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3 Structural Characterization and Bacterial Degradation
of Marine Carbohydrates

5 Abstract

The goal of this thesis was to develop and apply an integrated chemical and
microbial approach to study the effects of chemical structure on the rates and patterns of
carbohydrate degradation by anaerobic marine bacteria.

Polysaccharides produced by five species of marine plankton, Dunaliella tertiolecta,
Emiliania huxleyi, Stephanopzxis palmeri, a Phaeocystis sp., and Synechococcus
WH7335, were surveyed using one- and two-dimensional nuclear magnetic resonance
spectroscopy (NMR). Two carbohydrates from Synechococcus WH7335 were
characterized in detail. Synechococcus produced an a(1,4) glucose polysaccharide with
a(l,6) branches, which probably functions as anenergy reserve. The nominal molecular
weight of the polysaccharide was -5000 daltons. Large quantities of a glycerol-
polysaccharide, which was tentatively identified as a teichoic acid similar in structure to
teichoic acids found in cell walls of gram-positive bacteria, were also produced by
Synechococcus WH7335. This is the first report of teichoic acids in cyanobacteria.

Enrichment of bacteria from anoxic marine sediments on specific carbohydrates
yielded reproducible model systems with which to study the degradation of chemically
well-defined substrates. Headspace gases (CO2, H2 , CH4 , H2 S) were monitored by gas
chromatography, and carbohydrate substrates and intermediates were separated and
quantified via gel-permeation chromatography and high-pressure liquid chromatography.
The transfer of carbon from substrates through to end products was followed
quantitatively. Nuclear magnetic resonance spectroscopy was used to check for selective
structural alterations (such as preferential cleavage of specific linkage types or positions) of
the substrates.

A series of enrichment experiments showed that mixed cultures of marine bacteria
distinguish even between small, very closely-related substrates which do not require
extracellular hydrolysis prior to uptake. A galactose-f(1,3)-arabinose dimer was degraded
at half the rate of seven other similar disaccharides and three larger oligosaccharides. A
further series of degradation experiments with polysaccharides (pullulan, laminarin)
showed that they are degraded by bacteria at virtually the same rate as structurally related
substrates in the molecular weight range of 300-600 daltons. Degradation of the branched
glucan and the teichoic acid-type polysaccharide from Synechococcus WH7335 was also
very rapid.

The time-course of bacterial hydrolysis of pullulan was examined with gel
permeation chromatography and NMR to provide the first molecular-level evidence in
marine systems of the bacterial extracellular transformation of high molecular weight
organic matter to lower molecular weight organic matter. NMR spectra provided evidence
that the pullulan was hydrolyzed by pullulanase, an endo-acting extracellular enzyme which
preferentially hydrolyzes a(1,6) linkages. This is the first experimental evidence of
pullulanase activity among marine mesophilic bacteria.

The culture results suggest that enzymatic hydrolysis of macromolecular
carbohydrates to transportable pieces is not the slow step in bacterial degradation of at least
some types of polysaccharides. The results from the oligosaccharide experiments suggest
that certain heteropolysaccharides may not be degraded as quickly. Chemical structure can
be mor important than molecular weight in determining degradation rates of
carbohydrates. Varying rates of organic polymer degradation in anoxic sediments may be
largely determined by the sensitivity of bacterial enzymatic and transport systems to

Sstructural features.

I
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1 Chapter One: Introduction

Overview

U IPhytoplankton in the surface ocean use C02 fixed via photosynthesis to synthesize
macromolecular organic compounds such as proteins, lipid complexes, and3 polysaccharides. The majority of this macromolecular organic matter is remineralized back

to C02 either in the surface ocean or in the sediments (Henrichs, 1992). The factors3I controlling the remineralization of organic macromolecules are not well understood,
however, our limited ability to structurally characterize intact macromolecules is a major
barrier to determining rates and mechanisms of organic matter degradation in marine

systems. Although most organic matter in living organisms is macromolecular, research in

organic geochemistry has focused on lower molecular weight components or on hydrolysis

products (amino acids, monosaccharides) of the high molecular weight material. An
important aspect of marine organic matter, therefore, is largely unknown. Because we3 know little about the form in which organic matter is produced, we do not know which

factors control the rates and processes by which organic matter is cycled in the water

3 column and sediments, or why nominally labile components of organic matter
(carbohydrates and proteins, measured as monosaccharides (Cowie and Hedges, 1984) and
amino acids (Henrichs, 1992)) apparently are resistent to degradation beyond a given depth

in recent sediments.

A major proportion of macromolecular organic matter consists of carbohydrates,

high molecular-weight polymers of simple sugars. In phytoplankton, for example,
carbohydrates comprise 20-40% of cellular biomass (Parsons et at., 1961). Carbohydrates3 are used as energy reserves and for structural suppon (Lee, 1980), and are integral

components of membrane and cellular signalling systems (Bishop and Jennings, 1982).3 There is a wide range in the relative lability of different carbohydrates in marine
environments. Glucose (a simple sugar) fuels the basic metabolic pathways of most
organisms and is quickly degraded in seawater and sediments (Vaccaro and Jannasch,

1966; Takahashi and Ichimura, 1971; Meyer-Reil, 1978; Gocke etal., 1981). The presence

of carbohydrates (including glucose) in ancient sediments (Whelan and Emeis, 1992),

however, shows that some portion of carbohydrates resist degradation and are preserved in
sediments. This range of degradability exists even though individual monosaccharides are

Sstructurally quite homogeneous. High molecular weight carbohydrates are classic biological

polymers, differing in the number of repeating units, varying somewhat in monomer3 composition, and having a well-defined range of linking and cross-linking possibilities. We

I,



14 1
do not know which aspects of structure influence the extent of carbohydrate U
decomposition. Cellulose, for example, is a linear polymer of glucose, yet most organisms

an unable to degrade cellulose, even though its component monosaccharide is easily 1
degraded.

Bacteria are ultimately responsible for metabolizing and recycling much of the 3
organic carbon fixed by marine phytoplankton (Fuhrman and Azam, 1982; Azam et al.,

1983). In anoxic sediments, bacteria are the only organisms capable of degrading complex 3
organic matter to simpler substances and C02. While the bacterial degradation of

substances such as fatty acids and simple sugars is well understood (Gottschalk, 1986),

little is known about the pathways by which bacteria degrade the macromolecular material I
which comprises most of the organic matter in the environment. The goal of this thesis is to

investigate the bacterial degradation of complex carbohydrates in marine systems, focusing I
on the effects of the chemical structure on degradation rates and patia,. Structure is a

critical parameter because there is a finite limit of approximately 600 daltons on the3
molecular weight of substrate which a bacterium can ingest (Weiss et al., 1991). Above

this exclusion limit, organic matter must be degraded to smaller pieces outside of the

bacterial cell by exoenzymes that are selective for specific linkage types and positions

(Priest, 1992).

Carbohydrates were selected as a focal point of this work because they are
compositionally well-suited to serve as model compounds in a study of structural effects on

degradation rates and patterns. Unlike proteins and lipids, carbohydrate macromolecules 3
usually vary in a structurally well-defined manner. Proteins are made of combinations of

twenty amino acids linked by a peptide bond. Polysaccharides are typically made of only a

few closely-related monomers, with a vast array of linkage possibilities. In addition,

although carbohydrates comprise a high percentage of marine organic carbon, as a class 3
they have not been studied as thoroughly as lipids and amino acids in marine environments.

The next section of this chapter briefly reviews organic matter degradation, bacterial

communities in anoxic sediments, and geochemical studies of early diagenesis. The 1
following section includes an overview of carbohydrate terminology and structure, and a

brief survey of previous work on the sources and fates of marine carbohydrates. The 3
chapter concludes with an outline of the general approach and specific goals of the thesis.

Chapter 2 includes a basic :-itroduction to one- and two-dimensional nuclear 3
magnetic resonance spectroscopy (NMR) of carbohydrates, and results of a survey of

carbohydrate standards. Nuclear magnetic resonance spectroscopy is used to characterize 3
phytoplankton extracts in Chapter 3, and the cellular carbohydrates of a marine

cyanobacterium are characterized in detail. Chapters 4 and 5 present results of a series of 3
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experiments on the effects of chemical structure on oligo- and polysaccharide degradation

by anaerobic marine bacteria. Chapter 6 summarizes the work, and includes some

suggestions for further work on characterization and bacterial degradation of marine

carbohydrates.

Degradation of Organic Matter

The sediment-water interface is a site of active remineralization of organic matter by benthic
I organisms; very little of the organic matter reaching the sediment-water interface is

ultimately buried in the sediments (Emerson and Hedges, 1988; Hedges, 1992). Some

aspects of organic matter transformations within the sediments are reasonably well

understood, as illustrated in Fig. 1.1. The flux of organic carbon to the sediment-water
interface (A), and burial of organic carbon within the sediments (B), can be constrained
using sediment traps and by analysis of the organic carbon content of sediments,
respectively. The flux of methane, ammonia, and total C02 out of the sediments (1) has3 been measured with benthic flux chambers, while pore water analyses have provided
information on the burial of total C02, dissolved monomers, and (to some extent)3 dissolved polymers (J, K, L, respectively). The transformation of dissolved monomers to
total C02, ammonia, and methane (F) has been measured both in sediment systems and in

pure cultures of bacteria. In contrast, the rates and processes of transformations between

the three major carbon reservoirs within the sediments (particulate macromolecules ->
dissolved macromolecules -> dissolved monomers, (C, D, and E)) are relatively

U unknown.

The transformation and degradation of macromolecules within the sediments may3 be influenced by a variety of factors. Preservation of organic carbon has been explicitly
linked with slow degradation rates. Degradation rate may be slowed by the specific3 chemical structure of organic matter. Studies of bacterial degradation of specific substrates

clearly demonstrate that chemical structure can affect relative degradation rates. Free amino
acids, for example, are swiftly degraded by anaerobic bacteria, while saturated

hydrocarbons are resistant to degradation (Schink, 1989).

Extrapolation of pure culture studies to the degradation of macromolecules in

sediments is difficult, however, since these studies are not intended to investigate
degradation of high molecular weight organic matter. The low molecular weight structures

used as substrates (often simple aromatic or halogenated compounds) are not applicable
models for natural macromolecular structures (Weimer and Zeikus, 1977; Bernier and3 Stutzenberger, 1987; Hespell et al., 1987; van den Tweel et al., 1987; Heitkamp et al.,

I
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(adapted from Burdige and Martens, 1988)

Fig. 1.1
Model of organic matter transformations in the sediments (adapted from Burdige and
Martens, 1988). Arrows depict transfer of organic carbon. Sedimentation of organic matter
(A), burial of organic matter (B), transfer between particulate macromolecular organic
matter and dissolved monomer boxes (C), transfer between dissolved polymers and
particulate macromolecular organic matter boxes (D), transfer between dissolved polymer
and dissolved monomer boxes (D), transfer of dissolved monomers to methane, C02, and
ammonia (F), upward flux from dissolved monomer box (0), upward flux from dissolved
polymer box (H), upward flux from methane, total C02, ammonia box (I), burial of
dissolved polymers in porewater (J), burial of dissolved monomers in porewater (K),
burial of methane/total CO2/ammonia in porewaters (L).
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I 1988). In addition, pure or co-cultures of bacteria do not adequately represent the metabolic

versatility of microbial communities in anoxic sediments. Pure culture studies of microbial

transformations also suffer from the inherent limitation that microbes which can be grown

in culture represent perhaps 1% of the total population (Fuhrman et al., 1992), and the3 metabolic capabilities of most of the bacterial population therefore are unknown.

Packaging, particle interaction, and humification reactions all may hinder the3 degradation of nominally labile organic matter to the extent that it is ultimately buried in the

sediments. Harvey et al. (1986) found that the degradation of bacterial lipids in sediments
of higher organic carbon content was consistently lower than degradation in sediments with

low organic carbon content, under both oxic and anoxic conditions. They suggested that
sorption of lipid to organic matter could reduce its availability to microorganisms.

Packaging may account for preservation of labile organic matter components, such as
protection of pectin by lignin (Emerson and Hedges, 1988). Specific mechanisms which3 may be responsible for preservation of otherwise labile organic matter may occur through

transformation into "geomacromolecules" (Tissot and Welte, 1984), humification reactions,3 or incorporation of inorganic sulfur, as discussed in a recent review (Henrichs, 1992).

3 Bacteria in Anoxic Sediments

The fact that anoxic sediments account for more than 90% of the annual burial of marine

organic carbon (Henrichs and Reeburgh, 1987), has led to the suggestion that lack of

oxygen slows the degradation of organic matter, and by extension enhances organic matter
preservation (Emerson, 1985, for example). Laboratory incubation studies have shown rate
differences between oxic and anoxic degradation of bacterial membrane lipids (Harvey et3 al., 1986). The degradation of specific organic matter classes such as lignin undoubtedly

proceeds more slowly in the absence of oxygen (Benner et al., 1984a; Benner et al.,

1984b), but a wide variety of studies has shown that degradation rates of organic matter

under anoxic conditions may be very similar to rates of oxic degradation (Henrichs and

Reeburgh, 1987; Lee, 1992, and references therein).

Studies with pure cultures of bacteria support the contention that anaerobic
degradation is not a priori slower than aerobic decomposition, but the pathways by which3 a given organic compound is degraded may be very different, particularly if mono- or di-

oxygenases are involved in the aerobic degradation pathway. For some pairs of substrates

(catechol and resorcinol, for example), degradation of one compound is faster than the
other under oxic conditions, but the second substrate is degraded more quickly than the3 first under anoxic conditions (Schink, 1989). For certain classes of organic compounds,

I .
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such as saturated hydrocarbons, however, little to no degradation by pure cultures of U
bacteria occurs under anoxic conditions (Widdel, 1988). 1
Bacterial Consortia I
From a microbiological perspective, the most profound difference between oxic and anoxic

environments is the nature of the bacterial community. Because of their basic biochemical

restrictions, anaerobic bacteria must often work in concert (usually referred to as consortia*

) to effect the complete remineralization of organic matter from complex substrates. One

group of bacteria may perform an initial transformation of a substrate, and the products

which are excreted are utilized by other groups of bacteria until the substrate carbon is

completely oxidized to C02 and CH4. Primary degraders are often dependent upon other

bacteria to remove H2, for example, to make some fermentation reactions energetically

possible (Schink, 1989). 3
Since few species of bacteria can be isolated in pure culture, and in any case pure

culture studies are not intended to model the interactions of a natural bacteria community, 3
laboratory application of a consortium approach provides valuable information which

cannot be obtained by any other means. For laboratory consortia studies, an inoculum of

bacteria from sediments or another source is enriched on a specific substrate. The bacteria

which can grow most quickly and efficiently on the substrate are preferentially enriched, as

are the secondary degraders which metabolize the products of the initial transformation

reactions. Subsequent transfers of the initial enrichment decrease the percentage of bacteria

which are not directly involved in the degradation pathway. Ultimately a physiologically 3
stable assemblage of organisms is formed, which (in effect) can be treated as a 'pure

culture' that catalyzes an efficient sequence of transformations to metabolize a specific

substrate. A consortium of this nature can be manipulated (by selectively blocking a

reaction or inhibiting growth of one type of organism, for example) to study the specific

mechanisms and energetics of a degradation pathway.

This type of interdependent degradation process has been thoroughly investigated

using consortia which convert benzoate to methane (Ferry and Wolfe, 1976). Among the 3
other substrates used in bacterial consortia studies are methoxybenzoate (Balba et al.,

1979), catechol (Balba and Evans, 1980b), ferulic acid (Healy et al., 1980), and aromatic 3
* Tie term "consostia" is used here to encompass both consortia (physiologically stable assemblages of

bacteria catalyzing a specific sequence of transfonnations) and microbial food chains, in which one type of I
bacterium utilizes (for example) excretion products of another bacterium as described in the text. I
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amino acids (Balba and Evans, 1980a). Many substrates used in consortia studies are

structurally simple, however, a search of the literature revealed only two studies on the

degradation of complex cauohydrate-containing material (lignocellulose) by enrichment

cultures of aquatic bacteria (Benner et al., 1984a; Benner et al., 1984b). In addition, many

consortia studies have been based on fresh-water enrichments, in which methanogens are

the 'terminal' members of a consortium and a significant amount of substrate carbon is

converted to methane, while few consortia studies have been based on sulfate reduction. A

study of the transformation of cholesterol by a marine bacterial consortia is one of the few3 examples of this type of work (Taylor et al., 1981).

The extensi je literature on pure cultures, co-cultures* , and consortia of rumen

bacteria (i.e., bacteria enriched from the digestive system of ruminants such as cows) are a

valuable source of information on the anaerobic degradation of carbohydrates (Hungate,

1966; Dehorty, 1967; Hungate, :969; Miura et al., 1983; Hespell et al., 1987; Cotta, 1992;

Malburg et al., 1992, for example). These studies elucidated the biophysical basis of

anaerobic consortia, and have helped determine the rates and mechanisms of carbohydrate

Sdegradation by anaerobic bacteria. Although studies of rumen bacteria are an invaluable

source of information, rumen consortia differ in important aspects from anaerobic consortia

3 in marine sediments. The rumen is a natural bioreactor, in which the feedstock is

chemically consistent (principally plant polysaccharides) and is fed in and washed out at a

relatively constant rate. The organic matter reaching rureen anaerobes is always

undegraded, and the system is chemically and thermally very stable. In addition, the

terminal members of rumen consortia are methanogenic bacteria, whereas high levels of3 sulfate in marine systems results in the predominance of sulfate reducers as terminal

members of marine bacterial consortia.I
Enzymes and Porins

N The degradation of a substrate by a bacterial consortium is determined by the net capacities

of its members. For degradation of macromolecules, important determinants include the

types and specificities of extracellular enzymes, and the nature and types of porins,

expressed by the bacteria. In gram-negative bacteria (which include most marine bacteria),3 a lipopolysaccharide outer membrane surrounds the cell wall. Porins, trimeric proteins

spanning the outer membrane, form the channels thorough which hydrophilic substrates are

transported into the bacterial cell. Some porins are constituitive, while others, such as the

Defined cultives with two species of bacteria.

I
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LamB maltoporin, are induced only in the presence of specific substrates (Benz, 1988). I
The uptake limit for "general diffusion" porins is approximately 600 daltons (equivalent to
a trisaccharide) (Weiss etal., 1991), although some inducible porins have higher uptake 3
limits. Substrates too large to pass through the porin channel must be hydrolyzed outside
the cell by cell-surface or exoenzymes prior to ingestion. 3

Bacterial cell-surface and exoenzymes are specific for particular structural features
(Priest, 1992). Polysaccharide-degrading exoenzymes generally can be divided into exo-

acting enzymes, which hydrolyze a polysaccharide from the nonreducing end, and endo-

acting enzymes, which hydrolyze a polysaccharide at random points within the polymer.

Enzymes also have specificities for particular linkages, molecular weights, and structural I
configurations. One such enzyme is isoamylase, which can hydrolyze a(1,6) branches in
glucose polysaccharides, but does not attack the a(1,6) linkages in pullulan, a linear 3
glucose polymer (Antranikian, 1992). Another example is an amylolytic enzyme from
Pyrococcusfuriosus (a hyperthermophilic marine archaebacterium) which can hydrolyze

amylopectin (ct(1,4)glucose linkages with a(1,6) branches) and amylose (ct(1,4) linkages)

to produce mixtures of oligosaccharides, although maltose (glucose-a(1,4)-glucose) and

pullulan (a(1,6)-linked maltotriose units) are not hydrolyzed by the enzyme (Koch et al.,
1990). The consequences of enzyme and transport system specificities are reflected in

studies of pure- and co-cultures of bacteria, which have demonstrated that bacteria
preferentially utilize specific carbohydrates. Two examples of these pure- and co-culture

studies have demonstrated preferential utilization of cellobiose over glucose (Bernier and 3
Stutzenberger, 1987), and preferential utilization of select size ranges of xylan oligomers

(Hespell et al., 1987). 3
Previous Studies of Early Diagenesis 3
Our limited ability to characterize macromolecular organic matter has severely hampered

studies of early diagenesis. Because macromolecular organic matter cannot be structurally
characterized in detail, approaches to indirectly derive information about the nature and

types of reactions in marine sediments have been developed. One such approach involves 3
determining overall carbon balance. The flux of carbon to sediments, fluxes of dissolved

species out of the sediments, and burial of organic carbon are measured, and degradation 3
rates and pathways are modeled. Using such an approach, Martens and coworkers
(Martens etal., 1992, and references therein) determined that over 70% of the particulate

organic carbon at their Cape Lookout Bight site was not remineralized during early
diagenesis. Carbon and nitrogen analyses suggested that the recalcitrant organic matter was

I
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i probably derived from heavily degraded algal debris and nonwoody vascular plant tissue,

but the specific characteristics which conferred resistance to degradation were unknown. In

terms of Fig. 1.1, this approach measures sedimentation (A), upward flux of dissolved

species (1), and burial of pore water (L), while the transitions between the macromolecular3 particulate -> dissolved polymer-> dissolved monomer boxes (C, D, and E) are

unknowns.3 A closer look at the energetics of these transitions, if not the actual organic matter

transformations, has been provided by detailed studies of the dynamics of sulfur

radiotracers (Jorgensen and Bak, 1991). By combining these measurements with

determinations of porewater chemistry and bacterial numbers, rates of sulfate reduction,

sulfur cycling budgets, and estimations of carbon cycling efficiency have been determined

i (Jorgensen et a!., 1990). Microelectrodes have also been used to measure high-resolution

time and space gradients of 02, H2S, and S042- in surface sediments. This detailed picture3 of sulfate oxidation and reduction can ae used to model carbon cycling dynamics

(Gundersen and Jorgensen, 1990; Kuhl and Jorgensen, 1992).
The "G-model" type approach, as exemplified by Westrich and Berner (1984), uses

the time course of radiolabeled CO2 evolution to characterize the substrate organic matter as

consisting of a range of classes of degradability. Westrich and Berner found that their

experiments with degradation of phytoplankton yielded t-- classes of organic matter which

were remineralized, and one class of non-reactive organic matter. The "quality" of organic

matter therefore has a measurable effect on degradation rates in sediment (see also

(Emerson and Hedges, 1988; Boudreau and Ruddick, 1991), but the factors defining

3 'quality' which determine this range in degradability of organic matter have yet to be

determined. The G-model approach makes distinctions in terms of degradability among and3 within the organic matter in the macromolecular particle -> dissolved polymer ->

dissolved monomer boxes in Fig. 1.1, but the chemical nature of the different classes was

not defined.

To look more closely at organic matter transformations and to determine the relative

uptake of specific classes of organic matter, radiolabeled simple substrates have been added3 to sediments, and the evolution of labeled endproducts monitored (Buscail, 1986). This

type of study corresponds to the dissolved monomer--> total C02 transition (F) of Fig.

3 1.1. Hydrolytic activities in sediments have also been monitored using fluorescent substrate

analogs (King, 1986; Meyer-Reil, 1987, for example). While small substrates have been

used extensively as proxies for larger polymers (Henrichs, 1992; Lee, 1992), their

suitability as models of polymer uptake and macromolecular degradation is uncertain. In an

effort to address this problem, whole labeled organisms such as bacteria (Novitsky, 1986)

I
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or phytoplankton (Henrichs and Doyle, 1986) have been added to sediment samples, and i
evolution of radiolabeled end products has been monitored. The distribution of label within

the organisms was unknown, however, and carbon recoveries were often difficult to I
quantify. In general, degradation in sediments, particularly of larger substrates, has not

been adequately examined because the systems studied have on the whole been overly

complex and poorly characterized, and substrates were either inadequately characterized or

were structurally too simple to be useful in determining the major factors influencing

macromolecular degradation.

Ma.ine Carbohydrates U
Terminology and General Structures of Carbohydrates

A brief review of carbohydrate terminology and structure, and of previous work on marine

carbohydrates, is necessary in order to demonstrate the types of structural information
which are missing from previous studies of marine carbohydrates, and to set the scene for

the discussion of NMR spectroscopy in Chapter 2, phytoplankton carbohydrates in Chapter 3
3, and the bacterial degradation of carbohydrates in Chapters 4 and 5.

Carbohydrates are 'hydrates of carbon' of the general form (C(H20))n. A simple I
sugar (or monosaccharide) typically consists of a five- or six-membered ring, whose

constituent carbons are numbered as shown in Fig. 1.2. The #1 carbon (the anomeric

carbon) is particularly important, because it is a key linkage site for practically every type of i
carbohydrate. The hydroxyl group and proton attached to the anomeric carbon can take two

different orientations: a P-carbohydrate is formed when the hydroxyl group is above the i
plane of the ring; an a-carbohydrate is formed when the #1 hydroxyl group is below the

plane of the ring (Fig. 1.2b,c).

The neutral monosaccharides differ from one another principally in the orientation

of the #2, #3, and/or #4 hydroxyl groups. Glucose and galactose, for example, differ

solely in the orientation of the #4 hydroxyl group. Fig. 1.3 shows three general groups of
monosaccharides cormmonly found in the marine environment: the hexamers (glucose,

galactose, and mannose), the deoxy sugars (fucose and rhamnose) which lack a hydroxyl U
group at the #6 carbon, and the pentamers (xylose, ribose, and arabinose), which do not
have a #6 carbon. Two other major classes of carbohydrates which will not be discussed at

length are uronic acids, which have a carboxyl group at the #6 carbon, and amino sugars,

in which a -NH2 group substitutes for a hydroxyl group At either the #2, #3, #4, or #6 i

positions. Carbohydrates may also have sulfate groups at one of these positions.

The #1 hydroxyl group can link one monosaccharide to another or to non-sugar

I
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components. Two monosaccharides linked together in this fashion are known as a

disaccharide; any carbohydrate in the range of two to ten monosaccharide units is generally

known as an oligosaccharide, and carbohydrates of more than ten units are known of

polysaccharides (Fig 1.4). There are a wide range of carbohydrate linkage possibilities; the

anomeric carbon of one monosaccharide can be linked to the #2, #3, #4, or #6 carbon of

another monosaccharide.

I

U
(a) (b) (c)

Fig. 1.2
Monosaccharide scrucre: carbon anid protons are labeled 1-6 as shown (a). I-anoner (b).
a-anoner (c).

I
bexamen

3 0'2011 HO

glucose galactose rnannose

II
fucose rhamnnose3 pentamners

HOO

ribose arabirose xylose

Fig. 1.3
The eight neutal monosaccharides most commonly found in marine systems.
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Fig. 1.4
Examples of a disaccharide, an oligosaccharide, and a polysaccharide. (Chemical and
anomeric linkages are marked with arrows).
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U Two different monosaccharides can be linked together in any of 16 possible combinations;

three different monosaccharides have at least 384 linkage possibilities. Because of the

spatial restrictions imposed by these linkages, oligo- and polysaccharides also can have

tertiary structures, such as ribbons, loops, or sheets, which determine their hydrodynamnic3 volume in solution, and affect properties such as solubility and relative lability to acid or

enzymatic degradation. Cellooligosaccharides, for example, are much less soluble than3 maltooligosaccharides, although they differ only in anomeric linkage: cellobiose is glucose-

p(1A4)-glucose, whereas maltobiose is glucose-a(1,4)-glucose. Hydrolytic enzymes such

as a-amylase are, in a similar fashion, specific only for a(1,4) linkages, and do not cleave

p(1,4) anomeric linkages.

i Analysis of Marine Carbohydrates

3 As briefly outlined above, there is a wide variety of structural possibilities among

carbohydrates; while the basic building blocks are quite similar to one another, the
structures which can be built from these pieces are extremely varied. Analysis of these

structural distinctions can be difficult, however, since isolation of carbohydrates from

solution or from an organic matrix is not a trivial problem, and determination of

carbohydrate structure typically involves a further array of analytical difficulties. Recovery

of carbohydrates from natural samples is strongly influenced by the organic and inorganic

composition of the matrix in which the carbohydrates are found, as indicated by the
significantly higher variability in reproducibility of hydrolysis/derivitization procedures3 among replicate analyses of sediment and plankton as compared to standards (Walters and

Hedges, 1988).3 Since choice of extraction and analytical techniques can affect recovery of

carbohydrates (Mopper, 1977; Dawson and Mopper, 1978), most reports represent a

minimum of the carbohydrate components, in both qualitative and quantitative terms. Even

measurement of total carbohydrates is uncertain, since the response of the most commonly
used colorimetric 'total' carbohydrate determination procedures, such as the phenol-sulfuric

acid method (Chaplin and Kennedy, 1986), depends strongly on monomer composition of
the sample (Burney and Sieburth, 1977; Johnson and Sieburth, 1977). Principally because

of these analytical problems, most studies of marine carbohydrates have been limited to

determinations of eight or nine of the most common neutral monosaccharides (Handa and3 Yanagi, 1969; Cowie and Hedges, 1984; Ittekkot et al., 1984; Tanoue and Handa, 1987;

Hamilton and Hedges, 1988; Cowie, 1990; Cowie et al., 1992; Handa et al., 1992).

i Samples are typically analyzed by acid hydrolysis, derivatization, and gas-

I



26 l

chromatography or gas-chromatography-mass spectrometry (GC-MS), yielding i
information about monomer composition and concentration. The focus on monomer

composition means that a tremendous amount of potentially important structural i
information is lost. Studies of the bacterial degradation of carbohydrates, as well as the

literature on carbohydrate biochemistry (Bishop and Jennings, 1982; MiNer et al., 1992; 3
Pimenta et al., 1992; Weis et al., 1992; Borman, 1993), demonstrate that structural

differences among carbohydrates determined in part by size, branching, linkage point, and i
orientation are key factors which affect reactivity and functionality in macromolecules such

as polysaccharides, glycoproteins, and lipopolysaccharides. 3
The following section includes a brief summary and comparison of the

monosaccharide concentration and composition of marine organisms, and dissolved,
particulate, and sedimentary carbohydrates.

Carbohydrates of Marine Organisms i

Phytoplankton serve as a principle source for carbohydrates found in seawater, particles, 3
and sediments; the photosynthetic conversion of C02 to biomass is the basis of
carbohydrate production. The carbohydrate composition of marine phytoplankton and a

marine cyanobacterium is discussed at greater length in Chapter 3, and Appendix B

contains an extensive compilation of literature on phytoplankton carbohydrates.

The carbohydrate content of marine organisms varies greatly; in brown and red
algae, carbohydrates may comprise up to 74% of total organic matter (Romankevich,

1984), while planktonic algae have a carbohydrate content generally ranging from 20 to 3
40% (Parsons et al., 1961), and zooplankton carbohydrate content (on a carbon-normalized

basis) is 2-4 times lower than that of phytoplankton (Hamilton and Hedges, 1988). 3
Phytoplankton carbohydrate composition has been surveyed in both field samples and
laboratory monocultures. In general, glucose has been found to be the most common

monosaccharide, (Hecky et al., 1973; Cowie and Hedges, 1984; Tanoue and Handa, 1987;

Hamilton and Hedges, 1988; Cowie, 1990; Cowie et al., 1992), probably due to the fact

that phytoplankton storage carbohydrates are primarily composed of glucose (Lee, 1980).

Dissolved Carbohydrates i

Dissolved carbohydrates can be derived from a variety of sources, including phytoplankton 3
excretion, cell lysis, grazing by zooplankton, enzymatic action on particles and detritus,

and bacterial degradation of organic matter. Dissolved carbohydrates have been reported in i

i
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I the range of tens to hundreds of micrograms per liter (Vaccaro and Jannasch, 1966;

Johnson and Sieburth, 1977; Mopper, 1977; Liebezeit et al., 1980; Ittekkot et al., 1981;

1982; Sakugawa and Handa, 1985), again with glucose as the most common

monosaccharide.3 A number of studies have highlighted the fact that concentrations of dissolved

carbohydrates can vary significantly on short timescales (Burney and Sieburth, 1977;3 Harvey et al., 1986), so reports indicating large variability in carbohydrate composition and

concentration, especially in surface waters and in highly productive regions, may

reasonably represent a dynamic situation. This hypothesis is supported by data discussed in

Chapters 4 and 5, in which very rapid degradation of some oligo- and polysaccharides in

bacterial cultures was measured.

Dissolved carbohydrates occur as monosaccharides, oligosaccharides, and
polysaccharides, although few reports of carboi drate concentrations distinguish between3 these pools. Ittekkot (1981) found that "comb4. -1 carbohydrates" (total carbohydrates -
monosaccharides) comprised the majority of the total dissolved carbohydrates detected3 during a phytoplankton bloom. Monosaccharide concentrations were relatively uniform
throughout the bloom. Relatively constant concentrations of monosaccharides as compared

to dissolved polysaccharides were also found by Burney (1977), who also suggested that

the monosacchrides may be at or near uptake thresholds for bacteria.

Glucose dominated the monosaccharides and was the predominant constituent of
oligosaccharides and dissolved polysaccharides isolated from surface and deep waters of
the North Pacific (10 and 2500 m) and Bering Sea (10m and 2000 m) (Sakugawa et al.,3 1990). Concentrations of all three classes of carbohydrates were in the range of tens of

micrograms per liter of seawater, and in constrast to the studies mentioned previously,3 monosaccharides were found to have the greatest range in values. Oligosaccharides

identified by derivitization and chemical ionization- and electron-impact mass spectrometry
included sucrose, trehalose, melibiose, and several unidentified disaccharides. Some of the

polysaccharides were found to contain uronic acids, and a heteropolysaccharide was also

found in shallow water but not in deep water samples (Sakugawa and Handa, 1985). The

connection between dissolved and particulate carbohydrate pools was highlighted by the
identification of a range of similar low molecular weight oligosaccharides in particles and3 cultures of phytoplankton. Low molecular weight dissolved carbohydrates found at depth

may have originated from phytoplankton components of rapidly sinking particles.

I Similarities were also found between dissolved and particulate polysaccharides
isolated from Mikawa Bay, Japan, during a dinoflagellate bloom. A branched3 heteropolysaccharide of molecular weight > 4000 daltons which reportedly contained
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sulfate half-esters, as well as a glucan with P(1,3) and P(1,6) linkages, were isolated from I
concentrates of seawater. Boiling water extracts of particulate matter contained a similar

heteropolysaccharide and a p-glucan; extracellular release and/or cell lysis may have 3
produced the dissolved polysaccharides (Sakugawa and Handa, 1985). I
Particulate Carbohydrates

Particulate carbohydrates are generally attributed to detrital marine organic matter,

colonizing bacteria, and (depending on sampling location) terrigenous plant material.

Glucose is again the most abundant monosaccharide identified in most studies of marine

particles, including those collected in sediment traps from Dabob Bay (Cowie and Hedges,

1984); Saanich Inlet (Hamilton and Hedges, 1988), the Sargasso Sea (Ittekkot et aL.,

1984), and polar regions (Ittekkot and Degens, 1982; Liebezeit, 1984), the Bering Sea and

North Pacific (Tanoue and Handa, 1987). These same studies found that carbohydrates 3
typically accounted for 2-15% of total particulate organic matter. Sample processing can

affect these results, however, Ittekkot (1984) found that 18% of the carbohydrates 5
originally present as particulate matter were transferred to the dissolved pool during

processing.
Differences in composition and relative lability have been found among different

fractions of carbohydrate extracts. In sinking particles collected by sediment trap near

Antarctica, glucose was usually the most common monosaccharide in particles with a high 3
percentage of water-extractable carbohydrates, while samples with relatively higher

fractions of base-extractable and residual carbohydrates were sometimes dominated by 3
galactose, mannose, or arabinose (Handa et al., 1992). For particles collected by sediment

trap in the northwest Pacific, water-extractable carbohydrates decreased faster with depth

than did other organic components, while insoluble carbohydrates were less reactive than

other fractions of organic matter (Handa and Yanagi, 1969).

Few studies of particles determined any information beyond monomer compositon.
Handa and Yanagi (1969), however, observed that 1/3 of total particulate carbohydrate was
water-soluble and composed primarily of glucose, probably with 1,3 linkages, while the 3
remaining insoluble 2/3 consisted of a mixture of glucose, galactose, mannose, xylose, and
glucuronic acid with 1,2 or 1,4 linkages. The composition and relative size (expressed as 3
D.P., degree of polymerization=number of monosaccharide residues in a polysaccharide)

of the water-insoluble carbohydrates isolated from particles was relatively constant with
depth; while the concentration of hot-water soluble glucan decreased significantly with

depth.
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I Interpretations of the carbohydrate composition of particles is complicated by
variability among particles. The monosaccharide composition of sinking particles collected3 in sediment traps, and suspended particles collected with filters, for example, was found to

differ significantly (Tanoue and Handa, 1987). Seasonal variations in particle sources, and
I sediment resuspension for deep traps, may also account for differences in particle

composition (Cowie and Hedges, 1984). In addition, bacterial production of carbohydrates
in unpoisoned traps probably occurs simultaneously with degradation of more labile

components. A relatively constant total carbohydrate concentration may mask changes in
composition and structure, during which more labile phytoplankton carbohydrates (storage
polysaccharides, for example) might be converted to bacterial biomass, which would

include relatively resistant cell-wall carbohydrates.I
Carbohydrates in Sediments

Sinking particles are a major source of carbohydrates to marine sediments. Benthic
organisms and bacteria degrade particulate organic matter, remineralizing it to C02 and

synthesizing cellular components including carbohydrates. The intertwined production and

degradation processes, coupled with additional complications such as resuspension,

bioturbation, and seasonal variation in particle source and abundance, result in a complex
pattern of carbohydrates in marine sediments.

