Efn
e i R o

! . g o g et o A R L R e
: e PR S SR RS G R e '
N ey P T CAIRY RS LR ¢

T U AR Ay
T ontassines

llllllllllllllll

AD-A279 272 ﬂrQ IO H
L

DSTO

Information Tec

RESEARCH NOTE -
ERL-0715-RN

AN INDEPENDENT EVALUATION OF THE DECLARATIVE
ADA DIALECT

by

Gina Kingston and Stephen Crawley

94-14599

LT

APPROVED FOR PUBLIC RELEASE

IE

— > —
O ——
C—
(/) pa—

—‘—.(L"‘——

_ U:

gyl

-

rS

UNCLASSIFIED

DSTO#

AUSTRALIA

ELECTRONICS RESEARCH LABORATORY

Information Technology it

[] [] L]
Division NTIS - Cragd
DTIC 1AB
Unan.ounced
Justitication .
By
RESEARCH NOTE Distibotion
ERL-0715-RN | ehibation]
Availabuity
AN INDEPENDENT EVALUATION OF THE Dist | Avail 'a'f
DECLARATIVE ADA DIALECT Speci

by ﬁ_]

Gina Kingston and Stephen Crawley

SUMMARY

This paper provides an independent evaluation of the Declarative Ada Dialect (DAD),
which allows functional-style programming in Ada and was developed by the University of
Queensland under a Research Agreement with DSTO. It describes the use of DAD and
discusses its benefits and limitations.

© COMMONWEALTH OF AUSTRALIA 1994

JAN 94

APPROVED FOR PUBLIC RELEASE

DTIG GUALITY IN SPECTED 8

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 15(0, Salisbury, South Australia, 5108.

UNCLASSIFIED

. ~
ERL-0715-RN UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,
criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility
of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,
Canberra ACT 2601.

ii UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

CONTENTS

Page No.

LISTORFIGURESottt vvenoronorsscnnsesssasssanonsasssossssss v

1 IOMPOCUCHION . . . o v oot oo e o snosaneansosnanesosesosacsnesnenaenans 1

2 AnOverview of the DADLARGUAZE - . - .o oo oo v eeenenenenennenennnns 1

3 CRIOSIAY . o e v vt e ittt e e 3

3.1 Problem SIMEMENL0t ittt et et s e 3
; 32 Modifications and Development STFAegY« v vt it et i i 4
33 Outline Of the DAD PROGIIM . . « .« . v o vvvvtneeeen e tiennneeaeennn 5

‘ 4 Preprocessing, Compiling, Linking and EXECUtINg oo vvveunenenannnnns 6

S Transiation and Performance CharacteriStics o v v vt v v vt v vt ecanenoeanen 7

~ S.1 Preprocessor Propertiesttt e 7
S.1.1 Preprocessor Timettt ennenenennennns 7

502 COMCEXDANSION . .o oov v oo v v vnnonnnoecnanaeeeanes 7

52 Runtime Performance Characteristics oo v e e v v vneureunnnnansns 8

5201 Backgrouldcotitieeae e 8

: S22 MAthOdOIOZY vt vttt it it e e e 10

; 523 First-class Function Generators and Variables 10
V- 524 Recursive First-Class FUnCtionso0ooun... 12
P 525 COMCISIONS - - -« v v v v eeene et e e e e e e et e eie e 13
' 6 Benefits and Limitaionso cvvvntnn ittt 14
‘ 6.1 DAD and Other Functional Languagesc..ouuuuuuonnnanen.. 14
f 62 DADAMBAGE ... vvr ettt e e e e 15
63 Robustessand Maturityoovvetiotnnnnooeeonnnnas 17

64 POMADIHEY oottt e e e, 17

T ConCIESIONS v vt vttt it ittt s i s e 17

7.1 DADasa Demonstration tothe AdaCommunity00000unnn 18

7.2 DAD as an Ada Compatible Prototyping Language 19

REFERENCES ittt itiinersnreonosssononnssssusesssnsenssses 21

Appendix A SED Script for Determining Adaand DADtwkens 23

Appendix B SourceCodeforBeachmarksccitiinnnnennnnn 25

B.1 DAD Function_Generator And_CallCodecvvvenennnnnannnn 25

B.2 Ada Function_Generator And_CallCode 26

B3 DADSIMple Recursion Codeot v vvr oo nneeeroeneeeeeannn 28

BA Ada Simple_Recursion Code . . - - v v v vttt ie ittt 28

BS DAD Variable Recursion Code -0ttt ittt tnctnenanns 29

BS Ada Variable Recursion Code . . . - .. v v vt v et et et 30

B7 DADMutual Recursion Code . . - o v vt i e et it aeeansannosnnns k)|

B8 AdaMutusl Recumion Code. vt v vt vt rnnrsnnrenennnans 32

Appendix C Source Code and Output File for the Case Study — TEMPS. 35

Cl DAD TMPE COEo v vttt neenenneoneranneateneanes 35

C2 ABTEMPICOIEc00ivivvennrunannnanasassanannons 39

C3 P oW it ittt i s 45

UNCLASSIFIED fii

BRLO715-RN UNCLASSIFIED

Appondix D Problems Encountered while Compiting and Executing DAD Programs 47

Agpondix B DAD SORWEEoovrrevnnrecnnnsaunnteconerecnnys st
E]l DeCOrySUUCIIFEcovonsoveernnresnnaarosoaneanonsnes 51
B2 DADPIOQIOCESIONo oo ovoevortorsnsesassocssoonassnataes s1
B3 Demonstration PIOGISMSo occccvvooorsoneasnsscaenescnce 52

)
i
!
|
f

k-ﬁrwls
i

Pos e i

UNCLASSIFIED ERL-0715-RN

LIST OF FIGURES

Page No.
Figure 1 A Diagram of the Processes Undertaken 1o Create the DAD Executables. . 6
¢ Pigure 2 Graph Showing the Time Taken by the DAD Preprocessor on Files of
Varous Sizes. e it i et 8
Figure 3 Graph Showing the Relationship Between the Sizes of the .d Files and
Corresponding ada Files.. i, 9
Figure 4 Number of Function Values or Instances versus the Data Segment Usage . 12
Figure 5 Number of Function Calls versus Stack Usage 14
!
i
i
\
‘.
L4
¢
0
3
3
!
Q
UNCLASSIFIED v
N

e

UNCLASSIFIED

BRL-0715-RN

2T,

arTy

o

TTMRARR IR A

e sl B aalhL R . W e

o ——

e —t—

PAP—

fa

UNCLASSIFIED ERL-0715-RN

1 Introduction

Ads is a procodural programming language developed in the 1980°s under the direction of the US
Department of Defense [1]. One of the reasons for its development was 10 reduce the number of languages
supporied by the Department. uutddwopummsymubungdewbpedtumAmn
Department of Defence are programmed in

Since Ada’s development, functional programming has become popular for a variety of wasks — including
prototype programming during the early stages of the software lifecycle. Ada does not support rapid
prototyping, 30 8 second language is required for prototyping. This implies additional overheads including
the provision of additional programming language tools, support and training. As an alternative, Dr Paul
Bailes of the Department of Computer Science at the University of Queensland proposed that Ada should
be extended 10 support the functional paradigm and suggested that this could enable rapid prototyping
10 be performed in Ada.

This proposal led 1o a research agreement (DST 89/8809) between DSTO's Information Technology
Division and the University of Queensland. The agreement consisted of two main components. The first
calied for the design of functional extensions to the Ada language, which later became known as the
Declarative Ada Dialect (DAD). The second component called for the development of a preprocessor
(writien in Ada) 10 convert DAD source code into standard Ada. This work was done by the University’s
Key Centre for Software Technology over a three year period.

During this time, a number of papers were delivered (10 DSTO, giving sample programs written in DAD
(and its predecessors) and describing the syntax, semantics and implementation of the Declarative Ada
Dialect. On completion of the agreement the following were dclivered:

1. A final report “DAD — an Ada Preprocessor for Functional Programming™ {2]. This is a
covering document for 14 separate papers, 8 of which are bound with the report; the remaining
6 are previously published technical reports.

2. The source code for the DAD preprocessor and the DAD libraries.

3. The source code for several sample DAD programs.

A previous ITD paper [3} provides a reading guide to the documents delivered under the agreement.

This paper provides an independent evaluation of DAD assessing its usability and maturity. Section 2
provides an introduction to the DAD language. Section 3 describes a case study which was implemented
as part of the evaluation. Section 4 discusses the problems encountered while compiling and executing
the delivered DAD programs (details of which are given in Appendix E.C.2) and the case study. Section
S analyses some performance characteristics of the DAD preprocessor and its implementation. Section
6 discusses some aspects of the usability of DAD in general, and as a prototyping language. Finally
Section 7 offers some advice about the use of DAD.

2 An Overview of the DAD Language

The DAD language was developed to provide Ada programmers with access w the functional program-
ming paradigm for the development of rapid prototypes which could be incrementally refined 10 efficient,
robust, Ada programs.

The language was developed as an extension of the Ada language which can be converted into pure
Ads by a preprocessor written in standard Ada. The following quote from [4) justifies the choice of a
preprocessor implementation:
“A preprocessor implementation, translating our Ada extensions into “raw” Ada, guarantees:
that prototype components will in the final analysis be written in precisely the same language as
production components; that provided the preprocessor is also written in Ada, the prototyping
language will be portable to sny Ada platform; that desails of code generation and error
analysis can be kept t0 a minimum.”

The DAD syntactic exiensions are described in the DAD Language Reference Manual (5], which should
be read in conjunction with the Ada LRM (1). The most important additions are firsi-class functions and

UNCLASSIFIED 1

R s

W g e

R

ERLO715-RN UNCLASSIFIED

laxy types which will be describod below. The reader is refered 10 the DAD LRM for other syntactic
oxtensions.

mmwmmwhﬂmmmamﬂmwmm

e implomentation of fSirst-class functions and lazy types. The primary and optimised translations to

standard Ada [6, 7], and details of how these translations were developed (4, 8, 9], are provided in the
delivered documents.

To adhere 10 Ada's strong typing rules, firsi-class functions must be typed. A firsi-class function type
dechwration has the form:

type identifier is function [formal part] return type_mark.

For example, the following declaration could be used to declare a function type which took two integer
arguments and retumed a boolean:

type int_comparison is function (i, j:integer) return boolean.
A panticular first class function is specificed using the following format
function identifier:fn_type mark [{formal_ part] return typemark].
A comparison function for integers, 1ess_than can be specified in either of the following forms
function less_than:int_comparison

function less_than:int_comparison (greater,lesser:integer) return
boolean.

The first line shows the simplest specification possible; the second example shows how meaningful
identifiers can be used instead of the defaults provided in the type declaration. Note that, while the
identifiers may be renamed, the types must remain the same,
Lazy types are simply identified by the key word *“lazy” in their type declarations:

type indentifier {discriminant] is lazy type_definition

type lazy_boolean is lazy boolean.

The following is an extract from the mapprime program which was supplied by the DAD developers and
is documented in [10]. The procedure shows how the DAD library st ream -pack which implements
lazy streams can be used in declaring the map function, and gives a example of its use to display the
squares of prime numbers. The function square is passed as an argument to the map function, and
therefore must be first-class. The result from the map function is also first-class and isof type is_to_is.

package int_stream is rew stream pack (integer); use int_stream;

function up_to (start,finish: integer) return stream;
function sieve (seed: in stream) return stream;

type int_to_int is function (k: integer) return integer;
type is_to_is is function (1: stream) return stream;

function up_to (start, finish: integer) return stream is

end up_to;

function sieve (seed : in stream) return stream is

end sieve:

funetion square : int_to_int (k: integer) is
begin |

2 ~ UNCLASSIFIED

A4

b s : TRE TS B
. T

UNCLASSIFIED ERL-0715-RN

return k * k;
end square;

function map (f: int_to_int) return is_to_is
function : is_to_is is
begin
it is_null_stream (1) then
return 1;
else
return
£ (head (1))
&
map (£) (tail (1)):
end if;
end;
i beg:l.n
declare
mapsq : is_to_is := map (square);
ints : stream := up_to (2,1000);
primes : stream := gieve (ints);
pPsq : stream := mapsq (1 & primes);
i:integer:=0;
begin
while not is_null_ stream (psq) loop
i = i+1;
put (i); put (head (psq)): new_line;
psq := tail (psq):;
end loop:
end;

Most of the other extensions are mainly syntactic sugar. For example, the term dynami ¢ is used declare
recursive records. These are implemented using access types which point to the records.

3 Case Study

The following case study was performed by the authors to determine how easy it is for an inexperienced
DAD programmer to create and debug DAD programs. This section describes the development strategy
for the case study. Implementation problems, performance issues and conclusions on DAD’s usability
arising from this study and the DAD programs provided are discussed in Sections 4, 5 and 6 respectively.

3.1 Problem Statement

0 The case study is based on the example given in the following news item from comp . 1ang. ada,
posted on 29 Jan 90 with the subject: “Teaching concurrency in Ada™.

For a tasking example that can be developed from a very

simple one to include most of the task syntax, I use a remote

temperature sensor problem originally introduced by Young
0O in “"Real-time languages”.

In the basic form you have a set of tasks each sampling
the temperature of a ‘furnace’ at certain intervals. The
tasks all use the same thermometer, so they need to be

synchronized by a THERMOMETER tasks. They also share the
line to a mainframe on which they send data packets. This
requires an OUTPUT task.

D

UNCLASSIFIED 3

BRL-0713-RN UNCLASSIFIED

In a later step, the sensor is made to receive messages
from the mainframe that change the sampling intervals. For
this, an INPUT task must make conditional rendezvous with
the FURNACE tasks.

Exceptions may occur at different places, such as during the
rendezvous between FURNACE and THERMOMETER. The QUTPUT task
; P may have to accept both SEND calls and SEND_ERROR calls,

: which requires a select statement.

Finally, by assuming that there are more than one thermometer
but not enough to go around, you may illustrate guards. (An
allocator task accepts ACQUIRE only when inulase is less
than THERMO_NO, for example.)

