
RFPORT DOCUMENTA:ION PAGE IFC'F.•' • --

AD- A279 366
4ma of Man.meiWan d OL9M.. WohengRan. DC 20M..

i-uPORT u3. REPORT TYPE AND DATES

4. TITLE AND 5. FUNDING

- 1

9Q!..•, rc 5,• ,•k ' S. vytv ,.

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

1; , A•-. -F ORGANIZATION

10. SPONSORINGJMONITORING

9. SPONSORINGIMON~rORING AGENCY NAME(S) AND IL 1%0 AGE , ' I10 PNCOY G/OTRN

Ada Joint Program Office CT F.
The Pentagon, Fir 3E118 ZLE T
Washington, DC 20301-3080 1 ,,,

11. SUPPLEMENTARY 94-14197

12a. DISTRIBUTIONIAVAILABILITY ,,I(. UIbTRIBUTION

13. (Maximum 200

14 .r-t B ,.T r,)E~ r c.l cf 1, L-ýs 5 UBROvolt, t I

&3r'~~~d16 ~ 'PRICE

17. SECURITY 18. SECURITY 19. SECURITY 20, LIMITATION OF
CLASSIFICATION I CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

Standard Form 298, (Rev. 2no9)

tA Prowibed by ANSI S~d-

AVF Control Number: IABG-VSR 115
22 February, 1994

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 94022111.11340
Tartan. Inc.

TartanWorks Ada 68xxx Version 4.3.1
Sun SPARCstation ELC = >

Motorola MVME167 (MC68040)

Accesion For

NTIS CRA&I
OTIC TAB
Unannounced 0
Justification

By
Distribution I

Availability Codes
i Avail and I or

Dist Special

Prepared By:
IABG. Abt. ITE
Einsteinstr. 20

D-85521 Ottobrunn
Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 21 February, 1994.

Compiler Name and Version: TartanWorks Ada 68xxx Version 4.3.1

Host Computer System: Sun SPARCstation ELC under SunOS Version 4.3.1

Target Computer System: Motorola MVME167 (MC68040) running VxWorks
Version 5.1

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 94022111.11340 is
awarded to Tartan, Inc. This certificate expires 24 months after ANSI approval of
MIL-STD 1815B.

This report has been reviewed and is approved.

Michael Tonndorf
IABG, Abt. ITE
Einsteinstr. 20
D-85521 Ottobrunn
Germany

A Xaldaadin n-Organization
D irector,'"OoJn puter & Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311, USA

W ctor, Ada Joint Program Office
Defense nformation Systems Agency,
Center for Information Management

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1 .11.
Testing was completed on 21 February, 1994.

Compiler Name and Version: TartanWorks Ada 68xxx Version 4.3.1

Host Computer System: Sun SPARCstation ELC under SunOS Version 4.3.1

Target Computer System: Motorola MVME167 (MC68040) running VxWorks
Version 5.1

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 94022111.11340 is
awarded to Tartan, Inc. This certificate expires 24 months after ANSI approval of
MIL-STD 1815B.

This report has been reviewed and is approved.

Michael Tonndorf
IABG, Abt. ITE
Einsteinstr. 20
D-85521 Ottobrunn
Germany

•, Ada ali n Organization
Director, tomputer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311, USA

.DePo Di ctor, Ada Joint Program Of ice
Defense Information Systems Agency,
Center for Information Management

Declaration of Conformance

Customer. Tartan. 1ncM

Certificate Awardee: Tartan. !nc

Ada Validation Facility. IAB mbH

ACVC Version: 111

Ada Implementation

M Ada Compiler Name and Version: TartanWorks Ads 68m Version 4,3.1

Host Computer System: SPARC Station/EL= SunOS version 4.3.1

Target Computer System: Motorola MVME167 (MC68040) runinf

VxWorks version 5.1

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the

Ada Language Standard ANSI/MLSTD-1815A, ISO 8652-1987, FIPS 119 as tested in

this validation and documented in the Validation Summary Report.

Lee B. Ehrlichman Date
Tartan, Inc.
President and Chief Executive Officer

TABLE OF CONTENTS

CHAPTER 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1 - 1
1.2 REFERENCES 1 - 2
1.3 ACVC TEST CLASSES1 - 2
1.4 DEFINITION OF TERMS 1 - 3

CHAPTER 2
2.1 WITHDRAWN TESTS 2 - 1
2.2 INAPPLICABLE TESTS2 - 1
2.3 TEST MODIFICATIONS 2- 4

CHAPTER 3
3.1 TESTING ENVIRONMENT 3 - 1
3.2 SUMMARY OF TEST RESULTS 3 - 1
3.3 TEST EXECUTION 3 - 2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested -ccording to. the Ada Validation
Procedures [Pro92I against the Ada Standard [Ada83l using the current Ada Compiler
Validation Capability (ACVC). This Validation Summary Report (VSR) gives an account of
the testing of this Ada implementation. For any technical terms used in this report, the
reader is referred to [Pro92]. A detailed description of the ACVC may be found in the
current ACVC User's Guide [UG89J.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may
make full and free public disclosure of this report. In the United States, this is provided in
accordance with the "Freedom of Information Act" (5 U.S.C. #552). The results of this
validation apply only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not represent or
warrant that all statements set forth in this report are accurate and complete, or that the
subject implementation has no nonconformities to the Ada Standard other than those
presented. Copies of this report are available to the public from the AVF which performed
this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161, USA

Questions regarding this report or the validation test results should be directed to the AVF
which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772, USA

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92I Ada Compiler Validation Procedures,
Version 3.1, Ada Joint Program Office, August 1992.

(UG891 Ada Compiler Validation Capability User's Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains
a collection of test programs structured into six test classes: A, B, C, D, E, and L. The first
letter of a test name identifies the class to which it belongs. Class A, C, D, and E tests are
executable. Class B and class L tests are expected to produce errors at compile time and
fink time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED,
or NOT APPLICABLE message indicating the result when they are executed. Three Ada
library units, the packages REPORT and SPPRT1 3,and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of identity functions used to
defeat-some compiler optimizations allowed by the Ada Standard that would circumvent a
test objective. The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents of text files written
by some of the Class C tests for Chapter 14 of the Ada Standard. The operation of
REPORT and CHECK FILE is checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not
executable. Each test in this class is compiled and the resulting compilation listing is
examined to verify that all violaiions of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by the compiler. This
behavior is also verified.

Ciass L tests check that an Ada implementation correctly detects violation of the Ada
Standard involving multiple, separately compiled units. Errors are expected at link time, and
execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list of the values used
for this implementation is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove unforeseen conflicts between
the tests and implementation-dependent characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF. This
customization consists of making the modifications described in the preceding paragraph,
removing withdrawn tests (see section 2.1), and possibly removing some inapplicable tests
(see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized
test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow transformation
of Ada programs into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary report.
(ACVC)

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the procedures
Validation required to establish the compliance of an Ada implementation.
Facility (AVF)

Ada The part of the certification body that provides technical guidance
Validation for operations of the Ada certification system.
Organisation

Compliance of The ability of the implementation to pass an'ACVC version.
an Ada
Implementation

Computer System A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of
a program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-
designated programs; performs user-designated data manipulation,
including arithmetic operations and logic operations; and that can
execute programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process or service of all requirements
specified.

1-3

INTRODUCTION

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity is
Conformance realised or is attainable on the Ada implementation for which

validation status is realised.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organisation for Standardisation.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form < section >. < subsection > : < paragraph >.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,-

"input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully eitner
Implementation by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

Withdrawn A test found to be incorrect and not used in conformity testing.
test A test may be incorrect because it has an invalid test objective,

fails to meet its test objective, or contains erroneous or illegal use
of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following 104 tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The publication date
for this list of withdrawn tests is November 22, 1993.

B27005A E28005C B28006C C32303A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C35310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A P49008A B49008B A54B02A C55B06A
A74006A C74308A a83022B B83022H B83025B B83025D

IC83026A B83026B C83041A B85001L C86001F C94021A
C97i116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
BD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. Reasons for a test's inapplicability may be supported by documents issued
by the ISO and the AJPO known as Ada Commentaries and commonly referenced in the
format AI-ddddd. For this implementation, the following tests were determined to be
inapplicable for the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring more digits
than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Y (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER; for this
implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this implementation,
there is no such type.

"C45531 M..P and C45532M..P (8 tests) check fixed-point operations for types hat
require a SYSTEM.MAX-MANTISSA of 47 or greater; for this implementation,
MAXMANTISSA is less than 47.

C45536A, C460138, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of various
floating-point operations lie outside the range of the base type; for this
implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C instantiate generic units
before their bodies are compiled; this implementation creates a dependence on
generic units as allowed by AI-00408 & AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (see 2.3.)

CD1009C checks whether a length clause can specify a non-default size for a
floating-point type; this implementation does not support such sizes.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPE'SMALL; this implementation does not support decimal
'SMALLs. (See section 2.3.)

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses to
specify non-default sizes for access types; this implementation does not support
such sizes.

CD2B1 5B checks that STORAGE ERROR is raised when the storage size specified
for a collection is too small to hold a single value of the designated type; this
implementation allocates more space than was specified by the length clause, as
allowed by AI-00558.

AE2101C and EE2201D..E (2 tests) use instantiations of package SEQUENTIAL 10
with unconstrained array types and record types with discriminants without defaults;
these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised if the given
file operations are not supported for the given combination of mode and access
method; this implementation supports these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL0IO
CE2102F CREATE INOUjT FILE DIRECT 10
CE21021 CREATE IN FILE" DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL-10
CE2102P OPEN OUT FILE SEQUENTIAL0IO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOLIT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECTIO
CE2102U RESET IN-FILE DIRECTIO
CE2102V OPEN OUiT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECTIO
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT 10
CE31021 CRATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUJT FILE TEXT-10

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10 with
unconstrained array types and record types with discriminants without defaults;
these instantiations are rejected by this compiler.

CE2203A checks that WRITE raises USE ERROR if the capacity of an external
sequential file is exceeded; this implementation cannot restrict file capacity.

CE2403A checks that WRITE raises USE-ERROR if the capacity of an external direct
file is exceeded; this implementation cannot restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3304A checks that SET LINE LENGTH and SETPAGELENGTH raise USEERROR
if they specify an inappropriate value for the external file; there are no inappropriate
values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of COUNT'LAST
is greater than 150000, making the checking of this objective impractical.

2 .3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 108 tests.

The following tests were split into two or more tests because this implementation
did not report the violations of the Ada Standard in the way expected by the original
tests.

