I A

AD-A279 307

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

LY
AY. 17,1934

THESIS

\‘ﬁw.»,___.‘._‘“ T ¢
The Communications Toolbox for MATLAB
and
E0 3513 Laboratory Design
by
Susan A. Guckelberg
March 1994 % O
=5
Thesis Advisor: Randy 1. Borchardt = |
Second Reader: Dan C. Boger = el
=5
Approved for public release; distribution is unlimited :%- 5
== q

T

94 5 17 02g

I i



R ——

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

7

Publix reportng
3 ng the collection of infor
W recion o ntormation. mg." sl ‘m“‘«“"g .nm 'b:r.::':n?o Washington Headauarten Services, Durmontm information Operations and Reports, 1215 jeftenon

for ]
T ahaay. Suite 1304, Akngton. 12024707 and b the Office of Management and Budget. Paperwork Reduction Project (3704-0188), Weshington, DC 2050).

T AGENCY UST ONLY (Leave blank) ]2, REPORT DATE 3. REPORT TYPE AND DATES COVERED
24 March 1994 final

S
4. TITLE AND SUBTITLE

6. AUTHOR(S)

'.'ﬁ»owus oasA'u'ler'éou NAME(S) AND ADORESS(ES) ®. PERFORMING ORGANIZATION
ava chool

| W
11. SUPPLEMENTARY NOTES

'2m&maﬂ1ﬂm&'7y STATEMENT 12b. DISTRIBUTION CODE
A

I'13. ABSTRACT (Maximum 200 words)

i 1 hout per ¢ se, INCIUGing the time 107 reviewing inStructions, searching existing dats sources,
ing burden for thi coliection of Information 1 estimated to average PeT rApON: ng rding :'?“ et imate ot gy othes et

5. FUNDING NUMBERS

The Communications Toolbox for MATLAB and
EO 3513 Laboratory Design

Guckelberg, Susan A.

ostgraduate REPORT NUMBER

Monterey, CA 93943-5000

Y NAME(S) AND ADDRESS(ES 10, SPONSORING / MONITORING
. SPONSORING / MONITORING AGENC (S) (ES) AL

EO 3513, Communications Systems Engineering II: Modulation, is the second of a three-course
sequence for students in the C3, Space Systems Operations, and Information Technology Management
curricula at the Naval Postgraduate School in Monterey, California. This course presents a review of
‘Fourier methods and covers analog and digital communications systems.

The identified need for computer laboratories to support EO 3513 results in the development of a set
of 34 functions collectively called the Communications Toolbox for use with MATLAB. The
Communications Toolbox contains functions that, when linked together, simulate the output of various
communications systems.

Developed in association with the Communications Toolbox are two sets of laboratories: nine
computer-aided laboratories (tutorial in nature), and fourteen programming laboratories.

Laboratory and toolbox development are described and documented, with additional notes on design,
testing, and implementation. The complete laboratory sets, with answer keys, User's Guide, and
computer code for toolbox functions, are provided.

S . e —————— T ———
14. SUBJECT TERMS ) 1S. NUMBER OF PAGES
digital encoding, electronic communications, modulation, 479
quantization, sampling 16. PRICE CODE
L T T . T Ty —T VT T T YTV e e o e e T v Ty VTSV TR
17, SECURITY CLASSIFICATION 8. s:cgmv czussmcmou 19 sefcggmucgsswmnou 20. LIMITATION OF ABSTRACT
REP HiS PAGE
unClaseie unc?gssxﬁecf unaassxged UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prexcribed by ANS! $1d. 239.18
298-102




Approved for public release; distribution is unlimited.

THE COMMUNICATIONS TOOLBOX FOR MATLAB
AND

EO 3513 LABORATORY DESIGN
by
Susan A. Guckelberg

Lieutenant, United States Navy
B.A., Luther College, 1976

Submitted in partial fulfillment of the requirements for
the degree of

MASTER OF SCIENCE IN
INFORMATION TECHNOLOGY M ANAGEMENT
from the

NAVAL POSTGRADUATESCHOOL
March 1994

Guckelberg
ot ﬁﬂ Z.,&r\
EyL.Bomhardt,Thes:sAdvm

DanC.B@ eader

v

David R. Whipple, Chairman, nt of
Systems Managemen

- 14




ABSTRACT

EO 3513, Communications Systems Engineering I Modulation, is the

second of a three-course sequence for students in ithe C3, Space Systems
Operations, and Information Technology Management curricula at the Naval
Postgraduate School in Monterey, California. This course presents a review of
Fourier methods and covers analog and digital communications systems.

The identified need for computer laboratories to support EO 3513 results in
the development of a set of 34 functions collectively called the Communications
Toolbox for use with MATLAB. The Communications Toolbox contains
functions that, when linked together, simulate the output of various
communications systems.

Developed in association with the Communications Toolbox are two sets of
laboratories: nine computer-aided laboratories (tutorial in nature), and fourteen
programming laboratories.

Laboratory and toolbox development are described and documented, with
additional notes on design, testing, and implementation. The complete laboratory
sets, with answer keys, User’s Guide, and computer code for toolbox functions,

are provided.

Aecesston Por

mi‘ﬂbuu
Lvnuabuity Godes

veil and/epr
lut Spec 1.1




TABLE OF CONTENTS

L INTRODUCTION AND BACKGROUND..........coooomsesrssio 1
IL DESIGN NOTES.......coooomrrsmressssssssseesss s S 3
A.  GENERAL LABORATORY CONCEPT.......c.cocomrmmssmmson 3
B. INITIALLABORATORY OBJECTIVES.....oocooomssismerns 4
OL DEVELOPMENT NOTES. ..o S 6
A. APARADIGM SHIFT ..o 7
B. DEVIATION FROM OBJECTIVES ..o 7
IV. IMPLEMENTATION AND TESTING NOTES............ 8
A.  TOOLITTLE, TOO LATE ..o sesssssmsrssnss 8
B. FEEDBACK VIA STUDENT CRITIQUES...... 8
C. INSTRUCTOR PREFERENCES 9
D. INCORPORATION OF FEEDBACK 10
E. INSTRUCTOR-FRIENDLY FORMAT 10
F. REVISED OBJECTIVES AND REFERENCES... 1
V. CONCLUSION 20
LIST OF REFERENCES 21
APPENDIX A (COMPUTER-AIDED LABORATORIES)................. 23
APPENDIX B (COMPUTER-AIDED LABORATORY KEYS)........79
APPENDIX C (PROGRAMMING LABORATORIES)........crcccnr- 213
APPENDIX D (PROGRAMMING LABORATORY KEYS)....c.c.. 285
APPENDIX E (COMMUNICATIONS TOOLBOX FOR
. MATLAB) 407
APPENDIX F (USER’S GUIDE TO THE COMMUNICATIONS
TOOLBOX FOR MATLAB) aa7

iv




APPENDIX G (COMPARISON OF REQUIREMENTS).........ccocsvuunns 471

INITIAL DISTRIBUTION LIST..........rersneenneinssssssssesasssans




This page is intentionally
left blank.

vi




I. INTRODUCTION AND BACKGROUND

EO 3513. Communications Systems Engineering IL Modulation is the
second of a redesigned three-course sequence for the C3, Space Systems
Operations, and Information Technology Management curricula at the Naval
Postgraduate School in Monterey, California. The EO sequence provides
students with the background required to understand and apply basic
telecommunications and computer technology principles in operational
environments.

The content of the previous courses came under review by the C3 Academic
Group as part of a strategy to address the concerns highlighted in the 1992
curriculum review [Moose 93]. Problems addressed by the group included the
lack of “homogenity” in student academic background and a need to extend the
basics of the technological support systems—communications systems,
computers, and sensors—to cover the engineering aspects of C3 systems. (For
example, students should understand why specific systems designs are chosen
and know the limitations of various technologies that may hamper development
of future systems.)

Among the specific actions recommended were the adoption of a new course
matrix in the communications and sensors area and the raising of the required
student Academic Profile Code to reflect the completion of a calculus-based
physics course. The new matrix eliminated MA 1248, Selected Topics for Applied

Mathematics, which introduced Fourier series and Fourier integral transforms.




Instead, these topics, along with complex mathematics and an introduction to
circuits, are taught in the firstcourse of the new EO sequence, EO 2413. EO 3513
follows with a review of Fourier analysis, analog modulation, sampling theorem,
spectral representation of pulse and digital systems, pulse and digital modulations,
baseband coding forms, and frequency- and time-division multiplexing. The final
course of the sequence, EO 3503, includes the effects and measurement of noise
models, channel capacity and antennas, other transmission media, error correction,
the performance of complete systems, and an introduction to communications
security.

The development of this unique course sequence indicated the necessity for
the concurrent development of specialized supporting laboratories. It was the
opinion of the Curriculum Working Group that computer-based laboratories
allowing students to program inputs and analyze outputs would best suit the
objectives of EO 3513. MATLAB, a software package developed by The
MathWorks, Inc., was felt to be the optimal programming environment for these
laboratories.

This document chronicles the development and implementation effort for the
laboratories supporting EO 3513 as initiated by the Curriculum Working Group.
The contents of the Communications Toolbox for use with MATLAB and two

associated laboratory sets are included as appendices.




II. DESIGN NOTES -

A. GENERAL LABORATORY CONCEPT

The predominant concept for a set of laboratories supporting EO 3513 was
that students would be able to work with a set of MATLAB functions (“.m”
files) that would perform modulation, demodulation, radio frequency conversion,
and similar procedures. By linking the functions together, students could
simulate the outputs of communications systems introduced in the classroom. The
collective functions would be known as the Communication Toolbox. This
concept had the additional benefit of reinforcing computer programming skills
and theoretical concepts without requiring proficiency in using laboratory
equipment.

It was proposed that the laboratories be written during the Summer 1993
“development” quarter while a session of EO 2750 (precursor to EO 3513) was
being taught. Laboratories and newly-developed MATLAB function files would
be provided to students each week to support classroom instruction. The
following “clean-up” quarter (Fall 1994), during which EO 3513 would not be
offered, would provide an opportunity to fine-tune the laboratories and
Communications Toolbox before the course was taught again in the Winter 1994
quarter.

Both advantages and disadvantages were present in this proposal. A truly

concentrated effort would be required to generate and test the code needed




during the 11-week quarter. However, feedback would be almostimmediate, and
with a large course enrollment (more than 100 students), functional testing would

be brutally thorough. The development challenge was accepted.

B. INITIAL LABORATORY OBJECTIVES

In June 1993, the following objectives were provided for the laboratory set:

» Laboratory 1 -Fourier Techniques Review
Evaluate the spectrum of a signal using Fourier methods
Evaluate the effect of filters on a signal

Differentiate between time and frequency domain
representations of a signal

« Laboratory 2 -Sampling and Reconstruction
Observe the effect of sampling on spectrum
Observe the effect of aliasing
Oberve the different types of reconstruction
 Laboratory 3 -PAM, PWM, PPM

Observe difference in the time and frequency domain
between the original signal and its pulse representation

« Laboratory 4 -Analog to Digital Conversion and Digital Encoding
Observe the effect of quantization noise ‘
Observe the process of PCM encoding
Calculate the dynamic range of a system

Observe the effect of companding




» Laboratory 5 -AM SSB and AM DSB
Observe the time and frequency domains for both types of
modulation with inputs: (1) smgle tone, (2) two tones, (3)
simulated speech
Calculate the power and bandwidth of the above signals
 Laboratory 6 - Conventional AM
Observe the time and frequency comain for conventional
AM modulation with inputs: (1) single tone, (2) two tones,
(3) simulated speech
Calculate the power and bandwidth of the above signals
* Laboratory 7 - Frequency Modulation and Angle Modulation

Observe the time and frequency domain for both with inputs:
(1) single tone, (2) two tones, (3) simulated speech

Calculate the power and bandwidth of the above signals
« Laboratory 8 - Frequency and Time Division Multiplexing
Observe the processes in the time and frequency domains
Be able to explain in words what each is doing
» Laboratory 9 - RF Digital Modulation: ASK, FSK, DPSK, QPSK
Observe the processes in the time and frequency. domains

Be able to explain in words what each is doing




III. DEVELOPMENT NOTES

An initial set of six of the nine proposed laboratories was developed during
the Summer 1993 quarter. The remaining laboratories were disposed of as

follows:

« Laboratory 1, Foﬁrier Techniques Review, was a topic that the course
instructors felt they could best develop themselves.

« Laboratory 6, Conventional AM, was merged into Laboratory 5, AM SSB
and AM DSB, due to the similarity of the subject matter.

» Laboratory 8, Frequency and Time Division Multiplexing, was dropped.
The topics were such that instructors “wove” them into
their lectures wherever relevant. There appeared to be no
optimal placement for a laboratory on multiplexing.

The majority of development effort during the Summer 1993 quarter was
spent writing code for the functions and ensuring their interoperability. The
primary focus was on functionality rather than performance, partly due to the
lack of leisure time enforced by the schedule—and the knowledge that there
would be plenty of time to improve the functions during the cleanup quarter.

Following lumted testing of the functions by the developer, the associated
laboratory was drafted, then approved by one or more of the instructors. A
narrative format was chosen because it was explanatory rather than cryptic.

Answer keys and sample scripts were not specifically provided until

Laboratory 4. At that time, an appreciation was gained for the amount of time




invested by students in performing calculations and printing plots, in addition to

the primary task of coding the function calls and producing plots.

A. A PARADIGM SHIFT

With the development of Laboratory S came a shift in the laboratory focus.

The developer was requested by instructors to provide a MATLAB script file for

students to run, rather than require students to write any MATLAB code.

Subsequently, Laboratories 5, 7, and 9 were developed with a tutorial aspect

absent in Laboratories 2, 3, and 4.

B.

DEVIATION FROM OBJECTIVES

The initial objectives were altered in the following cases:

 Laboratory 2 used a signal recovery method in the frequency domain
(filtering) rather than in the time domain (reconstruction).

« Laboratories 5 and 7 employed three-tone rather than two-tone signals for
the multi-tone input.

« Laboratories 5 and 7 did not incorporate a simulated speech input.

» Laboratory 7 focused only on frequency modulation. Because of the
similarity of frequency and phase modulation, phase
modulation is not widely covered.

» Laboratory 9 replaced differential phase-shift keying (DPSK) with binary
phase shift keying (BPSK) as one of four digital modulation
methods explored.




IV. IMPLEMENTATION AND TESTING NOTES

A. TOO LITTLE, TOO LATE

The attempt at simultaneous laboratory development and implementation
proved in the end to be unresponsive to the pulse of the classroom. Ideally, a
student is given a laboratory handout at the time its topic is introduced in the
classroom. The instructor will have had the opportunity to review the laboratory
content before finalizing lecture notes, so that lecture and laboratory reinforce
one another. The ambitious development schedule for the weekly laboratories
was simply too tight to allow adequate review by instructors prior to distribution
to students.

Laboratories 7 and 9 were each completed on schedule, but a few days too
late to do little more than increase student/instructor workload as the classroom
lecture pace quickened towards the end of the quarter. Therefore only

Laboratories 2, 3, 4, and 5 were assigned to students.

B. FEEDBACK VIA STUDENT CRITIQUES

A feedback sheet was attached to each laboratory handout. Approximately
120 students were enrolled in five sections of EO 2750 during the Summer 1993

quarter. While it is not known exactly how many laboratories were assigned and




_—.—_ﬁ

with what direction, approximately 129 student feedback forms were returned to
the developer. While this number provided ample student feedback, the feedback
tended to focus on problems created by the large enrollment: overcrowding of
the laboratories, competition for printers, corruption 6f files, and other trying
circumstances.

Discounting specific problems with Toolbox functions and computer facility

resources, feedback generally fell into one of five areas:

+ “Teach me EO, not MATLAB!” (Emphasize analysis, not programming.)

« The laboratories require too much memory to run on the average personal
computer.

« The laboratories take too much time to complete.

* Questions on the laboratories are too vague.

« There is no opportunity to vary the input parameters and see the effects on
the signals.

C. INSTRUCTOR PREFERENCES

It became apparent rather quickly that philosophies among the three
instructors regarding use of the laboratories differed widely. Laboratories were
assigned in full, in part, or not at all. They were assigned to individuals or to
groups. In one case, a set of graphs was produced and duplicated for others to
use, so that computer time was avoided altogether.

Nonetheless, the developer remained determined to produce a laboratory set

that would simultaneously satisfy several instructors’ needs.




D.

INCORPORATION OF FEEDBACK

While the programming-type laboratories were abandoned fairly early during

the development quarter, their value as a learning vehicle was never questioned.

The developer chose to promote the harmonious existence of two independent,

related sets of laboratories: “computer-aided” laboratories that require no

programming whatsoever, and “programming” laboratories, smaller in scope,

with clearly defined procedures designed not to frustrate students.

Other changes stimulated by student feedback include the following:

« Laboratories are considerably shortened (sometimes by dividing into
smaller separate laboratories).

o Laboratory 1, Signal and Spectrum Generation, assumes no prior
experience with MATLAB.

« To better manage memory, all scripts to be run by students were developed
on a platform with just 4 megabytes of memory installed.
Programming laboratories include instructions to help
manage memory.

« The wording of all questions is clarified significantly, with all necessary
formulas provided in the laboratory handout.

 Plots are kept to a minimumby overlaying signals whenever possible.
Gratuitous labeling of plots is avoided.

« In programming laboratories, MATLAB coding requirements appear in bold
type and are preceded either by the words “M-file” or
“Plot.”

INSTRUCTOR-FRIENDLY FORMAT

When an assignment is difficult to correct, its return to students is invariably

delayed. Instructor needs are taken into account in the following ways:

« Recognizing that instructors may ignore certain topics in favor of
emphasizing others, a modular structure is adopted. For

10




example, Computer-aided Laboratories 5-8, which deal with
single- and multi-tone input, delay the treatment of multi-
tone input so that it can be easily eliminated from the
assignment. In Computer-aided Laboratory 9, each RF digital
modulation section can be run independently.

*» Questions and plots are numbered so that instructors can easily choose
from among them.

« Answer keys contain (1) a complete set of questions and answers, (2) a
complete set of labeled plots, and (3) MATLAB code for
either the “scr.m” tutorial script file or the “ex.m”
programming example file.

» The coding information provided in the computer-aided laboratory set is
sufficient to allow students to switch to programming
laboratories at any time.

» Although numbering between the two laboratory sets is consistent, the
computer-aided and programming laboratories are different
enough to preclude substitution of the tutorial scripts for

programming assignments.

» Since laboratories vary quite a bit in length, a summary of comparative
requirements is provided in Appendix G. Credit for each

laboratory might be assigned on a strict percentage basis.

. REVISED OBJECTIVES AND REFERENCES

While Stanley [Stanley 82] provides the majority of formulas and

techniques, other sources are consulted. Objectives and references for each
laboratory are summarized below.

1. Computer-aided Laboratories

» Computer-aided Laboratory 1 - Signal and Spectrum Generation

Observe single- and multi-tone signal generation,
understanding the role of time and signal vectors
[MathWorks 92, p. 164] and the use of plotting commands
[MathWorks 92, Chapter 14].

11




Observe single- and multi-tone one-sided signal spectra,
understanding function calls [MathWorks 92, Chapter 16].
Relate spectral characteristics to signal characteristics
[Stanley 82, Chapter 2-3].

« Computer-aided Laboratory 2 - Sampling and Recovery

Observe the effects of impulse, flattop, and natural sampling
on the spectrum. Calculate sampling periods, bandwidths,
and pulse durations. Label spectral components and
calculate their amplitudes. Calculate and label the first zero
crossings [Stanley 82, Chapters 6-1 and 6-2).

Observe message signal recovery via use of a lowpass filter
[Stanley 82, p. 98].

Observe the effects of aliasing on the spectrum and signal
recovery [Stanley 82, p. 267].

Observe the effect on the spectrum of varying the duty
cycle.

» Computer-aided Laboratory 3 - Pulse Modulation (PAM, PWM, PPM)

Observe the differences in the time domain for the three
types of modulation. Calculate the sampling period and pulse
duration for PAM. Calculate the maximum pulse duration for
PWM. Calculate the maximum pulse offset for PPM [Stanley
82, Chapters 6-3 and 6-5].

Observe the differences in the frequency domain for the
three types of modulation. Label the sampling frequencies
and calculate approximate baseband bandwidths.

» Computer-aided Laboratory 4 - Analog-to-Digital Conversion and
Digital Encoding

Observe the quantization process and the effect of
quantization noise. Calculate dynamic range, actual step size,
actual resolution, percentage resolution, and number of levels
[Stanley 82, Chapters 7-1 and 7-2).

Observe the process of pulse code modulation (PCM)
encoding. Label bit values for non-return-to-zero level
(NRZL) unipolar, return-to-zero level (RZL) unipolar, and
Manchester coded signals [Stanley 82, Chapter 7-4).

12




Observe the spectrum of each and calculate approximate
baseband bandwidths.

Observe the effect of companding on the quantization
process [Stanley 82, Chapter 7-3], via use of a u-255
compander [Schweber 91].

» Computer-aided Laboratory 5 - Amplitude Modulation Double
Sideband (AM DSB

Observe the AM DSB process using a single-tone input.
Calculating peak and average power and baseband and
transmission bandwidths. Observing coherent detection
[Stanley 82, Chapters 4-2, 4-4, 4-7, and 4-8].

Observe the AM DSB process using a multi-tone input.
Calculate baseband and transmission bandwidths, and
observe coherent detection.

o Computer-aided Laboratory 6 - Amplitude Modulation Single
Sideband (AM SSB)

Observe the AM SSB process [Couch 93] using a single-
tone input. Calculate peak and average power and baseband
and transmission bandwidths. Observe coherent detection
[Stanley 82, Chapters 4-3, 4-4, 4-7, and 4-8].

Observe the AM SSB process using a multi-tone input.
Calculating baseband and transmission bandwidths. Observe
coherent detection.

» Computer-aided Laboratory 7 - Conventional Amplitude Modulation
(Conventional AM)

Observe the conventional AM process using a single-tone

input. Calculate peak and average power and baseband and

transmission bandwidths [Stanley 82, Chapters 4-5 through

3-28]. (giagiarve envelope detection [Brown 92] [MathWorks
. P- .

Qbs:lrve the effect of overmodulating the conventional AM
signal.

Observe the conventional AM process using a multi-tone

input. Calculate baseband and transmission bandwidths.
Observe envelope detection.

13




« Computer-aided Laboratory 8 - Frequency Modulation (FM)

Observe the FM modulation process [Haykin 83] for single-
tone input. Calculate peak and average power and baseband
and transmission bandwidths (using Carson’s rule). Observe
control of the FM bandwidth by varying B [Stanley 82,
Chapters 5-1 through 5-4]. Calculate and label Af. Determine
distance between the sidebands in the spectrum.

Observe the FM modulation process for multi-tone input.
Calculate peak and average power and baseband and
transmission bandwidths (using Carson’s rule). Observe
control of the FM bandwidth by varying Af.

« Computer-aided Laboratory 9 - Radio Frequency Digital Modulation
Methods (ASK, FSK, BPSK, QPSK)

Observe the process of amplitude shift keying (ASK) and
coherent detection. Calculate bit duration and baseband
bandwidth. Label bit values and carrier frequency [Stanley

82, Chapter 7-6]. '

Observe the process of frequency shift keying (FSK) and
coherent detection. Calculate bit duration and baseband
bandwidth. Lab.l bit values and carrier frequency [Stanley
82, Chapter 7-6].

Observe the process of binary phase shift keying (BPSK)
and coherent detection. Calculate bit duration and baseband
bandwidth. Label bit va'ues and carrier frequency [Stanley
82, Chapter 7-6].

Observe the process of quadriphase shift keying (QPSK)and
coherent detection. Calculate bit duration and baseband
bandwidth. Label bit values and carrier frequency [Stanley
82, Chapter 7-8].
2. Programming Laboratories
» Programming Laboratory 1 - Signal and Spectrum Generation

Produce and plot single- and multi-tone signals, controlling
signal plots [MathWorks 92, p. 164 and Chapter 14].

14




Produce and plot spectra, using function calls [MathWorks
92, Ch. 16]. Relate spectral characteristics to signal
characteristics [Stanley 82, Chapter 2-3].

« Programming Laboratory 2A - Natural Sampling and Recovery

Generate a naturally-sampled signal and its spectrum.
Calculate the sampling period, bandwidth, and pulse
duration. Label spectral components and calculate their
amplitudes [Stanley 82, Chapter 6-1].

Recover the message signal via use of a lowpass filter
[Stanley 82, p. 98].

Generate an undersampled signal to observe the effects of
;l6iasing on the spectrum and signal recovery [Stanley 82, p.
7].

Vary the duty cycle of the sampled signal to observe the
effect on the spectrum. Calculate and label the first zero
crossing.

* Programming Laboratory 2B - Flattop Sampling and Recovery

Generate a flattop-sampled signal and its spectrum. Calculate
the sampling period, bandwidth, and pulse duration. Label
spectral components and calculate their amplitudes [Stanley
82, Chapter 6-1].

Recover the message signal via use of a lowpass filter
[Stanley 82, p. 98].

Generate an undersampled signal to observe the effects of
;l6iasing on the spectrum and signal recovery [Stanley 82, p.
71.

Vary the duty cycle of the sampled signal to observe the
effect on the spectrum. Calculate and label the first zero
crossing.

» Programming Laboratory 2C - Impulse Sampling and Recovery
Generate an impulse-sampled signal and its spectrum.

Calculate the sampling period and bandwidth. Label spectral
components [Stanley 82, Chapter 6-2].

15




Recover the message signal via use of a lowpass filter
[Stanley 82, p. 98].

Generate an undersampled signal to observe the effects of
aléasing on the spectrum and signal recovery [Stanley 82, p.
267).

* Programming Laboratory 3A - Pulse Modulation (PAM and PWM)

Generate PAM and PWM signals to observe the differences
in the time domain for the two types of modulation.
Calculate the sampling period and pulse duration for PAM,
and maximum pulse duration for PWM [Stanley 82,
Chapters 6-3 and 6-5).

Generate the spectra of the PAM and PWM signals to
observe the differences in the frequency domain for the two
types of modulation. Label sampling frequencies and spectral
components. Calculate baseband bandwidths.

* Programming Laboratory 3B - Pulse Modulation (PAM and PPM)

Generate PAM and PPM signals to observe the differences in
the time domain for the two types of modulation. Calculate
the sampling period and pulse duration for PAM, and
maxiénum pulse offset for PWM ([Stanley 82, Chapters 6-3
and 6-5].

Generate the spectra of the PAM and PPM signals to
observe the differences in the frequency domain for the two
types of modulation. Label sampling frequencies and spectral
components. Calculate baseband bandwidths.

¢ Programming Laboratory 4A - Analog-to-Digital Conversion
(Quantization)

Produce and evaluate the characteristic for two analog-to-
digital converters. Calculate dynamic range, actual step size,
actual resolution, percentage resolution, and number of levels
[Stanley 82, Chapters 7-1 and 7-2].

Sample and quantize a signal using each of the converters.

Measure the quantization noise and compare the noise in the
two systems.

16




« Programming Laboratory 4B - Pulse Code Modulation (PCM)

Quantize a signal and generate a bitstream for (PCM)
encoding.

Generate the digital signal and spectrum for NRZL unipolar,
RZL unipolar, and Manchester coded signals [Stanley 82,
Chapter 7-4). Predict and calculate approximate baseband
bandwidths.

 Programming Laboratory 4C - Companding

Generate a specified message signal and compress it using a
H-255 compander [Schweber 91]. Understand the purpose of
companding[Stanley 82, Chapter 7-3].

Vary the sampling rate and value of p to reduce quantization
noise in a 2-bit unipolar A/D system.

» Programming Laboratory 5 - Amplitude Modulation Double Sideband
(AM DSB)

Generate single- and multi-tone signals and spectra.
Calculate peak and average power and baseband bandwidth
for the single-tone signal.

Generate AM DSB signals and spectra. Calculate peak and
average power for the single-tone AM DSB signal [Stanley
82, Chapters 4-2, 4-7, and 4-8). Calculate transmission
bandwidth for both signals.

Coherently detect the AM DSB signals [Stanley 82,
Chapter 4-4].

 Programming Laboratory 6 - Amplitude Modulation Single Sideband
(AM SSB)

Generate single- and multi-tone signals and spectra.
Calculate peak and average power and baseband bandwidth
for the single-tone signal.

Generate AM SSB signals and spectra [Couch 93].
Calculate peak and average power for the single-tone AM
SSB signals [Stanley 82, Chapters 4-3, 4-7, and 4-8].
Calculate transmission bandwidth for both signals.

17




Coherently detect the AM SSB signals [Stanley 82,
Chapter 4-4).

» Programming Laboratory 7 - Conventional Amplitude Modulation
(Conventional AM) ,

Generate single- and multi-tone signals and spectra.
Calculate peak and average power and baseband bandwidth
for the single-tone signal.

Generate conventional AM signals and spectra. Calculate
peak and average power for the single-tone conventional
AM signal [Stanley 82, Chapters 4-5 through 4-8].
Calculate transmission bandwidth for both signals. Perform
an envelope detection on each signal [Brown 93]
[MathWorks 92, p. 310].

Overmodulate the single-tone conventional AM signal and
observe the result.

 Programming Laboratory 8 - Frequency Modulation (FM)

Generate single- and multi-tone signals and spectra.
Calculate peak and average power and baseband bandwidth
for the single-tone signal.

Frequency-modulate the signals [Haykin 83], using B = 10.
Calculate peak and average power and transmission
bandwidth (using Carson’s rule) for the single-tone signal
[Stanley 82, Chapters 5-1 through 5-4). Calculate and label
Af. Determine distance between the sidebands in the
spectrum.

Control bandwidth of the FM signal by varying B , then by
varying Af.

» Programming Laboratory 9 - Radio Frequency Digital Modulation
Methods (ASK, FSK, BPSK, QPSK)

Generate the NRZL unipolar digital message signal and
spectrum, using a random bitstream. Label bit values in the
signal. Calculate baseband bandwidth. Generate the
amplitude shift keyed (ASK)signal and spectrum. Label bit
values and carrier frequency [Stanley 82, Chapter 7-6}.

18




Generate the frequency shift keyed (FSK) signal and
spectrum. Label bit values and carrier frequencies [Stanley
82, Chapter 7-6].

Generate the NRZL bipolar digital message signal and
spectrum, using a random bitstream. Label bit values in the
signal. Calculate baseband bandwidth. Generate the binary
phase shift keyed (BPSK) signal and spectrum. Label bit
values and carrier frequency [Stanley 82, Chapter 7-6].

Split the signal into odd and even parallel signals. Generate
the quadriphase shift keyed (QPSK) signal and spectrum.
Label bit values and carrier frequency [Stanley 82, Chapter
7-8].

19




V. CONCLUSION

The success of this laboratory development effort cannot currently be
measured due to the fact that only about 70% of the initial laboratories have
been evaluted in a classroom setting. This figure translates to only 40% of the
final laboratory sets.

But in other ways, th= development effort can be considered successful. It is
a walking advertisement for rapid prototyping—the difficulties inherent with
“build as you go” resulted in a product much closer to the users’ needs than
they themselves initially envisioned. Given the adaptive nature of rapid
prototyping, the process was no more chaotic than could be expected. It must be
noted, however, that the rapid prototyping applied essentially to the laboratory
contents and not to the Communications Toolbox functions. It would have been
advantageous if development of the Communications Toolbox had been
completed prior to the quarter in which the laboratories were developed.

So while the development effort can be considered successful, an evaluation
of the total success of this project is premature. In fact, it may be ripe for
judgement only after graduates have completed follow-on tours. For the
immediate future, however, the developer is confident that the product is

responsive to the needs of the users.

20




REFERENCES

[Brown 93] Department of Electrical and Computer Engineering, Naval
Postgraduate School Technical Report no. NPSEC-93-017, SPC Toolbox,
by LT Dennis W. Brown and Monique P. Fargues, p. 55, 15 October 1993.

[Couch 93]} Couch, Leon W, II, Digital and Analog Communication
Systems, Macmillan Publishing Company, 1993, p. 314.
[Haykin 83] Haykin, Simon, Communication Systems, Second Edition,

John Wiley & Sons Inc., 1983, p. 190.

[(MathWorks 92] The MathWorks, Inc., The Student Edition of MATLAB for
Macinto.zh Computers, Prentice-Hall, Inc., 1992, Chapters 14, 16, and 19,
and Part 4.

[Moose 93] Moose, Paul (Chairman, C3 Academic Group, Naval
Postgraduate School) memorandum, Subject: Final Report of the C3
Futures Committee, 3 Feb 93.

[Schweber 91] Schweber, William, Electronic Communications Systems, A
Complete Course, Prentice-Hall, Inc., 1991, p. 342.

[Stanley 82] Stanley, William D., Electronic Communications Systems,
Prentice-Hall, Inc., 1982, Chapters 2, 3, 4, 5, 6, and 7.

21




This page is intentionally
left blank.

22




m

APPENDIX A—COMPUTER-AIDED LABORATORIES

Name:
Section:

EO 3513 Computer-aided Laboratory 1
Signal and Spectrum Generation

This laboratory introduces the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

While the laboratories in this set require you only to run MATLAB script files, you
will want to be familiar with some basic plotting and printing commands, and understand
the mechanics of script writing and function calls.

The m-file for this laboratory is “lablscr.m.”. It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe signal generation

A. Establishing the time vector

Since signals are functions of time, a time vector must be established prior to
generating a signal. Below is the time vector “t1” that is one second in duration and has a
“step size” of one-thousandth of a second. The variable name “delta_t” (At) is usually
assigned to the step size throughout this series of laboratories. The time vector consists of
1,001 values, or points, starting at 0 and ending at 1.
t1=0:0.001:1; %time vector
B. Generating a signal

The single-tone periodic signal s1, generated using the formula below, has a
frequency of 10 Hz:

sl=cos(2*pi*10*t1); %single-tone signal

A multi-tone signal can be generated by adding sinusoids together. The signal s2
contains frequencies of 20,35, and 50 Hz:

82=10%*cos(2*pi*20*t1)+4*cos(2*pi*35*t1)+6*cos(2*pi*50*t1); %multi-tone signal

Computer-aided Laboratory 1—page 1

23




In future laboratories you will use the maximum amplitude of a signal in order to
calculate its power in the time domain. The signal “s2” has a maximum amplitude of 20 (in
this case, conveniently found by adding the maximum amplitudes of its three cosines). If
not easily determined from the formula or the signal plot, use the “max” command in
MATLARB to find the approximate maximum signal amplitude:

max_of_s=max(s); %maximum amplitude in the signal s

The “plot”, "title”, “xlabel”, and “ylabel” commands, used as shown below,
produce clearly labeled graphs of the signals:

ylabel(‘Amplitude’)
Run the script “lablscr.m.”

Plot 1: Observe the single-tone signal sl plotted against the time
vector tl.

Plot 2: Olbserve the muiti-tone signal s2 plotted against the time vector
tl.

C. Controlling signal plots
Signals s1 and s2 are lower-frequency signals than will commonly be used in these
laboratories. The vectors t2, s3, and s4 below are representative of the time and signals
vectors that you will be observing.
2=0:0.0001:1; %time vector of 10,001 points
§3=5*sin(2*pi*200*t2); %single-tone signal
s4=10%cos(2*pi*130*12)+5*cos(2*pi*335*12)+cos(2*pi*400*t2); %multi-tone signal
Using higher frequencies makes signal characteristics hard to distinguish when the
i% signal vector is plotted. Described below are two methods of limiting plot size to
points.

(1) Restrict the nusuber of points plotted. This method bas an advantage in that
the two vectors need not be the same length:

plot(t2(1:1000),s3(1:1000))
(3] Use the “axis” command to freeze the axes at minimum and maximum

values of time, amplitude, etc, (as opposed to numbers of points). Following use of the
axis freeze, the axis must be released by typing the command “axis”.

Computer-aided Laboratory 1-—page 2

24




One slgnal will frequently be plotted over another in order to compare signals (a
recovered signal and its message signal, for example). Three methods are described below.

(1) Listing pairs of x and y arguments for the “plot” command:
plot(t2(1:500),s3(1:500),t2(1:500),54(1:500)) %plot s4 over s3

(2) Using the “hold on” and “hold off” commands, sometimes combined with
“pause™
glot(a,sA) %plot signal with larger amplitude first
old on
pause(3) %wait 3 seconds
plot(t2,s3, ’g’) %plot in green
hold off
(3) Creating a signal matrix to plot against a single time vector:
plot(t2(1:1000),[s3(1:1000);s4(1:1000)])

Other commands that affect plotting of results that you may see in the scripts include
the following:

“Subplot” permits up to four plots per graphics window.

“Pause” with no argument delays program execution until the user presses return
(preventing graphs from whizzing by unobserved)

“Clg” between sets of plots prevents plots from being superimposed.
Press return to continue.

Plot 3: Observe s4; press return; and observe s3 plotted over it. These
signals are restricted to 500 points.

D. Printing plots
On PC platforms, the command “meta” creates a graphics file. “Prtsc” dumps the
current graph window to a printer. “Print” sends a high-resolution copy to the printer. (The
ility to use these commands may vary according to machine and software
configuration.) You may need to edit the script file in order to print a plot.
For Macintosh platforms, choose “print” from the “file” menu to print the active

graph window, or use the “save as” command in the “file” menu to create a Quick-Draw
graphics file.

Computer-aided Laboratory 1—page 3

25




Part 2—Observe spectrum generation

A. Calling a function

The Communications Toolbox contains the function “spectral,” with the following
function call:
[specsig,Hz, fitsigl=spectral(s,delta_t); %function call to spectral.m

“Spectral” produces a one-sided spectrum. A two-sided spectrum with relatively-
correct amplitudes could also be generated, using the following command:

two_sided_spec=fftshift(abs(fftsig)); %plot against the time vector

The step size and number of points in the time vector relate directly to (1) the number
of frequencies observed in the , and (2) the resolution of the spectrum. The above
vector of 1,001 points with At=0.001 produces a one-sided spectrum of 500 Hz—half the
number of points—with a resolution of approximately 1 Hz.

Vector lengths for spectral plots are usually not reduced in order to see as many of the
spectral components as possible.

Press return to continue.
Plot 4: Observe the spectrum for sl.

Label the Hz value and the amplitude of the spectral
component.

Press return to continue,
Plot §: Observe the spectrum for s2.

Labe] the Hz values and the amplitudes of the spectral
components.

Plot 6: Observe the spectrum for s4.

Labe] the Hz values and the amplitudes of the spectral
components.

Question 1: Compare Plots 5§ and 6. Why does Plot 6 display more
frequencies than Plot 5?

Question 2: Given the spectral plot of a multi-tone signal, how could you
detem;ne the amplitudes and frequencies of each of the signal
tones

Computer-aided Laboratory 1—page 4

26




Name:
Section:

EO 3513 Computer-aided Laboratory 2
Sampling and Recovery

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab2scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the effects of sampling on the spectrum

A. Generating the signal
You will be observing three types of sampling on the following message signal:

t=0:.0001:1; %time vector
s=cos(2*pi*120*t)+cos(2*pi*300*t)+cos(2*pi*450*t); %multi-tone signal

Run the script “lab2scr.m.”
Plot 1: Observe the signal s plotted against the time vector t.
B. Sampling the signal

Signals are sampled by calling the functions “natsamp.m,” “impsamp.m,” and
“flattop.m.” Since 450 Hz is the highest frequency in the message signal, the sampling rate
of 1000 Hz adequately prevents aliasing.

The naturally-sampled signal is produced by multiplying a pulse train and the
message signal.

Press return to continue.

Plot 1: Observe the pulse train, at a rate of 1000 Hz and duty cycle of
0.5, plotted over the message signal.

Computer-aided Laboratory 2—page 1

27




Plot 2: Observe the naturally-sampled signal, at a sampling rate of
1000 Hz and duty cycle of 0.5.

The impulse-sampled signal is produced by multiplying an impulse train and the

Press return to continue.

Plot 3: Observe the impulse train, at a sampling rate of 1000 Hz,
plotted over the message signal.

Plot 4: ?ﬁ"ﬁz the impulse-sampled signal, at a sampling rate of

The flattop-sampled signal is produced by convolving the impulse train with a single
flattop pulse.

Press return to continue.

Plot §: Observe the flattop-sampled signal, at a sampling rate of 1000
Hz and duty cycle of 0.5.

Question 1: Calculate the followin values, in seconds, for the naturally-
and flattop-sampled :

sampling period T
pulse duration ¢

Question 2: l}escrlibe the distinguishing pulse shape of each sampled
signal:

naturally-sampled

flattop-sampled

impulse-sampled
C. Generating the spectrum

The one-sided spectrum of each sampled signal is produced using the function
“spectral.m.”

Press return to continue.

Plot 6: Observe the spectrum of the message signal.
Label the Hz value of each of the baseband signal frequencies.

Computer-aided Laboratory 2—page 2

28




Plot 7:

Observe the spectrum of the naturally-sampled signal.

Label the following groups of frequencies in the spectrum:
baseband signal frequencies .
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

Label the first zero crossing (1/).

Press return to continue.

Plot 8:

Plot 9:

Observe the spectrum of the impulse-sampled signal.

Label the following groups of frequencies in the spectrum:
baseband signal frequencies
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

Observe the spectrum of the flattop-sampled signal.

Label the following groups of frequencies in the spectrum:
baseband signal frequencies
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

Label the first zero crossing (1/7).

Question 3: Describe the overall shape of each spectrum. Does each of the

spectral plots conform to your theoretical expectations? Note
any discrepancies.

The amplitude spectrum of a naturally-sampled signal can be determined using the

formula

where

()= T RX(E-NE)
N=0

- dsin(Nrd)

P
N Nd

and d is the duty cycle and N indicates the number of the harmonic.

Computer-aided Laboratory 2—page 3

29




Question 4: Caliculate P, for N=1, N=2,and N = 3.

Compare with the values shown on the spectral plot for natural
sampling.

formul?c amplitude spectrum of a flattop-sampled signal can be determined using the

X,(0)= 3 RX(E-Ng,)
N=0

where
- dsin(Nzf)

By Nef

:_Il: d is the duty cycle, < is the pulse duration in seconds, and f indicates the frequency in

Question 5: Calculate P, for f = 550, f = 700, and f = 880.

Compare with the values shown on the spectral plot for flattop
sampling.

Part 2—Observe the message signal recovery

Signals are recovered using the function “recovers.m.”

A. Recovering the message signal

An ideal lowpass filter at 500 Hz retains the baseband frequencies while filtering out
the frequencies produced by sampling. Recovery of the message signal will be shown
using the naturally-sampled signal. In this “perfect” system, you will observe a nearly
perfect recovery.

Press return to continue.

Plot 10: Observe the recovered signal plotted over the message signal.

Computer-aided Laboratory 2—page 4

30




Part 3—Observe the effects of aliasing on the spectrum and recovery

A. Generating undersampled signals

An undersampled signal is sampled less than twice the highest signal frequency,
producing an effect known as “aliasing.” Undersampling will be demonstrated using
natural sampling at a rate of 600 Hz.

Question 6: What is the minimum theoretical sampling frequency for the
message signal s?

Press return to continue.
Plot 11: Observe the undersampled (naturally-sampled) signal.

Plot 12: Observe the undersampled (naturally-sampled) signal
spectrum.

Press return to continue.

Plot 13: Observe the recovered undersampled (naturally-sampled) signal
plotted over the message signal.

Label the recovered signal.
Question 7: Compare the undersampled signal spectrum in plot 12 to its

counterpart in plot 7. What is the effect of undersampling on
the spectrum? What is the effect of undersampling on the

signal recovery?

 Part 4—Observe the effect on the spectrum of varying the duty cycle

A. Generating the sampled signal

. The flattop-sampled signal is used to demonstrate the effects of varying the duty
cycle.

Press return to continue.

Plot 14: Observe the flattop-sampled signal, sampled at 1000 Hz with a
duty cycle of 0.7.

Computer-aided Labor~tory 2—page 5

31




Plot 15: Observe the flattop-sampled signal spectrum, sampled at 1000
Hz with a duty cycle of 0.7.

Label the Hz value at the first zero crossing (1/x).
Press return to continue. ’

Plot 16: Observe the flattop-sampled signal, sampled at 1000 Hz with a
duty cycle of 0.3.

Plot 17: Observe the flattop-sampled signal spectrum, sampled at 1000
Hz with a duty cycle of 0.3.

Label the Hz value at the first zero crossing (1/x).

Question 8: What is the effect of reducing the duty cycle on the sampled
signal baseband bandwidth?

Computer-aided Laboratory 2—page 6

32




Name:
Section:

EO 3513 Computer-aided Laboratory 3
Pulse Modylation (PAM, PWM, PPM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLARB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab3scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the differences in the time domain for the three types of
modulation

A. Generating the signal

signal'You will be observing the three types of pulse modulation on the following message
t=0:.0001:1; %time vector to one second
s=5%(cos(2*pi*75*t)+sin(2*pi*150*t)); %signal

Run the script “lab3scr.m.”

Plot 1: Observe the signal s plotted against the time vector t.

B. Modulating the signal

Signals will be modulated using the functions “flattop.m,” “pulswid.m,” and
.” To allow close examination of pulse widths and positions, a sampling rate of
500 Hz will be used.

You studied the flattop-sampled signal in Laboratory 2, and saw that while its pulses
varicd in amplitude, they always appeared at the start of the sampling period T, and had a
constant duration <. Flattop sampling is onec implementation of pulse-amplitude modulation
(natural sampling is the other). In this laboratory, the familiar characteristics of the pulse-
amplitude modulated (PAM) signal will be compared to characteristics of the pulse-width
and pulse-position modulated signals.

Computer-aided Laboratory 3—page 1

33




Press return to continue.

Plot 1: (:bserlve the PAM signal (d = 0.5) plotted over the message
signal.

Question 1: (ialculate the following values, in secohds, for the PAM
signal:

sampling period T
pulse duration =

Like PAM signals, pulse-width modulated (PWM) signal pulses begin with the
sampling period T. Pulse amplitudes are constant, while their widths vary, based on the
amplitude of the message signal at each pulse beginning. To facilitate this variation in pulse
width, the maximum pulse duration is expressed as a fraction of the sampling period T. The
signal you will observe has a maximum pulse duration of 0.8, meaning that the widest
pulse that c~ula occur would be 0.8 of the sampling period T in duration, where maximum
signal amplitude fell at the beginning of a pulse. The most narrow pulse would occur where
the minimum signal amplitude fell at the beginning of a pulse.

Question 2: The maximum signal amplitude of s is 8.8, the modulation rate
is 500 Hz, and che maximum pulse duration is 0.8 of the
sampling period. Calculate the duration in seconds of the
widest pulse that could occur for its PWM signal.

Question 3: The zero crossings in this signal occur halfway between the
minimum and maximum signal values. Calculate the pulse
duration in seconds for a PWM pulse that occurs at the
beginning of a zero crossing.

Press return to continue.

Plot 2: Observe the PWM (maximum pulse duration = 0.8) signal
plotted over the message signal.

The maximum signal amplitude in s occurs at 0.028 seconds; a
zero crossing occurs at (.03 seconds. Verify your answers to
Questions 2 and 3.

Labe] the duration of each of these pulses on the plot.

A pulse-position modulated signal, like a pulse-amplitude modulated signal, has a
constant duration 7. However, the pulse beginnings vary in location within the sampling
griod T. Most PPM systems vary pulse position from the middle of the sampling period T.

egative signal amplitudes cause the pulse to shift left; positive signal amplitudes cause the
pulse to shift right.

Computer-aided Laboratory 3—page 2

34




The function “pulspos.m” transmits signal information via the amount of the pulse
offset from the beginning of the sampling period. To allow for larger variations in the pulse
offset, the pulse duration t is kept small. The PPM signal you will observe has a duty cycle
of 0.1; thus the largest pulse offset that could occur would be 0.9 of the sampling period
T, observed at the maximum signal amplitude. No pulse offset occurs at the minimum

signal amplitude.

, In the following plot, the sampling period T is defined by the grid imposed over the
plot.

Press return to continue.
Plot 3: Observe the pulse-s?osition modulated signal (d = 0.1) plotted
over the message signal. Note the pulse positions at the signal

maximum (0.028 seconds), signal minimum (0.032 seconds),
and zero crossing (0.03 seconds) values.

Part 2—Observe the differences in the frequency domain for the three
types of modulation

A. Generating the spectra

The one-sided spectrum of each modulated signal is produced using the function
“spectral.m.”

Press return to continue.
Plot 4: Observe the spectrum of the message signal.

Label the Hz values of the baseband signal frequencies.
Plot 5: Observe the spectrum of the PAM signal.

Label the Hz value of the sampling frequency (fs).
Press return to continue.
Plot 6: Observe the spectrum of the PWM signal.

Label the Hz value of the sampling frequency (fs).
Plot 7: Observe the spectrum of the PPM signal.

Label the Hz value of the sampling frequency (fs).

Computer-aided Laboratory 3—page 3

35




B. Calculating baseband bandwidth

Recall that while PAM signals have a baseband bandwidth of approximately 0.5/z,
PPM and PWM signals have larger baseband bandwidths, approximately 0.5/risetime.
Consider the risetime of the pulses in your modulated signals to be equal to the step size in
the time vector.
Question 4: Using the above approximations, calculate the baseband
bandwidths for the PAM, PWM and PPM signals. Do these

values reflect what you observe in the spectral plots? Note any
discrepancies.

Computer-aided Laboratory 3—page 4

36




Name:
Section:

EO 3513 Computer-aided Laboratory 4

Analog-to-Digital Conversion and Digital Encoding
This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab4scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the quantization process and the effect of quantization
noise

A. Generating the signal
You will be observing the quantization process on the following message signal:

t=0:.0001:1; - %time vector to one second
s=5*cos(2*pi*50*t)+4*cos(2*pi*90*t); %esignal

The function”quantize.m” is used both to set the characteristic for a bipolar
quantization system, and to quantize input signals. You will first be observing a 5-bit
bipolar offset converter that will quantize signals at values between -10 and +10 volts.
B. Evaluate the converter
Run the script “labdscr.m.”

Plot 1: Observe the quantization characteristic for the converter.

Computer-aided Laboratory 4—page 1

37




Question 1: Caiculate the following values relating to the quantization
characteristic for this system:

dynamic e
actual step
actual resolution

percentage resolution
number of levels

Would you describe this quantizer as “mid-step,” or “mid-
tread”?

C. Compare the sampled and quantized signals

Signals are ty(;;(i)cally sampled prior to quantizing.”Flattop.m” is used to sample the
signal at a rate of 200 Hz with a duty cycle of 0.5.

Press return to continue.
Plot 2: Observe the sampled signal plotted over the message signal.
The signal is then quantized at the same rate, 200 Hz. The quantized signal is

ass;glned a bin number for each sample. Bin numbers for this quantized signal range from 0

to 31,

Plot 3: Observe the quantized signal plotted over the sampled signal.
From the command window, obtain the voltage value for each
level of the converter (“quanch_y”), and the bin numbers for
the first 6 samples in the plot (“bin_nums”).

Question 2: List the amplitude (“voltage”) of the quantized signal in each
of the first 6 sampling periods.

D. Measuring the quantization noise

The difference between the message signal and the quantized signal is referred to as
“quantization noise”—noise introduced by the quantization process. The function “snr.m”
returns the signal to noise ratio, measured in dB.
Press return to continue.
Plot 4: Observe the quantized signal plotted over the message signal.

Question 3: From Plot 4, obtain the value of the signal-to-noise ratio for
the quantized signal. Record this value.

Computer-aided Laboratory 4—page 2

38




Part 2—Observe the process of PCM (pulse code modulation) encoding

A. Generating a binary-encoded signal

The function “encode.m” is used to convert “bin_nums,” the vector returned from
“quantize.m” containing the quantization levels, to “codedsig,” a bitstream of 1’s and 0’s.

The vector “codedsig” is passed to the functions “nrziuni.m,” “rzuni.m,” and
“manchest.m,” which translate the bitstream into PCM signals.

In order for these PCM-encoded signals to transmit information at the same rate as the
sampled signal, the bit rate of the PCM signals must be five times as high as the sampling
rate (1000 vice 200) in order to efficiently transmit the five bits (clements) used in the
encoding scheme.

One-sided spectral plots are generated using the function “s m.”

B. Generating a non-return-to-zero level (NRZL) unipolar coded signal
Press return to continue.

Plot 5: Observe the NRZL unipolar coded signal plotted over the
quantized signal.

Plot 6: Observe an expanded view of the first two words of the NRZL
unipolar coded signal.

Labe] the bit values (0 or 1) in these two words. (Refer to
“bin_nums” for the base 10 values.)

Press return to continue.

Plot 7: Observe the NRZL unipolar coded signal spectrum. Note the
DC value present in the spectrum.

C. Generating a return-to-zero level (RZL) unipolar coded signal
Press return to continue.

Plot 8: Observe the RZL unipolar coded signal plotted over the
quantized signal.

Plot 9: Observe an expanded view of the third and fourth words of the
RZL unipolar coded signal.

Labe] the bit values (0 or 1) in these two words.

Computer-aided Laboratory 4—page 3

39




Press return to continue.

Plot 10: Observe the RZL unipolar coded signal spectrum.
D. Generating a manchester coded signal

Press return to continue.

Plot 11: (}bserlve the manchester coded signal plotted over the quantized
signal.

Plot 12: Observe an expanded view of the fifth and sixth words of the
manchester coded signal.

Labe] the bit values (0 or 1) in these two words.
Press return to continue.

Plot 13: Observe the manchester coded signal spectrum. Note the
absence of DC value present in the spectrum.

Question 4: From the command window, obtain the first 30 values of
“codedsig.” Record these values. Is this bit pattern reflected
on Plots 6, 9, and 12?

Press return to continue.

Question 5: De:cribe the distinguishing characteristics of each encoding
scheme:

NRZL unipolar
RZL unipolar
manchester

E. Estimate bandwidth for the PCM signals

The minimum theoretical PCM bandwidth for sinc-shaped pulses is B*N, the
bascband message signal bandwidth times the number of elements(bits). Rectangular
pulses theoretically require an infinite bandwidth, but can be estimated based on =, the
pulse duration:

B=0.5/x

The value of © depends on the PCM encoding scheme employed. For NRZL coded
signals, < is equal to the bit duration. For RZL and manchester coded signals, 1 is equal to
1/2 of the bit duration.

Computer-aided Laboratory 4—page 4

40




U

Question 6: (ialcu}ate the approximate baseband bandwidth for the PCM
signals:

NRZL unipolar coded si
RZL and manchester ed signals

Do these values reflect what you observe in the spectral plots?

Part 3—Observe the effects of companding on the quantization process

A.  Generating a signal

The effects of the companding process will be observed upon the following signal:
=0:.0001:0.1; %time vector to 0.1 seconds
$=2+2.1*cos(2*pi*50*t)+1.7*cos(4*pi*50*t)+1.5%cos(6*pi*S0*t); %signal for
companding
s=s+1.3*cos(8*pi*50*t);
Press return to continue.

Plot 14: Observe the plot of the message signal. Notice the low-level
signal activity.

B. Sampling and quantizing the signal (without companding)
The signal is sampled using “flattop.m™ at a rate of 1500 Hz with a duty cycle of 0.5.
Press return to continue.
Plot 14: Observe the sampled signal plotted over the message signal.
This sampled signal is quantized using the function “‘quantuni.m.” This unipolar
quantizing function accepts signals between 0 and 10 volts, and uses truncation rather than
rounding. The characteristic of a 3-bit binary converter is achieved by passing in two
symbols and three elements, resulting in 8 levels. The function “snrtm” is used to calculate
the signal to noise ratio.
Piot 15: Observe the quantized signal plotted over the sampled signal.
tl\llloﬁce the changes in the signal level that are not captured by
e converter.

Press return to continue.

Computer-aided Laboratory 4—page 5

41




Plot 16: Observe the message signal plotted over the quantized signal.

Question 7: From Plot 16, obtain the value of the signal-to-noise ratio for
the quantized signal. Record this value.

C. Compare compression characteristics for values of mu

Companding (the process of compressing, then expanding) improves the quantization
process by proportioning signals that spend most of the time m the lower range of the
dynamic range. The functions “compress.m” and “expand.m” simulate a mu-255
compander. Values of mu range from 1to 255.

“Compress.m” will be used to compress the signal two separate times.
Press return to continue.

Plot 17: Observe the plot of the message signal, compressed with a
value of mu = 255,

Plot 18: Observe the plot of the message signal, compressed with a
value of mu = 10.

Question 8: What is the effect of compression on the signal?
D. Sampling and quantizing the compressed signal

0.5 The compressed signal (mu = 10) is sampled at a rate of 1500 Hz with a duty cycle of

Press return to continue.

Plot 19: Observe the sampled compressed signal plotted over the
compressed message signal.

The sampled compressed signal is quantized at a rate of 1500 Hz, again using the
characteristic of a 3-bit converter.

Plot 20: Observe the quantized compressed signal plotted over the
sampled compressed signal.

E. Expanding the quantized compressed signal
The function “expand.m” is used to expand the quantized compressed signal.
Press return to continue.

Computer-aided Laboratory 4—page 6

42




Plot 21: Observe the companded signal plotted over the message signal.
Question 9: From Plot 21, obtain the value of the signal-to-noise ratio for
the companded signal. Record this value and compare it to the

ratio obtained in Question 7. Did the companding process
reduce the amount of quantization noise?

Computer-aided Laboratory 4—page 7

43




This page is intentionally
left blank.

44




Name:

Section:

EO 3513 Computer-aided Laboratory 5
Amplitude Modulation Double Sideband (AM DSB)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “labSscr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the double sideband amplitude modulation (AM DSB)
process using a single-tone input

A. Generating the signal and spectrum

You will be observing the AM DSB process on the following single-tone message
signal:

t=0:.0001:1; %time vector to one second
s=15%cos(2*pi*150*t), %single-tone signal

Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:
P= A02 'i'l Z(ANz + BN2 )
2580
Peak power is calculated as follows:

Ap?
2

Pp =

Computer-aided Laboratory 5—page 1

45




Question 1: (;alcu.late the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth

Run the script “labSscr.m.”

Plot 1: Observe the message signal.
“Spectral.m” is used to generate spectra.
Plot 2: Observe the spectrum of the message signal.

Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz
B. Observe the single-tone AM DSB signal

The message signal is modulated by multiplying it with a cosine with a carrier
frequency of 2000 Hz.

Peak power for the AM DSB signal is calculated as before:

Ap?

Pp = =2

Average power for the AM DSB signal is obtained using by adding the power
produced by each of the two components, resulting in
A 2

P="—

4

Question 2: Predxft the following values for the single-tone AM DSB
signal:

peak power

average power

transmission bandwidth
Press return to continue.

Plot 3: Observe the plot of the AM DSB signal.

Computer-aided Laboratory 5—page 2
46




Plot 4: Observe an expanded view of the AM DSB signal.
Label the phase shifts shown in this portion of the signal.
C. Verify the power and bandwidth of the AM DSB signal
Average power was calculated in the time domain; it will be verified in the frequency
domain. The function “psd.m” is used to generate the power spectral density of the
modulated signal. The nower levels associated with each frequency are added using the
“sum” command to produce average signal power.
Press return to continue.
Plot 5: Observe the A™M DSB signal spectrum.
Label the following values:
amplitude of each spectral component
Hz value of each speciral component
transmission bandwidth in Hz
Plot 6: Observe the AM DSB power spectral density.

Question 3: From Plot 6, obtain the values representing peak and average
power for the signal-tone signal, and record them.

Do your calculations for bandwidth and power agree with the
computer-generated values and spectrum?

D. Observe the recovery of the AM DSB signal
AM DSB signals are recovered using a three-step process:
1) Modulate the DSB signal by the carrier (called “demodulation”)
2) Use a lowpass filter to recover the signal frequencies in the
baseband
3) Multiply by a factor of 2 to restore signal amplitude
The function “recoverm.m” is used to lowpass-filter the baseband frequencies with a
cutoff frequency of 160 Hz. In this “perfect system,” you will observe an almost perfect
recovery.