SAs previously discussed, extraction and derivitization procedures have a significant

influence on recovery of carbohydrates, so the reported carbohydrate contribution to3 sediment organic carbon should be regarded as a minimum. Extractable and characterizable

carbohydrates were ca. 2-6% of total sedimentary organic carbon in sediments from Dabob
Bay (Washingon) (Cowie and Hedges, 1984), the equatorial eastern Atlantic (Moers et al.,

1990), and the Namibian Shelf (Klok et al., 1984b). Carbohydrate contents of reducing
sediments of Saanich Inlet and the Black Sea were considerably higher, in the range of 15-
22% (Mopper, 1977; Hamilton and Hedges, 1988). Differences were attributed to a range

of factors, including organic matter sources, water column depth and transformation

I processes, and activity of benthic macrofauna. Reports of carbohydrate concentrations in
sediments may also represent a minimum, since characterization of sedimentary organic3 matter is difficult. Klok et al. (1984b), for example, found that only 22% of sedimentary
organic carbon could be classified as amino acids, carbohydrates, volatile fatty acids, or
lipids. The 4% contribution of carbohydrates therefore represents almost 20% of identified

organic carbon. Pyrolysis-mass spectrometry of the unidentified organic carbon released
during the extraction procedure produced spectra which were attributed to carbohydrate

I
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alteration products; Klok and co-workers concluded that approximately 22% of

sedimentary organic carbon actually originated from carbohydrates.
Glucose is the most commonly reported monosaccharide from most sites (Mopper,

1977; Cowie and Hedges, 1984; Tanoue and Handa, 1987), although comparably high

concentrations of galactose and mannose have been found at some sites (Yamaoka, 1983;

Klok etal., 1984b; Moers etal., 1990). A few studies have looked beyond the major
neutral monosaccharides. A large suite of minor sugars, attributed to bacteria and I
comprising 5-15% of total sugars, have also been identified (Klok et al., 1984a; Klok et

a!., 1984b; Moers et al., 1990). 3
Depth trends of carbohydrate composition and concentration in sediments are often

difficult to interpret. While total carbohydrates decrease with depth in samples from some

sites (Hamilton and Hedges, 1988), other sites show little or no concentation changes with
depth (Cowie and Hedges, 1984; Tanoue and Handa, 1987; Moers et al., 1990). Even for
cases where total carbohydrates decrease with depth, relative composition is usually [

invariant, and carbohydrate content never decreases to zero. Residual carbohydrates which

are apparently resistant to further degradation have even been found in 2 million year old
sediments (Whelan and Emeis, 1992).

Due to the problems associated with the extraction of carbohydrates from a 3
sediment matrix, determining structural information about sediment carbohydrates is very
difficult, and has not been attempted frequently. KIok et al. (1984b) used gel permeation

chromatography to divide extractable, soluble carbohydrates into three size classes (<400 I
daltons, 400-2000 daltons, >2000 daltons). Approximately 10% of the total initial

carbohydrates were water extractable, and a significant fraction were in the >2000 dalton I
size fraction. Gel permeation chromatography was also used to separate carbohydrates in

humic and fulvic acids extracted from sediments in Hiroshima Bay (Yamaoka, 1983). 3
Carbohydrate concentrations in fulvic acids were much greater than in humic acids, and
most of the carbohydrates were found in the >1500 dalton fraction. 3
Summary: Implications for the Degradation of Marine Carbohydrates 3
The analysis of carbohydrates in marine samples is subject to many complications; the net
result is that in most cases, little is known beyond total neutral carbohydrate concentration I
and monomer composition of a given sample. Carbohydrates in seawater, particles, and
sediments are composed of a suite of monosaccharides, of which glucose is usually the 3
most common. Concentrations of individual monosaccharide, and often of total
carbohydrates, vary irregularly with depth in the water column and sediments. Since I
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1 carbohydrate structure and reactivity are controlled in part by aspects of structure which

have not been determined (size, linkage position, anomeric linkage), however, a large

portion of the marine carbohydrate picture remains obscured.
A comparison of the literature on marine carbohydrates and on bacterial degradation

of carbohydrates highlights a question about carbohydrates in marine systems. Studies of
marine organisms have shown that phytoplankton produce a range of carbohydrates, with

I varying monosaccharide composition (Parsons et al., 1961; Hecky et al., 1973; Lee,
1980). Microbiological studies of pure cultures of bacteria have demonstrated that bacterial
enzyme and transport systems have precise specificities for selected carbohydrates (Bernier

and Stutzenberger, 1987; Hespell et al., 1987). The fact that bacteria have a demonstrated

preference for certain carbohydrates implies that specific carbohydrates will be

preferentially utilized in marine environments. Studies of marine organisms, particles, and
sediments, however, particularly the comprehensive studies of Cowie (1984; 1990; 1992),3 Tanoue (1987), and Hamilton (1988), have shown that there are no systematic differences

in monosaccharide compositions between marine phytoplankton, particles, and sediments.3 Although phytoplankton are a major source of particle and sedimentary
carbohydrates, and diagenesis in the water column and sediments would be expected to
affect relative carbohydrate composition, profiles of particles in the water column and of

sediment cores show no regular trends in carbohydrate composition. Carbohydrate depth

profiles in sediments (Cowie and Hedges, 1984; Hamilton and Hedges, 1988) in fact

showed that a significant fraction of monosaccharides apparently belong to the fraction of
organic matter which is relatively resistant to degradation.3 A lack of systematic differences in monosaccharide composition, however, does
not mean that the carbohydrates in plankton, particles, and sediments are truly uniform in3 structure. Lack of systematic variation in monosaccharide composition may obscure large
variations in carbohydrate structure or matrix. Klok et al. (1984b), for example, found that
the monomer composition of total, extractable, and residual carbohydrates from sediments

was very similar. The difference in techniques needed to extract these carbohydrates,

however, suggests that the manner in which the carbohydrates are linked, or the structures

in which they are found, are very different. A significant fraction of carbohydrates were
identified only through the use of pyrolysis-mass spectrometry, again suggesting that some3 monomers were tightly bound in a matrix. The reason for the lack of systematic variations
in monosaccharide composition of marine plankton, particles, and sediments, and the5 relative similarity of monosaccharides down a sediment core, may therefore lie in the
structure of the parent oligo- and polysaccharides. The carbohydrates which are preserved3 in marine sediments may be linked differently than carbohydrates (made of the same
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monosaccharides) which are degraded within the upper layer of the sediments.

Thesis goal: A New Approach to Early Diagenesis

The link' between carbohydrate structure and reactivity is the central theme of this
thesis: what are the rate determining factors in the bacterial degradation of macromolecular
carbohydrates? In terms of Fig. 1.1, the transitions between the dissolved polymer -> 3
dissolved monomer boxes, and the dissolved monomer -> total C02 boxes, are the major
focus. Specifically, the goal is to determine the effects of structural features of
carbohydrates such as monomer composition, size, linkage position, and anomeric linkage

on the rate and manner by which they are degraded by mixed cultures of anaerobic marine
bacteria.

As outlined above, previous geochemical studies of organic matter degradation and
microbiological studies of degradation of specific substrates have provided important

information about early diagenesis in marine sediments. Both types of studies suffer from
serious limitations, however, and to overcome these problems it is necessary to apply an
integrated chemical and microbiological approach to study the dynamics of carbon cycling
in marine systems. We have reached the point where neither approach alone is adequate to
address complex issues such as the factors which determine whether an organic structure

will be degraded, the nature and extent of organic matter preservation in a given
environment, or the response of microorganisms to new substrates.

The work presented in this thesis represents an initial attempt to apply a combined
chemical and microbiological approach. The major features are a well-characterized system

in which substrate, intermediates, and products can be identified and quantified, and a

natural mixed microbial population which approximates the plasticity of bacterial consortia

in marine sediments. By enriching bacteria from sulfate-reducing sediments on strictly-
controlled carbon sources, reproducible model systems were obtained with which to study

the degradation of chemically well-defined substrates. Headspace gases (CO2, H2, M,

H2S) were measured by gas chromatography, and the carbohydrate substrate and

carbohydrate intermediates were separated and quantified via gel permeation
chromatography and high-pressure liquid chromatography. Specific structural alterations in

the substrate were determined using NMR spectroscopy. The flow of carbon from

substrates through to end-products was thereby followed quantitatively. By systematically
varying structural features of substrates in replicate cultures, the effects of specific

structural features on degradation rates and patterns were determined.
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I In order to successfully use this approach, a number of concrete experimental

requirements first had to be met:

(1) establish a reproducible, quantitative culture system to study the degradation of

well-characteried substrates

(2) develop analytical techniques to quantify carbohydrates and their degradation

products

3 (3) apply NMR spectroscopy to the detailed structural characterization of

carbohydrates and their degradation products in order to determine specific

structural features

3 Chapter Two provides the necessary background and development with NMR

spectroscopy, and in Chapter Three NMR spectroscopy is applied to the characterization of3 carbohydrates from several marine plankton as a first effort at determining macromolecular

carbohydrate structure of marine organisms. Chapter Four presents the results of an

exhaustive series of culture experiments which demonstrated the reproducible and

fundamentally robust nature of the culture system. The culture system, analytical
techniques, and NMR spectroscopy are combined in Chapter Five to study the degradation
of polysaccharides by anaerobic marine bacteria. The work is summarized in Chapter Six;

suggestions for future work by those with high energy and low sleep requirements are also
3 included.

3
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I Chapter Two: Nuclear Magnetic Resonance Spectroscopy
of Carbohydrates

IntroductionI
Nuclear magnetic resonance spectroscopy (NMR) is a sensitive, non-destructive technique3 for determination of chemical structure and conformation. Progress in NMR spectroscopy
within the last decade has led to enormous advances in the complexity of chemical
structures which can be resolved. While development of high field magnets, rapid
expansion of multiphase, multi-dimensional techniques, and improvements in computer
hardware and software have reduced the difficulty of analyzing complex structures and
spectra, properly setting up and interpreting an NMR experiment still requires some
background and experience. This chapter will provide a general overview of one- and two-3 dimensional NMR spectroscopy, a very brief discussion of the application of NMR
techniques to carbohydrate analysis, and finally more detailed discussion of specific3 techniques as used in a survey of carbohydrate standards, and as applied in Chapter 3 to a
survey of phytoplankton carbohydrates.

Nuclear magnetic resonance spectroscopy has been applied extensively in chemical
and biochemical research, including detailed structural characterization of industrially and
biomedically important bacterial polysaccharides (Backman-Marklund et al., 1990; Cassels

eta!., 1990; Doco et al., 1990; Fontaine et al., 1991, for example). Far less work has been
done on carbohydrates of geochemical interest. A search of the literature revealed only a3 handful of reports which include NMR characterization of marine carbohydrates, including
two studies which utilized 13C- and 1H-NMR to characterize hydrolysis products of red
algal polysaccharides (Jaseja et al., 1989; Geresh et al., 1990). The linkage points of the

reserve glucan of the prymnesiophyte Emiliania huxleyi have been investigated using 13C-

NMR (Varum et al., 1986), and the structure of sulfated galactans isolated from the

macrophyte Furcellaria lumbricalis was studied using both 13C- and IH-NMR (Knutsen et
a!., 1990). Carbon-13 NMR has also been used for gross characterization of humic
materials isolated from groundwater (Buddrus et al., 1989; Lambert et al., 1992) and
soils(Wershaw et al., 1990). Solid-state 13C-NMR has been used to characterize green

I algae (Berkaloff et al., 1983; Zelibor et al., 1988; Saito et a!., 1991) and decaying

mangrove leaves (Benner et al., 1990).
Solid-state 13C-NMR was also used recently in an investigation of dissolved

organic matter from the North Pacific. A comparison of samples collected at the surface,3 oxygen minimum zone (765 m), and a depth of 4000 m showed changes in the gross
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composition of dissolved organic matter >1000 daltons. A sharp decrease in the resonances

attributed to carbohydrate carbon was particularly prominent (Benner et a., 1992). While

solid-state 13C-NMR provides valuable information about the general types of carbon

present in a sample, and is the only type of NMR which can be done on insoluble samples,

the line-widths in solid-state 13C-NMR tend to be broad, and resolution is generally poor I
compared to solution NMR. Solid-state NMR also lacks the vast range of multidimensional
and heteronuclear experiments which can be used to unravel the complexities of a structure I
in solution. In addition, as discussed below, the conformation of closely related structures
in solution can differ greatly; the solid-state 13C-NMR of such structures would be virtually 3
indistinguishable, while the solution 13C- and 1H-NMR spectra would clearly highlight

such differences. As mentioned in Chapter 1, these differences in solution conformation
help determine the biological, physical, and chemical properties of a structure, including its
relative susceptibility to biological uptake, photochemical degradation, and enzymatic
attack, for example. I

Experimental conditions 3
The spectra were all acquired on a Brucker AC3000 300 MHz spectrometer. All of the

mono-, di-, and oligosaccharides standards were used as purchased from Aldrich Chemical I
Co. and Sigma Chemicals; saturated D20 solutions of the polysaccharides (U.S.

Biochemicals) were filtered (0.2 IL filter) prior to use to remove insoluble material which I
would have affected spectral quality. Sample quantities varied according to the type of

experiment and the solubility of the material. Typically, 5-6 mg of a mono-, di-, or
trisaccharide were used for high quality 1- and 2-dimensional (I--D and 2-D) proton

spectra much smaller sample quantities (on the order of los- lOOs of gtg) would have been 3
sufficient, although acquisition of the spectra would have required more instrument time.
Due to the low natural abundance of 13C and its inherently lower NMR sensitivity, much

more material is required for carbon experiments. One hundred mg were used to collect the

1-D 13 C and heteronuclear 2-D spectra of isomaltose; again, less material would have

required more aquisition time. Solublility is a limiting factor for oligo- and polysaccharides,
as explained below, but approximately 50 mg of pullulan, a linear glucose polysaccharide
of 200,000 daltons, were more than sufficient for high-quality 1 -D 13C and heteronuclear I
2-D spectra. All samples were dissolved in 100.0 atom% D D20 (Aldrich). All chemical

shifts are reported using the standard "8" notation, in which the reported shift (units of I
p.p.m.) is relative to the chemical shift of a standard. Unless otherwise noted, the proton

spectra were referenced to the solvent HOD peak (8=4.8 or 4.76, as noted). Carbon spectra I

I
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were referenced to internal acetonitrile (b=117.2). Most of the oligo- and polysaccharides,
as well as all of the phytoplankton spectra discussed in Chapter 3, were collected with the

sample probe at a temperature of 298 K.

I One- and two-dimensional NMR

3 General explanations of NMR spectroscopy can be found in organic chemisnty textbooks;
hcwever, the field has advanced rapidly, and most books and papers dealing with NMR3 which are more than 5-7 years old are incomplete, and do not cover many techniques now
commonly used. Modern NMR Techniques for Chemistry Research (Derome, 1987) is an

excellent general introduction to 1- and 2-dimensional methods; Basic One- and Two-

Dimensional NMR Spectroscopy (Friebolin, 1991) provides explanations about a variety
of experiments as well as information on the interpretation of spectra in terms of chemical

structures, and Two-Dimensional NMR Methods for Establishing Molecular Connectivity
(Martin and Zektzer, 1988) has more specialized discussion of specific two dimensional3techniques and composite pulse sequences.

In brief, in a liquid sample the net magnetic moments of spin- 1/2 nuclei such as IH
and 13C will align either with or against an external magnetic field B. At equilibrium,

slightly more nuclei will take the lower energy a-orientation (with the external magnetic
field) as compared to the p orientation (against the magnetic field), in accordance with a
Boltzmann distribution (Fig. 2.1). In an NMR experiment, the net magnetization of the
nuclei in a sample is redistributed through the application of a radiofrequency pulse, i.e.,
the nuclei in the lower energy a-orientation acquire sufficient energy to bring them to the p
orientation, and the time-course of their return to equilibrium is observed. The rate and3 means by which this process occurs is directly dependent upon the local chemical
environment of each nucleus in a sample. In terms of vector representations (Fig. 2.2),3 application of a radiofrequency pulse to the sample tips the net magnetization vector from

its equilibrium position along the z axis (i.e., in the direction of the external magnetic field
D). The NMR receiver detects the signal generated in the x-y plane. Through transverse

and longitudinal relaxation processes, the net magnetization gradually returns to its
equilibrium orientation along the z-axis. The decrease in the vector components in the x-y

plane is detected by the NMR receiver, and is referred to as the free induction decay (FID).
The FID, a function of time, is Fourier transformed to yield peaks as a function of3 frequency-the familiar NMR spectrum.

Isetrm
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Fig. 2.1 U
In an external magnetic field (B), a slight majority of spin- 1/2 nuclei will take the lower-
energy "a" orientation in the direction of the magnetic field. A radiofrequency pulse
supplies the energy necessary to convert these spins to the higher energy "a' orientation. 3
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Fig. 2.2
Effect of a radioftequency pulse on the net magnetization vector 3
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3 An NMR experiment can also be represented by the following sequence:

i preparation period - pulse - t2 (FID)

Since the data collected during an NMR experiment is the sum of a large number of
I repeated observations, a 'preparation period' is required to allow the sample to come to

equilibrium after application of the previous pulse, so that the starting conditions for each3 observation are equivalent The sample is pulsed, and during time t2 the receiver is
switched on to observe the nuclei (observe the free induction decay).

Two-dimensional NMR techniques, which have become widely used in the past

decade, provide a means of determining a significant amount of information about even
complex structures. Fundamentally all 2D techniques can be described in general terms
with the follov. ,ng modifications to the sequence explained above:

3 preparation period - pulse - t1 - pulse - t2 (FID)

3 In terms of vector diagrams (Fig. 2.3), the first pulse tips the net magnetization vector from
its equilibrium position along the z axis; a 900 pulse along the +y axis, for example, tips the
vector to the +x axis. The time interval tj is the evolution time, an incremented delay period
during which the magnetiztion vector precesses in the x-y plane.The net magnetization
vector can be trigonometrically decomposed to its components along the x and y axes. After

interval t1 , a second 900 pulse (+y in this case) is applied. The second pulse in effect tips
the x component to the -z axis, where it is not observed by the NMR receiver. The y

I component is unaffected by the second pulse, and therefore generates a signal in the
receiver. By incrementing t1 by a fixed amount throughout the experiment, a succession of3 signals is obtained as a function of time. The 2D experiment is therefore built up as a
function of the time increment tj , which is changed by a fixed amount for each 'step' in the
experiment, and by t2 , during which the FID is observed. Fourier transform yields the 2D
matrix as a function of frequencies Fl and F2, the transformations of t1 and t2. Variations

in pulse angles, intervals, and phases differentiate two-dimensional experiments from one
another. Three- and four-dimensional NMR experiments are performed by adding further
incremented time intervals (analogous to tj ) and pulse sequences; such experiments have3 already been applied to the characterization of large proteins in solution (Clore and
Gronenborn, 1991).I

I
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Fig. 2.3 1
Vector-model of a two-dimensional NMR experiment. Application of the first 900 pulse
along the +y axis brings the net magnetization vector to the +x axis. After an incremented
time ti, application of a second 90 pulse tips the +x component of the vector to the -z axis;
only the precession of the component remaining in the x-y plane is detected by the receiver.
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App~lcation of NMR to Studies of Carbohydrates

NMR spectroscopy is particularly useful for carbohydrate analysis, since many structural3 features, such as anomeric linkage and linkage position, are difficult or impossible to
resolve with standard carbohydrate analytical techniques. In addition, an NMR spectrum3 reflects the solution conformation of a structure, which can provide important information

about biochemical fit and function of carbohydrate-protein complexes (Weis et al., 1992),
for example.

The chemical shifts of nuclei such as 1H and 13C are determined by the immediate

magnetic environment of the nucleus. Seemingly equivalent protons, for example the -CH2
protons of the #6 carbon in glucose (Fig. 2.4), have different chemical shifts. In addition,
the presence of neighboring protons results in splitting of proton resonances into multiplet3 peaks--one neighbor splits a resonanace into a doublet, two equivalent neighbors yield a
triplet, three a quartet. Non-equivalent neighbors produce even more complex splitting3 patterns. For glucose, for example, the two #6 protons have different chemical shifts and
different splitting patterns ("J couplings"), although each is coupled only to the other and to
the #5 proton.

For one-dimensional proton spectra of carbohydrates, a few characteristic features
are readily apparent. The well-resolved doublets in the region 8=4.4-5.6 are due to
anomeric protons, which resonate far downfield because of their proximity to two
oxygens-the ring oxygen, and the anomeric hydroxyl group. As a general rule, a3 anomeric protons resonate downfield of 0 protons (due to their orientation relative to the
ring oxygen), and 0 protons typically have coupling constants J= - 8 Hz as compared to a3 J-values of 2-3 Hz. Since J-coupling of the anomeric proton is due to coupling with the #2
proton, the only exception is for carbohydrates such as galactose, which have the #2 proton
in the axial position.

One of the difficulties of carbohydrate analysis is that two to four different forms of
a free reducing sugar are typically present in solution at thermal equilibrium (Table 2.1). In

an NMR spectrum, the region 8=3.1-4.0 is complex even when just a single form of
monosaccharide is present, as in Fig. 2.4, which shows a solution of P-glucose (the

I spectrum was recorded before the conversion to an equilibrium mixture of a- and f-forms
took place.) The #6 protons resonate in the region 8=3.67-3.75 and 8=3.86-3.93, while the3 #2 proton is found upfield at 8=3.2-3.8. The #3, #4, and #5 proton resonances overlap in
the region 8--3.35-3.52. Once equilibrium between a and p forms has been reached (Fig.3 2.5), the spectrum becomes even more complex.

I
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Composition of reducing sugars in D 2O at 31 o_*

(% distribution among forms)
pyranose furanose

I p

D-glucose 38 62

3 D-galactose 30 64 2.5 3.5

D-mannose 65.5 34.5 0.6 0.3

D-arabinose 60 35.5 2.5 2

3 D-ribose 21.5 58.5 6.5 13.5

D-xylose 36.5 63 <1

3 D-rhamnose 60 40 - -

D-fucose 28 67 5

Table 2.1
The equilibrium distribution of reducing sugars in solution.,

(** table adapted from Modern Carbohydrate Chemistry, R.W. Binkley. New York,
Dekker, 1988, 343pp.)

I
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I For larger oligo- and polysaccharides, the I -D spectrum cannot be resolved; 2-D techniques
are required in order to assign resonances to specific protons.

Survey of earbohydrate standards

A library of carbohydrate standard spectra was collected in order to directly evaluate the3 spectral differences among the neutral monosaccharides most commonly found in marine
samples, and to determine the differences between oligo-and polysaccharides of similar
composition. While extensive tables of mono- (Bock and Pederson, 1983), oligo- (Bock et
al., 1984), and polysaccharide (Gorin, 1981) 13C chemical shifts have been published, less
data is available for proton NMR shifts. Additionally, as discussed below for the case of
isomaltose, some of the data in the published tables was collected over 20 years ago on low
field instruments, and can be improved upon with the help of high field instruments. A3 series of studies on the conformation and proton shifts of a set of O-methyl di- and
trisaccharides have been published (Backman et al., 1988; Baumann et al., 1988; Jansson3 et al., 1988; Baumann et al., 1989; Backman et al., 1990), but they do not provide a
complete survey of the neutral carbohydrates of interest in this work. Most of the tables
record the shifts for O-methyl derivatives of mono- and disaccharides, whose chemical

shifts differ significantly (particularly for anomeric and #2 protons) from those of the free
reducing sugars. In addition, most of the spectra were recorded at a temperature of 70 OC,

I which also affects chemical shifts.
Tables of proton and carbon chemical shifts are available for the monosaccharides3 glucose, galactose, mannose, allose, gulose, xylose, arabinose, ribose, and lyxose (Bock

and Thogersen, ), and a few oligosaccharides including maltose and maltotriose (Morris
I and Hall, 1982), cellotriose (Ikura and Hikichi, 1987), kojibiose, nigerose, sophorse, and

laminaribiose (DeBruyn, 1991). Chemical shifts have also been reported for the glucan
polysaccharides dextran (Morris and Hall, 1982), pullulan , and inulin (McIntyre and

Vogel, 1991). Other than these examples, however, few chemical shift tables of free
reducing neutral carbohydrates, and even fewer two-dimensional spectra, have been
reported. The quality of some published spectra is poor due to high viscosity of the sample
(McIntyre et al., 1990; McIntyre and Vogel, 1990; McIntyre and Vogel, 1991). In order to3 have a uniform reference base, the spectra of a range of mono-, oligo-, and polysaccharides
were collected, several of which are discussed below.3 All of the proton spectra were collected using solvent suppression (standard
Brucker software, PRESAT.AUR, for one-dimensional proton spectra). The two-3 dimensional COSY (explained further below) were collected using the COSYHG.AUR

I
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Brucker program, which also included solvent suppression. Typically 16-32 scans (in a I
few cases, 64 scans) were collected per t, increment. In order to decrease crowding about
the diagonal, a pulse width of 450 was used for the COSY experiments (Derome, 1987). 3
Carbon- 13 spectra were collected in the proton-decoupled mode; a 600 pulse (calibrated as
3.6 pisec) was found to be most effective. DEPT experiments were collected with the
Brucker program DEPT.AUR. The heteronuclear two-dimensional proton-carbon spectra
(HETCOR experiments) were collected using XHCORR.AUR. Details of acquisition and

processing parameters for 13C and 2D NMR spectra are given in Appendix A.

Oligosaccharides I
ID Spectra I

The 1-D spectra of gentiobiose (glucose-0(1,6)-glucose) and isomaltose (glucose-
a(1,6)-glucose) (Fig. 2.6) illustrate a dramatic difference in solution conformation, 3
reflected by their NMR spectra, which is solely due to anomneric linkage. (Since these
samples were referenced only to the HOD peak, set to 8=4.8, the chemical shift values are
relative.) The reducing end of the disaccharide is referred to as ring I; the non-reducing
monomer is referred to as ring II in the following discussion. The main common features
of the gentiobiose and isomaltose spectra are the free anomeric ends of ring I at 8=5.21 and I
4.64. The a anomeric linkage (ring II) for isomaltose is at 8=4.91, while the 0 anomeric
linkage for gentiobiose is at 8=4.50. The effect which distant protons have on chemical 3
shift is illustrated by the small, slightly-offset doublet at 8=4.49 for gentiobiose, which
represents ring II bound to ring I with an a free anomeric end. Similarly, the broad and 3
jagged appearance of the a anomeric linkage of isomaltose is due to the slightly differing
chemical shifts of ring II bound to ring I with a free a end, as compared to ring II bound to

ring I with a free P end. Although gentiobiose and isomaltose differ only in the orientation
of the (1,6) bond, most of their proton chemical shifts are quite different, even for protons
distant from the bond. The region 8=3.2-4.0 contains the #2-#5 proton resonances for each3
disaccharide; significant differences between the two disaccharides are apparent.
Deconvolution of the overlapping peaks requires 2-D techniques. 3
Correlation Spectroscopy (COSY) 3
Figure 2.7, the 2-D IH COSY of gentiobiose, provides an example of a common two-

dimensional technique, a COSY (COrrelation SpectroscopY) showing the relation of (in I
this case) protons in a structure. Gentiobiose proton shifts have not been previously

I
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I reported in the literature. Although a range of experiments is usually necessary to
completely assign a structure, the entire gentiobiose structure was assigned on the basis of
this well-resolved COSY (Table 2.2). The two one-dimensional spectra along the two axes
are a guide for reading the plot; the results of the actual experiment are within the matrix.
(The horizontal axis is referred to as the "F2" axis, while the vertical axis is the "Fl" axis.)
Since this is a homonuclear (proton-proton) experiment, the matrix is symmetrical about the3 diagonal, and only one half of the matrix is actually needed in order to extract useful
information.

During the second pulse of a 2D 1H COSY experiment, magnetization is transferred

from protons to their directly connected neighbors. The diagonal peaks in the matnix result
from non-transferred magnetization during the second pulse, so any proton which has no
directly connected neighbors will show only a diagonal peak. A cross-peak off the diagonal
indicates that a proton has a directly connected neighbor. For example, an anomeric proton
has only one nearest neighbor, the #2 proton. The #2 proton has both the anomeric proton
and the #3 proton as neighbors. As shown in Fig. 2.7, the anomeric proton from ring I has
only one crosspeak below it, which must therefore originate from its interaction with the #2
proton. Tracing down the peak from the #2 proton shows an additional crosspeak, which
must originate from the #3 proton. In this fashion, the connectivities around an entire ring

can be traced, as shown in Fig. 2.7.
The 2D COSY of isomaltose (Fig. 2.8) helps unravel the complexities of the one-

dimensional proton spectrum in a similar fashion, although the entire structure cannot be
traced as easily through the matrix as for gentiobiose. A cursory comparison with Fig. 2.7
reveals that the #6 protons are especially affected by anomeric configuration of the linkage.
In gentiobiose, the #6 protons in both rings yield a well-resolved doublet of doublets (at
8=4.3 for ring I and 8=3.9 for ring 11) and an asymmetric quartet at 8-- 3.85 for ring I and
3.7 for ring U. The #6 protons in isomaltose are less well-resolved and therefore harder to
distinguish in the matrix. The anomeric protons, of course, are well resolved, so the

crosspeak leading to the #2 protons is also easily found. Expanding the region between 8-
3.1 and 4.0 (Fig. 2.9) clarifies crosspeaks corresponding to the #2, #3, and ring 1 #4
protons, but the matrix is quite complex. Several other NMR spectra can aid in assignment
of the resonances corresponding to the other isomaltose protons and carbons.I
Carbon- 13

A proton-decoupled carbon spectrum of isomaltose (Fig. 2.10) shows the resonances3 corresponding to the carbons in the disaccharide. As with protons, carbon nuclei resonate

I
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I

chemical shift j (ring number, proton number) I
3.24 IP2
3.30 112
3.40 II4
3.45 (3.61) }$4
3.45 (3.70) 115
3.46 1133
3.48 113
3.52 1a2
3.61 105
3.70 10
3.71 116
3.85 ID6
3.87 It5
3.90 116'
3.97 Ica6
4.13 Ia6'
4.19 1P6'
4.50 111
4.64 I11
5.22 Icl

not determined: Ia 4

Table 2.2
IH-NMR chemical shifts of gentiobiose. The shifts are referenced to the internal HOD
peak, which was set to 8=4.8. Note that protons with the same chemical shifts (134 and 115)
are resolved within the 2D COSY. The chemical shift given in { brackets is the 'cross
reference' line for the 2D COSY in Fig. 2.7.

I
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Fig. 2.8
Isomaltose IH COSY 450 (HOD resonance set to 8=4.8).I.
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60 1
at positions in a spectrum which reflect their local magnetic environments. Carbons in I
anomeric positions typically resonate downfield near -=100, while the #6 carbons are often
found furthest upfield in the region near 8=60. The positions of these carbon nuclei were
determined with reference to internal acetonitrile (8-117.2). Seventeen distinct resonances
were detected (Table 2.3). Since the COSY spectrum shows that the two anomeric forms
(a and P) of ring I of isomaltose ame prominent in solution, eighteen carbon resonances (six
each from the a and p forms of ring I, six from ring 11) might have been found in the 13C

spectrum. A comparison of peak areas and the near-overlap of several of the resonances in
the region 6= 69-73 indicate that two carbons have the same chemical shift.

Both chemical shifts and relative peak intensities are listed in Table 2.3. (Note that I
the relative intensities are only a general guide to the abundance of a particular carbon in a
sample, since "intensity" is actually peak height, and the width of the lines in the spectrum
varies.) In addition, carbon intensities can be enhanced due to the nuclear Overhauser
effect, or they can be decreased due to incomplete relaxation between pulses. Since a pulse- 3
width of 600 was selected, full carbon intensity may not have been recorded. The intensities
in Table 2.3 can be grouped into broad catagories: six carbons with intensities > 0.65,
which belong to the II ring, six with relative intensities between 0.47 and 0.61 (the ring I
carbons), and five with intensities between 0.28 and 0.51 (the ring I a carbons). One of the
a carbons must overlap with another carbon, and the likely candidate is the ring 11 #4 I
carbon with a chemical shift of 8=68. The relative intensity of 1.0 is equal to the combined
relative intensities of a ring II carbon and a ring I a carbon, -0.7 + -0.3.

As listed at the bottom of Table 2.3, the only published report of isomaltose 13C

shifts lists many overlapping resonances. Resolution is principally a function of magnetic 3
field strength, however, and the data from which this table was prepared was published in
1973, when commercially available spectrometers operated at much lower fields. The

absolute chemical shift values do not agree exactly with the ones determined here, but the
listed values were corrected by Bock since he stated that the values published in the original
work "are obviously too high" (Bock et al., 1984). In addition, shifts for a structure may m
differ by 1-2 p.p.m. depending on temperature, concentration, and reference compound
used (Bock and Pederson, 1983). 3
Distortionless Enhancement by Polarization Transfer (DEPT)

Once the proton-decoupled carbon spectrum was acquired, DEPT ("Distortionless
Enhancement by Polarization Transfer") spectra were also collected. DEPT involves I
transferring the magnetization of the protons to their attached carbons, resulting in an

I
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I

chanil•uhz: relative intensity (highest peak = 1) asgomen (ring number,3 carbon number)

59.0 0.77 I16
64.2 0.47 1p6
64.3 0.28 1a6
67.9 0.61 104
68.0 1.00 114, Wa4
68.5 0.36 laW
69.9 0.49 Ia2
70.2 0.69 112
70.3 0.68 115
71.5 0.51 103
71.6 0.90 11372.6 0.59 10
72.8 0.5915

74.5 0.60 I13
90.7 0.39 Ial
94.6 0.59 I~1
96.5 0.68 111

1
Isomaltose assignments as repoqed by Bock (1984)
(shift values from original reference corrected by Bock; H6 shift set to 61.6)

61.6 H6
66.5 la6, I6
70.4 H4, W,14, I104,l5
72.4 112, Ia2
72.9 115
74.1 113, 10375.0 IA2, IP5
76.2 I1A3
92.9 Ial

96.8 Ip1198.5 191

Table 2.33 13C chemical shifts of isomaltose
(temperate 298 K; referenced to internal acetonitrile, 8=117.2)
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increase in sensitivity for 13C NMR. Theoretically, the sensitivity enhancement should be I
by a factor of ca. 6400, because the Lamor frequency of protons is four times that of 13C,
which means that the population difference between energy levels for protons is four times
as great, the magnetic moment is four times larger, and so the signal produced by a pulse is
4x4x4=64 times as great, since the signal induced in the receiver is also proportional to the
precessional rate. In addition, natural abundance of 13C is only 1% of total carbon. Of use
in the case of isomaltose (since neither sample quantity nor solubility are a problem) is the
fact that DEPT can show the number of protons attached to each carbon, so #6 carbons in
this case can be distinguished unambiguously from the other carbons. Three DEPT spectra
are shown in Fig. 2.11. The bottom trace, DEPT 45, shows all protonated carbons, which3
in the case of isomaltose is all of the carbons (compare to Fig. 2.10). Through multiple-
quantum filtratior. (see references at the beginning of the chapter for details), the DEPT 90 3
and DEFT 135 'sort' the carbons according to the numbers of attached protons. The DEPT
90 shows only carbons with one proton attached, while the DEPT 135 shows -CH and -
CH3 carbons pointing up, and inverts -CH2 carbons. By comparing the DEPT 45, 90, and
135, the identity of the #6 carbons is readily confimned: as expected, they are the three most
upfield carbons.

Heteronuclear Correlation Spectroscopy (HETCOR) 3
The next step was acquisition of a HETCOR, heteronuclear correlated experiment (Fig. 3
2.12) in which the connectivities of the protons and carbons in a structure can be
established. In this experiment, magnetization is transferred between carbons and their
attached protons. As the two axes (F2, Fl) of the matrix represent carbon and proton
frequencies, respectively, the matrix is not symmetrical, and none of the crosspeaks is
redundant; each represents a direct connection between a carbon and its attached proton(s).
Since the position of the anomeric protons, as well as the #2, #3, and some of the #4
protons were established in the COSY, these peaks could be used to confirm the position of 3
the corresponding carbons. The position of the #6 carbons, on the other hand, k' n 'cnown
from the DEPT spectra, and through the HETCOR the corresponding protons, ahu 3
therefore also the crosspeaks to the #5 protons, could be established. By working with the
spectra (and using enlargements and cross-sections), the isomaltose structure was assigned

as shown (Fig. 2.12, Table 2.4).
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I
U

i d iaLtml: Lag (ring number,
proton number)

13.21 IP2
3.35 n4
3.41 I4
3.45 13
3.48 la2
3.52 112
3.57 105
3.64 115i3.66**16
3.66** IW6
3.68** IW6'
3.70 113

33.71* 116, 6'
3.97 1a3
4.65 I~1
4.90 H1
5.20 lal

I not determined: 1S, Ia6

I * midpoint of HETCOR crosspeak; 6 and 6' protons not individually resolved
•* approximate chemical shift (low resolution crosspeak)

Table 2.4
IH chemical shifts of isomaltose
(temperature 298 K; referenced to HOD, 8=4.8)
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Maltose and Maltotriose !
A comparision of the COSY of maltose (glucose-cx(1,4)-glucose; Fig. 2.13) and isomaltose
(glucose-a(1,6)-glucose; Fig. 2.8) demonstrates that linkage position, as well as anomeric 3
linkage, significantly affects solution conformation and therefore the appearance of the
spectrum. The I-D trace above the 2-D COSY of maltotriose (Fig. 2.14) illustrates the
extent to which individual proton resonances coalesce in the region at 8=3.5-4.0 with the I
addition of just one monosaccharide. Using a variety of one- and two-dimernsional
experiments, Morris and Hall (Morris and Hall, 1982) completely assigned both the carbon I
and the proton spectra of these structures.