B22003A B24007A B24009A B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B380038
B38008A B38008B B38009A B38009B B38103A B38103B
B38103C B38103D B38103E B43202C B44002A B48002A
B48002B B48002D 848002E B48002G B48003E B49003A
B49005A B49006A B49006B B49007A B49007B B49009A
B4AO10C B54A20A B54A25A B58002A B58002B B59001A
859001C B590011 B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EO1A B85007C
B85008G B85008H B91004A 891005A B95003A B95007B
B95031A B95074E BA1001A BC1002A BC1109A BC1109C
BC1206A BC2001E BC3005B BD2AO6A BD2BO3A BD2DO3A
BD4003A BD4006A BD8003A

E28002B was graded inapplicable by Evaluation and Test Modification as directed
by the AVO. This test checks that pragmas may have unresolvable arguments, and
it includes a check that pragma LIST has the required effect; but, for this
implementation, pragma LIST has no effect if the compilation results in errors or
warnings, which is the case when the test is processed without modification. This
test was also processed with the pragmas at lines 46, 58, 70 and 71 commented
out so that pragma LIST had effect.

Tests C45524A..K (11 tests) were graded passed by Test Modification as directed
by the AVO. These tests expect that a repeated division will result in zero; but the
Ada standard only requires that the result lie in the smallest safe interval. Thus, the
tests were modified to check that the result was within the smallest safe interval by
adding the following code after line 141; the modified tests were passed:

ELSIF VAL < = F'SAFE SMALL
THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

2-4

IMPLEMENTATION DEPENDENCIES

C83030C and C86007A were graded passed by Test Modification as directed by the
AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"
before the package declarations at lines 13 and 11, respectively. Without the
pragma, the packages may be elaborated prior to package report's body, and thus
the packages' calls to function Report.ldentlnt at lines 14 and 13, respectively, will
raise PROGRAMERROR.

B83E01B was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram's formal parameter names (i.e. both
generic and subprogram formal parameter names) must be distinct; the duplicated
names within the generic declarations are marked as errors, whereas their
recurrences in the subprogram bodies are marked as "optional" errors--except for the
case at line 122, which is marked as an error. This implementation does not
additionally flag the errors in the bodies and thus the expected error at line 122 is
not flagged. The AVO ruled that the implementation's behavior was acceptable and
that the test need not be split (such a split would simply duplicate the case in
B83EO1A at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded inapplicable
by Evaluation Modification as directed by the AVO. These tests instantiate generic
units before those units' bodies are compiled; this implementation creates
dependences as allowed by Al-00408 & AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete, and the objectives of
these tests cannot be met.

.BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic bodies
contain uses of the types that require a constraint. However, the generic bodies are
compiled after the units that contain the instantiations, and this implementation
creates a dependence of the instantiating units on the generic units as allowed by
AI-00408 & AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete--no errors are detected. The processing of these tests
was modified by compiling the separate files in the following order (to allow
re-compilation of obsolete units), and all intended errors were then detected by the
compiler:

BC3204C: CO, C1, C2, C3M, C4, C5, C6, C3M

BC3205D: DO, DIM, D2, D1M

BC3204D and BC3205C were graded passed by Test Modificbiion as directed by the
AVO. These tests are similar to BC3204C and BC3205D above, except that all
compilation units are contained in a single compilation. For these two tests, a copy
of the main procedure (which later units make obsolete) was appended to the tests;
all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-ten value assmall for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal smalls
may be omitted.

2-5

IMPLEMENTATION DEPENDENCIES

AD9001 B and AD9004A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to
external routines (and hence have no Ada bodies). This implementation requires that
a file specification exists for the foreign subprogram bodies. The following command
was issued to the Ubrarian to inform it that the foreign bodies will be supplied at link
time (as the bodies are not actually needed by the program, this command alone is
sufficient):

interface -sys -L = library ad9001 b & ad9004a

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the

"information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Mr Ken Butler
Director of Ada Products
Tartan Inc.
300 Oxford Drive
Monroeville, PA 15146
USA
Tel. (412) 856-3600

For sales information about this Ada implementation, contact:

Ms. Marlyse Bennett
Director of Sales
Tartan, Inc.
12110 Sunset Hills Road
Suite 450
Reston, VA 22090
USA
Tel. (703) 715-3044

Testing of this Ada implementation was conducted at the customer's site by a validation
team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the
customized test suite in accordance with the Ada Programming Language Standard,
whether the test is applicable or inapplicable; otherwise, the Ada Implementation fails the
ACVC [Pro92J.

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was obtained that conforms
to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories. All tests
were processed, except those that were withdrawn because of test errors (item b; see
section 2.1), those that require a floating-point precision that exceeds the implementation's
maximum precision (item e; see section 2.2), and those that depend on the support of a file
system -- if none is supported (item d). All tests passed, except those that are listed in
sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests .3779
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 86
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point Precision Tests 201
f) Total Number of Inapplicable Tests 287 (c +d +e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic data cartridge containing the customized test suite (see section 1.3) was taken
on-site by the validation team for processing. The contents of the magnetic data cartridge
were loaded directly onto the host computer.

The tests were compiled and linked on the host computer system, as appropriate. The
executable images were transferred to the target computer system by the communications
link, an ethernet interface, and run. The results were captured on the host computer
system.

Testing was performed using command scripts provided by the customer and reviewed by
the validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for
validation testing during this test were for compiling:

-f forces the compiler to accept an attempt to compile a unit imported from
another library which is normally prohibited.

-c suppresses the creation of a registered copy of the source code in the
library directory for use by the REMAKE and MAKE subcommands.

For this validation the default optimization level -Op2 was used. No explicit Linker options
were set.

Test output, compiler and linker listings, and job logs were captured on magnetic data
cartridge and archived at the AVF. The listings examined on-site by the validation team
were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning
and purpose of these parameters are explained in IUGB9I. The parameter values are
presented in two tables. The first table lists the values that are defined in terms of the
maximum input-line length, which is the value for $MAX INLEN -- also listed here. These
values are expressed here as Ada string aggregates, where- "V" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAXINLEN 240

$BIG_IDi (1..V-1 = > WA, V = > '1')

$BIG_1D2 (1..V-1 = > 'A, V = > '2')

$BIG_1D3 (1..V/2 = > WA) & '3' & 01..V- 1-V/2 => WA)

$BIG_1D4 (1..V/2 = > WA) & '4 & (1..V-1-V/2

$BIG_(NTLIT (1..V-3 = > '0') & "298"

SBIGREALLIT (1..V-5 = > '0') & "690.0"

$BIGSTRINGi " & 01..V/2 => WA) & "

SBIG_STRING2 ' & (1..V-1 -V/2 = > WA) & '1' &

$BLANKS (1..V-20 = > 'I

SILLEGALEXTERNALFILENAME 1
"ILLEGALEXTERNAL FILENAME 1" & (1 ..V = > '

$ILLEGALEXTERNALFILE_-NAME2
"ILLEGAL EXTERNAL FILENAME2" & 01..V = > 1-1)

$MAXLEN_(NTBASEDLITERAL "2:" & (1..V-5 = > '0') & "'!1:"

$MAXLENREALBASEDLITERAL"16:" & (1..V-7 = > '0') & "F.E:"

$MAX STRINGLITERAL ""& (1 ..V-2 = > 'A) &

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

SCOUNT-LAST 2147483646

$DEFAULTMEM SIZE 1_000000

$DEFAULTSTOR UNIT 8

$DEFAULTSYS NAME MC68020

$DELTA-DOC 2#11.0#E-31

$ENTRYADDRESS SYSTEM .ADDRESS'(1 6#FO#)

$ENTRY ADDRESS1 SYSTEM.ADDRESS'(1 601 #)

$Z-NTRY ADDRESS2 SYSTEM.ADDRESS'(1 6#F2#)

$FIELDLAST 240

$FILE-TERMINATOR

$FIXEDNAME NO SUCHFIXEDTYPE

$FLOATNAME THEREISNOSUCHFLOATNAME

V ORMSTRING

$FORMSTRING2 "CANNOTRESTRICT-FILECAPACITY"

$GREATERTHAN DURATION 100000.0

't3ETRTA DRTO-AELAST
100000000.0

$GREATER-THAN-FLOATBASE LAST
3.5E +38

$GREATERTHAN FLOATSAFELARGE
1 .OE + 38

$GREATERTHANSHORT FLOAT SAFE LARGE
1.OE +38

A-2

MACRO PARAMETERS

$HIGH-PRIORITY 200

$INAPPROPRIATE LINELENGTH -1

$ INAPPROPRIATE PAGE LENGTH -1

$INCLUDEPRAGMA PRAGMA INCLUDE (RA28006Dl1.TST")

$INCLUDE-PRAGMA2 PRAGMA INCLUDE ("B28006Fl1.TST")

$INTEGERFIRST -2147483648

$INTEGE~RLAST 2147483647

$INTEGERLASTPLUS 1 2147483648

$INTERFACELANGUAGE C

$LESSTHANDURATION -100_000.0

$LESSTHANDURATIONBASEFIRST
-100_000_000.0

$LINETERMINATOR o

SLOWPRIORITY 10

$MACHINECODESTATEMENT TwoOpnds'(MOVEL, (IMM,2),(DR, d7));

$MACHINECODETYPE AddressMode

$MANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2147483648

$MININT -214748368

$NAME BYTE-I NTEGER

$NAMELIST MC68020

$NEGBASEDINT 8#777777777776#

SNEWMEMSIZE 1_000000

$NEWSTORUNIT 8

SNEWSYSNAME MC68020

A-3

MACRO PARAMETERS

$PAGE-TERMINATOR

*RECORDDEFINITION record
Operation: InstructionMnemonic;
Operand 1: Operand;
end record;

$ RECORD-NAME OneOpnds

$TASKSIZE 96

$TASK STORAGESIZE 4096

$TICK 0.01

$VARIABLE-ADDRESS SYSTEM .ADDRESS'(1 6#99000#)

$VARIABLEADDRESS1 SYSTEM .ADDRESS'(1 61990041)

$VARIABLEADDRESS2 SYSTEM .ADDRESS' (1 6#990081)

A-4

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to compiler documentation and not to this report.

B-i

USING TnE TARTAN ADA COWULU

3.2. UNIX COMMAND LINE OPTIONS
Command line options indicate special actions to be performed by the compiler or special output file

properties.

The following UNIX command line options may be specified:

a Generates an assembly code file. The assembly code file has an extension . s for
a body or . ss for a specification (sec. 3.5). In the default mode, no assembly
code is generated.

A Generates an assembly code file with interleaved source code. The assembly code
file has an extension . s for a body or . s s for a specification.