Question 4: Why is coherent detection (detection using the carrier)
necessary for an AM DSB signal?

Press return to continue.

Computer-aided Laboratory 5—page 3

47




Plot 7: Observe the demodulated AM DSB signal (prior to filtering).

Plot 8: Observe the AM DSB recovered signal plotted over the
message signal.

Press return to continue.

Plot 9: Observe the recovered amplified AM DSB signal plotted over
the message signal.

Press return to continue.

“Cmplxenv.m” is used to perform an envelope-detection on the AM DSB signal,
demonstrating the result of using an inappropriate detection method.

Plot 9: Qbserlve the expanded view of the AM DSB signal and message
signal.

Press return to view the envelope-detected signal.

Part 2—Observe the double sideband amplitude modulation (AM DSB)
process using a multi-tone input

A. Generating the signal and spectrum

Next you will be observing the AM DSB process on the following multi-tone
message signal:

s=10*cos(2*pi*350*t)+12*cos(2*pi*220*t)+20%cos(2*pi*100*t); %multi-tone signal
Press return to continue.
Plot 10: Observe the multi-tone message signal.
Plot 11: Observe the spectrum of the message signal.
Label the following values for the message signal:
Hz value of each spectral component

amplitude of each spectral component
baseband bandwidth in Hz

Computer-aided Laboratory 5—page 4

48




B. Observe the multi-tone AM DSB signal and spectrum

The message signal is again modulated by multiplying it with a cosine with a carrier
frequency of 2000 Hz.

Press return to continue.
Plot 12: Observe the plot of the AM DSB signal.
Plot 13: Observe an expanded view of the AM DSB signal.
Label the phase shifts shown in this portion of the signal
Press return to continue.
Plot 14: Observe the AM DSB signal spectrum.
Label the following values:
Hz value of each spectral component
amplitude of each spectral component
transmission bandwidth in Hz
C. Observe the recovery of the AM DSB signal

The three-step recovery process is repeated to recover the multi-tone AM DSB s’ snal.
The ideal lowpass filter has a cutoff frequency of 360 Hz.

Press return to continue.
Plot 15: Observe the demodulated AM DSB signal (prior to filtering).

Plot 16: Observe the AM DSB recovered signal plotted over the
message signal.

Press return to continue.

Plot 16: Observe the recovered amplified AM DSB signal plotted over
the message signal.

Computer-aided Laboratory 5—page 5

49




This page is intentionally
left blank.

50




Name:

Section:

EO 3513 Computer-aided Laboratory 6
Amplitude Modulation Single Sideband (AM SSB)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab6scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the single sideband amplitude modulation (AM SSB)
process using a single-tone input

A. Generating the signal and spectrum

You will be observing the AM SSB process on the following single-tone message
signal:

t=0:.0001:1; %time vector to one second
s=15*cos(2*pi*130*t); %single-tone signal

Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:
P= A02 +-1- Z(AN2 + BN2 )
283
Peak power is calculated as follows:

_Ap?

P
P=

Computer-aided Laboratory 6—page 1

51




Question 1: (}alcullate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth
Run the script “lab6scr.m.”
Plot 1: Observe the message signal.
“Spectral.m” is used to generate spectra.
Plot 2: Observe the spectrum of the message signal.
Labe] the following values for the message signal:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz
B. Observe the single-tone AM SSB signals and spectra
Single sideband modulation could be accomplished, in theory, by double sideband
modulation followed by filtering of unwanted frequencies. In practice, however, retaining
one sideband while rejecting the other is a complex procedure. In this laboratory, a Hilbert
transform, simulated by the function “hilbert.m,” will be used to apply a 90° phase shift to
the signal, cancelling either the upper or lower sideband.

“Hilbert.m” is called by the function “ssb.m,” which is used to generate the lower
and upper sideband signals at a carrier frequency of 3000 Hz.

Peak power for the AM SSB signal is calculated as before:

An examination of the AM SSB signal plots will confirm that the signal maximum in
an AM SSB signal is half of the signal maximum in its message signal.

Computer-aided Laboratory 6—page 2

52




Question 2: l;redlft the following values for the single-tone AM SSB
signal:

peak power
average power
bandwidth
Press return to continue.
Plot 3: Observe the plot of the AM lower sideband (LSB) signal.

Plot 4: Observe an expanded view of the AM LSB and message
signals.

Press return to continue.
Plot 5: Observe the plot of the AM upper sideband (USB) signal.

Plot 6: Observe an expanded view of the AM USB and message
signals.

C.  Verify the power and bandwidth of the AM SSB signals
Average power was calculated in the time domain; it will be verified in the frequency
domain. The function “psd.m” is used to generate the power spectral density of the
modulated signals. The power levels associated with each frequency are added using the
“sum” command to produce average signal power.
Press return to continue.
Plot 7: Observe the AM LSB signal spectrum.
Label the following values:
amplitude of each spectral component
Hz value of each spectral component
bandwidth in Hz
Plot 8: Observe the AM USB signal spectrum.
Label the following values:
amplitude of each spectral component
Hz value . each spectral component
bandwidth in Hz

Press return to continue.

Computer-aided Laboratory 6—page 3

33




Plot 9:
Plot 10:
Question 3:

Observe the AM LSB power spectral density.
Observe the AM USB power spectral density.

From Ploté 9 and 10, obtain the values representing peak and
average power for the signal-tone signal, and record them.

Do your calculations for bandwidth and gower agree with the
computer-generated values and spectrum?

D. Observe the recovery of the AM SSB signals
AM SSB signals are recovered using a three-step process:

baseband

1) Modulate the SSB signal by the carrier (called “demodulation”)
2) Use a lowpass filter to recover the signal frequencies in the

3) Multiply by a factor of 4 to restore signal amplitude

The function “recoverm.m” is used to lowpass-filter the baseband frequencies with a
utoff frequency of 150 Hz. In this “perfect system,” you will observe an almost perfect

recovery.

Press return to continue.

Plot 11:
Plot 12:

Observe the demodulated AM LSB signal (prior to filtering).
Observe the demodulated AM USB signal (prior to filtering).

Press return to continue.

Plot 13:

Observe the AM LSB recovered signal plotted over the
message signal.

Press return to continue.

Plot 13:

Plot 14;

Observe the recovered amplified AM LSB signal plotted over
the message signal,

Observe the AM USB recovered signal plotted over the
message signal.

Press return to continue.

Plot 14:

Observe the recovered amplified AM USB signal plotted over
the message signal.

Computer-aided Laboratory 6—page 4

54




Part 2—Observe the AM SSB process using a multi-tone input

A. Generating the signal and spectrum

Next you will be observing the AM SSB process on the following multi-tone
message signal:

$=5%C0s(2*pi*400*t)+12%cos(2*pi*230%t)+20%cos(2*pi*170*); %multi-tone signal
Press return to continue.
Plot 15: Observe the message signal.
Plot 16: Observe the spectrum of the message signal.
Label the following values for the message signal:

Hz value of each spectral component

bascband bandwidth in Hz
B. Observe the multi-tone AM SSB signals and spectra

'}Ii‘hc message signal is modulated by the function “ssb.m” at carrier frequency of
3000 Ha.

Press return to continue.
Plot 17; Observe the plot of the AM LSB signal.

Plot 18: (zbserlve an expanded view of the AM LSB and message
signals.

Press return to continue.
Plot 19: Observe the plot of the AM USB signal.

Plot 20: (;bserlve an expanded view of the AM USB and message
signals.

Press return to continue.

Computer-aided Laboratory 6—page 5

55




Plot 21: Observe the AM LSB signal spectrum.
Label the following values:
Hz value of each spectral component
amplitude of each spectral component
bandwidth in Hz
Plot 22: Observe the AM USB signal spectrum.
Label the following values:
Hz value of each spectral component
amplitude of each spectral component
bandwidth in Hz
C. Observe the recovery of the AM SSB signals

The three-step recovery process is repeated to recover the multi-tone AM SSB
signals. The ideal lowpass filter has a cutoff frequency of 420 Hz.

Press return to continue.
Plot 23: Observe the demodulated AM LSB signal (prior to filtering).

Plot 24: Observe the AM LSB recovered signal plotted over the
message signal.

Press return to continue.

Plot 24: Observe the recovered amplified AM LSB signal plotted over
the message signal.

Press return to continue.
Plot 25: Observe the demodulated AM USB signal (prior to filtering).

Plot 26: Observe the AM USB recovered signal plotted over the
message signal.

Press return to continue.

Plot 26: Observe the recovered amplified AM USB signal plotted over
the message signal.

Computer-aided Laboratory 6—page 6

56




Name:

Section:

EO 3513 Computer-aided Laboratory 7
Conventional Amplitude Modulation

(Conventional AM)
This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users

should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab7scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Observe the conventional amplitude modulation (conventional
AM) process using a single-tone input

A. Generating the signal and spectrum

You will be observing the conventional process on the following single-tone message
signal:

t=0:0.0001:1; %time vector to one second
s=cos(2*pi*150*t); %single-tone signal

Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:

P= Aoz +% Z(ANz +BN2 )
=1
Peak power is calculated as follows:

A 2
R =22

Computer-aided Laboratory 7—page 1

57




Question 1: Cialcullate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth
Run the script “lab7scr.m.”
Plot 1: Observe the message signal.
“Spectral.m” is used to generate spectra.
Plot 2: Observe the spectrum of the message signal.
Label the following values for the message signal:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz
B. Observe the conventional AM signal and spectrum
The function “conv_am.m” is used to normalize the message signal and modulate it
with a carrier frequency of 2000 Hz and a modulation index of 0.8. Notice that this
message signal has an amplitude of 1 (normalization unnecessary).
Peak power for the single-tone conventional AM signal is calculated as follows:
Po=(1+m)2P,
where P, is the average power of the carrier.

Average power for the single-tone conventional AM signal is calculated as follows:

2
m
P=[1+—

where P, is the average power of the carrier,

Computer-aided Laboratory 7—page 2
58




Question 2: Predict the following values for the single-tone conventional
AM signal:

peak power
average power
bandwidth
Press return to continue.
Plot 3: Observe the plot of the conventional AM signal.
Amplitude of the spectral components in the sidebands of the conventional AM signal
can be calculated as A/2

where m is the modulation index and A is the amplitude of the signal tone. The amplitude
of the spectral component representing the carrier is equal to the amplitude of the carrier.
Plot 4: Observe the conventional AM signal spectrum.
Label the following values:

amplitude of each spectral component

Hz value of each spectral component

bandwidth in Hz
C. Verify the power and bandwidth of the conventional AM signal

Average power was calculated in the time domain; it will be verified in the frequency

domain. The function “psd.m” is used to generate the power spectral density of the
modulated signal. The power levels associated with each frequency are added using the
“sum” command to produce average signal power.
Press return to continue.

Plot §: Observe the single-tone conventional AM power spectral
density.

Question 3: From Plot 5, obtain the values representing peak and average
plc:wer for the single-tone conventional AM signal, and record
them.

Do your calculations for bandwidth and power agree with the
computer-generated values and spectrum?

The power contained in the carrier of a conventional AM signal is sometimes referred
to as “wasted” because it conveys no information from sender to receiver.

Computer-aided Laboratory 7—page 3

59




g e =

Question 4: Refer to Plot 5 and estimate the percentage of power contained
in the carrier. What might be an advantage of having this
amount of power transmitted in the carrier as opposed to
transmission in the sidebands?

D. Observe the recovery and detection of the single-tone conventional AM signal

e Conventional AM signals are recovered via use of a bandpass filter and envelope
teCtor.

The function “recoverm.m” is used to bandpass-filter the signal between the
frequencies of 1800 and 2200 Hz. Filtering is followed by envelope detection. The
function “envelope.m” detects the complex magnitude of the conventional AM signal,
producing a highly accurate envelope detection.

Press return to continue.

Plot 6: Observe an expanded view of the envelope-detected signal
plotted over the conventional AM signal.

The DC value is subtracted from the detected signal, which is then divided by the
modulation index “m.”

Plot 7: Observe an expanded view of the modified envelope-detected
signal.

Press return to view the message signal.
Part 2—QObserve the effect of overmodulating the conventional AM signal

A. Observe the overmodulated conventional AM signal

The function “conv_am.m” is used to overmodulated the single-tone signal at a carrier
frequency of 2000 Hz and a modulation index of 1.5.

Press return to continue.

Plot 8: (}bserlve the single-tone overmodulated conventional AM
signal.

Plot 9: Observe the spectrum of the single-tone overmodulated
conventional AM signal.

Computer-aided Laboratory 7—page 4

60




B. Observe the effect of overmodulation on signal recovery

Question 5: What result of overmodulation prevents the use of an envelope

detector for the conventional AM signal?

Question 6: What type of detection is needed for an overmodulated
conventional AM signal? Why?

The function “recoverm.m” is used to bandpass-filter the signal between the
frequencies of 1800 and 2200 Hz, followed by envelope detection.

Press return to continue.

Plot 10: Observe an expanded view of the envelope-detected signal
plotted over the overmodulated conventional AM signal.

The DC value is subtracted from the detected signal, which is then divided by the
modulation index “m.”

Plot 11: Observe an expanded view of the modified overmodulated
envelope-detected signal.

Press return to view the message signal.

Label the recovered signal.
Part 3—Observe the conventional AM process using a multi-tone input

A. Generating the signal and spectrum

Next you will be observing the conventional AM process on the following multi-tone

message signal:
s=5%cos(2*pi*100*t)+4*cos(2*pi*300*t)+3*cos(2*pi*400*t); %multi-tone signal
Press return to continue.
Plot 12: Observe the message signal.
Plot 13: Observe the spectrum of the message signal.
Label the following values for the message signal:

Hz value of each spectral component
baseband bandwidth in Hz

Computer-aided Laboratory 7—page 5
61




B. Observe the multi-tone conventional AM signal and spectrum

The function “conv_am.m” is used to normalize the message signal and modulate it
with a carrier frequency of 2000 Hz and a modulation index of 0.5.

Press return to continue,.

Plot 14: Observe the plot of the multi-tone conventional AM signal.
Plot 15: Observe the spectrum of the multi-tone conventional AM
signal.

Label the following va’ ies:

Hz value of each spectral component
bandwidth in Hz

C. Observe the recovery and detection of the multi-tone conventional AM signal

The conventional AM signal is bandpass-filtered between the frequencies of 1500 and
2500 Hz using the function “recoverm.m,” followed by envelope detection using
“envelope.m.”
Press return to continue,

Plot 16: Observe an expanded view of the envelope-detected signal
plotted over the multi-tone conventional AM signal.

The DC value is subtracted from the detected signal, which is then divided by the
modulation index “m.”

Plot 17: Observe an expanded view of the modified envelope-detected
multi-tone signal.

Press return to view the message signal.

Computer-aided Laboratory 7—page 6

62




Name:

Section:

EO 3513 Computer-aided Laboratory 8
Frequency Modulation (FM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab8scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1--Observe the FM modulation process for single-tone input
A. Calculate theoretical average power, peak power, and bandwidth for the single-tone
message signal

You will be observing the frequency modulation (FM) process on the following
signal:

t=0:0.0001:1; %time vector to 1 second
s=15*cos(2*pi*50*t); %single-tone signal

Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:

P=Ag’ += Y (AN? +By?)
2N'--l

Peak power is calculated as follows:

ey

Question 1: Calculate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth

Computer-aided Laboratory 8—page 1

63




B. Observe the single-tone message signal and its spectrum
Run the script “lab8scr.m.”
Plot 1: Observe the single-tone message signal.
“Spectral.m” is used to generate one-sided spectra.
Plot 2: Observe the spectrum of the single-tone message signal.
Labe] the following values for the message signal:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz
C. Observe the process of FM modulation
The function “fm_mod.m” is used to frequency modulate the message signal ata
carrier frequency of 1000 Hz and B (beta) equal to 1. (When B is specified, Af is returned,
and vice versa.) The amplitude of the returned FM signal is set at 15.
Peak power is calculated as before:

_Ap?
By = 2

The average power of the FM signal is calculated as follows:
P=A2/2

Recall that 8 and Af are related in that B f,, = Af. There are three cases for estimating
transmission bandwidth, depending on the value of 8:

for B <0.25 Br=2f, (narrowband FM)
for25<8<10 Br=2(1+8)f, (Carson’srule)
for8210 Br=2Bf, (wideband FM)

where f, is the frequency of the message signal.

Computer-aided Laboratory 8—page 2

64




Question 2: Predict the following values for the single-tone FM signal:
peak power

average power
maximum frequency deviation Af
transmission bandwidth

Press return to continue.

Plot 3: Observe an expanded view of the FM signal plotted over the
message signal. Notice the frequency behavior of the FM
signal at high and low amplitudes of the message signal.

D. Observe the spectrum of the FM signal

Press return to continue.

Plot 4: Observe the spectrum of the single-tone FM signal.

Label the carrier frequency and the transmission bandwidth.
Label Af to each side of the carrier frequency.

Question 3: What is the distance between the sidebands in the FM spectrum
shown in Plot 4?

E. Verify the power and bandwidth of the FM signal

Average power was calculated in the time domain; it will be verified in the frequency
domain. The function “psd.m” is used to generate the power spectral density of the
modulated signal. The power levels associated with each frequency are added using the
“sum” command to produce average signal power.

Plot 5: Observe the single-tone powir spectral density.

Question 4: From Plot 5, obtain the values representing peak and average
power.

Do your theoretical calculations for bandwidth and power
agree with the computer-generated values?

Question 5: Consult a table of values for Bessel functions (or use the
MATLAB “bessel” function). Calculate the amplitude for the
spectral components shown in the FM spectrum in Plot 4 for n
= ( through 6. List each frequency by its Hz value and
sideband number n. Values should be consistent with the
amplitudes shown for power spectral density in Plot 5.

Computer-aided Laboratory 8—page 3

65




E.  Control the bandwidth of the FM signal by varying 8

The bandwidth of an FM signal can be controlled by fixing either B or Af. The single-
tone message signal will be fre?ucncy modulated four times with a carrier frequency of
2500 Hz, using the following four values of 8: 0.1, 1, 5, and 20.

Question 6: Calculate the maximum frequency deviation Af associated with
each of the four values of 8:

0.1

1

5
20

Question 7: Predict the transmission bandwidth for each of the FM signals
referred to in Question 6.

Press return to continue.
Plot 6: Observe the spectrum of the FM signal for 8 = 0.1.

Labe] the spectrum with the transmission bandwidth calculated
in Question 7.

Plot 7: Observe the spectrum of the FM signal for 8 = 1.

Labe] the spectrum with the transmission bandwidth calculated
in Question 7.

Press return to continue.
Plot 8: Observe the spectrum of the FM signal for 8 = 5.

Label the spectrum with the transmission bandwidth calculated
in Question 7.

Plot 9: Observe the spectrum of the FM signal for 8 = 10.

Label the spectrum with the transmission bandwidth calculated
in Question 7.

Computer-aided Laboratory 8—page 4

66




o

Part 2--Observe the FM modulation process for multi-tone input

A. Calculate theoretical average power, peak power, and bandwidth for the multi-tone
message signal

) alYou will next be observing the frequency modulation (FM) process on the following
Signal:

s=8*cos(2*pi*75*t)+12%cos(2*pi*25*t); %multi-tone signal

Question 8: Calculate the following values for the multi-tone message
signal:

peak power
average power
baseband bandwidth
B. Observe the multi-tone message signal and its spectrum
Plot 10: Observe the multi-tone message signal.
Plot 11: Observe the spectrum of the multi-tone message <ignal.
Label the following values for the message signal:
Hz value of the spectral components
amplitude of the spectral components
baseband signal bandwidth in Hz
C. Observe the process of FM modulation
The function “fm_mod.m” is used to frequency moc.late the message signal at a

carrier frequency of 1500 Hz and 8 (beta) equal to 1. The amplitude of the returned FM
signal is set at 20. When working with multi-tone signals, f,, is considered to be equal to

the highest frequency in the message signal.
Question 9: Predict the following values for the multi-tone FM signal:
peak power

average power
maximum frequency deviation Af
transmission bandwidth

Press return to continue,

Computer-aided Laboratory 8—page 5

67




Plot 12: Observe an expanded view of the FM :iﬂal plotted over the
message signal. Notice the frequency vior of the FM
signal at high and low amplitudes of the message signal.

D. Observe the spectrum of the FM signal

Press return to continue.

Plot 13: Observe the spectrum of the muiti-tone FM signal.

Label the carrier frequency and the transmission bandwidth.

Question 10: What is the distance between the sidebands in the FM
spectrum shown in Plot 13?

E. Verify the power and bandwidth of the FM signal

Average power is verified in the frequency domain using the function “psd.m” to
generate the power spectral density of the modulated signal. The power levels associated
with each frequency are added using the “sum™ command to produce average signal power.
Plot 14: Observe the muiti-tone power spectral density.

Question 11: From Plot 14, obtain the values representing peak and average
power.

Do your theoretical calculations for bandwidth and power
agree with the computer-generated values?

F.  Control the bandwidth of the FM signal by varying Af

The multi-tone message signal will be frex ...~y modulated four times with a carrier
frequency of 2500 Hz, using the following fo: - es of Af: 25, 100, 500, and 1000.

Question 12: Calculate the value of 8 associated with each of the four
values of Af:

25
100
500

1000

Question 13: Predict the transmission bandwidth for each of the FM signals
referred to in Question 12.

Press return to continue.

Computer-aided Laboratory 8—page 6

68




Plot 15: Observe the spectrum of the FM signal for Af = 25,

Label the spectrum with the transmission bandwidth calculated
in Question 13.

Plot 16: Observe the spectrum of the FM signal for Af = 100.

Label the spectrum with the transmission bandwidth calculated
in Question 13.

Press return to continue.
Plot 17: Observe the spectrum of the FM signal for Af = 500.

Label the spectrum with the transmission bandwidth calculated
in Question 13.

Plot 18: Observe the spectrum of the FM signal for Af = 1000.

Label the spectrum with the transmission bandwidth calculated
in Question 13.

Computer-aided Laboratory 8—page 7

69




This page is intentionally
left blank.

70




-

‘ Name:

Section:

EO 3513 Computer-aided Laboratory 9
Radio Frequency Digital Modulation Methods
(ASK, FSK, BPSK, and QPSK)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

The m-file for this laboratory is “lab9scr.m.” It may be helpful to print the m-file for
reference before running the script.

Part 1—Qbserve the process of amplitude shift keying (ASK) and
coherent detection

A. Generating the digital message signal

Digital signals in this laboratory are generated using the “random” command in
MATLAB; four new digital signals are generated each time the script is run.

ASK signals require a unipolar digital signal. The function “nrzluni.m” is used to
generate a NRZL unipolar digital signal at a bit rate of 100 bits per second.

Question 1: Calculate the bit duration t for this signal.

From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

Run the script “lab9scr.m.”

Plot 1: Observe the NRZL unipolar digital message signal, with a bit
rate of 100 bits per second.

Label the values (0 or 1) of the first 10 bits, and the bit
duration 1.

“Spectral.m” is used to generate one-sided spectra. Recall that a “coarse”
approximation for baseband bandwidth of a digital signal is 0.5/x.

Computer-aided Laboratory 9—page 1

71




Question 2: Calculate the approximate baseband bandwidth of the NRZL
unipolar digital message signal.

Plot 2: (:bsetive the spectrum of the NRZL unipolar digital message
signal.

Label the baseband bandwidth in Hz.
B. Generating the ASK signal

q The digital message signal is modulated by a cosine with a carrier frequency of 800
Zz.

Press return to continue.
Plot 3: Observe the ASK signal at a carrier frequency of 800 Hz.
Label the values (0 or 1) of the bits shown.
Question 3: Why is ASK modulation often referred to as “on-off keying”?
Plot 4: Observe the ASK signal spectrum.
Label the carrier frequency of the ASK signal.
C. Coherent detection of the ASK signal

The function “recover.m” is used to bandpass-filter the ASK signal between the
frequencies of 700 Hz and 900 Hz. The recovered signal is then multiplied by its carrier.

Question 4: Describe a noncoherent method of detection for this ASK
signal. Why will this method work for ASK?

Press return to continue.

Plot 5: Observe the spectrum of the demodulated ASK signal prior to
filtering.

The function “recoverm.m” is used to lowpass filter the signal at 100 Hz. The
recovered signal is then multiplied by a factor of 2 to restore its amplitude.

Plot 6: Qbserlve the message signal plotted over the recovered ASK
signal.

Press return to observe the amplified recovered ASK signal.

Computer-aided Laboratory 9—page 2

72




Part 2—Observe the process of frequency shift keying (FSK) and
coherent detection

A. Generating the digital message signal

The FSK signal can be based on either a unipolar or bipolar digital signal. The
function “nrzluni.m” is used to generate a unipolar digital message signal from a random
bitstream, at a bit rate of 100 bits per second.

Question §: From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

Press return to continue.

Plot 7: Observe the NRZL unipolar digital message signal, with a bit
rate of 100 bits per second.

Label the values (0 or 1) of the first 10 bits, and the bit
duration 1.

Plot 8: (}bserlve the spectrum of the NRZL uanipolar digital message
signal.

Label the baseband bandwidth in Hz.
B. Generating the FSK signal
The FSK signal is generated using the function “fsk.m.” Within this function, the
bits representing 1’s are modulated at a frequency of 1500 Hz, and the bits representing 0’s
are modulated at a frequency of 500 Hz.
Press return to continue.

Plot 9: Observe the FSK signal at a carrier frequencies of 500 and
1500 Hz.

Label the values (0 or 1) of the bits shown.
Plot 10: Observe the FSK signal spectrum.
Label the two carrier frequencies of the FSK signal.
C. Coherent detection of the FSK signal
The function “recoverm.m” is used to bandpass filter the FSK signal between the
mnscin;sagf 400 Hz and 1600 Hz. The recovered signal is multiplied twice, once by each

Computer-aided Laboratory 9—page 3

73




Press return to continue.

Plot 11: Observe the spectrum of the higher-frequency demodulated
signal, prior to filtering.

Press return to observe the spectrum of the lower-frequency
demodulated signal, prior to filtering.

The two signals are combined in the time domain by subtracting the loWer frequency
signal from the higher frequency signal.

Plot 12: Observe the spectrum of the combined upper and lower
frequency signals, prior to filtering.

“Recoverm.m” is used to lowpass-filter the combined signal at 100 Hz. Notice that
the 1’s in the message signal are now represented by a positive value and the 0’s are
represented by a negative value. The recovered signal is then multiplied by a factor of 2 to
restore its amplitude.

Press return to continue.

Plot 13: (;bserve the recovered FSK signal plotted over the message
signal.

Press return to observe the amplified recovered FSK signal.

Part 3—Observe the process of binary phase shift keying (BPSK) and
coherent detection

A. Generating the digital message signal

The BPSK signal is based on a bipolar digital signal. The function “nrzlbi.m” is used
to gcneratg' a bipolar digital message signal from a random bitstream, at a bit rate of 100 bits
per secon

Question 6: From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

Press return to continue.

Plot 14: Observe the NRZL bipolar digital message signal, with a bit
rate of 100 bits per second.

Label the values (0 or 1) of the first 10 bits, and the bit
duration .

Computer-aided Laboratory 9—page 4

74




Plot 1§: (;bserlve the spectrum of the NRZL bipolar digital message
signal.

Label the baseband bandwidth in Hz.
B. Generating the BPSK signal

The BPSK signal is generated by modulating the message signal with a cosine ata
carrier frequency of 800 Hz.

Press return to continue.

Plot 16: Observe the BPSK signal at a carrier frequency of 800 Hz.
Notice the phase shifts in the signal.

Press return to observe the message signal.

Label the values (0 or 1) of the bits shown.
Plot 17: Observe the BPSK signal spectrum.

Label the carrier frequency of the BPSK signal.
C. Coherent detection of the BPSK signal

The first step in coherent detection of the BPSK signal is to square the signal in the
time domain.

Press return to continue.
Plot 18: Observe the squared BPSK signal spectrum.

Question 7: What are the effects in the frequency domain of squaring the
BPSK signal?

The signal frequency is now twice the frequency desired. The function “freq_div.m”
iss Oltl)selgz to shift the frequency of the squared BPSK signal back to the carrier frequency of
Plot 19: Observe the frequency-divided BPSK signal spectrum.

“Recoverm.m” is used to lowpass-filter the signal at 1000 Hz. In the time domain,
the recovered signal is multiplied by the received signal.

Press return to continue.

Computer-aided Laboratory 9—page 5

75




Plot 20: Observe the spectrum of the recovered demodulated BPSK
signal, prior to filtering.

“Recoverm.m” is now used to lowpass-filter the signal at 100 Hz. The recovered
signal, which has a much higher amplitude than its message signal, is normalized by
dividing it by its maximum amplitude.

Plot 21: Observe the message signal plotted over the recovered
normalized signal.

Part 4—Observe the process of quadriphase shift keying (QPSK) and
coherent detection

A. Generating the digital message signal
The QPSK signal is based on a bipolar digital signal. The function “nrzlbi.m” is used
to generate a bipolar digital message signal from a random bitstream, at a bit rate of 100 bits

ver second. (The first 8 bits are established in a pattern that will demonstrate the four types
of phase shifts present in the QPSK signal.)

Question 8: From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

Press return to continue.

Plot 22: Observe the NRZL bipolar digital message signal, with a bit
rate of 100 bits per second.

Label the values (0 or 1) of the first 10 bits, and the bit
duration <.

Plot 23: Qbserlve the spectrum of the NRZL bipolar digital message
signal.

Label the baseband bandwidth in Hz.
B. Generating the QPSK signal
The first step in generating the QPSK signal is to split the signal by putting it through
a serial-to-parallel converter. One of the output signals is composed of the odd bits, the
qthe;l of the even bits. The bits in each output signal have a bii rate of half that of the input
signal.

Press return to continue.

Computer-aided Laboratory 9—page 6

76




Plot 24: Observe the signal composed of odd bits.

| Label the values (0 or 1) of the first 5 bits shown, and the bit
| duration .

Plot 25: Observe the signal composed of even bits.

Label the values (0 or 1) of the first 5 bits shown, and the bit
duration <.

Next, the signal composed of odd bits is modulated by a positive cosine with a carrier
frequency of 400 Hz. The signal composed of even bits is modulated by a negative sine
with a carrier frequency of 400 Hz.

Press return to continue.

Plot 26: Observe the modulated “odd-bit” signal. Notice the phase
shifts present.

Press return to observe the “odd-bit” signal.

Plot 27: Observe the modulated “even-bit” signal. Notice the phase
shifts present.

Press return to observe the “even-bit” signal.

The QPSK modulation process is completed by summing the two modulated signals
in the time domain.

Press return to continue.
Plot 28: Observe the QPSK signal.
Label the phase shifts present in the signal.
Plot 29: Observe the QPSK spectrum.
Label the carrier frequency of the QPSK signal.
C. Coherent detection of the QPSK signal
The first step in coherent detection of the QPSK signal is to generate two signals by
multiplying (demodulating) the QPSK signal in the time domain. Multiplication by a
positive cosine function at the carrier frequency of 400 Hz creates the “upper” odd-bit

signal. Multiplication by a negative sine function at the carrier frequency creates the “lower”
even-bit signal..

Press return to continue.

Computer-aided Laboratory 9—page 7

77




Plot 30: Observe the demodulated “upper” signal.
Press return to observe the demodulated “lower” signal.

Plot 31: Observe the demodulated “upper” signal spectrum, prior to
filtering.

Press return to observe the demodulated “lower” signal
spectrum, prior to filtering.

“Recoverm.m” is used to separately lowpass-filter and recover each signal, using a
cutoff frequency of 100 Hz.

Press return to continue.

Plot 32: (}bserlve the odd-bit signal plotted over the recovered “upper”
signal.

Plot 33: Qbserl\re the even-bit signal plotted over the recovered “lower”
signal.

The final step in coherent QPSK detection is to join the signals using a parallel-to-
serial converter, performed by the function “par_ser.m.” The bit rate of the output signal is
twice the bit rate of each of the input signals.

Press return to continue.

Plot 34: Observe the digital message signal plotted over the combined
“upper” and “lower” recovered signals.

Question 9: What is the chief advantage of quadriphase shift keying over
bipolar phase shift keying?

Computer-aided Laboratory 9—page 8

78




| APPENDIX B—COMPUTER-AIDED LABORATORY KEYS

|
!

i EO 3513 Computer-aided Laboratory 1 Key

Question 1:

Answer;

Question 2:

Answer:

Signal and Spectrum Generation

Compare Plots 5§ and 6. Why does Plot 6 display more
frequencies than Plot 5?

For signal s2 shown in Plot 5, the step size of 0.001 produced a one-sided
spectrum of only 500 Hz; for signal s4 shown in Plot 6, the step size of
0.0001 produced a one-sided spectrum of 5000 Hz.

Given the spectral plot of a multi-tone signal, how could you
detem’ine the amplitudes and frequencies of each of the signal
tones?

On a one-sided spectrum, the amplitude of each signal tone is plotted against
frequency in Hz. The amplitude of each signal tone could be found by

observing the amplitude of the spectral component. Frequencies could be
determined by observing the Hz values of the spectral components.

Computer-aided Laboratory 1 Key—page 1

79




Plot 1 - signal s1

500

% 0’- |
-1 N N N . e . N ;
0 01 02 03 04 05 06 07 08 09
Time
(]
E
g 0
220 . . . . , . . . ,
01 02 03 04 05 06 07 08 09
Time
20 _ Plot_3 - signal s4, then s3 _
[
2
‘E, 0
220 . . . N . . . N .
0 0005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0045 0.05
Time
1 ] ' ____Plot4 - spectrum of sl
[
B ~@—————— 10 Hz with amplitude = 1
E. 05}
o 2 — 2 4 o - : A L
0 50 100 150 200 250 300 350 400 450

Frequency in Hz

Computer-aided Laboratory 1 Key—page 2

80




Amplitude

Amplitude

15 i ] } Plot 5 - spectrum of s2
10 |———— 20 Hz with amplitude = 10 B
sl “@———— 50 Hz with amplitude = 6 i
0 l‘L—— 35 Hz with amplitude = 4 _ a . o

0 50 100 150 200 250 300 350 400 450 500
Frequency in Hz

10 i '  Plot 6 - spectrum of s4
“@——————— 130 Hz with amplitude = 10

T —

S| | —————— 335 Mz witn amplitude = 5 R
0 l.<—T-— 490 Hz witlh amplitu(?e =1 ) B . o

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 1 Key—page 3

81




lablscr.m
%Computer-aided Lab 1 script for student use

%% % %% %% % %% % %% % % %% %% % %% % %% %% %%
%Computer-aided Lab 1 Signal and Spectrum Generation
%% %% % %% % %% % %% %% %% %% % % %% %% % %% %
%Part 1--Observe signal generation

%A. Establish a time vector

Clear
clg

11=0:.001:1; %time vector
%B. Generate a signal

sl=cos(2*pi*10*t1); %single-tone signal
%emulti-tone signal
$2=10*cos(2* pi*20*t1)+4*cos(2*pi*35*t1)+6%cos(2*pi*S0*t1),

%C. Controlling signal plots
%Plot 1

subplot(211),
plot(tl,sl)

title('Plot 1 - signal s1)
xlabel('Time")

ylabel(' Amplitude”)

%Plot 2

plot(tl,s2)

title('Plot 2 - signal s2')
xlabel("Time"

ylabelC Amplitude’)

pause
clg

12=0:.0001:1; %time vector
s3=5%5in(2*pi*200*12); %single-tone signal
%multi-tone signal
4=10%cos(2*pi* 130*12)+5*cos(2*pi* 335*2)+cos(2*pi*400*12);

%Plot 3

Computer-aided Laboratory 1 Key—page 4

82




subplot(211),
plot(22(1:500),54(1:500))
title(Plot 3 - signal s4, then s3')
xlabel('Time")

ylabelC Amplitude’)

hold on

pause
plot(12(1:500),s3(1:500),b")
hold off

pause

%% %% % %% % %% % %% % %% % %%
%Part 2--Observe spectrum generation
%A. Calling a function

{specl,shortHz]=spectral(s1,.001); %generate spectrum for s2
%Plot 4

subplot(212),

plot(shortHz specl) %plot spectrum of s1
title(Plot 4 - spectrum of s17)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

pause
clg

spec2=spectral(s2,.001); %generate spectrum for s2
%Plot 5

subplot(211),

plot(shortHz spec2) %plot spectrum of s2
title(Plot 5 - spectrum of s2°)
xlabel(Frequency in Hz")

ylabelC Amplitude’)

(specd JongHz])=spectral(s4,.0001); %generate spectrum for s4
%Plot 6

subplot(212),

plot(longHz specd)  %plot spectrum of s4
title('Plot 6 - spectrum of s4)
xlabel('Frequency in Hz)

Computer-aided Laboratory 1 Key—page 5

83




This page is intentionally
left blank.

84




EO 3513 Computer-aided Laboratory 2 Key
Sampling and Recovery

Question 1: Calculate the following values, in seconds, for the naturally-
and flattop-sampled signals:

sampling period T
pulse duration

Answer; T = 1/fs => 1/1000 => 0.001 seconds
t =d*T=>0.5*0.001 => 0.0005 seconds

Question 2: Describe the distinguishing pulse shape of each sampled
signal:

naturally.sampled
flattop-sampled
impulse-sampled

Answer: naturally-sampled - pulses follow the shape of the message signal
flattop-sampled - pulses have the amplitude of the message signal at the
pulse beginning, but remain flat over pulse duration
impulse-sampled - pulses are ideal impulses with the amplitude of the signal

Question 3: Describe the overall shape of each spectrum. Does each of the
spectral plots conform to your theoretical expectations? Note
any discrepancies.

Answer: The naturally-sampled signal spectrum consists of groups of frequencies
which have a “sinc” shape to their envelope. The impulse-sampled signal
spectrum shows frequencies which have constant amplitudes. The flattop-
sampled signal spectrum shows frequencies that individually conform to the
“sinc” envelope.

Naturally-sampled and flattop-sampled spectra are as expected, but the
amplitude of the spectral components in the impulse-sampled signal

spectrum should remain constant, not decline (due to the computer’s
inability to generate a perfect impulse).

Computer-aided Laboratory 2 Key—page 1

85




Question 4:

Answer;

Question 5:

Answer;

Question 6:

Answer:

Question 7:

Answer:

Question 8:

Answer:;

Calculate P, for N=1, N =2,and N = 3.

Compare with the values shown on the spectral plot for natural
sampling.

ForN=1 Py=0.3183

ForN=2 Py=0

ForN=3 Py=-0.1061

Values are consistent with those on the spectral plots. (Note that the absolute
values are plotted.)

Calculate P, for f = 550, f = 700, and f = 880.

Compare with the values shown on the spectral plot for flattop
sampling.

For f =550 Py =0.4401

For f =700 Py= 0.4052

For f =880 Py=0.3553

Values are consistent with those on the spectral plots.

What is the minimum theoretical sampling frequency for the
message signal s?

22*450Hz =>2900 Hz

Compare the undersampled signal spectra in plot 12 to its
counterpart in plot 7. What is the effect of undersampling on
the spectrum? What is the effect of undersampling on the
signal recovery?

The replicas of the baseband message signal frequencies produced by
sampling overlap, and prevent proper recovery of the message signal (this
effect is called “aliasing™).

What is the effect of reducing the duty cycle on the sampled
signal baseband bandwidth?

As the pulse width decreases, the sampled signal baseband bandwidth
increases, illustrating the trade-off between transmission power and
required bandwidth.

The decreased pulse width causes the pulse shapes to change more
frequently; thus higher frequencies are needed to capture the changes.

Computer-aided Laboratory 2 Key—page 2

86




— ———— — —

Amplitude Amplitude Amplitde

Amplitude

_Plot 1 - message signal, pulse train _

0 0005 001 0015 002 0025 003 0035 004
Time
Plot 2 - naturally-sampled signal

-

0 0005 001 0015 002 0025 003 0035 004

Time

__Plot 3 - message signal, impulse train

o et plpeadonstf

0 0005 001 0015 002 0025 003 0035 004

Time

Plot 4 - impulse-sampled signal

L e e e RS

0 0005 001 0015 002 0025 003 0035 004

Time

Computer-aided Laboratory 2 Key—page 3

87




r—“

5 . ] Plot 5 - ﬂattog—vsamyled §ignal

Amplitude
o]

0 0005 001 0015 002 0025 003 0035 004
Time

NO PLOT HERE--JUST PRESS RETURN

Plot 6 - spectrum of message signal

3 - — 120Hz
'-Eé_ 0.5 4—— 300 Hz 4
< @ 450H:
O A s . " . . " A :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
0.5 Plot 7 - spectrum of naturally-sampled signal
o . baseband signal = ) ’ i ) I
'E frequencies first zero crossing
= s 25 3;: 45:
g l
< .
HJH A S N

0 ,
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 2 Key—page 4

88




__Plot 8 - spectrum of impulse-sampled signal

| 1

0.1 -

3005
E..

T

0 , . ..
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
0.5 ) ' Plotg - spectrum of flattop-s'amplegﬁ signal

3 first zero crossing

2

? 2fs 3‘5 4‘s
RN <A N N T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

5 ' Plot 10 - message signal, recovered signal _

QL

£ |
-5

0 0005 001 0015 002 0025 003 0035 004
Time

NO PLOT HERE--JUST PRESS RETURN

Computer-aided Laboratory 2 Key—page 5

89




5 ___Plot 11 - undersampled signal (natural sampling)

:

-5 N . N ) N R .
0 0005 001 0015 002 0.025 003 0.035 0.04
Time
0.6 qut 12 - undersampled spectrum (natural sampling)
'g 0.4} .
=
B
2F ]
£ o]
0 ., -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
5 Plot }3 - undersampled recovery (natural sampling), message signal
(]
E
- L ) — recovered signal | . .
0 0005 001 0015 002 0025 003 0035 004
Time

NO PLOT HERE--JUST PRESS RETURN

Computer-aided Laboratory 2 Key—page 6

90




10 Plot 14 ﬂattop~sam1)led s1gnal w1th d=.7_

TN W

Amplitude
=)

-10 " - . . , — . . R
0 0005 001 0015 0.02 0.025 003 0.035 004 0045 0.05
Time
1.5 ___Plot 15 - spectrum of flattop-sampled signal withd = .7 _
-g ) L first zero crossing at 1429 Hz
=
£ os) 1 l i
0 Lo Z bl v i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
10 _Plot 16 - flattop-sampled siggal withd=.3
Q
E
-g_ 0
<
-10 . . . . . . R . R
0 0005 0.01 0015 002 0.025 0.03 0035 004 0.045 0.05
Time
0.6 Plot 17 - spectrum of flattop-sampled signal with d = .3
"g) 0.4} first zero crossing at 3333 Hz |
B
g o2 “ “ /
0 l l JL [N | l L ] l ‘

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 2 Key—page 7

91




lab2scr.m
%Computer-aided Lab 2 script for student use

%% %% %% %% %% %% %% %% %% % %% %% %
%Computer-aided Lab 2 Sampling and Recovery

%% % %% % %% %% % %% %% % %% %% %% %% %

%Part 1--Observe the effects of sampling on the spectrum
%A. Generating the signal

Clear
clg

delta_t=,0001; %step size
t=0:delta_t:1; %time vector
%signal vector
$=c08(2*pi* 120*)+cos(2*pi*300* )+cos(2* pi*450*1);
samprate=1000;
d=.5;

%Plot 1

subplot(211), %plot message and pulse train
plot(t(1:400),s(1:400))

title(Plot 1 - message signal, pulse train")
xlabel(Time")

ylabelC Amplitude”)

hold on

pause
%naturally-sample the signal

[natsig] pulstrn]}=natsamp(s,delta_t,samprate.d);

%B. Sampling the signal

%Plot 1 continued

plot(t(1:400),pulstrn1(1:400),b")
hold off

%Plot 2

subplot(212), %plot naturally-sampled signal
plot(t(1:400),natsig1(1:400))

title(Plot 2 - naturally-sampled signal’)

xlabel("Time’)
ylabelCAmplitude?)

Computer-aided Laboratory 2 Key—page 8

92




pause
clg
%impulse-sample the signal
[impsig1,imptrn)=impsampy(s,delita_t,samprate);
%flattop-sample the signal

flatsig 1=flattop(s,delta_t,samprate,d);
%Plot 3

subplot(211), %plot message and impulse train
plot(t(1:400),[s(1:400);imptm(1:400)])
title(Plot 3 - message signal, impulse train")
xlabel('Time")

ylabelCAmplitude”)

%Plot 4

subplot(212), %plot impulse-sampled signal
plot(t(1:400),impsig1(1:400))

title('Plot 4 - impulse-sampled signal’)
xlabel(Time")

ylabelCAmplitude’)

pause
clg

%Plot 5

subplot(211), %plot flattop-sampled signal
plot(t(1:400),flatsig1(1:400))

title(Plot 5 - flattop-sampled signal’)
xlabel(Time")

ylabel( Amplitude”)

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

clear pulstml;clear pulstm2;clear imptm;
%C. Generating the spectrum

%generate spectrum for s
[spec_s,Hz}=spectral(s,delta_t);

%Plot 6

Computer-aided Laboratory 2 Key—page 9

93




subplot(211),

plot(Hz,spec_s)

titte(Plot 6 - spectrum of message signal')
xlabel(Frequency in Hz')

ylabel( Amplitude”)

clear spec_s;

%gencrate spectrum for naturally sampled signal
[specnat1,Hz,fftnat]=spectral(natsig 1 delta_t);

%Plot 7

subplot(212), %plot spectrum of naturally-sampled signal
plot(Hz specnatl)

title(Plot 7 - spectrum of naturally-sampled signal’)
xlabel(Frequency in Hz")

ylabelCAmplitude”)

pause
clg
clear specnatl;

%generate spectrum for impulse sampled signal
{specimp1,Hz fftimp]=spectral(impsig1,deita_t);

%Plot 8

subplot(211),

plot(Hz specimp1)

title(Plot 8 - spectrum of impulse-sampled signal’)
xlabel(Frequency in Hz")

ylabel(Amplitude’)

clear specimpl;clear impsig1;

%generate spectrum for flattop sampled signal
(specflatl, Hz fiiflat}=spectral(flatsig] delta_t);

%Plot 9

subplot(212), %plot spectrum of flattop-sampled signal
plot(Hz,specflatl)

title(Plot 9 - spectrum of flattop-sampled signal’)

xlabel(Frequency in Hz')
ylabelCAmplitude’)

Computer-aided Laboratory 2 Key—page 10

94




pause
clg

clear specflatl;clear flatsig1;clear fitflat;clear fitimp;

%%9%%% % %% %% % %% % %% % %%%%%%
%Part 2--Observe the message signal recovery
%A. Recovering the message signal

recnatl=recovers(ffnat,d, ideallow’,Hz,500);
clear fitnat;

%Plot 10

subplot(211),

plot(1(1:400),5(1:400))

title(Plot 10 - message signal, recovered signal’)
xlabel('Time")

ylabel( Amplitude”)

hold on

pause(3)
plot(t(1:400),recnat1(1:400),'g)
bold off

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

clear recnatl;

pause
clg

%% %% % %% % %% % %% % %% % % %% %% % % %% %%
%Part 3--Observe the effects of aliasing on the spectrum

% and recovery
%A. Generating undersampled signals

%generate the
(specnat2, Hz,finat?}=spectral(natsig2,delta_t);

%Plot 11

subplot(211),
plot(t(1:400),natsig2(1:400))

Computer-aided Laboratory 2 Key—page 11

95




title('Plot 11 - undersampled signal (natural sampling)”)
xlabel(Time")
yiabel( Amplitude’)

%Plot 12

subplot(212),

plot(Hz,specnat2)

title(Plot 12 - undersampled spectrum (natural sampling)’)
xlabel(‘Frequency in Hz')

ylabelC Amplitude’)

pause
clg

clear specnat?;
recnat2=recovers(fitnat2,d, ideallow’,Hz,500);
clear fiinar2;

%Plot 13

subplot(211),

plot(t(1:400),recnat2(1:400))

title('Plot 13 - undersampled recovery (natural sampling), message signal’)
xlabel(Time")

ylabelC Amplitude’)

hold on

panse(3)
plot(t(1:400),s(1:400),d")
hold off

subplot(212),
title('NO PLOT HERE--JUST PRESS RETURN)

pause

cg
clear

%% %% % %% % %% % % %% %% %% %% % %% %% % %% %%
%Part 4--Observe the effects of altering the duty cycle on the
%  baseband bandwidth

delta_t=.0001; %regenerate the signal variables
samprate=1000;

t=:delta_t:1;
8=2*(cos(2*pi*150*tH-cos(2*pi*250*t)+cos(2*pi*450*D);

%A. Flattop-sample the signal using a larger duty cycle

Computer-aided Laboratory 2 Key—page 12
96




flatsigbig=flatiop(s,delta_t,samprate,.7); %sample the signal
%Plot 14

subplot(211), %plot the signal
plot(1(1:500).fatsigbig(1:500))

title(Plot 14 - flattop-sampled signal with d = .7")
xlabel('Time")

ylabel( Amplitude)

[specflatbig,Hz]=spectral(flatsigbig,delta_t); %generate the spectrum
%Plot 15

subplot(212), %plot the spectrum

plot(Hz,specflatbig)

title('Plot 15 - spectrum of flattop-sampled signal with d = .7°)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

pause
clg

%B. Flattop-sample the signal using a smaller duty cycle
flatsigshort=flattop(s,delta_t,samprate,.3); %sample the signal
%Plot 16

subplot(211), %plot the signal
plot(t(1:500),flatsigshort(1:500))

title(Plot 16 - flattop-sampled signal with d = .3')
xlabel('Time")

ylabelC Amplitude’)

specflatshort=spectral(flatsigshort delta_t);

%Plot 17

subplot(212), %plot the spectrum

plot(Hz,specflatshort)

title(Plot 17 - spectrum of flattop-sampled signal with d = .3")

xlabel(Frequency in Hz')
ylabel{ Amplitude’)

Computer-aided Laboratory 2 Key—page 13

97




This page is intentionally
left blank.

98




EO 3513 Computer-aided Laboratory 3 Key

Question 1:

Answer:

Question 2:

Answer:
Question 3:

Answer:
Question 4:

Answer:

Pulse Modulation (PAM, PWM, PPM)

(}alc:llate the following values, in seconds, for the PAM
signal:

sampling period T
pulse duration <

T = 1/fs => 1/500 => 0.002 seconds
t=d *T=>0.5* .002 = 0.001 seconds

The maximum signal amplitude of s is 8.8, the modulation rate
is 500 Hz, and the maximum pulse duration is 0.8 of the
sampling period. Calculate the duration in seconds of the
widest pulse that could occur for its PWM signal.

Maximum pulse duration = 0.8 * T => 0.8 * 0.002 => 0.0016 seconds

The zero crossings in this signal occur halfway between the
minimum and maximum signal values. Calculate the pulse
duration in seconds for a PWM pulse that occurs at the
beginning of a zero crossing.

Pulse duration at zero crossing = 0.0016/2 => 0.0008 seconds

Using the above approximations, calculate the baseband
bandwidths for the PAM, PWM and PPM signals. Do these
values reflect what you observe in the spectral plots? Note any
discrepancies.

PAM bandwidth = 0.5k => 0.5/0.001 => 500 Hz
PWM and PPM = 0.5/risetime => 0.5/0.0001 = 5000 Hz

The calculated baseband bandwidth of the PAM signal, 500 Hz, is adequate
to capture the signal information. The PAM pulses occur at fixed, known
intervals, and are of a fixed, known duration. The 500 Hz approximation is
based solely on 1,the value of that duration.

PWM and PPM signals require a much higher baseband bandwidth because
less information is known about their pulses. The higher frequencies are
needed to convey the information regarding the exact locations or widths of
the pulses. The approximation of 5000 Hz appears to capture most of the
information required for the PWM and PPM signals.

Computer-aided Laboratory 3 Key—page 1

99




10 i Plot‘l - message siggalﬁ, PAM signal with d =.5

—

e . s N N N N L
0.01 0.015 002 0.025 003 0.035 0.04 0.045 0.05
Time

10 ___Plot 2 - message signal, PWM signal with max = .8

duration = 0.0016 seconds duration = 0.0008 secon
- 0 — e N N N A X
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

10 : P:lot 3- message signal,.PPM si_gnal wi‘th d=. l

Amplitude

-10 : : : : : : : : :
0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04
Time

NO PLOT HERE--JUST PRESS RETURN

Computer-aided Laboratory 3 Key—page 2

100




o

Plot 4 - spectrum of message signal

75H:z

150 Hz

Amplitude

0 A A - o N a s N . \
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
3 i . Plot 5 - spectrum of PAM signal withd =.5 _
g 2 fs = 500 Hz s
g 1 J+/ .
<
oul 11, ln.xJ L[.ILI.-‘I | N S A | BN I SR W o
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
4 i Plot 6 - spectrum of PWM signal with max =.8
-%é’ fs = 500 Hz
2 2 -
g
<
0 l 101 I. ula |h. Ill.ll | ._ll FYRITRTVDN VNI TN ot O N 1 "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
1 ] _Plot 7; spectrum of PPM sigpal withd=.1
% fs = 500 Hz
% 0.5+ .
<
0!
0 500 1000 1S00 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 3 Key—page 3

101




lab3scr.m
%Computer-aided Lab 3 script for student use

%% %% %% % %% % %% % To% T Fo Fo %o % Fo % % %o % % Fo Fo Fo %o %o Fo
%Computer-aided Lab 3 Pulse Modulation (PAM, PWM, PPM)
%% %% %% %% % %% % % %o % Fo %o %o %o % %o % %o %o % %o Fo %o Fo %o %o %
%Part 1--Observe the differences in the time domain for the
%three types of modulation

%A. Generating the signal

clg
clear

delta_t=.0001;

samprate=500;

t=0:delta_t:1;
s=5*(cos(2*pi*75*t)+sin(2*pi* 150*1));

%max(s) %find the max and min values of s
%min(s)

%Plot 1

subplot(211), %plot the message signal
plot(1(101:500),s(101:500))

title(Plot 1 - message signal, PAM signal with d = .5")
xlabel('Time")

ylabel( Amplitude’)

hold on

pause

%B. Modulating the signal
flatsig=flattop(s,delta_t,samprate,.5); %flattop sample the signal (PAM)
plot(t(101:500),flatsig(101:500),'b") %plot the puise-amplitude modulated signal

hold off
pause

pwsig=pulswid(s,delta_t,samprate,.8); %pulse-width modulate the signal
%Plot 2

subplot(212),
Computer-aided Laboratory 3 Key—page 4

102




plot(t(101:500),[s(101:500);pwsig(101:500)]) %plot the pulse-width modulated
title(Plot 2 - message signal, PWM signal with max = .8") %and message signal
xlabel("Time")

ylabel( Amplitude’)

pause
clg

ppsig=pulspos(s.delta_t,samprate..1); %pulse-position modulate the signal
%Plot 3

subplot(211),

plot(1(201:400),[s(201:400;ppsig(201:400)]) %plot message and pulse-position
title(Plot 3 - message signal, PPM signal withd = .1) %modulated signals
xlabel(Time")

ylabel( Amplitude")

grid

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

%% %P0 %% %% Fo %o %% %o Fo Fo % %o Fo %o %o %o %o %o %o %0 %o %o % T %o To To

%Part 2--Observe the differences in the frequency domain for the

%three types of modulation

%A. Generating the spectra

[spec_s,Hz)=spectral(s,delta_t); %generate spectrum of the message signai
%Plot 4

subplot(211), %plot message spectrum

plot(Hz,spec_s)

title(Plot 4 - spectrum of message signal’)

xlabel(Frequency in Hz")

ylabel( Amplitude’)

clear s;spec_s;

specpam=spectral(flatsig,delta_t); %generate spectrum of the PAM signal
%Plot 5

subplot(212), %plot PAM spectrum
plot(Hz,specpam)

Computer-aided Laboratory 3 Key—page 5

103




title(Plot 5 - spectrum of PAM signal with d = .5)
xlabel(‘Frequency in Hz')
ylabel( Amplitude’)

clear flatsig;specpam;
pause
clg

specpw=spectral(pwsig,delta_t), %generate spectrum of the PWM signal
%Plot 6

subplot(211), %plot PWM spectrum

plot(Hz specpw)

title('Plot 6 - spectrum of PWM signal with max = .8
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear pwsig;specpw;

specpp=spectral(ppsig,delta_t); %generate spectrum of the PPM signal
%Plot 7

subplot(212), %plot PPM spectrum

plot(Hz,specpp)

title('Plot 7 - spectrum of PPM signal with d = .1)

xlabel(Frequency in Hz')
ylabelC Amplitude")

Computer-aided Laboratory 3 Key—page 6

104




-

EO 3513 Computer-aided Laboratory 4 Key

Analog-to-Digital Conversion and Digital Encoding

Question 1:

Answer:

Question 2:

Answer:

Question 3:

Answer:

Calculate the following values relating to the quantization
characteristic for this system:

dynamic range

actual step size
actual resolution
percentage resolution
number of levels

Would you describe this quantizer as “mid-step,” or “mid-
tread”?

dynamic range = 6 * number of bits => 6 * 5 =>30dB

actual step size =21+ 1 x full-scale V=>+2-5+1x10=>0625V
actual resolution =+ 2“1 x full-scale V=>% 2~ x 10 => 0.3125 V
percentage resolution=1 2 1 x 100% =>+ 2 -5 x 100% => 3.125%
numbser of levels = 5 bits => 27 => 32 levels

This quantizer is “mid-tread.”

List the amplitude (“voltage”) of the quantized signal in each
of the first 6 sampling periods.

9375V
8.125V
50V
0oV
-4375V
75V

From Plot 4, obtain the value of the signal-to-noise ratio for
the quantized signal. Record this value.

10.45 dB

Computer-aided Laboratory 4 Key—pay 1

105




Question 4:

Answer:

Question 5:

Answer:

Question 6:

Answer:

From the command window, obtain the first 30 values of
“codedsig.” Record these values. Is this bit pattern reflected
on Plots 6, 9, and 12?

1 1110 1 11 0 0
1 01 1 1 1 0 0 0 O
01 0 0 1 0 01 0O
Yes—the bit pattern is reflected on the plots.

Describe the distinguishing characteristics of each encoding
scheme:

NRZL unipolar
RZL unipolar
manchester

The NRZL unipolar encoded signal indicates a mark by remaining at some
voltage level throughout the bit duration; it indicates a space by dropping to
zero.

The RZL unipolar encoded signal indicates a mark by remaining at some
voltage level for the first half of the bit duration, then dropping to zero for
the last half; it indicates a space by remaining at zero for the bit duration.

The manchester encoded signal indicates a mark by remaining at some
voltage level for the first half of the bit duration, then dropping to a second
voltage level for the last half of the bit duration; it indicates a space by
remaining at the lower voltage level for the first half of the bit duration, and
rising to the higher level for the second half of the bit duration.

(ialcu:ate the approximate baseband bandwidth for the PCM
signals:

NRZL unipolar coded signal
RZL and manchester coded signals

Do these values reflect what you observe in the spectral plots?
For NRZL signal: B = 0.5/x => 0.5/0.001 seconds => 500 Hz

Ilflc;r RZL and manchester signals: B = 0.5/r => 1/0.0005 seconds => 1000

The spectral plots support the above approximations.

Computer-aided Laboratory 4 Key—page 2

106




Question 7:

Answer:
Question 8:
Answer:

Question 9:

Answer:

From Plot 16, obtain the value of the signal-to-noise ratio for
the quantized signal. Record this value.

10.97 dB
What is the effect of compression on the signal?

The compression function increases the lower-amplitude signal values in a
manner that minimizes the extreme differences in the signal.

From Plot 21, obtain the value of the signal-to-noise ratio for
the companded signal. Record this value and compare it to the
ratio obtained in Question 7. Did the companding process
reduce the amount of quantization noise?

13.03 dB

Yes—the signal to noise ratio increased due to use of the compression and
expansion functions.