Polysaccharides

As illustrated above, increasing the size and complexity of a carbohydrate decreases the i
resolution of its NMR spectrum. Studies of high-molecular weight polysaccharides are also

complicated by the low solubility of many polymers. The types of experiments which can U
be run, and the information which can be gleaned fro,,, these experiments, is therefore
often limited by the solubility of the material. Spectra of three linear glucose polymers were 3
collected in order to characterize them for use in carbohydrate degradation experiments
(Chapter 5), and to compare them to the spectra of structurally related di- and
oligosaccharides. In addition, running NMR experiments and optimizing various
experimental parameters on these known polysaccharides was an important step in
characterizing natural polysaccharides (Chapter 3).

Three linear glucose polysaccharides were obtained from U.S. Biochemicals:
amylose, an a(1,4)-linked glucose polysaccharide with a molecular weight of 10-50 kD,
laminarin, a P(1,3)-linked glucose polysaccharide of 5-6 kD, and pullulan, a polymer of
200 kD which is made up of a(1,6)-linked maltotriose (a(1,4)) units. These three polymers 3
graphically illustrate the extent to which solubility is dependent not only on molecular size,
but also upon linkage type and position, and, by extension, upon solution conformation.
All three polymers are linear, all are composed entirely of glucose, and pullulan and
amylose differed only in that pullulan is at least four times larger, and every fourth linkage

in pullulan is (1,6) instead of (1,4). Pullulan, the largest of the polymers, was far more
soluble than amylose: more than 50 mg of pullulan, and less than I mg of amylose, for
example, could be dissolved in 0.5 mL D20. Laminarin, the smallest of the polymers, was
more soluble than amylose, but far less soluble than pullulan.

I
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Amylose

A comparison of the 1-D proton spectrum of amylose (Fig. 2.15) with the spectra of3 glucose, maltose, and maltotriose (Figs. 2.5, 2.13, and 2.14) shows the extent to which
the resolution in a polysaccharide decreases with molecular weight. Only the large anomeric
peak and the triplet at 8=3.4 (due to the #4 protons) are well-resolved. A 13C spectrum

(Fig. 2.16), showing six resonances, was acquired in approximately 24 hours of run-time

with ca. 5 mg of material at a temperature of 60 OC. This probably represents the practical
minimum in terms of sample quantity for a 13C spectrum of a polysaccharide; for branched
or heteropolysaccharides, more material would be required, because there would be a
greater variety of carbon types present and effective concentrations of each carbon type
would be accordingly lower.N
Larrinarin

I The resolution of individual protons in a polysaccharide is not nearly as high as for
mono- and oligosaccharides, but ID proton spectra still provide characteristic patterns for a

polymer. The proton spectrum of laminarin (Fig. 2.17) distinctly differs from that of
amylose. In particular, the region between 8=3.4-4.0 shows several distinctive groupings.3 In addition, the anomeric resonance at 8=4.85 is one of the few examples of a f-anomer
which resonates downfield of the HOD peak (here set to 8=4.8).

Pullulan

I The COSY spectrum of pullulan (Fig. 2.18) clearly differs from the other glucose
polymers. The two anomeric peaks at 8=5.33 and 5.38 are the two ct(l,4) linkages within

the maltotriose units, while the a(1,6) anomer is at 8=4.93. The crosspeaks within the
COSY matrix provide clear connections to the #2 protons, but tracing the proton network

Sthrough the COSY would be difficult. Because of pullulan's high solubility, however,
additional exper4 Aents are possible. Fig. 2.19 is the 13C spectrum of 50 mg of pullulan.3 Eighteen resonances, representing all of the carbon types in the sample, are clearly
distinguishable.

No attempt was made to completely assign the proton and carbon spectra, since

proton and carbon shifts have been reported for pullulan (McIntyre et al., 1990).

I
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One intriguing aspect was pursued, however, which illustrates the fact that spectrometer
and sample conditions can affect sample resolution. The published 13C shifts did not

include eighteen distinct carbon resonances; three resonances were assigned a shift value of
6=72. 1, and for one #2 carbon, shift was not determined. The published data were
obtained with a 400 MHz NMR (100 MHz for carbon), which should normally provide
better resolution than the 300 MHz (75 MHz for carbon) spectrometer used to obtain the3 spectrum in Fig. 2.19. Better resolution with the lower-field instrument could be due to
lower sample concentration, since a viscous solution results in line broadening and overlap.3 In order to assign the newly-resolved resonances, a HETCOR experiment was run.
Carbon-proton crosspeaks were obtained for all but the weakest #6 resonance at 6=67.7
(Fig. 2.20). The assignment of the carbons between 8=68.5 and 70.5 was the focus: even
though absolute chemical shifts change with sample temperature and concentration, relative
shifts should remain the same, so the order of shifts should be the same as reported in
(McIntyre et al., 1990). The reported proton shifts showed that all three #2 protons were
found in the region from 8-3.6-3.65, while all three #5 protons had shifts of 8=_.9-3.925 (at a temperature of 60 OC; absolute shifts at 25 OC are different). Inspection of Fig. 2.21
shows that crosspeaks for thecarbon resonances clustered between 8=68.5 and 70.5 fell5 neatly into two groups. The crosspeak at 8=68.83 was known to be a #5 carbon, with a
corresponding proton crosspeak between 8=3.79-3.89. Two crosspeaks with the same
proton shift corresponded to the carbons at 8=69.83 and 69.89, which therefore must be
the other two #5 carbons. Similarly, the carbons at -=69.58 and 70.02 show proton
crosspeaks in the same region as the carbon at 8=70.15, which is known to be a #2 carbon.
The "missing" #2 carbon (the #2 carbon in the first ring of the maltotriose group) therefore
has a shift of 8=70.02 in this spectrum.

I The pullulan spectra probably represent a 'best case', in terms of resolution and
solubility for a high molecular-weight polysaccharide, while amylose represents a5 minimum among soluble polysaccharides. The experiments used here are only a small
number of the many possibilities currently available with most modem NMR
spectrometers; specific questions of linkage position and solution conformation can be

further investigated with a variety of nOe (nuclear Overhauser effect) and relay-COSY
experiments, for example. In any case, pictorial representations of carbohydrates clearly do
not fully reveal the real differences between closely related structures in terms of their three-
dimensional conformations in solution. These differences manifest themselves in terms of

I physical properties such as solubility and hydrodynamic volume (Kennedy et al., 1988),
and may play a significant role in determining the accessibility of a polysaccharide toI

I
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bacterial exoenzymies; such factors may help determine the relative reactivities of natural I
polysaccharides in nmarne environments.
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I Chapter Three: Plankton Carbohydrates

I Introduction

3 Surprisingly little is known about the macromolecular structure of the material produced
through photosynthesis. The proportion of photosynthetically-fixed carbon which is3 incorporated into phytoplankton lipids, proteins, and carbohydrates under a range of
growth conditions has been studied using 14C incorporation as a tracer (Morris et al., 1974;
Hitchcock, 1978; Morris, 1981; Hitchcock et al., 1986; Smith etal., 1987). In these
studies, the relative quantities of cellular components in each 14C- labeled pool (low
molecular weight metabolites, proteins, lipids, and polysaccharides) were determined using
a sequential extraction method. The method provides an estimate of the distribution of
cellular carbon among major classes of biomolecules, but it does not provide any structural3 information about the material in each fraction. In addition, the classification of cellular
components using operationally-defined extraction techniques is problematic and may3 inaccurately reflect actual cellular composition of phytoplankton. Smith et al. (1987), for
example, found that laminarin-like polysaccharides were extracted in the 'low molecular
weight metabolite' fraction, and Smucker and Dawson (1986) demonstrated that chitin (a

polysaccharide of N-acetyl glucosamine) is found in the 'protein' fraction of cells.
Studies using carbohydrute-specific detection methods have demonstrated that

much of the carbon fixed by 7hytoplankton during photosynthesis is converted to
carbohydrates (Parsons et al., 1961; Handa, 1969; Haug et al., 1973; Mykelstad, 1977;

I Hama, 1988), which function as energy reserves, membrane components (Lee, 1980), and
as receptors in molecular recognition and communication processes (Bishop and Jennings,3 1982). Some phytoplankton also excrete carbohydrates; these exudates may be an
important energy source for heterorphs (Fogg, 1977; Cole et al., 1982; Iturriaga and
Zsolnay, 1983; Sundh, 1989). A comprehensive compilation of literature on phytoplankton

carbohydrates, including species studied, carbohydrate characterization methods, and
abbreviated results is included as an appendix to the thesis. This chapter begins with a short
summary of previous work on phytoplankton cellular and excreted carbohydrates. The
results of a survey of the carbohydrate composition of four species of phytoplankton are3 then briefly presented. The remainder of the chapter is devoted to the detailed
characterization of carbohydrates of the marine cyanobacterium Synechococcus WH7335;3 these carbohydrates served as substrates for bacteria in degradation experiments discussed

in Chapter 5.I
I
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Phytoplankton carbohydrates

Characterization of phytoplankton carbohydrates has generally been limited to I
determinations of monosaccharide concentration and composition. Even these
measurements are imprecise, since conditions sufficient to liberate some fractions of 3
carbohydrates result in the destruction of more labile carbohydrates, while mild extraction
techniques can result in incomplete extraction of hydrolysis-resistant carbohydrates such as 3
uronic acids (Henrichs, 1991). For a few types of phytoplankton carbohydrates, additional
structural information is available. Polysaccharides which function as energy reserves are
the most completely characterized phytoplankton carbohydrates. In a number of studies,
linkage position and orientation, and estimates of molecular weights of storage
polysaccharides have been made. Linkage position, and in some cases linkage orientation,
has also been determined for cell wall components and excreted polysaccharides of a few
species of phytoplankton. In general, however, little is known about the gross structure, 3
molecular weight, linkage position, or anomeric linkage of the carbohydrates produced by
marine phytoplankton. 3

Studies of monosaccharide composition and concentration have demonstrated that
the monosaccharide components of phytoplankton energy storage products, membranes,
and excreted polysaccharides differ significantly. Energy reserves, for example, are
typically glucose-rich homopolysaccharides which can be readily converted through the
glycolytic pathway to energy and to carbon building blocks for other cellular components. _
A number of different glucose polymers have been identified in marine phytoplankton.
Laminarin, a linear glucose polysaccharide with 0(1,3) linkages (Handa, 1969; Haug and I
Myklestad, 1976), 0(1,6) glucose polymers with P(1,3) branches (Varum et al., 1986), and
branched A(1,3) glucans (Paulsen and Myklestad, 1978) have been identified in diatoms 3
and prymnesiophytes. Starch, a mixture of a linear a(1,4) polysaccharide (amylose) and an
a(1,4) polysaccharide with a(1,6) branches (amylopectin), is an energy storage polymer

which has been found in dinoflagellates and green algae (Lee, 1980).
Carbohydrates in cell walls form fibrous networks which provide structural

support. These networks may be glucose-rich if they are made of cellulose (a 1(1,4)glucose -
polymer), but mannan (a polymer of mannose) and xylan (xylose polymer) fibers are also
known (Lee, 1980). Cell walls also typically have an amorphous, mucilaginous component 3
which may include uronic acids such as mannuronic or guluronic acid, or sulfated
carbohydrates (Lee, 1980). Complex mixtures of monosaccharides, including glucose,
galactose, amnose, xylose, fucose, and rhamnose have been found in diatom cell walls
(Hecky et al., 1973; Haug and Myklestad, 1976), while dinoflagellate cell walls are 3

I
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i composed primarily of glucose (Haug et al., 1973), with 0(1,3) and p(1,4) linkages (Nevo
and Sharon, 1969).3 A number of species of phytoplankton, particularly diatoms (Allan et al., 1972;
Smestad et al., 1974; Smestad et al., 1975; Haug and Myklestad, 1976; Percival et al.,3 1980) and red algae (Kieras et al., 1976; Geresh et al., 1990; Lupescu et al., 1991), excrete
carbohydrates. Excreted polysaccharides are commonly branched (Smestad et al., 1974;
Smestad et al., 1975; Haug and MykIestad, 1976; Percival et al., 1980), and typically have
a heterogeneous composition, which may include mixtures of fucose, galactose, rhamnose,
xylose, mannose, and glucose, as well as other components. Charged carbohydrates, such3 as uronic acids or sulfated sugars, have been found in almost all excreted polysaccharides
(Guillard and Hellebust, 1971; Allan et al., 1972; Myklestad et al., 1972; Smestad et al.,3 1975; Kieras eral., 1976; Percival et al., 1980; Geresh et al., 1990; Lupescu et al., 1991).
Not all studies of excreted carbohydrates have included analyses which would detect
charged components. One excreted polysaccharide containing amino sugars (Frew et al.,
1990) has also been found.

The composition and concentration of both cellular and excreted carbohydrates
depends on growth conditions, growth phase, and species. Accumulation of cellular
carbohydrates has been associated with nutrient depletion (Myklestad et al., 1972; Vieira3 and Myklestad, 1986) and with stationary-phase or slowly growing cells (Guillard and
Wangersky, 1958; Haug and Myklestad, 1976; Burney etal., 1981). Carbohydrate3 excretion may also occur during all phases of growth (Vieira and Myklestad, 1986;
Myklestad et al., 1989). Reported differences in carbohydrate composition and
concentration between species and between cultures therefore are likely to reflect real

biological differences. Since the relative difficulty of extraction and characterization of
phytoplankton carbohydrates is related to the complexity of the matrix in which they are
bound, however, the carbohydrate composition of a particular species may depend on
extraction and charcterization techniques, as well as growth phase and conditions.

Survey of Phytoplankton Carbohydrates3 Overview of Organisms

Four species of phytoplanklon and one cyanobacterium were cultured to learn more about
the types of polysaccharides which are produced in marine environments, and to isolate
carbohydrates which would be suitable substrates for bacterial degradation studies. Little

information other than monomer composition of hydrolysates and general classes of
storage polymers is available for most photosynthetic organisms; by testing a variety of

I
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extraction techniques and using NMR as a quick screening technique, promising extracts I
could be selected for further work. In addition, since commercially-available
polysaccharides are generally limited to linear homopolymers (usually of glucose), an
additional goal was to find a natural source of a more complex polysaccharide. One
chlorophyte (green algae), Dunaliella teniolecta, two prymnesiophytes (coccoliths), 3
Emiliania huxleyi and a Phaeocystis species, one bacillariophyte (diatom), Stephanopyxis
pamneri, and one cyanobacterium, Synechococcus WH7335, were cultured for these
studies. Synechococcus was ultimately selected for further study, and is described in
greater detail. 3
Cultures

All cultures were in stationary phase when harvested. The diatom Stephanopyxis palmeri,
isolated in Woods Hole by Mark Dennet from Sargasso Sea samples, was grown in filtered 3
Sargasso seawater supplemented with f/2 vitamins. The cells were grown under continuous
light at 20 OC. Stephanopyxis cells are ca. 100 mrn in length, and tend to clump in long 3
brown bundles or sheaths which resemble a horse's tail.

The Phaeocystis species was grown at 20 oC under continuous light from a seed
culture provided by the Northwest Pacific Culture Collection at the University of British I
Columbia (species 667; isolated off Surinam by R. Guillard). The HESNW medium (with
double vitamins) was made up in filtered seawater from the Coastal Research Center, 3
Woods Hole MA. The medium was autoclaved, sterile-filtered to remove iron precipitates,
and aged for at least 48 hours before each culture transfer. Individual Phaeocysts cells are 3
ca. 5 Iun spheres with two flagella which are lost when Phaeocystis grows in the colonial
form. Growth in colonial form is not related to nitrogen or other nutrient limitation (pers. 3
comm., C. Lancelot). Colonial Phaeocystis forms large round and oblong fight-brown
colored 'balloons' ranging in size from I to 8 umm. The other prymnesiophyte in this study,

E. huxleyi, was grown in f/2 medium at 20 OC under a 12-12 light-dark cycle. I
Cultures of the green algae Dwzaliella tertiolecta were grown under continuous light

in standard f02 medium made up in filtered seawater collected from the clean seawater 3
source at Dyers Dock, Woods Hole MA. Synnechococcus WH7335, a dark green colored
cyanobacterium isolated from a coastal area in the Gulf of California by John Waterbury,
was grown in S/N medium. The first culture was grown under a 14/10 light/dark cycle at
25 oC, while the second culture was grown at room temperature under ambient daylight I
and low light at night. The cells grew in a flat, gel-like mat on the bottom of the culture
flask, and remained in a cohesive clump until shaken vigorously.

I
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Excreted Carbohydrates

Filtered media (0.2g• filter) from all cultures except Dunaliella were tested for the presence
of carbohydrates using the phenol-sulfuric acid method (Chaplin and Kennedy, 1986).
Media from all four species tested were positive for carbohydrates; the Synechoccas

Smedium produced the highest positive response for carbohydrates, followed by
Stephanopixis, E. huxleyi, and Phaeocysds.

Extraction of cellular carbohydrates

Stationary-phase cultures were harvested by centrifuging the medium and removing the
pellet. After centrifugation, the medium was filtered through pre-combusted GF/F filters in3 order to remove the remaining cells. The pellet and filters were stored frozen until analysis.
In the cases of E. huxleyi, Phaeocystis, and a second culture of Synechococcus WH7335,3 the medium was filtered without prior centrifugation, so all extractions of cellular
carbohydrates from these species were made from filtered samples.

In all cases, either pre-combusted GF/F filters or the cell pellet (which in the case of
Stephanopixis and the first culture of Synechococcus WH7335 was a thick slurry) were
ground in 50 mL Q-H20 with a teflon-bit drill grinder. The aqueous slurry was poured into
a separatory funnel, and 50-100 mL of a 1:1 mixture of methanol and methylene chloride
was added. The aqueous mixture was extracted at least three times with fresh organic

I solvents, or until the organic phase remained colorless upon addition of fresh solvent. The
aqueous mixture was usually colorless or light yellow to green after extraction. The organic3 phases were combined and set aside. The aqueous phase and cellular fragments (and filter
fragments, for samples collected from filters) were filtered through a GF/F filter. The3 fragments and filter were set aside for hot-water extraction, while the aqueous phase was
concentrated by rotary-vacuum distillation to remove methanol, and then lyophiiized. This
fraction is referred to as the cold aqueous extract (CAE) in the following sections. The

cellular fragments (including filter, in cases where the fragment cake could not be removed
cleanly from the filter) were placed in a roundbottom flask with 50-100 mL Q-H20 and3 several boiling chips. After reflux for 20-32 hours, the material was centrifuged or filtered
through a GF/F filter to separate the extract from the cell and filter fragments. The hot3 aqueous extract (HAE) was then lyophilized. All CAE and HAE were tested for the
presence of carbohydrates using the phenol-sulfuric acid test (Chaplin and Kennedy,

3 1986).

I
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Table 3.1 lists the yields and results of CHN analyses of CAE and HAE of all five
organisms. All extracts contained carbohydrates, which demonstrates that harsh conditions
are not required to extract a portion of the cellular carbohydrates. The CAE were greater in
mass than the HAE, but also contained more salts or non-organic components. All extracts
also contained nitrogen; C/N ratios of -4-6 suggests that protein was a prominant I
component of the extracts. The chemical shifts and coupling constants of the anomeric
protons in the NMR spectra of the extracts indicated that cz-linked carbohydrates were much
more common than P-linked carbohydrates in both types of extracts. NMR spectra of all
extracts with the exception of the Synechococcus CAE showed the presence of large
quantities of non-carbohydrate material; further work would be required to purify the
carbohydrates. 3
Hot Aqueous Extracts

With the exception of the HAE from Dunaliella, the HAE generally were less soluble and
had fewer well-resolved NMR resonances than the CAE. NMR spectra were typically
dominated by poorly resolved resonances and broad, irregular humps. For each extract,
anomeric resonances were distinguishable, but extensive purification would be required to

determine further structural information about the carbohydrates in most of the HAE.
The spectrum of Stephanopixis shows possible anomeric resonances at 8=5.05,

5.2, 5.28, 5.5, and 5.55 (Fig. 3. 1a), but otherwise has few distinguishing features which
are consistent with NMR spectra of carbohydrates. Low humps at 8= 5.45 and 5.5 in the
Phaeocystis spectrum might correspond to bound ca-anomers (Fig. 3.1 b). A portion of the 3
extract was hydrolyzed for 5 hours in 4 M TFA at 100 oC; the spectrum of the hydrolyzed
hot aqueous extract shows several distinct anomeric resonances (Fig. 3.1c). The low 3
humps at -- 5.45 and 5.5 are no longer visible, but a series of resonances between 8-.5.12-
5.3, consistent with free monosaccharides, are apparent, as is a distinct c,-anomer at
8=4.95. A doublet which may be the corresponding free 0 anomer is evident at 8- 4.4. The
HAE of E. huxleyi is similar to that of Phaeocystis, in that low humps at 8=5.3, 5.4, and
5.5 could correspond to bound a-anomers (Fig. 3. ld). The HAE of Synechococcus also I
shows a possible bound a-anomer at 8-5.45 (Fig. 3. Ie). Hydrolysis of a portion of the
Synechococcus HAE for three hours in 4M TFA at 100 °C sharpened many of the 1
resonances (Fig. 3. 1f). In the anomeric region, a low resonance at 8=5.45 is still visible,
and a number of sharp doublets at 8.5.25 and 4.95, probably corresponding to free a- I
anomers, art apparent. The appearance of the spectrum in the region from 8=3.6-4.0 also
sharpened considerably, and resembles the proton spectrum of a polysaccharide. 3

I
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cu culturevolume C:HN

U Dunaliella erdolecua 1OL CAEL 228.64 mg
(extr. I-I)* 4.63: 0.75:1.15
(extr. 1-2)* 2.73: 0.53:1.18(extr. 2)* 15.05: 3.64: L.'5extracted from filters: not weighed

3 HAE: 26.65 mg 38.66: 4.14: 9.38
extracted from filters: 42.20 mg**

I
Emiliani huxleyi (remainder CAE: 67.10 mg 5.03: 0.72: 1.243 of l8Lculture) HAE: 53.25 mg** 8.21: 1.11: 1.38

3 Phaeocystis sp. (8/92) 1.5 L CAE: 7.90 mg 14.91:1.49: 3.40
HAE: 26.75 mg** 3.94: 0.71: 0.74

Phaeocysus sp. (12/92) 1.5 L CAE: 55.95 mg(Note that the difference in yield between the two Phaeocystis cultures is due to morevigorous growth and estimated higher cell density in the 12/92 culture)

Stephanopixis palmeri 18 L CAE: 134.80 mg*** 2.61: 0.67: 0.51
HAE: 19.60 mg 13.02: 1.58: 2.33

Synechococcus WH7335 0.8 L CAE: 262.4 mg*** 0.61: 0.33: 0.36
(10/92) HAE: 12.75 mg 15.88: 1.87: 4.29

Synechococcus WH7335 0.8 L CAE: 147.5 mg
(1/93)

F3: 144 mg 3.98: 0.59: 0.74****

*cold aqueous extract collected and lyophilized in three fractions
"**contains filter fiber (ca. 20 mg, based on extraction of 3 blank filters)
*** contains high quantities of salt (evident from appearance of IH NMR spectrum)
****CHN analysis carried out on salty residual material; probably not

representative of entire extract (see text)

Table 3.1
Culture volumes, extract yields (cold aqueous extracts (CAE); hot aqueous extracts
(HAE)), and CHN results for five species of plankton.

I
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These hydrolysis conditions are sufficient to hydrolyze maltoheptaose completely to I
glucose, so if some of the Synechococcus material is still in polymeric form, it must be

relatively resistant to acid hydrolysis. I
The HAE of Dunaliella teniolecta, in contrast to those of other organisms, was very

high in carbon, relatively rich in carbohydrates, and yielded an NMR spectrum with a
readily identifiable structure. A search of the literature revealed only two previous reports
on the carbohydrates of Dunaliella tertiolecta. A solid-state 13C-NMR analysis of whole 3
organisms and humic-like material from Dunaliella cultures showed that carbons with
chemical shifts consistent with those of neutral carbohydrates were a major component of
Dunaliella extracts (Zelibor et al., 1988). The monosaccharide composition of Dunaliella
principally consists of glucose (85.3% of total carbohydrates), with smaller concentrations
of rhamnose (5.5%), mannose (4.5%), ribose (2.0%), galactose (1.1%), xylose (1.0%),
and arabinose (0.65%). Total carbohydrates were a surprisingly low 12.2% of cell dry
weight; lipids and protein were 15% and 20% of total cell weight, respectively (Brown,
1991). Total carbohydrates of Dunaliella salina, in contrast, comprised 31.6% of cell dry
weight, with lipids and proteins making up 6.4% and 57% of cell dry weight, respectively.
Glucose was also the principal monosaccharide of D. salina (54.5% of total
carbohydrates), with galactose (37.3%) and ribose (5.4%) as well as uronic acids as the
remainder of the carbohydrates (Parsons et al., 1961).

The full spectrum of the Dunaliella HAE (Fig. 3.2) shows a prominant anomeric
resonance at 8=5.4, and relatively few non-carbohydrate resonances (the region 8=0.8- I
2.2). (Note that saturated solutions of the Dunaliella HAE showed a greater predominance

of non-carbohydrate resonanaces in this region. These resonances could be due to protein 3
components, which would also account for the N in the HAE.) All of the resonances in the
region from 8=3.2 - 5.4 (Fig. 3.3a) resemble those of a high molecular weight 3
polysaccharide. The single major ca-anomer at 8=-5.4 is consistent with an a(1,4) linkage.
Since there are no other anomeric resonances, the Dunaliella HAE probably contains a

homopolysaccharide with one linkage type and no branches. Homopolysaccharides are
often stored as eiiergy reserves in phytoplankton; the relatively large amount of the
Dunaliella HAE (in terms of mass and carbon content of the extract) suggests that it is a U
significant proportion of total cell mass, which is also consistent with a role as an energy
reserve. Green algae as a class are reported to accumulate starch (Lee, 1980), inulin, and 3
possibly laminarin (Painter, 1983) as energy reserves. The appearance of the spectrum is

not consistant with inulin, a fructose-glucose polysaccharide with 0 linkages, since inulin
would have several prominant anomeric resonances corresponding to glucose and fructose.
In addition, P-anomers are generally found upfield of the HOD (solvent) resonance at 3

I
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(a)
extract of DunalielLa tertiolecta

(b)I
amylose (a(1,4) glucose polymer)

Hw I

5.50 5.00 4.50 4.00 3.o50
PPM

Fig. 3.3
Partial IH NMR spectrum of Dunaliella tertiolecta hot aqueous extract (a) and IH NMR I
spectrum of amylose standard (b).
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I 6=64.76. The ý-anomer of laminarin (a p(1,3)-linked glucose polysaccharide) is one of the

few exceptions to this general rule, since it resonates close to 6=4.9. As a comparison with3 Fig. 2.17 shows, however, the Dunaliella polysaccharide does not resemble laminarin.

Starch is a combination of amylose, a linear ct(1,4) glucose polysaccharide, and

amylopectin, an a(1,4) glucose polysaccharide with a(1,6) branches. A spectrum of an

amylose standard, which closely matches the Dunaliella polysaccharide in Fig. 3.3a, is

shown in Fig. 3.3b. These spectra suggest that Dunaliella tertolecta contains amylose, the

unbranched glucose polysaccharide, as a storage product.

The Dunaliella HAE was the only case in which the hot-water extract of an
organism yielded more soluble 'carbohydrate-like material' (i.e., recognizable
carbohydrate-like features in the NMR spectrum) than the cold-water extract. This may be

I due to the fact that storage products of chlorophytes are found as grains inside the

chloroplasts, while for prymnesiophytes and bacilllariophytes, storage products are located3 outside of the chloroplast (Lee, 1980). Longer and more vigorous extraction procedures
(reflux for 20 hours) may be required to solubilize storage products which are inside the

chloroplast. The difference in relative carbohydrate content may also simply be a function

of solubility, since amylose is relatively insoluble in cold water (see Chapter 2).
The generally higher carbon content of the HAE compared to the CAE may indicate

that the HAE typically contain high quantities of carbohydrates which are relatively
insoluble, either because of molecular weight or specific chemical structure. The chemical3 shift and appearance (poorly-resolved J-coupling) of the proton resonances observed in the
HAE is consistent with those of polysaccharides. The changes in the NMR spectra of5 Phaeocystis and Synechocccus HAE after hydrolysis in 4M TFA also suggest that the
material in the HAE is primarily high molecular weight. Gel permeation chromatography of

the HAE would provide an estimate of molecular weight and could be used to separate the

components of the HAE.

I Cold Aqueous Extracts

5 All of the CAE were very soluble, and contained prominent anomeric resonances. Their

low carbon content suggested that they contain high quantities of non-organic compounds
I as well. The NMR spectra in general were quite well-resolved, with well-defined

resonances and J-coupling and fewer unresolved humps than seen in the HAE.

The CAE of Dunaliella (Fig. 3.4a) shows a well-resolved anomeric resonance at

6-5.37, probably from a bound a-anomer, since the free a-anomers of most neutral
carbohydrates resonate in the region 8=5.1-5.3. The majority of the resonances (in terms of

I
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(a) (b) \ _

5.60 5.40 5.20 5.00 4,.8 4.60 -5.60 5. 40 5.20 5. 00 4.80 4.60o
PPM PPM I

(c) (d) I
HOD (I, I

4 I

5.10 5.00 4.o5 5.0 5.4o 5.2o 5.0 4.10 4.60PPM PPM4

Fig. 3.4a-dPAnomericregions of.Dunaliella (a)Stephanopixis (b), Phaeocystis (c), and E. huxleyi (d)

cold aqueous extracts. Arrows mark anomeric proton resonances.
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both area and number) are in the region 8--3.0-4.5, which is the region in which most3 carbohydrate resonances are found. A series of doublets and quartets (nucleic acids?) were
observed in the region 8=0.9-3.3.

The anomeric region of the Stephanopixis CAE (Fig. 3.4b) shows several
diagnostic resonances. The doublet at 6=4.82 has the chemical shift and J-coupling
characteristic of a 0(1,3) linked polysaccharide such as laminarin (see Fig. 2.17).3 Laminarn is a known storage product of diatoms (Lee, 1980; Painter, 1983), although this
is the first suggestion of its presence in Stephanopibis pa/meri. Laminarin is very soluble in

I H20, its presence in the CAE supports the previous suggestion that relative solubility (and
perhaps location outside the chloroplast) may determine the type of procedure required to
extract cellular carbohydrates. Clearly, mild extraction procedures can be used to obtain
highly soluble polysaccharides.

The presence of several other types of carbohydrates is indicated by the prominent3 doublets at 8= 5.08 and 5.40, and the smaller resonances at 8--5.20, 5.28, 5.49, and 5.52.
The chemical shifts and J-couplings are indicative of a-anomers. The less well-resolved3 peaks between 8=5.32-5.4 and 8=5.57-5.62 may likewise be a-anomers. Several of the
small resonances in the region 8=4.5-4.68 could be f-anomers, although their low intensity
makes positive identification difficult. The majority of the resonances in the cold aqueous

extract fall in the region between 8=3.0 and 4.4, which is consistent with carbohydrate-
containing material. A cluster of poorly-resolved, low intensity resonances between 8=7.4
and 7.65 could be due to aromatic protons, while a number of aliphatic resonances,
including well resolved doublets, are in the region 8=0.9-2.9.3 The anomeric region of the Phaeocysis CAE (Fig. 3.4c) is relatively noisy, but a
few anomeric resonances are clearly visible, such as the distinct doublet at 8=5.2. The3 chemical shift and the depth of the splitting suggest that this anomer may correspond to a
free a-anomer or the a-anomer of a low molecular-weight carbohydrate. A number of
sharp resonances in the region 8=4.45-4.55 may likewise correspond to free P-anomers.

Several other possible anomeric resonances are visible in the region 8=5.5 and 5.6; these
likely correspond to bound a-anomers. The water-suppression in the region 8=4.9 is
noisy, so it is difficult to determine if any of the peaks between 8=4.45-4.85 are due to
carbohydrate proton resonances. The pair of doublets centered around 8=5.7 probably3 represent a doublet of doublets, not an anomeric resonance. The rest of the spectrum shows
a number of distinct aromatic-type resonances in the regions between 8=6.0-6.3, and 7.7-3 8.1. A number of poorly-resolved resonances, some of which resemble high-molecular
weight carbohydrate resonances, dominate the region from 8=3.5-4.2, while the regionI

I
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from 6-0.9 to 3.5 contains poorly-resolved humps as well as a few sharp singlets and
doublets.

The spectrum of the E. huxleyi CAE (Fig. 3.4d) shows several prominent

resonances from 6=4.95-5.05. The strong doublet at 6=4.55 could be a P anomeric
resonance. Carbohydrate-like resonances are found in the region 6=3.5-4.0, while a series
of well-resolved doublets are found in the aromatic region (8-5.8-7.6), and the upfield
portion of the spectrum from 8=0.9 to 3.0 is dominated by sharp singlets and doublets.

The chemical shifts and J-couplings of the anomeric protons in the CAE were
generally consistent with mono- or oligosaccharides. The J-couplings of the bound
anomers were well-resolved, which is typical of oligosaccharides but not polysaccharides
(see Figs. 2.13, 2.14, and 2.15, for example). Some carbohydrates in the HAE and CAE

may differ only in molecular weight, since the partitioning of aqueous-extractable
carbohydrates in the HAE and CAE based partially on solubility. For certain cellular
components such as energy reserves, phytoplankton probably synthesize a continuum of
carbohydrate sizes, so certain types of carbohydrates differing only in molecular weight
might be found in both fractions. One example might be the Dunaliella HAE and CAE,
which both had prominant u-anomers at 8--5.4. This chemical shift corresponds to glucose
a(1, 4)-linked anomeric protons. Monosaccharide analysis of the Dunaliella HAE is all that
is needed to show that this extract contains amylose; the CAE might contain
maltooligosaccharides, which (unlike amylose) are soluble in cold water.

The Carbohydrate of Synechococcus WH7335

The cold aqueous extract of Synechococcus was greatest in mass and richest in
carbohydrates of all of the extracts tested. The goal of this work was to obtain

carbohydrates for use in bacterial degradation experiments (Chapter 5), and to further
characterize the carbohydrates of Synechococcus WH7335. The following section will
present a brief overview of previous work on the carbohydrates of cyanobacteria, followed
by the characterization of the carbohydrates of Synechococcus WH7335.

Carbohydrates of Cyanobacterla

Cyanobacteria contain carbohydrates in the cell membrane and as energy reserves, and can
also excrete carbohydrates. Carbohydrates can be a significant fraction of total organic

matter, in a Nostoc sp. for example, carbohydrates comprised 23-30% of total cellular
matter (Mehta and Vaidya, 1978). The cell membrane of cyanobacteria is high in

I
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carbohydrates, and shares characteristics of cell membranes of both gram-negative and
gram-positive bacteria. Like gram-negative bacteria, cyanobacteria have an outer membrane
surounding the cytoplasmic membrane. The cell wall, which may be up to 50% of total
dry cell mass, is composed principally of murein, a peptidoglycan (Lee, 1980). The
peptidoglycan layer of cyanobacterial cell walls is similar in thickness to that of gram-
positive bacteria, and also resembles gram-positive bacteria in degree of cross-linking, and
in the presence of covalently bound polysaccharides (Weckesser and Jurgens, 1988). A
polysaccharide of 25-30 kD, for example, was found to be covalently linked to the3 peptidoglycan of Synechocystis sp. strain PCC6714 (Jurgens and Weckesser, 1986). The
peptidoglycan components of cyanobacterial cell walls can include glucose amine, galactose3 amine, and mannose amine. Lipopolysaccharides, composed of mannose, galactose, and
glucose, as well as 0-methyl sugars such as 0-Me-xylose, -mannose, -arabinose, -fucose,
and -rhamnose, may also be cell wall components (Drews and Weckesser, 1982). Uronic
acids have also been found in cell walls (Schmidt, 1980; Bertocchi et al., 1990).

The composition of carbohydrate energy reserves is much simpler than cell wall3 composition. Granules known as "a-granules" accumulate in the space between the
thylakoids in actively photosynthesizing cells (Lee, 1980). These granules are made of 9-

S26 a(1,4)-linked glucose units, with a(1,6) branches. The polysaccharide can comprise
10-30% of total cell dry weight (Shivley, 1988).

Most cyanobacteria have an extracellular mucilage layer (often referred to as the

"sheath", "capsule", or "slime layer") which surrounds the cell wall (Lee, 1980). The
sheath can be up to I pm thick. Some cyanobacteria synthesize a fibrous external layer
which can envelope several cells, while others excrete a slime/mucilage which may partly
dissolve and no longer be associated with the cells; these slimy layers do not have well3 defined structure (Drews and Weckesser, 1982). Sheath carbohydrates may include 0-
methyl sugars (Bertocchi et al., 1990).3 Some species of cyanobacteria have been shown to excrete large quantities of
exopolysaccharides; extracellular polysaccharides were 14-18% of total biomass, for
example, in cultures of a species of Nostoc (Mehta and Vaidya, 1978). Cyanobacterial

exopolysaccharides are quite complex in composition; xylose, arabinose, ribose, glucose,
galactose, mannose, fucose, rhamnose, and glucuronic acid have all been reported (Drews
and Weckesser, 1982). Sulfate groups have also been found in some exopolysaccharides
(Bertocchi et al., 1990). No compositional information beyond monosaccharide3 composition has been reported for exopolysaccharides.