Ba Specifies that the compiler will produce an optimization (. opt) file which con-
tains special optimization information, when the unit being compiled is a body.
When another unit is compiled which refers to this unit in its context clause, a
dependency may be created on this unit's body (in addition to the specification)
duem to the utilization of this optimization information. Also, the compiler will
attempt to utilize optimization information from the optimization file of units
named in the context clause of the curent unil Dependencies will be created an
both the specification and the body (if any) of the units from which opnmikation
information is utilized. This option will allow maximum optimization at th
expense of increased recompilations when changes are made.

By default, the compiler will nor produce an optimization file for the cume unit
(effectively preventing the creation of dependencies on this body), but will read
the . opt files of units in the current unit's compilation closure to obtain infr-
mation which may be used to improve the optimizations performed on the crrent
unit.

Bin Specifies that the compiler will neither produce an optimization (. opt) file when
the unit being compiled is a body (effectively preventing the creation of depen-
dencies on this body), nor will the compiler attempt to utilize optimization info-
mation from units named in the context clause of the current unit (preventing the
possibility of creating a dependency on another body). When compiling an entire
system, this stategy will lead to minimnl dependencies between the Compilation
units in the system.

By default, the compiler will nor produce an optimization file for the current unit,
but will read the . opt files of units in the current unit's compilation closure to
obtain information which may be used to improve the optimizations performed on
the current unit.

c Normally, the compiler creates a registered copy of the user's source code in the
library directory for use with the librarian remake2 subcommand. This option
suppresses the creation of this copy.

Cs Controls whether the compiler generates 16-bit instead of 32-bit PC relative ad-
dress modes when addressing objects whose distance ftom the current location
cannot be determined at compile time. By using this option, the user asserts that
the program space for the final program will be small enough for all calls to use
the 16-bit PC-relative address modes in call instructius. If this assertion is
inconect. erroneous code could result.

2UI.. r3-akecu

v43.l 3-3

d When compiling a library unit. deemines whether the unit is a refinement of its
previous version and. if so. do not make dependent units obsolete. This check is
not done by default. A warning mesage is given if the unit is not a refinemen of
its previous version. The no update option3 may be used in conjunction with this
option to check for possible refinemens without risking a change to the program
library.

own Stops compilation and produces a listing after n errors are encountered, where n is
an integer in the range 0.. 255. The default value for n is 255.

f Forces the compiler to accept an attempt to compile a unit imported from another
Library. which is normally prohibited.

g Produces debugging information for AdaScope, the Taran Ada symbolic debug-
ger. It is not necessary for all object modules to include debugging information to
obain a linkable image, but use of this option is encouraged for all compilaioas.
No significant execution-time penalty is incurred with this optio.

. Causes the compiler to omit data segments with the text of enumeration literals. 8
This text is normally produced for exported enumeraon types in order to support
the text am-ibutes (' IMAGE. 'VALUE and ' WIDTH). You should use this option
only when you can guarantee that no unit that will import the eummeration type
will use any of its text attributes. However, if you are compiling a unit with an
enumeration type that is not visible to other compilation units, this option is not
needed. The compiler can recognize when the text attributes are not used and will
not generate the supporting sn.

K Causes the compiler options specified for this compilation unit to be saved in the
program library. These options will be used when a subsequent (re)make com-
mand is issued on this unit. unless ovezidden by compiler options specified on the
(re)make command line (sec. 10.2.5).

L- (project:]library Selects the library and optionally the project for this compilation. This Optiontakes effect after ail commands from the librarian ini&diZaton file4 have been

executed, thereby possibly overriding its effects.

La Always generates a listing. The default is to generate a listing only if a diagnostic
message is issued.

Ln Never generates a listing. The default is to gnerate a listing only if a dianostic
message is issued.

1w-n Specifies the line width used in a listing, where n is an integer in the range 80..
132. The default value for n is 80.'

n-option Controls the type of messages that will be generated by the compiler. The avail-
able options are:

e Reports only errors.

. Reports errors, watrings, and informational messaga.

4U.X- adalibrc
5Nora dm 10 it= M cM ac dMa gbte usf secikfs on ie dammomnd UM will 2=a8ly Sppef an liane in timing fe due t fm left

u34 s=fpas d Ule mbui.
3-4 v4.3..1

USING THE TARTAN ADA CONPMnER

The default condition, for which there is no option. is to report errors and warn-
ings.

Me When package MACHINECODE is used, controls whether the compiler attempts

to alter operand address nodes when those address modes are used incorrectly.

With this option, the compiler does not attempt to fix any machine code insertion
that has incorrect addres modes. An error message is issued for any incorrect

machine code insertion. By default, when neither Me or Mw is specified, the
compiler attempts to generate extra instructions to fix incorrect address modes in
the array aggregates operand field.

Mw The compiler attempts to generate exut instructions to fix incorrect address
modes. A warning message is issued if such afixup is required. By default, when
neither Me or Mw is specified, the compiler attempts to generate extra instructions

to fix incorrect address modes in the array aggregates operand field.

n Specifies that the program library will not be updated with the result of this
compilation.

Opn Controls the level of optimization performed by the compiler, where n is an
inzeger in the range 0.. 4.

The following optimization levels may be specified-

n =0 r-.nimum - Performs context determination, constant folding, al-
gebraic manipulation. and short circuit analysis. Pragma
I %LINEs are not obeyed.

n = I low - Performs minimum optimizatons plus evaluation order
determination as well as common subexpression elimination and
equivalence propagation within basic blocks. Again, pragma
INLINES are not obeyed.

n = 2 standard (default) - Best tradeoff for space/time. Performs low
optimizaions plus flow analysis for common subexpression
elimination and equivalence propagation across basic blocks, in-
variant hoisting. dead code elimination, assignment killing.

strength reduction. lifetime anal-sis for improved register alloca-
tion. tail recursion elimination, inrprocedural side-effect
analysis and some inline expansion.

n =3 time - Performs standard optimizations plus loop unrolling and
aggressive inline expansio. This optimization level usually
produces the fastest code, however, optimization level standard

ray produce faster code under certain circumstances.

n = 4 space - Performs standard opimmizaons mnmus any opuimization
that may increase code size. This optimization level usually
produces the smallest code, however, optimiation level

standard may produce smaller code under certain circumstances.

p Loads a synactically correct compilation unit(s) in dhe source file into the library
as a parsed unit(s). Parsed units amt, by definition, inconsistent. This option

allows you to load units into the library without regard to correct compilation
order. The librarian remake subcommand 6 is subsequently used to compile the

units in the corret sequence (sec. 10.2.5.2).

6k"x remakecu

v4.3.1 3-S

Examines wnits for syntax errors, then stops compilation. No semantic checking
is performed. Nothing is entered in the program library. No library need be
specified when using this option.

S (ACDE ILORS Z] Suppresses the given set of checks:
A ACCESS CHECK
C CONSTRAINT CHECK
D DISCRIMINANT CHECK
E ELABORATION CHECK
I INDEX CHECK
L LENGTH CHECK
O OVERFLOW CHECK
R RANGE CHECK
S STORAGE CHECK
Z NZEROO DIVISIONCHECK

The S option has the same effect as an equivalent pragma SUPPRESS applied to
the source file. If the source program also contains a pragma SUPPRESS, a given
check is suppressed if either the pragm or the option specifies it: that "s, the
effect of a pragma SUPPRESS cannot be negated with the command line option.
See LRM 11.7 for further details. Supplying the S option can significantly
decrease the size and execution time of the compiled code. Examples are:

SOZ Suppresses OVERFLOWCHECK and
"ZEROw DIVISION CHECK.

S Suppresses all checks. Invoking this option will not remove all
checks if the resulting code without checks will be less efficient.

SC Suppresses CONSTRAINTCHECK, equivalent to SAD ILR.

tgt-processor Specifies the Motorola target processor, where processor may be one of the fol-
lowing:

mc68020 for all supported boards using the MC6&20 processor
mc68030 for all supported boards using the MC68030 processor
mcc6 8040 for all supported boards using the MC68040 processor
cpu32 for all supported boards using the CPU32 processor

Compilations for a 68xxx processor take place in a specific development environ-
ment called a universe. Tartan supplies three universes for the 68xxx product:

"* 68020/68M00
" 68040
* CL'U32

When using the librarian (re)make subcommand. tht librarian sets the compiler
target option to mcc68020 for the 68020/68030 universe. To override the default
setting for 68030 specific Compilation& you must specify mc68030 as an ar-
gument to the (re)make command line option -q "-tgt-mc68030' (sec.
10.3.25).

V Prints out compiler phase names. The compiler prints out a short description of
each compilation phase in progress.

x Includes cross reference information for the source in the object file (sec. 3.7).

Note: On UNIX. the output from the compiler may be reirected using the UNX redirection facility
including'&' for stderr: for example:

.adaprocessor tax-spec.ada >& tax spec.txt

3-6 v4.3.1

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent
pragmas, to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada
Standard, and to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation, as described in this.
Appendix, ire provided by the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this . report.
Implementation-specific portions of the package STANDARD, are outlined below for
convenjence.

package STANDARD is

type BYTE INTEGER is range -128 .. 127;
type SHORTINTEGER is range -32768 .. 32767;
type INTEGER is range -2147_483_648.. 2_147_483_647;

type FLOAT is digits 6 range -16#0.FFFFFF#E+32 .. 16#0.FFF FFF#E+32;
type LONG FLOAT is digits 15 range -16#0.FFFF FFFF FFFF F8#E +256..

16#0.FFFF_-FFFF-_FFFF-F8#E + 256;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

CHAPTER 4

APPENDIX F TO MIL-STD-1815A

This chapter contains the required Appendix F to the LRM, which is Military

Standard, Ada Programming Language, ANSI/MIL-STD-1815A.

4.1. PRAGMAS

4.1.1. Predefined Pragmas

The Tartan Ada Compiler supports all of the predefined pragmas described in
the LRM, annex B.

- pragma CONTROLLED (sec. 4.1.1.1)
- pragma ELABORATE
- pragma INLINE (sec. 4.1.1.2)
- pragma INTERFACE (sec. 4.1.1.3)
- pragma LIST
- pragma MEMORY SIZE (sec. 4.1.1.4)
- pragma OPTIMIZE-(sec. 4.1.1.5)
- pragma PACK (sec. 4.4.6)
- pragma PAGE
- pragma PRIORITY
- pragma SHARED
- pragma STORAGEUNIT (sec. 4.1.1.4)
- pragma SUPPRESS
- pragma SYSTEMNAME (sec. 4.1.1.4)

The following sections summarize the effects of and restrictions on certain
predefined pragmas.