Computer-aided Laboratory 4 Key—page 3

107




Plot 1 - quantization characteristic

10

Voltage in
10 i _ Plgt2 - message agad saleed sigxals _
= ok
g
<
-10 . . " . . A R . N
0 001 002 003 004 005 006 0.07 0.08 0.09 0.1
Time
10 . _Plot 3 - sampled signal and quantized signal ,
% (i ][] Vanns
-10 . . — . N N . . -
0 001 002 003 004 005 006 0.07 008 0.09 0.1
Time

Computer-aided Laboratory 4 Key—page 4

108




_Plot 4; message signa'l and quantized signal

SNR=10.45

001 002 003 004 005 006 007 008 009 0.1

Time

NO PLOT HERE--JUST PRESS RETURN

. Plot 5 - NRZL unipolar coded signal and quantized signal _

10

% il i

10

0 . . —_ " A — — s —_—
0 0005 001 0015 002 0025 003 0.035 004 0.045 0.05

Plot 6 - expanded NRZL unipolar coded signal

Time

LI
H

1 1 1\0’1 1 1\0 0

0 0001 0.002 0.003 0004 0.005 0.006 0.007 0.008 0.009 0.01

Time

Computer-aided Laboratory 4 Key—page 5

109




?lot 7 -vNRZL ﬁunipolm; coded §ignal spectrum

5
0 s N " i —
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
NO PLOT HERE--JUST PRESS RETURN
10 _ Plot8- RZ1, unipolar coded signal and quantized signal

. O

0 0005 001 0015 002 0025 003 0035 004 0045 005
Time

_Plot 9 - expanded RZL unipolar coded signal

Amplitude
=)

10

1 0 1 1 1 1 0 0 0 0

Amplitude
=

-10 . . 2 s N . . . .
0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
Time

Computer-aided Laboratory 4 Key—page 6

110




Amplinde

Amplitude

Amplitude

Plot'IO -RZL unipolar coded spectrum

3
2 -

1 -
0 . . i e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz
NO PLOT HERE--JUST PRESS RETURN

10 Plot 11 - manchester coded signal and quantized signal

0

0 0005 001 0015 002 0025 003 0035 004 0045 005
Time

10 _Plot 12 - expanded manchester coded signal

-10 . . . . . . . ) .
0.02 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.03
Time

Computer-aided Laboratory 4 Key—page 7

111




1 ] _____Plot 13 - manchester coded spectrum

-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

NO PLOT HERE--JUST PRESS RETURN

10 Plot 14 - message signal and sampled signal

Amplitude

Time

10 Plort 15 - sampled signal and quantized signal

Amplitude
(¥ ]

oUW, ot anun_aitm, J\ﬂl DYLuﬂmmnmh R
0 0005 0.01 0.015 0.02 0.025 003 0035 0.04

Time

Computer-aided Laboratory 4 Key—page 8

112




10 . Plot 16 - message signal, quantized signal

% st SNR=10.97
0
0 0.005 001 0. 015 0. 02 0. 025 0.0 0. 035 .04
Time
NO PLOT HERE--JUST PRESS RETURN
10 Plot 17 - message signal, compressed signal with mu = 255

0 0.005 001 0015 002 0.025 0.03 0035 0.04
Time
10 Plot 18 - message signal, compressed signal with mu = 10

0 0005 001 0015 002 0025 003 0035 004
Time

Computer-aided Laboratory 4 Key—page 9

113




10 Plot 19 - compressed signal and sampled compressed signal

Amplitude
(¥}

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time

10 Plot 20 - sampled wmmgsw sigllal and quantized compressed signal

T L

0 , , Hia1gh
0 0.005 0.01 0.015 0.02 0025 003 0.035 0.04
Time

Amplitude

10 _____Plot 21 - message signal and companded signal

SNR=13.03

Amplitude

0 . R N N N N N
0 0.005 001 0015 002 0025 003 0035 0.04
Time
NO PLOT HERE

Computer-aided Laboratory 4 Key—page 10

114




Yy

lab4scr.m

clg
Clear

d=5;
samprate=200;

t=0:delta_t:1;

%Plot 1

grid

xlabel('Voltage in")
ylabel("Voltage out")

pause
clg

%Plot 2

xlabel(Time")
ylabelC Amplitude’)

%Piot 3

subplot(211), %plot the message and sampled signals
plot(t(1:1000),[s1(1:1000);flatsig(1:1000)})
titke(Plot 2 - message and sampled signals’)

%Computer-aided Lab 4 script for student use

%% %% %% % %% %% %% % %% % %% %% %% %% FeFo %%
%Computer-aided Lab 4 Analog-to-Digital Conversion and
% Digital Encoding

%% %% %% %% %% %% % %% % %% %% %% %% % %% %%
%Part 1--QObserve the quantization process

%A. Generating the message and sampled signals

delta_t=.0001; %set signal and sampling variables

sl=5%cos(2*pi* 15*t)+4*cos(2*pi*19*t); %signal and sammpling frequencies

%are intentionally low

flatsig=flattop(s1,delta_t,samprate.d);

%B. Evaluate the characteristics of the converter
[quanch_x,quanch_y,quansig,bin_n::ms]=quantize(2,5,flatsig,samprate,delia_t);

su'iirs(quamh_x,quanch _y)

title(Plot 1 - quantizatiop characteristic’)

%C. Compare the sampled and quantized signals

Computer-aided Laboratory 4 Key—page 11

115




subplot(212),
plot(t(1:1000),[flatsig(1:1000);quansig(1:1000)])
title(Plot 3 - sampled signal and quantized signal’)
xlabel('Time))

ylabel( Amplitude’)

pause
clg

quanch_y(1:(length(quanch_y)-1))

some_bin_nums=bin_nums(1:6)
pause
%5.. M:asure the quantization noise

sig_to_mcis=snr(sl,quansig);
str=num2str(sig_to_nois);

%Plot 4

subplot(211),
plot(t(1:1000),[s1(1:1000);quansig(1:1000)])
title(Plot 4 - message signal and quantized signal’)
xlabel(Time')

ylabel( Amplitude”)

text(.3,.8,['SNR=" str],'sc")

subplot(2i2),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

%% % % %% %% %% %% % %% %% %% %% % %%

%Part 2--Observe the process of PCM encoding

%A. Generating a binary-encoded signal
codedsig=encode(bin_nums,2,5); %binary-encode the signal
%B. Generating a non-return-to-zero level (NRZL) coded signal
bitrate=samprate*5;

nrzlunisig=nrzluni(codedsig,delta_t bitrate);
nrzlunisig=nrzlunisig*5; %increase signal level for plotting

Computer-aided Laboratory 4 Key—page 12

116




pem_axis=[0 .05 -10 10];
pem_axisl={0 .01 -10 10};
pem_axis2=[.01 .02 -10 10);
pem_axis3=[.02 .03 -10 10];

axis(pcm_axis);
%Plot 5

subplot(211),

plot(t(1:600),[quansig(1:600);nrzlunisig(1:600)])

title(Plot 5 - NRZL unipolar coded signal and quantized signal’)
xlabel(Time")

ylabel( Amplitude’)

axis(pcm_axisl);
%Plot 6

subplot(212),

plot(t(1:600),nrzlunisig(1:600))

title(Plot 6 - expanded NRZL unipolar coded signal’)
xlabel('Time")

ylabel( Amplitude’)

axis;

pause
clg

[specnrzl Hz}=spectral(nrzlunisig,delta_t);
clear nrzlunisig;

%Plot 7

subplot(211),

plot(Hz,specnrzl)

title(Plot 7 - NRZL unipolar coded signal spectrum')
xlabel(Frequency in Hz')

ylabel( Amplitude)

subplot(212),
tileCNO PLOT HERE--JUST PRESS RETURNY)

pause
clg

clear specnrzl

Computer-aided Laboratory 4 Key—page 13

117




%C. Generating a retumn-to-zero level (RZL) unipolar coded signal

rzunisig=rzuni(codedsig,delta_t bitrate);
rzunisig=rzunisig*s; %increase signal level for plotting

axis(pcm_axis);
%Plot 8

subplot(211),

plot(t(1:600),[quansig(1:600);rzunisig(1:600)])

tite(Plot 8 - RZL. unipolar coded signal and quantized signal’)
xlabel(Time')

ylabel( Amplitude’)

axis(pcm_axis2);
%Plot 9

subplot(212),

plot(t(1:600),rzunisig(1:600))

tile(Plot 9 - expanded RZL unipolar coded signal’)
xlabel(‘Time)

ylabelC Amplitude’)

axis;

pause
clg

specrz=spectral(rzunisig deita_t);
clear rzunisig

%Plot 10

subplot(211),

plot(Hz,specrz)

title(Plot 10 - RZL unipolar coded spectrum’)
xlabel('Frequency in Hz’)

ylabelCAmplitude’)

subplot(212),
title'NO PLOT HERE--JUST PRESS RETURN")

pause
clg

Computer-aided Laboratory 4 Key—page 14

118




clear specrz
%D. Generating a manchester coded signal

manchsig=manchest(codedsig,delta_t bitrate);
manchsig=manchsig*5; %increase signal level for plotting

axis(pcm_axis);
%Plot 11

subplot(211),
plot(t(1:600),[quansig(1:600);manchsig(1:600)])

title(Plot 11 - manchester coded signal and quantized signal’)
xlabel('Time))

ylabelCAmplitude’)

axis(pcm_axis3);
%Plot 12

subplot(212),

plot(1(1:600),manchsig(1:600))

title(Plot 12 - expanded manchester coded signal’)
xlabel(Time")

ylabel( Amplitude’)

axis;

pause
clg

specman=spectral(manchsig.delta_t);

clear manchsig

some_codedsig=codedsig(1:30) %print out values of first 6 words
pause

%Plot 13

subplot(211),

plot(Hz,specman)

title(Plot 13 - manchester coded spectrum’)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN))

Computer-aided Laboratory 4 Key—page 15

119




peuse

%% %% %% %% %% %% % %% %% %% % %% % %% % %% %% %%
%Part 3—~Observe the effects of companding on the quantization
% process

%A. Generating a signal

Clear
cig

samprate=1500;
d=.5;
delta_t=.0001;
t=0:delta_t:0.1;

$=2+2.1%cos(2*pi* 50*)+1.7* cos(4*pi* 50*t)+1.5*cos(6*pi* 50*1);
s=s+1.3*%cos(8*pi*50*1);

comp_axis=[0 0.04 0 10}; %set plotting boundaries
axis(comp_axis);

mul=255; %high value of mu
mu2=10; %low value of mu

%Plot 14

subplot(211),

plot(t(1:1000),s(1:1000))

title(Plot 14 - message signal and sampled signal’)
xlabel("Time")

ylabel( Amplitude’)

hold on

%B. Sampling and quantizing the signa!
flatsigl=flattop(s.delta_t.samprate.d);

plox(1(1:1000),flatsig1(1:1000),5)
hold off

axis(comp_axis);
%Plot 15
subplot(212),

plot(1(1:1000),flatsig1(1:1000))
title(Plot 15 - sampled signal and quantized signal’)

Computer-aided Laboratory 4 Key—page 16

120




xlabel(Time)
ylabel( Amplitude’)
hold on

[quanch_x,quanch_y,quansig1}=quantuni(2,3 flatsigl samprate delta_t);

plot(t(1:1000),quansig1(1:1000),b")
hold off

axis(comp_axis);

pause
clg

snr_quant=sur(s,quansigl); %find the quantization noise
str=num2str(snr_quant);

%Plot 16

subplot(211),
plot(t(1:1000),[s(1:1000);quansig1(1: 1000)])
title(Plot 16 - message signal, quantized signal’)
xlabel('Time")

ylabelC Amplitude’)

text(.3,.8,['SNR=' str],'sc")

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

%C. Compare compression characteristics for values of mu
press1_s=compress(s,mul,max(s)); %use signal maximum for compression function
%Plot 17

subplot(211),

plot(1(1:1000),[s(1:1000);press1_s(1:1000)])

title(Piot 17 - message signal, compressed signal with mu = 255")

xlabel('Time")

ylabel( Amplitude”)

press2_s=compress(s,mu2,max(s));
exp_sig=expand(press2_s,mu2,max(press2_s));

%Plot 18

Computer-aided Laboratory 4 Key—page 17

121




subplot(212),

plot(t(1:1000),{s(1:1000);press2_s(1:1000)])

title(Plot 18 - message signal, compressed signal with mu = 10")
xlabel('Time")

ylabelCAmplitude’)

pause
clg

%D. Sampling and quantizing the compressed signal
%use 8 levels to illustrate

flatsig2=flattop(press2_s.delta_t,samprate,d);
%Plot 19

subplot(211), .
plot(1(1:1000),[press2_s(1:1000);flatsig2(1:1000)])

title(Plot 19 - compressed signal and sampled compressed signal)
xlabel("Time")

ylabel( Amplitude’)

fquanch_x.quanch_y.quansig2]=quantuni(2,3 flatsig2 samprate delta_t);
%Plot 20

subplot(212),

plot(t(1:1000),[flatsig2(1:1000);quansig2(1:1000)])

tide(Plot 20 - sampled compressed signal and quantized compressed signal’)
xlabel("Time")

ylabelC Amplitude’)

pause
clig

%E. Expand the compressed quantized signal

exp_comp=expand(quansig2,mu2 max{(quansig2)); %use maximum signal value
snr_comp=snr(s,exp_comp);

str=num2str(snr_comp);

%Plot 21
subplot(211),
plot(t(1:1000),[s(1:1000);exp_comp(1:1000)])

title('Plot 21 - message signal and companded signal’)
xlabel('Time")

Computer-aided Laboratory 4 Key—page 18

122




e EEEEEEE—

ylabelC Amplitude’)
text(.3..8,'SNR=' str],'sc)

subplot(212),
title(NO PLOT HERE)

axis;

Compuser-aided Laboratory 4 Key—page 19

123




This page is intentionally
left blank.

124




EO 3513 Computer-aided Laboratory 5 Key
Amplitude Modulation Double Sideband (AM DSB)

Question 1: Calculate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth

b o AL
Answer: peak power 2 =102/2=>50

P=A,? 1 Y (AN? +By?)
average power 2521 =>102/2=>50
baseband bandwidth 150 Hz

Question 2: Predict the following values for the single-tone AM DSB

signal:
peak power
average power
bandwidth
2
Pp = .A_P_..
Answer: peak power 2 =>102/2=>50
A 2
average power T 4 =>102/4=>25
bandwidth 300 Hz

Computer-aided Laboratory 5 Key—page 1

125




Question 3:

Answer:

Question 4:

Answer:

From Plot 6, obtain the values representing peak and average
power for the signal-tone signal, and record them.

Do your calculations for bandwidth ard power agree with the
computer-generated values and spectrum?

peak power =50
average power = 25
Yes—calculations agree.

Why is coherent detection (detection using the carrier)
necessary for an AM DSB signal?

Envelope detection of the AM DSB signal would not detect phase shifts,
which indicate that the message signal has changed from positive to
negative values, or from negative to positive values.

Computer-aided Laboratory 5 Key—page 2

126




10 i . Plot 1 - single-tone message signal

-10 . . N . L R .
0 0005 001 0015 002 0.025 003 0035 004 0.045 005
Time
10 . _Plot 2 - single-tone message signal spectrum _
.g <———————— 150 Hz with amplitude = 10
2 st :
5 bascband bandwidih = 150 Hz
0 N " " N . s i . "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 S000
Frequency in Hz
10 ' ' Plot 3 - single-tone DSB signal
% 1 ! } 1
? 0 SR Gl 6\ ! A1tk it ‘ t ! l I"‘t | I
it i i TR i 1l i
-10 . . R | N . , .
0 0005 001 0015 002 0.025 0.03 0035 004 0.045 0.05
Time
10 _Plot 4 - single-tone message signal, expanded DSB signal _

Amplitude
=)

-10 R . s . . . ) .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

Computer-aided Laboratory 5 Key—page 3

127




Amplitude

Power spectral density

Amplitude

Amplitude

Plot 5 - sing!monc QSB sig)al spectrum

5
< ———— 1850 Hz with amplitude = 5
<@ 2150 Hz with amplitude = §
"N bandwidth 300 Hz
0 s " — s —_ " _ s i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
15 Plog 6- singlf-tone' DSB sigpal power spectral density
10 peak power=50 avg power=25 y
5 s
0 " N N ol A N -~ N N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
5 Plot 7 - demodulated single-tone DSB signal spectrum prior to filtering

N N

O N —_ " .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10

Frequency in Hz ‘ _
Plot 8 - single-tone message, DSB recovered, and amplified signals

0.005 0.01 0.015 002 0025 0.03 0035 0.04 0.045 0.05
Time

Computer-aided Laboratory 5 Key—page 4

128




L

Plot 9 - expanded DSB, message, and envelope detected signals

O A N i N i N — N
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 G.009 0.01
Time

NO PLOT HERE--JUST PRESS RETURN

50 i _ Plot 10 -'multi-tgnc message signal

.

Amplitude
=]

0 . A N - . N N N —_
0 0.005 001 0015 002 0.025 003 0.035 0.04 0.045 0.05
Time

20 . _Plot 11 - multi-tone message signal spectrum _
-<tl——————— 100 Hz with amplitude = 20

10L| @ 220 Hz with amplitude = 12 i
~@————— 350 Hz with amplitude = 10

ol _bandwidth350Hz . ‘ . ‘

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Amplitude

Computer-aided Laboraiory 5 Key—page 5

129




50 : . _Plot 12 - multi-tone DSB signal

-50 R . R . N A A R N
0 0005 001 0015 002 0.025 0.03 0.035 004 0.045 0.05
Time |
50 . Plotﬁlg - muthi-tone tpcssagg'_s_ignal, expanded DSB signal i

phase shifts

-50 . , . . . : . , .
0 0001 0002 2003 0004 0.005 0.006 0.007 0.008 0.009 0.01
Time
Plot 14 - multi-tone DSB signal spectrum
10 W) T v — r —F T —— -
'§ 1900 Hz with g | | <t————— 2100 Hz with amplitude = 10
amplitwde = 10
= 5 178(:i }nlxzdew-l-‘g —_— < ——————— 2200 Hz with amplilude =6 |
E' 16‘;'3‘;& with ~@———— 2350 Hz with amplitude = 5
ampliude=5 —— = || || |bandwidh 700Kz
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

NO PLOT HERE--JUST PRESS RETURN

Computer-aided Laboratory 5 Key—page 6

130




10

Plot 15 - demodulated multi-tone DSB signal spectrum prior to filtering

Amplitude
-

0 ll e LH [l
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
50 Plgt 16 - xqulti-ton'e message, Dgi recovered, and amplified signals
g- 1
<
-50 . . . . N . . . N
0 0005 001 0015 0.02 0.025 003 0035 004 0.045 0.05

Time

Computer-aided Laboratory 5 Key—page 7

131




labSscr.m
%Computer-aided Lab § script for student use

%% % %% %% %% %% %% % %% %% %% %% % %% %% %%
%Computer-aided Lab 5 Amplitude Modulation AM DSB

%% %% %% % %% %% %% %% % % % % % %% % %% %% %%

%Part 1-Observe the AM DSB modulation process with single-tone
% input

%A. Generating the signal and spectrum

Clear
clg

delta_t=.0001; %set signat and sampling variables
t=0:delta_t:1;

s=10*cos(2*pi*150*1); %single-tone signal variable

fc=2000; %modulating frequency for the carrier signal .
cutoff=160; %ideal lowpass filter cutoff frequency for single-tone

%Plot 1

subplot(211), %plot the signal
plot(1(1:500),s(1:500))

title(Plot 1 - single-tone message signal’)
xlabel(Time")

ylabel( Amplitude’)

{specs,Hz]=spectral(s,delta_t); %generate the spectrum
%Plot 2

subplot(212), %plot the spectrum

plot(Hz.specs)

title('Plot 2 - single-tone message signal spectrum’)
xlabel(Frequency in Hz')

ylabel(Amplitude’)

pause
clg

%B. Observe the single-tone double sideband (DSB) modulated
% signal

moddsbs=cos(2*pi*fc*t).*s; %modulate the signal by multiplying by a cosine

Computer-aided Laboratory 5 Key—page 8

132




%Piot 3

subplot(211), %plot the modulated signal
plot(1(1:500),moddsbs(1:500))

title(Plot 3 - single-tone DSB signal’)
xlabel(Time')

ylabelC Amplitude’)

%Plot 4

subplot(212), %plot detailed view to show phase shifts
plot(t(1:100),[s(1:100);moddsbs(1:100)})

title(Plot 4 - single-tone message signal, expanded DSB signal’)
xlabel('Time")

ylabelC Amplitude’)

pause
clg

%C. Verify the power and bandwidth of the DSB signal
modspecdsbs=spectral(moddsbs,delta_t); %generate the modulated spectrum
%Plot 5

subplot(211), %plot the modulated spectrum
plot(Hz,modspecdsbs)

title(Plot 5 - single-tone DSB signal spectrum’)
xlabel('Frequency in Hz")

ylabelC Amplitude’)

clear modspecdsbs;

dsb_pk_pwr_sngl=((max(moddsbs))*2)/2; %find the peak power
stri=num2str(dsb_pk_pwr_sngl);
psddsb=psd(moddsbs,delta_t); %generate the power spectral density

dsb_avg_pwr_sngl=sum(psddsb); %find average power by summing the power
%spectral density values
str2=num2str(dsb_avg pwr_sngl);

%Plot 6

subplot(212), %plot the power spectral density for the modulated signal
plot(Hz,psddsb)

title(Plot 6 - single-tone DSB signal power spectral density’)

xlabel('Frequency in Hz")
ylabel(Power spectral density”)

Computer-aided Laboratory 5 Key—page 9

133




text(.2,.3,'peak power=" strl),'sc)
text(.6,.3.('avg power=' str2],'sc’)

clear psddsb;

pause
clg

%D. Observe the recovery of the DSB signal

demoddsbs=cos(2*pi*fc*t).*moddsbs; %first step in recovering the sngnal--

%multiply by the carrier
[recspecdsbs,Hz,dsbfft}=spectral(demoddsbs.delta_t); %generate the spectrum
%the recovered signal
%Plot 7
subplot(211),
plot(Hz recspecdsbs)

title(Plot 7 - demodulated single-tone DSB signal spectrum prior to filtering’)
xlabel(Frequency in Hz')
ylabelC Amplitude’)

clear demoddsbs;clear recspecdsbs;
moddsbs=moddsbs(1:100);

recdsbs=recoverm(dsbfRt,'ideallow’ Hz cutoff); %recover and filter
clear dsbfft;

bigrecdsbs=recdsbs*2; %amplify signal

%Plot 8

subplot(212), %plot the recovered signal on top of the message signal
plot(t(1:500),{s(1:500),recdsbs(1:500)1)

title('Plot 8 - single-tone message, DSB recovered, and amplified signals’)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause
plot(t(1:500),bigrecdsbs(1:500),b)
hold off

pause
clg

detdsbs=cmplxenv(moddsbs);
%Piot 9

Computer-aided Laboratory 5 Key—page 10

134




subplot(211), %plot the recovered signal on top of the message signal
plot(t(1:100),[moddsbs(1:100);s(1:100)])

tile(Plot 9 - expanded DSB, message, and envelope detected signals’)
xlabel(Time)

ylabel( Amplitude’)

hold on

pause
plot(t(1:100),detdsbs(1:100), 'b)
hold off

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN)

pause

%% %% %% %% % %% % % % %% %o %% % %% % %o % Fo% %
%Part 2--Observe the AM DSB modulation process with
% multi-tone input

%A. Generating the signal and spectrum

Clear
clg

delta_t=.0001; %set signal and sampling variables
t=0:delta_t:1;

%multi-tone signal variable
s=10*cos(2*pi*350*1)+12*cos(2*pi*220*1)+20*cos(2*pi* 100*t);

fc=2000; %modulating frequency for the carrier signal
cutoff=360; %ideal lowpass filter cutoff frequency for multi-tone

%Plot 10

subplot(211), %plot the signal
plot(t(1:500),s(1:500))

title(Plot 10 - multi-tone message signal’)
xlabel(Time")

ylabelCAmplitude’)

[specs Hz}=spectral(s,delta_t); %generate the spectrum
%Plot 11

subplot(212), %plot the spectrum

plot(Hz specs)

title(Piot 11 - multi-tone message signal spectrum”)
xlabel(Frequency in Hz')

Computer-aided Laboratory 5 Key—page 11

135




ylabelCAmplitude’)

peuse
clg

%B. Observe the multi-tone double sideband (DSB) modulated

% signal and spectrum

moddsbs=cos(2*pi*fc*t).*s; %modulate the signal by multiplying by a cosine
%Plot 12

subpiot(211), %plot the modulated signal
plot(t(1:500),moddsbs(1:500))

title(Plot 12 - multi-tone DSB signal’)
xlabel(Time")

ylabelCAmplitude’)

%Plot 13

subplot(212), %plot detailed view to show phase shifts
plot(t(1:100),{s(1:100);moddsbs(1:100)])

title(Plot 13 - multi-tone message signal, expanded DSB signal’)
xlabel("Time")

ylabelCAmplitude’)

pause
clg

modspecdsbs=spectral(moddsbs,delta_t); %generate the modulated spectrum
%Plot 14
subplot(211), %plot the modulated spectrum

plot(Hz,modspecdsbs)

title(Plot 14 - multi-tone DSB signal spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

%C. Observe the recovery of the DSB signal
demoddsbs=cos(2*pi*fc*t).*moddsbs; %first step in recovering the signal--

Computer-aided Laboratory 5 Key—page 12

136




%multiply by the carrier
(recspecdsbs,Hz,dsbfft]=spectral(demoddsbs.delta_t); %generate the spectrum
%the recovered signal
%Plot 15
subplot(211),
plot(Hz recspecdsbs)
tile(Plot 15 - demodulated multi-tone DSB signal spectrum prior 1o filtering')
xlabel(Frequency in Hz')
ylabel( Amplitude’)

clear recspecdsbs;clear specs;clear modspecdsbs;clear demoddsbs;
clear moddsbs;

recdst yverm(dsbfft,'ideallow’ Hz cutoff); %recover and filter
bigrecdsus=recdsbs*2; %amplify signal

%Plot 16

subplot(212), %plot the recovered signal on top of the message signal
plot(t(1:500),[s(1:500);recdsbs(1:500)])

title(Plot 16 - multi-tone message, SB recovered, and amplified signals’)
xlabel(Time")

ylabelCAmplitude’)

hold on

pause
plot(t(1:500) bigrecdsbs(1:500),b")
hold off

Computer-aided Laboratory 5 Key—page 13

137




This page is intentionally
left blank.

138




EO 3513 Computer-aided Laboratory 6 Key
Amplitude Modulation Single Sideband (AM SSB)

Question 1: Calculate the following values for the single-tone message
signal:

peak power

average power
baseband bandwidth

P, = illz_
Answer: peak power = P72 s 2=>112.5

P=Ag? += Y (An? +By?)
average power = 2 N1 =>152/2=> 1125

baseband bandwidth = 130 Hz

Question 2: Predict the following values for the single-tone AM SSB
signal:

peak power
average power
bandwidth

p, = Ap”
2

Answer: peak power = =>7.52 /2 => 28.125

A2
P="
average power = 2 =>1752/2=>28.125

baseband bandwidth = 130 Hz

Computer-aided Laboratory 6 Key—page 1

139




Answer:

“‘

Question 3: From Plots 9 and 10, obtain the values representing peak and

average power for the signal-tone signal, and record them.

Do your calculations for bandwidth and power agree with the
computer-generated values and spectrum?

single-tone LSB peak power = 28.72
single-tone USB peak power = 28.12
single-tone LSB average power = 28.79
single-tone USB average power = 28.13

Yes—calculations agree.

Computer-aided Laboratory 6 Key—page 2

140




Amplitude

Amplitude

Amplitude

P}ot 1- singlc-topc message sigrlaI

20 —
or 4
-20 R N Fa . . N . R o
0 0.005 001 0015 002 0025 0.03 0.035 004 0045 005
Time
15 _ _Plot 2 - single-tone message signal spectrum )
10l | % 130 Hz with amplitude = 15
S5t .
bandwidth 130 Hz |
0 . " . " N N N . i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
10 _ Plot 3 - single-tone LSB signal
L Tt i !‘f" “l AT i
of I ; i i‘x‘f Wil ‘,l ‘: o i HAAHN “1‘; ' A H, L i ‘,5' 1 i li
-10 , R . . A . \ -
0 0.005 001 0015 002 0.025 0.03 0.035 0.04 0.045 0.05
Time
20 _Plot 4 - single-tone message signal, expanded LSB signal
0 4
=20 . . — 2 . . \ R N
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time

Computer-aided Laboratory 6 Key—page 3

141




10 i i Plot 5 - single-tone USB signal

-10 . . . N . . . . R
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
20 ' Plot Q - singlg—tone message signal, gxpande:d USB signal i
Q
<
=20 . .- . . . . R . .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time
10 ' . Plot 7 - single-tone LSB spectrum
g
"é. S 2870 Hz with amplitude = 7.5 >~ .
< A bandwidih 130 Hz
0 " — — 2 — A A " "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
10 _ ' Plot 8 - single-tone USB spectrum

3130 Hz with ampliude = 7.5 ———— .
/-  bandwidth 130 Hz

Amplitude
(7]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 6 Key—page 4

142




Power spectral density

Power spectral density

Amplitude

Amplitude

30

Plot 9 - single-tone LSB power spectral density

20}
10}

PEAK POWER=28.72 §
AVG POWER=28.12 ]

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

30
20t
10+

Plot 10 - single-tone USB power spectral density

PEAK POWER=28.79 ]
AVG POWER=28.13

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot !1 - single-tone demodulated LSB spectrum prior to filtering

20

oud
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
Plot 12 - single-tone message, LSB recovered, and amplified signals

-20

0

0.00; 001 0015 0.02 0025 0.03 0035 004 0045 005
Time

Computer-aided Laboratory 6 Key—page 5

143




Amplitude

Amplitude

Amplitude

Amplitude

Plot 13 - single-tone demodulated USB spectrum prior to filtering

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 14 - single-tone message, USB recovered, and amplified signals

0.005 001 0015 002 0025 0.03 0035 004 0045 0.05
Time

Plot 15 - multi-tone message signal

20

0005 001 0015 002 0025 003 0035 004 0045 005
Time

) Plot 16 - multi-tone message signal spectrum

10+

——— 170 Hz with amptlitude = 20
<————— 230 Hz with amptlitude = 12 J
400 Hz with amptlitude = 5

RS I—
bandwith 400 Hz

0
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Computer-aided Laboratory 6 Key—page 6

144




?lot 17 - multi;tonc LS}} signal

I “"“. }"i‘i"‘.‘t“‘!' | HE I A
{!\i.‘utsl i ‘ NN 'ul."‘i!-;‘?s’““ l ’] | PN A ‘-‘}:A'

iy
'

i
i

Amplitude

20 . . N —_— N R N N R
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Plot 18 - multi-tone message signal, expanded LSB signal

50
L
:
2 0 \/\ /ing\/A{B{§QM7§;(W
£
<

-50 . N . . R . , A .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time

Plot 19 - multi-tone USB signal

[ 3]
B I TR it 1l P A
-.§ 0 il L T lg nllL eIt
R O TR 1 Y

<

220 . . . . . . . , .

0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

50 _Plot 20 - multi-tone message signal, expanded USB signal
[}]
<
? 0

-50 . . . . . . \ .
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time

Computer-aided Laboratory 6 Key—page 7

145




Plot 21 - multi-tone LSB spectrum

g 10 2'830 Hz—\;rixh amplitude = 10 ——P
= st 2770 Hz with amplitude = 6 ———8» -
E. 2600 Hz with amplitude = 2.5 ——9 bandwidth 400 Hz

00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

10 ' Plot 22 - multi-tone USB spectrum
g 3170 Hz with amplitude = 10 ——9
| 5t 3230 Hz with amplitude = 6 7
s 3400 Hz with amplitude = 2.5 bandwidth 400 Hz

0 A A —_— " " i 2 h— a—
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 23 - multi-tone dcmgdulateg LSB spectrum 1 prior to filtering

5
(3]
z
:
1 P |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
50 Yot 24 - multi-tone message, LSB recovered, and amplified signals
(3]
2

-50 . . — N . L R , R
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Computer-aided Laboratory 6 Key—page 8

146




5 Plgt 25 - multi-tone demodulated USB spectrum 1 prior to filtering

Amplitude

]

0 A L N "
0 S00 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

50 Plo} 26 - m'ulti-ton‘c message, U§l§ recovgred, angi amplified signals

Amplitude
=)

0 . N N — — N i - .
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Computer-aided Laboratory 6 Key—page 9

147




lab6scr.m
%Computer-aided Lab 6 script for student use

%% %% %% % %% %% %% %% % %% %% %% % %% %% %%
%Computer-aided Lab 6 Amplitude Modulation AM SSB

%% %% %% %% % %% %% %% % %% %% % %% %% %% %%

%Part 1--Observe the AM SSB modulation process with single-tone
% input

%A. Generating the signal and spectrum

clear
clg

delta_t=.0001;
t=0:delta_t:1; %time vector
s=15%cos(2*pi*130*t); %single-tone signal

fc=3000; %modulating frequency for the carrier signal
cutoff=150; %ideal lowpass filter cutoff frequency for single-tone

%Plot 1

subplot(211), %plot the signal
plot(t(1:500),s(1:500))

title(Plot 1 - single-tone message signal’)
xlabel('Time')

ylabelCAmplitude’)

[specs,Hz)=spectral(s,delta_t); %generate the spectrum
%Plot 2

subplot(212), %plot the spectrum

plot(Hz,specs)

title(Plot 2 - single-tone message signal spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

pause
clg

clear specs;

%B. Observe the single-tone AM SSB modulated
% signals and spectra
[Isbs,usbs}=ssb(t,s,1,fc); %generate the upper and lower sideband signals

Computer-aided Laboratory 6 Key—page 10

148




%Plot 3

subplot(211), %plot the lower sideband signal
plot(t(1:500),1sbs(1:500));

title(Plot 3 - single-tone LSB signal’)
xlabel(Time))

ylabel( Amplitude’)

%Piot 4

subplot(212), %plot detailed view--no phase shifts
plot(t(1:100),[s(1:100);Isbs(1:100)])

title(Plot 4 - single-tone message signal, expanded L.SB signal’)
xlabel("Time')

ylabel( Amplitude’)

pause
clg

%Plot 5

subplot(211), %plot the upper sideband signal
plot(1(1:500),usbs(1:500));

title(Plot 5 - single-tone USB signal’)
xlabel("Time")

ylabel( Amplitude’)

%Plot 6

subplot(212), %plot detailed view—no phase shifts
plot(t(1:100),[s(1:100);usbs(1:100)]1)

title(Plot 6 - single-tone message signal, expanded USB signal’)
xlabel('Time")

ylabel( Amplitude’)

pause
clg

[speclsbs, Hz]=spectral(Isbs,delta_t); %generate the lower sideband spectrum
%Plot 7

subplot(211), %plot the lower sideband spectrum

plot(Hz,speclsbs);

title('Plot 7 - single-tone LSB spectrum’)

xlabel(Frequency in Hz')
ylabel( Amplitude’)

Computer-aided Laboratory 6 Key—page 11

149




specusbs=spectral(usbs.delta_t); %gencrate the upper sideband spectrum
%Plot 8

subplot(212), %plot the upper sideband spectrum
plot(Hz.specusbs);

title(Plot 8 - single-tone USB spectrum’)
xlabel('Frequency in Hz')

ylabelC Amplitude’)

clear specusbs;clear speclsbs;

pause
clg

%C. Verify the power and bandwidth of the SSB signals
Isb_pk_pwr_sngl=((max(Isbs))*2)/2 %find the peak power

{psdisb Hz])=psd(Isbs,delia_t); %generate the lower sideband power
%spectral density

Isb_avg_pwr_sngl=sum(psdisb) %find average power by summing the power
%spectral densities
%Plot 9

subplot(211), %plot the lower sideband power spectral density
plot(Hz,psdisb)

title(Plot 9 - single-tone LSB power spectral density")
xlabel(Frequency in Hz’)

ylabel(Power spectral density’)

clear psdish;
usb_pk_pwr_sngl=((max(usbs))*2)/2 %find the peak power

psdusb=psd(usbs.delta_t); %bgenerate the upper sideband power
%spectral density

usb_avg_pwr_sngi=sum(psdusb) %find average power by summing the power
%spectral densities
%Plot 10

subplot(212), %plot the upper sideband power spectral density
plou(Hz,psdusb)

title(Plot 10 - single-tone USB power spectral density’)
xlabel(Frequency in Hz')

Computer-aided Laboratory 6 Key—page 12

150




e —

ylabel(Power spectral density’)
clear psdusb;

pause
clg

%D. Observe the recovery of the SSB signals

demodisbs=cos(2*pi*fc*t).*Isbs; %recover the signal by multiplying by
%the camrier

clear Isbs;

{recspecisbs,Hz ffilsbs)=spectral(demodlisbs,delta_t);

clear demodisbs;

%Plot 11

subplot(211), %plot the remodulated Isb spectrum

plot(Hz recspeclsbs)

title(Piot 11 - single-tone demodulated LSB spectrum prior to filtering”)
xiabel(Frequency in Hz")

ylabelC Amplitude”)

clear recspecisbs;

reclsbs=recoverm(ffisbs, ideallow',Hz,cutoff); %recover and filter

clear fftisbs;
bigreclsbs=reclsbs*4; %amplify signal

%Plot 12

subplot(212), %plot the recovered signal on top of the message signal
plot(1(1:500),[s(1:500);reclsbs(1:500)])

title(Plot 12 - single-tone message, LSB recovered, and amplified signals’)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause
plot(t(1:500),bigrecisbs(1:500),b)
hold off

pause
clg

demodusbs=cos(2*pi*fc*t).*usbs; %recover the signal by multiplying by
%the carrier
clear usbs;

Computer-aided Laboratory 6 Key—page 13

151




(recspecushs,Hz fftusbs]=spectral(demodusbs,delta_t);
clear demodusbs;

%Piot 13

subplot(211), %plot the remodulated usb spectrum

plot(Hz recspecusbs)

title(Plot 13 - single-tone demodulated USB spectrum prior to filtering’)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear recspecusbs;

recusbs=recoverm(fftusbs,ideallow’ Hz cutoff); %recover and filter
clear fftusbs;
bigrecusbs=recusbs*4; %amplify signal

%Plot 14

subplot(212), %plot the recovered signal on top of the message signal
plot(1(1:500),{s(1:500);recusbs(1:500)])

title('Plot 14 - single-tone message, USB recovered, and amplified signals’)
xlabel("Time")

ylabelCAmplitude’)

hold on

pause
plot(t(1:500),bigrecusbs(1:500),")
hold off

pause

%% %% %% %% % %% % % %% % %% % % %o %o Fo %o %% % % % Fo Fo %o %o %o
%Part 2--Observe the AM SSB modulation process with multi-tone
% input

%A. Generating the signal and spectrum

Clear
clg

delta_t=.0001;
t=0O:delta_t:1; %time vector

%multi-tone signal
s=5*cos(2*pi*400*t)+12%cos(2*pi*230*t)}+20%cos(2*pi*170*t);

£c=3000; %modulating frequency for the carrier signal
cutoff=420; %ideal lowpass filter cutoff frequency for multi-tone

Computer-aided Laboratory 6 Key—page 14

152




%Plot 15

subplot(211), %plot the signal
plot(1(1:500),5(1:500))

title(Plot 15 - multi-tone message signal’)
xlabel('Time")

ylabelC Amplitude’)

[specs,Hz}=spectral(s.delta_t); Fogenerate the spectrum
%Plot 16

subplot(212), %plot the spectrum

plot(Hz,specs)

title(Plot 16 - multi-tone message signal spectrum’)
xlabel(Frequency in Hz')

yiabelC Amplitude’)

pause
clg

clear specs;

%B. Observe the multi-tone AM SSB modulated
% signals and spectra

{Isbs,usbs]=ssb(t,s,1,fc); %generate the upper and lower sideband signals
%Plot 17

subplot(211), %plot the lower sideband signal
plot(1(1:500),1sbs(1:500));

title(Plot 17 - multi-tone LSB signal’)
xlabel('Time")

ylabel( Amplitude”)

%Plot 18

subplot(212), %plot detailed view--no phase shifts
plot(t(1:100),[s(1:100);1sbs(1:100)])

title(Plot 18 - multi-tone message signal, expanded LSB signal’)
xlabel(Time")

ylabel( Amplitude’)

pause
clg

%Plot 19

Computer-aided Laboratory 6 Key—page 15

153




subplot(211), %plot the upper sideband signal
plot(t(1:500),usbs(1:500));

title(Plot 19 - multi-tone USB signal’)
xlabel('Time")

ylabel( Amplitude’)

%Plot 20

subplot(212), %plot detailed view—no phase shifts
plot(t(1:100),{s(1:100);usbs(1:100)])

title(Plot 20 - multi-tone message signal, expanded USB signal’)
xlabel("Time")

ylabelCAmplitude’)

pause
clg

{speclsbs,Hz]=spectral(lsbs,deita_t); Fogenerate the lower sideband spectrum
%Plot 21

subplot(211), %plot the lower sideband spectrum
plot(Hz,speclsbs);

title(Piot 21 - multi-tone LSB spectrum’)
xlabel(Frequency in Hz")

ylabelC Amplitude’)

specusbs=spectral(usbs,delta_t); %generate the upper sideband spectrum
%Plot 22

subplot(212), %plot the upper sideband spectrum

plot(Hz,specusbs);

title(Plot 22 - multi-tone USB spectrum’)

xlabel(Frequency in Hz')

ylabel( Amplitude’)

clear specusbs;clear speclsbs;

pause
clg

%C. Observe the recovery of the SSB signals
demodlsbs=cos(2*pi*fc*t).*Isbs; %recover the signal by multiplying by

%ithe carrier
clear Isbs;

Computer-aided Laboratory 6 Key—page 16

154




T ——

[recspeclsbs,Hz fftlsbs)=spectral(demodisbs delta_t);
clear demodisbs;

%Plot 23

subplot(211), %plot the remodulated Isb spectrum

plot(Hz recspeclsbs)

title(Plot 23 - multi-tone demodulated LSB spectrum prior to filtering')
xlabel( Frequency in Hz')

ylabelCAmplitude”)

clear recspecisbs;

reclsbs=recoverm(ffilsbs,'ideallow',Hz cutoff); %recover and filier
clear fftlsbs;
bigreclsbs=reclsbs*4; %amplify signal

%Plot 24

subplot(212), %plot the recovered signal on top of the message signal
plot(t(1:500),[s(1:500);reclsbs(1:500)])

title(Plot 24 - multi-tone message, LSB recovered, and amplified signals’)
xlabel(Time")

ylabelCAmplitude”)

hold on

pause
plot(t(1:500),bigreclsbs(1:500),b")
hold off

pause
clg

demodusbs=cos(2*pi*fc*t).*usbs; %recover the signal by multiplying by
%the carrier

clear usbs;

(recspecusbs,Hz, fftusbs)=spectral(demodusbs,delta_t);

clear demodusbs;

%Plot 25

subplot(211), %plot the remodulated usb spectrum
plot(Hz,recspecusbs)

title(Plot 25 - multi-tone demodulated USB spectrum prior to filiering)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear recspecusbs;
Computer-aided Laboratory 6 Key—page 17

155




recusbs=recoverm(ffiusbs, ‘ideallow’,Hz cutoff); %recover and filter
clear ffusbs;
bigrecusbs=recusbs*4; %amplify signal

%Plot 26

subplot(212), %plot the recovered signal on top of the message signal
plot(t(1:500),{s(1:500);recusbs(1:500)])

title(Plot 26 - multi-tone message, USB recovered, and amplified signals’)
xlabel('Time")

ylabelC Amplitude’)

hold on
pause

plot(t(1:500),bigrecusbs(1:500),")
hold off

Computer-aided Laboratory 6 Key—page 18

156




EO 3513 Computer-aided Laboratory 7 Key
Conventional Amplitude Modulation
(Conventional AM)

Question 1: Calculate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth

pp = AP
Answer: peak power = P72 51272 =505
P= A02 +'1— Z(ANz +BN2 )
average power = 2yt =>12/2 =505

bandwidth = 150 Hz

Question 2: Predict the following values for the single-tone convent: -.al
AM signal:

peak power
average power
bandwidth

Answer: peak power =P, = (1 + m)2P.=> (1 +0.8)2 * 0.5 => 1.62

m2

1+—

P = ( )PC
average power = => (1 +(0.82/2)) * 0.5 =>0.66

bandwidth = 300 Hz

Computer-aided Laboratory 7 Key—page 1

157




Question 3:

Answer:

Question 4:

Answer:

Question 5:

Answer:

Question 6:

From Plot 5, obtain the values representing peak and average
pl(:wer for the single-tone conventional AM signal, and record
them.

Do your calculations for bandwidth and power agree with the
computer-generated values and spectrum?

peak power = 1.6172
average power = (0.6598

Yes—calculations agree.

Refer to Plot 5 and estimate the percentage of power contained
in the carrier. What might be an advantage of having this
amount of power transmitted in the carrier as opposed to
transmission in the sidebands?

When m = 1, approximately 33% of the total average power is carried in the
sidebands, making the percentage of power in the carrier approximately
67%. The signal shown in Plot 5 had a value of m = 0.8. Approximately
75% of the power appears to be transmitted in the carrier.

Transmitting a high percentage of power in the carrier makes the carrier
easier to detect.

What result of overmodulation prevents the use of an envelope
detector for the conventional AM signal?

The presence of phase shifts in the overmodulated conventional AM signal
prevents use of an envelope detector.

What type of detection is needed for an overmodulated
conventional AM signal? Why?

Coherent detection (detection using the carrier) is necessary for an
gzermodulated conventional AM signal. The phase shifts preclude envelope
tection.

Computer-aided Laboratory 7 Key—page 2

158




Amplitude Amplitude Amplitude

Amplitude

Plot 1 - single-tone message signal

1 / \/ \/ -
-1
0 0005 001 0.015 0.02 0025 0.03 0035 004 0045 0.05
Time
1 _Plot 2 - single-tone message signal spectrum_
~——————— 150 Hz with amplitude = 1
0.5} .
bandwndth 150 Hz
0
0 500 1000 1500 2000 2500 3000 3500 4000 4”)0 5000
Frequency in Hz
2 ___Plot 3 - single-tone conventional AM signal
o }‘ | i
’ i f it
22 . . . N R N - . \
0 0.005 0.01 0015 002 0025 003 0.035 004 0.045 0.05
Time
1 Plot 4- -8 ingle-tone conventlonal AM spectrum
~———— 2000 Hz with amplitude = 1
05t . 4
1850Hzwith o <s————— 2]50 Hz with amplitude = 0.4
amplitude = 0.4 bandwidth 300 Hz
0 —_. " 2 i s N o L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Computer-aided Laboratory 7 Key—page 3

159




%‘ 0.5 VPIOIS; single-tone coswentior'xal AM_powcr spectral density _
3
:
S o A 1 I B
£ 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
NO PLOT HERE--JUST PRESS RETURN

2 __Plot 6 - single-tone filtered and envelope-detected signals
g
= 0 |
g
<

-2 N . , . N . ,

0.015 0.016 0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025

Time

1 _Plot 7 - single-tone envelope-detected and message signals
E
g 0 \\ /
<

0015 0.016 0.017 0018 0019 002 0021 0022 0.023 0.024 0.025
Time

Computer-aided Laboratory 7 Key—page 4

160




Amplitude

Amplitude

Amplitude

5 _Plot 8 - single-tone overmodulated conventional AM signal

0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05
Time

1 _Plot 9 - spectrum of overmodulated conventional AM signal

0.5 .

0 A P N | ) - N i — N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

5 Plot 10 - filtered and envelope-detected overmodulated signals

TN oo

-5 . . . Y . . . N .
0.015 0.016 0.017 0.018 0.019 0.02 0.02! 0.022 0.023 0.024 0.025
Time

Plot 11 - envelope-detected and message overmodulated signals

2 . . L . . — . . .
0.015 0.016 0.017 0.018 0019 0.02 0.021 0.022 0.023 0.024 0.025
Time

Computer-aided Laboratory 7 Key—page 5

161




2 _ _ P!ot 12 - _multi-tgnc message signal

Amplitude
?

0 0005 001 0015 002 0025 003 0035 004 0.045
Time

< i __Plot 13 - multi-tone message signal spectrum

0.05

100 Hz
- 300 Hz
- 400 Hz

Amplitude

bandwidth 400 Hz

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency in Hz

" ' Plot 14 - multi-tone conventional AM signal

5000

Amplitude

“0 0005 001 0015 002 0025 003 0035 004 0045
Time

1 Plot 15 - multi-tone conventional AM spectrum

0.05

1900 Hz ~d——— 2000Hz
0l 100H: bandwidth 800 Hz

Amplitude

L~ | e 2400Hz

A 2100 Hz
1600 Hz 4‘4 2300 Hz
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time

Computer-aided Laboratory 7 Key—page 6

162

5000




Amplitude

2 Plot 16 - multi-tone filtered and envelope-detected signals

0.015 0016 0017 0018 0019 002 0021 0.022 0023 0024 0025

Time
20 Plot 17 - _multi-tone cnvelqpe-detqctcd and message signals
10} .
OF ]
0015 0016 0017 0018 0019 002 0021 0.022 0023 0024 0.025

Time

Computer-aided Laboratory 7 Key—page 7

163




lab7scr.m
%Computer-aided Lab 7 script for student use

%% %% %% %% %% % %% % %% % %% %% %% % %% %% % %% %
%Computer-aided Lab 7 Conventional Amplitude Modulation--
% Conventional AM

%% % %% %% % % %% % %% %% % % %% % %% % %% %% %% %%
%PART 1--Observe the conventional AM modulation process
% using single-tone input

%A. Generating the signal and spectrum

clear
clg

delta_t=.0001;
t=0:delta_t:1; %time vector
s=c0s(2*pi*150*t); %single-tone signal

fc=2000; %modulating frequency for the carrier signal
fs=150; %highest frequency in the message signal
m=.38; %conventional AM modulation index
over_m=1.5; %index for overmodulated signal

cutoff1=1800; %lower cutoff frequency for ideal bandpass filter
%for single-tone signal

cutoff2=2200; %upper cutoff frequency for ideal bandpass filter
%for single-tone signal

%Plot 1

subplot(211), %plot the signal
plot(t(1:500),s(1:500))

title(Plot 1 - single-tone message signal’)
xlabel(Time")

ylabelC Amplitude’)

[specs,Hz}=spectral(s,delta_t); % zenerate the spectrum
%Plat 2

subplot(212), %plot the spectrun:

plot(Hz,specs, 'g)

title(Plot 2 - single-tone message signal spectrum’)
xlabel(Frequency in Hz")

ylabelC Amplitude’)

pause
Computer-aided Laboratory 7 Key—page 8

164




clg
%B. Observe the conventional AM signal and spectrum

convams=conv_am(s,delta_t,fc,m);
%Plot 3

subplot(211), %plot the conventional AM modulated signal
plot(t(1:500),convams(1:500))

title(Plot 3 - single-tone conventional AM signal’)
xlabel('Time")

ylabel( Amplitude’)

[convamspec,Hz fficonvams]=spectral(convams,delta_t); %generate the modulated
%ospectrum
%Plot 4

subplot(212), %plot the modulated spectrum
plot(Hz,convamspec, 'b")

title(Plot 4 - single-tone conventional AM spectrum’)
xlabel('Time")

ylabelC Amplitude’)

pause

clg
%C. Verify the power and bandwidth of the conventional AM signal

cam_peak_power=((max{convams))}*2)/2; %find the peak power
psdcam=psd(convams,delta_t); %generate the power spectral density

cam_avg_power=sum(psdcam); %find average power by summing the power
%spectral density values

strl=num2str(cam_peak_power);

str2=num2str(cam_avg_power);

%Plot 5

subplot(211), %plot the power spectral density for the modulated signal
plot(Hz,psdcam)

titleCPlot § - single-tone conventional AM power spectral density”)
xlabel(Frequency in Hz')

ylabel(Power spectral density”)

text(.5,.8,[PEAK POWER=" strl],'sc)

text(.5,.7,CAVG POWER=" str2],'sc")

Computer-aided Laboratory 7 Key—page 9

165




subplot(212),
title'NO PLOT HERE--JUST PRESS RETURN)

pause
clg

%D. Recover and detect the conventional AM signal

%recover and filter
filisig=recoverm(fftconvams, idealbnd’,Hz,cutoff1 cutoff2);
filtsig=filtsig(1:300); %shorten the vector for speed
envsig=envelope(filtsig); %envelope detect the signal

bigsig=(envsig-1)/m; %remove DC value and divide by m

%Plot6  %plot the envelope detected signal over the
%recovered signal

subplot(211),

plot(t(151:250),[filtsig(151:250);envsig(151:250)])

title('Plot 6 - single-tone filtered and envelope-detected signals’)

xlabel(Time")

ylabelC Amplitude’)

%plot the message signal over the
%amplified envelope-detected signal
%Plot 7

subplot(212),

Pplot(1(151:250),bigsig(151:250))

title(Plot 7 - single-tone envelope-detected and message signals”’)
xlabel('Time")

ylabelC Amplitude’)

hold on

pause
plot(t(151:250),s(151:250), ")
hold off

pause
clg

%% %% %% %% %% % %% % %% % % %% %% % %% %
%PART 2--Observe the effect of overmodulating the

% conventional AM signal

%A. Observe the overmodulated conventional AM signal

Clear
clg

Computer-aided Laboratory 7 Key—page 10

166




_

delta_t=.0001;
t=0:delta_t:1; %time vector
s=cos(2*pi*150*t); %single-tone signal

fc=2000; %modulating frequency for the carrier signal
fs=150; %highest frequency in the message signal
m=.8; %conventional AM modulation index
over_m=1.5; %index for overmodulated signal

cutoff1=1800; %lower cutoff frequency for ideal bandpass filter
%for single-tone signal

cutoff2=2200; %upper cutoff frequency for ideal bandpass filter
%for single-tone signal

oconvams=conv_am(s,delta_t,fc.over_m); %overmodulate the signal
%Plot 8

subplot(211), %plot the overmodulated signal
plot(t(1:500),oconvams(1:500))

tide('Plot 8 - single-tone overmodulated conventional AM signal’)
xlabel('Time")

ylabel( Amplitude’)

[oconvamspec Hz fftconvams]=spectral(oconvams,delta_t); %generate the modulated
%spectrum
%Plot 9

subplot(212), %plot the spectrum of the overmodulated signal
plot(Hz,oconvamspec, ‘g')

title(Plot 9 - spectrum of overmodulated conventional AM signal’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

pause
clg

%B. Observe the effect of overmodulation on recovery
filtsig=recoverm(fftconvams,'idealbnd’ Hz cutoff1 cutoff2);
filtsig=filtsig(1:300); %shorten the vector for speed

envsig=envelope(filtsig); %use envelope detector
bigsig=((envsig-1)/m); %remove DC value, divide by m

%Plot 10  %plot the envelope detected signal over the
%%recovered signal
subplot(211),

Computer-aided Laboratory 7 Key—page 11

167

| |




plot(t(151:250),[filtsig(151:250);envsig(151:250)])

titke(Plot 10 - filtered and envelope-detected overmodulated signals’)
xlabel(Time")

ylabel( Amplitude)

%plot the message signal over the
%amplified envelope-detected signal
%Plot 11

subplot(212),

plot(t(151:250),bigsig(151:250))

title(Plot 11 - envelope-detected and message overmodulated signals’)
xlabel(Time")

ylabelC Amplitude)

hold on

pause

plot(t(151:250),5(151:250), 'b")

hold off

pause
clg

%% % %% %% % % %% % %% %% % %% % %o %o % %% % % % %o %o %
%PART 3--Observe the conventional AM modulation process
% using multi-tone input

%A. Generating the signal and spectrum

clear

delta_t=.0001;

t=0:delta_t:1; %time vector
$=5*cos(2*pi*100*t)+4*cos(2*pi*300*t)+3*cos(2*pi*450*1); %single-tone signal
max_s=max(s); %save value to expand signal during detection

fc=2000; %modulating frequency for the carrier signal
fs=450; %highest frequency in the message signal
m=.5; %conventional AM modulation index

cutoffl=1500; %lower cutoff frequency for ideal bandpass filter
%for multi-tone signal

cutoff2=2500; %upper cutoff frequency for ideal bandpass filter
%for multi-tone signal

%Plot 12

subplot(211), %plot the signal
plot(1(1:500),s(1:500))
title(Plot 12 - multi-tone message signal’)

Computer-aided Laboratory 7 Key—page 12

168




xlabel(Time")
ylabel( Amplitude’)

[specs,Hz)=spectral(s,delta_t); Fgenerate the spectrum
%Plot 13

subplot(212), %plot the spectrum

plot(Hz,specs, 'g)

title(Plot 13 - multi-tone message signal spectrum’)
xlabel(Frequency in Hz")

ylabel( Amplitude”)

pause
clg

%B. Observe the conventional AM signal and spectrum
convams=conv_am(s,delta_t.fc,m);
%Plot 14

subplot(211), %plot the conventional AM modulated signal
plot(t(1:500),convams(1:500))

title(Plot 14 - multi-tone conventional AM signal’)
xlabel('Time'")

ylabel( Amplitude’)

[convamspec,Hz fficonvams]=spectral(convams,delta_t); %generate the modulated
%ospectrum
%Plot 17

subplot(212), %plot the modulated spectrum
plot(Hz,convamspec, b')

title(Plot 15 - multi-tone conventional AM spectrum®)
xlabel('Time")

ylabelC Amplitude’)

pause
clg

%C. Recover and detect the conventional AM signal
%recover and filter

filtsig=recoverm(fficonvams, ‘idealbnd’,Hz cutoff1 cutoff2);

filtsig=filtsig(1:300); %shorten detsig

envsig=envelope(filtsig); %envelope detection
bigsig=(envsig-1)/m; %remove DC value, divide by m

Computer-aided Laboratory 7 Key—page 13

169




_

biggersig=bigsig*max_s; %amplify the signal

%plot the complex envelope-detected signal
%Plot 16 %over the message signal

subplot(211),
plot(t(151:250),(filtsig(151:250);envsig(151:250)])

title('Plot 16 - multi-tone filtered and envelope-detected signals”)
xlabel('Time")

ylabel( Amplitude’)

%Plot 17 %plot the message signal over the amplified signal

subplot(212),

plot(t(151:250),biggersig(151:250))

title(Plot 17 - multi-tone envelope-detected and message signals’)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause

plot(t(151:250),s(151:250), ")

hold off

Computer-aided Laboratory 7 Key—page 14

170




EO 3513 Computer-aided Laboratory 8 Key
Frequency Modulation (FM)

Question 1: Calculate the following values for the single-tone message
signal:
peak power

average power
baseband bandwidth

P = A2”
Answer: peak power = 72 o> 1527251125

P= A02 +‘1- S‘:(ANZ +BN2 )
average power = 2.5 => 152/2=>1125
baseband bandwidth = 50 Hz
Question 2: Predict the following values for the single-tone FM signal:
peak power
average power

maximum frequency deviation Af
transmission bandwidth

Po = é‘ﬁ.
Answer: peak power = P72 o> 15272251125

average power=A2/2 => 152/2=>112.5
maximum frequency deviation =8 f, => 10 * 50 => 500 Hz
transmission bandwidth = 2 B f_ =>2 * 10 * 50 => 1000 Hz

Question 3: What is the distance between the sidebands in the FM spectrum
shown in Plot 4?

Answer: 50 Hz (the value of f;)

Computer-aided Laboratory 8 Key—page 1

171




Question 4: From Plot §, obtain the values representing peak and average
power.

Do your theoretical calculations for bandwidth and power
agree with the computer-generated values?
Answer: peak power = 112.5
average power = 112.5

Yes - calculations agree.

Question 5: Consult a table of values for Bessel functions (or use the
MATLAB “bessel” function). Calculate the amplitude for the
spectral components shown in the FM spectrum in Plot 4 for n
= 0 through 6. List each frequency by its Hz value and
sideband number n. Values should be consistent with the
amplitudes shown for power spectral density in Plot 5.