It is fairly easy to provide the “scaffolding” tasks that
simulate the mainframe communication and write a log on the
screen as events occur.

The example has the advantage that it makes realistic use
of concurrency. 1 discuss it in a my paper “Entity-life
modeling and structured analysis in real-time software design
- a comparison” (CACM Dec 1989). The step-wise development
of the example is included in my forthcoming book “Software
construction in Ada”. 1I’ll be happy to provide draft copies
of that chapter to anyone interested.

R W R G A s s e o crasme e+

Dr. Bo Sanden, ISSE

G S e

; George Mason University
Fairfax, VA 22030-4444
bsandenfgmuvax.gmu. edu

32 Modifications and Development Strategy

This example was modified slightly and the development was split into three stages.

: L. a. ‘There is one THERMOMETER which can be used at any time and returns a
constant value. This is implemenied using a procedure.

b. There is a MAINFRAME which outputs a message when a reading is received
from one of the FURNACES. The readings from each FURNACE are merged.
The message only indicates that a rcading has been received and not its contents.
Readings are passed between objects using lazy streams.

€. A fixed delay is used for controlling the sampling time.

d. No facility is provided for changing the sampling time of the fumaces.

s 2. a. The THERMOMETER is protected so that only one FURNACE may use it at a
time. The temperatures it returns increase uniformly.

{ b. The output messages indicaie the source of the reading and its value.

* ¢. The delay for controlling the sampling time is based on the current clock value.

.

3. The sampling time of the furnaces is changed at regular intervals so that the rate of
sampling decreases.

Brvor handling and error messages were not implemented because the DAD preprocessor does not
transiale exceptions and eéxception handicrs comrecily. The multiple thermometers option was not
implemented because this is best solved using standard Ada constructs.

ey

C o

4 UNCLASSIFIED

G

UNCLASSIFIED ERL-0715-RN

33 Outline of the DAD program

The main components of the DAD program are as follows:

1. The THERMOMETER which is controlled by a task and whose value is accessed via a
function call:

task THERMOMETER is
entry TEMPERATURE (TEMP: out INTEGER):
end THERMOMETEK;
function GET_TEMPERATURE return INTEGER;
2. The MAINFRAME's control of the FURNACESs’ sampling rates, which is done via streams
between the MAINFRAME and each FURNACE:

package INTERVAL STREAM is new STREAM_PACK(INTEGER);
type INTERVALS is array (1..NUM_FURNACES) of
INTERVAL_STREAM. STREAM;
function MAINFRAME INPUT return INTERVALS;
function INPUT GENERATION(DUE : TIME; NEW_VALUE : INTEGER)
return INTERVAL_STREAM.STREAM;

3. The generation of results by each FURNACE:

type READING is record
DATE : TIME;
TEMP : INTEGER;
end record;
package READING_STREAM is new STREAM_PACK (READING) ;
function SAMPLE (INT : INTEGER;
INPUT_STREAM : INTERVAL_STREAM.STREAM)
return READING_STREAM.STREAM is
function SAMPLE DUE (INT : INTEGER; DUE : TIME;
INPUT_STREAM : INTERVAL STREAM.STREAM)
return READING_STREAM.STREAM;

4. The collation of the results from each FURNACE:

function DATE_BASED MERGE (S1, S2 : in READING_STREAM.STREAM)
return READING_STREAM.STREAM;

5. The display of the results by the MAINFRAME:

procedure MAINFRAME_OUTPUT (OUTPUT_STREAM:
in out READING_STREAM.STREAM) is
procedure OUTPUT(R : READING);

The complete DAD code and the generated Ada code for the final version are shown in Appendix C. An
caslier version of this code had 10 be modified 10 allow the DAD preprocessor to translate it correctly.
A comment in the DAD code notes the modification required.

Tt was relatively easy 10 develop the DAD code for the case study, although difficulties were encountered
dus 00 tansistion emrors produced by the preprocessor and deficiencies in the compilers (discussed in
Sections 4 and 6.3).

UNCLASSIFIED 5

g

ERL-0715-RN UNCLASSIFIED

4 Preprocessing, Compiling, Linking and Executing

The DAD programs and the case study were analysed to determine if there were any problems generating
executable code from DAD source code. This involves several sieps. Firstly, the DAD source code is
translated into Ada source code using the dad command. This code is compiled and linked using a
standard Ada compiler and linker to produce a UNIX executable. This is illustrated in Figure 1. The
resultant executables are run to see if they work correctly.

Three different Ada tool sets were used in the evaluation process. The demo systems, test programs and
the case study were all compiled and linked using the Telesoft (V4.1) and VAX Ada tools. In addiuon,
some of the code was fed through the Verdix (V5.5) tools.

Program in DAD Code

Ada
(Telesoft, Vax
&Jor Verdix)
orrpiler/Link

DAD Preprocessor
Source Code

Program
Executable

Figure 1 A Diagram of the Processes Undertaken to Create the DAD Executables.

A variety of problems were found in preprocessing, compiling, linking and executing the various DAD

programs:
1.

2.

7.

8.

The compilation order for the jstupl sample program is incorrectly documented in the
READ_ME file,

The preprocessor mistranslates exception handlers, nested first-class functions and some uses
of a function name within the function’s body. It also seems not to generate task termination
code correctly in some circumstances.

The DAD preprocessor gencrales code that makes non-portable assumptions about the lengths
of Ada code lines accepied by compilers,

The DAD runtime system includes code which makes non-portable assumptions about task
priorities.

All three Ada compilers have problems compiling nested generics, many of which are
generated by the preprocessor. In the case of Telesoft, the compiler crashes.

The Verdix Ada linker has problems with some examples.

The implementation of TEXT_I0.OPEN in the Telesoft runtime system appears not to wors
with tasking.

The Telesoft debuggers arc incapable of debugging any code that involves generics.

The problems have a varicty of sources: problem 1 is a documentation error and problems 5-8 are
deficiencies in thc Ada compilation sysiems. “Normal™ Ada portability problems were also encountered
with some of the Ada compilers supporting nonstandard math libraries. The remaining problems
are associated with the DAD preprocessor and were all encountered while developing the case study.
Problems 3 and 4 were also encountered when the delivered programs were being evaluated.

UNCLASSIFIED

L4

3]

UNCLASSIFIED ERL-0715-RN

It is worth noting that some of the DAD preprocessor crrors are fairly basic, and showed up during
routine programming. This is indicative of the level of maturity of the DAD tools in general.

S Translation and Performance Characteristics

This section examines centain compilation and runtime performance characteristics of DAD. Section §.1
examines the preprocessor execution time and the size of the generated Ada files. Section 5.2 deals with
DAD’s runtime characteristics, concentrating on its use of stack and heap space. The execution speed of
DAD code was not examined in detail in light of the current level of maturity of the DAD system.

51

Preprocessor Properties

This section looks at some properties of the DAD preprocessor, in particular the time it takes to
translate a file and the relative size of the resultant Ada files. The graphs use the program numbers
given in Table 6, with the number 16 to representing the case study. The preprocessor times and
resultant file sizes arc for the entire programs (excluding DAD librarics). A more objective file
size measure than “lines of code™ was obtained by stripping out all comments and then counting
Ada / DAD tokens. The sed script used to measure file sizes is given in Appendix A.

5.1.1

512

Preprocessor Time

This section looks at the time taken 1o preprocess DAD files. Of particular interest is
how the preprocessor time depends on the size of the DAD program.

Timing mecasurcments were made on a single user SUN SPARC IPC with 24Mb of
memory running SunOS 4.1.1 and OpcnWindows. The DAD executables were on a
remotely mounted NFS file system. The measurcments arc UNIX elapsed clock times,
measured using the UNIX date system call, averaged over 10 runs.

Figure 2 plots preprocessing time versus DAD file size for the sample programs. It
is difficult to draw any firm conclusions because there are no mid-range data points
but the shape appears to lic between lincar and quadratic. More detailed investigation
would be required to determine the exact relationship and its root cause.

The Ada compilation times for the generated files were found 1o be on average 5 times
as long as the preprocessing time. Thus, DAD preprocessing does not have a significant
impact on overall compilation times. However, it was not possible 10 compare these
times 10 the compilation times for equivalent programs written in Ada.

Code Expansion

This section comparcs the size of DAD files 10 the corresponding generated Ada files.
This gives some indication of the succinciness of DAD compared to Ada for this style
of programming. However, a comparison with equivalent hand written Ada code might
give different conclusions.

Figure 3 plots the code sizc of DAD files against the size of the generated Ada code.
This graph appears to be lincar, though sample program #15 is significantly off the line
of best fit. This is probably because much of the cruise control problem involves straight
forward arithmctical calculaton. The remaining DAD programs are approximately half
the size of the gencraicd Ada code.

UNCLASSIFIED 7

ERL-0715~-RN UNCLASSIFIED

Preprocessor Time Versus Dad FileSize

Preprocessor Time (s }

90

75

45 ~

30

15 <

+6 4413
+16 12

T
o 1500 3000 4500 €000

DAD File Size

Figure 2 Graph Showing the Time Taken by the DAD Preprocessor on Files of Various Sizes.
5.2 Runtime Performance Characteristics

This section looks at the runtime memory characteristics of DAD using “micro” benchmark
programs.
The programs were designed:

1. to compare the storage requircments for assigning first-class functions to variables
where optimisations either could, or could not, be made;

2. o compare the optimisation of a singlc recursive firsi-class function 1o that for mutually
recursive first-class functions and

3. to compare these oplimisations to thosc of other functional languages.

5§2.1 Background

It is a general property of a language with first class functions is that it is not possible
to use a simple stack to hold function arguments and local variables. This is because
variables may still be accessible via first class function values when the enclosing scope
is exited. For example:

procedure gen_adder () : procedure() : int
count := 1
procedure add () : int
count := count + 1
count
add
let adder = gen_adder ()
let res = adder ()

In the above example, the space uscd to hold the count variable cannot be discarded
when a call o gen_adder completes. Insicad the space must be retained as long as
the function value which has been assigned 10 adder is accessible by the program.

8 UNCLASSIFIED

w——

pa

T SRS 3T

¥

L&]

UNCLASSIFIED ERL-0715-RN

Size of DAD Files Compared to Generated Ada Files

10000 4
+ 4
*n
7500 W +18
Mds File Size $000
+13
*n
2500 o
+6
7+
3,4 16
+
9}1
5
4
o T T L) 1
0 1500 3000 4500 €000

DAD File Size

Figure 3 Graph Showing the Relationship Between the Sizes of the .d Files and Corresponding .ada Files.

The DAD system uses task instances to implement i st class functions [9]. There is a
task for each function type, and new lasks are gencrated when a new function value is
created or a first class function is called. These tasks serve two purposes. Firstly, they
encapsulate the scope of a function within the body of a task so that nested first class
functions can access their local variables and arguments after the function has exited.
Sccondly, they get around limitations of the Ada type system in order 1o pass classes
of first class functions as arguments and results. DAD’s lazy values are handled in a
similar way.

The use of tasks to implement function values and function calls will generally lead to
substantial runtime overheads. However, there is considerable scope for optimisation
to reduce these costs. The possible optimisations fall into two categories; those which
are applicable to all functional languages, and those which relate specifically to DAD’s
use of tasking.

A common practice in functional programming is to implement algorithms for list and
tree structures using recursive function calls. For example, the following function
searches for a given number in a list.

rec type Int_list (is_empty : bool) is record
case is_empty is
when true => empty : nil
when false => cons : record(head : int;
tail : List(t])
end case;

rec procedure search (1l: Int_list, target: int): bool is
if l.is_empty then false
else if l.cons.head = target then true
else search(l.cons.tail)

UNCLASSIFIED 9

ERL-0715-RN

?—

UNCLASSIFIED

5.2.2

5.2.3

Close examination of the above function shows that the last thing done by a call to
search in most cases is a recursive call o itself. This is referred to as “tail recursion™.
As a gencral rule, tail recursion can be optimised by replacing the call with code 0
set up the call's new arguments followed by a branch to the start of the function. The
function’s arguments and variables are effectively reused, so that for the example, the
stack space overhead is constant rather than being proportional to the length of the list.

A sccond general optimisation involves analysing functions to see if their variables and
arguments need to be allocated in dynamic space. For example, if a scope does not
contain any code that gencrates function values, its variables can be allocated on the
stack.

The DAD specific optimisations are mainly in the area of resource reclamation. These
are necessary largely because typical Ada systems are not garbage collected and do not
reclaim orphaned tasks. The DAD preprocessor therefore needs o gencrate special code
for reclaiming tasks where possible. DAD primitive constructs that are imple~nted in
Ada can also be hand optimised in various ways.

Methodology

The methodology used to examine the runtime behaviour of DAD programs was 1o
write some small benchmark programs, execute them to measure their space utilisation,
and examine the gencrated Ada code to try to understand the differences in the results.
The complete set of benchmark programs along with the corresponding generated Ad.
code is given in Appendix B.

A fairly primitive tcchnique was uscd to measure space utilisation. Sun UNIX provides
the uscr with the ability to set upper limits on a program’s use of certain resources; in
particular the data sizc and the stack size. The shell built-in 1imit function' was used
to set these and the benchmarks were run to sec how long they ran. Each benchmark
outputs one or more lincs of text for each iteration, so progress can be measured by
counting the lines. The stack and data resource limits under the configuration used,
have a granularity of 4096 bytes and 8192 bytes respectively, but this has negligible
effect on the actual measurcments.

It is worth noting that the benchmarks did not always terminate in the correct way under
some Ada implementations tested. The two programs which were dependent on the data
limit terminated with a “bus error” or “segmentation violation™ rather than with an Ada
STORAGE_ERROR exception as requircd by the Ada Reference Manual.

