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Abstract

The free eneru for electron transfer is studied for the Fe2+/FeO+ charge

transfer system at the water-Pt(111) hiterface. Classical diabatic fr-ee en-

ergy curves are calculated along with with an adiabatic curve based on the

Anderson-Newns Hlamiltonian. Reactive flux calculatioins are then performed

,on this curve to determine the effect of recrossings on the classical rate con-

stntut. These effects are not found to be large (it 0.6). The sadvent model is

than extended to a quantum mechanical path integral version and the quan-

tumn adiabatc free energy curves are calculated. The resulting quantum ef-

fects are found to bequite significant, Illustrating that the same electrode

oweapotential does not necessarily result in the same fr-ee energy curves for

the classical and quantum mechanical solvent models. These results suggest

that classical models for water may not be adequate, or at least need to be

modified, for accurate simulations of heterogeneous election transfer.

Typeset using REV'IýX.

*Deptmuat of Physics, University of Pennsylvania



I. INTRODUCTION

Electron transfer (ET) is a process of fundamental importance in chemistry, physics, and

biology [1,2]. The field has seen substantial theoretical research activity, including computer

simulations of a variety of homogeneous electron transfer systems, such as charge separation

in an ion pair in a polar solvent [3-7] as well as electron transfer in the homogeneous ferrous-

ferric system. [8--10] Recently, however, there has been an emerging focus on heterogeneous

ET systems [11-13] from the point of view of computer simulation. It is such interfacial

charge transfer phenomenon which are important, for example, at a metal electrode im-

mersed in an electrolyte solution. A better understanding of heterogeneous ET processes

will be relevant to many areas of technology, ranging from electrochemistry to corrosion to

battery technology. The present authors have previously performed simulations examining

the free energy curves for a model ion in water near a Pt(111) surface. [11] That work showed

an insensitivity of the solvent diabatic free energy curves to surface-induced solvent density

inhomogenities. It also illustrated a substantial adherence to Marcus parabolic behavior [1]

over the wide "normal" free energy range, as well as a significant deviation in the inverted

regime. The present work significantly extends this area of research with the focus being on

a more realistic ferrous-ferric charge transfer system at a platinum electrode. In addition to

finding the diabatic free energy curves, a classical adiabatic curve is computed using a model

for heterogeneous ET based on the Anderson-Newns Hamiltonian. [14-171 Classical reactive

flux calculations are then performed for this system to determine the effect of transition

state recrossins within the Marcus theoretical framework for the classical adiabatic rate

constant. This latter work is related to the work of Rose and Benjamin except that those

authors used a aimpler two-state description of the heterogeneous ET Hamiltonian. [13]

In a significant departure from previous simulation studies of heterogeneous ET, a path

integral model is developed in order to probe the effects of quantization of the water nuclear

motion. This model is employed to determine the quantum adiabatic free energy curves

within the context of path integral quantum transition state theory. (18] The important
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efcts of water quantization on the ET free energies is then assessed, with special attention

placed on their magnitude with respect to the size of the classical transition state recrossing

efects. It is found that the effect of quantizing the water modes is by far the most important

one, leading to the conclusion that the effects of water quantization must be considered in

order for simulations of heterogeneous ET to be accurate.

IL METHODS

A. The Anderson-Newus Hamiltonian

Charge transfer between an ion in solution and a metal electrode is represented in the

p -resent research by a version [19-21] of an Hamiltonian referred to in the literature as the

Anderson-Newns Hamiltonian [14--17. It can be written as

H = HA + (e, + AE)n, + E(hn + Vact.j + V,.c.), (2.1)
Is

where H..w represents solvent-solvent, solvent-surface, and all other interactions which do

not explicitly involve electronic degrees of freedom, e. is the vacuum energy level of the

acceptor ion's electron orbital which is involved in the charge transfer (orbital "a"), and AE

is the shift of the energy level due to the presence of the fluctuating solvent. The acceptor

orbital has an occupancy n. equal to either 0 or 1. The sum over k in Eq. (2.1) represents a

sum over the electronic energy states e* in the semi-infinite metal electrode. This summation

term clearly includes contributions arising from both the occupancy of the metal electron

states as well as a piece which is a "transfer term" giving rise to charge transfer between the

states and the ion orbital (ct and c are creation and annihilation operators respectively).

The Hamiltonian of Eq. (2.1), with its explicit quantum operators, is not yet in a useful

form for the purposes of computer simulation. To transform it to the desired form, one

can follow the work of Grimley [16] and Muscat and Newns [17]. First, the physically

reasonable assumption is made that the solvent adiabatically follows the electronic degrees
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of freedom due to the different timescales. One can then examine just the electronic part of

the Hamiltonian for a given solvent shift variable AE treated adiabatically:

H.1 = ( + ABE)n. + E (elin. + V.ctc• + Michtc.) (2.2)
Is

By a series of mathematical manipulations involving the resolvent operator for this Hamil-

tonian, it can be shown that the ground state electronic energy is given up to a constant by

the approimate form [16,17] :

+ -(e + + E el)tan- + c AE))
2f A

+ -ln ((e, + AE - e,) + A• (2.3)

where el in the Fermi level of the metal and A is a parameter which measures the broadening

of the energy of the orbital a due to the presence of the metal electrons. The parameter A

is formally given by the expression :

A(e) = ir•kIv.I 2 6(e- _k) • (2.4)
k

Here, Vk, is the matrix element coupling the orbital and a particular metal electron state k.