0 (1000 Hz)
(950, 1050 Hz)

0.2459 * 15 = 3.6885
0.0435 * 15 = 0.6525

Answer:

(900, 1100 Hz)
(850, 1150 Hz)

(750, 1250 Hz)

0.2546 * 15 = 3.819
0.0584 * 15 =0.876
0.2196 * 15 = 3.294
0.2341 * 15 = 3.5115

=38 D3S 0B
LI A (I T I 1

1
2
3
4 (800, 1200 Hz)
5
6

(700, 1300 Hz) 0.0145 * 15 = 0.2175

Question 6: Calculate the maximum frequency deviation Af associated with
each of the four values of f3:

0.1

1

5
20

Af=Bf, =>0.1*50=>5Hz
Af=Bf_ =>1%*50=>50Hz
Af =B f, =>5* 50 =>250 Hz
Af =B £, => 20 * 50 => 1000 Hz

Answer:

Computer-aided Laboratory 8 Key—page 2

172




Question 7: Predict the transmission bandwidth for each of the FM signas
referred to in Question 6.

Answer: for8=0.1 Br=2f, =>2*50=>100Hz
forB=1 Br=2(1+8)f, =>2(1+1)50=>200Hz
forB=5 Br=2(1+8)f,=>2(1+ 5)50=>300Hz
for8=20 Br=28f, =>2*20* 50 =>2000Hz
Question 8: Calculate the following values for the multi-tone message
signal:
peak power

average power
baseband bandwidth

pp = AP
Answer: peak power = P72 = 202/2=5200
P=A,? +-1-Z(AN2 +By?)
average power = 2831 => 82/2+122/2=>

104
baseband bandwidth =75 Hz

Question 9: Predict the following values for the multi-tone FM signal:

peak power

average power

maximum frequency deviation Af
transmission bandwidth

_Ap?
Answer: peak power = T2 o /2=>200
average power = A2 /2 => 202/2=>200

maximum frequency deviation =8 f, => 10 * 75 => 750 Hz
transmission bandwidth =2 8 f_ =>2 * 10 * 75 => 1500 Hz

Question 10: What is the distance between the sidebands in the FM
spectrum shown in Plot 13?

Answer: 50 Hz (the value of f))

Computer-aided Laboratory 8 Key—page 3

173




Question 11:

Answer:

Question 12:

Answer:

Question 13:

Answer:

From Plot 14, obtain the values representing peak and average
power.

Do your theoretical calculations for bandwidth and power
agree with the computer-generated values?

peak power = 200
average power = 200

Yes - calculations agree.

Calculate the value of B associated with each of the four
values of Af:

25
100
500

1000

B=Af/f,=>25/75=>0.33
B=Af/f,=>100/75=>1.33
B=Af/f,=>500/75=>6.67
B=Af/f,=>1000/75=>13.33

Predict the transmission bandwidth for each of the FM signals
referred to in Question 12.

for 8 =0.33 Br=2(1+8)f, =>2(1+0.33) 75=>250Hz
for 8 =1.33 Br=2(1+B8)f,=>2(1+133)75=>325H:z
for 8 = 6.67 Br=2(1+B8)f, =>2(+6.67)75=>725Hz
for 8 = 13.33 Br=2B8f, =>2*13.33 *75 => 2000 Hz

Computer-aided Laboratory 8 Key—page 4

174




20 . . Plot 1 - single-tone message signal

-20 . . . . . . . . ;
0 001 002 003 004 005 006 007 008 009 0.1
Time
15 ] i Plo't 2- sin&-tone' message spectrum .
-g 10 ~@——— 50 Hz with amplitude = 15
a
£ SH _ d
< A bandwidth S0 Hz
O N - - N P " " — A
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
20 ] _Plot 3: single;tone message gnd FM signals .
[¥]
E
= 0
g
<

0 N - s M o N - _~— —
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

NO PLOT HERE--JUST PRESS RETURN

Computer-aided Laboratory 8 Key—page 5

175




Amplitude

Power spectral density

Amplitude

Amplitude

|7

Plot 4 - single-tone FM spectrum, beta=10, delta_f=500 _

fc - Af bandwidth 1000 Hz fc+ Af
\ k
— fc 1000 Hz
0 — ) J_l d 4 L ; " l L. N
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz
15 ] Plot 5 - FM power §pectral Qensity, peta=1(_), delta _£=500 .
10 PEAK POWER=112.5 AVG POWER=112.5
] LI | *
0 R . Ll l l l I | . R
0 200 400 600 1000 1200 1400 1600 1800 2000
Frequcncy inHz
15 i Plotf 6 - sing)e-tonefM spectrum, rbeta=0.‘l, delta'_f=5
10+ .
5| bandwidth 5 Hz i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
15 ___Plot 7 - single-tone FM spectrum, 'bcta=lldclta_§=50 -
10 .
5 AtL bandwidth 50 Hz
0 N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Computer-aided Laboratory 8 Key—page 6

176




Amplitude

Amplitude

Amplitude

Amplitude

Plot 8 - single-tone FM spectrum, beta=5, delta_f=250 _

6 ——
4} bandwidth 300 Hz <
i I] ‘
0 . . . \ .ll I Il. , - . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
4 ' Plot 9 - sing_e-tonc FM spectrum, bpm=20,'delm_f?1000 '
( A bandwidth 2000 Hz
| I.l ] ] |
AN il ML
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
20 ' ' Plot 10 - multi-tone message signal .
Or .
-20 , —= . . — . .
0 001 002 003 004 005 006 007 008 0.09 0.1
Time
15 _ ____Plot 11 - muld-t~ne message spectrum __
10l =®—— 25 Hz with amplitde = 12 _
5 ~®———— 75 Hz with amplitude = 8 1
A bandwidth 75 Hz
0 A — A N N A — . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Computer-aided Laboratory 8 Key—page 7

177




20 e _Plot 12 - multi-tone message and FM si

: .
'g_ 0
220 ! , g ' A ;
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time
NO PLOT HERE--JUST PRESS RETURN
5 _Plot 13 - mLthi-tonc FM spectrum, beta=10, delta_f=750
3 bandwidth 1500 Hz
£
g
< fc 1500 Hz

0‘ . A - s "

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

15 Plot' 14 - mplti-tong FM power spcptxal depsig, bgta=10, 'dclta_f'=750

10 PEAK POWER=200 AVG POWER=200

1

0! . . R .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Power spectral density
(5.

Computer-aided Laboratory 8 Key—page 8

178




Amplitude Amplitude Amplitude

Amplitude

_Plot15 - multi-tone FM spectrum, berta=0.33‘33, delta_f=25

20
10 §
bandwidth 250 Hz
N R | | R
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
10 ' Plot l§ - multi'-tonc FM spectrum, bqta=l QB, dclta;_f=100'
5} | bandwidth 325 Hz -
0 A N " M -l.u lL. " " " :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
6 _Plot 17 - multi-tone FM spectrum, beta=6.667, delta_{=500
a bandwidth 725 Hz |
2t J
0 Y A Sasaihl i A i A
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
4 Plot 18 - multi-tone FM spectrum, beta=13.23, delta_f=1000
bandwidth 2000 Hz
2+ 4
O L P
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Computer-aided Laboratory 8 Key—page 9

179




lab8scr.m
%Computer-aided Lab 8 script for student use

%% %% %% %% %% %% % % %% % %% % % %% %o Fo %o
%Computer-aided Lab 8 Frequency Modulation (FM)

%% %%%% %% %% % %% %% %% %% % %% % %% %

%Part 1--Observe the FM modulation process for single-tone input
%A. Calculate theoretical average power, peak power, and bandwidth
% for the single-tone message signal

clear
clg

delia_t=.0001;
t=0:deha_t:1;

Ac=15;  %FM signal amplitude for single-tone message
fc=1000; %FM signal frequency for single-tone

theta=0; %single-tone value

fm=50; %single-tone message signal frequency
s=15*cos(2*pi*fm*t); %single-tone signal
%B. Observe the single-tone message signal and its spectrum
%Plot 1

subplot(211),

plot(1(1:1000),s(1:1000))

title(Plot 1 - single-tone message signal’)
xlabel(Time")

ylabel( Amplitude’)

[msg_spec,Hz}=spectral(s,delta_t);

%Plot 2

subplot(212),

plot(Hz,msg_spec)

title(Plot 2 - single-tone message spectrum’)
xlabel('Frequency in Hz")

ylabel( Amplitude’)

pause
clg

%C. Observe the process of FM modulation

Computer-aided Laboratory 8 Key—page 10

180




o

beta=10;

%generate the FM signal
(fm_sig.delta_f beta)l=fm_mod(t,Ac.fc.fim theta, none’ beta);
%Plot 3
subplot(211),

plot(1(1:200),{s(1:200);fm_sig(1:200)])

title('Plot 3 - single-tone message and FM signals’)
xlabel('Time")

ylabel(C Amplitude’)

subplot(212),
tile(NO PLOT HERE--JUST PRESS RETURN))

pause
clg

%D. Observe the spectrum of the FM signal
[fm_spec,Hz}=spectral(fm_sig.delta_t);
%Plot 4

subplot(211),

plot(Hz(1:2000),fm_spec(1:2000))

title({"Plot 4 - single-tone FM spectrum, beta=',...
num2str(beta) ', delta_f=" num2str(delta_f)])

xlabel(Frequency in Hz')

ylabelC Amplitude’)

%E. Verify the power and bandwidth of the FM signal
psdfm=psd(fm_sigdelta_t);

fm_pk_pwr_sngl=(max(fm_sig)"2)/2;
fm_avg_pwr_sngl=sum(psdfm);
stri=fm_pk_pwr_sngl;
str2=fm_avg_pwr_sngl;

%Plot 5

subplot(212),

plot(Hz(1:2000),psdfm(1:2000))

title([Plot S - FM power spectral density, beta='...
num2str(beta) °, delta_f=" num2str(delta_f)))

xlabel(Frequency in Hz')

Computer-aided Laboratory 8 Key—page 11

181




ylabel(Power spectral density’)
text(.2,.35,(PEAK POWER=" num2str(str1)],'sc’)
text(.6,.35,'AVG POWER=" num2str(str2})],'sc’)

pause
clg

%F. Control the bandwidth of the FM signal by varying beta
%Fix beta at values of 0.1, 1, 5, and 20
%Modulate at 2500 Hz to ceater the spectrum

fc=2500;

beta=0.1;

(fm_sig.delta_f betal=fm_mod(t,Ac,fc.fm, theta, none' beta);
fim_spec=spectral(fm_sig,delta_t);

%Plot 6

subplot(211),

plot(Hz,fm_spec)

title(['Plot 6 - single-tone FM spectrum, beta=" num2str(beta)...
', delta_f="num2str(delta_f)])

xlabel(Frequency in Hz')

ylabelC Amplitude’)

beta=1;

[fm_sig.delta_f betal=fin_mod(1,Ac fc,fm,theta, 'none’ beta);
fm_spec=spectral(fm_sig.declta_t);

%Plot 7

subplot(212),

plot(Hz fm_spec)

tile(['Plot 7 - single-tone FM spectrum, beta=' num2str(beta)...
', delta_f=' num2str(delta_f)])

xlabel(Frequency in Hz")

ylabel( Amplitude”)

pause
clg

beta=>5;

[fm_sig,delta_f,betal=fm_mod(t,Ac,fc.fm,theta, none’beta);
fm_spec=spectral(fm_sig,delta_t);

%Plot 8

Computer-aided Laboratory 8 Key—page 12

182




subplot(211),

plot(Hz,fm_spec)

title(['Plot 8 - single-tone FM spectrum, beta=' num2str(beta)...
', delta_f=' num2str(delta_f)])

xlabel(Frequency in Hz')

ylabelC Amplitude’)

beta=20;

(fm_sig.delta_f.beta]=fin_mod(t,Ac.fc.fm,theta,'none’ beta);
fm_spec=spectral(fm_sig,delta_t);

%Plot 9

subplot(212),

plot(Hz fm_spec)

title([Plot 9 - single-tone FM spectrum, beta=' num2str(beta)...
', delta_f=' num2str(delta_f)])

xlabel(Frequency in Hz")

ylabel( Amplitude’)

pause
clg

%% %o %o %o %% % Fo % Fo %o Fo %o %o %o %o % %o %o %o %o %o %% Fo %o %o %o Fo %o % %o
%Part 2--Observe the FM modulation process for multi-tone input
%A. Calculate theoretical average power, peak power, and bandwidth
% for the multi-tone message signal

Clear
clg

delta_t=.0001; %set signal and modulation variables
t=0:delta_t:1;

Ac=20; %FM signal amplitude for multi-tone message
fc=1500; %FM signal frequency for multi-tone

theta=[0 0); %multi-tone valuc

fm=(75 25]; %multi-tone frequency vector
s=8*cos(2*pi*75%()+12*cos(2*pi*25%t); %multi-tone signal

%B. Observe the multi-tone message signal and its spectrum
%Plot 10

subplot(211),
plot(t(1:1000),s(1:1000))

Computer-aided Laboratory 8 Key—page 13

183




title('Plot 10 - multi-tone message signal’)
xlabel("Time")
ylabelC Amplitude”)

(msg_spec,Hz]=spectral(s.delta_t);
%Plot 11

subplot(212),

plot(Hz,msg_spec)

title('Plot 11 - multi-tone message spectrum’)
xlabel(‘Frequency in Hz")

ylabel( Amplitude’)

pause
clg

%C. Observe the process of FM modulation

beta=10;

%generate the fm signal
(fm_sig,delta_f,betaj=fm_mod(t,Ac,fc,fm,theta,'none’ beta);
%Plot 12
subplot(211),

plot(t(1:200),[s(1:200);fm_sig(1:200)])

title(Plot 12 - multi-tone message and FM signals)
xlabel('Time")

ylabel( Amplitude’)

subplot(212),
title('NO PLOT HERE--JUST PRESS RETURN)

pause
clg

%D. Observe the spectum of the FM signal
[fm_spec,Hz)=spectral(fm_sig,delta_t);

%Plot 13

subplot(211),

plot(Hz fm_spec)

title(("Plot 13 - multi-tone FM spectrum, beta="...

num2str(beta) °, delta_f=' num2str(delta_f)])
xlabel(Frequency in Hz')

Computer-aided Laboratory 8 Key—page 14

184




ylabel( Amplitude’)
%E. Verify the power and bandwidth of the FM signal
psdfm=psd(fm_sig,delta_t);

fm_pk_pwr_mit=(max(fm_sig)*2)/2;
fm_avg _pwr_mlit=sum(psdfm);
stri=fm_pk_pwr_mlt;
str2=fm_avg_pwr_mlt;

%Plot 14

subplot(212),

plot(Hz,psdfm)

title({'Plot 14 - multi-tone FM power spectral density, beta='...
num2str(beta) ', delta_f=" num2str(delia_f)])

xlabel(Frequency in Hz')

ylabel(Power spectral density")

text(.2,.35,'PEAK POWER=" num2str(str1)],'sc")

1ex1(.6,.35,'AVG POWER=" num2str(str2)),'sc")

pause
clg

%F. Control the bandwidth of the FM signal by varying delta_f
%Fix delta_f at values of 25, 100, 500, and 1000
%Modulate at 2500 Hz to center the spectrum

fc=2500;

delta_f=25;

[fm_sig,delta_f,beta}=fm_mod(t,Ac fc fin thetadelta_f, none");
fm_spec=spectral(fm_sig,delta_t);

%Plot 15
subplot(211),

plot(Hz,fm_spec)
uitle(['Plot 15 - multi-tone FM spectrum, beta=' num2str(beta)...

", delta_f="num2str(delta_f)])
xlabel(Frequency in Hz')
ylabelC Amplitude’)
delia_f=100;

[fm_sig,delta_f,beta]=fm_mod(t,Ac,fc.fm thetadelta_f,none’);
fm_spec=spectral(fm_sig,delta_t);

Computer-aided Laboratory 8 Key—page 15

185




%Plot 16

subplot(212),

plot(Hz,fm_spec)

title(["Plot 16 - multi-tone FM spectrum, beta=' num2str(beta)...
', delta_f=" num2str(delta_f)])

xlabel(Frequency in Hz")

ylabel( Amplitude)

pause
clg

delta_{=500;

[fm_sig,delta_f betal=fm_mod(t,Ac,fc fm,theta,deita_f,'none’);
fm_spec=spectral(fm_sig,delta_t);

%Plot 17

subplot(211),

plot(Hz,fm_spec)

title(['Plot 17 - multi-tone FM spectrum, beta=" num2str(beta)...
', delta_f=' num2str(delta_f)])

xlabel(Frequency in Hz')

ylabelC Amplitude’)

delta_f=1000;

[fm_sig,delta_fbeta}=fm_mod(t,Ac,fc.fm theta,delta_f, none’);
fm_spec=spectral(fm_sig,delta_t);

%Plot 18

subplot(212),

plot(Hz fm_spec)

title(("Plot 18 - multi-tone FM spectrum, beta=' num2str(beta)...
', delta_f=" num2str(delta_f)])

xlabel(Frequency in Hz')

ylabel( Amplitude”)

Computer-aided Laboratory 8 Key-—page 16

186




EO 3513 Computer-aided Laboratory 9 Key
Radio Frequency Digital Modulation Methods

(ASK, FSK, BPSK, and QPSK)

Answers will vary slightly due to the random bitstream generation.

Question 1:

Answer:

Question 2:

Answer:
Question 3:

Answer:

Question 4:

Answer:

Question S:

Answer:

Question 6:

Answer:

Calculate the bit duration t for this signal.

From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

bit duration = 1/bit rate => 1/100 => 0.01 seconds
ask bits=0101101100

Calculate the approximate baseband bandwidth of the NRZL
unipolar digital message signal.

baseband bandwidth = 0.5/t => ¢ 5/0.01 => 50 Hz
Why is ASK modulation often referred to as “on-off keying”?

The carrier is turned “on” and “off” to represent the 1’s and Q’s in the digital
message signal.

Describe a noncoherent method of detection for this ASK
signal. Why will this method work for ASK?

Envelope detection is appropriate for an ASK signal since the only the
presence or absence of the signal must be detected. (ASK is a DSB-SC
signal.)

From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

fsk_ bits=0101011111

From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

bpsk bits=1011011111

Computer-aided Laboratory 9 Key—page 1

187




Question 7:

Answer:

Question 8:

Answer:
Question 9:

Answer:

What are the effects in the frequency domain of squaring the
BPSK signal?

The spectrum of the BPSK signal is considerably narrowed, and is shifted
to a Hz value twice that of the carrier frequency.

From the command window, obtain the values of the first 10
bits in the bitstream. Record these values.

qpsk_bits=0001101100

What is the chief advantage of quadriphase shift keying over
bipolar phase shift keying?

The information rate of a QPSK signal is twice that of a BPSK signal, with
no increase in bandwidth requirements.

Computer-aided Laboratory 9 Key—page 2

188




Amplitude

Amplitude Amplitude

Amplitude

1.

0.

© o o

Plot 1 - unipolar digital message signal for ASK

0

1 0

—y

11 01 1 00

L _

0.02

004 006 008 01 012 014 016 018 02

0
Time
5 o Iﬂot 2- upipolar dlgggl message spectrum for ASK
1 .
baseband bandwidth 50 Hz
5 ]
0 . N " A 2 —_ —_— N "
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz
2 Plot3 - ASK signal _
: VAR
| \NWWN \Mul\ it MV\\J\
2 . N . . N . . . .
0 0.005 001 0015 0.02 0.025 003 0.035 0.04 0.045 0.05
Time
6 Plot 4 - ASK spectrum
4 A
<@———— carrier frequency 800 Hz
2 4
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency in Hz

Computer-aided Laboratory 9 Key—page 3

189




0.6 ___Plot 5 - demodulated ASK spectrum prior to filtering

0.4 -

0.2 i 4
0 a— M — . " N " 2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Amplitude

2 Plot 6 - recovered ASK signal, message signal, amplified signal
JAFTASAA S F—

0 002 004 006 008 01 012 014 016 018 02
Time

I Plot 7 - unipolar digital message signal for FSK
6101 0 1 11 1 1

0 002 004 006 008 01 012 014 016 018 02
Time

Plot 8 - unipolar digital message spectrum for FSK

“200 400 600 800 1000 1200 1400 1600 1500 2000
Frequency in Hz

Computer-aided Laboratory 9 Key—page 4

190




Amplitude

Amplitude

Amplitude

2 — ___Plot9 - enlarged FSK and digital signals _

0
0
2 . . R N . . _— — .
0 0005 001 0015 002 0.025 0.03 0035 0.04 0045 0.05
Time
0.6 . . ' Plog 10 - FSK spectrum
0.4} carrier frequency 1500 Ha———»- ; i
i

0.2 ~a}—— carrier frequency 500 Hz 1

0 SR T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Plot 11 - upper, then lower demodulated FSK spectrum prior to filtering

A cdedhenn. snmetibbeodifion.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency in Hz
_Plot 12 - spectrum of combined FSK signals prior to filtering _

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency in Hz

Computer-aided Laboratory 9 Key—page 5

191




2 __Plot 13 - message, recovered FSK, and amplified signals

| A

0 002 004 006 008 01 012 014 016 018 02
Time

NO PLOT HERE--JUST PRESS RETURN

2 . Plot 14 - bipolar digital message signal for BPSK
1 0 110 1 11 11

0 002 004 006 008 01 012 014 016 018 02
Time

___Plot 135 - bipolar digital message spectrum for BPSK
baseband bandwidth 50 Hz

0 ‘
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Computer-aided Laboratory 9 Key—page 6

192




____Plot 16 - enlarged BPSK signal and message signal

| S
-

1 0 1 1 0

0 0005 001 0015 002 0025 003 0035 004 0045 005

Time

o
[ 8]
7

Amplitude
=4

Plot '17 - BE'SK spectrum

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

P!ot 18 - .squared. BPSK spectrum

|

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz
_Plot19 - squ_gred and fregucpcy divided BP"SK spectrum

200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Computer-aided Laboratory 9 Key—page 7

193




0.2, . Plot 20 - dergodulatgd BPSI‘( spectrum prior to ﬁltgrinLﬁ

g o :
E &MMA
0 bl . ba 4. g PURPIPTRIgDY w 1) <

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency in Hz
2 Plot 21 - pormali'zcd recgvered BPSK sx;gnal wi_th message sigqal
E AT Wi d
[ VY \_ ./
“0 002 004 006 008 0.1 012 014 0.16 0.18 0.2
Time
) ' P_lot 22 - 'bipolar_digital message signal for QPS}(
Q 00 0 11 0 11 0O
g
| '
0 002 004 006 008 01 012 014 016 018 02
Time
0.5 qut 23 - biTpolar dig'tal message spectrum for QESK

baseband bandwidth 50 Hz

Amplitude

0 . N A - N N
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Computer-aided Laboratory 9 Key—page 8

194




Amplitude Amplitude Amplitude

Amplitude

WMWY

2 . . . Plot y - delayed odd bits _
0 0 1 1 0
- 4
— bit duration
0.02 seconds
0 002 004 006 008 01 012 014 016 018 0.2
Time
2 ' . ] Plot g - dclgryed even bits . . _
0 1 0 1 0
L - bit duration ]
0 0.02 seconds
0 002 004 006 008 01 0.12 014 016 0.18 0.2
Time
) ____Plot 26 - modulated odd signal and delayed odd bits

0 0005 001 0015 002 0025 003 0035 004 0045 0.05

Time

Plot 27 - modulated even signal and delayed even bits

SaATATATATAVATEY

I

VWUV

0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05

Computer-aided

Time

Laboratory 9 Key—page 9

195




2 Plot28 phase shiftsin QPSK signal

KU

-2l R . . . .
0 001 002 003 004 005 0.06 0.07 0.08 0.09 0.1
Time

0.4 . Plot 29 - QP_SK spectrum __ _

<}——— carrier frequency 400 Hz

0 At AR 3t Bg ok i iume,

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz

2 Plot 30 - odd, then even demodulated signals

e

R 5 i

2 —
0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05

Time
0.3 }’lot 31 - odd, Qen even demoqulated  spectra Jr)rior to fﬁlteringﬁ
g 0.2 J
59‘ 0.1 -
0 ——a

0 200 400 600 800 100012001400160018002000
Frequency in Hz

Computer-aided Laboratory 9 Key—page 10

196




Amplitude

Amplitude

Amplitude

Plot 32 - recovered and original odd bit signals

2 —
| o N
2 s A " " _— " " i
0 002 004 006 008 C1 012 0.14 0.16 0.18 02
Time
2 Plot 33 - recovered and original even bit signals
2 " A N N . a e " "
¢ 002 004 006 008 0.1 0.12 0.14 016 0.18 0.2
Time
2 ___Plot 34 - combined odd and even recovered signals
) o~ PR,
N TN ‘U
0 K.r"\./i-—--"! \...f ‘/\T\,/‘-\-—-«{ {»»‘-'&__,A\/f AN

2 P N N N PR - — A N
0 002 004 006 008 0.1 0.12 0.14 0.16 0.13 0.2

Time

NO PLOT HERE

Computer-aided Laboratory 9 Key—page 11

197




lab9scr.m
%Lab 9 script for student use

%% %% %% %% % %% %% % %% % %% % %% %% T %%
%Computer-aided Laboratory 9 Radio Frequency (RF)
% Digital Modulation

%% %% %% %% % % % To % % % %o T % %o % %o % %% Fo %o %o
%PART 1--Amplitude Shift Keying (ASK)

%A. Generating the digital message signal

Clear
clg

delta_t=.0001;
fc=800;
bitrate=100;

bitstream=round(rand(1:100)); %generate the random bitstream
bitstream(1:3)=[0 1 0}; %ensure one of each bit type
ask_bits=bitstream(1:10) %print the first 10 bits

pause

[nrzlsig.t}=nrzluni(bitstream delta_tbitrate); %ogenerate the digital signal
clear bitstream;

big_axis=[0.2-22); %set manual scaling for graphs
smali_axis={0 .05 -2 2];

axis(big_axis);

%Plot 1

subplot(211), %plot the digital message signal

plot(t.nrzlsig)

title(Plot 1 - unipolar digital message signal for ASK’)

xlabel(Time")

ylabel(Amplitude”)

axis; ‘%release manual scaling

[nrzlspec,Hz}=spectral(nrzlsig,delta_t); %generate the message spectrum
%Plot 2

subplot(212),
plot(Hz(1:2000) nrzlspec(1:2000), 'b)
title(Plot 2 - unipolar digital message spectrum for ASK")

Computer-aided Laboratory 9 Key—page 12

198




xlabel(Frequency in Hz")
ylabelCAmplitude’)

Clear nrzlspec;

pause

cig

%B. Generating the ASK signal
asksig=nrzlsig.*cos(2*pi*fc*t); %generate the ASK signal
axis(small_axis);

%Plot 3

subplot(211), %plot the ASK signal
plot(t,asksig)

title(Plot 3 - ASK signal’)
xlabel('Time")

ylabel( Amplitude’)

axis; %release manual plot scaling
[askspec,Hz askfft]=spectral(asksig,delta_t); %gencrate the ASK spectrum
%Plot 4

subplot(212),
plot(Hz(1:2000),askspec(1:2000), 'g)
title('Plot 4 - ASK spectrum’)
xlabel(Frequency in Hz")

ylabel( Amplitude)

pause
clg

%C. Filtering and recovering the ASK signal

%bandpass filter and recover
recask=recoverm(askfft,'idealbnd’,Hz fc-bitrate fc+bitrate);
clear askfft;
demodask=recask.*cos(2*pi*fc*t), %multiply by carrier in time domain
clear recask;
[demodspec,Hz, demodfft]=spectral(demodask.delta_t); %observe spectrum
clear demodask;

%Plot 5

Computer-aided Laboratory 9 Key—page 13

199




subplot(211),

Pplot(Hz(1:2000),demodspec(1:2000))

title(Plot 5 - demodulated ASK spectrum prior to filtering’)
xiabel(Frequency in Hz')

ylabel( Amplitude’)

clear demodspec;

%lowpass filter and recover
recdemodask=recoverm(demodfft,'ideallow', Hz bitrate);
clear demodfft;

ampsig=recdemodask*2;, %amplify recovered signal
axis(big_axis);
%Plot 6

subplot(212), %plot message, recovered, and amplified signals
plot(t,frecdemodask;nrzlsig])

title('Plot 6 - recovered ASK signal, message signal, amplified signal’)
xlabel('Time")

ylabel( Amplitude)

hold on

pause

ploy(t,ampsig,’b)

hold off

pause

%% % % %% %% %% %% % % %o %% Fo %% %
%PART 2--Frequency Shift Keying (FSK)
%A. Generating the digital message signal

Clear
clg

delta_t=.0001; %set variables

low_freq=500;
hi_freg=1500;

bitrate=100;

bitstream=round(rand(1:100)); %generate the random bitstream
bitstream(1:3)=[0 1 0); %ensure at least one of each bit type
fsk_bits=bitstream(1:10)

pause

big axis=[0.2-22]; %set manual scaling for graphs
small_axis=[{0 .05 -2 2];
Computer-aided Laboratory 9 Key—page 14

200




[nrzlsig, t}=nrzluni(bitstream delta_t bitrate); Jbgenerate the digital signal
clear bitstream;

axis(big_axis),

%Plot 7

subplot(211),

plot(t,nrzlsig)

title('Plot 7 - unipolar digital message signal for FSK')

xlabel('Time")

ylabel( Amplitude’)

axis; %release manual scaling
%observe the NRZL spectrum
(nrzlspec,Hz]=spectral(nrzlsig,defta_t);

%Plot 8

subplot(212),

plot(Hz(1:2000),nrzlspec(1:2000), b)

title(Plot 8 - unipolar digital message spectrum for FSK')
xlabel(Frequency in Hz')

ylabelC Amplitude”)

pause
clg

%B. Generating the FSK signal

fsksig=fsk{nrzlsig.delta_tbitrate Jow_freq,hi_freq); %generate the FSK signal
axis(small_axis); %manually scale graph

%Plot 9

subplot(211), %FSK signal plotted over message signal
plot(t.[nrzlsig;fsksig])

title(Plot 9 - enlarged FSK and digital signals’)

xlabel('Time")

ylabel( Amplitude’)

axis; %release

[fskspec,Hz fskfft}=spectral(fsksig.delta_t); %observe the FSK spectrum
%Plot 10

Computer-aided Laboratory 9 Key—page 15

201




h

subplot(212),
plot(Hz(1:2000),fskspec(1:2000), 'g)
tide(Plot 10 - FSK spectrum’)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

pause
clg

%C. Coherent detection of the FSK signal

%bandpass filter and recover the FSK signal
recsig=recoverm(fskfft,'idealbnd’, Hz low_freq-bitrate,hi_freq-+bitrate);
clear fskfft;

%lower frequency

demodfsklower=recsig.*cos(2*pi*low_freq*t); %multiply by carrier in time domain
{demodspecl Hz]=spectral(demodfsklower,delta_t); %generate spectrum

Foupper frequency
demodfskupper=recsig.*cos(2*pi*hi_freq*t); %multiply by carrier in time domain
{demodspecu,Hz]=spectral(demodfskupper,delta_t); %generate spectrum

%Plot 11

subplot(211), %plot upper and lower demodulated signals
plot(Hz(1:2000),demodspecu(1:2000))

title(Plot 11 - upper, then lower demodulated FSK spectrum prior to filtering’)
xlabel(Frequency in Hz)

ylabel( Amplitude’)

hold on

pause

plot(Hz,demodspecl,b)

hold off

clear demodspecl;clear demodspecu;

combsig=demodfskupper-demodfsklower; %combine signals in time domain
clear demodfsklower;clear demodfskupper;

[combspec,Hz,combffi}=spectral{(combsig,delta_t); %spectrum of combined signals
clear combsig;

Computer-aided Laboratory 9 Key—page 16

202




%Plot 12

subplot(212),

plot(Hz(1:2000),combspec(1:2000))

title('Plot 12 - spectrum of combined FSK signals prior to filtering’)
xlabel('Frequency in Hz')

ylabei(Amplitude’)

clear combspec;

peuse

clg

lowpass filter and recover
recfsk=recoverm(combfft, ideallow’,Hz bitrate);
clear combfit;
amprecfsk=recfsk*2; %amplify signal

axis(big_axis);
%Plot 13

subplot(211),

plot(t, (nrzisigirectsk])

title(Plot 13 - message, recovered FSK, and amplified signals’)
xlabel("Time")

ylabelCAmplitude’)

hold on

pause
plot(tamprecfsk,b’)
hold off

subplot(212),
titleCNO PLOT HERE--JUST PRESS RETURN)
pause

%% %% %% %% %% %% % %% %% %% %% % %%
%PART 3--Binary Phase Shift Keying (BPSK)
%A. Generating the digital message signal

clear

clg

delta_t=.0001;

fc=800,

bitrate=100;

bitstream=round(rand(1:100)); %generate the random bitstream

bitstream(1:3)=[1 O 1); %ensure one of each bit type
bpsk_bits=bitstream(1:10)

Computer-aided Laboratory 9 Key—page 17

203




pause

[nrzisig t]=nrzibi(bitstream, delta_tbitrate); %generate the digital
%message signal

clear bitstream;

big_axis=[0.2-22]; %set manual scaling for graphs
small_axis=[0 .05 -2 2J;

axis(big_axis);

%Plot 14

subplot(211), %plot the message signal

plot(t.nrzlsig)

title(Plot 14 - bipolar digital message signal for BPSK")

xlabel("Time")

ylabelCAmplitude’)

axis; %release manual scaling

[nrzlspec,Hz)=spectral(nrzisig,delta_t); %generate the message spectrum
%Plot 15

subplot(212),

plot(Hz(1:2000),nrzlspec(1:2000), 'g)

title(Plot 15 - bipolar digital message spectrum for BPSK')
xlabel(Frequency in Hz')

ylabel( Amplitude’)

clear nrzlspec;

pause
clg

%B. Generating the BPSK signal

bpsksig=nrzlsig.* *pi*fc.*t); %generate the BPSK signal
axis(small_axig); %set manual scaling

%Plot 16

subplot(211), %plot the BPSK signal over the message signal
plot(t,bpsksig)

title(Plot 16 - enlarged BPSK signal and message signal)
xlabel(Time")

Computer-aided Laboratory 9 Key—page 18

204




ylabel( Amplitude’)
hold on

peuse
plot(t,nrzlsig,b")
hold off

[bpskspec,Hz]=spectral(bpsksig.delia_t);
%Plot 17

subplot(212), %plot the BPSK spectrum
plot(Hz(1:2000),bpskspec(1:2000), 'g)
titte(Plot 17 - BPSK spectrum’)
xlabel('Frequency in Hz')
ylabelCAmplitude’)

clear bpskspec;

pause
clg

%C. Coherent detection of the BPSK signal
squarebpsk=bpsksig.A2; %square the BPSK signal in time domain
div_sig=freq_div(squarebpsk,tfc); %divide the frequency in half
squarespec=spectral(squarebpsk,delta_t);

{div_spec, Hz div_fft]=spectral(div_sig,delta_t);

clear squarebpsk;

%Plot 18

subplot(211), %plot the squared signal spectrum--narrow at 2fc
plot(Hz(1:2000),squarespec(1:2000))

title(Plot 18 - squared BPSK spectrum’)

xlabel(Frequency in Hz')

ylabelC Amplitude”)

clear squarespec;
%Piot 19

subplot(212),

plot(Hz(1:2000),div_spec(1:2000), 'd")

title('Plot 19 - squared and frequency divided BPSK spectrum’)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear div_spec;

Computer-aided Laboratory 9 Key—page 19

205




peuse
clg

rec_bpsksrecoverm(div_fft,'ideallow',Hz,1000); %recover via lowpass filter
clear div_fft;

demodbpsk=rec_bpsk. *bpsksig; %multiply by the received signal

clear bpsksig:

[demodspec,Hz,demodfft)=spectral(demodbpsk delta_t); %observe spectrum
clear demodbpsk;

%Plot 20

subplot(211),

plot(Hz(1:2000),demodspec(1:2000))

title(Plot 20 - demodulated BPSK spectrum prior to filtering')
xlabel(Frequency in Hz')

ylabelCAmplitude’)

clear demodspec;

recdemodbpsk=recoverm(demodftt,ideallow’,Hz bitrate); %lowpass filter
clear demodfft;clear Hz,

normbpsk=recdemodbpsk/max(recdemodbpsk); %normalize the signal
clear recdemodbpsk;

axis(big_axis);

%Piot 21

subplot(212), %plot the recovered signal
plot(t,[normbpsk;nrzlsig])

title(Plot 21 - normalized recovered BPSK signal with message signal’)
xlabel('Time)

ylabel( Amplitude’)

axis;

pause

%% %% %% %% %% %% %% % %% %%
%PART 4--Quadriphase Shift Keying

%A. Generating the digital message signal
clear

clg

delta_t=.0001;

Computer-aided Laboratory 9 Key—page 20

206




fcm400;
bitrate=100;

big_axis=[0 .2-22]; %set axes
med_axis={0 .1 -2 2];
small_axis=[0 .05 -2 2);

bitstream=round(rand(1:100)); %generate the bitstream
bitstream(1:9)={0 001101 10}; %set values 1o demonstrate phase shifts
gpsk_bits=bitstream(1:10)

pause

[nrzlsig tl=nrzlbi(bitstream,delta_t bitrate); %generate the digital signal
clear bitstream;

axis(big_axis); %set manual scaling

%Plot 22

subplot(211), %graph the digital signal

plot(t.nrzisig)

title('Plot 22 - bipolar digital message signal for QPSK")

xlabel('Time")

ylabel( Amplitude’)

axis; %release manual scaling

[W,EIWM(Mﬁg,&lm_t); %generate the message spectrum
%Plot 23

subplot(212),

plot(Hz(1:2000),nrzispec(1:2000))

title(Plot 23 - bipolar digital message spectrum for QPSK")
xlabel(Frequency in Hz")

ylabelC Amplitude’)

clear nrzlispec;

pause
cig

%B. Generating the QPSK signal

inrzlodd nrzleven}=ser_par(nrzisig,delia_t bitrate); %put signal through
%serial-to-parallel
%converter

axis(big_axis),

%Plot 24

Computer-aided Laboratory 9 Key—page 21

207




subplot(211),  %graph the delayed digital signal--odd bits
plot(tarzlodd, )
title{Plot 24 - delayed odd bits)

xlabel(Time)

ylabelC Amplitude”)

%Plot 25

subplot(212), %graph the delayed digital signal--even bits
plot(t.nrzieven, 'g")

title(Plot 25 - delayed even bits)
xlabel(Time")
ylabelCAmplitude’)

axis;

pause

clg

cos_mod=nrzlodd.*cos(2*pi*fc.*t); %modulate each signal
sin_mod=nrzleven.*(-sin(2*pi*fc.*t));

axis(small_axis);
%Plot 26

subplot(211),

ploi(t.cos_mod)

title(Plot 26 - modulated odd signal and delayed odd bits")
xlabel(Time')

ylabelC Amplitude’)

hold on

pause
plot(t,nrzlodd, 'b")
hold off

axis(small_axis);

%Plot 27

subplot(212),

plot(t,sin_mod)

tile(Plot 27 - modulated even signal and delayed even bits")

xlabel('Time)

ylabel(Amplitude’)
hold on

pause
Computer-aided Laboratory 9 Key—page 22

208




plot(vnrzieven, b)
hold off

pause
cg

qpsk._sig=cos_mod+sin_mod; %sum the signals in the time domain
clear cos_mod;clear sin_mod;

%Plot 28

axis(med_axis);

subplot(211),

plot(t.qpsk_sig, 'b)

title(Plot 28 - phase shifts in QPSK signal’)
xlabel(‘Time")

ylabelC Amplitude’)

axis;
[qpskspec,Hz]}=spectral(qpsk_sig,delta_t); %generate the QPSK spectrum
%Plot 29

subplot(212),
plot(Hz(1:2000),qpskspec(1:2000))
title(Plot 29 - QPSK spectrum’)
xlabel(Frequency in Hz')

ylabel Amplitude’)

clear qpskspec;

pavse
cg

%C. Coherent detection of the QPSK signal

upperdemod=qpsk_sig.*cos(2*pi*fc.*t); %demoduiate each signal
lowerdemod=qpsk_sig.*(-sin(2*pi*fc.*t)); %using its carrier frequency

clear gpsk._sig;
axis(small_axis);
%Plot 30

subplot(211),  %plot upper and lower signals

Computer-aided Laboratory 9 Key—page 23

209




plot(t.upperdemod)

tide(Plot 30 - odd, then even demodulated signals’)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause

plot(tJowerdemod, ')

hold off

{upperspec,Hz upperfft]=spectral(upperdemod,delta_t); %generate spectrum for
clear upperdemod;

(lowerspec,Hz lowerfftj=spectrallowerdemod,delta_t); %each signal

clear lowerdemod;

%Plot 31

subplot(212),

plot(Hz(1:2000),upperspec(1:2000))

title(Plot 31 - odd, then even demodulated spectra prior to filtering”)
xlabel('Frequency in Hz')

ylabel( Amplitude”)

hold on

pause

plot(Hz Jowerspec, 'g")

hold off

clear upperspec;clear lowerspec;

pause
clg

rec_upper=recoverm(upperfft,'ideallow’ Hz bitrate); %recover each signal
clear upperfft; %via a lowpass filter

rec_lower=recoverm(lowerfft, 'ideallow',Hz bitrate);
clear lowerfft;

axis(big_axis);

%Plot 32

subplot(211), %plot recovered signals against the input odd and even signals
plot(t,[rec_upper;nrzlodd])

title(Plot 32 - recovered and original odd bit signals’)

xlabel(Time")

ylabelCAmplitude’)

%Plot 33

Computer-aided Laboratory 9 Key—page 24

210




subplot(212),

plot(t, [rec_lower;nrzieven])

title(Plot 33 - recovered and original even bit signals’)
xlabel(Time")

ylabelC Amplitude’)

pause
clg

comb_sig=par_ser(rec_upper,rec_lower,delta_t,bitrate); %put signal through
clear rec_upper;clear rec_lower; %parallel-to-serial

%Plot 34

%converter
subplot(211),
plot(t,[comb_sig;nrzlsig])
title("Plot 34 - combined odd and even recovered signals’)
xlabel('Time")
ylabel( Amplitude”)

axis;

subplot(212),
title(NO PLOT HERE)

Computer-aided Laboratory 9 Key—page 25

211




This page is intentionally
left blank.

212




T ——

APPENDIX C—PROGRAMMING LABORATORIES

Name:
Section:

EO 3513 Programming Laboratory 1
Signal and Spectrum Generation

This laboratory introduces the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes

labeled.

Part 1—Produce and plot signals

A. Establish a time vector
Since your signals will be functions of time, a time vector must be established prior to

generating a signal. Below is a sample time vector “t” that is one second in duration and has
a “step size” of one ten-thousandth of a second. The variable name “delta_t” (A9) is usually
assigned to the step size . The time vector consists of 10,001 values, or points, starting at 0
and ending at 1.
t=0:0.0001:1; %time vector
M-file: Clear variables and graphs with “clear” and “clg.”

Generate two time vectors, t1 and t2:

tl with a duration of 1 second and step size of .001

t2 with a duration of 1 second and step size of .0001
B. Generate a signal

A single-tone periodic signal can be generated using the following formula, in which
“P’ represents frequency in Hz and *“t” represents a time vector:

s=cos(2*pi*f*t); %single-tone signal

Programming Laboratory 1—page 1

213




A multi-tone signal can be generated by adding sinusoids together. The following
signal contains frequencies of 200, 500, and 800 Hz:

53=10*cos(2*pi*200*t)}+4*cos(2*pi*S00*t)+6*cos(2*pi*800*t); %multi-tone signal

In future laboratories you will determine the maximum amplitude of a signal in order
to calculate its power in the time domain. The signal “s3” has a maximum amplitude of 20
(in this case, conveniently found by adding the maximum amplitudes of its three cosines).
If it is not easily determined from the formula or the signal plot, use the “max” command in
MATLAB to find the approximate maximum signal amplitude:

max_of_s=max(s); %maximum amplitude in the signal s

Since the signal is a function of the time vector “t”, it will be the same length as
“"—10,001 points.

M-file: Generate three signals, sl, s2, and s3, using your two time
vectors:
s1, function of tl, single-tone with frequency of less than 50
s2, function of t2, single-tone with frequency of less than 500
s3, function of t2, multi-tone with frequencies of less than 500

C. Controlling signal plots

The “plot”, "title”, “xlabel”, and “ylabel” commands will produce clearly labeled
graphs of your signals:
plot(tl,s1)
title(“Signal’)
xlabel(“Time’)
ylabel(‘ Amplitude’)
Other useful commands:

“Subplot” permits up to four plots per graphics window. The first digit of the
argument represents the number of rows (up to two), the second digit the number of
columns (up to two), and the third digit the placement of the graph (up to four). In the
example below, a graph is placed in the lower right corner of the graphics window:

subplot(224), %formatted for 2 rows and 2 columns, in position 4
plot(t,s)

If you use the subplot command to position the first graph in the window, MATLAB will
continue to follow that format until the graph window is filled.

*“Pause” with no argument delays program execution until the user presses return
(preventing graphs from whizzing by unobserved).

Programming Laboratory 1—page 2

214




o

“Clg” between sets of plots prevents plots from being superimposed.
Plot 1: Plot sl.

Signal characteristics may be hard to distinguish when the entire signal vector is
plotted. Described below are two methods of limiting plot size to 1000 points.

The first method involves restricting the number of points plotted. This method has
an advantage in that the two vectors need not be the same length.

plot(t2(1:1000),s2(1:1000))
title(‘Signal’)
xlabel(‘“Time’)

ylabel(‘ Amplitude’)

A second method is more tricky. Establish the axis parameters in vector format, then
use the “axis” command to freeze the axes. Following use of the axis freeze, release the
gis by typing the command “axis”. (Note: Using the “hold off” command also unfreezes

e axis.)

small_axis=[0 0.1 -20 20]; %min x, max x, min y, max y for axis frecze
axis(small_axis);

plot(t2,s2)

title(“Signal’)

xlabel(“Time’)

ylabel(‘Amplitude’)

%continue to plot signals of similar scale, then release axis
axis; %don’t forget to release axis!

Plot 2: Plot the first 1000 points of s2, using one of the methods
described above.

You will often be asked to plot one signal over another in order to compare signals (a
recovered signal and its message signal, for example). Three methods are described below.

The easiest method involves listing pairs of x and y arguments for the “plot”
command:

plot(t2(1:500),52(1:500),t2(1:500),s3(1:500)) %plot s3 over s2
title(‘Signal’)

xlabel(‘Time’)

ylabel(‘ Amplitude’)

A second method uses the “hold on” and “hold off” commands. “Hold on” freezes
the current graph while plot commands are repeated. The example below also shows the
use of the “pause” command, with the second signal drawn after a 3-second delay. When

Programming Laboratory 1—page 3

215




using “pause” in conjunction with “hold,” designate a color other than red in order to see
both signals easily.
plot(t2(3501:4500),s3(3501:4500)) %plot signal with larger amplitude first
title(‘Signal’)
xlabel(‘Time’)
Xlabel(‘Amphtude’)

old on

pause(3)
lot(t2(3501:4500),s2(3501:4500),’g’)
old off

In the third method, a signal matrix is created and plotted against a single time vector:
plot(t2(1:1000),[s2(1:1000);s3(1:1000)])
title(‘Signal’)
xlabel(‘Time’)
ylabel(‘Amplitude’)

Plot 3: P:}ot s2 and s3 against t2, using one of the methods described
above.

D. Printing plots

On PC platforms, the command “meta” creates a graphics file. “Prisc” dumps the
current graph window to a printer. “Print” sends a high-resolution copy to the printer. (The
capability to use these commands may vary according to machine and software
configuration.)

On Macintosh platforms, choose “print” from the “file” menu to print the active graph

window, or use the “save as” command in the “file” menu to create a Quick-Draw graphics
file.

Part 2—Produce and plot spectra

A. Calling a functicn

The Communications Toolbox contains the function “spectral,” which has the
following function call:

[specsig,Hz,fitsig]=spectral(s,delta_t);

“Spectral” produces a one-sided spectrum. To create a two-sided spectrum with
relatively-correct amplitudes, use the following command:

two_sided_spec=abs(fftshift(fftsig)); %plot the vector against its index
Programming Laboratory 1—page 4

216




(Note: the two-sided spectrum above can pot be plotted against the Hz vector returned from
“spectral.”)

The step size and number of points in the time vector both affect the vector length,
which relates directly to the resolution of the spectrum. The exact relationship can be
described as

1
N*At

where Af represent the frequency resolution in Hz; N represents the number of points in the
time vector, and At represents the difference between points in the time vector.

The step size alone affects the number of frequencies shown in the spectrum. The
above vector of 10,001 points with At=0.0001 produces a one-sided spectrum of 5000 Hz
with a resolution of 1 Hz. A vector with a step size of 0.001 will produce a one-sided
spectrum of 500 Hz, regardless of its duration in seconds.

The vector length and step size above are appropriate for most of the signals
generated in this laboratory set. To increase processing speed while drafting a script, reduce
the vector llcngth by reducing the duration of the time vector (from 1 second to 0.2 seconds,
for example).

To call the function “spectral,” pass in the input parameters “s” and “delta_t”. The
function ouputs are the vector “specsig” representing the spectrum of “s,” the vector “Hz”
for use as the x-axis when plotting the spectrum, and the vector “fftsig” for use in
recovering the signal.

You will not always need to furnish all of the inputs to a function, nor require all of
the outputs generated by a function. For example, you will not be recovering signals in this
laboratory, and will not need “fftsig.” Your function call to “spectral” might look like this:

[spectrum_1,Hz]=spectral(s1,0.001); %function call to spectral for sl

Vector lengths for spectral plots are usually not reduced in order to see as many of the
spectral components as possible. A spectral plot might be generated as follows:

plot(Hz,spectrum_1)
title(‘Spectrum of s1°)
xlabel(‘Frequency in Hz’)
ylabel(‘Amplitude’)

M-file: Using spectral.m, generate the spectrum for sl.

Programming Laboratory I—page 5

217




rF

Plot 4: Plot the spectrum for sl.

Label the Hz value and the amplitude of the spectral
component.

M-file: Using spectral.m, generate the spectrum for s2.
Plot §: Plot the spectrum for s2.

Labe] the Hz value and the amplitude of the spectral
component.

M-file: Using spectral.m, generate the spectrum for s3.
Plot 6: Plot the spectrum for s3.

Label the Hz values and the amplitudes of the spectral
components.

Question 1: Compare Plots 4 and 5. Why does Plot § display more
frequencies than Plot 4?

Question 2: Given the spectral plot of a single-tone signal, how could you
dietenln}‘,lne the maximum amplitude and frequency for the
signa

Programming Laboratory 1—page 6

218




Name:
Section:

EO 3513 Programming Laboratory 2A
Natural Sampling and Recovery

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can

be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes

labeled.

Part 1—Generate a naturally-sampled signal and its spectrum

A. Generate a signal

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal with frequencies less
than 500. (Tones should have the same amplitude.)

Question 1: What is the maximum amplitude of the signal?

Question 2: What is the highest frequency in the signal? What is the
Nyquist rate?

B. Naturally-sample the signal

M-file: Use natsamp.m to sample the signal. Use a sampling rate
above the Nyquist rate but not more than 2000 Hz.

Plot 1: Plot the sampled signal over the message signal.

Programming Laboratory 2A—page 1

219




Question 3: Calculate the following values for the sampled signal:

sampling period T (calculated in seconds)
pulse duration ¢ (calculated in seconds)

Describe the pulse shape of the sampled signal.
C. Generate the spectrum
M-file: Use spectral.m to generate the spectrum.
Plot 2: Plot the spectrum of the sampled signal.

Label the following groups of frequencies in the spectrum:

baseband signal frequencies
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

¢ The amplitude spectrum of a naturally-sampled signal can be determined using the
ormula

X,(0)= 3 RX(F-NE)
N=0

where
- dsin(Nrd)

P
N"""Nnd

and d is the duty cycle and N indicates the number of the harmonic.
Question 4: Calculate P, for N=1, N=2,and N = 3.

Compare with the values shown on the spectral plot.

Question 5: Describe the overall shape of the spectrum. Does the spectrum
conform to your theoretical expectations? Note any
discrepancies.

Programming Laboratory 2A—page 2

220




Part 2—Recover the message signal

A. Recover the message signal

The function “recovers” calls the filtering function designated in the input parameter.
The Communications Toolbox contains two lowpass filters, “ideallow” and “lowpass.”
Select a cutoff frequency that captures oply the baseband signal frequencies.
M-file: Use recovers.m to recover the message signal.
Plot 3: Plot the recovered signal over the message signal.

M-file: To free memory, clear all variables other than the time vector
and message signal.

Part 3—Observe the effects of aliasing

A. Produce an undersampled signal

M-file: Use natsamp.m to sample the message signal at less than the
Nyquist rate (twice the highest frequency in the signal).

Plot 4: Plot the undersampled signal over the message signal.

M-file: Use sll)ectral.m to generate the spectrum of the undersampled
signal.

Plot 5: Plot the spectrum of the undersampled signal.

Question 6: Compare Plot 5 with Plot 2. What is the effect of
undersampling on the spectrum?

M-file: Use recovers.m to recover the undersampled signal. Use the
;ame )cutoff frequency for the lowpass filter that you used in

Plot 6: Pilot tre recovered undersampled signal over the message
signal.

Label the recovered signal.
Question 7: What is the effect of undersampling on signal recovery?

Programming Laboratory 2A—page 3

221

eeeeeeeeeeeeeeeeeeeeeeee— ]




M-file: To free memory, clear all variables other than the time vector
and message signal.

Part 4—Observe the effect on the spectrum of varying the duty cycle

A. Generate the sampled signal

M-file: Use natsamp.m to sample the message signal at the same rate
used in Part 1b, varying the duty cycle.

Plot 7: Plot the sampled signal.
B. Generate the spectrum
M-file: Use spectral.m to generate the spectrum.
Plot 8: Plot the spectrum of the sampled signal.
Label the Hz value at the first zero crossing (1/x).

Question 8: Compare Plot 8 with Plot 2. What is the effect of changing the
duty cycle on the sampled signal baseband bandwidth?

Programming Laboratory 2A—page 4

222




Name:
Section:

EO 3513 Programming Laboratory 2B
Flattop Sampling and Recovery

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1—Generate a flattop-sampled signal and its spectrum

" A. Generate a signal

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal with frequencies less
than 500. (Tones should have the same amplitude.)

Question 1: What is the maximum amplitude of the signal?

Question 2: What is the highest frequency in the signal? What is the
Nyquist rate?

B. Flattop-sample the signal

M-file: Use flattop.m to sample the signal. Use a sampling rate above
the Nyquist rate but not more 2000 Hz.

Plot 1: Plot the sampled signal over the message signal.

Programming Laboratory 2B—page 1

223




Question 3: Calculate the following values for the sampled signal:

sampling period T (calculated in seconds)
pulse duration ¢ (calculated in seconds)

Describe the pulse shape of the sampled signal.
C. Generate the spectrum
M-file: Use spectral.m to generate the spectrum.
Plot 2: Plot the spectrum of the sampled signal.
Label the following groups of frequencies in the spectrum:
baseband signal frequencies
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

¢ ul'l;he amplitude spectrum of a flattop-sampled signal can be determined using the
ormt

X,(0)= LAX(E-NG)
=0

where

_ dsin(Ntf)

P
N Ntf

;lnzd d is the duty cycle, 1 is the pulse duration in seconds, and f indicates the frequency in

Question 4: Calculate P, for f = 550, f = 700, and f = 880.

Compare with the values shown on the spectral plot.

Question 5: Describe the overall shape of the spectrum. Does the spectrum
conform to your theoretical expectations? Note any
discrepancies.

Programming Laboratory 2B—page 2

224




Part 2—Recover the message signal

A. Recover the message signal

The function “recovers” calls the filtering function designated in the input parameter.
The Communications Toolbox contains two lowpass filters, “ideallow” and “lowpass.”
Select a cutoff frequency that captures only the baseband signal frequencies.
M-file: Use recovers.m to recover the message signal.
Plot 3: Plot the recovered signal over the message signal.

M-file: To free memory, clear all variables other than the time vector
and message signal.

Part 3—Observe the effects of aliasing

A. Produce an undsrsampled signal

M-file: Use flattop.m to sample the message signal at less than the
Nyquist rate (twice the highest frequency in the signal).

Plot 4: Plot the undersampled signal over the message signal.

M-file: I.;se s;l:ectral.m to generate the spectrum of the undersampled
signal.

Plot 5: Plot the spectrum of the undersampled signal.

Question 6: Compare Plot 5 with Plot 2. What is the effect of
undersampling on the spectrum?

M-file: Use recovers.m to recover the undersampled signal. Use the
;amezcutoff frequency for the lowpass filter that you used in
art '

Plot 6: Plot t:le recovered undersampled signal over the message
signal.

Label the recovered signal.
Question 7: What is the effect of undersampling on signal recovery?

Programming Laboratory 2B—page 3

225




M-file: To free memory, clear all variables other than the time vector
and message signal.

Part 4—Observe the effect on the spectrum of varying the duty cycle

A. Generate a sampled signal

M-file: Use flattop.m to sample the message signal at the same r12te
used in Part 1b, varying the duty cycle.

Plot 7: Plot the sampled signal.
B. Generate the spectrum
M-file: Use spectral.m to generate the spectrum.
Plot 8: Plot the spectrum of the sampled signal.
Labe; the Hz value at the first zero crossing (1/x).

Question 8: Compare Plot 8 with Plot 2. What is the effect of changing the
duty cycle on the sampled signal baseband bandwidth?

Programming Laboratory 2B—page 4

226




Name:

Section:

EO 3513 Programming Laboratory 2C
Impulse Sampling and Recovery

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Par: 1—Generate a impulse-sampled signal and its spectrum

A. Generate a signal

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal with frequencies less
than 500. (Tones should have the same amplitude.)

Question 1: What is the maximum amplitude of the signal?

Question 2: What is the highest frequency in the signal? What is the
Nyquist rate?

B. Impulse-sample the signal

M-file: Use imsamp.m to sample the signal. Use a sampling rate above
the Nyquist rate but not more than 2000 Hz.

Plot 1: Plot the sampled signal over the message signal.

Question 3: Calculate the duration of the sampling period T (in seconds).

Programming Laboratory 2C—page 1

227




C. Generate the spectrum

M-file:
Plot 2:

Question 4:

Use spectral.m to generate the spectrum.

Plot the spectrum of the sampled signal.

Label the following groups of frequencies in the spectrum:
baseband signal frequencies
spectral components associated with the sampling
frequency (fs) and each of its multiples (2fs, 3fs, etc.)

Describe the overall shape of the spectrum. Does the spectrum

conform to your theoretical expectations? Note any
discrepancies.

Part 2—Recover the message signal

A. Recover the message signal

The function “recovers” calls the filtering function designated in the input parameter.
The Communications Toolbox contains two lowpass filters, “ideallow” and “lowpass.”
Select a cutoff frequency that captures only the baseband signal frequencies.

M-file:
Plot 3:
M-file:

Use recovers.m to recover the impulse-sampled signal.
Plot the recovered signal ¢ver the message signal.

To free memory, clear all variables other than the time vector
and message signal.

Part 3—Observe the effects of aliasing

A. Produce an undersampled signal

M-file:

Plot 4:
M-file:

Use impsamp.m to sample the message signal at less than the
Nyquist rate (twice the highest frequency in the signal).

Plot the undersampled signal over the message signal.

l{se s;liectral.m to generate the spectrum of the undersampled
signal.

Programming Laboratory 2C—page 2

228




Plot §: Plot the spectrum of the undersampled signal.

Question 5: Compare Plot 5§ with Plot 2. What is the effect of
undersampling on the spectrum?

M-file: Use recovers.m to recover the undersampled signal. Use the
same cutoff frequency for the lowpass filter that you used in
Part 2.