First-class Function Generators and Variables

The function_generator_and_call program is designed to examine the storage
overhead of first class function instances. It creates a large array of functions and loops
to initialise the array elements with a trivial function value:

type FN is function return INTEGER;
type FN_GEN is function (I:INTEGER) return FN;

type FN_ARRAY is array (0..100000) of FN;
FNS : FN_ARRAY

I : INTEGER;

1

‘The Sun manual page for limil(l) states that the datasize limit covers both the stack and data segments. In fact,

experiments indicate that it only covers the data segment, as is implicd by its name.

10

UNCLASSIFIED

€y

UNCLASSIFIED ERL-0715-RN

-- GENERATOR generates functions of type FN
function GENERATOR : FN_GEN
function : FN is
begin
return I;
end;

begin
-- create functions & output there value
for I in FNS’'RANGE loop
FNS{(I) := GENERATOR(I):
put_line (INTEGER’ IMAGE (FNS(I) ()));
end loop;

CRCIRY

end;

The variable_recursion program is dcsigned o examine the storage overhead
of calls to first class functions using function variables. It is a nonterminating recursive
loop where the recursive function call is made via a variable F:

type FN is function return INTEGER:
F : FN;
function FOO : FN;

function FOO : FN is
begin
F := FO0O;
put_line(“In Fo00");
return F();
end;
function DUMMY: FN is
begin
return 1;
end;

begin
F := DUMMY;
FOO():

end;

The function_generator_and_call program gencrates function values and
then calls them. The function_generator program is a variant of func-
tion_generator_and_call, which avoids the ovcrhead of the final function calls,
replacing the original putline statement with:

put_line("In Loop"):

Figure 4 shows the UNIX data segment usage for each program against the number of
function values or instances crcated. The number of loop or recursive iterations before
the programs halted was found to be independent of the stack segment limit. This
simply indicates that the recursion in variable_recursion is controlled by a task
or tasks rather than the main program.

The graphs show that the dala space used by function_generator_and_call,
variable_recursion and function_generator is a linear function of the
number of function values or instances created. The slopes of the graphs show
that the gencration of each function value requires 31.8Kb and 31.2Kb in func -

UNCLASSIFIED 11

ERL-0715-RN UNCLASSIFIED
LINIT (MO} *
FUNCTION_GENERATOR_AND_CALL
2250 *
+ v +
VARIABLE_RECURSION
2000 +
+ [+}
1750 FUNCTION_GENERATOR
]
1500
+ [[
1259 4 o
1000 < P
750
500 - +
&
250 4 4
]
0 -’ T T T 1
] e 60 90 120

Number of Function Instances. Vaiues or Calls

Figure 4 Number of Function Values or Instances versus the Data Segment Usage

tion_generator_and_call and function_generator respectively. The ex-
tra 0.6 Kb uscd in function_generator_and_call could be due to the additional
function call or it could be an anifact of the granularity of the measurement technique.
(Note that it is difficult to detcrminc the overhead of function calls because simple calls
are optimised.)

The slope of the graph for variable_recursion shows that each new function
instance requircs 20.7 Kb. This is noticcably less than the amount for memory re-
quircd for each function value in function_generator_and_call and func-
tion_generator, despite the relative simplicity of the functions.

The “knee” in the graphs beyond the “50Mb point indicates that another system
parameter is affccting the results for large data segment limits: in this case, the parameter
is most likcly the amount of physical swap space available on the system.

§.2.4 Recursive First-Class Functions

The simple_recursion program is designed 10 examine the storage overhead of
recursive first class function calls. The FOO function is a simple nonterminating tail
recursive loop:

type FN is function return INTEGER;

function FOO : FN is
-~ recursive first-class function
begin
put_line("In Foo");
FOO ()
end;

begin

12 UNCLASSIFIED

(28]

™

UNCLASSIFIED ERL-0715-RN

5.2.5

FOO():
end;

The mutual_recursion program is intcnded to examine the storage overhead of
mutually recursive first class function calls. The FOC and DUMMY functions are used.

type FN is function return INTEGER;
function DUMMY : FN;

function FOO : FN is
-- mutually recursive with DUMMY
begin

put_line("In Foo");

return DUMMY(); -- mutually recursive call
end;
function DUMMY: FN is
-- mutually recursive with FOO

begin
put_line("In Dummy");
return FOO(); ~-- mutually recursive call
end;
begin
FOO();

end;

Figure S shows the UNIX stack usage for cach program against the number of recursive
function calls in progress. The graph indicates that the relationship is linear and that
each recursive function call requires only 141 bytes of stack space for both programs.

The data scgment limit had no cffect of the number of function calls. Examination
of the generated Ada code indicates that the DAD preprocessor has deduced that the
functions crcate no function values and have no arguments and therefore has optimised
away the tasks normally uscd for performing first class function calls. No tail recursion
optimisation has been performed at this level. The stack usage graphs suggest that the
same is true for the Ada level.

Conclusions

The DAD preprocessor performs some oplimisation: when a function is not required to
be first-class or takes no argumcnts, the preprocessor does not generate any tasks for
instances of the function. A number of other desirable optimisations are not included
in the DAD compiler. The DAD system can make use of optimisations performed by
Ada compilers (when the appropriate options are selected); for example, the compiler
may be able perform some tail recursion optimisation. However, many of the possible
optimisations are the responsibility of the preprocessor; for example, an Ada compiler
cannot be expected to optimize tail recursion in first-class functions implemented using
tasks.

The storage overhcads for unoptimised first-class function instances are approx-
imatcly 200 times the overhead for optimised function calls. The functions
FUNCTION_GENERATOR_AND_CALL, VARIABLE_RECURSION and FUNCTION-
_GENERATOR all have storage overhcads greater that 20 Kb per function compared to
141 bytes for SIMPLE_RECURSION and MUTUAL_RECURSION where the optimisa-
tion is performed. The benefits of optimizing whenever possible appear to be substantial,
but only a limited number of optimisations are performed.

UNCLASSIFIED 13

~

ERL-0715-RN UNCLASSIFIED

LIMIT (Kb) +
75000
] ¢« o

60000 —

SIMPLE_RECURSION
+

MUTUAL_RECURS ION
o

45000 —

30000 —

15000 ~—4

Function Calls

Figure 5 Number of Function Calls versus Stack Usage

6 Benefits and Limitations

Many of the delivercd papers claim that DAD is a usclul language for rapid prototyping [8, 4, 9]. Others,
in particular “An Evaluation of the Declarative Ada Dialect”, claim that it is not a gencral purpose rapid
prototyping language, but is useful for Ada programmers(11, 12). This section considers the benefits
and drawbacks of using DAD for rapid prototyping, focusing mainly on development where the final
implementation of the systcm must be in Ada. In particular we look at

1. DAD compared to other functional languages,

2. the compatibility of DAD with standard Ada,

3. the robustness and maturity of the DAD language and preprocessor and

4. the portability of the DAD implcmentation stratcgy and physical implementation.

6.1 DAD and Other Functional Languages

There are two main points of comparison between DAD and other functional languages which are
used for rapid prototyping. These are the languages® succinctness and the performance of their
implementations.

Succinctness
DAD was designed to be Ada-like, so its syntax and constructs are less concise than those of other

functional languages. This is highlighted by the following quotes from Document 11 (writien by
a semi-independent reviewer of DAD):

“The drawback 10 DAD’s busy syntax is that it detracts heavily from its usefulness as a
rapid prototyping language. More cffort must be invested mercly in expressing ideas in
the language, and alicrations and rewrites become increasingly tedious.”

As well as having a more verbose syntax than other functional languages, a number of features
present in most functional programming languages are absent from DAD.

14 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

6.2

“The abscnce of pattern matching and "natural” currying also does much to increase the
verbosity of DAD . .. Furthermore, the necd o explicitly write a function in curried
form tends to obscure the possibility of using currying . . . the idea to use a partially
parametcrized function may well occur after it is wrilten.”

DAD provides a substitute for “natural currying” which cnables programs to explicitly declare
functions which can be partially parametcrized.

“It is in polymorphism, however, that Miranda has its great advantage.”

It should be notcd that DAD has limited polymorphism available through Ada generics. However
that offered by other functional languages is mose powerful and less verbose.

Performance

The DAD preprocessor generates Ada code that relies heavily on Ada tasks and generics. Both
of these constructs have high time and spacc overheads. In addition, the DAD preprocessor
only performs a subsct of the optimisations performed by other functional languages, resulting
in further time penaltics.

Functional programmers often write programs for succinctness. The compiler is then responsible
for ensuring the source code gets translated into an efficicnt implementation. Poor performance
often results in systems where the compiler docs not make appropriate optimisations. As the
DAD compiler performs only a limited subset of the common optimisations, the use of DAD can
incur time penaltics which arc not possessed by other functional languages, and which may be
unacceptable in many applications.

DAD’s usefulnoss as a rapid prototyping tool is limited when compatibility with Ada is not
requircd. If other functional languages arce available, their use would be preferable,

DAD and Ada

As DAD is an cxtcension of Ada it may offer some benefits in an Ada environment. There are
several things to consider:

1. How wecll do the syntactic and scmantic cxtensions provided by DAD fit into the Ada
language?

2. Can Ada components be uscd in DAD programs?

3. Can DAD components be used in Ada programs?

4. How easy is it for Ada programmers to understand DAD programs? and

5. How easy is it for Ada programmers to lcarn 10 write DAD programs?

DAD Extensions of Ada

The syntactic extensions provided by DAD are well documenicd in the delivered papers, in
particular [6]). In contrast, the documentation of DAD’s secmantics is limited; the sematics must
mainly be inferred from the cxamples or the implementation. There are a number of issues
regarding the use of DAD which could not be considered due to a lack of semantic information
(the cumrent implementation is too immature to usc as a basis for analysis), for example:

1. the interaction of first-class functions with Ada tasks,
2. the usc of first-class functions in gencric instantiations,
3. the effect of garbage collection (or lack of it) on program development.

In addition, the advent of Ada9X will raise other issucs of compatibility.
These and other related issues are complex to address and remain unresolved.
Ada Components in DAD Programs

DAD programs can make use of standard Ada librarics and other reusable Ada components:
for example, the standard Ada libraries Calendar and Text_IO0 were used in the DAD code
developed as part of the case study. However, Ada packages which use limited private types
require adaptations to cnable them 0 be used in DAD programs. This is because functions may

UNCLASSIFIED 15

ERL-0715-RN UNCLASSIFIED

only have in arguments, but objects of limited private types must be passed as in owt parameter.
Simple buffer packages may be used to overcome these problems. The packages contain new
access types which reference the original limiled private types.

DAD Components in Ada Programs

DAD libraries and components can also be uscd by Ada programs, provided the Ada programs
are preprocessed o translate the calls to DAD functions and the references to the DAD lazy types
and lazy objects.

The DAD library stream_pack as wcll as other lazy types may be useful additions 0 a
repository of rcusable components. Indeed the st ream_pack library proved very useful during
the development of the case study. It is a hand-coded package which implements generic lazy
streams, where instances of strcams may have muliiple producers and consumers. When the full
generality of these streams are needed the package should provide efficient code. However, for
lazy streams with only on¢ producer or consumer, other, more cfficient implementations may be
possible.

Other lazy types can be created using the DAD language constructs and the DAD preprocessor
can then be uscd to gencrate Ada code. As the implementation of lazy types requires some form
of concurrency control, DAD versions may gencrate satisfactory Ada implementations.

Using DAD to construct lazy types should decrcase their development time, since DAD code is
simpler to write than code which direcly manipulates tasks and is also shorter. (The expansion
ratio for DAD to generated Ada code is approximatcly 4:1.) In general this brevity is at the
expense of performance, but hand-coding can produce more cfficicnt code — as illustrated by the
library stream_pack.

Understanding DAD Programs

DAD programs use an Ada-style notation. Thus, programmers familiar with Ada should, in theory,
be able to rcad and understand simple DAD programs. Some programs which use lazy types and
firstclass functions (including programs which are straight-forward applications of techniques
well-understood by functlional programmers) may initially - ause some difficulties.

As DAD programs arc more succinct than their gencrated Ada counterparts, some DAD programs
may be understood more ecasily than equivalent Ada programs.

Writing DAD Programs

Ada is a procedural language. DAD was developed as an Ada-style language which supports the
functional programming paradigm. The functional programming paradigm is significantly different
from the procedural programming paradigm.

Ada programmers with no expericnce in functional programming cannot be expected to write
well-structured functional-style programs. The use of DAD for program development does not
guarantee the quality of the rcsulling programs. In fact, as DAD is a super-set of Ada, Ada
programmers are more likely to stick to the standard Ada subsct with only limited use of the
DAD constructs.

The difference belween the functional and procedural programming paradigms is seen as a major
impediment to the uptake of DAD in Ada cnvironments. The difficully in leaming to program
in a functional language lics not with the syntax of the language, but rather with the underlying
concepts and techniques. The argument the DAD developers used 10 support the development of
DAD is debatable. They say that:

1. *“the more new technology is prescnted as an increment to an existing one, the less
learning is nccessary” and

2. “natural human resistance to innovation necds 1o be overcome by avoiding unnecessary
change” [4)

We believe that these are some of the main reasons why the DAD fcatures will not be adopted —
even if its use was mandatcd within an organisation. The prescnce of all the Ada concepts in the

16

UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

6.3

64

new language cnablcs Ada programmcrs 1o program in standard Ada. It is precisely those who
are resistant to change who will continuc (0 program in Ada.

Robustness and Maturity

The previous discussions in this scction assume that the DAD language and preprocessor are robust.
However, as mentioned in Scction 4, a number of problems, including incorrect translations, were
encountercd while using the DAD preprocessor during the implementation of the case study.

Several of the incorrect ranslations lead to runtime crrors which were difficult to trace with some
of the Ada systcms. The dcbugging of gencric instantiations was not supported on one system,
while another propagated tasking exceptions when other exceptions arose earlier and should have
been propagated.

The incorrect translation of DAD exccption handlers was particularly annoying, since exception
handlers would have been uscful in determining some of the other incorrect translations.

