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1. INhffODuCTION

The XBR-2D code is a two-dimensonal (2-1), axisymmetric heat conduction code specially

femulated and developed by Veritay Technology for the US. Army Ballistic Research Laboratory (now

krown as the Army Research Laboratory [ARL]) to simulate gun barrel hea transfer during single shot

and burst firing scenarios. The code is an explicit finite difference formulation that features a geometric

radial grid network. This provides finely spaced grids at the bore surface to accurately model the steep

temperature gradients at the time of maximum heat flux, while defining the temperature distribution

through the barrel wall with a minimum number of grids.

The explicit nature of the formulation requires that the maximum value of the time interval be limited

by specific criteria to maintain computational stability. Thus, the maximum time step is constrained by

the thickness of the smallest grid.

The burst fire event consists of a number of brief ballistic cycle periods, which are generally less than

100 ms in duration and are characterized by intense heating and steep temperature gradients at the bore

surface. These represent the most severe conditions that the code is designed to simulate. Between these

periods of ballistic activity are dwell periods in which heat transfer is low and the through-wall thernal

profile relaxes through heat conduction processes. The temperature gradient at the bore surface decreases

in magnitude but the grid pattern remains extremely fine. Prior to this effort, the same time step and grid

pattern were used throughout the simulation to evaluate both the brief ballistic cycle and the potentially

extensive dwell period between shots. When simulating long bunt fire scenarios for artillery with the

original version of the XBR-2D code, the computer time is excessive; execution times of 20 hours on the

ARL's Cray computer have been cited. Thus, it is desired to reduce the run time exhibited by the code

while maintaining its computational accuracy.

1.1 Approaches to the Problem. Two possible approaches were evaluated to reduce the execution

time. The first approach involved changing the numerical method to either an implicit finite difference

or a boundary element method. An implicit finite difference scheme involves solving the entire grid

matrix simultaneously for each time step as opposed to the explicit scheme which solves each grid

independently based on the values at the previous time step. An advantage of the implicit method is that

"Developed under conma No. DAAAIS-S-D-0014, Delivery Order 0004.
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there are no stability-related time step restrictions. The main constraint on the time step is the need to

maintain adequate resolution of the heat transfer time history. During the dwell period, the step can be

inoreased without sacrificing accuracy. Using test cases designed to evaluate the different methods, the

implicit finite difference solutions did not agree with the explicit method in any calculations. After

reviewing both methods to verify that they were properly implemented, and calculating analytical solutions

to the test cases, it was determined that the implicit method was not providing accurate solutions to the

problems, so it was eliminated as an option.

The boundary element method (BEM) has the possibility of significantly improving the speed as well

as the accuracy of the solution. The BEM solves the governing equation only along the boundary,

eliminating the need to compute internal points. If internal values are desired, only the point of interest

needs to be calculated This eliminates the large number of extraneous internal points which need to be

calculated in either of the finite difference methods. However, the BEM, especially for the case of

transient heat conduction, involves very complicated mathematics in its derivation. Because of the limited

scope of this task order, the BEM could not be pursued to its conclusion, although some very valuable

and promising work was accomplished.

The second approach to speeding up the XBR-2D code, and the one that was ultimately implemented,

was to work with the current explicit finite difference scheme and improve its efficiency. Since the time

step in the original version of the code was constant for both the ballistic cycle and the dwell period, an

increase in the step size for the dwell period (when the stability requirements are relaxed) allows for a

decrease in the execution time. An algorithm was developed which computes the maximum temperature

gradient in the system, and dynamically alters the time step based on this value. This algorithm, along

with other programming optimizations, decreased the execution time by factors of three to six, depending

upon the length of the dwell period. These improvements in the execution time were achieved without

significantly affecting the numerical results of the XBR-21) simulations.

2. EVALUATION OF NUMERICAL ALTERNATIVES

To quickly evaluate the various numerical methods, two test cases were developed. Case one,

illustrated in Figure 1, is a flat, two-dimensional, 6 x 6 platz with aconstant temperature of 3000 on one

side and a constant temperature of 1,500r on the opposite side. The remaining sides are insulated. The

steady-state solution to this problem is a linear distribution from 300 to 1,500.

2



The amc d o case is also illuauted In Figure 1. In this coe, the plme ftm the first test cae is

imulated n thre sdes d a heat flux is appled to the fourth side. The heat flux is applied for 30 u

and is followed by a pause of 60 ms. The cycle is then repeated to roughly simulate the conditions in a

gun bamrl.

- 4- 1- *-I- q-
ss -Hf --H ------~-M-H- -r 1-

I * * I I * I
-".41"-r -"

Figure 1. Heat transfer test cases used to evaluate various numerical technigues.

2.1 Explicit Mad Implicit Finite Difference Methods. The numerical method contained in XBR-2D

version 1.0 is an explicit, centered finite difference method. This method is explained in detail in the

original XBR-2D report (Chandra 1990). In an x-y coordinate system, the transient heat equation.

A21T = .• 8 (1)

can be modeled using this method with the centered difference equation

T•.•z~ ~ ia . Ij÷o•(''j - 2Tin, a '"J ""
2+ 'r1 j., - n, + TVMJo,

-io~j* * t( .- 2-I J a&+ A+t+ , (2)

4- -k E = Boundatry Condition

where 41 is the external heat flux at the grid, T j is the temperature of the grid of interest, and TWI, TU-1 ,

T,• TI. are the temperatures of adjacent grids.
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The time step was varied with the explicit method until a converged solution was reached. This

process is illustrated in F•gures 2-4. Figure 2 shows the overall behavior of the first test case with

vadous-sized time steps. Temperature differences with the larger time steps all occur in the very early

region. Figures 3 and 4 focus on the early time behavior where the solutions converge as the step sizva

is reduced. A time step of 0.010 s was chosen for the baseline calculations.