Plot 6: Plot the recovered undersampled signal over the message
signal.

Label the recovered signal.

Question 6: What is the effect of undersampling on signal recovery?

Programming Laboratory 2C—page 3

229




This page is intentionally
left blank.

230




Name:
Section:

EO 3513 Programming Laboratory 3A
Pulse Modulation (PAM and PWM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1—Observe the differences in the time domain for two types of
pulse-modulated signals (PAM and PWM)

A. Generate asignal

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal with frequencies less
than 200.

Question 1: What is the maximum amplitude of the message signal?
B. Modulating the signal

You studied the flattop-sampled signal in Laboratory 2, and saw that while its pulses
varied in amplitude, they always appeared at the start of the sampling period T, and had a
constant duration . Flattop sampling is one implementation of pulse-amplitude modulation
(natural sampling is the other). In this laboratory, the familiar characteristics of the pulse-
amoglitude modulated (PAM) signal will be compared to characteristics of the pulse-width
modulated signal.

M-file: Use flattop.m to pulse-amplitude-modulate the signal. Use a
sampling rate of 500 Hz.

Programming Laboratory 3A—page 1

231




e

Plot 1: Plot the PAM signal over the message signal. Show a portion
of the signal that contains the maximum signal amplitude.

Question 2: (ialwllate the following values, in seconds, for the PAM
signal:

sampling period T
pulse duration ¢

Like PAM signals, pulse-width modulated (PWM) signal pulses begin with the
sampling period T. Pulse amplitudes are constant, while their widths vary, based on the
amplitude of the message signal at each pulse beginning. To facilitate this variation in pulse
width, the maximum pulse duration is expressed as a fraction of the sampling period T. The
widest pulse that could occur would be this fraction of the sampling period T, located
where the maximum signal amplitude fell at the beginning of a pulse. The most narrow
pulse would occur where the minimum signal amplitude fell at the beginning of a pulse.

M-file: Use pulsewid.m to puilse-width-modulate the signal. Use a
sampling rate of 500 Hz and a maximum pulse duration of
greater than 0.5.

Plot 2: Plot the PWM signal over the message signal. Show the same
portion of the signal (containing the maximum signal
amplituce) as displayed in Plot 1.

Question 3: What is the maximum pulse duration that could occur in your
PWM signal?

Part 2—Observe the differences in the frequency domain for the two
types of modulation

A. Generate the spectra
M-file: Use spectral.m to generate the spectrum of the PAM signal.
Plot 3: Plot the spectrum of the PAM signal.

Label the following values:

Hz values of the baseband signal frequencies
sampling frequency (fs)

M-file: Use spectral.m to generate the spectrum of the PWM signal.

Programming Laboratory 3A—page 2
232




Plot 4: Plot the spectrum of the PWM signal.
Label the Hz value of the sampling frequency (fs).
B. Calulating baseband bandwidth
Recall that while PAM signals have a baseband bandwidth of approximately 0.5/«,
PWM signals have larger bascband bandwidths, approximately 0.5/risetime. Consider the
risetime of the pulses in your modulated signals to be equal to the step size in the time
vector.
Question 4: Using the above approximations, calculate the baseband
bandwidths for the PAM and PPM signals. Do these values

reflect what you observe in the spectral plots? Note any
discrepancies.

Programming Laboratory 3A—page 3

233




This page is intentionally
left blank.

234




Name;
Section:

EO 3513 Programming Laboratory 3B
Pulse Modulation (PAM and PPM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLARB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLARB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1—Observe the differences in the time domain for two types of
pulse-modulated signals (PAM and PPM)

A. Generate a signal

M-file: Establ‘ilsh a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal with frequencies less
than 200.

Question 1: What is the maximum amplitude of the message signal?
B. Modulating the signal

You studied the flattop-sampled signal in Laboratory 2, and saw that while its pulses
varied in amplitude, they always appeared at the start of the sampling period T, and had a
constant duration t. Flattop sampling is one implementation of pulse-amplitude modulation
(natural sampling is the other). In this laboratory, the familiar cgamctcristics of the pulse-
amoglitudc tqg\;lhted (PAM) signal will be compared to characteristics of the pulse-position
modulated signal.

M-file: Use flattop.m to pulse-amplitude-modulate the signal. Use a
sampling rate of 500 Hz.

Programming Laboratory 3B—page 1

235




Plot 1: Plot the PAM signal over the message signal. Show a portion
of the signal that contains the maximum signal amplitude.

Question 2: (’ialcnllate the following values, in seconds, for the PAM
signal:

sampling period T
pulse duration ¢

A pulse-position modulated (PPM) signal, like a pulse-amplitude modulated signal,
has a constant duration t. However, the pulse beginnings vary in location within the
sampling period T. Most PPM systems vary pulse position from the middle of the sampling
period T. Negative signal amplitudes cause the pulse to shift left; positive signal amplitudes
cause the pulse to shift right.

The function “pulspos.m” transmits signal information via the amount of the pulse
offset from the beginning of the sampling period. To allow for larger variations in the pulse
offset, the pulse duration z is kept small. For a PPM signal with a duty cycle of 0.2, the
largest pulse offset that could occur would be 0.8 of the sampling period T, observed at the
maximum signal amplitude. No pulse offset occurs at the minimum signal amplitude.

M-file: Use pulsepos.m to pulse-position-modulate the signal. Use a
sampling rate of 500 Hz and a pulse duration of less than 0.5.

Plot 2: Plot the PPM signal over the message signal. Show the same
portion of the signal (containing the maximum signal
amplitude) as displayed in Plot 1. (Note: Using the “grid”
commani 2 ¢; may help identify the boundaries of the sampling
periods.

Question 3: Vthatlf,s the largest pulse offset that could occur in your PPM
signal?

Part 2—Observe the differences in the frequency domain for the two
types of modulation

A. Generate the spectra
M-file: Use spectral.m to generate the spectrum of the PAM signal.

Programming Laboratory 3B—page 2

236




Plot 3: Plot the spectrum of the PAM signal.
Label the following values:

Hz values of the baseband signal frequencies
sampling frequency (fs)

M-file: Use spectral.m to generate the spectrum of the PPM signal.
Plot 4: Plot the spectrum of the PPM signal.
Label the Hz value of the sampling frequency (fs).
B. Calculating baseband bandwidth
Recall that while PAM signals have a baseband bandwidth of approximately 0.5/,
PPM signals have larger baseband bandwidths, approximately 0.5/risetime. Consider the
risctime of the pulses in your modulated signals to be equal to the step size in the time
vector.
Question 4: Using the above approximations, calculate the baseband
bandwidths for the PAM and PPM signals. Do these values

reflect what you observe in the spectral plots? Note any
discrepancies.

Programming Laboratory 3B—page 3

237




This page is intentionally
left blank.

238




Name:

Section:

EO 3513 Programming Laboratory 4A
Analog-to-Digital Conversion (Quantization)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and pl«.t instructions refer to building MATLAB script files; questions can
be answered separateiy. Develog script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part I—FEvaluate two analog-to-digital converters

A. Evaluate a bipolar converter

The function”quantize.m” is used to set the quantization characteristic for a bipolar
quantization system. “Quantize.m” converts signals with values between -10 and +10
volts.

M-file: Use quantize.m to generate the characteristic for a 3-bit bipolar
analog-to-digital converter.

Plot 1: Plot the quantization characteristic, using the output vector
- quanch_x to represent voltage in, and quanch_y to represent
voltage out.

Question 1: Calculate the following values relating to the quantization
characteristic for the 3-bit bipolar converter:

dynamic range

actual step size
actual resolution
percentage resolution
number of levels

Programming Laboratory 4A—page 1

239




B. Evaluate

a unipolar converter

“Quantuni.m” is a unipolar quantizing function that converts signals between values
of 0 and +10 volts.

M-file:

Plot 2:

Question 2:

Use quantuni.m to generate the characteristic for a 5-bit
unipolar analog-to-digital converter.

Plot the quantization characteristic, using the output vector
quanch_x to represent voltage in, and quanch_y to represent
voltage out.

Calculate the following values relating to the quantization
characteristic for the 5-bit unipolar converter:

dynamic range

actual step size
actual resolution
percentage resolution

number of levels

Part 2—Observe the quantization process

A. Generate
M-file:

and sample a signal

Establish a time vector with a At of 0.0001 and a duration of
0.1 seconds.

Generate a multi-tone message signal s with frequencies less
than 50. (Maximum signal amplitude should not exceed 10.)

Signals are typically sampled prior to quantizing.

M-file:

B. Quantize
M-file:

Plot 3:

Use flattop.m to sample the signal, using a sampling rate of
500 Hz or greater.

the signal using a 3-bit bipolar converter

Use quantize.m to quantize the sampled signal as if using a 3-
bit bipolar converter. Use the same sampling rate for sampling
and quantizing. (The characteristic of this converter is
displayed in Plot 1.)

Plot the 3-bit bipolar quantized signal over the sampled signal.

Programming Laboratory 4A—page 2

240




C. Quantize the signal using a 5-bit unipolar converter

M-file: Use quantize.m to quantize the sampled signal as if using a 5-
bit bipolar converter.

Plot 4: Plot the 5-bit bipolar quantized signal over the sampled signal.

A bin number representing voltage level is assigned to each sample in the quantized
signal. Bin numbers begin with 0.

D. Relate bin numbers to voltage levels

M-file: Print the values of quanch_y for the 3-bit bipolar converter
(the highest “voltage” level appears twice, for plotting
purposes only.). Then print the first 5§ values of bin_nums.

Question 3: List the amplitude (“voltage”) of the 3-bit bipolar quantized
signal in each of the first § sampling periods.

M-file: Print the values of quanch_y for the 5-bit bipolar converter;
then print the first 5 values of in bin_nums.

Question 4: List the amplitude (“voltage”) of the 5-bit bipolar quantized
signal in each of the first 5 sampling periods.

Part 3—Measure the quantization noise

The difference between the message signal and the quantized signal is referred to as
“quantization noise”--noise introduced by the quantization process. The function “snr.m”
returns the signal to noise ratio, measured in dB.

A. Find the signal to noise ratios
Plot §: Plot the 3-bit bipolar quantized signal over the message signal.

M-file: Use snr.m to find the signal to noise ratio for the message
signal and the 3-bit bipolar quantized signal.

Plot 6: Plot the S-bit bipolar quantized signal over the message signal.

M-file: Use snr.m to find the signal to noise ratio for the message
signal and the 5-bit bipolar gquantized signal.

Programming Laboratory 4A—page 3
241




B. Compare quantization noise for the two systems

Question 5: List the values of the signal to noise ratios for the 3-bit bipolar
and 5-bit bipolar quantized signals. Which converter produced
less quantization noise?

Programming Laboratory 4A—page 4

242




Name:
Section:

EO 3513 Programming Laboratory 4B
Pulse Code Modulation (PCM)

This laboratory requiies ine Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATIAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions

as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part I—Generate a bitstream to encode

A. Generate a message signal

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a multi-tone message signal s with frequencies less
than 50. (Maximum signal amplitude should not exceed 10).

B. Quantize the message signal

M-file: Use quantize.m to quantize the message signal, using 2
symbols and from 3 to 6 elements. Use a sampling rate of 100
to 200 Hz.

Piot 1: Plot the quantized signal over the message signal.

C. Generate a bitstream

The function “encode.m” will convert “bin_nums,” the vector returned from
“quantize.m” containing the quantization levels, to “codedsig,” a bitstream of 1’s and 0’s.
Each value in bin_nums is represented by one binary word in “codedsig.” The number of
bits in each word is determined by the number of elements.

M-file: Use encode.m to convert “bin_nums” to a bitstream.

Programming Laboratory 4B—page 1

243




Part 2—Encode the bitstream using pulse code modulation (PCM)

The functions “nrzluni.m,” “rzuni.m,” and “manchest.m” translate the vector
“codedsig” into PCM signals. The bit rate for these PCM-encoded signals is calculated by
multiplying the sampling rate by the number of elements.

A. Generate a non-return-to-zero level (NRZL) unipolar coded signal and spectrum

M-file:
Plot 2:

Question 1:

M-file:

Plot 3:

Question 2:

M-file:

Using nrzlevel.m, generate a NRZL unipolar coded signal.

Plot an expanded view of the NRZL unipolar coded signal over
the quantized signal, showing the first 8 to 10 words.

In your own words, describe the NRZL unipolar encoding
scheme.

Using spectral.m, generate a NRZL unipolar coded signal
spectrum.

Plot the NRZL unipolar coded signal spectrum.

Predict an adequate baseband signal bandwidth for the NRZL
unipolar coded signal based on its spectral plot.

To free memory, clear the variables for the NRZL unipolar
coded signal and spectrum.

B. Generate a return-to-zero level (RZL) unipolar coded signal and spectrum

M-file:
Plot 4:

Question 3:

M-file:

Plot 5:

Question 4:

M-file:

Using rzuni.m, generate a RZL unipolar coded signal.

Plot the RZL unipolar coded signal over the quantized signal,
showing the same portion of the signal as in Plot 5.

In your own words, describe the RZL unipolar encoding
scheme.

Using spectral.m, generate an RZL unipolar coded signal
spectrum.

Plot the RZL unipolar coded signal spectrum.

Predict an adequate baseband signal bandwidth for the RZL
unipolar coded signal based on its spectral plot.

To free memory, clear the variables for the RZL unipolar coded
signal and spectrum.

Programming Laboratory 4B—page 2

244




C.  Generate a manchester coded signal and spectrum
M-file: Using manchest.m, generate a manchester coded signal.

Plot 6: Plot the manchester coded signal over the quantized signal,
showing the same portion of the signal as in Plot 5.

Question §: In your own words, describe the manchester encoding scheme,

M-file: Using spectral.m, generate a manchester coded signal
spectrum.
Plot 7: Plot the manchester coded signal spectrum.

Question 6: Predict an adequate baseband signal bandwidth for the
manchester coded signal based on its spectral plot.

M-file: Print out the values of “codedsig” that represent the bits
shown in Plots 2, 4, and 6.

Question 7: Record the values of “codedsig.” Is this bit pattern reflected
on Plots 2, 4, and 6?

D. Estimate bandwidth for the PCM signals
The minimum theoretical PCM bandwidth for sinc-shaped pulses is B¥N, the
baseband message signal bandwidth times the number of elements(bits). Rectangular
pulses theoretically require an infinite bandwidth, but can be estimated based on 1, the
pulse duration:
B =0.5/x
The value of T depends on the PCM encoding scheme employed. For NRZL coded
signals, < is equal to the bit duration. For RZL and manchester coded signals, < is equal to
1/2 of the bit duration.

Question 8: Calculate the approximate baseband bandwidth for the PCM
signals:

NRZL unipolar coded signal
RZL and manchester coded signals

How do thrce values compare with your predictions?

Programming Laboratory 4B—page 3

245




This page is intentionally
left blank.

246




Name:

Section:

EO 3513 Programming Laboratory 4C
Companding

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions

as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled

Part 1—Observe the effects of companding on the message signal

A. Generate the signal

M-file: Establish a time vector with a At of 0.0001 and a duration of
0.05 seconds.

Generate the following multi-tone message signal s:

$=2+2.1%cos(2*pi*50*t)+1.7%cos(4*pi*S50*t)...
+1.5%cos(6*pi*50*t)+1.3%cos(8*pi*50*t);

B. Compare compression characteristics for high and low values of mu

Companding (the process of compressing, then expanding) improves the quantization
process by proportioning signals that spend most of the time in the lower range of the
dynamic range. The functions “compress.m” and “expand.m” simulate a mu-255
compander. Values of mu range from 1 to 255. An input of mu = 255 produces the
maximum compression and expansion.

When using “compress.m” and “expand.m,” be sure pass in the exact maximum of
each individual signal. Use the “max” command as part of the parameter.

M-file: ;JSSiSng compress.m, compress the message signal, using mu =

Programming Laboratory 4C—page 1

247




Plot 1:

M-file:

Plot 2:

Question 1:

Using expand.m, expand the compressed signal, using mu =
25S.

Plot the compressed signal (mu = 255) over the message
signal. (Notice the low-level signal activity.)

Plot the expanded signal (mu = 255) on the same graph. The
expanded signal should plot directly over the message signal.

Using compress.m, compress the message signal, using mu =
s

Using expand.m, expand the compressed signal, using mu = §.
Plot the compressed signal (mu = 5) over the message signal.

Plot the expanded signal (mu = 5) on the same graph. The
expanded signal should plot directly over the message signal.

What is the effect on the compressed signal of increasing the
value of mu?

Part 2—Reduce quantizaton noise by companding the message signal

Your goal in this section of the laboratory is to design a companding system that will
reduce quantization noise. The signal s is given, as is the use of a 2-bit unipolar quantizer.
Your variables are the sampling rate and the value of mu. (Note: Your variables must
remain constant within the system, but may be adjusted to represent different systems.)

“Quantuni.m” employs a truncation rather than a rounding scheme, which tends to
increase quantization noise.

A. Sample and quantize the message signal

M-file:
M-file:

Plot 3:
Plot 4:

Use flattop.m to sample the message signal.

Use quantuni.m to quantize the sampled signal (use the same
sampling rate for sampling and quantizing). Pass in 2 symbols
and 2 elements.

Plot the quantized signal over the sampled signal.

Plot the message signal over the quantized signal. (This graph

illustrates the degree of quantization noise present without
companding.)

Programming Laboratory 4C—page 2

248




B. Establish a benchmark value for signal to noise ratio

M-file: Use snr.m to calculate the signal to noise ratio for the message
and quantized signals (no companding).

Question 2: Obtain the value of the signal to noise ratio (no companding).

Record this value. By exceeding this benchmark value, you
will be decreasing quantization noise.

C. Compress, sample, and quantize the message signal
M-file: Use compress.m to compress the message signal.

Plot §: Plot the compressed signal over the message signal to gauge
the degree of compression.

M-file: Use flattop.m to sample the compressed signal, using the same
sampling rate as before.

M-file: Use quantuni.m to quantize the sampled compressed signal,
passing in 2 symbols and 2 elements. Continue to use the same
sampling rate.

Plot 6: Plot the quantized compressed signal over the sampled
compressed signal.

D. Expand the quantized compressed signal

M-file: Use expand.m to expand the quantized compressed signal.

Plot 7: Plot the companded signal over the message signal. (This
graph illustrates the degree of quantization noise with
companding.)

E. Find the signal to noise ratio for the companded signal

M-file: Use snr.m to calculate the signal to noise ratio for the message
and companded signals.

Question 3: Obtain the value of the signal to noise ratio using companding.
Record this value.

If the signal to noise ratio has not increased over the benchmark value obtained in
Question 2, examine the signals shown in Plot 7. Try to determine the major cause of the
noise in the companded signal. Adjust one or both variables in your system, and repeat the
companding steps.

Programming Laboratory 4C—page 3

249




Question 4: Provide the following characteristics of your system:

sampling rate
value of mu

Programming Laboratory 4C—page 4

250




Name:

Section:

EO 3513 Programming Laboratory 5
Amplitude Modulation Double Sideband (AM DSB)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1—Generate single- and multi-tone message signals and spectra

A. Generate the message signals

M-file: Establish a time vector with a At ot 0.0001 and a duration of 1
second.

Ggl(;erate a single-tone signal with a frequency of less than
500.

Generate a muiti-tone signal with frequencies of less than 500.
Plot 1: Plot the single-tone message signal.
Plot 2: Plot the multi-tone message signal.
B. Predict power and bandwidth for the message signals
Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:

P=Ay? +1-2(AN’ +By?)
28=1

Programming Laboratory S—page 1

251

—




Peak power is calculated as follows:

_Al"‘2
B = 2

Question 1: Calculate the following values for the single-tone message

signal:

peak power

average power
baseband bandwidth

C. Verify bandwidth for the message signals

M-file:

Plot 3:

M-file:

Plot 4:

M-file:

Use spectral.m to generate the spectrum of the single-tone
message signal.

Plot the spectrum of the single-tone signal.
Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

Use spectral.m to generate the spectrum of the multi-tone
message signal.

Plot the spectrum of the multi-tone signal.
Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

To free memory, clear the variables representing the spectra of
the single- and multi-tone signals.

Programming Laboratory 5—page 2

252




Part 2—Generate amplitude modulated double sideband (AM DSB)
signals using single- and multi-tone input

A. Generate the single- and multi-tone AM DSB signals

M-file:

Plot 5:
Plot 6:

Plot 7:
Plot 8:

Modulate the single-tone signal by multiplying it with a cosine
with a carrier frequency of 1500 to 3000 Hz. (Remember to use
the “.*? operator. )

Modulate the multi-tone si by multiplying it with a cosine
with a carrier frequency of 1500 to 3000 Hz (choose a
different carrier frequency than used for single-tone
modulation).

Plot the single-tone AM DSB signal.

Plot an expanded view of the single-tone AM DSB and
message signals that shows one or more zero crossings.

Label the phase shifts shown in this portion of the signal.
Plot the multi-tone AM DSB signal.

Plot an expanded view of the multi-tone AM DSB and message
signals that shows one or more zero cros. .gs.

Label the phase shifts shown in this portion of the signal.

B. Predict power for the single-tone AM DSB signal
Peak power for the AM DSB signal is calculated as before:
2

pp=é.1’_.

2

Average power for the AM DSB signal is obtained using by adding the power
produced by each of the two components, resulting in

2
p=.é_
4

Question 2: Predict the following values for the single-tone AM DSB

peak power

average power
transmission bandwidth

Programming Laboratory 5—page 3

253




C.  Verify the bandwidth of the single- and multi-tone AM DSB signals

M-file:

Plot 9:

Plot 10:

M-file:

Use spectral.m to generate the spectrum of the single-tone AM
DSB signal.

Use spectral.m to generate the spectrum of the multi-tone AM
DSB signal.

Plot the spectrum of the single-tone AM DSB signal.
Label the following values:
amplitude of each spectral component
Hz value of each spectral component
transmission bandwidth in Hz
Plot the spectrum of the multi-tone AM DSB signal.
Labhel the following values:
amplitude of each spectral component
Hz value of each spectral component
transmission bandwidth in Hz

To free memory, clear variables representing spectra for the
single- and multi-tone AM DSB signals.

D.  Verify power for the single-tone AM DSB signal

Peak power is verified in the time domain.

M-file:

To calculate peak power, use the “max” command to find the
single-tone AM DSB signal maximum; then square this value
and divide by 2.

Average power is verified in the frequency domain.

M-file:

To calculate total average power, use psd.m to obtain a vector
representing power spectral density of the single-tone AM DSB
signal; then use the “sum” command to add the frequencies.

Question 3: Record the values representing peak and average power for the

signal-tone signal.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

Programming Laboratory 5—page 4

254




Part 3—Recover the AM DSB signals

A. Demodulate the AM DSB signals (multiply by their carriers)
M-file: Multiply the single-tone AM DSB signal by its carrier.

Use spectral.m to generate the spectrum of the demodulated
single-tone signal.

Multiply the multi-tone AM DSB signal by its carrier.

Use spectral.m to generate the spectrum of the demodulated
multi-tone signal.

To free memory, clear variables representing the single- and

multi-tone AM DSB signals, and the demodulated single- and

multi-tone AM DSB signals (all are time domain vectors).
Plot 11: Plot the spectrum of the demodulated single-tone signal.
Plot 12: Plot the spectrum of the demodulated multi-tone signal.

M-file: To free memory, clear variables representing the spectra of the
demodulated single- and multi-tone demodulated signals.

B. Filter and recover the message signals

“Lowpass” and “ideallow” are the lowpass filters available. Choose cutoff
frequencies that capture only the baseband signal frequencies.

M-file: Use recoverm.m to recover and filter the single-tone baseband
signal frequencies.

Multiply the recovered signal by a factor of 2.

Use recoverm.m to recover and filter the multi-tone baseband
signal frequencies.

Multiply the recovered signal by a factor of 2.
Plot 13: Plot the recovered single-tone signal over the message signal.
Plot 14: Plot the recovered multi-tone signal over the message signal.

Question 4: Why is coherent detection (detection using the carrier)
necessary for an AM DSB signal?

Programming Laboratory 5—page 5

255




This page is intentionally
left blank.

256




Name:
Section:

EO 3513 Programming Laboratory 6
Amplitude Modulation Single Sideband (AM SSB)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions

as dilrectcd by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1—Generate single- and multi-tone message signals and spectra

A. Generate the message signals

M-file: Establish a time vector with a At ot 0.0001 and a duration of 1
second.

ngerate a single-tone signal with a frequency of less than
500.

Generate a multi-tone signal with frequencies of less than 500.
Plot 1: Plot the single-tone message signal.
Plot 2: Plot the multi-tone message signal.
B. Predict the power and bandwidth for the message signals

Parseval’s theorem states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:

P=Ay2+12X (A2 + B,2), summation from 1 to =

Programming Laboratory 6—page 1

257




Peak power is calculated as follows:

P, =A2/2

Question 1: Calculate the following values for the single-tone message

signal:

peak power
average power
baseband bandwidth

C. Verify bandwidth for the message signals

M-file:

Plot 3:

M-file:

Plot 4;

M-file:

Use spectral.m to generate the spectrum of the single-tone
message signal.

Plot the spectrum of the single-tone signal.
Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

Use spectral.m to generate the spectrum of the multi-tone
message signal.

Plot the spectrum of the multi-tone signal.
Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

To free memory, clear the variables representing the spectra of
the single- and multi-tone message signals.

Part 2—Generate amplitude modulated single sideband (AM SSB) signals

using single- and multi-tone input

A. Generate the single- and multi-tone AM SSB signals

Single sideband modulation could be accomplished, in theory, by double sideband
modulation followed by filtering of unwanted frequencies. In practice, however, retaining

Programming Laboratory 6—page 2

258




one sideband while rejecting the other is a complex procedure. In this laboratory, you will
use a Hilbert transform, simulated by the function “hilbert.m,” to apply a 90° phase shift to
the signal, cancelling either the upper or lower sideband.

‘“Hilbert.m” is called by the function “ssb.m.”

M-file:

Plot §:
Plot 6:

Plot 7:
Plot 8:

Plot 9:
Plot 10:

Plot 11:
Plot 12:

Use ssb.m to modulate the single-tone signal. Pass in a carrier
frequency of 1500 to 3000 Hz.

Use ssb.m to modulate the multi-tone signal. Pass in a carrier
frequency of 1500 to 3000 Hz (choose a different carrier
frequency than used for single-tone modulation).

Plot the single-tone AM lower sideband (LSB) signal.

Plot an expanded view of the single-tone AM LSB and message
signals.

Plot the single-tone AM upper sideband (USB) signal.

Plot an expanded view of the single-tone AM USB and
message signals.

Plot the multi-tone AM LSB signal.

Plot an expanded view of the multi-tone AM LSB and message
signals.

Plot the multi-tone AM USB signal.

Fiot an expanded view of the multi-tone AM USB and message

B. Predict power and bandwidth for the AM SSB signals

Peak power for the AM SSB signal is calculated as before:

Py =A2/2

Average power for the AM SSB signal is calculated as follows:

P=A2/2

An examination of the AM SSB signal plots will confirm that the signal maximum in
an AM SSB signal is half of the signal maximum in its message signal.

Programming Laboratory 6—page 3

259

e



Question 2: Predict the following values for the single-tone AM SSB

peak power
average power
transmission bandwidth

C. Verify the power and bandwidth of the AM SSB signals.

M-file:

Plot 13:

Plot 14:

M-file:

Plot i5:

Use spectral.m to generate the spectrum of the single-tone AM
LSB signal.

Use spectral.m to generate the spectrum of the single-tone AM
USB signal.

Plot the spectrum of the single-tone AM LSB signal.
Label the following values:
amplitude of each spectral component
Hz value of each spectral component
transmission bandwidth in Hz
Plot the spectrum of the single-tone AM USB signal.
Label the following values:
amplitude of each spectral component
Hz value of each spectral component
transmission bandwidth in Hz

To free memory, clear the variables representing the spectra of
the single-tone LSB and USB signals.

Use spectral.m to ge. - @ the spectrum of the multi-tone AM
LSB signal.

Use spectral.m to generate the spectrum of the multi-tone AM
USB signal.

Plot the spectrum of the multi-tone AM LSB signal.
Label the following values:
amplitude of each spectral component

Hz value of each spectral component
transmission bandwidth in Hz

Programming Laboratory 6—page 4

260




Plot 16:

M-file:

Plot the spectrum of the multi-tone AM USB signal.
Label the following values:
amplitude of each spectral component
Hz value of each spectral component
transmission bandwidth in Hz

To free memory, clear the variables representing the spectra of
the muiti-tone LSB and USB signals.

Peak power is verified in the time domain.

M-file:

To calculate peak power, use the “max” command to find the
single-tone AM LSB signal maximum; then square this value
and divide by 2.

Calculate peak power for the single-tone AM USB signal.

Average power is verified in the frequency domain.

M-file:

Question 3:

M-file:

To calculate total average power, use psd.m to obtain a vector
representing power spectral density of the single-tone AM LSB
signal; then use the “sum” command to add the frequencies.

Calculate total average power for the single-tone AM USB
signal.

Record the values representing peak and average power for the
signal-tone LSB and USB signals.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

To free memory, clear the variables representing the power
spectral densities of the single-tone AM LSB and USB signals.

Part 3—Recover the AM SSB signals

A. Recover the single-tone AM SSB signals

The first step in recovering an AM SSB signal is to demodulate (multiply the signal

by its carrier).

Programming Laboratory 6—page 5

261




When you called the function “ssb.m” you passed in the parameters setting amplitude
(car_amp) and frequency (car_freq) for the cai::er signal. To demodulate the AM SSB
signals, you will need to reconstruct the carrier signal in the following form:

M-file:

Plot 17:

Plot 18:

M-file:

- carrier = car_amp*(2*pi* car_freq*t)

Multiply the single-tone AM LSB signal by its carrier.
(Remember to use the “.*” gperator.)

Use spectral.m to generate the spectrum of the demodulated
single-tone AM LSB signal.

Multiply the single-tone AM USB signal by its carrier.

Use spectral.m to generate the spectrum of the demodulated
single-tone AM USB signal.

To free memory, clear the variables representing the single-
tone AM LSB and USB signals; and their demodulated signals.

Plot the spectrum of the demodulated single-tone AM LSB
signal.

Plot the spectrum of the demodulated single-tone AM USB
signal.

To free memory, clear the variables representing the spectra of
the demodulated single-tone AM LSB and USB signals.

The second step in recovering an AM SSB signal is to filter the demodulated signal in
order to recover the message signal.

“Lowpass” and “ideallow” are the lowpass filters available. Choose cutoff
frequencies that capture only the baseband signal frequencies.

M-file:

Use recoverm.m to recover and filter the baseband signal
frequencies for the single-tone AM LSB signal.

Multiply the recovered signal by a factor of 4.

Use recoverm.m to recover and filter the baseband signal
frequencies for the single-tone AM USB signal.

Multiply the recovered signal by a factor of 4.

To free memory, clear the variables representing the recovered
single-tone AM LSB and USB signals, and their “fft” vectors.

Programming Laboratory 6—page 6

262




Plot 19:

Plot the recovered single-tone AM LSB and USB signals over
the message signal.

B. Recover the multi-tone AM SSB signals

M-file:

Plot 20:

Plot 21:

M-file:

Plot 22:

Question 4:

Multiply the multi-tone AM LSB signal by its carrier.

Use spectral.m to generate the spectrum of the demodulated
multi-tone AM LSB signal.

Multiply the multi-tone AM USB signal by its carrier.

Use spectral.m to generate the spectrum of the demodulated
multi-tone AM USB signal.

To free memory, clear the variables representing the multi-tone
AM LSB and USB signals; and their demodulated signals.

Plot the spectrum of the demodulated multi-tone AM LSB
signal.

Plot the spectrum of the demodulated multi-tone AM USB
signal.

To free memory, clear the variables representing the spectra of
the demodulated multi-tone AM LSB and USB signals.

Use recoverm.m to recover and filter the baseband signal
frequencies for the multi-tone AM LSB signal.

Multiply the recovered signal by a factor of 4.

Use recoverm.m to recover and filter the baseband signal
frequencies for the multi-tone AM USB signal.

Multiply the recovered signal by a factor of 4.

To free memory, clear the variables representing the recovered
single-tone AM LSB and USB signals, and their “fft” vectors.

Plot the recovered muiti-tone AM LSB and USB signals over
the message signal.

Is coherent detection (detection using the carrier) necessary
for an AM SSB signal?

Programming Laboratory 6—page 7

263




This page is intentionally
left blank.

264




Name:

Section:

EO 3513 Programming Laboratory 7
Conventional Amplitude Modulation
(Conventional AM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions

as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part I—Generate single- and multi-tone message signals and spectra

A. Generate the message signals

M-file: Establish a time vector with a At ot 0.0001 and a duration of 1
second.

Generate a single-tone signal with a frequency of less than
500. Find the maximum signal value.

Generate a multi-tone signal with frequencies of less than 500.
Find the maximum signal value.

Plot 1: Plot the single-tone message signal.
Plot 2: Plot the multi-tone message signal.
B. Predict power and bandwidth for the message signals
Parseval’s theorem states that average signal power can be calculated in either the time

or the frequency domain. The following formula applies to calculation in the time domain:

P= Aoz +12(AN2 +BN2)
2N=l

Programming Laboratory 7—page 1

265




Peak power is calculated as follows:

2

<A
=

Question 1: Calculate the following values for the single-tone message

signal:

peak power
average power
baseband bandwidth

C. Verify bandwidth for the message signals

M-file:

Plot 3:

M-file:

Plot 4:

M-file:

Use spectral.m to generate the spectrum of the single-tone
message signal.

Plot the spectrum of the single-tone signal.
Label the following values:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

Use spectral.m to generate the spectrum of the multi-tone
message signal.

Plot the spectrum of the multi-tone signal.
Label the following values:

Hz value of the spectral components
baseband signal bandwidth in Hz

To free memory, clear the variables representing the spectra of
the single- and muliti-tone signals.

Programming Laboratory 7—page 2

266




Part 2—Generate conventional amplitude modulated (conventional AM)
signals using single- and multi-tone input
A. Generate the single- and multi-tone conventional AM signals

The function “conv_am.m” is used to normalize and modulate the message signal.

M-file: Use conv_am.m to modulate the single-tone message signal.
Use a carrier frequency of 1500 to 3000 Hz.

Use conv_am.m to modulate the multi-tone message signal,
using a different carrier frequency in the same range.

Plot S: Plot the single-tone conventional AM signal.
Plot 6: Plot the multi-tone AM DSB signal.
B. Predict power and banawidth for the conventional AM signals
Peak power for the single-tone conventional AM signal is calculated as follows:
P,=(1+m)?P,
where P, is the average power of the carrier.

Average power for the single-tone conventional AM signal is calculated as follows:

2
m
P=|1+— [P,

where P, is the average power of the carrier.

Question 2: Predict the following values for the single-tone conventional
AM signal:

peak power
average power
transmission bandwidth

Programming Laboratory 7—page 3

267




C. Verify the power and bandwidth of the conventional AM signal

Amplitude of the spectral components in the sidebands of the conventional AM signal
can be calculated as

mA/2

where m is the modulation index and A is the amplitude of the signal tone. The amplitude
of the spectral component representing the carrier is equal to the amplitude of the carrier.

M-file:

Plot 7:

Plot 8:

M-file:

Use spectral.m to generate the spectrum of the single-tone
conventional AM signal.

Use spectral.m to generate the spectrum of the multi-tone
conventional AM signal.

Plot the spectrum of the single-tone conventional AM signal.
Label the following values:

amplitude of each spectral component

Hz value of each spectral component

transmission bandwidth in Hz
Plot the spectrum of the multi-tone conventional AM signal.
Label the following values:

Hz value of each spectral component
transmission bandwidth in Hz

To free memory, clear variables representing spectra of the
single- and multi-tone conventional AM signals.

Peak power is verified in the time domain.

M-file:

To calculate peak power, use the “max” command to find the
single-tone conventional AM signal maximum; then square this
value and divide by 2.

Average power is verified in the frequency domain.

M-file:

To calculate total average power, use psd.m to obtain a vector
representing power spectral density of the single-tone
conventional AM signal; then use the “sum” command to add
the frequencies.

To free memory, clear the variable representing power spectral
density.

Programming Laboratory 7—page 4

268




Question 3: Record the values representing peak and average power for the
signal-tone conventional AM signal.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

Part 3—Recover the conventional AM signals

A. Recover the single-tone conventional AM signal

i Conventional AM signals are recovered via use of a bandpass filter and envelope
teCtor.

The function “recoverm.m” is used to bandpass-filter and recover the signals.

M-file: Use recoverm.m and the bandpass filter idealbnd.m to filter
and recover the single-tone conventional AM signal.

The function “envelope.m” is an envelope detector that uses a Hilbert transform to
detect the magnitude of the complex envelope. Due to its algorithm, “envelope.m” is a
highly accurate but memory-intensive function.

M-file: Reduce the size of the vector representing the filtered single-
tone conventional AM signal to about 500 points.

Use envelope.m detect the filtered single-tone conventional
AM signal.

Plot 9: Plot an expanded view of the single-tone envelope-detected
signal over its filtered conventional AM signal.

To complete the signal detection, the steps in the conventional AM process are
reversed. The DC value is removed from the envelope-detected signal; this signal is divided
by the modulation index; finally the signal is multiplied by the maximum value of the
original message signal.

M-file: Subtract 1 from the envelope-detected signal to remove the DC
value. Then divide by the modulation index and multiply by
the maximum value in the message signal.

Plot 10: Plot an expanded view of the single-tone message signal over
the modified envelope-detected signal.

Programming Laboratory 7—page 5

269




B. Recover the multi-tone conventional AM signal

M-file:

Plot 11:

M-file:

Plot 12:

Use recoverm.m and the bandpass filter idealbnd.m to filter
and recover the multi-tone conventional AM signal.

Reduce the size of the vector representing the filtered multi-
tone conventional AM signal to about 500 points.

l{se envelope.m detect the filtered multi-tone conventional AM
signal.

Plot an expanded view of the multi-tone envelope-detected
signal over its filtered conventional AM signal.

Subtract 1 from the envelope-detected signal to remove the DC
value. Then divide by the modulation index and multiply by
the maximum value in the message signal.

Plot an expanded view of the multi-tone message signal over
the modified envelope-detected signal.

Part 4—Observe the effect of overmodulation on a conventional AM

signal

A. Overmodulate a single-tone conventional AM signal

M-file:

Use conv_am.m to modulate the single-tone signal, using a
modulation index greater than 1.

Using the envelope detector on the corventional AM signal will give you a preview
of why envelope detection is inadequate as a detection method for an overmodulated
conventional AM signal.

M-file:

Plot 13:

Reduce the length of the overmodulated conventional AM
signal to about 500 points.

I%se e?velope.m to detect the envelope of the overmodulated
signal.

Plot an expanded view of the envelope-detected signal over the
overmodulated conventional AM signal.

Programming Laboratory 7—page 6

270




B. Describe the effect of overmodulation on signal recovery

Question 4: What type of detection is needed for an overmodulated
conventional AM signal? Why?

Programming Laboratory 7—page 7

271




This page is intentionally
left blank.

272




Name:
Section:

EO 3513 Programming Laboratory 8
Frequency Modulation (FM)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions

as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part 1--Observe the FM modulation process for single- and multi-tone
input
A. Generate the message signals

M-file: Establish a time vector with a At of 0.0001 and a duration of 1
second.

Generate a single-tone signal with a frequency of less than
100.

Generate a two-tone signal with frequencies of less than 100.
Amplitudes may vary.

Plot 1: Plot the single-tone message signal.

Plot 2: Plot the multi-tone message signal.

Programming Laboratory 8—page 1

273




B. Predict peak power, average power, and bandwidth for the message signals
Parseval’s theorera states that average signal power can be calculated in either the time
or the frequency domain. The following formula applies to calculation in the time domain:
P=Ag? +o Y. (AN? +By?)
2 N=1

Peak power is calculated as folows:

Az
"=ty

Question 1: Calculate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth
C. Generate the single- and multi-tone message signals spectra

M-file: Use spectral.m to generate the spectrum of the single-tone
message signal.

Plot 3: Plot the spectrum of the single-tone message signal.
Label the following values for the message signal:
Hz value of the spectral component
amplitude of the spectral component
baseband signal bandwidth in Hz

M-file: Use spectral.m to generate the spectrum of the multi-tone
message signal.

Plot 4: Plot the spectrum of the multi-tone message signal.
Label the following values for the message signal:
Hz value of the spectral components
amplitude of the spectral components
baseband signal bandwidth in Hz
M-file: To free memory, clear the variables associated with the single-
and muli.-tone message signal spectra.

Programming Laboratory 8—page 2

274




Part 2--Generate frequency modulated (FM) signals using single- and
multi-tone input

A. Generate the single- and multi-tone FM signals

The function “fm_mod.m” is used to frequency modulate the message signal. Input
parameters relating to the message signal frequency and phase, and carrier signal frequency
and amplitude must be specified. Additionally, either beta (B) or delta_f (Af) must be
specified. When B is specified, Af is calculated and retumed, and vice versa.

For multi-tone FM signals, signal frequencies and phases are passed in using
vectors. For this laboratory, phase (theta) can be set to zero. A sample frequency vector
follows:

fm=[33 66]
M-file: Use fm_mod.m to generate the single-tone FM signal.
Use fm_mod.m to generate the muliti-tone FM signal.
For both FM signals, use 8 = 10 and a carrier frequency
between 1500 and 2500 Hz. Set the amplitude of each FM
signal equal to the maximum amplitude in its message signal.

Plot 5: Plot the single-tone FM signal over its message signal. Notice
the variations in FM signal frequency as message signal
amplitude changes.

Plot 6: Plot the multi-tone FM signal over its message signal. Show
the message signal maximuom and minimum amplitudes, if
possible.

B. Predict peak power, average power, and bandwidth for the FM signals

Peak power is calculated as before:

Average power of the FM signal is calculated as follows:
P=A2/2

Programming Laboratory 8—page 3

275




Recall that B and Af are related in that B f | = Af. There are three cases for estimating
transmission bandwidth, depending on the value of B:

for 8 < 0.25 Br=2f, Towband FM)
for2.5<B8<10 Br=2(1+8)f, (Carson’srule)
forB8 210 Br=28f, (wideband FM)

where f;, is the frequency of the message signal.
Question 2: Predict the following values for the single-tone FM signal:

peak power

average power

maximum frequency deviation Af
transmission bandwidth (use Carson’s rule)

C. Generate the spectra of the FM signals

M-file: Use sll:ectral.m to generate the spectrum of the single-tone FM
signal.

Plot 7: Plot the spectrum of the single-tone FM signal.

Label the carrier frequency and the transmission bandwidth.
Label Af to each side of the carrier frequency.

Question 3: Consult a table of values for Bessel functions (or use the
MATLAB “bessel” command). How many sidebands are
required for 98% power transmission for this FM signal? Does
t?: ;pec(tlrgm shown in Plot 7 reflect the expected number of
sidebands?

Question 4: What is the distance between the sidebands in the FM spectrum
shown in Plot 7?

M-file: l;se sll)ectral.m to generate the spectrum of the multi-tone FM
signal.

When calculating transmission bandwidth for a multi-tone FM signal, use the
maximum frequency in the message signal.

Plot 8: Plot the spectrum of the muiti-tone FM signal.
Label the carrier frequency and transmission bandwidth.

Programming Laboratory 8—page 4

276




M-file:

M-file:

Question §:

__ﬁ

D.  Verify the power and bandwidth of the single-tone FM signal
Peak power is verified in the time domain.

To calculate peak power, square the maximum vaiue of the FM
signal and divide by 2.

Average power is verified in the frequency domain.

To calculate total average power, use psd.m to obtain a vector
representing power spectral density of the single-tone
conventional AM signal; then use the “sum” command to add
the frequencies.

Record the values representing peak and average power for the
signal-tone FM signal.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

Part 3--Control the bandwidth of the FM signals

A. Control the bandwidth of the single-tone FM signal by varying 8

M-file:

Question 6:

Question 7:

M-file:

Plot 9:

Use fm_mod.m to generate two single-tone FM signals, both at
a carrier frequency of 2500 Hz but with different values of 8.

Calculate the maximum frequency deviation Af associated with
each of the two values of B.

Calculate the transmission bandwidth for each of the single-
tone FM signals.

Use spectral.m to generate the spectra of the two single-tone
FM signals.

Piot the first of the single-tone FM signal spectra generated
above.

Label the spectrum with the transmission bandwidth calculated
in Question 7.

Programming Laboratory 8—page 5

271




Plot 10:

Plot the second of the single-tone FM signal spectra generated
above.

Label the spectrum with the transmission bandwidth calculated
in Question 7.

A. Control the bandwidth of the multi-tonc FM signal by varying At

M-file:

Question 8:

Question 9:

M-file:

Plot 11:

Plot 12;

Use fm_mod.m to generate two multi-tone FM signals, both at
a carrier frequency of 2500 Hz but with different values of At.

C:lzl;late the value of B associated with each of the two values
o *

Calculate the transmission bandwidth for each of the multi-
tone FM signals (use the higher of the two values for message
signal frequency).

Use spectral.m to generate the spectra of the two multi-tone
FM signals.

Plot the first of the multi-tone FM signal spectra generated
above.

Label the spectrum with the transmission bandwidth calculated
in Question 9.

P:)ot the second of the single-tone FM signal spectra generated
above.

Label the spectrum with the transmission bandwidth calculated
in Question 9.

Programming Laboratory 8—page 6

278




Name:

Section:

EO 3513 Programming Laboratory 9
Radio Frequency Digital Modulation Methods
(ASK, FSK, BPSK, and QPSK)

This laboratory requires the Communications Toolbox for use with MATLAB. The
toolbox functions are available on disk for use on both PC and Macintosh platforms. Users
should employ the “help” feature in MATLAB for information about the functions, or
consult the users’ guide.

M-file and plot instructions refer to building MATLAB script files; questions can
be answered separately. Develop script files, produce and label plots, and answer questions
as directed by your instructor. All plots should be numbered and titled, with x- and y-axes
labeled.

Part I—Amplitude shift keying (ASK)

A. Generate the digital message signal
The radio frequency modulation methods in this laboratory are all based on digital
tbrgzsszgc signals. One method of generating a random bitstream in MATLAB is described
bitstream=round(rand(1:500)); %random bitstream
M-file: Generate a random bitstream of 100 bits.
ASK signals require a unipolar digital signal.

M-file: Use “nrzluni.m” to generate a digital message signal with a bit
rate of 100 bits per second.

Question 1: Calculate the bit duration t for this signal.

Plot 1: Plot at least the first 10 bits of the NRZL unipolar digital
message signal.

Label the values (0 or 1) of the first 10 bits, and the bit
duration <.

Programming Laboratory 9—page 1

279




Recall that a “coarse” approximation for baseband bandwidth of a digital signal is

0.5/«.

Question 2:

M-file:

Plot 2:

Calculate the approximate baseband bandwidth of the NRZL
unipolar digital message signal.

Use “spectral.m” to generate the one-sided spectrum of the
digital message signal.

Plot the first 2000 Hz of the NRZL unipolar digital message
sigral spectrum.

Label the baseband bandwidth in Hz.

B. Generate the ASK signal

M-file:

Plot 3:

Question 3:
M-file:

Plot 4:

M-file:

Generate the ASK signal by modulating it with a cosine with a
carrier frequency of between 500 and 1000 Hz. (Remember to
use the “.*” gperator.)

Plot at least § bits of the ASK signal.

Labhel the values (0 or 1) of the bits shown.

Why is ASK modulation often referred to as “on-off keying”?

Use “gspectral.m” to generate the one-sided spectrum of the
ASK signal.

Plot the first 2000 Hz of the ASK signal spectrum.
Label the carrier frequency of the ASK signal.

To free memory, clear the ASK signal and spectrum, and the
NRZL unipolar digital message spectrum.

Part 2—Frequency shift keying (FSK)

A. Generate the FSK signal

The FSK signal can be based on either a unipolar or bipolar digital signal. Use the
NRZL unipolar digital message signal generated in Part 1 to generate the FSK signal.

The FSK signal is generated using the function “fsk.m.” Within this function, the
bits representing 1’s are modulated at a higher frequency, and the bits representing 0’s are
mouulated at a lower frequency.

Programming Laboratory 9—page 2

280




M-file:

Plot §:

M-file:

Plot 6:

M-file:

Use “fsk.m” to generate the FSK signal. Choose a high
frequency of between 1000 and 1500 and a low frequency of
between 500 and 1000, allowing a margin of 200 Hz between
the two frequencies.

Plot at least the first 5§ bits of the FSK signal over the
NRZL unipolar digital message signal.

Label the values (0 or 1) of the bits shown.

Use “spectral.m” to generate the one-sided spectrum of the
FSK signal.

Plot the first 2000 Hz of the FSK signal spectrum.
Label the two carrier frequencies of the FSK signal.

To free memory, clear the FSK signal and spectruin and the
NRZL unipolar digital message signal.

Part 3—Binary phase shift keying (BPSK)

A. Generate the digital message signal
The BPSK signal is based on a bipolar digital signal.

M-file:

Plot 7:

M-file:

Set the bit pattern for the first 8 bits of the bitstream as
follows:

bitstream(1:8)=<[0 0 0 1 1 0 1 1];

Use “nrzlbi.m” to generate an NRZL bipolar digital message
signal at a bit rate of 100 bits per second.

Plot at least the first 10 bits of the NRZL bipolar digital
message signal.

Label the values (0 or 1) of the first 10 bits, and the bit
duration <.

Use “spectral.m” to generate the spectrum of the NRZL bipolar
digital message signal.

Programming Laboratory 9—page 3

281




Plot 8: Plot the first 2000 Hz of the spectrum of the NRZL bipolar
digital message signal.

Label the baseband bandwidth in Hz.
B. Generate the BPSK signal

M-file: Generate the BPSK signal by modulating the message signal
with a cosine at a frequency of between 250 and 1000 Hz.

Plot 9: Plot at least the first S bits of the NRZL bipolar digital
message signal over the BPSK signal. Notice the phase shifts
present in the signal where bit values change.

Label the values (0 or 1) of the bits shown.

B. Generate the BPSK spectrum

M-file: Use “spectral.m” to generate the one-sided spectrum of the
BPSK signal.

Plot 10: Plot the first 2000 Hz of the BPSK signal spectrum.
Label the carrier frequency of the BPSK signal.

Part 4—Quadriphase shift keying (QPSK)

The QPSK signal, like the BPSK signal, must be based on a bipolar digital message
signal; however, it exhibits four different types of phase shifts. The first 8 bits of the digital
message signal form a pattern that will demonstrate the four types of phase shifts present in
the QPSK signal.

A. Generate the QPSK signal
The first step in generating the QPSK signal is to split the signal by putting it through

a serial-to-parallel converter. One of the output signals is composed of the odd bits, the
other of the even bits. The bits in each output signal have a bit rate of half of the input

signal.

M-file: Use “ser_par.m” to split the NRZL bipolar digital message
signal into two signals.

Plot 11: Plot at least the first 5§ bits of the signal composed of odd bits.

Label the values (0 or 1) of the first 5 bits shown, and the bit
duration «.

Programming Laboratory 9—page 4

282




Plot 12; ﬂot at least the first 5 bits of the signal composed of even
ts.

Label the values (0 or 1) of the first § bits shown, and the bit
duration <.

Next, the signal composed of odd bits must be modulated by a positive cosine
function. The signal composed of even bits must be modulated by a negative sine function.

M-file: Multiply the signal composed of odd bits with a positive
cosine function with a carrier frequency of between 250 and
1000 Hz.

Plot 13: Plot at least the first 5§ bits of the digital message signal over
the modulated “odd-bit” signal. Notice the phase shifts
present.

M-file: Using the same carrier frequency, multiply the signal
composed of even bits with a negative sine function.

Plot 14: Plot at least the first 5§ bits of the digital message signal over
the modulated “even-bit” signal. Notice the phase shifts
present.

The QPSK modulation process is completed by summing the two modulated signals
in the time domain.

M-file: Sum the two modulated signals.
Plot 15: Plot the first 5 bits of the QPSK signal (0.1 seconds).
Label the phase shifts present in the signal.
M-file: Use “spectral.m” to generate the one-sided QPSK spectrum.
Plot 16: Plot the first 2000 Hz of the QPSK spectrum.
Label the carrier frequency of the QPSK signal.
Question 4: Compare the spectrum for the BPSK signal in Plot 10 with that

of the QPSK signal in Plot 16. What is the chief advantage of
quadriphase shift keying over bipolar phase shift keying?

Programming Laboratory 9—page 5

283




This page is intentionally
left blank.

284




APPENDIX D—PROGRAMMING LABORATORY KEYS

EO 3513 Programming Laboratory 1 Key

Signal and Spectrum Generation

Answers will vary. The answers below are based on the following signals:

s1=5%cos(2*pi*30*t1);

§2=10%cos(2*pi*100*2);

s3=15%cos(2*pi*250*12)+5*cos(2*pi*400*12);

Question 1: Compare Plots 4 and 5. Why does Plot § display more
frequencies than Plot 4?

Answer: For signal s1 shown in Plot 4, the step size of 0.001 produced a one-sided
spectrum of only 500 Hz; for signal s2 shown in Plot 5, the step size of
0.0001 produced a one-sided spectum of 5000 Hz.

Question 2: Given the spectral plot of a single-tone signal, how could you
determine the maximum amplitude and frequency for the
signal?

Answer: On a one-sided spectrum, signal amplitude is plotted against frequency in

Hz. The maximum signal amplitude cou'd be found by observing the
amplitude of the spectral component. Frequency could be determined by
observing the Hz value of the spectral component.

Programming Laboratory 1 Key—page 1

285




Amplitude

Amplitude

Amplitude

Plot 1 - signal sl

0 01 02 03 04 05 06 07 08 09 1
Time
Plot 2 - portion of signal s2
0 001 002 003 004 005 006 007 008 009 0.1
Time
. Plot 3 - signals s2 and s3 )
0 001 002 003 004 005 006 007 008 009 0.1
Time
. _ qut4 - spectrum of sl -
<@————— 30 Hz with amplitude = 5
0 S0 100 150 200 250 300 350 400 450 500

Frequency in Hz

Programming Laboratory 1 Key—page 2

286




Amplitude

Amplitude

Plot S - spectrum of s2

10 . — —
4————— 100 Hz with amplitude = 10
5S¢ :
0 . N - - N A . N a
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
15 _ Plot 6 - spectrum of s3 ' ' _
10k 4"—'—'—' 250 Hz with amplitude = 15 {
S T
I - 400 Hz wuh amph!ude 5
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Programming Laboratory 1 Key—page 3

287




labl_ex.m

%Programming Lab 1 example for instructor use
% Answers will vary!

%% %% %% %% %% %% % %% %% %% %% %% %% %%
%Programming Lab 1 Signal and Spectrum Generation
%% %% %% % %% % %% % %% %o %% %% %% % %o % %% %o
%Part 1--Produce and plot signals

%A. Establish a time vector

Clear
clg

t1=0:.001:1;
12=0:.0001:1;

%B. Generate a signal

s1=5*cos(2*pi*30*tl);
s2=10*cos(2*pi*100*12);
§3=15%cos(2*pi*250*12)+5*cos(2*pi*400*12);

%C. Controlling signal plots
%Plot 1

subplot(211),

plot(tl,s1)

title(Plot 1 - signal s1°)
xlabel(Time')

ylabelC Amplitude’)

%Plot 2

plot(t2(1:1000),52(1:1000))
title(Plot 2 - portion of signal s2')
xlabel('Time))

ylabel( Amplitude”)

pause
clg

%Plot 3
subplot(211),

plot(12(1:1000),53(1:1000))
title(Plot 3 - signals s2 and s3)

Programming Laboratory 1 Key—page 4

288




xlabel(Time")

ylabelC Amplitude’)

hold on
plot(t2(1:1000),s2(1:1000),d)
hold off

%% % %% %% %% %% % %% % %%
%Part 2--Produce and plot spectra
%A. Calling a function

[specl,shortHz]=spectral(s1,.001); %generate spectrum for s1
%Plot 4

plot(shortHz specl) %plot spectrum of sl

title('Plot 4 - spectrum of s17)

xlabel(Frequency in Hz")

ylabelCAmplitude’)

pause
clg

[spec2,longHz]=spectral(s2,.0001); %generate spectrum for s2
%Plot 5

subplot(211),

plot(longHz spec2) %plot spectrum of s2

title(Plot S - spectrum of s2')

xlabel(Frequency in Hz')

ylabelC Amplitude”)

{spec3]=spectral(s3,.0001); %genecrate spectrum for s3

%Plot 6

plot(longHz,spec3) %plot spectrum of s3
title('Plot 6 - spectrum of s3°)
xlabel(Frequency in Hz')
ylabel(Amplitude’)

Programming Laboratory 1 Key—page 5

289




This page is intentionally
left blank.

290




EO 3513 Programming Laboratory 2A Key

Natural Sampling and Recovery

Answers will vary. The answers below are based on the following signal:
s=2%(cos(2*pi*150*t)+cos(2*pi*250*t)+cos(2*pi*450*t));

Question 1:
Answer:
Question 2:

Answer:

Question 3:

Answer:

Question 4:

Answer:

What is the maximum amplitude of the signal?
6

What is the highest frequency in the signal? What is the
Nyquist rate?

highest frequency is 450 Hz
Nyquist rate is 900 Hz

Calculate the following values for the sampled signal:

sampling period T (calculated in seconds)
pulse duration 1 (calculated in seconds)

Describe the pulse shape of the sampled signal.

T = U/fs => 1/1000 => 0.001 seconds
t=d*T=>0.5*0.001 = 0.0005 seconds

The top of each pulse reflects the shape of the message signal.
Calculate P, for N=1, N=2,and N = 3.

Compare with the values shown on the spectral plot.

ForN=1 Py= 03183
ForN=2 Py= 0
ForN=3 Py= -0.1061

Values on the spectral plot appear larger by a factor of 2, consistent with the

increased signal amplitude. (Note that absolute values are plotted.)

Programming Laboratory 2A Key—page 1

291




Question 5:

Answer:

Question 6:

Answer:

Question 7:
Answer:

Question 8:

Answer:

Describe the overall shape of the spectrum. Does the spectrum
conform to your theoretical expectations? Note any
discrepancies.

The spectrum consists of groups of frequencies which have a “sinc” shape
to their envelope.

Yes--no discrepancies.

Compare Plot 5 with Plot 2. What is the effect of
undersampling on the spectrum?

The replicas of the baseband message signal frequencies produced by
sampling overlap.

What is the effect of undersampling on signal recovery?

The overlapping of the baseband message signal frequencies prevents
proper recovery of the message signal (this effect is called “aliasing”).

Compare Plot 8 with Plot 2. What is the effect of changing the
duty cycle on the sampled signal baseband bandwidth?

As the pulse width decreases, the sampled signal baseband bandwidth
increases; as pulse width increases, the sampled signal baseband bandwidth
decreases. This relationship illustrates the trade-off between transmission
power and bandwidth requirements.

Narrower pulses translate to more frequent changes, requiring higher
frequencies to capture those changes.

Programming Laboratory 2A Key—page 2

292




Plot 1 - message signal, naturally-sampled signal

-1 . N . “ s z - N N
0 0005 001 0015 002 0.025 0.03 0035 0.04 0.045 0.05
Time

_ Plot 2'- spectrum of naturally-sampled signal

/wd. Daseband signal first zero crossing at
frequencies 2000 Hz

2fs

0.5 fs s 4fs 7

) . _ ; A -

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Amplitude

Plot 3 - recovered and message signals

-10 A N N . " N N N .
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

10

Amplitude
o

_Plot4- messa'&and pndersa;npled signals _

-10 . A N . . - . . .
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Programming Laboratory 2A Key—page 3

293




1 . . Plot 5 - undersampled spectrum

Ot _J

SV | P I TN T T TR T

0.
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Amplitude
(=)
LV ]

10 _ ; Plog 6- rec9vered a:nd message siggals

0 . — A N N N N L N
0 0005 001 0015 002 0.025 0.03 0.035 004 0045 0.05

Time
10 ] _Plot 7: natura'lly-samﬁplcd signal withd = .2 )
£ NI T
‘g_ 0
-10 . N . . . . . . .
0 0005 001 0015 0.02 0.025 0.03 0.035 004 0.045 0.05
Time
0.4 __Plot 8 - spectrum of naturally-sampled signal withd = .2

SIS

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 2A Key—page 4

294




lab2A_ex.m

%Programming Lab 2A example for instructor use
%Answers will vary!