Errors occurring during the compilation or preprocessor phases were relatively easy to relate to the
DAD source code, despite the simplistic crror tracking procedures available. The only supported
method for tracing crrors detected during the Ada compilation to DAD coding errors is a mapping
between the DAD and Ada lines. (See Document 3 in [2].)

In summary, the DAD preprocessor cannot be considercd as mature or robust. It still produces
translation errors for simple constructs and it was casy to produce new programs which were
translated incomectly. The maturity of the language is harder to assess. However the discussions
above indicate arcas where it could be improved.

Portability

The portability of DAD is limited by

1. The usc of Ada compiler dependent features in the gencrated code and the DAD
runtime systcm,
2. The preprocessor’s inherent dependence on the file system used.

While the DAD preprocessor must be file system dependent, its implementation has not been
developed with due consideration for portability. Its use of hidden directories and lack of
encapsulation of the 1/0O make porting more arduous than it need be.

More important is the DAD preprocessor’s use of Ada tasks, priority and generics. The imple-
mentation and scheduling of tasks are compiler dependent. This can result in different compilation
problems and run-time behaviour for different compilation systems.

DAD’s heavy use of tasking and generics can also cause Ada compiler dependent limits to be
violated. For example, breaches due to the excessive nesting of generics were common during this
evaluation. While the DAD devclopers arc not responsible for the current state of Ada compilers,
they should acknowledge the compilers’ known limitations. The DAD preprocessor should have
been designed to function correctly within them.

7 Conclusions

The DAD language and its implementation can be vicwed both as:

1. anexperiment to demonstrate o the Ada community that Ada should be extended to support
the functional programming paradigm, and
2. an experiment in defining an Ada compatible prototyping language.

UNCLASSIFIED 17

ERL-0715-RN UNCLASSIFIED

7.1 DAD as a Demonstration to the Ada Community

The DAD language and preprocessor have shown that the Ada language can be extended to support
the functional programming paradigm by adding first class functions and lazy types. The preprocessor
demonstrates that first class funclions can be successfully implemenicd using the existing Ada tasking
mechanisms.

In spite of the above points, the DAD work is not likely to succeed in the broader aim of convincing the
Ada community that Ada should support the functional programming paradigm:

1.

The DAD work docs not demonsirate that adding support for the functional paradigm improves
the Ada language. Some of the main benefits of pure functional programming [13] are:
1) programs arc casier to understand and reason about as they do not contain assignment
statements, 2) it encourages thinking at higher levels of abstraction, 3) it aids automatic
parallclisation due to the absence of side-cffects, 4) it is the basis for many applications in
Artificial Intelligence, 5) it is valuable in developing exccutable specifications and prototype
implcmentations, and 6) it provides a simple framework for studying computer science. It
is clcar that many of these benefits are reduced in languages such as DAD which allow
assignment.

In addition, DAD supports, and in some cases rcquires, a mixture of functional and procedural
programming. Little rescarch has been done in this style of programming, and is not clear
whether (well-written) DAD programs using a mixed paradigm programs would be easier to
understand than cquivalent pure Ada programs. In particular, there is reason to believe that
mixed paradigm programs that mix lazy types and conventional Ada tasks would be very
difficult to understand.

Specifying the semantics of DAD using prototypical translations of DAD constructs into Ada
does not give the reader much confidence that interactions between the semantics of DAD
constructs arc well understood. In their defence, the DAD researchers were hampered by the
lack of a formal specification for Ada.

In our opinion, the approach that the rescarchers took to implementing DAD is not likely to
convince the Ada community that the functional programming paradigm can be suppornted
without a substantial performance penalty. The main problems are the assumptions that
DAD makes about the implementations of dynamic storage management and tasking in the
underlying Ada runtime systcms:

a. The DAD implementation stralegy makes extensive use of tasking, with closures im-
plemented using dynamic task crcation and first class function calls implemented using
task swilching. In practice, dynamic task crcation and task swilching are more expen-
sive in runtime rcsources comparcd with the techniques normally used to implement
first class functions. Evcn with a specially wned impiementation of Ada tasking, we
would expect the cost of a DAD style first class function call to be at least an order of
magnitude slower than cither a conventional Ada function call or a first class function
call implemented in the conventional way,

b. The DAD implementation stratcgy sccms to assume that tasks are garbage collected by
the Ada system. Without a garbage collcctor, trivial DAD programs can consume vast
amounts of memory very quickly. The problem is that very few Ada implementations
include garbage collectors, probably because there is little demand for them. In our
expericnce, most Ada programmers view garbage collection as very costly in machine
resources, and require hard evidence 0 convince them otherwise.

We acknowledge that the DAD researchers never aimed to produce a DAD implementation
that is competitive with mature implcmentations of Ada or functional languages. Furthermore,
they clearly did not have the resources needed to do so. However, given the emphasis that
the Ada community places on cfficiency, we belicve that a different approach would have
been more appropriate.

18

UNCLASSIFIED

e i g s s 8 =

UNCLASSIFIED ERL-0715-RN

7.2 DAD as an Ada Compatible Prototyping Language

The second view of DAD is of an Ada compatible prototyping language. Once again, the DAD has
sucreeded in showing that some linguistic featurcs that are appropriate 10 prototyping can be added to
Ada. The examplc DAD programs supplicd by UQ and those developed by the authors show that DAD
can be used for prototyping small-scale problems that do not require much functional style computation.

When DAD is comparcd against other prototyping languages such as Smallialk, ML and Miranda, it can
be seen 1o have drawbacks in the following arcas:

1. Succinctness: A general requircment of prototyping languages is that they allow algorithms to
be expressed clcarly and succinctly. Since the syntax of DAD is a superset of standard Ada,
DAD programs are gencrally more verbose than equivalent programs in other prototyping
languages. This can be attributed to Ada’s 1) being statement oriented rather than expression
oricnted, 2) requiring explicit types in all declarations, and 3) having a gencrally wordy
syntax.

2. Currying: Most functional languagces support partial instantiation of the arguments of a higher
order function by currying. In DAD, the programmer has to resort to explicitly defining a
new function to do this.

3. Polymorphism: Most prototyping languages support polymorphism using both static and
dynamic typing. In many such languagcs, polymorphism is furthcr enhanced by subtyping or
inheritence. In DAD, as in Ada, the only form of polymorphism available is through generics.

4. Storage Management: Nearly all prototyping languages try to hide the problems of dynamic
storage allocation and deallocation from the programmer by providing automatic reclamation
of garbage. In most cascs, the programmer can ignore the issue entircly when building a

prototype.

In DAD, the problem of storage management largely falls on the programmer in practice.
While it is possible to ignore the issue in “toy” problems, this approach is not viable for
medium to large scale prototypes. Hand coding storage management is labour inteasive and
crror pronc in general, and will be especially so for programs written using the functional
paradigm.

The DAD authors have argucd that this is a problem with the current DAD implementation
that will go away in a garbage collected implementation. We believe it would have been
better to have written the DAD language definition to say that a full implementation requires
garbage collection.-

One of the main potential advantages of DAD compared to other prototyping languages is its ability to
make use of pre-cxisting Ada code. Tt is hard to say what impact a complete, stable implementation of
DAD would have in this arca. The DAD authors have recognised that it is necessary o write “wrappers”
for Ada private types to allow them to be used in a functional way. It is not clear whether other changes
would need to be made for morc complex software to allow it to be used with DAD.

The DAD authors suggest that since DAD is compatible with Ada, it would be possible to obtain
production quality Ada software by rcfining 2 DAD prototype. While this may be true, it has not been
demonstrated that this approach is practical. We think that DAD code that makes exiensive use of lazy
types is likely to be especially difficult to transform.

The testing and analysis of the DAD sysicm carricd out in SE group have clearly demonstraied that the
current implementation is not sufficiently mature for it (0 be used for scrious prototypin; work. The
main problems identificd arc as follows:

1. DAD bugs: In a couple of cascs, the DAD preprocessor has shown to generate incorrect Ada
code. In particular, both nested first class function definitions and exception handlers are
translated into Ada code that does not compile correctly. In addition, the DAD preprocessor
and runtime system makc non-portable assumptions about target Ada compilers and the
implementation of tasking on targct Ada systems.

2. Target Ada system bugs: The DAD preprocessor gencrates code that relies heavily on nested
generics and Ada tasking in ways that arc radically different from a conventional Ada program.

UNCLASSIFIED 19

ERL-0715-RN UNCLASSIFIED

This has shown up a varicty of problems in the 3 Ada systems uscd as largets. These ranged
from compiler imposed reswrictions on the number of levels of nesting of generics (VAX
Ada), through to compiler and runtime system crashes, and totally inadequate support for
dcbugging gencrics (Telesoft Ada).

While the DAD authors should not be blamed for these problems, this is a weak link
in their implementation stratcgy. Notwithstanding the cfforts of AJPO in validaling Ada
compilers, it is well known that many vendors® offerings are distinctly second rate, especially
in infrequently used aspects of the Ada language.

3. Performance: The test results reported in this paper clearly show that the current implemen-
tation of first class functions in DAD is very “mcmory hungry”. Inspection of the generated
Ada code shows that simple optimisations normally performed by compilers for functional
languages have not been performed. This, and other evidence, suggests that use of the current
DAD implcmentation for scrious prototyping work is likely to run into major performance
problems.

4. Ease of usc: The authors’ experience in using the current DAD implementation to develop
the furnace controllcr cxample is that it is not casy 10 use. The main problems are:

a. Bugs and shortcomings in the DAD and Ada systems mentioncd above.
b. Difliculty tracking Ada compilation and cxccution crrors back to the DAD source code.
¢. The lack of suitable dcbugging tools in general and under Telesoft in panticular.

5. Incomplete testing: Judging from the nature of some of the problems found during testin and
analysis, the authors suspect that the DAD preprocessor has not been subject to methodical
testing, or large scale ad-hoc testing. This concern should be addressed before DAD is used
for scrious prototyping work.

In summary, the authors do not belicve that the current implementation of DAD is suitable for serious
medium or large-scale prototyping. Even assuming that the concerns relating 1o the current implemen-
tation are addresscd, it is not clcar that DAD would be superior to existing prototyping languages in
the Defence context

The advantage of being able to interface DAD directly with Ada code should be measured against DAD’s
shornicomings as a protolyping language. It may be more (ruitful to pursue aliernative approaches such
as providing support for intcrlanguage calls between Ada and Smalltalk, ML or Miranda.

The DAD software delivered by the University of Quecnsland is held by SE group. Any queries
conceming the DAD system should be dirccied to the authors or the Head of DSTO's Software
Engineering Group.

Acknowledgments

We would like to thank Sicfan Landherr for motivating th:s study and his assistance in the preparation
of this paper.

20 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

(m
2

B3]
4]

(3]

(6}

7
(8]

9

REFERENCES

ANSL. Reference Manual for the Ada Programming Language, 1983.

Paul A. Bailes, Dan Johnston, Eric Salzman and Li Wang. DAD - an Ada Preprocessor for Functional
Programming.

Gina Kingston. A Rcading Guide for the Declarative Ada Dialect (DAD). ITD Divisional Paper
ITD-92-19, Oct 1992.

Paul A. Bailes, Dan Johnston and Eric Salzman. Rationale for the Design of an Ada Prototyping
Language. Technical rcport, No. 228. Language Dcsign Laboratory, Key Centre for Software
Technology, Department of Computer Scicnce, University of Queensland, August 1992,

Paul A. Bailes, Dan Johnston and Eric Salzman. DAD Defined. Technical report, No. 229. Language
Design Laboratory, Key Centre for Software Technology, Department of Computer Science,
University of Queensland, August 1992,

Paul A. Bailes, Dan Johnston, Eric Salzman and Li Wang. DAD Canonical Specification. Technical
report, No. 236. Language Design Laboratory, Key Centre for Software Technology, Department of
Computer Science, University of Queensland, August 1992,

DAD Actual Translation Specifications (Document S). DAD - an Ada Preprocessor for Functional
Programming, August 1992,

Paul A. Bailes, Dan Johnston, Eric Salzman and Li Warg. Full Functional Programming in a
Declarative Ada Dialcct (Document 1a). DAD - an Ada Preprocessor for Functional Programming.
Paul A. Bailes, Dan Johnston and Eric Salzman. First-Class Functions for Ada. Technical report, No.
225. Language Dcsign Laboratory, Key Centre for Software Technology, Department of Computer
Science, University of Quccensland, August 1992.

(10] DAD Demonstrations (Document 6). DAD - an Ada Preprocessor for Functional Programming.
[11] Paul A. Bailes, Dan Johnston and Eric Salzman. Prospects for Ada Language and Technology R&D

(document 12). DAD - an Ada Preprocessor for Functional Programming.

{12] Mark Pedersen. An Evaluation of the Declarative Ada Dialect (Document 11). DAD - an Ada

Preprocessor for Functional Programming, August 1992,

(13] Bruce J.MacLennan. Functional Programming - Practice and Theory. Addison-Wesley, 1990.

UNCLASSIFIED 21

ERL-0715-RN

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

APPENDIX A
SED Script for Determining Ada and DAD tokens

The following SED Script was produccd to count the number of tokens in an Ada or DAD source file.
Comments ar¢ not counicd.

#!/bin/sh

AUTHOR
DATE
PURPOSE

~ Nk W Wk N Nk Wk W

sed -e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e
-e

$1) |

PROGRAM :

SYM_COUNT

: STEPHEN CRAWLEY
: JANUARY 29
: This script can be used to count the number of tokens

rg/

in a DAD or an Ada source code file.

