
UNCLASSIFIED

AD-A279 272

ERL-0715-RN

AN INDEPENDENT EVALUATION OF THE DECLARATIVE
ADA DIALECT

by

Gina Kingston and Stephen Crawley Im

ta)

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

I

UNCLASSIFIED
AR-008-466

DSTOA*
A U S T R A L I A

ELECTRONICS RESEARCH LABORATORY

Information TechnologyDivision NTIS CAPAi
DTIC IAB1..

Justlficatloil

RESEARCH NOTE By.......

ERL-0715-RN Distoib.-tioq

AN INDEPENDENT EVALUATION OF THE Avaii
DECLARATIVE ADA DIALECT is " ei

by-I

Gina Kingston and Stephen Crawley

SUMMARY

This paper provides an independent evaluation of the Declarative Ada Dialect (DAD),
which allows functional-style programming in Ada and was developed by the University of
Queensland under a Research Agreement with DSTO. It describes the use of DAD and
discusses its benefits and limitations.

© COMMONWEALTH OF AUSTRALIA 1994

JAN 94

APPROVED FOR PUBLIC RELEASE

DTIC QUALITY INSPECTED

POSTAL ADDRESS: Directr, Electronics Research Laboratory, PO Boux I5(M, Salisbury, South Australia, 5108.

UNCLASSIFIED

¶ #

ERL-0715-RN UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,

criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility

of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

Ui UNCLASSIFIED

S

UNCLASSWqED ERL-0715-RN

CONTENTS
psge No.

UJST OF FKKURES .. v

2 As Ovrview •the DAD Lnguage 1

3 Cale 3dy3
3.1 Problem Saement .. 3
3.2 ModicataiMs aid Development Sategy. 4

3.3 Oullne of the DAD propm 5
4 Pwepoe ing Compilin& Linking and Executing 6
S Thnulation and Performance Characieristics 7

5.1 ftpra smo Propares. 7
5.1.1 Preprocessor Time 7

5.1.2 Code Expansion 7
5.2 Runtime Perfoanance Characteristics 8

5.2.1 Backgrund. ... 8
5.2.2 Methodology 10

5.2.3 First-class Function Generators and Variables 10

5.2.4 Recursive First-Class Functions 12

5.2.5 Conclusions .. 13
6 Benelits and Limitations ... 14

6.1 DAD and Other Functional La•guages 14

6.2 DAD and Ada .. 15

S6.3 Robustness and Matuity 17

6.4 Portability ... 17

7 Conclusions .. 17

7.1 DAD as a Demonstration to the Ada Community 18

7.2 DAD as an Ada Compatible Prototyping Language 19

SR ENCES .. 21
Appedix A SED Script for Deermining Ada and DAD tokens 23

Appendx B Source Code for Benchmarks 25
1.1 DAD PF ctom Oenerator...And-Call Code 25
B.2 Ada FimcioLOeneralor.AM&Call Code 26

B.3 DAD Simple..Recusion Code 28
BA Ada SmpleRecursion Code 28

B.5 DAD variabieRecwsion Code. 29

B.6 Ads Mriable.Recursion Code 30

O 5.7 DAD MutuatRecursion Code 31
B.8 Ada MWAmaLRecursion Code 32

ApPmox C Source Code and Output Pile for dhe Case Study - TEMPS 35
c.I DAD Tmps Code ... 35
C.2 Adakr•a Code... 39

O C. '.... 45

UNCLASSIFIED iii

0

USLIVwWJ UNCLASSIFIRD

AWN& ID pambksm 3amowwrd whil CampVq MW Executing DAD Praam 47

Aip 3ft 3 DAD So•ww ... 51

3.1 Db*cIM U .. 51

3.2 DAD Pap ... s

W.3 Denuvm&WD P A 52

UNCIASSEID ERL.-0715-MN

£ LIST OF FIGURES

Page No.

S1 A Diagram of the Processes Undertaken to Create the DAD Execumbles. .6

Flm 2 Omph Showing dhe Time Taken by the DAD Preprocessor on Files of
VNkd = Sizes 8

FWPM 3 Graph Showing the Relationship Between the Sizs of the d Files and
Corresponding WAd Files 9

Rgm 4 Number of Function Values or Instances versus dte Data Segment Usage. 12

F 5 Number of Function Calls versus Stack Usage 14

C'

t

0

0

UNLSSlFELD

j
mat� UNQflWD

t

tI
I
5;

)

j
)

S

C

I

'B UWMD

} I

UNCLASSIFIED ERL-07 15-RN

1 Introduction

qu omean Ill. [orne te INit for d t development was to reduce he number of languages

b IMe D M L Mot o ooperatiknal systems being developed for the Australiaofmme Del eace an poue In Ada.

Sim Ada's dovWIpU@SL ftiiondal pmrogrmming has become popular for a variety of tasks - including
i spe wpoaumlag dring the early stas of the software lifecycle. Ada does not support rapid
Proe typk so a second language Is required for prototyping. This implies additional overheads including
tdo poviles of additio pmleuamlng language tools, support and training. As an alternative, Dr Paul

aas of de Dqame of Computer Science at the University of Queensland proposed tdal Ada should
be exteded 10 support the functional paradigm and suggested that this could enable rapid prototyping
to be perfumed in Ada.

This iposal led to a research agrement (DST 8998809) between DSTO's Information Technology
Division and the University of Queensland. The agreement consisted of two main components. The first
called for the design of functional extensions to the Ada language, which later became known as the
Declarative Ada Dialect (DAD). The second component called for the development of a preprocessor
(wrim. in Ada) to convert DAD source code into standard Ada. This work was done by the University's
Key Centre for Software bchnology over a three year period.

During this time, a number of papers were delivered to DSTO, giving sample programs written in DAD
(and its predecessos) and describing the syntax, semantics and implementation of the Declarative Ada
Dialect. On completion of the agreement the following were delivered:

1. A final report "DAD - an Ada Preprocessor for Functional Programming" (2]. This is acovering document for 14 separate papers, 8 of which are bound with the report; the remaining
A6 ware previously published technical reports.

S2. ThW source code for the DAD preprocessor and the DAD libraries.
3. The source code for several sample DAD programs.

A previous ITD paper [3] provides a reading guide to the documents delivered under the agreement.

C This paper provides an independent evaluation of DAD assessing its usability and maturity. Section 2
provides an introduction to the DAD language. Section 3 describes a case study which was implemented
as pat of the evaluation. Section 4 discusses the problems encountered while compiling and executing
the delivered DAD programs (details of which are given in Appendix E.C.2) and the case study. Section
5 analyses some performance characteristics of the DAD preprocessor and its implementation. Section
6 discusses some aspects of the usability of DAD in general, and as a prototyping language. Finally

*• Section 7 offers some advice about the use of DAD.

2 An Overview of the DAD Language

The DAD language was developed to provide Ada programmers with access to the functional program-
* mog paradigm for dte development of rapid prototypes which could be incrementally refined to efficient,

robust. Ada programs.

The language was developed as an extension of the Ada language which can be converted into pure
Ada by a preproceso written in standard Ada. The following quote from [4] justifies the choice of a
preproes implementation:

* "A preprocessor implemenatio translating our Ada extensions into "raw" Ada, guarantees:
dtat prototype components will in the final analysis be written in precisely the same language as
puditetlou components; th provided the preprocessor is also written in Ada, the prototyping
imangag will be portable to any Ada platform; that details of code generation and error
analysis can be kept to a minimum."

MWTe DAD syntctitc extensions we described in the DAD Language Reference Manual 151, which should
i 0 be m~d in co•onc with the Ads LRM (1]. The most important additions are first-class functions and

UNCLASSIFIED I

L.71R UNCLASSIFIED

AM Mw which will be described below. Th reader is refeed to the DAD LRM for other syntactic

=1 =a pm wor paam code which uses gnric packages contain"in• spprpa tk for
go -mm mim oft Sucless Suetions a•d lazy types. be primary and optimi•d ranslations to

- Ada [6, 7]. and details of how these transhltions were developed [4, 8, 93, atw provided in the

ddgvmd documet.

To abm so Ada's sa# typbg rules. flrst.class functions must be typed. A first-class function type
inhadonmbas dig fonm:

type identifier is ftwntion [formal part] return typejmark.

For ampk the following declaration could be used to declare a function type which took two intege

agpmen and murned a booean:

type int_comparison is function (i,j:integer) return boolean.

"A pm first class function is specificed using the following format

functio identifier:fn-type mark E[formalpart) retun typemark].

"A comrison function for integers, less than can be specified in either of the following forms

function lessthan: int-comparison

function less than:int comparison (greater, lesser: integer) return
boolean.

Tbe first le shows the simplest specification possible; the second example shows how meaningful
identfiers can be used instead of the defaults provided in the type declaration. Note that, while the
identifiers may be renamed, the types must remain the same.

Lazy types are simply identified by the key word 'lazy" in their type declarations:

type indentifier [discriminant] is lazy type_definition

type lazyJboolean is lazy boolean.

STh following is an extract from the mapprime program which was supplied by the DAD developers and

is docuntmed in [10]. The procedure shows how the DAD library stream:pack which implements
lazy Streams can be used in declaring the map function, and gives a example of its use to display the

squares of pime numbers. The function square is passed as an argument to the map function, and
theefore mustbe frst-class. The result from themap function is also first-class and is of type is to is.

package int stream is new streampack (integer); use int_stream;

function upto (start,finish: integer) return stream;
function sieve (seed: in stream) return stream;

type int toint is function (k: integer) return integer;
type is to is is function (1: stream) return stream;

function upto (start, finish: integer) return stream is

end upto;

function sieve (seed in stream) return stream is)

end sieve:

function square : intto int (k: integer) is

2U LSI

S2NC..LASSI l • I III FII D II *I II II

UNCLASSIFIED ERLV0715-RN

return k * k;
end square;

function map (f: int_toint return isto-is
function : is tois is
begin
if is null-stream (1) then
return 1;

else
return

f (head (1))

map (f) (tail (1));
end if;

end;
begin
declare
mapsq : is to is :- map (square);
ints : stream :- up-to (2,1000);
primes : stream :- sieve (ints);
psq : stream :- mapsq (1 & primes);
i:integer:-0;

begin
while not isnullstream (psq) loop

i :-i+1;
put (i); put (head (psq)); newline;
psq :- tail (psq);

end loop;
end;

Most of the other extensions are mainly syntactic sugar. For example, the term dynamic is used declare
recursive records. These are implemented using access types which point to the records.

3 Case Study

The following case study was performed by the authors to determine how easy it is for an inexperienced
DAD programmer to create and debug DAD programs. This section tiescribes the development strategy
for the case study. Implementation problems, performance issues and conclusions on DAD's usability

iuing from this study and the DAD programs provided are discussed in Sections 4, 5 and 6 respectively.

3.1 Problem Statement

O) The case study is based on the example given in the following news item from comp. lang. ada,
poseed on 29 Jan 90 with the subject: "Teaching concurrency in Ada".

For a tasking example that can be developed from a very
simple one to include most of the task syntax, I use a remote
temperature sensor problem originally introduced by Young
in "Real-time languages".

In the basic form you have a set of tasks each sampling
the temperature of a 'furnace' at certain intervals. The
tasks all use the same thermometer, so they need to be
syn•hronized by a THERMOMETER tasks. They also share the
line to a mainframe on which they send data packets. This
requires an OMTPUT task.

UNCLASSIFIED 3

*1

L047,S..N UNCLASSF D

S In a later step, the sensor is made to receive messages
from the mainframe that change the sampling intervals. For
this, an INPUT task must make conditional rendezvous with
the FURNACE tasks.

Exceptions may occur at different places, such as during the
rendezvous between FURNACE and THERMOMETER. The OUTPUT task
may have to accept both SEND calls and SEND ERROR calls,
which requires a select statement.

Finally, by assuming that there are more than one thermometer
but not enough to go around, you may illustrate guards. (An
allocator task accepts ACQUIRE only when inulase is less
than THERMO-NO, for example.)

It is fairly easy to provide the "scaffolding" tasks that
simulate the mainframe communication and write a log on the
screen as events occur.

The example has the advantage that it makes realistic use
of concurrency. I discuss it in a my paper "Entity-life
modeling and structured analysis in real-time software design
- a comparison" (CACM Dec 1989). The step-wise development
of the example is included in my forthcoming book "Software
construction in Ada". I'll be happy to provide draft copies
of that chapter to anyone interested.

Dr. Bo Sanden, ISSE

* I George Mason University

* Fairfax, VA 22030-4444

bsanden@gmuvax .gmu. edu

3.2 Modifications and Development Strategy

This example was modified slightly and the development was split into three stages.

1. a. Them is one THERMOMETER which can be used at any time and returns a
constant value. This is implemented using a procedure.

b. There is a MAINFRAME which outputs a message when a reading is received
from one of the FURNACES. The readings from each FURNACE are merged.
The message only indicates that a reading has been received and not its contents.
Readings are passed between objects using lazy streams.

c. A fixed delay is used for controlling the sampling time.
d. No facility is provided for changing the sampling time of the furnaces.

2. a. The THERMOMETER is protected so that only one FURNACE may use it at a
tine. The temperatures it returns increase uniformly.

b. The output messages indicate the source of the reading and its value.
C. The delay for controlling the sampling time is based on the current clock value.

