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12. Abstract: The fundamental equations of ma gnetofluiddynamics, are derived

For incompressible fluid, magnetohydrodynamics, the important parameters are the ywnolds

number ?,, the mngnstic pressure nmmbt.r Pq., which is the ratio of magnetic pressure to

dvnamic rressu-'e, and tha velocity number R., which i-. the ratio of the fluid velocity to

tthe c,'hrncteristic velocity of which the magnetic field .• moving through a conductor,.

Scm• •nzt solutions and properties of the equations of Map tohyirodvnamIcv are given,

Stamblit:y of Y.rminar flow nnd turbulence in ma netohydrndynamics are brief2ly reviewed,,

Finql.y nsor; .•.gnetohydrodynamic experiments are described4

For cc .p-r.sntble flui!, magnetog.sdymamics, the Iportant parameters are stil. R

I&{ and R. p!us other well known important paramete!" of ordinary gas dynamics such as

Mach number, Prandtl number and ratio of specific heats. Both the waves of small

xmplitV., Al'un'ue waves in compressibh flerad. and ehocl t•nve, in mi•rkeoZasdynam.Lc#
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!L Introc:uctioi.

Electronp:iatic rh: n(r:3na in solid cocd'uztois hiave been

well knrown for a lonra tinte but the electri.•a~rtic phenomena

in fluids, liquid or gases, are not so well kniwn3  Only

recently the problem of Inagnetohydrodynamics has been attract-

ing the attention of some research workers because it Is

importait in nstroptrysics, geophysics and the behavior of

interstellar ga.3 masv-es, The main diffeai'nce in the electro-

r-gnetiL phen.:r. iia i.2ý f2Il frc-n'U tcsc,, -Ir 'Ic IlIds L', due to the

fact that ,echa-iica.l fov-c:-s ter'v'ng f.rom ec't.z-= eurrents my

produce fluid dn•ii 'otions -.w1 the flci y ':;ar'.ic motions may

produce eitect-L'o :ap'!c'kcn:n?.ý-' in ot.har -ý.-rd5 i there is an

inte2raction bet:ee:n the electroiTr' -ett fo•'ceŽ3 ,-d the ordinary

fluid eyna•ic f.,-mc&. Tlhs I~tF:a.ctton phenoeTna Iacomes

important whene,-er t1he lekctromaLi3tic forces a.re of the same

ordar of m•agritade as the iz•ztlk: ! forces or r.scouu3 forces of

the fluid, Act:.ally the discovery of magnetohydrodyramics was

miad in cosmic physics. Magnetic phenomena of different types

has been observ.d and needed an explanation, In ordinary labor-.

atory experiments of discharges of electrical current in gamesa

the mechanical effects are usually small, the results of these

experiments cannot be used to expl•n the electromagnetic phen-

omena affecting the motion of gaseous masses of cosmical dimen-

sions. Hence study of electromagnetic phenomena in liquid con-

ductors has been extensively carried out where in some respects



the conditions are rore si•,.ir.r to those occurring in cosmical

physics. Thu: Ghe Megnetohydrodynamics has been founds The

result of magnetnhyJ•rodynamic- ha,% als.) some angireerilng

interest because of t-e utility o•' induction flow-meters, which

rely on the gen3ration of a measurable potential difference in

the fluid in a Airection perpendicular to the motion and to the

magnetic field.

Recently t3ecause the interest of hypersonic flow of missiles,

the interaction of the electromagnatic force and fluid dynamic

forces in gases are not negligible and may be p,'oduced in lab-

or'iltori.e by thý use of shock tube. Thus some preliminary

studies of mai -n <o1dyramics has been initiated. But much

has to be done ¾efore a complete n nderstanding of these pben-

omena is possible. in tili prasext paper, I shall make a brlef

revlew of the present status of m•-,netohydrodynamics and nagneto.

ga~sdybamics°

2. FPzndamental EquaT.ions.

In studyinl- the magnetic flutd dynamics, one has to deal

with the fluid dynamical equations and the eloctrodynamic equa-

tions simultaneously. In the general three dimensional flow

there are 16 u.Winowns in the problems of a magnetofluiddynmice,

i.e.;

(a) The mapnetic field strength i (3 components)

(b) Tiu electric field strength E (3 components)

(C) The electric current density J (3 components)



(d) The excss•n .ýIctric charge

(e) The fluiid velocity vector q' (3 compornents)

(f) The pressla-e of the fluid b

(g) The density of the fluid

(h) The temperature of the fluid T.