4.1.1.1. Pragma CONTROLLED

Access collections are not subject to automatic storage reclamation so pragma
CONTROLLED has no effect. Space deallocated by means of
UNCHECKEDDEALLOCATION will be reused by the allocation of new objects.

4.1.1.2. Pragma INLINE

Pragma INLINE is supported as described in the LRM 6.3.2, with the following
restrictions and clarifications:

- The body of the subprogram to be expanded inline must be compiled before
the unit that calls the subprogram. If the call is compiled prior to the
subprogram body, inline expansion of that call will not be performed. A
warning is issued when a call is not inlined because the body has not
been compiled.

- If a unit contains a call that results in inlined code, any subsequent
recompilation of the body of the called subprogram will make the unit
containing the inlined call obsolete.

C-2

APPENDIX F OF THE Ada STANDARD

- When inlining across libraries, the body of the subprogram to be inlined
must be exported from a frozen specification library (sec. 10.3.13 and
10.3.17).

- The optimization level, as set by the compiler command line option,
determines whether an attempt is made to obey a pragma INLINE (sec. 8.2).
If the compilation containing a call to the subprogram named in a pragma
INLINE is compiled at the minimum or low optimization level,(UNIX: -OpO
or -Op 1; VMS: /optimize = minimum or /optimize = low) inlining will not be
attempted for that call.

- Inlining may not be performed if the compiler determines that the
subprogram to be inlined is too complex. Typical examples are
subprograms that recursively call themselves, or whose objects are
referenced by enclosing subprograms.

4.1.1.3. Pragma INTERFACE

Pragma INTERFACE is supported, as described in LRM 13.9.

The pragma associates a particular calling sequence with a subprogram whose
implementation is provided in the form of an object code module. The
librarian interface subcommand<AII hosts: interface> (sec. 10.3.20) must be
used to identify the associated object code module.

The languagename may be Ada, Assembly, or C. Any other language name will be
accepted, but ignored, and the default language, Ada, will be used.

It is almost always necessary to use a pragma LINKAGENAME (sec. 4.1.2.1) for
interfaced subprograms. Without the LINKAGE NAME pragma, the user must
determine the compressed name the compiler generates and use that name in the
provided object module.

An interfaced subprogram cannot have a direct Ada implementation, i.e., a body
is not allowed for such a subprogram. It is possible to compile an Ada
subprogram with a different name and then use the librarian interface
subcommand to reference that subprogram.

4.1.1.4. Pragmas MEMORYSIZE, STORAGEUNIT, and SYSTEMNAME

This section details the procedure for compiling one of these pragmas. The
compilation containing the pragma must be compiled into a library that
contains package SYSTEM. For most users, the Tartan Ada Standard Packages
Library will be the library that includes package SYSTEM. In that case, the procedure
is as follows:[This procedure will not cause any of the units in the Tartan Ada Standard
Packages Library to become obsolete.]

1. Thaw standard_packages.spec.

2. Compile the pragma into the library standard_packages.root. This step
updates package SYSTEM. Any unit that depends on SYSTEM becomes
obsolete and will require recompilation before it may be used in a
program.

C-3

APPENDIX F JF THE Ada STANDARD

3. Freeze standardpackages.spec.

For pragma STORAGE UNIT, no value other than that already specified by
SYSTEM.STORAGEUNIT (sec. 4.3) is allowed.

For pragma SYSTEM NAME, no value other than that already specified by

SYSTEM.SYSTEM NAME (sec. 4.3) is allowed.

4.1.1.5. Pragma OPTIMIZE

Pragma OPTIMIZE is supported as described in the LRM, annex B with the
following exception. A pragma OPTIMIZE only has an effect when placed in a
subprogram's declarative part. The pragma is applied only to that subprogram
and not to any nested subprograms.

The argument applied to pragma OPTIMIZE (space or time) directly corresponds
to the same argument supplied with the optimization option on the compiler
command line. For example, specifying time as the argument to pragma OPTIMIZE has
the same effect as compiling the subprogram and specifying optimization level
time(UNIX: -Op3; VMS: /optimize=time) on the command line.

4.1.2. Implementation-Defined Pragmas

Implementation-defined pragmas provided by Tartan are described in the
following sections.

4.1.2.1. Pragma LINKAGENAME

The pragma LINKAGE NAME associates an Ada entity with a string that is
meaningful externally, for example, to a linkage editor. It takes the form

pragma LINKAGENAME (name, string-constant)

The pragma is only allowed in a package specification or in a declarative
part, or after a library subprogram in a compilation before any subsequent
compilation unit.

If the pragma appears in a library, package specification the name must denote
an entity declared earlier in the -me package. If the pragma appears in any
other package specification or in a declarative part, the name must denote an
entity declared earlier in the same package or declarative part, and must
denote either a subprogram or an exception. If the pragma appears after a
given library subprogram, the only name allowed is the name of this
subprogram.

The name must be the simple name or operator symbol of an Ada entity. The
name refers only to the most recently declared entity with the given name, not
to all of the overloadings of the name.

The name should denote an entity that has a runtime representation; for
example, a subprogram, an exception, or an object. If the name denotes an
entity that has no runtime representation the pragma has no effect; for
example, named numbers, generic units, and most constants with values known at
compile-time do not have runtime representations. The pragma also will have

C-4

APPENDIX F OF THE Ada STANDARD

no effect if the name is one declared by a renaming declaration.

The effect of the pragma is to cause the string-constant to be used in the
generated object code as an external name for the associated Ada entity. It
is the responsibility of the user to guarantee that this string constant is
meaningful to the linkage editor and that no illegal linkname clashes
arise. <Names given in the string-constant argument of a pragma LINKAGE-NAME are
case sensitive. For example, aNy_Od_LLINKname is not equivalent to
ANYOLDLINKNAME. Therefore, a misspelled linkname will cause the link to fail.>

When determining the maximum allowable length for the external linkage name,
keep in mind that the compiler will generate names for elaboration flags for
subprograms simply by appending a five-character suffix to the linkage name.
Therefore, a linkage name for a subprogram may have five fewer characters than
the lower limit of other tools that need to process the name (e.g., the Tartan
Linker limits names to 40 characters; therefore, your external linkage name
should not exceed 35 characters).

4.1.2.2. Pragma FOREIGN-BODY

In addition to pragma INTERFACE, Tartan Ada supplies pragma FOREIGN BODY as a
way to access entities defined in programs written in other languages. Use of the
pragma FOREIGN BODY dictates that all subprograms and objects in the package are
provided by means of a foreign object module. Unlike pragma INTERFACE, pragma
FOREIGNBODY allows access to objects as well as subprograms.

The pragma is of the form:

pragma FOREIGNBODY (languagename L, elaborationroutine-name])

A single such pragma may appear in any non-generic library package, and must
appear in the visible part of the package before any declarations. The pragma
is only permitted when the declarations in the visible and private parts of
the package consist of subprogram declarations, number declarations, and
object declarations with no explicit initialization and with a subtype given
by a simple type mark. Use clauses and other pragmas may also appear in the
package specification. If any of these restrictions are violated, the pragma
is ignored and a warning is generated. Note in particular that types,
exceptions, packages, and generic units may not be declared in the package.

The larnguage name argument is a string intended to identify the language
processor used to create the foreign module. It is treated as a comment by
the compiler.

The optional elaboration routine name argument is a string giving the linkage
name of a routine to initialize the package. The routine specified will be
called for the elaboration of this package body. It must be a global routine
in the object module provided by the user.

The programmer must ensure that the calling convention and data representation
of the foreign body subprograms and elaboration routine are compatible with
those used by the Tartan Ada Compiler (sec. 5.4).

In order to successfully link a program including a foreign body, the object

C-5

APPENDIX F OF THE Ada STANDARD

module for that body must be provided to the library using the librarian
foreign subcommand< UNIX: foreign; VMS: foreign> (sec. 2.3.3 and 10.3.16).

All entities declared by the package must be supplied by the foreign object
module. Pragma LINKAGE-NAME will usually have to be used to ensure agreement
between the linkage names used by the Tartan Ada Compiler and the foreign
language processor.

The foreign body is entirely responsible for initializing objects declared in
a package utilizing pragma FOREIGN BODY. In particular, the user should be
aware that the implicit initializations described in LRM 3.2.1 are not done by
the compiler. (These implicit initializations are associated with objects of
access types, certain record types and composite types containing components
of the preceding kinds of types.)

The user may choose to override the pragma FOREIGN BODY and compile a
-corresponding package body written in Ada. In this case the pragma is ignored
(in particular the specified elaboration routine is not called), and no
librarian foreign subcommand is required or allowed. This capability is
useful for rapid prototyping, where an Ada package may serve to provide a
simulated response for the functionality that a foreign body may eventually
produce. It also allows the user to replace a foreign body with an Ada body
without recompiling the specification.

If only subprograms are declared in the package specification it is more
portable to use pragma INTERFACE on each of the subprograms instead of pragma
FOREIGNBODY on the package.

In the following example, we want to call a function plmn which computes
polynomials and is written in C.

package MATH-FUNCTIONS is

pragma FOREIGN BODY("C");
function POLYNOMIAL(X:INTEGER) return INTEGER;

-- Ada spec matching the C routine
pragma LINKAGENAME(POLYNOMIAL, "plmn");

- Force compiler to use name "plmn" when referring to this
- function

- Note: The linkage name "plmn" may need to be "_plmn",
-- if the C compiler produces leading underscores
- for external symbols.

end MATHFUNCTIONS;

with MATHFUNCTIONS; use MATH-FUNCTIONS;
procedure MAIN is

X:INTEGER := POLYNOMIAL(1O);
- Will generate a call to "pimn"

begin ...
end MAIN;

To compile, link and run the above program, you must:

C-6

APPENDIX F OF THE Ada STANDARD

1. Compile MATH-FUNCTIONS.

2. Compile MAIN.

3. Provide the object module (for example, math.tof) containing the
compiled * "C" code for plmn, converted to Tartan Object File Format
(TOFF); if the module is written in assembly code, for example, using
the IEEE-to-TOFF utility (Object File Utilities Manual, ch. 4).

4. Issue the command:

UNIX:

adalib <processor> foreign mathfunctions math.tof

VMS:

a168 foreign mathfunctions math.tof

5. Issue the command:

UNIX:

adalib <processor> link main

VMS:

a168 link main

Without step 4. an attempt to link will produce an error message informing you
of a missing package body for MATHFUNCTIONS.

4.1.2.3. Pragma UNCHECKED NO STATE WRITTEN and
Pragma UNCHECKED_N-O_STATEWRITTENORREAD

The pragmas UNCHECKEDNOSTATEWRITTEN and
UNCHECKEDNOSTATEWRITTEN OR-READ
take the form:

pragma UNCHECKED NO STATE WRITTEN(name 1, name...])
pragma UNCHECKED-NOSTATE_WRITTENORREAD(name L. name...])