3. The7 pldme of the furnaces is changed at regular intervals so that the rate of
sampling dereases.

W mMg and emnr Messages were not implemented because the DAD preprocessor does not
W" NOOOW d oepton anderscorecty.The mutpethermometers optinwas oinglumsvmsd because this is best solved using standard Ada construCts.

4 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

3J Outline of the DAD program

Tie main co•mpnents of the DAD program are as follows:

1. The THERMOMETER which i controlled by a task and whose value is accessed via a
C: function call:

task THERMOMETER is
entry TEMPERATURE (TEMP: out INTEGER);

end THERMOMETER;
function GETTEMPERATURE return INTEGER;

2. The MAINFRAME's control of the FURNACEs' sampling rates, which is done via streams
between the MAINFRAME and each FURNACE:

package INTERVALSTREAM is new STREAMPACK(INTEGER);
type INTERVALS is array (1..NUMFURNACES) of

INTERVAL STREAM. STREAM;
function MAINFRAMEINPUT return INTERVALS;

function INPUT GENERATION(DUE : TIME; NEWVALUE : INTEGER)
return INTERVALSTREAM.STREAM;

3. The generation of results by each FURNACE:

type READING is record
DATE : TIME;
TEMP : INTEGER;

end record;
package READINGSTREAM is new STREAMPACK(READING);
function SAMPLE (INT : INTEGER;

INPUTSTREAM : INTERVALSTREAM.STREAM)
return READINGSTREAM.STREAM is

function SAMPLEDUE (INT : INTEGER; DUE : TIME;
INPUTSTREAM : INTERVALSTREAM.STREAM)

return READING STREAM. STREAM;

C 4. The collation of the results from each FURNACE:

function DATE BASEDMERGE (Si, S2 : in READINGSTREAM.STREAM)
return READINGSTREAM. STREAM;

5. The display of the results by the MAINFRAME:

procedure MAINFRAMEOUTPUT (OUTPUTSTREAM:
in out READINGSTREAM.STREAM) is

procedure OUTPUT(R : READING);

Ito complete DAD code and the generated Ada code for the final version are shown in Appendix C. An
udler vaalon of this cods had to be modified to allow the DAD preprocessor to translate it correctly.
A cmmemn in the DAD code notes the modification required.

It Wn relvy easy to develop the DAD code for the case study, although difficulties were encountered
Sto meaa enmso produced by the preprocessor and deficiencies in the compilers (discussed in
Saede.. 4 ad 63).

UNCLASSIFIED 5

ERL-0715=-RN UNCLASSIFIED

4 Preprocessing, Compiling, Linking and Executing

The DAD programs and the case study were analysed to determine if there were any problems generating
executable code from DAD source code. This involves several steps. Firstly, the DAD source code is
translated into Ada source code using the dad command. This code is compiled and linked using a
swandard Ada compiler and linker to produce a UNIX executable. This is illustrated in Figure 1. The
resultant executables are run to see if they work correctly.

Three different Ada tool sets were used in the evaluation process. The demo systems, test programs and
the case study were all compiled and linked using the Telesoft (V4.1) and VAX Ada tools. In addition,
some of the code was fed through the Verdix (V5.5) tools.

Program in DAD Cod. DA ePpoprooaaA:

Ada (Titisoft)
'for/Liorsresp/ Ada

(TolosoD . Vfx
ajar Verdix)

or/i~nk.

DAD Preprocessor
Source Code

Program
Executaod

)

Figure 1 A Diagram of the Processes Undertaken to Create the DAD Executables.

A variety of problems were found in preprocessing, compiling, linking and executing the various DAD
programs:

1. The compilation order for the jstupl sample program is incorrectly documented in the
READmE file.

2. The preprocessor mistranslates exception handlers, nested first-class functions and some uses
of a function name within the function's body. It also seems not to generate task termination
code correctly in some circumstances.

3. The DAD preprocessor generates code that makes non-portable assumptions about the lengths
of Ada code lines accepted by compilers.

4. The DAD runcime system includes code which makes non-portable assumptions about task
priorities.

5. All three Ada compilers have problems compiling nested generics, many of which are
generated by the preprocessor. In the case of Telesoft, the compiler crashes.

6. The Verdix Ada linker has problems with some examples.
7. The implementation of TEXTJO.OPEN in the Telesoft runtime system appears not to worK

with tasking.
8. The Telesoft debuggers are incapable of debugging any code that involves generics.

The problems have a variety of sources: problem I is a documentation error and problems 5-8 are
deficiencies in the Ada compilation systems. "Normal" Ada portability problems were also encountered
with some of the Ada compilers supporting nonstandard math libraries. The remaining problems
are associated with the DAD preprocessor and were all encountered while developing the case study.
Problems 3 and 4 were also encountered when the delivered programs were being evaluated.

6 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

It is worth noting that some of the DAD preprocessor errors are fairly basic, and showed up during
routine programming. This is indicative of the level of maturity of the DAD tools in general.

5 Translation and Performance Characteristics

This section examines certain compilation and runtime performance characteristics of DAD. Section 5.1
examines the preprocessor execution time and the size of the generated Ada files. Section 5.2 deals with
DAD's runtime characteristics, concentrating on its use of stack and heap space. The execution speed of
DAD code was not examined in detail in light of the current level of maturity of the DAD system.

5.1 Preprocessor Properties

This section looks at some properties of the DAD preprocessor, in particular the time it takes to
translate a file and the relative size of the resultant Ada files. The graphs use the program numbers
given in Table 6, with the number 16 to representing the case study. The preprocessor times and
resultant file sizes are for the entire programs (excluding DAD libraries). A more objective file
size measure than "lines of code" was obtained by stripping out all comments and then counting
Ada / DAD tokens. The sed script used to measure file sizes is given in Appendix A.

5.1.1 Preprocessor Time

This section looks at the time taken to preprocess DAD files. Of particular interest is
how the preprocessor time depends on the size of the DAD program.

Timing measurements were made on a single user SUN SPARC IPC with 24Mb of
memory running SunOS 4.1.1 and OpenWindows. The DAD executables were on a
remotely mounted NFS file system. The measurements are UNIX elapsed clock times,
measured using the UNIX date system call, averaged over 10 runs.

Figure 2 plots preprocessing time versus DAD file size for the sample programs. It
is difficult to draw any firm conclusions because there are no mid-range data points
but the shape appears to lie between linear and quadratic. More detailed investigation
would be required to determine the exact relationship and its root cause.

The Ada compilation times for the generated files were found to be on average 5 times
as long as the preprocessing time. Thus, DAD preprocessing does not have a significant
impact on overall compilation times. However, it was not possible to compare these
times to the compilation times for equivalent programs written in Ada.

41

5.1.2 Code Expansion

This section compares the size of DAD files to the corresponding generated Ada files.
This gives some indication of the succinctness of DAD compared to Ada for this style
of programming. However, a comparison with equivalent hand written Ada code might
give different conclusions.

Figure 3 plots the code size of DAD files against the size of the generated Ada code.
This graph appears to be linear, though sample program #15 is significantly off the line
of best fit. This is probably because much of the cruise control problem involves straight
forward arithmetical calculation. The remaining DAD programs are approximately half
the size of the generated Ada code.

UNCLASSIFIED 7

ERLW7 15-RN UNCLASSIFIED

Prlprces.or T.i" Vft.u. Did FIj.Sax.

Prwpronesso T. U1 I

90
+11 * IS

75

40

+ 14

45

30

15

+6 44 13
+16 12

0 4* * I -- i
0 1500 3000 4500 6000

DAD FAI. Saz.

Figure 2 Graph Showing the Time Taken by the DAD Prprocessor on Files of Various Sizes.

5.2 Runtime Performance Characteristics

This section looks at the runtime memory characteristics of DAD using "micro" benchmark
programs.

The programs were designed:

1. to compare the storage requirements for assigning first-class functions to variables
where optimisations either could, or could not, be made;

2. to compare the optimisation of a single rccursive first-class function to that for mutually
recursive first-class functions and

3. to compare these optimisations to those of other functional languages.

5.2.1 Background

It is a general property of a language with first class functions is that it is not possible
to use a simple stack to hold function arguments and local variables. This is because
variables may still be accessible via first class function values when the enclosing scope
is exited. For example:

procedure gen adder () procedure(: int
count :- 1

procedure add) int
count := count + 1
count

add

let adder - genadder C)
let res - adder()

In the above example, the space used to hold the count variable cannot be discarded
when a call to gen._adder completes. Instead the space must be retained as long as
the function value which has been assigned to adder is accessible by the program.

8 UNCLASSIFIED

UNCLASSIFIED ERL-07 15-RN

SlwO ofDA riles Cowp,1. d to G.,eeteod Ada. rIol.

10000

+ 14
+*1

7500 +15

#dA rile Size 5000

++ 13
12

2500

+6

74 3.416

01500 3000 4500 600

DAD File Size

Figure 3 Graph Showing the Rclationship Bctween the Sizes of the .d Files and Corresponding .ada Files.

The DAD system uses task instances to implement i..st class functions [9]. There is a
task for each function type, and new tasks are generated when a new function value is
created or a first class function is called. These tasks serve two purposes. Firstly, they
encapsulate the scope of a function within the body of a task so that nested first class
functions can access their local variables and arguments after the function has exited.
Secondly, they get around limitations of the Ada type system in order to pass classes
of first class functions as arguments and results. DAD's lazy values are handled in a
similar way.

The use of tasks to implement function values and function calls will generally lead to
substantial runtime overheads. However, there is considerable scope for optimisation
to reduce these costs. The possible optimisations fall into two categories; those which
are applicable to all functional languages, and those which relate specifically to DAD's
use of tasking.
A common practice in functional programming is to implement algorithms for list and

tree structures using recursive function calls. For example, the following function
searches for a given number in a list.

rec type Int_list (isempty: bool) is record
case is empty is

when true => empty: nil

when false -> cons : record(head : int;
tail : List(t]

end case;

rec procedure search (1: Int list, target: int): bool is
if l.is empty then false
Plse if l.cons.head - target then true
else search(l.cons.tail

UNCLASSIFIED 9

ERL-0715-RN UNCLASSIFIED

Close examination of the above function shows that the last thing done by a call to
search in most cases is a recursive call to itself. This is referred to u "tail recursion".
As a general rule, tail recursion can be optimised by replacing the call with code to
set up the call's new arguments followed by a branch to the start of the function. The
function's arguments and variables are effectively reused, so that for the example, the
stack space overhead is constant rather than being proportional to the length of the list.

A second general opuimisation involves analysing functions to see if their variables and
arguments need to be allocated in dynamic space. For example, if a scope does not
contain any code that generates function values, its variables can be allocated on the
stack.

The DAD specific optimisations are mainly in the area of resource reclamation. These
are necessary largely because typical Ada systems are not garbage collected and do not
reclaim orphaned tasks. The DAD preprocessor therefore needs to generate special code
for reclaiming tasks where possible. DAD primitive constructs that are implern'-nted in
Ada can also be hand optimised in various ways.

5.2.2 Methodology

The methodology used to examine the runtime behaviour of DAD programs was to
write some small benchmark programs, execute them to measure their space utilisation,
and examine the generated Ada code to try to understand the differences in the results.
The complete set of benchmark programs along with the corresponding generated Ad.,
code is given in Appendix B.

A fairly primitive technique was used to measure space utilisation. Sun UNIX provides
the user with the ability to set upper limits on a program's use of certain resources; in
particular the data size and the stack size. The shell built-in limit function' was used
to set these and the benchmarks were run to see how long they ran. Each benchmark
outputs one or more lines of text for each iteration, so progress can be measured by
counting the lines. The stack and data resource limits under the configuration used,
have a granularity of 4096 bytes and 8192 bytes respectively, but this has negligible
effect on the actual measurements.

It is worth noting that the benchmarks did not always terminate in the correct way under
some Ada implementations tested. The two programs which were dependent on the data
limit terminated with a "bus error" or "segmentation violation" rather than with an Ada
STORAGE-ERROR exception as required by the Ada Reference Manual.

5.2.3 First-class Function Generators and Variables

The function_generator and_call program is designed to examine the storage
overhead of first class function instances. It creates a large array of functions and loops
to initialise the array elements with a trivial function value:

type FN is function return INTEGER;

type FNGEN is function (I:INTEGER) return FN;

type FNARRAY is array (0..100000) of FN;
FNS : FNARRAY

I : INTEGER;

7lMs Son manual page for limit(l) statcs that the datasize limit covers both the stack and data segments. In fact,
apsehumus indicate that it only covers the data segment, as is implied by its name.

10 UNCLASSIFIED

I

UNCLASSIFIED ERL-0715-RN

-- GENERATOR generates functions of type FN
function GENERATOR : FNGEN

function : FN is
begin

return I;
end;

begin
-- create functions & output there value
for I in FNS'RANGE loop

FNS(I) :- GENERATOR(I);
put line(INTEGER' IMAGE(FNS (Il)));

end loop;

end;

The variable recursion program is designed to examine the storage overhead
of calls to first class functions using function variables. It is a nonterminating recursive
loop where the recursive function call is made via a variable F:

type FN is function return INTEGER;

F : FN;

function FOO FN;

function FOO FN is
begin

F := FOO;
putline("In Foo");
return F0;

end;
function DUMMY: FN is

begin
return 1;

end;

begin
F :- DUMMY;
FOO 0;

end;

The functiongeneratorand call program generates function values and

then calls them. The function_generator program is a variant of func-
tiongeneratorandcall, which avoids the overhead of the final function calls,
replacing the original putline statement with:

putline("In Loop");

Figure 4 shows the UNIX data segment usage for each program against the number of
function values or instances created. The number of loop or recursive iterations before
the programs halted was found to be independent of the stack segment limit This
simply indicates that the recursion in variablerecursion is controlled by a task
or tasks rather than the main program.