The results of the second test case are shown in Figure 5. For this case the explicit method was

unstable if the time step was large, but, once the step was small enough to maintain stability, the results

remained the same as the time step was reduced ftther. A step size of 0.001 s was chosen for the

baseline calculations of Test Case No. 2.

These baseline solutions were then used to evaluate the accuracy of the implicit finite difference

calculations.

The implicit finite difference method chosen to be evaluated was the alternating-direction implicit

(ADI) method (Anderson, Tannehill, and Pletcher 1984). This method was chosen over standard centered

difference implicit methods because it produces a tridiagonal system of equations. A tridiagonal matrix

requires substantially less computational time to solve than nontridiagonal matrices such as those

developed with standard implicit methods. The key to minimizing the execution time of the implicit

method is the selection of an algorithm to solve the tridiagonal system of equations. Three tridiagonal

matrix solving algorithms were evaluated: the Thomas algorithm (Anderson, Tannehill, and Pletcher

1984), Gauss-Jordan Elimination, and LU Decomposition (Press et al. 1989). The Thomas algorithm,

found to be slightly faster than the other two, was chosen as the solution method. All three algorithms

gave identical numerical results.

Figures 6 and 7 show a comparison between the explicit and implicit solutions for the two test cases.

The figures show a distinct difference in the behavior of the implicit method. Both finite difference

methods were re-examined and appeared to be implemented properly, but the solutions could not be made

to agree. An analytical solution was developed for the second test case. When this solution was

compared to the implicit and explicit results, it became obvious that the implicit method was not properly

solving the problem. The implicit method was, therefore, eliminated as an option.

4
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2.2 Boundar lement Method (BEM). As the name implies, in the BEM approach the governing

diffential qwumons am trusformed into integral identities which ar applied on the boundary. Theme

megrals we then numerically integrated over the boundary, which has been divided into small segmnts

(boundary deeme). The BEM can be applied to complex boundary shapes relatively easily and,

fhzrtdhermoe, since all the approximations are restricted to the boundary, it can model regions having

rapdly chngi variables with considerable accuracy.

Since the problem is solved only on the boundary, and fewer calculations are involved, the BEM

should provide a significant decrease in the execution time over either finite difference method. For the

Poisson equation, (i.e., steady state heat conduction), the BEM formulation is well known and documented

(Becker 1992; Brebbia and Dominguez 1989; Brebbia and Walker 1980). However, when a time

dependency is added to the problem, the formulation becomes much more complex.

An existing steady state heat conduction BEM code, POLINBE (Brebbia and Dominguez 1989), was

chosen for evaluation. This code was written to model problems with geometries similar to the tes cases

used to evaluate the finite difference techniques. When run as a steady state problem, a solution was

obtained practically instantaneously.

Appendix A describes in detail the mathematical formulation of the transient heat conduction BEM.

This formulation was added to the POLINBE code in an attempt to develop a transient BEM solution to

model the test cases. Several problems where encountered in the formulation of the method. The most

important difficulty was the selection of an approximation function. This function is a key element of the

transient heat conduction formulation and further effort is required to determine an appropriate function

for the barrel heating problem.

Tbe BEM is quite complex, and development and implementation of this technique could not be

accomplished during the present program; however, the progress that was made strongly suggests that it

holds great potential. It is believed that this method may be able to provide a substantial decrease in

execution time, while providing an increase in computational accuracy; however, these attributes have yet

to be demonstrated for the barrel heat conduction problem.

8



3. XBR-2D CODE MODIFICATIONS

3.1 Tisme St e . Thest cases described in Section 2 illustrated the difficulties associated
with achieving execution time imprvemets by altering t integration method. The sample cases we

not able to maintain a consistent numerical solution without additional efibot that would have required

great resources than wen available It was decided that the best option at this time was to improve the:

existing explicit finite differnce method's efficiency by modifying ft time step and optimizing ft

FORTRAN codi.

In the original version of the XBR-2D code, t time step (At) was based on the stability criteria:

Ar2
At= a A(3)

6a

For a binel with a chrome plating, Ar was fixed at the plating thickness, otherwise Ar was determined

based on a user-provided At. This time step is then used throughout the ballistic cycle and, in the case

of multiple shots, the dwell period between shots. In cases where thre is a significant dwell period, the

temperature gradients can become quite small and a step as small as dictated by equation 3 is not

necessary to maintani stability.

In a filt attempt to speed up the code, ft time step was increased equally for Ut entire dwell period.

Any significant inrease in the At caused the code to become unstable. To maintain stability, ft time step

modification was then changed to a function dependent upon the maximum radial temperature gradient

in the system. In the dwell region, the step is defined as

At- A l.., CF (4)

where CF is a geometric correction factor which accounts for differences in grid sizes between various

gun calibers, . is defined in equation 3, and (VT,)= is the maximum temperatum gradient in the

barrel. The dwell time step is restricted so that it cannot be smaller than Ut base time step, A;, nor can

it be greater than 100 times the base time step.

9



TIds cano n provides te largest na in stop sie when the heat coduction appmaches a

setdy stame aund will provide th most substantal speed increases in multiple s•t simulations wher the

ent of th dwell period is long compared io the length of the ballistic cycle, as in the ca of artillery.

3.2 Code Outm Many small code optimizations wen also made in most of XBR-2D's

subutine. Then involved replacing fequetly used arly elements (such as T(I+ I)) with local variables

(such as TI), replaing repetitive calculations with a single calcuation, and moving certain calculations

out of loops. These optm izations were moe sipificam in the ubroutme HEATRANS which carries out

the finite difference calculations, and in the subroutines which calculate the boundary conditos. These

modifications, on their own, decreased the execution time of XBR-2D by 15%.

An option that was included in the original XBR-2D was the ability to rm off tf screen updates.

