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1, Introductioa.
Electromzgiatic phenemena in solid conduziors have bsan

well krown for a long time but ths electromagretic phenomana
in fluids, licuid or gases, are not so well known, Only
recently the problem of magnetohydrodynamics has been attract-

ing the attention of some researcr: workers because it is

important in astrophysics, geophysics and the behavior of
interstellar gas mre.s:-:es,lﬂh The main difference in the electro-
mooetic phencnna in fiwids frew thess Sr gciids Lo due to the
fact that mechanical forces deriving from siccivic currents may
procuce fluid d-momic noctions ond the Iluid dynarmic motions may
produce electio wapne’ic phevonerr. . In cther wroids, there is an
interaction bet:cen the electron: netic forees u-d the ordinary
fluid ¢dynamic forees. This dnler.ction phenomina tecomes
imprrteant whenevser the slectromsgmtic forces are of the sane
ordar of magritade as the inerti:1 forces or viscous forces of
the fluid. Actually the discovery of magnstohydrodynamics was
mada in cosmic physics. Magnetic phenomena of different types
has been observad and needed an explanation. In ordinary labore
atory experiments of discharges of electrizel current in gases,
the mechanical effects are usually small, the results of these
experiments cannot be used to expl.iin the electromagnetic phene
omena affecting the motion of gaseous masses of cosmical dimen-

sions, Hence study of electromagnetic phenomena in liquid cone

ductors has been extensively carried out where in some respects
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the conditions are more similer to those occurring in cosmical
physics, Thus che magnetohydrodynamics has been foun!. The
result of magnetohydrodynamice has alsy some cngireering

'.. interest because of tie utility o7 induction fiow-meters, which
rely on the genz2ration of a measurable potential difference in
the fluid in s iirection perpendicular to the motion and to the

mzgnetic field.

Recently ta2cause the interest of hyperscnic flow of missiles,
the interaction of the alectromzgnatic force and fluid dynamic
forces in gases are not negligible and may be produced in labe
oralories by the uvse of shock tube., Thus some preliminary
studies of maenctoisdyramics has been initiated. But mach
hag to be done eforc a complete 1nderstanding of these phen-
omena is possible. In this preseri paper, I shall make & brief

review of the present statns of mignetohydrodynamics and nmagneto-

gasdynamicéc

2. Fundamental Equations.

In studyin; the magnetic fluid dynamics, one has to deal
with the fluid dynamical equations and the elsctrodynamic equae
tions simultanevusly. In the general three dimensional flovw
there ars 16 unincwns in the problems of a mgmtofluﬁdynuic.,
1.8.3

(a) The magmetic field strength ¥ (3 components)

(b) The electric field stmngl’:h? (3 components)

(e¢) The electric current density TG components)




(d) T™e excess 2leciric charge [

(e) The fliid velocity vector q (3 components)

(£) T™e pressure of the fluid b

(g) The -deﬁsity of the fluid °

(h) The temperature of ths fluid T,

FPor these unknowns, we hame to find 16 rolations which are
the fundamental equaiions of magnetofluiddynanics and which are
givan below:

The axwell equntionss ara assumed to be true in magreto~

fluiddynaics. “hey are six in mmber and are as follows:

¢

vxd = T, 2EE

Py (2.1)

—

V;:E_’: — 2&:..'1’
oX (2.2)

vhare V is the gradient operator. Gibbs vector notations are

used. t 13 the time. € 1is the dielectric constant and M, is

- X
MKS‘ ’V , .
the magnetic permsability. The MSK unit system is used, . s -,
The current density equation is N \
] 7 st » eard - .
- - > =P T~ ‘
J = (Er h TaH) e L2 5 ( (2.3
{~y 3

wvhere ¢ is the electric conductivity, 'I‘he terms with ?am the
coupling terms ith the fluid dynamic equations which represent
the interaction phenomena,

The conser-ation of electric charge gives

20 .
O+ 2l (2.5)
v o+ oy O

| | J




Equations '2.1) to {2.4) are the electronasnetic equations
wi th coupling terms Jue te fluid dynamic motion.

The conservation of macs, i.e. the equation of continuity
in fluid dynamics, 1is
S« ".'-,"5‘3' "\s z o (2.5)
For incompressitle fluid,y 2 constant = }'; s equation (2.5)
becomes

F e (2.50)

where . “is the stress tonsor due o viscosity which is usually
ggsumed to te lirear hombgeneous function of rate of change of
velocity. The 1 J component of th: stress tensor .‘;""my be

uwritten as follows:

Y i «l
TG e S ) Gy (2.1)

-

whera 1,3 = 1,2,3, Subscript 1 or j refers to the 1 or j come
ponant of the vector respectively. u, is ths ith component of
velocity vector q and x5 is the ith component of cartesian spatial
coordinats, 6,;, 204173, o,;,a 14f i+ Jo A 4s the ordimary
cosfficient of viscosity, We assume that the second coefficient
of viscosity is =§ Ao For incompressible fluid with cons tant

viscopity, the viscosity terms mmy be greatly simplified and

eqiation (2.6) becomes
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f’%f-\/"v?.] -v,br6'5—,,qc,_jy}])+/4\73 (2. 62)
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vhere viz v v .