The graphs show that the data space used by functiongeneratorand call.
variable-recursion and function-generator is a linear function of the
number of function values or instances created. The slopes of the graphs show
that the generation of each function value requires 31.8Kb and 31.2Kb in func -

UNCLASSIFIED 11

ERL-0715-RN UNCLASSIFIED

LINIT |IbI
FUMCTI0N.GC t#tATOAIOCrALL

2250 *
T +,

VARIABLE_RECURSION

2000 +

+ 0

1750 FUICTIONiGENURATOR

0

1500
+ 0 0

1250 0

1000 +

750

500 +

250 +

0*

0 30 60 90 120

Nufib.r of Fu-ct-oo Instances. Vaues or Call.

Figure 4 Number of Function Values or Instances versus the Data Segment Usage

tiongeneratorandcall and functiongenerator respectively. The ex-
tra 0.6 Kb used in function generatorandcall could be due to the additional
function call or it could be an artifact of the granularity of the measurement technique.
(Note that it is difficult to determine the overhead of function calls because simple calls
are optimised.)

The slope of the graph for variablerecursion shows that each new function
instance requires 20.7 Kb. This is noticeably less than the amount for memory re-
quired for each function value in function_generatorandcall and func-
tiongenerator, despite the relative simplicity of the functions.

The "knee" in the graphs beyond the "50Mb point indicates that another system
parameter is affecting the results for large data segment limits: in this case, the parameter
is most likely the amount of physical swap space available on the system.

5.2.4 Recursive First-Class Functions

The simplerecursion program is designed to examine the storage overhead of
recursive first class function calls. The FOO function is a simple nonterminating tail
recursive loop:

type FN is function return INTEGER;

function FOO : FN is
-- recursive first-class function
begin

put_line("In Fool,);
FO0();

end;

begin

12 UNCLASSIFIED

UNCLASSIFIED ERL-0715--RN

FOO 0;
end;

The mutualrecursion program is intended to examine the storage overhead of
mutually rccursive first class function calls. The FOO and DUMMY functions are used.

type FN is function return INTEGER;

function DUMMY : FN;

function FOO : FN is
-- mutually recursive with DUMMY

begin
putline("In Foo");
return DUMMYO; -- mutually recursive call

end;
function DUMMY: FN is
-- mutually recursive with FOO

begin
putline("In Dummy");
return FOO(; -- mutually recursive call

end;

begin
FOO 0;

end;

Figure 5 shows the UNIX stack usage for each program against the number of recursive
function calls in progress. The graph indicates that the relationship is linear and that
each recursive function call requires only 141 bytes of stack space for both programs.

The data segment limit had no effect of the number of function calls. Examination
of the generated Ada code indicates that the DAD preprocessor has deduced that the
functions create no function values and have no arguments and therefore has optimised
away the tasks normally used for performing first class function calls. No tail recursion
optimisation has been performed at this level. The stack usage graphs suggest that the
same is true for the Ada level.

$.2.S Conclusions

The DAD preprocessor performs some optimisation: when a function is not required to
be first-class or takes no arguments, the preprocessor does not generate any tasks for
instances of the function. A number of other desirable optimisations are not included

SC in the DAD compiler. The DAD system can make use of optimisations performed by
Ada compilers (when the appropriate options are selected); for example, the compiler
may be able perform some tail recursion optimisation. However, many of the possible
optimisations are the responsibility of the preprocessor, for example, an Ada compiler
cannot be expected to optimize tail recursion in first-class functions implemented using
tasks.

The storage overheads for unoptimised first-class function instances are approx-
imately 200 times the overhead for optimised function calls. The functions
FUNCTIONGENERATORANDCALL, VARIABLERECURSION and FUNCTION-
-GENERATOR all have storage overheads greater that 20 Kb per function compared to
141 bytes for SIMPLE RECURSION and MUTUALRECURSION where the optimisa-
tion is performed. The benefits of optimizing whenever possible appear to be substantial,
but only a limited number of optimisations are performed.

UNCLASSIFIED 13

ERL-0715-RN UNCLASSIFIED

LIMIT (Kb) +

SIMP1.9RICRIitcls
75000 - +

0 0
NUTUALRRECURS ION

0

60000 -

45000 -

30000 -

15000 -

0

0 3 6 9 12

Futncion Ca11s

Figure 5 Number of Function Calls versus Stack Usage

6 Benefits and Limitations

Many of the delivered papers claim that DAD is a useful language for rapid prototyping [8, 4, 9]. Others,
in particular "An Evaluation of the Declarative Ada Dialect", claim that it is not a general purpose rapid
prototyping language, but is useful for Ada programmers[I 1, 12]. This section considers the benefits
and drawbacks of using DAD for rapid prototyping, focusing mainly on development where the final
implementation of the system must be in Ada. In particular we look at

1. DAD compared to other functional languages,
2. the compatibility of DAD with standard Ada,
3. the robustness and maturity of the DAD language and preprocessor and
4. the portability of the DAD implementation strategy and physical implementation.

6.1 DAD and Other Functional Languages

There are two main points of comparison between DAD and other functional languages which are
used for rapid prototyping. These are the languages' succinctness and the performance of their
implementations.

Succinctness

DAD was designed to be Ada-like, so its syntax and constructs are less concise than those of other
functional languages. This is highlighted by the following quotes from Document 11 (written by
a semi-independent reviewer of DAD):)

"The drawback to DAD's busy syntax is that it detracts heavily from its usefulness as a
rapid prototyping language. More effort must be invested merely in expressing ideas in
the language, and alterations and rewrites become increasingly tedious."

As well as having a more verbose syntax than other functional languages, a number of features
present in most functional programming languages are absent from DAD. U

14 UNCLASSIFIED

I

UNCLASSIFIED ERL-0715-RN

"The absence of pattern matching and "natural" currying also does much to increase the
verbosity of DAD ... Furthermore, the need to explicitly write a function in curried
form tends to obscure the possibility of using currying ... the idea to use a partially
paramcterized function may well occur after it is written."

DAD provides a substitute for "natural currying" which enables programs to explicitly declare

functions which can be partially parameterizcd.

"It is in polymorphism, however, that Miranda has its great advantage."

It should be noted that DAD has limited polymorphism available through Ada generics. However
that offered by other fanctional languages is more powerful and less verbose.

Performance

The DAD preprocessor generates Ada code that relies heavily on Ada tasks and generics. Both
of these constructs have high time and space overheads. In addition, the DAD preprocessor
only performs a subset of the optimisations performed by other functional languages, resulting
in further time penalties.

Functional programmers often write programs for succinctncss. The compiler is then responsible
for ensuring the source code gets translated into an efficient implementation. Poor performance
often results in systems where the compiler does not make appropriate optimisations. As the
DAD compiler performs only a limited subset of the common optimisations, the use of DAD can
incur time penalties which are not possessed by other functional languages, and which may be
unacceptable in many applications.

DAD's usefulnoss as a rapid prototyping tool is limited when compatibility with Ada is not
required. If other functional languages are available, their use would be preferable.

6.2 DAD and Ada

As DAD is an extension of Ada it may offer some benefits in an Ada environment. There are
several things to consider:

1. How well do the syntactic and semantic extensions provided by DAD fit into the Ada

language?
2. Can Ada components be used in DAD programs?
3. Can DAD components be used in Ada programs?
4. How easy is it for Ada programmers to understand DAD programs? and
5. How easy is it for Ada programmers to learn to write DAD programs?

DAD Extensions of Ada

The syntactic extensions provided by DAD are well documented in the delivered papers, in
particular [6). In contrast, the documentation of DAD's semantics is limited; the sematics must
mainly be inferred from the examples or the implementation. There are a number of issues
regarding the use of DAD which could not be considered due to a lack of semantic information
(the current implementation is too immature to use as a basis for analysis), for example:

1. the interaction of first-class functions with Ada tasks,
2. the use of first-class functions in generic instantiations,
3. the effect of garbage collection (or lack of it) on program development.

In addition, the advent of Ada9X will raise other issues of compatibility.

These and other related issues are complex to address and remain unresolved.

Ada Components in DAD Programs

DAD programs can make use of standard Ada libraries and other reusable Ada components:
for example, the standard Ada libraries Calendar and Text 10 were used in the DAD code
developed as part of the ease study. However, Ada packages which use limited private types
requim adaptations to enable them to be used in DAD programs. This is because functions may

UNCLASSIFIED 15

ERL-0715-RN UNCLASSIFIED

only have in arguments, but objects of limited private types must be passed as in out parameter.
Simple buffer packages may be used to overcome these problems. The packages contain new
access types which reference the original limited private types.

DAD Components in Ada Programs

DAD libraries and components can also be used by Ada programs, provided the Ada programs
are preprocessed to translate the calls to DAD functions and the references to the DAD lazy types
and lazy objects.

The DAD library stream_pack as well as other lazy types may be useful additions to a
repository of reusable components Indeed the stream_pack library proved very useful during
the development of the case study. It is a hand-coded package which implements generic lazy
streams, where instances of streams may have multiple producers and consumers. When the full
generality of these streams are needed the package should provide efficient code. However, for
lazy streams with only one producer or consumer, other, more cfficient implementations may be
possible.

Other lazy types can be created using the DAD language constructs and the DAD preprocessor
can then be used to generate Ada code. As the implementation of lazy types requires some form
of concurrency control, DAD versions may gcnerate satisfactory Ada implementations.

Using DAD to construct lazy types should decrease their development time, since DAD code is
simpler to write than code which directly manipulates tasks and is also shorter. (The expansion
ratio for DAD to generated Ada code is approximately 4:1.) In general this brevity is at the
expense of performance, but hand-couing can produce more efficient code - as illustrated by the
library streampack.

Understanding DAD Programs

DAD programs use an Ada-style notation. Thus, programmers familiar with Ada should, in theory,
be able to read and understand simple DAD programs. Some programs which use lazy types and
first-class functions (including programs which are straight-forward applications of techniques
well-understood by functional programmers) may initially ause some difficulties.

As DAD programs are more succinct than their generated Ada counterparts, some DAD programs
may be understood more easily than equivalent Ada programs.

Writing DAD Programs

Ada is a procedural language. DAD was developed as an Ada-style language which supports the
functional programming paradigm. The functional programming paradigm is significantly different
from the procedural programming paradigm.

Ada programmers with no experience in functional programming cannot be expected to write
well-structured functional-style programs. The use of DAD for program development does not
guarantee the quality of the resulting programs. In fact, as DAD is a super-set of Ada, Ada
programmers are more likely to stick to the standard Ada subset with only limited use of the
DAD constructs.

The difference between the functional and procedural programming paradigms is seen as a major
impediment to the uptake of DAD in Ada environments. The difficulty in learning to program
in a functional language lies not with the syntax of the language, but rather with the underlying
concepts and techniques. The argument the DAD developers used to support the development of
DAD is debatable. They say that:

1. "the more new technology is presented as an increment to an existing one, the less
learning is necessary" and

2. "natural human resistance to innovation needs to be overcome by avoiding unnecessary
change" [4]

We believe that these are some of the main reasons why the DAD features will not be adopted -

even if its use was mandated within an organisation. The presence of all the Ada concepts in the

16 UNCLASSIFIED

L

UNCLASSIFIED ERL-0715-RN

new language enables Ada programmers to program in standard Ada. It is precisely those who
are resistant to change who will continue to program in Ada.

6.3 Robustness and Maturity

The previous discussions in this section assume that the DAD language and preprocessor are robust.
However, as mentioned in Section 4. a number of problems, including incorrect translations, were
encountered while using the DAD preprocessor during the implementation of the case study.

Several of the incorrect translations lead to runtime errors which were difficult to trace with some
of the Ada systems. The debugging of generic instantiations was not supported on one system,
while another propagated tasking exceptions when other exceptions arose earlier and should have
been propagated.

The incorrect translation of DAD exception handlers was particularly annoying, since exception
handlers would have been useful in determining some of the other incorrect translations.

Errors occurring during the compilation or preprocessor phases were relatively easy to relate to the
DAD source code, despite the simplistic error tracking procedures available. The only supported
method for tracing errors detected during the Ada compilation to DAD coding errors is a mapping
between the DAD and Ada lines. (See Document 3 in [2].)

In summary, the DAD preprocessor cannot be considered as mature or robust. It still produces
translation errors for simple constructs and it was easy to produce new programs which were
translated incorrectly. The maturity of the language is harder to assess. However the discussions
above indicate areas where it could be improved.

6.4 Portability

The portability of DAD is limited by

1. The use of Ada compiler dependent features in the generated code and the DAD
runtime system.

2. The preprocessor's inherent dependence on the file system used.

While the DAD preprocessor must be file system dependent, its implementation has not been
developed with due consideration for portability. Its use of hidden directories and lack of
encapsulation of the I/O make porting more arduous than it need be.