Fbr these unknowns, we have to find 16 relations which are

the fundamental equ-ations of magretofluiddynam1ics and which are

given belows

The .Uxwel. eqnations5 arn acsuTmd to be true in magreto.

fluiddynau-cso 'Aey -are six in n-,,ber and are as followas

Vsr x , A.. E_ (2.1)

-A*

(2.2)

where V is the gradient operator. Gibbs vector notations are

used. t Is the times E is the dielectric constant anda/4&1.
A KS'

the magnetic permeability. The AM unit system is used,

The current density equatiqn is

where d" is the electric conductiv ity. The terms with q are the

coupling terms -dth tho fluid dynrmic equations which represent

the interaction phenomena.

The conser-ation of electric charge gives

,o (2.4)



Eqnatvions '2 - (2`h) are the electron.,-agetic equations

wi th coupling terms 4ue tc fluid dynamic motion.

The consenv:ation of mares, i,,e. the equation of continuity

-. in fluid dynamics, is

(2.5)
For incompressible fluid,' , constant :4, equation (2.5)

becomes

,.)- - (2o5a)

The equation of motion is as follows

where - is the stress tensor Cue *.o viscosity which is usually

assumed -to 1 linear homogeneous iPunction of rate of change of

velocity. The i J co.zponent of tWv stress tens or ,m"nay be

written as follows:

wherra i,j 1,2,3. Subscript i or j refers to the i or J con-

ponent of the vector respectively. u, is the ith component of

velocity vector q and x. is the ith component of cartesian spatial

coordinate*0  joif i J, r ;1if i J./'is the ofhim17

coeffIcient of viscosity, We assure that the second coefficient

of viscosity is -2 . For incompressible fluid with constant

vi cooity, the viscosity terms way be greatly simplified and

e.4'Aation (2,6) becomes



X Y %;P(2. 6a)

where M 0V

It is an empirical fact that thore is a functiona] relation

between the density P , the pzessure,.ý and tio temperature T

of a fluid. This relation is knewn as equation of state, For

gas dynamics, Ilie perfect gas lau. is vuisuly used wulch is

- (2.8)

whore R is the gas constant. In ruagntogasdyramics equation

(2.8) is also use,] as the equation of state.

In magnetohydrodynamics, eqiation (2.3) is replaced by

P :constant (2.8a)

which is asswu.d to be known.

The last relation is the ewrgy equation which is

a~ rE (2.9)

"- where the summation convention is used, i.e

S'iX" 8 -x C•xa and

Et -" rlz ÷•÷ •
I = internal enerrf of the fluid per unit mass

= CýT for •evfect gaS, CV 2 specific heat at constant volume,

EU EiEi Z• electric energy per unit volume°

S+A



Sil i i : ma-netic ei.r*r per unit voluw'eo

1--2 rate of energy produced by external agencieu. For adiabatic

system Z O0

" iJ component of viscous struss tensor givein by (247).

' ij component of electrorag-etic stress tetsr

K = coefficient of heat conductivity

Si X ith component of the Poyrting vector S. where

-P -P -- 0

$: E cX H

qrd a ith component of the radiation e•nergy flux.
I

HEi % RA

% rate of radiation energy eniasion per unit volume.

RA rate of radiation energy absd6-ption per unit volume.

In the case of incompressible fluid, i.e. magnetohydrodyna-

mics, if we assumw that the coefficient of viscosity/k is

constants we imay solve the unknowns H,~ J~i andý

from equation (2.1) to (2.6).without considering the energy

equation. After these unknowns are found, equation (2.9) gives

the temperature. For compressible fluids, Ieeo magnetogas-

dynamics, we have to deal with equations (2,1) to (2.9) simul-

tan sously. In the following we shall review briefly the present

status of magnetohydrodynamics and magnetogaadynamicso
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3, ,mortant Paramaters in etohdrod•_t mic•.