I
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Extraction of Synechococcus WH7335 3
Two cultures of Synechococcus WH7335 were extracted for this study. The first culture I
was harvested by initially centrifuging the medium to concentrate a viscous cellular pellet

which was removed from the flask by pipet; the medium was then filtered through
precombusted GF/F filters to harvest the cells which had not settled during centrifugation.

The cell pellet and the filters were stored frozen, and extracted separately. Both yielded the
same fractions when subjected to gel chromatography, but salt concentration appeared to be

significant particularly in the cell pellet fractions (note that the mass of the cold water extract I
from the first culture was nearly double that of the second culture, Table 3.1). The second

culture, therefore, was harvested by filtration without prior centrifugation. Because of the I
high viscosity of the medium, only ca. 40 mL of medium could be filtered through each

47mm GF/F filter. Each filter was then rinsed with a few mL of Q-H20 in order to remove3
as much salt as possible. The filters were frozen, and then extracted as previously

described. I
The spectrum of the CAE (Fig. 3.5) had relatively few resonances which are

definitely attributable to non-carbohydrate protons (the region from 8=0.9-2.8). An
expansion of the region between 8=5.85 and 5.7 (inset, Fig. 3.5) shows six distinct a-

anomeric resonances at 8=4.87, 5.10, 5.12, 5.17, 5.20, and 5.39. The sharpness of the

resonances suggests that at least the major component of the CAE is an oligosaccharide, I
rather than a polysaccharide (see Figs. 2.15, 2.17, andl 2.18 for comparison).

Fractionation of the Cold Aqueous Extract I
The lyophilized CAE was dissolved in Q-H20, and fractionated by gel permeation

chromatography. The first culture was initially fractionated on a Sephadex G-25 column 3
(100-3001 mesh, nominal exclusion on a dextran basis: 5000 daltons), 1.5 x 33.8 cm.,
with a void volume of 27.3 mL (corresponding to 24.8 min.) as calibrated with pullulan,

and a total volume of 59.8 mL. The mobile phase was Q-H20, pumped at 1.1 mL/min with I
a peristaltic pump (Pharmacia P-I). Carbohydrates were detected with a refractive index

detector (Showdex RI-71, detection limit ca. 5 Jig carbohydrate), and data were acquired 3
with a Hewlett-Packard 3396 11 integrator. Tests showed that better separation was

achieved on a Sephadex G-50 column (nominal exclusion: 10,000 daltons, 100-300 p 3
mesh), which was used to fractionate the extract from the second culture. The G-50 column I
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was 1.5 x 28.5 cm, with a void volume of 19.5 mL (as calibrated with pullulan, MW i
200,000 daltons) and a total volume of 49.6 mL.

The lyophilized CAE was dissolved in 8 mL Q-H20, and filtered through a 0.2 ;L 3
syringe filter to remove insoluble particles. One mL of the solution (1. mL total volume,

with rinse) was injected through a three-way injection port (Alltech). Figure 3.6 shows a 3
typical integrator trace: the extract was collected in five portions, Fl (15-22 minutes), F2
(22-31 minutes), F3 (31-48 minutes), F4 (48-64 minutes), and F5 (64-105 minutes).

Similar fractions were pooled and lyophilized, then dissolved in 0.5 mL D20 and examined

by NMR. Recovery of the CAE from the column was complete; of the 147.5 mg original

extract, 149. 4 mg was recovered: 3.1 mg was recovered as F1, approx. 0.5 mg as FP,
144 mg as F3, and 1.8 mg as F4. (Fraction 5 yielded only a few grains of material). The

slight discrepency in mass is probably due to residual water in F3, which tended to I
lyophilize as a waxy mass.

CHN analysis (Table 3.1) of a small amount of F3 which remained after the 3
polysaccharide degradation experiments (Chapter 5) showed that this fraction still contained
high quantities of nitrogen. While some of the nitrogen probably comes from protein

(which would account for the high-field proton resonances (8=1.0-2.8) observed in IH
NMR the spectrum (Fig. 3.5, for example)), the lack of observable 13C resonances in the

region downfield of 8.100 (explained further in the next section) precludes the presence of
a large quantity of proteins. (Small quantities of amino acids or proteins would not be
observable in the 13C spectrum.). Some of the nitrogen may occur in the form of residual 3
salts which co-eluted with F3.

A comparison of NMR spectra of the fractions showed that both the first and 3
second Synec hococcus cultures produced the same material. In the NMR investigations
below, all fractions (with the exception of Fraction 2) were from the second culture, since

the high concentration of salts (especially in Fraction 3) adversely affects the spectra. The
second culture produced less of Fraction 2 than the first culture (see discussion below), so
the material from the first culture was used for the NMR and compositional investigations

of Fraction 2.

NMR Analysis of Fraction I -Fraction 5 U
Fraction 1 corresponded to the void volume of the column (A10 kD); although the spectrum
showed several possible anomeric peaks at 8=5.0, 5.1, 5.25, 5.3, and 5.4, at least half of

the proton resonances corresponded to non-carbohydrate material (broad peaks between
8=0.9 and 2.6), so this fraction was not investigated further.

I
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Fractions 2 and 3 will be discussed at length below. Fraction 4 (Fig. 3.7) corresponded to

very low molecular weight material; the proton spectrum showed two distinct a-anomers, a

deeply-split (free?) resonance at 6-5.1, and a broader (bound?) resonance at 8=4.95, which I
may correspond to an a(1,6) linkage in a glucose oligosaccharide. The resonances between
6-3.1 and 4.0 were consistant with a small oligosaccharide. After lyophilization, Fraction 5 3
yielded only a few grains of white material (probably salt), which did not produce a signal

in an NMR spectrum acquired for several hours. 5
Fraction 2

The elution profile of F2 on the Sephadex G-25 column corresponds to a molecular weight

of 5-6 kD (based on a laminarin standard). The spectrum of F2 (Fig. 3.8) shows a distinct

anomeric resonance at 8=4.95, a low resonace at 8=5.1 which may correspond to a free a-

anomer, and several overlapping resonances centered around 8--5.35. The overlapping I
resonances suggest that F2 is a branched- or heteropolysaccharide. If P2 were a mixture of

linear polysaccharides, the resolution of the anomers at 8--5.35 should have been as high as 3
the anomer at 8=4.95. The broad resonance at 8=-5.35, and the behavior of F2 upon re-

chromatography (explained below) provided strong evidence that F2 is a branched- or

heteropolysaccharide. The resonances in the region 8=-3.3-4.1 show the general appearance

of a polysaccharide. A proton COSY spectrum of F2 (not shown) had generally low

resolution, which is also consistant with F2 being a high moleuclar weight polysaccharide.
The spectrum does distinctly show a cluster of anomeric resonances anl their crosspeaks

with #2 protons (Fig. 3.9); the #2 protons are all in the region 8-3.52-3.59. 3
A sample of F2 was analyzed for carbohydrate composition at the Complex

Carbohydrate Research Center (University of Georgia, Athens GA). The sample was 3
converted to TMS methylglycosides, which were analyzed by gas chromatography-mass

spectrometry. Glucose was the )nly carbohydrate detected in the sample, so P2 is not a

heteropolysaccharide. Based on the NMR spectrum, which clearly showed that F2 either

was a branched- or heteropolysaccharide, F2 must be a branched glucan. The behavior of

F2 on the G-50 column further supports this hypothesis, since when F2 was re-
chromatographed on the G-50 column, three overlapping subfractions with retention times

of 18, 34, and 42 minutes were detected. A retention time of 42 minutes would nominally I
correspond to an oligosaccharide of 3-7 sugar units, which is inconsistent with the NMR

spectrum. The spectra of all three subfractions were virtually the same, in spite of the 5
difference in their retention times. The three subfractions probably differ in degree of

branching, which would account for the differences in their chromatographic behavior. I

I
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cold aqueous extract.
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Since branches generally slow the passage of a polysaccharide through a gel column, the U
molecular weight estimate for the polymer (5-6 kD) represents a minimum.

Because F2 is composed of glucose, the linkage and branching positions can be

determined by comparing the chemical shifts of the anomeric protons with those of glucose
polysaccharide standards. The proposed structure of F2, an a(1,4)-linked glucose 3
polysaccharide with a(1,6) branches, is shown in Fig. 3.10. The anomer at 8=4.95 in Fig.

3.8 corresponds to an a(1,6) linkage (compare with Fig. 2.18, but note that Fig. 2.18 was 3
referenced to the HOD peak at 8=4.8, whereas Fig. 3.8 was referenced to internal acetone

at 6=2.2.). Likewise, the overlapping anomeric peaks clustered between 8=5.25-5.45

correspond to a(1,4) linkages. The variations in chemical shifts of the az(1,4) anomers

suggest that the main chain of this polysaccharide is ax(l, 4) linked, where the presence of

an a(1,6) branch slightly changes the chemical shift of the a(1,4) unit to which it is

attached. In addition, the ratio of integrated areas of the ax(1,4) anomer and the ct(1,6)

anomer is 4.2: 1.0, consistent with an a(1,4)-linked main chain with a(l,6) branches. The 3
frequency of branching will depend upon the size of the branches; two-unit branches (an

a(1,6) branch with an attached a(l,4) glucose), for example, would on average have

branches on every third glucose in the main chain, as shown in Fig. 3.10.
Finding an a(1,4) glucose polysaccharide with a(1,6) branches in the extract of

Synechococcus WH7335 is consistent with other reports on the carbohydrates of I
cyanobacteria. As discussed above, cyanobacteria accumulate branched glucans as energy

reserves, and Synechococcus sp. PCC6301 was also found to have a branched glucose 3
polysaccharide (Bertocchi et al., 1990). These polysaccharides can comprise up to 10-30%

of total cell dry weight (Shivley, 1988), but in Synechococzcus WH7335 they were only a

minor fraction of the cold aqueous extract. Either Synechococcus WH7335 was harvested

before it accumulated significant carbohydrate reserves, or the majority of the branched

glucose polysaccharide was not removed in the cold aqueous extract. Since aqueous

extractions at moderate temperatures have previously been used to obtain cyanobacterial

storage products (Weber and Wober, 1975; Shivley, 1988), Synechococcus WH7335
probably had relatively low carbohydrate reserves at the time of extraction. The second

culture of Synechococcus had lower concentrations of F2 than the first culture, which also 3
implies that level of energy reserves can vary between cultures. I

I
I
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!
Fraction 3
Correlation Spectroscopy (COSY) U

Fraction 3, which had an elution profile similar to that of oligosaccharides such as 3
maltoheptaose (MW 1153), made up the majority of the cold aqueous extract (Fig. 3.6). As
Fig. 3.11 shows, the proton spectrum of this fraction is very similar to Fig. 3.5, the 5
spectrum of the total extract. Six well resolved a-anomeric resonances and one small
possible P-anomeric resonance are clearly distinguishable. The resonances in general are

quite sharp, consistent with a DP3-7 oliogosaccharide (see for example maltotriose, Fig.
2.13). The only unusual reature is the lack of a prominent free f,-anomeric resonance, since
even for a DP7 oligosaccharide, a significant proportion of the free reducing end of the
oligosaccharide (which is 1r7th of the total anomeric resonances) should be in the P-form
(see Table 2.1).

A well-resolved proton COSY of F3 (Fig. 3.12) provided tL; - •ting basis for

determining the major components of F3. (Note that this spectrum was acquired as a COSY
90, with a P2 pulse of 900, for enhanced sensitivity.) The major a-anomeric resonances all
gave strong cross peaks, and the anomer at 8=5.1 was resolved into two overlapping

doublets coupled to #2 protons at 8=3.71 and 8=-3.53 (Fig. 3.13). Occasionally these sorts
of crosspeaks are observed as a type of 'spillover' from the anomeric proton, i.e., long-
range coupling with the #3 proton, as well as the #2 proton, results in a crosspeak at the I
corresponding chemical shift along the F1 axis (see the a-anomeric resonances of
isomaltose COSY, Fig. 2.8, for example). In this case, however, close examination of the 3
major resonance at 8=5.1 revealed a slight asymmetry on the upfield side, suggesting the
presence of two overlapping resonances.In addition, the smaller crosspeak at 8-=5.1 seems
to have a further strong crosspeak (a quartet) at 8=4.05, which is consistent with it being a
distinct anomeric resonance, not a result of relayed magnetization transfer. I

Carbon- 13

Sufficient material was available for the aquisition of a 13C spectrum (Fig. 3.14). A sweep
width of 200ppm (extending from 8=0-200) was used initially, but since all of the major 5
carbon resonances fell in the relatively narrow window between 8=58-96, a narrower

sweep width was used for acquisit;-n of a high-resolution spectrum. 5
I
I
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I Nine major and seven minor* carbon resonances were detected (arrows, Fig. 3.14).

Because no major carbon resonances were detected in the region between 8-15-20, the3 major carbohydrate components cannot include fucose or rhamnose, since the #6 carbon of

these carbohydrates is a methyl group with a chemical shift in this region. Similarly, the

Slack of a carbon resonance in the region 8=170-180 indicates that uronic acids are not a
major component of F3 (Bock and Pederson, 1983; Bock et al., 1984). The shift range
corresponds well with that expected of neutral carbohydrates, in which anomeric carbons

are generally found in the range 8=90-104, and #6 carbons are usually found in the range

8=60-69, with the #2, #3, #4, and #5 carbon resonances falling in between. Two carbons
(one major and one minor) have chemical shifts characteristic of anomeric carbons, while
four carbons (thrme major and one minor) have shifts close to the region where #6 carbons

I typically resonate. The carbons at 8.58-59 are slightly upfield from the usual range of #6

carbons, and could, in fact, correspond to #7 carbons--methyl groups attached to the ring3 carbons-which are often foutnd in the range 8=55-58 (Bock et al., 1984).

g Distorttonless Enhancement by Polarization Transfer (DEPT)

This possibility was investigated by acquiring DEPT spectra of F3 (Fig. 3.15). Figure3 3.15b is a DEPT 45 experiment, which shows all protonated carbons. The spectrum is

identical to Fig. 3.14, so all of the major carbons in F3 have attached protons. Figure3 3.15a, a DEPT 135 experiment, irverts -CH2 carbons and shows -CH and

-CH3 carbons in their normal orientation. All four carbon resonances in the region 8=58-593 are inverted, so all must be -CH2 carbons, and not -CH3 carbons. A DEPT 90 (not shown)

showed that all of the carbons in the remainder of the spectrum (8=66-96) are -CH carbons,

not -CH3 carbons.

The DEPT spectrum clarified the types of carbons present in F3, but the manner in
which the carbons are linked together is still unclear. The DEPT spectra show three major

and one minor #6-type carbon in F3, yet only two carbons (one major and one minor) have
chemical shifts characteristic of anomeric carbons. It is difficult to envision an3 oligosaccharide structure in which the anomeric carbons have the same magnetic (NMR)

environment-and therefore the same chemical shift-while their #6 carbons have

significantly different magnetic environments. In addition, if the major anomeric carbon at

"6=95.9 represents all of the major anomers, its peak height should be approximately equal

* The resonance marked with a question mark in Fig. 3.14 was resolved only when the spectrum was
processed with a line broadening value of 0, so its identification as an independent resonance is not positive.

I
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Fig. 3.15
DEPT spectra of F3. DEPT 1350 (a) inverts -C(I12 carbons, while DEPT 450 (b) shows all
protonated carbons. Referenced to acetonitrile (6=117.2)
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to the sum of the three major #6 carbons, which is clearly not the case. The minor anomeric3 carbon at 8=96.1, in contrast, appears comparable in height to the minor #6 carbon.

Heteronuclear Correlation Spectroscopy (HETCOR)

Acqusition of a HETCOR spectrum, which correlates carbons with their attached protons,3 was the next step in determining the structure of the major component of 13. Figure 3.16
shows eleven distinct crosspeaks, including all nine major carbons and two of the minor3 carbons. From the proton spectrum along the F1 axis, the identification of the carbons at
6=95.88 (the major a-anomer, with a proton shift 8=5.1) and 96.10 (a secondary a-
anomer, with proton shift 6=5.12) as anomeric carbons is confirmed. They are also

therefore both a-anomeric carbons; F3 does not have a significant p-anomeric carbon

component.

The DEPT 135 spectrum showed that all four crosspeaks in the region 8=58-59
correspond to #6 carbons; their proton chemical shifts overlap in the region 8=3.6-3.85.

3 The remaining five crosspeaks must correspond to #2, #3, #4, and #5 carbons. The proton

COSY can aid in determining their identity. Since the carbon spectrum will include only the3 most abundant components of P3, only the strongest resc lances in the proton COSY need

to be considered. Beginning with the strongest anomeric resonance (chemical shift of

-6=5.1, along line A in Fig. 3.17), a strong crosspeak is found at the intersection with line

B. The #2 proton must therefore be the doublet of doublets at 6=3.54, at the end of line B.

Continuing to the right along line B, a very strong crosspeak from the connection of the #2
and #3 protons is found at the intersection of lines B and C. The #3 proton therefore has a
chemical shift of 6=3.73. Backtracking along line C to the intersection with line D leads to3 another strong crosspeak, which must be the crosspeak from the #3 and #4 protons. The

well-resolved triplet at 6=3.4 therefore comes from the #4 proton. The crosspeak of the #43 and #5 protons is more difficult to identify, but an enlargement of the region (Fig. 3.18)
shows several low-resolution crosspeaks (circled) at the intersection of lines D and E. The
#5 proton must therefore be in the region around 6=3.8.

Returning to an expansion of the F3 HETCOR (Fig. 3.19), the proton assignments

along the F1 axis unambiguously identify the major carbohydrate carbons, with one

exception. The chemical shift of the #5 proton, which was determined to be centered
around 6=3.8, could correspond to the crosspeak at 6=70 or at 6=76.8. A search of the3 carbohydrate NMR literature ((Gorin, 1981)(Bock and Pederson, 1983)(Bock et al.,

1984)(Mclntyre et al., 1990)(Mclntyre and Vogel, 1990), for example) indicated that the

3 #5 carbon almost certainly corresponds to the resonance at 6=70.

I
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At this point, the identity of the remaining carbon with chemical shift 8=76.8 is
uncertain. The principle problem, however, is to determine the structure of a carbohydrate
with a nominal molecular weight in the range of 1000-3000 daltons which has no free 0
anomers detectable either in proton or carbon spectra. In addition, this structure apparently
has three major distinct types of #6 (-CH2) carbons, even though it has only one major
anomeric carbon.

Compositional and Linkage Analysis
Compositional and linkage analysis of F3 at the Complex Carbohydrate Research

Center (University of Georgia, Athens GA) provided some of the pieces to solve the
structural puzzle. To determine monomer composition, alditol acetates of the hydrolyzed
sample were analyzed by gas chromatography-mass spectrometry (GC-MS). Linkage
positions were determined by Hakomori methylation and GC-MS of the permethylated
alditol acetates. Table 3.2 shows that F3 was composed of glucose, galactose, mannose,
and glycerol in approximate ratios of 1.0:0.3:0.07.0.6. The reported concentration of

glycerol may be an underestimate, since triacetate derivatives of glycerol are volatile (Dr. R.
Carlson, pers. comm.). These components comprised 51% * of F3; the remainder is
presumably salt and the non-carbohydrate material seen at high field in the lH NMR
spectrum. Further chemical analyses carried out at the Complex Carbohydrate Research
Center demonstrated that pentoses, uronic acids, amino sugars, and acid-labile
carbohydrates such as 3,6-anhyrohexose were not components of F3. These data are
consistent with the results of the 13C spectrum (Fig. 3.14), which indicated that the
principle components of F3 were neutral hexoses. Linkage analysis showed that all three
positions of the glycerol were substituted; there were no free hydroxyl groups. Mannose

and galactose were present only in "terminal" forms, i.e. were linked to other components
only through the #1position. Glucose was present in two forms, 4-linked glucose (i.e.,
(1,4) linkages) and terminal glucose, in an approximate ratio of 2:3. Glucose, galactose,
and mannose are all common components of cyanobacterial cell walls, but glycerol has not
previously been reported to be a component of cyanobacteia carbohydrates or glycolipids
(Schmidt et al., 1980; Drews and Weckesser, 1982; Vaidya and Mehta, 1989; Bertocchi et
al., 1990).

* The relative carbon content of F3 analyzed at the Complex Carbohydrate Research Center is much higher
than for the sample of F3 used in CHN analysis. This is probably due to inhomogenaity of lyophilized F3.
Most of F3 was used in the culture series described in Chapter 5 and for monomer and linkage analysis;
only a small residue, which may have been relatively high in salt content, was available for CHN analysis.
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glycsl residum mole% &&gtmgmp

3 1,2,3-linked glycerol 29 92
terminal mannose 4 23
teminal galactose 16 96
glucose 51 296I (terminal glucose -32)

(4-linked glucose -19)I

* Table 3.2
Results of composition and linkage analysis of cold aqueous exwact F3 of
Synechococcus WH7335. (See text for analytical procedures.) Percentages
of terminal- and 4-glucose are calculated based on relative peak areas
of the GC-MS chromatogram acquired for linkage analysis.I
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e Structure of F 3

The proposed structure of F3 is a glycerol-phosphate oligosaccharide (Fig. 3.20). The
main chain of the oligomer consists of glycerol linked through a pair of phosphoric diesters 3
which sandwich an a(1,4)-linked glucose unit. Monomers of glucose, galactose, and
mannose are linked to the #2 carbon on each glycerol unit, and to the terminal" glycerol 3
positions on either end of the chain.

The proposed structure is a variation on teichoic acids found in the cell walls of
gram-positive bacteria. Teichoic acids are polymers of either ribitol phosphate or glycerol
phosphate (although a mannitol phosphate teichoic acid has also been identified (Kenne and
Lindberg, 1983)), in which repeating units are linked together through the phosphoric I
diesters. Glycerol-containing teichoic acids are the most common types of teichoic acids
(Kennedy and White, 1988). Some teichoic acids have neutral carbohydrates, amino acids, 3
or amino sugars linked to the ribitol or glycerol unit. Teichoic acid can comprise 20-40% of
cell wall dry weight of gram-positive bacteria (Lehninger, 1975). As discussed previously,
cyanobacteria share characteristics of both gramn-positive and gram-negative bacteria, and
the thick cyanobacterial cell wall is similar in construction to that of gram-positive bacteria
(Weckesser and Jurgens, 1988). I

Most of F3 was used as a substrate in the polysaccharide degradation experiments
(Chapter 5); the small amount of remaining material was tested for the presence of I
phosphorus using a standard colorimetric test (Koroleff, 1983). A sample containing 1965
gg of F3 was hydrolyzed in 42 pL 1.2 M H2SO4 for 3 hours at 100 OC. The solution was 3
then diluted with 958 p.L Q-H20 to reduce the H2SO4 concentration to 0.05 M, and
phosphate concentration was measured. Calibration with standards showed that the
solution contained 6.67 glM phosphate, which is equivalent to 413 jg phosphorus in 1965
jig of F3. If the proposed structure for F3 (Fig. 3.20) is correct, then F3 should contain
approximately 9% P or -180 jg P, assuming 100% purity. Sufficient phosphorus is I
available to account for the phosphoric diesters in the proposed structure. Since the exact
carbon content of the F3 residual is uncertain (see Chapter 5), stoichiometric quantification 3
of P and C will have to be carried out on material from a fresh culture of Synechococcus

WH7335. Biochemical considerations and a survey of the literature strongly suggest that

I
"Glycerol has three carbons; the terminal' positions are the #1 and #3 carbons, while the #2 carbon is in

the middle. 3
I
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the phosphorus in F3 is most likely contained in phosphoric diesters; 31p NMR studies I
should provide unambiguous structural identification.

The only other glycerol-oligosaccharide structures known to occur in bacteria are
glycolipids, which have long-chain fatty acids esterified to the #1 and #2 carbons of
glycerol, and a mono- or oligosaccharide glycosydically linked to the #3 carbon. The NMR 3
spectra of F3, however, are not consistent with a major lipid component, because
resonances characteristic of lipids were completely absent in all of the 13C and IH spectra.

In addition, extraction of glycolipids is usually carried out with organic solvents. Because
of the size of their hydrophobic moiety, glycerol glycolipids would probably not be found
in the cold aqueous extract of Synechococcus WH7335. The phosphate-containing m
structure in Fig. 3.20, in contrast, should be quite hydrophilic, is similar to known
structures found in gram-positive bacteria, and is consistent with the NMR spectra as well
as the linkage and compositional data.

A number of glycerol teichoic acids contain glycosyl residues in the main polymer 3
chain. Teichoic acids with two phosphoric diesters sandwiching a glycosyl residue, similar
to the structure in Fig. 3.20, have been found in species of Staphylococcus and
Micrococcus (Kennedy and White, 1988). Most glycerol teichoic acids are connected
through phosphoric diester linkages between the #1 and #3 carbons of successive glycerol
units, but linkages between the #1 and #2 carbons have been found in teichoic acids of I
Bacillus subdlis and Streptomyces antibioricus (Kenne and Lindberg, 1983). The

assignment of the #1 and #3 carbons of glycerol to phosphoric ester linkage positions in
Fig. 3.20 is based both on spatial considerations and on NMR spectra which suggest that
the #2 carbon has a direct glycosyl linkage, as explained below. The structure proposed in 3
Fig. 3.20 is sterically somewhat crowded, which may restrict free movement in solution.
The bulky structure, along with a high concentration of glycerol, may help account for the
high viscosity of the Synechococcus medium, and the mat-like cohesion of the cells.

The speculative feature of the proposed structure is the presence of terminal

glycosyl residues attached to the #2 carbon of glycerol. While teichoic acids with I
carbohydrate units directly linked to glycerol have been isolated, none of these structures
also contained carbohydrate units between pairs of phosphoric diesters as part of the main 3
polymer chain. The compositional data and the NMR spectra, however, support the
proposed structure. An oligomer of -3400 daltons (six glycerol units, n=2 in Fig. 3.20) 3
would have approximately correct glycerol:carbohydrate ratios, would conform to the
elution profile of F3 on the G50 GPC column, and is consistent with the NMR spectra.

The 'oligosaccharide-like'appearance of the IH NMR spectrum (Fig 3.11) is due to theI
Th 'liosccaid-lke apernc o te H M secru (ig311 i de o!h

3
I l1 m ll / m I l l l ) mI
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U absence of direct carbohydrate-carbohydrate linkages in F3; all of the carbohydrates are
linked either to glycerol or are sandwiched between phosphoric diesters.

The NMR spectra also provide compelling evidence for a direct carbohydrate
linkage to the #2 carbon of glycerol. The presence of glycerol accounts for the three -CH 23 groups detected in the DEPT experiment (Fig. 3.15); two carbons are from the #1 and #3
carbons of glycerol, while one is the #6 carbon of glucose. The previously unassigned3 carbon at 6=76.8 is most likely the #2 glycerol carbon. The carbon shifts of free glycerol
are 8=71.2 (#2 carbon) and 8=61.7 (#1 and #3 carbons), however, so the chemical shift of
the #2 carbon has been shifted downfield. The #2 glycerol carbon is chemically similar to
#2, #3, and #4 carbons in a monosaccharide ring, and literature data shows that the
chemical shifts of #2-44 monosaccharide carbons are moved downfield from 6=70-74 to
8-=76-86 when directly linked to a glycosyl unit (Bock et al., 1984). The chemical shift of
the #2 glycerol carbon, therefore, is consistent with a direct linkage to terminal glucose,3 galactose, or mannose.

The #1 and #3 glycerol carbons in F3, in contrast, are shifted somewhat upfield of3 their free glycerol resonance positions. Since for a monosaccharide, a direct linkage of a
-CH2 type carbon to a glycosyl unit also shifts the resonance position 5-8 ppm downfield,

the #1 and #3 glycerol carbons are probably not directly linked to a terminal
monosaccharide. In the case of isomaltose, for example, the ring 1 #6 carbon has a
chemical shifts of 8=64, while the ring HI carbon which is not part of an interglycosyl

linkage has a chemical shift of 8=59 (Table 2.3). Linkage of the glycerol #1 and #3 carbons
though a phosphoric ester may produce the slight upfield shift observed in the 13C

3 spectrum (Fig. 3.14). (Note that if the F3 oligosaccharide does have an approximate
molecular weight of 3400, the NMR signals of the #1 and #3 carbons at the ends of the
oligosaccharide which do have glycosyl linkages would not be abundant enough to be
resolved from the baseline of the 13C spectrum.)

Since only nine resonances dominate the 13C spectrum, and glucose comprises

more than 50% of F3, the major carbohydrate resonances are assigned to glucose. The
remaining three major resonances are from glycerol. The chemical shifts of six of the minor
resonances observed in Fig. 3.14 are assigned to galactose, which comprises
approximately 16% of F3 on a molar basis. The positions of the minor resonances in the

S 13C spectrum (Fig. 3.14) supports their assignment to galactose rather than to 4-linked

glucose. If the minor resonances were from 4-1inked glucose, they would (with the3 exception of the #4 carbon) closely correspond to the carbon shifts of the terminal glucose
unit. Instead, the minor resonances cluster upfield, and have chemical shifts consistent with3 galactose. The assignments of the #1 and #6 galactose carbons are based on the proton and

I
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DEPT spectra, respectively, while the assignments of the #245 carbons are based on I
comparisons with literature values (Bock et al., 1984). The most tentative assignment is of
the #3 and #4 carbons, since the relative resonance position of these two carbons can be
reversed. In this case, the two resonances nearly overlap, and assignment was made
arbitrarily. The complete assignment of the 13C shifts is given in Table 3.3. The resonances 3
of the 4-1inked and terminal glucose carbon most likely overlap, with one possible
exception. The identification of a seventh minor carbon resonance at 8=76.79 is tentative,
since resolution of this resonance from the major resonance at 8=76.82 is dependent upon
the line broadening value used to process the FID of the 13(2 spectrum (see footnote to

Table 3.3, and references in the beginning of Chapter Two, for details). If the seventh I
minor carbon resonance is real, it may corresponds to the #4 carbon of the 4-linked
glucose. I

Assignments of some of the anomeric protons can also be made. In Fig. 3.13, the
major anomer at 8=5.1 clearly belongs to glucose. Based on the 13C assignment, the
anomer at 8.5.13 must belong to galactose. The anomeric proton of 4-glucose, which is
linked to a phosphoric ester, most likely has a different chemical shift than anomeric proton

of terminal glucose, which is linked to the #2 glycerol carbon. Since 4-glucose is part of
the main polymer chain, its motion is more constrained and its anomeric resonance and
crosspeak would be less well defined than anomeric protons corresponding to terminal
monosaccharide units. The anomer at =--5.37, the usual position for a(1,4) glucose
linkages, therefore probably corresponds to the anomeric proton of 4-glucose. Exact
identitification of the other anomers is difficult; galactose corresponds to one of the small
anomers at 8--5.18, 5.2 1, or 4.95. Since terminal monosaccharides seem to produce
strong crosspeaks, and the chemical shift of a-galactose is usually found in the region near
8-5.1-5.2, the anomer at 8-5.18 is most likely a-galactose. The multiple low-intensity

anomers (including the small anomer overlain by the major glucose anomer at 6=5. 1) may
arise from monosaccharides attached to #1 and #3 glycerol carbons at either end of the
oligomer. Due to differences between 1H and 13C in isotopic abundance and NMR
sensitivity, the anomeric protons from these terminal monosaccharides would be
observable, even though the corresponding anomeric carbons would not be detected.

All of the carbohydrate linkages are a-anomers, and the lack of free p-anomers in
the 1H and 13C spectra (Figs. 3.11, 3.14) provides strong evidence that glycerol and
carbohydrates found in F3 are not merely co-occurring separate structures which were
coincidentally freed by the same extraction procedure. An oligosaccharide would normally
have a significant free reducing P end which should be detectable in IH and 13C spectra,
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-is relative intensity (highest peak =1) asignment

3 58.57 0.86 glycerol terminal C*
58.72 0.67 glycerol terminal C*
59.39 0.17 #6 galactose
59.67 0.66 #6 glucose*
66.56 0.22 #2 galactose
67.46 0.25 #3 galactose
67.49 0.23 #4 galactose
67.75 0.72 #4 glucose
69.20 0.23 #5 galactose
69.60 0.86 #2 glucose
70.10 0.77 #5 glucose
71.07 0.75 #3 glucose
(76.79** 0.20 #4 4-linked glu?)
76.82 1.00 glycerol #2 C
95.88 0.87 #1 glucose
96.10 0.21 #1 galactose

I
i * assignment of the terminal glycerol carbons and the #6 glucose carbon

may be reversed

"•identification as an independent resonance is tentative; processing the FID with line
"broadening (LB) = 0 produces a spectrum in which this resonance is resolved from the
major resonance at 8=76.82. With non-zero LB values, the base of the resonance at
8-76.82 is wider, and a second resonance is not identifiable.I

Table 3.3
13C chemical shifts of F3 from Synechococcus WH7335
(temperature 298 K; referenced to internal acetonitrile, 8=117.2)

I
I
I
I
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but the glycerol-phosphate oligosaccharide has no free reducing ends; all carbohydrate I
components are linked through the anomeric carbon either to glycerol or phosphate.

Although teichoic acids are common in gram-positive bacteria, neither teichoic acids 3
nor glycerol-containing carbohydrates of any nature have been previously reported in
cyanobacteria. This lack information is probably due to the extraction and analytical
procedures used in previous studies of cyanobacteria, rather than to a unique feature of
Synechococcus WH7335. Little structural information other than monosaccharide
composition is available for most cyanobacterial carbohydrates (Mehta and Vaidya, 1978;
Vaidya and Mehta, 1989; Bertocchi et al., 1990), and the usual problems of carbohydrate
identification-most procedures detect only a limited range of components-apply as well. I
Glycerol triacetates are quite volatile, which can impede detection by most derivitazation
procedures (pers. comm, Dr. R.W. Carlson, Univ. Georgia). In addition, phosphate
linkages are labile, and would be easily hydrolyzed by acid or base extraction procedures,
as well as by any of the common carbohydrate derivatization procedures. Studies of
cyanobacterial lipopolysaccharides also do not report any structures similar to Fig. 3.20,
but since phenol (Weckesser and Jurgens, 1988) or chloroform:methanol (Chaplin and
Kennedy, 1986) are usually used to extract lipopolysaccharides. a hydrophilic teichoic acid
would not be extracted by these methods.

Final confirmation of the teichoic acid structure of F3 can be made through
stoichiometric determination of the C:P ratio and 31p NMR studies. Further NMR
experiments designed to confirm linkage position and connectivites (nOe experiments, relay
COSY, selective decoupling, etc.) could also be made. Size calibrations of branched and
charged oligomers via gel permeation chromatography are problematic, since
hydrodynamic volume and electrostatic interaction with stationary phases can affect elution
time. Mass spectrometry may be useful in providing approximate molecular weight
estimates, and fragmentation patterns could provide more information about the repeating
units in the oligomer.

Conclusions

Synechococcus WH7335 produces large quantities of carbohydrates. Only 800 mL of
culture yielded over 70 mg of primarily carbohydrate-containing material just in the cold

aqueous extract. Further carbohydrates were contained in the hot aqueous extract, and the
residual cellular material probably contained more carbohydrates. In addition, the
cyanobacterium excretes very high quantities of carbohydrates into the culture medium.
One of the structures identified in the cold aqueous extract of Synechococcus WH7335 was
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I an a(l,4)-linked glucose polysaccharide with ca(1,6) branches, probably accumulated as an

energy reserve, with a minimum MW>5000 daltons. The proposed structure of the

principle carbohydrate component of the cold aqueous extract is a glycerol-phosphate

oligosaccharide in which a pair of phosphoric diesters sandwich an a(1,4)-linked glucose.3 The oligomer is structurally related to teichoic acids found in cell walls of gram positive

bacteria. If the structural assignment is correct, this is the first report of teichoic acids in

cyanobacteria.

I
I
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I Chapter Four
Effect of Chemical Structure on Carbohydrate Degradation

by Anaerobic Marine Bacteria
Degradation of Di- and Oligosaccharides

3 Introduction

As discussed in Chapter 1, the cycling of organic matter in anoxic marine sediments is
dependent upon an interplay of chemical and microbial processes. A combination of
microbiological and geochemical approaches is used here to provide new insights into the3 factors controlling the degradation of macromolecular organic matter. A first step in this
type of investigation was to establish model systems with which to study bacterial

I degradation of carbohydrates. The fundamental requirements were areproducible
experimental system in which substrate, intermediates, and products could be
characterized, and a natural mixed microbial population which approximated the

degradative capabilities of microorganisms in marine sediments. Model systems were well
suited for this study because the carbon source could be controlled, so carbon
transformations and recovery could be determined quantitatively. In addition, multiple
replicates could be made to check reproducibility of the cultures with every substrate in3 every culture series, as well as between culture series over time periods of months to years.