As it is roughly insesitive to the energy e for energies in the range of interest, A is typically

taken as a constant.

The net effect of the preceeding manipulations is that classica dynamics can now be run

on the Hamiltonian H.., + Eo(AE) which represents the adiabatic ground state behavior of

the Hamiltonian of Eq. (2.1). This result is obtained because one can easily assign AE to

certain classical potential energies in a typical molecular dynamics simulation. In particular,

in the Hamiltonian for the present simulation one can separate out all the terms that depend

on the Coloumbic interaction between the solvent and the ion. One can then write those

team in a form assuming a ferric ion (Fe+) with a positive charge Z (Z = 3) which has an

electron orbital of occupancy n. If the orbital is empty, then n. = 0, and the Hamiltonian

effectively reduces to that describing the Fe3+ ion solvated near the metal surface. If the

ion orbital is filled, however, then n. = 1 and the Hamiltonian describes the combination
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of the Fes+ ion with the negatively charged electron, i.e., a solvated ferrous ion (Fe2+) near

the surface. The overall Coloumbic terms are thus given by:

(Z - n.)(V..m - V.,..) (2.5)

Here, V..a,. indicates the potential energy between the solvent and a single positive charge

at the ion's position, while V.,6.,. indicates the potential energy between the solvent and a

unit negative charge at the position of the ion's image. In order to make a correspondence

between Eq. (2.5) and the Anderson-Newns Hamiltonian of Eq. (2.1) one must therefore

specfy

AB - (. -V4.00.) (2.6)

The Z-dependent terms in Eq. (2.5) are grouped with the rest of the interactions in the

solvent Hamiltonian Ha..

The end result of the analysis is that adiabatic computer simulations can be performed

for an Fe3+ ion and its image, with sn additional term in the Hamiltonian representing the

electronic degrees of freedom given by Eq. (2.3). One therefore expects the free energy

curves will display the approximate form [21,19,20] :

F(Ae) = -L(AE - AEY() A + E0(AE) (2.7)

Here, A is the reorganization free energy obtained from a best fit parabola to the diabatic

Fes+ free energy curve, and AE,.,. gives the location of the minimum of the diabatic curve.

Standard umbrella sampling techniques (see, e.g., refs. [5,8] can be applied to calculate

the adiabatic free energy curve as a function of AE and find the free energy barrier to the

charge transfer reaction involving the ionic orbital a. Also, the average occupancy of the

acceptor orbital a at any point along the free energy curve can be shown to be given by

[16,17]

(n=(AE)) = 1/2 + (l/ir)tan-' ( e. - AE)) (2.8)

5



9

Equation (2.8) serves as a useful summary of the behavior of the Anderson-Newns Hamil-

tonian. The average occupancy of the orbital a on the ion, (no(AE)), smoothly goes from

0 to 1 as a function of the shift in its energy due to the solvent, given by AE. If the solvent

shift takes on a value such that the energy level is altered to coincide with the Fermi level of

the metal, the average occupancy is one-half (i.e., the electron transfers). The parameter A

measures how quickly the transition from 0 to 1 occurs as AE is varied, which is in keeping

with its role as an energy level broadening.

B. Model

Some of the simulation details in the present work were presented in an earlier article

by the present authors [11] but are repeated again here in the interest of completeness.

The solvent consisted of 671 water molecules described by a flexible SPC model [22,23].

This model was modified in a fashion which is inconsequential for the classical case, but is

important for later generalization to the quantum case, and is discussed in Appendix A. A

temperature of 300 K was maintained during the simulation by using one Nose thermostat

[24] on the oxygens, and another on the hydrogens.

The water molecules in the simulation were situated at the interface with a Pt(111)

electrode surface. The interactions between the water molecules and the platinum surface

were given by the potential developed by Raghavan et al. [25] which, in turn, was developed

by fitting to the water-platinum atom potential given by Spohr and Heinzinger [26]. Since

this effective potential represents the Pt(111) plane with its fcc lattice structure, the potential

exhibits an hexagonal symmetry. Moreover, this potential represents the corrugated Pt

(111) surface without including individual platinum atoms• in the simulation. Using such

an effective potential is advantageous as one does not have to devote significant computer

resources to the integration of the metal atoms' trajectories which are unlikely to contribute

ignificant effects.

Hexagonal periodic boundary conditions were not employed in the present study as in
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the study of Raghavan et al. [25] Rather, a carefully chosen rectangular cell was employed

whose sides of length 3a and v's can inscribe a hexagon of side length s, shown in Fig. 1.