It is an empirical fact that thore i3 a functional relation
between the density P s the pressure /f and the temperature T
of a fluid. This relation is kncwn as equation of state, ‘F‘or
gas dynamics, the perfect gas law is usuilly used which is

A =FRT (2.8)
whore R is the gas constant. In magnetogasdyramics equation
(2.8) 1s also used as the equatiocn of state.

In magnetchydrodynamics, equation (2,3) is replaced by

}._, s /: = constant (2.8a)
which is assumed to be known,

The last relation is the energy equation vhich is

2L -t-/E f-,,b) Q

ox 1 di 3 3K/ )ax,,«

(29)

3 o8; bY
+ ——— —— f o -___5' -
s ( 9";) ox, T Ef “’ ox; = °

where the summation convention is used, i.e,

a‘(; = S U
o é‘f t 5 Yo%, and

E, = r I+ U0+ Uy
I 2 internal erergy of the fluid per unit mass
2 G, T for reifect gas, G, 3 spccific heat at constant volume.

Up = -i- EiEi = electric energy per unit volume,

- . ]




Uy = /-:,%Hini < magnatic eiergy per unit voluse,

‘Q—QS rate of emorgy produced by external agencies, For adiabatic

ot
sysiem %P- z0
yB an. = Mo
- /Cr;" = 1j componsnt of viscous stress tensor giwven vy (2.7).
v ’Cf; 2 i) componsant of electroragmetic stress tensor

?

w €857 e Hig ~ Lo e vt 1y ] 514
) K = coefficient of heat conductivity
Sy ® ith componsnt of the Poyrting vector E: where
3’ z i‘.'.x ;l’
Qpy 11;h component of the radiation energy flux

2 - R
Rg 2 rate of radiation energy emiassion per vnit volume,
Ry S rate of raiiation energy abso:ption per unit volume,

In the case of incompressible fluid, i.e, magnetohydrodyna-

!/ mics, if we assume that the coefficient of viscosity /¢ ia
- -
constant, we may solve the unknowns H, ?, Jile, ; and,f

from equation (2.1) to (2.6) without considering the energy
equation, After these unknowns are found, equation (2.9) gives
the temperature. For compressible fluids, i.e. magnetogas~
dynamics, we have to deal with equations (2.1) to (2.9) simle
temsously. In the following we shall review briefly the present

status of magnetohydrodynamics ani magnetogasdynamics,




[

Part L, MAGNETO-HYDRODYHAMICS

3. Importan! faramoters in Magnetohydrodyiwrmics.

e consid»r only %the cases vwhere ths velocity of the flow
G 33 much smel er than the veloeity o 1izat C, The relati-
. vistic effects may be omitted. Since the ~rergy in the electric
£is1d is of th> order of q2/C2 of the energy in the magretic
fiald, in this case, the erergy in the electric field can be
neglected, Cc 'seguently in ordinary nagnatohydrodynamics, we
considar only he interaction between the velocity fleld 7;’; and
the magnetic field I, In this approximation we may putfa =0
in the fundamental equations,

The fundaiental equations for magnetohydrodynamics may be
obtained from aquations (2.1) to (2.6) in tha following none-

dimensional fo .
3 .J

"R/ 9F Fu ’;’a v el
a?i + {3 V)3 — Ra (HA *) K ‘~V*(7£ fR‘(B:E

2H* (G o) B = (T )T = 7 o o

oA R (3.2)
»

vh3 = o ? (3.1

vhere the non-dimensional quantities zre defined as follows:
—p —>
- : ~ ~3 -3
* - - *. e H * hocnd *- -Q.
) P H=gm ) 9TsL7, e

U
7s*=j.;!';“ Ry et RoLYL R <cauL W

~




U 18 the characteristic velocity, L is the characteristic
length and H, 1s the characteristic mgnetic field of this
4 system. The rroble: is t solve the unknowns p*, §* and W*
> in terms of tte important parameters Ry, Ry and Ry

The meanings of these three lmportant psramsters are as

followsa:
1) R, is the well known Reynolds number which character-

izes the wvisccus flow.

