further that we keep u if z < - Then the density of u is

f(u)gi(u),/ f(u)g(u)du. (10)

g2(u) " 9 g2(U)

The proof is the same as that of the usual rejection method (see, e.g., Ripley 1987). Similarly, for the

weighted bootstrap of Section 2.3, if we sample ul i.i.d gi(u), j = 1, 2,..., m but we resample using

weights wj = f(u%)/g2(uI) it is straight forward to show that the distribution we are approximately

sampling is again (10). In our setting gi is 0(t), g2 is h(') whence

:() _ f(u)hW()(u) f f(u)h(t)(u)d
h h(t)(u) J W(1)
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We set t = 1, without loss of generality. We assume that h(l) converges a.s. to h(1). This is the

case with usual kernel density estimates (see Devroye and Gyorfi 1985) as well as estimator (7). In

either case, W(') is of the form m-1 ET I g,(u) where gj is a (random) density. Hence the numerator

of (11) converges a.s. to f(u) as m -, oo. If, as m -- o, t,•e denominator converges to f f(u), the

density h converges a.s. to the density h. Then by a standard theorem (see, e.g., Glick 1974)

f -h hi-- 0 a..as m- oo.

Thus we investigate the limiting behavior of ffhC1)/h(I). We write 0(1 ) as 4) to -ndicate

that it is an average over m terms. In fact the i.i.d sequence f P),j = 1,2,...} drawn from h(°)

determines {h$Q, m = 1,2,...} under (7). The ii.d. sequence { j = 1,2,...} drawn from 0)

determines {Q),m = 1,2,...} under a kernel density estimate. In either case, it is clear that for

certain sequences the random functions of u, h(1)(u)/Q)(u), can be badly behaved in the tails

and that, with f. = fh(1)/IQ, f ff. need not exist.

Fortunately in practice, the situation is more encouraging. For the Gibbs sampler, suppose f is

continuous and strictly positive, as it will be in most statistical applications where u is a parameter

vector. Since the complete conditional distributions associated with f are all proportional to f,

from (3), the p(u(*-'); u) are continuous and strictly positive. Hence, from (7), P(t) and thus f,. are

as well. Using a kernel density estimate for h(0) based upon a kernel function which is continuous

and strictly positive where f is, again, fm will be as well.

Fix an underlying sequence such that f.(u) converges to f(u). By Egoroff's theorem f..(u)

converges uniformly to f(u) on a compact subset of U, say fl, having arbitrarily large probability

under f. But then, since fA is continuous on a we have fn f,. --+ fa f. Since f,. --+ f a.s.

we can claim such convergence of integrals for almost every underlying sequence. In the case of a

Metropolis-Hastings algorithm, to obtain similar results we require that, for almost every v, q(v; u)

to be strictly positive and continuous where f is.

3.2 Simulation Results

The simulation study investigates the distribution of J.")/2 = f •h(- hi with . as in (11), as

well as the exact value of J/2 = f lh(1) - hj. We confine ourselves to the Gibbs sampler and to

illustrations which are, of necessity, simple in order to permit exact calculations and thousands of
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replications within a reasonable amount of computing time. In fact w- take f(u) to be bivariate

normal or a bimodal mixture of two bivariate normals with high correlation between the compo-

nents, a situation where convergence is known to be slow. In either case we ran the sampler drawing

from h(u.LU 2 ) first taking h(O)(U 2 ) to be N(ao, a02). We chose po away from the mean of AU 2 ) and

considered a2 both smaller and larger than the variance of f(U 2 ) in order to examine under and

overdispersed initial distributions relative to (U2). In the mixture case h(1)(ul) is not available

explicitly. Straightforward calculation yields

= 2 f) /)2 f (1)(u)I h(l)(ul) - lidul. (12)

Hence, given h(l)(ul) and W(1)(u 1 ), (12) can be calculated using Monte Carlo integration by

taking draws from f(u-); 2000 draws were used. The exact value of f ih(1)-hI can also be calculated

in this fashion. If h(l)(uj1 ) is not available explicitly it was obtained by Monte Carlo integration

using draws from hW°)(u 2 ). 500 draws were made to evaluate the integral in the denominator of

right hand side of equation (12).

For each f and h(°), the simulation involves an outer loop over the number of replicates (we

choose 1000 here). Each replicate yields a random value of JT(.)/2. For each replicate we ran m = 500

parallel strings of the Gibbs sampler. Of course since we only took one iteration this amounts to

making 500 draws from h(°) after which h(W)(uL) is determined and (12) can be calculated.