Periodicity was enforced in the x and y directions. Such a simulation cell can accommodate

the underlying hexagonal symmetry of the (111) surface, as shown in Fig. 2. For the

particular case of the (111) face of platinum, the smallest hexagon that could be formed

had a side of length 2.77 A. A central hexagon with a side five times larger, or 13.86 A, was

chosen which gave a box length in the z direction of 41.6 A and in the y direction of 24.0 A.

The water-water interactions were smoothly cut-ofi by half the y box length, going to zero

at 12.0 A. The smooth cut-off began at a distance of 10.3 A.

While the bottom of the periodic cell was bounded by the platinum surface, the top of

the cell was bounded by a featureless slab. The parameters for the interaction of this slab

with a water molecule were taken from the "soft" water-metal potential of Hautman, Halley,

and Rhee [28], with the image terms omitted. The height of this slab was adjusted to give

bulk water density in the middle 5 A of our cell, giving the periodic cell a length in the z

direction of 22.5 A.

Raghavan et al. [25] have demonstrated that their potential leads to a rather interesting

water structure at the metal liquid interface for SPC/E water [29]. Since the distance

between the platinum atoms on the (111) face (,,, 2.77 A) is commensurate with the distance

between water molecules in ice, the waters apparently form an ice-like layer on top of the

Pt(111) face wlhch exhibits hexagonal ordering even at room temperature. There is also a

second layer of waters which is hydrogen bonded to the first one. Beyond the second layer,

however, the water exhibits essentially bulk-like characteristics (although there is some hint

of a moderate nonuniformity in density which could be interpreted as corresponding to a

third partially ordered layer). It should be noted that even though a flexible water model

has been employed in the present study which is slightly different from rigid SPC/E, it was

again verified that the water interaction with the platinum surface again gives rise to a

similar water double layer structure.

The iron ion was fixed 5.1 A above the center of the platinum surface which places it in
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the center of the second layer of waters. This placement is in accordance with the work of

Rose and Benjamin [13]. The interaction between the iron and the water was taken from

Kuharski et al. [8]. It essentially consists of a Coloumbic interaction between the charge on

the ion with the partial charges on the SPC water, along with a repulsive potential between

the iron and the oxygens. In addition to this iron ion, an image charge of the ion was

intoduced below the surface, as discussed in Appendix B. All iron-water interactions were

cut-off in the same fashion as were the water-water interactions.

C. Free Energy Sampling Method - Umbrella Sampling

The free energy curve F(Ae), is related to the probability of observing a certain value of

the energy gap function AE = Ae. Therefore one could run simulations in equilibrium and

via some sort of binning arrangement calculate the probability of obtaining various values

of Ae and thereby extract F(Ae). However the reactive ET event occurs very infrequently.

Consequently one would be unable to effectively sample these important transitional regions

of the free energy curve using a realistic amount of computer time. The solution to this

problem is to add a biasing potential to force the system to obtain a particular range of

values of Ae and then remove the effect of the potential when calculating F(Ae). One can

see how to do this by simply rewriting the equilibrium average of some quantity A in the

system described by a Hamiltonian H (i.e. (A)W) in terms of a different system with the

added biasing potential Vb :

(A), = f dx e-PHA f dx e-0(H+V&)ePV'A f dx e-P(H+vb) (2.9)

f dx e- M  = f dx e-P3M  f dx e-P(H+vb)

(A), = (Ae"V')H+v& (e-"V')H (2.10)

Specializing to the case A = 6(Ae - AE) and Vb = Vb(AE), and using the definition of

the free energy (up to an overall constant), one obtains

F(Ae) -= -kBT ln(6(Ae - AE))H (2.11)

- -- kbT ln(6(Ae - AE))H+v, - Vb(Ae) + c . (2.12)
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Here c is some constant that depends on the specific choice of the biasing potential Vb. By

using a series of biasing potentials in overlapping regions of the variable Ae, i.e. "windows",

one can match up the results and form a smooth curve of F(Ae) for the original system,

even in otherwise infrequently sampled regions relevant to the ET process. [5,8]

D. Reactive Flux Calculations

In the aditbatic limit, the Marcus rate constant is essentially a classical transition state

theory expression obtained by using Ae as the reaction coordinate. [1] In other words, the

theory ignores dynamical recrossings so that once the reaction coordinate passes through the

transition state towards the product it is assumed that it will never turn around and come

back. A standard technique known as the reactive flux correlation function [30] has been

developed to efficiently calculate the efect of these recrossing - an effect which is expressed

in terms of a prefactor K to the TST rate constant. The reactive flux correlation function

expression for x has its origin in the classical expression for the rate constant to go from a

stable state A (reactant) to a stable state B (product) :

kBA = (XA)- 1 (4(0)6(q(0) - q*)8B(q(t))) • (2.13)

Here, q is the generalized reaction coordinate, q* denotes its transition state value, 0 B is a

unit step function with its origin at the transition state, and ZA denotes the molar fraction

in the reactant state (ZA + XB = 1). The zero time limit of this expression gives the TST

rate constant [30] which assumes no recrossings and is an upper bound to kEA :

GTST = (ZA)-' 1 (4(0)6(q(0) - q*)OB(4(0))) - (2.14)

Since the TST quantity is an upper bound, one can write the exact rate constant as

kBA = kTST , (2.15)

where Pe < 1. The closer K is to unity the less important are the transition state recrossings.