Ry, =  Jwrtial force = LUL (3.5)
Viscous force A
(2) Ry is the magnetic pressure number which is the ratio

£

2 ~
of magnetic prassure é%{'l'— Ly VH s 83y, over the dynamic

pressure J, /2,
a
- magnetic sure = Aa He/ a—'3'— = ——-”—V 06
Ry = dynamic pgar::um LU/ u* (3.6

Only when Ry is of the order of unity or larger the fluid flow
will be affectad by the magnetic field, If Ry, << 1, the terms
due to magnetic field in the equations of motion may be neglected,
and the ?will not be affected noticeably by E:

(3) R, 1s the velocity number which is

Y

R,= o 4LV = - (3.7)
_ v
where Vo = F/f!-:l:. o "Vo" may be regarded as a characteristic

velocity of which the magnetic field is moving through the con-
ductor. If U> > V,, the field is practically compelled to
follow the molion, the magnetic field will be greatly influenced




by the motion. On the other hand, if UK V , the magietic
field will not te influenced noticesably by the motion. This
is the reason why the magnetohydrodynamic dimension L is very

large so that V, is very small,

k. Solutions and Properties of the Equations of Magnetohydro-

d!emuo
It is well known that there is no general rmsthod of solue-

tion for hydrodynamical equations alone, Thus it is much more
difficult to imvestigate magnetohydrodynamics. One of the first
steps to understand magnetohydrodynamic equations is to find
some simple exact solutions of magnetohydrodynamical equations
in order to bring out its essential features. One way to find
such exact solutions will be the gemsraligation of some well
known results of ordinary hydrodynamics. The following gives
soms of these results: -

(a) Two dimensional steady flow between parallel plates.

Oonsider two parallel plates situated in the plane
x," 3 £1 respectively, x,* being one of the non-dimensional
spatial coordinates xi*. Iet only one component (xl* ~ wise)
of velocity be different from zero and be a function of :2*
only, i.e. ul*(xz*). Furthermore we assume that there is a
uniforn external magnetic field H, which is in'the x," - direc-
tion, It should be noticed that if H is in the x;* or x* -
direction, the velocity fisld will not be influsnced by the
magnetic field in this case. Under these conditions, the
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equations (3.1) to (3.3) give

1%,
L 4 ) AduX
i ol % 4 =0 (4e1)
. ¢ a H 2 &L&
B where /£ :RHRQRV:- --f-f::——-d: (k.2)
The general solution of equation (L.l) 1a
u,*:.f. Cotﬂ'/kX:' + f—,a.imﬁ,kx,f" + C (Le3)

where A, B and C are arbitrary constants to be determined fron
the boundary conditions,

(1) Plane Conette flow. The boundary conditions are X" = 0,
ul* & 03 xz* 841, ul* x+1, )(2* s -1, “1* s »1, Equation

(h.3) becomes

w* = bk x ‘ (o)
This flow corresponds to the flow between two parallel infinite
plates moving in opposite direction with velocity + U and at the
location x,* & *1 respectively. There is no pressure gradient
in x;* - direction.
If "k" tends to be zero, equation (L.lL) becomes
u' = x* (4.5)
which is the linear velocity distribution of ordimary hydrody-
nanics.
If "k* is very large, k—pe@ , then

| )
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:é/':: u* = ﬁ“%g —_— 0 (4. 6)
except xz*—-oi_lo For very large value of k, in the central
portion between the two plates, the velocity is almost zero and
then incresses very rapidly to the valuss * 1 near xo® sti,

Tis is a typical rhenomenon in magnetohydrodynamics of iarp Ke
The reason is due to the fact that tl‘n magnetic field increases
thé total shearing stress of the flow field. Near the wall, the
shearing atress dus to the magnetic field tends to zero, the
tofal '.ahoar:lng stress will be largely produced by the viacous
force only. As a result there wiu"be a large velociti gxidisnt
near the wall. This effect is qualitatively similar to ﬁnt of
turbulent flow, In turbulent flow the total shearing stress of

\ the Vﬂpv is mu_ch larger than that of the corresponding laminar
flow, But the turbulent stress will be zero at the wall; thus
there will be a iarga velocity gradient near the wall of tur-

) bulent flow to respond to the large shearing stress of the flow
field, ' | '

(ﬁ) Flane Poiseuille Flow, 6,7 The boundary conditions are

x* ® 11, uy* = 05 x,* 2 0, uy" = 1, Equation (L.3) becomes

L{l*'___: Coc&»g -;_%ﬂ«ﬂ:{ﬁxf (Le 7)
If kx=>0, (L.7) becomes

This 1s the plane Poiseuills flow of ordinary hydrodynamics, If

k""“’

w
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ﬁ': %jr -

except x,* —» * 1, hence
€ = 1 (4.9)
| except 22* 8 ). Here agaln we have a large wvelocity gradient .
near the walls,
After the value of uy* is obtained, the induced magnetis
f161d 1n x,* = direction ] and the pressure f * may be obtai ned
by quadrature,