By turning off the screen updates alone, the execution time on a PC decreases by 15%. For the

comparisons done in the next section, the screen update was turned off for both the original XBR-2D runs

and the new runs. All of th runs in the next section were calculated on a 33-Mqz 80486 PC-compatible

computer.

4. CODE EVALUATION

4.1 155-mm Howitzer. A 155-mm howitzer test case for Unicharge was provided by the ARL. Ibis

case simulates the firing of 60 rounds with a 5-s dwell time between each shot. Initially, to speed up the

debugging and testing process, only the first sound was studied. This case involved a single shot followed

by a dwell of5 s. Table I compares the bore surface temperature dse of this single shot case before and

after th code modifications. Table 2 compares th peak bore surfce temperature at ach location. The

values are unchanged for the two simulations. ThMe modifications to the code do not take effect until after

the peak tempermu• has been reached. The new code required less than 20% of the execution time

required by version 1.0 of XBR-2D.

Figure 8 is a graph of Ut probe lemperature for the new and old runs. The two cases are so close

tha any differences are not discernible on the graph.
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TAW 1. CmParimon of Old ad New XLR-2D Surface Temperature Rise for a Sirgle-Sho
155-mm Test Cum CIrmpeTramnes we at the Completon of doe Simulim)

Temperature ris (K) at eat location.
Locatons in inches from do beach end.

Execution
Run lime 10.0 42.3 85.7 129.1 172.5 215.9 259.3 310.8

(5)
Orig 3,6-0 29.90 27.91 22.32 20.73 18.70 15.74 16.81 15.81

New 301 29.75 27.91 22.32 20.72 18.70 15.74 16.81 15.81

Table 2. Comparison of Old and New XBR-2D Peak Surface Temperature Rise for a Single-Shot
155-mm Test Cue

Peak temperature rise (K) at each ocadOL
Locations in inces from the breech end.

Executon
Run Time 10.0 42.3 85.7 129.1 172.5 215.9 259.3 310.8

(s)
Og 3,650 8-3.3 1031.7 847.3 695.0 -563.8 418.1 443.9 357.3

New 705 833.3 1031.7 847.3 695.0 563.8 418.1 443.9 357.3

Table 3 summarizes the results of the full 60-round simulation. Figures 9 and 10 are plots of the

surface temperature rise and the probe temperature rs, respectively. There ame no discernible differences

an the graphs.

Table 3. Comparison of Old and New XBR-2D Surface Temperature Rise for a 60-Shot 155-mm Test
Case CTemperatures we at the Completion of the Simulation)

Temperature rise (K) at each location.
Locations in inches from the breech end.

Eaecution
Run Time 10.0 42.3 85.7 129.1 172.5 215.9 259.3 310.8

(s)

Orig 264,819 373.5 368.0 312.2 275.4 242.3 202.4 213.7 202.0

New 78,144 372.5 367.7 311.3 274.7 241.8 202.0 213.3 201.6

11
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Figure 10. Residual emneratum at 10 in and a prbe deth of 0.05 in for the 60-shot simulxio"

4.2 0-am Tank A tes case modeling a 120-mm tank gun was assembled by Vedtay. A

three-shot bust of M829 tank rounds was modeled with a 10-s dwell time. The peak surface temperatures

are smunmarized in Table 4. Figure 11 shows the surface temperatue rise for the third shot of the burii

The new values were obtained after the code corrections described in Appendix C were implemented.

4.3 76m-=. A test cue modeling a 76-mm Oto Melara gun was assembled by Veritay. This

simulation, summarized in Table 5, included a three-round burst firing with a 1-s dwell time between

showt. In this case, the new XBR-2D simulation was four times faster than the oginal XBR-2D

simulation. Figure 12 compares the msuface temperature history at the 22-in location and includes a

magnified view of the third temperature peak. The pointed shape in the "old-XBR" curve is a result of

plotting only every tenth point The new values were obtained after the code corrections described in

Appendix C were implemented.
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Table 4. Comparison of Old and New XBR-2D Surface Temperaniw Rise for a Sizgle-Sot
120-mm Teat Coe

Surface wemprmr rise (K) at cua iocma
Locatia. ii iMree from the beech M&d.

Run Tun 15 20 25 30 35 40 45 s0
(a)

Orig. 15,939 1,032.8 1,119.1 1,206.8 1,400.6 1,350.7 1,312A 1,305.2 1,294.0

New 1,647 1,031.7 1,119.0 1,208.1 1,0A 6 1,39A 1325.5 1,321.6 1.312.7

1100

1000

900

800

* 700

"I.. 600

• 500

E-. 400

300

200 , n , n , n , ' • • •

20002 20003 20004 20005 20006 20007 20008 20009 20010

Time (ms)

Figure 11. Surface tmnperatures at the 15-in location for the 120-mm mm simulations.
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Table . Comparson of Old and New XBR-2D Surface Temperature Rise for a Single-Shot
76-mm Test Case

Peak surface temperaure rise (K) at each location.
Locatons in inches from the breech end. _ _ _

Run Time 22.0 30.0 40.0 50.0 60.0 70.0
(5)

Orig. 4,452 883.4 865.5 746.5 611.4 510.3 539.8

New 1,158 864.9 871.2 762.6 631.9 525.2 560.4

900 -

800 m

S700 1
. 6 00 3oo_
500 "WO

400
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~. 3000 M 0

1002 3
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Time (me)

Figure 12. Surface temperature history at the 22-in location for the 76-mm mm simulation.
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5. CONCLUSIONS AND RECOMMENDATIONS

The XBR-2D code was modified and execution time was decreased by a factor of 5.2 in the 155-mm

howitzer sample case provided by the ARL. The decrease in execution time was mostly obtained by

modulating the time step during the dwell peuiod between shots. The longer the dwell period relative to

the ballistic cycle, the greater the speed improvement will be. Several programming optimizations

provided additional increases in efficiency and speed.