%% % %% % % % % %% % % %% % % % %% % %o % % Fo %% %
%Programming Lab 2A Natural Sampling and Recovery

%% %% %% %% % %% %% % %% %% %% %% %% % %% %
%Part 1--Generate a naturally-sampled signal and its spectrum
%A. Generate a signal

clear
clg

delta_t=.0001;
samprate=1000;

t=0:delta_t:1; %generate the signal
s=2%(cos(2*pi*150*)+cos(2*pi*250*t)+cos(2*pi*450*1)); %signal

%Plot 1

subplot(211), %plot the signal

plot(t(1:500),5(1:500))

title(Plot 1 - message signal, naturally-sampled signal’)
xlabel('Time")

ylabel( Amplitude’)

hold on

%B. Naturally-sample the signal
natsigl=natsamp(s,deita_t,samprate,.5); %sample the signal

plot(1(1:500),natsig1(1:500),b) %plot the naturally-sampled signal
hold off

%C. Generate the spectrum

[specnat],Hz fftnat1 }=spectral(natsig1,delta_t);
%Plot 2

subplot(212), %plot the spectrum

plot(Hz specnat1)

title('Plot 2 - spectrum of naturally-sampled signal’)

xlabel(Frequency in Hz')
ylabel( Amplitude’)

Programming Laboratory 2A Key—page 5

295




peuse
clg

%% %% %% H%B%H%H%H%%% %%
%Part 2—-Recover the message signal
%A. Filter and recover the sampled signal

recsig 1=recovers(fftnat1,.5,ideallow’,Hz,500);
%Plot 3

subplot(211), %plot recovered signal
plot(t(1:500),frecsig1(1:500);5(1:500)])
title(Plot 3 - recovered and message signals’)
xlabel(Time")

ylabel( Amplitude’)

clear %free memory

%% %% % %% % % %% %% % %% % % %%
%Part 3--Qbserve the effects of aliasing
%A. Produce an undersampled signal

delta_t=.0001; %restore variables for tand s

samprate=800;

t=0:delta_t:1;
%3=5%00s(2*pi*200*()+8*cos(2*pi*300*t}+3*cos(2*pi*450*t);
s=2*(cos(2*pi* 150*t)+cos(2*pi*250*+cos(2*pi*450*1)); %signal
natsig2=natsamp(s,deita_t,samprate,.5); %undersample the signal
%Plot 4

subplot(212), %plot undersampled signal over message signal
plot(t(1:500),{s(1:500);natsig2(1:500)])

title(Plot 4 - message and undersampled signals’)

xlabel('Time")

ylabel( Amplitude’)

pause
clg

(specnat2,Hz, fitnar}=spectral(natsig2,delta_t);
%Plot 5

subplot(211), %plot undersampled spectrum

Programming Laboratory 2A Key—page 6

296




plot(Hz,specnat2)

title('Plot 5 - undersampled spectrum’)
xlabel(Frequency in Hz")

ylabel( Amplitude’)

recsig2=recovers(fftnat2,.5, ideallow',Hz,500);
%Plot 6

subplot(212), %plot recovered undersampled signal
plot(1(1:500),[recsig2(1:500);s(1:500)])

title(‘Plot 6 - recovered and message signals')

xlabel('Time")

ylabel( Amplitude”)

pause

clg

Clear

%% %% % %% % % %% % % % %o % % % % % %% % % %% % %% % % % % % %
%Part 4--Observe the effect on the spectrum of varying the duty cycle
%A. Generate the sampled signal

delta_t=.0001;
samprate=1000;

t=O:delta_t:1; %generate the signal
8=2*%(Cos(2*pi*150*t}+cos(2*pi*250*t)+cos(2*pi*450*1)); %signal

=2,

natsig3=natsamp(s,delta_t,samprate,d); %sample the signal
%Plot 7

subplot(211), %plot the naturally-sampled signal
plot(t(1:500),natsig3(1:500))

title(Plot 7 - naturally-sampled signal with d = .2")
xlabel(Time")

ylabel( Amplitude”)

%B. Generate the spectrum
{specnat3,Hz}=spectral(natsig3,delta_t);

%Plot 8

subplot(212), %plot the spectrum

Programming Laboratory 2A K. —page 7

297




plot(Hz,specnat3)

title('Plot 8 - spectrum of naturally-sampled signal with d = .2')
xlabel(Frequency in Hz')

ylabel( Amplitude’)

Programming Laboratory 2A Key—page 8

298




EO 3513 Programming Laboratory 2B Key
Flattop Sampling and Recovery

Answers will vary. The answers below are based on the following signal:
s=cos(2*pi*100*t)+cos(2*pi*150*t)+cos(2*pi*200*t);

Question 1: What is the maximum amplitude of the signal?
Answer: 3

Question 2: What is the highest frequency in the signal? What is the
Nyquist rate?

Answer: highest frequency is 200 Hz
Nyquist rate is 400 Hz

Question 3: Calculate the following values for the sampled signal:

sampling period T (calculated in seconds)
pulse duration < (calculated in seconds)

Describe the pulse shape of the sampled signal.

Answer: T = 1/fs => 1/1000 => 0.001 seconds
Tt =d*T=>04 *0.001 => 0.0004 seconds

The top of each pulse is flat, reflecting the amplitude of the message signal
at the pulse beginning.

Question 4: Calculate P, for f = 550, f = 700, and f = 880.

Compare with the values shown on the spectral plot.

Answer: For f =800 Py=0.3359
For f=850 Py=0.3282
For f =900 Py=0.3200

Values are consistent with those on the spectral plots.

Programming Laboratory 2B Key—page 1

299




Question §: Describe the overall shape of the spectrum. Does the spectrum
conform to your theoretical expectations? Note any
discrepancies.

Answer: The flattop-sampled signal spectrum shows frequencies with amplitudes that
individually conform to the “sinc” envelope.

Yes—no discrepancies.

Question 6: Compare Plot 5§ with Plot 2. What is the effect of
undersampling on the spectrum?

Answer: The replicas of the baseband message signal frequencies produced by
sampling overlap.

Question 7: What is the effect of undersampling on signal recovery?

Answer: The overlapping of the baseband message signal frcqucnclcs prevents
proper recovery of the message signal (this effect is called “aliasing™).

Question 8: Compare Plot 8 with Plot 2, What is the effect of changing the
duty cycle on the sampled signal baseband bandwidth?

Answer: As the pulse width decreases, the sampled signal baseband bandwidth
increases; as pulse width increases, the sampled signal baseband bandwidth
decreases. This relationship illustrates the trade-off between transmission
power and bandwidth requirements.

Narrower pulses translate to more frequent changes, requiring higher
frequencies to capture those changes.

Programming Laboratory 2B Key—page 2

300




Plot 1 - message signal, flattop-sampled signal

%MMWWMM}WJ

0.005 0.01 0.015 002 0.025 0.03 0.035 0.04 0.045 005

Time
0.4 i i Plot 2 - spectrum of t"latwp-s'ampledrsigﬂl '

g band first zero crossing at 2500 Hz
= o2kl |6 x4 3s 4fs .
§ i e

Sl oY ow oo

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
5 ' ___Plot 3 - recovered and message signals )

E 0\/\/\/\/\/\/\/\/\/\/-
£

0 0005 001 0015 002 0025 003 0035 0.04 0045 0.05
Time

5 _ _Plot 4'- under§amplcq and message signals _

E I
0 0005 001 0015 002 0025 0.03 0035 004 0045 0.05
Time

Programming Laboratory 2B Key—page 3

301




1 _ __ Plot5- undersampled spectrum o

05t

Amplitude

ll“ ““ Aaso) J_LlL T4 NIYEE T N by a0 PN U Y FYY
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Plot 6 - recovered and message signals

5 : —~
<af——— recovered signal

Amplitude
=

0 0005 001 0015 002 0025 003 0035 004 0045 005

Time
5 . Plot7 flattop—samplcd signal withd = .7
:E_ OW&W
0 0005 001 0015 002 0025 003 0035 004 0045 0.05
Time
1 _ Plot' 8 - spectrum o'f ﬂattop;sampl@ signal withd = .7
'g first zero crossing at 1429 Hz
E 0.5+ / 1
0 “I hL U_L 1“ — PR ¥ IS ALl g N Fin}
0 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 2B Key—page 4

302




lab2B_ex.m

%Programming Lab 2B example for instructor usc
%Answers will vary!

%% %% %% %% % %% %% %% % %% %% %% %% % %% %
%Programming Lab 2B Flattop Sampling and Recovery
%% %% %% % %% %% %% %% % %% %% % %% % %% % %
%Part 1--Generate a flattop-sampled signal and its spectrum
%A. Generate a signal

Clear
clg

delta_t=.0001; -
samprate=1000;

t=0:delta_v:1; %generate the signal
s=cos(2*pi* 100*t)}+cos(2*pi* 150*t)+cos(2*pi*200*1);

%Plot 1

subplot(211), %plot the signal

plot(t(1:500),5(1:500))

title(Plot 1 - message signal, flattop-sampled signal’)
xlabel("Time)

ylabelC Amplitude’)

hold on

%B. Flattop-sample the signal
flatsigl=flattop(s,delta_t,samprate,4); %sample the signal
%Plot 2

%plot the flattop-sampled signal over
plot(t(1:500),flatsig1(1:500),b") %the message signal
hold off
%C. Generate the spectrum
[specflat] Hz ffiflat1]=spectral(flatsig1.delta_t);

%Plot 3
subplot(212), %plot the spectrum

plot(Hz,specflat)
title(Plot 2 - spectrum of flattop-sampled signal’)

Programming Laboratory 2B Key—page 5

303




xlabel(Frequeacy in Hz)
ylabel( Amplitude’)

pause
clg

%% %% % %% % %% %% %% % %% %%

%Part 2—Recover the message signal
%A. Filter and recover the sampled signal

recsig 1=recovers(fftflatl, 4,'ideallow’,Hz,250);
%Plot 3

subplot(211), %plot recovered signal
Plot(1(1:500), [recsig1(1:500);5(1:500)})
title(Plot 3 - recovered and message signals’)
xlabel(Time")

ylabelC Amplitude”)

clear %frec memory

%% %% % %% % % %% % %% % %% % %%
%Part 3--Observe the effects of aliasing
%A, Produce an undersampled signal

delta_t=.0001; %restore variables fortand s
samprate=400;

t=(:delta_t:1;
$=cos(2*pi* 100*1)+cos(2*pi*150*¢)-+cos(2*pi*200*1);

flatsig2=flattop(s,delta_t,samprate,.4); %undersample the signal
%Piot 4

subplot(212), %plot undersampled signal and message signal
plot(1(1:500), [flatsig2(1:500);s(1:500)])

tile('Plot 4 - undersampled and message signals’)
xlabel('Time")

ylabel( Amplitude’)

pause
clg

[specflat2,Hz, ffiflat2}=spectral(flatsig2,delta_t);
%Plot 5

Programming Laboratory 2B Key—page 6
304




T-----------------------—-—-—-r4

subplot(211), %plot undersampled spectrum
plot(Hz,specfla2)

title(Plot 5 - undersampled spectrum’)
xlabel(Frequency in Hz")

ylabel( Amplitude’)

recsig2=recovers(fitfla2, 4,'ideallow',Hz,250);

%Plot 6

subplot(212), %plot recovered undersampled signal
plot(t(1:500),[recsig2(1:500);s(1:500)])

title(Plot 6 - recovered and message signals”)

xlabel(‘Time')

ylabel( Amplitude’)

pause

clg

clear

%% % %% %% % %% %o % %% %% % %% % %% % % % %% T % % %% % %%
%Part 4--Observe the effect on the spectrum of varying the duty cycle
%A. Generate the sampled signal

delta_t=.0001;
samprate=1000;

t=0:delta_t:1; %generate the signal
$=008(2*pi* 100*1)+c0s(2*pi* 150*t}+cos(2*pi*200*)); %signal

a7

flatsig3=flattop(s,delta_t samprate,d); %sample the signal
%Plot 7

subplot(211), %plot the flattop-sampled signal
plot(t(1:500),flatsig3(1:500))

title(Plot 7 - flattop-sampled signal with d = .7")
xlabel(Time")

ylabel( Amplitude”)

%B. Generate the spectrum
[specflat3,Hz]=spectral(flatsig3,delta_t);

%Plot 8

Programming Laboratory 2B Key—page 7

305




subplot(212), %plot the spectrum

plot(Hz,specflat3)

title('Plot 8 - spectrum of flattop-sampled signal with d = .7")
xlabel(Frequency in Hz')

ylabel( Amplitude’)

Programming Laboratory 2B Key—page 8

306




EO 3513 Programming Laboratory 2C Key

Impulse Sampling and Recovery

Answers will vary. The answers below are based on the following signal:
$=5%(cos(2*pi*100*t)+cos(2*pi*350*t)+cos(2*pi*400*t));

Question 1:
Anwer:
Question 2:

Answer:

Question 3:
Answer:
Question 4:

Answer:

Question 5:

Answer:

Question 6:
Answer:

What is the maximum amplitude of the signal?
15

What is the highest frequency in the signal? What is the
Nyquist rate?

highest frequency is 400 Hz
Nyquist rate is 800 Hz

Calculate the duration of the sampling period T (in seconds).
T = 1/fs = 1/2000 => 0.0005 seconds

Describe the overall shape of the spectrum. Does the spectrum
conform to your theoretical expectations? Note any
discrepancies.

The amplitudes of the spectral components of an impulse-sampled

should in theory remain constant. Since those shown in the plot decline
gradually (due to the computer’s inability to generate a perfect impulse), the
spectrum does not conform to theoretical expectations.

Compare Plot S to Plot 2. What is the effect of undersampling
on the spectrum?

The replicas of the baseband message signal frequencies produced by
sampling overlap.

What is the effect of undersampling on signal recovery?

The overlapping of the baseband message signal frequencies prevents
proper recovery of the message signal (this effect is called “aliasing™).

Programming Laboratory 2C Key—page 1

307




20 . Plot 1 - message signal, impulse-sampled signal

Amplitude

2 N " N —_ e, —_ " s i
0 0005 0.01 0015 002 0.025 003 0.035 0.04 0045 0.05

Time
1 _ _Plot 2; spectrum of ixppulse-g»ampleq signalrﬁ
] baseband
-g signal fs 2fs
;é‘ 0.5 - frequencies 4
{
0 N A s Al
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
20 __Plot 3 - recovered and message signals
Q
"é_ o
<
) 0005 001 0015 002 0025 003 0035 004 0045 0.05
Time
20 i _Plot 4 - undersampled and message signals

Amplitude

20 M — .- A e " N " —_—
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Programming Laboratory 2C Key—page 2

308




Amplitude

Amplitude

?lot 5 - undersampled spectrum

0.5+

LILLL mmmn

1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

PlotT 6- nccgvered and message signals

—a—— recovered signal

0.005 001 0015 002 0025 003 0035 004 0045 0.05
Time

Programming Laboratory 2C Key—page 3

309




1ab2C_ex.m

%Programming Lab 2C example for instructor use
%Answers will vary!

%% %% %% %% % %% %% %% %% %% % %% %% % %% %
%Programming LabC Impulse Sampling and Recovery

%% %% %% %% % %% %% % %% %% %% %% %% % %% %
%Part 1--Generate an impulse-sampled signal and its spectrum
%A. Generate a signal

clear
clg

delta_t=.0001;
samprate=2000;
d=samprate*delia_t;

t=0:delta_t:1; %gencrate the signal
s=5*(cos(2*pi* 100*1)+cos(2* pi*350* )+cos(2*pi*400*1));

%Plot 1

subplot(211), %plot the signal

plot(t(1:500),s(1:500))

title('Plot 1 - message signal, impulse-sampled signal’)

xlabel(Time")

ylabelCAmplitude’)

hold on

%B. Impulse-sample the signal

impsigl=impsamp(s,delta_t,samprate); %sample the signal
%plot the impulse-sampled signal over

plot(1(1:500),impsig1(1:500),g) %the message signal

hold off

%C. Generate the spectrum

[specimp]1,Hz fftimp1])=spectral(impsigl delta_t);

%Plot 2

subplot(212), %plot the spectrum
ploy(Hz,specimpl)

title(Plot 2 - spectrum of impulse-sampled signal’)
xiabel(Frequency in Hz')

Programming Laboratory 2C Key—page 4

310




ylabel( Amplitude’)

pause
clg

%% %% % %% %% %% % %% %% %% %% %% %

%Part 2--Recover the impulse-sampled signal
%A. Filter and recover the sampled signal

recsigl=recovers(ffiimp1,d, ideallow',Hz,500);
%Plot 3

subplot(211), %plot recovered signal
plot(t(1:500),[recsig1(1:500);s(1:500)])
title(Plot 3 - recovered and message signals’)
xlabel('Time")

ylabel( Amplitude’)

clear %free memory

%% % %% %% % % %% %% % %% % %% %
%Part 3--Observe the effects of aliasing
%A. Produce an undersampled signal

delta_t=.0001; %restore variables for tand s
samprate=750;
d=samprate*delta_t;

t=0:delta_t:1;
s=5%(cos(2*pi* 100*t)}+-cos(2*pi*350* t)+cos(2*pi*400*1);

impsig2=impsamp(s,delta_t,samprate); %undersample the signal
%Plot 4

subplot(212), %plot undersampled signat
plot(¥(1:500), [impsig2(1:500);s(1:500)])
title(Plot 4 - undersampled and message signals”)
xlabel('Time")

ylabelC Amplitude’)

panse
clg

[specimp2,Hz, fitimp2]=spectral(impsig2,delta_t);
%Plot 5
Programming Laboratory 2C Key—page 5

311




subplot(211), %plot undersampled spectrum

recsig2=recovers(fimp2,d, ideallow’,Hz,500);

%Plot 6

subplot(212), %plot recovered undersampled signal
plot(t(1:500),[recsig2(1:500);s(1:500)])

title('Plot 6 - recovered and message signals”)

xlabel('Time")
ylabelCAmplitude’)

Programming Laboratory 2C Key—page 6

312 -




EO 3513 Programming Laboratory 3A Key

Pulse Modulation (PAM and PWM)

Answers will vary. The answers below are based on the following signal:
s=2*(cos(2*pi*120*t)+sin(2*pi*30*t));

Question 1:
Answer:

What is the maximum amplitude of the message signal?
4

Question 2: Calculate the following values, in seconds, for the PAM

Answer:

Question 3:

Answer:
Question 4:

Answer:

signal:

sampling period T
pulse duration <

T = 1/fs => 1/500 => 0.002 seconds
t=d*T=>0.5*.002 = 0.001 seconds

What is the maximum pulse duration that could occur in your
PWM signal?

Maximum pulse duration = 0.9 * T => 0.9 * 0.002 => 0.0018 seconds

Using the above approximations, calculate the baseband
bandwidths for the PAM and PWM signals. Do these values
reflect what you observe in the spectral plots? Note any
discrepancies.

PAM bandwidth = 0.5k => 0.5/0.001 => 500 Hz
PWM bandwidth = 0.5/risetime => 0.5/0.0001 = 5000 Hz

The calculated baseband bandwidth of the PAM signal, 500 Hz, is adequate
to capture the signal information. The PAM pulses occur at fixed, known
intervals, and are of a fixed, known duration. The 500 Hz approximation is
based solely on t,the value of that duration.

The PWM signal requires a much higher baseband bandwidth because less
information is known about its pulses. The higher frequencies are needed to
convey the information regarding the exact widths of the pulses. The
approximation of 5000 Hz appears to capture most of the information
required for the PWM signal.

Programming Laboratory 3A Key—page 1

313




5 , ___Plot 1 - message signal, PAM signal

-5 . . . N R N . R "
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time
5 ] __Plot 2 - message signal, PWM signal .
% 0-
-5 . — . . A . N . .
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time
1 . _____Plot 3 - spectrum of PAM signal
30Hz
:g 120 Hz
E. 0.5 .
fs
0 Ll “.“ BN 1 1 | PV ¥ | § S T R
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
2 ' _____Plot4 - spectrum of PWM signal
[ %]
2
N P | P | L

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 3A Key—page 2

314




lab3A_ex.m

%Programming Lab 3A example for instructor use
%Answers will vary!

%%%%%%%%%%% % %% %% %% % %% %% % %% %% %% %% % %%
%Programming Lab 3A Pulse Amplitude and Pulse Width Modulation
%% %% %% % %% %% % %% %% % %% %% %% %% % %% %% % %% %%
%Part 1--Observe the differences in the time domain

%for two types of pulse-modulated signals (PAM and PWM)

%A. Generate a signal

clg
clear

delta_t=.0001;

t=0:delta_t:1;

s=2*(cos(2*pi* 120*1)+sin(2*pi*30*1));
samprate=500;

%B. Generate the PAM and PWM signals

flatsig=flattop(s,delta_t samprate,.5);
%Plot 1

subplot(211),
plot(1(1:200),{flatsig(1:200);s(1:200)])
title(Plot 1 - message signal, PAM signal)
xlabel('Time')

ylabel( Amplitude’)

pwsig=pulswid(s,delta_t,samprate,.9); %pulse-width modulate
%the signal
%Plot 2

subplot(212),
plot(t(1:200),[pwsig(1:200);5(1:200)])
title(Plot 2 - message signal, PWM signal")
xlabel(Time')

ylabelC Amplitude’)

pause
clg

%% %% %% %% %% %%% %% %% %% %% %%
%Part 2--Observe the differences in the spectra
%for two types of pulse-modulated signals (PAM and PWM)

Programming Laboratory 3A Key—page 3

315




%A. Generate the spectrum of the PAM signal

[specpam Hz)=spectral(flatsig,delta_t); %generate the PAM spectrum
%Plot 3

subplot(211),

plot(Hz specpam)

title('Plot 3 - spectrum of PAM signal’)

xlabel(Frequency in Hz)

ylabelC Amplitude’)

%B. Generate the spectrum of the PWM signal
specpwm=spectral(pwsig.delta_t); %generate the PWM spectrum
%Plot 4

subplot(212),

plot(Hz specpwm)

title(Plot 4 - spectrum of PWM signal’)

xlabel(Frequency in Hz')
ylabelCAmplitude’)

Programming Laboratory 3A Key—page 4

316




Question 1:
Answer:
Question 2:

Answer:

Question 3:

Answer;

Question 4:

Answer:

EO 3513 Programming Laboratory 3B Key

Pulse Modulation (PAM and PPM)

Answers will vary. The answers below are based on the following signal:
s=5*%(cos(2*pi*100*t)+cos(2*pi*40*t));

What is the maximum amplitude of the message signal?
10

Calculate the following values, in seconds, for the PAM
signal:

sampling period T
pulse duration =

T = 1/fs => 1/500 => 0.002 seconds
t=d*T=>0.5*.002 = 0.001 seconds

What is the largest pulse offset that could occur in your PPM
signal?

Largest pulse offset =0.9 * T => 0.9 * 0.002 => 0.0018 seconds

Using the above approximations, calculate the baseband
bandwidths for the PAM and PPM signals. Do these values
reflect what you observe in the spectral plots? Note any
discrepancies.

PAM bandwidth = 0.5k => 0.5/0.001 => 500 Hz
PPM bandwidth = 0.5/risetime => 0.5/0.0001 = 5000 Hz

The calculated baseband bandwidth of the PAM signal, 500 Hz, is adequate
to capture the signal information. The PAM pulses occur at fixed, known
intervals, and are of a fixed, known duration. The 500 Hz approximation is
based solely on < the value of that duration.

The PPM signal requires a much higher baseband bandwidth because less
information is known about its pulses. The higher frequencies are needed to
convey the information regarding the exact location of the pulses. The
approximation of 5000 Hz appears to capture all most of the information
required for the PPM signal.

Programming Laboratory 3B Key—page 1

317




10 . __Plot 1 - message signal, PAM signal

+

-10 . . P . . . o . .
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

10 , Plot2 - message signal, PPM signal

Amplitude

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time

3 - _ Plot 3 - spectru: 1 of PAM signal

40 Hz

2 100 Hz N

O Lol ILH i d l].ll Aadacd N ——i Y ENEY

0 560 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Amplitude

1 i ' ?lot 4 - spectrum of PPM signal

fs

; OSL
a U .
Jlmmmmmw"
0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz )

Programming Laboratory 3B Key—page 2

318




1ab3B_ex.m

% Programming Lab 3B example for instructor use
%Answers will vary!

%% %% %% %% %% %% %% % % %% % % % %% %% %% T % %% %% % %%
%Programming Lab 3B Pulse Amplitude and Pulse Position Modulation
%% % %% % %% % %% % %% %% %% %% %% %% %% % %% %% %% % %%
%Part 1--Observe the differences in the time domain

%for two types of pulse-modulated signals (PAM and PPM)

%A. Generate a signal

clg
clear

delta_t=.0001;

t=0:delta_t:1;
s=5*(cos(2*pi*100*t)+cos(2*pi*40*1));
samprate=500;

%B. Generate the PAM and PPM signals
flatsig=flattop(s.delta_t,samprate,.5);
%Plot 1

subplot(211),
plot(t(1:200),{flatsig(1:200);s(1:200)])
title('Plot 1 - message signal, PAM signal’)
xlabel('Time")

ylabel( Amplitude”)

ppsig=pulspos(s,delta_t,samprate,.1); %pulse-position modulate
%the signal
%Plot 2

subplot(212),
plot(t(1:200),{ppsig(1:200);s(1:200)])
title(Plot 2 - message signal, PPM signal’)
xlabel('Time")

ylabelC Amplitude’)

grid

pause
clg

%% % %% % %% % % % %o % % %% % %% %% % %
%Part 2--Observe the differences in the spectra
Programming Laboratory 3B Key—page 3

319




%for two types of pulse-modulated signals (PAM and PPM)
%A. Generate the spectrum of the PAM signal

[specpam Hz}=spectral(flatsig.delta_t); %generate the PAM spectrum
%Plot 3

subplot(211),

plou(Hz specpam)

title(Plot 3 - spectrum of PAM signal’)

xlabel(Frequency in Hz")

ylabel( Amplitude’)

%B. Generate the spectrum of the PPM signal
specppm=spectral(ppsig.delta_t); %generate the PPM spectrum
%Plot 4

subplot(212),

plot(Hz,specppm)

title(Plot 4 - spectrum of PPM signal')

xlabel(Frequency in Hz')
ylabelCAmplitude’)

Programming Laboratory 3B Key—page 4

320




EO 3513 Programming Laboratory 4A Key
Analog-to-Digital Conversion (Quantization)

Answers will vary. The answers below are based on the following signal:
s=4*cos(2*pi*20*t)+5*cos(2*pi*45*t);

Question 1: Calculate the following values relating to the quantization
characteristic for the 3-bit bipolar converter:

dynamic range

actual step size
actual resolution
percentage resolution
number of levels

Answer: dynamic range = 6 * number of bits =>6 * 3 => 18 dB
actual step size=2"1+ lxfullscale V=>+2-3+1x10=>25V
actual resolution =+ 2 "M x full-scale V=>+2"3x 10=>125 V
percentage resolution =+ 2 " x 100% =>+2 M x 100% => 12.5%
number of levels = 3 bits => 23 => 8 levels

Question 2: Calculate the following values relating to the quantization
characteristic for the 5-bit unipolar converter:

dynamic range

actual step size
actual resolution
percentage resolution
number of levels

Answer: dynamic range = 6 * number of bits =>6 * 3 => 18 dB
actual step size =27+ ! x full-scale V=>+2-6+1x 10 =>0.3125 V
actual resolution =+ 2 "@ *+ 1) x full-scale V=>+2 "0 x 10 =>0.156 V
percentage resolution =+ 2 -(n+ 1) x 100% =>+ 2 6 x 100% => 1.56%
number of levels = 3 bits => 25 => 32 levels

Programming Laboratory 4A Key—page 1

321




Question 3:

Answer:

Question 4:

Answer:

Question S:

Answer:

List the amplitude (“voltage”) of the 3-bit bipolar quantized
signal in each of the first 5 sampling periods.

75V

SN
SO
<<<<

List the amplitude (“voltage”) of the 5-bit bipolar quantized
signal in each of the first 5 sampling periods.

875V
875V
75V
5.6250 V
3715V

List the values of the signal to noise ratios for the 3-bit bipolar
and 5-bii bipolar quantized signals. Which converter produced
less quantization noise?

3-bit converter snr = 12.3872 dB
5-bit converter snr = 15.8277 dB

The 5-bit converter produced less noise, as evidenced by its higher signal to
noise ratio, or by its closer representation to the message signal.

Programming Laboratory 4A Key—page 2

322




Voltage out

Voltage out

Plot 1 - quantization characteristic for an 3-bit bipolar converter

10
Sl |
O e e

1 R S Bt SRR
1% 5 0 5 10
Voltage in
10 Plot 2 -.quantization chmcteristic for ?-bit unipolar Cf)nverter

Voltage in

Programming Laboratory 4A Key—page 3

323




0 001 002 003 004 005 006 007 008 009 0.1
Time

10 ' lﬂs)t 4 - sampled a'nd 5-bi5 bipolarﬁquantizid signals

-10 . . . . . . . l .
0 001 002 003 004 005 006 007 0.08 0.09 0.1
Time

10 __Plot 5 - message signal and 3-bit bipolar quantized signal

0 001 002 003 004 005 006 007 008 009 0.1
Time

__Plot 6 - message signal and 5-bit bipolar quantized signal _

0 001 002 003 004 005 006 007 008 009 0.
Time

Programming Laboratory 4A Key—page 4

324




lab4A_ex.m

%Lab 4A example script for instructor use
%Answers will vary!

%% %% %% %% % %% %% %% %% % %% %% %% % %%
%Programming Lab 4A Analog-to-Digital Conversion
% {Quantization)

%% %% %% %% % % %% % %% %% % %% %% %% % %%
%Part 1--Evaluate two analog-to-digital converters
%A. Evaluate a bipolar converter

clear
clg

[quanch_x1,quanch_yl]=quantize(2,3); %generate the 3-bit converter
%Plot 1

stairs(quanch_x1,quanch_y1)

grid

titte('Plot 1 - quantization characteristic for an 3-bit bipolar converter’)

xlabel("Voltage in")
ylabel("Voltage out’)

pause
clg

%B. Evaluate a unipolar converter
[quanch_x2,quanch_y2]=quantuni(2,5); %generate the 5-bit converter
%Plot 2

stairs(quanch_x2,quanch_y2)

grid

titte('Plot 2 - quantization characteristic for 5-bit unipolar converter’)
xlabel("'Voltage in’)

ylabel("Voltage out’)

pause
clg

%% %% 9% %% %% % % %o % Fo % %% %% %o
%Part 2—~Observe the quantization process
%A. Generate and sample a signal

delta_t=.0001; %set signal and sampling variables

Programming Laboratory 4A Key—page 5

325




d=.5;
samprate=800;

t=0:delta_t:0.1;

$=4%cos(2*pi*20*1)+5*cos(2*pi*45*1); %signal frequencies must be less than
%half the sampling rate!

flatsig=flattop(s.delta_t,samprate,d);

%B. Quantize the signal using an 3-bit bipolar converter

{qx1,gyl,quan_sigl bin_nums1]=quantize(2,3,flatsig samprate delta_t);

%Plot 3

subplot(211), %plot the sampled and quantized signals
plot(t,[flatsig;quan_sig1])

title(Plot 3 - sampled and 3-bit bipolar quantized signals’)
xlabel('Time")

ylabelCAmplitude’)

%C. Quantize the signal using a 5-bit bipolar converter
[qx2,9y2,quan_sig2,bin_nums2])=quantize(2,5 flatsig,samprate,delta_t);
%Plot 4

subplot(212),

plow({flatsig;quan_sig2})

tile(Plot 4 - sampled and 5-bit bipolar quantized signals’)
xlabel('Time")

ylabelCAmplitude”)

pause
clg

gyl
bin_nums1(1:5)

qy2
bin_nums2(1:5)

%% %% %% % %% % %% %% % %% % %%
%Part 3--Measure the quantization noise
%A. Find the signal to noise ratios
%Plot 5

subplot(211),
Programming Laboratory 4A Key—page 6

326




__*

plo(t,[s:quan_sigl])

title(Plot 5 - message signal and 3-bit bipolar quantized signal’)
xlabel(Time")

ylabel( Amplitude”)

%Plot 6

subplot(212),

plot(t.[s:quan_sig2])

title(Plot 6 - message signal and 5-bit bipolar quantized signal’)
xlabel('Time")

ylabelC Amplitude’)

%B. Compare quantization noise for the two systems

snr_3bit=snr(s,quan_sig1)
snr_5Sbit=snr(s,quan_sig2)

Programming Laboratory 4A Key—page 7

327




This page is intentionally
left blank.

328




Question 1:

Answer:

Question 2:

An.

Question 3:

Answer:

Question 4:

Answer:
Question §:

Answer:

Question 6:

Answer:

m

EO 3513 Programming Laboratory 4B Key

Pulse Code Modulation (PCM)

Answers will vary. The answers below are based on the following signal:
s=7*cos(2*pi*10*t)+3*cos(2*pi*35*t);

In your own words, describe the NRZL unipolar encoding
scheme.

Marks are indicated by positive voltage; spaces are indicated by zero
voltage.

Predict an adequate baseband signal bandwidth for the NRZL
unipolar coded signal based on its spectral plot.

Prediction: B = approximately 1000 Hz

In your own words, describe the RZL unipolar encoding
scheme.

Marks are indicated by positive voltage; spaces are indicated by zero
voltage. Voltage always drops to zero for the last half of the bit duration.

Predict an adequate baseband signal bandwidth for the RZL
unipolar coded signal based on its spectral plot.

Prediction: B = approximately 2000 Hz
In your own words, describe the manchester encoding scheme.

Changes are indicated by a transition in the middle of the bit. Marks always
change from high to low voltage; spaces change from low to high voltage.

Predict an adequate baseband signal bandwidth for the NRZL
unipolar coded signal based on its spectral plot.

Prediction: B = approximately 2500 Hz

Programming Laboratory 4B Key—page 1

329




Question 7: Record the values of “codedsig.” Is this bit pattern reflected
on Plots 2, 4, and 6?

Answer: 1 1.1 1 11 1 1 1.0 1 0
1 011 0 0 1 0 01 0 O
1 0 01 00 1 0 0 1 1 1
1 0 0 01 0 01 01 0O
0O 0 01 1 0 0 0 0 01O
Plots reflect the bit pattern above.
Question 8: (ialcullate the approximate baseband bandwidth for the PCM
signals:

NRZL unipolar coded signal
RZL and manchester coded signals

How do these values compare with your predictions?
Answer: For NRZL signal: B = 0.5/t => 1/0.0083 seconds => 600 Hz

For RZL and manchester signals: B = 0.5/t => 1/0.00042 seconds =>
1200 Hz

cT:leupfﬁdimd NRZL signal bandwidth of 1000 Hz is within 400 Hz of the
culation,

The predicted RZL signal bandwidth of 2000 Hz is within 800 Hz of the
calculation.

The predicted manchester signal bandwidth of 2500 Hz is more than twice
the calculation.

Predictions are conservative in all cases.

Programming Laboratory 4B Key—page 2

330




10 i _Plot 1 - message signal and quantized signal _

A

-10 . — - P U= A . A —
0 001 002 003 004 005 0.06 0.07 008 0.09 0.1
Time
NO PLOT HERE--JUST PRESS RETURN
10 Plot 2 - NRZL unipolar coded signal and quantized signal
v . - — . . - ; .
[ M
i 5wt L S T
.-g‘. 0o+ . S ey Ry S gy
<
-10 \ . N . R . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
10, ] Plot 3 - NRZL unipolar coded signal spectrum
L
E
—é_ 5
<
0 Bendion b M - L 4 N N -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 4B Key—page 3

331




Amplitude

Amplitude

10 Plot 4 - RZL. unipolar coded signal and quantized signal

AL Wi

- 10 - 3 e A " -t A "
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
4 Plot 5 - RZL unipolar coded spectrum _
2 .
0 datbade olmua . NS VU VR B 1 N l . b e
0 500 1000 1500 2000 2500 3000 3500 4000 4500 S000

Frequency in Hz

10 Plot 6 - manchester coded signal and quantized signal
_— - . 7 . .

I

-10 N . . . , . . .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
2 . ____Plot 7 - manchester coded spectrum _

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 4B Key—page 4

332




lab4B_ex.m

%Lab 4B example script for instructor use
%Answers will vary!

%% % %% %% %% %% % %% %% %% %% %
%Programming Lab 4B Digital Encoding
%% % %% % % %% % %% %% %% %% %% %
%Part 1--Generate a bitstream to encode
%A. Generate a message signal

clear
clg

delia_t=.0001; %set signal and sampling variables
samprate=200;

t=0:delta_t:1;
s=7*cos(2*pi* 10*t)}+3*cos(2*pi*35*1);

%Plot 1

subplot(211),

plot(t(1:1000),s(1:1000))

title(Plot 1 - message signal and quantized signal')

xlabel('Time")

ylabel( Amplitude’)

hold on

%B. Quantize the message signal

elements=6;
[qx.qy.quan_sig,bin_nums)}=quantize(2.clements,s,samprate,delta_t);

plot(t,quan_sig,b")
hold off

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

pause
clg

clear s;clear gx;clear qy;
%C. Generate a bitstream

Programming Laboratory 4B Key—page 5

333




ﬁ

codedsigsencode(bin_nums,2,clements); %binary-encode the signal

%%H%BEHET%HHT%RHT%%%T % %% %%%%%R% %% % %
%Part 2--Encode the bitstream using pulse code modulation (PCM)
%A. Generate a non-return-to-zero level (NRZL) unipolar

% coded signal and spectrum

bitrate=samprate*elements;

nrzlunisig=nrziuni(codedsig,delta_t,bitrate);
nrzlunisig=8*nrzlunisig;

%Plot 2

subplot(211),
plot(t(1:500),[quan_sig(1:500);nrzlunisig(1:500)})

title(Plot 2 - NRZL unipolar coded signal and quantized signal’)
xlabel('Time))

ylabelCAmplitude")

{specman,Hz)=spectral(nrzlunisig,delta_t);
%Plot 3

subplot(212),

plot(Hz specman)

title(Plot 3 - NRZL unipolar coded signal spectrum’)
xlabel(Frequency in Hz')

ylabelCAmplitude”)

pause
clg

clear specman
clear nrzlunisig

%C. Generating a return-10-zero level (RZL) unipolar coded signal

rzunisig=rzuni(codedsig.delta_tbitrate);

rzunisig=8*rzunisig;

%Plot 4

subplot(211),

plot(t(1:500),[quan_sig(1:500);rzunisig(1:500)])

title(Plot 4 - RZL unipolar coded signal and quantized signal’)

xlabel(Time)
ylabelC Amplitude’)

Programming Laboratory 4B Key—page 6

334




specman=spectral(rzunisig.delta_t);
%Plot 5

subplot(212),

plot(Hz,specman)

title('Plot § - RZL unipolar coded spectrum’)
xlabel(Frequency in Hz")

ylabelC Amplitude’)

pause
clg

Clear specman
clear rzunisig

%D. Generating a manchester coded signal

manchsig=manchest(codedsig.delta_t bitrate);
manchsig=8*manchsig;

%Plot 6

subplot(211),
plot(1(1:500),[quan_sig(1:500);manchsig(1:500)])

title(Plot 6 - manchiester coded signal and quantized signal’)
xlabel(Time)

ylabel( Amplitude’)

specman=spectral(manchsig,delta_t);
%Plot 7

subplot(212),

plot(Hz,specman)

title('Plot 7 - manchester coded spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

codedsig(1:60)

Programming Laboratory 4B Key—page 7

335




This page is intentionally
left blank.

336




Question 1:

Answer:

Question 2:

Answer:

Question 3:

Answer:

Question 4:

Answer:

-

EO 3513 Programming Laboratory 4C Key

Companding

Answers will vary according to student’s choices for values of sampling rate and mu.

What is the effect on the compressed signal of increasing the
value of mu?

Increasing the value of mu increases the compression function, raising the
lower signal values more, which minimizes the extreme differences in the
signal.

Obtain the value of the signal to noise ratio (no companding).
Record this value. By exceeding this benchmark value, you
will be decreasing quantization noise.

snr_quant = 8.0639 dB

Obtain the value of the signal to noise ratio using companding.
Record this value.

snr_cmpnd = 9.18 dB
Provide the following characteristics of your system:

sampling rate
value of mu

sampling rate = 1400 Hz
mu =255

Note: In general, lower sampling rates require lower values of mu in order
to reduce quantization noise through companding the message signal. For

example, with a sampling rate of S00 Hz, mu mus: be equal to or less than
50. With a value of mu = 255, the sampling rate must be at least 780 Hz.

Programming Laboratory 4C Key—page |

337




Amplitude

Amplitude

Amplitude

Amplitude

10 Plot 1 - message, compressed, expanded signals with mu = 255

0 i — " —_ N " —_ i s
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
10 Plot 2 - message, compressed, expanded signals with mu = 5

0 N . a N N N N - .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

0 0005 001 0015 0.02 0025 0.03 0.035 0.04 0045 005
Time

10 ' _Plot 4 - quantized signal and message signal

0 I L N —_ |
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Programming Laboratory 4C Key—page 2

338




10 _Plot 5 - message sign'gl, compressed signal with mu = 255

Amplitude

0 0005 001 0015 002 0025 0.03 0035 004 0045 0.05

Time

10 Plot 6 - sampled and quanﬁtized compressed signals with mu = 255

M

il !

Amplitude
(7.1

Al

i

A AL

0 0005 001 0015 0.02 0.025 003 0.035 004 0045 0.05

Time

10 i Plot 7 - message signal and companded signal

Amplitude

S S

0 0005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time

NO PLOT HERE

Programming Laboratory 4C Key—page 3

339




1ab4C_ex.m

%Lab 4C example script for instructor use
%Answers will vary!

%% %% %% %% %% %% %% %% %% %

%Programming Lab 4C--Companding

%% %% %% %% %% % %% % %% %% %

%Part 1--Observe the effects of companding on the quantization
% process

%A. Generate the signal

Clear
clg

deha_t=.0001;
t=0:delta_t:0.05; %no spectral analysis, so don’t need a long
%vector

s=2+2.1*cos(2*pi*50*t)+1.7*cos(4*pi* 50*t)+1.5*cos(6*pi*50*1)...
+1.3*cos(8*pi*S0*1);

%B. Compare compression characteristics for high and low values of mu

muhigh=255; %highest value of mu
mulow=5; %lowest value of mu

sighigh=compress(s,muhigh,max(s)); %compress with mu=255
exhigh=expand(sighigh,muhigh,max(sighigh)); %expand with mu=255

%Plot 1

subplot(211),

plot(t,[s;sighigh])

title(Plot 1 - message, compressed, expanded signals with mu = 255"
xlabel("Time")

ylabel( Amplitde)

hold on

pause(3)

plot(t,exhigh,b’)

hold off

sigiow=compress(s,mulow,max(s)); %compress with mu=5$
exlow=expand(siglow,mulow,max(siglow)); %expand with mu=5

%Plot 2

subplot(212),
Programming Laboratory 4C Key—page 4

340




plot(t,[s:siglow])

title(Plot 2 - message, compressed, expanded signals with my = 5°)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause(3)

plot(t,exiow,’b")

hold off

pause
clg

%% %% %% %% % %% % %% %% % %% %% %% % %% %% %% % % % %%
%Part 2—-Reduce quantization noise by companding the message signal
%A. Sample and quantize the message signal

samprate=1400; %set signal and sampling variables

d=.5;
mu=25S§;

flatsig=flattop(s.delta_t.samprate.d);
fax.qy.quansigl=quantuni(2,2 flatsig,sampratedelta_t);

%Plot 3

subplot(211),

ploy(,[flatsig;quansig])

tide('Plot 3 - sampled signal and quantized signal’)
xlabel('Time")

ylabel( Amplitude’)

%Plot 4

subplot(212),

plot(t,[quansig;s])

title(Plot 4 - quantized signal and message signal’)
xlabel('Time")

ylabelC Amplitude’)

pause
clg

%B. Establish a benchmark for signal to noise ratio
snr_quant=snr(s,quansig) %find the quantization noise

%C. Compress, sample, and quantize the message signal

Programming Laboratory 4C Key—page 5

341




compsig=compress(s,mu,max(s)); %compress signal
%Plot 5

subplot(211),

plot(t,[s:compsig])

title(Plot 5 - message signal, compressed signal with mu = 255")
xlabel("Time")

ylabelC Amplitude’)

flatcomp=flattop(compsig,delta_t samprate,d); %sample the compressed signal
[gxqy.quancomp)=quantuni(2,2 flatcomp,samprate delta_t);

%Plot 6

subplot(212),

plot(t,[flatcomp;quancomp])

title(Plot 6 - sampled and quantized compressed signals with mu = 2557
xlabel("Time)

ylabelCAmplitude’)

pause
clg

%D. Expand the quantized compressed signal
cmpndsig=expand(quancomp,mu,max(quancomp));

%Plot 7

subplot(2:1),

plot(t.[s;cmpndsig))

title('Plot 7 - message signal and companded signal’)
xlabel("Time")

ylabelCAmplitude’)

%E. Find the signal to noise ratio for the companded signal
snr_cmpnd=snr(s,cmpndsig)

subplot(212),
titeC'NO PLOT HERE')

Programming Laboratory 4C Key—page 6

342




EO 3513 Programming Laboratory 5 Key
Amplitude Modulation Double Sideband (AM DSB)

Answers will vary. The answers below are based on the following signals:

sgl=5%cos(2*pi*200*t);

mlt=5*cos(2*pi*400*t)+3*cos(2*pi* 100*t)+2*cos(2*pi*350*1);

Question 1: Calculate the following values for the single-tone message
signal:

peak power
average power
baseband bandwidth

_Ap?

Answer: peak power = P72 s /12=>125

P= Aoz +
average power =

[ SR

> (AN? +By?)
N=1 =>52/2=>125

baseband bandwidth = 200 Hz

Question 2: Predict the following values for the single-tone AM DSB
signal:

peak power
average power
transmission bandwidth

pp = A2
P=—"0"
Answer: peak power = 2 =>52/2=>125
2
p=A’
average power = 4 =>52/4=>6.25

transmission bandwidth = 400 Hz

Programming Laboratory 5 Key—page 1

343




Question 3:

Answer:

Question 4:

Answer:

Record the values representing peak and average power for the
signal-tone signal.

Do your calculations for bandwidth and power in Question 3
agree with the computer-generated values?

dsb_pk_pwr_sngl = 12.5
dsb_avg_pwr_sngl = 6.2506

Yes—calculations agree.

Why is coherent detection (detection using the carrier)
necessary for an AM DSB signal?

Envelope detection of the AM DSB signal would not detect phase shifts,
which indicate that the message signal has changed from positive to
negative values, or from negative to positive values.

Programming Laboratory 5 Key—page 2

344




Plot 1 - single-tone message si

-5 . . — . . . . ; .
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
10 _ L Plot2- multi-toge message signal
[}
i
-10 . . . . . . . . N
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
5 _ _Plot 3 - single-tone message signal spectrum

~@————— 200 Hz with amplitude = 5

Amplitude

bandwidth 200 Hz
0 . " —_— s N i " o s
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
5 Plot 4 - multi-tone message signal spectrum _

4—-——4oouzmmampnmde 5

———— 100 Hz with amplitude = 3
bandwidth 400 Hz
0+~1L__ 350 Hz with amplitude = 2
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Amplitude

Programming Laboratory 5 Key—page 3

345




5, , Plot 5 - single-tone DSB signal

) ; ;
. \ . ) )
: i 1 ) . T
. A H Holig! Hi i 3 \

ORI\ B AR KRR R AIN RN R [ T Ml BT ! wie

| ! !

! | i

! !

i

Amplitude

_5 . . | . . i N 1 i . PR | "
0 0005 0.01 0015 0.02 0.025 003 0.035 004 0.045 0.05
Time

Plot 6 - expanded message and sin e-tone DSB signals

0 0001 0002 0.003 0004 0.005 0.006 0.007 0.008 0.009 0.01
Time

10 _ . Plot 7 - multi-tone DSB signal

-101 . . . N - . R . ,
0 0.005 001 0015 0.02 0.025 0.03 0.035 004 0.045 0.05
Time

10 ___Plot 8 - expanded message and multi-tone DSB signals

Amplitude

0 0.001 0.002 0003 0004 0005 0.006 0.007 0.008 0.009 001
Time

Programming Laboratory 5 Key—page 4

346




Amplitude

Amplitude

Amplitude

Amplitude

3 . ___Plot 9 - single-tone DSB signal spectrum _
2F 1300 Hz with ——B> <———— 2200 Hz with amplitude = 2.5
1k amptlitude = 2.5 i
bandwidth 400 Hz

0 . . N L . 4 . - o . N

0 S00 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz
3 __Plot 10 - multi-tone DSB signal spectrum _ '
bandw:dth 800 Hz 3400 Hz with
2+ 2600 Hz with ltude=2.5 amplitude = 2.5
v 3100 Hz with

1 - 2650 Hz with amptlitude = 1.5 =t amptlinde = 1.5 -
oL 2900 Hz with amptlirude = 1 3350 Hz with amgflitude = 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

3 Plot 11 - demodulated single-tone DSB spectrum prior to filtering
2L 4
1} .
oL L. A e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

3 Plot 12 - gcmodu'lated multi-tone DSB spectrum prior to filtering _
2 r .
1 -L .
0 . . . . , L 1 l lJ .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Programming Laboratory 5 Key—page 5

347




Amplitude

10 Plot 13 - single-tone message, amplified recovered DSB signal
’ \/WWWW

-10 . . N . . o s . -

0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

20 'Plot 14 - multi~}onc message, g'mpliﬁeg recovgred DS§ sigx)a}
10 -
oF 4

0 A N N N a —_— — N “
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Programming Laboratory 5 Key—page 6

348




lab5S_ex.m

%Programming Lab 5 example for instructor use
%Answers will vary!

%% %% %% % %% %% %% %% % %% %% %% %% %% % %

%Programming Lab 5 Amplitude Modulation AM DSB
%% %% %% % %% %% %% % %% %% %% % % %% % %% %

%Part 1--Generate single- and multi-tone message signals
%and spectra

%A. Generating the message signals

Clear
clg

delta_t=.0001; %set signal and sampling variables
t=0:delta_t:1;

sgl=5*cos(2*pi*200*t); %single-tone signal variable
%multi-tone signal variable

mlt=5*cos(2*pi*400*t)+3*cos(2*pi* 100*t)+2*cos(2*pi*350*t);

%Plot 1

subplot(211), %plot the single-tone signal

plot(1(1:500),sg1(1:500))

title(Plot 1 - single-tone message signal’)

xlabel('Time")

ylabelC Amplitude”)

%Plot 2

subplot(212), %plot the multi-tone signal

plot(t(1:500),mlt(1:500))

title(Plot 2 - multi-tone message signal’)

xlabel("Time")

ylabelCAmplitude’)

pause
clg

%B. Predict power and bandwidth for the message signals
%C. Verify bandwidth for the message signals

[specsgl,Hz}=spectral(sgl,delta_t); %generate the spectrum
Programming Laboratory 5 Key—page 7

349




%Plot 3

subplot(211), %plot the spectrum

ploy(Hz specsgl)

title(Plot 3 - single-tone message signal spectrum’)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

{specmit,Hz]=spectral(mit delta_t); %generate the spectrum
%Plot 4

subplot(212), %plot the spectrum
plot(Hz,specmlt)

title('Plot 4 - multi-tone message signal spectrum’)
xlabel('Frequency in Hz')

ylabelCAmplitude’)

clear specmlt; clear specsgl;

pause
clg

%% %% %o % %% %o %o %o T % %o Fo % %o % Fo % % %o %o %o % %o %o Fo % Fo %o %o
%Part 2--Generate AM DSB signals using single- and multi-tone
%input

%A. Generate the single-tone AM DSB signal and spectrum

moddsbsgl=cos(2*pi*2000*t).*sgl; %modulate the signal by multiplying by a cosine
moddsbmit=cos(2*pi*3000*t).*mlit;

%Plot 5

subplot(211), %plot the modulated signal
plot(t(1:500),moddsbsgi(1:500))

title(Plot § - single-tone DSB signal’)
xlabel(Time")

ylabel( Amplitude’)

%Plot 6

subplot(212), %plot detailed view to show phase shifts
plot(t(1:100),[sgl(1:100);moddsbsgl(1:100)])

title('Plot 6 - expanded message and single-tone DSB signals”)

xlabel("Time")
ylabe!C Amplitude’)

Programming Laboratory 5 Key—page 8

350




pause
clg

%Plot 7

subplot(211), %plot the modulated signal
plot(t(1:500),moddsbmit(1:500))
title(Plot 7 - multi-tone DSB signal’)
xlabel(Time")

ylabelCAmplitude’)

%Plot 8

subplot(212), %plot detailed view to show phase shifts
plot(1(1:100),{ml(1:100);moddsbmlt(1:100)])

title(Plot 8 - expanded message and multi-tone DSB signals’)
xlabel('Time’)

ylabelC Amplitude’)

pause
clg

%B. Predict power for the single-tone AM DSB signal
%C. Verify bandwidth for the single- and multi-tone AM DSB signals

dsbsgispec=spectral(moddsbsgl.delta_t); %generate the modulated spectrum
dsbmitspec=spectral(moddsbmit,delta_t);

%Plot 9

subplot(211), %plot the modulated spectrum
plot(Hz dsbsglspec)

title(Plot 9 - single-tone DSB signal spectrum®)
xlabel(Frequency in Hz")

ylabelCAmplitude’)

%Plot 10

subplot(212), %plot the modulated spectrum
plot(Hz,dsbmltspec)

title(Plot 10 - multi-tone DSB signal spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

clear dsbmltspec;clear dsbsglspec;

Programming Laboratory 5 Key—page 9

351




pause
clg

%D. Verify the power for the single-tone AM DSB signal

dsb_pk_pwr_sngl=((max(moddsbsgl)y*2)/2 %find the peak power

psddsb=psd(moddsbsgl.deita_t); %generate the power spectral density

dsb_avg pwr_sngl=sum(psddsb) %find average power by summing the power
%spectral density values

clear psddsb;

%% %% %% %% %% %% %% %% %% %%

%Part 3--Recover the AM DSB signals

%A. Demodulate the AM DSB signals

demodsgl=cos(2*pi*2000*t).*moddsbsgl; %first step in recovering the signal--

%multiply by the carrier
demodmlt=cos(2*pi*3000*t).*moddsbmit;

[specsgl, Hz,sglfft}=spectral(demodsgl.delta_t); Jogenerate the spectrum
[specmit,Hz mltfft]=spectral(demodmit.delta_t); %the recovered signal

clear demodsgl;clear demodmit;clear moddsbsgl;clear moddsbmlt;

%Plot 11

subplot(211),

plot(Hz specsgl)

title(Plot 11 - demodulated single-tone DSB spectrum prior to filtering’)
xlabel(Frequency in Hz")

ylabelC Amplitude”)

%Plot 12

subplot(212),

plot(Hz,specmlt)

title(Plot 12 - demodulated multi-tone DSB spectrum prior to filtering’)
xlabel(Frequency in Hz")

ylabelCAmplitude”)

clear specmlt; clear specsgl;

pause
clg

%B. Filter and recover the message signals

Programming Laboruiory 5 Key—page 10

352




recsgl=recoverm(sglfft,'ideallow’,Hz,250); %recover and filter
clear sgifft;

recmit=recoverm(mitfft,'ideallow' Hz,450);
clear mltffy;

bigsgl=recsgl*2; %amplify signal
bigmlt=recmlt*2;

%Plot 13

subplot(211), %plot the recovered signal on top of the message signal
plot(t(1:500),[sgl(1:500);bigsgl(1:500)])

title('Plot 13 - single-tone message, amplified recovered DSB signal’)
xlabel('Time')

ylabelCAmplitude’)

%Plot 14

subplot(212), %plot the recovered signal on top of the message signal
plot(t(1:500),[mlt(1:500);bigmIit(1:500)])

title(Plot 14 - multi-tone message, amplified recovered DSB signal’)

xlabel(Time")
ylabelC Amplitude’)

Programming Laboratory 5 Key—page 11

353




This page is intentionally
left blank.

354




EO 3513 Programming Laboratory 6 Key
Amplitude Modulation Single Sideband (AM SSB)

Answers will vary. The answers below are based on the following signals:
sgl=8%cos(2*pi*220*t);
mlt=2*cos(2*pi*150*t)+4*cos(2*pi*225*t)+8*cos(2*pi*400*t);

Question 1:

Answer:

Question 2:

Answer:

Question 3:

Answer:

Calculate the following values for the single-tone message
signal:

peak power

average power

baseband bandwidth
peak power =A;2/2=>82/2=32
average power=A,2 + 12 X (A2 +B,2)=>82/2=32
baseband bandwidth = 220 Hz

Predict the following values for the single-tone AM SSE
signal:

peak power
average power
transmission bandwidth

peak power =A.2,2=>42/2=8
average power=A2/2=>42/2=8
transmission bandwidth = 440 Hz

Record the values representing peak and average power for the
signal-tone LSB and USB signals.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

Isb_pk_pwr_sngl = 8.2009
usb_pk_pwr_sngl = 8.0261

Isb_avg pwr_sngl = 8.0001
usb_avg_pwr_sngl = 7.9999

Programming Laboratory 6 Key—page 1

355




Question 4: Is coherent detection (detection using the carrier) necessary
for an AM SSB signal?

Answer: Yes, because although there are no phase shifts present in the AM SSB
signals, their shapes do not closely follow the envelope of the message
signal, preventing envelope detection.

Programming Laboratory 6 Key—page 2

356




10 Plot 1 - single-tone message signal ] _

-10 . . : n X : . . .
0 0.005 001 0.015 002 0.025 0.03 0.035 0.04 0.045 0.05
Time

Plot2 mulu-tonc message s:ggal '
0
0 0.005 0.01 0.015 0.()2 0.025 0.03 0.035 0.04 0.045 0.05
Time

Amplitude
©

__Plot3 - single-tone message signal spectrum

10 -
8
2 < 220 Hz with amplitude = 8
= sl i
g
< bandwidth 220 Hz
0 A " . — N N . —_ N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
10 Plot4 mulu-tone message mgnal spectrum _

A band\mdlh4(X)Hz
~———— 400 Hz with amplitude = 8
tlj——— 225 Hz with amplitude = 4

Amplitude
th

0 - 150 Hz with amplitude = 2
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Programming Laboratory 6 Key—page 3

357




Amplitude

Plot 5 - single-tone LSB signal _

-5 , R . . — . R . X
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time
10 __Plot 6 - single-tone message signal, expanded LSB signal
Of 4

0 a . N - N . —_ N N
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time

_Plot 7 - single-tone USB signal

AENARALA Alh Al 1 § § \ )

’ SICREERITRITYRRL Y b Y1\
: : (1 1 i ‘ : | k1

-5 . . . . , . A \
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time
10 __Plot 8 - single-tone message signal, expanded USB signal _
0F |
1050001 0,002 0,003 0,004 0,005 0.006 0,007 0,008 0.009 0.01

Time

Programming Laboratory 6 Key—page 4

358




10, . _ flot 9 - multi-t&nc LSE signal i}
E, o JUAMi! VAR ‘ '
-10 . . . . . . . . .
0 0.005 0.01 0015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
20 __Plot 10 - multi-tone message signal, expanded LSB signal

10+ .