S AN

S/TN AN N (LTI (LT /A L2 g\
AN SR REVAVETIA

's/

I\II.I\II/!/gI \

's/<>/t/g’ \

rs/
's/
s/

rg-

s/
's/
's/
rs/

i=/1/g’ \
<=/'/g’ \
>=/t/g’ \
/==1-g’ \
**/1 /g’ \
<</V/g’' \
>>/1/g' \
\oNL/ /g0 N

rs/=>/'/g" \

rg-
rs-
rg-
rg-
rg-
rg-
rg=-
rs-

wC

NCET TN =/TV) =\ \2-gp’ \
N IVIN(E:-@IN) -\1 \2-gp’ \
N TONUII=-" TV -\ \2-gp’
NCET TVNCTE="TV) =\1 \2-gp’ \
NCCE=/ZTONET TV -\ \2-gp’
MC:~@INVN(L™ 1V) -\ \2-gp’
NCLE=" TN TV -\ \2-gp’ \
NCEC="TVN T TV =\ \2-gp’

UNCLASSIFIED 23

ERL-0715-RN UNCLASSIFIED

Y2 UNCLASSIFIED

e

a

UNCLASSIFIED ERL-0715-RN

APPENDIX B
Source Code for Benchmarks

The sections in this appendix are the DAD and corresponding Ada files for a series of programs designed

to

look at the storage requirements for DAD programs.

B.1 DAD Function_Generator_And_Call Code

wi
us

| 229

PROGRAM :- FUNCTION_GENERATOR_AND_CALL

AUTHOR :- Gina Kingston

DATE H 5 Oct 92

PURPOSE :- To test the storage implications of assigning unique

first-class functions to elements of an array.

** This is a Declarative Ada Dialect (DAD) file *x*

th TEXT_IO;:
e TEXT_I0;

ocedure FUNCTION_GENERATOR_AND_CALL is

type FN is function return INTEGER:
-- main first-class function type

type FN_GEN is function (I:INTEGER) return FN;
-- function type used to generate functions of first type

type FN_ARRAY is array (0..100000) of FN:
FNS : FN_ARRAY;
-- the array for the functions

I : INTEGER;

-- GENERATOR generates functions of type FN
function GENERATOR : FN_GEN
function : FN is
begin
return I:;
end;

UNCLASSIFIED 25

ERL-0715-RN UNCLASSIFIED

begin
-- create functions & output there value
for I in FNS’RANGE loop
FNS(I) := GENERATOR(I):
put_line (INTEGER’ IMAGE (FNS(I) ())):
end loop:
-- re-output the values of the functions
-- this was included to ensure that garbage collection
-- would not effect the storage requirements for this program
for I in FNS’'RANGE loop
put_line (INTEGER’ IMAGE (FNS(I) ()));
end loop:
end;

B.2 Ada Function_Generator_And_Call Code

with LAda_lazy , DAda_box_package ;
with DAda_functions ;
with TEXT_IO ;
use TEXT IO :
procedure FUNCTION_GENERATOR_AND_CALL is
type DAda_FN_params is record
null;
end record ;
DAda_FN_dummy params : DAda_FN_params ;
package DAda_FN_package is new DAda_functions
(DAda_FN_params , INTEGER) ;
type FN is new DAda_FN_package.funct_type ;
procedure DAda_FN_complete renames DAda_FN_package.kill_ functs ;
function DAda_apply FN (
DAda_fn : in FN) return INTEGER ;
type DAda_FN_GEN_params is record
I : INTEGER ;
end record ;
package DAda_FN_GEN_package is new DAda_functions
(DAda_FN_GEN_params , FN) ;
type FN_GEN is new DAda_FN_GEN_package. funct_type ;
procedure DAda_FN_GEN_complete renames
DAda_FN_GEN_package.kill functs :
function DAda_apply FN_GEN (
I : in INTEGER ;
Dada_fn : in FN_GEN) return FN ;
type FN_ARRAY is array (0 .. 100000) of FN ;
FNS : FN_ARRAY ;
I : INTEGER ;
task type DAda_GENERATOR_task is
entry DAda_init (DAda_params: in DAda_FN_GEN_params);
entry DAda_result (result: out FN);
end DAda_GENERATOR_task;
type DAda_GENERATOR_task ptr is access DAda_GENERATOR_task;
function GENERATOR (params: DAda_FN_GEN_params) return FN;
package DAda_GENERATOR_replacement is new
DAda_FN_GEN_package. funct_generator (GENERATOR):
task body DAda_GENERATOR_task is
I : INTEGER ;

26 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

DAda_params : DAda_FN_GEN_params ;
DAda_res : FN ;
begin
accept DAda_init (
DAda_params : in DAda_FN_GEN_params) do
DAda_GENERATOR_task.DAda_params := DAda_params ;
DAda_GENERATOR_task.I := DAda_params.I ;
end DAda_init ;
declare
function DAD_ funcl (
DAda_params : in DAda_FN_params) return INTEGER is
begin
return I ;
end DAD_funcl;
package DAda_DAD_funcl_replacement is new
DAda_FN_package. funct_generator (DAD_funcl) ;
begin
DAda_res := FN(DAda DAD funcl_replacement.make) ;
accept DAda_result (
result : out FN) do
result := DAda_res ;
end DAda_result ;
end ;
end DAda_GENERATOR_task;
function GENERATOR (params: DAda_FN_GEN_params) return FN is
DAda: DAda_GENERATOR task_ptr := new DAda_GENERATOR_task;
DAda_rslt: FN:
begin
DAda.DAda_init (params);
DAda.DAda_result (DAda_rslt):
return DAda_rslt;
end GENERATOR:
function DAda_apply_ FN_GEN (
I : in INTEGER ;
DAda_fn : in FN_GEN) return FN is
begin
return DAda_FN_GEN package.apply (DAda_FN_GEN params ' (I =>
I) , DAda_FN_GEN_package.funct_type (DAda_fn)) ;
end DAda_apply_ FN_GEN;
function DAda_apply FN (
DAda_fn : in FN) return INTEGER is
begin
return DAda_FN_package.apply (DAda_FN_dummy params ,
DAda_FN_package.funct_type (DAda_fn)) ;
end DAda_apply_ FN;
begin
for I in FNS ’ range loop
FNS (I) := GENERATOR (DAda_FN_GEN params ' (I =>1I)) ;
put_line (INTEGER ' IMAGE (DAda_FN_package.apply
(DAda_FN_dummy params ,
DAda_FN_package.funct_type (FNS (I))))) ;
end loop ;
for I in FNS ' range loop
put_line (INTEGER ’ IMAGE (DAda_FN_package.apply
{ DAda_FN_dummy params ,
DAda_FN_package.funct_type (FNS (I))))) :

UNCLASSIFIED 27

o — 1

ERL-0715-RN UNCLASSIFIED

end loop ;

DAda_GENERATOR_replacement.kill :

DAda_FN_GEN_package.kill functs ;

DAda_FN_package.kill_functs ;
end FUNCTION_GENERATOR_AND_CALL;

B.3 DAD Simple_Recursion Code

- ——— —— -~ ——

—-- PROGRAM :- VARIABLE_RECURSION

:: AUTHOR :- Gina Kingston

:: DATE :- 4 Nov 92

:: PURPOSE :- To test the storage implications of recursive

- first-class function calls

-- ** This is a Declarative Ada Dialect (DAD) file **

- > - - ———

with TEXT_IO;
use TEXT IO:;

procedure SIMPLE_RECURSION is

type FN is function return INTEGER;
-- type for the first-class function

function FOO : FN is
-- recursive first-class function
begin
put_line(’'In Foo’);
FOO():
end;

begin
FOO () ;
end;

B.4 Ada Simple_Recursion Code

with LAda lazy , DAda_box_package ;
with DAda_functions ;
with TEXT_IO :
use TEXT_IO ;
procedure SIMPLE_RECURSION is
type DAda_FN params is record
null;
end record :
DAda_FN_dummy_params : DAda_FN_params ;
package DAda_FN_package is new

3 UNCLASSIFIED

- .

L3

L]

o~y

UNCLASSIFIED ERL-0715-RN

DAda_functions (DAda_FN_params , INTEGER) ;
type FN is new DAda_FN_package.funct_type
procedure DAda_FN_complete renames DAda_FN_package.kill_ functs ;
function DAda_apply FN (
DAda_fn : in FN) return INTEGER ;
function FOO (
DAda_params : in DAda_FN_params) return INTEGER is

begin

put_line ("In Foo") ;

return FOO (DAda_FN_dummy params) ;
end FOO;

package DAda_FOO_replacement is new
DAda_FN_package.funct_generator (FOO) ;
function DAda_apply_ FN (
DAda_fn : in FN) return INTEGER is
begin
return DAda_FN_package.apply (CAda_FN_dummy params ,
DAda_FN_package.funct_type (DAda_£fn)) :
end DAda_apply_ FN;
begin
declare
DAD f : INTEGER := FOO (DAda_FN_dummy params) ;
begin
null;
end ;
DAda_FOQO_replacement.kill ;
DAda_FN_package.kill functs ;
end SIMPLE_RECURSION;

B.S DAD Variable_Recursion Code

== PROGRAM :- FUNCTION_GENERATOR

:: AUTHOR :- Gina Kingston

:: ATE :— 4 Nov 92

:: PURPOSE :- To test the storage implications of assigning a

-- first-class function to variable and returning its
-- value from within the function.

-- ** This is a Declarative Ada Dialect (DAD) file *=*

with TEXT_IO;
use TEXT_IO;

procedure VARIABLE _RECURSION is

type FN is function return INTEGER:
-- type for the function

UNCLASSIFIED

29

ERL-0715-RN UNCLASSIFIED

F : FN:
-- variable which takes function values

function FOO : FN; -- needed so that foo recognises the name foo

function FOO : FN is
-- main first-class function which uses the variable F.
begin
F := FO00;
put_line("In Foo");
return F({):
end;
function DUMMY: FN is
-- function for the inital value of the variable
begin
return 1;
end;

begin
F := DUMMY;
FOO ()

end;

B.6 Ada Variable_Recursion Code

with LAda_lazy , DAda_box_package :
with DAda_functions ;
with TEXT_IO ;
use TEXT_IO ;
procedure VARIABLE RECURSION is
type DAda_FN_params is record
null;
end record ;
DAda_FN_dummy_ params : DAda_FN_params ;
package DAda_FN_package is new
DAda_functions (DAda_FN_params , INTEGER) ;
type FN is new DAda_FN_package.funct_type :
procedure DAda_FN_complete renames DAda_FN_package.kill functs :
function DAda_apply_FN (
DAda_fn : in FN) return INTEGER ;
F : FN ;
function FOO (
DAda_params : in DAda_FN params) return INTEGER :
package DAda_FOO_replacement is new
DAda_FN_package. funct_generator (FOO) :
function FOO (
DAda_params : in DAda_FN_params) return INTEGER is
begin
F := FN(DAda_FOO_replacement.make) ;
put_line ("In Foo") ;
return DAda_FN_package.apply (DAda_FN_dummy_ params ,
DAda_FN_package.funct_type (F))
end FOO;
function DUMMY (
DAda_params : in DAda_FN_params) return INTEGER is

30 UNCLASSIFIED

e -

[}

ro

UNCLASSIFIED ERL-0715-RN

begin

return 1 ;
end DUMMY;
package DAda_DUMMY replacement is new

DAda_FN_package.funct_generator (DUMMY) ;

function DAda_apply_ FN (

DAda_fn : in FN) return INTEGER is
begin

return DAda_FN_package.apply (DAda_FN_dummy params ,

DAda_FN_package.funct_type (DAda_f£fn)) ;

end DAda_apply FN;

begin
F := FN(DAda_DUMMY_replacement.make) ;
declare
DAD_f : INTEGER := FOO (DAda_FN_dummy params) :
begin
null;
end ;

DAda_DUMMY_replacement.kill ;

DAda_FOO_replacement.kill ;

DAda_FOO_replacement.kill ;

DAda_FN_package.kill functs ;
end VARIABLE_RECURSION;

B.7 DAD Mutual_Recursion Code

~~ PROGRAM :- MUTUAL_RECURSION
-- AUTHOR :- Gina Kingston
-- DATE :— 4 Nov 92

-~ PURPOSE :- To test the storage implications of mutually recursive
- first-class functions.

-- ** This is a Declarative Ada Dialect (DAD) file **

with TEXT_IO:
use TEXT_IO;

procedure MUTUAL_RECURSION is
type FN is function return INTEGER;

-- function type f«r first-class functions

function DUMMY : FN;
-- define function for first mutually recursive call

UNCLASSIFIED

31

ERL-0715~RN UNCLASSIFIED

function FOO : FN is
-~ mutually recursive with DUMMY

begin
put_line("In Foo");
return DUMMY(); -- mutually recursive call
end;

function DUMMY: FN is
-=- mutually recusive with FOO

begin
put_line("In Dummy");
return FOO(); -- mutually recursive call
end;
begin
FOO():

end;

B.8 Ada Mutual_Recursion Code

with LAda_lazy , DAda_box_package ;
with DAda_functions ;
with TEXT_IO ;
use TEXT_IO ;
procedure MUTUAL RECURSION is
type DAda_FN_params is record
null;
end record ;
DAda_FN_dummy params : DAda_FN_params :
package DAda_FN_package is new
DAda_functions (DAda_FN_params , INTEGER) ;
type FN is new DAda_FN package.funct_type ;
procedure DAda_FN_complete renames DAda_FN_package.kill functs ;
function DAda_apply FN (
DAda_fn : in FN) return INTEGER ;
F : FN ;
function DUMMY (
DAda_params : in DAda_FN_params) return INTEGER ;
package DAda_DUMMY replacement is new
DAda_FN_package. funct_generator (DUMMY) ;
function FOO (
DAda_params : in DAda_FN_params) return INTEGER is

begin

put_line ("In Foo") ;

return DUMMY (DAda_FN_dummy params) ;
end FOO;

package DAda_FOO_replacement is new
DAda_FN_package.funct_generator (FOO)
function DUMMY (
DAJda_params : in DAda_FN_params) return INTEGER is

begin

put_line ("In Dummy") ;

return FOO (DAda_FN_dummy params) ;
end DUMMY;

function DAda_apply_FN (
DAda_fn : in FN) return INTEGER is

32 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

: begin
. return DAda_FN_package.apply (DAda_FN_dummy_params ,
DAda_FN_package. funct_type (DAda_fn)) ;
end DAda_apply_ FN;
begin
declare
DAD_f : INTEGER := FOO (DAda_FN_dummy params) :
. begin
null;
end ;
DAda_DUMMY_replacement.kill ;
DAda_FOO_replacement.kill ;
DAda_DUMMY_replacement.kill ;
DAda_FN_package.kill functs ;
end MUTUAL_ RECURSION:

s

UNCLASSIFIED 33

e

ERL-0715-RN

UNCLASSIFIED

UNCLASSIFIED

P —

[VSTSIPRpR St

&

by

'

UNCLASSIFIED ERL-0715-RN

APPENDIX C

Source Code and Output File for the Case Study — TEMPS,

This following sections describe the case study implemented during the evaluation of DAD. The first
section contains the original DAD source, the sccond the gencrated Ada source and the third is a sample

of the type of output produced by the program.