More important is the DAD preprocessor's use of Ada tasks, priority and generics. The imple-
mentation and scheduling of tasks are compiler dependent. This can result in different compilation
problems and run-time behaviour for different compilation systems.

DAD's heavy use of tasking and generics can also cause Ada compiler dependent limits to be
violated. For example, breaches due to the excessive nesting of generics were common during this
evaluation. While the DAD developers are not responsible for the current state of Ada compilers,
they should acknowledge the compilers' known limitations. The DAD preprocessor should have
been designed to function correctly within them.

7 Conclusions

The DAD language and its implementation can be viewed both as:

1. an experiment to demonstrate to the Ada community that Ada should be extended to support
the functional programming paradigm, and

2. an experiment in defining an Ada compatible prototyping language.

UNCLASSIFIED 17

ERL-0715-RN UNCLASSIFIED

7.1 DAD as a Demonstration to the Ada Community

The DAD language and preprocessor have shown that the Ada language can be extended to support
the functional programming paradigm by adding first class functions and lazy types. The preprocessor
demonstrates that first class functions can be successfully implemented using the existing Ada tasking
mechanisms.

In spite of the above points, the DAD work is not likely to succeed in the broader aim of convincing the
Ada community that Ada should support the functional programming paradigm:

1. The DAD work does not demonstrate that adding support for the functional paradigm improves
the Ada language. Some of the main benefits of pure functional programming [13] are:
1) programs are easier to understand and reason about as they do not contain assignment
statements, 2) it encourages thinking at higher levels of abstraction, 3) it aids automatic
parallelisation due to the absence of side-effects, 4) it is the basis for many applications in
Artificial Intelligence, 5) it is valuable in developing executable specifications and prototype
implementations, and 6) it provides a simple framework for studying computer science. It
is clear that many of these benefits are reduced in languages such as DAD which allow
assignment.

In addition, DAD supports, and in some cases requires, a mixture of functional and procedural
programming. Little research has been done in this style of programming, and is not clear
whether (well-written) DAD programs using a mixed paradigm programs would be easier to
understand than equivalent pure Ada programs. In particular, there is reason to believe that
mixed paradigm programs that mix lazy types and conventional Ada tasks would be very
difficult to understand.

2. Specifying the semantics of DAD using prototypical translations of DAD constructs into Ada
does not give the reader much confidence that interactions between the semantics of DAD
constructs are well understood. In their defence, the DAD researchers were hampered by the
lack of a formal specification for Ada.

3. In our opinion, the approach that the researchers took to implementing DAD is not likely to
convince the Ada community that the functional programming paradigm can be supported
without a substantial performance penalty. The main problems are the assumptions that
DAD makes about the implementations of dynamic storage management and tasking in the
underlying Ada runtime systems:

a. The DAD implementation strategy makes extensive use of tasking, with closures im-
plemented using dynamic task creation and first class function calls implemented using
task switching. In practice, dynamic task creation and task switching are more expen-
sive in runtime resources compared with the techniques normally used to implement
first class functions. Even with a specially tuned implementation of Ada tasking, we
would expect the cost of a DAD style first class function call to be at least an order of
magnitude slower than either a conventional Ada function call or a first class function
call implemented in the conventional way.

b. The DAD implementation strategy seems to assume that tasks are garbage collected by
the Ada system. Without a garbage collector, trivial DAD programs can consume vast
amounts of memory very quickly. The problem is that very few Ada implementations
include garbage collectors, probably because there is little demand for them. In our
experience, most Ada programmers view garbage collection as very costly in machine
resources, and require hard evidence to convince them otherwise.

We acknowledge that the DAD researchers never aimed to produce a DAD implementation
that is competitive with mature implementations of Ada or functional languages. Furthermore,
they clearly did not have the resources needed to do so. However, given the emphasis that
the Ada community places on efficiency, we believe that a different approach would have
been more appmpriate.

18 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

7.2 DAD as an Ada Compatible Prototyping Language

The second view of DAD is of an Ada compatible prototyping language. Once again, the DAD has

sucreeded in showing that some linguistic features that are appropriate to prototyping can be added to
Ada. The example DAD programs supplied by UQ and those developed by the authors show that DAD
can be used for prototyping small-scale problems that do not require much functional style computation.

When DAD is compared against other prototyping languages such as Smalltalk, ML and Miranda. it can
be seen to have drawbacks in the following areas:

1. Succinctness: A general requirement of prototyping languages is that they allow algorithms to
be expressed clearly and succinctly. Since the syntax of DAD is a superset of standard Ada.
DAD programs are generally more verbose than equivalent programs in other prototyping
languages. This can be attributed to Ada's 1) being statement oriented rather than expression
oriented, 2) requiring explicit types in all declarations, and 3) having a generally wordy
syntax.

2. Currying: Most functional languages support partial instantiation of the arguments of a higher
order function by currying. In DAD, the programmer has to resort to explicitly defining a
new function to do this.

3. Polymorphism: Most prototyping languages support polymorphism using both static and
dynamic typing. In many such languages, polymorphism is further enhanced by subtyping or
inheritence. In DAD, as in Ada, the only form of polymorphism available is through generics.

4. Storage Management: Nearly all prototyping languages try to hide the problems of dynamic
storage allocation and deallocation from the programmer by providing automatic reclamation
of garbage. In most cases, the programmer can ignore the issue entirely when building a
prototype.

In DAD, the problem of storage management largely falls on the programmer in practice.
While it is possible to ignore the issue in "toy" problems, this approach is not viable for
medium to large scale prototypes. Hand coding storage management is labour intensive and
error prone in general, and will be especially so for programs written using the functional
paradigm.

The DAD authors have argued that this is a problem with the current DAD implementation
that will go away in a garbage collected implementation. We believe it would have been
better to have written the DAD language definition to say that a full implementation requires
garbage collection.

One of the main potential advantages of DAD compared to other prototyping languages is its ability to
make use of pre-existing Ada code. It is hard to say what impact a complete, stable implementation of
DAD would have in this area. The DAD authors have recogniscd that it is necessary to write "wrappers"
for Ada private types to allow them to be used in a functional way. It is not clear whether other changes
would need to be made for more complex softwahe to allow it to be used with DAD.

The DAD authors suggest that since DAD is compatible with Ada, it would be possible to obtain
production quality Ada software by refining a DAD prototype. While this may be true, it has not been
demonstrated that this approach is practical. We think that DAD code that makes extensive use of lazy
types is likely to be especially difficult to transform.

Tbe testing and analysis of the DAD system carried out in SE group have clearly demonstrated that the
current implementation is not sufficiently mature for it to be used for serious prototypin- work. The
main problems identified are as follows:

1. DAD bugs: In a couple of cases, the DAD preprocessor has shown to generate incorrect Ada
code. In particular, both nested first class function definitions and exception handlers am
translated into Ada code that does not compile correctly. In addition, the DAD preprocessor
and runtime system make non-portable assumptions about target Ada compilers and the
implementation of tasking on target Ada systems.

2. Target Ada system bugs: The DAD preprocessor generates code that relies heavily on nested
generics and Ada tasking in ways that are radically different from a conventional Ada program.

UNCLASSIFIED 19

ERL-0715-RN UNCLASSIFIED

This has shown up a variety of problems in the 3 Ada systems used as targets. These ranged
from compiler imposed restrictions on the number of levels of nesting of generics (VAX
Ada), through to compiler and runtime system crashes, and totally inadequate support for
debugging generics (Telesoft Ada).

While the DAD authors should not be blamed for these problems, this is a weak link
in their implementation strategy. Notwithstanding the efforts of AJPO in validating Ada
compilers, it is well known that many vendors' offerings are distinctly second rate, especially
in infrequently used aspects of the Ada language.

3. Performance: The test results reported in this paper clearly show that the current implemen-
tation of first class functions in DAD is very "memory hungry". Inspection of the generated
Ada code shows that simple optimisations normally performed by compilers for functional
languages have not been performed. This, and other evidence, suggests that use of the current
DAD implementation for serious prototyping work is likely to run into major performance
problems.

4. Ease of use: The authors' experience in using the current DAD implementation to develop
the furnace controller example is that it is not easy to use. The main problems are:

a. Bugs and shortcomings in the DAD and Ada systems mentioned above.
b. Difficulty tracking Ada compilation and execution errors back to the DAD source code.
c. The lack of suitable debugging tools in general and under Telesoft in particular.

5. Incomplete testing: Judging from the nature of some of the problems found during testing, and
analysis, the authors suspect that the DAD preprocessor has not been subject to methodical
testing, or large scale ad-hoc testing. This concern should be addressed before DAD is used
for serious prototyping work.

In summary, the authors do not believe that the current implementation of DAD is suitable for serious
medium or large-scale prototyping. Even assuming that the concerns relating to the current implemen-
tation are addressed, it is not clear that DAD would be superior to existing prototyping languages in
the Defence context

The advantage of being able to interface DAD directly with Ada code should be measured against DAD's
shortcomings as a prototyping language. It may be more fruitful to pursue alternative approaches such
as providing support for interlanguage calls between Ada and Smalltalk, ML or Miranda.

The DAD software delivered by the University of Queensland is held by SE group. Any queries
concerning the DAD system should be directed to the authors or the Head of DSTO's Software
Engineering Group.

Acknowledgments

We. would like to thank Stefan Landherr for motivating tl-t': study and his assistance in the preparation

of this paper.

20 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

REFERENCES

[1] ANSI. Reference Manual for the Ada Programming Language, 1983.

[2] Paul A. Bailes, Dan Johnston, Eric Salzman and Li Wang. DAD - an Ada Preprocessor for Functional
Programming.

[3] Gina Kingston. A Reading Guide for the Declarative Ada Dialect (DAD). ITD Divisional Paper
ITD-92-19, Oct 1992.

[4] Paul A. Bailes, Dan Johnston and Eric Salzman. Rationale for the Design of an Ada Prototyping
Language. Technical report, No. 228. Language Design Laboratory, Key Centre for Software
Technology, Department of Computer Science, University of Queensland, August 1992.

(5] Paul A. Bailes, Dan Johnston and Eric Salzman. DAD Defined. Technical report, No. 229. Language
Design Laboratory, Key Centre for Software Technology, Department of Computer Science,
University of Queensland, August 1992.

[6] Paul A. Bailes, Dan Johnston, Eric Salzman and Li Wang. DAD Canonical Specification. Technical
report, No. 236. Language Design Laboratory, Key Centre for Software Technology, Department of
Computer Science, University of Queensland, August 1992.

(7] DAD Actual Translation Specifications (Document 5). DAD - an Ada Preprocessor for Functional
Programming, August 1992.

[81 Paul A. Bailes, Dan Johnston, Eric Salzman and Li Wang. Full Functional Programming in a
Declarative Ada Dialect (Document 1a). DAD - an Ada Preprocessor for Functional Programming.

(91 Paul A. Bailes, Dan Johnston and Eric Salzman. First-Class Functions for Ada. Technical report, No.
225. Language Design Laboratory, Key Centre for Software Technology, Department of Computer
Science, University of Queensland, August 1992.

[10] DAD Demonstrations (Document 6). DAD. an Ada Preprocessor for Functional Programming.
[11] Paul A. Bailes, Dan Johnston and Eric Salzman. Prospects for Ada Language and Technology R&D

(document 12). DAD an Ada Preprocessor for Functional Programming.
[121 Mark Pedersen. An Evaluation of the Declarative Ada Dialect (Document 11). DAD - an Ada

Preprocessor for Functional Programming, August 1992.
[13] Bruce J.MacLennan. Functional Programming - Practice and Theory. Addison-Wesley, 1990.

4 UNCLASSIFIED 21

ERL-0715-RN UNCLASSIFIED

I

22 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

APPENDIX A
SED Script for Determining Ada and DAD tokens

The following SED Script was produced to count thc number of tokens in an Ada or DAD source file.
Comme•ts are not counted.

#!/bin/sh

PROGRAM SYMCOUNT
AUTHOR STEPHEN CRAWLEY
DATE JANUARY 29
PURPOSE This script can be used to count the number of tokens
in a DAD or an Ada source code file.

sed -e 's/--.*//' \
-e Is/^\(.*\)"\(["]*\) ."/klk2!3"/g'
-e "s/:"=/*/!gIg \
-e 's/l'" \k- l!Igk
-e 's/<>/!/g' \
-e 's:-/=l!g' \
-e 's/<=/!/g' \
-e 's/>=!/g' \
-e ' s-l=-!-g'

-e ' sl<<l! lg'

-e 'sl>>/!/g'

-e 's/=>k!Ig' \
-e Is-\(([^] k([!-/]k)-kl k2-gp'k
-e 's-\([^] k [:@)-l \2-gp'k

-e 's-\([^]\)\([-]\)-\l \2-gp' \-e 'sk[kk[-]\)-\l \2-gp'

-e 's-\(-@]\)\([]\)-\l \2-gp' \
-e 'sk[~]~("]\)-\l k2-gp'k

$1) I wc

UNCLASSIFIED 23

ERL-0715-RN UNCLASSIFIED

24 UNCLASSIFIED

A

UNCLASSIFIED ERL-0715-RN

APPENDIX B
Source Code for Benchmarks

The sections in this appendix arc the DAD and corrcsponding Ada filcs for a series of programs designed
to look at the storage rcquiremcnLs for DAD programs.