Each name must be the simple name of an Ada subprogram declared in the
declarative part or package specification where the pragma appears. The name
refers only to the most recently declared subprogram with the given name, not
to all of the overloadings of the name.

The pragma UNCHECKED NO STATE WRITTEN notifies the compiler that the named
subprogram has no side effects on any objects outside the subprogram.
Assignment to in out or out parameters is not considered a side effect.Function
results are also not considered to be side effects. Calling another
subprogram is considered to be a side effect, unless the called subprogram is
also named in either a pragma UNCHECKEDNOSTATEWRITTEN or pragma
UNCHECKEDNO STATEWRITTEN ORREAD.

C-7

APPENDIX F OF THE Ada STANDARD

This pragma permits the compiler to improve the optimization performed near
calls to the named subprogram without introducing a dependency on the body of
the subprogram. In effect, global side effect analysis is achieved without
creating additional dependencies which may require recompilation.

Any function which writes only to its result, or any subprogram which writes
only to its in out or out parameters is an excellent candidate for this
pragma.

The pragma UNCHECKED NO STATE WRITTEN OR READ indicates that the
named subprogram behaves strictly as a mathematically pure function. In essence,
this means that the subprogram will always return the same result when called with
identical parameters. The named subprogram must follow all of the rules for an
UNCHECKEDNOSTATE WRITTEN subprogram. In addition, the named
subprogram may not read-the value of any variable not contained within is
undefined and may be unpredictable.

4.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

4.2.1. 'EXCEPTIONADDRESS

The attribute 'EXCEPTION ADDRESS used with a prefix that denotes an exception
yields the "storage address associated with the exception. The value of this attribute is
of the type ADDRESS defined in the package SYSTEM.

47.3. SP.ECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the 68xxx target in package SYSTEM (LRM
13.7.1 and Annex C) are:

package SYSTEM is
type ADDRESS is new _U_ADDRESS;
type NAME is (MC68020);
SYSTEM NAME : constant NAME := MC68020;
STORAGE_UNIT : constant : = 8;
MEMORYSIZE : constant := 1_000_000;
MAX INT :constant := 2_147_483_647;
MIN TNT : constant : = -MAX INT - 1;
MAX DIGITS : constant = 15; -
MAXMANTISSA : constant : = 31;
FINEDELTA : constant 2#1.0#e-31;
TICK : constant := 0.01;

subtype PRIORITY is INTEGER range 10 .. 200;
DEFAULT PRIORITY : constant PRIORITY := PRIORITY'FIRST;
RUNTIME ERROR exception;

end SYSTEM;

4.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic restrictions for representation
specifications followed by additional restrictions applying to specific kinds
of clauses.

C-8

APPENDIX F OF THE Ada STANDARD

4.4.1. Basic Restriction

The basic restriction on representation specifications (LRM 13.1) is that they
may be given only for types declared in terms of a type definition, excluding
a G type in a smaller size, even if possible. The following rules apply

with regard to feasibility:

-An object that is not a component of a composite object is
allocated with a size and alignment that is referable on the target
machine (i.e., no attempt is made to create objects of
non-referable size on the stack). If such stack compression is
desired, it can be achieved by the user by combining multiple stack size

and restrictions.

4.4.2.1. Size Specifications for Types

The rules and restrictions for size specifications. applied to types of various
classes are described below.

The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in
the given size wherever feasible. No attempt is made to store values of
the type in a smaller size, even if possible. The following rules apply
with regard to feasibility:

- An object that is not a component of a composite object is
allocated with a size and alignment that is referable on the target
machine (i.e., no attempt is made to create objects of
non-referable size on the stack). If such stack compression is
desired, it can be achieved by the user by combining multiple stack
variables in a composite object; for y other
components of the composite object (i.e., whenever possible, a
component of non-referable size is made referable).

In all cases, the compiler generates correct code for all operations on
objects of the type, even if they are stored with differing
representational sizes in different contexts.

Note: A size specification cannot be used to force a certain size in
value operations of the type; for example:

type MY INT is range 0..65535;
for MYINT'SIZE use 16; - o.k.
A,B: MYINT;

.A + B... -- this operation will generally be
- executed on 32-bit values

3. A size specification for 9 type specifies the size for objects of this
type and of all its subtypes. For components of composite types, whose
subtype would allow a shorter representation of the component, no
attempt is made to take advantage of such shorter representations.

C-9

APPENDIX F OF THE Ada STANDARD

For example, consider the following:

type MY INT is range 0..2* * 17-1;
for MY I"NT'SIZE use 17; -- (1)
subtype SMALLMYINT is MYINT range 0..255;
type R is record

X: SMALL.MYINT;

end record;

The component R.X will occupy 17 bits even though it can be represented
in 8 bits. If a pragma PACK(R) is added, R.X will still be allocated in
17 bits.

In contrast, for types without a size specification, such components may
be represented in a lesser number of bits than the number of bits
required to represent all values of the type. In the example above, if
the size specification at (1) is removed, R.X will be represented in 32
bits (the size of MY INT). However, a pragma PACK(R) will now cause R.X
to be allocated in 8 bits.

Size specifications for access types must coincide with the default size

chosen by the compiler for the type.

Size specifications are not supported for floating-point types or task types.

No useful effect can be achieved by using size specifications for these types.

4.4.2.2. Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including
the value 0, even if 0 is not in the range of the values of the type. For
numeric types with negative values, the number of bits must acccunt for the
sign bit. No skewing of the representation is attempted. Thus,

type MYINT is range 100..101;

requires at least 7 bits, although it has only two values, while

type MYINT is range -101..-100;

requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of
operations on the type. Such influence should be exerted via the
ACCURACY-DEFINITION of the type (LRM 3.5.7, 3.5.9).

A size specification for a scalar type may not specify a size larger than the
largest operation size supported by the target architecture for the respective
class of values of the type.

C-10

APPENDIX F OF THE Ada STANDARD

4.4.2.3. Size Specification for Array Types

A size specification for an array type must be large enough to accommodate all
components of the array under the densest packing strategy. Any alignment
constraints on the component type (sec. 4.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an
array. Within the limits of representing all possible values of the component
subtype (but not necessarily of its type), the representation of components
may, however, be reduced to the minimum number of bits, unless the component
type carries a size specification.

If there is a size specification for the component type, but not for the array
type, the component size is rounded up to a referable size, unless pragma PACK
is given. This rule applies even to boolean types or other types that require
only a single bit for the representation of all values.

4.4.2.4. Size Specification for Record Types

A size specification for a record type does not influence the default type
mapping of a record type. The size must be at least as large as the number of
bits determined by type mapping. Influence over packing of components can be
exerted by fneans of (partial) record representation clauses or by pragma PACK.

Neither the size of component types, nor the representation of component
subtypes can be influenced by a length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in
records contain either dope information for arrays whose bounds depend on
discriminants of the record or relative offsets of components within a record
layout for record components of dynamic size. These implementation-dependent
components cannot be named or sized by the user.

A size specification cannot be applied to a record type with components of
dynamically determined size.

Note: Size specifications for records can be used only to widen the
representation accomplished by padding at the beginning or end of the record.
Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

4.4.2"6. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated
with the specified size. It is expressed in storage units and need not be
static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a
STORAGE ERROR exception to be raised. Dynamically sized records or arrays may
carry hidden administrative storage requirements thaer must be accounted for as
part of the collection" size. Moreover, alignment constraints on the type of
the allocated objects may make it impossible to use all memory locations of
the allocated collection. No matter what the requested object size, the
allocator must allocate a minimum of 2 words per object. This lower limit is

C-i 1

APPENDIX F OF THE Ada STANDARD

necessary for administrative overhead in the allocator. For example, a
request of 5 words results in an allocation of 5 words; a request of one (1)
word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is
extended automatically if more objects are allocated than possible in the
collection originally allocated with the compiler-established default size.
In this case, STORAGEERROR is raised only when the available target memory is
exhausted. If a collection size of zero is specified, no access collection is
allocated.

4.4.2.6. Specification of Task Activation Size

The specification of a task activation size causes the task activation to be
a!located with the specified size. It is expressed in storage units; refer to
package SYSTEM for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a
STORAGEERROR exception to be raised. Unlike collections, there is no
extension of task activations.

4.4.2.7. Specification of 'SMALL

Only powers of 2 are allowed for 'SMALL.

The length of the representation may be affected by this specification. If a
size specification is also given for the type, the size specification takes
precedence; it must then be possible to accommodate the specification of
'SMALL within the specified size.

4.4.3. Enumeration Representation Clauses

For enumeration representation clauses (LRM 13.3), the following restrictions
apply:

- The internal codes specified for the literals of the enumeration type may
be any integer value between LONG INTEGER'FIRST and INTEGER'LAST. It is
strongly advised that you do not provide a representation clause that
merely duplicates the default mapping of enumeration types which assigns
consecutive numbers in ascending order starting with zero (0).
Unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified
encodings is costly at runtime.

Array types, whose index type is an enumeration type with non-contiguous
value encodings, consist of a contiguous sequence of components.
Indexing into the array involves a runtime translation of the index value
into the corresponding position value of the enumeration type.

4.4.4. Record Representation Clauses

The alignment clause of record representation clauses (LRM 13.4) is observed.

Static objects may be aligned at powers of 2 up to a page boundary. The

C-12

APPENDIX F OF THE Ada STANDARD

specified alignment becomes the minimum alignment of the record type, unless
the minimum alignment of the record forced by the component allocation and the
minimum alignment requirements of the components is already more stringent
than the specified alignment.

The Lomponent clauses of record representation clauses are allowed only for
components and discriminants of statically determinable size. Not all
components need to be present. Component clauses for components of variant
parts are allowed only if the size of the record type is statically
determinable for every variant.

The size specified for each component must be sufficient to allocate all
possible values of the component subtype, but not necessarily the component
type. The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type
may cause an implicit alignment constraint on the record type itself.

If some, but not all, discriminants and components of a record type are
described by a component clause, the discriminants and components without
component clauses are allocated after those with component clauses; no attempt
is made to utilize gaps left by the user-provided allocation.

4.4.5. Address clauses

Address clauses (LRM 13.5) are only supported for variables. If an address
clause is applied to an Ada Routine, the address clause will not be flagged
by the compiler; however, the linker will not place the code for the routine
at the specified address.

If an address clause is applied to an Ada variable, the linker will not
reserve storage at the specified address. It is up to the user to ensure that
use of the specified address will not result in a loss of significant data.
This limitation will not affect the typical uses of address clauses for
mapping memory-resident registers and device control words onto Ada variables.