1iŽ consid-:r only the casees shere the ',,elocitf of the flow

q Is much siw-laer t~ian the velocity of li,ht C. The relati-

vistic effects may be omitted. Since the irergy in the electric

field is of th:' order of q 2 /C2 of the energy in the magnetic

field, it this case, the energy in tho electric field can be

n1.1glectedo Cc 'sequiently in ordinary mlagnmtohydrodynamics, we

considar only he interaction between the velocity field qv and

the magnetic f .eld Ibo In this approximation we may putte Z 0

In the fundame'tal equations*

The fundaiental equations for magnetohydrodynamics may be

obtained from c•quations (2.1) to (2.6) in tha following non-

direnalonal fo - , 7 :.

cT*W (3.1)
P1 7,f A71 f (A .

~ (3.2)

• aere -the non-dimensional quantities are defined as follows:

L

RH 2id.UA 0 4

1' U ;



U is the characteristic velocity, L is the characteristic

length and % is tho character-ztic magnetic field of this

system. The rroble'. is 'to solve the unknovi-, p*, j and 7

in terms of the important paratiters Re, % and Rv.

The meanings of theae three Important parameters are as

follows:

(1) % is the well known .ynolds number which character-

izes the viscous flowo
-nertial force a UL (3.5)

Vicous force J UL(3S
(2) % is the magnetic pressure number which is the ratio

of magnetic pressure " , ,say, over the dynaOi

AR :. V)#ti #•_ sa, ae thedynmiPressure fe, U2 /2.

RR=magntic ]2Maur* 4:! 149. (3.6dyamcresue. U U4 (.6

Only when is of the order of unity or larger the fluid flow

will be affected by the magnetic fleldo If Ef < < I, the term

due to magnetic field in the equations of motion may be negleted,

and the 'qwill not be affected noticeably by 4.

(3) ,r, is the velocity number which is

R U (3.7)

where Ve . "Ve" may be regarded as a characteristic

velocity of which the magnetic field is moving through the con-

ductor. If U? > Ve, the field is practically compelled to

follow the motion, the magnetic field will be greatly irnfunced



by the motion. On the other hand, if U (( Va, the mapetic

field will not be influenced noticeably by the motion. This

is the reason why the magnatohydrodynamic d.snsion L iU very

large so that Vv is very small.

4. Solutions and Properties ofthe Equations of ! etobyo-

dynamics.

It is well known that there is no general rsthod of solu-

tion for hydrodynamical equations alone. Thus it is much more

difficult to ir-estigate wagnstohydrodynamiceo One of the first

stepa to understand magnetohydrodynamic equations is to find

some simple exact solutions of magnetohydrodynamical equations

in order to bring out its essential features. One way to find

such exact solutions will be the generalization of some well

known results of ordinary hydrodynamics. The following given

soem of these results:

(a) Two dimensional steady flow between parallel plates.

Oonsider two parallel plates situated in the plane

X2* x ± 1 respectively, x2* being one of the non-dimunsional

spatial coordinates xi*. let only one component (x* - wise)

of velocity be different from zero and be a function of x2

only i *(x2*) Furthermore we assume that there is a

uniform external magnetic field 40 which is in the x2* - direc-

tion. It should be noticed that if Ho is in the xl* or ,* -

direction, the velocity field will not be influenced by the

agmatic field in this case. Under these conditions, the



equations (1.1) to (3.3) give

-- "• _•."'•(4.1)

where A M Re dj , Av r (4i.2)

The general solution of equation (4.1) is

where A. B and C are arbitrary constants to be determined from

the boundary conditionso

t1) Plane COnette flow. The boundary condition. ar x* a o,

u1* aO0; X2 * a + 1, ul + Is 1,X 2 * a.10 ul* a .1. Equation

(4i.3) becomes
* = sinh k ,* (4)

This flow corresponds to the flow. between two parallel Infinite

plates moving in opposite direction with velocity ±h U and at the

location X2* ±a 1 respectively. There Is no pressure gradient

in - direction*

Zf " tends to be sero, equation (4.4) becomes

U1* a X2* (4-;)

which In the linear velocity distribution of ordinary bIrdpd

naIvck. t

71 •!k. is very large, k--,-O , then



except x1*--- 1. For very large value of k, in the central

portion between the two plates, the velocity is almost zero aid

then increases very rapidly to the values 1 near x 2 * s*

This is a typical phenomenon in magnetohbydrodynamics of larp k.