For the single bivariate normal case we took f = h = BVN(O,0 1,1,0.8) and h(°)(u2) -

N(2, o-0), a02 - 9,0.09. For the mixture case our h = 0.4 x BVN(2.0,-2.0,1,1,0.8) + 0.6 x

BVN(0,0,01,1,0.8) with h(°)(u2) = N(0,1). The exact value of J and some features of the dis-

tribution of J(l) are summarized in Table 1. Note that the starting distribution does not affect

P(J$(,)) < J) which equals 1 in all the cases indicating the effectiveness of the the adaptive strategy.

The distribution of the A.1) is fairly symmetric and lies well below the J in each case. Fixing m,

in general, performance will depend upon how often and at which iterates we resample as well as

the dimension of u.

{ Insert Table 1 here }
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4 Acceleration by Changing P

Here we further investigate the approach of adaptive switching of transition kernels introduced

in Section 2.4. The goal is to replace the current kernel P1 by a new one, P2 which we expect to

accelerate convergence. We envision application of this approach to the Metropolis-Hastings class of

algorithms by changing q(u; v) the proposed kernel. As noted by Tierney (1994) various types of q's

are useful. For example if v is generated by adding a random increment to u, drawn according to a

density g then q(u; v) = g(v - u). If g is elliptically symmetric, i.e., g(z) = g(zTAz) then switching

might mean changing A. If v is chosen independently of the current u then q(u; v) = g(v). Here g

functions similarly to an importance sampling density. Transition depends upon the relative sizes

of the weights w(u) = L and w(v) = f. If g oc f then the chain produces i.i.d draws from

h. Under suitable rescaling of u, g is often taken to be a multivariate normal or t density so that

switching would change the mean and /or covariance of g to make g more resemble f.

We remind the reader that, for the Metropolis-Hastings algorithm, any such g, obtained adap-

tively or otherwise, yields a chain whose invariant distribution is h. Hence initial adaptive switching

for a finite number of transitions does not affect desired ergodic behavior. In Section 4.1 we argue

that, in finite state spaces, for given choices of P1 and P2, if P2 is better than P1 in the sense of

Section 2.4, then for a fixed total number of transitions, a smaller bound on variation distance

results by running some under P2 than all under P1 . Here we extend Theorem 1 of Section 2.4.

Of course, it would have been preferable to run all transitions under P2 but a potentially better

P2 is only identified through (parallel) transitions under P1. The fact that P 2 is thus random does

not violate the conclusions of Theorem 2 below. However, simulation investigation is required to

demonstrate that such adaptive development of P 2 does, in fact, tend to yield better P's. This

is taken up in Section 4.2 with illustrations using a random increment choice for g. We find that

adaptive change of A results in a distribution of variation distance from h which tends to yield

smaller values than the fixed variation distance without switching. The work of Gilks et al. (1992)

incorporates a different sort of adaptive strategy to identify a potentially better P 2 .
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4.1 Theoretical Results

We consider the rate of convergence of a finite state space Markov chain arising under a finite

deterministic sequence of transition matrices P1, each having h as an invariant distribution. It is

routine that such a chain has h as its stationary distribution. We illustrate in the case of just two

P• where P1 is run for the first s iterations and then P 2 for the next t - s iterations. We obtain a

bound on the variation distance at the th iteration as in Theorem 1 which may be compared with

(9). The reader will readily see extension to more than two Pi 's. Recalling the notation surrounding

Theorem 1, we have for all j and 1 _ . <- t,

Theorem 2: )2

I(E•P•P-) - h1) hj 1 (

where (P 1*P-')j, = E! •1 (Pk 2b-"

Proof: Following Diaconis and Stroock we have

4 (PVV), _%t 1 (ptp~s)2-1

But hi(i,),, = hI(Pf')1 3,i = 1,2 and for any integer k > 1. Hence it is easy to see that

h2(P 2-I),1 = hI(P2-'•#)1, so that

_______ PP7'fl

Let D be a diagonal matrix with 9 k diagonal entry V/F. Let DPD-I = riBirT where Bi is

diagonal with eigenvalues of P1 and rirT = I. Therefore,

(P-P 2('-') sp) = E aiblkai (14)
k

where ai = (rB.r1 TT)i, and bik =(r2~rT2),k.

Now, if (B).. = 1, ai = :sr1 .e•,,r 1 , • r r,,2 .1 , + ((3'))' Zrlri,. Henc
if i $ _ al( - = (1 -())')/1ij while if I = j a• _ r, . +

2,.)= (1-(,(*))h,+(•'j). Similarlyif k $ 1 bik _5 bý = (1-(s6(*))2(t¢-))V, i" while

if k I bu5 <1g (.. )2t)),+(3U)2t) Hence (14) is bounded by El EI a4Ib~kajzI which

after a bit of algebraic manipulation becomes ( (2))2i(j'))2(-')) h1 +(')("')2(t-Th

the bound in (13) follows.
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Comparing theorems 1 and 2, if ,() < , a tighter bound on the variation distance arises by

switching. In this sense we argue that switching accelerates convergence.