4.4.6. Pragma PACK

Pragma PACK (LRM 13.1) is supported. For details, refer to the following
sections.

4.4.6.1. Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is
chosen. For details of packing, refer to the explanation of size
specifications for arrays (sec. 4.4.2.3).

If, in addition, a length clause is applied to the array type, the pragma has
no effect, since such a length clause already uniquely determines the array
packing method.

If a length clause is applied to the component type, the array is packed
densely, observing the component's length clause. Note that the component
length clause may have the effect of preventing the compiler from packing as
densely as would be the default if pragma PACK is applied where there was no

C-13

APPENDIX F OF THE Ada STANDARD

length clause given for the component type.

4.4.6.2. The Predefined Type STRING

Package STANDARD applies pragma PACK to the type STRING. However, when
applied to character arrays, this pragma cannot be used to achieve denser packing
than is the default for the target: 1 character per 8-bit word.

4.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is
chosen that is compatible with the sizes and alignment constraints of the
individual component types. Pragma PACK has an effect only if the sizes of
some component types are specified explicitly by size specifications and are
o. non-referable nature. In the absence of pragma PACK, such components
generelly consume a referable amount of space.

It should be noterd that the default type mapping for records maps components
of boolean or othur types that require only a single bit to a single bit in
the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referabie amount of storage to the component.

If pragma PACK is applied to a recora for which a record representation clause
hat been given detailing the allocation of some but not all components, the
pragma PACK affects only the components whose allocation has not been
detailed. Moreover, the strategy of not utilizing gaps between explicitly
allocated components still applies.

4.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enforced by the
type mapping rules. Any representation specification that cannot be satisfied
within these constraints is not obeyed by the compiler and is appropriately
diagnosed.

Alignment constraints are caused by properties of the target architecture,
most notably by the capability to extract non-aligned component values from
composite values in a reasonably efficient manner. Typically, restrictions
exist that make extraction of values that cross certain address boundaries
very expensive, especially in contexts involving array indexing. Permitting
data layouts that require such complicated extractions may impact code quality
on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal
alignment of types, we provide the general rule that is being enforced by the
alignment rules:

- No object of scalar type (including components or subcomponents of a
composite type) may span a target-dependent address bourt iry that would
mandate an extraction of the object's value to be performed by two or
more extractions.

4.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

C-14

APPENDIX F OF THE Ada STANDARD

The only implementation-dependent components allocated by Tartan Ada in
records are fields containing either dope information for arrays whose bounds
depend on discriminants of the record or relative offsets of components within
a record layout for record components of dynamic size. These components
cannot be named by the user.

4.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the LRM describes a syntax for associating interrupts with
task entries. Tartan Ada implements the address clause

for TOENTRY use at intlD;

by associating the interrupt specified by intID with the TOENTRY entry of the
task containing this address clause. The interpretation of intlD is both
machine and compiler dependent.

The Motorola 68xxx specification provides 256 interrupts that rmay be
associated with task entries. These interrupts are identified by an integer
in the range 0..255, corresponding to the interrupt vector numbers in section
9.2 of the MC68040 32-Bit Microprocessor User's Manual. When you specify an
interrupt address clause, the intlD argument is interpreted as follows:

- If the argument is in the range 0..255, a full support interrupt
association is made between the interrupt specified by the argument and
the.task entry. That is, the runtimes make no assumptions about the task
in question. This method is the slower.

- If the argument is in the range 256..511, a fast interrupt association is
made between the interrupt number (argument-256) and the task entry.
This method provides faster execution because the runtimes can depend
upon the assumptions previously described.

For the difference between full support and fast interrupt handling, refer to
section 9.5.12.

4.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKED CONVERSION as documented in Section 13.10 of the
LRM. The sizes need not be the same, nor need they be known at compile time. The
only exception is unconstrained array types which may not be used as the target of an
UNCHECKED-CONVERSION.

If the value in the source is wider than that in the target, the source value
will be truncated. If narrower, it will be zero-extended. Calls on
instantiations of UNCHECKEDCONVERSION are made inline automatically.

4.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES

Tartan Ada supplies the Iredefined input/output packages DIRECT 10,
SEQUENTIAL 10, TEXT 10, and LOW LEVEL 10 as required by LRM Chapter 14.
The functionality of DIRECT_10, SEQUENTIAL_1O, and TEXTO1 is fully supported.

C-15

APPENDIX F OF THE Ada STANDARD

4.9. OTHER IMPLEMENTATION CHARACTERISTICS

The following information is supplied in addition to that required by Appendix
F to MIL-STD- 1815A.

4.9.1. Definition of a Main Program

Any Ada library subprogram unit may be designated the main program for
purposes of linking (using the Ada librarian's link subcommand) provided that
the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for
termination as other tasks (described in LRM 9.4 (6-10)). Specifically, these
tasks are not terminated simply because the main program has terminated.
Tsrminate alternatives in selective wait statements in library tasks are
therefore strongly recommended.

4.9.2. Implementation of Generic Units

All instantiations of generic units, except the predefined generic
UNCHECKEDCONVERSION and UNCHECKEDDEALLOCATION subprograms, are
implemented by code duplications. No attempt at sharing code by multiple
instantiatioris is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be
compiled before the unit can be instantiated. It does not impose the
restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a.generic
unit will cause any units that instantiated this generic unit to become
obsolete.

4.9.3. Implementation-Defined Characteristics in Package STANDARD

The implementation-dependent characteristics in package STANDARD (Annex C) are:

package STANDARD is

type BYTEINTEGER is range -128 .. 127;
type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2 147 483 648.. 2 147_483_647;

* type FLOAT is digits 6 range -16#0_FFFFFF#E+ 32.. 16#0.FFFFFF#E + 32

type LONGFLOAT is digits 9 range -1 6#0.FFFFFFFFFFFFF8#E + 256..
16#0.FFFFFFFFFFFFF8#E + 256 ;

type DURATION is delta 0.0001 range -86400.0.. 86400.0;

end STANDARD;

C-16

APPENDIX F OF THE Ada STANDARD

4.9.4. Attributes of Type DURATION

The type DURATION is defined with the following characteristics:

- - - - - -
Attribute I Value I
I ~II

DURATION'DELTA I 0.0001 sec II ~II
--------------------------------I ~II

SI -S
DURATION'SMALL I 6.103S16E sec I

-------------------------------- I
I ~ II

DURATION'FIRST I -86400.0 secI I
------------------------------- I

DURATION'LAST I 86400.0 sec
- - - - - -

4.9.5. Values of Integer Attributes

Tartan Ada supports the predefined integer types INTEGER, SHORT INTEGER and
BYTEINTEGER. The range bounds of these predefined types are:

I II
I Attribute I Value I
I I I
I------------ -----------.

I
INTEGER'FIRST I -2"*31I ~I

----------------------- II ~II
INTEGER'LAST I 2**31-1I ~II

---------------------------- II ~II
SHORT.INTEGER'FIRST I -2*'15I ~II

---------------------------- II ~II
SHORTINTEGER'LAST I 2"1S-1I ~I

---------------------------- I
BYI . IGE'FIS 12

I BYTL-INTEGER-FIRST 1 -128 I
I ~II---------------------------- I

I BYTI"._NTEGER 'LAST I 127
-- I I

C-17

APPENDIX F OF THE Ada STANDARD

The range bounds for subtypes declared in package TEXT_10 are:

I I I
I Attribute I ValueI ~II
------------------------------ I

I
COUNT'FIRST I 0I ~II

------------------------------------ III
COUNT'LAST I INTEGER'LAST - 1

I
--------------------------------I

POSITIVECOUNT'FIRST I 1

POSITIVELCOUNT'LAST I INTEGER'LAST - 1
I

------------------------------------I ~II
FIELD'FIRST I 0I ~I

I ~II
FIELD'LAST I 240I ~II

The range bounds for subtypes declared in packages DIRECT_10 are:

I I I
I Attribute I Value I
I I
- -------------------------------

COUNT'FIRST I 0I I
--------------------------------- II I
COUNTLAST I INTEGER'LASTI I
---------------------------------- III
POSITIVECOUNT' FIRST I 1

I
I--------------------------------II I

POSITIVECOUNT'LAST I COUNT'LASTI ~II
---- -------. - - ------------.. . . . ---. ..--- -----

4.9.6 Values of Floating-Point Attributes

Tartan Ada supports the predefined floating-point types FLOAT and LONG-FLOAT.

C-18

APPENDIX F OF THE Ada STANDARD

- -I

I Attribute I Value for FLOAT
I I
I -- I
I I
IDIGITS I 6I I

MANTISSA I 21I I

EMAX I 84I ~ II
- --- I

EPSILON I 16#0.100000#E-4 (approximately 9.S3674E-07)I I

I SMALL I 16*0.8000_00#E-21 (approximately 2.58494E-26)I ~II
--- --

I LARGE I 16#0.FFFFFS#E+21 (approximately 1.93428E+25)I ~II
--- I
SAFFEMAX I 126

--- I
I I

SAFELSMALL I 16#0.2000_000#E-31 (approximately 5.87747E-39)1
I ~II

-- II. II
I SAFE-LARGE I i6#0.3FFFFE0#E÷32 (approximately 8. 50706E+37)1
I I I
-- II I

I FIRST I -16#0.FFFFFF#E+32 (approximately -3.40282E+38)I I
--- II ~I
LAST I 16#0.FFFFFF#E+32 (approximately 3.40282E+38)

--- II ~II

MACHINERADIX I 2I I
--- II I
MACHINEJ4ANTISSA I 24I I

I--II ~II
IMACHINE-EMAX I 128I I
--- II ~II

I MACHINELEMIN 1 -125
I ~II

IA NE UNS I TU

IMACHINE-ROUNDS I TRUE
I ~II--- I

MACHINE-OVERFLOWS I TRUE
ICI 1

C-i19

APPENDIX F OF THE Ada STANDARD

I
Attribute I Value for LONG_FLOAT

--II I

DIGITS I 15
I I

--.