The reason is due to the fact that the magnetic field Increases

the total shearing stress of the flow field. Near the walls the

shearing stress due to the magnetic field tends to zero, the

total shearing stress will be largely produced by the visoo

force only As a result there will be a large velocity gradient

near the wall. This effect Is qualitatively similar to that of

turbulent flow. In turbulent flow the total shearing stress of

the flow is much larger than that of the corresponding lamunar

flow. But the turbulent stress will be zero at the wall; thum

there will be a large velocity gradient near the anll of tur-h

bulent flow to respond to the large shearing stress of the flow

field.

(ii) Plane Foiseuille FLow, 6,7 7ie boundary oonditione ar

X2* 1, UI* 8 0; Z2 * a O, ul* a U Equation (4.3) beco•sm

- -& -

if k-4, (i(.7) becomes

Ul (4s.8)

This is the plane Poiseujls flow of ordinary hydrodynamis. If



U - I I I I IW I I n i I

S---,oo

except X -- 1, hence

(I•9)

except 2* a L Here again we have a large velocity gradient

near the walls.

After the value of uj* Is obtained, the induced magnetic

fileld in X, direction ISand the pressutre1 * may be obtained

by quadrature.

where the boundary conditions X2 * ±1=tIt 0 am used and

%wner A .and B awe constants. A is the pressure gradient :in
p p p

X, direction, (dp*/d11 *) S in the pressure at ze a o,

X2 1. It is interesting to notice that zj* wine preasure

variation Is the sawe here as that in the ordinary hy dodynaide.o

?he magnetic field introducus the variation of pressure in the

x* - direction. This point again is similar to the case of

turbulent flow of ordinary hydrodynamics.

(b) Other simple eiteady flows. There are mny other simple

steady flow exact solutions had .been found, e. g.:



(i) Flow IT a circular pipe under an external radial mag-

netic field, (ref. 8)

(ii) Flow in a rectangular channel under transverse magnetic

fields (ref. 9),

(IMi) flow between concentric circular cylinders under cc

stant axial magnetic field (ref. 10). In this case, the vsi,3c±,

distribution is not affected by the presence of the magnetic

field.

(c) Analotr between magnetic field and vorticity.

There is a formal analogy between the vortcity E of

ordinary bhdrodynamics and the magnetic field R of maugntobdro.-

dynamic1 6 o The fundmental equations for vorticity arm

7 ~(LI12)

The fundamental equations for the magnetic field H axe

a~-0

where wt• z magntic diffusivity.

Since equations (L.12) and (4.13) are identical in form,

we may apply all of the known theorems of vorticity in ordinary

hydrodynamics to the magnetic field of mngnatohyd:rodynadcs.o

For instance, from Rallholts's theorem, we may show that when

conductivity 6 Is Infinite, le.A,,' O, the lines of magneti

force move with the fluid,



5. Stability of Laminar Flow in Magnetohydrodynaaics.

It has now' been generally recognized that turbulent motion

is the more natural state of fluid flow, and the laminar motion

occurs only th,, Reynolds umber is so low that the deviations

from it are liable to be damped out. In cosmic conditions,

where the problem of magnutohydrodynamice is important, becaue

of large dimensions, I.e. large Reynolds numbers, one would

expect that the flow will be mostly turbulent. There are two

problem. of great interest in these conditions. One In the

problem of stability of lminar motion with respect to It ik-

itesimally smanl disturbances. It should be noted that

instability does not necessarily lead to turbulent motion# it

could lead to another state of laminar motion. Another problem

Is* of course, the turbulent flow itself*

The ordinary theory of stability of laminar flow has been

extended to include the effects of magnetic forces. All of

these investigations consider those cases where the basic flow

In not affected by the magnetic forces but the disturbancess10 .

In al these cases, it was found that the magnetic field tends

to increase the stability of laminar flow because the distur-

banwe tend to be dasped out by the eddy currentso

It is well known that the stability of the flow Is greatly

affeoted by the profile of the basic flow. It will be of Interest

If the effect of stability of laminak flow by the magnetic field

should be investigated uhen both the effects of induced magatic

forae and of the change of basic velocity profile occurp e.g.•,



the problem of parallel flow With a transverse magnetic field

discussed in f 4.

Awther interesting point is that the Squire's theorenu

for the relation of three dimensional and two dimunsional dim-

turbances in the stability problem of parallel flow, does nwt

In general, hold in magnstob•drodynauics.