With (--)' denoting here the constraint q = q* for the initial conditions, one can write

9



- (q(O)OB(q(t)))s (2.16)

which can be broken up into initially positive and negative trajectories, i.e.,

(4+(o)en(q(t))).s +4()Bqt))6(.7
(+()) (+(0))6(2.17)

Usually, one can switch to a flux-weighted distribution [30] to obtain better sampling of the

relevant initial conditions. In this case, the transmission coefficient is given by

I1N+ 1 N-
S= - f OB(q+(t)) -- -- F. 8(q';(t)) , (2.18)

where the trajectories are implicitly sampled from the flux-weighted distribution function.

The quantity . is taken from the simulation during a period of time in which it is essentially

time-independent and achieves its "plateau value". [30,31]

In the present study, a modification of the foregoing expressions was neccessary. For

the reaction coordinate under consideration, AE, the implementation of a flux-weighted

distribution is not straightforward. This is because it is difficult to constrain AE while

leaving AE unconstrained in a simple way. Instead one can use the expression

((At(o)O(AE(t) - Ae))W9)9 (219((EoeA()))A(2.19)

where (...)k indicates an average over the velocity distribution, and (...)q,6 indicates an aver-

age over the spatial terms with an implicit 6 function fixing the reaction coordinate at the

transition state.

II. RESULTS

A. Diabatic Free Energy Curves

An important ingredient for formulating the Anderson-Newns model for heterogeneous

ET is the diabatic Marcus free energy curves. Therefore, simulations were first performed

for an ion of fixed charge and with no additional term representing the electronic degrees of
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freedom. The free energy as a function of the solvent coordinate is defined up to a constant

by setting the probability of finding a certain value Ae of AE as equal to expf--/F(Ae)].

More explicitly, one has [5,4]:

F(Ae) = - kBT In [J dx6(AE(x) - Ae) e-6v()] , (3.1)

where x represents the multidimensional coordinates of the entire system.

Anal6gous to the discussion in our earlier paper [11], the reaction coordinate can

written as the negative of the difference of the solvent interacting with the 3+ ion and the

2+ ion, since the non-coulombic interactions are identical in both cases. Using this fact and

Eq. (3.1), it can be shown [4] that the free energy curves satisfy:

F2+(Ae) = Fs+(Ae) + Ae (3.2)

As a result of the above argument, only the 2+ diabatic free energy curve was calculated

by the techniques of umbrella sampling [5,8J, and the 34- curve was generated via Eq.

(3.2). Parabolic biasing potentials on the solvent coordinate AE(x) were used to define the

umbrella sampling windows, and each window was first equilibrated for over 10 picoseconds.

Then the data were collected for each window from 8 ps trajectories. A total of 62 partially

overlapping windows were employed to generate the curver shown in Figure 3.

Before computing the adiabatic free energy curves, one needs to use the diabatic curves

to find the reorganization energy X and the location of the minimum of the Fe3+ curve,

Ae,,,•. It has been shown by Schmickler [19] that if the diabatic free energy curves are

parabolic the adiabatic free energy curves will have the form of a symmetric double well

provided the overpotential 7 is set to zero. The latter quantity is defined by

17 C.- - e! + Aein - A . (3.3)

The quantity e. - e! is adjustable by simply varying the external potential of the electrode,

but one must know the other quantities in the above expression in order to affect the desired

adjustment to achieve the desired symmetric form. Assuming parabolic behavior, the 3+

11



curve should satisfy the equation y V 1/4A(Ae - Ae,,) 2 + c, and a least squares fit to

the classical data in Figure 3 gives A = 57.3 kcals and te• = 449.7 kcals, each correct

to about 0.5 kcals. Thus, there will be an error of approximately 0.7 kcal in the effort to

acheive a zero overpotential.

B. Adiabatic Curves

Fbr a given overpotential (e.g. zero in the present case), one can determine the adia-

batic curves using the Anderson-Newns Hamiltonian (i.e., with Eq. (2.3) included in the

dynamics) and umbrella sampling. Following the same techniques as described previously,

the adiabatic curve was found for A = 0.05 e.v. as shown in Figure 4. Twenty eight partially

overlapping sampling windows were used to compute the curve. Once the adiabatic curve

was calculated, the top of the barrier was found to be at Ae = 390.5 kcals ± 0.5 kcals.

By using this information, reactive flux techniques could then be used to determine the

importance of dynamical recrossing effects in the ET rate constant. [13]

C. Racrsing Behavior

As discussed earlier, the effects of classical recrossings of the transition state are measured

by a quantity K given by Eq. (2.19). In that equation, Ae* indicates the transition state

value of AE and the symbol (...)• denotes an equilibrium average over all the individual

solvent momenta. The symbol (...),' denotes an equilibrium average over all the individual

solvent coordinates with the multidimensional reaction coordinate AE constrained by a 6

function to be at Ae*. In practice this quantity was determined by running trajectories held

in the area of the barrier top by a constraining potential which is a function of AE. When

AE passed through the barrier top, that solvent coordinate configuration was saved and the

solvent momenta were reselected from the appropriate Boltzmann distribution. A number

of such trajectories with reselected momenta were then run and the nested averaging was

pkm ed over these trajectories with different momenta (the Nosi thermostats were turned

12



off for this procedure). More runs were then performed for different solvent configurations

at the barrier top, so as to arrive at a final converged value of r.