Techniques for adapting BEMs to gun barrel heating problems were explored. The method was used

for a steady-state heat conduction problem and it appears very promising for both its accuracy and its

speed. The formulation of a transient heat transfer BEM is a very complex process, and the limited scope

of this effort did not allow this work to be completed. The theoretical background was developed to

implement this mathematical technique in solving the 2-D, axisymmetric barrel heating problem; however,

several obstacles remain that prevented its adoption in this program.

The Army may wish to consider funding an additional effort to incorporate this state-of-the-art

numerical method. This effort would include development of approximation functions required to

optimize the BEM technique for the transient barrel heating problem, and permit evaluation of the

technique in terms of computational accuracy and speed. Another item that would improve the accuracy

of the computed results is the inclusion of tempeture-dependent material properties. At present, thermal

diffusivity and thermal conductivity are treated as constant values in the formulation and integration of

the governing equations.
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BAC4ROUIND

'1U boutndary element method (BEM) has rcIved considerable attanton over the pea 15 years, ma

appears to hold much promise for use In solving transient hed conduction poblemns, although certain

difficulties remain to be solved.

The BEM apparently originated a a scheme for numerical computations largely as an extension of

apprximat techniques Involving Green's functions, integral equations, finite element schemes, and

finite difference approaches (Brebbia and Walker 1980). The initial applications of BEM were directed

toward time-I spaia problems, such as steady-state heat flow, potential, and elastostatic

problems. 113 application to time-dependent fields, including transient heating, has required additional

attention to determine effective means of dealing with the tme-dependence feature. Wis actrity is still

on-going.

A number of different BEM formulations have been advanced for treating transient heat conduction

problems. The most successful from the standpoint of accuracy is, according to WObel (1988), the one

which employs time-dependent fundamental solutions*. This approach is a numerical extension of the

classical Green's function method (Morse and Feshbach 1953; Carslaw and Jaeger 1948) for obtaining

analytical solutions to simple, t-actable diffusion problems. Since no method has yet been found to

completely separate the time dependence explicitly from the unknowns in the BEM equations (even when

the time-dependent fundamental solution is used), it is still necessary to use a time marching scheme of

some type to obtain a numerical solution of the BEM equM ons.

Two such time marching schemes have typically been used. In the first, the total time is divided inM

steps with each new step treated as a new problem. Within the inital time step the initial and boundary

conditions can be used to solve the problem for the unknown variables. 1he temperatums at a number

of points within the domain ar calculated and used as initial values for the second time step, together with

the original boundary values, to uive the problem anew for the second time intervaL Tbis process is

repeated step by step until the final time is reached. The solution may become unstable if the time steps

are very small (Becker 1992).

"fl ,mhology "fumdmnmua su-a " r•mng w de gwornindg ptmi diffaumil eqadmu, is a *hoihm obtmaid fr
he haia dam=nA witho ut coada n specific finite bmuduy canditim of th probku.
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In the second marching scheme, the integrations with respect to time always start from the initial

condtions and the effect of the time evolution of heat transferred is determined through boundary

inegrations, so that values of temperature at points within the domain of interest are not required.

However, the solution at any time step is still dependent on the solution at all pievious time Msp (not just

the previous one as in the first marching shme) gintg back to the initial time. ibs process suffes from

requirements for larg amounts of computation time and storage space (Bcker 992).

From a c uatonl standpoin these apach using the time n fundamental solution am

recognized as having significant limitations (Wrobel 1988).

Alternate BEM formulations of the transient heat conduction problems include the use of Laplace

transforms to remove the time dependency, solve the equations, and then apply the inverse Laplace

transform to obtain physical values (Brebbia and Walker 1980, Rizzo and Shippy 1990). Another involves

a coupled boundary element-finite difference (BE-PD) approach in which finite difference time steps are

used (Curran, Lewis, and Cross 1980). Tbis coupled scheme is similar to the first time marching scheme

noted above. A third approach uses a potetal-type method. This is an indirect version of the time-

dependent Green's function method (Curran, Lewis, and Cross 1986). Several other approaches art also

known (Wobel 1988).

In recent years, there has been a trend towards the use of time-independent fundamental solutions

together with an approximate treaument of the time derivative term. Two key references for this approach

include the works of Wrobel, Brebbia, and Nardini (1986), and Wrobel, Telles and Brebbia (1986).

Caims of significant reductions in computation time and storage requirements have been made when using

this approach (Wrobel 1988; Wrobel, Telles, and Brebbia 1986).

Although a mnmber of other BEM formulations were examined, efforts here emphasized this time-

independent fundamental solution approaci. Tbe mathematical formulation of this BEM approach is

summarized in the following section.
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FUNDANIFAL SOfLON" 5W FORMU"A1Ot

U trasiet tea eqpatinlm W We solved fr the amperam disii m u(x) owr te doman 0 is

V2 U (Z.)0 _ (Z , (A-1)

wnere x is a field poim with codines(x, x, x ) In 1 or on i boundary• , and iis a (comsm)

diflbksty coeficlnt.

Boundary conditiom am taken hem to be of the simple form

u(x) - i(x) an F,
q (k) k au (x) an r. (A-2)

where r - r= + r. is ftz compte bounda of , q(x) is the ftu, n(x) is the unit outward normal a

poim x, mad k is the (commit) thermal cmnductivity coefficien These boundary conditiom have been

exftedd to include radiation effects by Deigueiredo mad Brebbla (1988) and Onishi mad Kzuwk (1962).

The initial condition at time t = 0 is of the form

u(X,0o) - u.(x) Oan . (A-3)

Now apply Green's second Identity to a pair of the functiom u and u*, where u* is the fundamntal

soluion to Laplace's equation (not the transient at equation)

kV 2u" (C,x)= - 8' (C,x) , (A-4)

"NU Ima"flM po" in uat REM D Hww inm ,fd w a Vaud •tinte poin t. m wh * iinC (w be

a iunmd & fcwh is wenm w be a fixWd point fe my am caloauk.