-

Amplitude
=

O — " " N N A N . "
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time
10 _ i} Plot 11 - multi-tone USB signal i}
E 0 i ot AR S "'u,“ filisiki, TR i i
-10 . . . . . N , N .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
20 _Plot 12 - multi-tone message signal, expanded USB signal _

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.0
Time

Programming Laboratory 6 Key—page 5

359




Amplitude Amplitude

Amplitude

Amplitude

Plot 13 - single-tone LSB spectrum

T bandwidth 220 Hz

<————— 1280 Hz with amplitude = 4

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 14 - single-tone USB spectrum

~*1  bandwidth 220 Hz

<o 1720 Hz with amplitude = 4

SO0 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 15 - mulu-tone LSB  spectrum

-——
bandwidth 400 Hz A==

2275 Hz with amplitude = 2
14—-——- 2350 Hz with amphtude 1

2100 Hz with amplitude = 4

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 16 - mulu-tone USB spectrum

v

2900sz1ﬂlamphmdc 4 —P
ﬁ

h bandwidth 400 Hz

2725 Hz with amplitude = 2 ———P>
2650 Hz with amphtude ] — lJ

0
0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 6 Key—page 6

360




Amplitude

Plot 17 - single-tone demodulated LSB spectrum prior to filtering

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
Plot 18 - single-tone demodulated USB spectrum prior to filtering

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 19 - single-tone message and recovered LSB and USB signals

0.005 001 0015 002 0025 0.03 0035 004 0045 0.05
Time

NO PLOT HERE--JUST PRESS RETURN

Programming Laboratory 6 Key—page 7

361




2 Plot 20 - multi-tone demodulated LSB spectrum prior to filtering

| _
g(,l' ) Jh

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

D) Plot 21 - multi-tone demodulated USB spectrum prior to filtering

Amplitude

1"' -1
oL . !

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

20 Plot 22 - multi-tone message and recovered LSB and USB signals

0 N N — N . N N N .
0 0005 001 0.015 002 0.025 0.03 0.035 0.04 0.045 0.05
Time

Programming Laboratory 6 Key—page 8

362




lab6_ex.m

%Programming Lab 6 example for instructor use
%Answers will vary!

%% %% %% % %% %% %% % %% % T %% %% %% %% %%
%Programming Lab 6 Amplitude Modulation AM SSB
%% %% %% % %% %% %% % %% %% %% %% %% % %% %
%Part 1--Generate single- and multi-tone message signals
% and spectra

%A. Generate the message signals

clear
clg

delta_¢=.0001;
t=0:delta_t:1; %time vector

sgl=8*cos(2*pi*220*t); %single-tone signal
%multi-tone s.gr.2

mlt=2*cos(2*pi*150*1)+4*cos(2*pi* 225* )+ 8*cos(Q*pi*400*t);

%Plot 1

subplot(211), %plot the signal

plot(t(1:500),sgl{1:500))

title('Plot 1 - single-tone message signal’)

xlabel('Time’)

ylabelC Amplitude”)

%Plot 2

subplot(212), %plot the signal

plot(t(1:500),mit(1:500))

title('Plot 2 - multi-tone message signal')

xiabel(Time)

ylabelC Amplitude’)

pause
clg

%B. Predict the power and bandwidth for the message signals
%C. Verify bandwidth for the message signals

[specsgl, Hz]=spectral(sgl.delta_t); %generate the spectrum
%Plot 3

Programming Laboratory 6 Key—page 9

363




subploy(211), %plot the spectrum
plot(Hz,specsgl)

title(Plot 3 - single-tone message signal spectrum")
xlabel('Frequency in Hz')

ylabelC Amplitude’)

specmlt=spectral(mit,delta_t); %generate the spectrum
%Plot 4

subplot(212), %plot the spectrum
plot(Hz,specmlt)

title(Plot 4 - multi-tone message signal spectrum’)
xlabel(‘Frequency in Hz")

ylabelC Amplitude”)

clear specsgl;clear specmlt;

pause
clg

%% % %% % %% %o % %% %o %o % %o %% % %o % %o % %o %o %% T %o %
%Part 2--Generate AM SSB signals using single- and multi-
% tone input

%A. Generate the single- and multi-tone AM SSB signals

{Isbsgl,usbsgl]=ssb(,sgl,1,1500); %generate the single-tone upper and lower
%sideband signals

(Isbmit,usbmlt]=ssb(t,mlt,1,2500); %generate the multi-tone upper and lower
%sideband signals

%Plot 5

subplot(211), %plot the lower sideband signal
plot(t(1:500),1sbsgl(1:500));

tile(Plot 5 - single-tone LSB signal®)
xlabel("Time")

yiabelC Amplitude”)

%Plot 6

subplot(212), %plot detailed view--no phase shifts
ploi(i(1:100),{sgl(1:100);1sbsgl(1:100)])

title(Plot 6 - single-tone message signal, expanded LSB signal’)
xlabel("Time")

ylabel( Amplitude’)

pause
Programming Laboratory 6 Key—page 10

364




-

clg
%Plot 7

subplot(211), %plot the upper sideband signal
plot(t(1:500),usbsgl(1:500));

title('Plot 7 - single-tone USB signal')
xlabel("Time")

ylabelCAmplitude”)

%Plot 8

subplot(212), %plot detailed view—no phase shifts
plot(1(1:100),[sgl(1:100);usbsgl(1:100)])

title('Plot 8 - single-tone message signal, expanded USB signal’)
xlabel('Time")

ylabel( Amplitude’)

pause
clg

%Plot 9

subplot(211), %plot the lower sideband signal
plot(t(1:500),1sbmit(1:500));

title(Plot 9 - multi-tone LSB signal’)
xlabel('Time")

ylabelCAmplicude’)

%Plot 10

subplow(212), %plot detailed view--no phase shifts
plot(t(1:100),[mlt(1:100);1sbmit(1:100)])

title(Plot 10 - multi-tone message signal, expanded LSB signal’)
xlabel("Time")

ylabelCAmplitude’)

pause
clg

%.. .11

subplot(211), %plot the upper sideband signal
plot(t(1:500),usbmit(1:500));

title(Plot 11 - multi-tone USB signal’)
xlabel('Time")

ylabel( Amplitude’)

Programming Laboratory 6 Key—page 11

365




%Plot 12

subplot(212), %plot detailed view--no phase shifts
plot(t(1:100),[mlt(1:100);usbml(1:100)})

title(Plot 12 - multi-tone message signal, expanded USB signal’)
xlabel(Time")

ylabel( Amplitude’)

pause
clg

%B. Predict power and bandwidth for the AM SSB signals
%C. Verify the power and bandwidth of the AM SSB signals

[speclsbsgl,Hz]=spectral(Isbsgl.deita_t), %generate the lower sideband spectrum
[specusbsgl,Hz)=spectral(usbsgl,delta_t); %generate the upper sideband spectrum

%Plot 13

subplot(211), %plot the lower sideband spectrum
plot(Hz speclsbsgl);

tile(Plot 13 - single-tone LSB spectrum’)
xlabel('Frequency in Hz")

ylabelC Amplitude’)

%Plot 14

subplot(212), %plot the upper sideband spectrum
plot(Hz specusbsgl);

title(Plot 14 - single-tone USB spectrum”)
xlabel('Frequency in Hz")

ylabel( Amplitude’)

clear specusbsgl;clear specisbsgl;

pause
clg

{speclsbmit,Hz]=spectral(Isbmit,delta_t); %generate the lower sideband spectrum
[specusbmit,Hz]=spectral(usbmit.delta_t); %generate the upper sideband spectrum

%Plot 15
subplot(211), %plot the lower sideband spectrum
plot(Hz,speclsbmlt);

tide(Plot 15 - multi-tone LSB spectrum'’)
xlabel(Frequency in Hz")

Programming Laboratory 6 Key—page 12

366




ylabelCAmplitude’)
%Plot 16

subplot(212), %plot the upper sideband spectrum
plot(Hz, specusbmlt);

title(Plot 16 - multi-tone USB spectrum”)
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear specusbmlt;clear specisbmit;

pause
clg

Isb_pk_pwr_sngl=((max(Isbsg))*2)/2 %find the peak power
usb_pk_pwr_sngl=((max(usbsgh))"2)/2

[psdisb,Hz])=psd(Isbsgl.delta_t), %generate the lower sideband power
%spectral density
Isb_avg_pwr_sngl=sum(psdisb) %find average power by summing the power
%spectral densities
[psdusb,Hz]=psd(usbsgl.delta_t); %generate the lower sideband power
%spectral density
Isb_avg pwr_sngl=sum(psdusb) %find average power by summing the power
%spectral densities
clear psdusb;clear psdisb;
%o% % %% % %o % %o % %o %o %o Fe %o %o %% %o
%Part 3--Recover the AM SSB signals
%A. Recover the AM SSB single-tone signals
demodlsbsgl=cos(2*pi*1500*1).*Isbsgl; %recover the single-tone signal by
%multiplying by the carrier
demodusbsgl=cos(2*pi*1500*t).*usbsgl;
clear Isbsgl;clear usbsgl;

[specisbsgl,Hz fftisbsgl}=spectral(demodisbsgl,delta_t);
clear demodlisbsgl;

[specusbsg], Hz fitusbsgl)=spectral(demodusbsgl,delta_t);
clear demodusbsgl;

%Plot 17

subplot(211), %plot the demodulated 1sb spectrum
plot(Hz speclsbsgl)

Programming Laboratory 6 Key—page 13

367




title(Plot 17 - single-tone demodulated LSB spectrum prior to filtering’)
xlabel(Frequency in Hz')
ylabelC Amplitude")

clear speclsbsgl;
%Plot 18

subplot(212), %ploi the demodulated usb spectrum

plot(Hz specusbsgl)

title(Plot 18 - single-tone demodulated USB spectrum prior to filtering")
xlabel(Frequency in Hz")

ylabelC Amplitude’)

clear specusbsgl;

pause
clg

reclsbsgl=recoverm(ffilsbsgl,'ideallow' Hz,250); %recover and filter
clear ffilsbsgl; %single-tone LSB
bigisbsgl=reclsbsgl*4; %amplify signal

clear reclsbsgl;

recusbsgl=recoverm(fftusbsgl, ideallow’,Hz,250); %recover and filter
clear fftusbsgl; %single-tone USB
bigusbsgl=recusbsgl*4; %amplify signal

clear recusbsgl;

%Plot 19

subplot(211), %plot the recovered signals over the message signal
plot(t(l:500),[sg1(1:S(X));biglsbsgl(l:500);bigusbsgl(1:500)])

title(Plot 19 - single-tone message and recovered LSB and USB signals’)
xlabel('Time")

ylabel( Amplitude’)

subplot(212),
title(NO PLOT HERE--JUST PRESS RETURN")

clear biglsbsgl;clear bigusbsgl;clear sgl;

pause
clg

%B. Recover the AM SSB multi-tone signals
demodisbmlt=cos(2*pi*2500*1).*Isbmlt; %recover the multi-tone signal by

Programming Laboratory 6 Key—page 14

368




%multiplying by the carrier
demodusbmlt=cos(2*pi*2500*t).*usbmit;

clear Isbmlt;clear usbmit;

[speclsbmlt,Hz fftlsbmlt}=spectral(demodisbmlt,delta_t);
clear demodisbmit;

(specusbmit Hz fftusbmlt}=spectral(demodusbmit,delta_t);
clear demodusbmlt;

%Plot 20

subplot(211), %plot the demodulated Isb spectrum

plot(Hz speclsbmit)

title(Plot 20 - multi-tone demodulated LSB spectrum prior to filtering’)
xlabel(Frequency in Hz")

ylabelCAmplitude”)

clear specisbml;
%Plot 21

subplot(212), %plot the demodulated usb spectrum
plot(Hz,specusbmlt)

title(Plot 21 - multi-tone demodulated USB spectrum prior to filtering”)
xlabel(Frequency in Hz')

ylabel( Amplitude”)

clear specusbmit;

pause
clg

reclsbmli=recoverm(ffilsbmit,'ideallow',Hz,420); %recover and filter
clear fftlsbmit; %multi-tone LSB
bigisbmlt=reclsbmlt*4; %amplify signal

clear recisbmilt;

recusbmlt=recoverm(fftusbmlt,ideallow’,Hz,420); %recover and filter
clear fftusbmit; %multi-tone USB
bigusbmlt=recusbmlt*4; %amplify signal

clear recusbmlt;

%Plot 22

subplot(211), %plot the recovered signals over the message signal

plot(1(1:500),[mlt(1:500);biglsbmIt(1:500); bigusbmit(1:500)])
Programming Laboratory 6 Key—page 15

369




title("Plot 22 - multi-tone message and recovered LSB and USB signals’)
xlabel("Time")
ylabelC Amplitude’)

Programming Laboratory 6 Key—page 16

370




EO 3513 Programming Laboratory 7 Key

Conventional Amplitude Modulation
(Conventional AM)

Answers will vary. The answers below are based on the following signals:
sgl=cos(2*pi*150*t);
mit=3*cos(2*pi*430*1)+2*cos(2*pi*250*t)+cos(2*pi*110*t);

Question 1:

Answer:

Question 2:

Answer:

Calculate the following values for the single-tone message
signal:

peak power

average power
baseband bandwidth

_ A
peak power = 72 12722505

P= Ao2 +-1- Z(ANZ 'i"BN2 )
average power = 3o =>12/2=>05

baseband bandwidth = 150 Hz

Predict the following values for the single-tone conventional
AM signal:

peak power
average power
transmission bandwidth

peak power = (1 + m)2 P_=> (1 + 0.8)2* 0.5=> 1.62

m2

1+

P = ( )PC
average power = => (1 +(0.82/2)) * 0.5 => 0.66

transmission bandwidth = 300 Hz

Programming Laboratory 7 Key—page 1

37




Question 3:

Answer:

Question 4:

Answer:

Record the values representing peak and average power for the
signal-tone conventional AM signal.

Do your calculations for bandwidth and power in Q: ‘ion 2
agree with the computer-generated values?

cam_pk_pwr_sgl = 1.6172
cam_avg_pwr_sgl = 0.6598

Yes—calculations agree.

What type of detection is needed for an overmodulated
conventional AM signal? Why?

Coherent detection (detection using the carrier) is necessary for an
overmodulated conventional AM signal. The phase shifts preclude envelope
detection.

Programming Laboratory 7 Key—page 2

372




Amplitude

Amplitude

Amplitude

1 ] ___Plot1 - single-tone message signal

0 0005 0.01 0015 002 0025 003 0035 0.04 0045 0.05

Time
10 } i Plot 2 - multi-tone message signal
OF .
-10 — N . . . . A . .
0 0005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time
1 _ _Plot 3 - single-tone message signal spectrum
- 150 Hz with amplitude = 1
0.5+ i

bandwidth 150 Hz

0 N - N - N A L L P
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz
3 _Plot 4 - multi-tone message signal spectrum _
2 - 430 Hz with amplitude = 3 i

250 Hz with amplitude = 2
bandwidth 430 Hz

0 i - - - 110 Hz with amplinde =1 .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Programming Laboratory 7 Key—page 3

373




Amplitude

Amplitude

Amplitude

_Plot 5 - single-tone conventional AM signal _

0,005 001 0015 002 0025 003 0035 004 0045 0.05

Time

__Plot 6 - multi-tone conventional AM signal

0.005 0.01 0015 002 0025 0.03 0035 0.04 0.045 0.05

Time

Plot7 - sm&le-tonc oonventlonal AM spectrum

0.5}

~————— 2000 Hz with ampllllude =1

2150 HZ With e <@———— 2150 Hz with amptlitude = 0.4
amptlitude = 0.4 bandwidth 300 Hz

-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Plot 8 - multi-tone conventional AM spectrum

0.5

2890 Hz bandwidth 860 Hz
2250 Hz

4—_ 2500HZ
2070 Hz L 50 He
‘ \\;ﬁl , J’;/ " 2930 Hz

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz

Programming Laboratory 7 Key—page 4

374




Amplitude

Amplitude

Amplitude

Amplitude

2 _Plot9 - single-tone filtered and envelope-detected signals

2 . . N . . : . , \
0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

Time

2 Plot 10 - single-tone envelope-detected and message signals

—

2 . . . N . R N N A
0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
Time

2 ____Plot 11 - mulu-tone filtered and envelope-detected signals

Of T

2 R . . . A X - . R

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
Time

5 Plot 12 - multi-tone envelope-detected and message signals

J\N/\/\

0.01 0011 0012 0013 0014 0015 0016 0017 0018 0019 0.02
Time

Programming Laboratory 7 Key—page 5

375




5 ] Plot 13 - overmodulated conventional AM signal

LTI

-5 . - . N . . N . .
0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
Time

Amplitude

Programming Laboratory 7 Key—page 6

376




lab7_ex.m

%Lab 7 example script for instructor use

%% %% % %% % %% % % %% %% % %% %% %% %% % %% % T
%Programming Lab 7 Conventional Amplitude Modulation
% (Conventional AM)

%% %% % %% % %% % % %% %% % % %% % %% % %% % Fo %o Fo

%PART 1--Generate single- and multi-tone message signals
% and spectra
%A. Generate the message signals

clear
clg

delta_t=.0001;
t=0:delta_t:1; %time vector
sgl=cos(2*pi*150*1); %single-tone signal

%multi-tone signal
mlt=3*cos(2*pi*430*t)+2*cos(2*pi*250* t)+cos(2*pi*110*1);
max_m=max(mlt); %save for amplifying detected signal

fc1=2000; %modulating frequencies for the carrier signals
£c2=2500;

fs1=150; %highest frequency in the single-tone message signal
fs2=430; %highest frequency in the multi-tone message signal
m=.8; %conventional AM modulation index

over_m=1.5; %index for overmodulated signal

%Plot 1

subplot(211), %plot the signal
plot(1(1:500),sgl(1:500))

title(Plot 1 - single-tone message signal’)
xlabel(Time'")

ylabel( Amplitude’)

%Pliot 2

subplot(212), %piot the signal
plot(1(1:500),mlt(1:500), 'b")

title(Plot 2 - multi-tone message signal’)
xlabel(Time")

ylabelC Amplitude’)

pause
clg

Programming Laboratory 7 Key—page 7

377




%B. Predict power and bandwidth for the message signals
%C. Verify bandwidth for the message signals
[specsgl,Hz]=spectral(sgl,delta_t); %generate the spectrum
%Plot 3

subplot(211), %plot the spectrum
plot(Hz,specsgl, 'g)

title(Plot 3 - single-tone message signal spectrum’)
xlabel(‘Frequency in Hz")

ylabel( Amplitude’)

[specmlt,Hz]=spectral(mit,delta_t); %generate the spectrum
%Plot 4

subplot(212), %plot the spectrum
plot(Hz,specmlt)

title(Plot 4 - multi-tone message signal spectrum’)
xlabel(Frequency in Hz")

ylabelC Amplitude’)

clear specsgl;clear specmit;

pause
clg

%% %% % %o %o % %% % %o % %o %% %o %o % % Fo % %o %o % %o o %o % % % %o
%PART 2--Generate conventional AM signals using single- and
% multi-tone input

%A. Generate the single- and multi-tone conventional AM

%osignals

convamsgl=conv_am(sgl,delta_t,fcl,m);
convammlt=conv_am(mit,delta_t fc2,m);
sgl=sg1(1:300);

mit=mit(1:300);

%Plot 5

subplot(211), %plot the conventional AM modulated signal
plot(t(1:500),convamsgl(1:500))

title(Plot 5 - single-tone conventional AM signal’)

xlabel('Time')
ylabel( Amplitude’)

Programming Laboratory 7 Key—page 8

378




%Plot 6

subplot(212), %plot the conventional AM modulated signal
plot(t(1:500),convammit(1:500), 'o")

title('Plot 6 - multi-tone conventional AM signal)
xlabel("Time")

ylabelC Amplitude)

pause
clg

%B. Predict power and bandwidth for the conventional AM signals

%C. Verify power and bandwidth for the conventional AM signals
%generate the modulated spectrum

{camspecsgl, Hz fficamsgl]=spectral(convamsgl,delta_t);

[camspecmit,Hz fficammlit]=spectral(convammlt,delta_t);

%Plot 7

subplot(211), %plot the modulated spectrum

plot(Hz camspecsgl, 'g)

title(Plot 7 - single-tone conventional AM spectrum”)
xlabel(Frequency in Hz")

ylabel( Amplitude’)

%Plot 8
subplot(212), %plot the modulated spectrum

plot(Hz camspecmit)
title(Plot 8 - multi-tone conventional AM spectrum’)

xlabel(Frequency in Hz")
ylabelC Amplitude’)
clear camspecsgl;clear camspecmit;clear convammlit;

pause
clg

cam_pk_pwr_sgl=((max(convamsgD))*2)/2 %find the peak power
psdcam=psd(convamsgl,delta_t); %generate the power spectral density
clear convamsgl;

cam_avg_pwr_sgl=sum(psdcam) %find average power by summing the power
%spectral density values
clear psdcam;

Programming Laboratory 7 Key—page 9

379




%% %% %% %% % %% %% % %% %% %% % %% %
%Part 3--Recover the conventional AM signals
%A. Recover the single-tone conventional AM signal

%recover and filter
filtsgl=recoverm(fficamsgl,'idealbnd’,Hz,1800,2200);
filtsgl=filtsg](1:300);
clear fftcamsgl;
envsgl=envelope(filtsgl);

%plot the envelope-detected signal over the
%Plot 9 %filtered signal

subplot(211),
plot(t(101:200),{filtsgl(101:200);envsgl(101:200)})

title(Plot 9 - single-tone filtered and envelope-detected signals’)
xlabel(Time")

ylabelC Amplitude’)

bigsgl=(envsgl-1)/m; %remove DC value, divide by m

%Plot 10
%plot the message signal
subplot(212), %over the amplified envelope-detected signal
plot(t(101:200),bigsgl(101:200))
title(Piot 10 - single-tone envelope-detected and message signais’)
xlabel('Time")
ylabel( Amplitude’)
hold on
pause
plot(t(101:200),sg1(101:200), ")
hold off

pause
clg

clear bigsgl;clear filtsgl;
filtmlt=recoverm(fftcammlt, idealbnd’,Hz,2000,3000);
clear fftcammlt;

filtmlt=filtmlt(1:300); %reduce length for speed
envmli=envelope(filtmlt); %use envelope detector

%plot the envelope-detected
%Plot 11 %signal over the filtered signal
subplot(211),

Programming Laboratory 7 Key—page 10

380




plot(1(101:200),[filtm1t(101:200);envmit(101:200)])

title(Plot 11 - multi-tone filtered and envelope-detected signals’)
xlabel('Time")

ylabelC Amplitude”)

bigmlt=(envmlt-1)/m; %remove DC value, divide by m, amplify
biggermli=bigmlt*max_m; %amplify the signal

%Plot 12

%message signal over
subplot(212), %envelope-detected signal
plot(1{101:200),biggermit(101:200))
title('Plot 12 - multi-tone envelope-detected and message signals’)
xlabel(Time")
ylabel( Amplitude’)
hold on
pause
plot(1(101:200),mit(101:200), 'b)
hold off

pause
clg

%% %% % % %% %% % %o %o % %o %o % %o %o % Fo %o %o Fo % Fo %o % %o %o %o %o
%PART 4--Observe the effect of overmodulation on a single-tone
%conventional AM signal

%A. Overmodulate a single-tone conventional AM signal

oconvamsgl=conv_am(sgl.delta_tfcl,over_m); %overmodulate the signal
%Plot 13

subploi(211), %plot the enlarged view of the overmodulated signal
plot(t(101:200),oconvamsgl(101:200))

title(Plot 13 - overmoduiated conventional AM signal’)
xlabel('Time")

ylabel( Amplitude’)

hold on

pause

%B. Describe the effect of overmodulation on recovery
oenv=envelope(oconvamsgl); %use envelope detector

plot(1{101:200),0env(101:200), b
hold off

Programming Laboratory 7 Key—page 11

381




This page is intentionally
left blank.

382




EO 3513 Programming Laboratory 8 Key

Frequency Modulation (FM)

Answers will vary. The answers below are based on the following signals:
sgl=15%cos(2*pi*50*t),
mlt=6*cos(2*pi*90*t)+9*cos(2*pi*30*t);

Question 1:

signal:

Answer:

Question 2:

Answer:

Calculate the following values for the single-tone message

peak power
average power
baseband bandwidth
2
PP = AP
peak power = 2 =>152/2=>1125

P=Ay% + z AN? +By?)
average power = 2Nzt =>152/2=>1125

baseband bandwidth = 50 Hz

Predict the following values for the single-tone FM signal:

peak power

average power

maximum frequency deviation Af
transmission bandwidth (use Carson’s rule)

pp = AL
peakpower= = 2 =>152/2=>112.5

average power=A2/2=>152/2=>112.5
Af =B * fm => 10 * 50 => 500 Hz
transmission bandwidth = 2 8 f;; => 2 * 10 * 50 => 1000 Hz

Programming Laboratory 8 Key—page 1

383




Question 3:

Anwer:

Question 4:

Answer;

Question 5:

Answer:

Question 6:

Answer:

Question 7:

Answer;

Question 8:

Answer:

Consult a table of values for Bessel functions (or use the
MATLAB “bessel” command). How many sidebands are
required for 98% power transmission for this FM signal? Does
the spectrum shown in Plot 7 reflect the expected number of
sidebands?

14 sidebands are required.

The spectral plot reflects the expected number of sidebands.

What is the distance between the sidebands in the FM spectrum
shown in Plot 7?

50 Hz

Record the values representing peak and average power for the
signal-tone FM signal.

Do your calculations for bandwidth and power in Question 2
agree with the computer-generated values?

fm_pk_pwr_sngl =112.5
fm_avg_pwr_sngl = 112.4888

Yes——calculations agrees.

Calculate the maximum frequency deviation Af associated with
each of the two values of B.

Af=8*fm=>1%*50=>50Hz
Af=8 *fm =>5* 50 => 250 Hz

Calculate the transmission bandwidth for each of the single-
tone FM signals.

Br=2f,=>2*50=>100Hz
Br=2(1+8)f,=>2(1+5)*50=>600Hz

C:lzl;late the value of B associated with each of the two values
o *

B=Af/fm=>900/90=>10
B =Af/fm => 1200/ 90 => 13.333

Programming Laboratory 8 Key—page 2

384




Question 9: Calculate the transmission bandwidth for each of the multi-
tone FM signals (use the higher of the two values for message
signal frequency).

Answer: Br=28f,=>2%*10*90=>1800 Hz
Br=28f,=>2%*13.333 * 90 => 2399.94 Hz

Programming Laboratory 8 Key—page 3

385




Amplitude

Amplitude

Amplitude

20 — i Plot 1 - single-tone message signal

Of .
220 N . . . . N . N .
0 001 0.02 003 004 005 0.06 007 0.08 0.09 0.1
Time
20 . ' Plot 2 - multi-tone message signal
Or .
_20 A " " A N " N N _—
0 001 0.02 003 004 005 0.06 007 008 0.09 0.1
Time
15 ] ____Plot 3 - single-tone message spectrum
~@}———— 50 Hz with amplitude = 15
10 .
i 1

4+ bandwidth 50 Hz

%0 500 1000 1500 2000 2300 3000 3500 4000 4500 5000
Frequency in Hz

10 . i qut 4- ngllti-toneressage spectrum

~a——— 30 Hz with amplitude = 9

5 44——— 90 Hz with amplitude = 6 .

-

bandwidth 90 Hz
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

S

Programming Laboratory 8 Key—page 4

386




Y

20 _Plot 5 - single-tone message and FM signals

A AT

0
0 0002 0004 0006 0008 001 0012 0014 0016 0018 0.02
Time

Amplitude
=)

20 i Plot 6 - multi-toncﬂmqssa]c and FM signals '

0 0002 0.004 0.006 0.008 0.01 0012 0014 0.016 0.018 0.02
Time

Amplitude
=

__Plot 7 - single-tone FM spectrum with beta=10

(9]

Q bandwidth 1000 Hz
% fo-Af | fc + Af
E \h[ -
. N ll R | i fe l.SOOHZ
0 500 1000 1500 2000 2500 3000
Frequency in Hz
< ___Plot 8 - multi-tone F& spectrum with beta=10
3 bandwidth 1800
:g AL
& ' - , | h h‘L fc 1500 Hz
s il
mll“”””” ”]L‘“I | l L “ A ” .‘ l . : 1 ”T “““llu
0 500 1000 1500 2000 2500 3000
Frequency in Hz

Programming Laboratory 8 Key—page 5

387




Amplitude Amplitude

Amplitude

Amplitude

15 ] __Plot 9 - single-tone FM spectrum, beta=1 _

10 bandwidth 100 Hz 1

. LUk

0 . N . il N . \ .
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency in Hz
6 _ _ Plot 1'0 - single-tone FM spectrum, l')eta=5ﬁ _
4l bandwidth 600 Hz -
i Il J
0 . . - R .JJ 1 IL4 i . N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz
5 i Plot 11 - multi-tone FM spectrum, delta_f=900 -
bandwidth 1800 Hz
O . 2l (TYH "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

Plot 12 - multi;tone EM spectrum, delta_f=1200 ‘
| bandwidth 2400 Hz
[ N\
1 lM MM |
0 ! RN ) SLURLEN] A
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency in Hz

o

Programming Laboratory 8 Key—page 6

388




=~

lab8_ex.m

%Lab 8 example script for instructor use
% Answers will vary!

%% % %% %% %% %% % %% % %% %% % % %% %% %
%Programming Lab 8 Frequency Modulation (FM)

%% %% % %% %% %% % %% %% % %% % %o %% % Fo %o

%PART 1--Generate the single- and multi-tone message signals
%A. Generate the single- and multi-tone message signals

clear
clg

delta_t=.0001; %set signal and frequency variables
t=0:delta_t:1;

Acs=15;  %FM signal amplitude for single-tone message
fcs=1500; %FM signal frequency for single-tone
thetas=0; %single-tore value

fms=50; %single-tone message signal frequency

sgl=15*cos(2*pi*fms*t);  %single-tone signal

Acm=20; %FM signal amplitude for multi-tone message
fcm=1500; %FM signal frequency for multi-tone
thetam=[0 0]; %multi-tone value

freq1=90;

freq2=30;

fmm={freq1 freq2}; %multi-tone frequency vector

mli=6*cos(2*pi*freql *1)+9*cos(2*pi*freq2*1); %multi-tone signal
%Plot 1

subplot(211),

plot(1(1:1000),5g1(1:1000))

title(Plot 1 - single-tone message signal’)
xlabel("Time")

ylabelC Amplitude’)

%Plot 2

subplot(212),
plot(t(1:1000),mlt(1:1000))

title(Plot 2 - multi-tone message signal’)
xlabel(Time")

ylabel( Amplitude’)

Programming Laboratory 8 Key—page 7

389




pause
clg

%B. Prectict peak power, average power, and bandwidth for the
%message signals

%C. Generate the single- and multi-tone message signal spectra
[specsgl,Hz]=spectral(sgl.delta_t);
%Plot 3

subplot(211),

plot(Hz,specsg!)

title(Plot 3 - single-tone message spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude’)

[specmlt,Hz)=spectral(mit,delta_t);
%Plot 4

subplot(212),

plot(Hz,specmlt)

title(Plot 4 - multi-tone message spectrum")
xlabel(Frequency in Hz')

ylabelC Amplitude’)

clear specsgl;clear specmlt;

pause
clg

%% %% %o %o %% %o %o %o Fo %o % %o %o %o Fo % Fo %o %o % % Fo %o %o % Fo Fo
%PART 2--Generate frequency modulated (FM) signals using
%single- and multi-tone input

%A. Generate the single- and multi-tone FM signals

beta=10;
%generate the FM signal

[fm_sgl,delta_fs beta)=fm_mod(t,Acs,fcs,fms thetas,'none’ beta);
(fm_mit.delta_fm,betaj=fm_mod(t,Acm.fcm,fmm thetam, none',beta);
%Plot 5
subplot(211),
plot(t(1:200),[sgl(1:200);fm_sg!(1:200)])

Programming Laboratory 8 Key—page 8

390




title(Plot S - single-tone message and FM signals’)
xlabel("Time")

ylabelC Amplitude’)

%Plot 6

subplot(212),
plot(t(1:200),[m1t(1:200);fm_mlt(1:200)])
title('Plot 6 - multi-tone message and FM signals’)
xlabel("Time")

ylabel( Amplitude’)

pause
clg

%R Predict peak power, average power, and bandwidth
% for the FM signals

%C. Generate the spectra of the FM signals
[specsgl,Hz)=spectral(fm_sgl,delta_t);

%Plot 7

subplot(211),  %label delta_f
plot(Hz(1:3000),specsgl(1:3000))

title(Plot 7 - single-tone FM spectrum with beta=10")
xlabel('Frequency in Hz")

ylabel( Amplitude”)
[specmlit,Hz]=spectral(fm_mlt delta_t);

%Plot 8

subplot(212), %label delta_f
plot(Hz(1:3000),specmit(1:3000))

title(Plot 8 - multi-tone FM spectrum with beta=10")
xlabel(Frequency in Hz')

ylabel( Amplitude’)

pause
clg

%D. Verify the power and bandwidth of the FM signal
psdfm=psd(fm_sgl,.delta_t);

fm_pk_pwr_sngl=(max(fm_sg)*2)2
Programming Laboratory 8 Key—page 9

391




fm_avg pwr_sngl=sum(psdfm)

%% % %% %% % % %% % %% % %% % %% % % %% %%
%PART 3--Control the bandwidth of the FM signal
%A. Control bandwidth by varying beta, using single-tone input
%fix beta at valuesof 1 and §
%modulate at 2500 Hz to center the spectrum
fcs=2500;
beta=1;

[fm_sgl,delta_f,beta)=fim_mod(t,Acs.fcs,fms,thetas, none’,beta);
delta_f
fm_sgl=spectral(fm_sgl,delta_t);

%Plot 9

subplot(211),

plot(Hz fm_sgl)

title('Plot 9 - single-tone FM spectrum, beta=1")
xlabel(Frequency in Hz")

ylabel( Amplitude’)

beta=5;

(fm_sgl.delta_f,betal=fm_mod(1,Acs, fcs fms thetas,'none' beta);
delta_f
fm_sgl=spectral(fm_sgl,delta_t);

%Plot 10

subplot(212),

plot(Hzfm_sgl)

title(Plot 10 - single-tone FM spectrum, beta=5")
xlabel('Frequency in Hz")

ylabel( Amplitude’)

pause
clg

%B. Control bandwidth of the FM signal by varying delta_f,
% using multi-tone input
%fix delta_f at values of 900 and 1200
%Modulate at 2500 Hz to center the spectrum

fem=2500;
delta_fm=900;

[fm_mit,delta_f beta]=fm_mod(t,Acm,fcm fmm, thetam delta_fm,'none’);

Programming Laboratory 8 Key—page 10

392




beta
specmlt=spectral(fm_mit,delta_t);

%Plot 11

subplot(211),

plot(Hz,specmlt)

title(Plot 11 - multi-tone FM spectrum, delta_{=900")
xlabel(Frequency in Hz')

ylabelC Amplitude”)

delta_fm=1200;

[fm_mit,delta_f beta]=fm_mod(t,Acm, fcm fimm,thetam,delta_fm,'none’);
beta
specmlt=spectral(fm_mit,delta_t);

%Plot 12

subplot(212),

plot(Hz,specmit)

title(Plot 12 - multi-tone FM spectrum, delta_f=1200")
xlabel(Frequency in Hz")

ylabel( Amplitude”)

Programming Laboratory 8 Key—page 11

393




This page is intentionally
left blank.

394




EO 3513 Programming Laboratory 9 Key
Radio Frequency Digital Modulation Methods

(ASK, FSK, BPSK, and QPSK)

Answers will vary.

Question 1:

Answer:

Question 2:

Answer:

Question 3:

Answer:

Question 4:

Answer:

Calculate the bit duration < for this signal.
bit duration = 1/bit rate => 1/100 => 0.01 seconds

Calculate the approximate baseband bandwidth of the NRZL
unipolar digital message signal.

baseband bandwidth = 0.5/t => 0.5/0.01 => 50 Hz
Why is ASK modulation often referred to as “on-off keying”?

The carrier is turned “on” and “off” to represent the 1’s and 0’s in the digital
message signal.

Compare the spectrum for the BPSK signal in Plot 10 with that
of the QPSK signal in Plot 16. What is the chief advantage of
quadriphase shift keying over bipolar phase shift keying?

The information rate of a QPSK signal is twice that of a BPSK signal, with
no increase in bandwidth requirements.

Programming Laboratory 9 Key—page 1

395




O . N " L —_ N A s
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Amplitude

Plot 1 - NRZL unipolar digital message signal

o 1 0 1 0 o0 o 1 1 o

0 001 002 003 004 005 006 007 008 009 0.

Time

Plot 2 - NRZL unipolar digital message spectrum

Frequency in Hz

Plot 3 - ASK signal

o 1 o 1 o0 0 o0 1 1 o

___W\W AMW WWWWW

0 001 002 003 004 005 006 007 008 009 0.l

Time

Plo_t 4- ASK spectrum

—

<«§—————— carrier frequency 500 Hz

Programming Laboratory 9 Key—page 2

396




Amplitude

Amplitude

Amplitnde

Amplitude

2, ____Plot5 - expanded FSK and digital message signals
1

0 1 0
’ v“v/\vﬁv/\v
) — N . . . \ . : .
0 4.005 0.01 0015 002 0025 0.03 0.035 004 0.045 0.05
Time
0.6 . i Plot 6- FSK spectrum
4——— carrier t'mquency 500 Hz
04} ﬂ
02 ~<@——— carrier frequency 1000Hz
0 . i N . N N
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency in Hz
2 ' _Plot 7 - NRZL bipolar digital message signal '
0 0 0 1 1 0 1 1 0 0
]S 4
_2 A " A A . A N s —
0 001 002 003 004 005 006 007 008 0.09 0.1
Time
0.4 Plot 8 - NRZL bipolar digital message spectrum
basebmd bandwidth 50 Hz

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency in Hz

Programming Laboratory 9 Key—page 3

397




© o
N W

Amplitude
=)

] Plot9 - BPSK signal and message signal

o o0 0 11 o 1 1 0

AAMAAVAVRAVIN

0 00l 002 003 004 005 006 007 008 009

Time

ﬁPlot '10 - BP_SK spectrum

0.1

carrier frequency 250 Hz

.1
0
0 200 400 600 830 1000 1200 1400 1600 1800 2000
Frequency in Hz
2 . ] __Plot 11 - delayed ndd bits _ _
,g 0 0 1 1 0
'E;', o} P‘ .
A \ bit duraion 0.02 secoods
0 001 002 003 004 005 006 007 008 009 01
Time
2 _ i PlotlZ-dclgyed even bits i ' '
_g 0 1 0 1 0
LI *
., bhdmio0Qsonds .
0 001 002 003 004 005 006 007 008 009 0.1

Time

Programming Laboratory 9 Key—page 4

398




Plot 13 - modulated odd signal and delayed odd bits

0 001 002 003 004 005 006 007 008 009 0.1
Time

2 ___Plot 14 - modulated even signal and delayed even bits

| AATTAAMATMALS
2

0 001 002 003 004 005 006 007 008 009 0.1

Time
% Plotl5-QPSKsignal _
phasg shif
e
£ (WD VTNV
20 001 002 005 004 005 006 007 008 009 01
Time

_ Plot }6 - QPSK spectrum _

Amplitnde

800 1000 1200 1400 1600 1800 2000
Frequency in Hz

Programming Laboratory 9 Key—page 5

399




l1ab9_ex.m
%Example Lab 9 script for instructor use

9% %% % %% % % %% % %% %% % % %% % %% %% %

%ngnmmmg Laboratory 9 Radio Frequency (RF)
Digital Modulation

%%%%%%%%%%%%%%%%%%%%%%%%%%

%PART 1--Amplitude Shift Keying (ASK)

%A. Generate the digital message signal and spectrum

clear
clg

delta_t=.0001;
fc=500;
bitrate=100;

bitstream=round(rand(1:100)); %generate the random bitstream
unipolar_bits=bitstream(1:10) %print the first 10 bits
pause

[nrzlsig,{}=nrzluni(bitstream,delta_tbitrate); %generate the digital signal
big_axis=[0.1-22); %set manual scaling for graphs
med_axis=[0.05-22];

axis(big_axis);

%Plot 1

subplot(211), %plot the digital message signal

plot(t,nrzlsig)

title(Plot 1 - NRZL unipolar digital message signal’)

xiabel('Time")

ylabel( Amplitude’)

(nrzispec,Hz)=spectral(nrzlsig,delta_t); %generate the message spectrum
axis;

%Plot 2

subplot(212),

plot(Hz(1:2000),nrzispec(1:2000), 'g")
title(Plot 2 - NRZL unipolar digital message spectrum’)
xlabel(Frequency in Hz')

Programming Laboratory 9 Key—page 6

400




ylabel( Amplitude)
clear nrzispec;

pause
cig

%B. Generate the ASK signal

asksig=nrzlsig. *cos(2*pi*fc*t); %generate the ASK signal
axis(big_axis);

%Plot 3

subplot(211), %plot the ASK signal

plot(t,asksig)

title('Plot 3 - ASK signal’)

xlabel('Time")

ylabel( Amplitude’)

%C. Generate the ASK spectrum

askspec=spectral(asksig,delta_t); %generate the ASK spectrum
clear asksig;

axis;
%Plot 4

subplot(212),
plot(Hz(1:2000),askspec(1:2000), 'b)
title('Plot 4 - ASK spectrum’)
xlabel(Frequency in Hz")

ylabel( Amplitude”)

clear askspec;

pause
clg

%% %% % %% % %% % % %% %% % %% % %
%PART 2--Frequency Shift Keying (FSK)
%A. Generate the FSK signal

low_freq=500;
hi_freq=1000;

Programming Laboratory 9 Key—page 7

401




fsksig=fsk(nrzisig,delta_t,bitrate,Jow_freq,hi_freq); %generate the FSK signal
axis(med_axis); %manually scale graph
%Plot S

subplot(211), %FSK signal plotted over message signal
plot(t, [urzlsig;fsksig])

title(Plot 5 - expanded FSK and digital message signals’)
xlabel('Time")

ylabel( Amplitude’)

%B. Generate the FSK spectrum

[fskspec,Hz}=spectral(fsksig,delta_t); %observe the FSK spectrum
clear fsksig;

axis;
%Plot 6

subplot(212),
plot(Hz(1:2000),fskspec(1:2000))
title(Plot 6 - FSK spectrum')
xlabel(Frequency in Hz')

ylabel( Amplitude’)

clear fskspec;

pause
clg

%% % %% % %% %% % %% % %% % %% % %% %
%PART 3--Binary Phase Shift Keying (BPSK)

%A. Generate the digital message signal and spectrum
%set bit pattern to show phase shifts at beginning

bitstream(1:10)=(0001 1011 00]; %set values to

%demonstrate phase shifts
bipolar_bits=bitstream(1:10)
pause
fc=250;
[nrzlsig,tl=nrzlbi(bitstream,delta_t,bitrate); %generate the digital

%message signal

axis(big_axis);
%Plot 7

Programming Laboratory 9 Key—page 8

402




subplot(211), %plot the message signal

plot(tarzlsig)

title('Plot 7 - NRZL bipolar digital message signal’)

xlabel('Time')

ylabelC Amplitude’)

(nrzispec,Hz]=spectral(nrzlsig,delta_t); %generate the message spectrum
axis;

%Plot 8

subplot(212),

plot(Hz(1:2000),nrzlspec(1:2000), ')

title('Plot 8 - NRZL bipolar digital message spectrum')
xlabel(Frequency in Hz")

ylabel( Amplitude’)

clear nrzlspec;

pause
clg

%B. Generate the BPSK signal
bpsksig=nrzlsig.*cos(2*pi*fc.*t); %generate the BPSK signal
axis(big_axis); %set manual scaling

%Plot 9

subplot(211), %plot the BPSK signal over the message signal
plo(t,[bpsksigmrzisig])

title('Plot 9 - BPSK signal and message signal’)

xlabel('Time")

ylabel( Amplitude’)

%C. Generate the BPSK spectrum

[bpskspec,Hz]=spectral(bpsksig,delta_t);
clear bpsksig;

axis;
%Plot 10

subplot(212), %plot the BPSK spectrum
Programming Laboratory 9 Key—page 9

403




plot(Hz(1:2000),bpskspec(1:2000), 'g)
title('Plot 10 - BPSK spectrum’)
xlabel(Frequency in Hz')

ylabel( Amplitude”)

clear bpskspec;

pause
clg

%% %% % %% % % %% %% % %% %% %
%PART 4--Quadriphase Shift Keying
%A. Generate the QPSK signal

{arzlodd,nrzleven)=ser_par(nrzlsig,delta_t,bitrate); %put signal through
%serial-to-parallel
%oonverter

axis(big_axis);

%Plot 11

subplot(211), %graph the delayed digital signal--odd bits
plot{t,nrzlodd, b’)

¢ale(Plot 11 - delayed odd bits”)

xlabel('Time")

ylabelC Amplitude’)

%Plot 12

subplot(212), %graph the delayed digital signal--even bits
plot(t,nrzleven, 'g)

title(Plot 12 - delayed evea bits’)

xlabei(Time")

ylabelC Amplitude’)

panse
clg

cos_mod=nrzlodd.*cos(2*pi*fc.*f); %modulate each signal
sin_mod=nrzleven.*(-sin(2*pi*fc.*1));

%Plot 13

subplot(211),

plot(t,fcos_mod;nrziodd])

title('Plot 13 - modulated odd signal and delayed odd bits)

xlabel(Time")
ylabel( Amplitude’)

Programming Laboratory 9 Key—page 10

404




%Plot 14

subplot(212),

plot(t,[sin_mod;nrzleven])

title('Plot 14 - modulated even signal and delayed even bits’)
xlabel(Time")

ylabelC Amplitude’)

pause

clg

qpsk_sig=cos_mod+sin_mod; 9%sum the signals in the time domain
clear cos_mod;clear sin_mod,;

%Plot 15

subplot(211),
plot(t.qpsk_sig, ')
title(Plot 15 - QPSK signal’)
xlabel(‘Time")

ylabel( Amplitude’)

[qpskspec,Hz}=spectral(gpsk_sig,delta_t); %generate the QPSK spectrum
clear qpsk_sig;

axis;
%Plot 16
subplot(212),

plot(Hz(1:2000),qpskspec(1:2000))
title(Plot 16 - QPSK spectrum’)

xlabel(Frequency in Hz')
ylabelC Amplitude’)

Programming Laboratory 9 Key—page 11

405




This page is intentionally
left blank.

406




APPENDIX E—~COMMUNICATIONS TOOLBOX FOR MATLAB

compress.m

%function comsig=compress(s,mu,Vm)

%

%COMPRESS compresses the signal 's’ using using the mu-255
%companding law, returning ‘comsig'. Values of mu must be
%between 1 and 255; mu = 1 results in a linear function

%(no compression),

%Input parameters:

% s-—-the signal for compression and later expansion

% mu--the degree of compression effected (mu = 255 delivers the
% highest compression, mu = 1 results in no compression)
% Vm--the maximum voltage in the signal. (Note: This value
% must be exact! Using the 'max’ command to pass in the
% variable ensures its accuracy.)

% Written by Mike Shields 27 Jul 93
%Edited by Susan Guckelberg 5 Dec 93

function comsig=compress(s,mu,Vm);

signs=(2*sign(s))-1; %find the sign of each value of s and adjust to
%avoid division by 0

b=log(mu.*(abs(s)/Vm)+1); %the compression function

b=b.*(Vm/log(1+mu));

comsig=b.*signs; %restore the signs to s

Communications Toolbox for MATLAB—page 1

407




convert.m

%function conv_num=convert(decimal symbols,elements)

%

%CONVERT takes a decimal number value ‘decimal’ and retumns its
%representation using the number of ‘symbols’ raised

%to the number of ‘elements’.

%Input parameters:

% decimal--a base 10 number for conversion to another base
% symbols--the number of symbols in the coding scheme
% (binary=2, quad=4, hex=16)

% elements--the number of places in the coding scheme

% (the power to which the number of symbols is raised)

%Written by Susan Guckelberg 25 Jul 93

function conv_num=convert(decimal symbols.elements);

for k=1:clements
conv_num(elements+1-k)=rem(decimal, symbols);

decimal=fix(decimal/symbols),
end

Communications Toolbox for MATLAB—page 2

408




conv_am.m

%function convamsig=conv_am(msg.delta_t.fc,m)

%

9%CON_AM normalizes the input message signal 'msg’,
%raises it by 1, modulates it using ‘'m' and 'fc’, and returns the
%conventioal AM modulated signal ‘convamsig'.

%Input parameters:

% msg--the message signal, normalized

% delta_t—-the step size of the time vector

% fc--the frequency of the carrier (modulating) signal

% m--the index of modulation (values between 0 and 1)

%Written by Susan Guckelberg 10 Aug 93

function convamsig=conv_am(msg,delta_t.fc,m);

t=(1:length(msg))*delta_t; %regenerate the time veclor
normsig=msg./max(abs(msg)); %normalize the signal
convamsig=(1+m*normsig).*cos(2*pi*fc*t); %multiply by the modulation index,

%add 1 to raise the values above 0,
%and modulate the signal

Communications Toolbox for MATLAB—page 3

409




encode.m

%function codedsig=encode(bin_nums,symbols.clements)
%

%ENCODE accepts the vector of bin numbers ‘bin_nums'’
%generated by ‘quantize.m’. For each number in
%'bin_nums', convert.m is called to

%convert it to the desired base ('symbols’). it returns

%the encoded signal ‘codedsig’, the length of bin_nums
%multiplied by ‘elements’.

%Input paramenters:

% bin_nums--a vector of bin numbers returned from bipolar.m
% symbols—the number of symbols in the coding scheme
% (binary=2, quad=4, hex=16)

% elements--the number of places in the coding scheme

% (the power to which the number of symbols is raised)

% Written by Susan Guckelberg 24 Jul 93

function codedsig=encode(bin_nums,symbois,elements);

codedsig=(];

for i=1:length(bin_nums)
codednum=convert(bin_nums(i),symbols,elements);

aﬂoodedsisﬂcodedsig codednum];

Communications Toolbox for MATLAB—page 4

410




envelope.m

%function envsigsenvelope(x)

%

%ENVELOPE performs an envelope detection on the input signal
%'x’ by computing the Hilbert transform of x, resulting in

%the magnitude of the complex envelope.

%Input parameter:

% x--the signal to be envelope-detected

% Written by Dennis W. Brown 8 Sep 93

%Edited by Susan Guckelberg 26 Dec 93

%Hilbert transform section written by Charles Deaham 7 Jan 88
%Revised by LS, 19 Nov 88, 22 May 90, TPK 4 Nov 92
%Copyrighted by The MathWorks, Inc. 1988,1990,1992

function envsig=envelope(x);
envsig=(];

%the following section is based on the function
%HILBERT copyrighted by The MathWorks, Inc.
%% %% % %% % % % % % Fo %o Fo %o %o % % %o %o %% %o Fo
[rcl=size(x); %find the size of x
if r==1

x=x.", %transpose the vector into a column
end

[n,cc)=size{x); %perform a Hllbert transform
m=2°nextpow2(n);
y={ft(real(x),m);
fm~=1

h=[1; 2*ones(fix((m-1)/2),1); 1; zeros(fix((m-1)/2),1));
e“dy(:)==y-‘h(:. ones(1.cc) );

y=iffi(y,m);

y=y(I:n,:);

%% %% % %% % %% %% %% %% % %% % %% % %%
%end of the section based on HILBERT

eavsig=abs(y); %generate the envelope

Communications Toolbox for MATLAB—page 5

411




expand.m

%function expansig=expand(s,mu,Vm)

%

%EXPAND expands the signal ‘s’ using using the mu-255
%companding law, returning ‘expansig’. Values of mu must
%be between 1 and 255; mu = 1 results in a linear function
%(no expansion).

%Input parameters:

% s--the signal for expansion (compressed earlier)

% mu--the degree of expansion effected (mu = 255 delivers the
%  highest expansion, mu = 1 results in no expansion)

% Vm--the maximum voltage in the signal (Note: This value
%  must be exact! Using the ‘'max’ command to pass in the
% variable ensures its accuracy.)

%Written by Mike Shiclds 27 Jul 93
%Edited by Susan Guckelberg 5 Dec 93

function expansig=expand(s,mu,Vm);

signs=(2*sign(s))-1; %find the sign of each value of s and adjust to
%avoid division by 0

b=s*(log(1+mu)/Vm); %the expansion function

expansig=(Vm/mu)*(exp(b)-1).*signs; %restore the signs to s

Communications Toolbox for MATLAB—page 6

412




flattop.m
%function [flatsig.pulstm]=flattop(s,delta_t,samprate.d)
%

%FLATTOP multiplies the signal s’ and an impulse train; then
%convolves it with a pulse to generate the flattop-sampled

%signal ‘flatsig’.

%Input parameters:

% s--the signal to be sampled

% dela_t--2 - t1, the step size of the time vector in the signal

% samprate--the sampling frequency in Hz (note: minimum sampling rate
% is twice the highest frequency in the message signal)

% d--the duty cycle (less than 1)

% Written by Randy Borchardt 27 Jul 93
%Edited by Susan Guckelberg 18 Oct 93

function [flatsig,pulstrn}=flattop(s,delta_t,samprate,d);
length_s=length(s); %number of points in the time vector
tot_time=(length_s-1)*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds
numpulse=tot_time/T; %number of pulses
Tpts=length_s/mumpulse; %number of points in sampling period T
taupts=d*Tpts; %number of points in tau

pulse=ones(1,taupts); %generate pulse

imptm=zeros(1,length_s); %generate impulse train
imp=1:Tpts:length_s;

imptm(imp)=ones(imp);

pulstm=conv(imptm,pulse); %generate pulse train
pulstr=pulstrn(1,1:length_s);

flatsigl=s.*imptrn; %generate the flattop-sampled signal
flatsig=conv(flatsigl pulse);
flatsig=flatsig(1,1:length_s); %set length of flatsig to length of s

Communications Toolbox for MATLAB—page 7

413




fm_mod.m

%function [fm_sig,delta_f,betal=fm_mod(t,Ac.fc,fm,theta,delta_f beta)

%

%FM_MOD calculates either delta_f or beta, whichever was not

%passed in, and retumns both, along with the frequency-modulated

%signal 'fm_sig'. Generates single- and multi-tone FM signals.

%Input parameters:

% t--the time vector on which the message signal is based

% Ac--the amplitude of the returned frequency modulated signal

% fc--the frequency of the returned frequency modulated signal

% fm--the frequency of the message signal (a vector for multi-tone signals)

% theta—the phase of the message signal (a vector for multi-tone signals)

% delta_f--the maximum frequency deviation (if unknown, pass in 'none’, with
% quotes, and it will be calculated and returned)

% beta—-the index of modulation (if unknown, pass in 'none', with guotes, and
% it will be calculated and returned)

% Note: Either delta_f or beta MUST be passed in

%Written by Susan Guckelberg 19 Aug 93

function {fm_sig,deita_f betal=fm_mod(t,Ac fc.fm theta,delta_f beta);

if beta=="none’ %calculate values for beta or delta_f for user
beta=delta_{/max(fm);

elseif delta_f=='none’
delta_f=beta*max(fm);

end

sigma=zeros(t); Yereserve space for sigma

for i=1:length(fm) %generate the fm signal

sums(1:length(t))=sin(2*pi*fm(i)* t+theta(i));

sigma=sigma+sums;

end

fm_sig=Ac*cos(2*pi*fc*i+beta*sigma);

Communications Toolbox for MATLAB—page 8

414




freq_div.m

%function div_sig=freq_div(squarebspk,t.fc)

%

%FREQ_DIV accepts the squared BPSK signal 'squarebpsk’ and
%performs a frequency division in preparation for coherent
%detection.

%Input parameters:

% squarebpsk--the squared BPSK signal

% t--the time vector for the BPSK signal

% fc--the carrier frequency for the BPSK signal

%Written by Susan Guckelberg 24 Jan 94
function div_sig=freq_div(squarebpsk.t fc);
div_sig=squarebpsk./cos(2*pi*fc.*t); %divide the

%squared signal by the carrier
%frequency to shift back to fc

Communications Toolbox for MATLAB-—page 9

415




fsk.m
%function fsksig=fsk(dig_sig.delta_t bitrate,freq_0,freq_1)
%

%FSK performs frequency shift keying on the input digital
%signal 'dig_sig', returning ‘fsksig.’

%Input parameters:

% dig_sig--the digital input signal, usually NRZL,

% delta_t--22 - tl, the step size of the time vector in

% the signal

% freq 0--the frequency assigned to 0-value bits

% freq_1--the frequency assigned to 1-value bits

% Written by Susan Guckelberg 31 Aug 93
function fsksig=fsk(dig_sig,delta_t bitrate freq 0,freq 1);

t=(1:length(dig_sig))*delta_t; %regenerate t
T=1/bitrate; %bit duration T in seconds
avg_bitpts=T/delta_t; %number of points in bit

dig_sig=dig_sig(2:length(dig_sig)); %lose the first point

z=1; %index for bits
i=l; %index for dig_sig

while i<length(dig_sig) %generate a frequency vector
%either high or low
bitpts=round(z*avg_bitpts)-i+1; %account for fractional
%values of avg_bitpts
if dig_sig(i)=0
freq(i:bitpts+i-1)=ones(1:bitpts)*freq_0; %O bits
else
freq(i:bitpts+i-1)=ones(1:bitpts)*freq 1; %1 bits
end

i=i+bitpts;
z=z+1;
end

freq=[freq(1) freql; %add one point at beginning
%of vector

fiksig=cos(2*pi*freq.*t);

Communications Toolbox for MATLAB—page 10

416




highpass.m

%function HPF=highpass(Hz,cutoff)

%

%HIGHFASS generates a simple high-pass filter 'HPF',
%evaluating frequencies in the vector 'Hz'

%and using the cutoff frequency fc.

%Input parameters:

% Hz--a vector representing frequencies in Hz. returned from
% spectral.m

% fc--the cutoff frequency beginning the filter

function HPF=highpass(Hz cutoff);

HPF~Hz./(1+(j.*cutofi));

Communications Toolbox for MATLAB—page 11

417




hilbert.m

%function hilbsig=hilbert(anysig)

%

%HILBERT returns ‘hilbsig’, the real part of the hilbert transform
%of the input signal ‘anysig', showing a 90° phase shift.
%Hilbert is called by the function ssb.m.

%Input parameters:

% anysig--the input signal

%Written by Susan Guckelberg 30 Jul 93

function hilbsig=hilbert(anysig);

length_s=length(anysig);

ffthilb=fft(anysig); %take the fast fourier transform of the signal
%multiply first half of transform by -j
%and second half by j

hilbjsig=[f{thilb(1) ffthilb(2:ceil(length_s/2)).*(-j) ...

ffthilb(ceil(length_s’2)+ 1:length_s).*jl;

hilbsig=real(ifft(hilbjsig)). %take the inverse fast fourier transform
%and rew:m the rcal part

Communications Toolbox for MATLAB—page 12

418




idealbnd.m

%{unction IBPF=idealbnd(Hz cutoff1,cutoff2)

%

%IDEALBND generates an ideal band-pass filter TBPF', evaluating
%frequencies in the vector 'Hz' and using the frequencies
%between ‘cutoff1’ and ‘cutoff2'.

%Input parameters:

% Hz--a vector representing frequencies in Hz, remurned from

% spectral.m

% cutoff1--the frequency beginning the filter

% cutoff2--the frequency ending the filter

%Written by Susan Guckelberg 12 Jul 93
function IBPF=idealbnd(Hz cutoffl cutoff2); %2 cutoff frequencies

IBPF=[zeros(1,cutoff1) ones(1,cutoff2-cutoff}) ...
zeros(1 length(Hz)-cutoff2)];

Communications Toolbox for MATLAB—page 13

419




idealhi.m

%function IHPF=idealhi(Hz cutoff)

%

%IDEAHLHI generates an ideal high-pass filter THPF', evaluating
%frequencies in the vector 'Hz' and using the

%frequencies beginning with cutoff.