6. Tu~rbulence. in 'Agn9tohyrodynamics-

The interaction between the electromagnetic and tim hW1ro-

dynamc forces in an incompressible conducting fluid in turbulent

motion was first studied systematically by Batcheler 1 6 and was

further developed by Chandrasekhar17 and otherse Ihs fundamental

equations are still equations (3.1) to (3.3)o Ub review nowe of

the results of turbulent flow as followsa

(a) O(rOwt1 6 of electromagnetic energy In a turbulent motion.

Batchelor considered the disturbance of electromagnetic enr•r

produced by the turbulent motion in the absence of external e@lO-

trical or magnetic field. Ho assumed that both the turbulent

velocity and the electromagnetic fields are stationary random

functmicns. From equation (14.13), it mna be shown that the rate

of change of the average amount of mairntie energy In unit vobm=

of fluid IS

-_ ~ - & I 2 l(6.1)

ihers the subscript H refers to the component in the direction

of the lines of magnetic force and the repeated suffix i Indicates



-16.

summation ovor three orthogonal components.

In the absence of electron.magnetic effets, for Isotropic

turbulence, iU is well known that the mean square vorticity

satisfies the equation

--• -• _ / ,,/; -• /•,•t (6,.2)

Here the analogy of magnetic field and vorticity may be applied

by comparing equations (6.1) and (6.2). From experiments of

ordinary isotropic turbvlence it was found that the rate of

chang of Is approxitely zro, i.e. the production term

and the decay terma &)i)'~j are approximately

In equilibrium. If one assumes that the statistical distriba-

-pV
tioe H are approximately the came as those of Z.7 the tw

contributions to d I H12 /dt will. be in equilibrium if

ifaA) I > hIj , ill decay to zero and if L). <4)~ w131

inoase. Hence the criterion for the energy of the disturbing

magntic field to increase Is

(6.3)
(b) The invariant theory of isotropic turbulence in

naetoobydrodymace17.

Qhandrasekhar extended the statistical theory of Isotr•epi

turublence of ordinary hydrodynamics developed by Taylors

von Karman and others to the case with the presence of electro-

magmtic field. It Is convenient to write the fundamental

equations (3.3) to (3.•) in the following form



TF- f 544 (9i q4 41)J 4)MI'H

where ri = ( ).& iH hi has the dimensions of a velocity.

Subscrints I and k refer to the ith and kth component of the

vector respectively and the summation convention is used. Ih

the detlvatlon of (6o4) the solenoidal properties of the veeftr

'T*W r~are used.

In the statistical theory of homogeneous and Isotropic

turbulemae ref Ty2or and von Karmann we consider the correlation

between the fluctuating quantities at two points (P(z: 1 ) and

P1 (4 ) in space. From equation (6.4),v e see that the foll.w-

lIg correlations should be considered:

Double correlations:

Triple correlations:

_......_ (6.6)

where the prime* and the lack of prime refer to the quantities

at the point P1 and P respectively.



For homoerneous and Isotropic turbulence, we my apply

the theory of invariant to the tensors of (6.5) and (6.6).

For double correlations, we have

Cz

-
14

,q;,g =. R(6.7)

where7~: 1  fij ,Q.Band Itam saular

functions of r and t only, t4 o Lr/.S~-,'

U the usual alternating symbol,, M':
&- rr

Simdlarly for triple correlations, we have

. i,,: ,, .F,. )

?S

(6.8

41 R;v'f '), w C-i 6,4



where T, S,U, V, P and ,1 are scalals which are functions of r

and t in homogeneous and isotropic turbulence. Prime on these

scalars refers to partial differentiation with respect to re

From the funda-rental equation (6.4), the equations gov-

erning these scalar functions may be found, The equation governing

Q, S, and T is

.Ž4V -(4*)(-)*oJ5 , -d (6.9)

This Is a generalization of the von Kaeran - How'arth equation to

magnotohydrodynanies. SiUilar to ordinary hydrodynamics,, equation

(6.9) gives an invariant

fQ(rir r O.T r 6 )

7his Is known as loitsiansky invariant. The existence of such an

invariant shows that no transfer of energy from the velocity field

to the magnetic field takes place among the largest eddieo.