23



=ad wher U(.)is the Dimc deha flAdn.i T* fuueuon ui rqxue tohe fiel d ew d byv a

c n~~M e c wit sauce acting at point 1. ThbISgies as a iMsb

PVukV% - kVu'i) d U. uq - qu) dr, (A-S)

where

q ) (C.' ) (A-6)

R ll tdatIn equton A-S, u md q e fo of x, v" ad 4 a cd of and x, nd u de

ntgnrtiom awe carried out with respect to the variable x.

Substituting equation A4 iDo A-5 gives the result

10U*kV lu.D - u' + fu-q - q-u) d" , (A-7)

where u' Is the value of u at the mice point 4. For mny other fixld position of the uit amue i which

miSt be cioasen, ite ouma n values of u* ard q* willbediflent. and a new in l equaion (of

Wimde form) will qy.

The fundmental solution of equation A-4 for an Isoopic teIe'a(3-D) domain is

us , (A-8)4:r

and for a two-dimensional (2-D) domain is

where r is the dimnce from the unit point soure at 4 to my odter point unders
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SquAion A.7 Is valid IAr my fted Point in dig d4m012, bum ID fmnul th problem as a bounuary

ueuique. tdo painm 4 mu be t to di bouundary. Upon amuigfor dii6 nd u for 0 Jumip Of do

WeVgAI to q*, Ut fMowing blegal equation, is obezined (Wrobel. TelIes. and Brebbla 1966):

fut4kV'udQa. - c'u' + f (u-q - q-u) dl (A-10)

where c' is a Amuacon of the old angle &e boundary makes at a poim 4 (see Brebbla and Domlnue

1989, p. 70), uad the integral in if is calculated in fth Ocahy pdnclpl value awe.

In the 2-D cut, for eample, If dhe boundary is smooth at Ue point 4 (I.e., hew is n discontinuity

of dope), Uo vahue of c' Is % rather P a unity when 4 Is an Intror point If a discontinuity of slope

occursat 4then c!- Wx.where 9is the knad mglofdie boundary r at. lbequantity c!applies

to the aontinuous boundary, as well as to U polms wher elements of the boundary join when the

boundary Is divided into a finite number of element. for numerical analysis.

Furith, substituft equation A-I into equa A-10 Sive

k 'd . c'ui + u'qdr - fq'dr (A-12)

where

Equation A-12 is de sitaing poinm for fonu~latons which employ time-independent fundamental

solon. The treatmet of tf trnsient term on ft left hand side of this equaion dIffers m t sdcemes

pro;osed In the liHua (Wrobel, Teles, and Brebbia 1986).

STEADY-STATE SOLUTION PROCEDURE

To lluMstrate ft pmocdure for obtaining a solution t equation A-12 over the boundary, consider fst

the dmple steady-state cae In which - 0. Mbe Integral term on the left-han side of equation A-12

becomes zr and the following equation results:

c • u + fl'dr" a f'u'qdr (A-13)
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Suppose the boundary is 2-D, msmoh and divided into N dlemens by a eries of stright line

sepsonts whom ends le on d boundary curve, mad succesively join ore another to form a closed cirwit

about th boundary. M11 Points at Me middle of each deutM where unknown values (in equation A-13)

an considered arn called 'nodes." Boundary eemen of this type are called "commant" eeme

In this cue of constant elments, die values of u mad q an ssumed to be constant ovm each demm

and equal to die value at the mid-elemnent node. Equation A-13 can be discretized for a given point o"r

before applying any boundary conditions as

1 N N -1

u+E uq~dr fi uodr (-4

where the point "i is one of fhe boundary nodes and rj is the boundary of the "j" elemenL For this type

of elemet (i.e., constant) the boundary is always smoodt, since die node is at the center of the elemen.

Hence c! a

The u and q values can be taken out of the integrals since they are constant over each eemenL They

ae labelled uW and N for each element "j," so equation A-14 becomes

N N1+, ÷2, q" d luJ- X, ( u d l'qJ

or

N + X GOqJ, (A-15)
jul j=l

where

- Iq'dr , Gu• udr . (A-16)

Thes insegrals relate the "i" node where the fundamental solution is acting to any other node "j."

l it is assumed that die position i can also vary from 1 to N, correponding to an application of the

fundamental solution at each node successively, then one obtaims a system of equations resulting from

applying equalion A- to eacu boundary poitL
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•, If s kts

÷ when w-j

jI W+ when i=j
2 (A-17)

Uun equaion A-16 can be written a

N N
E H~u' = 2: GIq. (A-18)

j-1 p=1

Ibis se of equations for the unkowns ui and can be written in matrix form as

H VU =Q Q, (A-19)

when Haand an two N x N matrices, and IL•Q are vector of length N.

Since there are N1 values of u and N2 values of q known on portions r' and r 2 respectively, where

N, + N2 = N, there are only N unknowns in the system of equations A-19. To introduce these known

boundary values into equation A-19, the system must be rearranged by moving columns of IL and C from

one side to the other. When all the unknowns are passed to the left-band side, the system can be written

A X = E (A-20)

where E is a vecor of unknown (u's and q's) boundary values.

Fquation A-20 can be solved, and all the boundary values will then be known. With this Inftnnaon,

my internal value of u or its derivatives can be calculated at any internal point "i" using the conespWing

steady-state form of equation A-7,

ui-rqudr fruqdr. (A-2l)

Here the fundamental solution is considered to be acting on an internl point "I," and all the values of u

and q on the boundary am already known.

The process is then one of numerical integration. The same discretization is used for the boundary
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N N
u 1: G qJq - Z AuJ, (A-22)

jul jul

ad the cweffcaaM O( and AV must be calculated again for each different internal point L

11M DWEDENDENT FORMULAION

To pmoceed with the formulation of time-ndepedent fundamettal solutions using equation A-12, the

so-called Dual Redclty BEM developed by WWb and w-wodme (Wnobel 1988; Wrobel, Tells, and

Drbbia 1986) will be outlined here.