* _ | AL
B =R [ Spg] 0w
vhere the boundary conditions x,” = X1, H,} = 0 are used and

K= [’ "f.*ofx:‘

*i

»
')6 = -R, ’g + A,e, X,* + 8,/. (4o11)

where Ap»and Bp are constants, Ap is the pressure gradient in
xl’ « direction, (dp*/dxl’); Bp is the pressure at xl"" 0,
xz':: X1, It is interesting to notice that xl* wise pressure
variation is the same here as that in the ordinary hydrodynamics.
The magnetic £isld introduces the variation of pressure in the
x," = direction, This point again is similar to the case of
turbulent flow of ordinary hyirodynamics,

(b) Other simple steady flows, There are many other simple
steady flow exsct solutions had been found, e.g.:
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(1) Flov in a circular pipe under an external radial mag-

natic field, (ref, 8)
(11) Flow in a rectangular channel under transverse magnetic

fields (ref, 9).

(111) Flov between concentric circular cylinders under cc
stant axial magretic field (ref., 10). In this case, the veloei.,
distribution is not affected by the presence of the magnetiec
field,

(c¢) Analogy between magnetic field and vorticity.

There is a formal analogy between the vortiecity s of

ordinary hydrodynamics and the magnetic field Wof ma gnetohydro=
dynamicsmo The fundamental equations for vorticity y are

V-FL? =0
S ~ .
S T VNIxF) = 0 oS (h12)
The fundamental equations ~f’o::- the magnetic field H are
VeH =0
_P.Z —Vx(é’;g?) = lJ v"l:’ (h.lB)
o4 H

vhere 1= /7&!?': magnetic diffusivity,

Since equations (4.12) amd (L.13) are identical in form,
we may apply all of the kmown theorems of vorticity in ordinmary
hydrodynamics to the mgnetic field of magnetohydrodynamics.
For instance, from Helmholts's theorem, we may show that when
conductivity & 1s infinite, .e..), = 0, the lines of magnetie

force move with the fluid,




Se Stability of Laminar Flow in Msgnetohydrodynamics.

It has nov been generally recognized that turbulent motion
is the more na*ural state of fluid flow, and the laminar motion
occurs only the Reynolds mumber is so low that the deviations
from it are liable to be damped out. In cosmic conditions,
vhere the problem of magnetohydrodynamics is important, because
of large dimensions, i.e. largs Reymolds numbers, ons would
expect that the flow will be mostly turbulent. There are two
problems of great interest in these conditions. One is the
problem of stability of laminar motion with respect to infine
itesimally small disturbances, It should be noted that
instability does not necessarily lead to turbulent motiomn, it
could lead to another state of laminar motion. Another prohlhn
is, of course, the turtulent flow itself,

The ordinary theory of stability of laminar flow has been
extended to include the effects of magnetic forces.. All of
these investigations consider those cases whare the dasic flow
is ot affected by the magnetic forces but the disturbancesi®~Y,
In all these cases, it was found that the magnetic field tends
to increase the stability of laninar flow because the disture
bances tend to be damped out by the eddy currents.

It is well known that the stability of the flow is greatly
affected by the profile of the basic flow, It will be of interest
if the effect of stadbility of laminar flow by the magnetic fisld
should be investigated when both the effects of induced magnetic
foroe and of the change of basic velocity profile occur, e.g.,




the problem of parallel flow with a transverse magmtic fisld
discussed in § ko

Another interesting point is that the Squire's theoreml’
for the relation of three dimensionzl and two dimensional dise
turbances in the stability problem of parallel flow, does mot
in general, hold in magnetohydrodynamics,

6. Turbulence in agnetohydrodynamics.
The interaction between the electromagnetic and the hydroe

dynamic forces in an incompressible conducting fluid in turbuleat

motion was first studied systematically by Batchelerid

and vas
further developed by Chandrasekhari! and others. The fundamental
equations are still equations (3.1) to (3.3)s We review soms of
the results of turbulent flow as follows:

(a) arowtn’® of elsctromagnstic energy in a turbulent motion.
Batchelor considered the disturbance of electromagnetic energy
produced by the turbulent motion in the absence of external elso-
trical or magnetic field., BHe assumed that both the turbulent
velocity and the elsctromagnetic ficlds are stationary random
functions. Fronm equation (L.13), it may be shown that the rate
of change of the average amount of magnetic energy in unit volume

of fluid is

2 B iEE) - A lenlt

(61)

where the subscript H refers to the component in the direction
of the lines of magnetic force and the repeated suffix i indicates
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summation owvir three orthogonal components.