I ANTISSA I S1I I
I---III

EMAX I 204I I
--- II ~I
EPSILON I 16#0.4000_0000_0000_000#E-12

I (approximately 8.8817841970013E-16)
I ~I

--II I
SSMALL I 16#0.8000_O0000_0000_000#E- 51

I (approximately 1.9446922743316E-62)

---I
I I

LARGE I 16#0.FFFFFFFFFFFFEOO#E+51
I (approximately 2.5711008708143E+61)

I - I

I ~II
SAFELEMAX I 1022II

---I I
SAFE-SMALL I 16#0.2000_0000_0000_O00#E-255

I (approximately 1.1125369292536-308)II

--II ~II
SAFELARGE I 16#0.3FFFFFFFFFFFF80#E+256

I (approximately 4.4942328371S57E+307)I ~II
--III
FIRST I -16#0.FFFFFFFFFFFFFS#E+256

I (approximately -1.79769313486232E+308)I ~II
--II ~II

LAST I 16#0.FFFFFFFFFFFFFB#E+256
I (approximately -1.79769313486232E+308)I ~II

--I

C-20

APPENDIX F OF THE Ada STANDARD

I ~ II
I Attribute I Value for LONGFLOAT (cont'd) I
I I I
-- I

I 14ACHINLRADIX I 2I I
-- I

I ACHINELMNTISSA I 53I ~II
-- I

I MACHINLE_4AX I 1024I I
-- I

I MACHINLEF4IN I -1021

--- I
II

,HINEROUNDS I TRUE

II

I MACHINLOVERFLOWS I TRUE

4.10. SUPPORT FOR PACKAGE MACHINECODE

Package MACHINECODE provides the programmer with an interface to request the
generation of any instruction that is available on the MC68020,
MC689811MC68882, MC68030, MC68040 or CPU32 processors. The implementation
of package MACHINECODE is similar to that described in section 13.8 of the Ada
LRM, with several added features. Please refer to Appendix B for the package
MACHINECODE specification.

4.10.1. Basic Information

As required by LRM, section 13.8, a routine which contains machine code
inserts may not have any other kind of statement, and may not contain an
exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

4.10.2. Instructions

A machine code insert has the form TYPE MARK'RECORD AGGREGATE, where the
type must be one of the records defined in package MIACHINECODE. Package
MACHINE CODE defines seven types of records. Each has an opcode and zero to 6
operands. These records are adequate for the expression of all instructions provided
by the 68xxx.

4.10.3. Operands and Address Modes

An operand consists of a record aggregate which holds all the information to
specify it to the compiler. All operands have an address mode and one or more
other pieces of information. The operands correspond exactly to the operands
of the instruction being generated.

C-21

APPENDIX F OF THE Ada STANDARD

Each operand in a machine code insert must have an Address Mode. The address
modes provided in package MACHINECODE provide access to all address modes
supported by the 68xxx.

In addition, package MACHINE CODE supplies the address modes
SYMBOLIC ADDRESS and SYMIBOLICVALUE which allow the user to refer to Ada
objects by specifying object'ADDRESS as the value for the operand. Any Ada object
which has the 'ADDRESS attribute may be used in a symbolic operand.
SYMBOLICADDRESS should be used when the operand is a true address (for example,
a branch target). SYMBOLIC VALUE should be used when the operand is actually
a value (for example, one of the source operands of an ADD instruction).

When an Ada object is used as a source operand in an instruction (that is, one
from which a value is read), the compiler will generate code which fetches the
value of the Ada object. When an Ada object is used as the destination
operand of an instruction, the compiler will generate code which uses the
address of the Ada object as the destination of the instruction.

4.10.4. Examples

The implementation of package MACHINECODE makes it possible to specify both
simple machine code inserts such as:

TWOOPNDS'(MOVEQ, (IMM, 3), (DR, DO))

and more complex inserts such as

TWOOPNDS'(ADDIL,
(IMM, 10),
(SYMBOLICVALUE, ARRAY VAR(X, Y, 27)'ADDRESS))

In the first example, the compiler will emit the instruction MOVEQ 3, DO. In
the second example, the compiler will first emit whatever instructions are
needed to form the address of ARRAYVAR(X, Y, 27) and then emit the ADDI_L
instruction. The various error checks specified in the LRM will be performed on all
compiler-generated code unless they are suppressed by the programmer (either through
pragma SUPPRESS, or through command qualifiers).

4.10.5. Incorrect Operands

Under some circumstances, the compiler attempts to correct incorrect operands.
Three modes of operation are supplied for package MACHINE CODE to determine
whether corrections are attemp'ted and how much information about the necessary
corrections is provided to the user.

C-22

APPENDIX F OF THE Ada STANDARD

The compiler command line options for the three modes of operation are:

I I
UNIX I VMS

I ~I
-------------------------------------- III
Me I fi xup-noneI ~II

I Mw I fixup.warnI ~II
--- II ~II

I no option (default] I fixup-quiet [default] I
I -- I

In the Me or fixup =none mode, the specification of incorrect operarnds for an
instruction is considered to be a fatal error. In this mode, the compiler
will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use 'ADDRESS constructs as long as
the object which is used meets the requirements of the instruction.

In the default or fixup = quiet mode, if you specify incorrect operands for an
instruction, the compiler will do its best to correct the machine code to
provide the desired effect. For example, although it is illegal to use an
address register as the destination of an ADDI instruction, the compiler will
accept -it and try to generate correct code. In this case, the compiler will
load the value found in the address register indicated into a data register,
use the data register in the ADDI instruction, and then store from that data
register back to the desired address register.

TWOOPNDS'(ADDI L, (IMM, 3), (AR, Al))

will produce a code sequence such as:

mov.l al,dO
addi.I #3,dO
mov.l dO,al

In the Mw or fixup =warn mode, the compiler will perform the same level of
correction as in the default or fixup =quiet mode. However, a warning message
is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

4.10.6. Assumptions Made in Correcting Operands

When compiling in the UNIX default or Mw modes, or in the VMS fixup=quiet or
fixup= warn modes, the compiler attempts to emit additional code to move "the right
bits" from an incorrect operand to a place which is a legal operand for the requested
instruction. The compiler makes certain basic assumptions when performing these
corrections. This section explains the assumptions the compiler makes and their
implications for the generated code. Note that if
you want a correction which is different from that performed by the compiler,
you must make explicit machine code insertions to perform it.

C-23

APPENDIX F OF THE Ada STANDARD

For source and source/destination operands:

-SYMBOLICADDRESS means that the address specified by the
'ADDRESS expression is used as the source bits. When the Ada object
specified by the 'ADDRESS instruction is bound to a register, this will
cause a compile-time error message because it is not possible to 'take
the address" of a register.

SYMBOLICVALUE means that the value found at the address specified bythe
'ADDRESS expression will be used as the source bits. An Ada object which
is bound to a register is correct here, because the contents of a
register can be expressed on the 68xxx. Any other non-register means
that the value found at the address specified by the operand will be used
as the source bits.

For destination operands:

- SYMBOLIC ADDRESS means that the desired destination for the operation is
the address specified by the 'ADDRESS expression. An Ada object which is
bound to a register is correct here; a register is a legal destination on
the 68xxx.

- SYMBOLIC VALUE means that the desired destination for the operations is
found by fetching 32 bits from the address specified by the 'ADDRESS
expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to
the address used in the SYMBOLIC ADDRESS case.

- All other operands are interpreted as directly specifying the destination

for the operation.

4.10.7. Register Usage

The compiler may need several registers to generate code for operand
corrections in machine code inserts. If you use all the registers,
corrections will not be possible. In general, when more registers are
available to the compiler it is able to generate better code.

Since the compiler may need to allocate registers as temporary storage in
machine code routines, there are some restrictions placed on your register
usage. The compiler will automatically free all registers which are volatile
across a call for your use (that is DO, Dl, AO, Al, FpO, Fpl).

If you reference any other register, the compiler will reserve it for your use
until the end of the machine code routine. The compiler will not save the
register automatically if this routine is inline expanded. This means that
the first reference to a register which is not volatile across calls should be
an instruction which saves its value in a safe place.

The value of the register should be restored at the end of the machine code
routine. This rule will help ensure correct operation of your machine code
insert even if it is inline explained in another routine. However, the
compiler will save the register automatically in the prolog code for the
routine and restore it in the epilog code for the routine if the routine is

C-24

APPENDIX F OF THE Ada STANDARD

not inline expanded.

4.10.8. Data Directives

Four special instructions are included in package MACHINE CODE to allow the
user to place data into the code stream. These four instructions are DATA8,
DATA16, DATA32 and DATA64. Each of these instructions can have from 1 to 6
operands.

DATA8 and DATA16 are used to place 8-bit and 16-bit integer data items into
the code stream.

DATA32 is used to place 32-bit data into the code stream. The value of an
integer, a floating-point literal, or the address of a label or a routine are
the legal operands (i.e. operands whose address mode is either IMM,
FLOATLITSINGLE, or SYMBOLICADDRESS of an Ada object).

<< Li >>
THREEOPNDS'(DATA32, (SYMBOLIC-ADDRESS, LI'ADDRESS),

(FLOATLITSINGLE, 2.0),
(IMM, 99));

will produce a code sequence such as:

L1: .Jong Li
.long 1073741824 I 0.2el
.long 99

DATA64 is used to place a 64-bit data into the code stream. The only legal
operand is a floating literal (i.e operand whose address mode is
FLOATLITSINGLE or FLOATLITDOUBLE).

4.10.9. Inline Expansion

Routines which contain machine code inserts may be inline expanded into the
bodies of other routines. This may happen under programmer control through
the use of pragma INLINE, or with the optimization levels standard and
time(UNIX: -Op2 and -Op3; VMS: /optimize =standard and /optimize=time) when the
compiler selects the inline optimization as an appropriate action for the
given situation. The compiler will treat the machine code insert as if it
were a call. Volatile registers will be saved and restored around it and
similar optimizing steps will be taken.

4.10.10. Unsafe Assumptions

There are a variety of assumptions which should not be made when writing
machine code inserts. Violation of these assumptions may result in the
generation of code which does not assemble or which may not function
correctly.

- Do not assume that a machine code insert routine has its own set of local
registers. This may not be true if the routine is inline expanded into
another routine. Explicitli save and restore any registers which are not
volatile across calls. If you wish to guarantee that a routine will

C-25

APPENDIX F OF THE Ada STANDARD

never be inline expanded, you should use an Ada separate body for the
routine or compile at an optimization level lower than the default. Then
make sure there is no pragma INLINE for the routine.

Values should not be assigned to the frame pointer register in the middle
of a machine code insert routine, even if your code saves and restores
the contents of the register. A dangerous situation can arise if an
exception is propagated through the procedure frame, or if a machine code
insert references a variable that uses a frame pointer in the address
formula.