The function 0 at any point inside dte domain fl is approximated by a set of N (c"osen) coordinate

fnc•oms fk(x) multiplied by functions *t), which are unmknowns,

N
tl(Z. 0 = X: fk~x) 00 -t) (A-23)

j-l

Using this appfoximation, t domain ntgrl on the left-hand side of equation A-12 becomes

N
ju l d d=j•l i, E fiud d2 (A-24)

It is furthr assumed that thee exists a function ykx) for each function fkx), where the two funtions

are reI by

V2 ?#j (X). a (X). (A-25)

Substituting equation A-25 into equation A-24 gives

N
j*dQ - IZ ~JV2,#Ju 0d Q (A-26)

htzeducing expression A-26 into equation A-12 yields the result

"*Oubag de aocdm fW= f' will be aiyk adumd iau.
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cu'U + fqudr- fu'qdrl ". 1  u kV2 dL".(

Now applying the Iu mmlon ndicated in equation A-10 to the domain integral gives Me result

N
c'uIfq'd~u~qdr- z 1(c'yV +fq-VJdrj~u-1qJdj.W (A-29)

clulfqsudr- uf q Jul

where

Equation A-28 nvlves boundary integrals only.

Wrobel and co-woke (Wrobel 1988; Wrobel, Tellcs, and Brebbia 1986) found it convenient to

approximate the variation of functions u, q, V, ard 15 witin each boundary element using a unique

(unspecified) ae of interpolation functions , such that

U * OTU

q V .

IWuOTy4

vrJ. uTuj.(A-29)

and

IIJ OTT,

where subscript e denotes a particula boundary elemm

Wrobel (1988) claims that it is not necessary to approximate the functions V and il this way over the

boundary, since they are known once the set of functions 0 are chosen. However, he notes that this

app-xim-ation dramatically reduces the required boundary integrations, with some sacrifice in accuracy.

"ru serioumness of this sacrifice is unknown, but should be explored.

29



Upon divid rt bounmmdary tim elmaM, aMpying die dlscretiz d verion of equation A-28 to each

bomuday noId, and ata le preedifg ap xmatons ino accoum dhe following system of equatimo

(wdum lin mtrix form) .mllua

H U- Q=-.!(uv-o 1•) . (A-30)

By evaluating te disctized verion of equation A-23 at all bounary node, one finds

0=F •,(A-31)

Upon inversion, dua yields the result

a F-'. (A-32)

Subituting expression A-32 into equation A-30 gives the matrix form

CIO+ HU G Q (A-33)

whew
whom -1

IC

In the matrix equation A-33, the vectors U and Q each have the dimension equal to the number N of

boundary nodes, and the matrices C, H and G are of dhe size (i.e., N x N) of standard boundary element

matrices.

Wrobel and co-workers (Wrobel 1988; Wrobel, TeWles, and Brebbia 1986) further utilized a simple,

two-level time integration scheme in their work This involved using a linear approximation for U and

Q within each time step of the form

U W (1 - p)* + OU-*'

Q = (I -P)Q=÷+DQM*l

I "*IU - UM) (A-34)
At

where P (O_ P 1) is a parameter which indicates the values of U and Q between time levels m and

m+ 1.
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Subsituting these appFaximatons into equation A-33 results in te folowing

(71C + -H)Lr Q- PGQ"-(I C -(I-P)HJUu * (I-P)GQQ. (A-35)

The rgit-hand side of equation A-35 is known at time m AL By introducing die boundary conditions at

time (in + 1) At. the left-hand side of equation A-35 can be rearranged, and the system of equ&on can

be solved for this time step.

SELECTION OF COORDINATE FUNCTIONS

T ýi selection of coordinate functions fkx) used to apmximate the time derivative of the 4ependeW

variable u(xt) over the domain Ql is apparently quite importan. Certainly it needs further attention in any

future effort to apply this overall BEM to the barrel heating problem.

Wrobel (1984) conje*ures that the choice of functions, fkx), should correspond to the behavior of the

fundamental solubin itiself. He has apparently had some success in 2- and 3-D problems with Cartesian

coordinates using functiorn of the form

fk(x) - R(x,xJ). (A-36)

Here R represents the Euclidean distance between two points in space, xJ are coordinates of the jth fixed

point, and x are the coordinates of any point in the domain Q. This set of coordinate functions is linearly

independent as long as the fixed points are separate (not coincident). The corresponding functions # and

i• are

VJ(x)-_± R3(x,xJ) (A-37
a

and

'iJ(x)= 3k R2(x,xJ) (A-38)
a 7W
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whe a has the value of 9 or 12 for 2- or 3-D probls, respectvely.

For axisymmetfi poblems WmbeL Tells, and Brebbia (1986) have suggested the usC of coordinate

functions of the form

fJ(x)-RI(xx J)[l-r ,J I(A-39)

where 0 (or r) is die distance frm a fixed point (or any point in the domain Q) to the axis of revoluto

and R' is the Euclidean distance between points defined in the (rz) plane (ie., on the generating pimi

0=B consa). In this cue, the expressions for V ad i are of the form

VJ(x) = •R' 3(x,x J) (A-40)
12

and

J(x)= kR,2(x,xJ) aR(A-41)

Wrobel (1988) also notes the following items:

(1) The functions fV should be linearly independent for the matix F to have an inverse.

(2) Once the family fV is chosen, it is usually easy to determine the functions 'yJ and 0.

(3) The position and number of fixed points is conveniently chosen to coincide with the boundary
nodes.