In the absence of electromagnetic effeits, for isotropic
turbulence, it is well known that the mean square vorticity
satisfies the equaiion

Lo T . . a
—_— & L& ~— ‘“ < - ~ P2
A oA - 4 (é))“a i ‘ [ VC-.)‘.’ (6.2)

Here the analogy of magnetic field and worticity may be applied
by comparing equations (6.1) and (6.2). From experiments of
ordinary isotropic turbulence, it was found that the rate of
change of l (3?‘*! is approximately zero, i.e. the mroduction term
I;&,{;_’g )a: and the decay term <) |Pw;|* are approximately
in equilibrium. If one assumes that the statistical distribue

tions ?are approximately the scame as those of @ » the two

contributions to d [ /at will be 1n equilsbrium 1z 2
ifg),}d, “'_'}'a] will decay to zero and irlJH<l) s l Hz’ vill

increase. Hence the criterion for the energy of the disturbing

magnetic field to increase is
s) JHe & > 1 (6.3)
(b) The invariant theory c;f isotropic turbulence in
mgnetohgdrodymxnear'.
Chandrasekhar extended the statistical theory of hot-ropic

turnblence of ordinary hydrodynamics developed by Taylor,
von Karman and others to the case with the presence of electro-

. magnetic field, It is convenient to write the fumiamental
equations (3.1) to (3.1) in the following form




ul‘{w

a,v- 5%, (q’ql »gzﬁg)~~7i~§~(f’+~’~f£4&)+qv 4,

. oA

o (6.4)
3:;'—— *‘)_i:g “"% -j,g‘(/) = ‘J” V“'/ﬂ,'

where h, = ( )i Hye hy has the dimensions of a velocity,
Subscrints 1 and k refer to the ith ard kth component of the
vector respectively and the summation convention is used. In
the derivation of (6.4) the solenoidal properties of the vectors
QTand F are used.

In the statistical theory of homogeneous and isotropie
turbulence of Taylor and von Karman, we consider the correlation
between the fluctuating quantities at two points (P(xi) and
14 (x’_' ) in space. From equation (6.L), we see that the follow=
ing correlations should be considered:

Double correlations:

v |, Ak ui Ay’ (6.5)
Triple correlations:

. 4 kg uf J?;J?{ax" arif Ay Aoy 4f
(6.6)

Graj- “h) Ay and 4 (R o - Af )

vhere the p'inu and the lack of primes refer to the quantities
at the point P/ and P respectively.

—_—




_—-——f

“18 =

For homogenoous and isotropic turbulence, we may apply
the theory of invariants to the tensors of (6.5) and (6,6).
For double correlations, we have

. 2
“if m Tl = (re'r29)5y
/M/ = 7":- 7 ?} -(rf;"-f.;w)é,;[

————

a,-,ﬂf" = RE€i4 7y (67)

wharef,::xi’ - X4, rzzf?},q,aandﬂmacm:
functions of r and t only. 5;{ =0 ’li‘f'i 51'{‘"": zf ’.27
5:'1'1 is the usual alternating symbol. Q'=§; ) H"-%g:

Similarly for triple correlations, we have
= -,—,.&T/I % ~(rT+37)( i), H;'SM) +2T8; T,
SRS VLY

didg 4y
Ak
“f‘("o& :U(fr’ei&y'&f- ?;e}/‘!fi)

hhky VG b Geq )

@""I’ﬂf")—l" P(Trog~T8y) (6.8

é

VOTY A ) VAW ey S Ty




vhere T, S,U, V, P and 7 are scalars which are functions of r
and t in homogeneous and isotropic turbulence. Prime on these
ascalars refers to partial differentiation with respect to To
From the fundamental eguation (6.4), the equations gove

erning these scalar functions may be founds The equation governing
Q S, and T is

c)o 2212 + ) (T-5) +e (5?-7’4"'1“5@‘)@ (6.9)
This is a generalization of the von Karman - Hovarth equation to
magnetohydrodynanics. Similar to ordinary hydrodynamics, equation
(6.9) gives an invariant

LQ(K#}?”JF = CONSTANT (6.20)

This is known as Ioitsiansky invariant. The existence of such an
invariant shows that no transfer of energy from the velocity field
to the magnetic field takes place among the larpgest eddies.
The equation governing H and P is
IH

eaPran(Z et 2)n a

and the equation governing R, U, Vand W is

R _ 1. 5 a
7-‘()”;‘;%5)(U~V)+(‘3%‘5"',’.ﬁ‘§>£(n*/s))l? w]  (&12)