The equation governing H and P is

(6.11)

and the equation gpverning Rp U, V and W is

(Y:4=- I- S.). -)U- V) +•. .,J (•.,o)• ,,

From equations (6.11) and (6.12), we may obtain the invariant. of

the Loitaiansky type for H and R respectivelyo

Thw rate of dissipation of energ may be obtained from (6,9)

and (610) by taking the limit of r.--PO. V have then



or

where 2 and R2 define the curvatures of the curves of longtudtinal

correlations 9, o" and e at r a 0 respectively. They represent

the smallest eddies in the turbulent field, Equation (6.14) shows

that the rate of dissipation Is due to viscous dissipation and

production of Joule heat by electrical conductivity,

7. ragnetophydrodynam-c experiments.

7here are very few experimental investigations of Imngto-

hydrodynantc phenomena because it is necessary to have a strong

mgintic field within a lare volume in order to obeerve any

appreciable magnotohydrodynamic effects. It is rather difficult

to achieve in a laboratory.

The first magnetohydrodynamic experiment was done by ffartmann6s?

and Lazarus 7o 1ey investigated the flow of mercury in a pipe

perpendicular to a magnetic field. They found a qualitative agree-

ret between theory ( j 4) and experiments for laminar flow and

discovered that the magnetic field has an influence on the transition



between laminar and turbulent flow,

ehnert3 mecently rexiAL-noe Hartmann's data and found

that the critical velocity for transition was proportional to

the magnetic field strength:. Lohnert also measured the torque

transmitted by mercury contained between two mrin-conducting

cylinders rotating In a mag-etic field parallel t3 the axis.

For laminar flow, the effect .ue to magnetic field is small.

For non-laminar flow with the otter cylinder at rest and inner

cylinder rotating, t'ie torque was found to decrease when the

magnetic field was applying. lhnert planned to use molten-

sodium instead of mercury in his new experiment becaime of

higher conductivity and lower density than mercury. For

instance the value of R 2 for molten sodium is about 35 times

that of mercury in the same ph~mical conditicns. However,

there are many experimental difficulties to use molten sodium.

lehnert 3 also showed a very interesting simple experiment

to demonstrate the magnetohydrodynamic phenomenon. Consider a

cylindrical glass vessel containing mercury. Without magnetic

field, if one moves the marcury with a peg, the surface is

agitated and complicated wave pattern occurs, particularly ifhen

one hits the ve6&el, surface waves occur Just like water surface

waves.

If the vessel is placed in a strong mnetic field perpen-

dicular to the surface of the liquid, the surface waves disappear.

The liquid no longer behaves like water but like thick syrup.

If a peg is being moved in the liquid, the surface shows some



large whirls all with an axis of rotation parallel with the

magnetic field linea.

Part IL MAGIC 'TGASDYUAMICS

8. Iwportant paramewters in magnetoLasdynamcs

At very high temperature, the gas may be ionized, and the

interaction of electromagnetic forces and the gasdynamic force

may not be negligible. Furthermore, under such conditions, the

compressibility effects should be considered. In this case our

fundamental equations are (2.1) and (2.9). This system of

equations has not been investigated yet. Only he simple ons-

dimensional waves of infinitesimal amplitude, Alften's wave

(ý 9) and shock waves (i 10) hav6 been discussed under further

simplified assumptions. kb shall briefly review these results

later. First we should like to bring out the important para--

meters in magetogasdynumics. We shall restrict ourselves to

the adiabatic case ( C)': 0) with negligible radiation lost

(qft : 0). Furthermore, we shall consider the case where the

velocity of the flow q" is much smaller than the velocity of

light C so that the relativistic effects may be neglected and

that the enervy in the electric field is negligible in comparison

with that in the magnetic field.

Under these mugnetogasdynamic approximations, the fundamental

equatLoa (2.1) to (2.9) may be reduced to the following non-

dimensimal forms



(8.2)

ah (8.3)

.••_)_/L. fr-i) Al

ht*1 .. JdPet

A (8.6)

1A') M Je Cý+RM. Iv D

(8-5

other non-dimensional quantities are seas as those defined in

(3.').

Frmthese equations urn see that as far as the magnetic

foroes are concerned, the important parausters are stiLll HB and

H,. 1 other new par'ameters are those well known paraiutreri8

gasr dfais ioe a~ 'C a= r.