Owing to the discrete timestep in the simulations, the values of AE which were saved

were very slightly off the exact chosen barrier, whether to the right or the left. The net effect

of this numerical uncertainty is that a delta function constraint is not precisly enforced for

the reaction coordinate at the top of the barrier. (This is allowed in the reactive flux

method provided the barrier is high and the stable states are well separated. [30]) One can

then deduce from Eq. (2.19) that the zero time value of . will be ; 0, but it rises quickly

and subsequently falls off to the final plateau value. The graph of . versus time is shown by

Fig. 5 for the present system. In the calculations, 112 different starting configurations of the

solvent were used to generate the graph, each one being run with 100 reselected momenta

configurations. The final value for r is 0.5769 +/- 0.0004. This shows "',at recrossing effects

do not substantially cast a shadow on the TST (Marcus) estimate of the ET rate constant

which describes the rate over many orders of magnitude.

IV. QUANTUM EFFECTS

A. Path Integral Methods

Since classical recrossings are found to have little effect on the overall rate constant,

the role of quantum mechanical solvent effects was next examined. An earlier study of the

homogeneous Fe2+/Fe+ ET system found tunneling of the water librational modes can can

have a substantial impact on the rate constant, [9] although it has been suggested [10] that

the latter effect may be somewhat enhanced by the particular model used for water. Clearly,

the issue of solvent quantization is an important one in ET theory, and the present study

examines these effects for the first time for the quite different case of heterogeneous ET.

The quantum mechanical simulations were carried out using the well-established tech-

nique of path integral molecular dynamics [32,331. In order to use such a simulation to
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actually calculate an activated rate constant, path integral quantum TST was used. (18]

This theory provides a quantum mechanical analogue for the classical TST activation free

energy by expressing the quantum rate constant k as

k = x ITST (4.1)

where r. is a quantum correction factor of order unity (but not necessarily less than unity),

and kQT•T can be written in the approximate form

kqTsT !e-

Here, AFt" is the difference in free energy from the well to the barrier of the quantum free

energy curve corresponding to the path centroid of the reaction coordinate AE. In the

present case, the reaction coordinate centroid is defined as

AEE0 = 1 (4.3)

The quantity wo in Eq. (4.2) is the fiequency of the reactant well corresponding to the

centroid thermal motion in that region. The transition state configuration in the path

integral QTST is given by AEo = Ae., i.e., the maximum of the quantum free energy curve.

The adiabatic free energy curves of the centroid of AE(r) will therefore be the subject of

interest in the following discussion. The notation Ae. will be used to refer to a particular

value of the centroid AR, when discussing the quantum sinmultion; the context of the usage

should remove any potential confusion with the classical case.

In path integral simulations, the isomorphic quasiparticle polymer which represents a

quantum particle [33] is spread out in space, but collapses towards a point particle, and

becomes more classical-like, in the limit of high temperature or large mass. As a consequence,

only the hydrogens of the water model were discretized; the oxygens are over an order of

magnitude more massive and were treated classically.

The mass of the quasiparticles in the discretized path integral is an arbitrary parameter.

In practice, however, during molecular dynamics simulations one would prefer larger veloc-

ities so that the hydrogen polymers more evenly sample the available phase space. This
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can be accomplished by choosing smaller quasiparticle masses, but masses too small give

velocities so large that they pose difficulties for the numerical integrator and lead to non-

ergodic sampling. A mass of 50 a.u. was found to be suitable on both fronts. In addition,

one needs to select a value of the discretization parameter P (i.e., the number of quasipar-

tides). [18] Ideally, the value of P selected would be the smallest one which exhibits the

proper convergence in the interest of computation effort. In order to estimate the value

of P which gives such convergence, a Monte Carlo study was performed by Lobaugh [34].

This study was along the lines of one suggested by Kuharski and Rossky [35]. It consisted

of two solvent water molecules which interacted using the flexible SPC potential and an

additional quadratic constraining potential between their centers of mass. This potential

had a minimum at 2.85 Aand a frequency w = 26 ps-1 , creating an environment similar to

the bulk solvent. A total of 106 trial Monte Carlo moves were carried out and a number of

different properties were examined as a function of P, including radial distribution functions

and the bond length average (roy). The value P = 25 was selected as exhibiting sufficient

convergence in these properties; for example, a graph of (roa) vs. P is shown in Fig. 6.

The application of the path integral discretization scheme to a classical model for water

involves the assumption that the classically optimized water model will still provide a good

representation for actual water in the quantum limit. One drawback of this approach is

that the parameters of the water model were developed classically to model actual water.