From equations (6.11) and (6.12), we may obtain the invariants of
the Ioitsiansky type for H and R respsctively,

The rate of dissipation of energy may be obtained from (6,9)
and (6.10) by taking the limit of r—~»0. We have then




La |3 = 25 45 "‘“ — 4o G,
T —
| *’a:ﬁ';/f/ =425 4, ;f:" ~ L0, H, (6.13)
or

T3 + }f’l) = ~to(Ng, + 4, #) (6.14)

vhere Q2 and R2 define the curvatures of the curves of longitudinal

correlations Z(—.Tf? and 45, /A,’ at r = 0 respectively. They represent
the smallest eddies in the turbulent field. Equation (6.14) shows
that the rate of dissipation is due to viscous dissipation and
production of Joule heat by electrical conductivity.

7. Magnetohydrodynamic experiments.

There are very few experimental investigations of magneto-
hydrodynamic phenomena because it is necessary to have a strong
magnetic field within a largs volume in order to observe any
appreciable magnetohydrodynamic effects, It is rather difficult
to achieve in a laboratory. v

The first magnetohydrodynamic experiment was done by Haﬂmumé’7
: and Lazam7. They investigated the flow of mercury in a pipe

perpendicular to a magnetic field. They found a qualitative agree-
ment between theory ( j; L) and experiments for laminar flow and

discovered that the magnetic field has an influence on ths transition
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between laminar armd turbulent flow,
Iahmrt3 recantly reaxsminecd Harilmann's data and found
that the critical velocity for *transition was proportional to
. the magnetic field strength. Iechnert also measured the torque

transmitted by mercury contained between two mn<=conducting

cylinders rotating in a magwtic field parallel t> the axis.
For laminar flow, the effect cuve to magnetic field is small.
For monelaminar flow with the outer cylinder ai rest and inner
cylinder rotating, the torque wes found “o decrease when the
magnetic field was applying. Iehnert planned to use molten~
sodium instead of mercury in his nev experiment because of
higher conductivity and lower density than mercury. For
instance the valus of RyR 2 for molten sodium is about 35 times
that of mercury in the same physical conditicns. However,
there are many experimental difficulties to use molten scdium.

l'ahmn-i'.3 &lso showed a very interesting simple experiment
to demonstrate the mametohydroéynamic phenomenon, Consider a
cylindrical glass vessel containing mercury. Without magnetic
field, if one moves the mercury with a peg, the surface is
agitated and complicated wave pattern occurs, particularly vhen
ons hits the veswel, surface waves occur just like water surface

. waves, |

If the vessel is placed in a strong magnetic fisld perpen-
dicular to the surface of the liquid, the surface waves disappear.
The liquid no longer behaves like water but 1like thick syrup.
If a peg is being moved in the liquid, the surface shows some

————————————————————————————————




large whirls all with an axis of rotation parallel with the
magnetic field lines.

Part IL. MAG'ETDGASDYIAMICS

8, Important parameters in magnetogasdynamics.

At very high temperature, the gas may be ionized, and the
interaction of electromagnetic forces and the gasdynamic force
may not be negligible. Furthermore, under such conditions, the
compreasibility effects should be considered, In this case ocur
fundamental equations are (2.1) and (2.9). This system of
equations has not been investigated yet.. Only *he simple ons-
dimensional waves of infinitesimal amplitude, Alfven's wave
( §9) and shock waves (2 10) have been discussed under further
simplified assumptions. We shall briefly revisw these results
later, First we should like ‘to bring out the important parae-:
meters in ma gnetogasdynamics. We shall restrict ourseives to
the adiabatic case (SF = 0) with negligitie radiation lost

(qm S 0). Furthermore, we shall consider the case where the
velocity of the flow q is much smaller than the velocity of
1light C so that the relativistic effects may be neglected and
‘that the energy in ths electric field is negligible in compariscn
with that in the magnetic field,

Under these magmstogasdynamic approximations, the fundamental
equations (2.1) to (2.9) may be reduced to the following non-
dimensional form:
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Mach nmumber = H‘—Q— P H /(‘c" Prandt]l number, and the
ant,’ Ko
other non~dimensional quantities are same as those defined in
(3.4).
From these equations we see that as far as the megnetic
forces are concerned, the important parameters are still By and
Rye The other new parameters are those well known parameters in

gas dynmcs, 1009‘ Pr, Mand ¥ o
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9. Magnetogasdvnamic waves - Alfven's wave.