B.1 DAD FunctionGeneratorAndCall Code

-- PROGRAM FUNCTIONGENERATORANDCALL

-- AUTHOR Gina Kingston

-- DATE 7 Oct 92

-- PURPOSE To test the storage implications of assigning unique
-- first-class functions to elements of an array.

-- ** This is a Declarative Ada Dialect (DAD) file **

17-- - - - - - - - - -

with TEXTIO;
use TEXTIO;

procedure FUNCTIONGENERATORANDCALL is

type FN is function return INTEGER;
-- main first-class function type

type FNGEN is function (I:INTEGER) return FN;
-- function type used to generate functions of first type

r

type FNARRAY is array (0..100000) of FN;
FNS : FNARRAY;
-- the array for the functions

I : INTEGER;

-- GENERATOR generates functions of type FN
function GENERATOR : FN GEN

function : FN is
begin

return I;
"end;

UNCLASSIFIED 25

ERL-0715-RN UNCLASSIFIED

begin
-- create functions & output there value
for I in FNS'RANGE loop

FNS(I) :- GENERATOR(I);
putline (INTEGER' IMAGE (FNS (I) ());

end loop;
-- re-output the values of the functions
-- this was included to ensure that garbage collection
-- would not effect the storage requirements for this program
for I in FNS'RANGE loop

put line(INTEGER' IMAGE (FNS (I)0));
end loop;

end;

B.2 Ada Function Generator And Call Code

with LAdalazy , DAda box_package
with DAda functions
with TEXT 10
use TEXT_10 ;
procedure FUNCTIONGENERATORANDCALL is

type DAda FN_params is record
null;

end record
DAda_FN dummyparams : DAda FN params
package DAda FN package is new DAdafunctions

(DAdaFN_params , INTEGER) ;
type FN is new DAdaFN_package.funct type
procedure DAda FN complete renames DAda_FN_package.kill functs
function DAda apply_FN (

DAda fn : in FN) return INTEGER
type DAda FN GEN_params is record

I : INTEGER
end record ;
package DAda FN GENypackage is new DAda functions

(DAda FN GENjparams , FN) ;
type FNGEN is new DAdaFNGEN.package.funct_type
procedure DAdaFNMGENMcomplete renames

DAdaFNMGEN_package.killfuncts
function DAda applyFNGEN

I : in INTEGER ;
DAda fn : in FN GEN) return FN

type FNARRAY is array (0 .. 100000) of FN
FNS : FN ARRAY ;

I : INTEGER ;
task type DAdaGENERATOR-task is

entry DAdainit (DAdaparams: in DAdaFNMGEN_params);
entry DAdaresult (result: out FN);

end DAda GENERATOR_task;
type DAda_GENERATORtask ptr is access DAdaGENERATORtask;
function GENERATOR (params: DAda FN GEN_params) return FN;
package DAda GENERATORreplacement is new

DAdaFNGENypackage.functgenerator (GENERATOR):
task body DAda GENERATOR task is

I INTEGER ;

26 UNCLASSIFIED

UNCLASSIFIED ERL-07 I15-RN

DAda_,params : DAdaFN-GEN-params

begin
accept DAda mnit

DAdaJparams in DAda_FNGENJparams)do
DAda_-GENERATOR-task.DAdayparams :- DAdayparams
DAdaGENERATOR-task.I :- DAda~params.I

end DAda mnit
declare

function DAD-fundl
DAda~.yarams :in DAda_FNyparams) return INTEGER is

begin
return I

end DAD-fundl;
package DAda_-DAD-funcl replacement is new

DAdaFNypackage.funct generator (DAD-fundl
begin

DAda-res :- FN(DAdaDAD-funcl-replacement.make)
accept DAda-result(

result out FN) do
result :=DAda res

end DAda-result
end ;

end DAdaGENERATOR task;
function GENERATOR7(params: DAda_-FN -GENyparams) return FN is

DAda: DAdaGENERATOR-task~ytr := new DAdaGENERATOR-task;
DAda-rslt: FN;

begin
DAda.DAda ini t (params);
DAda.DAda result (DAda-rslt);
return DAda rslt;

end GENERATOR;
function DAda -apply__FNGEN

I :in INTEGER;
DAda-fn : in FNGEN) return FN is

begin
return DAda_-FN -GENjpackage.apply (DAdaFN -GEN~params CI -

I) , DAda_-FN_-GENypackage.funct type (DAda-fn)
end DAda -apply FNIGEN;
function D)Ada apply_ FN

DAda-fn :in FN) return INTEGER is
begin

return DAda_-FN~package.apply (DAda_-FN -dumrmyjparams
DAda_-FNypackage.funct-type (DAda_fn)

end DAda appl yFN;
begin

for I in FNS 'range loop
FNS (I):- GENERATOR (DAda_-FN GENJparams '(I ->I

put-line CINTEGER I IMAGE CDAd-a FN~package.apply
DAdaFN-dummyyparams
DAdaFNjPackage.funct type (FNS (I)))

end loop;
for I in FNS 'range loop

put-line CINTEGER I IMAGE CDAda FN~package.apply
DAdaFN-dunm~yparams
DAdaFN~package.funct-type (FNS (I)))));

UNCLASSIFIED 27

ERL-0715-RN UNCLASSIFIED

end loop ;
DAdaGENERATOR replacement.kill ;
DAdaFNGENpackage.killfuncts ;
DAda FNpackage.killfuncts

end FUNCTIONGENERATORANDCALL;

B.3 DAD Simple-Recursion Code

-- PROGRAM :- VARIABLERECURSION

-- AUTHOR Gina Kingston

-- DATE 4 Nov 92

-- PURPOSE To test the storage implications of recursive
-- first-class function calls

-- ** This is a Declarative Ada Dialect (DAD) file **

with TEXT_10;
use TEXT_10;

procedure SIMPLERECURSION is

type FN is function return INTEGER;
-- type for the first-class function

function FOO : FN is
-- recursive first-class function
begin

put line('In Foo');
FOO() ;

end;

begin
FOO() ;

end;

B.4 Ada Simple-Recursion Code

with LAda lazy , DAdabox_package ;
with DAda functions
with TEXT 10 ;
use TEXT_10 ;
procedure SIMPLERECURSION is

type DAdaFNparams is record
null;

end record ;
DAdaFNP3dummy_params : DAdaFN-params
package DAdaFNpackage is new

28 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

DAdafunctions (DAda_FN_params , INTEGER
type FN is new DAdaFNpackage.functtype ;
procedure DAdaFN_complete renames DAdaFN package.kill_functs
function DAdaapplyFN (

DAda fn: in FN) return INTEGER
function FOO

DAdajparams : in DAdaFN_params) return INTEGER is
begin

put line I "In Foo"

return FOO (DAdaFNdummyparams
end FOO;
package DAdaFOO replacement is new

DAda FN_package.functgenerator (FOO
function DAda_apply_FN (

DAda fn : in FN) return INTEGER is
begin

return DAdaFN_package.apply (EAdaFN dummy_params
DAdaFNpackage.functcype (DAdafn)

end DAda apply FN;
begin

declare
DADf : INTEGER := FOO (DAda FN dummy_params

begin
null;

end ;
DAda__FOO-replacement.kill
DAda__FNpackage.killfuncts

end SIMPLERECURSION;

B.$ DAD VariableRecursion Code

-- PROGRAM FUNCTIONGENERATOR

-- AUTHOR :- Gina Kingston

-- ýATE :- 4 Nov 92

-- PURPOSE To test the storage implications of assigning a
- - first-class function to variable and returning its
S-- value from within the function.

-- ** This is a Declarative Ada Dialect (DAD) file **

with TEXT 10;
use TEXT_10;

procedure VARIABLERECURSION is

r type FN is function return INTEGER;
- -- type for the function

UNCLASSIFIED 29

ERL-0715-RN UNCLASSIFIED

F : FN;
-- variable which takes function values

function FOO FN; -- needed so that foo recognises the name foo

function FOO FN is
-- main first-class function which uses the variable F.

begin
F :- FOO;
put line("in Foo");
return F0;

end;
function DUMMY: FN is
-- function for the inital value of the variable

begin
return 1;

end;

begin
F :- DUMMY;
FOO0;

end;

B.6 Ada Variable-Recursion Code

with LAdalazy , DAda box-package
with DAdafunctions
with TEXTIO
use TEXT 10
procedure VARIABLERECURSION is

type DAda_FN_params is record
null;

end record
DAda_.FN__dummyparams : DAda FN params
package DAdaFN_package is new

DAdafunctions (DAdaFNyparams , INTEGER
type FN is new DAda FN.package.funct_type ;
procedure DAdaFN complete renames DAdaFNypackage.kill functs
function DAda applyFN (

DAdafn : in FN) return INTEGER
F : FN ;
function FOO

DAda_params : in DAdaFNparams) return INTEGER
package DAda_FOO replacement is new

DAda _FNpackage.functgenerator (FOO) ;
function FOO (

DAda params : in DAdaFNparams) return INTEGER is
begin

F :- FN(DAda FOO replacement.make) ;

putline ("In Foo") ;
return DAda_ FN ackage.apply (DAda FN dummyparams

DAdaFNypackage.functtype (F))
end FOO;
function DUMMY

DAda params : in DAdaFN_params) return INTEGER is

30 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

a begin
return 1

end DUMMY;
package DAdaDUMMYreplacement is new

DAda FNypackage.functgenerator (DUMMY
function DAda applyFN (

DAdafn : in FN) return INTEGER is
begin

return DAdaFN_package.apply (DAdaFN dummy_params
DAda FNypackage.funct type (DAda_fn)

end DAda apply_FN;
begin

F :- FN(DAdaDUMMYreplacement.make)
declare

DADf : INTEGER := FOO (DAda FN dummyparams
begin

null;
end ;
DAda DUMMY replacement.kill
DAdaFOO replacement.kill ;
DAdaFOO-replacement.kill ;
DAdaFNpackage.killfuncts

end VARIABLERECURSION;

B.7 DAD MutualRecursion Code

-- PROGRAM MUTUALRECURSION

-- AUTHOR Gina Kingston

-- DATE 4 Nov 92

-- PURPOSE To test the storage implications of mutually recursive
-- first-class functions.

-- ** This is a Declarative Ada Dialect (DAD) file **

with TEXTIO;
use TEXTIO;

procedure MUTUALRECURSION is

type FN is function return INTEGER;
-- function type f.r first-class functions

function DUMMY : FN;
-- define function for first mutually recursive call

UNCLASSIFIED 31

A

ERL-0715.-RN UNCLASSIFIED

function FOO : FN is
-- mutually recursive with DUMMY

begin
put-line("In Foo");
return DUMMYO; -- mutually recursive call

end;
function DUMMY: FN is
-- mutually recusive with FOO

begin
putline("In Dummy");
return FOO(); -- mutually recursive call

end;

begin
FOOC ;

end;

B.8 Ada MutualRecursion Code

with LAdalazy , DAda_box_package
with DAda functions
with TEXT_1O ;

use TEXTI0 ;
procedure MUTUAL RECURSION is

type DAdaFNJparams is record
null;

end record
DAdaFN-dummy_params : DAdaFN_params
package DAdaFN_package is new

DAdafunctions (DAda FN_params , INTEGER
type FN is new DAda FN package.functtype ;
procedure DAda FN complete renames DAdaFN package.killfuncts
function DAdaapply FN (

DAda fn : in F') return INTEGER ;
F : FN ;
function DUMMY

DAda_params : in DAdaFN-params) return INTEGER ;
package DAdaDUMMYreplacement is new

DAda FNpackage.funct_generator (DUMMY
function FOO (

DAda_params : in DAdaFN-params) return INTEGER is
begin

put-line ("In Foo"
return DUMMY (DAdaFN dummy params

end FOO;
package DAdaFOOreplacement is new

DAda FN yackage.functgenerator C FOO
function DUMMY (

DAJaparams : in DAdaFNparams) return INTEGER is
begin

put_line ("In Dummy"
return FOO (DAdaFN dummyparams

end DUMMY;
function DAda applyFN #

DAdafn : in FN) return INTEGER is

32 UNCLASSIFIED----------

UNCLASSIFIED ERL-0715-RN

begin
return DAdaFN~package.apply (DAdaFN -dummyyparams

DAdaFN~package.funct type (DAda-fn));
end DAda applyFN;

begin
declare

DAD-f :INTEGER := OO (DAda FN dummxyyparams ;
bs-gin

null;
end ;
DAdaDUMMY replacement.kill;
DAdaFOO-replacement.kill;
DAdaDUMMY replacement.kill;
DAdaFNypackage.kill-functs;

end MUTUALRECURSION;

t

UNCLASSIFIED 33

ERL-0715-RN UNCLASSIFIED

34 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

APPENDIX C
Source Code and Output File for the Case Study - TEMPS.

This following sections describe the case study implemented during the evaluation of DAD. The first
section contains the original DAD source, the second the gcnerated Ada source and the third is a sample
of the type of output produced by the program.