A series of structurally related di- and oligosaccharides were selected as substrates3 for the first several series of culture experiments because the degradation of these
carbohydrates has not apparently been studied in marine systems, even though low-
molecular weight carbohydrates, including some of the substrates used in the culture series,

have been identified in seawater (Sakugawa and Handa, 1985). The bacterial metabolism of
glucose and other monosaccharides is well understood (Wood, 1961; Gottschalk, 1986;
Clark, 1989), and fermentation of glucose disaccharides has been studied in pure cultures
of bacteria (Weimer and Zeikus, 1977; Bernier and Stutzenberger, 1987). Glucose uptake3 by bacteria in seawater (Vaccaro and Jannasch, 1966; Takahashi and Ichimura, 1971;
Gocke etal., 1981, for example) and sediments (Meyer-Reil, 1978) has also been3investigated. Uptake of specific low molecular weight carbohydrates other than glucose,
however, has apparently not been been investigated in marine systems. In studies of the
microbial populations of seawater and sediments, glucose uptake has been used as a proxy

for carbohydrate metabolism in general, even though the ability to ferment different
monosaccharides is variable among different species of bacteria. One of the characteristics
commonly used to differentiate pure cultures of bacteria from one another, in fact, is their
ability to metabolize specific hexoses or pentoses. In addition, while many bacteria can

I
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metabolize glucose, the ability to utilize glucose polysaccharides such as cellulose is
restricted to select groups of bacteria, so glucose metabolism does not necessarily reflect
metabolism even of glucose oligosaccharides. I

Bacterial degradation of carbohydrate-containing material in marine systems has
been investigated in studies focusing on the bacterial utilization of phytoplankton exudates 3
(Newell etal., 1981; Cole etal., 1982; Iturriaga and Zsolnay, 1983; Biddanda, 1988, for
example). A number of studies have shown that the phytoplankton exudates contain 3
carbohydrates (Burney, 1986), including high molecular weight polysaccharides (Khailov,
1968; Hama and Handa, 1987; Sundh, 1989). These carbohydrates have not been well
characterized, and little structural information other than nominal molecular weight range
was determined for the phytoplankton exudates.

The goal of culture studies described in this chapter was to establish a set of
reproducible model systems which could be used to compare the degradation of a series of
sruturally related di- and oligosaccharides. Because disaccharides are well within the 3
molecular weight range which can be directly taken up without extracellular hydrolysis by
bacteria, the degradation of these substrates corresponds to the dissolved monomers
-> total C02 transition (F) of Fig. 1.1. Variations in degradation rates or patterns for
different disaccharides must be due to the influence of specific structural features on the
ability of a diverse range of bacteria to take up or intracellularly degrade the disaccharides.
Studying the degradation of small, directly-ingestible carbohydrates therefore also provided
a reference for the polysaccharide degradation experiments presented in the next chapter. 1
Transformation of dissolved polymers to C02 involves at least two major transitions,
represented by E and F in Fig. 1.1. By comparing the degradation of carbohydrates which 3
have the same chemical structure and differ only in size, effects due to the requirement for
exiracellular enzymatic hydrolysis of a large polysaccharide (F) can be distinguished from I
effects which are attributable to bacterial transport and internal degradation of a smaller
carbohydrate with the same structure (E).

This chapter presents the results of a series of experiments in which replicate
cultures of anaerobic bacteria from sulfate-reducing sediments were enriched on a suite of
structurally related substrates. The disappearance of substrate was measured using high I
pressure liquid chromatography (HPLC), the evolution of gaseous end products (CO2,
CH4, H2S) was monitored with gas chromatography, and carbon balance was determined 3
at the end of each culture. I
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U Methods

3 In order to compare the degradation of several structurally-related substrates in parallel
cultures, a culture system which was reproducible and relatively simple was needed.5 Hungate anaerobic techniques (Hungate, 1969) were used to prepare replicate 120 mL
serum vials with 50 mL artificial seawater (Table 4.1) under a N2 headspace. The vials
were sealed with 10 mm butyl rubber stoppers and aluminum crimp-seals. After addition of

substrate and inoculum (described below), each series of culture vials was incubated in the
dark at 25 OC for the course of the experiment (20-25 days). A flow diagram of the cultureU experimental procedures is shown in Fig. 4.1.

Five series of experiments were conducted over a 9 month time period. Two to six
Ssubstrates were selected for each series, and most substrates were used in at least two

separate culture series in order to check reproducibility of results between culture series. In3 every case, a single substrate was added to an individual vial. All of the substrates and all
of the blanks (described below) were run in triplicate in every culture series.

I Substrates

3 In order to directly compare the effects of specific differences in substrate composition,
linkage position, and linkage orientation, eight disaccharides composed of monomers

Scommonly observed in marine environments (Cowie and Hedges, 1984; Hamilton and
Hedges, 1988) and a small size-range of maltooligosaccharides (Fig. 4.2) were selected as

I substrates for the degradation experiments. Four of the substrates were homodisaccharides,
in which two glucose units were linked together, and four were heterodisaccharides of
glucose-galactose, galactose-arabinose, or galactose-mannose. A number of features,
including monomer composition, linkage position, and linkage orientation can be directly
compared with this set of substrates. Cellobiose and lactose differ from one another in
monomer composition; the former is a f(1,4)-linked glucose disaccharide, while the latter is
a galactose-glucose disaccharide with a f(1,4) linkage (Fig. 4.2). Similarly, isomaltose is

I an a(1,6) glucose disaccharide, while melibiose is an a(l,6) galactose-glucose
disaccharide. Lactose and GLM (galactose-p(1,4)-mannose) both are p(1,4) linked3 disaccharides, composed of galactose-glucose and galactose-mannose, respectively. The
pairs of disaccharides maltose-isomaltose and cellobiose-gentiobiose differ in linkage
position, with (1, 4) and (1,6) linkages. Anomeric linkage (a vs. P) differentiate maltose

and cellobiose, and isomaltose and gentiobiose. GLA (galactose-0(1,3)-arabinose) differs
from the other substrates both in linkage position and composition, since it is the only

I
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NaCi 250 mM
MgSO 4 -7H2 0 30mM 3
MgCl2.6H20 20mM
CaQC2-2H20 101mM
KCI 10mM 3
NH4 CI 19mM
K2HPO4  0.33 mM

HEPES 15 mM U
resazurin 1 mL stock solution (0.1%)

trace metals 1 mL stock solution:
HCI 100 mM
MnCI2 .4H20 0.25 mM
COC12-6H20 0.8 mM
ZnSO4 -7H20 0.3 mM
H3BO3 0.1 mM 3
NiCI2-6H20 0.1 mM
CuCl2.2H2 0 0.01 mM
Na2MoO4-2H20 0.08 mM
sequestrine Fe (13% Fe) 1.0 g/L

Na2S 400 pM i

I
Table 4.1
Artificial seawater medium used for all cultures. Ingredients (except the Na2S) were

mixed in Q-H20, and then all further steps were carried out under N2, using Hungate
anaerobic techniques. The medium was boiled vigorously for approximately 4 minutes,
then was quickly cooled on an ice slurry, and the Na2S solution was added to the medium.
Medium was dispensed in 50 mL portions into 120 mL serum vials, which were capped
with 1 cm butyl rubber stoppers, crimp sealed, and autoclaved. Any vials in which the
medium showed any pink coloration upon removal from the autoclave (i.e., incomplete
reduction/ presence of oxygen) were discarded.

I
I
I
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I (1,3)-linked disaccharide, as well as the only disaccharide which includes a five-carbon
sugar, arabinose. The maltooligosaccharide series, maltose, maltotriose, maltopentaose,
and maltoheptaose, differ from each other only in size, since all are composed of a(1,4)
linked glucose units.I
Preparation of Substrates and Inoculum

I All substrates were used as received from Sigma Chemical Co. After the culture vials had
been prepared and autoclaved (see legend, Table 4.1), the substrates were dissolved in
deoxygenated water under N2, filter sterilized, and added to each vial. The final substrate
concentration (after addition of inoculum slurry) was lmM. The inoculum source was
sulfate-reducing, anoxic surface sediment (depth ca. 5 m), collected during October 1990
from Salt Pond (Woods Hole, MA), a highly productive marine glacial basin (Lee, 1992)).

I The bottom water and sediments are anoxic; the mud consisted of very fine-grained black
sediments. Srmdl (0.5 L) jars were filled to the top with mud and stored at 4 OC. The
inoculum was prepared by adding (under nitrogen) ca. 27 cm3 sediment to 70 mL of

oxygen-free deionized (Millipore "Q" system) water. The slurry was continuously mixed
on a magnetic stirring plate, and 1.5 mL was withdrawn by syringe and added to each vial.
Total sediment addition to a vial typically ranged from 80-100 mg dry weight, which
corresponds to approximately 150-250 pmol carbon (see below); no systematic differences

Sin culture behavior with inoculum mass were observed for any culture. Total volume of
each culture was 52 mL (50 mL medium, 0.5 mL substrate solution, and 1.5mL inoculum

3 slurry.)

U Culture Sampling

For every culture series, each vial was subsampled for headspace gas composition and

concentration, pH, and substrate concentration on a daily basis for the first 15 days; further
samples were taken at 20 to 25 days. Visual examinations of the cultures by phase-contrast3 microscope were made on a periodic basis, and total C02 was determined three to four
times during the course of each experiment.

Headspace Gas Measurement

I Gas analyses were made by isothermal gas chromatography (GC; Shimadzu GC-8A),

using a thermal conductivity detector (TCD), dual custom columns (Hayesep Q, 100/120

I
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mesh, 8' teflon-coated stainless steel; Alltech) and a glass-lined injection port. The carrier

gas was ultra high-purity N2 at a flow rate of 50 mL/min. Inlet and detector temperature
was 700 C, column temperature was 500 C, and TCD current was 90 mA. Signal output

was stored and processed with a Vista Varian 402 integrator. The GC system was
calibrated with two gas standards consisting of 100% CM1 , and of 5% C02 and 10% H2 in

N2. Injection volume was 250 giL; detection limits were 180, 130, and 2 ppm by volume
for C02, CH4, and H2, respectively. Hydrogen sulfide was also detected both in

headspace gases and in acidified medium (measured for total C02 determinations; see
below), but was not quantified rigorously because of reactivity witha section of stainless

steel tubing connecting the teflon-lined column with the TCD. Instrumental standard
deviation for replicate measurements of a standard gas mixture was 4%.

Substrate Quantification

One mL medium was removed from each vial daily for the first 15 days to determine
substrate concentration. The pH was measured, and the medium was filtered to remove
large particles and stored in a clean vial at -400 C for later analysis. The samples were
prepared for carbohydrate analysis by bringing them to room temperature, and removing

500 0d from each vial. To partially desalt the sample, the medium was passed through a
pre-rinsed "On-Guard" Ag column (Dionex Corporation) and collected along with a 2500

pL Q-water wash. The mini-column was rinsed with 2500 ILL Q-water between samples.
Approximately six samples (3 mL medium) could be desalted per cartridge; no carryover
was observed between samples. The 3000 ML (sample + rinse) were reconcentrated by
placing the vial in a warm sand bath and evaporating the sample to dryness under a stream
of nitrogen. The samples were redissolved in 500 pL Q-water prior to analysis. Tests with

standards demonstrated that carbohydrate recovery from the desalting and evaporation
procedure was 100%.

The samples were analyzed for carbohydrates using a high-pressure liquid
chromatography (HPLC) system consisting of two 15 cm, 31L NH2-bonded Si cartridges

(Alltech) connected in series and an evaporative light-scattering detector (ELSD; Varex

Corporation). The mobile phase was 65:35 acetonitrile:water at lmLimin. With this
mobile phase, DP1-DP6 oligosaccharides (for example, glucose-maltohexaose) are

completely separated, although the DP5-DP6 peaks are very broad (Fig. 4.3). To improve

peak resolution, maltopentose and maltohepatose were analyzed with a 50:50

acetonitrile:water mobile phase. If any smaller oligosaccharides had been present in the
medium as intermediates from the degradation of the larger maltooligosaccharides (see
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below), they would still have been resolved under these conditions. Monosaccharides I
(glucose, galactose, mannose, fucose, ribose, rhamnnose, arabinose, and xylose) can also

be separated with this system, using an 87:13 acetonitrile:water mobile phase at a flow rate 3
of 0.8 m~lmin., although glucose and galactose, and ribose and rhamnose, are not
baseline-resolved. The ELSD was run at a temperature of 150P C with a nitrogen flow rate

of 50 mL/min and a time constant of 5 seconds. Data was acquired with a Hewlett-Packard
3396 11 integrator. Standard deviation of replicate analyses was 6%. Initial substrate

concentration per 100 iaL injection was approximately 35 ga, the detection limit of the I
system is approximately 1 Lag carbohydrate. I
Total C02 Determination

Total C02 was measured three to four times during each culture series by separately

determining C02 in the medium, and adding this quantity to the headspace C02 which was

measured on a daily basis. To determine C02 in the medium, 1 mL medium was

withdrawn from each vial (and replaced by 1 mL of nitrogen) and injected into a nitrogen-

filled, sealed 10 mL serum vial. The medium was acidified to approximately pH 1 by
addition of concentrated HCl, and shaken for 15 minutes on an orbital shaking table before

250 pL of headspace were removed with a gas tight syringe for GC analysis. Standard I
deviation of replicate measurements of C02 in the medium was 6%.

Addition of carbon other than substrate to the cultures was minimized in order to ensure I

that the carbohydrate substrate was the sole carbon source for bacterial growth. The artifical

seawater medium in each culture contained 0.154 pmol carbon in the form of Sequestrine I
(Ciba-Geigy; a chelated iron complex necessary to prevent precipitation of iron upon
autoclaving). Resazurin (a redox indicator), and HEPES buffer added an additional 258 n

imol carbon. Measurements of Salt Pond sediments collected at the same site in autumn of
1992 showed the average organic carbon content was -1800 gtM/cm 3 (pers. comm., Dr. 3
Brian Howes). Approximating from inoculation volume and the quantity of sediment

remaining in the inoculum slurry after culture inoculation, 150-250 Imol additional carbon

could potentially be available to the bacteria. For all disaccharides except GLA (which as a
hexamer-pentamer disaccharide contains only 11, not 12, carbons), substrate concentration

was equivalent to 624 pmol carbon (GLA concentration was equivalent to 572 gtmol
carbon). Substrate carbon therefore comprised 55-60% of the total carbon in the medium, I

I
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including carbon in the buffer and inoculum slurry. In order to check that the bacteria were

not utilizing the buffer or substrates which might be present in the inoculum slurry, a series
of blanks were included in each culture series. The blanks consisted of vials with substrate
which were not inoculated ("B vials"), vials without substrate which were inoculated ("I

vials"), and vials which were inoculated and autoclaved before substrate was added

("IAS" vials). All three types of blanks showed only a low background level of CO2 (<5

punol) which was attributed to degassing of the CO2 naturally present in the water used to
make the medium. The substrate levels in the B and IAS vials were identical on the first and3 last days of the culture experiments, demonstrating that loss of substrate was not due to

sorption to the vial or sediment particles.

I Results and Discussion

General Results

In almost all culture experiments, substrates were consumed within 2-4 days of

I inoculation. Fig. 4.4 shows a typical profile (maltose in this example) of substrate

disappearance and evolution of gases in the headspace. Substrate concentration decreased3 slightly on day 1, and was below the limit of detection on day 2. Headspace CO2 levels

rose sharply between day 2 and 6, increased slowly until day 12, increased at a faster rate

between days 13 and 15, and reached a final level of 97 pimol on day 25. Hydrogen was

detected in the headspace on day 1, increased in concentration through day 3, and then
decreased abruptly and was below detection limit by day 5. Low levels of methane, which

I persisted through the course of the experiment, were first detected on day 4. Hydrogen

sulfide (not shown in Fig. 4.4) was first detected in the headspace on day 4, and steadily

I increased in concentration with time. Recovery of substrate carbon as total C02 at the end

of the culture series (20 or 25 days) typically was between 60% and 70% of the theoretical3 maximum (i.e., the amount which would be present if 100% of the substrate were

converted to C02). Approximately 0.25% of the total carbon was converted to CH4.

The pattern of swift substrate consumption, followed by a several-step increase in

CO2, conforms to a sequence of degradation steps which would be expected from an
anaerobic bacterial consortium. Disaccharides are within the size range which bacteria can3 directly ingest, so uptake is not limited by the need for initial extracellular hydrolysis of

substrate. Pure culture studies have demonstrated that bacteria can swifly consume
Sdisaccharides; cultures of Thermomonospora cwvata, for example, reduced cellobiose

levels from 9 mM to 1 mM over a timespan of 23 hours (Bernier and Stutzenberger, 1987).I
I
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I
The pattern of C02 evolution is also consistent with the substrate consumption

I pattern. Carbon dioxide is one of several products of the initial stages of carbohydrate
fermentation by a culture of bacteria (Wood, 1961; Gottschalk, 1986). Anaerobic bacteria3 which ferment carbohydrates typically assimilate approximately 10% of the substrate
carbon (Clark, 1989), and excrete most of the remainder in the form of low molecular
weight organic compounds such as short-chain acids, alcohols, and C02. The acids and
alcohols are taken up by other bacteria in the community, which can further utilize them,
ultimately oxidizing much of the carbon to C02. The initial increase in C02 observed in the
cultures most likely corresponds to C02 produced directly from substrate fermentation. The
'plateau' in headspace C02 between days 6 and 11 probably represents the time required by3 the next group of bacteria to double to sufficient numbers to convert the short-chain acids
and alcohols produced in the initial fermentation to C02. Initial bacterial numbers, bacterial3 doubling time, as well as rate of substrate conversion, will determine the amount of time
required to metabolize a specific substrate.

The transient presence of small organic acids as secondary metabolites in the
cultures was also indicated by temporary changes in medium pH. In all of the cultures,
medium pH provided a subtle indication of changes in quantities of acidic fermentation

products (presumably acetate, lactate, etc. in addition to C02) in the culture medium.
Substrate degradation was accompanied by a decline in medium pH of up to ca. 0.9 pH3 units. (Note that this drop occurred in spite of the 15 mM HEPES buffer in the medium;
pH control had been a problem in initial test cultures with lower buffer and higher substrate

I concentrations.) The decline was presumably due principally to the production of small
organic acids, and not to the presence of C02, because as headspace C02 levels increased
between days 5 and 15, pH also gradually increased. This is consistent with conversion of

oeganic acids to C02. The opposite effect would be expected (i.e., a decrease in headspace
C02 with an increase in pH) if headspace C02 levels were simply a function of carbonate
equilibrium in a closed system. Biological production of C02 from organic acids dominated
changes in both pH and C02 levels in these cultures. By the end of the culture series, the3 pH returned to its initial level, implying that organic acids produced early in the culture
series had been completely consumed and converted to cellular carbon and C02.

I The sequential nat,, of these transfc-.nations is also indicated by the appearance
and subsequent consumr te -f H2 in the headspace from day 2 to day 5:1H2 is a byproduct
of carbohydrate fermentation, and is utilized by bacteria such as sulfate reducers and
methanogens. The appearance of low levels of M2-14 is reasonable in these model marine
systems, since simultaneous high levels of sulfate reduction and low levels of

I
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methanogenesis have been observed in a wide range of marine sediments (Winfrey et al.,

1981; Kuivila et al., 1990), and references therein.) Sulfate-reducing bacteria can

outcompete methanogenic bacteria for substrates such as H2 and acetate, but methanogens

can also utilize 'non-competitive' substrates such methanol, trimehylaniine, and

methionine (Oremland and Polcin, 1982). Methane typically was initially detected on day 4

or day 5, and reached a maximum concentration of 1-2 jImol by day 7. The methanogens in

the cultures could therefore be utilizing non-competitive substrates which were a byproduct

of initial carbohydrate fermentation. Methane production could also be a function of I
bacterial growth rate. There are two major groups of sulfate reducers, one of which can

only incompletely oxidize substrates such as lactate to acetate, and a second group which I
can oxidize substrates including acetate completely to C02. Most acetate-utilizing sulfate

reducers double much more slowly than the sulfate reducers which cannot utilize acetate

(Widdel, 1988). If the methanogens double faster than the acetate-utilizing sulfate reducers,

for example, they may be able to utilize acetate until the sulfate reducers reach sufficient

numbers to control substrate utilization.

The melibiose cultures, in which CH4 levels usually reached 5-6 tzmol by day 7,

were the only exceptional case. The higher level of CH4 production was probably due to

trace levels of methanol which may have been inadvertantly introduced with the substrate

solution. Since melibiose is prepared commercially by recrystallizing from dilute solutions

of methanol in water (pers. comm., U.S. Biochemicals), methanol may have taken the
place of some of the waters of hydration in the melibiose crystals. There is no direct

spectroscopic evidence, however, of methanol in the melibiose solutions. NMR spectra of

melibiose were inconclusive, since the methanol -CH3 group has a chemical shift in the

most crowded region of the melibiose spectrum. Comparison of spectra by subtraction was

also attempted. The sample was evaporated (which would theoretically remove the

methanol) and redissolved in D20, and a second spectrum was acquired under the same
conditions. The results were again inconclusive; the low levels (<1% on a carbon basis) of

methanol, if present, were not detectable against a high background signal level. Methanol

contaminant could not be the source of methane in the cultures enriched on other substrates,
however, since the other substrates such as lactose are commercially prepared by

crystallization from pure water (pers. comm., U.S. Biochemicals).

Reproducibility

The headspace gas results show that this culture system fulfills a major prerequisite

for comparative degradation experiments: results were highly reproducible, both within ,I
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Striplicate vials for each culture series, and between culture series run several months apart.

Figs. 4.5 and 4.6 show headspace C02 for lactose and maltose cultures during two

3 different culture series: reproducibility between the triplicates of a series, as well as

between the same substrate run in several series, was very good. The standard deviation of

headspace C02 measurements for an individual vial measured three times was 8%, while

standard deviation of three replicate vials in an individual culture series ranged from 8-25%

during the initial few days of the culture series, and was 7-14% for the later time points.

3 Standard deviation of headspace C02 levels in different culture series which included the

same substrate (as shown in Figs. 4.4 and 4.5) was 10-25% for the first several days of

3 the culture series, and 1-8% for the later time points. Relative changes in headspace C02

levels were the greatest during the initial timepoints in a culture series, which accounts for

I the differences in standard deviation over the course of the series.

In addition to being reproducible, the cultures exhibited a sequence of

transformations which are consistent with previous observations of anaerobic bacterial

communities and consortia studies. Enrichment cultures of this type may serve as

reasonable, simplified models of bacterial communities in anoxic sediments. This system

3 could therefore be used to study the degradation of other substrates, such as proteins,

lipids, or other types of complex organic matter. By eliminating many of the problems3 associated with matrix effects and uncharacterized and unquantified carbon sources, and by

using a system simple enough to be run with multiple replicates, the effect of specific

Sfeatures of substrate structure can be directly compared, and bacterial transformation

processes of these substrates can be studied in detail.

I Homo- and Heterodlsaccharldes

3 The lactose and maltose headspace C02 plots (Figs. 4.4 and 4.5) highlight a subtle

difference between glucose homodisaccharide and heterodisaccharide substrates. As shown

3 in Fig. 4.7, headspace C02 increased very quickly for the glucose homodisaccharides

(solid symbols), regardless of linkage orientation (a or P) or position ((1,4) or (1,6))

I (isomaltose, which is not shown, yielded a profile similar to maltose). Headspace C02 for

the four heterodisaccharides (open symbols)--lactose, melibiose, GLM, and GLA-all

showed at least a slight initial delay. In every case except lactose, the slight delay in

evolution of headspace C02 mirrored a slight delay in substrate degradation (Fig. 4.8). The

most significant difference in substrate utilization was between cultures enriched on GLA

1 and all of the other substrates, whether homo- or heterodisaccarides. Complete

disappearance of GLA from the culture took 9 days, at least twice as long as for any otherI
I
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I substrate (2 to 4 days) (Fig. 4.8). Again, initial C02 levels in the headspace were closely
tied to substrate degradation. The lag in degradation of substrate was mirrored by a lag in
headspace C02 (Fig. 4.7), which increased very slowly for the initial 8 days, increased

abruptly between days 8 and 11, and was similar to that of other cultures between days 12
and 25.

Recovery of carbon as C02 at the end of the culture series was comparable for GLA
and maltose (Fig. 4.9). Because total C02 was measured only three times (days 6, 13, and3 15) for this series of cultures, total C02 levels on day 25 were calculated in two ways. The
solid symbols for the day 25 point in Fig. 4.9 represent the sum of C02 in the medium
measured on day 15, and the headspace C02 level measured on day 25. Since an increase
in headspace C02 was measured in both cases, C02 in medium must also have increased.
The open symbols for the day 25 timepoint represent the sum of the measured headspace
C02 level plus an estimate of C02 in medium. The estimate was made by determining the
ratio of C02 in medium to C02 in the headspace on day 15. The quantity of C02 measured3 in the headspace on day 25 was multiplied by this ratio to arrive at an estimate of C02 in
medium.3 Particularly for GLA, this calculation most likely significantly underestimates actual
C02 levels in the medium, because large quantities of organic acids were still present in the
medium on day 15, as indicated by pH. Figure 4.10 shows headspace C02 and medium

pH levels for both maltose and GLA. As previously described, pH drops initially with
production of C02 from substrate carbon, then increases with production of C02 from
secondary metabolites. A comparison of Figs. 4.9 and 4.10 shows that the (measured) total
C02 levels of the maltose culture increased from 40% to 63% of the theoretical maximum

I between days 13 and 15 (Fig. 4.9), when headspace C02 also increased and medium pH
returned to initial values (Fig. 4.10). For GLA, however, measured total C02 was virtually

I constant between days 13 and 15, and pH level did not return to initial values until some
time between 15 and 25 days. A lower pH level, driven by the presence of organic acids,
would keep the ratio of medium/headspace C02 low, and therefore the medium/headspace

ratio on day 15 is almost certainly lower than the ratio on day 25. For maltose, for
example, the mediunvheadspace C02 ratio was 2.9 on day 13, and had increased to 3.4 by
day 15. For GI.A, the ratio was 2.6 on day 15. Using a ratio of 3.4 for GLA on day 25,
for example, would have yielded a total C02 level of 65.9% of the theoretical maximum.

I
I

I
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1 Degradation of GLA

I The slow degradation of GLA could have a number of causes, including the need
for enzyme induction, the specific linkage or monomers of the substrate, or initial numbers3 of GLA-degrading bacteria. Most of these possibilities can be eliminated, however, and
several lines of evidence suggest that bacterial numbers account for the lag in GLA3 degradation. The time lag in GLA degradation is probably not due to enzyme induction,
since induction of other carbohydrate-degrading enzymes such as ,-galactosidase-used in
lactose degradation-occurs on the order of 30 minutes (Gottschalk, 1986). The

composition of GLA is not unusual, since its component monomers, galactose and
arabinose, are two of the eight neutral monosaccharides most commonly found in marine
environments (Cowie and Hedges, 1984; Hamilton and Hedges, 1988). Arabinan and
galactan polymers are known to occur naturally (Aspinall, 1983). Neither linkage position3 nor anomeric linkage are unusual, since fK(1,3) linkages are found in a range of marine
carbohydrates, including chrysolaminarin, a storage product of prymnesiophytes (Lee,3 1980). In addition, 0(1,3) hydrolase activity has been demonstrated in a number of diatoms
(Myldestad et al., 1982) and has been detected in beach sands collected from beneath
decomposing macrophytes (Wainwright, 1981). It is therefore unlikely that GLA is

intrinsically difficult to degrade because of its component monomers or linkage.
To determine whether bacterial numbers significantly affected GLA degradation, a

GLA culture was grown until day 10, when the headspace C02 increased sharply, and 0.5
mL medium was then used to inoculate a second vial. As shown in Fig. 4.11, the lag in3 C02 production in the transfer culture was half of that in the original culture. These results
suggest that the rate of degradation of GLA is related to the number of GLA-degrading3 bacteria present in the initial inoculum. The ability to degrade GLA is probably not
widespread among bacteria, and a relatively uncommon bacterium is responsible for GLA

degradation.

Why might only select bacteria have the ability to degrade GLA, when both the
component monomers of GLA and p(1,3) linkages are common in marine systems? The
unusual feature of GLA might be its hexamer-pentamer combination: arabinose lacks a #6
carbon, which might be a critical feature in a substrate-enzyme complex used to handle3 most disaccharides. GLA is sufficiently small to be ingested without extracellular
hydrolysis, so the critical step might be either intracellular transport of the dimer (i.e. from3 the periplasmic space through the cell membrane), or actual hydrolysis of the bond within
the cell.

I.
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I
Intracellular transport of carbohydrates has been studied extensively in a few gram-

negative bacteria, and several different systems which transport carbohydrates into the

cytoplasm have been identified. Group translocation systems modify a substrate--for3 example, by adding a phosphate group--during transport, while permease systems co-

transport the unaltered substrate and H+ (or in some cases Na+ or Li+) (Nikaido and Saier3 Jr., 1992). Binding-protein permeases, which require ATP, are also common in gram-

negative bacteria (Gottschalk, 1986). Glucose and other monosaccharides are often

transported via group translocation systems, such as the phosphoenolpyruvate-

phosphotransferase system, which phosphorylates hexoses at the #6 carbon as they are
transported. Although not found in all bacteria, phosphotransferase systems are common in3 anaerobes. Two glucose phosphotransferase systems have been identified in the gram-

negative bacterium Escherichia coli. One system is specific for glucose, while the other can3 transport glucose, mannose, and "other sugars with different substituents at carbon 2 of the

hexose ring" (Emi, 1989). The same carbohydrate may be transported using different

systems in different bacteria. For example, some bacteria transport disaccharides such as

lactose using group translocation, while others transport lactose via a permease system

(Gottschalk, 1986). The same bacterium may also contain a variety of transport systems

which become active under different environmental conditions. In bacteria with permease
systems for disaccharides, internal degradation often occurs through phosphorylytic

3 cleavage. Cellobiose and maltose, for example, are internally hydrolyzed to glucose-I-

phosphate and glucose (Gottschalk, 1986).

3 A common feature of the transport and hydrolysis systems is that the proteins are

specific for a substrate or a small range of substrates. For phosphorylation and

phosphorylytic cleavage, the #6 and #1 carbons are crucial. In the case of GLA, the

bexamer-pentamer substrate combination may be unusual enough that relatively few

bacteria have the biochemical machinery necessary to transport or hydrolyze GLA. Without

a #6 carbon on one of its component monomers, GLA might not fit a standard template. If
the ability to degrade this hexamer-pentamer combination is relatively rare, the long initial3 delay in degradation observed in the culture experiments would be a reflection of the

amount of time necessary for a relatively uncommon bacterium to reach numbers sufficient

to degrade all of the substrate. In the absence of information on the structure of most

marine oligo- and polysaccharides, the natural occurrence of these types of structures in

3 marine environments cannot be assessed.

I
I
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Degradation of Maltooligosaccharides I

In order to determine whether there were any distinguishable differences between
degradation of a size range of oligosaccharides, and in particular whether any lower
molecular weight oligosaccharides were produced and released into the medum as 3
intermediates during degradation, a series of maltooligosaccharides were used as substrates
in a culture series. All substrate concentrations were adjusted to a ImM dimer equivalent
level: I mM DP2 (maltose), .667 mM DP3 (maltotriose), .400 mM DP5 (maltopentaose),
and .286 mM DP7 (maltoheptaose). The degradation of the maltooligosaccharides occurred
very quickly, and the profiles of substrate disappearance and production of total C02 were i
virtually identical (Fig. 4.12). HPLC analysis of the medium showed that no lower
molecular-weight oligosaccharides accumulated in the medium as degradation intermediates 3
in any of the cultures.

The uniform pattern of substrate degradation in the DP2-DP7 maltooligosaccharide

cultures was somewhat surprising. In general, DP5 and DP7 oligosaccharides are too large
to be directly taken up, and must be hydrolyzed outside the •l by exoenzymes before they
can be utilized by bacteria. The nearly identical pattern of substrate uptake, and the lack of
observable lower molecular weight oligosaccharides in the maltopentaose (DP5) and
maltoheptaose (DM7) cultures, could have two possible explanations. Either extracellular 3
hydrolysis and uptake are very closely coupled, so that intermediates were taken up too
quickly to accumulate to detectable levels, or some of the bacteria in the cultures have
special uptake channels for maltose, as has been observed for E. coli, another common
gram-negative bacterium.

As discussed in Chapter 1, bacteria take up hydrophilic substrates such as
carbohydrates through trimeric proteins which form water-filled pores (porins) which span
the bacterial outer membrane. These porins typically have an uptake limit of 600 daltons
(Weiss et al., 1991), which is approximately the equivalent of a trisaccharide. Maltoporin is
an inducible porin (i.e., expressed only in the presence of maltooligosaccharides) which 3
has been extensively studied in E. coli. These studies (Benz, 1988, and references therein)
have shown that maltooligosaccharides up to maltoheptaose can be directly taken up 3
through a maltoporin. If maltoporin is also found in some species marine bacteria, then the
entire maltooligosaccharide series could be taken up directly without extracellular

hydrolysis, so that substrate degradation and evolution of C02 would be the same for each
member of the maltooligosaccharide series. The structure and substrate specificity of porins
has been extensively studied, but the porins have come from a restricted range of bacteria.
A search of the literature revealed that references to maltoporin are limited to E. coli. The I

!
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only studies which have been carried out on marine bacteria focused on structuralI
determinations of the general diffusion porins of the marine phototrophs Rhodobacter
capsulatus (Weiss et al., 1990) and Rhodobacter sphaeroides (Benz, 1988; Nikaido and
Saier Jr., 1992, and references therein).

A study of the degradation of mixtures of DP2-DP6 cellooligosaccharides by pure
cultures of rumen bacteria showed that while extracellular hydrolysis aid uptake can be
closely coupled, changes in relative distribution of the cellooligosaccharides can be

detected. As concentrations of cellohexaose and cellopentaose in the culture medium
decreased, concentrations of lower molecular weight cellooligosaccharides increased.
Although complete degradation of the cellooligosaccharides occurred on a timescale of •
hours, the changes in cellooligosaccharide composition were clearly resolved using HPLC

analysis of the medium (Russell, 1985). Pure cultures of starch-degrading rumen bacteria 3
also produced a range of oligosaccharides during the initial steps of degradation. Co-
cultures of these bacteria produced detectable levels of maltooligosaccharides from starch in 3
most, but not all, cases. Uptake of maltooligosaccharides in one co-culture was swift
enough that starch degradation products were not detected, even though the polysaccharide-
degrading member of the co-culture had been shown to produce a range of
maltooligosaccharide intermediates from starch when grown in pure culture (Cotta, 1992).

Either scenario-maltoporin, or closely coupled hydrolysis and uptake-is possible 3
for the maltooligosaccharide cultures. In all cases, no accumulation of smaller
oligosaccharides in the medium was observed, even for time points at which the original
substrate was partly consumed. Better resolution might be achieved by taking more
frequent and larger samples of the medium during the initial 72 hours of the culture. One
way to distinguish between the two possibilities would be to try a similar series of culture
experiments using cello- or xylo-oligosaccharides, which would have to be hydrolyzed

extracellularly. If no lower molecular weight oligomers were observed in these cases, I
uptake must be closely coupled to hydrolysis. If lower molecular weight oligosaccharides
did accumulate, however, it would leave an unresolved dilemma, since the relative uptake 3
affinities for maltooligosaccharides may differ from those for xylo- or

cellooligosaccharides. 3
Conclusions 3

Although carbohydrate dimers are well within the size range which can be ingested
without extracellular hydrolysis (Gottschalk, 1986; Priest, 1992), the di- and I
oligosaccharide experiments indicate that structural differences can be important in

U
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determining degradation rate even at a small size level. The maltooligosaccharide
experiments illustrate that in certain cases-such as GLA and maltoheptaose-smalI

structural features may be more important than molecular weight or size in determining
relative rate of degadation. Individual species of bacteria are known to preferentially ingest3 certain mono- and disaccharides (Bernier and Stutzenberger, 1987; Hespell et al., 1987);
these experiments demonstrate that even mixed bacterial cultures, comprised of a variety of
bacterial types, distinguish between small substrates. The slight initial delay in degradation

of GLM and melibiose, as well as the much longer delay in GLA degradation, are probably
a reflection of the time necessary for bacteria with the proper enzyme systems to double to
sufficient numbers for substrate degradation to be detected. Enzymatic capability to degrade
glucose homodimers, regardless of linkage type or position, might be more widely3 distributed than the ability to degrade heterodimers.

Although the oligosaccharide degradation experiments took place on time scales of
* weeks, not years, evidence that small variations in structure can lead to measurable

differences in rate of substrate degradation even for simple, highly soluble carbohydrates
has wider implications for the degradation of polysaccharides in marine sediments. These

experimental results suggest that varying rates of organic polymer degradation in anoxic
sediments may be determined in part by the sensitivity of bacterial enzymatic and transport

systems to structural features. Some types of marine carbohydrates may be very difficult to
degrade, primarily because of their specific chemical structure. Factors such as packaging
or particle interaction might further slow the degradation of nominally labi!e
polysaccharides. In areas with high rates of productivity and sedimentation, greater relative3 resistance to degradation may result in some of the original polysaccharide being buried to a
depth below the zone of most active remineralization.