- Do not assume that the 'ADDRESS on SYMBOLIC ADDRESS or
SYMBOLIC-VALUE operands means that you are getting an ADDRESS to
operate on. The Address- or Value-ness of an operand is determined by
your choice of SYMBOLICADDRESS or SYMBOLIC VALUE. This means
that to add the contents of X to DO, you should write

TWOOPNDS'(ADDL, (SYMBOLICVALUE, X'ADDRESS), (DR, DO));

but to add the address of X to DO, you should write

TWOOPNDS'(ADDL, (SYMBOLIC ADDRESS, X'ADDRESS), (DR, DO));

- The compiler will not generate call site code for you if you emit a call
instruction. You must save and restore any volatile registers (DO, D1,
AO,.Al, FpO, Fpl) which currently have values in them. If the routine
you call has out parameters, a large function return result, or an
unconstrained result, it is your responsibility to emit the necessary
instructions to deal with these constructs as the compiler expects. In
other words, when you emit a call, you must follow the linkage
conventions of the routine you are calling. For further details on call
site code, see sections 5.4, 5.5, and 5.6.

- Do not attempt to move multiple Ada objects with a single long
instruction such as MOVE. Although the objects may be contiguous under
the current circumstances, there is no guarantee that later changes will
permit them to remain contiguous. If the objects are parameters, it is
virtually certain that they will not be contiguous if the routine is
inline expanded into the body of another routine. In the case of locals,
globals, and own variables, the compiler does not guarantee that objects
which are declared textually ' 'next" to each other will be contiguous in
memory. If the source code is changed such that it declares additional
objects, this may change the storage allocation such that objects which
were previously adjacent are no longer adjacent.

4.10.11. Limitations

- The current implementation of the compiler is unable to fully support
automatic correction of certain kinds of operands. In particular, the
compiler assumes that the size of a data object is the same as the number
of bits which is operated on by the instruction chosen in the machine
code insert. This means that in the insert:

TWOOPNDS'(ADDB, (SYMBOLIC-VALUE, INTEGERVARIABLE'ADDRESS), (DR, DO))

C-26

APPENDIX F OF THE Ada STANDARD

the compiler will assume that INTEGER VARIABLE is 8 bits wide, when in
fact it is stored in 32 bits of memory.

Note that the use of X'ADDRESS in a machine code insert does not
guarantee that X will be bound to memory. This is a result of the use of
'ADDRESS to provide a ' "typeless" method for naming Ada objects in
machine code inserts. For example, it is legal to say (SYMBOLC_VALUE,
X'ADDRESS) in an insert even when X is found in a register.

- Absolute Short Address Mode with a symbolic operand is not supported.
For example, the following operand is illegal:

(ABS_SHORT, SOMEVARIABLE'ADDRESS)

- In Address Modes in which two displacements are allowed only base
displacement can be represented by a symbolic address. Outer
displacement must be an integer. For example, this operand is legal:

(MEMPOST2, BD MEMPOST2 = > SOME ROUTINE'ADDRESS, -- base
ANMEMPOST2 = > AO, - displacement
XNMEMPOST2 = > DO,
XN SIZE MEMPOST2 -> LONG,
SCALE MEMPOST2 => ONE,
OD_MEMPOST2 = > 16) -- outer Displacement

while thq following operand is illegal:

(MEMPOST2, BD MEMPOST2 = > ROUTINE 1'ADDRESS, -base displacement
AN ME-MPOST2 = > AO,
XN MEMPOST2 = > DO,
XN SIZE MEMPOST2 => LONG,
SCALE MEMPOST2 => ONE,
OD ME-MPOST2 => ROUTINE_2'ADDRESS) --outer Displacement

- PC-relative Address Modes with a suppressed base register field can
sometimes be handled ;ncorrectly by the current implementation of the
compiler.

- Extended-precision floating-point literals are not supported.

4.10.12. ADDRESSMODE Usage

- Addressing modes that accept 16 or 32-bit displacements are represented
by two entries in package MACHINE CODE's ADDRESSMODE
enumeration: one that accepts an integer, and one that accepts a symbolic
address. For example, Memory Indirect Pre-indexed addressing mode is
represented by MEMPRE and MEMPRE2 Address Modes.

- DARI (Data or Address Register Indirect) ADDRESS MODE is provided
exclusively for use with operands five and six of the CAS2 instruction.

- ARIDX (Address Register Indirect with Index and Displacement)
ADDRESSMODE represents both the 8-bit displacement and the base
displacement sub-modes of the Address Register Indirect with Index

C-27

APPENDIX F OF THE Ada STANDARD

addressing mode. The compiler will pick the most economical form.

- PCIDX (Program Counter Indirect with Index and Displacement)
ADDRESS MODE represents both the 8-bit displacement and the base
displacement sub-modes of the Program Counter Indirect with Index addressing
mode. The compiler will pick the most economical form.

4.10.13. INSTRUCTION-MNEMONIC Usage

- INSTRUCTIONMNEMONIC names in package MACHINE CODE are formed
by concatenating the base instruction name with a suffix representing the
size of the instruction. For example, CMP B, CMP_W, and CMPL are
package MACHINECODE entries for the 68xxx CMP instruction. If the
instruction exists in a single size only, it is represented by two
entries in package MACHINE CODE: one with and one without a suffix. For
example, the 68xxx LEA instruction is represented by LEA and LEAL.
Unsized instructions are represented by their base names with no suffix.

- For instructions that operate on control registers the control register
operand needs to be explicitly supplied in the machine code insert:

TWOOPNDS'(ANDITOCCR, (IMM, 3), (CR, CCR));

- For Conditional Branch, Branch Always, and Branch to Subroutine
instructions an unsized entry (for example, BEQ) lets the compiler pick
the instruction of the optimal size.

- BSRNORET and JSRNORET mnemonics are aliases for BSR and JSR
respectively. Use them when a called routine is known to never return.

- The digit in the mnemonics of the Co-Processor instructions (cp*)
indicates the number of optional co-processor defined extension words.

- When using MC68881 /MC68882 unary instructions which operate on a
single floating-point register, the register operand needs to be supplied as
both the source and the destination operand:

TWOOPNDS'(FCOSHX, (FPR, FP1), (FPR, FP1));

The FTST instruction is the exception to this rule:

ONEOPNDS'(FTSTX, (FPR, FP1));

- When using CPU32 Table Lookup and Interpolation instructions, the Dn
register-pair operand needs to be supplied as two separate operands of
the machine-code insert. For example,

C-28

APPENDIX F OF THE Ada STANDARD

THREEOPNDS° (TBLSL, (DR, DO), (DR, D1), (DR, D7));

will emit the TBLS.L DO:D1,D7 instruction.

- MC68881/MC68882 instruction Move System Control Register, FMOVE
is represented by several individual instructions, each of which requires an
explicit control register operand:

TWOOPNDS'(FMOVETOFPCR, (DR, DO), (CR, FPCR));

- FSINCOS instruction returns the sine in its second operand and the cosine
in its.third operand.

- MC68881/MC68882 Move Multiple Data Registers, FMOVEMX and Move
Multiple Control Registers. FMOVEM L instructions, expect the register
mask operand to be represented by an integer literal:

TWOOPNDS'(FMOVEM_X, (IMM, 3), (ARI, AO));

4.10.14. Example

with MACHINE CODE; use MACHINECODE;
with SYSTEM; use SYSTEM;

procedure SINCOS(SOURCE : in LONGFLOAT;
SIN : out LONG FLOAT;
COS : out LONGFLOAT) is

begin

- Compute sine and cosine of Source and return them in
-- parameters Sin and Cos, respectively

THREEOPNDS'(FSINCOSD, (SYMBOLICVALUE, SOURCE'ADDRESS).
(FPR, FPO),
(FPR, FP1));

TWO OPNDS'(FMOVE D, (FPR, FPO), (SYMBOLICADDRESS, SIN'ADDRESS));
TWOOPNDS'(FMOVE-D, (FPR, FP1), (SYMBOLICADDRESS, COS'ADDRESS));

end SINCOS;

C-29

APPENDIX F OF THE Ada STANDARD

Assembly code output:

.data

.globl _aOfsincos

.text

_aOfsincos:
link a6,#O
cirl a7@-

fsincosdia6@(8:w),fpl :fpO
fmoved fpO,a6@(16:w)
fmoved fpl,a6@(24:w)

unlk a6
rts

I Total bytes of code in the above routine = 28

.text

.even
I Total bytes of code = 28

Total.bytes of data = 0

4.11. INLINE GUIDELINES

The following discussion on inlining is based on the next two examples. From
these sample programs, general rules, procedures, and cautions are
illustrated.

Consider a package with a subprogram that is to be inlined.

package IN PACK is
procedure I_WILL_BE_INLINED;
pragma INLINE (IWILL_BE_INLINED);

end INPACK;

Consider a procedure that makes a call to an inlined subprogram in the
package.

with INPACK; use IN-PACK;
procedure USESINLINEDSUBP is
begin

I WILLBEINLINED;
end USESINLINEDSUBP;

After the package specification for IN PACK has been compiled, it is possible
to compile the unit USES_INLINEDSUBP that makes a call to the subprogram
I WILL BE INLINED. However, because the body of the subprogram is not yet
available, the generated code will not have an inlined version of the

C-30

APPENDIX F OF THE Ada STANDARD

subprogram. The generated code will use an out of line call for
IWILL_BE_INLINED. The compiler will issue warning message #2429 that the
call was not inlined when USESINLINEDSUBP was compiled.

If IN PACK is used across libraries, it can be exported as part of a
specification library after having compiled the package specification. Note
that if only the specification is exported, there will be no inlined calls to
INPACK in all units within libraries that import IN PACK. If only the
specification is exported, all calls that appear in other libraries will be
out of line calls. The compiler will issue warning message #2429 to indicate
the call was not inlined.

There is no warning at link-time that subprograms have not been inlined.

If the body for package IN PACK has been compiled before the call to
I WILL BE INLINED is compiled, the compiler will inline the subprogram. In
the example above, if the body of IN PACK has been compiled before
USESINLINEDSUBP, the call will be inlined when USESINLINEDSUBP is
compiled.

Having an inlined call to a subprogram makes a unit dependent on the unit that
contains the body of the subprogram. In the example, once USESINLINEDSUB has
been compiled with an inlined call to IWILLBEINLINED, the unit
USES INLINED SUBP will have a dependency on the package body INPACK. Thus, if
the body for package body INPACK is recompiled, USESINLINED_SUBP will become
obsolete, and must be recompiled before it can be linked.

It is possible to export the body for a library unit. If the body for package
IN PACK is added to the specification library using the Ada librarian
subcommand export compilation unit, other libraries that import package
IN_PACK will be able to compile inlined calls across library units.

At optimization levels lower than the default, the compiler will not inline
calls, even when pragma INLINE has been used and the body of the subprogram is
in the library prior to the unit that makes the call. Lower optimization
levels avoid any changes in flow of the code that causes movement of code
sequences, as happens in a pragma INLINE. If the compiler is running at a low
optimization level, the user will not be warned that inlining is not
happening.

C-31