C.1 DAD Temps Code

-- PROGRAM :- TEMPS

-- AUTHOR Gina Kingston

-- DATE -- 22 Oct 92

-- PURPOSE To test how easey it is to write and use of DAD program

-- Implements a modified version of a proposed Ada tasking
-- example given by Dr Bo Sanden.

-- ** This is a Declarative Ada Dialect (DAD) file **

with STREAMPACK;
with CALENDAR; use CALENDAR;
with text io; use text io;

procedure TEMPS is

-- furnace outputs
type READING is record

DATE : TIME;
TEMP : INTEGER;

end record;
-- stream for furnace outputs
package READINGSTREAM is new STREAMPACK(READING);
function "&" (C : in READING; S : in READING STREAM.STREAM) return

READINGSTREAM.STREAM renames READINGSTREAM."&"

OUTPUT STREAM : READING STREAM.STREAM;

-- stream for furnace inputs

package INTERVALSTREAM is new STREAMPACK(INTEGER);

function "&" (C : in INTEGER; S : in INTERVAL STREAM.STREAM) return
INTERVALSTREAM.STREAM renames INTERVALSTREAM."&";

UNCLASSIFIED 35

0ERL)715-RN UNCLASSIFIED

-- number of furnaces
NUM FURNACES : constant :- 3;
-- used for maniputing the streams for furnace inputs
type INTERVALS is array (I..NUMFURNACES) of INTERVALSTREAM.STREAM;
INPUT-STREAMS : INTERVALS;

-- Controls the rate at which the furnaces take samples

-- **** This function was originally places inside
-- **** MAINFRAMEINPUT. However the task it generated was
-- **** similarly nested, but its scope was required to be global

function INPUT GENERATION(DUE : TIME; NEW VALUE : INTEGER) return
INTERVALSTREAM.STREAM is

begin
delay(DUE - CLOCK);
return NEWVALUE & INPUTGENERATION(DUE + 30.0, NEWVALUE + 1);

end INPUTGENERATION;

function MAINFRAMEINPUT return INTERVALS is
begin

return (INPUTGENERATION(CLOCK + 1.0, 2),
INPUTGENERATION(CLOCK + 2.0, 3),
INPUT GENERATION(CLOCK + 3.0, 4));

end MAINFRAMEINPUT;

-- Controls the Output to the Screen

procedure MAINFRAMEOUTPUT (OUTPUTSTREAM:
in out READINGSTREAM.STREAM) is

procedure OUTPUT(R : READING) is
YEAR YEARNUMBER;
MONTH MONTH-NUMBER;
DAY : DAYNUMBER;
SECONDS : DURATION;

begin
SPLIT(R.DATE, YEAR, MONTH, DAY, SECONDS);
PUTLINE("RECEIVED "& INTEGER'IMAGE(R.TEMP) & AT TIME " &

INTEGER'IMAGE(INTEGER(SECONDS)) & " OF " &
DAY NUMBER'IMAGE(DAY) & " / " &
MONTH NUMBER'IMAGE(MONTH) & " / &
YEARNUMBER'IMAGE(YEAR));

end OUTPUT;

begin

READINGSTREAM.HEADREQUEST(OUTPUTSTREAM);
loop

if READINGSTREAM.HEADAVAILABLE (OUTPUTSTREAM) then
OUTPUT (READINGSTREAM.HEAD (OUTPUTSTREAM));
OUTPUTSTREAM :- READINGSTREAM.TAIL(OUTPUTSTREAM);
READINGSTREAM.HEADREQUEST (OUTPUTSTREAM);

else

36 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

DELAY (0.5);
-- To enable switching to another function to occur

end if;
end loop;

end MAINFRAMEOUTPUT;

-- Merges two streams according to the date part of their elements.
-- Merged streams should already be ordered.

function DATEBASEDMERGE (51, S2 : in READINGSTREAM.STREAM) return
READINGSTREAM. STREAM is

begin
READINGSTREAM.HEADREQUEST(Sl);
READINGSTREAM.HEADREQUEST(S2);
if READING STREAM.HEAD AVAILABLE(S1) then

if READINGSTREAM.HEADAVAILABLE(S2) then
if READINGSTREAM.HEAD (Sl).DATE = READINGSTREAM.HEAD (S2).

DATE then
return READINGSTREAM.HEAD (SI) & (READINGSTREAM.HEAD (S2)

& DATE BASEDMERGE (READINGSTREAM.TAIL (Si),
READINGSTREAM.TAIL (S2)));

elsif READINGSTREAM.HEAD (Si).DATE < READINGSTREAM.HEAD(S2).
DATE then

return READING STREAM.HEAD (Si) &
DATEBASEDMERGE (READINGSTREAM.TAIL (SI), S2);

else
return READING STREAM.HEAD (S2) &

DATEBASEDMERGE (SI, READINGSTREAM.TAIL (S2));
end if;

else
return READING STREAM.HEAD (SI) &

DATEBASEDMERGE (READINGSTREAM.TAIL (Sl), 52);
end if;

elsif READING STREAM.HEAD AVAILABLE(S2) then
return READING STREAM.HEAD (S2) &

DATEBASEDMERGE (Si, READINGSTREAM.TAIL (S2));
else

delay 0.5;
return DATEBASEDMERGE (Si, S2);

end if;
end DATEBASEDMERGE;

-- Controls access to the thermometer

task THERMOMETER is
entry TEMPERATURE(TEMP: out INTEGER);

end THERMOMETER;

task body THERMOMETER is
CURRENTTEMP INTEGER : 0;

begin

UNCLASSIFIED 37

ERL-0715-RN UNCLASSIFIED

loop
select

accept TEMPERATURE(TEMP : out INTEGER) do
TEMP := CURRENTTEMP;

end TEMPERATURE;
CURRENTTEMP :- CURRENTTEMP + 1;

or
terminate;

end select;
end loop;

end THERMOMETER;

-- Procedural call to get the temperature.

-- This is included so that knowledge of the task representation
-- of the THERMOMETER is not required

function GET TEMPERATURE return INTEGER is
TEMP : INTEGER;

begin
THERMOMETER.TEMPERATURE(TEMP);
return TEMP;

end GETTEMPERATURE;

-- Controls the furnaces sampling

function SAMPLE (INT : INTEGER;
INPUTSTREAM : INTERVALSTREAM.STREAM) return

READING STREAM.STREAM is
function SAMPLEDUE (INT : INTEGER; DUE : TIME;

INPUTSTREAM : INTERVAL STREAM.STREAM) return
READINGSTREAM.STREAM is

begin
DELAY(DUE - CLOCK);
if INTERVALSTREAM.HEADAVAILABLE(INPUTSTREAM) then

INTERVALSTREAM.HEADREQUEST(INTERVALSTREAM.TAIL(
INPUTSTREAM));

return READINGSTREAM. "&" ((CLOCK, GETTEMPERATURE),
SAMPLEDUE(INTERVALSTREAM.HEAD(INPUT_STREAM),

DURATION(INT * 5) + DUE ,
INTERVALSTREAM.TAIL(INPUTSTREAM)));

else
return READINGSTREAM."&"((CLOCK, GETTEMPERATURE),

SAMPLEDUE(INT, DURATION(INT * 5) + DUE,
INPUTSTREAM));

end if;
end SAMPLEDUE;

begin
INTERVALSTREAM.HEADREQUEST(INPUTSTREAM);
return SAMPLE DUE (INT, CLOCK, INPUTSTREAM);

end SAMPLE;

-- main program

38 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

j | begin

1--) set up sampling rate (stream of changes)
-- 2) set up the stream of results (merged individual streams)
-- 3) output the results as they arrive at tne simulated mainframe

INPUTSTREAMS := MAINFRAMEINPUT;
OUTPUTSTREAM : DATEBASEDMERGE(SAMPLE(1, INPUTSTREAMS(1)),

DATEBASEDMERGE(SAMPLE(2, INPUTSTREAMS(2)),
SAMPLE(3, INPUTSTREAMS(3))));

MAINFRAMEOUTPUT(OUTPUTSTREAM);

end TEMPS;

C.2 Ada Temps Code

with LAdalazy , DAdaboxpackage
with DAda functions
with STREAMPACK
with CALENDAR
use CALENDAR
with text io
use text io ;

procedure TEMPS is
type READING is record

DATE : TIME
TEMP : INTEGER

end record
package READING STREAM is new STREAMPACK C READING) ;
function "&" (

C : in READING
S : in READING STREAM.STREAM

return READINGSTREAM.STREAM renames READINGSTREAM
OUTPUTSTREAM : READINGSTREAM.STREAM ;
package INTERVAL STREAM is new STREAMPACK (INTEGER)
function "&" (

C : in INTEGER
S : in INTERVALSTREAM.STREAM

return INTERVAL STREAM.STREAM renames INTERVAL STREAM "&" ;
NUMFURNACES : constant 3 ;
type INTERVALS is array (1.. NUMFURNACES

of INTERVAL STREAM.STREAM
INPUT STREAMS : INTERVALS
task type LAda taskINPUTGENERATION is

entry INPUT GENERATION
DUE : in TIME ;
NEWVALUE : in INTEGER
LAda : in INTERVAL STREAM.STREAM

end LAda_t ask_INPUTGENERATION;
type LAdatask_.INPUTGENERATIONptr is access

LAda.taskINPUTGENERATION
function INPUTGENERATION

DUE : in TIME ;
NEW-VALUE : in INTEGER) return INTERVALSTREAM.STREAM

task type LAda taskDATEBASEDMERGE is

UNCLASSIFIED 39

ERL-0715-RN UNCLASSIFIED

entry DATEBASEDMERGE (
Si , S2 : in READINGSTREAM.STREAM
LAda : in READINGSTREAM.STREAM

end LAda_task_DATEBASEDMERGE;
type LAda-taskDATEBASED_MERGEptr is access

LAda taskDATEBASEDMERGE
function DATE BASED MERGE (

Si , S2 : in READINGSTREAM. STREAM
return READINGSTREAM.STREAM

task type LAda taskSAMPLE is
entry SAMPLE (

INT : in INTEGER
INPUTSTREAM : in INTERVALSTREAM. STREAM
LAda : in READINGSTREAM.STREAM

end LAda_taskSAMPLE;
type LAdataskSAMPLEptr is access LAdataskSAMPLE
function SAMPLE (

INT : in INTEGER
INPUTSTREAM : in INTERVALSTREAM. STREAM

return READINGSTREAM.STREAM ;
task body LAda taskINPUTGENERATION is

DUE : TIME ;
NEWVALUE : INTEGER
LAda : INTERVALSTREAM. STREAM

begin
accept INPUTGENERATION

DUE : in TIME;
NEW VALUE : in INTEGER
LAda : in INTERVAL STREAM.STREAM) do
LAda taskINPUTGENERATION.DUE := DUE
LAda task INPUT GENERATION.NEWVALUE := NEWVALUE
LAda taskINPUTGENERATION.LAda LAda

end INPUTGENERATION ;
INTERVALSTREAM.LAdaSTREAM_suspend (LAda
declare
begin

delay (DUE - CLOCK
INTERVALSTREAM.LAdaSTREAM transfer value (LAda

NEWVALUE &

INPUTGENERATION (DUE + 30.0 , NEW VALUE + 1)) ;
goto LAdaexit
<<LAda exit>>
INTERVALSTREAM.LAdaSTREAM completed (LAda

end ;
end LAda taskINPUT GENERATION;
function INPUTGENERATION

DUE : in TIME ;
NEW VALUE : in INTEGER) return INTERVALSTREAM.STREAM is
LAda : INTERVAL STREAM.STREAM :-

INTERVAL STREAM.LAda STREAM create
LAdaactive task : LAda taskINPUTGENERATION_ptr :

new LAda taskINPUTGENERATION
begin

LAda active task.INPUTGENERATION (DUE , NEWVALUE , LAda) ;
return LAda ;

end INPUT-GENERATION;

40 UNCLASSIFIED

UNCLASSIFIED ERL-0715.-RN

function MAINFRAMEINPUT return INTERVALS is
begin

return (INPUT GENERATION (CLOCK + 1.0 , 2)
INPUT GENERATION (CLOCK + 2.0 , 3)
INPUT GENERATION (CLOCK + 3.0 , 4)

end MAINFRAMEINPUT;
procedure MAINFRAMEOUTPUT

OUTPUTSTREAM : in out READINGSTREAM.STREAM) is
procedure OUTPUT (

R : in READING) is
YEAR YEAR NUMBER
MONTH MONTH NUMBER
DAY : DAY NUMBER ;
SECONDS : DURATION

begin
SPLIT (R . DATE , YEAR , MONTH , DAY , SECONDS
PUTLINE ("RECEIVED " & INTEGER ' IMAGE (R . TEMP) &

" AT TIME " &
INTEGER ' IMAGE (INTEGER (SECONDS)) &

"OF & DAY NUMBER IMAGE (DAY) &
"/ & MONTH NUMBER ' IMAGE (MONTH) &
"/ & YEARNUMBER IMAGE (YEAR

end OUTPUT;
begin

READINGSTREAM . HEADREQUEST (OUTPUTSTREAM
loop

if READINGSTREAM . HEADAVAILABLE (OUTPUT STREAM) then
OUTPUT (READINGSTREAM . HEAD (OUTPUTSTREAM)
OUTPUTSTREAM READINGSTREAM . TAIL