I
I
I
I
I
I
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I Chapter Five
Effect of Chemical Structure on Carbohydrate Degradation

by Anaerobic Marine Bacteria
Degradation of Polysaccharides

Introduction

The previous series of culture experiments demonstrated that the culture system produced

Srobust, reproducible results. Small differences in degradation lag between homo-and
hetero-disaccharides, as well as the long degradation lag in the case of the GLA substrate,

suggest that bacteria differentiate between closely related substrates even when extraceilular
hydrolysis is not required. In terms of the model shown in Fig. 1.1, the previous cultures

involved transitions from the pool of 'dissolved monomers' (which here are defined as

substrates which bacteria can ingest without extracellular hydrolysis) to methane and C02.

Most organic matter is synthesized as macromolecules, which bacteria must

hydrolyze with exoenzymes before they can transport and convert them to cellular carbon
and C02. The enzymatic hydrolysis of macromolecules is often assumed to be the slow
step in organic matter degradation (Meyer-Reil, 1987; Hoppe, 1991, for example; Meyer-

Reil, 1991), but this assumption has not been rigorously tested. The experiments in

Chapter 4 demonstrated that small variations in substrate structure can greatly restrict the

range of bacteria which are capable of uptake and intracellular degradation of a small
carbohydrate. By comparing the results of the di- and oligosaccharide degradation

experiments with the degradation F,7tructurally-related polysaccharides, effects which are
solely attributable to molecular -- , a be determined. The transitions represented by F and

E in Fig. 1.1 (dissolved polymers -> dissolved monomers, and dissolved monomers ->
methane + C02, respectively) can thereby be differentiated.

Although little work has been done on the bacterial degradation of macromolecules

such as carbohydrates in marine systems, extensive references are available in the non-

marine literature. The best reference point in any study of anaerobic carbohydrate

degradation are studies of the natural consortia of ruminants. In cattle and other ruminants,
a complex population of strictly anaerobic bacteria cooperatively degrade plant

polysaccharides. Studies of rumen bacteria are also the basis of much contemporary work

on anaerobes, since the techniques commonly used to culture anaerobic bacteria ("Hungate

techniques") were originally developed to work with rumen bacteria (Hungate, 1969).
Extensive studies of bacterial carbohydrate degradation have been carried out with

pure cultures, co-cultures, and consortia of rumen bacteria over the past several decades

(Hungate, 1966; Dehorty, 1967; Weimer and Zeikus, 1977; Miura et al., 1983; Hespell etI.
I
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al., 1987; Cotta, 1992; Malburg et al., 1992, for example). These studies have elucidated m

the biochemical basis of carbohydrate degradation by anaerobic bacteria, and have provided
a fundamental understanding of anaerobic metabolism. Rumen bacteria have a wide range

of enzymatic and metabolic capabilites, and are nutritionally interdependent. Plant

polysaccharides are degraded by exoenzymes excreted by cellulolytic" bacteria. As

discussed in Chapter 1, these bacteria ferment oligosaccharides and excrete low molecular

weight substrates such as alcohols and fatty acids, which in turn are utilized by other

bacteria. The non-cellulolytic bacteria may, for example, excrete vitamins required by some

of the cellulolytic bacteria, or may consume H2 produced during fermentation. In this

manner, bacteria which can utilize only a limited range of low molecular weight substrates

cooperate with metabolically more versatile bacteria.

Studies of the exoenzymes produced by rumen bacteria have also yielded detailed

information about the mechanisms and specificities of enzymatic carbohydrate degradation

(Williams and Withers, 1982; Robson and Chambliss, 1989). Further information on

carbohydrate-degrading enzymes has been provided by studies of enzymes from

thermophilic and extreme thermophilic bacteria, which are of interest due to their

applications in biotechnology (paper pulping, starch saccharification) (Hudson et al., 1990I ,
Klingeberg et aL, 1990; Koch and Antranikian, 1990). The enzymes of several marine

thermophiles and extreme thermophiles isolated from hydrothermal vents have also been 3
studied in this context (Brown et al., 1990; Koch et al., 1990).

The bacterial (as differentiated from the isolated enzymatic) conversion of

polysaccharides to oligosaccharides, and the subsequent degradation of the

oligosaccharides, however, has been followed in detail in only a few studies of pure- and

co-cultures of rumen bacteria (Russell, 1985; Cotta, 1992), and has not been studied at all

with either pure cultures or consortia of aquatic bacteria.

As discussed in Chapter 1, although studies of rumen bacteria are an invaluable I
source of information on the degradation of carbohydrates by anaerobes, urmen consortia

differ from marine anaerobic consortia in several important aspects. The rumen is a natural n

bioreactor, in which the feedstock is chemically consistent (principally plant

polysaccharides) and is fed in and washed out at a constant rate. The organic matter n
reaching rumen anaerobes is always fresh, and the system is thermally very stable. In

addition, the terminal members of rumen consortia are methanogenic bacteria, whereas high 3
* The term "cellulolytic" is used here to refer to all polysaccharide-degrading rumen

bacteria. Only a fraction of these organisms actually are cellulolytic; the majority hydrolyze
starch and hemicellulose contined in plant polysaccharides.
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I levels of sulfate in marine systems results in the predominance of sulfate reducers as

terminal members of marine bacterial consortia.

The anaerobic degradation of macromolecular organic matter in marine systems

therefore requires further investigation. Most models of carbon cycling in the marine

3 environment assume the conversion of high molecular weight organic matter to lower

molecular weight substrates (Burdige and Martens, 1988; Henrichs, 1992). The specifics

of these conversion processes, though, have not been studied. As discussed in Chapter 1,

"G-model"-type studies indicate that there is a range of reactivity classes of organic matter
in marine sediments, although the factors determining the range of reactivity are unknown.

An important goal of the culture studies was to investigate the bacterial degradation of
polysaccharides in order to determine the effects of gross size and chemical linkage on3 degradation rates and patterns. This chapter presents the results of a series of experiments

in which replicate cultures of anaerobic-marine bacteria were enriched on polysaccharides.

3 Sampling time points were very closely spaced in order to follow degradation processes in

detail. As in the culture experiments discussed in Chapter 4, the disappearance of substrate

and the production of gaseous end products was monitored. In addition, gel permeation

chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR) were used to
follow the extracellular conversion of high-molecular weight polysaccharides to lower

molecular weight poly- and oligosaccharides which were subsequently also degraded.

3 Methods
Substrates

The substrates were laminarin (a p(1,3) linked glucose polysaccharide, MW 5-6000

daltons), pullulan (a(1,6)-linked maltotriose units, MW 200,000 daltons), and F2 and F3,3 the branched glucose polysaccharide and teichoic acid-type polymer isolated from

Synechococcus WH7335 (Chapter 3). NMR spectra of all substrates were presented in3 Chapters 2 (laminarin and pullulan, Figs. 2.17 and 2.18) and 3 (F2 and F3, Figs. 3.8 and
3.11). The pullulan was used as received from U.S. Biochemicals, and F2 and F3 were

used as the isolates described in Chapter 3. Tests with laminarin showed that as received

from U.S. Biochemicals, the laminarin contained insoluble material; in addition, after a
filtered laminarin solution sat at room temperature for several days, a soft insoluble gel

3 precipitated. The laminarin was therefore dissolved, filtered through a 0.2 g± filter, and
lyophilized before weighing. The starting material was a dense medium-brown powder,3 which became white and fluffy after lyophilization. The laminarin solution was filtered

I
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again upon addition to the cultures. Laminarin prepared in this manner was more soluble I
than the starting material, and did not precipitate from solution.

Substrate concentrations of laminarin and pullulan were equivalent (on a carbon

basis) to the 1.0 mM level used for the disaccharide cultures in Chapter 4. Final substrate

concentrations (after addition of inoculum) were 336 ;ig/mL for laminarin and pullulan 3
(equivalent to 67 jIM and 1.7 1LM, respectively). The fraction of F2 with a nominal
molecular weight >5000 daltons upon re-chromatography (see Chapter 3) was used in the

culture. Approximately 380 jig of F2 were added to a cultur vial. Monosaccharide analysis

(see Chapter 3) showed that the carbohydrate concentration of F2 was 146 jig/mg. The 11
mL culture therefore had a carbohydrate concentration of 5.1 jig/mL i

Fifty mg of substrate were used in the F3 culture. The amount of carbohydrate

added can only be approximated. While CHN analysis of F3 showed that the weight ratio 3
of F3 was 3.98%: 0.67%: 0.74%, monosaccharide analyses (see Chapter 3) suggested

that F3 was approximately 50% carbohydrate. Both measurements of F3 may be accurate; 3
after lyophilization, F3 was a waxy or crusty tan-white material which may have been

heterogeneous in composition. As discussed in Chapter 3, most of F3 was used for the

culture series and carbohydrate analysis; only a small residual, which may have been
enriched in salts, was available for CHN analysis. The high-field material observed in the
1H NMR spectrum (Fig. 3.5) indicated that some of the nitrogen could come from i
proteins, but the 13C NMR spectra (Figs. 3.14, 3.15) showed that all major and minor
carbons could be unambiguously assigned to the teichoic acid-type polysaccharide. If

protein had been a major component of the F3 extract, corresponding carbon resonances

should have been observed. The charged teichoic acid-type polysaccharide most likely 3
contains salt as counter ions; ammonium salts, for example, could be a source of some of
the nitrogen.

The structure proposed forF3 has a C:H:O:P ratio of 34.2%: 5.3%: 51.3%: 9.2%.
As an approximation, therefore, the F3 sample for CHN analysis may be 10%
carbohydrate (which would leave a residual of 0.56% C: 0.14% H: 0.74% N for the non- i
carbohydrate material; some of the nitrogen may be in the form of N-salts). At 10%
carbohydrate composition, the approximate concentration of F3 in the culture would be 93 3
jtg/mL; with a carbohydrate concentration of 50%, the concentration of 13 would be -470

ig/mL.

I
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3 Culture methods

Preparation of medium, substrate, and inoculum were as described in Chapter 4. The only

difference was that the sediment used for the inoculum was freshly collected from Salt

Pond in October 1992 and stored at 4 oC for 4 months prior to use. In addition, because

polysaccharides are less soluble than disaccharides, the substrates were dissolved in larger

volumes of Q-H20, and 4.0 mL of substrate solution was added to each 50 mL culture.

Cultures with laminarin and pullulan were run in triplicate, while due to limited

substrate quantities, only single vials of F2 and F3 were prepared. Blanks included vials3 with substrate and no inoculum (pullulan and laminarin; "B" vials), inoculated vials which

were autoclaved prior to addition of substrate (pullulan, laminarin, and F3 "IAS" vials),

3 and a vial which was inoculated without addition of substrate ("I" vial).

I Culture Sampling

Samples for headspace gas analysis, total C02, pH, and substrate concentration were

collected as described in Chapter 4. Samples of culture medium were collected at intervals

of 4-8 hours over the first 70 hours of the culture experiment, while headspace gases were

3 measured every 24 hours for the first three days, and then on the 5th, 8th, 12th, 15th, and

26th days after inoculation. Total C02 was measured only on the 15th and 26th days after

inoculation. Only four medium samples were collected for F2. At 0 and at 69 hours, 1.5

mL of medium was removed from the culture; I mL was removed for total C02

determination at 15 and 26 days. Removal of additional medium from the F2 culture at

intermediate timepoints would have excessively drained the 11 mL culture.

I Sample Analysis

3 Headspace gases were analyzed by gas chromatography, as described in Chapter 4. The

sensitivity of the thermal conductivity detector had deteriorated over a two-year interval, so3 that detection limits were 360, 260, and 4 ppm by volume for C02, CH4 , and H2,

respectively.

Samples were analyzed for carbohydrates by using a combination of gel permeation

chromatography (GPQ and NMR spectroscopy. The objectives in using GPC were both to

remove salts from the higher molecular weight fractions in order to accurately quantify

remaining polysaccharides by refractive index detection, and to separate the remaining

substrate into discrete molecular weight classes. At each time point, 1.0 mL medium wasI
I
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removed from each culture vial, and sterile filtered through a 0.2 pun syringe filter into a
clean vial. A few samples were analyzed immediately, and the rest were stored frozen at -

40 OC until analysis. Two different gel permeation columns were used to separate I
carbohydrates. A Sephadex G-25 column was used to analyze all of the laminarin samples,
the two F2 samples, and to monitor a few pullulan samples during the first 70 hours of the 1
cultures, while a complete series of pullulan samples was analyzed on a G-50 column. The

Sephadex G-25 column (100-300 pzm mesh, nominal exclusion on a dextran basis: 5000 3
daltons) was 1.5 x 33.8 cm., with a void volume of 27.3 mL (corresponding to 24.8 min)

as calibrated with pullulan, and a total volume of 59.8 mL The Sephadex G-50 column

(nominal exclusion: 10,000 daltons, 100-300 pzm mesh) was used to fractionate the

pullulan samples. The G-50 column was 1.5 x 40.6 cm, with a void volume of 25.8 mL

(as calibrated with pullulan, MW 200,000 daltons) and a total volume of 71.7 mL.The I
mobile phase in both cases was Q-H20, pumped at 1.1 mLAJmin with a peristaltic pump
(Pharmacia P-i). Carbohydrates were detected with a refractive index detector (Showdex 3
RI-71, detection limit ca. 5 ;tg carbohydrate), and data were acquired with a Hewlett-
Packard 3396 11 integrator.

Samples were brought to room temperature if necessary, and 800 ILL was
dispensed into a clean vial. The sample, and a small volume of Q-H20 rinse, was taken up

with a 1 mL Luer slip-tip syringe, which fit directly onto the three-way injection port
(BioRad) and applied to the column. The laminarin eluted from the G-25 column in the

void volume (between 21 and 29 minutes), and was reasonably well separated from the I
very broad salt peak which began to elute at 22 minutes, was significant at 29 minutes, and

tailed out at 60 minutes. Laminarin concentrations less than 50% of the initial concentration 3
(<168 Jtg/mL) were not resolved from the front of the salt peak, but could easily be

detected by NMR analysis. For every sample, the 21-29 minute fraction was collected and
lyophilized, redissolved in 0.5 mL D)20, and a proton spectrum was acquired. Each

spectrum was collected using the same conditions: 1024 scans, using solvent suppression,

with a receiver gain of 400. All of the spectra were scaled to the zero-time spectrum, so that
the decreases in peak height and area were proportional to the decrease in substrate
concentration.

The five pullulan samples (collected at 40, 56, 60, 64, and 69 hours) run on the G-
25 column had the same elution profile as the laminarin samples. A complete set of pullulan
samples was run on the G-50 column. As shown in Fig. 5.7, the pullulan eluted in the void
volume, between 20 and 29 minutes (peak maximum: 23.3 minutes), while the salt peak

from the medium began to elute at approximately 26 minutes, and became significant only
at approximately 44 minutes (peak maximum: 57.6 minutes). Laminarin and maltoheptaose

I
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standards were also run to calibrate the column; laminarin eluted in a very broad peak that

began with a very low shoulder at 21 minutes. The main peak extended from 29-61

minutes, with a peak maximum at 35 minutes. Maltoheptaose (MW 1153) eluted in a

smooth broad peak beginning at 40 minutes and extending to 61 minutes, with a peak

maximum at 51 minutes. A mixture of pullulan, laminarin, and maltoheptaose standards

injected on the G-50 column was resolved into three distinct, overlapping peaks, with peak3 maxima at 23, 35, and 51 minutes. Based on these tests, three fractions were collected for

the pullulan samples: 20-29 minutes, 29-42 minutes, and 42-68 minutes.

The fractions were individually lyophilized and redissolved in 0.5 mL D20. Proton

spectra were acquired for all pullulan fractions of all time points. Spectra of the first two

fractions were acquired under the same conditions as for laminarin (1024 scans, RG=400,

solvent suppresion). Since the third fraction contained nearly all of the salt and all of the

buffer from the medium, the maximum receiver gain setting which could be used was 20;

and 2048 scans were acquired. All of the spectra of the first two fractions from every time

point were autoscaled to the zero-time spectrum of the first fraction, so that increases and3 decreases in peak height and area should be proportional to changes in substrate

concentration. Because the third fraction contained elevated carbon levels (buffer) and salt
and was acquired under different spectrometer conditions, it was scaled by visual

inspection to the same signal/noise level as the first two fractions.

The carbohydrates from Synechococcus WH7335 were initially obtained and

characterized as described in Chapter 3. Samples of F2 were run on the G-25 column and
collected as for laminarin. Long-term (>50,000 scans, acquisition time -100 hours) IH1 NMR spectra were acquired to determine the presence of F2 in the culture medium. Since

F3 eluted in the same fraction as the salts and buffer in the culture medium, the F3 samples
were lyophilized and NMR spectra were acquired without attempting to size fractionate or

remove salts on a gel column.

I Results and Discussion

Reproducibility and general results

Reproducibility among replicate vials was excellent (see Chapter 4 for discussion), and the

I general characteristics of the cultures (headspace gas profiles, pH, evolution of total C02)

were very similar to the di- and oligosaccharide cultures described in Chapter 4. All of the

3 substrates were rapidly degraded during the first 70 hours of the cultures. Because

sampling intervals were closely spaced, however, it was possible to determine that the3 substrates differed from one another in the time scale of their removal from the cultures.

I
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Headspace gas profiles followed the pattern of the previous cultures, with early

production and swift consumption of H2 (Fig. 5.1; note that headspace gas samples were

collected at less-frequent intervals than medium samples), a gradual increase in headspace

C02 over the first several days of the culture followed by a sharp increase (Fig. 5.2) at later

time points, low levels of CH4 (not shown), and appearance of H2S at the later phases of 3
the cultures. Recovery of laminarin and pullulan carbon as CO2 after 26 days averaged

60% (see Fig. 5.2), similar to carbon recoveries for the di- and oligosaccharide cultures I
(Chapter 4). Recovery of carbon for F3 can only be estimated, since the exact carbon

content of the substrate as added to the culture is not well constrained. Using the 10%

carbohydrate :omposition estimated for F3 (i.e., 5 mg of substrate), recovery of carbon as

C02 is 61.7%; if F3 is ,0% carbohydrates, carbon recovery would be 12.3%. As

described below, NMR analysis of the F3 culture showed that substrate consumption was

complete. Either the carbon assimilation efficiency for bacteria consuming the teichoic acid-

type polysaccharide is higher than for bacteria consuming the other carbohydrates used in 3
the cultures (i.e., more than 10-30% of substrate carbon is assimilated as cellular carbon),

or the carbohydrate concentration of F3 as used in the culture was closer to 10% than 50%. I
The F2 culture showed a very slight increase in CO2 over the course of the culture

series, but total CO2 levels were not significantly above the blank levels at any time. Total

substrate concentration was only 56 gig, so the lack of measurable difference between F2

and blank cultures is not surprising. The carbon content of F2 is 40%; if 100% of F2 were

converted to C02, the increase in total CO2 would be only 1.8 11mol. Several pieces of I
evidence suggest that F2 was consumed during the course of the culture: the headspace gas

of the F2 culture contained a trace of H2 at 49.5 hours, and a small quantity of H2S was 3
measured in the total C02 determination at 711 hours. None of the culture blanks produced

measurable H2 or H2S. In addition, as discussed below, NMR spectra showed that F2 3
disappeared from the medium over the course of the experiment.

As in the oligosaccharide cultures, there was a significant time interval between the I
complete degradation of carbohydrate substrate and the maximum CO2 levels in the

cultures, a reasonable result since carbon dioxide is one of several products of the initial

steps in carbohydrate fermentation (Wood, 1961; Gottschalk, 1986). As shown in the m
degradation of cellulose by pure cultures of rumen bacteria, other products such as low

molecular weight acids and alcohols are also present in significant quantities (Weimer and I
Zeikus, 1977). Only when these substrates are converted to C02 by secondary degraders

do the CO2 levels in the cultures reach a maximum. The pH levels of the cultures dipped
very slightly, even less than in the case of the di- and oligosaccharide cultures, and then

returned to starting values during the 26-day course of the experiment; either the turnover I
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I time of organic acids was faster than in the oligosaccharide cultures, or fewer acidic

intermediates were produced.

The blank vials (B, 1, and IAS) all had headspace C02 levels < 5 jimol, and
produced no H2, CH4, or H2S. Total C02 levels in the blanks ranged from 16-35 Wnmol,3 equivalent to 4-9% of the total C02 in the laminarin and pullulan cultures. The F3 LAS total
CO2 level was 10 gimol, equivalent to 9.7% of the level in the F3 culture. Recovery of3 substrate from the B and IAS vials was 100% on the 26th day of the culture series,
demonstrating that substrate was not lost through sorption to the walls of the vials or to

3 sediment particles.

Substrate degradation

Degradation of substrate is summarized in Fig. 5.3, which shows the F3, laminarin, and3 pullulan profiles. Because of the small volume of the culture (11 mL), F2 was measured
only at two timepoints, 0 and 69 hours, which are represented by filled circles in Fig. 5.3.
At each timepoint, 1.5 mL (instead of 1.0 mL) of medium was removed; removal of
additional medium at intermediate timepoints would have excessively drained the culture.

F2 concentrations were determined by examining the NMR spectra of the medium

removed at 0 and 69 hours (Fig. 5.4). A long-term (>50,000 scans, acquisition time -120
hours) IH NMR spectrum of the zero hour sample clearly showed the presence of anomeric

I protons at 8=5.2 and 5.4, consistent with the NMR spectrum of F2 where these two
resonances corresponded to a free c anomer and the a(1,4) linkage, respectively (Fig.3 3.8). The anomeric resonance at 8=495 corresponding to the a(1,6) linkage was obscured
by spinning sidebands from the HOD (solvent) resonance, but the other anomeric
resonances were clearly discernible. The quality of the spectrum is quite good, considering

that the zero-time sample contained only -7.5 gig of a 5000 dalton polysaccharide (from 1.5

mL medium). An additional fraction of the F2 sample was collected from the G-25 GPC

column (29-31 minutes) to check for lower molecular weight hydrolysis products; the
NMR spectrum did not show any anomeric proton resonances.

F3 concentrations were determined by measuring the height of the anomeric
resonance at 8=5.12 of the corresponding NMR spectra, whereas laninarin and pullulan3 concentrations were calculated from GPC analysis of samples and integration of peak areas
as determined by refractive index detection. The data for pullulan were corrected for a high-3 molecular weight contaminant which co-eluted with pullulan; the area of the contaminant
material represented approximately 3% of the total peak area of the original pullulan
concentration. The correction was made by subtracting the peak area of the contaminant

I



180

0U
0I

__ , , I I I I , , I i I , , ,

- I

00

t I

00 M10

( usI

ch E
T- C)

00 CD CQvpp o~o ajrsqI



I
181

I
I
I

0 hours

______(a)

I_

I 69 hours

(b)

I

I

5.40 5.30 5050 5.. 0 4.90

Fig. 5.4 PPM

IH NMR spectrum of anomeric region of F2 at zero-time (a) and 69 hours (b). Anomeric
resonances are marked with arrows.
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(as measured in a sample collected at 447 hours) from all peak areas for previous timeU
points. In the NMR spectra of the pullulan samples, the contaminant corresponded to a

poorly-defined, broad resonance in the high-field region (8=0.9-1.1). The same

contaminant was observed in the NMR spectra of the laminarin samples, but the data were

not corrected because a peak area count for the contaminant could not be determined after 3
complete degradation of laminarin, since the co-eluting lead edge of the salt peak obscured
the contaminant (see previous comments about the G-25 column).

The F3 samples were lyophilized directly, because GPC could not separate the
substrate from the medium salts. The F3 NMR spectra were therefore dominated by

resonances belonging to the buffer (HEPES), and suffered in quality from the high 3
concentrations of salts (ringing near the HOD peak, prominant spinning sidebands).
Nonetheless, the anomeric regions of the spectra were well resolved, and changes in the 3
anomeric resonances were easily observed. Fig. 5.5 shows the anomeric region of the

NMR spectra of F3 for the first 25.5 hours of the culture series. From top to bottom, the 3
spectra are of samples collected at 0, 8, 16, and 25.5 hours. The anomeric proton at 8=-5.12

is the major anomer from F3, corresponding to terminal glucose, and the anomer at 8=5.17

corresponds to terminal galactose. The less well-defined anomeric resonance at 8=5.40 3
probably represents 4-linked glucose (see Chapter 3). The relative intensity of the aiomer
at 8-5.4 appeared to decrease slightly over the first 16 hours, whereas the major F3 anomer 3
appeared unchanged over the same time period, and then abruptly disappeared (along with

the remainder of the anomer at 8=5.4, and the low-intensity a-anomers at 8=5.18 and 5.22) 3
between 16 and 25.5 hours. The slight change in the intensity of the anomeric resonance at
b-5.40 may indicate that F3 is preferentially hydrolyzed at the phosphoric diester-glucose-

phosphoric diester bonds; higher resolution NMR spectra (longer-term acquisition) would

help resolve the change. (3000-scan spectra (ca. 6 1/2 hours) were acquired for Fig. 5.5.)

The onset of degradation may therefore be more rapid than is shown in Fig. 5.3, for which I
only the changes in the major anomeric resonance at 6=5.12 were measured.

Laminarin was not degraded as quickly as F3, but the transition from substantial I
quantities of substrate to complete removal was equally swift. Figure 5.6 shows the

anomeric region of the NMR spectra of the laminarin fraction collected from the G-25 3
column. These samples were collected during the first 36 hours of the culture series. The

anomeric resonance at 8=4.79 appears unchanged from 0 to 25.5 hours (Figs. 5.6 a-d). At 3
30 hours (Fig. 5.6e), the resonance is noticeably smaller, and there is a slight indication of
a free a anomer at 8=5.2. Twenty-five percent of the laminarin was degraded at this time

(Fig. 5.3). No anomeric resonances are observed at 36 hours (Fig. 5.100; all of the

I
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laminarin was degraded within the first 36 hours of inoculation, with the greatest change

occurring between 30 and 36 hours.

Pullulan was degraded slightly more slowly than either F3 or laminarin, although

like the other substrates, the transition from high concentration to complete degradation of

initial substrate occurred very swiftly. In the case of pullulan, degradation occurred over a

span of 14 hours. The lag before the onset of rapid substrate degradation is expected,3 because the sediment inoculum contained a range of bacterial types. The priry

fermenting bacteria responsible for the initial steps of degradation require time to double3 sufficiently to degrade the substrate; the amount of time is a function of initial bacterial cell
numbers and doubling time. The length of the initial lag (16, 25.5, and 49.5 hours for F3,

laminarin, and pullulan, respectively) is consistent with growth of a number of generations

of bacteria, since bacterial doubling times are often on the order of hours to tens of hours
(Gottschalk, 1986). Even in pure- and co-cultures of bacteria, where the initial bacterial

inoculum is often orders of magnitude higher than in these polysaccharide cultures, lags are
often observed between inoculation and the onset of substrate degradation. A 17-hour lag3 was observed, for eample, before initial degradation of cellulose by a pure culture of

Clostridiwn thermocellum (Weimer and Zeikus, 1977). In pure cultures of several species
of rumen bacteria, a 2-3 hour lag was observed before the onset of starch degradation

(Cotta, 1992).

The lag before onset of rapid substrate degradation was shortest for F3 (16 hours),
followed by laminarin (25.5 hours), and pullulan (49.5 hours), but once rapid degradation
began, the time interval for degradation of initial substrate was very similar (9.5, 10.5, and

I 14 hours (Fig. 5.3); note that zero-concentration samples may have been collected several

hours after the substrate was completely removed.) Extracellular hydrolysis per se does not

appear to be the slow factor in degradation of teichoic acid-type or glucose polysaccharides.

This is similar to results from a study of the degradation of cellodextrins (DP 1-7 0(1,4)-3 linked glucose oligosaccharides) by pure cultures of rumen bacteria. Although
cellopentaose and cellohexaose were hydrolyzed extracellularly prior to uptake, hydrolysis
was not a slow step in the degradation process (Russell, 1985). The exceptionally swift

degradation of teichoic acid-type polysaccharide may indicate that phosphoric diesters are

particularly easily hydrolyzed, and that a large percentage of the bacterial population in the3 initial inocculum has the enzymatic capability to hydrolyze these bonds.

I
I
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Detailed Analysis of Pullulan Degradation 3
The G-50 column used for the pullulan samples clearly resolved the changes in the I

pullulan substrate through the course of the culture. Figs. 5.7-5.11 show the refractive
index detector plot of substrate (and salt) for 0, 49.5, 56, 60, and 64 hours, respectively.
(Note that these data are further shown in Figs. 5.12-5.18, and are summarized in Fig.
5.19). The zero time plot (Fig. 5.7) showed a well-resolved pullulan peak starting at 20.4
minutes, with a peak maximum at 23.5 minutes, corresponding to a refractive index
maximum of 10.2. At 49.5 hours, the refractive index maximum had decreased to 9.4 (Fig.
5.8), and by 56 hours (Fig. 5.10), to 7.6. At 56 hours, the refractive index between 29 and 3
42 minutes had also increased by 0.2 refractive index units, suggesting that greater
quantities of material were eluting just behind the void volume of the column. These

changes became even more pronounced at 60 hours (Fig. 5.10). The lead edge of the peak
appeared slightly later (21.1 minutes), the peak maximum was shifted back to 23.9 minutes
and had a refractive index value of just 2.8. In addition, the refractive index between 28
and 42 minutes was higher than observed for any previous sample, which implied that
relatively large quantities of material were below the nominal exclusion limit of 10,000
daltons. By 64 hours (Fig. 5.11), the void volume peak had been reduced even further,
subsequent NMR analysis showed that this material was the high molecular weight, high

NMR field contaminant, and did not contain any pullulan. (The same peak was observed in
samples collected at later time points as well.) The refractive index between 29 and 42

minutes was still slightly higher than observed for the zero time point (Fig. 5.7), which
again suggested that material was eluting just behind the void volume of the column.

GPC and NMR analysis of the samples provided excellent size and structural
resolution of the substrate and its degradation products. Three distinct molecular weight
classes of pullulan and its hydrolysis products, _ 10,000 daltons (20-29 minutes), -5000
daltons (29-42 minutes), and _ -1200 daltons (42-68 minutes), were resolved. Since
pullulan contains both a(1,4) and a(1,6) linkages, there are several possible means by
which it could be hydrolyzed to smaller poly- and oligosaccharides. NMR analysis of the

size-fractionated samples showed that one linkage type was preferentially hydrolyzed.

Figs. 5.12-5.18 show the anomeric region of the NMR spectra of time points
between inoculation (0 hours, Fig. 5.12) and complete degradation of pullulan and its
lower molecular weight hydrolysis products at 69 hours (Fig. 5.18). In all of the figures,
the top spectrum is the fraction corresponding to the void volume of the column, which
should contain any material with a nominal molecular weight > 10,000 daltons. The middle
spectrum is the fraction corresponding to the elution of laminarin (5,000-6,000 daltons),
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were collected as marked. (See text for chromatography specifications.)
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Fig. 5.8
G50 gel permeation chromatogram, of pullulan (49.5 hours). Ž10,000 dalton (20-29
minutes) , -5000 dalton (29-42 minutes), and • 1200 dalton (42-68 minutes) fractions
were collected as marked. (See text for chromatography specifications.) I
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Fig. 5.10
G50 gel permeation chromatogram of pullulan (60 hours). >10,000 dalton (20-29
minutes), -5000 dalton (29-42 minutes), and < 1200 dalton (42-68 minutes) fractions were
collected as marked. (See text for chromatography specifications.) I
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Fig. 5.11
GS0 gel permeation chromatogram of pullulan (64 hours). >10,000 dalton (20-29
minutes), -5000 dalton (29-42 minutes), and < 1200 dalton (42-68 minutes) fractions were
collected as marked. (See text for chromatography specifications.)I
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and the bottom spectrum is the fraction which corresponded to maltoheptaose (5 -1200 I
daltons). In the a 10,000 dalton MW fraction of the zero-time sample, there are three well-

resolved anomeric resonances at 8=4.95, 5.36, and 5.40, corresponding to the ca(1,6)

linkage and the two a(1,4) linkages of the maltotriose units, respectively. The 5,000 dalton

fraction (Fig. 5.12b) has no distinctive features, while the 1200 dalton fraction (Fig. 5.12c)

shows a low increase centered around 8=5.4 and perhaps a slight indication of a peak near

8=5.2, suggesting that the pullulan substrate may contain low levels of maltose and/or

maltotriose. Spectra of samples collected during the first 36 hours were similar to the zero- I
time samples; only -2% of the pullulan was degraded during this time interval (Fig. 5.3).
The sample collected at 40 hours (Fig. 5.13), when approximately 5% of the pullulan had

been degraded (Fig. 5.3), began to show changes. In Fig. 5.13, slight indications of peaks

around 8=5.4 and 4.95 suggest that some of the original 200,000-dalton pullulan has been

hydrolyzed to a molecular weight of 5000-6000 daltons. These peaks in the 5000-6000

dalton range became much more distinct through the remaining time points (Figs. 5.14-

5.18) ; at 56 hours (Fig. 5.15), with 25% of th original pullulan no longer in the > 10,000

dalton fraction, even the J-coupling of the anomeric resonances was resolved.
In a similar fashion, the progressive increase in anoir ric resonances in the 1000

dalton molecular weight class was apparent through the time points at 49-64 hours (Figs
5.14-5.17). The changes between 60 and 69 hours (Figs. 5.16-5.18), when pullulan in the

molecular weight class >10,000 daltons was reduced from 33% of starting concentration to

0%, are especially significant. In Fig. 5.16a, the decrease in peak height of the Z10,000

dalton pullulan is clearly evident. A relatively large amount of material, with well-resolved

anomeric resonances, is in the 5000 dalton size fraction (Fig. 5.16b), and Fig. 5.16c

shows substantial anomeric resonances in the 1200 dalton molecular weight range. Fig.

5.17a shows that at 64 hours, all of the pullulan substrate had been removed from the

>10,000 dalton fraction; only substrate in the 5000 and 1200 dalton fractions remained I
(Figs. 5.17b and c). Just 5 hours later, at 69 hours, all of the carbohydrate in all size

classes has been consumed (Figs. 5.18a-c).

The changes in distribution of pullulan among the size classes are summarized in

Fig.5.19. The areas of the anomeric resonances in each size fraction at each time point were

integrated and plotted. (Note that scaling of the NMR spectra for the 1200 dalton size
fraction was done by visual inspection; error in the scaling is propagated in the plot.)

Figure 5.20 shows a bar graph of the same data, which shows that onset of hydrolysis was

far more rapid than removal of substrate from the medium. At 60 hours, even though only
33% of the pullulan remained in the > 10,000 dalton size class, more than 80% of the

I
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IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(zero time): > 10,000 daltons (a), -5000 daltons (b), • 1200 daltons (c). A small
quantity of a(1,4) anomer (probably from traces of maltotriose) is visible in spectrum (c).
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Fig. 5.13 I
IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(40 hours): > 10,000 daltons (a), -5000 daltons (b), -< 1200 daltons (c). A small amount
of pullulan is evident in the 5000-dalton size class (b).
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Fig. 5.14
IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(49.5 hours): Z 10,000 daltons (a), -5000 daltons (b), < 1200 daltons (c).I
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Fig. 5.15 I
IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(56 hours): > 10,000 daltons (a), -5000 daltons (b), 5 1200 daltons (c). Significant
quantities of puilulan are in the 5000 dalton molecular weight range (b). A well-resolved
(z(1,6) resonance and a free a-anomer are evident in the 1200 dalton molecular weight
range (c).
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Fig. 5.16
IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(60 hours): > 10,000 daltons (a), -5000 daltons (b), < 1200 daltons (c). Quantity of
pullulan in the Z 10,000 daltons molecular weight range (a) is significantly reduced, and
quantity of pullulan in the 5000 dalton molecular weight range (b) is significantly
increased. Note that the J-couplings in (b) for both a(1,4) anomers and for the a(1,6)
anomer are clearly resolved. J-coupling of a(1,6) anomer is resolved in the 1200 dalton
molecular weight range (c), but the a(1,4) anomeric resonance is broad and shows no

i distinctive J-coupling.
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Fig. 5.17 I
IH NMR spectrum of three gel permeation chromatography fractions of pullulan
(64 hours): > 10,000 daltons (a), -5000 daltons (b), : 1200 daltons (c). No pullulan
remains in the 10,000 dalton molecular weight range (a). The 5000 dalton molecular weight
range (b) has less pullulan than for the previous time point, while the quantity of substrate
in the 1200 molecular weight range (c) has increased. I
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Fig. 5.18
IH NMR spectrum of three gel permeation chromatography fractions of pullulanI (69 hours): 2 10,000 daltons (a), -5000 daltons (b), < 1200 daltons (c). No pullulan in
any molecular weight range.
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pullulan was still in the medium. Rapid degradation of substrate commenced between 60 1
and 64 hours.