(4) The inclusion of an internal point associated with f = constant may be required to better simulate
the heating up of the entire body by a constant value.
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APPENDIX B:

CORREMTONS TO XBR-2D CODE
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The= were two mnwjor e'os In the original XBR-2D release that were discovered and pointed out Io

Veitay by Army Research Laboratory (ARL) personel nr the end of this effor. Figure B-I illumes

the results hom several runs with the original code. These curves reprusent the surface temperature rise

at the 42-in location of a 155-amm howitze. The only implicit input differenc between the seven runs

are the locations of the left and right hand computationa boundaries. The resulting temperatures am very

different from each other. It was this finding that caned atention to the errors in coding.

1400

* 1200 .

-5- 1000 *S=...0

600 / 4"--- ,=-

4 00 I ~ -i

/.: --*-..--- U•e-Si
6) ! -- Y- ... npU~-,t
C. 400 /- -- ,,-- 4.-.,U

M 200

0 5 " ' " ' "* ' ' 1 ' I ' ' " ' " ' "
5 6 7 8 9 10 11 12 13 14 15

Time (me)

Figure B-I. Original XBR-2D runs with various comomtational regions.

One of the interpolation functions in the code, which converts the geometric parameters from the input

file's axial positions to that of the individual grid locations, had a mistake in the formulation. The left

side boundary was always assigned the geometric values of the first input value (inside and outside

diameters), no matter where this boundary was located. If the left side boundary was not equal to the first

geometric location in the input file, the wrong geometry was used for that point. This has been corrected

in the new version of the code.

A more significant error present in the original code was the treatment of the thermal boundary layer.

The thickness of the boundary layer was always set to zero at the left hand boundary. This is not correct
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for a leMt side boundary that does not start at the rea of the gu. Tpa erroa results In a mu&h dinoe

trmal boundary layer than is eoireet If te left sde boundMa Is ot at the r of dt gip.

1400

* 1200

* 1000

8600-i -,--•,,-
5. 800

400* 400 / -- " "---.ha~

W 200

0 1 .. . , ....
5 7 8 9 10 11 12 13 14 15

Time (ma)

Figure B-2. Corrcted XBR-2D run with various camoutational reions.

This error was corrected by adding subroutine PZDZIN which calcults ft thlciness of the thennal

boundary layer up to the left side boundary and uses this sman initial condition for the calculations. The

test cases nut in Figure B-1 were repeated after the corrections were made and ar presented in

Figue B-2.

The agreement between the curves is wasonmab considering the wide range of qaial resolutions that

ar represented In the figure. The first curve defined the simulation's 100 grids to represent the entire

barrel, thus focing the axial grid spacing (Az) to be 3.13 in. Conversely, the last simulation pesented

defines dte code's 100 grids over a mere 10 in. making the axial spacing 0.1 in. For simulations

conducted using previoas versions of the XBR-2D code, the results will change slightly if te left

cmpuainl boundary was not set to zero. Simulations with a left boundary at z = 0 should be

essentially unchanged from the previous version of the code.
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IMe S mti -2 X 1)-cD ods imid aon aros In coding ad in theory. Then m- wen

aneaed a h eoled In wninJ 120. The addin of mlie grids in dte aome layer, if th

bi ,ye becomne daik wus do added as a sew him of version 1.20.

FIflrr • BQUATION

The original finite diarence equation In XBR was corect U the geometric factor was couutant
huho 0 thiecloe However, di code, in fing di gridding to the barrel geomery, modified the

grids such that th geometric factor between the first san second gri was dMfeenu from the geometric

factor between die rest of the grids

To cor ret this er'" and to accommodae the modification which allows for multiple grids thuough

it chrome layer, the finite difference equation was modified to allow for a general gridding scheme with
diffem radald grl spacing In either direction. The Ar is computed for each radial position mad it is this

value, not th pometric factor, which is used In it finite diffen equation.

For th Fourier equation of hea conduction in cylindrical coordinates,

63T I BT ,1 8 (A 8 T) I 6T(C)S+ + I. -,( c-1)

Th generalized finite difftence equatio for variable Ar is:

cc( I.+ & 2. ( r.Ar)

+[T. 1 - T 1 J + (ArI ) IJ. + Tu.j ]

r~i (A.Ar) AZji-T1 ] .. T 1. -T 1 +T 4 ]
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e gn a dlk m equation for var*e r at the dcnome-sle, Inrfw is:

( &r.+Ar)]

_(a_ T - a.T--+ 1 -'

W ,, 3. 7r. [a . , . -W , 'rI, & T . J T ,.,, -2 r,, + T ,.,,]

+• M ,.,,+T10,41 [Au,,.T.,,]. (C-3)

Then two equations were implemented in XBR version 1.20 to replace te original finite differenoe
eqatiois.

RADIAL ORIDDING

In the original versions of XBR-2D, the number of radial grids was computed boed on the local

thickness. Tis could resulft in, for certain geometries, dffen numbers of radial grids as the thickness

varied axially. In such a situation, the axial heat condecto calculations were invalid. This was corcted

by computing the number of grids required for the thinnest part of the barel and stretching that number

of grids to fit the thickness at other axial positions.

Two other alternatives were tested: (1) basing the number of grids on the thickest pan of the barrel

and shrinkdig the grids to fit into the thinner parts, and (2) using an average thickness and both shrinkin

and stretching, where approprate, to fit the barrel geometry. Both of these methods caused the grid sizes

to become extremely small in the thinnest section of the barrel when grid shrinking was resolved. This

resulted in a drasdc reduction in the time step and a coespondingly large increase in execution time.

MULTIPLE GRIDS IN THE CHROME LAYER

XBR-2D orginally fixed the thickness of th first grid to the thickness of the chrome layer, if such

a layer was pMes. If the chrome layer becomes thick, or XBR is used to model other types of liners,
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ft clme laMyer must be modeled with more than oe g•ild. XBR was modified so dtha if a chrome layer

Is jaem•i te fAs grld's thickness Is boed on the time step. If the chrome thickmess is greater than this

thidmess, tien dt thickness of the second gid Is computed based on the geometic factor and this process

is continued until the chrome thickness is reached The exact thickness of the chrome Is thn

accompVished by shrinong tde grids to this thickness. The interface between th cdme and seel is

handled by Equatio 2.