(OUTPUT STREAM
READINGSTREAM . HEADREQUEST (OUTPUTSTREAM

else
delay (0.5

end if;
end loop ;

end MAINFRAMEOUTPUT;
task body LAdataskDATEBASEDMERGE is

S1 , S2 : READING STREAM.STREAM
LAda : READINGSTREAM.STREAM

begin
accept DATEBASEDMERGE

Si , S2 : in READINGSTREAM. STREAM
LAda : in READING STREAM.STREAM) do
LAdataskDATEBASEDMERGE.S1 :- S1
LAdatask DATEBASED MERGE.S2 :- S2
LAda taskDATEBASEDMERGE.LAda :- LAda

end DATEBASEDMERGE ;
READINGSTREAM.LAdaSTREAM_suspend (LAda
declare
begin

READINGSTREAM . HEADREQUEST (S1)
READINGSTREAM . HEAD_REQUEST (C2)
if READING STREAM . HEADAVAILABLE (Si) then

if READINGSTREAM . HEADAVAILABLE S $2) then
if READING STREAM . HEAD (Si) . DATE -

r READINGSTREAM . HEAD (S2) . DATE then

UNCLASSIFIED 41

ERL-0715-RN UNCLASSIFIED

READINGSTREAM.LAdaSTREAM_transfer_value
LAda , READINGSTREAM . HEAD (Si) &

READING STREAM . HEAD (S2) &
DATE BASED MERGE

READING STREAM TAIL (S1
READINGSTREAM TAIL (S2))

goto LAdaexit ;
elsif READINGSTREAM HEAD (S). DATE <

READINGSTREAM HEAD (S2) DATE then
READINGSTREAM.LAdaSTREAMtransfervalue

LAda , READINGSTREAM . HEAD (Si) &
DATEBASED MERGE (

READING STREAM . TAIL (S1) , S2
goto LAdaexit

else
READINGSTREAM.LAdaSTREAM_transferEvalue

LAda , READINGSTREAM . HEAD S S2) &
DATEBASEDMERGE (S1

READINGSTREAM . TAIL (52)

goto LAdaexit
end if;

else
READING STREAM.LAdaSTREAM transfer value (LAda

READINGSTREAM . HEAD (SI) &
DATE BASED MERGE (

READING STREAM . TAIL (Si) , S2
goto LAdaexit

end if;
elsif READINGSTREAM . HEADAVAILABLE S S2) then

READING STREAM.LAda STREAM transfer value (LAda
READINGSTREAM . HEAD S $2) &
DATEBASED MERGE (S1
READINGSTREAM . TAIL S $2)

goto LAdaexit
else

delay 0.5
READINGSTREAM.LAdaSTREAMtransfervalue (LAda

DATE-BASED MERGE (Si , S2

goto LAda exit
end if;
<<LAda exit>>
READING STREAM.LAdaSTREAM completed C LAda

end ;
end LAda_task_DATE_BASEDMERGE;
function DATE BASED MERGE

Si , S2 : in READINGSTREAM. STREAM
return READINGSTREAM.STREAM is

LAda : READING STREAM.STREAM :
READING STREAM.LAdaSTREAM create

LAda.active task : LAdataskDATEBASED MERGE-ptr:-
new LAdataskDATEBASEDMERGE

begin
LAdaactive task.DATEBASEDMERGE (Sl , S2 , LAda) ;

return LAda ;
end DATEBASEDMERGE;
task THERMOMETER is

42 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

entry TEMPERATURE
TEMP : out INTEGER

end THERMOMETER;

task body THERMOMETER is
CURRENTTEMP : INTEGER 0

begin
loop

select
accept TEMPERATURE

TEMP out INTEGER) do
TEMP : CURRENTTEMP

end TEMPERATURE ;
CURRENTTEMP :- CURRENTTEMP + 1

or
terminate;

end select;
end loop ;

end THERMOMETER;
function GETTEMPERATURE return INTEGER is

TEMP : INTEGER
begin

THERMOMETER TEMPERATURE (TEMP
return TEMP

end GETTEMPERATURE;
task body LAda taskSAMPLE is

INT : INTEGER ;
INPUTSTREAM : INTERVALSTREAM.STREAM
LAda : READINGSTREAM.STREAM

begin
accept SAMPLE

INT : in INTEGER
INPUT STREAM : in INTERVALSTREAM.STREAM
LAda : in READINGSTREAM.STREAM) do
LAda taskSAMPLE.INT := INT ;
LAdataskSAMPLE.INPUTSTREAM INPUT-STREAM
LAda task SAMPLE.LAda := LAda

end SAMPLE ;
READINGSTREAM.LAdaSTREAMsuspend (LAda
declare

task type LAdataskSAMPLEDUE is
entry SAMPLE DUE (

INT in INTEGER
DUE in TIME ;
INPUT STREAM : in INTERVAL STREAM.STREAM
LAda : in READINGSTREAM.STREAM

end LAdataskSAMPLEDUE;
type LAdataskSAMPLEDUEptr is access

LAda task-SAMPLE DUE
function SAMPLEDUE

C INT in INTEGER
DUE in TIME ;
INPUTSTREAM : in INTERVALSTREAM.STREAM

return READING STREAM.STREAM ;
task body LAda taskSAMPLEDUE is

INT INTEGER
DUE TIME

UNCLASSIFIED 43

ER.-0715-RN UNCLASSIFIED

INPUT STREAM : INTERVAL STREAM.STREAM
LAda READINGSTREAM.STREAM

begin
accept SAMPLEDUE

INT in INTEGER
DUE in TIME ;
INPUTSTREAM : in INTERVAL STREAM.STREAM
LAda in READING STREAM.STREAM) do
LAda taskSAMPLEDUE.INT := INT ;

LAda task SAMPLE DUE.DUE DUE
LAda taskSAMPLEDUE.INPUTSTREAM :

INPUTSTREAM
LAda task SAMPLEDUE.LAda := LAda

end SAMPLE DUE *
READINGSTREAM.LAdaSTREAMsuspend (LAda
declare
begin

delay (DUE - CLOCK
if INTERVALSTREAM . HEADAVAILABLE

INPUTSTREAM) then
INTERVALSTREAM HEADREQUEST

(INTERVAL STREAM . TAIL (INPUT STREAM
READING STREAM.LAda STREAM transfer-value

LAda , READING STREAM . "&'*
(CLOCK , GETTEMPERATURE

SAMPLEDUE (
INTERVAL STREAM . HEAD (INPUT STREAM
DURATION (INT * 5) + DUE ,
INTERVALSTREAM . TAIL (INPUT_ TREAM

)))) ;

goto LAdaexit
else

READINGSTREAM. LAdaSTREAMtransfervalue
LAda , READINGSTREAM . "&" (

(CLOCK , GET TEMPERATURE)
SAMPLEDUE (INT ,

DURATION (INT * 5) + DUE
INPUTSTREAM)

goto LAdaexit
end if;
<<LAda exit>>
READINGSTREAM.LAdaSTREAMcompleted (LAda

end ;
end LAda_task_SAMPLEDUE;
function SAMPLE DUE

INT in INTEGER
DUE in TIME ;
INPUT STREAM : in INTERVALSTREAM.STREAM

return READING STREAM.STREAM is
LAda : READINGSTREAM.STREAM :

READINGSTREAM.LAdaSTREAMcreate ;
LAdaactivetask : LAdataskSAMPLEDUE ptr :-

new LAda taskSAMPLEDUE
begin

LAdaactive_task.SAMPLEDUE
INT , DUE , INPUTSTREAM , LAda) ;

44 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

return LAda
end SAMPLEDUE;

begin
INTERVAL-STREAM HEADREQUEST (INPUTSTREAM

READINGSTREAM.LAdaSTREAMtransfervalue C LAda
SAMPLEDUE (INT , CLOCK , INPUT-STREAM

goto LAdaexit
<<LAda exit>>
READINGSTREAM.LAdaSTREAM completed (LAda

end ;

end LAda task SAMPLE;
function SAMPLE (

INT in INTEGER

INPUTSTREAM : in INTERVALSTREAM.STREAM
return READING STREAM.STREAM is

LAda : READINGSTREAM.STREAM
READINGSTREAM.LAdaSTREAM create

LAdaactivetask : LAdataskSAMPLEptr

new LAda taskSAMPLE

begin
LAda active task.SAMPLE (INT , INPUTSTREAM , LAda
return LAda

end SAMPLE;
begin

INPUTSTREAMS MAINFRAMEINPUT

OUTPUTSTREAM
DATEBASEDMERGE (SAMPLE (1 INPUTSTREAMS (1

DATEBASEDMERGE (SAMPLE (2 , INPUTSTREAMS (2)

SAMPLE (3 , INPUTSTREAMS (3)))) ;
MAINFRAMEOUTPUT (OUTPUTSTREAM

end TEMPS;

C.3 Temps Output

RECEIVED 0 AT TIME 43282 OF 4 / 11 / 1992
RECEIVED 1 AT TIME 43282 OF 4 / 11 / 1992

RECEIVED 2 AT TIME 43282 OF 4 / I 1992
RECEIVED 3 AT TIME 43288 OF 4 /11 i 1992
RECEIVED 4 AT TIME 43293 OF 4 / 11 / 1992

RECEIVED 5 AT TIME 43294 OF 4 / 11 / 1992
RECEIVED 6 AT TIME 43299 OF 4 / 11 / 1992

RECEIVED 7 AT TIME 43303 OF 4 / 11 / 1992

RECEIVED 8 AT TIME 43304 OF 4 I 11 / 1992

RECEIVED 9 AT TIME 43313 OF 4 / 11 / 1992
RECEIVED 10 AT TIME 43314 OF 4 / 11 / 1992

RECEIVED 11 AT TIME 43319 OF 4 / 11 / 1992

RECEIVED 12 AT TIME 43324 OF 4 / 11 / 1992
RECEIVED 13 AT TIME 43334 OF 4 / 11 / 1992
RECEIVED 14 AT TIME 43334 OF 4 / 11 / 1992
RECEIVED 15 AT TIME 43335 OF 4 / 11 / 1992
RECEIVED 16 AT TIME 43344 OF 4 / 11 / 1992
RECEIVED 17 AT TIME 43349 OF 4 / 11 / 1992
RECEIVED 18 AT TIME 43354 OF 4 / 11 / 1992
RECEIVED 19 AT TIME 43355 OF 4 / 11 / 1992
PSCEIVED 20 AT TIME 43363 OF 4 / 11 / 1992

UNCLASSIFIED 45

ERL-0715-RN UNCLASSIFIEL

RECEIVED 21 AT TIME 43364 OF 4 / 11 / 1992

RECEIVED 22 AT TIME 43374 OF 4 / I1 / 1992

RECEIVED 23 AT TIME 43375 OF 4 / 11 / 1992

RECEIVED 24 AT TIME 43379 OF 4 / 11 / 1992

RECEIVED 25 AT TIME 43384 OF 4 / ii / 1992

RECEIVED 26 AT TIME 43393 OF 4 I 11 / 1992

RECEIVED 27 AT TIME 43394 OF 4 / 11 / 1992

RECEIVED 28 AT TIME 43395 OF 4 / 11 / 1992

RECEIVED 29 AT TIME 43404 OF 4 / 11 I 1992

RECEIVED 30 AT TIME 43409 OF 4 / 11 / 1992

RECEIVED 31 AT TIME 43414 OF 4 / 11 / 1992

RECEIVED 32 AT TIME 43415 OF 4 / I 1992

RECEIVED 33 AT TIME 43424 OF 4 / 11 / 1992
RECEIVED 34 AT TIME 43424 OF 4 / 11 / 1992

RECEIVED 35 AT TIME 43433 OF 4 / 11 / 1992

RECEIVED 36 AT TIME 43435 OF 4 / 11 I 1992

RECEIVED 37 AT TIME 43439 OF 4 / 11 / 1992

RECEIVED 38 AT TIME 43444 OF 4 / 11 / 1992

RECEIVED 39 AT TIME 43453 OF 4 / 11 / 1992

RECEIVED 40 AT TIME 43454 OF 4 / 11 / 1992
RECEIVED 41 AT TIME 43455 OF 4 / 11 / 1992

RECEIVED 42 AT TIME 43464 OF 4 / 11 / 1992

RECEIVED 43 AT TIME 43469 OF 4 / 11 / 1992

RECEIVED 44 AT TIME 43474 OF 4 / 11 / 1992

RECEIVED 45 AT TIME 43475 OF 4 / 11 / 1992
RECEIVED 46 AT TIME 43483 OF 4 / 11 / 1992

RECEIVED 47 AT TIME 43484 OF 4 / 11 / 1992
RECEIVED 48 AT TIME 43493 OF 4 I 11 / 1992

RECEIVED 49 AT TIME 43495 OF 4 / 11 / 1992

RECEIVED 50 AT TIME 43499 OF 4 / 11 / 1992

RECEIVED 51 AT TIME 43504 OF 4 / 11 / 1992
RECEIVED 52 AT TIME 43514 OF 4 / 11 / 1992

RECEIVED 53 AT TIME 43514 OF 4 / 1I 1992

RECEIVED 54 AT TIME 43515 OF 4 / 11 / 1992

46 UNCLASSIFIED

. .