Enzyme Specificity

The changes in the anomeric resonances in the 1200 dalton fracton show that pullulan is
preferentially hydrolyzed at the a(1,6) linkage. In Fig. 5.16c, for example, the anomer at •
8=4.95 is well-resolved, with J-coupling corresponding to that observed in Fig. 5.16a and
b. The anomeric resonances in Fig. 5.16c centered around 8=5.4 (corresponding to the

(1,4) linkages) have broadened and become less distinct. The broadening and loss of
resolution among these resonances, in contrast to the clean anomeric resonance at 8=4.95,
shows that the ct(1,6) linkage is being preferentially cleaved to produce oligosaccharides. 3
In 200,000-dalton pullulan, and even in the pullulan hydrolyzed to the molecular weight
range of 5000 daltons, there are essentially only two types of cx(1,4) linkage environments
(in NMR terms), corresponding to the linkages connecting the first and the second, and the
second and third, units in the maltotriose sections of the polymer. Once oligosaccharides
have been produced by hydrolysis of the ct(1, 6) linkage, the chemical shifts of the ot(1,4)
linkages are slightly shifted depending upon position in the oligosaccharide chain, hence
the loss of resolution in this area of the spectrum. (A similar situation was observed in
Figs. 3.8 and 3.9, where the presence of az(1,6) branches slightly changed the chemical

shift of the a(1,4) resonances.) If both the a(1, 4) and the ca(l,6) linkages were being3
cleaved, the same type of broadening and loss of resolution would be expected for the

et(1,6) resonance. In addition, the ratio of the areas represented by the a(1,4) and a(1,6) 3
linkage in pullulan is 2:1 (two maltotriose linkages to one (1(1,6) linkage joining successive
maltotriose units). The ratio holds for the 5000 dalton fraction as well, but for the 1200 3
dalton fraction, the area of the a(1,6) linkage is clearly less than half of the area of the
ct(1,4) linkages. Acquisition of a high-resolution 1H NMR spectrum (12,800 scans,

acquisition time -27 hours) of the 60 hour, 1200 dalton fraction (shown in Fig. 5.16c) I
showed that the ratio of the a(1,4) to a(1,6) to free a anomers was 4.0:1.0:0.3, which is
exactly the ratio expected for two maltotriose units linked by a single a(1,6) linkage (Fig. 3
5.21). (The free 0 anomer could not be resolved from the ringing and spinning sidebands
upfield of the HOD resonance.) 3

Preferential cleavage of the x(1,6) suggests a further important point about the

action of the enzymes hydrolyzing the pullulan: they must be endo-exoenzymes, capable of
hydrolyzing linkages in the interior of the polysaccharide chain, and not exo-exoenzymes

which can only hydrolyze the non-reducing terminal unit of a polysaccharide chain. 3

3
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Four different pullulanases and pullulan hydrolases, with different specificities, have been I
found in a range of bacteria. The enzymes in the pullulan cultures cannot be Type I or 11
pullulan hydrolases, since these enzymes attack a(1,4) linkages in pullulan, yielding 3
panose or isopanose (Antranikian, 1992). Type I and II pullulanases, however, specifically

cleave a(l,6) linkages. Type I pullulanase cleaves both a(1,6) branches in branched 3
polysaccharides such as amylopectin, and a(1,6) linkages in pullulan. This endo-enzyme

typically produces maltotriose and a series of a(1,6)-linked maltotriose-oligosaccharides

from pullulan. Type II pullulanase acts similarly to Type I pullulanase, but can hydrolyze

a(l,4) linkages in addition to a(l,6) linkages (Koch and Antranikian, 1990). Hydrolysis

of the a(1,6) linkage seems to be preferential, however, since Type II pullulanases convert I
pullulan into a series of O(1,6) maltotriose-oligosaccharides. Both pullulanases can only

hydrolyze a(1,6) linkages which are in the viscinity of a(1,4) linkages (i.e., isomaltose

and isomaltotriose are not hydrolyzed by pullulanase), which suggests that specific

carbohydrate conformations are necessary for the enzyme-substrate complex (Antranikian,

1992).

The most active pullulan-degrading enzyme in the pullulan cultures must therefore

be either Type I or Type II pullulanase. The evidence from the NMR spectra is consistant

with either enzyme, since both hydrolyze pullulan to maltotriose and a(1,6)-linked

maltotriose oligosaccharides. Type I pullulanase, however, has been identified only in the U
aerobic bacteria Kiebsiella pneumoniae and Bacillus acidopullulyticus (Klingeberg et at.,

1990) and in an anaerobic thermophilic species of Fervidobacteriwn (Antranikian, 1992).

Type 11 pullulanase, in contrast, has been found in a wide range of anaerobes. Because of

their potential utility in industrial applications (saccharification of commercial 3
polysaccharides), investigation of these enzymes has focused almost exclusively on

thermophilic and extremly thermophilic bacteria, including thermophilic clostridia

(Klingeberg et al., 1990). Few studies have focused on marine bacteria; a search of the
literature revealed that the only marine organisms reported to produce pullulan were the
hyperthermophilic marine archaebacteria Pyrococcusfuriosus (Brown et al., 1990) and I
Pyrococcus woesi (Antranikian, 1992).

The anaerobic bacteria enriched from sulfate-reducing sediments therefore most !
likely produce Type I pullulanase, which is found in other anaerobes as well. A search of

the literature has not revealed any other reports or investigations of pullulanase activity 3
among mesophilic marine bacteria. In addition, most studies have been carried out on pure

cultures of bacteria or on enzymes isolated from pure cultures. Pullulanase activity in

growing cultures typically was determined by monitoring the quantity of reducing sugars in
the medium. Specific extracellular pullulanase activity was measured by incubating the cell-

U
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I free medium with pullulan, and monitoring production of glucose and oligosaccharides
(DP2-DP6) using an HPLC column and an unspecified detection method (Klingeberg et

al., 1990). In studies using only isolated enzymes, the hydrolysis of starting substrate was
determined by measuring reducing sugars colorimetrically, while production of3 oligosaccharides was determined by HPLC or thin-layer chromatography (Koch and
Antranikian, 1990) (Brown et al., 1990). This study therefore is the first report of

pullulanase activity among marine mesophiles, as well as a first determination of
'intermediate' hydrolysis steps, since the degradation of pullulan to smaller3 polysaccharides, as well as oligosaccharides, was monitored.

Implications for Early Diagenesis of Organic Matter3 in Marine Sediments

Most organic matter is biosynthesized as high molecular weight cellular components such
as proteins, lipid complexes, and polysaccharides. Research in organic geochemistry,
however, has focused on the lower molecular weight components or on hydrolysis3 products (amino acids, monosaccharides) of the high molecular weight material. An
important feature of marine organic matter, therefore, is largely unknown. Because little is
known about the structure of biological macromolecules, we do not know which factors
control the rates and processes by which organic matter is cycled in the water column and3 sediments, or why nominally labile components of organic matter (such as carbohydrates
and proteins) are resistent to degradation beyond a given depth in recent sediments.
Although this discrepancy between our knowledge of low and high molecular organic
matter and the quantitative importance of these pools has long been recognized (Burdige,
1991; Henrichs, 1992; Lee, 1992), progress in characterizing the nature and dynamics of

I macromolecular organic matter has been slow. As previously discussed for Fig. 1.1, while
there are estimates of input, burial, and upward flux terms, the cycling among the3 particulate macromolecule -> dissolved macromolecule -> dissolved monomer boxes is
poorly understood and completely unquantified.3 Microbiologists have also long been concerned with these transformations in the

context of bacterial physiology and biochemistry, and have attempted to determine the
mechanisms by which bacteria enzymatically hydrolyze substrates which are too large to

directly ingest (Pollock, 1962, for example). In studies of marine systems, a range of
fluorescent substrate analogs such as methylumbelliferyl (MUF) glycosides have been used3 to try to characterize the nature and activities of bacterial exoenzymes in seawater and
sediments. Because natural substrate concentrations are unknown, rate comparisons areI

I
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only relative. Even with this limitation, however, MUF substrates have provided useful I
information about varying sensitivities to different MUF-monosaccharides, and apparent

depth-related and seasonal changes in enzyme activity (Somville, 1984; King, 1986;

Meyer-Reil, 1987). The MUF substrates, however, are not necessarily adequate

representatives of polysaccharide hydrolysis. Among rumen bacteria, for example, there 3
are numerous examples of organisms which grow efficiently on oligosaccharides, although

they do not grow on related polysaccharides because they cannot produce the exoenzymes

necessary to convert the polysaccharides to oligosaccharides (Russell, 1985; Cotta, 1992;

Malburg et al., 1992). Bacteria which are capable of hydrolyzing and utilizing

oligosaccharides (which the MUF substrates are supposed to model) do not necessarily

have the enzymatic capability to hydrolyze polysaccharides to oligosaccharides. In addition,

the MUF substrates cannot be used determine the activity of certain enzymes such as m

pullulanase. MUF substrates do not conform to the structural specificity of pullulanase,

which requires a(1,4) linkages on either side of the target a(1,6) linkage (White and

Kennedy, 1988).

The results of the polysaccharide degradation experiments help begin to bridge

these large gaps in both geochemical and microbiological studies of early diagenesis.

Chapters 4 and 5 present an alternative method for studying the early diagenesis of organic

matter, through which the time course of alterations in substrate structure can be I
specifically determined, and the effects of variations in substrate structural features can be

directly compared. The degradation of pullulan is apparently the first molecular-level

evidence in marine systems of the bacterial extracellular hydrolysis of macromolecular to

low molecular weight organic matter. The closely-spaced sampling intervals, combined 3
with size- and structural information obtained with gel permeation chromatography and

NMR spectroscopy permitted precise determination of the degradation mechanism, and by

implication, of the specific enzyme responsible for substrate hydrolysis.
While the culture system used in these experiments does not precisely replicate

natural sediment systems (substrate levels in the cultures, for example, are much higher

than found in natural sediments), it shares many features of natural sediment communities

which might develop after the 'crash' of a phytoplankton bloom, for example. In addition, U

degradation of the substrate which was added at a low level (F2, at a concentration of 5.1

iLg/mL) occurred on the same time scale as the degradation of the substrates added at much 3
higher level, which suggests that substrate concentrations did not significantly affect culture

development.

The behavior of the culture system was quantitative, consistent, and reproducible

through multiple replicates over several years, which supports the assumption that these

I
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I cultures are reasonable models of natural bacterial consortia. While absolute rates of

organic matter degradation cannot be determined, the processes and relative rates of3 degradation are significant. An important conclusion is that gross size of glucose
polysaccharides and teichoic acid-type polysaccharides is not a significant determinant of
degradation rate. The transition from dissolved polysaccharide to transportable
oligosaccharide, although it could be observed with high-resolution sampling, was not the
slow step in degradation, since lower molecular weight carbohydrate intermediates
accumulated, and the polysaccharide was degraded on the same timescale as its component
units of maltotriose (Chapter 4). In certain cases, therefore, the dissolved polymer ->
dissolved monomer transition is not the slow step in degradation of organic matter. High
molecular weight does not necessarily correlate with slower degradation rates. This result is
directly contrary to the widely-held (but not well tested) belief that the enzymatic hydrolysis
of macromolecules by bacteria determines organic matter degradation rate (Meyer-Reil,
1987; Hoppe, 1991, for example; Meyer-Reil, 1991).

In this regard, the relatively slow degradation of GLA is even more surprising: the
smallest substrate used in the culture series persisted for the longest time in the culture.
Even once degradation of GLA had begun, 120 hours elapsed before the substrate was
completely consumed. For F3, laminarin, and pullulan, the interval between onset of
degradation and complete substrate consumption was on the order of 10-15 hours. The
order-of-magnitude difference in rate of substrate degradation, on top of the long3 degradation lag, may suggest that GLA degrading bacteria are not only rare in the initial
inoculum, they also have a low doubling rate. Substrate structural features clearly can have
a significant effect on degradation rates, even at molecular weights below the direct

transport size limit.

I
I
I
I

I
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I Chapter Six: Sumnmary

Most organic matter is synthesized as high molecular weight cellular components such as
proteins, lipid complexes, and polysaccharides. In marine systems, the majority of this

organic matter is rapidly remineralized back to CO2; only a small fraction of total primary
productivity is ultimately buried in sediments as recalcitrant organic matter. Research in

organic geochemistry, however, has focused primarily on low molecular weight
components or hydrolysis products (amino acids, small lipids, monosaccharides) of
macromolecules. Our inability to structurally characterize intact macromolecules has

I hampered efforts to determine rates and mechanisms of organic matter degradation and
preservation in marine sediments. The factors governing transformations of
macromolecular organic matter in marine sediments are important 'unknowns' in studies of
early diagenesis.

In anoxic sediments, which account for more than 90% of the annual burial of
organic carbon (Henrichs and Reeburgh, 1987), bacteria are the only organisms capable of
degrading macromolecular organic matter to CO2 and simple substrates. While the bacterial
degradation of simple substrates is well understood, little is known about the rates and
mechanisms by which consortia of bacteria degrade macromolecules. Studies of pure
cultures of bacteria have demonstrated that many bacteria produce extracellular enzymes to
hydrolyze large substrates to smaller pieces which they can ingesL These extracellular

enzymes selectively cleave structures with specific conformations and chemical linkages
(Rogers, 1961; Priest, 1992). Substrate ?,tructure therefore must play a role in bacterial

degradation of organic matter.

The underlying theme of this thesis is the connection between chemical structure
and reactivity: what structural factors determine the rate and pathways by which bacteria
degrade macromolecular carbohydrates in anoxic sediments? The impetus for the focus on
carbohydrates was the observation that monosaccharides such as glucose are readily

metabolized by most organisms, but many high molecular weight polymers of simple
sugars (such as cellulose) can be degraded only by a select range of bacteria, protozoa, and3 fungi. This range in reactivity exists even though individual monosaccharides are
structurally quite similar. High molecular weight carbohydrates are classic biological
polymers, which differ primarily in the number of repeating units, vary somewhat in

monomer composition, and have a well-defined range of linking and branching
possibilites.

A combination of chemical and microbiological techniques were used to investigate
the influence of size, linkage position, linkage orientation, and monomer composition onI

I
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the rate and pathways by which consortia of anaerobic bacteria degrade carbohydrates.

Hungate anaerobic ,',chniques (Hungate, 1969) were used to enrich replicate cultures of

bacteria from sulfate-reducing sediments on structurally well-characterized substrates. The

substrates, intermediates, and degradation products were quantified and characterized using

a variety of chromatographic and spectroscopic techniques. The basis for nuclear magnetic

resonance (NMR) spectroscopic determinations of carbohydrate structure was laid out in

Chapter 2. A variety of 1- and 2-D NMR experiments was used to investigate the structure

of several carbohydrate standards, and several corrections and additions to published IH-

and 13C-chemical shifts of oligo- and polysaccharides were made.

In Chapter 3, NMR spectroscopy was applied to the characterization of water-

extractable plankton carbohydrates. The structures of three specific polysaccharides were

determined. Dunaliella tertiolecta contained large quantities of an amylose-like (a(1,4)-

linked) polysaccharide; extracts of Synechococcus WH7335 contained smaller quantities of

an amylopectin-like (a(1,4) with a(1,6) branches) glucose polysaccharide. Both of these

polysaccharides probably are accumulated as energy reserves. The cold aqueous extract of

Synechococcus WH7335 consisted principally of a glycerol-polysaccharide, which was

tentatively identified as a teichoic acid. Teichoic acids of similar structure are found in the

cell walls of gram-positive bacteria; this is the first suggestion of their occurrence in

cyanobacteria.

The value of NMR spectroscopy in structural determinations was particularly

evident in the characterization of the Synechococcus teichoic acid. While independent

determinations of monomer composition and linkage position were necessary, the I- and

2-D NMR spectra were critical in constraining the types of structures which were consistent

with the compositional data. Discovery of the teichoic acid-type polysaccharide also brings

up a truism about investigations of the chemical composition of organisms: you find what

you are looking for. Techniques used in previous studies of the glycolipid composition of
cyanobacteria would not have extracted teichoic acid of this type, and methods used to

characterize the carbohydrate composition of cyanobacteria would have destroyed this labile

structure.

The oligosaccharide degradation experiments in Chapter 4 demonstrate that the

culture system produced quantitative and reproducible results. The sequence of
transformations observed in the cultures were consistent with the sequential substrate
degradation expected in a consortia of anaerobic bacteria. The results of the di- and

oligosaccharide experiments demonstrate that even mixed cultures of bacteria differentiate

between closely-related structures. The slow degradation of GLA revealed that chemical
structure is important, even within the size range of substrate which bacteria can transport
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without extracellular hydrolysis. The time-lag in GLA degradation suggests that most

bacteria simply cannot degrade this particular structure, in spite its small size and the fact

that neither its component pieces nor its linkage position or orientation were unusual. The
lag in substrate degradation most likely reflected the time required for a very small
percentage of the bacteria in the initial inoculun to double sufficiently to completely

degrade the substrate. The decrease in degradation lag in a transfer culture supports the
hypothesis that initial bacterial numbers were a cause of slow substrate degradation.

The development of the GLA cultures (CO2 evolution, etc.) indicated that GLA is
metabolized to standard products (acetate, lactate, CO2, etc.). This further suggests that

internal transport or hydrolysis of the hexamer-pentamer disaccharide, not transformation
of a fermentation product, was the slow step. Since many of the biochemical processes in

carbohydrate metabolism involve phosphorylation of the #1 or #6 carbon, a disaccharide
which lacks one #6 carbon may not fit a standard enzymatic template. Because little
information about the structure of marine carbohydrates is available, it is impossible to tell

whether hexamer-pentamer carbohydrate combinations are common in marine systems.
The polysaccharide degradation experiments in Chapter 5 demonstrate that the

hydrolysis of soluble macromolecules to ingestible substrates is not necessarily the slow
step in polymer degradation. Bacterial degradation of pullulan and laminarin, as well as the

branched glucan and the teichoic acid-type structure from Synechocccus WH7335, was
rapid. An important conclusion from the degradation experimen-. is that high molecular

weight does not always correlate with slow degradation rates. Differences in chemical

structure can significantly affect degradation rates, but structure is not defined solely by
gross size. This result directly contradicts the assumption that enzymatic hydrolysis of
macromolecules is the rate-limiting step in organic matter degradation (Meyer-Reil, 1987;

Hoppe, 1991; Meyer-Reil, 1991). The lack of a rate difference implies that enzyme

induction and production of exoenzymes must occur very quickly. Rate differences in
carbohydrate degradation (i.e., degradation of GLA compared to pullulan) occur on time
scales consistent with the doubling time of bacteria, not with the production of enzymes.

The time course of the transformation of 200,000-dalton pullulan to -5000 dalton
polysaccharides and to oligosaccharides was resolved using gel-permeation

chromatography and NMR spectroscopy. This study provided the first molecular-level
evidence in marine systems of the extracellular hydrolysis of a macromolecule to ingestible

substrates. NMR spectra revealed that the pullulan was most likely hydrolyzed by a Type II

pullulanase, an endo-acting extracellular enzyme which preferentially hydrolyzes a(l,6)
linkages. The hydrolysis of pullulan was specific through all substrate size classes. Even
when substrate hydrolysis was well advanced, there was a well-defined linkage pattern

I
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evident in the remaining substrate. The uniformity of linkage patterns suggests that I
pullulanase, not a mixture of pullulanase and amylolytic enzymes, was responsible for

hydrolysis through all size classes of substrate.

This is the first report of pullulanase activity among mesophilic marine bacteria.

The activity of pullulanase would not have been measured by previous studies of the

enzymatic activity of bacteria in seawater or sediments (Somville, 1984; King, 1986;

Meyer-Reil, 1987; Hoppe, 1991, for example), because the fluorescent substrate analogs

used in those studies do not conform to the structural specificity of pullulanase. Type II

pullulanase cleaves only a(1,6) linkages which have at least two a(1,4)-linked monomers

on either side (White and Kennedy, 1988).
The demostration of this activity, and the rapid overall degradation of pullulan, raise

a question about the types of polysaccharides which may exist in marine environments.

Results of the oligosaccharide degradation experiments suggest that a bacterial population
in sediments may to some extent be 'primed' to degrade particular structures. Glucose
homodisaccharides were in general degraded slightly faster than heterodisaccharides. The

difference in time required for complete substrate degradation (on the order of 20-40 hours)
suggests that induction of a specific enzyme was probably not the cause of slower

degradation of heterodisacchaides, since enzyme induction typically occurs on a time scale

of minutes (Gottschalk, 1986). Bacteria capable of degrading glucose homodisaccharides
may either have been more numerous in the initial inoculum, or may have doubled more
quickly, than the bacteria which degraded the heterodisaccharides. In the case of GLA, the
ability to degrade the hexamer-pentamer disaccharide was probably very rare, since the

degradation lag was more than twice as long as for any other substrate. Even after the onset
of degradation, substrate degradation was an order of magnitude slower (120 hours for

complete consumption) than observed for any other substrate. The rapid degradation of
pullulan, on the other hand, implies that bacteria which can degrade this structure are either

very numerous or double quickly. This in turn implies that its specific combination of

a(1,4) and a(1,6) linkages may be common in marine systems. Further data on the linkage
pattern of glucose polysaccharides produced in marine systems would be necessary to test

this hypothesis. The rapid degradation of the polysaccharides also implies that the quantity
of dissolved carbohydrates measured in seawater may not accurately reflect the importance
of high molecular weight carbohydrates to bacteria, since high turnover rate may keep the

standing stock of substrate very low.

The results of the degradation experiments demonstrate that neither anomeric

linkage nor linkage position per se affect degradation of disaccnarides. Glucose

homodisaccharides of differing linkage position and orientation were degraded on the same

I
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I timescale. Molecular weight also did not prove to be the slow step in degradation, since

pullulan and maltotriose were degraded on the same time scale, in spite of the 400-fold

difference in their molecular weights. The slow degradation of GLA, however, suggests
that particular combinations of monosaccharides might be difficult or impossible for most
bacteria to degrade. Although the difference in degradation rate between GLA and the other

substrates was a matter of days, which is very little time on a sedimentary timescale, only a

very small number of carbohydrate structures were used in the degradation experiments.
Experiments with a wider variety of carbohydrates might reveal other structures which are
resistant to degradation by bacteria. The small fraction of marine carbohydrates which is

ultimately buried and preserved in sediments may in fact be distinguished by unusual

structural features.3The relatively rapid degradation of the other two heterodisaccharide combinations

(galactose-glucose, galactose-mannose) used in the culture experiments shows that not all

combinations of monosaccharides are biochemical problems. The fact that three of the
eight most common neutral monosaccharides found in marine environments are pentamers,

I however, suggests that pentamer-hexamer combinations can probably be found among

marine carbohydrates; all of the arabinose, rhamnose, and xylose found in organisms,

particles, and sediments is not likely to occur solely in homopolysaccharides. In addition,

two of five common hexameric monosaccharides are deoxy sugars, which have a methyl
group at the #6 carbon. None of the substrates used in the cultures included either fucose or

rhamnose, but it is possible that deoxy sugars in combination with other monosaccharides
in a polymer might also present biochemical problems. Addition of a phosphate group at3 the #6 carbon of a monosaccharide, in fact, is dependent upon the presence of a free

hydroxyl group at that position. Further investigations with different heterodisaccharides or3 heteropolysaccharide substrates could highlight other carbohydrate structures which are

difficult for bacteria to hydrolyze or metabolize.

Phase transition, packaging, and reactions with other types of sedimentary organic

matter are additional factors which may influence carbohydrate degradation. The substrates
used in the culture series were all soluble, but in marine systems, deposition of particles at

I the sediment-water interface brings particulate carbohydrates to the sediments. The

particulate macromolecule -> dissolved polymer transition of Fig. 1.1 (D) was not3 investigated at all in this study, although it may be a rate-limiting factor in degradation of

macromolecules. One intriguing idea for further work would be to use a relatively insoluble

Ssubstrate in a further series of cultures (cellulose is an obvious example), and to monitor

the transitions from insoluble carbohydrate -> soluble polymers -> soluble oligomers

-> C02. The only necessary addition to the techniques used in the polysaccharide

I
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degradation experiments would be a precise measure of remaining insoluble substrate, I
which could probably be quantified colorimetrically. Colorimetric determinations would be

quite accurate in this case, since the monomer composition of the substrate is known.

Packaging may well be important, because the relative resistance of a soluble

substrate such GLA to degradation may be significantly magnified if it were part of a cell

wall polysaccharide, for example, sandwiched by murein layers or a thick coating of chitin.

Reactivity of carbohydrates with sedimentary organic matter has been investigated I
in a number of studies. As mentioned in Chapter 1, Klok et al. (1984) concluded that

although only 4% of the total organic matter released during extraction procedures was

directly identifiable as carbohydrates, 22% of sedimentary organic matter was actually

derived from carbohydrates. The fact that pyrolysis was necessary to release these

carbohydrate components from sediments implies that that they were very tightly bound in 3
the sediment matrix. Moers et al. (1988) found even at ambient tempertures, glucose

reacted with H2S to form a variety of products. They suggested that formation of reactive 3
thio-glucosides may lead to formation of other organic compounds which are resistent to

biological or chemical degradation. Any 'inherent' resistance of an oligo- or polysaccharide

to biological degradation may be further magnified by these types of processes.

Suggestons for Further Work i
The work presented in this thesis opens a number of avenues for further research. The n
culture system could be used to study degradation of other types of carbohydrates, or other

classes of organic matter such as proteins, glycoproteins, or lipopolysaccharides. The I
substrates used in the oligo- and polysaccharide cultures represent only a small percentage

of the range of carbohydrate structures. Hexamer-pentamer carbohydrates or

heteropolysaccharides might yield interesting results in a new series of cultures. As

mentioned previously, the particulate -> dissolved macromolecule transition could be

investigated using insoluble (or lesI soluble) carbohydrate substrates. From a
microbiological perspective, isolation of select bacteria, such as the GLA-degrading

bacteria or the mesophiles which produce Type II pullulanase, would be interesting. The I
GLA-degrading bacteria ma- have unique biochemical features which permit them to

degrade unusual heterodisaccharides.

Since the culture system has been exhaustively tested in the laboratory, an extension

to field studies is also important. Isotopically labeled substrates (or substrates with

fluorescent tags) would probably be needed in order to do trace-level experiments. Labels
would also simplify the problems associated with extracting a substrate from a complex
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I matrix.
Extensive methods development is required to rigorously test the hypothesis that3 carbohydrates which are preserved in sediments differ in structure from their more labile

counterparts which are degraded. The survey of plankton carbohydrates presented in3 Chapter 2 demonstrated that purification of specific carbohydrates from a complex

biological matrix can be difficult; purification of intact polymeric carbohydrates from a

sediment matrix will be even more of a challenge.

An indirect method of determining the structure of sedimentary carbohydrates

would be to begin with the hypothesis that carbohydrates preserved at depth in the

3 sediments differ in structure from labile carbohydrates in surface sediments. A core

collected from a site with consistent organic matter sources (to minimize effects due to3 source changes) could be used to compare carbohydrates in surface and buried sediments.
(Conventional extraction techniques could be used to determine total carbohydrates and the

depth in the core at which carbohydrate degradation appears to level off.) A sequence of

extraction techniques could be used in a first attempt to characterize the types of matrices in

which the carbohydrate are bound at differen depths in the core. This would be an

extension of the type of study carried out by Klok et al. (1984), but a range of techniques

used in glycobiology (lectin affinity chromatography, selected enzymes which have only
recently become commercially available, etc.) could be applied as well. The 'harshness' of

the extraction method required to extract a particular fraction of carbohydrates should be3 related to the type of matrix in which the carbohydrate is found. With some of the milder

extraction techniques, structural characterizations of the carbohydrates could also be made.

The phytoplankton survey in Chapter 3 is a first attempt at characterizing the

macromolecular structure of plankton carbohydrates; much more could be done. A high

priority in studies of marine carbohydrates should be development of methods to measure
and characterize small quantities of intact carbohydrates. NMR spectroscopy is particularly
promising in this respect, since higher sensitivity aid better resolution can be achieved by3 using inverse techniques and higher-field magnets. Two analytical challenges stand out: (1)
development of more effective extraction techniques which can recover intact carbohydrates3 from a variety of matrices; (2) development of desalting techniques which can be applied to
the lower molecular weight (<1000 dalton) size class of dissolved organic matter. Relative

to their abundance in marine organic matter, very little work has been done to characterize

marine carbohydrates. Development and application of new analytical techniques will be a

key to more complete structural determination of marine carbohydrates.

I
I
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Appendix A. NM Acquisition and Processing Parameters
(1SC and 2D Experiments)

NOTE: Standard Brucker software was used for acquisition and processing of all spectra.
This list of parameters is not intended to be a guide or explanation of the 13C and 2D
experiments; consult the literanue on NMR spectroscopy cited in Chapter 2 for information
on these topics. This list of experimental parameters may be useful for those who have
hands-on experience with NMR spectrometers; Brucker manuels should be consulted for
explanations of abbreviations and experiments.

3 Chapter 2:

gentiobiose COSY 45 (Fig. 2.7) isomaltose COSY 45 (Fig. 2.8)
AU PROS: AU PROG:

COSYHG.AUR COSYHS.AUR
DATE 26-9-91 DATE 18-2-92

M12 1024 S12 1024
SII 512 S1 512
SW2 798.722 SW2 847.458
SW1 399.361 SWI 423.729SNDO 1 NDO 1

WDW2 S WDW2 S

WDWI S WOW1 S
SS82 0 SSB2 0
SS81 0 SSal 0
MC2 M MC2 P
PLIM ROW: PLIM ROW:FL 5.547P F1 5.645PF12 2.54P F2 2.827PAND COLUMN: AND COLUMN:
FA 5.547P F1 5.645P
F2 2.891P F2 2.627P

6D0 5.000000051 6.0000000 SI 28L
S3 2 00 03 .0020000
53 .0020000 S2 33LS2 34L P1 8.70P1 4.50 00 .0000030

DO .0000030 D2 .080000002 .0600000 P2 4.40
P2 2.30 RD 0.00RD 0.0 P 0.0

PW 0.0 DE 740.00
DE 785.00 NS 16
NS 2 DS 2
DS 2 NE 256
NE 256 ININ .0012520 N 0080

I
I
I
I
I
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isomaltose 13 C (Fig. 2.10) isomaltose DEPT (Fig. 2.11)

ISOM13C.003 ISODEPT.O45
DATE 14-11-92 AU PROG:

DEPT.AUR
SF 75.469 DATE 13-11-92SY 75.0
01 4094.509
SI 6192 SF 75.0 6
TO 4096 SY 75.0
SW 3521.127 01 4952.706
HZ/PT .860 SI 8192

TD 4096
PtW 3.6 SW 3424.65E
RD 2.500 HZ/PT .83E
AG .502
RA 640 PW 0.c
NS 1024 RAD 0.0 ITE 333 AD .=98

FM 4400 RG 640

02 4900.000 NS 64
DP 16L PO TE 333

LB 1.500 FW 4300
68 0.0 02 4900.30C
CX 35.00 OP 16L DO
CY 19.00
Ft 102.816P LB 1.50C
F2 56.173P GB 0.0
HZ/CM 100.579 CX 35.C0PPM/CN4 1.333 CY 5.00
SR -1106.22 Ft 103.096:

F2 57.729P
HZ,'CM 97.823
PPM/CM 1.29E
SR -1109.65

I

isomaltose HETCOR (Fig. 2.12) maltose COSY 45 (Fig. 2.13) 1
AU PROG:

AU PRO: COSYGAUR
XHCORR.AUR DATE 19-2-g2

DATE 23-!Y-92

S12 4096 S"1 512
SIl 512 SW2 047.458
SW2 3125.000 SWI 423.729
Swl 390.016 moo 1
NOD 2

W0W2 S

WOD2 6 WOWI S
WOWI S SS62 0
LB2 2.000 SSN 1 0

632 0.0 PLIM ROW:
N2 M Ft 5.646PPLIM ROW: F2 2.828PP1 Row:49P AND COLUMN:
F2 98.649P F1 5.646PF2 57.462P F2 2.B2BPAND COLUMN:Fl 5.460P at 5.0000000
F2 2.874P Si 28L

03 .020000
01 5.0000000 S2 33LI
SI OH P1 8.70
P1 26.00 00 .0000030
00 .0000030 02 .0800000
P4 9.60 P2 4.40
03 .0034500 RD 0.0
P3 4.90 PW 0.0
04 .0017200 DE 740.00
S2 16H NS 16
RP 0.0 05 2
PR 0.0 NE 256
DE 202.50 IN .oo0leoo
NS 16
aS 2
P9 100.00
NE 256;• .00064:0

U
*1!
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3 maltotriose COSY 45 (Fig. 2.14) amylose 13C (Fig. 2.16)

WU ;ROG AMYL!3C CA
COS ;G..Ui DATE 24-4-92

DATE : -2-.2S12 102-1 
SF 75.469

s31 512 SY 75.0
SW2 648. e68 01 4816.91t

s .a2 -zýe Sl 8192MOO " TO 4096

SW 3731.343
HZ/PT .91!

dOW? S

Wool s Pw 3.6
SS82 0 AD 2.4500SSel 0 n .4

MC0 
G 49.0

01 .0flOw0 RG 1600
03 o .00200C NS 27500F2 3. '05; TE 333

AN DO COLUBN0

00 3.00003 
FC 4700

2 3. 00 C02 4900.00001 5L MOMoc OP 16L CPO

92 .2.8 l 0.2
03 . pO0;OOCC LB 1. 500
S2 33 9 O

DO .0000030 Cx 35.O00
D2 .0800000 CY 9.O00
P 2 '1 "3 0 F 1 10 2 .2 9 8 P

RD o. c F2 52.868P

"O 73 Sjc 
HZ/CM 106.584

us 1.6 PPM/CI4 1.412
as 2 SR -1035.01
E 2-I

I
pullulan COSY (Fig. 2.18) pullulan 13C (Fig. 2.19)

COsyNG AUP PULL 13CI. CGJ
ODTE :6-2-9.1 DATE 23-4-92

S12 1024 SF 75.469
311 s12
SW? 720.351 SY 75.0

SWl 360 231 01 4816.911
MOO I SI 8192TD 4096

SW 3731.343

2 s 
HZ/PT .911

SS82 0 PW 3.6
SSB1 0 RD 2.500SS4C
MCP. AG .549
PI 5 OW: r RG 1600

F2 3. NS 18992
AN, MUM"- TE 333
F1 5.600P
F2 3.200, FM 4700

P, 5.0000C02• 
4900.000

SI 2s9- OP ISL CPO

c 3 0020000
S2 33•° LB 1.500
001 A so 0.0
00 40-k 0 

3.0
02 .0000000 CX 35.0o2 . ooo0o CY 17.O00I

RD 0.0 Fl 102.324.
Plu 0c P2 52. 894P
3c 870 . 0
!IS 64 oHZ/CM 

106.584as 2 ;PM/CM 1.412

'it 236 SR -1036.97
IN 0053980

II
I

I



222

C~hapter3:
pullulan HETCOR (Fig. 2.20) i2COSY (Fig. 3.9)

AU PROb:
XHCORR. AUR SYNWH73. SNX

DATE 5-12-92 FI PROJ:
jYNKwPRO. O0

S12 4096 F2 PROJ:
SZi 512 SYNWIPRO.GO:

SW2 3424.658 AU PROG:

SKI 841.751 COSYNG.AURNOD 24 .5 OATE 0-2-93

512 1024
SI 512SK2 644.595

WOW2 6 SWK 422.297

WOWI S NOO I
LB2 1.500

6 92 
0.0$59t to WOW2 S

MC2 M KOMI
PLIN ROW: SSB2 0
FI 100.003P ss58 0
F2 55.998P NC2 PO
AND COLUMN: PLIN RON:
FI 5.590P FS 5.546P
F2 3.1 99P F2 4.088PAND COLUM:370P

01 5. 0000000 F1 3.707P

S OH 3.41op

P1 26.00 Do 6.0000000DO •.0000030 31 26L
P4 9 . 0 03 .0020000
03 .0034500 22 33L
P3 4.90 P1 0.10
04 .0017200 02 .0000030
S2 16H D2 .0600000RD 00P2 8.80
RD 0.0 RD 0.0
PW 0. 0 PW 0.0
DE 185.00 DE 742.00
NS 128 MS 256
DS 2 OS s I
P9 100.00 ME 126
NE 12i IN .0011840
IN .0002970

F3 COSY (Fig. 3.12) F3 13C (Fig. 3.14) 3
AU PROG: DATE 12-2-93

COSYH6. AUR
DATE 1-2-93 SF 75.469

12SY 
75.0

SI1 512 01 4760.266
SW2 1562.500 SI 8192
SwI 781.250 TO 4096
MOO I SW 3546.099HZ/PT .8666

WOW2 S Pw 3.6
wowl s RD 2.500
ss52 0 AG .578SSel 0 R6 1600
NC2 P NS 51321PLZN ROW: N 12
F1 5.671P TE 333

F2 2.845P
AND COLUMN: FW 4500 I
F2 5.671P *02 4900.000P2 2.845P OP 16L PO
D1 6.0000000

s1 28L LB 1.500
03 .0020000 GB 0.0
92 33L CX 15.0
Pt 8.60
DO .0000030 CY 12.00
02 .0600000 F1 100.667P
P2 8.80 F2 53.691P
RD 0.0 HZ/CM 236.349
Pw 0.0 PPM/CM 3.132DE 402.50
NS 32 SR -1061.35
DS 2
ME 256 I

I
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I
F3 DEPT (Fig. 3.15) 13 HEETCOR (Fig. 3.16)

I AU PROG: AU PROS:
XHCOR . AUR

DEPT.AUR DATE 15-2-93
DATE 10-2-93 S12 4096szl 128
SF 75.469 sW2 3546.099SY 75.0 SWI 114.332
01 4760.266 MOO 2
$1 8192

TO 4096
SW 3546.099 KOW2 6HZ/PT .866 woml s

L92 8.000682 0.0p• 0. 0 ssel 10
RD 0. 0 MC2 p
AG .578 PLIN RON:RG~ I0 F 97. 742PNS 6000 F2 57. 133F
NS 6000N COLUMN:TE 333 I 54.464