The general solution of magnetogasdynamics 4is very diffi-

cult. In order to bring out some essential fe:itures of magnetoe
gasdynamics, we may investigate some very simple cases. One of
these simple cases is one dimensional wave motion of small
amplitude. Alfven was the first one who found such wave in
magnetohydmdynamicslsa If there 1s a homogeneous magnetic
field H, in an incompressible and inviscid fluid of density %
and infinite conductivitys =c° , the disturbance in this liquid

vill propagate as a wave in the direction of H, with a speed of

VH = /f:/e d Ho (90 1)

This wave is known as Alfwven's wave,

Alfven's analysis has been extended to the case of compres-
sible fluid by several authors1=?1, e following analysis was
due to van de Hulstzl,

Strictly speaking, to investigate the one dimensional wave
motion in magnetogasdynamics, we should use the system of equation
(8.1) to (8.,5). But Van de Hulst made the following simplified
assumptions: ‘

(1) The energy equation is replaced by a simple adiabatic

’f‘:-CahV\:f (9.2)

whare /ﬁ' is the perturbed pressure from that of the gas at rest

relation

4 o+ W 15 the mterial displacement from the position at rest
and the fluid velocity q is
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cs= p°a°2 S compressibility factor, a is the velocity of sound
of the gas a% rest, i

(11) The cceffi.cien't. of viscosity is assumed to be constant.

(1i1) A11 the quantities are assumed to be function of ons
space coordinate Z and time ¢t only. The perturbed quantities are
assumed to be small so that the equations for the perturbed quane-
tities may be lincarized,

(iv) A umogeneous magnetic 1.1d H is applied. We wish to
investigate wave travels in the Z-direction. The x-axis is chosen
perpendicular to H so that the components of H are (D, Hos H’).

If we substitute the assumptions into equations (2.1), (2.2),
(2.3), (2.6), (9.2) amd (9.3), simplify them under magnetogas=
dynamic approximations and linearized, we have two independent
sets of linear equations for the perturbed quantities; one set
contains the perturbed quantities, hys Exs Jx» dys 9g» P/ amd

Wy » and the other set corntains h,, Ey, Jy, Qx, Jg and Eg,

We are looking for periodic solutions, in which all perturbed

quantities are proportional to

giot=rka (9.k)
where & has a given real vazlue, Only for certain eigenvalues
of k, such solution exists, These eigenvalues of k give the
different modes of wave propagation and they are determined from
the determinantal equations of the two sets of linear equations




for the perturbed quantitiss, These two determinantal equations
after simplifications are as follows

(4aPL) (A ) (X e ) A X, { (A5 ) - % F (K He Re)20(9:5)

X‘(/‘c““k*qxe/”e)[f&n(’*QKe) *(?*’)xe = (9:6)
vwhere a |
X=25 ) Ye= €, X-‘:;'{; ’X’m=/'_e%T:-er
2 Wy
H ! ¢
=-—-z _._C_Q. :—(ﬁ.“i “* = -~ ¢
TR At R o frumks O

Since f and f ‘are linear functions of x, equation ($.5) has three
roots of x and (9.6) has tw, These roots are the eigenvalues we
are looking for. We shall not review all the special cases for x
here but a few interesting ones.

(a) Mo external mgnetic fisld,
The roots of (9.5) are

X2X) S Xy s 8 damped electromagnetic wave (9.8a)
23"2:%- —————> & Viscous wave (9.8b)
x2x, (1= %u')—-ea damped sound wave (9.8¢)

Thers is no coupling between these three fundamental modes., 7The
roots of (9.b) are those of (9.8a) and (9.8b). The difference of
modes with the same values of x is a difference of ths plane of
polarisation.




(b) Propagation in the direction of the external field
2 8 0, The sound waves are not affected. The other modes are

coupled and follow from the equation

(X ~Meke ) (1 +@FXe) ~ the Xop f = O (9.9)

(c) Propagation per;éndicﬁlaxj to the external field,
1 =0 ntut g/xm;éo._ The viscosity wave of (9.5) and the electro-
xgmtic wave of (9.6) are not affected. The viscosity wave of
(9.6) is slightly affected. The two other important modes of
(9.5) are coupled and satisfy the equation

(X“‘st) (QX = Mo Xe Ve).. % Xs (x—/qe_xe)_.: o (9.10)

(@) Undamped waves, If the conductivity is zero, we have the
ordinary undamped light and sound waves.