UNCLASSIFIED ERL-0715-RN

APPENDIX D

Problems Encountered while Compiling and Executing DAD Programs

There was another discovery found when writing the VARIABLE-RECURSION.d program. It is very

easy to work around and may or may not be considered to be erroneous. The .d file contained such a
minor differences to the final VARIABLERECURSION that it %as not considered worthwhile to include
it separately. In the first-class function foo a variable is assigned to take the valuefoo. The translation

of this into Ada is incorrect when the function has not be specified separately first However in the

example given the program is ana'ogous to SIMPLERECURSION. The only difference being the use
of the variable.

PROGRAM COMPILER/LINKER PROBLEMS

Telesol't VAX Verdix

DAD standard files OK 1 OK 1 - ladajlazy.a

addn OK OK

ham 2 2 2 - ham.ada

mapfib 2 2 2 - mapfib.ada

mapprime 2 2 2 - mapprime.ada

primes OK OK

sfu 3 OK OK 3

setst 2 2 2 - sets.ada

yhand 2 2 2 - yhand.ada

ystub 4 4 - 4

ytest 4 4 -2 - ytest.ada
4

jstupl 2 2 - 2 - jstupl.adn
5

alrbit 2,3 2 - 2 - alrbit.ada
3

alLtbit-verb 2,3 2 - 2 - alt_bit verb.ada
3

dms 6 6 7 6,7

cruise_control 3,8 8 7 3. 7, 8

stream-test - - 9 - stream_tesLd

trial OK

trial_2 OK

tri_3 OK

tri_4 OK

tempsjl OK

tempsi2 OK

Table 1 DAD Programs and the Problems Encountered While Trying to Execute Them (Continued ...)

UNCLASSIFIED 47

ERL-0715-RN UNCLASSIFIED

PROGRAM COMPILER/LINKER PROBLEMS

Telesoft VAX Verdix

temps_3 - 10 - temps_3.d

temps_-4 OK OK

Table 1 DAD Programs and the Problems Encountered While Trying to Execute Them

PROBLEM COMPILER FIXABLE/
UNFIXED

Tasking Priority Range VAX FIXABLE

Pragma Priority was used with values 5, 10 and 20.
Vax only has priority values 0..15 (Default 7) so the values
had to be changed to lie within this range. Note that their
order relative to each other was maintained, but not with
respect to the default value.
Telesoft has priorities in the range 0.63 (Default 31).
Verdix has priorites in the range 0..99 (Default 0).

2. Number of Characters per Line of Code Telesoft FIXABLE

The DAD preprocessor generates Ada code with a VAX

maximum of 250 characters per line.
The Telesoft compiler requires line lengths to be a
maximum of 200 characters long. The VAX requires lines
to be at most 120 characters long. Hence some of the
generated files needed to be modified before they could be
compiled.
Verdix has a maximum of 499 characters per line.

3. PROGRAM ERROR Telesoft UNFIXED

A Program-Error occurred during Execution. For one
program it appears as if a call to TEXT_IO.OPEN caused
the problem. The others could not be debugged as the main
program consisted of statements which were calls to
instantiations of generics. The Telesoft compiler has a
known bug whereby generics and their instantiations cannot
be debugged.

4. Termination N/A UNFIXED

Two of the programs which should have terminated did not.
As NAME.kill is called when L- task is no longer required, it
appears as if at least one task was missed.

5. READ ME N/A FIXABLE

The compilation order in the READ-ME file was wrong.
One of the standard DAD libraries is overwritten by the
misplaced file.

Table 2 Problems Encountered While Trying To Execute DAD Programs (Continued ...)

48 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

6. Generic Nesting Telesoft FIXABLE

In some cases the compiler had difficulty due to the depth VAX

of nesting of the generics. This was fixed by directly
instantiating one or more levels of the generics.
The Telesoft error message gave no clues as to the cause of
failure.
>>> SEMANTIC: Exception in Middle Pass
>>> Internal Error: Operation Aborted.

7. Load Error Verdix UNFIXED

The error Id : VERDIX IIOME/standardi.
objectsllinkblock bOl : internal error occurrcd during
linking.
The cause of this error could not be determined.

8. Maths Library Telesoft FIXABLE

Telesoft, VAX and Verdix all have differently named maths VAX

libraries.
Telesoft's is called generic elementary Junctions, VAX's is
called math lib and Verdix's is called math.
This needed to be changed to the correct library from math.

9. GOTO in Exception Handler N/A N/A

A GOTO was placed in the exception handler by the DAD
preprocessor. This occured for a first-class function and
would probably occur for any function which must be
translated to a task by the preprocessor.

10. Scope of TASK Incorrect N/A N/A

When a function which returns a lazy type is nested the
task associated with it in the generated Ada code may have
the wrong scope. This occurs if the evaluation of the lazy
datast.ructure is only required outside of the scope of its
containing function.

Table 2 Problems Encountered While Trying To Execute DAD Programs

UNCLASSIFIED 49

ERL-0715-RN UNCLASSIFIED

50 UNCLASSIFIED

UNCLASSIFIED ERL-0715-RN

APPENDIX E
DAD Softwvare

This appendix describes the structure of the DAD directory as it was delivered, including descriptions
of the DAD commands, library packagcs and samplc programs.

E.1 Directory Structure

Table 3 describes the main directories of the DAD directory.

DIRECTORY CONTAINS

bin The scripts and binaries for creating and removing DAD libraries and
preprocessing DAD files.

demo The sample systems delivered. The subdirectories are numbered according to
the document in [21 where the systems are discussed.

lib The DAD runtime system (written in standard Ada) and DAD library packages
(written in DAD).

src The source files for the DAD preprocessor. DADCOM is a shell script for
building the system.

Table 3 DAD Directory Structure

E.2 DAD Preprocessor

The files in the bin directory are described in Table 4, the files in the demo directory are described
in the section on the demonstrations and the files in the lib directory are described in Table 5.

COMMAND PURPOSE EXAMPLE

dad Preprocesses DAD files (suffix . d) to obtain Ada dad addn.d
files (suffix . ada) as described in the manual page at
the end of [5]. (The -i option for generating
illuminated listings and -a option for invoking the
compiler have not been implemented for the Telesoft
version of the preprocessor. This binary is compiled
for the Sun 4 architecture.)

d.all Preprocesses a DAD file and then compiles and links d.all addn
the resulting Ada file.
NOTE:
1) The DAD file must contain a main unit with the
same name as the file.
2) The current directory must be setup for DAD.

d.mklib Sets up the current directory for DAD. (See below).

d.,rmlib Deletes all files generated by DAD and Ada
commands. (See below).

Table 4 DAD bin Directory

The d.mklib and d. rmlib scripts do not work correctly for TelesofL To perform the equivalent
of d.mklib, do the following:

1. Ensure that your environment variables are correctly set for the Telesoft tools. STELE-
SOFT (not STELESOFT/bin) should be in your path.

UNCLASSIFIED 51

ERL-0715-RN UNCLASSIFIED

2. Create a Telesoft library (e.g. samplib) and liblst. alb file.
3. Make the . dada, . dadasyms and . debug_table subdirectories.
4. Run the in, dad, and ada commands as in d.mklib.

To perform the equivalent of d. rmlib, do the following:

rm -rf .dada .dada_syms .debugtable *.ada
rm -rf samplib.obj samplib.sub

where samplib is the name of the Ada library created above.

FILE PROVIDES

stream-pack.d A generic lazy stream package.

a_.strings.a A package for variable length strings.
a_files.d A package which allows standard Ada files to be passed as parameters

to DAD functions and procedures.

Table 5 DAD 'lib' Directory

E.3 Demonstration Programs

The DAD source code for several demonstration programs was delivered along with the DAD
preprocessor. These programs reside in the demo subdirectory of the DAD directory.

PROGRAM DEMO ACTIONS
DIRECTORY

1 addn 6 An example of currying using functions which add
'n' to a number.

2 ham 6 Generates the Hamming number sequence.
3 mapfib 6 Returns the Fibonacci numbers with prime indices.

4 mapprime 6 Generates the squares of prime numbers.
5 primes 6 An imple. entation of the Sieve of Eratosthenes.

6 sfu 6 An example of using streams for sequential file
updates.

7 setst 7 An implemenation of seLs using their characteristic
functions.

8 yhand 7 A-expressions using hand generated laziness.
9 ystub 7 A-expressions

10 ytest 7 A-expressions using first-class functions.
11 jstupl 8 A solution to the Jobshop problem using streams.

12 alt_bit 9 Alternating Bit Protocol implementation.

13 alt.bit.vcrb 9 As above, with some generics expanded (to get

around Verdix Ada restrictions)

Table 6 Demonstration Programs (Continued ...)

52 UNCLASSIFIED

I

UNCLASSIFIED ERL-07 15-RN

PROGRAM DEMO ACTIONS
DIRECTORY

14 dms 10 An implementation of a Dependency Management
Systcm.

15 cruisecontrol 11 An implcmcntation of a Cruise Control for a car.
with a simulator.

Table 6 Dcmonstration Programs

The programs are grouped into further subdircctorics according to where they are documented.
The number of the subdirectory corresponds to the number of the document describing its contents
in [2]. The names of the demonstrations, their locations and, their intended function are given
in Table 6.

UNCLASSIFIED 53

ERL-0715-RN UNCLASSIFIED

I

54 UNCLASSIFIED

UNCLASSIFIED ERL-071S-RN

DISTRIBUTION

No. of Copies
Defence Science and Technology Organisation

Chief Defence Scientist
Central Office Executive) I shared copy

Counsellor, Defence Science, London Cont Sht

Counsellor, Defence Science, Washington Cont Sht

Scientific Adviser POLCOM I copy

Senior Defence Scientific Adviser I copy
Assistant Secretary Scientific Analysis I copy

Navy Office

Navy Scientific Adviser 1 copy

Air Office
Air Force Scientific Adviser 1 copy

Army Office
Scientific Adviser, Army I copy

Electronics Research Laboratory
Director I copy

Chief, Information Technology Division I copy

Chief, Electronic Warfare Division Cont Sht
Chief, Communications Division Cont Sht
Chief, Guided Weapons Division Cont Sht

Research Leader Military Computing Systems I copy
Research Leader Command, Control & Intelligence Systems Branch I copy

Head Software Engineering Group I copy

G. Kingston (Author) 3 copies

S. Crawley (Author) I copy
Head, Program and Executive Support I copy

Manager Human Computer Interaction Laboratory 1 copy

Head, Command Support Systems Group I copy

Head, Intelligence Systems Group I copy
Head, Systems Simulation and Assessment Group 1 copy

Head, Exercise Analysis Group 1 copy

Head, 01 Systems Engineering Group 1 copy

Head, Computer Systems Architecture Group I copy

Head, Trusted Computer Systems Group I copy

Head, Information Management Group I copy

Head, Information Acquisition & Processing Group I copy

Publications & Publicity Officer, Information Technology Division 1 copy

P. Bailes (University of Queensland) 2 copies

UNCLASSIFIED 55

4 • ERL-0715-RN UNCLASSIFIED

Libraries and Information Services
Australian Government Publishing Service I copy
Defence Central Library, Technical Reports Centre I copy

Manager, Document Exchange Centre, (for retention) I copy
National Technical Information Service, United States 2 copies
Defence Research Information Centre, United Kingdom 2 copies
Director Scientific Information Services, Canada I copy
Ministry of Defence, New Zealand I copy
National Library of Australia I copy

Defence Science and Technology Organisation Salisbury, Research Library 2 copies

Library Defence Signals Directorate I copy
British Library Document Supply Centre 1 copy

Spares
Defence Science and Technology Organisation Salisbury, Research Library 6 copies

)

36 UNCLAS• £iFLED

S1. Page Classification
Department of Defence

DOCUMENT CONTROL DATA SHEET 2. Privacy MarkingCaveat(of document)

3a. AR Number 3b. Laboratory Number 3c. Type of Report 4. Task Number
AR-008-466 ERL-0715-RN Research Note

5. Document Date 6. Cost Code 7. Security Cleeslficatlon 8. No. of Pages 62
JANUARY 1994 -W 9. No. of Refs. 13

Document Title Abstract

AN INDEPENDENT EVALUATION OF
THE DECLARATIVE ADA DIALECT S (Secret) C (Confi) R (Rest) U (Unclaes)

"For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L) in document box.

11. Author(s) 12. Downgradlngse'imlting Instructions

Gina Kingston and Stephen Crawley

13a. Corporate Author and Address 14. Officer/Position responsible for

Electronics Research Laboratory Security: ..
PO Box 1500, Salisbury SA 5108

Downgrading: ...
l31b. Task Sponsor Approval forRelease:...DERL ..

15. Secondary Release Statement of this Document

APPROVED FOR PUBLIC RELEASE

l6a. Deliberate Announcement

No Limitation

S16b. Casual Announcement (for citation In other documents)

x No Umitation [Rat. by Author, Doc No. and date only.

17. DEFTEST Descriptors 18. DISCAT Subject Codes
Ada (programming language) 120
Functional programming

C Declarative Ada Dialect'
Prototypes

19. Abstract

This paper provides an independent evaluation of the Declarative Ada Dialect (DAD), which allows
functional-style programming in Ada and was developed by the University of Queensland under a
Research Agreement with DSTO. It describes the use of DAD and discusses its benefits and limitations.

0o&S." wF11