THERMAL BOUNDARY LAYER

The thermal boundary layer is calculated using the method described by Stratford and Beavers (S&B)

in 1961. In the translation from the paper to tie code several mistakes were made. The code originally

had the Mach number weighting function, P, defined as:

P. M, [i M 4 (Y -I) M,2];:. (C-4)

After reviewing the S&B method, it was determined that the equation for the Mach number weighting

function should be:

p, M rL•-s . (C-5)I. + -i I)M2

The term e.2 was S&B's correction for axisymmetric flow. The other corrections involved moving

the Mach number inside the brackets and correcting and moving the second term to the denominator of

the expression. This corrected equation now agrees with the method described by S&B in their 1961

paper.

MODIFICATIONS TO THE RESTART OPTION

The original coding of t restart option required the simulation, when restarted, be run with the same

configuration and timing as the original run. This was slightly modified in the new version of the code.

The code now writes the time into the file LASTIEMP.OUT. When the restart option is chosen, the

simulation uses this time as the starting point. This allows simulations of various firing rates to be nrn.
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NEW INPUT FILE FORMAT

Two mo re upu Glaps wea added to the kpa file foir graphical oqupu films, and an addiiona l ine was

added where the barrd and chrome matea propendes must be inpu. F-oUowmg is a simple Wip fil

is Sample XUR-2D input file for & 25-me barrel (750 Shots/min)
is

A mbient Tm 4R), Pr fpsi), gas vel (in/s)
z : -....-.. -... .... :

530.0 14.70 0.00

b Sarrel Gemetry :

; zchrom (in), tuaxr (as), acon, xchsa (in), a:x (in)

S . ...... . . . .

2 .. ... . ... ..

; : . : : . nloc zatart (in), zend (in)

S . ..........

* . . . . . . . 2

0.005 4080.0 0.100 4.60 73.5 20 0.0 10.0

- ndtz, "db (lUdtz) - no of axial locations, ndtz locations (in)

; (max - 0)

; 1 2 3 4 5 6 7 a

7 0.0 4.0 13.0 23.0 43.0 65.0 75.0

db•ar (1:ndta) - barrel o.d. at ndta locations (In)

: 1 2 3 4 5 6 ? 8

2.75 2.75 2.25 2.00 1.90 1.75 1.65

dbor (1:ndta) - barrel i.d. at ndtz locations (in)

* 1 2 3 4 5 6 7 8
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r''r W1W .

1.024 1.024 1.024 1.024 1.024 1.024 1.024

U

* Desired Output LosatLoIst

U abls. seo t (liahts)- no of locatioms for output, nhts locations (in)
t maz4-)

I

: 1 2 3 4 5 S 7 a

* 4.625 4.425 4.425 4.625 7.0 7.0 7.0 7.0

* rout (lanhts) - radial depth at nhtI locations (in)

* 1 2 3 4 5 6 7 a

0.0 0.005 0.025 0.5 0.0 0.005 0.02 .5

; iring Date:

n nrounds, nkountl, nkount2. deltv (a), lastshot
S .......... I : 9

.. ...............
1 2... ...................2 ... 0

1 2 .... ........................ 2 2SI 2 : 2o o e t ~ I OO O e ,e

110 503.00-5 1

* Desired Output Units and Files:

i iunit (0 for K, 1 for deg R)

itemp (0 for as calculated, 1 for temp rise).

: 2 iout (1:9)

............ screen output

t :............. single shot probe temperature.

; : :I ............ single shot inside surface temperature.

;: : : a........... single shot outside surface temperature.

I : a : ..t ........... burst fire probe temperature.
* : : : :............ burst fire Inside surface temperature,

; 2 2 2 2 .......... burst fire outside surface temperature,

: " 2 2 " " ........... heat transfer coefficient.

1 2 2 2 : 2 2 ..... effective gas temperature history

0002020100000

Sg ..... raphical output file
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...... graphical output Mile

Barezl Barrel chrome Chrome

: k a k a

4.5402 0.0156 8.3595 0.03131
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TSTS PERFORME ON XDR-2)D VERSION 120

Teat No. 1: Using saee phatin on a steel barrel, vary the patng thickess and see if the results are

900

700
E' 600

S500

S 400

* 300

' 200
rn 100

0 5 10 15 20 25 30

Time (mu)

Figure C-1. 155-mm howitzer test case with various steel plating thicknesses.
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Tea No. 2: Vy the gomeu famr fom 0.1 to 0.3 and observe die tcmpemnum.

900

S700

E 600

v 500
M

9 400
v

v 300
a

'• 200

rn 100

0 0 I - I , I

0 5 10 15 20 25 30

Time (mg)

Figre C-2. Variation of aeometric factors in a 155-mm howitzer.
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.1r

Figur C-3. Thicknes of fte hnnal boundar laver Dredicted by Stratford and Bmaeu vs. time ad
vositon in a 153-mmn howitzr.
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Tea No,.4: Examin the Mach umnber profil dwn fte bamnL

4pe

Figure C-4. Mach numnber prfles vs tnicmead Dpoudon for the 155-mm howitzer tesmae
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Teo No. 5: Ap.y• a caus lau flux to the bao suthae a rd camupe u rnmmlts to an amltiCal

1800

- 16000 mbs dU

1400

1000

Boo

600

400

200
0 ,

0 5 10 15 20 25 30
Time (ms)

Ftgure C-5. (bonarlson of XBR with a constant heat flux to an analytical solution

A beat flux of 1.000,}00 watts was applied to the surface. The analytical solution was abtained from

the equaio:

2 q"-

T(xA) T, +
k
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