Fortunately, at room temperature, the classically accessible regions provide the dominant

coanribution to the physical properties. Technically, however, the model should be reparam-

eterized in the quantum limit. Antother drawback, which has also not yet been fully investi-

gated due to the computational cost, is that the quantum version of the water may explore

regions of the potential energy surface that are classically inaccessible. Thus, the functional

form of the potential in these regions may not be correctly parameterised to reproduce the

physical properties of water. For example, it was found that the discretized version of the

classical model dissociates at infrequent intervals as the potential is not bounded along the

O-H bonds. This resulted from occasional unphysical tunneling of an hydrogen to another
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nearby water molecule (roughly 1 dissociation occurred for every 500 water molecules in a
picosecond of simulation). To prevent this behavior from occurring, the potential was modi-

fied by the addition of a hard repulsive wall along the O-H bond. As discussed in Appendix

A, this wall was adjusted to prevent the dissociations without affecting the thermodynamic

properties of either the quantum or classical versions of the water.

The numerical techniques used for the quantum case were essentially identical to the

classical cae. Agwn two Nos6 thermostats were used; one on the oxygens and one on

all of the hydrogen qusiparticles. The solvent coordinate consists of the same Coulombic

interactions, with the exception that each hydrogen quasiparticle acts to create a potential

at the ion site as would a charge of magnitude +1/P. The same value of e, - el was used

in order to fairly compare the quantum adiabatic curves with the classical ones (i.e. to be

able to clearly discern quantum solvent effects for a single underlying Hamiltonian).

B. Q.untum Rasults

The results from the quantum umbrella sampling, which contains contributions from 9

sampling windows, are shown in Fig. 7. It should be noted that with P = 25 the simulation

requires oughly 11 times more computer time than the classical case to complete a given run.

In fact, the present simulation seems to be the most ambitious simulation of quantized water

attempted to date. All modes of the flexible model have been quantized and a relatively

large number of water molecules were used (671). The simulation required the dedicated use

of five high end computer workstations (e.g. HP/Apollo 735) for 4 months along with 200

CPU hours on a Cray C90. Of course, in the future such computations will become more

commonplace as computers increase in speed.

As can be seen in Fig. 7, the quantization of the solvent model has a significant effect on

the fire energy curves. The same value for e1 - f was used as in the classical case, but now

the curves are no longer symmetric. The overpotential in the quantum case is 10.3 kcals,

cresting free energy curves which are in marked contrast to the symmetric classical case. This
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belavior results because the mn;,mum reaction coordinate value is shifted from 449.7 kcals

to 464.3 kcals in the quantum case, while A has shifted from 57.3 kcals to 61.6 kcals. The

quantum barrier height from the - 2+ well is 8.9 kcals, as opposed to 11.2 kcals in the

classical case. For the - 3+ well, the quantum barrier is 19.1 kcals as opposed to the classical

12.7 kcals. The results illustrate that the same electrode overpotential will not necessarily

result in similar adiabatic free energy curves in the classical and quantum mechanical models.

In fact, the thermodynamic driving force is substantially different for the two cases, reflecting

the differences in solvation of the ion by the classical and quantum water models. These

differces in free energies would have quite large effects on the rates. This study therefore

strongly suggests the importance of treating quantum solvent effects within the quantum

TST expression (i.e. a factor of 60 for the oxidation of Fe'+ and of 4 x 104 for the reduction

of Pea+) in studies of heterogeneous electron transfer rates for aqueous solutions.

V. CONCLUDING REMARKS

The present studies have examined the role of both a classical and quantum mechani-

cal water solvent model with regards to electron transfer across the water-metal interface.

Within a Marcus theory framework, solvent dynamical effects have been shown to be of

relatively minor importance. A comparison of the quantum adiabatic free energy curves

with the correpoding classical curves has shown, on the other hand, a considerable impact

from quantum effects. Since a quantum solvent model more accurately describes the actual

physical system, this result suggests that a classical simulation may not be adequate for the

study of hetero- neus ET.

A comparison of the present results with those of Bader et al. (9] on the quantum solvent

eects in the homogeneous Fe2+/Fe+ ET system is in order. In the latter study, the path

integral method was used to quantize the rigid SPC model for water. In that case, the

important librational motions of the water dipoles were quantized and therefore allowed to

tunnel in the symmetric Fe2+/Fe3+ ET process. Indeed, these librational tunneling effects
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were estimated to be significant (a factor of 60), although Song and Marcus [10] suggest this

factor would be revised downward by considering a more realistic solvent spectral density.