4.2 Simulation Results

The simulation study is patterned after that of Section 3.2 taking u to be three dimensional, high

enough to allow interesting structure while again keeping computations manageable. We assume

that f (= h, here) is either trivariate normal or a bimodal mixture of two trivariate normals. We

utilize a random increment trivariate normal proposal transition kernel with covariance matrix

identity. We examine the benefit of adaptive switching in the following illustrative way. We first

run m parallel strings each for t Metropolis steps obtaining u(,3 = 1, 2,.. ., m. Secondly, using the

output of the first s Metropolis steps ulk),j = 1,2,..., m, we co-- te u the sample covariance

matrix of the ( ). We then switch the covariance matrix of the proposal transition kernel to this

ER and run an additional t - s Metropolis steps to obtain UP),j = 1, 2,...,m. We compare the

L1 distance between f and the density h(t) of the (t) with that between f and h*(W, the density of
uj , i.e., J) = f Ih0) - f and J(t(Eu) = f jh*(t) - f1 Of course both 0(t) and h*(t) are unknown

and h'(W is random. j(t) can be calculated arbitrarily accurately by making m very large, obtaining

a kernel density estimate 0(t) of h0t) and then using Monte Carlo integration with draws from f

to calculate fj 0) - fI = ff - 11. On the other hand since Eu varies with the sample, (s)

we treat .(t)(Eu) as random. That is, here (as in practice) we do not take m so large that Eu is

essentially the covariance of u(), whence the new transition kernel is essentially fixed. Instead our

simulation replicates adaptive switching to obtain the distribution of JQ)(Eu) and to compare with

P(). The J(t)(Eu) are still computed by Monte Carlo integration.

Our two illustrative cases are as follows, Case I: f(u) = h(u) = N3(p,I + 91IT) where ; =

(- 5 ,-5 ,1 5 )T and Case II: f(u) = h(u)= 0.4 x N 3(0,I+ 4 1 1 T) + 0.6 x N3(151,I+ 9gT), where I

is the identity matrix and 1 is a column vector of ones. In either case our starting proposal density

is a unit three dimensional normal distribution. As before we ran (m =) 500 parallel chains. We

have taken 1000 draws to calculate the distances. We have replicated 1000 J(t)(Eu) to evaluate

the probability that the adaptive distance is less than the actual distance. For Case I, we take

a = 10, t = 30 while for Case II we take s = 50, t = 110. Table 2 summarizes the encouraging

findings. For a fixed m, in general, performance is sensitive to s, t and the • ension of u.

13



{ Insert Table 2 here }

5 Two Examples

Here we consider two examples employing the proposed accelerators. The first ..- s resam-

pling in fitting a non linear model with a very badly behaved likelihood; the second strates

the collapse of ergodic behavior under infinitely often stochastic adaptation of the trans L ion kernel.

5.1 A Nonlinear Model

Bates and Watts (1988 page 110-121) discuss the analysis of a data set on the utilization of nitrite

in bush beans as a function of light intensity on each of two days. Assuming zero utilization at

zero light intensity and an asymptote as light intensity increases, they investigate several nonlinear

normal models with homogeneous variance using maximum likelihood analysis. A Michaelis-Menten

form, which provided adequate fit, models the mean utilization as (01 + 4,22)Z3/(02 + X1 + 03 -- )

where zx is the light intensity and X2 = 0 for day 1, = 1 for day 2. The likelihood analysis yielded

the summary given in Table 3. The mean square error yields the variance estimate P = 647723.0.

The correlation matrix indicates a very poorly behaved likelihood surface; in fact as we shall see,

the surface is more pathological than the authors realized.

{ Insert Table 3 here }

We perform a Bayesian analysis with extremely vague priors on the different parameters, so

that, up to standardization, the posterior density is essentially the likelihood surface. We show the

benefit of resampling using the Gibbs sampler. The complete conditionals for 01, 4, a 2 are standard.