9. 4agnetogasdvnamic waves - Altren's wave.

The general solution of magnetogasdynamics is very diffi-

cult. In order to bring out some essential feaitures of magneto-

gasdynamics, we may investigate some very simple cases. One of

these simple cases is one dimensional wave motion of small

amplitude. Alfven was the first one who found such wave in

magnetohydrodynamics 8. If there is a homogeneous magnetic

field No in an incompressible and inviscid fluid of density P

and infinite conductivityd-= o , the disturbance in this liquid

winl propagate as a wave in the direction of Ho with a speed of

VH= -4. (9.1)

This wave is known as Alfvente wave.

Alften's analysis has been extended to the case of compres-

sible fluid by several authors1 9 '2lo The following amnasis was

due to van de Hulst 2 1 .

Strictly speaking, to investigate the one dimnsional wav

motion in magnetogaadynamics., we should use the system of equation

(8.1) to (8.5). Eut Van do Hulst made the following simplified

assaptions:

(1) The enery equation is replaced by a simple adiabatic

relation

= (9.2)

where is the perturbed pressure from that of the gas at rest

Sis the material displacement from the position at rest

and the fluid velocity qtis



C) W

.4. (9.3)

C Z P 2ao: comp-ressibiLity factor, ao is the velocity of Bound

of the gas at rest,

(ii) The ccefficient of viscosity is assumed to be constant.

(iii) All the quantities are assumed to be function of one

space coordinate Z and time t only. The perturbed quantities are

assumed to be small so that the equations for the perturbed quan-

tities may be linearized.

(iv) A hivogeneous magetic 1i.eld H is applied. We wish to

investigate wave travels in the Z-direction. The x-axis is chosen

perpendicular to R so that the components of H are (0, Hys ie).

If we substitute the assumptions into equations (2.1), (2.2),

(2.3), (2.6), (9.2) and (9.3), simplify them under magnatogas-

dynamic approximations and linearized, we have two independent

sets of linear equations for the perturbed quantities; one set

contains the perturbed quantities, hby Exi Jxx qy, qs, p' and

1WS and the other set contains h~, LR., ýr qx1 , JS and 5

We are looking for periodic solutions, in which all perturbed

quantities are proportional to

e (9A)

where W has a given real value. Only for certain eignvalues

of k, such solution exists. These ei1envalues of k give the

different modes of wave propagation and they are determined ftom

the determinantal equations of the two sets of linear equatiore



for the perturbed quantitits. These two determinantal equations

after simplifications are as follows

-C7 _ TX *4Ae) ) (9.6)

where

Ha r

Since and f 'are linear functions of x, equation (9.5) has three

roots of x and (9.6) has two. These roots are the eigenvalue we

are looking for. We shall not review all the special oases for z

here but a few interesting ones.

(a) 1b external migntic field,

The roots of (9-5) are

2 : X, .e - . a damped electromagnetic wave (9.8a)

--- a .. viscouswave (9.8b)

There is no coupling between these three fundamental modes* The

zoots of (9,b) are those of (9.8a) and (9.8b). The difference of

%odes with the same values of x Is a difference of the plane of

polarisation.



(b) Propagation in the direction of the external field

g a 0, The sound waves are not affected. The other modes are

coupled and follow from the equation

(Jr..(,,1,,4ex m Xak (9.9)

(c) Propagation perpendicular to the external field.

1 a 0 but g/x.,*O. The viscosity wave of (9.5) and the electro-
Kx
magrntic wave of (9.6) are not affected. The viscosity wave of

(9.6) to slightly affected. The two other important modes of

(9o5) are coupled and satisfy the equation

(ti - .-- X5 X (9.110)

(d) Undamped waves. If the conductivity is sero, we have the

ordinary undamped light and sound waves.

It the damping terms are omitted, which correspond to infij-

mite conductivity (0 6= wo ) and zero viscosity "/4 : 0), the

equations (9.5) and (9.6) reduce respectively to the following

s9Mps form

I.... .. . - - , (9.11)
X ;AtC'X' X -XS

and

X Q (9.12)

Us two solutions of (9.11) depend on the relative magnitude of

sound velocity of the iedium a% and the velocity of the mgnmto-

bldrodynamiuc wve Vir gomr Is a slow ode with wlocity smalle



than sound velocity and a fast mode with velocity larger than

sound velocity. If the magmric field increases, the slow mode

changes from the nolution x a i to tV* solutio.1 x a (g + 1) zr.