In the present simulations of the single ion, heterogeneous ET process, all of the modes of

the flexible SPC model have been quantized. Therefore it is more difficult to specifically

attribute the quantum effects to librational tunneling (although they are surely present).

hMoeer, the heter1geneous Fe2+/Fez+ ET system is quite different from the homogeneous

cam, since the symmetry of the homogeneous system is broken by replacing one of the iron

icns with a metal electrode. In the heterogeneous case, the differences in the classical versus

quantum ion solvation may be the dominant effect which, in fact, leads to changes in the

thermodynamic driving force for the reaction (c.f. Fig. 7). Such effects are not possible in

the symmetric ho eneous F+/Fe ET system.

fNture research must include a thorough and costly examination of the quantum water

model to insure its accuracy. It is unclear whether the relatively straightforward exten-

sin of a classical model to the quantum regime via a path integral discretization scheme

provides a sufficiently accurate representation of physical water without reparameterization

of the modeL Of particduar concern are the regions of the potential which are classically

inaccessible. Such regions will undoul>tedly need at least minor modification. Additional

research must also include an examination of the role of solvent electronic polarizability, as

well as a serious attempt to develop an effective classical water model which can capture

the quantum slvation effects. [36] The important issues of the water/surface interaction

and the dectronic exchange term A (c.f. Eq. 2.4) clearly require some serious theoretical

attention, as does the problem of finite ion concentrations. These and other issues will surely

make the theoretical study and simulation of heterogeneous ET processes a challenging and

stimulating endeavor.
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APPENDIX A: THE HARD WALL MODIFICATION TO THE FLEXIBLE SPC

WATER MODEL IN THE QUANTUM LIMIT

In this Appendix, a hard wall modification to the flexible SPC water model is presented.

As discused earlier, it was found that the discretized path integral version of the flexible

SPC water model dissociates at infrequent intervals since the potential is not bounded along

the 0-H bonds. This behavior results from occasional unphysical tunneling of an hydrogen

from a water molecule to an oxygen site on a nearby water molecule. To prevent this

situation from occurring, the potential was modified by the addition of a hard repulsive wall

alog the 0-H bond, given by the funcional form

2h + Gh (l

(,o.. - r(o )+ (roe. - r,)12  (Al)

where a& = 15.13 (kcal/mole)(A)32 and "h = 2.6 TOfs, where roi," is the equilibrium OH

bond length distance- These parameters were adjusted to prevent the dissociations without

dectiug the thermodynamic properties of either the quantum or classical versions of the

water.

Several test simulations were carried out with P = 5 in a three dimensional periodic

cpbe with 512 water molecules. It was found that for rT = 2.8 roNm, or larger, the waters

AMil dissociated. As tunneling effects will surely increase with larger P, this behavior will
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clearly be present for P = 25. For a value of rh = 2.6 roH..q the dissociations ceased. It was

also explicitly verified that this value of rh prevents the dissocations with P = 25 and does

not afct the known properties of SPC water. In addition, the average total intramolecular

potential for the P = 5 case was examined as a function of rh and was found to have

converged by rh = 2.6 rtoH,. This behavior is shown in Fig. 8.

APPENDIX B: IMAGES AT THE DIELECTRIC-CONDUCTOR INTERFACE IN

COMPUTER SIMULATIONS

In this Appendix, the incorporation of image charges into molecular dynamics simu-

lations at a dielectric-conductor interface is examined. This analysis is performed in such

a way as to make the appropriate connections with a dielectric continuum model and a

perfectly ftat conducting surface.

If an ion is in solution near a conducting surface, one would expect an image term to be

present in the Hamiltonian for the system. In fact, it is a classic problem to have a charge

q imbedded in a dielectric medium of dielectric constant e., nc tr the interface with another

medium of dielectric constant e2 (the conducting case corresponds to the limit of e2 --+ oo).

If the half space z > 0 is filled with dielectric el, while z < 0 is filled with dielectric e2 ,

Jackson (37] solves for the potential 0 when a charge q is imbedded in medium I a distance

d from the interface. Fbr the region z > 0 the solution is:

C1R C1RI

where R measures the distance from an observer to the charge q, and H measures the

distance from an observer to an image charge q' which is located a distance d behind the

inteface (and thus 2d from the actual charge q). The image charge has a magnitude given

by:

q, = -e2-C1. (B2)

C2 + 20
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One possible interpretation for the potential given in Eq. (B1) is to regard the expression

as reprsenting two actual charges q and q' imbedded in a medium of dielectric constant e1

which fills all of space, keeping in mind that one can only use the equation for the z > 0

region. In the z < 0 region the potential is given by

0 _Lq" (B3)e R

where R measures the distance from the actual charge q, and q" is given by

U= 2 (B4)
C2 + 'El

For the case under study in the present work, medium 2 is a conductor, so one is interested

in the field in the z > 0 region when 62 -4 oo. Equation (B2) clearly shows that q' = -q,

and the potential from Eq. (Bi) gives :

q -q (B3)
-;, -R + (B5)R,

While Eq. (B15) is the correct expression for the field in dielectric 1, it is nevertheless

not yet in a form useful for direct incorporation into a molecular dynamics simulation. The

reason for this lies in the manner in which such a simulation takes into account the dielectric

constant. No explicit dielectric constant is ever introduced into the intermolecular forces.