C.1 DAD Temps Code

-- PROGRAM : TEMPS

-- AUTHOR :- Gina Kingston

-- DATE 22 Oct 92

-- PURPOSE :- To test how easey it is to write and use of DAD program

-- Implements a modified version of a proposed Ada tasking

- example given by Dr Bo Sanden.

-~ ** This is a Declarative Ada Dialect (DAD) file **

with STREAM PACK;
with CALENDAR; use CALENDAR;
with text_io; use text_io;

procedure TEMPS is

-- furnace outputs
type READING is record
DATE : TIME;
TEMP : INTEGER;
end record;
—-- stream for furnace outputs
package READING_STREAM is new STREAM_ PACK (READING);

function "&" (C : in READING; S : in READING_STREAM.STREAM) return

READING_STREAM.STREAM renames READING_STREAM."&" ;
OUTPUT_STREAM : READING_STREAM.STREAM;
-- stream for furnace inputs

package INTERVAL_STREAM is new STREAM_PACK(INTEGER):

function "&" (C : in INTEGER; S : in INTERVAL_STREAM.STREAM) return

INTERVAL_STREAM.STREAM renames INTERVAL_STREAM."&";

UNCLASSIFIED

35

SN S

ERL-0715-RN UNCLASSIFIED

-- number of furnaces

NUM_FURNACES : constant := 3;

-- used for maniputing the streams for furnace inputs

type INTERVALS is array (1..NUM FURNACES) of INTERVAL_STREAM.STREAM;

INPUT_STREAMS : INTERVALS;

-—- ®»*x*x This function was originally places inside

-— *%*** MAINFRAME_ INPUT. However the task it generated was

-- *%kx* gimilarly nested, but its scope was required to be global
—_— KRR KN

function INPUT_GENERATION(DUE : TIME; NEW_VALUE : INTEGER) return
INTERVAL STREAM.STREAM is
begin
delay (DUE - CLOCK);
return NEW_VALUE & INPUT_GENERATION(DUE + 30.0, NEW_VALUE + 1);
end INPUT_GENERATION;

function MAINFRAME_INPUT return INTERVALS is
begin
return (INPUT_GENERATION(CLOCK +1.0, 2),
INPUT_GENERATION(CLOCK + 2.0, 3),
INPUT_GENERATION(CLOCK + 3.0, 4));
end MAINFRAME_INPUT;

procedure MAINFRAME OUTPUT (OUTPUT_STREAM:
in out READING_STREAM.STREAM) is
procedure OUTPUT (R : READING) is
YEAR : YEAR_NUMBER;
MONTH : MONTH_NUMBER;
DAY : DAY_NUMBER;
SECONDS : DURATION;
begin
SPLIT(R.DATE, YEAR, MONTH, DAY, SECONDS);
PUT_LINE ("RECEIVED "& INTEGER’'IMAGE(R.TEMP) & " AT TIME " &
INTEGER’ IMAGE (INTEGER(SECONDS)) & " OF " &
DAY NUMBER' IMAGE (DAY) & " / " &
MONTH_NUMBER’ IMAGE (MONTH) & " / " &
YEAR NUMBER' IMAGE (YEAR));
end OUTPUT;

begin

READING_STREAM.HEAD REQUEST (QUTPUT_STREAM);
loop
if READING_STREAM.HEAD_AVAILABLE (OUTPUT_STREAM) then
OUTPUT(READING_STREAM.HEAD(OUTPUT_STREAM));
OUTPUT_STREAM := READING_STREAM.TAIL(OUTPUT_STREAM);
READING_STREAM.HEAD_REQUEST(OUTPUT_STREAM);
else

36 UNCLASSIFIED

=

UNCLASSIFIED ERL-0715-RN
DELAY (0.5);
-- To enable switching to another function to occur
end if;
end loop;

end MAINFRAME OUTPUT;

-~ Merges two streams according to the date part of their elements.
-~ Merged streams should already be ordered.

function DATE_BASED_MERGE (S1, $2 : in READING_STREAM.STREAM) return
READING_STREAM.STREAM is
begin
READING_STREAM.HEAD_ REQUEST (S1):
READING_STREAM.HEAD REQUEST(S2);
if READING_STREAM.HEAD_ AVAILABLE (S1) then
if READING_STREAM.HEAD_AVAILABLE (S2) then
if READING_STREAM.HEAD (S1) .DATE = READING_STREAM.HEAD (S2).
DATE then
return READING _STREAM.HEAD (S1) & (READING_STREAM.HEAD (S2)
& DATE_BASED_MERGE (READING_STREAM.TAIL (Sl),
READING_STREAM.TAIL (S2)));
elsif READING_STREAM.HEAD (S1).DATE < READING_STREAM.HEAD(S2).
DATE then
return READING_STREAM.HEAD (S1l) &
DATE_BASED_MERGE (READING_STREAM.TAIL (S1), S2):
else
return READING_STREAM.HEAD (S2) &
DATE_BASED_MERGE (S1, READING_STREAM.TAIL (S2));
end if;
else
return READING_STREAM.HEAD (S1) &
DATE_BASED_MERGE (READING_STREAM.TAIL (S1), S$2);
end if;
elsif READING_STREAM.HEAD_AVAILABLE (S2) then
return READING_ STREAM.HEAD (S2) &
DATE_BASED_MERGE (S1, READING_STREAM.TAIL (S2)):

else

delay 0.5;

return DATE_BASED MERGE (S1, 82);
end if;

end DATE_BASED_MERGE;

- - - — o —— — -

task THERMOMETER is
entry TEMPERATURE (TEMP: out INTEGER);
end THERMOMETER;

task body THERMOMETER is
CURRENT _TEMP : INTEGER := (;
begin

UNCLASSIFIED 37

ERL-0715-RN UNCLASSIFIED

loop
select
accept TEMPERATURE (TEMP : out INTEGER) do
TEMP := CURRENT_TEMP;
end TEMPERATURE;
CURRENT_TEMP := CURRENT_TEMP + 1;
or
terminate;
end select;
end loop;
end THERMOMETER;

= P " - — - —— > ————— —

-- This is included so that knowledge of the task representation
-~ of the THERMOMETER is not required

function GET_TEMPERATURE return INTEGER is
TEMP : INTEGER;

begin
THERMOMETER . TEMPERATURE (TEMP) ;
return TEMP;

end GET_TEMPERATURE;

function SAMPLE (INT : INTEGER;
INPUT _STREAM : INTERVAL_STREAM.STREAM) return
READING_STREAM.STREAM is
function SAMPLE DUE (INT : INTEGER; DUE : TIME;
INPUT_STREAM : INTERVAL_STREAM.STREAM) return
READING_STREAM.STREAM 1is
begin
DELAY (DUE - CLOCK);
if INTERVAL_STREAM.HEAD_AVAILABLE(INPUT_STREAM) then
INTERVAL_STREAM.HEAD_REQUEST (INTERVAL_STREAM.TAIL(
INPUT_STREAM)) ;
return READING_STREAM."&" ((CLOCK, GET_TEMPERATURE),
SAMPLE_DUE(INTERVAL_STREAM.HEAD (INPUT_STREAM),
DURATION(INT * 5) + DUE ,
INTERVAL_STREAM. TAIL (INPUT_STREAM)));
else
return READING_STREAM,"&"((CLOCK, GET_TEMPERATURE),
SAMPLE_DUE (INT, DURATION(INT * 5) + DUE,
INPUT_STREAM));
end if;
end SAMPLE DUE;
begin
INTERVAQ_STREAM.HEAD_RBQUEST(INPUT_STREAM);
return SAMPLE DUE (INT, CLOCK, INPUT_STREAM) ;
end SAMPLE;

-~ main program

38 UNCLASSIFIED

e

e

P SRCFENEp S

3

UNCLASSIFIED ERL-0715-RN

begin

-- 1) set up sampling rate (stream of changes)
-- 2) set up the stream of results (merged individual streams)
-- 3) output the results as they arrive at the simulated mainframe

INPUT_STREAMS := MAINFRAME_INPUT;
OUTPUT_STREAM := DATE_BASED_MERGE (SAMPLE(1l, INPUT_STREAMS(1)),
DATE_BASED_MERGE (SAMPLE (2, INPUT_STREAMS (2)),
SAMPLE (3, INPUT_STREAMS(3}))):
MAINFRAME_OUTPUT (OUTPUT_STREAM) ;

end TEMPS:

C.2 Ada Temps Code

with LAda_lazy , DAda_box_package ;
with DAda_functions ;
with STREAM_PACK ;
with CALENDAR ;
use CALENDAR ;
with text_io ;
use text_io ;
procedure TEMPS is
type READING is record
DATE : TIME ;
TEMP : INTEGER ;
end record ;
package READING_STREAM is new STREAM PACK (READING)
function "&" (
C : in READING ;
S : in READING_STREAM.STREAM)
return READING_STREAM.STREAM renames READING_STREAM . "&"
OUTPUT_STREAM : READING_STREAM.STREAM ;
package INTERVAL STREAM is new STREAM PACK (INTEGER) ;
function "&" (
C : in INTEGER ;
S : in INTERVAL_STREAM.STREAM }
return INTERVAL STREAM.STREAM renames INTERVAL_STREAM . "&" ;
NUM_FURNACES : constant := 3 ;
type INTERVALS is array (1 .. NUM_FURNACES)
of INTERVAL STREAM.STREAM ;
INPUT_STREAMS : INTERVALS ;
task type LAda_task_INPUT_GENERATION is
entry INPUT_GENERATION (
DUE : in TIME ;
NEW_VALUE : in INTEGER ;
LAda : in INTERVAL_STREAM.STREAM) ;
end LAda_task_INPUT_GENERATION;
type LAda_task_ INPUT_GENERATION ptr is access
LAda_task_INPUT_GENERATION ;
function INPUT_GENERATION (
DUE : in TIME ;
NEW_VALUE : in INTEGER) return INTERVAL_STREAM.STREAM ;
task type LAda_task_DATE_BASED_MERGE is

UNCLASSIFIED 39

ERL-0715-RN UNCLASSIFIED

entry DATE_BASED_MERGE (
S1 , S2 : in READING_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) ;
end LAda_task_DATE_BASED_MERGE;
type LAda_task_DATE_BASED_MERGE ptr is access
LAda_task_DATE_BASED_MERGE ;
function DATE_BASED_MERGE (
S1 , S2 : in READING_STREAM.STREAM)
return READING_STREAM.STREAM ;
task type LAda_task_SAMPLE is
entry SAMPLE (
INT : in INTEGER ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) ;
end LAda_task_SAMPLE;
type LAda_task_SAMPLE ptr is access LAda_task_SAMPLE ;
function SAMPLE (
INT : in INTEGER ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM)
return READING_STREAM.STREAM ;
task body LAda_task_INPUT_GENERATION is
DUE : TIME ;
NEW_VALUE : INTEGER
LAda : INTERVAL STREAM.STREAM ;

_ begin ‘

i accept INPUT_GENERATION (

| DUE : in TIME ;

NEW_VALUE : in INTEGER ;

! LAda : in INTERVAL_STREAM.STREAM) do
LAda_task_INPUT GENERATION.DUE := DUE ;
LAda_task_INPUT_GENERATION.NEW_VALUE := NEW_VALUE ;
LAda_task_INPUT_GENERATION.LAda := LAda ;

end INPUT_GENERATION ;
INTERVAL_STREAM.LAda_STREAM_suspend (LAda) ;
declare
begin
delay (DUE - CLOCK)
INTERVAL_STREAM.LAda_STREAM transfer_value (LAda ,
NEW_VALUE &
INPUT_GENERATION (DUE + 30.0 , NEW_VALUE + 1)) ;
goto LAda_exit ;
<<LAda_exit>>
INTERVAL STREAM.LAda_STREAM completed (LAda) ;
end ; {
end LAda_task_INPUT_GENERATION;
function INPUT_GENERATION (
DUE : in TIME ;
NEW_VALUE : in INTEGER) return INTERVAL_STREAM.STREAM is
LAda : INTERVAL_STREAM.STREAM :=
INTERVAL_STREAM. LAda_STREAM_create ;
LAda_active_task : LAda_task_INPUT_GENERATION ptr :=
new LAda_task_INPUT_GENERATION ;

begin
LAda_active_task.INPUT_GENERATION (DUE , NEW_VALUE , LAda) ;
return LAda ;

end INPUT GENERATION:;

40 UNCLASSIFIED

()

UNCLASSIFIED ERL-0715-RN

function MAINFRAME_INPUT return INTERVALS is
begin
return (INPUT_GENERATION (CLOCK + 1.
INPUT_GENERATION (CLOCK + 2.
INPUT_GENERATION (CLOCK + 3.
end MAINFRAME INPUT;
procedure MAINFRAME OUTPUT (
OUTPUT_STREAM : in out READING_STREAM.STREAM) is
procedure QUTPUT (
R : in READING) is
YEAR : YEAR_NUMBER ;
MONTH : MONTH_NUMBER ;
DAY : DAY NUMBER ;
SECONDS : DURATION ;
begin
SPLIT (R . DATE , YEAR , MONTH , DAY , SECONDS) ;
PUT_LINE ("RECEIVED " & INTEGER ‘' IMAGE (R . TEMP) &
* AT TIME " &
INTEGER ' IMAGE (INTEGER (SECONDS)) &
" OF " & DAY_NUMBER ' IMAGE (DAY) &
* / " & MONTH_NUMBER ' IMAGE (MONTH) &
" / " & YEAR_NUMBER ’ IMAGE (YEAR)) ;