For 02 and 03 we used Metropolis subchains for 50 steps with Gaussian proposals having standard

deviations essentially the asymptotic standard errors. We eschewed reparametrization since this

would sacrifice easy sampling for 01, 0 and ao. Initially we started ten chains in the vicinity of the

MLE. Autocorrelation in any individual chain is extremely high, requiring roughly 1500 iterations

to die down to insignificance. Because the joint posterior for 81, 92 and 93 is so nearly singular,

even after several hundred thousand iterations of the ten chains (requiring more than 24 hours

14



of run time), we cannot capture tail behavior adequately or conclude convergence. However, as

an approximate benchmark we obtained kernel density estimates for the 8i and 0 based upon a

sample of size 500, 50 from each chain using every 1500 th iteration after 100,000. These estimates

appear as the solid curves in figure 1. We then ran 500 parallel chains out to 100 iterations doing

no resampling as well as 500 parallel chains out to 100 iterations resampling once at iteration 5.

The kernel density estimates for the 8, and 0 without resampling appears as the dashed curves in

figure 1, those with resampling as the dotted curves. Clearly, even a single resampling is beneficial.

Lastly note that, the standard errors of the MLE's supplied by Bates and Watts are not useful,

e.g., i1 ± 3SE# includes approximately 50 % of the marginal posterior mass for 81.

5.2 A Pathological Example

We remarked in Sections 2.3 and 2.4 that, when stochastic adaptation is employed at each transition,

even if h(u) is the unique stationary distribution for each adaptive transition kernel, this does

not assure that the resultant MCMC algorithm converges or, if it does, that it converges to h.

Analytic examination of non-stationary Markov chains with stochastic choice of transition kernel

is generally infeasible. However, we can give a simple example due to G. 0. Roberts (personal

communication) where the additional randomness introduced in the selection of the transition

kernel changes the overall ergodic behavior of the chain. Assume u is two dimensional with f(u) =

h(u) = BVN(O, 0,1,1, p), p > 0. Suppose P1 is the transition kernel associated with the Gibbs

sampler, i.e., we draw •(t) I '-1) N(p0-1), 1 - p2 ) and u(e) 4(t) - N(pu4'), 1 - p2 ). Then f is the

invariant distribution associated with P1 . Suppose P2 is the transition kernel corresponding to exact

sampling of u through the principal components transformation V1 = UI + U2, v 2 = l- U2. That

is v, and v2 are independent with vi - NW(0,2(l+p)),v 2 -, N(0,2(1-p)). Inverting (v)T =(V1 ,2)T

to solve for (u)T = ("i u2)T yields a draw from f.

Now suppose at iteration t we take Pl if (4-) > 0 , P2 otherwise. A trajectory from this chain

will tend to show more positive ',) than negative. This is clear since if (t-1) < 0 we have a 0.5
chance that (') > 0 while if u (t-1) > 0 simple calculation shows that ) N(p2t-1), 1-p')

Ui >0 siple alclatin shws hat ~t)(t)U
whence (t) has a chance greater than 0.5 of being positive. Hence the ergodic average of the i&)

will be positive and the ergodic estimate of P(ul > 0) > 1. Thus ut can not have N(C, 1) as

its stationary distribution. In fact, by simulation investigation using 1000 parallel strings each

15



starting from u() N(0, 1), the supposed stationary distribution, we can observe the marginal

distribution of 1 (t) at various t's as well as the behavior of ergodic estimates under this scheme.

Table 4 illustrates such calculations for p = 0.9.

{ Insert Table 4 here }
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Table 1. Simulation for Resampling

h Normal Normal Mixture
hW°)(u 2) N(2,9) N(2,0.09) N(0, 1)

J 0.7626 1.3010 0.2485P~'.) < J) 1.0 1.0 1.0
_.(J__)) 0.11 1.0658 0.1542

Va(J,)) 0.0012 0.00036 0.00056
Med(.J)) 0.1075 1.0661 0.1543
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Table 2. Simulation for switching P

h Normal Mixture
J() 1.6335 1.3260

P(.(t)(J,) < J(t)) 1.0 1.0

__(._(_)(Eu)) 1.0251 1.1014
Var(J(t )(•u)) 0.0190 0.0016
Med(J.(t(Eu)) 1.0056 1.0976

Table 3. Parameter Summary for the Michaelis-Menten model

Standard Correlation
Parameter Estimate Error t Ratio Matrix

01 70096 16443 4.3 1.00

82 139.4 39.3 3.6 1.00 1.00
83 0.01144 0.00404 2.8 0.99 0.99 1.00
4) -5381 1915 -2.8 -0.69 -0.66 -0.66 1.00

Table 4. Simulation for the pathological example p = 0.9

t(iteration) E(z')) P( 4 ) > 0) M,±A)/t Itl()(1& ))/t
5 0.5957 0.767 0.4840 0.7232
10 0.5953 0.777 0.5268 0.7390
50 0.6018 0.750 0.5710 0.7516

100 0.6047 0.784 0.5796 0.7534
500 0.5553 0.744 0.5895 0.7572
1000 0.6093 0.777 0.5938 0.7589
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