If the damping terms are omitted, which correspond to infi-
nite conductivity (¢~ =eo ) and zero viscosity (/Ll z 0), the
equations (9.5) amd (9.6) reduce respectively to the following

simple form

- Zom A - ¢ 5s -
- % 7 o = (9.12)
and
X =-/![x,,,, + (g +1) xc] (9.12)

The two solutions of (9.11) depend on the relative magnitude of
sound velocity of the medium &, and the velocity of the magnetoe
hydrodynamic wave Vyo There is a slow mode with velocity smaller
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than sound velocity and a fast mode with velocity larger than
sourd wvelocity, If the magmiic field increases, the slow mode
changes from the solution x 3 x, to the solutioa x = (g +1) Xgo
This mode represents a regular Alfven's wave with velocity Vg as
long as Vy is much smaller than aje It changes to a kind of
revarded gound wave for larger values of Vg The fast mode starts
o+ as an ordinary sound wave bu® changes to a modified Alfwen's
wave as soon as Vy is larger than a0

(e) Slightly demped wave., If both "a"™ and "b" are small,
gome first order effects due to damping may te found from (9.5)

and (9.6)s ¥We will not discuss them here.

10. Shock waves.

In the last section, we consider the proparation
of waves of Minitésmal amplitude in a compressible fluid. The
study of waves of finite amplitude in magnetogasdynamics has not
been carefully carried out. Only the analysis of analogues of
the Rankine-Hugoniat equations for shock waves in an infinitely
conducting fluid has been made by de Hoffman and Tellerc<, They
discussed both relativistic amd non-relativistic shock waves,
But we shall restrict ourselves to the non-relativistic cases
vhich have been systematically interpreted by Helfer?>,

One of the mein assumptions in de Hoffman-Tellsr analysis
is that the conductivity of the fluid is infinite. Even though
the conductivity of the fluid is actually finite because of the




large dimension of interstellar clouds in which such an analysis
is applied and the large conductivities of stellar materials,
such an assumption is a reascnable one. Under this assumption
the lines of magnetic force move with the fluid [O4 h(cﬂ.
Another assumption is that the fluid is assumed to be an ideal
gas of a constant value of ratio of specific heats 0~ .

For ordinary shock relations, if we know ithe conditions in
front of the shock, the conditions behind the shock depend on one
paramster, the strength of the shock, e.g. the pressure ratio
across the shock. In the case of mgnetogasdynamics, the shock
relations depend on three parameters:

(1) Strength of the shock, We may use the pressure ratio

Y= Pz/p]. as a measure of the strength of shock,

(11) Magnetic field strength. We may use the ratio of
magnetic energy per unit mass to internal energy Q(¥ -1) as. a
measure of ths importance of the magnetic field strength, shere

-3
G = Lebiln (10.2)
A /o)

(411) The direction of the magnetic field. We may use ths
angls between magnetic linss of foroes in front of ths shock and
the direction of propagation of shock & or

8, = tan 6, . (10.2)
&s a measure of the direction of magmetic field. The subseript 1
refers to values in front of shock and subscript 2 refers to
valuss behind the shock,




According tc the parameter 81, we have the following three
cases:

(a) Parallel shock 820

In this case, tho magwtlic field has no influence upon the
gas dynmamic phenomena, C(lassical Rankine-Hugoniot relatioms for
shock hold in this case, . »

(b) Perpendicular shock 8; o9,

In the coordimate system of stationary shock with welocity

Q) in front of the shock and perpendicular to the shock front, we
have the following shock relations in magnetogasdynamics.
53, =217 (10.3)

L3 +p* = L%, + 2% (20.4)

R+ 317+ 37 = BRI+ 0.8+ 5 232 og

L Aa T x T, 4 LS
A B y
Fi9 =Ha 3, (10.7)

Equations (10.3) and (10.5) have exactly the same forms as in the
case of ordinary shock if one takes into account the magnmetic
pressure and energy by (10,6) and the coupling of magnetic and




velocity field by (10.7) which is a consequence of infinite
corductivity. The magnetic field is compressed by the shock

exactly to the same extent as the fluid

Ha _ £
H, ~ 7 "7 (10.8)

The equation for "l in terms of Y and Q is obteined from

(10.3) to (10.7) as follous:

¢~y # [+ (Y-1)] -0 =52 (Y-1)=2 (o9

When Q & 0, it reduces to the Rankine~Rugoniot relation. The
presence of the magnetic field is seen to cause a decrease in
compression 7 o The Mach numbers ql/tl and Q,/a, are increased
dus to the presence of the magnetic field for the same reason.

(c) Oblique shocks

The oblique shock relations of this case has been worked
out by Helfer. Numerical results for Q va Y-1 at various valuss
of 8y are given by Helfer in reference 2ho It is interesting to
note that for very weak shock, Y= 1, the shock relations temd to
be the value of wave of infinitesimal amplitude discussed in § 9.
Another interesting result is that for weak flelds, the magnetic
field is always amplified by the passage of shock fronts. This
1s importent to explain some of the astrophysical phenomena®>,
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