~

-

o O o
-
oW N

end OUTPUT;
begin
READING_STREAM . HEAD_REQUEST (OUTPUT_STREAM) ;
loop
if READING_STREAM . HEAD_AVAILABLE (OUTPUT_STREAM) then
OUTPUT (READING_STREAM . HEAD (OUTPUT_STREAM))
OUTPUT_STREAM := READING_STREAM . TAIL
(OUTPUT_STREAM) ;
READING_STREAM . HEAD_ REQUEST (QUTPUT_STREAM) ;
else
delay (0.5) :
end if;
end loop
end MAINFRAME OUTPUT;
task body LAda_task_DATE_BASED_MERGE is
sl , 82 : READING_STREAM.STREAM ;
LAda : READING_STREAM.STREAM ;
begin
accept DATE_BASED_MERGE (
S1 , 82 : in READING_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) do
LAda_task_DATE_BASED_MERGE.S1 := Sl ;
LAda_task _DATE_BASED_MERGE.S2 := S2 ;
LAda_task_DATE_BASED_MERGE.LAda := LAda
end DATE_BASED_MERGE ;
READING_STREAM.LAda_STREAM suspend (LAda) ;
declare
begin
READING_STREAM . HEAD_REQUEST (S1) ;
READING_STREAM . HEAD_REQUEST (S2) ;
if READING_STREAM . HEAD_AVAILABLE (S1) then
if READING_STREAM . HEAD_AVAILABLE (S2) then
if READING_STREAM . HEAD (S1) . DATE =
READING_STREAM . HEAD (S2) . DATE then

UNCLASSIFIED 41

ERL-0715-RN UNCLASSIFIED

READING_STREAM.LAda_STREAM_ transfer_ value
(LAda , READING_STREAM . HEAD (S1) &
{ READING_STREAM . HEAD (S2) &
DATE_BASED_MERGE {
READING_STREAM . TAIL (S1) ,
READING_STREAM . TAIL (S2)))) :
goto LAda_exit ;
elsif READING_STREAM . HEAD (S1) . DATE <
READING_STREAM . HEAD (S2) . DATE then
READING_STREAM.LAda_STREAM transfer_ value (
LAda , READING_STREAM ., HEAD (S1) &
DATE_BASED_MERGE (
READING_STREAM . TAIL (S1) , s2))
goto LAda_exit ;
else
READING_STREAM.LAda_STREAM transfer_value
(LAda , READING STREAM . HEAD (S2) &
DATE_BASED_MERGE (Sl ,
READING_STREAM . TAIL (S2))) ;
goto LAda_exit ;
end if;
else
READING_STREAM.LAda_STREAM transfer_value (LAda ,
READING_STREAM . HEAD (S1) &
DATE_BASED_MERGE (
READING_STREAM . TAIL (81) , S2))
goto LAda_exit
end if;
elsif READING_STREAM . HEAD_AVAILABLE (S2) then
READING_STREAM.LAda_STREAM transfer_value (LAda ,
READING_STREAM . HEAD (S2) &
DATE_BASED _MERGE (S1 ,
READING_STREAM . TAIL (S2))) ;
goto LAda_exit ;
else
delay 0.5 ;
READING_STREAM.LAda_STREAM_ transfer_value (LAda ,
DATE_BASED_MERGE (S1 , S2)) :
goto LAda_exit ;
end if;
<<LAda_exit>>
READING_STREAM.LAda_STREAM_completed (LAda) ;
end ;
end LAda_task DATE_BASED_MERGE; 3
function DATE_BASED_MERGE (
§1 , S2 : in READING_STREAM.STREAM)
return READING_STREAM.STREAM is
LAda : READING_STREAM.STREAM :=
READING_STREAM.LAda_STREAM create ;
LAda_active_task : LAda_task_DATE_BASED _MERGE_ptr := 1
new LAda_task_DATE_BASED_MERGE ;
begin
LAda_active_task.DATE_BASED_MERGE (S1 , S2 , LAda) :
return LAda ;
end DATE_BASED_MERGE;
task THERMOMETER is

42 UNCLASSIFIED

[
.

)

UNCLASSIFIED ERL-0715-RN
entry TEMPERATURE (
TEMP : out INTEGER)
end THERMOMETER;
task body THERMOMETER is
CURRENT_TEMP : INTEGER := 0 ;
begin
loop
select
accept TEMPERATURE (
TEMP : out INTEGER) do
TEMP := CURRENT_TEMP ;
end TEMPERATURE ;
CURRENT_TEMP := CURRENT TEMP + 1 ;
or
terminate;
end select;
end loop ;
end THERMOMETER;
function GET_TEMPERATURE return INTEGER is
TEMP : INTEGER ;
begin
THERMOMETER . TEMPERATURE (TEMP) ;
return TEMP ;
end GET_TEMPERATURE;
task body LAda_task_SAMPLE is
INT : INTEGER ;
INPUT_STREAM : INTERVAL STREAM.STREAM ;
LAda : READING_STREAM.STREAM ;
begin
accept SAMPLE (
INT : in INTEGER ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) do
LAda_task_SAMPLE.INT := INT ;
LAda_task_SAMPLE.INPUT_STREAM := INPUT_STREAM ;
LAda_task_SAMPLE.LAda := LAda ;
end SAMPLE ;
READING_STREAM.LAda_ STREAM_suspend (LAda) :
declare
task type LAda_task_SAMPLE_DUE is
entry SAMPLE DUE (
INT : in INTEGER ;
DUE : in TIME
INPUT_STREAM : in INTERVAL_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) ;
end LAda_task_SAMPLE_DUE;
type LAda_task_SAMPLE_DUE_ptr is access
LAda_task_SAMPLE_DUE ;
function SAMPLE_DUE (
INT : in INTEGER ;
DUE : in TIME ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM)
return READING_STREAM.STREAM ;
task body LAda_task_SAMPLE_DUE is
INT : INTEGER ;
DUE : TIME ;
UNCLASSIFIED 43

ERL-0715-RN UNCLASSIFIED

INPUT_STREAM : INTERVAL_STREAM.STREAM ;
LAda : READING_STREAM.STREAM ;
begin
accept SAMPLE DUE (
INT : in INTEGER ;
DUE : in TIME ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM ;
LAda : in READING_STREAM.STREAM) do
LAda_task_SAMPLE DUE.INT := INT ;
LAda_task_SAMPLE DUE.DUE := DUE ;
LAda_task_SAMPLE_DUE.INPUT_STREAM :=
INPUT_STREAM ;
LAda_task_SAMPLE DUE.LAda := LAda ;
end SAMPLE DUE ;
READING_STREAM.LAda_STREAM_suspend (LAda) ;
declare
begin
delay (DUE - CLOCK) ;
if INTERVAL_STREAM . HEAD_AVAILABLE
(INPUT_STREAM) then
INTERVAL_STREAM . HEAD_REQUEST
(INTERVAL_STREAM . TAIL (INPUT_STREAM)) :
READING_STREAM.LAda_STREAM transfer_value
(LAda , READING_STREAM . "&" (
(CLOCK , GET_TEMPERATURE) ,
SAMPLE_DUE (
INTERVAL_STREAM . HEAD (INPUT_STREAM) ,
DURATION (INT * S) + DUE ,
INTERVAL_STREAM . TAIL (INPUT_:TREAM
))y))
goto LAda_exit ;
else
READING_STREAM.LAda_STREAM transfer_ value (
LAda , READING_STREAM . "&" (
(CLOCK , GET_TEMPERATURE) ,
SAMPLE_DUE (INT ,
DURATION (INT * 5) + DUE ,
INPUT_STREAM)})) ;
goto LAda_exit :
end if;
<<LAda_exit>>
READING_STREAM.LAda_STREAM_completed (LAda) ;
end ;
end LAda_task_ SAMPLE_DUE;
function SAMPLE DUE ({(
INT : in INTEGER ;
DUE : in TIME ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM)
return READING_STREAM.STREAM is
LAda : READING_STREAM.STREAM :=
READING_STREAM.LAda_STREAM create ;
LAda_active_task : LAda_task_SAMPLE_DUE ptr :=
new LAda_task_ SAMPLE_DUE ;
begin
LAda_active_task.SAMPLE DUE
(INT , DUE , INPUT_STREAM , LAda) ;

44 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN
return LAda
end SAMPLE_DUE;
begin
INTERVAL _STREAM . HEAD_ REQUEST (INPUT_STREAM) ;
READING_STREAM.LAda_STREAM_transfer_value (LAda ,
SAMPLE _DUE (INT , CLOCK , INPUT_STREAM)) ;
goto LAda_exit ;
<<LAda_exit>>
READING_STREAM.LAda_STREAM completed (LAda) ;
end ;
end LAda_task_SAMPLE;
function SAMPLE (
INT : in INTEGER ;
INPUT_STREAM : in INTERVAL_STREAM.STREAM)
return READING_STREAM.STREAM is
LAda : READING_STREAM.STREAM :=
READING_STREAM.LAda_STREAM create ;
LAda_active_task : LAda_task_SAMPLE ptr :=
new LAda_task_SAMPLE ;
begin
LAda_active_task.SAMPLE (INT , INPUT STREAM , LAda) ;
return LAda ;
end SAMPLE;
begin
INPUT_STREAMS := MAINFRAME INPUT ;
QUTPUT_STREAM :=
DATE_BASED_MERGE (SAMPLE (1 , INPUT_STREAMS 1)),
DATE_BASED MERGE (SAMPLE (2 , INPUT_STREAMS (2)) ,
SAMPLE (3 , INPUT_STREAMS (3)))) :
MAINFRAME OQUTPUT (OUTPUT_STREAM) ;
end TEMPS;
C.3 Temps Output
RECEIVED 0 AT TIME 43282 OF 4 / 11 / 1992
RECEIVED 1 AT TIME 43282 OoF 4 / 11 / 1992
RECEIVED 2 AT TIME 43282 oF 4 / 11 / 1992
RECEIVED 3 AT TIME 43288 OF 4 / 11 / 1992
RECEIVED 4 AT TIME 43293 OF 4 / 11 / 1992
RECEIVED 5 AT TIME 432%4 OF 4 / 11 / 1992
RECEIVED 6 AT TIME 43299 OF 4 / 11 / 1992
RECEIVED 7 AT TIME 43303 OF 4 / 11 / 1992
RECEIVED 8 AT TIME 43304 OF 4 / 11 / 1992
RECEIVED 9 AT TIME 43313 OF 4 / 11 / 1992
RECEIVED 10 AT TIME 43314 OF 4 / 11 / 1992
RECEIVED 11 AT TIME 43319 OF 4 / 11 / 1992
RECEIVED 12 AT TIME 43324 OF 4 / 11 / 1992
RECEIVED 13 AT TIME 43334 OF 4 / 11 / 1992
RECEIVED 14 AT TIME 43334 OF 4 / 11 / 1992
RECEIVED 15 AT TIME 43335 OF 4 / 11 / 1992
RECEIVED 16 AT TIME 43344 OF 4 / 11 / 1992
RECEIVED 17 AT TIME 43349 OF 4 / 11 / 1992
RECEIVED 18 AT TIME 43354 OF 4 / 11 / 1992
RECEIVED 19 AT TIME 43355 OF 4 / 11 / 1992
RECEIVED 20 AT TIME 43363 OF 4 / 11 / 1992
UNCLASSIFIED 45

ERL-0715-RN UNCLASSIFIEL

RECEIVED 21 AT TIME 43364 OF 4 / 11 / 1992
RECEIVED 22 AT TIME 43374 OF 4 / 11 / 1992
RECEIVED 23 AT TIME 43375 OF 4 / 11 / 1992
RECEIVED 24 AT TIME 43379 OF 4 / 11 / 1992
RECEIVED 25 AT TIME 43384 OF 4 / 11 / 1992
RECEIVED 26 AT TIME 43393 OF 4 / 11 / 1992
RECEIVED 27 AT TIME 43394 OF 4 / 11 / 1992
RECEIVED 28 AT TIME 43395 OF 4 / 11 / 1992
RECEIVED 29 AT TIME 43404 OF 4 / 11 / 1992
RECEIVED 30 AT TIME 43409 OF 4 / 11 / 1992
RECEIVED 31 AT TIME 43414 OF 4 / 11 / 1992
RECEIVED 32 AT TIME 43415 OF 4 / 11 / 1992
RECEIVED 33 AT TIME 43424 OF 4 / 11 / 1992
RECEIVED 34 AT TIME 43424 OF 4 / 11 / 1992
RECEIVED 35 AT TIME 43433 OF 4 / 11 / 1992
RECEIVED 236 AT TIME 43435 OF 4 / 11 / 1992
RECEIVED 37 AT TIME 43439 OF 4 / 11 / 1992
RECEIVED 38 AT TIME 43444 OF 4 / 11 / 1992
RECEIVED 39 AT TIME 43453 OF 4 / 11 / 1992
RECEIVED 40 AT TIME 43454 OF 4 / 11 / 1992
RECEIVED 41 AT TIME 43455 OF 4 / 11 / 1992
RECEIVED 42 AT TIME 43464 OF 4 / 11 / 1992
RECEIVED 43 AT TIME 43469 CF 4 / 11 / 1992
RECEIVED 44 AT TIME 43474 OF 4 / 11 / 1992
RECEIVED 45 AT TIME 43475 OF 4 / 11 / 1992
RECEIVED 46 AT TIME 43483 OF 4 / 11 / 19982
RECEIVED 47 AT TIME 43484 OF 4 / 11 / 1992
RECEIVED 48 AT TIME 43493 OF 4 / 11 / 1992
RECEIVED 49 AT TIME 43495 OF 4 / 11 / 1992
RECEIVED 50 AT TIME 43499 OF 4 / 11 / 1992
RECEIVED 51 AT TIME 43504 OF 4 / 11 / 1992
RECEIVED 52 AT TIME 43514 OF 4 / 11 / 1992
RECEIVED 53 AT TIME 43514 OF 4 / 11 / 1992
RECEIVED 54 AT TIME 43515 OF 4 / 11 / 1992
46 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

APPENDIX D
Problemss Encountered while Compiling and Executing DAD Programs

There was another discovery found when writing the VARIABLE_RECURSION.d program. It is very
easy to work around and may or may not be considered to be crroncous. The .d file contained such a
minor diffcrences to the final VARIABLE_RECURSION that it was not considcred worthwhile w include
it separately. In the first-class function foo a variable is assigned to take the value foo. The translation
of this into Ada is incorrect when the function has not be specified scparately first. However in the
example given the program is analogous to SIMPLE_RECURSION. The only difference being the use
of the variable.