2 03.20P
FW 4500 O1 5.0000000
02 4900.000 SI ONOP 16L DO Pt 26.00

0o .0000030LB 1.500 P4 9.60
GB 0.0 03 .0034500CX 8.O0P3 4.60cx 180004 .0017200CY 4.0O0 S2 IrdNIF1 100. 805P RD 0.0F2 53.829P DE 1.0
HZ/CM 196.957 DE 571.80MS 512PPM/CM 2.610 D5 2
SR -1071.74 PS 100.00NE 64IN .0003070

I
I
I
I
I
I
I
I
I



224

Appendix B: Survey of Phytoplankton Carbohydrates

TYM:
structural
-harvested, sonicated to remove cell contents, dried. Hydrolyzed w/ 1.8 N HCO at 100 OC.
Found glucose, galactose, mannose, xylose, fucose, rhannose (in most species), little to
no arabinose, ribose (Hecky et al., 1973)

-heated dried algae in NaOH, H2SO4; ppt'd w/ EtOH. Found 90% (1-3) P-xylan, 10%
P(1-4) glucan.(Maeda et al., 1990)

-after extraction w/ acid, residue extracted w/ alkali. Hydrolyzed, found complex mix of
monomers, including rhamnose, fucose, ribose, xylose, mannose, galactose, glucose.
(different % in different species). (The two fractions accounted for 100% of total
carbohydrate). Didn't analyze for uronic acids. (Haug and Myklestad, 1976)

-insoluble carbohydrate (after acid and alkali extraction) was typically 32-52% of organic
matter for samples high in dinoflagellates, which are known to have a cellulose-type cell
wall. (H-aug et al., 1973)

-partial degradation of cleaned cell walls yielded cellodextrins (DP2-4), laminaribiose, and
laminaritriose (ie, both 0(1,4) and A(1,3) linkages present). (Nevo and Sharon, 1969)

-coccolith polysacc isolated; found uronic acids, investigated Ca++ binding, isolated
similar polysaccharide from Black Sea sediment E. huxleyi (estimated age ca. 1000 yr) (De
Jong et al., 1976)

storage:
-freeze-dried alga extracted with .05M H2SO4, neutralized, dialyzed. 16.2% yield, >99%
glucose, trace mannose. Avg. DP of 106 (determined by measuring reducing power).
Mainly 01-6) linked w/ (1,3) branch points that have (1,6) sidechains (Varum et a!., 1986)

-freeze-dried alga extracted 2x w/ .1N H2SO4 to give total glucan. Found only trace
quantities of other sugars, and only small amounts of glucose remained in reside. 0(1,3)
linked; believe this extract represents storage prod. Didn't analyze for uronic acids. (Haug
and Myklestad, 1976) (Myklestad, 1974)

-extracted lyophilized mixed-species (net tow) w/ .1N H2SO 4; got 95-98% glucose.
Diatoms seem to have glucose principally as storage product; w/ dinoflagelates, acid- and
alkali-soluble material v similar in composition.(Haug et a!., 1973)

-indications of f(1,3)glucose polysaccharide (Handa, 1969)

-extracted cells w/.05M H2SO 4 at 4 OC for lhr, found a 0(1,3) glucan w/ branches at -
positions 2 and 6. (Paulsen and Myklestad, 1978)

excreted
-filtered and rotovaped medium, dialysed, lyophilized: contained sulfate half-esters,
rhamnose, fucose, arabinose, galactose (Myklestad et al., 1972) Followed up w/ periodate
oxidation, methylation: found branched structure, w/ fucose and galactose on inner and
outer, rhamnose on outer parts. Rhamnose generally (1,2), galactose (1,4) and (1,3),
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I fucose is (1,3) and at branch points. Previous report of arabinose in error;
rhamnose:fucose:galactose = 4:75:21 (Smestad et al., 1974)

-Dialysed, lyophilized, dissolved in H20, ppt'd w/ EtOH, lyophilized again. Contained

fucose, rhamnose, mannose, glucose, xylose, glucuronic acid, galactose
(34:15:19:16:69:trace molar ratio). Sulfate also found, total production ca. 30 mg/dm3.
Fractionation showed at least 3 polymers: a glucan, a heteropolymer w/o glucose, and a
polymer w/ mannose and fucose. Glucan had primarily (1,3) links, w/ some branches
through Cl, C3, and C6. Glucose probably chrysolaminarin; may be derived from dead
cells (10 wk total incubation time before cells harvested and removed) (Percival et al.,
1980)

-12-day cultures; got 4.5-27 mg/L carbohydrate from Chaetoceros species. Found
rhamnose, fucose, galactose in all polysaccharides; xylose, mannose, and glucose in two
of four species. Polymers were homogenous (free-boundary electrophoresis); structural
analysis (unspecified) indicates high degree of branching. Amount of exopolysacc > total
amounts of cellular, alkali-sol carbohydrate. Since cultures so fresh, quantities not likely
due to cell lysis. (Haug and Myklestad, 1976)

-production in Chaetoceros species ranged from 6-27 mg/L. Ratio of extracellular to
cellular carbohydrate ranged from .29 to 1.25 for Chaetoceros species; other species were
lower. (Myklestad, 1974)

-cells removed from media by centrifugation. Medium dialyzed, concentrated, lyophilized.
Analyzed by ionophoresis, paper chromatography, gas-liq chromatography. Found
primarily rharnose, also mannose, fucose, xylose, galactose, glucose; arabinose and
ribose and unknowns in exosaccharides from some species. Glucuronic test positive for all
species checked. Nitzschiafrustulnm yielded highest quantities of exopolysaccharide.
Production of polymer started in period between log and stationary phase, and continued
for 14d (in a 21d culture) Polysaccharide produced in high S%o culture differed in
solubility from those produced in low S%o cultures. Found compositional differences in
the two exopolysaccharides. (Allan et al., 1972)

-sulfated polysaccharide produced by diatom: moved as single anionic compound w/ free
boundary electrophoresis. Sulfated, has rhamnose, fucose, galactose (.3:3.5:1) Highly
branched, w/ fucose in both furanose and pyranose forms. Galactose present mainly in3 inner part of molecule. (Smestad et at., 1975)

-filtered culture medium, determined carbohydrate w/ N-ethyl carbazole. Maximum
concentration ranged from 10-123 mg/L, depending on species. (Guillard and Wangersky,3 1958)

-investigated kinetics of 14C-labeled particulate production and extracellular release in
(zoopl mesh) filtered water from three sites [not carbohydrate-specific production]
(Lancelot, 1979)

-measured total carbohydrate, polysacc produced in batch cultures; rate ranged from 42
pg/celg/day for log to 20 pg/cell/day for stationary phase cultures (Myklestad et al., 1989)

-mild acid hydrolysis, column chromatography [particulars NOT specified] used to isolate
3-0- (a-D-glucopyranosyluronic acid)-L-glactopyranose; structure determined by NMR
(Jaseja et al., 1989)

I
I
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-from culture in stationary phase, isolated exopolysaccharide by dialyzing, lyophilizing, I
hydrolysis w/ 2M TFA at 100 OC for 2hr. Used DE-52 ion exchange resin to separate
neutral, anionic components, then used Sephadex GIO to do size separation. Used NMR,
GLC-ei-MS to determine structure of 3-0- (a-D-glucopyranosyluronic acid)-L-
galactopyranose (Geresh et al., 1990)

-mild acid hydrolysis, anion exchange chromatography, GPC to isolate sulfated sugar I
fraction, desulfated, convened to alditol acetates, used IR and NMR to determine structure
as D-galactose 6-sulfate, D-glucose 6-sulfate, D-galactose 3-sulfate. (Lupescu etal., 1991)

-sequence of ppt steps used to isolate exopolysaccharide; a high MW heteropolymer (I-
lOxlOA6), 42% hexose: 30% pentose: 8.5% uronic acid: 9% ester sulfate: 1-2% amino
acid. Glucose and galactose make up hexoses, xylose is pentose. Galactose: xylose:
glucose: uronic acid: sulfate is 2.12:2.42:1:1.2:2.61. (all this known from previous wk). I
Determined structure of a methylated glucuronic acid by ci-MS and a variety of other
techniques. (Kieras et al., 1976) 1
-radiolabeled extracellular productss dialyzed, hydrolyzed, paper chromatography vs. stds.
Found galactose, glucose, mannose, arabinose, xylose, ribose, rhamnose, hexuronic acid,
and unknown. Cold- and warm-water species had same sugars (except arabinose), but
relative proportions different. (Guillard and Hellebust, 1971)

-medium filtered, concentrated, lyophilized, acetylated derivatives, GC: found galactose,
also mannose, glucose, xylose, arabinose; little rhamnose (Vieira and Myklestad, 1986)

-total dissolved carbohydrate measured (method not specified) in a variety of species grown
in culture. For Phaeodacrylwn, filtered medium pH-adjusted to 5.0, passed through C18
sep-pak, eluted w/ MeOH. Rotovaped, methanolysis, TMS, GC. Neutrals, carboxylated, 3
amino sugars detected; sulfate esters would've been desulfated, measured w/ others.
Dissolved carbohydrates ranged from ca. 2-15 mg CA medium. Total of Phaeodacrylwn
carbohydrate in surface-active material reached a max of 1.4 mg/l extract. (Frew et al., I1990)

-cells removed by centrifugation, medium concentrated, dialyzed (10-l4kD cutoff), 3
separated by gel permeation, etc. In soil cryptomonas, found fucose, rhamnose, xylose,
mannose, glucose, galactose-uronic, glucose-uronic, trace of 3-0-Me galactose. Fract A
was 1,3-linked galactose, 1,4-linked galactose-uronic. Fract B had more sulfate, was more
highly branched had greater compositional variety. (Paulsen et al., 1992)

extracenular mucilage
-diatom grows in colonies surrounded by mucilage tubes; tube polymer consists of 72%
carbohydrate, 22.5% sulphate, 7.5% protein. Carbohydrate consisted of 20-22% uronic
acid, 17-20% anhydrogalactose. Polymer moved as single anionic compound w/ free-bdry
electrophoresis. Complete hydrolysis gave mannose, mannuronic acid, xylose, and an I
unknown sugar. Main part of mannose (1,3) linked, some has branch points at C2 and C3,
some present as non-reducing endgroups. (mannose derivatives also represent mannuronic
acid). Xylose present as non-reducing endgroups, and as (1,2) and (1,4) links. Unknownis probably 3,6-anhydro-2-0-methyl-hexitol triacetate, either (1,4) or (1,5) linked. Sulfate I
on C2 of mannose or mannuronic acid, or at C4 (Paulsen et al., 1978)

-red algae mucilage found to be sulfated polysacc w/ xylose and glucuronic acid, and I

I
I
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I galactose, glucose, rhamnose, and 3-0-methyl xylose. (Fareed and Percival, 1977)

- red algae mucilage: xylose, glucose, D- and L-galactose, 3-0-methylxyl, 3- and 4-0-
methyl galactose, glucuronic acid (3:1:2.5:.13:.13:.8). Also found 2-0-methylhexose, 2-0-
methylglucuronic acid, 2,4-di-0-methylgal. Also ca 10% sulfate half-esters. Found 1,3 and1,4 links. MW estimated ca 4x10A6 and 5x10A6. (Percival and Foyle, 1979)

i (general) cellular/extracted
-acid hydrolysate: extracted w/. 1N H2SO 4, upped to IN, acetylated+GC5 extracted remainder w/ IN H2SO 4, acetylated + GC (Myklestad et al., 1972)

-sonicated cells in water, centrifuged to remove cell walls: Hydrolyzed w/ 1.8 N HCI at
100 oC. Much glucose, some galactose, mannose, xylose, rhamnose, fucose; little to no
ribose, arabinose (Hecky et aL, 1973)

-hot-alkali extract: 5% yield from cells, v soluble in H20. Mannose, 27% glucuronic acid,
7.5% ester sulphate[though paper is confusing with respect to composition]. Found (1,3)
and (1,2) linkages (Ford and Percival, 1965)

-sequential extraction w/ water, alkali (cold H20, hot H20, NaOH): got glucose, mannose,and fucose from water extract (after hydrolysis), mannose and uronic acid from alkaliextract. (Percival et al., 1980)

3 -acid hydrolysate: glucose, galactose, ribose in all species, mannose in bacillariophyceae;
xylose, rhamnose, fucose in sev. species (see table in paper). Didn't find large quantities of
hexuronic acids (Parsons et al., 1961)

,-diatoms refluxed in MeOH:H 20 (90:10) 2x, then refluxed in H2 0. EtOH added to aq.
extract, dehyrated gummy mass w/ MeOH and ether extractions. Found glucose, trace of
other monomers (probably contamination from extracellular extract). Alkali labile polymer
yielded metasaccharinic acid, consistent w/ 1-3 linkage. In (hydrolyzed) residue after H20
extract, got same monomers as in exopolysacc: rhamnose, fucose, xylose, mannose,
galactose, glucose, and 3 unknowns. Proportions of monomers different, though. (Allan et
al., 1972)

-EDTA-soluble fraction of coccolith (coccoliths decalcified in 10% EDTA, supernatant
filtered, Bio-Gel P4, Amicon PM-10 filter, dialysis, lyophilized): acidic polysacc, single
peak on DEAE-cellulose chromatog. Contained ester sulphate, galactose, glucose,
mannose, rhamnose, ribose, arabinose, xylose, galacturonic acid, 2,3-di-0-Me rhamnose,I 3-0-Me xylose, 6-0-Me mannose. (Fichtinger-Schepman et al., 1979)

-alkali-sol dinoflagellate extract contained large amounts of glucose, while alkali-soluble
diatom extracts contained a comples mixture of monomers. (Haug et a., 1973)

-lyophilized phytoplankton were Soxhlet extracted w/ benzene:MeOH, treated w/.01N
HCI, and then w/.5 N NaOH. Collected solid residue, washed w/ HCI, analyzed by solid-3 state 13C NMR. (Zelibor etal., 1988)

-developed new analytical techniques to quantitatively determine anhydroglycans, sulfated
polysacc (derivatize to alditol acetates) (Stevenson and Furneaux, 1991)

-cold- and hot-water base extracts to obtain carrageenan. Has backbone of alternating 3-

I
I
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linked O-D galactose and 4-linked a-D-galactose ca 50% of the Pý-galactose units are 4- 3
sulfated; a-galactose units are principally 3,6-anhydro [all this was previously known]. Did
further investigation into structural details of carageenan; looked into content and distribut
of 'precursors' and sequences; char'd by NMR. (Knutsen et al., 1990) i

-fucose-containing sulfated polysacc w/ anticoagulant properties. W/ methylation analysis,
determined sulfate principally at C4 of 3-linked fucan backbone. Also has 2-0-linked
galactosyl residues, 4-0-linked and 3,4-di-O- substituted glucosyluronic acid residues as
minor components. Galactosyl residues might be in backbone; could be in sidechain.
(Nishino et al., 1991)

4-general review) Brown algae: alginic acid (polymer of mannuronic and guluronic acids),
fucans (fucose with other sugar residues and sulfate esters). Red algae: sulfated galactans
(which have galactose, 3,6-anhydrogalactose). Green algae: complex polysacc, many of
which are sulfated. "All algae" synthesize glucans as storage polysacc. (Percival and
McDowell, 1990)

-Whole-cell carbohydrate composition: (determined via acid hydrolysis, GC) rhamnose, 5
fucose, arabinose, xylose, mannose, glucose, trace of ribose, galactose, and arabinose.
(Handa, 1969)

-whole-cell carbohydrate composition (acid hydrolysis, GO): glucose was most common I
monosaccharide in 7 of 8 species; rhamnose, fucose, ribose, xylose, arabinose, mannose,
galactose also found. Significant differences in carbohydrate composition/content between
species. (Brown, 1991)

growth effects
-increase in carbohydrate content per cell when nitrate is depleted(Myklestad and Haug,1972)

-increase in carbohydrate/cell over time (ie, into lag phase of culture)(Myklestad and Haug,
1972) I
-stationary phase: higher glucan content, though there are significant differences between
species. Amount of alkali-sol (=cell wall) carbohydrate not v dependent on growth phase.
(Haug and Myklestad, 1976)

-stationary-phase cultures in generally higher in 6-deoxy sugar (fucose, rhamnose) than log 3
phase cultures (Haug and Myklestad, 1976)

- cells from different species harvested in log phase showed similar compositions, while
cells in stationary phase differed between species. (Myklestad, 1974) I
-salt concentrantion influenced cell size and number (lower S%o=> more, smaller cells;
yield of exopoly increased six fold.) Higher nutrients=> increase wt, exopolysaccharide 3
yield. (Allan et al., 1972)

-found changes in protein:carbohydrate ratio w/ spring bloom, change in species I
composition (Haug et al., 1973)

-carbohydrate production did not parallel increase in cell #s during exponential growth;
maximum concentration was ca 3mg/L. Accumulation occurred in stationary phase

I
I
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(concentration ranged from ca 10- 123mg/L, depending on species) (Guillard and
Wangersky, 1958)

3 -cites evidence (studies of others, own field observations) that slowly growing
phytoplankton in culture and in natural waters produce and release more extracellular
carbohydrate than rapidly growing cells.(Burney etal., 1981)

-carbohydrate excreted during ALL phases of growth; composition distinct from reserve or
cellwall polysaccharides. Eestimated/calculated rate of 42pg/cell/day in log phase, 20
pgfcell/day in stationary phase (Myklestad etal., 1989)

-rapidly growing cells produced relatively little carbohydrate; slow-growing cells produced
more. Production also influenced by N:P ratio of medium. Especially at high N:P ratios, C.
4ainis produced large amount of exopolysaccharide. Production of exopolysaccharide
continued even after cellular accumulation of carbohydrate had ceased. (Mykelstad, 1977)

-concentration of dissolved carbohydrate increased w/ time from .14 to .4 mg C/L. No
change in dissolved carbohydrate (extracellular) when culture transferred to dark. Cellular
carbohydrate was lost before protein, lipids in dark; loss of carbohydrate was in water-
soluble (presumably storage) carbohydrate, not cell wall carbohydrate. (Handa, 1969)

-Production of exopolysaccharide observed only in actively photosynthesizing cells;
carbohydrate not due to leakage from dead/dying cells, or dissolution of gel-capsule around
cell. N depletion in medium caused increase in exuded carbohydrate; carbohydrate
produced in all phases of growth. (Vieira and Myklestad, 1986)

SPECIES:
(note: check (Painter, 1983) for further species; ca. 100 species mentioned)

-diatoms (Baclflariophyceae):
storage products: laminarin (Lee, 1980; Painter, 1983)
other polysacc: cellulose? chitin? complex extracellular mucilages, sulfated

glucuronomannans (Lee, 1980; Painter, 1983)
Asterionella socialis (Allan et al., 1972)
Amp'hiprora paludosa (Allan et al., 1972)
Berkeleya rutilans (Paulsen et al., 1978)
Chaetoceros affinis (Myklestad and Haug, 1972; Myklestad et al., 1972; Smestad

ertal., 1974; Parsons etal., 1961; Haug and Myklestad, 1976)
(Myklestad, 1974; Myklestad et al., 1989; Mykelstad, 1977)

Chaetoceros brevis (Haug et al., 1973)
Chactoceros calcitrans (Brown, 1991)
Chaetoceros curvisetus (Haug and Myklestad, 1976; Myklestad, 1974; Haug et

al., 1973; Smestad et al., 1975; Frew et al., 1990)
Chaetoceros debilis (Haug and Myklestad, 1976; Myklestad, 1974; H-aug et al.,

-- 1973)
Chaetoceros decipiens (Haug and Myklestad, 1976; Myklestad, 1974)
Chaetoceros gracilis (Brown, 1991)
Chaetoceros laciniosus (Haug et al., 1973)
Chaetoceros similis (Haug et al., 1973)
Chaetoceros sociahs (Haug and Myklestad, 1976; Myklestad, 1974; Haug et al.,

1973)
Corethron hystrix (Haug and Myklestad, 1976; Myklestad, 1974)

I|
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Coscinodiscus sp. (Parsons et al., 1961) £
Coscinodiscus nobilis (Percival et al., 1980)
Cyclotella cryptica (estuarine) (Hecky et al., 1973)
Cyclotella nana (Allan et al, 1972) I
Cyclotella stelligera (freshw) (Hecky eta )., 1973)
Cyclotella sp. (Guillard and Wangersky, 1958)
Cylindrothecafusiformis (Allan et al., 1972) I
Melosira granulata (frmshw) (Hecky eta a., 1973)
Melosira nwmn-doides (estuarine) (Hecky et al., 1973)
Navicula incerta (Allan et al., 1972)
Navicula pelliculosa (freshw) (Hecky et a)., 1973)
Nirzschia angularis (Allan et al., 1972)
Nitzschia brevirostris (estuarine) (Hecky et al., 1973)
Nitzchia closterium (Brown, 1991) I
Nitzschiafrustulm (Allan et a)., 1972; Frew et a)., 1990)
Phaeodactylum tricornutum (Ford and Percival, 1965; Parsons et a!., 1961; Frew

eta)., 1990; (Brown, 1991)
Rhizosolenia imbricata (Haug et al., 1973)
Skeletonema costatum (Parsons et al., 1961; Myklestad, 1974; Allan et a)., 1972;

Haug et al, 1973; Mykelstad, 1977; (Handa, 1969; Paulsen and Myklestad,
1978; Brown, 1991) I

Thalassionema nitzschioides (Haug et a)., 1973)
Thalassiosira gravida (Haug and Myklestad, 1976; Myklestad, 1974; Haug et a).,

1973)
Thaiassiosira fluviadlis (Myklestad, 1974)
Tha0assiosira pseudonana (Brown, 1991)

-coccoliths (Prymneslophyceae): I
storage products: chrysolaminarin in vesicles in cell posterior (Lee, 1980)
Emiliania huxdeyi (Varum et a., 1986; Fichtinger-Schepman et a., 1979;

De Jong et al., 1976) I
Isochrysis galbana (Guillard and Wangersky, 1958; Frew et al., 1990;

Brown, 1991)
Pavlova lutheri (Brown, 1991)
Pavolva salina (Brown, 1991)
Phaeocystispouchetii (Haug et a)., 1973; Guillard and Hellebust, 1971)
Prymnesium parvum (Guillard and Wangersky, 1958) 1

-dinoflageUates (Dinophyceae):
storage products: starch (Lee, 1980, Painter, 1983)
Amphidinium cartere (Parsons et a)., 1961; Guillard and Wangersky, 1958) I
Ceranumfusus (Haug et al., 1973)
Ceratiwn longipes (Haug et al., 1973)
Ceratium tripos (Haug et al., 1973)
Exuviella sp. (Parsons et a)., 1961)
Gonyaulax tamarensis (Haug et al., 1973)
Gymnodinium sp. (Guillard and Wangersky, 1958)
Perid'nium trochoidewn (Haug et al., 1973) I
Peridinium westii (Nevo and Sharon, 1969)

-green algae (Chiorophyceae):
(green algae sp.) (Percival and McDowell, 1990)

I
!



1 231

storage product: starch (Lee, 1980), also inulin, possibly laminarin (Painter, 1983)
other sacc: true cellulose, modified cellulose, mannans, gluco-mannanr, xylans,
pectic acid, complex hemicelluloses, sulfated mucilages (Painter, 1983)
Ankistrodesmus densus (Vieira and Myklestad, 1986)
Botryococcus braunii (Zelibor et al., 1988; Berkaloff et al., 1983)
Bryopsis maxima (Maeda et al., 1990)
Chtamydomonas sp. (Zelibor et al., 1988)
Chlamydomonas "Y" (Guillard and Wangersky, 1958)
Chlorellapyrenosidosa (Zelibor et al., 1988)
Chlorella stigmatophora (Frew et al., 1990)
Chlorella sp. (Zelibor et al., 1988; Guillard and Wangersky, 1958)
Chlorococcum sp. (Guillard and Wangersky, 1958)
Closterium sp. (Zelibor et al., 1988)
Dunaliella euchlora (Guillard and Wangersky, 1958)
Dunaliella salina (Parsons et al., 1961)
Dunaliella terdiolecra (Zelibor et a!., 1988)(Brown, 1991)
Hydrodictyon sp. (Zelibor et al., 1988)
Nannochloris atomus (Brown, 1991)
Scenedesnmus sp. (Zelibor et al., 1988)
Sceneaesrmas obliquus (Zelibor et al., 1988)
Tetraselmisr naczdata (Parsons et al., 1961)
Zygnema sp. (Zelibor et al., 1988)

I -golden-brown algae (Chrysophyceae):
storage product: chrysolaminarin (Lee, 1980); laminarin? (Painter, 1983)
other sacc: complex sulfated calcium-binding heteroglycans (Painter, 1983)
Monochyrsis lutheri (Parsons er al., 1961)
Olisthodiscus luteus (Frew et al., 1990)
Syracosphaera carterae (Parsons et al., 1961)

I -red algae (Rhodophyceae)
storage product: floridean starch (similar to amylopectin) (Lee, 1980; Painter, 1983)
cell wall: cellulose (Lee, 1980)
other sacc: true cellulose doubtful; mannans, xylans, sulfated galactans, complex

extracellular mucilages (Painter, 1983)
(red algae sp.) (Stevenson and Furneaux, 1991; Geresh et al., 1990;

Percival and McDowell. 1990)
Porphyridium aerugineium (Percival and Foyle, 1979)
Porphyridium cruentum (Kieras et al., 1976; Percival and Foyie, 1979)
Porphyridium sp. (Lupescu er al., 1991; Frew et al., 1990)
Rhodella maculata (Fareed and Percival, 1977)
Rhodella reticulata (Jaseja et al., 1989)

I (agars)

-brown algae (Phaeophyceae)
storage product: laminarin (Lee, 1980; Painter, 1983)
cell walls: generally 2 layers. cellulose is mai.- structural skeleton, alginic acid
(t(1,4) manuronic acid, variable amount of L• ,uronic acid attached at Cl, 04) and
fucoidin (a(l ,2) sulfated fucose, lesser amount of a(1,4) sulfated fucose) are
amorphous. Relative amounts of alginic acid, fucoidin, vary between species, plant
part, environ. (Lee, 1980)
other sacc: cellulose, lichenan, alginate, fucoidan, sulfated hexuronoxylofucans,I

I
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complex sulfated heteroglycans (Painter, 1983) 1
Ecklonia kurome (Nishino et al., 199 1)
(brown algae sp.) (Percival and McDowell, 1990)

-Prasinophytes:
Tetraselmis chid (Brown, 1991)
Tetraselmnis suecica (Brown, 1991) 3

-Eustigmatophyte:
Nannochloropsis oculata (Brown, 1991) 3

-Cryptophyte:

Chroomonas salina (Brown, 1991) !
-(to be classified)

Acdnocyclus sp. (Guillard and Wangersky, 1958)
Distephanus speculwn (Haug et al., 1973)
Furceiaria lWnbricalis (Knutsen et al., 1990) I
Melosira sp. (Guillard and Wangersky, 1958)
Monochrysis lutheri (Guillard and Wangersky, 1958)
Nitzschia brevirostris (Guillard and Wangersky, 1958) 1
Pyraminomonas sp. (Guillard and Wangersky, 1958)
Rhodomonas sp. (Guillard and Wangersky, 1958)
Cryptomonas (Paulsen et al., 1992) [[soil species!!]]

NMTHODS:
-phenol-H2SO4 (Myklestad and Haug, 1972) 3
-phenol-H2SO4, electrophoresis (demonstrated that polysacc was anionic), acetylated, GC;
paper chromatography.(Myklestad et al., 1972) 1

-periodate oxidation, methylation; position of sulfate estimated by IR spectra (Smestad et
al., 1974)

-hydrolysis, alcohol ppt, cellulose chromatography, paper chromatography, Smith 1
degradation, methylation, GC (Ford and Percival, 1965)

-hydrolysis of whole cell (apparently) with H2SO4, paper chromatography. (Parsons et al., I
1961)

-hydrolysis of whole cell w/.05M H2SO4, neutralization/dialysis/lyophilized, GC of alditol 1
acetates, methylation analysis, periodate oxidation, Smith degradation, 13C NMR
(400=100MHz) (Varum et al., 1986)

-hydrolysis w/ 1.8 N HCl, Mopper's sugar analyzer [borate complexes?](Hecky et al., I
1973)

-dialyse, lyophilize, hydrolyze, fractionate into neutral and acidic fractions. alditol acetates, 3
GC-MS, EI-MS, chrom. on DE-52 cellulose, methylation, periodate oxidation. (Percival et
al., 1980)

-hot water treatment, dil. alkali and DMSO soluble. GPC, Smith degradation, alditol I
U
I
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I acetates, TMS derivs., GC, TLC, enzymatic hydrol., IH NMR (90 MHz), IR (Maeda et
al., 1990)

3 -(Myklestad, 1974) same methods as (Haug et al., 1973) (ditto (Mykelstad, 1977))

-MeOH'H20 extract (discarded), H20 extract, spectrophotometric determination of
carbohydrate concentration, methoxy function measurement, sulfate estimated by perchloric
acid reflux and titration, uronic acid determined by carbazole reaction and 530nm
absorbtion, alkaline degradation, paper chromatography, GLC, ionophoresis (Allan et al.,3 1972)

-isolated EDTA-soluble acidic polysacc from coccoliths. DEAE-cellulose chromatography,
2D cellulose-electrophoresis, polyacrylamide electrophoresis, ele. analysis, pyr.-MS, IR,
360 M&z NMR (only determined -CH3 group at 8=1.3 from deoxy hexose), turbidimetric
determination of sulphate esters, paper chromatography, glc, glc-MS of methanolysates
and hydrolysates. (Fichtinger-Schepman et al., 1979)

I -lyophilized whole net-tow plankton. Extracted 2x w/.IN H2SO 4 ; residue extracted 2x
w/. IN NaOH. phenol-H2SO 4 . Estimated insoluble carbohydrate as difference between
total and soluble. (measured insoluble in 2 cases by strong acid hydrolysis.) Alditol acetate
determination of monomer comp. (Haug et a!., 1973)

-free-boundary electrophoresis, complete hydrolysis, ion-exch chromatography, carbon-
Celite chromatography, alditol acetates, ei-MS, ci-MS, IR, methylation unsuccessful
(apparently this often happens with polysaccharides which contain both sulphate and uronic
acid; couldn't completely methylate desulphated polymer, either. Could methylate after3 desulphation and reduction.) (Paulsen et al., 1978)

-free boundary electrophoresis, complete acid hydrolysis, alditol acetates, methylation,
GLC-MS. (Smestad et al., 1975)

-filtered medium, used N-ethyl carbazole test to determine carbohydrate (Guillard and
Wangersky, 1958)

I -liquid scintillation counting of particles and filtrate (not carbohydrate specific) (Lancelot,
1979)

I -solid-state 13C NMR used on 'alghumin' and 'hydrolyzed alghumin' isolated from green
algae by sequential Soxhlet, .01N HCI, .5N NaOH, acidification to pH 6. (Zelibor et al.,
1988)

-'method of Strickland and Parson (1972)' used to determine total extracellular
carbohydrate, and to determine total exopolysaccharide (after dialysis) (Myklestad et al.,5 1989)

-new techniques to derivatize 3,6-anhydrogalactans w/o destroying them. Also can produce
partially methylated alditol acetates from sulfated polysaccharides. (Stevenson and
Furneaux, 1991)

-used mild acid hydrolysis, column chromatography [unspecified] to isolate disacc from
Smedium. 300Ml-z NMR (1H, 13C) used to determine structure (Jaseja eta)., 1989)

I
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-from culture in stationary phase, isolated exopolysacc by dialyzing, lyophilizing, 3
hydrolysis w/ 2M 'TA at 100 OC for 2hr. Used DE-52 ion exch resin to separate neutral,
anionic components, then used Sephadex G10 to do size separation. Did total hydrolysis to
determine monomer composition of polysaccharide, TLC, HPLC (ri detector), GCL, GC-
MS, FAB-MS. Used NMR, GLC-ei-MS to determine structure of 3-0- (a-D-
glucopyranosyluronic acid)-L-galactopyranose (Geresh et al., 1990)

-polysaccharide hydrolyzed w/.IM TEA for 3 hr at 100 oc, DE-52 ion exch, Sephadex I
G1O, TLC to determine correct fractions to apply to Biogel P2 column, collected,
lyophilized, desulfated by treatment w/ 2M HC1 for 2 hr at 100 oC. Alditol acetates, GLC.
IR, NMR (300 MHz, used to determine position of sulfate, relative ratio of saccharide U
types) (Lupescu et al., 1991)

-dried, nilled, treated w/.1M HCQ for 30 min at 4 oC, washed for 4hr w/ H20 at 800. 3
Cold water extract obtained by stirring residue w/ distilled H20 for 12 hr after
neutralization w/ .OIM NaOH. Hot water extract by collecting residue, adjusting to pH 8
w/ NaOH, stirring lhr at 120 oc. Extracts ppt'd w/ 2-propanol, dialyzed, lyophilized.
Further separated by solubility in .1M KC1. 1H NMR (500 MHz, also 400 MHz; used
especially to look for 3,6-anhydro and sulfated resonances) (Knutsen et al., 1990)

-disrupted cells, centrifuged to remove cellular contents, washed w/ solvents, suspended I
and dialyzed cell walls, lyophilized. Electron microscopy, phenol-H2SO4, chem. and
enzymatic degradation, charcoal chromatography, paper chromatography, IR (Nevo and
Sharon, 1969)

-polysaccharide separated from centrifuged medium by ppt'ing w/ cetylpyridinium
chloride. Centrifuged, dissolved in LiCl; ppt'd w/ EtOH, repeated several times, dried in
dessicator. Ion exch chromatography, paper chromatography, alditol acetates, ci-MS I(KIeras et al., 1976)

-(purification of fucose-containing, sulfated polysacc done according to a reference; no I
further explanat.) Used GPC to separate MW fractions, TLC, colorimetric tests for acetyl,
sulfate, uronic acid content determinations. Alditol acetates, GC, NMR (400MHz; used
only to see signals for anomeric, methyl (deoxy), acetyl protons), methanolysis, per-0-
methylation, GC-ms, desulfation. (Nishino et al., 1991)

-NaH14CO3 used to grow cultures of Phaeocystis. Medium centrifuged, dialyzed,
hydrolyzed w/ IN H2SO4 , BaCO3 ppt, evaporated, paper chromatography w/ standards. I
Gel filtrat w/ standards to determine MW, anthrone and radioactivity detection. (Guillard
and Hellebust, 1971) 3
-a review (1990) of spectroscopic/colorimetric tests for uronic, sulfated saccharides;
includes separation techniques for major components of red, brown, and green algae (ie,
carageenans, etc.) (Percival and McDowell, 1990)

-phenol-H2SO4 used to determine concentration. Carbohydrate extracted repeatedly w/
boiling H20. Ppt w/ EtOH (1 vol) and acetone (3 vol.). Monosaccharide composition
determined by acid hydrolysis (6N HC0 @ 100 oC, I hr), GC. (Handa, 1969)

-phenol-H2SO4 to estimate carbohydrate concentration in filtered medium; cells analyzed
for carbohydrate by hydrolysis w/ 80% H2SO4 and phenol-H2SO 4 . Medium carbohydrate

It
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I further analyzed by dialysis of filtered, rotovaped medium, lyophilization, hydrolysis w/ 2
N TFA for 6 hr at 100 OC, Na-borohydride reduction, acetylation, GC. (Vieira and3 Myklestad, 1986)

-mucilage hydrolyzed in formic acid, paper chromatography, GLC, methylation, alditol
acetates, GLC-MS (Fareed and Percival, 1977)

-coccoliths isolated by disruption, gradient centrifugation, EDTA, GPC, gel
electrophoresis; coccoliths also treated w/ Na-phosphate buffer, IM NaOH, KMnO4,3 equilib dialysis (to determine Ca++ binding properties) (De Jong et at., 1976)

-(got polysacc from Marine Colloids Inc. Rockland, Maine). Hydrolyzed, alditol acetates,
GC-MS, paper chrom., GPC, Hakomori methylation, periodate oxidation, desulfation, IR
(Percival and Foyle, 1979)

-(only mentions polysacc fibrillar material in passing; doesn't even state clearly how it was3 removed to get at the sporopollenin-like material) (Berkaloff et al., 1983)

-total carbohydrate determination (technique not specified.) Suwface-active carbohydrate
removed by acidification of medium to pH 5, C18 sep-pak, methanolysis, TMS, GC.
(Frew et al., 1990)

-medium filtered, dialyzed in 10-14kD membrane, lyophilized; gel chromatog, TMS derivs
analyzed by GC, alditol acetates, GC-MS, desulfuration, IR (Paulsen et al., 1992)

-cells lyophilized, extracted w/.05M H2SO 4 for 1 hr at 4 OC. Neutralized w/ NaOH,
dialyzed against H20, concentrated, lyophilized.GLC, GC-MS, methanolysis, periodate
oxidation, etc. (Paulsen and Myklestad, 1978)

-cells washed, lyophilized, extracted w/ chloroform-MeOH-H20 to get 'low MW
carbohydrate', then hydrolyzed w/.5M H2SO4 . Total carbohydrate by phenol-H2SO4;
alditol acetates, GC. Total carbohydrate yield surprisingly low (4.6-12% of organic matter)(Brown, 1991)

I
I
I
I
I

I
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