Rather the intermolecular forces allow for an orientational polarizability (or other forms of

polarizability as well, depending on the model) which responds to an applied electric field

in such a manner as to behave as a dielectric of constant el. For SPC water at standard

temperature and pressure el has been computed to be 65 +/- 9 [8] while the experimental

water value is 80. It is seen that even though the expression for the potential from a charge in

bulk dielectric may be q/eLR, we would carry out this simulation on a computer by simply

allowing the solvent to relax around the charge without any direct introduction of el; a

properly constructed solvent model will already take into account its dielectric nature. It

will arise of its own accord. Correspondingly, if one wished to carry out a simulation which

would give the potential shown in Eq. (135), one cannot simply introduce an image charge
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and an explicit dielectric constant. Rather, we would have to do a bulk simulation where

the solvent is extended to the z < 0 region and surrounds a charge q'. This is undesirable

for several reasons. First of all, it eliminates not only the water double layer at the platinum

surface, but also the platinum-water interaction entirely. Secondly, it entails a much larger

simulation which is therefore substantially slower (computer time to perform the simulation

is roughly proportional to the square of the number of atoms and hence grows quickly). And

finally, it would obscure any effects in the solvent polarization fluctuations that might arise

due to the solvent's restiction to the half-space z > o.

There is a way around this problem, however. One can construct a simulation other

than the bulk one just described which preserves both the interfacial water interaction, as

well as the potential given in Eq. (B5). This can be done by retaining the actual charge q

which is fixed a distance d from the interface, and introducing an additional image charge

q, a distance d behind the interface (i.e. at the same position as the earlier q' = -q charge)

which is considered as being in vacuum. In other words, one has a solvent with a charge q

inside of it, with which it interacts Coloumbically (and perhaps with other forces as well,

such as Lennard-Jones, depending on the model). In addition, the solvent interacts with

some effective potential that represents a surface at z = 0. But there is also an isolated

charge q"' a distance d below the z = 0 plane, which does not interact with the surface,

but does Coloumbically (and only Coloumbically) interact with the solvent. This charge q"

can then be adjusted so that in a continuum model it will give the proper potential which

matches with Eq. (B5). Such a simulation, with an isolated charge behind the interface

interacting Coloumbically with the solvent, poses no computational difficulties.

If one relies on the superposition of the image and actual charges, the first thing needed is

to write down the potential in a continuum model given by the actual charge in the dielectric

near another dielectric of constant C2 = 1 (the vacuum). The earlier Eqs. (B1) and (B2)

clearly show that the potential in this case is given by

q 1 61-1
f = + R(B6)
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Now one can consider the separate and distinct case of the image charge q"' which is

located behind the interface in the z < 0 region. One wants to find the potential in a

continuum model taat this charge in vacuum induces in the z > 0 region. To do so, one

needs to adapt Eqs. (B3) and (B4), originally developed for z < 0. The reason for this is

that what matters is not really whether z is greater or less than 0, but rather whether one

is looking for the potential in the region that contains, or does not contain, the charge of

interest_ Therefore, in a continuum model, the potential in dielectric I due to the charge q",

in vacuum behind the interface is given by

b = __" 2(B7)
elk' 1 + El

Summing Eqs. (B6) and (B7) and setting the result equal to Eq. (B5), one finds

0 = _q. (B8)

Surprisingly the needed charge is simply the negative of the actual charge, independent of

the dielectric constant el!

To summarize what has been done: If one is performing a molecular dynamics simulation

with a charge q in a solvent a distance d above a conductor, one should add an image charge

-q a distance d below the conductor which interacts with the solvent. The purpose of this

procedure is to make rigorous contact with the expected results of a dielectric continuum

theory. In practice, however, for the simulations detailed in the present work the ion is 5.1

A from the surface. At such a distance the inclusion of the image charge with the water

solvent (e s, 80) has only a very minor effect.
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FIGURES

FIG. 1. Rectangular periodic cell which permits hexagonal ordering

FIG. 2. Sample two dimensional tiling of space with rectangular periodic cell

FIG. 3. Solid lines gives the diabatic free energy curves for the iron ion 5.1 A from the Pt

surface. The upper solid line is for the Fe2+ ion, and the lower solid line is for the Fes+ ion.

FIG. 4. Classical Adiabatic free energy curves for ferrous-ferric charge transfer at the wa-

ter-Pt(111) interface. Here A = 0.05 e.v. Eq. (2.3) was used for the electronic energy contribution,

an approxmate expression to the electronic portion of the Anderson-Newns Hamiltonian.

FIG. 5. it vs. time (eq. (2.19)) for ferrous-ferric charge transfer at the water-Pt(111) interface.

The final value for . is 0.5769 +/- 0.0004.

FIG. 6. (roN) vs. P in the monte carlo path integral water simulation of Lobaugh. P = 25

wv selected as exhibiting converged behavior.

FIG. 7. Adiabatic free energy curve for ferrous-ferric charge transfer at the water-Pt(111)

interface using a quantum solvent is shown by the solid line. Eq. (2.3) was used for the electronic

eery contribution, an approximate expression to a portion of the Anderson-Newns Hamiltomian.

The dwahed line shows a best fit to eq. (2.7). The dot-dash line shows the previous classical case.

FIG. 8. < j•V*.m > vs. rh in molecular dynamics study for P =5.
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