PROGRAM COMPILER/LINKER PROBLEMS
Telesoft VAX Verdix

DAD standard files OK 1 OK 1 - lada_lazy.a

addn 0K OK -

ham 2 2 - 2 - ham.ada

mapfib 2 2 - 2 - mapfib.ada

mapprime 2 2 - 2 - mapprime.ada

primes OK OK -

sfu 3 OK OK 3

setst 2 2 - 2 - scts.ada

yhand 2 2 - 2 - yhand.ada

ystub 4 4 - 4

ylest 4 4 - 2 - ytest.ada
4

jstupl 2 2 2 - jstupl.ada
5

alt_bit 23 2 - 2 - alt_bit.ada
3

alt_bit_verb 23 2 - 2 - alt_bit_verb.ada
3

dms 6 6 7 6,7

cruise_control 38 8 7 3.7.8

stream_test - - - 9 - stream_test.d

trial OK - -

trial_2 0K - -

trial_3 OK - -

trial_4 OK - -

temps_1 OK - -

temps_2 OK - -

Table 1 DAD Programs and the Problems Encountered While Trying to Exccute Them (Continued . . .)

UNCLASSIFIED 47

ERL-0715-RN UNCLASSIFIED

PROGRAM COMPILER/LINKER PROBLEMS
Telesoft YAX Verdix
temps_3 - - - 10 - temps_3.d
temps_4 OK oK -

Table 1 DAD Programs and the Problems Encountered While Trying to Execute Them

PROBLEM COMPILER

Tasking Priority Range VAX

Pragma Priority was uscd with valucs §, 10 and 20.

Vax only has priority valucs 0..15 (Dcfault 7) so the valucs
had to be changed 1o lic within this range. Notc that their
order relative 1o cach other was maintained, but not with
respect to the default value.

Telesoft has prioritics in the range 0..63 (Default 31).
Verdix has priorites in the range 0..99 (Dcfault 0).

Number of Characters per Line of Code Telesoft

The DAD preprocessor gencrales Ada code with a VAX

maximum of 250 characters per line.

The Telesolt compiler requires line lengths to be a
maximum of 200 characters long. The VAX rcquires lincs
to be at most 120 characters long. Hence some of the
gencrated files needed to be modificd before they could be
compiled.

Verdix has a maximum of 499 characlers per linc.

PROGRAM_ERROR Telesoft

A Program_Error occurred during Exccution. For one
program it appears as if a call to TEXT_IQ.OPEN causcd
the problem. The others could not be debugged as the main
program consisted of statements which were calis o
instantiations of gencrics. The Telesoft compiler has a
known bug whercby generics and their instantiations cannot
be debugged.

Termination N/A

Two of the programs which should have terminated did not.
As NAME kill is called when 2 task is no longer required, it
appears as if at Icast onc task was misscd.

READ ME N/A

The compilation order in the READ_ME file was wrong.
One of the standard DAD librarics is overwritien by the
misplaced file.

FIXABLE/
UNFIXED

FIXABLE

FIXABLE

UNFIXED

UNFIXED

FIXABLE

Table 2 Problems Encountered While Trying To Execute DAD Programs (Continued ...)

48

UNCLASSIFIED

UNCLASSIFIED

ERL-0715-RN

10.

Generic Nesting

In some cases the compiler had difficulty duc 10 the depth
of nesting of the generics. This was fixed by dircctly
instantialing onc or morc levels of the generics.

The Telesolt crror message gave no clues as 1o the cause of
failure.

>>> SEMANTIC: Exception in Middle Pass

>>> Interral Error: Operation Aborted.

Load Error

The error Id : VERDIX_IIOME/standard/-
objectsilink_block_b01 : internal error occurred during
linking.

The cause of this crror could not be determined.

Maths Library

Telesoft, VAX and Verdix all have differently named maths
librarics.

Telesoft’s is called generic_elementary functions, VAX's is
called math_lib and Verdix’s is called math.

This needed to be changed o the correct library from math.

GOTO in Exception Handler

A GOTO was placed in the exception handler by the DAD
preprocessor. This occured for a first-class function and
would probably occur {or any function which must be
translated to a sk by the preprocessor.

Scope of TASK Incorrect

When a function which rcturns a lazy type is nested the
task associated with it in the gencrated Ada code may have
the wrong scope. This occurs if the evaluation of the lazy
datastructure is only required outside ol the scope of its
containing function.

Table 2 Problems Encountered While Trying To Exccute DAD Programs

Telesoft
VAX

Verdix

Telesoft
YAX

N/A

N/A

FIXABLE

UNFIXED

FIXABLE

N/A

N/A

UNCLASSIFIED

49

ERL-0715-RN UNCLASSIFIED

50 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

L APPENDIX E
DAD Software

This appendix describes the structure of the DAD dircctory as it was delivered, including descriptions
of the DAD commands, library packages and sample programs.

. E.l Directory Structure

Table 3 describes the main directories of the DAD directory.

DIRECTORY CONTAINS

bin The scripts and binaries for creating and removing DAD libraries and
preprocessing DAD files.

demo The sample systems delivered. The subdirectorics are numbered according to
the document in {2] where the systems are discussed.

lib The DAD runtime sysicm (written in standard Ada) and DAD library packages
(written in DAD).

src The source files for the DAD preprocessor. DAD_COM is a shell script for

building the system.

Table 3 DAD Directory Structure

E.2 DAD Preprocessor

The files in the bin directory are described in Table 4, the files in the demo directory are described
in the section on the demonsurations and the files in the 1ib directory are described in Table S.

COMMAND PURPOSE EXAMPLE

dad Preprocesses DAD files (suffix . d) 1o obtain Ada dad addn.d
fites (suffix .ada) as described in the manual page at
the end of {5]. (The -i option for generating
illuminated listings and -a option for invoking the
compiler have not been implemented for the Telesoft
version of the preprocessor. This binary is compiled
for the Sun 4 architecture.)

d.all Preprocesses a DAD file and then compiles and links d.all addn
the resulting Ada file.
NOTE:
1) The DAD file must contain a main unit with the
same name as the file.
2) The current directory must be sctup for DAD.

d.mklib Sects up the current directory for DAD. (Sce below).
d.rmlib Deletes all files generated by DAD and Ada
commands. (Scc bclow).

Table 4 DAD bin Directory

Thed.mklib and d. rmlib scripts do not work corrccily for Telesoft. To perform the equivalent
of d.mklib, do the following:

1. Ensure that your cnvironment variables are correctly set for the Telesoft tools. $TELE-
SOFT (not $TELESOFT/bin) should be in your path.

UNCLASSIFIED 51

ERL-0715-RN UNCLASSIFIED
2, Create a Telesoft library (c.g. samplib) and 1iblst.alb file.
3. Make the .dada, .dada_syms and .debug_table subdirectories.
4. Run the 1n, dad, and ada commands as in d.mklib.

To perform the cquivalent of d. rmlib, do the following:

rm ~rf .dada .dada_syms .debug_table *.ada
rm -rf samplib.obj samplib.sub

where samplib is the name of the Ada library created above.

FILE

stream_pack.d
a_strings.a

a_files.d

E.3 Demonstration Programs

PROVIDES

A generic lazy stream package.

A package for variable length strings,

A package which allows standard Ada files to be passed as parameters
to DAD f{unctions and procedures.

Table 5 DAD ‘lib’ Dircctory

The DAD source code for several demonstration programs was delivered along with the DAD
preprocessor. These programs reside in the demo subdirectory of the DAD directory.

(= BV B S VE R 8]

10
11
12
13

PROGRAM DEMO ACTIONS
DIRECTORY

addn 6 An cxample of currying using functions which add
‘n’ to a number.

ham 6 Generates the Hamming number sequence.

mapfib 6 Kctumns the Fibonacci numbers with prime indices.

mapprime 6 Generates the squares of prime numbers.

primes 6 An implc. ~cntation of the Sieve of Eratosthenes.

sfu 6 An cxample of using streams for sequential file
updatcs.

setst 7 An implemenation of sets using their characteristic
functions.

yhand 7 A-expressions using hand generated laziness.

ystub 7 A-expressions

ytest 7 A-expressions using first-class functions.

jstupl 8 A solution to the Jobshop problem using streams.

ale_bit 9 Alternating Bit Protocol implementation.

alt_bit_verb 9 As above, with some gencrics expanded (to get
around Verdix Ada restrictions)

Table 6 Demonstration Programs (Continued . ..)

52

UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

PROGRAM DEMO ACTIONS
DIRECTORY
14 dms 10 An implcmentation of a Dependency Management
System,
15 cruise_contro} 11 An implecmentation of a Cruise Control for a car,

with a simulator,

Table 6 Dcmonstration Programs

The programs are grouped into further subdircctorics according o where they are documented.
The number of the subdirectory corresponds to the number of the document describing its contents
in [2]. The namcs of the demonstrations, their locations and, their intended function are given
in Table 6.

UNCLASSIFIED 53

LR O O

ERL-0715-RN

UNCLASSIFIED

e m———r - g——— e

54

UNCLASSIFIED

(2]

UNCLASSIFIED ERL-0715-RN
DISTRIBUTION
No. of Copies
Defence Science and Technology Organisation
Chief Defence Scientist)
Central Office Executive) 1 shared copy
Counsellor, Defence Science, London Cont Sht
Counsellor, Defence Science, Washington Cont Sht
Scientific Adviser POLCOM 1 copy
Senior Defence Scientific Adviser 1 copy
Assistant Secretary Scientific Analysis 1 copy
Navy Office
Navy Scientific Adviser 1 copy
Air Office
Air Force Scientific Adviser 1 copy
Army Office
Scientific Adviser, Army 1 copy
Electronics Research Laboratory
Director 1 copy
Chief, Information Technology Division 1 copy
Chief, Electronic Warfare Division Cont Sht
Chief, Communications Division Cont Sht
Chief, Guided Weapons Division Cont Sht
Research Leader Military Computing Systems 1 copy
Research Leader Command, Control & Intelligence Systems Branch 1 copy
Head Software Engineering Group 1 copy
G. Kingston (Author) 3 copies
S. Crawley (Author) 1 copy
Head, Program and Exccutive Support 1 copy
Manager Human Computer Interaction Laboratory 1 copy
Head, Command Support Systems Group 1 copy
Head, Intelligence Systems Group 1 copy
Head, Systems Simulation and Assessment Group 1 copy
Head, Exercise Analysis Group 1 copy
Head, C3I Systems Engineering Group 1 copy
Head, Computer Systems Architecture Group 1 copy
Head, Trusted Computer Systems Group 1 copy
Head, Information Management Group 1 copy
Head, Information Acquisition & Processing Group 1 copy
Publications & Publicity Officer, Information Technology Division 1 copy
P. Bailes (University of Queensland) 2 copies
UNCLASSIFIED §5

b ERL-0715-RN UNCI ASSIFIED

Libraries and Information Services

Australian Government Publishing Service 1 copy
! Defence Central Library, Technical Reports Centre 1 copy
Manager, Document Exchange Centre, (for retention) 1 copy
National Technical Information Service, United States 2 copies
Defence Research Information Centre, United Kingdom 2 copies
Director Scientific Information Services, Canada 1 copy
Ministry of Defence, New Zealand 1 copy
National Library of Australia 1 copy
Defence Science and Technology Organisation Salisbury, Research Library 2 copies
Library Defence Signals Directorate 1 copy
British Library Document Supply Centre 1 copy
Spares
Defence Science and Technology Organisation Salisbury, Research Library 6 copies
56 UNCLAS: :FIED

Department of Defence

P»—

1. Page Classification

Unclassitied
2. Privacy Marking/Caveat
DOCUMENT CONTROL DATA SHEET (ot document)
3a. AR Number 3b. Laboratory Number 3c. Type of Report 4. Task Number
AR-008-488 ERL-0715-RN Research Note
§. Document Date 6. CostCode 7. Security Classification 8. No. of Pages 62
JANUARY 1994
V) U U
10. Title { 1 l J [J 9. No. of Rels. 13

AN INDEPENDENT EVALUATION OF
THE DECLARATIVE ADA DIALECT

Document Title Abestract

S (Secret) C (Confi) R (Rest) U (Unclass)

* For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.

11. Author(s)

Gina Kingston and Stephen Crawley

12. Downgrading/Delimiting Instructions

13a. Corporate Author and Address

Electronics Research Laboratory
PO Box 1500, Salisbury SA 5108

13b. Task Sponsor

14. Officer/Position responsible for

15. Secondary Release Statement of this Document
APPROVED FOR PUBLIC RELEASE

16a. Deliberate Announcement
No Limitation

16b. Casual Announcement (for citation in other documents)
E No Limitation

D Ret. by Author , Doc No. and date only.

17. DEFTEST Descriptors

Ada (programming language)
Functional programming
Declarative Ada Dialect *
Prototypes

18. DISCAT Subject Codes

1205

19. Abstract

This paper provides an independent evaluation of the Declarative Ada Dialect (DAD), which allows
functional-style programming in Ada and was developed by the University of Queensland under a
Research Agreement with DSTO. It describes the use of DAD and discusses its benefits and limitations.

losve 8§

e r——
Doc.Sect WF11