%Input parameters:

% Hz--a vector representing frequencies in Hz, returned from

% spectral.m

% cutoff--the frequency beginning the filter

%Written by Susan Guckelberg 12 Jul 93
%Revised 21 Jul 93

function IHPF=idealhi(Hz,cutoff);

ff=cutoff/(Hz(2)-Hz(1));
IHPF=[zeros(1,ff) ones(1,length(Hz)-ff));

Communications Toolbox for MATLAB—page 14

420




ideallow.m

%function ILPF=ideallow(Hz,cutofT)

%

%IDEALLOW generates an ideal low-pass filter 'ILPF', evaluating
%frequencies in the vector 'Hz' and using the frequencies

%ending with ‘cutoff’.

%Input parameters:

% Hz--a vector representing frequencies in Hz, returned from

%  spectralm

% cutoff--the frequency ending the filter

% Written by Susan Guckelberg 12 Jul 93
%Revised 10 Aug 93

function ILPF=ideallow(Hz,cutoff);

midfreq=cutoff/(Hz(2)-Hz(1));
ILPF=[ones(1,midfreq) zeros(1 length(Hz)-midfreq)];

Communications Toolbox for MATLAB—page 15

421




impsamp.m

%function [impsig,imptm]=impsamp(s,delia_t,samprate)

%

%IMPSAMP multiplies the signal 's’ and an impulse train to

%generate the impulse-sampled signal ‘impsig'.

%Input parameters:

% s--the signal to be sampled

% delta_t--12 - 1, the step size of the time vector in the signal

% samprate--the sampling frequency in Hz (note: minimum sampling rate
% is twice the highest frequency in the message signal)

%Written by Randy Borchardt 27 Jul 93
%Edited by Susan Guckelberg 18 Oct 93

function [impsig,imptrn]=impsamp(s,delta_t samprate);
length_s=length(s); %number of points in the time vector
tot_time=(length_s-1)*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds

numpulse=tot_time/T; %number of pulses
Tpts=length_s/numpulse; %number of points in sampling period T

imptm=zeros(l,length_s); %generate impulse train
imp=1:Tpts:length_s;
imptm(imp)=ones(imp);

impsig=s.*imptm; %generate the impulse-sampled signal
impsig=impsig(1,1:length_s); %set length of impsig to length of s

Communications Toolbox for MATLAB—page 16

422




lowpass.m

%function LPF=lowpass(Hz,cutoff)

%

%LOWPASS gencrates a simple low-pass filter LPF,
%evaluating frequencies in the vector 'Hz' and using the
%frequencies ending with ‘cutoff.

%Input parameters:

% Hz--a vector representing frequencies in Hz, returned from
% spectral.m

% cutoff--the frequency ending the filter
%Written by Susan Guckelberg 12 Jul 93
function LPF=lowpass(Hz cutoff);

LPF=1 J(1+(j.*(Hz./cutoff)));

Communications Toolbox for MATLAB—page 17

423




manchest.m

%function {manchsig bit_t.transec}=manchest(codedsig,delta_tbitrate)
%

%MANCHEST takes a binary-encoded signal and prepares it for
%plotting as a manchester-coded signal. It returns the

%signal ‘manchest’, a time vector 'bit_t', and the number of
%seconds needed for transmission ‘transec’.

%Input parameters:

% codedsig—a binary-encoded signal

% delta_t--12 - t1, the step size of the time vector in the signal
% bitrate--number of bits per second desired for the output

% signal

% Wrilten by Susan Guckelberg 25 Jul 93
function [manchsig,bit_t,transec}=manchest(codedsig.delta_t bitrate);

T=1/bitrate; %sampling period T in seconds
avg_Tpts=(1/delta_t)*T; %number of points in T

k=1;
i=1;
while i<=length(codedsig) %fill half the sampling period T with
%either O's or 1's and the reverse for
%the remainder
Tpts=round(i*avg_Tpts)-k+1; %account for fractional
%values of avg_Tpts
halfT=round(Tpts/2);
if codedsig(i)==1
manchsig(k:k+halfT-1)=ones(1:halfT);
manchsig(k+halfT+1:k+Tpts)=-1 .*ones(1: Tpts-halfT);
else
manchsig(kk+halfT-1)=-1 .*ones(1:halfT);
manchsig(k+halfT+1:k+Tpts)=ones(1:Tpts-halfT);

end
k=k+Tpts;
i=i+];
end
transec=length(manchsig)*delta_t; %number of seconds needed for
%transmission of the coded signal
manchsig=[manchsig(1) manchsig]; %add one point to manchsig
%to account for zero
%in time vector, using value of
%first point

Communications Toolbox for MATLAB—page 18

424




bit_t=0:delta_t:transec; %time vector for bitstream

Communications Toolbox for MATLAB—page 19

425




natsamp.m

:function (natsig,pulstm]=natsamp(s,delta_t,samprate,d)

%NATSAMP multiplies the input signal 's' and the pulse train

%'pulstm’ 1o generate the naturally-sampled signal ‘natsig'.

%Input parameters:

% s--the signal to be sampled

% deha_1--02 - t1, the step size of the time vector in the signal

% samprate--the sampling frequency in Hz (note: minimum sampling rate
% is twice the highest frequency in the message signal)

% d--the duty cycle (less than 1)

%Written by Randy Borchardt 27 Jul 93
%Edited by Susan Guckelberg 18 Oct 93

function [natsig,pulstm}=natsamp(s,delta_t ,samprate.d);
length_s=length(s); %number of points in the time vector
tot_time=(length_s-1)*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds
numpulse=tot_time/T; %number of pulses
Tpis=length_s/numpulse; %number of points in sampling period T
taupts=d*Tpts; %number of points in tau

pulse=ones(1,taupts); %generate pulse

imptn=zeros(1.length_s); %generate impulse irain
imp=1:Tpts:length_s;

imptm(imp)=ones(imp);

pulstrn=conv(imptm,pulse); %generate the pulse train
pulstrn=pulstrn(1,1:length_s);

natsigl=s.*pulstn; %multiply the signal and pulse train
natsig=natsigl(1,1:length_s); %set length of flatsig to length of s

Communications Toolbox for MATLAB—page 20

426




nrzlbi.m

%function [nrzlsig bit_t transec]}=nrzibi(codedsig,delta_t bitrate)
%

%NRZLBI takes a binary-encoded signal and prepares it for plotting
%as a non-return-to-zero bipolar level signal. It retums the
%signal 'nrzlsig’, the time vector ‘bit_t', and the number of
%seconds needed for transmission ‘transec’.

%Input parameters:

% codedsig—-a binary-encoded signal

% delta_t--12 - t1, the step size of the time vector in the signal
% bitrate--number of bits per second desired for the output

% signal

%Algorithm by Pete Hutson 17 Mar 93
%Written by Susan Guckelberg 25 Jul 93

function [nrzlsig,bit_t transec}=nrzlbi(codedsig,delta_t bitrate);

T=1/bitrate; %bit duration T in seconds
avg_Tpts=(1/delta_t)*T; %number of pointsin T

k=1; 9%index for nrzlsig
i=1; %index for codedsig

while i<=length(codedsig) %fill T with
%either 0's or 1's
Tpts=round(i*avg_Tpts)-k+1; %account for fractional
Yvalues of avg_Tpts
if codedsig(i)==1
nrzlsig(k:k+Tpts-1)=ones(1:Tpts);
else
nrzlsig(k:k+Tpts-1)=ones(1:Tpts)*(-1);
end
k=k+Tpts;
i=i+l;
end

transec=length(nrzlsig)*delta_t; %number of seconds needed for
%transmission of the coded signal

nrzisig=[nrzisig(1) nrzlsigl; %add one point to nrzlsig
%to account for zero
%in time vector, using value of
%first point

bit_t=0:delta_t:transec; %time vector for bitstream

Communications Toolbox for MATLAB—page 21

4217




nrzluni.m

%function [nrzlsig bit_t transec)=nrzluni(codedsig,delia_tbitrate)
%

%NRZLUNI takes a binary-encoded signal and prepares it for plotting
%as a non-return-10-zero unipolar level signal. It returns the
%signal ‘nrzisig', the time vector bit_t', and the number of
%seconds needed for transmission ‘transec’.

%Input parameters:

% codedsig—a binary-encoded signal

% delta_t--12 - t1, the step size of the time vector in the signal
% bitrate--number of bits per second desired for the output

% signal

%Algorithm by Pete Hutson 17 Mar 93
%Written by Susan Guckelberg 25 Jul 93

function [nrzlsig bit_t transec}=nrzluni(codedsig,delta_t,bitrate);

T=1/itrate; %bit duration T in seconds
avg_Tpts=(1/delta_t)*T; %number of pointsin T

k=1; %index for points in nrzlsig
i=l; %index for points in codedsig
while i<=length(codedsig) %fill T with
%either O's or 1's
Tpts=round(i*avg_Tpts)-k+1; %account for fractional
%values of avg_Tpis
if codedsig(i)==1
nrzlsig(k:k+Tpts-1)=ones(1:Tpts);
else
nrzlsig(k:k+Tpts-1)=zeros(1:Tpts);
end
k=k+Tpts;
i=i+1;
end

transec=length(nrzlsig)*delta_t; %number of seconds needed for
%transmission of the coded signal
nrzlsig=[nrzlsig(1) nrzisigl; %add one point to nrzlsig
%10 account for zero
%in time vector, using value of
%first point

bit_t=0:delta_t:transec; %time vector for bitstream

Communications Toolbox for MATLAB—page 22

428




par_ser.m

%function comb_sig=par_ser(odd_sig.even_sig,delta_t bitrate)
%

%PAR_SER accepts the odd and even signals previously separated in
%the function 'ser_par.m' and combines them at twice their
%bitrate, returning ‘comb_sig'.

%Input parameters;

% odd_sig--the digital signal composed of odd bits, returned

% from 'ser_par.m'

% even_sig--the digital signal composed of even bits, returned
% from 'ser_par.m'

% delta_t--12 - t1, the step size of the time vector in the signal
% bitrate--number of bits per second in the original digital

% signal (before separation)

function comb_sig=par_ser(odd_sig.even_sig,delta_tbitrate);

odd_sig=odd_sig(2:length(odd_sig)); %remove last value, added
even_sig=even_sig(2:length(even_sig)); %to account for O in time vector

bit_dur=1/itrate; %bit duration in seconds
avg_bitpts=(1/delta_t)*bit_dur; %number of points in each bit

k=1; %index for bits
i=l; %index for length of vector

%generate combined signal at
while i<length(odd_sig) %twice the bitrate passed in

bitpts=round(k*avg_bitpts)-i+1; %account for fractional

%values of avg_bitpts
comb_sig(i:i+bitpts-1)=odd_sig(i:i+bitpts-1);
i=i+bitpts;
k=k+1;
bitpts=round(k*avg_bitpts)-i+1; %account for fractional
%values of avg_bitpts
comb_sig(i:i+bitpts-1)=even_sig(i:i+bitpts-1);
k=k+1;
i=i+bitpts;
end
comb_sig=[comb_sig(1) comb_sig}; %add one point to comb_sig
%to account for zero
%in time vector, using value of
%first point

Communications Toolbox for MATLAB—page 23

429




psd.m
%function [psdsig,Hz ffisigl=psd(anysig,delta_t)
%
%PSD performs a fast fourier transform on the input signal ‘anysig’
%and returns 'fftsig’. For a power spectral density graph,
%plot 'psdsig’ against 'Hz'. To find average signal power,
%integrate psdsig by using the ‘sum’ command.
%Input parameters:
% anysig--the input signal
% delta_t--12 - t1, the step size of the time vector in the signal
%Written by Susan Guckelberg, 5 Aug 93
function [psdsig,Hz ffisigl=psd(anysig,delta_t);
fitsig=fft(anysig); %find the fast Fourier transform of the signal
abfftsig=abs(fftsig); %find the absolute value of the transform
length_f=length(abfftsig); %find the length of the fourier transform
shortsig={abffisig(1) abffisig(2:ceil((length_£)/2))]; %excluding first
%value, truncate the vector
% to half its length

lengthss=length(shortsig); %find length of transform vector
psdsig=shortsig./lengthss; %scale down amplitude by

%dividing the frequency values

%by the vector length
psdsig=(psdsig.~2)./2; %square and halve the amplitudes
nyqfreg=1/(delta_t*2); %find the Nyquist frequency

Hz=nyqfreq*(1:lengthss)/lengthss; %create Hz frequency vector

Communications Toolbox for MATLAB—page 24

430




pulspos.m

%function ppsig=pulspos(s,delta_t,samprate,pulsdur)

%

%PULSPOS returns the pulse-position-modulated signal 'ppsig’ for

%the signal 's'. Pulse amplitude is set at half of the maximum
%amplitude of the signal. Offset values are calculated from the
%beginning of the sampling period T.

%Input parameters:

% s--the signal to be sampled

% delta_t--©2 - t1, the step size of the time vector in the signal

% samprate--the sampling frequency in Hz (note: minimum sampling rate
% is twice the highest frequency in the carrier)

% pulsdur--the pulse duration (fraction of the sampling period T). Maximum
% pulse offset is T - pulsdur.

% (Note: pulsedur is typically small; the larger the pulse duration,

% the smaller the maximum pulse offset)

9% Written by Susan Guckelberg, 6 Jul 93
%Revised 8 Nov 93

function ppsig=pulspos(s,delta_t,samprate pulsdur);
length_s=length(s); %number of points in the time vector

tot_time=length_s*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds

numpulse=tor_time/T; %number of pulses
avg_Tpts=length_s/numpulse; %avg number of points in sampling period T
taupts=ceil(avg_Tpts*pulsdur); %set the pulse duration tau,
%avoiding zero values
minamp=min(s); %find the minimum amplitude in s
maxamp=max(s); %find the maximum amplitude in s
pulsamp=maxamp/2; %set the pulse amplitude
pos_s=s+abs(minamp)+.01; %increase s values to all positive
max_pos=max(pos_s); %find the maximum amplitude in pos_s

i=l; %initialize index

pulsenum=1;

while ic=length_s %generate pulse position modulated signal
pulsperc=pos_s(i)/max_pos; %find the percentage of each pulse

%amplitude to the maximum amplitude
Tpts=round(pulsenum*avg_Tpis)-i+1; %account for fractional
%values of avg_Tpts

mxoffpts=Tpts-taunts; %find maximum offset value

prezero=ceil(pulsperc*mxoffpts); %assign the amplitude percentage
Communications Toolbox for MATLAB—page 25

431




%to the pulse offset
postzero=Tpts-taupts-prezero; %find the number cf points
%necdedto fill T
if Tpts==taupts
pp=pulsamp*ones(1:Tpts); %pulse extends the entire width of T
else
%zero level signal points preceding pulse
pulse(1:prezero)=pulsperc*zeros(1:prezero);
%pulse points with value pulsamp
pulse(prezero+ 1 :prezero+taupts)=pulsamp*ones(1:taupts);
%zero values for remainder of T
pulse(prezero-+taupts+1:Tpts)=zeros(1:postzero);
end
%generate the pulse position modulated signal ppsig
ppsig(i:i+Tpts-1)=pulse(1:Tpts);
i=i+Tpts;
pulsenum=pulsenum+1;
end

if length(ppsig)<length_s %add zeros to ppsig if shorter than s
ppsig=[ppsig zeros(1:length_s-length(ppsig))};

if length(ppsig)>length_s  %truncate ppsig if longer than s

ppsig=ppsig(1:length_s);
end

Communications Toolbox for MATLAB—page 26

432




pulsewid.m

%function pwsig=pulswid(s,delta_t,samprate maxdur)

%

%PULSWID returns the pulse-width-modulated signal 'pwsig' for the
%signal 's’. The amplitude of pwsig is half the maximum amplitude

%of s.

%Input parameters:

% s--the signal to be modulated

% delta_t--12 - t1, the step size of the time vector in the signal

% samprate--the sampling frequency in Hz (note: minimum sampling rate
% is twice the highest frequency in the carrier)

% maxdur--the maximum pulse duration, expressed as a fraction of

% the sampling period T (Note: maximum can be 1, typically close to 1)

%Written by Susan Guckelberg, 6 Jul 93
%Revised 7 Nov 93

function pwsig=pulswid(s.delta_t,samprate,maxdur);
length_s=length(s); %number of points in the time vector

tot_time=length_s*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds

numpulse=tot_time/T; %number of pulses

avg_Tpis=length_s/numpulse; %avg number of points in sampling period T

minamp=min(s); %find the minimum amplitude in s
maxamp=max(s); %find the maximum amplitude in s
pulsamp=maxamp/2; %set the pulse amplitude
pos_s=s+abs(minamp)+.01; %increase s values to all positive
max_pos=max(pos_s); %find the maximum amplitude in pos_s

i=1; %initialize index
pulsenum=1;
while i<=length_s %generate pulse width modulated signal

pulsperc=pos_s(i)/max_pos; %find the percentage of the
%amplitude to the maximum amplitude

Tpts=round(pulsenum*avg_Tpts)-i+1; %account for fractional
%values of avg_Tpts
maxpuls=Tpts*maxdur; %set the maximum pulse duration

taupts=ceil(pulsperc*maxpuls); %assign the percentage to the maximum
%pulse duration to find the number
%of points in tau, avoiding zero values

%generate the pulse width modulated signal

Communications Toolbox for MATLAB—page 27

433




pwpulse(1:taupts)=pulsamp*ones(l:taupts);  %pulse points with
% value pulsamp

pwpulse(taupts+1:Tpts)=zeros(1: Tpts-taupts); %zero values for
%remainder of T

pwsig(i:i+Tpts-1)=pwpulse(1: Tpts);

i=i+Tpts;

pulsenum=pulsenum+1;

end

if length(pwsig)<length_s %add zeros to pwsig if shorter than s
pwsig=[pwsig zeros(1:length_s-length(pwsig))];

if length(pwsig)>length_s %truncate pwsig if longer than s
pwsig=pwsig(l:length_s);
end

Communications Toolbox for MATLAB—page 28

434




quantize.m

%function [quanch_x,quanch_y,quan_sig,bin_nums}=quantize(symbols,
%eclements,ss,samprate,delta_t)

%

%QUANTIZE accepts a signal 'ss' ranging between -10 and 10 volts.
%It returns ‘bin_nums', a vector containing the bin numbers

%for the quantization scheme (bin numbers begin with 0);

%the bipolar quantized signal ‘quan_sig' (values are rounded

%rather than truncated); and vectors ‘quanch_x' and ‘quanch_:/',

%for use in plotting the quantization characteristic.

%For quantization system characteristic only, input ¢nly 'symbols’
%and 'elements’, and define outputs ‘quanch_x' and ‘quiinch_y".
%Input parameters:

% ss--the sampled signal to be quantized (usually a flattop-

% sampled signal)

% samprate--the sampling frequency in Hz

% delta_t--2 - t1, the step size of the time vector in the signal

% symbols--the number of symbols in the coding scheme

% (binary=2, quad=4, hex=16)

% elements--the number of places in the coding scheme

% (the power to which the number of symbols is raised)

%Written by Susan Guckelberg, 21 Jul 93
%Revised 23 Nov 93

function[quanch_x,quanch_y,quan_sig bin_nums)=quantize(symbols,...
elements,ss,samprate,delta_t);

maxgs=10; %maximum value in the quantized signal
minqs=-10; %minimum value in the quantized signal

levels=symbols”elements; %number of levels in the
%quantization scheme
bins=levels-1;
stair=(maxqs-mings)/levels; %size of the vertical step in
%the quantization scheme
fork=1:levels+1 %set the quantization characteristics
quanch_y(k)=minqgs+((k-1)*stair);
ifk==1
quanch_x(k)=mings;
clseif k=<levels+1
quanch_x(k)=maxgs;
quanch_y(k)=minqs+((k-2)*stair);
else quanch_x(k)=minqs+((k-1.5)*stair);
end

end

Communications Toolbox for MATLAB—page 29

435




if nargin==5 %use when a signal is input for quantization
lengthss=length(ss);

tot_time=(lengthss-1)*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds

numpulse=tot_time*samprate; %number of pulses

avg_Tpts=lengthss/numpulse; %avg number of points in sampling period T

i=1; %initialize index i, q, and pulsenum
1,
pulsenum=1;
while i<lengthss
level=mings; %initialize minimum quantized signal level
j=1; %initialize index
while ss(i)>quanch_y(j+.5*stair  %check for values halfway
level=quanch_y(j+1); %between steps
Fith
if j==levels %maximum level reached
break
end
end
Tpts=round(pulsenum*avg_Tpts)-i+1; %account for fractional
%values of avg_Tpts
quan_sig(i:Tpts+i-1)=level*ones(1:Tpts); %generate quantized signal
bin_nums(q)=j-1; %bin numbers begin with 0
G=q+l;
i=i+Tpts;
pulsenum=pulsenum+1;
end

if length(quan_sig)<lengthss %pad quan_sig with last assigned value if
%shorter than ss
quan_sig=[quan_sig ss(i)*ones(1:lengthss-length(quan_sig))];
end

if length(quan_sig)>lengthss %truncate quan_sig if longer than ss
quan_sig=quan_sig(1:lengthss);
end

end %end if

Communications Toolbox for MATLAB—page 30

436




quantuni.m

%function [quanch_x,quanch_y,quan_sig,bin_nums)=quantuni(symbols,
%clements,ss,samprate.delta_t)

%

%QUANTUNI accepts a signal 'ss’ ranging between 0 and 10 volts.
%It retumns 'bin_nums’, a vector containing the bin numbers

%for the quantization scheme (bin numbers begin with 0);

%the bipolar quantized signal 'quan_sig' (values are truncated
%rather than rounded); and vectors 'quanch_x' and 'quanch_y',

%for use in plotting the quantization characteristic.

%For quantization system characteristic only, input only 'symbols’
%and 'elements’, and define outputs ‘quanch_x' and ‘quanch_y".
%Input parameters:

% ss--the sampled signal to be quantized (usually a flattop-

% sampled signal)

% samprate--the sampling frequency in Hz

% dela_t--12 - 11, the step size of the time vector in the signal

% symbols--the number of symbols in the coding scheme

% (binary=2, quad=4, hex=16)

% elements--the number of places in the coding scheme

% (the power to which the number of symbols is raised)

%Written by Susan Guckelberg, 21 Jul 93
%Revised 23 Nov 93

function[quanch_x,quanch_y,quan_sig bin_nums}=quantuni(symbols,...
elements,ss,samprate,delta_t);

maxqs=10; %maximum value in the quantized signal
mings=0; %minimum value in the quantized signal

levels=symbols”elements; %number of levels in the
%quantization scheme
bins=levels-1;
stair=(maxqs-mings)/levels; %size of the vertical step in
%the quantization scheme
for k=1:levels+1 %set the quantization characteristics
quanch_y(k)=minqs+((k-1)*stair);
ifk==1
quanch_x(k)=mings;
elseif k=levels+1
quanch_x(k)=maxgs;
quanch_y(k)=minqs+((k-2)*stair);
else quanch_x(k)=minqs+((k-1)* stair);
end
end

Communications Toolbox for MATLAB—page 31

437




if nargin==5 %usc when a signal is input for quantization

lengthss=length(ss);
tot_time=(lengthss-1)*delta_t; %number of seconds in the time vector
T=1/samprate; %sampling period T in seconds

numpulse=tot_time*samprate; %number of pulses
avg_Tpts=lengthss/numpulse; %avg number of points in sampling period T

i=l; %initialize index i, q, and pulsenum
1
pulsenum=1;
while iclengthss
level=max(quanch_y); %initialize maximum quantized signal level
j=levels; %initialize index
while ss(i)<quanch_y(j)
level=quanch_y(j-1);
=ik
if j==0 %minimum level reached
break
end
end
Tpts=round(pulsenum*avg_Tpts)-i+1; %account for fractional
%values of avg_Tpts
quan_sig(i-Tpts+i-1)=level*ones(1:Tpts); Fogenerate quantized signal
bin_nums(q)=j-1; %bin numbers begin with 0
g=q+1;
i=i+Tpts;
pulsenum=pulsenum+1;
end

if length(quan_sig)<lengthss %pad quan_sig with last assigned value if
%shorter than ss
quan_sig={quan_sig ss(i)*ones(1:lengthss-length(quan_sig))};
end
if length(quan_sig)>lengthss %truncate quan_sig if longer than ss
quan_sig=quan_sig(1:lengthss);
end

end %end if

Communications Toolbox for MATLAB—page 32

438




recoverm.m

%function recsig=recoverm(fftsig.func,Hz cutoff1,cutoff2)

%

%RECOVERM returmns ‘recsig’, a filtered and recovered modulated
%signal,

%Input parameters:

% fTsig--the transform to be filtered and recovered

% func--the title of the filter function, which must be passed

% in as a string enclosed in quotes

%  Filter functions in the Communications Toolbox are

% LOWPASS HIGHPASS IDEALLOW IDEALHI, and IDEALBND.
% Hz--the vector representing frequency in Hz, returned from spectral.m
% cutoff1--the cutoff frequency for low- and high-pass filters

% cutoff2--an additional cutoff frequency, passed in only for bandpass filters

% Written by Susan Guckelberg 10 Aug 93
function recsig=recoverm(fftsig,func,Hz cutoff1 cutoff2);

if nargine=ed
halffltr=feval(func,Hz,cutoff1); %generate the filter vector
elseif nargin==5
halffitr=feval(func,Hz,cutoff1,cutoff2); %use fc2 for bandpass filter
end
%complete the filter
fitr=[halffltr(1:length(halffltr)- 1) fliplr(halffitr));

filtsig=flr *ffisig; %multiply the filter and signal

recsig=real(ifft(filtsig)); %perform inverse fast fourier transform

Communications Toolbox for MATLAB—page 33

439




recovers.m

:ﬁlwdonmcdzﬂwovus(fftsi&d.ﬁm.ﬂzmm.umtm
%RECOVERS rewrns ‘recsig’, a filtered and recovered sampled signal.
%Input parameters:

% fltsig—the transform vector to be filtered and recovered, returned

% from spectral.m

% d--the duty cycle of the sampled signal. (Note: to recover an impulse-
% sampled signal, calculate d=samprate*delta_t.)

% func—the title of the filter function, passed

% in as a string enclosed in single quotes

%  Filter functions in the Communications Toolbox are

% LOWPASS HIGHPASS JDEALLOWJIDEALHI, and IDEALBND.
% Hz-—the vector representing frequency in Hz, returned from spectral.m
% cutoffl-—the cutoff frequency for low- and high-pass filters

% cutoff2--an additional cutoff frequency, passed in only for bandpass filters

%Written by Susan Guckelberg, 7 Jul 93
%Revised 10 Aug 93

function recsig=recovers(ffisig,d func,Hzcutoff1 cutoff2);

if nargin==5
halffier=feval(func,Hzcutoffl); %generate the filter vector
halffitr=feval(func Hz cutoff1,cutoff2), %for bandpass filters
end
%complete the filter

fitr=(halffitr(1:length(halffltr)-1) flipir(halffitr));

filtsig=fltr *fitsig.*(1/d); %multiply the filter and signal
%use 1/d to scale the signal amplitude

recsig=iffi(filtsig); %perform inverse fast fourier transform

Communications Toolbox for MATLAB—page 34

440




rzuni.m
%function [rzunisig,bit_t transec]=rzuni(codedsig,delta_t,bitrate)
%

%RZUNI takes a binary-encoded signal and prepares it for plotting
%as a return-to-zero unipolar coded signal. It returns the signal
%'rzunisig’ and the number of seconds needed for transmission
%'transec’.

%Input parameters:

% codedsig--a binary-encoded signal

% delta_t--2 - t1, the step size of the time vector in the signal

% bitrate--number of bits per second desired for the output

% signal

%Written by Susan Guckelberg 25 Jul 93
function [rzunisig,bit_t.transec]=rzuni(codedsig,delta_t bitrate);

T=1/bitrate; %bit duration T in seconds
avg_Tpts=(1/delta_t)*T; %number of points in T

k=1; %index for rzunisig
i=1; %index for codedsig
while i<=length(codedsig) %fill half the sampling period T with
%either O's or 1's and zeros for
%the remainder
Tpts=round(i*avg_Tpts)-k+1; %account for fractional
%values of avg_Tpts
halfT=round(Tpts/2);
if codedsig(i)==1
rzunisig(k:k+halfT-1)=ones(1:halfT);
else
rzunisig(k:k+halfT-1)=zeros(1:halfT);
end
rzunisig(k+halfT+1:k+Tpts)=zeros(1: Tpts-halfT);
k=k+Tpts;
i=i+1;
end

transec=length(rzunisig)*delta_t; %number of seconds needed for
%transmission of the coded signal

rzunisig=[rzunisig(1) rzunisigl; %add one point to rzunisig
%10 account for zero
%in time vector, using value of
%first point

bit_t=0:delta_t:transec; %time vector for bitstream
Communications Toolbox for MATLAB—page 35

441




ser_par.m

%function [odd_sig.even_sigl=ser_par(dig_sig.delta_t bitraie)
%

%SER_PAR accepts a digital signal (one that is a function of a
%time vector, such as those returmed from 'rzuni.m'’ or
%'nrzlbi.m’) and separates it into two digital signals, one
%composed of the odd bits and one of the even bits. The bit
%durations in the output digital signals are twice that of the
%input digital signal. Input signals ARE RESTRICTED to those
%with EVEN numbers of bits.

%Input parameters:

% dig_sig--the digital signal, a function of a time vector

% delta_t--22 - t1, the step size of the time vector in the signal
% bitrate--number of bits per second in the input signal

% dig_sig

% Written by Susan Guckelberg 6 Sep 93
function [odd_sig,even_sig]=ser_par(dig_sigdelta_tbitrate);

dig_sig=dig_sig(2:length(dig_sig)); %remove first value, added

%to account for O in time vector
tot_time=length(dig_sig)*delta_t; %number of seconds in the time vector
bit_dur=1/bitrate; %bit duration in seconds
numbits=round(tot_time*bitrate); %number of bits in input signal

avg_bitpts=(1/delta_t)*bit_dur; %number of points in each bit

odd_sig=[];

even_sig=[];

z=1l; %index for counting bits
i=l; %index for dig_sig

%generate odd and even bitstreams at half the bitrate

while i<length(dig_sig)
bitpts=round(z*avg_bitpts)-i+1; %find length of the odd
%bit in dig_sig, accounting
%for fractional values
%of avg_bitpts

bit(1:bitpts)=ones(1:bitpts)*dig_sig(i); %set odd bit to the
%value of dig_sig(i)

odd_sig=[odd_sig bii); %add bit to odd_sig

bit=[}; %important to wipe out the bit

i=i+bitpts; %advance the index in dig_sig, keep bitpts the same

bit(1:bitpts)=ones(1:bitpts)*dig_sig(i); %assign value of

Communications Toolbox for MATLAB—page 36

442




even_sig=[even_sig bit]; %next bit in dig_sig

bit=(]; %!lo even_sig

z=2+1; %advance bit number in dig_sig

bitpts=round(z*avg_bitpts)-i+1; %find length of next bit
%in dig_sig

bit(1:bitpts)=ones(1:bitpts)*odd_sig(length{odd_sig));
odd_sig=[odd_sig bit]; %add the bit to odd_sig

bit=[);
bit(1:bitpts)=ones(1:bitpts)*even_sig(length(even_sig));
even_sig=[even_sig bit]; %add the bit to even_sig
bit=[);

i=i+bitpts; %advance index in dig_sig

z=z+1; %advance one bit in dig_sig

end

odd_sig=[odd_sig(1) odd_sig]; %add one point to odd signal
%to account for zero
%in time vector, using value of
%end point

even_sig=[even_sig(1) even_sig]; %repeat for even signal

Communications Toolbox for MATLAB—page 37

443




snr.m

%function s_n_ratio=snr(cleansig,noisysig)

%

%SNR subtracts a noisy signal (usually the output or
%recovered signal with noise) from a clean signal
%(usually the input or message signal) and

%retumns the signal to noise ratio 's_n_ratio' in dB
%Input parameters:

% cleansig--signal vector

% noisysig--signal vector

%Written by Mike Shields 28 Jul 93
%Edited by Susan Guckelberg 5 Dec 93

function s_n_ratio=snr(cleansig,noisysig);
noise=cleansig-noisysig;

s_n_ratio=10*log10(sum(cleansig.A2)/sum(noise.A2)); %snr in dB

Communications Toolbox for MATLAB—page 38

444




spectral.m

%function [specsig,Hz. fftsigl=spectral(anysig.delta_t)

%

%SPECTRAL performs a fast fourier transform on the input signal ‘anysig’
%and returns 'ftsig’. For a spectral analysis graph, plot 'specsig’

%against 'Hz'.

%Input parameters:

% anysig--the input signal

% delta_t--12 - 11, the step size of the time vector in the signal

% Written by Susan Guckelberg, 6 Jul 93
function [specsig,Hz,fftsig]=spectral(anysig,delta_t);
ffisig=fft(anysig); %find the fast fourier transform of the signai
abfftsig=abs(ffisig); %find the absolute value of the transform
length_f=length(abfftsig); %find the length of the fourier transform
shortsig=[abfftsig(1) abffisig(2:ceil((length_f)/2))); %excluding first
%value, truncate the
%vector to half its iength
lengthss=length(shortsig); %find length of transform vector
specsig=shortsig./lengthss; %scale down ampiitude by
%dividing the frequency values
%by the vector length
nyqfreq=1/(delta_t*2); %find the Nyquist frequency

Hz=nyqfreq*(1:lengthss)/lengthss; %create Hz frequency vector

Communications Toolbox for MATLAB-—page 39

445




ssb.m

%function [Isbsig,usbsigl=ssb(t,msg,car_amp,car_freq)

%

%SSB calls hilbert.m to perform a hilbert transform

%on the input signal, returning lower and upper sideband
%signals 'Isbsig' and ‘usbsig’.

%Input parameters:

% --the time vector used to generate the message signal

% msg--the message signal

% car_amp--the amplitude of the carrier (modulating) signal
% car_freq--the frequency of the carrier (modulating ) signal

%Written by Susan Guckelberg 31 Jul 93
function [Isbsig,usbsigl=ssb(t,msg,car_amp,car_freq);
m_hat=hilbert(msg);

ssbl=msg.*cos((car_freq*2*pi).*t);
ssb2=m_hat.*sin((car_freq*2*pi).*t);

clear m_hat

Isbsig=(ssbl+ssb2).*(car_amp/2);
usbsig=(ssb1-ssb2).*(car_amp/2);

Communications Toolbox for MATLAB—page 40

446




APPENDIX F—USER’S GUIDE TO THE
COMMUNICATIONS TOOLBOX FOR MATLAB

ll”’ll’IIlI’IllllIIIIIIII’IIIIIIIIIIIIIII’IIIIIIIIIII’

User’s Guide to the

Communications Toolbox
for MATLAB

Susan Guckelberg

VANV LN R VAV VLNV N LN NN VNN VNN CRN NN RN RN AN RLNLNR RNV ANRCRRNVUVNCNRNVNRNRNCRLLRL DL av v v avsr vy
AN RN R NN AL NN N LSRN NN RN LR NN RN NN NN NRCN RN AN VNLNCRN TR ARV LRNCRNNRNNCRNV ANV AR /v v v v v v

PR AR AR R A G F R A AV 4 N G o i 4 @ & @ G I e EEEEEEEEEEEEEEEEEE

447




User’s Guide to the Communications Toolbox for MATLAB—page 2

44




Table of Contents

PUTPOSE....oouiiiiniitiniiiiiitittiiiteasisrsacessstatorsnsossssossassssasssssssssess 5
PIBHIOIMS. ... ..o s e e ea e 5
g (0 1 ST 5

amplitude modulation

conv_am, hilbert, $sb.....cccoiiiiiiiiiiiiiiiiiiiiiiiriirereeenaaes 9
detection

CNVEIOPE. ..nniniiiiiiiiiiiinieeiienteteeretteseetanaansrctsaensesseneesananns 10
digital encoding

CONVETLL, ENCOUC ... eouiuirinrirraiiiiriacasssmcncarsenrerssarsssesasnssesanssns 8

manchest, nrzlbi, nrzluni, rzZuni.........cocoeeeiviiiniiiiireeiiieninn.. 16
filters

highpass, idealbnd, idealhi, ideallow, lowpass........cc.ccovevurernnnnane 15
frequency modulation

i1 00 11141« S PP RP 12
pulse modulation

Pulpos, pulswid.......coocvmiiiiiiiiiiiiiiiiiiiiir e eee 19
guantization

COMPIESS, EXPANA ..ouvvreriuiiriiiiiiiinietriiutioriniseriesesessacassssnoens 7

QUANLZE, QUANIUNT ...covvienieirnieicniareerarreraesneessesneansecassncssannes 20

SIIE 1 ettiniinineentetincttretteatecarontetsasncsonsasesarsnstararsrseserssrnnans 22
radio frequency digital modulation

Freq diV...ocoiiiiiiiiiniiiiiiiiiriiiieir e e et e s ra e s aaans 13

BS K ceniiiri e s ee e ce s r e sea e snsaans 14

PAT_SCT, SCI_PAT...ccuirenrreirirreersraressassrontorssonssncassssassssnsnsces 17
sampling

flattop, impsamp, DASAMP......c.cevrrrereneenrenreenceeeereeenernosnrennes 11
signal recovery

TECOVEIM, TECOVETS cueuevrurrirerrorrsresasscesesnresnansssonansssnsesssanonns 21
spectral analysis

PSA, SPECITAl...cuivnirneninniniiinerreenerenreeereenseseeaseresnanennennens 18
110 O 23

User’s Guide to the Communications Toolbox for MATLAB—page 3

449




User’s Guide to the Communications Toolbox for MATLAB—page 4

450




purpose

These thirty-four functions support basic electronic communication concepts and
techniques, and were designed to accompany the EO 3513 course offered at Naval
Postgraduate School, Monterey, California.

The “help” function in MATLAB provides quick access to detailed information
about required input parameters.

platforms

The Communications Toolbox for use with MATLAB was developed on a
Macintosh Powerbook 165¢ using MATLAB SIMULINK version 1.2, by The
MathWorks, Inc. The MATLAB m-files were translated for use with MS-DOS platforms
using MacLink Plus 6.0, by DataVis, Inc.

The Communications Toolbox is designed to run under MATLAB 3.5 for the IBM
PC, without the presence of other specialized toolboxes.

MATLAB is a registered trademark of The MathWorks, Inc.

references

Brown, LT Dennis W. and Fargues, Monique P, Department of Electrical and
Computer Engineering, Naval Postgraduate School Technical Report no. NPSEC-
93-017, SPC Toolbox, 15 October 1993.

Couch, Leon W,, II, Digital and Analog Communication Systems, Macmillan
Publishing Company, 1993.

Haykin, Simon, Communication Systems, Second Edition, John Wiley & Sons
Inc., 1983.

The MathWorks, Inc., The Student Edition of MATLAB for Macintosh
Computers, Prentice-Hall, Inc.

Schweber, William, Electronic Communications Systems, A Complete Course,
Prentice-Hall, Inc., 1991.

?&nzlcy, William D., Electronic Communications Systems, Prentice-Hall, Inc.,

User’s Guide to the Communications Toolbox for MATLAB—page 5

451




User’s Guide to the Communications Toolbox for MATLAB—page 6

452




Amplitude

compress, expand
function calls:

comsig=compress(s,mu, Vm)
expansig=cxpand(comsig,mu,Vm)
synopsis:
compress and expand, used together, simulate the companding process for reducing quantization
noise (Schweber, p. 342). The value of Vm (the maximum amplitude, or voltage) in the signal “s™
can be identified at the time of the function call by using the “max” command to pass in the “Vm”
parameter, as demonstrated with expand:

expansig=expand(comsig,255,max(comsig));

algorithm:
The 1-255 companding law is described by the formula:

2]

Vou = v )
where 1< u<255. p = 0 results in a linear function (no compression or expansion).

10 Message signal 10 —Message signal expanded

L
Amplitude
¥ ]

0 0.05 0 0.05
Time Time

User’s Guide to the Communications Toolbox for MATLAB—page 7

453




convert, encode
function calls:

conv_mmweonvm(dedmal.symbol&eumm))
odsi fe(bi bols.el

synopsis:

Convert and encode are used to transform the vector of bin numbers retumned from quantize or
quantuni to a stream of values encoded in other than decimal representation, commonly as a
bitstream of 1’s and 0's. Encode calls convert for cach value in the “bin_pums” vector.

algorithm:

Encode finds the length of the vector “bin_nums” and loops through the vector, passing each
value to convert along with the number of symbols (base) and elements (places) desired for the
output.

In convert, the MATLAB function “rem” is used to repeatedly evaluate the input base 10 number
“decimal” resulting in a new number of base “symbol” having the number of places specified by
“elements.” For example, input of 2 symbols and 3 elements results in a three-bit binary number.
Each value retumed from convert is added to the vector “codedsig.”

User's Guide to the Communications Toolbox for MATLAB—page 8

454




Amplitude

Amplitude

conv_am, hilbert, ssb
function calls:

convamsig=conv_am(msg,delta_t,fc,m)
hilbsig=hilbert(anysig)
[sbsig,usbsig]=ssb(t,msg,car_amp,car_freq)

synopsis:

conv_am and ssb perform two types of amplitude modulation (AM): conventional AM, and
single sideband AM. (The third type, double sideband AM, can be produced by multiplying the
message signal by a cosine function of the desired carrier frequency.)

algorithm:

conv_am returns a conventional AM signal by employing the formula
A1+ mx(t)]cosaa,t
where x(t) is the message signal and m is the modulation index (Stanley, p. 147).
ssb retums the lower and upper single sideband (SSB) signals as follows:
A [m{t)cosm t + d(t)sinw,t]
where m(t) is the message signal. The minus (-) signisusedto;mducelheuppersideband.(USB)
signal; the plus (+) sign is used to produce the lower sideband (LSB) signal. The value of ()
is determined within the function hilbert by taking the fast fourier transform of the message
signal and applying -j to the positive frequencies and j to the negative frequencies (Couch, p. 314).

5 _Message signal 5 __DSB signal
OT -
- . . . -5 , \ .
0 0005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
Time Time
5 __LSBsignal 5 Conventional AM signal

0 0005 001 0015 002 0 0005 001 0015 002

Time Time

User’s Guide to the Communications Toolbox for MATLAB—page 9

455




envelope
function cail:
cavsig=envelope(x)
synopsis:
envelope performs an envelope detection on the input signal “x.” (Note: envelope performs a
transpose of the input signal vector, making it a memory-intensive function. Reduce the size of
the input vector whenever possible.)
Witten by Dennis W. Brown 8 Sep 93
Hilbert transform section written by Charles Denham 7 Jan 88

Revised by LS, 19 Nov 88, 22 May 90, TPK 4 Nov 92
Copyrighted by The MathWorks, Inc. 1988,1990,1992 (The MathWorks, Inc., p. 310)

algorithm:

envelope computes the Hilbert transform of “x,” resulting in the magnitude of the complex
envelope (Brown and Fargues, p. 55).

_Envelope-detection of a signal

| S

2 A a 2 - N N a —d A
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

User’s Guide to the Communications Toolbox for MATLAB—page 10

456




flattop, impsamp, natsamp
function calls:

{flatsig, pulstro}=flattop(s.delta_t,samprate,d)
(impsig,imptm]=impsamp(s,delta_t,samprate)
(natsig,pulstrn]=natsamp(s,delta_t.samprate.d)

synopsis:

flattop, impsamp, and natsamp sample the input signal “s.” flattop returns a flattop-
sampled signal; impsamp returns an impulse-sampled signal; natsamp returns a naturaily-
sampled signal.

Witten by Randy Borchardt 27 Jul 93
algorithm:

The sampling functions each begin by generating an impulse train. impsamp multiplies the
impulse train and the input signal “s” and returns the product as “impsig.”

flattop generates “impsig” in the same way, and then convolves it with a single pulse of duty
cycle “d” to produce the flattop-sampled signal “flatsig.”

natsamp creates a pulse train by convolving a single pulse of duty cycle “d” with the impulse
train. The pulse train and the input signal “s™ are maltiplied 1o generate the naturally-sampied
signal “natsig.”

impsamp also returns its impulse train, and flattop and natsamp each return a pulse train.

5 M ¢ signal | 5 Na@y—mpledsjgnal

ok
-5 . — N - . R R

0 001 002 0.03 0.04 0 001 002 003 0.04

Time Time
5 Imgulse-saxgmlcd signal 5. Flattop-sampled _signal
0 T _L ‘ll Lh’
I‘f l” I 'l‘

-5 . . . - , . N

0 001 002 0.03 0.04 0 001 002 003 0.04

Time Time
User's Guide to the Communications Toolbox for MATLAB—page 11

457




fm_meod

g
2

function call:
[fm_sig,delta_f,betal=fm_mod(t,Ac.fc,fin,theta,delta_f,beta)
synopsis:

fm_mod calculates cither “delta_f" (the maximum frequency deviation) or “beta,” whichever was
not passed in, and returns both, along with the frequency-modulated signal “fm_sig.” fm_mod
will generate single- and multi-tone FM signals.
For multi-tone signals, frequency and phase parameters are represented by vectors. A sample vector
for £, representing a three-tone signal, follows:

fm=(50 150 230}
The vector representing phases for the multi-tone signal is established in the same way (even when
all values are zero). The vectors representing frequency and phase must be the same length.

algorithm:
fm_mod is based on the formula
A, cos| 2t +BY sin(2nfy t+ ei)]
i

where A, is the amplitude of the FM signal, f_ is the frequency of the FM signal, £ is the
frequency of the message signal (a vector for multi-tone FM signals), and © is the phase of the
message signal (a vector for multi-tone FM signals) (Haykin, p. 190).

20 FM signal and message si

0

U

0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time

User’s Guide to the Communications Toolbox for MATLAB—page 12

458




freq_div
function call:
div_sig=freq_div(squarebspk,L,fc)
synopsis:

freq_div accepts the squared BPSK signal squarebpsk™ and performs a frequency division in
preparation for coherent detection. freq_div is specific to the BPSK detection process used in this

laboratory set.

algorithm:

freq_div divides the squared BPSK signal by cos(2xft), simulating its frequency shift down to
the value of “f..”

1 ngmd BILSK spectrum 1 Freq di'vided B}’SK spectrum

3
= ost ]
&

Amplitude
o
W
1

" A 0 M " "
0 500 1000 1500 2000 0 500 1000 1500 2000
Frequency in Hz Frequency in Hz

User’s Guide to the Communications Toolbox for MATLAB—page 13

459




fsk

fuaction call:

fsksig=fsk(dig_sig,delta_t,bitrate,freq_0,freq_1)

synopsis:

fsk performs frequency-shift-keying on the input digital signal “dig_sig”, returning “fsksig,” with

“freq_0" assigned to 0 bits, and “freq_1" assigned to 1 bits.

algorithm:

fsk works bit by bit to assign one of two input frequeacy values to a frequency vector. The output

FSK signal is generated as a cosine function of the frequency vector. “Delta_t” and “bitrate” are

passed in to determine the number of points in each bit.

2 Digital message signal 2 FSK signal
g’ R oV
g g |

2 -2

0 0.05 0 0.05
Time Time

User’s Guide to the Communications Toolbox for MATLAB—page 14

460




highpass, idealbnd, idealhi, ideallow, lowpass

function calls:

HPF=highpass(Hz,cutoff)

IBPF=idealbnd(Hz,cutoff1,cutoff2)

IHPF=ideathi(Hz,cutoff)

ILPF=ideallow(Hz,cutoff)

LPF=lowpass(Hz,cutoff)

SYnopsis:

These filters each return a vector the length of “Hz” (retumed from spectral). Examining a one-
sided spectral analysis graph (“specsig” plotted against “Hz") will belp in determining the desired
cutoff frequency or frequencies.

The “feval” command in MATLAB allows the filter functions 10 be called from within the
functions recoverm and recovers.

algorithm:
The simple lowpass filter in lowpass is based on the following formula (Stanley, p. 98):
1
1+j—
f
The simple highpass filter in highpass is based on the following formula:
H(f) = ——
1+
f,

The remaining “ideal” filters are composed of 0’s and 1’s, changing values at the cutoff frequency
or frequencies to retain only the desired frequency band. Each of the lowpass filters below has a

cutoff frequency of 100 Hz.
Ideal lowpass filter Simple lowpass filter
g ! 1 & ! ‘
g of g ol |
0 500 0 500
Frequency in Hz Frequency in Hz

User's Guide to the Communications Toolbox for MATLAB—page 15

461

_—



manchest, nrzlbi, nrzluni, rzuni

function calls:

{manchsig,bit_ttransec}=manchest(codedsig,deita_tbitrate)
[nrzlsig,bit_t,transec)=nrzlbi(codedsig,delta_t,bitraic)
[nrzlsig,bit_t,ransec]=nrzluni(codedsig,delta_t,bitrate)
[rzumisig,bit_t,transec]=rzmi{codedsig.delta_t,bitrate)

synopsis:

Each of these four digital encoding functions returns a digital signal at the specified bitrate for
plotting against the time vector “bit_t.” The number of transmission seconds “transec” is
calculated.

manchest retuns a manchester-encoded signal. nrzlbi returns a bipolar non-return-to-zero
signal. nrzluni returns a unipolar non-return-to-zero signal. rzuni returns a unipolar return-to-

zero signal.
algorithm:

These functions require input of a bitstream of 1’s and 0’s, such as “codedsig,” retured from
encode, or one randomly generated using the “rand” command in MATLAB. A time vector is
established and the number of points per bit is determined. Values within the bit are assigned
according to the encoding scheme. The examples below show the output for each encoding
function based on input vector of [0100011010).

o Manchester coded signal 2 NRZ bipolar signal
OLHHI”HHII- g_ ()Ll’ I’l_
2 . 2 .
0 0.05 0.1 0 0.05 0.1
Time Time
2 NRZ unipolar signal 2 RZ unipolar signal
A e T - A N 1 I
2 . -2 .
0 0.05 0.1 0 0.05 0.1
Time Time

User’s Guide to the Communications Toolbox for MATLAB—page 16

462




par_ser, ser_par

function calls:

comb_sig=par_ser(odd_sig,even_sig,delta_t,bitrate)
[odd_sig,even_sigl=ser_par(dig_sig,delta_t,bitrate)

synopsis:

ser_par and par_ser contribute to the quadriphase-shift-keying (QPSK) process. ser_par is
used during signal generation to split the digital signal into two signals, one composed of odd bits
and one of even bits. The bitrates of the output signals are slowed to half that of the input signal.
par_ser is used during the coherent detection of the QPSK signal to join the two signals into one
by alternating the retrieval of the bits between the odd and even signals and reverting to the
original bitrate.

algorithm:

ser_par presents some indexing chailenges, since the number of points in successive bits is
subject to change. The number of points in the first two bits of the input digital signal are applied
to the first bit in the odd signal and the first bit in the even signal, in order to reduce the bitrate in
half, while applying the correct bit values.

In par_ser, only the first half of each ‘odd’ bit is fetched, and the second half of each ‘even’ bit.
This procedure controls the changing number of points per bit, and increases the bitrate to twice
that of the input signals.

2 Digital message siggal

3
EAlIIEE

2 R . .
0 005 01 015 0.2
Time
) _Odd bit signal 2 _Even bit signal _
oo UL e guy
2 : ; . . . —
0 005 01 015 0.2 0 005 01 015 0.2
Time Time

User's Guide to the Communications Toolbox for MATLAB—page 17

463




psd, spectral

Amplitude

function calls:

[psdsig,Hz,ffisigl=psd(anysig,delta_t)
[specsig,Hz fitsigl=spectral(anysig,delia_t)

synopsis:

spectral and psd return vectors used for plotting one-sided spectral analysis graphs. Plot
“specsig” against “Hz” to observe the amplitude of signal tones. Plot “psdsig™ against “Hz” to
observe the power present in signal tone (power spectral density).

To find average signal power, integrate “psdsig” by using the MATLAB “sum” command.

The returned vector “fitsig” is used in signal recovery.

algorithm:

Each function performs a fast fourier transform on “anysig,” creating the “fftsig” output signal,
and then finds its absolute value. The first half of the vector is retained and divided by its length,
resulting in “specsig,” returned from spectral. In psd, the vector is then squared and divided by 2
to reflect the power in each signal tone, and returned as “psdsig.” The “Hz” vector is scaled to the
length of the Nyquist frequency (1/2*delta_t).

20 Spcc_trum 20 Power spectral density
10} . %_ 10+ -
ol 11 oL | | .
0 500 1000 0 500 1000
Frequency in Hz Frequency in Hz

User’s Guide to the Communications Toolbox for MATLAB—page 18

464




Amplitude

Al M,
0.01 0015 0.02 0.025 0.3

pulspos, pulswid
function calls:

ppsig=pulspos(s,delta_t.samprate,pulsdur)
pwsig=pulswid(s,delta_t,samprate.maxdur)

synopsis:

pulspos returns a pulse-position-modulated signal with pulse amplitude set at half of the
maximum amplitude of the input signal. Offset values are calculated from the beginning of the
sampling period T.

pulswid returns a pulse-width-modulated signal with pulse amplitude set at half of the maximum
amplitude of the input signal. The input parameter “maxdur” sets the maximum pulse duration.
All pulses are non-zero-width pulses.

algorithm:

The average number of points in the sampling period T and the amplitude of the pulse-modulated
signal is established. The input signal is raised to all-positive values.

In pulswid, the signal amplitude at the pulse beginning is compared to the maximum signal
amplitude. The ratio is applied (o the number of points in “maxdur” to determine the number of
points in the pulse duration “tau.”

In pulsepos, “tan” is fixed based on “puisedur” The number of offset points from the pulse
beginning is determined for each sampling period T, based on the ratio of the signal amplitude to
the maximum signal amplitnde at the pulse beginning.

10 ~PWM signal

10

: i,
:

1

-10 - — .
0.01 0015 0.02 0.025 0.03
Time Time

User's Guide to the Communications Toolbox for MATLAB—page 19

465




quantize, quantuni
function calls:

[quanch_x,quanch_y,quan_sig,bin_nums)=quantize(symbols,elements,ss,samprate,delta_t)
[quanch_x,quanch_y,quan_sig,bin_nums}=quantuni(symbols,cicments,ss,samprate,delta_t)

synopsis:

quantize and quantuni simulate analog-to-digital converters while providing two vectors,
“quanch_x" and “quanch_y,” for plotting the desired quantization characteristic (use the MATLAB
“stairs” command). quantize simulates a bipolar quantizer with a range of -10 10 +10 volts.
quantuni simulates a unipolar quantizer with a range of 0 to +10 volts..

algorithm:

quantize and quantuni compute the number of converter levels by raising “symbols” to
“elements.” The value of each step in the converter is found by dividing the number of levels into
the difference between the minimum and maximum converter values. The value of each successive
level is found by adding one step, and is stored in the vector “quanch_x" (voltage in). “Quanch_y”
stores output values associated with input values (voltage out).

The average number of points in the sampling period T is determined. The input signal value at
the beginning of each sampling period is found and the value is assigned to the proper “bin.”
Intermediate values are rounded in quantize and truncated in quantuni. The bin numbers are

stored in “bin_pums.”
1 3-bit bipolar converter 10 3-bit unipolar converter
: : : ‘ % :
S LN el
_ S
-10 -5 0 5 10 0 5 10
Voltage in Voltage in
10 Sampled signal 10— Quantized signal
-1 — -1 .
0.05 0.1 0 0.05 0.1
Time Time

User’s Guide to the Communicai..ns Toolbox for MATLAB—page 20

466




recoverm, recovers

function calls:

recsig=recoverm(ffisig,func,Hz,cutoff1,cutoff2)
recsigarecovers(fitsig,d,func,Hz, cutoff1,cutoff2)

synopsis:

recoverm and recovers filter and recover signals, remming the time-domain signal “recsig.”
Use recoverm for modulated signals and recovers for sampled signals.

The input parameters “fftsig” (the fast fourier transform) and “Hz” are returned from spectral. The
input parameter “func” refers to one of the filter functions included in the Communications
Toolbox: idealkigh, ideallow, idealbnd, lowpass, and highpass. The name of the filter
function must be enclosed by single quotes whea passed in as a parameter.

algorithm:

The filter function passed in as “func” is evaluated using the cutoff frequency or frequencies,
returning a filter the length of “Hz.” The filter is tailored to the length of “fftsig” and the two
vectors are multiplied.

In recovers, the resulting signal vector is multiplied by by 1/d (the duty cycle) to scale the
amplitude properly. Impulse-sampled signals require the input parameter “d” to be calculated as the
sampling rate times delta_t (the step size in the time vector).

Finally, an inverse fast fourier transform is performed on the signal vector.

User’s Guide to the Communications Toolbox for MATLAB—page 21

467




sar
function_cali:
s_n_ratio=sar(cleansig,noisysig)
synopsis:
snr returns the signal-to-noise ratio in dB for the “noisysig™ signal input.
Written by Mike Shields 28 Jul 93
algorithm:
sor is based on the following formula
sz)
10lo;
Iy

where “x” is the input “clean” signal, and “y” is the output, or “noisy,” signal.

User’s Guide to the Communications Toolbox for MATLAB—page 22

468




CDIVEIOPE ..o eiiiiiieiieieniereetaerentoareessencncnsracasnsnnrncnrensasnnnn veenveee.. 10

hﬂbert............ .............. vesenns cesases teecscencnsene S veeed9

IANCNE SO, .. e tiirteiiiieeiieeererresereresereencsesscessosassssensesssssssssssssscessl®
DALSAMP ...oovviinnceneinnennncens eierettsieseetetettstetensianetntetiesnaens ST § |
mzlbi.... ..... e eeeerranerenettasetenneceratetnrestarennasetnnrennrons APPSR { ;)

Par_SeT....ccvvnirucninnnns Ceretersecieentneietrsatastesasanes N 17
psd...coovainnnnnns Ceeeeereeieceiatreecasetrtetntatertesessttastsatntastntsaorstsrsrins 18

.
QUANLZE ........coouvnrierrneirerernenrcnsaresssceseacnsnssossonsssonenssnrsssnmnennse .20
]

T P RPN

User’s Guide to the Communications Toolbox for MATLAB—page 23

469




This page is intentionally
left blank.

470




APPENDIX G—COMPARISON OF REQUIREMENTS

Comparison of Laboratory Requirements

Questions Labeled Plots Combined | % of Total

Comp-Aid 1 : 2 3 5 4%
Comp-Aid 2 R 7 IS 127%
Comp-Aid 3 4 s 9 7%
Comp-Aid 4 9 3 12 107%
Comp-Aid § 4 6 10 8%
Comp-Aid 6 3 6 9 7%
Comp-Aid 7 6 5 | 9%
Comp-Aid 8 13 12 25 21%
Comp-Ald 9 9 16 25 21%

Tota! S8 63 121 100%

Questions Labeled Plots Plots M-fileOps Combined | % of Total

Prog i 2 3 6 8 19 47
Prog 2A B 3 8 10 29 6"
Prog 2B 8 3 8 10 29 6%
Prog 2C 6 2 6 R 2 [
Prog 3A 4 2 4 0 16 4%
Prog 3B 4 2 4 6 16 A
Prog 4A s 0 6 10 21 &0
Prog 4B 8 0 7 10 25 6"
Prog § 4 6 14 I8 42 9%
Prog 6 4 6 22 31 63 14%
Prog 7 4 4 13 22 43 10%
Prog 8 9 8 12 19 48 1%
Prog 9 4 4 16 17 s e

Total 74 53 133 189 449 100%

471




INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Randy L. Borchardt, Code EC/Bt

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Dr. Dan C. Boger, Code AS/Bo
Department of Systems Management
Naval Postgraduate School
Monterey, CA 93943-5103

LCDR Michael K. Shields, USN, Code EC/SI
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Capt Michael A. Cervi, USAF, Code CC/Ce
J-int C3 Academic Group

Naval Postgraduate School

Monterey, CA 93943-5142

Computer Technology Programs
Code 37

Naval Postgraduate School
Monterey, CA 93943-5119

472

No. Copies