"This mode represents a regular Alften's wave with velocity VE as

long as VH is much smaller than as, It changes to a kind of

reiarded sound wave for larger values of VHO The fast mode starts

o as an ordinary sound wave bu;t changes to a modified Alfren's

wave as soon as VH is larger than as.

(e) Slightly damped wave. If both "a" and "b" are sma8ll,

some first order effects due to damping may be found from (9,5)

and (9.6). We will not discuss them here.

10. Shock waves.

In the last section, we consider the propac.at.on

of waves of infinitesimal amplitude in a compressible fluid. 7he

study of waves of finite aplitude in magntogasdynamics has not

been carefully carried out. Only the analysis of nanguea of

the Pankine-Hugoniat equations for shock waves in an infinitely

conducting fluid has been made by de Hoffman and Teller 2 2 . guy

discussed both relativistic and norn.relativistic shock waves.

Pat we shal restrict ourselves to the non-relativistic cases

which have been systematically interpreted by Thlfer 2 3 .

One of the'maln assumptions in de Roffman-Teller analysis

is that the conductivity of the fluid is infinite. Even though

the conductivity of the fluid is actually finite because of the



large dimension of interstellar clouds in which such an analysis

is applied and the large conductivities of stellar materials,

such an assumption is a reasonable oneo Under this assumption

the lines of magnetic force move with the fluid LG- V0(3~.
Another assumption is that the fluid is assumed to be an ideal

gas of a constant value of ratio of specific heats ýr.

For ordinar7 shock relations, if we know the conditions in

front of the shock, the conditions behind the shock depend on one

parameter, the strength of the shocks e.g. the pressure ratio

across the shock. In the case of oagnetogasdynamics, the shock

relations depend on three parameters:

(1) Strength of the shock. We may use the pressure ratio

Y P2/pl as a measure of the strength of shock.

(ii) ftgnetic field strength. We may use the ratio of

magnetic energy per unit mass to internal energy Q(a -1) as a

measure of the importance of the magnetic field strength, her!

(Iii) The direction of the magnetic field. We my use the

angle betwen magnetic lima of force in front of tih shock and

the direction of propagation of shock 4 or

s a measure of the direction of magnetic fild, It subscipt I

rfer to values in front of shock and s0script 2 refs= to

waves behind the shock,



According to the parameter slq we have the following three

cases I

(a) Parallel shock 8I M 0

In this ca4se, tho magptic field has no influence upon the

gas dynamic phenomena. Classical Rankine-Hugoniot relations for

shock hold in this case0 .

(b) Perpendicular 3bock sa z oO.

In the coordinate system of stationary shock with velocity

ql in front of the shock and perpendicular to the shock fronts we

have the following shock relations in magnetogasdynam.cu.

f Q =, =r ft (10.3)

~ (10-4)

/-;,. (10.6)

Equations (10J3) and (105.) have exactly the same form as in th

case of ordinary shock if one takes into account the magnetic

pressure and energy by (10.6) and the coupling of uagnstic ad
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velocity field by (10o7V whi,,h is a consequence of infinite

conductivity. Thn magnetic field is compressed by the shock

exactly to the same extent as the fluid

H a = - f-&- (10.8)
H,

1 equation for I in terns of T and Q is obtaIned from

(10.3) to (10.7) as follows:

(7-,* -," Y- E*) o (.9)

When Q : O, it reduces to the Rankine-RugDniot relation. The

presence of the magnetic field is seen to cause a decrease In

Compreussion Y, The Mch numb~ers q2/a 1 andl q2/&2 are increased

due to the presence of the magnetic field for the asa reason.

(o) Oblique shocks

The oblique shock relations of this case has been worked

out by Helfer. Numerical results for Q vs Y-1 at various values

of el are given by Helfer In reference 24. It is interesting to

note that for very weak shock, YT1, the shock relations tend to

be the value of wave of infinitesinal amplitude discussed in 1 9.

Another Interesting result is that for weak fields, the magnetic

field Is alays mplified by the passap of shock fronts. ThIs

Is Inportent to explain sore of the astrophysical phenomena23 .
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